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ABSTRACT.

We show how pilot-wave theory points to new physics, beyond quan-
tum mechanics, in three distinct ways. First, generalised cosmological
initial conditions, departing from the Born rule, can lead to observ-
able anomalies in the cosmic microwave background and in relic cos-
mological particles. Second, a breakdown of the Born rule in the deep
quantum-gravity regime, with gravitational corrections that render the
Born rule semiclassically unstable, can create anomalies in Hawking
radiation from evaporating black holes. Third, a regularised equation
of motion that remains finite at nodes of the wave function gener-
ates corrections to the Born rule at short distances, while a natural
time-dependent generalisation implies an instability of quantum equi-
librium at short times, effects which may be observable in high-energy
collisions.

1 Introduction

‘We have to find a new view of the world that has to agree with everything
that is known, but disagree in its predictions somewhere ... .’ (ref. [1],
p. 171)

In the search for new physics, it can be useful to have a theory that
agrees with all experiments carried out so far – and that also suggests
new areas where novel predictions could be found. The pilot-wave ap-
proach to quantum mechanics, pioneered by Louis de Broglie in the
1920s and elaborated by David Bohm in the 1950s [2–7], provides such
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a theory. It agrees with quantum mechanics in a broad regime, but of-
fers three natural points of departure for new physics: (1) in the early
universe, with non-standard initial conditions that violate the Born rule,
(2) in the quantum-gravitational regime, where standard quantum prob-
abilities are ill-defined, and (3) near nodes of the wave function, where
pilot-wave dynamics breaks down and requires regularisation. These
themes lead to specific predictions. In this paper we outline the basic
motivations and key results.

Pilot-wave theory was first proposed in complete form in 1927 by
de Broglie [2, 3] for a low-energy system of spinless particles whose
wave function ψ(x1,x2, ...,xN , t) obeys the N -body Schrödinger equa-
tion (units ~ = 1)

i
∂ψ

∂t
= −

N∑
n=1

1

2mn
∇2
nψ + V ψ . (1)

According to de Broglie, the particles move along a definite trajectory
(x1(t), ...,xN (t)) determined by the law of motion

dxn
dt

=
1

mn
∇nS , (2)

where ψ = |ψ| eiS . This implies that, for an ensemble of systems with
the same wave function ψ, an arbitrary distribution ρ(x1,x2, ...,xN , t)
evolves by the continuity equation

∂ρ

∂t
+

N∑
n=1

∇n · (ρvn) = 0 , (3)

with a velocity field

vn =
1

mn
∇nS . (4)

From (1) it follows that |ψ|2 obeys the same continuity equation,

∂ |ψ|2

∂t
+

N∑
n=1

∇n ·
(
|ψ|2 vn

)
= 0 . (5)

We then have a simple theorem: if ρ and |ψ|2 are equal at some initial
time, they will remain equal for all time. This is the state of ‘quantum
equilibrium’

ρ(x1, ...,xN , t) = |ψ(x1, ...,xN , t)|2 . (6)
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As shown in detail by Bohm in 1952, in this state we obtain agreement
with the usual predictions of quantum mechanics, in particular for quan-
tum ‘measurements’ of operator observables as usually understood [5].

Similar reasoning applies generally. For a system with configuration
q and wave function ψ(q, t), we have a Schrödinger equation

i
∂ψ

∂t
= Ĥψ . (7)

The system moves along a definite trajectory q(t) determined by the law
of motion

dq

dt
=

j(q, t)

|ψ(q, t)|2
, (8)

where j = j [ψ] = j(q, t) (with a form depending on Ĥ [8]) is the stan-
dard quantum current appearing in the configuration-space continuity
equation

∂ |ψ|2

∂t
+ ∂q · j = 0 (9)

derived from (7). This may be written as

∂ |ψ|2

∂t
+ ∂q ·

(
|ψ|2v

)
= 0 , (10)

with a velocity field

v(q, t) =
j(q, t)

|ψ(q, t)|2
. (11)

For an ensemble of systems with the same wave function ψ, by con-
struction an arbitrary distribution ρ(q, t) evolves by the same continuity
equation

∂ρ

∂t
+ ∂q · (ρv) = 0 . (12)

And so again we have a state of quantum equilibrium

ρ(q, t) = |ψ(q, t)|2 , (13)

whose predictions agree with quantum mechanics. This construction
applies, for example, to field theory on a background spacetime (flat or
curved), where q is identified with the field configuration on a spacelike
slice at global time t.1

1Because the dynamics is nonlocal for entangled degrees of freedom, the dynam-
ics is specified with respect to a preferred slicing of spacetime with preferred time
parameter t [9].
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Now, as it stands, pilot-wave theory might appear as just another
reformulation of known physics, with nothing measureably new to offer.
But in fact, careful inspection reveals three natural mechanisms for new
physics, which we briefly sketch here, with further details below.

First, the theory provides an obvious generalisation to ‘quantum
nonequilibrium’ ensembles with [10–21]

ρ(q, t) 6= |ψ(q, t)|2 .

Here the equations of motion – (7) for ψ and (8) for q – remain the
same, it is only the initial conditions (over an ensemble) that differ from
usual. There is, of course, a conceptual difference between immutable
laws of motion and variable initial conditions. If we accept (7) and (8)
as basic laws, it is clear that in pilot-wave theory the Born rule (13)
does not have the same status: the Born rule is not a law but merely an
initial condition.2 Therefore, the theory naturally invites us to consider
more general initial conditions with ρ 6= |ψ|2. The potentially observable
consequences of this simple step, in particular for cosmology, are outlined
in Section 2.

Second, in the context of quantum gravity, pilot-wave theory sug-
gests that there is no fundamental equilibrium state at the Planck scale
and, furthermore, that at lower energies small quantum-gravitational
corrections can render the Born rule unstable, enabling initial equilib-
rium ρ = |ψ|2 to evolve into final nonequilibrium ρ 6= |ψ|2 [22, 23].
While these effects are expected to be very tiny, they may have observ-
able consequences in the radiation from exploding primordial black holes
(Section 3).

