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RÉSUMÉ. Dans les années ’50,stimulé par les travaux de David Bohm,
Louis de Broglie remet en doute l’interprétation orthodoxe de la théorie
quantique. Il reformule alors son “programme de double solution” en
supposant que la particule obéit à une équation d’onde non-linéaire.
Dans cette approche, la particule quantique est semblable à un soliton,
stabilisé par une non-linéarité de type “self-focusing”. Loin du soli-
ton, là où l’amplitude de l’onde tend vers zéro, la non-linéarité serait
désactivée, et l’on retrouverait en bonne approximation l’ équation
d’onde linéaire de Schrödinger. de Broglie impose aussi la condition
d’accord des phases entre le soliton et l’onde de Schrödinger, censée
garantir le guidage de la particule par l’onde linéaire, en accord avec
l’équation du guidage qu’il avait déjà postulée en 1926. Nous nous in-
terrogeons ici sur le bien-fondé de ce programme, et sur la possibilité
de satisfaire aux nombreuses contraintes nécessaires à sa réalisation.

ABSTRACT. In the 1950’s, stimulated by the work of David Bohm,
Louis de Broglie puts into question the orthodox interpretation of the
quantum theory. He reformulates his “double solution program”, as-
suming that the particle obeys a non-linear wave equation. In this ap-
proach the quantum particle behaves as a soliton, stabilized by a non-
linearity of the self-focusing type. Far away from the soliton, in regions
where the amplitude of the wave goes to zero, the non-linearity would
be desactivated so that in good approximation the linear Schrödinger
equation would be satisfied. de Broglie also imposes the condition of
phase harmony between the soliton and the linear wave in order to
guarantee the guidance of the particle by Schrödinger’s wave, in agree-
ment with the guidance equation already postulated by him in 1926. In
the present paper we question the realizability and the self-consistency
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of this program, and also the possibility to satisfy the numerous con-
straints required by its fulfillment.

Key words double solution, soliton, non-linear Schrödinger equa-
tion, wave monism, trajectories in configuration space.

Preamble: thirty years of quest, finding my way
through de Broglie’s double solution program.

At the beginning of the completion of my Ph.D, in 1992, I was invited
to participate to the colloquium La physique quantique -”Pour raison
garder” (Centenaire de Louis de Broglie) in Les Treilles1, a magnificent
domain in the Haut-Var, in the heart of Provence. There I met distin-
guished quantum physicists, among which Leslie Ballentine, Asim Barut,
Anthony Leggett, Philip Pearle and Anton Zeilinger. This event defini-
tively anchored the direction of my research towards the foundations of
the quantum theory. It also constituted my first contact with the Fonda-
tion de Broglie, and the beginning of a long collaboration. In particular
I met in Les Treilles Pierre Lochak, Simon Diner and Jacques Robert,
who belonged to the Fondation. Our discussions incited me to read a
book of Louis de Broglie entitled Non-linear Wave Mechanics: A Causal
Interpretation, where he developed his double solution program [1]. To
be fully frank, although I highly appreciated the clarity and originality
of this book, I was not convinced by de Broglie’s arguments concern-
ing phase harmony and the derivation of the guidance equation, which
pushed me in a first time to question specialists of these questions at the
Fondation de Broglie. I received a large variety of advice and sugges-
tions; for instance I was invited to consult numerous references among
which books of Lichnerowicz, Hadamard and others. Unfortunately, I
did not find a satisfying answer to my questions in this literature.

At that time, the group of theoretical physics at the Vrije Univer-
siteit Brussels had not yet been “restructured” and it was divided in two
subgroups, the first one (to which I belonged ) dealing with foundations,
the second one with non-linear dynamics and solitons. I also consulted
by then my distinguished colleagues about the analogy between solitons
and particles but the answer was rather negative, partly due to Derrick’s
theorem [2] (that will be analysed in depth in appendix), and partly due
to the fact that many interesting properties of non-linear equations do

1https://lestreilles.hypotheses.org/501
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not survive in presence of noise. The general advice that I received
was that dealing with non-linear partial differential equations was like
“jumping from a plane without parachute”.

Some years later I entered in contact with the work of Penrose and
Diosi concerning the Schrödinger-Newton equation [3, 4, 5], in which a
non-linear and self-focusing potential is present, due to an hypotheti-
cal self-gravitational interaction. Their work suggested that the collapse
of the wave function had something to do with this non-linear poten-
tial, which is in direct correspondence with some ideas developed by de
Broglie in the 60’s around his double solution program [6]. In collabora-
tion with Samuel Colin and Ralph Willox, in a first time [7, 8], and with
Mohamed Hatifi more recently [9], we spent several years investigating
these questions [10, 11], with the support of several projects2. We under-
stood however that the Schrödinger-Newton suffers from a widespread
property, shared by the overwhelming variety of non-linear potentials
considered so far in the framework of the double solution program: it is
not self-accelerating [9] and therefore, in virtue of Ehrenfest’s theorem,
the dynamics of solitonic solutions of the non-linear Schrödinger equa-
tion is classical (Newtonian). The guidance equation is thus fulfilled in
this (classical) situation only when Bohm’s quantum potential is absent.
Even in the case of free particles, when no external potential acts on
the system, the quantum potential vanishes only when the solution is
a plane wave, which considerably reduces the field of application of the
double solution program.

It is only two years ago [12] that I found a formal solution of the
double solution program that does not suffer from the previously men-
tioned drewbacks, solution that will be sketched in the present paper. It
is not fully satisfying however, because it establishes from the beginning
a difference of principle between the (non-linear) soliton and the (linear)
pilot wave. This is in a sense a reappearance of the wave particle dual-
ity, which contradicts wave monism, a fundamental motivation for the
double solution program.

After nearly thirty years, here ends my quest about de Broglie’s dou-

2FWO-KN184 “Solitonen en solitonachtige oplossingen van gedeeltelijk integreer-
bare niet-lineaire partieel differentiaalvergelijkingen met corpusculair gedrag”, 2007;
John Templeton Foundation-21326 “Non-Linearity and Quantum Mechanics: Quest
for a Rogue Wave Mechanics”, 2011-2013; John Templeton Foundation-60230 “Non-
Linearity and Quantum Mechanics: Limits of the No-Signaling Condition”; FQXI,
2016-2017, “Quantum Rogue Waves as Emerging Quantum Events”.
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ble solution program, with a somewhat mitigated conclusion. Now, one
could imagine that other ways remain open, as I will discuss in the last
section of the paper, but the problem is not simple and it is even, maybe,
ill-posed.

1 Introduction

Louis de Broglie proposed in 1926 [13] a realistic interpretation of the
quantum theory in which particles are guided by the solution of the lin-
ear Schrödinger equation (ΨL). The theory was generalised by David
Bohm in 1952 [14, 15]. Certain ingredients of de Broglie’s original idea
disappeared in Bohm’s formulation, in particular the double solution
program, according to which the particle is associated to a wave u dis-
tinct from the pilot-wave ΨL, u being sometimes treated as a moving
singularity [6], and sometimes as a solution φNL of a non-linear equation
of very high amplitude, a “hump” ([1, 16]). In the present paper we will
focus on the second alternative (“hump”) that would be associated to a
non-linear wave equation about which de Broglie wrote [1]

“ ... a set of two coupled solutions of the wave equation: one, the Ψ
wave, definite in phase, but, because of the continuous character of its
amplitude, having only a statistical and subjective meaning; the other, the
u wave of the same phase as the Ψ wave but with an amplitude having
very large values around a point in space and which (· · · ) can be used to
describe the particle objectively.”...

We are thus looking for a solitonic solution of a non-linear self-
focusing equation, represented here by φNL, which supposedly has a
very small size, which is reminiscent of Bohm’s description of particles
as material points.

We consider that de Broglie’s double solution program [1, 6] is very
appealing for several reasons.

The first reason is that this program is wave monist and that wave
monism potentially solves some paradoxes inherent to the wave particle
duality [8].

It is also reminiscent of Poincaré’s ideas about the electron [17] which
he considered to consist of a field of forces, which pioneers the modern
approach of particles physics which is based on fundamental interactions.

Another reason is that, if de Broglie’s ideas are right, the quantum
theory would be an emergent theory, as we will explain now. The pilot



Double Solution 237

wave interpretation (also commonly called de Broglie-Bohm (dBB) inter-
pretation or simply Bohm interpretation [14, 15] ) which is the backbone
of the double solution program postulates3 that

-(i) particles follow trajectories which obey the guidance equation (or
the quantum potential in Bohm’s approach);

-(ii) the distribution of positions at a certain time t0 obeys the Born
rule

-(iii) each measurement is in the last resort a measurement of posi-
tion.

As the guidance equation is derived from the equation of conservation
associated to Schrödinger’s equation, combining postulates (i) and (ii)
ensures that the Born rule is satisfied at any time, at least when the
observable that we consider is the position of the particle (this is the
so-called equivariance property).

Taken together, (i), (ii) and (iii) ensure that the dBB interpretation
leads to exactly the same predictions as the orthodox quantum theory.
Some years ago, important results were obtained by Antony Valentini
and coworkers [18, 19, 20, 21, 22, 23, 24, 25], who established that the
Born rule is the consequence of (i): after a sufficiently long time, for
nearly any initial distribution of position, the chaotic nature of the dBB
dynamics ensures that the distribution will converge to the distribution
in |Ψ|2, in accordance with the Born rule. This process is called the
onset of quantum equilibrium [26].

The postulate (iii) is in a sense always true and unfalsifiable: when-
ever we print the result of a measurement on a piece of paper, or when-
ever it is displayed on the screen of a computer, and that we look at this
result, our eyes will perform a measurement of position.

