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ABSTRACT. We present a toroidal electromagnetic ansatz that pro-
vides a realistic microscopic model of the QED electron. The proposed
toroidal electromagnetic wave satisfies Maxwell’s equations and repro-
duces fundamental properties of the electron as described in quan-
tum electrodynamics (QED). Within this framework, the electron is
modeled as a rotating electromagnetic wave confined to a toroidal ge-
ometry. Parameter optimization yields quantitative agreement with
the electron charge e, spin A/2, and magnetic moment up(1 + a/27),
incorporating the Schwinger anomalous magnetic moment correction.
The model yields an amplitude on the order of the Schwinger scale
where electron-positron pair production occurs. The major radius cor-
responds to the Compton wavelength scale, while the monochromatic
frequency is consistent with the de Broglie-Dirac frequency. The phase
velocity is found to be 2¢, and the computed rest energy approximates
0.8m.c?. This representation provides a microscopic classical electro-
magnetic framework that encapsulates the properties of the QED elec-
tron.

P.A.C.S.: 03.65.Bz; 04.20.-q

Introduction

The electron’s nature remains fundamental to understanding physics,
as both Wilczek and Einstein noted: "to understand the electron is
to understand the world." While the electron’s properties-charge, mass,
spin, and magnetic moment-are precisely measured experimentally, the
Standard Model describes it as a structureless elementary point particle.
There is no realistic microscopic model of the electron.
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Historical Background

The search for a physical microscopic model of the electron has its
roots in the nineteenth-century hydrodynamic conception of matter and
aether. In 1867, William Thomson (Lord Kelvin) proposed that atoms
were vortex rings or knotted tubes of motion in an ideal, incompressible
aether, whose stability and identity arose from their topological link-
age [1]. He called it the Wirbelbewegung, literally vortex motion. This
vortex-atom hypothesis inspired later efforts to describe charge and mass
in terms of continuous fields rather than point particles. By the late
nineteenth century, J. J.Thomson, H.A.Lorentz, and M.Abraham had
reformulated Kelvin’s idea in electromagnetic terms, treating the elec-
tron as a localized region of electromagnetic momentum or as a charged
sphere whose inertia was of purely electromagnetic origin [2, 3]. With
the advent of relativity and quantum mechanics, these classical mod-
els gave way to field-theoretic interpretations of the electron, yet the
notion of topological structure in the field persisted. A century after
Kelvin, Ranada showed that Maxwell’s equations admit exact, finite-
energy knotted field solutions-Hopfions-in which electromagnetic helic-
ity is a conserved topological charge [4, 5]. Building on this, Irvine and
collaborators later produced knotted light fields experimentally from su-
perposed Laguerre-Gaussian modes [6, 7]. All such configurations are,
however, divergence-free and therefore carry no electric charge.

There is also a long history of attempts at providing a realist in-
terpretation for the abstract objects encoded in the relativistic Dirac
equation with point charges. Such notable efforts can be traced back
to Dirac himself, realizing his equations described what looked like an
oscillation at the speed of light internal to the electron, to Schrodinger
who then coined the term Zitterbewegung, literally jittery motion. This
lineage of the electron considered as a charged field continued to the
"classical model of the Dirac Electron" by Barut and Zanghi [8], to the
vortex cores of Bohm, Vigier and Lochak [9] and the "Geometric Clifford
Algebras" of Hestenes [10][11], but to single a few. These frameworks
usually remain rather abstract in their formalism but all roughly posit
that the electron contains a charge and that far from being a abstract
point has an internal 3D structure where this charge moves (usually at
¢) in a given geometry.

A critical review of recent zitterbewegung models by one author (MF)
found existing approaches, particularly those invoking point-particle con-
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cepts, even within the extended geometries, to be inadequate [12]. That
analysis identified three-dimensional electromagnetic wave-fields with
zitterbewegung geometry as a promising research direction, combining
Kelvin’s approach with geometric insights. This framework, previously
proposed by the first author (CdS) and reviewed in [12], motivated our
present deeper investigation of toroidal fields possessing divergence and
thus intrinsic charge.