Third, the theory predicts its own demise at nodes where ψ = 0
and the velocity field (11) diverges (for a broad class of Hamiltonians
found in nature). This problem is usually ignored as nodal regions are

of (Lebesgue- or |ψ|2-) measure zero. But as a matter of principle, new
physics must set in sufficiently close to nodes, so as to regularise the the-
ory in some fashion [24]. A simple regularisation of the dynamics implies
small corrections to the equilibrium state close to nodes. We show how
the form of the corrections (though not their overall magnitude) may be
predicted. Generalising to a time-dependent regularisation again enables
initial equilibrium ρ = |ψ|2 to evolve into final nonequilibrium ρ 6= |ψ|2

2For a thorough discussion see ref. [21].
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[24]. Such effects might potentially appear in high-energy collision ex-
periments, in the form of smeared cross sections, or as anomalous spin
or polarisation probabilities (Section 4).

2 Generalised initial conditions in cosmology

The application of quantum mechanics to the early universe is a fairly
mature science, at least for quantum systems on a background classical
spacetime. We know that small temperature anisotropies in the cosmic
microwave background (CMB) were seeded by small inhomogeneities
in the early universe. According to inflationary cosmology, those early
inhomogeneities were in turn seeded by primordial quantum fluctuations
at very early times [25–27]. The ‘primordial power spectrum’ measured
by the Planck satellite then provides a record of the Born rule at work
in the very early universe. This means that measurements of the CMB
can be employed to test quantum mechanics, in particular the Born rule,
at the earliest moments in the history of our universe [19, 28].

2.1 Quantum relaxation

According to pilot-wave theory, the Born rule ρ = |ψ|2 (applied for ex-
ample to a field on a background spacetime) is not a law of nature but
merely a state of statistical equilibrium, analogous to thermal equilib-
rium in classical physics [10–21]. It can be understood as having arisen
by a past process of dynamical relaxation, whereby an initial nonequilib-
rium ensemble with ρ 6= |ψ|2 evolves – via the continuity equation (12) –

towards the equilibrium state ρ = |ψ|2 (on a coarse-grained level). This
can be quantified by a decrease of the coarse-grained H-function

H̄(t) =

∫
dq ρ̄ ln(ρ̄/|ψ|2) (14)

(for coarse-grained densities ρ̄ and |ψ|2), which satisfies a coarse-graining
H-theorem H̄(t) ≤ H̄(0) (assuming no initial fine-grained structure at
t = 0) [10, 12, 14]. Extensive numerical simulations have illustrated
quantum relaxation in a variety of circumstances, with an approximately
exponential decay [17, 29, 30]

H̄(t) ≈ H̄0e
−t/τ (15)

(for wave functions that are superpositions of multiple energy eigen-
states), where H̄ → 0 implies ρ̄ → |ψ|2. We may then understand the
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Born rule observed today as having arisen from relaxation processes tak-
ing place in the remote past, presumably close to the big bang.

Such studies have been extended to field theory on a background
expanding space. Consider a massless scalar field φ on flat expanding
space with metric

dτ2 = dt2 − a2δijdxidxj (16)

and scale factor a = a(t) (conventionally taking a0 = 1 at time t0 today).
For an unentangled field mode with Fourier component

φk =

√
V

(2π)3/2
(qk1 + iqk2) (17)

(where V is a normalisation volume and qk1, qk2 are real), the wave func-
tion ψk(qk1, qk2, t) satisfies the two-dimensional Schrödinger equation

i
∂ψk

∂t
= − 1

2a3

(
∂2

∂q2k1
+

∂2

∂q2k2

)
ψk +

1

2
ak2

(
q2k1 + q2k2

)
ψk , (18)

with de Broglie velocities

q̇k1 =
1

a3
∂sk
∂qk1

, q̇k2 =
1

a3
∂sk
∂qk2

(19)

(where ψk = |ψk| eisk) [19, 28]. These match the usual equations for a
two-dimensional harmonic oscillator with time-dependent mass m = a3

and time-dependent angular frequency ω = k/a (units ~ = c = 1). An
arbitrary ensemble distribution ρk(qk1, qk2, t) evolves by the continuity
equation

∂ρk
∂t

+
∂

∂qk1
(ρkq̇k1) +

∂

∂qk2
(ρkq̇k2) = 0 , (20)

which may be integrated forwards in time for given initial conditions.

2.2 Large-scale power deficit in the CMB

At short physical wavelengths λphys = aλ << H−1, where H−1 = a/ȧ is
the Hubble radius, we find the usual rapid and efficient coarse-grained
relaxation ρ̄k → |ψk|2 indicated above. However, at longer wavelengths
λphys & H−1 we find that relaxation is retarded or suppressed [19, 31–
34]. We can then expect quantum noise to be suppressed at large cosmo-
logical scales, as appears to be observed (though not without controversy,
as the data are especially noisy at large scales) [35].
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The degree of suppression can be quantified by a nonequilibrium
mean square 〈

|φk|2
〉

=
〈
|φk|2

〉
QT

ξ(k) , (21)

where 〈...〉QT is the quantum-theoretical equilibrium value and ξ(k) < 1
measures the ‘squeezing’ of the Born rule as a function of k. Extensive
numerical simulations support an approximate form (neglecting small
oscillations)

ξ(k) = tan−1(c1
k

π
+ c2)− π

2
+ c3 , (22)

with an increasing deficit at small k, where the unknown parameters
c1, c2, c3 depend on the initial state and on the time interval [33, 34].
Such large-scale suppression could have taken place during a (radiation-
dominated) pre-inflationary era. Assuming for simplicity that the spec-
trum is unaffected by the transition to inflation, we may then expect the
usual inflationary power spectrum [25]

PQT
R (k) =

4πk3

V

〈
|Rk|2

〉
QT
∝ 4πk3

V

〈
|φk|2

〉
QT

(23)

for primordial ‘curvature perturbations’ Rk ∝ φk to take the corrected
form [19, 28]

PR(k) = PQT
R (k)ξ(k) , (24)

with a large-scale deficit. This implies corrections to the angular power
spectrum observed in the CMB [19, 28, 32, 33].