Taking account of the aforementioned results about the onset of quan-
tum equilibrium [26], the dBB interpretation is thus a mere consequence
of the guidance equation (postulate (i)). From this point of view, if
the guidance equation could be derived from a well-chosen non-linear
self-focusing equation in agreement with de Broglie’s double solution
program, one would be in right to consider that the quantum theory
emerges from a non-linear wave equation. It is obviously worth estab-
lishing firmly such a result which explains why your servitor devoted,
as explained in preamble, some of his best years to this quest. This

3Mathematical details and precise definitions can be found in section 2.
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program is severely constrained however and leaves not much room for
credible candidates as we shall discuss throughout the present paper.

The paper is structured as follows:

-In section 2 we introduce preliminary concepts and basic ingredients
of the double solution program (de Broglie-Bohm dynamics; equivari-
ance, guidance equation and quantum potential).

-In section 3 we consider the velocities in the light of Ehrenfest’s
theorem, and the constraints to be fulfilled by every non-linear potential
aimed at realizing the double solution program. We also introduce the
factorization ansatz which plays a fundamental role in our analysis.

-In section 4 we pursue this analysis for what concerns accelerations.

-In section 5 we study in depth the implications of the factorization
ansatz regarding the double solution program.

-In section 6, we present a non-linear potential which fulfills the con-
straints imposed by Ehrenfest’s theorem.

-The last section (7) is devoted to open questions and conclusions.

Some technicalities related to the factorization ansatz, are treated
in appendix (section 8) as well as Derrick’s no-go theorem (section 9),
and reference is made to Barut’s program [29] (section 10) which also
incorporates the factorisation ansatz.

2 Prerequisites: the (deterministic) de Broglie-Bohm
dynamics; equivariance, guidance equation and
quantum potential.

The dBB interpretation [27] is a dynamical and deterministic formula-
tion of quantum mechanics in which it is assumed that the positions of
the particle exist at all times, i.e. independently of the observer. We will
consider, in what follows, a single spinless and non-relativistic particle
for which a quantum wave function (also called the pilot wave) ΨL(x, t)
solves the (linear) Schrödinger equation:

i~
∂ΨL(x, t)

∂t
= − ~2

2m
∆ΨL(x, t) + V L(x, t)ΨL(x, t), (1)

where V L(x, t) is an external potential4. In the standard formulation of
quantum mechanics, the probability distribution of all particle positions

4We attributed the label L to this potential because it is assumed that it does not
depend on Ψ. It acts thus linearly on the wave function, due to the fact that complex
multiplication is distributive relative to addition and commutative.
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PdB(x, t) obeys the Born rule PdB(x, t) = |ΨL(x, t)|2. For convenience,
let us express the wave function in polar form:

ΨL(x, t) = RL(x, t)ei ϕL(x,t), (2)

where RL(x, t) and ϕL(x, t) are two real functions. The probability
distribution is then given by PdB(x, t) = RL(x, t)2 and is conserved
through the continuity equation:

∂RL(x, t)2

∂t
+ ∇ ·

(
RL(x, t)2 ~∇ϕL

m

)
= 0, (3)

By analogy with classical hydrodynamics, the phase-function ϕ(x, t) is
associated to a velocity field v(x, t) given by:

dx(t)

dt
= v(x, t) =

~
m
∇ϕL(x, t)

∣∣∣∣
x=x(t)

, (4)

which is also called the guidance equation of de Broglie. This equation
expresses how the pilot wave guides the trajectories of the particles.
After integration of (4), the deterministic dB trajectory x(t) is obtained.

In order to mimick the distribution of positions in (RL)2 predicted
in the standard interpretation, that is to say in order to mimick the
Born rule, it suffices to impose that at a certain time t0, PdB = (RL)2

everywhere. Then, in virtue of equations (3) and (4), PdB = (RL)2

everywhere at any time, which is also called the equivariance property.

As we already mentioned in the introduction, it can be shown that for
a very large class of hamiltonians and wave functions the distributions
of positions will converge in time to the Born distribution PdB = (RL)2,
even when initially they depart from it (a process also called “quantum
equilibrium” [26]). Ultimately the onset of the quantum equilibrium is
due to the chaotic nature of the dBB dynamics in the vicinity of zeros
of the pilot wave [8, 25].

Note that the guidance equation (4) is of the first order in time be-
cause it deals with velocities. David Bohm considered the accelerations
associated to these velocities and showed that they derive from a non-
classical potential, the so called quantum potential Q [14, 15], from now
on denoted QL in order the emphasize the fact that is related to the pi-
lot wave ΨL. As can indeed be shown by a lengthy but straightforward
computation, combining equations (1), (2) and (4), implies that
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m
d2x(t)

dt2
= −∇(V L(x, t) +QL(x, t)), (5)

where

QL(x, t)) =
−~2

2m

∆RL(x, t)

RL(x, t)
(6)

Remark: dB versus dBB dynamics.

As already noted, de Broglie’s guidance equation is of the first order
in time while Bohm’s equation is of the second order. From now on
we shall refer to this fine structure in the dynamics by labelling by the
label dB “de Broglie” velocities and dynamics as encapsulated in the
guidance equation (4), while we shall associate the label dBB to the
acceleration as encapsulated in the generalised Newton equation (5).
The label dBB will also refer to the “pilot wave interpretation” outlined
in the previous paragraphs, in which no particular assumption is made
about the structure of the particles, that we can treat FAPP as material
points.

It is worth noting at this level a very important result demonstrated
by Colin and Valentini [28]: equilibrium is reached after a sufficiently
long time ONLY when initial velocities obey equation (4). On the con-
trary, when velocities are distributed arbitrarily, while accelerations obey
equation (5), quantum equilibrium does not occur and is even unstable
in the sense that when the initial distribution of positions and velocities
is out of equilibrium it will converge to equilibrium ONLY if the initial
distribution of velocities obeys de Broglie’s guidance equation.

3 Double solution program, Ehrenfest’s theorem
and velocities

Let us consider a non-linear Schrödinger equation of the type

i~
∂Ψ(x, t)

∂t
= −~2 ∆Ψ(x, t)

2m
+ V L(x, t)Ψ(x, t) + V NL(Ψ)Ψ(x, t), (7)

where V L represents an arbitrary linear potential, of the type commonly
considered when solving the linear Schrödinger equation (for instance
an electro-magnetic potential) while V NL represents a non-linear self-
focusing potential which supposedly concentrates the wave function of
the particle over a tiny region of space, in accordance with de Broglie’s
double solution program.
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3.1 Ehrenfest’s theorem.

Ehrenfest’s theorem establishes that the time derivative of the average
value of an observable Ô obeys

d<Ô>
dt =< ∂Ô

∂t > + 1
i~ < [H, Ô] >,

where

< .... >=
∫
d3xΨ(x, t)∗....Ψ(x, t),

and

HΨ(x, t) = −~2 ∆Ψ(x,t)
2m + V L(x, t)Ψ(x, t) + V NL(Ψ)Ψ(x, t).

In particular, the time derivative of the position of the barycentre of

a solitonic solution Ψ(x, t) obeys d<x̂(t)>
dt =< p̂ > /m where x̂ represents

the position operator, multiplicative in position representation and p̂ the
momentum operator which is equal, in position representation, to ~

i∇.
Note that in order to apply Eherenfest’s theorem we made use of the
fact that the non-linear potential is assumed here to be a multiplicative,
real valued, potential.

In order to fulfill de Broglie’s guidance equation (4), we must impose
that

d < x̂(t) >

dt
=< p̂ > /m = vdB(< x >, t) =

~
m
∇ϕL(x, t)

∣∣∣∣
x=<x>(t)

, (8)

where ΨL(x, t) = RL(x, t)ei ϕL(x,t) is solution of the linear Schrödinger
equation (1) and < x̂(t) > is the barycentre of the particle5 (< x̂(t) >=∫
d3x|Ψ(x, t)|2 · x̂(t)).

3.2 Factorisation ansatz and generalized guidance equation.

Now, the soliton is never located in places where the amplitude of the
pilot wave ΨL (ΨL is solution of the linear Schrödinger equation (1))
vanishes; therefore, without loss of generality, we can impose that Ψ
is the product of ΨL with a peaked function ΦNL associated to the
soliton (this is the so called factorization ansatz studied by us in

5Remark that the bra-ket notation introduced here should not necessarily be in-
terpreted as a quantum statistical average in the usual sense; it rather indicates an
average quantity in regard of the weight (density of stuff) | φNL(t,x) |2. In the same
order of ideas, the L2 norm of Ψ,

∫
d3x|Ψ(x, t)|2 is assumed here to be normalized

to unity, by convenience, in order not to overload the equations, but this choice is
not imperative. In any case, this L2 norm is constant throughout time because the
dynamics is unitary.
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several papers in the past and originally proposed by Asim Barut [29] in
a slightly different context, as explained in appendix, section 10).

For convenience, let us express these wave functions in polar form:

ΨL(x, t) = RL(x, t)ei ϕL(x,t), (9)

ΦNL(x, t) = RNL(x, t)ei ϕNL(x,t), (10)

Ψ(x, t) = R(x, t)ei ϕ(x,t), (11)

then, according to the factorisation ansatz

Ψ(x, t) = ΨL(x, t) · ΦNL(x, t), (12)

so that R = RL ·RNL, and ϕ = ϕL + ϕNL.

Let us estimate the velocity of the barycentre of this solitonic solu-
tion:

< p̂ > /m =

∫
d3xΨ∗(x, t)

~
im
∇Ψ(x, t) =

~
m

∫
d3xR2(x, t)∇ϕ(x, t)

(13)
We shall assume from now on that R and RNL, the amplitudes of the
wave functions Ψ and ΦNL are peaked around their barycentre, and also
that the amplitude as well as the phase of the pilot wave ΨL remain
constant in good approximation in the region where the weight of Ψ
(ΦNL) is concentrated.