1 Model
1.1 Properties of the electron

Any model of the electron must account for the following observed prop-
erties:

e Compton scale dimensions (~ 107! m) from experimental obser-

vations
e Spin S = h/2
e magnetic moment pu = pup = eh/2m, and g-factor ¢ = —2 from

Dirac theory
e Anomalous g-factor: CODATA value g = —2.00231930436256(35)
e Origin of electric charge

e Mass and energy values

1.2 Methodology

We employ the following methodology: we postulate an electromag-
netic ansatz specifying fields E and B using toroidal geometries con-
sistent with the zitterbewegung hypothesis. We verify compliance with
Maxwell’s equations, deriving charge density as a geometrical property.
Upon confirming the ansatz represents a valid electromagnetic wave, we
derive QED electron phenomenology through parameter fitting. Failure
to match the full phenomenology invalidates the ansatz. Our specific
ansatz reproduces all target values with energy at 0.8m.c?. While con-
stituting an approximate result, we believe this merits attention as it
demonstrates that even a crude ansatz can account for most quantum
properties. Detailed derivations appear in the appendix, providing sys-
tematic and transparent calculations.
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Figure 1: The fields are defined inside the torus. The mask will be the
step function effectively selecting the open inner volume as the domain
where the EM field is defined. Ry is the major radius, rg the minor
radius. R is the position from origin to a given point inside the torus
with E = ﬁo + 7

1.3 Electromagnetic Ansatz

1.3.1 Definitions

Following the zitterbewegung intuition, we posit that the electron is
an electromagnetic wave confined to a torus (see fig:1). We define the
amplitudes as Fy and By = FEy/c, but we do not specify their values.
We call the major radius Ry and the little radius ro. We will define a
vortex phase ¢ = (¢ — wt) but will not specify the frequency. All four
parameters, the amplitude, the major and minor radius of the torus and
the frequency are free parameters of the model. We will consider that
the fields only exist within the volume of the torus and are null outside
of it. We will make use of the Heaviside step function mask to quantify
this.

Throughout the derivation, and for convenience, for vectors we will
use the cylindrical coordinate basis X = (R, ¢, z) and for integrations
we will make use of the toroidal coordinate system to integrate over the
volume delineated by the torus volume as shown in fig. 1.
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Q)
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Figure 2: E and B fields. Note the left handed nature. While the fields
are represented flat in the (a) picture, they should be imagined as laid
out along the circle on (b). There is one wavelength fitting in the circle
given the phase ¥ = (¢ — wt).

1.3.2 E and B

We posit the following ansatz for the E and B electro-magnetic vectors

E = iEoH (r —ro)e’®=t [aR +i (1 + 5)&4 . (1)
0

B =iBoH(r —ro)e®“tq_. (2)

where E, is the amplitude of the wave which we consider a free
parameter. By = Fy/c, and H(r —rg) = 1 for r < rg and 0 for r > ry is
the Heaviside function.

FEy, Ry, 9, w are respectively amplitude, major and minor radius of
torus and frequency. None of these values are specified for now and they
treated as free parameters of the model. Parameter fitting will set their
values. See figl and 2.

This ansatz exhibits an unconventional structure distinct from plane
wave solutions to Maxwell’s equations. The wave follows circular geom-
etry with vectors aligned to cylindrical coordinates: E has components
along both the radial direction ar and the azimuthal direction a4, in-
troducing a longitudinal component absent in purely transverse plane
waves. The magnetic field B points along the z-direction. The phase
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0 = (¢ — wt) follows the classical phase vortex formalism [13]. Notably,
E, B: and the phase propagation direction form a left-handed triad,
contrasting with the right-handed orientation of conventional electro-
magnetic plane waves.