The corrected spectrum (24) has been fit to CMB data with some
success, though at the time of writing there is no clear statistical prefer-
ence for a large-scale deficit of the form (22) [36]. To confirm or rule out
cosmological models with quantum relaxation will require more detailed
predictions. Such models imply small oscillations in ξ(k) [33]. We may
also expect to find statistical anisotropy, with ξ showing some depen-
dence on the direction of the wave vector k (at least at large scales) [37].
Further comparison with data is a task for future work.

2.3 Nonequilibrium relic particles

According to inflationary cosmology, the matter in our universe was cre-
ated at early times by inflaton decay [27]. As the early inflationary
expansion comes to an end, the energy of the inflaton field is converted
into matter and radiation, initiating a hot big bang. If the early inflaton
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field violates the Born rule, then so will its decay products [31, 38]. By
this mechanism, the early hot universe could be filled with nonequilib-
rium particles that break the Born rule.

We may ask if such particles could survive to the present day and
still be in nonequilibrium. To avoid relaxation, the particles would need
to decouple at very early times so as to stream freely with negligible
interaction.3 Prominent theories of high-energy physics suggest that
dark matter is largely composed of relic particles that decoupled very
early – for example, gravitinos. It then seems conceivable that, even
today, dark-matter particles could violate the Born rule [14, 19, 31, 38].

Today it is not possible to experiment with dark-matter particles di-
rectly, since they interact extremely weakly with ordinary matter. How-
ever, we may be able to observe their annihilation or decay products.
For example, pairs of gravitinos are expected to annihilate into pairs of
gamma-ray photons. In other models, dark-matter particles can decay
to produce X-rays. If the parent particles violate the Born rule, so will
the outgoing photons. Among other phenomena, the resulting spectral
lines could have anomalous profiles [39].

We may then envisage experiments testing the Born rule for X-rays
or gamma rays produced by disintegrating dark matter. The Fermi
Gamma-ray Space Telescope has detected a puzzling excess of gamma
rays from the Galactic centre [40], which on some models could originate
from the annihilation or decay of dark-matter particles [41, 42]. We then
have a case for testing the Galactic excess gamma-ray photons for devi-
ations from the Born rule. The incoming photons could impinge on an
appropriate two-slit screen, or perhaps a diffracting crystal or grating,
where the resulting interference or diffraction pattern may be monitored
for anomalies. The incoming photons could also be tested for anomalies
in the angular dependence of their differential scattering cross sections in
high-energy collisions or, more simply and cleanly, the photons could be
tested directly for anomalies in their polarisation probabilities (cf. Sec-
tion 4.4) [19, 43]. Such tests would have to be done aboard a dedicated
satellite in space, to avoid absorption of the incoming gamma rays by the
earth’s atmosphere. The forthcoming QUICK3 satellite mission includes
an interferometer designed to test the Born rule in space [44]. Once such
a system is fully operational, it could be deployed to test Galactic excess

3The particles would also need to have effective wave functions with very few
energy modes superposed [38].
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gamma rays – or photons from some other exotic source – for deviations
from the Born rule.

3 Quantum gravity and quantum probability

So far we have considered quantum systems on a background classical
spacetime. In quantum gravity, spacetime itself is quantised. This turns
out to have profound implications for the Born rule.

3.1 Pilot-wave quantum gravity

In the usual ‘canonical’ approach to quantum gravity, spacetime is foli-
ated by spacelike slices with 3-metric gij , which is then subject to quanti-
sation. In the presence of a matter field φ we obtain the Wheeler-DeWitt
equation (~ = c = 16πG = 1) [45, 46](

−Gijkl
δ2

δgijδgkl
−√gR+ Ĥφ

)
Ψ = 0 (25)

for the wave functional Ψ = Ψ[gij , φ], where

Gijkl =
1

2
g−1/2(gikgjl + gilgjk − gijgkl) (26)

and Ĥφ is an appropriate contribution from φ. There is also a constraint

−2Dj
δΨ

δgij
+ ∂iφ

δΨ

δφ
= 0 (27)

(where Dj is a spatial covariant derivative) ensuring that Ψ is a function
of the coordinate-independent 3-geometry.

It is noteworthy that Ψ has no explicit dependence on time t (where
at the classical level t labels the foliation by spacelike slices). In the
standard quantum-mechanical formulation, this presents numerous dif-
ficulties which are generally known as the ‘problem of time’ [47–53].

In the pilot-wave formulation, in addition to equations (25) and (27)
for Ψ, we also have de Broglie guidance equations [54]

∂gij
∂t

= 2NGijkl
δS

δgkl
,

∂φ

∂t
=

N
√
g

δS

δφ
(28)

for evolving fields gij and φ, where as usual Ψ = |Ψ| eiS and N is the
‘lapse function’ associated with the foliation.4 Even though Ψ is static,
there are time-dependent trajectories for gij and φ.

4For simplicity and without loss of generality we take the ‘shift vector’ N i = 0.
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3.2 Problem of probability and its solution

Pilot-wave theory has been extensively applied to the simplified version
of quantum gravity known as quantum cosmology [55]. These applica-
tions include bouncing cosmological models and demonstrations of singu-
larity avoidance [56–58]. These works discuss and calculate de Broglie-
Bohm trajectories, for example for the cosmological scale factor a(t),
without however discussing probability. There is a technical reason for
this: solutions Ψ of the Wheeler-DeWitt equation are non-normalisable
and cannot define a Born-rule probability density |Ψ|2. This is because
the Wheeler-DeWitt equation for Ψ on configuration space is mathe-
matically analogous to a Klein-Gordon equation for a field φ on space-
time: the integral

∫
dq |Ψ|2 diverges as does the integral

∫
d3x

∫
dt |φ|2

[49, 50]. In pilot-wave theory, this problem can be solved by abandoning
the Born rule at the fundamental level [22, 23].