Henceforth, in good approximation,

< p̂ > /m =
~
m

(∇ϕL(< x̂(t) >) +

∫
d3xR2(x, t)∇ϕNL(x, t)), (14)

which constitutes a generalisation of the guidance equation (4), due to
the presence of a new contribution taking account of the phase of the
soliton.

Denoting vdB the de Broglie-Bohm velocity ( ~
m∇ϕ

L(< x̂(t) >)), vint.
the solitonic contribution to the velocity of the barycentre of the wave
function, (vint. = ~

md3xR2(x, t)∇ϕNL(x, t)), and their sum vdrift, we
get

vdrift = vdB(x0(t)) + vint., (15)
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where x0(t) = x0(t = 0) +
∫ t

0
dtvdrift.

This is a generalization of de Broglie’s guidance equation with an
extra-contribution due to the internal degrees of freedom of the soliton.

As we have discussed elsewhere [9], the solitonic contribution to the
velocity of the barycentre of the wave function, vint. is most often NOT
negligible. Henceforth, for the overwhelming majority of non-linearities
considered so far in order to tackle de Broglie’s double solution program,
the solitons DO NOT obey the guidance equation (4). Their dynamics
is actually classical due to the absence of an ad hoc self-acceleration as
we shall show in the next section.

4 Double solution program, Ehrenfest’s theorem
and the problem of (self)acceleration.

4.1 Logarithmic self-interaction potential.

Other authors in the past considered seriously the possibility of a non-
linear generalisation of Schrödinger’s equation, e.g. Bialynicki-Birula
and Mycielski who studied in depth the case of a logarithmic non-
linearity [30]. They showed that the gaussian solitons associated to this
non-linear self-focusing potential (“gaussons”) do not obey the guidance
equation; instead their dynamics is classical. Here is a sketch of the proof
of this result in a special case6. For convenience, we shall assume that
the problem is formulated in one dimension of space (passing to three
dimensions does not bring any fundamental novelty here). We shall also
assume that the potential linear in Ψ is harmonic (V L = kx2/2) and that
the nonlinear potential is logarithmic in |Ψ| (V NL = −κ · ln(|Ψ|) with
κ a real number taken to be positive in order to ensure self-focusing).
Then, equation (7) admits gaussian solutions (gaussons) of the type

Ψ(x, t) = exp−(Ax2+Bx+C),

with A, B and C complex functions of time; to get localized gaussons
requires Re.A > 0.

6Bialynicki-Birula and Mycielski derived this result in a very general case in
their paper [30], making use of Ehrenfest’s theorem as we shall do later. Ac-
cordingly, they wrote the following: ...The most elaborate program to create an
intrinsically nonlinear wave mechanics has been developed by de Broglie and his
collaborators(...). This was a very ambitious program aimed at creating a causal
underlying nonlinear structure basically different from the linear theory. The
linear theory was to describe only the statistical behavior of the new structure.
No specific nonlinear equation, however, has emerged from those investigations...The
last sentence was underlined by us.
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The reason therefore is that for such solutions the logarithmic poten-
tial−κln(|Ψ|) is quadratic in x: V NL(x, t) = κ(Re.(A(t))·x2+Re.(B(t))·
x+Re.(C(t))). This self-interaction is also “comoving” in the sense that
it can be written in the form κ(Re.(A(t)) · (x− < x >)2 + κ(Re.(C̃(t))
with < x > representing the barycentre of Ψ at time t:

< x >= −Re.(B(t))/(2Re.(A(t))),

and Re.(C̃(t)) = Re.(C(t))− < x >2.

Let us now pursue with Ehrenfest’s theorem in order to estimate the
acceleration of the soliton.

d < p̂(t) >

dt
=< −∇(V L(x, t)+V NL(x, t) >= aclassical(x, t)+aself (x, t),

(16)

where aclassical(x, t) represents the classical acceleration due to the
presence of the linear potential (here aclassical(x, t) = −k < x >), and
a self-acceleration which is due to the presence of the non-linear, self-
focusing, potential.

This self-acceleration is equal to 0 at all times however because it is
equal to < −κ(x− < x >) > .

If the guidance equation was satisfied, we should impose, in accor-
dance with equations (5,6) that

d < p̂(t) >

dt
=< −∇(V L(x, t) +QL(x, t)) >= aclassical(x, t) + adB(x, t),

(17)
which imposes, taking account of (16), that the self-acceleration and the
dB acceleration are equal, in good approximation7:

< −∇QL(< x >, t) >= adB(< x >, t)

= aself (x, t) =< −∇V NL(x, t) >

It is easy to check that the gradient of the quantum potential (6) in
the case of a gaussian wave function is equal to 0 only at the center of
the gaussian packet (x =< x >). In all other locations, the guidance
equation is thus not satisfied because if it was the case this would imply
that aself (x, t) = adB(< x >, t) 6= 0 which contradicts the fact that
everywhere aself (x, t) = − < ∇V NL(x, t) >= 0.

7When the soliton is peaked enough, we are free to neglect quantum fluctuations:
assuming that a function f(x) varies slowly over the extent of the soliton, we get
< f(x) >= f(< x >), in good approximation.
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In ref. [9], we have shown through accurate, semi-analytic simulations
that the solitonic contribution to the velocity of the barycentre of the
wave function “conspires” to erase the influence of the quantum potential
at the level of the dynamics. Expressed in terms of the drift velocity,
the dB velocity and the solitonic contribution to the velocity (15), this
means that vdrift = vdB(x0(t)) + vint. = vclassical as illustrated by the
figure 1, reproduced from ref. [11].

Figure 1: Plot of vdB , vint., vdB + vint. and vdrift = d
dt (x0) in function

of time, obtained from semi-analytic gaussian solutions (gaussons) of
the 1D equation (7) in presence of a harmonic linear potential and self-
gravitation of an homogeneous spherical mass distribution (equivalent
to a logarithmic non-linearity in the case of coherent gaussons and when
the size of the gausson is quite smaller than the radius of the sphere [7]);
space and time were rescaled and are of the order of unity. The drift
velocity is obviously classical here (it is an harmonic function of time).

In other words, in order to realize the double solution program, we
must find a non-linear potential such that everywhere < V NL(x, t) >=
QL(x, t) up to a constant. This condition is not fulfilled by gaussons
self-focused by the logarithmic potential because this potential is not
self-accelerating.
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Actually, it is easy to estimate, by direct computation, even when the
solitonic solution is not a gausson, the self-acceleration of the logarithmic
potential:

< −∇V NL(x, t) >= −
∫
d3xR2(x, t)∇V NL(x, t)

= κ
∫
d3xR2(x, t)∇R(x,t)

R(x,t) = κ
∫
d3xR(x, t)∇R(x, t)

= κ
2

∫
d3x∇R2(x, t).

Now, R2(x, t) obviously vanishes at infinity, because we deal here
with localized, self-focused solutions of equation (7), which implies, af-
ter integration by parts, that the self-acceleration of the logarithmic
potential is equal to zero always and everywhere, as originally noted in
ref.[30].

4.2 Generalized Schrödinger-Newton self-interaction poten-
tial.

In a previous paper [7], we studied the gravitational self-interaction, in
the case of a homogeneous rigid sphere of mass M and radius R. We
showed that when the extent of the wave function is quite smaller than
the size of the sphere, the gravitational self-interaction can be expressed

through the non-linear potential V NL(x, t) =
∫
d3x′|Ψ(x′, t)|2 · G.M

2

2R3 ·
||x−x′||2 where k = G.M2/R3, with G Newton’s gravitational constant,
and ||...|| the 3D-euclidean norm8.

Applying Ehrenfest’s theorem to this interaction we find that

< ∇V NL(x, t) >= G.M2

R3 · < x− < x >>= 0 so that the self-
gravitational interaction is also non-accelerating in the regime where
the extent of the wave function is quite smaller than the size of the
sphere. This result is in agreement with the plot of figure 1 which shows
that the acceleration of the barycentre of the gausson is classical (har-
monic). We generalized this result: every self-interaction of the type
V NL(x, t) =

∫
d3x′|Ψ(x′, t)|2 ·f(||x−x′||2) is non-accelerating whichever

choice we could make for the kernel function f . We can indeed prove
by direct computation that, in virtue of Ehrenfest’s theorem, the self-
acceleration is then equal to

−1
m

∫
d3x∇V NL(x, t)|Ψ(x, t)|2

8Retrospectively, we realized that, when the external, linear potential is the har-
monic potential quadratic in the position, this interaction is the same as the logarith-
mic self-interaction (V NL = −κln(|Ψ|)), in the case of coherent gaussons for which

Re.A does not vary with time, provided we impose that κRe.A = GM2

2R3 .
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=−1
m

∫
d3x

∫
d3x′|Ψ(x, t)|2|Ψ(x′, t)|2 · ∇f(||x− x′||2)

=−1
m

∫
d3x

∫
d3x′|Ψ(x, t)|2|Ψ(x′, t)|2 · 2(x− x′) dfdu |u=||x−x′||2 ,

where ||...|| represents the euclidean norm in R3.

Now, |Ψ(x, t)|2|Ψ(x′, t)|2 dfdu |u=||x−x′||2 is an even function of (x−x′)2,
(y−y′)2 and (z−z′)2, while the cartesian components of the vector x−x′
are odd functions of (x− x′), (y− y′) and (z− z′). As we integrate over
a symmetric domain d3xd3x′, the self-acceleration is always equal to 0.

In particular, when the kernel is equal to f(u) = −GM2/u with,
as here above, G Newton’s gravitational constant and M the mass of
an elementary, structureless, particle, we deal with the single parti-
cle Schrödinger-Newton dynamics. This result concerning the absence
of self-acceleration is also valid if we deal with the gravitational self-
interaction of any rigid body provided its mass ditribution is isotropic. If
we consider the limit where f(u) is proportional to a Dirac delta function
of u, our analysis also applies to the so called NLS interaction (VNL(x, t)
proportional to |Ψ(x, t)|2 that was studied in the past by D.Fargue in
the 1D case [31, 32].