We consider a non-planar monochromatic wave propagating circu-
larly, confined to a torus, with angular frequency w. This represents a
novel class of Maxwell solutions not previously documented. We now
demonstrate that this ansatz satisfies Maxwell’s equations.

1.4 Limitations of the Model

We acknowledge that this formulation is preliminary. Notably, the Heav-
iside function approach cannot satisfy proper boundary conditions or
far-field behavior. The Heaviside mask artificially truncates the fields
at the torus boundary, artificially turning the fields off outside of the
torus, which is unphysical. Furthermore, this formulation eliminates the
far-field radiation, which is equally unphysical.

2 Maxwell’s equations

2.1 Gauss’ law for magnetic fields

Divergence of B in cylindrical coordinates
6.5:{]1%5%(333”;;(B(bngz(&)}. 3)

Since Br = 0, B4 = 0 their divergence is null. Since B, = iByet(?—wt),

it obviously does not depend on z and therefore it’s derivative with

respect to z is also trivially null. Therefore, we obtain the trivial result
that V- B = 0., e.g. no magnetic monopoles.

2.2 Gauss’ law for E

In this section we will focus on Gauss’ law for electric fields:
vV-E=", (4)

We employ the field-theoretic concept of geometrical charge. In
conventional electrical engineering, the causal narrative proceeds from
charges to fields: one introduces charge density p, induces motion, and
generates radiating fields. This interpretation reads equation 4 from
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right to left-charges create fields. Here, charges are ontologically funda-
mental while fields emerge from their presence and dynamics.

We invite the reader to reverse the conventional reading of equation
4, interpreting it from left to right: fields generate charge. This simple
reversal emphasizes our inverted causality-we begin with a field ansatz
and compute its divergence, identifying this as geometrical charge. Any
non-zero divergence constitutes the charge density, a scalar quantity that
merely quantifies the field’s divergence without independent ontological
status. In this framework, only fields possess objective reality; charge
density emerges as an abstract, derived quantity.

Divergence of E in cylindrical toroidal coordinates

I 10 10 0
V.-E= {R@]%(RER)+R%(E¢)+3Z(EZ)}. (5)

The Electric field components are

Ep = iEge’ @Y B, = — Eye'¢=? (1 + g) JE.=0. (6
0

which yields a divergence

oo Ey .
V-E::—i—%éw_m% (7)

so we then define the charge density as
. E i(p—w
pot) = — gy €07, 8)
0

Note that at this stage we have identified the charge with the diver-
gence. We define the charge density as the divergence of the F field.

2.3 Faraday’s law

We have specified the forms of the fields E and B , and they must verify
Faraday’s law:

oB

—— 9

o 9)

We will use this equation to set the frequency w, which is a free
parameter.

VxE=-—
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Resulting in

— — = — E .
VxE=(VxE),=-2 R% et g, (10)

Partial time derivative of B provides

. , OB - : Ey
B = Z»Boez(¢—wt) as, o — —iwB = wBOez(t;S—wt) iy, = wioez(qb—wt) i,
c
(11)
therefore .
- = 0B 2
VXE:_E if and only if w:R—z. (12)
We have calculated both sides of Faraday’s law from our ansatz and find
that they are equal if and only if w = 2¢/Ry. This sets the free parameter
w. This renders the model monochromatic for a given Ry. There is only
one numerical value for w which satisfies this law for a given Ry. The
wave is monochromatic. This is to be contrasted to plane waves which
can have any given frequency.

2.3.1 Phase velocity

We define our ansatz using the phase § = (¢ — wt), representing the
phase vortex of a circulating wave. The fitting parameter w is deter-
mined by enforcing Faraday’s law, yielding w = 2¢/Ry. This constraint
makes w single-valued, resulting in a monochromatic wave. By defini-
tion, no group velocity exists since there is no wave packet with varying
frequencies-for a given Ry, only one frequency is permitted.