We can illustrate the problem, and its solution, with a simple model of
quantum cosmology. We consider a flat expanding universe with metric
(16). The universe contains a homogenous matter field φ with potential
V(φ). We then have a Wheeler-DeWitt equation [59]

1

2m2
P

1

a

∂

∂a

(
a
∂Ψ

∂a

)
− 1

2a2
∂2Ψ

∂φ2
+ a4VΨ = 0 (29)

for Ψ(a, φ), where m2
P = 3/4πG is the (rescaled) Planck mass squared.

In terms of α = ln a this can be rewritten as a two-dimensional Klein-
Gordon equation

1

m2
P

∂2Ψ

∂α2
− ∂2Ψ

∂φ2
+ 2e6αVΨ = 0 (30)

with a potential term. The free part has the general solution

Ψ = f(φ−mPα) + g(φ+mPα) , (31)

where f and g are packets travelling in the two-dimensional ‘spacetime’
(α, φ). Clearly, the integral

∫ ∫
dαdφ |Ψ|2 necessarily diverges. This

problem can be solved by denying that |Ψ|2 is a measure of probability.
In pilot-wave theory, in addition to the Wheeler-DeWitt equation (29),
we also have the de Broglie guidance equations [22, 23]

ȧ = − 1

m2
P

1

a

∂S

∂a
, φ̇ =

1

a3
∂S

∂φ
. (32)
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For a theoretical ensemble with wave function Ψ(a, φ), we can consider
an arbitrary (by definition normalisable) probability density P (a, φ, t)
whose time evolution follows the continuity equation

∂P

∂t
+

∂

∂a
(P ȧ) +

∂

∂φ

(
Pφ̇
)

= 0 (33)

with the velocity field (32). This can be integrated forwards in time,
given an arbitrary initial condition P (a, φ, t0) at t = t0. By construc-

tion, at all times
∫ ∫

dadφ P = 1 whereas
∫ ∫

dadφ |Ψ|2 = ∞. Thus,
necessarily, the system is in a perpetual state of quantum nonequilib-
rium5

P 6= |Ψ|2 . (34)

If we accept that there is no equilibrium state, and no Born rule, in
the deep quantum-gravity regime, we can consistently discuss ensembles
with a normalised probability density P .

We might ask what happens to P as it evolves in time. Clearly, it
cannot relax towards |Ψ|2 as occurs in conventional systems (on a coarse-
grained level), since P remains normalised. It has been suggested that,

nevertheless, P might relax towards |Ψ|2 in a local region of configuration
space [60]. However, numerical simulations show that relaxation does not
occur even locally [61].

3.3 Semiclassical emergence of the Born rule

At this point it is natural to ask how the theory can account for the
observed Born rule in the semiclassical regime – that is, for a quan-
tum system on a background classical spacetime, with an effective time-
dependent Schrödinger equation

i
∂ψ

∂t
= Ĥψ (35)

for a standard (normalisable) wave function ψ(q, t).

As usually understood this regime emerges, for example for a quan-
tum field φ, when the Wheeler-DeWitt wave functional takes the form
[62]

Ψ[gij , φ] ≈ ΨWKB[gij ]ψ[φ, gij ] , (36)

5While this does not materially affect the discussion, in fact with our choice of con-
figuration space the natural (non-normalisable) quantum density is equal to a2 |Ψ|2
and not |Ψ|2 [22, 23]. Strictly speaking we then have a perpetual nonequilibrium
P 6= a2 |Ψ|2.
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where ΨWKB[gij ] is a WKB state for the background. The effective time-
dependent wave functional ψ[φ, t] arises simply by evaluating ψ[φ, gij(t)]
along a classical background trajectory gij(t). We then obtain the usual,
much-studied regime, where we expect to find (coarse-grained) relaxation

ρ[φ, t]→ |ψ[φ, t]|2 to quantum equilibrium.

Thus, despite the absence of a fundamental Born-rule state, never-
theless the Born rule emerges as required in the semiclassical regime,
and so the theory can still agree with observation.

3.4 Gravitational instability of quantum equilibrium

In the semiclassical approximation, the effective Hamiltonian Ĥ has tiny
quantum-gravitational corrections which have been evaluated [59, 62].
Remarkably, there are both Hermitian and non-Hermitian terms. The
non-Hermitian terms are usually discarded by hand, since in standard
quantum mechanics they generate a small violation of probability con-
servation. However, we can make sense of those terms in pilot-wave
theory: in their presence, probability is still conserved but the Born rule
becomes unstable [22, 23]. To see this note first that, if we evaluate the
de Broglie velocity for φ to the same approximation, we find that it takes
the usual form φ̇ = (N/

√
g)(δS/δφ) but with S now equal to the phase

of ψ. We then have the usual continuity equation

∂ρ

∂t
+

∫
d3x

δ

δφ

(
ρφ̇
)

= 0 (37)

for ρ[φ, t]. As for |ψ[φ, t]|2, writing Ĥ = Ĥ1 + iĤ2 (with Ĥ1, Ĥ2 Her-
mitian), we find that the Schrödinger equation (35) implies a continuity
equation

∂ |ψ|2

∂t
+

∫
d3x

δ

δφ

(
|ψ|2 φ̇

)
= s , (38)

with a source term

s = 2 Re
(
ψ∗Ĥ2ψ

)
. (39)

Because the continuity equations for ρ and |ψ|2 no longer match, an ini-

tial distribution ρ = |ψ|2 can evolve into a final distribution ρ 6= |ψ|2.
Small quantum-gravitational corrections can generate nonequilibrium
from initial equilibrium. The timescale for this process has been esti-
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mated:6

τnoneq ≈
1

2
∣∣∣〈Ĥ2

〉∣∣∣ . (40)