4.3 Self-interaction potential analytic in |Ψ(x, t)|.

Let us now consider that the self-interaction is an analytic function
in the variable |Ψ(x, t)|: V NL(x, t) =

∑∞
m=0,1,2... vm|Ψ(x, t)|m, where∑∞

m=0,1,2... vmu
m is supposedly the Taylor development of a real, ana-

lytic function of u ∈ C.

Then, if we apply Ehrenfest’s theorem in the same way that we did in
the previous sections, we find that the self-acceleration of the barycentre
of the wave function obeys

d2<x>
dt2 = −1

m

∫
d3x(∇V NL(x, t))|Ψ(x, t)|2 =

−1
m

∫
d3x(∇(

∑∞
n=0,1,2... vn|Ψ(x, t)|n))|Ψ(x, t)|2=

−1
m

∫
d3x(

∑∞
n=0,1,2... n · vn|Ψ(x, t)|n+1)∇Ψ(x, t) =

−1
m

∫
d3x∇(

∑∞
n=0,1,2...

(n)
(n+2)vn|Ψ(x, t)|n+2),

which is equal to zero, after integration by parts, because the wave
function is supposedly localized and is thus equal to zero at infinity.



248 T. Durt

4.3.1 Combining Noether’s theorem and Ehrenfest’s theorem into a no-
go theorem.

As is well-known, fundamental symmetries are related to conservation
laws, in virtue of Noether’s theorem. In particular it is generally so that
if the action is invariant under translations in space, the total momen-
tum of the system is a concerved quantity. This property explains why
the potentials considered so far are not self-accelerating. To show this,
let us reconsider the non-linear equation (7); it can be derived from a
variational principle for the action

ANL(Ψ) =

∫ +∞

−∞
dt

∫
d3x

i

2
(Ψ∗

∂Ψ

∂t
−Ψ

∂Ψ∗

∂t
)− ~2

2m
|∇Ψ|2+Ψ∗(V L+V NL)Ψ.

The contribution of the non-linear potential to the Lagrangian is thus
equal to

∫
d3xΨ∗(x, t)V NL(x, t)Ψ(x, t). Now, one can check that for

potentials considered so far, this contribution is invariant if we replace
Ψ(x, t) by Ψ(x + δx, t):∫

d3x
∫
d3x′|Ψ(x, t)|2|Ψ(x′, t)|2 · f(||x− x′||2)

=
∫
d3x

∫
d3x′|Ψ(x + δx, t)|2|Ψ(x′ + δx, t)|2·f(||x + δx−(x′ + δx)||2)

and∫
d3x

∑∞
n=0,1,2... vn|Ψ(x, t)|n=

∫
d3x

∑∞
n=0,1,2... vn|Ψ(x + δx, t)|n

The absence of self-acceleration is thus a consequence of the invari-
ance of the self-interaction under a homogeneous translation in the 3D
space. From this point of view, our analysis constitutes a no-go theorem:
if the self-interaction is invariant under global translations in space, no
self-acceleration is there to mimick the influence of the quantum poten-
tial and we will fail to realize de Broglie’s double solution program.

Another no-go theorem was derived in the past by Derrick [2], in
which space dilations play a central role. This theorem is however flawed
to a large extent as we will show in appendix (section 9), and is in par-
ticular not relevant in the context of the double solution program, unless
we consider non-unitary evolutions, which is clearly out of context here.
Most of all, even if, as shown in appendix, this theorem, conveniently
reformulated, tells us something about the stability of the solitonic solu-
tions of the non-linear Schrödinger equation, it remains mute concerning
the question of self-acceleration which is a key issue regarding the dou-
ble solution program. Its relevance remains therefore very limited in the
present context.
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5 Factorisation ansatz and guidance equation.

5.1 Factorisation ansatz.

In addition to the non-linear evolution equation (7), let us also impose
the factorization ansatz (12):

Ψ(x, t) = ΨL(x, t) · φNL(x, t),

where ΨL, the pilot wave, is a solution of the linear Schrödinger equation
(1) while φNL(x, t) is supposed to be localized over a very small region of
space. Our aim is, as already explained before, to represent the particle
by φNL(x, t), a soliton guided by the pilot wave according to de Broglie’s
guidance equation (4):

v = vdB ≡
~
m

Im.(ΨL(t,x)∗∇ΨL(t,x))

| ΨL(t,x) |2
, (18)

where v represents the velocity of the (barycentre of) the soliton. Com-
bining equations (1,7,8), expressing ΨL(x, t) in function of its modu-
lus and its phase through RL(x, t)eiϕL(x,t), and also making use of the
identity 5ΨL(x, t) = (5RL(x, t))eiϕL(x,t) + ΨL(x, t)i5ϕL(x, t), it is
straightforward to show that φNL obeys the non-linear equation

i~ · ∂φNL(x, t)

∂t
=

− ~2

2m
·∆φNL(x, t)− ~2

m
· (i5ϕL(x, t) · 5φNL(x, t)

+
5RL(x, t)

RL(x, t)
· 5φNL(x, t)) + V NL(Ψ)φNL(x, t). (19)

By doing so we replace thus equation (7) by a system of three equations
(1,8,19). This replacement is one to one and can be done without loss
of generality whenever x is not a node of the pilot-wave ΨL(x, t) which
happens “nearly everywhere”.

5.2 Guidance equation.

It is worth noting that, to the difference with the equations (1,7) which
are unitary, the L2 norm of the non-linear wave φNL is not preserved with
time, because the terms mixing ΨL and φNL in (19) are not hermitian.
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The change of norm of φNL can be shown [11], to obey

d < φNL | φNL >
dt

≈ ~
m

∆ϕL(t,x0)· < φNL | φNL >

− 2
5RL(t,x0)

RL(t,x0)
·
∫
d3x(φNL(x, t))∗

~5
mi
· φNL(x, t), (20)

where we define the (position of the) barycentre x0 of the soliton as
follows:

x0 ≡ <φNL|x|φNL>
<φNL|φNL> .

Let us define the velocity vdrift of the barycentre x0 as follows:

vdrift ≡
d(<φNL|x|φNL><φNL|φNL> )

dt
(21)

Then, as shown by us some years ago [11], in the limit where the
soliton is peaked enough around its barycentre, vdrift obeys

vdrift =
~
m
5ϕL(t,x0(t)) +

< φNL | ~
im5 | φNL >

< φNL | φNL >
(22)

= vdB + vint.,

where x0(t) = x0(t = 0) +
∫ t

0
dtvdrift.

The drift velocity contains the well-known Madelung-de Broglie-
Bohm contribution (vdB = ~

m5ϕL(t,x0(t))) plus a new contribution

due to the internal structure of the soliton (vint. =
<φNL| ~

im5|φNL>
<φNL|φNL> ).

As the weight of Ψ is essentially concentrated at the level of the soli-
ton, we also find that vint. is nothing else than the solitonic contribution
to the velocity of the barycentre of the wave function that we discussed
previously (15):

~
m (
∫
d3xR2(x, t)∇ϕNL(x, t))=vint. =

<φNL| ~
im5|φNL>

<φNL|φNL>

In reference [11], we also established the following result:

-in the limit where the soliton is peaked enough around its barycentre,
we get:

< φNL | φNL > (t)

< φNL | φNL > (t = 0)
=
R2
L(x0, t = 0)

R2
L(t,x0)

. (23)
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Keeping in mind that all aforementioned results were derived in the
limit where the width of the peaked soliton is quite smaller than the typ-
ical scales of variation of RL(x, t)) and ϕL(x, t) over space, the previous
results imply that the full wave function Ψ solution of (19) has the form

Ψ(x, y, z, t) ≈ φ′NL(t,x)eiϕL(t,x), (24)

where φ′NL(x, t) is centered in x0(t = 0) +
∫ t

0
dtvdrift and is of constant

L2 norm (throughout the present paper we chose to normalize Ψ and φ′

to unity).

Details of all these computations are reproduced in appendix.

6 A (formal) realization of the double solution pro-
gram.

6.1 Realizing the double solution program with the factorisa-
tion ansatz and a purely real solitonic wave function.

These results strongly suggests the possible existence of a purely real soli-
tonic solution of equation (19) such that vint. = 0 in which case the guid-
ance equation of de Broglie (18) is satisfied: vdrift = ~

m5ϕL(t,x0(t)). In
the present section, we shall identify a well-chosen non-linearity aimed
at guaranteeing that the there exist purely real solitonic solutions of
equation (19). This result was already derived in ref. [12] where we
showed that, in presence of this well-chosen non-linearity and when the
pilot wave is a gaussian coherent state of a 3D harmonic oscillator, (the
barycentres of) exact analytic, solitonic solutions of the equation (7)
obey dB dynamics. Roughly summarized, the reasoning which brought
us to identify the ad hoc non-linearity goes as follows: let us impose
that at all times and everywhere ϕNL = 0 = Im.(φNL). Making use of
equation (19), we find

− ∂Im.(φNL(x, t))

∂t
=

1

~
Re.(i~ · ∂φNL(x, t)

∂t
) =

1

~
Re.(− ~2

2m
·∆φNL(x, t)− ~2

m
· (i5ϕL(x, t) · 5φNL(x, t)

+
5RL(x, t)

RL(x, t)
· 5φNL(x, t)) + V NL(Ψ)φNL(x, t)) = 0. (25)
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Making use of the fact that φNL and V NL are supposedly purely real
functions, φNL(x, t) = RNL(x, t) and the non-linear potential is fixed
unambisguously by the constraint (25):

V NL(Ψ) =
~2

2m
· (∆RNL(x, t)

RNL(x, t)
+ 2
5RL(x, t)

RL(x, t)
· 5RNL(x, t)

RNL(x, t)
) (26)

Then, equation (19) reduces to a system of two equations

Im.(φNL) = 0 (27)

∂Re.(φNL)

∂t
=
∂RNL(x, t)

∂t
= − ~

m
5ϕL(x, t) · 5RNL(x, t) (28)

Assuming again that the width of the peaked soliton is quite
smaller than the typical scales of variation of ϕL(x, t)), equation (28)
is nothing else than the guidance equation. Indeed, imposing that
5ϕL(x, t) = 5ϕL(x0(t)), with x0(t) = x0(t = 0) +

∫ t
0
dtvdB(t) and

vdB(t) = ~
m5ϕL(x0(t)), it is straightforward to check that the solution

of (28) is a solitary wave (we call in the present context a solitary wave
a wave that keeps the same shape at all times, what is sometimes called
a soliton in other contexts):

RNL(x, t) = RNL(x− (x0(t)− x0(t = 0))), t = 0).