We calculate the phase velocity to determine how the wavefront
propagates along the ring. Expressing the phase in terms of arc-length
s = Rp¢ and time, we have (s, t) = s/Ro—(2¢/Ro)t. The phase velocity
corresponds to the speed at which points of constant phase move along
the ring. Setting df = 0 yields:

1 2c ds
de o ds o dt=0 = 1, o c (13)

vp = 2¢ (14)
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Since this represents phase velocity rather than group velocity, it does
not violate special relativity. Superluminal phase velocities are common
in waveguide structures, including toroidal geometries.

2.4 Ampére—Maxwell law

We will use in the following form of Ampére-Maxwell law

=

. . 198 .
B— =2 = ol 1
V x 2 ot ‘LL()J ( 5)

QD

We use this unusual form of the law to emphasize that we will calcu-
late the left side and right side independently. The left side, as can be
trivially seen, can be derived from E and B by differentiation, while the
right side can be derived independently from the continuity equation.

The details are in appendix. The first derivation of V- J from the E
and B ansatz gives

- Ey

V-J= EowR—Oei(¢_“t). (16)

While calculating from the continuity equation and p gives

yielding, given the p

- o Ey .
V.-J= EOwR—Oe’(¢_“t). (18)

Which matches the V-.J quantity derived from the Ampére-Maxwell
law.

2.5 A new class of solution for Maxwell equations

This completes the proof that our ansatz satisfies Maxwell’s equations,
representing a novel solution to our knowledge. Unlike standard Hopfions
or known vacuum cavity /waveguide eigenmodes, which are divergence-
free, our solution possesses non-zero divergence in free space. We identify
this divergence with the definition of charge density.
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3 Phenomenology of the electron

Having established that our model accommodates charge, we investigate
whether it reproduces QED electron phenomenology. We calculate RMS
charge, spin, magnetic moment, and anomalous magnetic moment using
parameter fitting.

3.1 Calculation of the electron charge

We have derived the charge density p and we can integrate it over the
volume of the torus to compute the total charge contained therein.

3.1.1 Space integrated total instantaneous charge inside the torus.

The instantaneous charge density is

p(t) = posin(¢ — wt)

The real charge density, containing the phase factor, integrates to zero
over the complete torus volume-positive and negative values cancel iden-
tically over the 27 spatial wavelength. This instantaneous charge clearly
cannot represent the electron’s phenomenological charge.

3.1.2 Root Mean Square charge

Since charge density forms a scalar wave, we adopt the RMS definition
of charge. While total charge is well-defined for constant densities like
the electron’s —e, oscillating charge densities p(r,t) require an effective
measure. We employ the Root Mean Square (RMS) charge to quantify
the effective magnitude of the fluctuating charge.

Computing the RMS charge over the volume gives us

Qrms = \/571—250 EOT(% =e€ (19)
This provides a first constraint for our free parameters.
3.2 Magnetic Moment and gyromagnetic factor g

Taking J given above, one can calculate the magnetic moment at any
time as

1 [~ -
ﬁzngdev. (20)



The EM Electron 11

A rather lengthy but straightforward derivation, also employing a notion
of RMS charge, gives us a second constraint on our free parameters. We
require that the magnetic moment be that of the electron and we write

21 o(a?)) (21)

2
V2o ¢ By R0r0<1+ 232) = 1+ 5=

With this form we emphasize the analytical expansion of the anoma-
lous gyromagnetic calculated in QED in terms of powers of o with the
first term being the Schwinger factor.