In the presence of an evaporating Schwarzchild black hole of mass
M(t), the Hamiltonian Ĥk of a scalar field mode k has a non-Hermitian
correction iĤ2 where [63]

Ĥ2 ' −
1

12
κ
(mP

M

)4
Ĥk , (41)

with κ a numerical factor and mP =
√
~c/G ' 10−5 g (the standard

Planck mass). If we take
〈
Ĥk

〉
to be of order the Hawking temperature

kBTH =
~c3

G

1

8πM
=

1

8π
mPc

2mP

M
,

we find an estimated timescale [22, 23]

τnoneq ∼
48π

κ
tP

(
M

mP

)5

, (42)

where tP is the usual Planck time. The effect is significant only in the
final stages of evaporation when M is close to mP. We may then expect
the very final burst of Hawking radiation to show deviations from the
Born rule.7

In practice, we may reasonably hope to observe γ-ray Hawking ra-
diation from exploding primordial black holes [66]. If such γ-rays were
discovered, they could be tested for possible violations of the Born rule,
such as anomalous polarisation probabilities [19, 43]. Again, such tests
would have to be done aboard a dedicated satellite in space.

4 Regularised pilot-wave theory

The effects discussed so far require delicate measurements of radiation
from the early universe, from disintegrating relic particles, or from ex-
ploding primordial black holes. One might ask if there are any worth-
while experiments that might be conducted in the laboratory, under

6From the time derivative of the H-function H(t) =
∫
Dφ ρ ln(ρ/ |ψ|2) [22, 23].

7Related effects could also play a role in resolving the information-loss puzzle
[19, 64, 65].
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controlled conditions, and for which there may be plausible prospects of
observing deviations from quantum mechanics.

As it stands, pilot-wave theory tells us that we are trapped in a state
of quantum equilibrium – a state of ‘quantum death’ broadly analogous
to the state of ‘heat death’ predicted by classical statistical thermody-
namics [10–21]. As we saw in Section 2, we might find evidence for
an early state of quantum nonequilibrium from careful measurements of
the CMB, and residual nonequilibrium could in principle survive to the
present day in certains kinds of relic cosmological particles. But once
the equilibrium state is reached, there appears to be no realistic means
of escape, except for the tiny quantum-gravitational effects which we
described in Section 3 – and which seem beyond any hope of laboratory
detection.8 This somewhat discouraging conclusion is modified, how-
ever, if we carefully re-examine the fundamental equations of pilot-wave
dynamics.

4.1 New physics at nodes (ψ = 0)

The Hamiltonians found in nature are often quadratic in the momenta.
The de Broglie velocity (11) is then proportional to a phase gradient

∂qS = Im
∂qψ

ψ
, (43)

which generally diverges at nodes where ψ = 0. This problem is usually
ignored, perhaps because nodal regions are of measure zero and the
trajectories tend to avoid them. But physically speaking, a diverging
velocity signals a breakdown of pilot-wave dynamics at ψ = 0 – just as
a diverging acceleration signals a breakdown of Newtonian gravity (for
a point mass) at r = 0. In our view, there must be new physics close to
points where ψ = 0 – just as in Newtonian gravity there is new physics
close to r = 0 where general relativity becomes important [24].

It should be emphasised that (single-component) wave functions
generically do have nodes: in n dimensions the simultaneous equations
Reψ = 0, Imψ = 0 generally have solutions yielding nodal regions of
dimension n − 2. Such points are often referred to as ‘phase singu-
larities’, where the phase gradient (43) diverges. They might also be
compared with the spacetime singularities of classical general relativity

8We may discount as completely unrealistic attempts to escape from quantum
death simply by waiting for rare fluctuations away from equilibrium [12].
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(for example at the centre of a black hole). Unlike their gravitational
analogues, however, phase singularities do not attract or absorb trajec-
tories. Instead, trajectories tend to avoid them or circle around them
– as we might expect since nodal regions have zero equilibrium proba-
bility (that is, zero |ψ|2 measure). We can then understand why phase
singularities are usually disregarded as unproblematic in applications of
de Broglie-Bohm theory. Nevertheless, in principle, new physics must
set in sufficiently close to such points.

Consider the simple example of a hydrogen-like atom in a stationary
state

ψ(r, θ, φ, t) = ψnlm(r, θ, φ)e−iEnt (44)

of energy En and with the usual quantum numbers nlm (in spherical
coordinates). For m 6= 0 there is a nodal line ψnlm = 0 along the z-axis
(where sin θ = 0). We have a deBroglie velocity

v =
1

m0
∇S

(denoting the particle mass by m0), where

S = mφ− Ent . (45)

The trajectories circle around the z-axis at a fixed distance d = r sin θ.
The speed (ref. [6], p. 150)

|v| = m

m0

1

d
(46)

diverges as d→ 0.

We might ask if this problem could be merely an artifact of the low-
energy theory. Perhaps such divergences are absent in the pilot-wave the-
ory of high-energy physics.9 Support for this appears to come from the
pilot-wave trajectory theory of fermions, with a negative-energy ‘Dirac
sea’ and a many-body Dirac equation [67–70]. Taking for simplicity the
free one-body case, we have a Dirac equation

i
∂ψ

∂t
= −iα ·∇ψ +mβψ , (47)

9For a recent review see ref. [7].
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where ψ is a four-component wave function and α, β are appropriate
4× 4 matrices. This implies a continuity equation

∂(ψ†ψ)

∂t
+ ∇ · (ψ†αψ) = 0 (48)

and a de Broglie guidance equation

dx

dt
=
ψ†αψ

ψ†ψ
. (49)

A general density ρ evolves by

∂ρ

∂t
+ ∇ · (ρv) = 0 , (50)

where v = ψ†αψ/ψ†ψ, and we have a quantum equilibrium distribution
ρ = ψ†ψ.10 If we assume that ψ 6= 0, elementary manipulations show
that (ref. [6], p. 505)

|v| ≤ 1 (51)

and the de Broglie velocity is bounded by the speed of light. If instead
ψ = 0 – that is, if the four components vanish simultaneously for some
x, t – then (49) is strictly speaking undefined since both the numerator
and the denominator vanish. For example, we might have an initial wave
function ψ(x, 0) where the four components happen to equal the same
function f(x) where f has one or more nodal lines. Thus in principle
nodes can occur, where (49) is undefined. However, the bound (51) ap-
plies arbitrarily closely to such points. There is no sign of any divergence
close to nodes, and we may reasonably define (49) at nodes by a simple
limiting process from neighbouring points where ψ 6= 0. For high-energy
Dirac particles, then, the de Broglie velocity is well-behaved close to
nodes and our argument for new physics does not apply.