Remarkably, there is no constraint at all concerning the shape of the
soliton RNL(x, t = 0).

Generalising equation (6), let us define the quantum potential of the
Ψ wave as follows:

Q(x, t)) =
−~2

2m

∆R(x, t)

R(x, t)
(29)

The non-linearity V NL(Ψ) (26) can as well be expressed in terms of the
quantum potential of the pilot wave (6) and of the quantum potential of
the Ψ wave:

V NL(Ψ) = QL −Q. (30)

Intuitively, the quantum potential associated to the pilot wave, QL,
provides the self-acceleration required in order to obey the dB dynamics.
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It is not self-focusing however. Beside this, we expect the contribution
proportional to the quantum potential associated to the full wave, −Q,
to be self-focusing but not self-accelerating9 because when the non-linear
potential is an analytic function of R(x, t) the self-acceleration is equal
to 0, as shown in appendix. This is illustrated by the following example
(see ref. [12] for a more detailed treatment) where the pilot wave is a
coherent state of a 1D harmonic oscillator, and R(x, t) is gaussian, of
constant size.

6.2 Special case: coherent states of a 1D harmonic potential.

It is easy to figure out what are the respective physical contributions
of QL and Q, when the linear potential is harmonic V L(x) = k · x2/2,
in the case where the soliton is a gausson, and when the pilot wave is a
gaussian coherent state of a 1D harmonic oscillator. The quantum poten-
tial in the case of a gaussian wave function exp−(Ax2+Bx+C) is equal to
(4(Re.A)2(x− < x >)2−2Re.A). Therefore, up to an additive constant,

QL = −k2 (x− xL0 (t))2, and Q = + k̃
2 (x− x0(t))2 where xL0 (t) represents

the peak of the coherent state while x0(t) represents the peak/barycentre
of the gausson, and k̃ is an effective spring constant associated to the
gausson. k̃ is quite larger than k because the gausson is supposedly
quite narrower than the pilot wave (here a coherent state). QL plays
the same role here as an external time-dependent potential because it
does not depend on the wave function of the gausson. It is accelerating
but not self-focusing. On the contrary −Q is not self-accelerating but
self-focusing; its presence guarantees that the gausson keeps the same
shape throughout time.

9Under the constraints considered here, the non-linear potential is unambiguously
expressed through equation (30). Possibly, any potential of the form QL + UNL

where UNL is self-focusing but not self-accelerating would deliver the correct accel-
eration although it does not deliver the correct velocity. For instance UNL could
be a logarithmic non-linearity [30], or of the Schrödinger-Newton type [7, 8]. Now,
as already mentioned, Colin and Valentini showed that the onset of quantum equi-
librium is guaranteed only [28] when initial velocitites do obey (4). Henceforth, the
solution of de Broglie’s double solution found here (30) is seemingly the only one.
This remark should be put in relation with ref. [33] where J.R. Croca proposed some
years ago to add to the linear Schrödinger equation a non-linear potential of the form
V NL = QL. We actually consider that self-focusing is required in order to realize
de Broglie’s double solution program. According to us there is thus a problem with
Croca’s proposal: in general QL is not self-focusing. It can even be self-defocusing
as shown by the example treated in section 6.2.
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In virtue of Eherenfest’s theorem, the peak of the gausson undergoes
an acceleration equal to the sum of

-the classical contribution ( 1
m < −∇V L(x, t) >= − k

mx) with

-the self-acceleration ( 1
m < −∇V NL(x, t) >= 1

m < −∇QL(x, t) >).

This sum is equal to − k
mx + k

m (x − xL0 (t)) = −k
m xL0 (t). In every

point, the velocity and acceleration are the same as the velocity and
acceleration of the peak of the coherent state (pilot wave). All gaussons
move thus as a block, following the peak of the coherent state. This
explains, in the dBB picture, why the shape of the coherent state does
not change with time. At the level of the faraway tails of the pilot wave
for instance the barycentres of the gaussons oscillate around a virtual
harmonic potential of spring constant k but centered around a position
which is the position occupied by the barycentre of the gausson at the
time where the peak of the coherent state passes through x = 0. The
dynamics is obviously not classical here, excepted for what concerns the
peak of the pilot wave/coherent state.

7 Conclusions and open questions.

7.1 Phase harmony.

In his book [1], de Broglie introduced the condition of phase harmony
according to which the phase of the soliton is the same as the phase of the
pilot wave. This constraint can be understood in terms of Ehrenfest’s
theorem: the velocity of the barycentre of the soliton is equal to the
average value of the gradient of its phase multiplied by ~/m. In virtue
of the guidance equation (4), it must also be equal to the dB velocity,
that is to say, the gradient of the phase of the pilot wave multiplied by
~/m. If the condition of phase harmony is satisfied, and that the phase
of the pilot wave varies very slowly at the scale of the soliton, then,
indeed, the velocity of the barycentre of the soliton is well equal to the
dB velocity. However, as we have shown by many examples, it is very
difficult to achieve phase harmony, and the majority of the non-linear
potentials considered so far do NEITHER respect phase harmony, NOR
the guidance equation.

The non-linear potential (30), on the contrary, makes it possible to
satisfy phase harmony (as can be seen after combining (24) with (27)),
and its solitonic solutions respect, in good approximation, the guidance
equation.
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7.2 Galilean invariance.

As has been noted in [11], when there is no external potential (V L),
which means that the particle is only submitted to its self-interaction,
and when equation (7) is invariant under Galilean transformations
(boosts)10, which is the case whenever the non-linear potential V NL

only depends on the modulus of Ψ, we find, after performing a Galilean
boost on a static soliton φ0

NL(x) the exact solution

φ0
NL(x − v · t)e−i((E0+~ω)·t−~k·x)/~. This solution satisfies the fac-

torization ansatz with a pilot wave which is a plane wave. It also re-
spects phase harmony because static solitonic solutions φ0

NL(x)e−iE0t/~

are de facto real functions (up to an irrelevant, position-independent,
global phase). This trick makes it possible to generate solitons moving
at velocity vdB . As already noted by Fargue [31] many years ago, such
solutions exist for a large class of different non-linearities (e.g. a non-
linearity proportional to |Ψ|2), and they all agree with the principle of
phase harmony already invoked by de Broglie in 1927. Obviously, this
property is seen to be a direct consequence of the Galilean invariance of
the non-linear potential V NL. Difficulties arise however when an exter-
nal potential V L is present, and/or when the pilot wave is not a plane
wave. The abovementioned trick is then useless because the quantum
potential does no longer vanish and (self) accelerations are present. This
approach is thus a dead-end, but other approaches maybe provide sat-
isfactory realizations of the double solution program. One of them was
proposed by Barut [29]. It has some relativistic flavour because it in-
corporates the principle of mass-energy equivalence [34]. However, as
discussed in appendix (section 10), it is only valid when the pilot wave
is a plane wave. Other, fully relativistic approaches remain possible in
principle, but even there serious obstacles limit the realization of the
double solution program as we discuss in the next paragraph.

7.3 Fully Lorentz covariant approaches.

Special relativity played an essential role in the genesis of de Broglie’s
wave mechanics. In the 30’s, de Broglie was fascinated by Dirac’s equa-
tion and throughout his life he repeatedly refered to Klein-Gordon equa-
tion [16] (which, by the way, could as well have been attributed to
Schrödinger and/or de Broglie as explained in ref. [35]). As is well-

10See for instance ref. [8] where we studied in depth the Galilean invariance of the
1 D NLS potential.
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known however, the dBB interpretation meets several obstacles in the
case of bosons. For instance, the conserved quantity associated to the
Klein-Gordon equation is not positive-definite. Other approaches are
possible, one of them being for instance to treat Glauber’s first order cor-
relation function as a photon wave function [36]. As this wave function
obeys Maxwell’s equations, one can associate to it a conservation equa-
tion which is a complexified version of Poynting’s conservation equation.
In this approach, however, the conserved density does not transform un-
der Lorentz boosts as the time component of a relativistic 4-vector [27].
If we try to associate trajectories to photons through the dBB usual
trick consisting of interpreting the velocity of the particle as the ratio
between the current vector and the conserved density, we must accept
that trajectories do not transform as quadridimensional, minkoskian,
lines of universe. Dirac’s equation does not suffer from this drewback,
but recently it has been shown that the same problem occurs when we
consider two non-interacting Dirac fermions:

-either their dynamics is described by the Bohm-Hiley dynamics to
which it is possible to associate a conservation equation with a positive
definite density; however, as has been shown by Pierre Pelcé [37], the
Bohm-Hiley dynamics is not invariant under Lorentz boosts;

-or their dynamics is described the Durt-Pelcé dynamics [38] which
is well Lorentz invariant; however the conserved density is, in this case,
not positive definite.