3.3 Poynting Vector

In order to calculate the Poynting vector we take the vector product
between F and B:

—

S="F x B, (22)

1
;ﬁ
which gives us (details in appendix)

S = —%SOCEOQ g, (23)

3.4 Linear Momentum density
Taking the Poynting vector, it is immediate to find the linear momentum
o g 1 g E02 o

-2

= = —— 24
p 2 c g, ( )

C

3.5 Angular Momentum and Electron Spin

Taking p and the radius R the angular momentum density is
[=ERx7p, (25)
The total angular momentum is
L= / Rx pgdV (26)
Yielding (details in appendix)

2
T 2 2 -
L= *50 EO ™ RO To (1 + W) a, (27)
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The spin is 1/2, means

N
I

N | St
Q>
w

—~
[N}
o
=

which is true if and only if

1 r2 h
- E2 2p2 .2 1 0 I 2
050 o T RS TS —l—rR% (29)

Which provides our third constraint.
3.6 Energy Density and mass

We can now calculate the energy density.

1 1
—— E2 7B2
u(t) = 5e0B*(0) + 5o BA() (30)
Yielding energy density
R

Integrating the energy density over the volume of the torus we get
the total energy contained therein (all details in appendix)

5 17“3

U = 60772R07’(2)Eg(§ + gRig) (32)

3.7 Solving for Ey, Ry,r9 and calculating U

Using thin torus approximation rq/Rp ~ 0 and in first order in alpha
1+ a/27 &~ 1; the equations simplify to

For spin:
1 2 2922 N
—eoEgmRirg = = (33)
c 2
for charge:
V2n2eq Egrd = e (34)

for magnetic moment:

\/§€o7TCEO Ro’f’g = Up (35)
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For energy
5
U= §eow230r§E§ (36)

Solving for Ey, Ry, 7o and U. We compare the amplitude to Eg,
the Schwinger limit. We compare lengths Ry and r¢ to 7. the reduced
Compton wavelength. Then we calculate total energy U and compare to

MeC?

2f

Ey = —5-Es ~0.2859 Eg ~ 3.783 x 10'"V/m (37)
Ry~ §rc ~ 1.57267, ~ 6.073 x 10~ *m (38)
ro ~ /mar. ~ 0.1516r. ~ 5.854 x 10~ 4m (39)
5
U~ 27m€c2 ~ 0.7949 m.c? ~ 0.406MeV (40)
Y
3.8 Frequency w
Using w = 12%—2 and f’—f ~ 1.573, we obtain

w = 0.636wp ~ 9.86 x 10%° rad/s. (41)

Where wp is the Dirac frequency (Zitterbewegung) from the Dirac equa-
tion.

3.8.1 Planck-FEinstein relation E = hw

We can calculate the energy of a photon with frequency w as F =
hw = 649keV. Comparing this with the electron rest mass energy
E. = m.c® = 511keV we obtain

hw = 1.27mc?. (42)

This ratio is consistent with the hypothesis that a photon of frequency
w confined to a circular orbit of radius Ry could manifest as an electron.

3.9 Numerical values
Ey

Ry U huw
20~ 0.286, 2 ~ 1.573, ~ 0.795, - ~0.636, —_ ~ 1.270
Eg Te mec? wp mec?

(43)



14 CAM dos Santos, MJJ Fleury

3.10 Scwhinger limit for amplitude, Compton radius for di-
mensions

This model predicts field amplitudes at the Schwinger limit, where
electron-positron pair production occurs from vacuum. This correspon-
dence supports our interpretation: the electron emerges as coiled light at
precisely this critical amplitude. Furthermore, the characteristic scales
match Compton dimensions, consistent with both experimental observa-
tions and the Dirac equation.

3.11 On the Einstein mass energy equivalence

While our result falls somewhat short of m.c?, it remains compelling:
mass-energy equivalence emerges as the equivalence between mass and
electromagnetic energy. This energy is confined to a torus of Compton-
scale dimensions with nearly the correct magnitude. The appearance
of v in relativistic mass E = ym.c?, in classic special relativity further
suggests an electromagnetic origin of mass, which emerges naturally from
this framework.

4 Conclusion

We claim we have a novel microscopic representation of the QED elec-
tron.

We hypothesized a circulating phase vortex ansatz with toroidal ge-
ometry, parameterized by major radius Ry, minor radius 7o, amplitude
Fy, and frequency w. The phase contains unit prefactor for ¢.