Even so, our problem cannot be dismissed as an artifact of the low-
energy theory, since diverging velocities still arise in high-energy bosonic
field theory where the de Broglie velocity is again given by a phase
gradient – as we saw in equations (19) and (28) for a scalar field. Refer-
ring to our example of an unentangled field mode k (Section 2.1), now

10Numerical simulations show that quantum relaxation ρ→ ψ†ψ takes place (on a
coarse-grained level) along similar lines to the low-energy theory [71].
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taken to be on Minkowski spacetime (so that a = 1), the wave function
ψk(qk1, qk2, t) satisfies [19]

i
∂ψk

∂t
= −1

2

(
∂2

∂q2k1
+

∂2

∂q2k2

)
ψk +

1

2
k2
(
q2k1 + q2k2

)
ψk , (52)

with de Broglie velocities

q̇k1 =
∂sk
∂qk1

, q̇k2 =
∂sk
∂qk2

. (53)

These match the low-energy equations for a two-dimensional oscillator
with mass m = 1 and angular frequency ω = k. As in the low-energy
particle theory, the velocities q̇k1, q̇k2 generally diverge close to nodes
(ψk = 0). This means that, at certain points in the field configuration
space, the field velocity ∂φ/∂t diverges, which seems physically unaccept-
able – just as a diverging particle velocity at certain points in 3-space
seems unacceptable. Similar conclusions apply to the electromagnetic
field, whose de Broglie guidance equation takes the form (in the tempo-
ral gauge [7, 12, 13])

∂A

∂t
=
δS

δA
. (54)

The phase gradient also appears in the guidance equations for other
(non-Abelian) gauge fields [7]. We seem obliged to accept that the pilot-
wave theory of high-energy physics breaks down in certain regions of
configuration space, where mathematical regularisation is needed, and
close to which some sort of new physics must set in.

According to our argument, then, pilot-wave dynamics predicts its
own demise at phase singularities where ψ = 0. We must encounter new
physics as we approach such points. What that new physics might be is a
matter for future research. Pending the development of an improved the-
ory, however, we can explore simple regularisations of pilot-wave theory
and attempt some confrontation with experiment.

4.2 Corrections to the Born rule at short distances

A regularisation of pilot-wave theory was once briefly remarked on (in
a footnote) by Bell (ref. [72], p. 138). For a general system with wave
function ψ(q, t), we can regularise the de Broglie velocity v = j/|ψ|2
by smearing j and |ψ|2 with a narrowly-peaked function so that the
denominator never vanishes. In this simple model, the smeared |ψ|2
becomes the new equilibrium distribution.
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Let us define the regularised quantities [24]

j(q, t)reg =

∫
dq ′ µ(q ′ − q)j(q ′, t) , (55)(

|ψ(q, t)|2
)
reg

=

∫
dq ′ µ(q ′ − q)|ψ(q ′, t)|2 , (56)

where µ(q ′ − q) is positive and narrowly-peaked around q ′ − q = 0 (for
example a Gaussian) and

∫
dq ′ µ(q ′ − q) = 1. We may then define a

regularised de Broglie velocity

v(q, t)reg =
j(q, t)reg

(|ψ(q, t)|2)reg
. (57)

The usual theory is recovered when µ(q ′ − q)→ δ(q ′ − q).
For an ensemble with the same wave function ψ, an arbitrary distri-

bution ρ(q, t) then satisfies

∂ρ

∂t
+ ∂q · (ρvreg) = 0 . (58)

Now ψ still satisfies the Schrödinger equation, hence |ψ|2 still satisfies
(9), from which it is readily shown that

∂(|ψ|2)reg
∂t

+ ∂q ·
(
(|ψ|2)regvreg

)
= 0 . (59)

This takes the same form as (58). Thus, if ρ = (|ψ|2)reg initially, we
have ρ = (|ψ|2)reg at later times. We then have a modified equilibrium
distribution with a smeared Born rule,

ρ(q, t) = (|ψ(q, t)|2)reg , (60)

where (|ψ|2)reg is positive. If instead ρ 6= (|ψ|2)reg initially, in appropri-
ate circumstances we can expect relaxation ρ → (|ψ|2)reg (on a coarse-
grained level) as quantified by a decrease of

H̄reg(t) =

∫
dq ρ̄ ln(ρ̄/(|ψ|2)reg) (61)

(cf. Section 2.1).

Such a regularised theory is of course not intended to be fundamental,
but merely an effective description of some as-yet-unknown physics. This
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model predicts a simple smearing of the usual Born distribution at short
distances in configuration space (set by the width of µ). In particular, the
new equilibrium density (60) does not vanish at nodes of ψ, in contrast
with the usual prediction ρ = |ψ|2 of quantum mechanics. We may then
suggest searching for this effect experimentally.11

We can calculate the lowest order correction to the Born rule, in
the limit of a very narrow regularising function µ. Consider smearing
a general function f(q), on n-dimensional configuration space, with a
narrow normalised measure

µ(q ′ − q) = δna (q ′ − q) =

n∏
i=1

δa(q ′i − q i) (62)

of width a with respect to each degree of freedom qi. Writing

Ia(q) =

∫
dnq ′ δna (q ′ − q)f(q ′) =

∫
dns δna (s)f(q + s) , (63)

we can expand

f(q + s) = f(q) + si∂if(q) +
1

2
sisj∂i∂jf(q) + ... . (64)

Taking∫
dns δna (s) = 1 ,

∫
dns δna (s)si = 0 ,

∫
dns δna (s)sisj = δija

2 , (65)

we find

Ia(q) = f(q) +
1

2
a2∇2f(q) + ... , (66)

where ∇2 =
∑n
i=1 ∂

2
i . For f(q) = |ψ(q, t)|2 (at fixed t) we then have the

general result (
|ψ|2

)
reg

= |ψ|2 +
1

2
a2∇2(|ψ|2) + ... . (67)

The lowest order correction to the Born rule is proportional to the Lapla-
cian of |ψ|2. We might hope to set experimental bounds on the (presum-
ably very small) parameter a.