More generally, as was recognized by Bohm and later by Bell [14,
15, 39], if we wish to associate dBB trajectories to entangled systems,
trajectories must be defined in the configuration space which is a source
of intrinsic non-locality. This problem had already been identified by de
Broglie himself in 1927 [13]. Many years later, de Broglie attempted,
together with Andrade e Silva, to get rid of the configuration space and
to reformulate his interpretation in real, 3D physical space [40, 41, 42,
43, 44]. The violation of Bell’s inequalities [39] shows however, according
to us, that this attempt is condemned to fail from the beginning.

7.4 Other ways to realize the double solution program.

In a previous paper [8], we wrote...Since a couple of decades, de Broglie’s
point of view has been revived, be it indirectly, by experimental observa-
tions in hydrodynamics, which show that certain macroscopic objects, so
called walkers (bouncing oil droplets), exhibit many of the features of the
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de Broglie-Bohm (dB) dynamics [45, 46, 47, 48]. ... It is not clear how-
ever to figure out how such systems could exhibit quantum non-locality.
In particular, having in mind that the majority of the theoretical models
that are used to describe bouncing droplets is based on hydrodynamics
and fluid dynamics, which is always formulated in 3D, it is hard to go be-
yond a formulation of trajectories in 3D space. It seems thus impossible
mission to formulate the dynamics of bouncing droplets in configuration
space. Retrospectively, wave monism does not appear to have played a
role in the theory of bouncing oil droplets, even in “masselotte” models
à la Borghesi [49] where the particle is represented by a massive material
point, and the bath on which it bounces by a wave, similar to the pilot
wave interpretation. We are thus in right to consider that, also here, the
price to pay in order to realize the double solution program is to sacrifice
wave monism.

7.5 Conclusions

Our paper illustrates to which extent the double solution program is
severely constrained. We showed that the most obvious way to realize
it is to look for a wave function which is the product of the pilot wave
with a purely real solitonic wave. This, in turn, fixes the form of the
non-linear potential which is unambiguously specified by equation (30)
as we have shown here. To conclude our analysis it seems well that
in order to realize de Broglie’s double solution program it is required
to sacrifice wave monism, because the pilot wave and the particle are
not treated on the same footing: the non-linearity “makes a difference”
between them from the beginning and they do not naturally “emerge”
from the non-linearity.

Now, the dBB interpretation is rejected by the majority of quantum
physicists because of its ad hoc character, of its artificial degree of com-
plexity and of its non-relativistic flavour. Unfortunately, the same could
be said, at this level, about the double solution program, in contradiction
with the fact that this program was aimed at restoring simplicity and
coherence at a fundamental level. In a sense such conclusions are not
surprising: we know today, with a degree of certainty that was absent
60 years ago, that quantum mechanics is a non-local theory and that
it is very difficult to formulate it in terms of trajectories without pass-
ing to the configuration space. Some of the obstacles described in the
present paper reflect all these difficulties. Our solution can be extended
to the configuration space, at least in the classical limit [36], which shows
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that passing to the configuration space is not the main problem here11.
Despite of this, two main questions remain open at this level:

-Q1: is it possible to find a Lorentz invariant realization of the double
solution program ?

-Q2: is it possible then to respect wave monism?

It is not clear whether a relativistic formulation of the double solution
program is possible, because even in the case of the pilot wave/dBB
interpretation such a formulation does not exist yet. One is in right,
however, to expect that a solution of the double solution program ought
to be robust in the non-relativistic limit, in which case the answer to the
question Q2 is, definitively, negative.

8 Appendix 1: Factorisation ansatz and generalized
guidance equation: additional computations.

8.1 Non-unitarity/change of norm.

Let us denote HL the linear part of the the full Hamiltonian in (19). It
is not hermitian, so that

√
< φNL|φNL >, the L2 norm of its solution

φNL(x, t)) is not constant throughout time. The non-linear potentials
considered by us preserve the L2 norm however. We can thus evalu-
ate the time derivative of < φNL|φNL > by direct computation, either
integrating by parts, or making use of the formula

11As explained elsewhere with more details [36, 50], de Broglie remained reluctant
throughout all his life to the possibility to express quantum trajectories in the con-
figuration space [51]. For instance, in the 50’s, he wrote the following [1]: ...“Or,
la méthode de Schrödinger implique nécessairement l’emploi de l’espace de config-
uration et ne permet pas de se représenter le phénomène physique constitué par
le mouvement des corpuscules dans le cadre de l’espace physique. Sans doute la
Mécanique classique se servait-elle souvent, elle aussi, de l’espace de configuration,
mais ce n’était pas pour elle une nécessité: elle pouvait raisonner en considérant
le mouvement des points matériels du système dans l’espace à trois dimensions et
elle n’employait l’espace de configuration que comme un artifice mathématique per-
mettant de présenter plus élégamment ou d’effectuer plus aisément certains calculs.
Dès l’apparition des Mémoires de Schrödinger, tout en reconnaissant l’exactitude des
résultats obtenus par sa méthode, j’avais trouvé paradoxal le principe même de cette
méthode”... Following Bohm and others [52], we do not share de Broglie’s opinion,
even if this opens the door to non-locality, that we consider to constitute an essential
feature of quantum physics.
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d < φ|O|φ >
dt

=

< φ|∂O
∂t
|φ > +

1

i~
< φ|OHL −H†LO|φ >

=< φ|∂O
∂t
|φ > +

1

i~
(< φ|[O,Re.HL]−|φ > (31)

+
1

~
(< φ|[O, Im.HL]+|φ >),

where O is an arbitrary observable, described by a self-adjoint operator,
while Re.HL and Im.HL, the real and imaginary parts of HL are self-
adjoint operators defined through 2·Re.HL = HL+H†L and 2i·Im.HL =

HL−H†L. Here, the symbol [, ]− ([, ]+) represents the (anti)commutator.

We find by direct computation that

Re.(−~2

m
i5ϕL(x, t) · 5)

= (−~2

m
i5ϕL(x, t) · 5)− (

~2

2m
i∆ϕL(x, t)) (32)

and Im.(−~2

m i5ϕL(x, t) · 5) = ( ~2

2m∆ϕL(x, t)).

Therefore the guidance potential contributes to
d<φNL|φNL>

dt = d<φNL|1|φNL>
dt by a quantity

< φNL|(
~
m

∆ϕL(x, t))|φNL >≈ (
~
m

∆ϕL(< x >, t)) < φNL|φNL >),

due to the fact that, over the size of the soliton, ϕL(x, t) and its deriva-
tives are supposed to vary so slowly that we can consistently neglect
their variation and put them in front of the L2 integral.

The contribution of the RL − φNL coupling to d<φNL|φNL>
dt is

~2

m
1
i~
∫
d3x(5RL(x,t)

RL(x,t) ·5(φNL(x, t))∗φNL(x, t)−(φNL(x, t))∗ 5RL(x,t)
RL(x,t) ·

5φNL(x, t)).

We now suppose that we are in right to neglect the variation

of 5RL(x,t)
RL(x,t) in the integral above and to replace it by 5RL(x0,t)

RL(x0,t)
.
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Then we find, after integrating by parts, a contribution −25RL(t,x0)
RL(t,x0) ·∫

d3x(φNL(x, t))∗ ~5mi · φNL(x, t)

Putting all these results together, we find [11] that

d < φNL|φNL >
dt

≈ ~
m

∆ϕL(t,x0)· < φNL|φNL >

−2
5RL(t,x0)

RL(t,x0)
·
∫
d3x(φNL(x, t))∗

~5
mi
· φNL(x, t). (33)

8.2 Property 1: drift velocity.

Let us now consider the barycentre x0 of the soliton: x0 ≡ <φNL|x|φNL>
<φNL|φNL>

in order to estimate its velocity vdrift:

vdrift ≡
d(<φNL|x|φNL><φNL|φNL> )

dt
(34)

For instance, if we consider its z component:

z0 = <φNL|z|φNL>
<φNL|φNL>

and

dz0
dt = 1

<φNL|φNL>
d<φNL|z|φNL>

dt − z0
<φNL|φNL>

d<φNL|φNL>
dt ,

so that we find (making use of (20) as well as of results in the previous
section 8.1)
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dz0

dt
=

1

< φNL|φNL >

∫
d3x(φNL(x, t))∗

~5z

mi
· φNL(x, t)

+
1

< φNL|φNL >

∫
d3x(φNL(x, t))∗(

~5z

m
· ϕL(x, t))φNL(x, t)

+
1

< φNL|φNL >
< φNL|(

~
m

∆ϕL(x, t)) · z|φNL >

+
1

< φNL|φNL >
~
im

∫
d3x
5RL(x, t)

RL(x, t)
· 5(φNL(x, t))∗ · z · φNL(x, t)

− 1

< φNL|φNL >
~
im

∫
d3x(φNL(x, t))∗ · z · 5RL(x, t)

RL(x, t)
· 5φNL(x, t))

− z0

< φNL|φNL >
· ( ~
m

)∆ϕL(t,x0)· < φNL|φNL > (35)

+2
z0

< φNL|φNL >
5RL(t,x0)

RL(t,x0)
·
∫
d3x(φNL(x, t))∗

~5
mi
· φNL(x, t))

Now, ~
im

∫
d3x(φNL(x, t))∗ · z · 5RL(x,t)

RL(x,t) · 5φNL(x, t)

≈ z0
5RL(t,x0)
RL(t,x0)

∫
d3x(φNL(x, t))∗ ~5mi · φNL(x, t)),

while

< φNL|( ~
m )∆ϕL(x, t) · z|φNL > ≈ z0 · ( ~

m )∆ϕL(t,x0)· < φNL|φNL >
and so on so that finally only the two first lines of (35) survive.

We get thus [11] the generalized dB guidance equation (22), which
constitutes the

Property 1:

vdrift=
~
m
5ϕL(x0(t), t) +

< φNL| ~im5|φNL >
< φNL|φNL >

=vdB + vint..

vdrift contains the de Broglie-Bohm velocity

vdB ≡
~
m
5ϕL(x0(t), t), , (36)

and the internal velocity

vint. ≡
< φNL| ~im5|φNL >
< φNL|φNL >

. (37)
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(36) is nothing else than the de Broglie velocity as imposed through the
guidance equation (4), while vint. can be considered as a contribution to
the average velocity originating from the internal structure of the soliton.
Both contributions to the drift are evaluated at or around the barycentre
of the soliton, x0.