Fitting to Maxwell’s equations yielded geometrical charge p from
the field divergence, reversing the conventional ontological hierarchy be-
tween charges and fields. This constraint fixed w, rendering the wave
monochromatic for given Rj.

Matching QED phenomenology required: RMS charge Qrys = e,
magnetic moment u = pp(l 4+ «/27), and spin h/2.

The model yields field amplitudes at the Schwinger limit (where pair
production occurs), Compton-scale dimensions for major radius, phase
velocity 2¢, and Dirac time scale for the frequency, energy approximately
0.8m.c?, all consistent with Dirac theory and observation. The energy
calculated from the Einstein-Planck relation is approximately 1.27m.c?
again consistent with the coiled photon hypothesis.
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5 Discussion
5.1 On the use of fitting parameters

In using fitting parameters in any phenomenological approach one is
well advised to remember the famous quip by John Von-Neumann, that
"With four parameters I can fit an elephant, and with five I can make
him wiggle his trunk." L. Mayer later humorously formalized this joke
in [18], showing explicitly how to draw an elephant with four complex
parameters (and wiggle its trunk with a fifth). This demonstration ele-
vates the quip to the status of an aphorism, reminding us that, in general,
overfitting models with too many free parameters, can reproduce almost
anything, but the models lose their predictive power.

5.2 A visualization and a realistic microscopic model

We propose that this study validates pursuing Plain Old Electro-
Magnetism (POEM) as a viable ontological framework for a microscopic
understanding of the QED electron. Rather than replacing QED, the
POEM electron provides crucial visualization capabilities, offering a clas-
sical microscopic electromagnetic framework that renders accessible to
computation many esoteric quantum properties. Phenomena such as
spin-1/2; the gyromagnetic moment and anomalous Scwhinger factor,
and mass-energy equivalence-traditionally considered inherently quan-
tum and beyond visualization-acquire straightforward visual explana-
tions within this framework.

5.3 A novel wave class

This model’s novelty lies in employing a fundamentally different class
of wave solutions rather than plane waves. QED and condensed matter
physics conventionally formulate creation and annihilation operators in
terms of plane waves and photons, with Feynman diagram corrections
requiring infinite summations of virtual photon contributions. We specu-
late that this infinite series may be a representation artifact arising from
the mismatch between plane wave basis functions and the hypothesized
underlying coiled wave structure-analogous to requiring infinite Fourier
components to represent a square wave on a sine wave basis.

5.4 On Open Source

The authors share this model in its preliminary form, embracing an open-
source philosophy. Following the principles to "release early and release
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often" and "given enough eyeballs, all bugs are shallow," we present this
work to attract collaborators with expertise in exotic electromagnetic
envelope solutions. This simple model, developed with substantial Al
assistance, seeks to engage researchers who can advance these ideas with
greater proficiency in specialized electromagnetic formulations.

5.5 Iterations on model

As noted, we consider this work preliminary and acknowledge the ar-
tificial nature of the Heaviside mask. Both the abrupt cutoff at the
boundary and the suppression of far-field behavior are unphysical. We
further acknowledge the somewhat arbitrary choice of the RMS charge
to carry out the calculations. However, these simplifications provide an-
alytical convenience for this initial formulation. This work is intended
to provide a foundation for systematic refinement by the broader re-
search community rather than constitute a definitive treatment. The
presented model nevertheless demonstrates encouraging agreement with
QED phenomenology, yielding correct order-of-magnitude estimates for
all parameters despite the oversimplified ansatz employed. While precise
energy predictions were not anticipated given the elementary Heaviside
step function implementation and the absence of proper boundary con-
ditions for the torus, the results suggest that the approach captures
essential physical features. Alternative representations employing Bessel
functions may improve both accuracy and self-consistency. Current ef-
forts are proceeding in this direction.
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