11If such an effect were found, it would not be ‘nonequilibrium’ but rather a mod-
ification of equilibrium.
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As a simple example, consider a one-dimensional oscillator in the first
excited state

ψ1(x) =

(
4

π

)1/4

(mω)
3/4

x exp

(
−mωx

2

2

)
. (68)

The node at x = 0 is replaced by a minimum

min
(
|ψ|2

)
reg

= a2
2

π1/2
(mω)

3/2
+ ... , (69)

with a specific frequency and mass dependence (to lowest order in a).
Similarly, for the hydrogen-like state

ψ211(r, θ, φ) = − 1

8
√
πa30

r

a0
e−r/2a0(sin θ)eiφ , (70)

on the nodal line (z-axis) we find(
|ψ211|2

)
reg

= a2
1

32πa50
e−r/a0 + ... , (71)

with a specific dependence on r. The second example is unrealistic as
the physics is superseded by the high-energy Dirac theory. However, the
first example does apply realistically to high-energy bosonic field theory,
where as noted a Fourier mode k of a massless scalar field (on Minkowski
spacetime) corresponds mathematically to a two-dimensional oscillator
with m = 1 and ω = k. In principle, such effects could be tested by
careful measurements of the electromagnetic field (perhaps in optical
cavities).

4.3 Instability of quantum equilibrium at short times

We may also briefly discuss a natural generalisation of the above model
to a time-dependent regularising function µ(q ′ − q, t) [24]. If there is
new physics at nodes of ψ, it seems plausible that the function µ could
be time dependent – for example, during high-energy collisions taking
place over very short times.

Let us again define a regularised de Broglie velocity (57), with jreg
and (|ψ|2)reg as in (55) and (56), but with µ(q ′ − q) replaced by µ(q ′ −
q, t). We now find that, instead of (59), (|ψ|2)reg satisfies

∂(|ψ|2)reg
∂t

+ ∂q ·
(
(|ψ|2)regvreg

)
= s , (72)
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with a ‘source’

s(q, t) =

∫
dq′

∂µ(q ′ − q, t)
∂t

|ψ(q ′, t)|2 . (73)

There is now a mismatch between the continuity equation (58) for ρ
(which of course still holds) and the continuity equation (72) for (|ψ|2)reg.
As in semiclassical gravity with small quantum-gravitational corrections
(Section 3.4), an initial equilibrium distribution ρ = (|ψ|2)reg can evolve
into a final nonequilibrium distribution ρ 6= (|ψ|2)reg. In the extended
regularised theory, with a time-dependent smearing function, the Born
rule is unstable.

The extended model suggests that quantum nonequilibrium could be
created in a high-energy collider experiment. If a collision occurs dur-
ing an approximate time interval (ti, tf ), we might take µ to be static
(∂µ/∂t = 0) at times t < ti and t > tf , so that we have an equilibrium
distribution (|ψ|2)reg before and after the collision (where (|ψ|2)reg ' |ψ|2
if µ has negligible width). If ∂µ/∂t 6= 0 during (ti, tf ), an incoming equi-
librium state ρin = (|ψ|2)reg can evolve into an outgoing nonequilibrium
state ρout 6= (|ψ|2)reg.12

4.4 Testing the Born rule in high-energy collisions

We have seen that the need for regularisation does not apply directly
to trajectories of Dirac fermions. However, if these are coupled to regu-
larised bosonic fields, where the latter have a modified or unstable Born
rule, we can expect all particle species to display corrections to the Born
rule. Such corrections could of course manifest in many ways. How
might such corrections be most conveniently observed? We have two
suggestions. The first involves testing for smeared zeros of differential
scattering cross sections. The second involves testing for anomalous spin
or polarisation probabilities. We briefly review these.

In high-energy physics we typically calculate S-matrix elements from
initial states |i〉 to final states |f〉. These take the schematic form (omit-
ting overall normalisation factors)

〈f | Ŝ |i〉 ∼ δ4(pf − pi)M , (74)

whereM is the Feynman amplitude (obtained from Feynman rules) and
δ4(pf −pi) is an energy-momentum conserving delta-function. Applying

12For a worked example in a cosmological context see ref. [24].
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the usual Born rule, we may then derive differential cross sections of the
quantum-theoretical form(

dσ

dΩ

)
QT

∼ |M|2 . (75)

Now, in a de Broglie-Bohm formulation, the outcome of a high-energy
collision experiment at a final time tf is determined by the initial condi-
tions ψ(q, ti), q(ti) at time ti, where the configuration q includes what-
ever particles and fields may be relevant.13 For an ensemble of experi-
ments with a given ψ(q, ti), the distribution of outcomes is determined
by the initial distribution ρ(q, ti) of configurations. Thus, for a given
initial quantum state, dσ/dΩ is determined by ρ(q, ti). Should ρ(q, ti)

be unequal to the usual Born distribution |ψ(q, ti)|2, we can expect to
find a departure

dσ

dΩ
6=
(
dσ

dΩ

)
QT

(76)

from the usual differential cross section. In particular, we may expect
to find a smearing of the angular dependence and (perhaps) an erasure
of zeros. Experimentally, then, we suggest carefully probing the angular
distribution of outcomes close to points where |M|2 vanishes, in order to
discover if the distribution truly goes to zero – or if instead it is smeared
out at small angular scales.