8.3 Property 2: rescaling.

Let us now reconsider the change of norm of φNL.

To do so, we introduce the total time derivative of RL (dRLdt = ∂RL
∂t +

vdrift · 5RL) where vdrift =
d<φNL|x|φNL>
<φNL|φNL>

dt obeys the generalized dB
guidance equation (22).

By a direct computation, we find

dRL
dt

RL
=

1

RL
(
∂RL
∂t

+5RL ·
~5
m
· ϕL(t,x0)) +

1

RL
5RL ·

1

< φNL|φNL >

∫
d3x(φNL(x, t))∗

~5
mi
· φNL(x, t) (38)

Making use of the conservation equation of the linear Schrödinger

equation ∂(RL)2

∂t = −div((RL)2 ~5
m · ϕL(t,x0)) we find

1
RL

(∂RL∂t +5RL · ~5m ·ϕL(t,x0)) = −1
2 div(~5

m ·ϕL(t,x0)) and we can
rewrite (38) as follows:

dRL
dt

RL
=
−1

2

~
m

∆ϕL(t,x0)

+
5RL
RL

· 1

< φNL|φNL >

∫
d3x(φNL(x, t))∗

~5
mi
· φNL(x, t) (39)

Making use of (20) (derived in section 8.1), we obtain at the end
dRL
dt

RL
= −1

2
1

<φNL|φNL>
d<φNL|φNL>

dt so that, finally,

d<φNL|φNL>
dt

< φNL|φNL >
= −2

dRL
dt

RL
. (40)

From the constraint (40) we infer [11] the
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Property 2

< φNL|φNL > (t)

< φNL|φNL > (t = 0)
=

(RL)2(t = 0)

(RL)2(t)
, (41)

where we evaluate (RL)2(t) at the barycentre of φNL, which moves ac-
cording to the generalized dB guidance equation (22). Let us rescale
φNL(x, t) by defining φ′NL through φNL(x, t) ≡ φ′NL(x, t)/RL; we can
thus predict in general that, if it exists and remains peaked during its
evolution, the solution of (19) has the form

Ψ(x, y, z, t) ≈ φ′NL(x, t)eiϕL(x,t), (42)

where φ′NL(x, t) is centred in x0(t = 0) +
∫ t

0
dtvdrift and is of constant

L2 norm.

In general, the non-linearity does not depend on the phase of Ψ so
that V NL(Ψ) = V NL(φ′NL(x, t)), and (19) can then be cast in the form

i~ · ∂(φ′NL(x, t)/RL(t,x0))

∂t
=

− ~2

2m
·∆(φ′NL(x, t)/RL(t,x0)) + V NL(φ′NL)(φ′NL(x, t)/RL(t,x0))

−~2

m
· i5ϕL(x, t) · 5(φ′NL(x, t)/RL(t,x0))

−~2

m
· 5RL(x, t)

RL(x, t)
· 5(φ′NL(x, t)/RL(t,x0)). (43)

In order to say more about φ′NL(x, t) we must solve equation (43)
which is a complicated problem, in general.

9 Appendix 2: Derrick’s theorem and linear power-
law potentials.

9.1 Derrick’s no go theorem.

Derrick [2] considered static self-interaction and localized static solitonic
solutions of the time-independent non-linear Schrödinger equation:

E ·Ψ(x) =
−~2

2m
∆Ψ(x) + V NL(x)Ψ(x). (44)
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Multiplying this equation at the left by Ψ∗ and integrating over the
whole space we get

E·
∫

d3xΨ∗(x)Ψ(x) =
−~2

2m

∫
d3xΨ∗(x)∆Ψ(x)+

∫
d3xΨ∗(x)V NL(x)Ψ(x).

(45)

Following Derrick let us interpret the functional −~
2

2m

∫
d3xΨ∗(x)∆Ψ(x)+∫

d3xΨ∗(x)V NL(x)Ψ(x), as the energy of the soliton:

E =
−~2

2m

∫
d3xΨ∗(x)∆Ψ(x) +

∫
d3xΨ∗(x)V NL(x)Ψ(x). (46)

Assuming here that V NL(x) = V NL(Ψ(x)), let us consider dilated func-
tions Ψλ(x) = Ψ(λx), with λ a positive real number.

Their energy obeys

Eλ =
−~2

2m

∫
d3xΨ∗λ(x)∆Ψλ(x) +

∫
d3xΨ∗λ(x)V NL(x)Ψλ(x). (47)

It is straightfoward to show that Eλ = I1/λ + I2/λ
3 where, be-

cause V NL(x) = V NL(Ψ(x)), I1 = −~2

2m

∫
d3xΨ∗(x)∆Ψ(x) and I2 =∫

d3xΨ∗(x)V NL(x)Ψ(x).

Let us assume that Ψ(x) is a minimal energy state; then dEλ
dλ

∣∣
λ=1

=0

and d2Eλ
dλ2

∣∣
λ=1
≥ 0. These constraints impose that

−I1−3I2 = 0 and 2I1 +12I2 ≥ 0; combining both constraints implies
that −2I1 ≥ 0. However, the soliton is supposed to be localized in a
finite region of space so that, integrating by parts, we find that I1 =
+~2

2m

∫
d3x|∇Ψ(x)|2 > 0.

According to Derrick, the soliton is thus unstable; in other words it
is impossible to find a minimal energy state that would be a localized
static solitonic solution of the time-independent non-linear Schrödinger
equation; this is the so called Derrick no-go theorem. Note that this
theorem can be generalized to the case where the dimension of space is
N ; then we get Eλ = I1/λ

(N−2) + I2/λ
N , and it is easy to show that the

no-go theorem is still valid for all dimensions strictly larger than 2.
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This theorem played the role of a scarecrow during many years. In
the version presented above, which is its commonly accepted version,
it rules out the possibility to apply the double solution program in the
physical, 3D, space. Nevertheless, we showed in the past by two explicit
examples, the 3D Schrödinger-Newton potential [7] and the 1 D NLS
potential in |Ψ|2 [8] , that the premices of Derrick’s no-go theorem are
fundamentally flawed.

Before considering more general situations, let us in a first time
present an oversimplified version of our argument in the case where the
potential is linear and is a power-law.

9.2 Derrick’s theorem, linear power-law potentials, and the
Virial quantum theorem.

Let us assume that V NL = 0 and V L(x)=a · |x|b, with a and b arbi-
trary real constants. Repeating Derrick’s procedure in this case, that
is to say, varying the energy of (46) with dilated functions Ψλ(x) =
Ψ(λx), we get, in dimension N , Eλ = I1/λ

(N−2) + I2/λ
N+b, where

I1 = −~2

2m

∫
dNxΨ∗E(x)∆ΨE(x) and I2 =

∫
dNxΨ∗L(x)V L(x)ΨL(x). Im-

posing that dEλ
dλ

∣∣
λ=1

=0 we get (2−N)I1 = (N + b) · I2
Now, we are free to consider in the present context the quantum

version of the Virial theorem. To do so, let us consider a solution of the

time-dependent equation linear Schrödinger equation (1) i~∂Ψ(x,t)
∂t =

−~2 ∆Ψ(x,t)
2m + V L(x)Ψ(x, t). In virtue of Ehrenfest’s theorem, we find

that
d
dt < Ψ|x · p|Ψ >= 1

i~
∫
dNxΨ∗(x, t))[−~2 ∆Ψ(x,t)

2m +V L(x),x · p]Ψ(x, t))

=
∫
dNxΨ∗(x, t))(~2 ∆Ψ(x,t)

m + x · ∇V L(x)Ψ(x, t))

If V L(Ψ)|x,t = a · |x|b, and if we consider an eigenstate of the Hamil-
tonian, that is to say a wave function ΨE(x) such that

EΨE(x) = − ~2

2m∆ΨE(x) + V L(x)ΨE(x),

we find

0 =
∫
dNxΨ∗E(x)(~2 ∆Ψ(x,t)

m + b · V L(x))ΨE(x).

If we reformulate this constraint in terms of I1 and I2, we find that
2I1 = b·I2, which contradicts Derrick’s constraint (2−N)I1 = (N+b)·I2
excepted for the particular value (2 − N)/(N + b) = 2/b ↔ N = 0 or
b = −2. In particular, Derrick’s “theorem” leads to the prediction that
the ground state of the 1D harmonic potential as well as the ground
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state of the 3D Coulomb potential are unstable, a puzzling and obvi-
ously misleading prediction. This apparent paradox can be solved if we
observe that the contradiction is present from the beginning at the level
of equation (46), which differs from (45) by a factor < Ψ|Ψ >. Repeat-
ing Derrick’s rescaling based on equation (45), instead of (46), we get,
in dimension N ,

Ẽλ = I1λ
2 + I2λ

−b where

Ẽλ =
−~2

2m

∫
d3xΨ∗(λx)∆Ψ(λx)+

∫
d3xΨ∗(λx)V L(λx)Ψ(λx)∫

d3xΨ∗(λx)Ψ(λx)
.

Imposing dẼλ
dλ |λ=1 = 0 delivers, when V L(x) = a · |x|b, 2I1 = bI2

which is nothing else than the quantum Virial theorem (valid in arbitrary
dimension N). The second derivative of Ẽλ relatively to λ, estimated at
λ = 1, is now equal to 2I1 + b(b+ 1)I2=2I1 · (1 + b+ 1).

Now, I1 > 0, so that if we impose the second derivative to be positive
we finally find b+ 2 > 0, which is for instance satisfied by the harmonic
potential and the Coulomb potential, in any dimension N . In particu-
lar, this analysis confirms the stability of the ground states of the 1D
harmonic potential and of the 3D Coulomb potential.

To conclude, Derrick’s theorem is to a large extent ill-founded. As
we discussed elsewhere [7, 8] , in the case of the 3D Schrödinger-Newton
potential and the 1 D NLS potential in |Ψ|2, the Derrick’s theorem does
not take account of the fact that the energy of the ground state of a
set of equinormalized functions depends on their norm. For the two
aforementioned potentials for instance, the minimal energy decreases
when the norm increases. It is however impossible for a state inititally
prepared with a certain L2 norm < Ψ|Ψ > to reach states with a higher
norm, because the quantum evolution is unitary12. What actually occurs
in the case of the 1 D NLS potential is that, as is well-known, the system
will radiate some weight and decrease its norm until it reaches the ground
state associated to its final norm and stabilizes. In ref. [8], we studied
in depth the symmetries of the 1 D NLS potential regarding rescaling.
Here, we shall extend this analysis, focusing on the rescaling properties
of non-linear power-law potentials.

12This is also true in the case of the logarithmic potential as originally noted by
Bialynicki-Birula and Mycielski [30] : if we rescale the wave function by multiplying
it by a complex number z, the size and shape of the self-focused gaussons does not
change but the potential is shifted by a positive quantity when |z| < 1, and by a
negative quantity when |z| > 1. Lower energy gaussons are thus associated to larger
L2 norms, which, once again, nullifies Derrick’s theorem in this case.
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9.3 Derrick’s theorem and non-linear power-law potentials.

Let us now assume that V L = 0 and V NL(x) = V NL(Ψ(x))=a · |Ψ(x)|b,
with a and b arbitrary real constants. Repeating Derrick’s procedure, but
this time with the correct functional, that is to say, varying the energy of
(45) rather than of (46) with dilated functions Ψλ(x) = Ψ(λx), we would

get Eλ = I1/λ
(N−2) + I2/λ

(N−b), where I1 = −~2

2m

∫
dNxΨ∗E(x)∆ΨE(x)

and I2 =
∫
dNxΨ∗L(x)V NL(Ψ(x))ΨL(x). However, the dilated functions

Ψ(λx) do not share the same L2 norm as Ψ(x), and there is no reason, as
we already remarked before, to impose that Ψ(λx) minimizes the energy,
disregarding the norm of the trial function Ψλ(x).

A correct stability analysis requires instead to minimize the energy
under variations of Ψ(x) that preserve the L2 norm.

We should thus rather impose that

Ẽλ =
−~2

2m

∫
dNxΨ̃∗(λx)∆Ψ̃(λx)+

∫
dNxΨ̃∗(λx)V NL(Ψ̃(λx))Ψ̃(λx)∫

dNxΨ̃∗(λx)Ψ̃(λx)
is minimal,

with Ψ̃(λx) = λN/2Ψ(λx).

Now, if V NL(x)=a · |Ψ(x)|b, we get Ẽλ = Ĩ1λ
2 + Ĩ2λ

N ·b/2 where

Ĩ1 =
−~2

2m

∫
dNxΨ̃∗(x)∆Ψ̃(x)∫

dNxΨ̃∗(x)Ψ̃(x)

and

Ĩ2 =
∫
dNxΨ̃∗(x)V NL(Ψ(x))Ψ̃(x)∫

dNxΨ̃∗(x)Ψ̃(x)
.

Imposing dẼλ
dλ |λ=1 = 0 delivers13 the Viral-like relation

2Ĩ1 = −(N · b/2)Ĩ2.

Stability requires that d2Ẽλ
dλ2 |λ=1 > 0, which implies that 2Ĩ1 +

(N · b/2)(N · b/2 − 1)Ĩ2 > 0. Combining this constraint with 2Ĩ1 =
−(N · b/2)Ĩ2 delivers 2Ĩ1(1 − Nb/2 + 1) > 0 and, because I1 > 0 we
finally find 4−Nb > 0.

In order to complete our stability analysis, it is still necessary to show
that states with lower energy have a L2 norm higher than the L2 norm

of Ψ(x). To do so, let us consider rescaled states ˜̃Ψλ1,λ2(x) = λ2Ψ(λ1x),

13Note that, if we consider non-linear potentials of the form V NL(x, t) =∫
d3x′|Ψ(x′, t)|2 · f(||x − x′||) with =f(||x − x′||) = a · ||x − x′||b, we obtain the

Viral-like relation 2I1 = bI2 and all the stability analysis is exactly identical to the
one performed in the case of linear power-law potentials. In particular when b = −1
the single particle Schrödinger-Newton potential possess a stable ground state, in
accordance with Lieb’s analysis [53] .
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with λ1, λ2 ∈ R+ and λ2
1 = λb2. One can check by direct computation

that if Ψ(x) satisfies (44), and V NL(x)=a · |Ψ(x)|b, then

˜̃E ˜̃Ψλ1,λ2
(x) =

−~2

2m
∆ ˜̃Ψλ1,λ2

(x) + V NL(x) ˜̃Ψλ1,λ2
(x)., (48)

where the rescaled energy ˜̃E obeys ˜̃E = λ2 · λ2
1 · E = λb+1

2 · E. Now, if
we assume that Ψ is a stable localized soliton, then E is negative. Thus,
d ˜̃E
dλ2
|λ2=1 = (b+ 1) · E, with E < 0.

Moreover, < ˜̃Ψλ1,λ2 |
˜̃Ψλ1,λ2 >, the L2 norm of ˜̃Ψλ1,λ2(x) is equal to

λ2
2λ
−N
1 · < Ψ|Ψ >= λ

(2−bN/2)
2 · < Ψ|Ψ >.

Also imposing that in the vicinity of λ1 = λ2 = 1 the wave functions
with energy smaller than E have a L2 norm larger than the non-varied
norm < Ψ|Ψ > requires

(2− bN/2) > 0↔ bN < 4, when b+ 1 > 0

and

(2− bN/2) < 0↔ bN > 4, when b+ 1 < 0.

Now, we must also fulfill the constraint 4 −Nb > 0 so that there is
no stability when b < −1. Even when b > −1, stability is guaranteed
according to our criteria only if bN < 4. For instance when b = 2 (NLS
potential), it is only in a 1D space that stability is guaranteed.

The 3D NLS potential is for instance ruled out by this analysis of
stability but there still exist 3D potentials that pass the test, contrary
to Derrick’s claim.

To conclude this section, although the original version of Derrick’s
theorem is flawed for several reasons, it appears to provide useful tools for
performing a stability analysis of the solitonic solutions of (44), when this
equation possesses specific invariance properties under rescaling, which
is for example the case when V NL(x)=a · |Ψ(x)|b, or when V NL(x, t) =∫
d3x′|Ψ(x′, t)|2 · f(||x− x′||) with =f(||x− x′||) = a · ||x− x′||b.

Our analysis, in which we take account of the unitarity of the evolu-
tion, confirms Derrick’s analysis in some cases (e.g. there is no stable 3D
soliton for the NLS equation with V NL(x)=a · |Ψ(x)|2, but for instance,
in the case of the 3D single particle Schrödinger-Newton potential, it
ensures the stability, of the solitonic ground state, in agreement with
Lieb’s results [53].
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10 Appendix 3: Factorisation ansatz, and Barut’s
program.

The factorization ansatz was considered in the past by A.Barut, in the
case of a free particle [29]. Here, we reproduce the derivation of L.Bindel
[34], which differs from the original one by a factor 2, but is essentially the
same. To do so, let us consider the non-relativistic Schrödinger equation
for a free particle (V L = 0) in absence of self-interaction (V NL = 0):

i~
∂ΨL(x, t)

∂t
= − ~2

2m
∆ΨL(x, t) (49)

Let us search for a solution of the form ΨL(x, t) = F (x, t) · e i~ (p·x−E·t).

Mass-energy imposes, in the non-relativistic limit, that E = mc2 + p2

2m so
that we obtain two equations, considering the real and imaginary parts
of equation (49):

∆F (x, t) + 2(
m · c
~

)2F (x, t) = 0, (50)

and

∂F (x, t)

∂t
+ (

p

m
) · ∇ · F (x, t) = 0. (51)

The second one is nothing else than the guidance equation, with a
constant velocity v = ( p

m ); the first one is the Helmholtz equation and
makes appear the Compton length of the particle. In order to ensure
the consistency of this approach we must require that F is a purely real
function. Then the wave ΨL(x, t) is the product of a plane wave with a
non-dispersive solution, that is to say a solitary wave which propagates
without changing it shape: F (x, t) = F (x− v · t).

Surprisingly, this example shows that linear equations possess non-
dispersive solutions. The solution considered here should be put in re-
lation with the solutions considered in the section 7.2, that are built
by “boosting” a static soliton (here F (x, t = 0)) thanks to a Galilean
transformation. It faces the same problem, however: it is difficult to
figure out how to extend this result to the case where an external po-
tential is present (V L 6= 0), in which case Galilean invariance is broken.
Bindel proposed to incorporate Barut’s ideas to a perturbative approach
in which the free propagator is expressed in terms of non-dispersive so-
lutions, while the influence of the potential V L is taken account through
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a development in series of the propagator, as is often done in the case
of a scattering process. This approach is certainly valid in the case of
a scattering process where the in and out states are asymptotically free
states. However it is difficult to extend it to the case of bound states,
like e.g. the case of a coherent state of a harmonic oscillator that we
decribed in section 6.2.
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[38] T. Durt and P. Pelcé, On connections between L. de Broglie fusion theory
and quantum relativistic two-body equations. Annales de la Fondation
Louis de Broglie, 47, 163, (2022).

[39] J. S. Bell. On the EPR paradox.Physics, 1: 165 (1964).

[40] L. de Broglie and J. Andrade e Silva. Idées nouvelles concernant les
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