Should anomalies in cross sections be observed, it will be natural to
ask if they are really caused by corrections to the Born rule or if instead
they are caused by some unexpected correction to the Hamiltonian. For
this reason, spin or polarisation probabilities provide a cleaner test, as
follows.

Any two-state quantum system has observables σ̂ ≡m ·σ̂ with eigen-
values σ = ±1, where m is a unit vector on the Bloch sphere and σ̂ is a
Pauli spin operator. According to quantum theory, if σ̂ is measured over
an ensemble with density operator ρ̂, we will find an expectation value

EQT(m) ≡ 〈m · σ̂〉 = Tr [ρ̂ (m · σ̂)] = m ·P , (77)

where P = 〈σ̂〉 = Tr [ρ̂σ̂] is the average polarisation. The outcome
σ = +1 then has a Born-rule probability

p+QT(m) =
1

2
(1 + EQT(m)) =

1

2
(1 + P cos θ) , (78)

13These may include degrees of freedom in the measuring apparatus.
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where θ is the angle between m and P. For spin-1/2 particles, values
σ = ±1 represent spin (in units ~/2) up or down a spatial axis m, while
for photons they represent polarisation parallel or perpendicular to a
spatial axis M (with θ corresponding to an angle Θ = θ/2 in 3-space). If
the Born rule is violated, we can expect to observe deviations from the
sinusoidal modulation (78).

For example, if single photons pass through a linear polariser, the
emerging beam will be fully polarised (P = 1). If the beam then impinges
on a second linear polariser, at angle Θ with respect to the first, (78)
predicts a transmission probability

p+QT(Θ) = cos2 Θ . (79)

If we vary Θ over an ensemble of measurements, deviations from (79)
would signal an unambigous violation of the Born rule.

It should be emphasised that the linearity in m of the quantum ex-
pectation value (77) is equivalent to additive expectation values for in-
compatible or non-commuting observables (such as spins along different
axes) [43]. The latter is a deep and remarkable property of quantum
states [73], which is violated in quantum nonequilibrium (for general
deterministic hidden-variables theories) [43]. A nonlinear expectation
value

E(m) = ε+ Pimi +Qijmimj +Rijkmimjmk + ... (80)

(summing over repeated indices, where in Bloch space ε is a constant
scalar, Pi is a constant vector, and Qij , Rijk, ... are constant tensors)
then provides a simple and universal signature of quantum nonequilib-
rium [19], with an anomalous outcome probability

p+(m) =
1

2
(1 + E(m)) . (81)

Note that the vector Pi in (80) can differ from the quantum-theoretical
polarisation vector PQT expected from the usual quantum state prepa-
ration.

For a two-state quantum system deviations from the Born rule can
also be parameterised by a spherical harmonic expansion

p+(θ, φ) =

∞∑
l=0

+l∑
m=−l

blmYlm(θ, φ) , (82)
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where m is specified by angular coordinates (θ, φ) on the Bloch sphere
and we may take PQT to point along +z.14 In quantum equilibrium
p+ = p+QT and the only non-vanishing coefficients are

bQT
00 =

√
π , bQT

10 = P
√
π/3 . (83)

Anomalous coefficients can in principle be calculated from a hidden-
variables theory (such as pilot-wave theory) with corrections to the Born
rule.

Experimentally, we would hope to set upper bounds on the magni-
tudes of the parameters ε, Qij , Rijk, ... , or equivalently, upper bounds
on the magnitudes of the coefficients blm (lm 6= 00, 10). This could
involve careful analysis of spin or polarisation data from high-energy
collisions.

In recent years, high-energy experiments have been repurposed as
novel tests of entanglement and Bell’s inequality [74]. Such experiments
may also be repurposed as tests of the Born rule at high energies and
at short times. Strong interactions take place over timescales of order
10−23 s. To probe the Born rule at such short times, we might consider
photons emerging from a strong-interaction process (where photons can
be radiated by quarks). By monitoring their polarisation probabilities,
we may search for nonlinear expectation values (80) and associated vio-
lations of the Born rule.

5 Conclusion

In the spirit of our opening quote from Feynman’s 1964 lectures on The
Character of Physical Law [1], we have seen that de Broglie’s pilot-wave
theory is richly suggestive of new physics. We have summarised how the
theory can naturally depart from quantum mechanics in three specific
domains: the early universe, quantum gravity, and high-energy physics.
In all three cases, we are able to predict new effects that are potentially
observable or at least amenable to constraint by experiment.

Our quote from Feynman was taken from the final chapter of those
lectures, entitled ‘Seeking New Laws’, which attempts to outline the
various ways in which new laws (hence new physics) are most likely to
be found. According to Feynman, it is often underestimated just how
difficult it is to find new laws that account for what is known while at
the same time making new predictions:

14The reality of p+ requires b∗lm = (−1)mbl(−m).
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‘If you can find any other view of the world which agrees
over the entire range where things have already been ob-
served, but disagrees somewhere else, you have made a great
discovery. It is very nearly impossible, but not quite, to find
any theory which agrees with experiments over the entire
range in which all theories have been checked, and yet gives
different consequences in some other range ... .’ (ref. [1], pp.
171–2)

The often haphazard and serendipitous history of science suggests
that we be wary of making hard and fast rules about how science should
proceed. Nor should we be overly confident about which tactics are most
likely to succeed. However, it seems fair to suggest that the de Broglie-
Bohm or pilot-wave approach to quantum physics deserves more atten-
tion than it has generally received, in particular as regards the search
for new physics. As Feynman rightly emphasised, to have a theory that
agrees with experiment in domains thus-far explored, and which natu-
rally suggests new physics in domains yet-to-be explored, is something
of a rarity – a valuable asset whose implications deserve to be taken seri-
ously. Whether or not that suggested new physics will ever be observed
is, of course, a matter for further research and experiment.
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