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Semiclassical models for experiments testing Bell’s

inequalities with pairs of “entangled particles”
FEDERICO COMPARSI

1.I.S. Albert Einstein
via Adda 6, 20871 Vimercate (MB), Italy

“A theory may appear in which such conspiracies inevitably occur,
and these conspiracies may then seem more digestible than the non-
localities of other theories. When that theory is announced I will not
refuse to listen, either on methodological or other grounds. [...] However
that may be, long may Louis de Broglie continue to inspire those who sus-

pect that what is proved by impossibility proofs is lack of imagination.”
(J.S. Bell)

ABSTRACT. In this paper we want to bring back on track the un-
fulfilled Einstein-de Broglie-Schrodinger program [1, 3], recently taken
up by Barut and others [4-16]. This program was born before matrix
mechanics and it is currently believed to be impossible due to Bell’s
theorem, since it is a local model on space-time. We will show that it
is possible to build toy models in accordance with this program that
might be able to roughly reproduce the correlations observed in Bell
tests. I want to thank Emilio Santos who privately provided me with
some material and useful information to write this paper.

RESUME. Dans ce papier, je veux relancer le programme inachevé
de Einstein-de Broglie-Schrodinger, récemment reprise par Barut et
autres. Ce programme a eté créé avant la mécanique des matrices, et
est actuellement considéré comme impossible en raison du théoréme
de Bell, puisqu’il s’agit d’un modele local dans ’espace-temps. Je vais
démontrer qu’il est possible de construire des modeéles jouets en accord
avec ce programme qui sont capable d’expliquer approximativement
les corrélations observées dans les expériences de type EPR. Je tiens
a remercier Emilio Santos qui m’a fourni en privée du matériel et des
informations utiles pour écrire ce papier.
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Figure 1: Illustration of the Gaussian wave packet considered by
Schrédinger in 1926 [40].

1 Introduction

The two loopholes that are naturally involved in the models compatible
with the semiclassical theory of matter waves by Einstein-de Broglie-
Schrodinger [17-23] are the memory loophole and the detection loophole
[24]. In this paper we show that simple models exist that, by exploit-
ing “non-ergodic” [25,26] and “enhancement” [27] effects, are able to
recover the EPR correlations for EPR-Bohm-type experiments in a not
too conspiratorial way.

In 1926 Erwin Schrodinger, the great founder of wave mechanics, al-
ready suggested us the way to understand the new quantum phenomena:
“taking seriously the de Broglie-Einstein undulatory theory of moving
particles, according to which the particles are nothing but a kind of
‘wave crest’ on a background of waves.” [28]. Indeed, the very founda-
tions of quantum mechanics reside in the important works by Einstein
and de Broglie [29-32] in 1923-1925, which Schrédinger used as a start-
ing point [28]. Starting with relativistic considerations [33,34] and after
discovering the Klein-Gordon equation in 1925, Schrodinger in 1926 fell
back on a non-relativistic wave mechanics in configuration space due to
some temporary difficulties in his original relativistic treatment. How-
ever, as de Broglie emphasized and even Schrodinger later recognized, a
fundamental treatment of elementary processes must be relativistic and
expressed ultimately in space-time [35-40].

As remarked by Georges Lochak, de Broglie believed in a particle
represented as a localized bump in the wave. He knew that such a
stable feature can occur only in certain nonlinear equations, and he often
quoted as an example the solitary waves: actually his bumplike wave was
a soliton. Yet, on the other hand, it may be considered as a sophisticated
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Figure 2: Plot of a breather soliton solution (black) phase-locked
in a de Broglie wavelet (orange). The latter introduced by de
Broglie in 1925 [5] [32].

form of Schrodinger’s idea of a wave packet [41]. According to de Broglie
the wave is a substantial part of the particle.

We want to clarify that, for the rest of the paper, when we talk about
particles we will actually be referring to soliton or soliton-like solutions
of the wave equations. This is why we used the quotation marks in
the title: there is no real “entanglement” (with absurd instantaneous
actions at a distance, quoting Isaac Newton) and there are no real point
particles.

Despite trying to account for the necessary non-linearity by adding
the self-gravitational! potentials in the massive wave equation [17,44], de

1Broglie’s original considerations were intrinsically relativistic, so the extention of
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Figure 3: Frame of a video of a walking droplet.

Broglie initially considered as a good representation of a quantum scalar
and neutral particle the so called “de Broglie wavelet”, a solution of the
massless wave equation [29]. This solution has a central peak describing
a relativistic particle which moves in space oscillanting in phase with a
de Broglie plane wave. Therefore, it can be seen as a linear analog of the
breather soliton solutions of non-linear wave equations [45], which can be
shown to remain phase-locked in a de Broglie wavelet [6,12]. This result
is somewhat reminiscent of the hydrodynamic analogies of Bjerknes [32]
as well as of the hydrodynamic experiments carried out by J. W. M.
Bush et al. [46] and shown in figure 3.

In this context it should be emphasized that the single particle wave
equations in physical space [18,47] are always non-linear due to the
inclusion of the self-fields [48,49] and of the external and environmental
interactions [50-54]. With such a theory the localization of the particle
in the detector is explained without recurring to instantaneous collapse
of the wave function or to the many-worlds interpretation: the particle
is always a localized bump in its wave field. It is known that there are

the wave equations to the general relativistic case was a necessity for him. Indeed,
since the matter wave fields were considered by de Broglie as real physical fields, they
should have an associated energy-momentum density and so they would be a source of
gravitational field. De Broglie later hoped that the non-linearity introduced through
this gravitational self-interaction could permit a derivation of the guidance law just
from the wave equation, in a similar way as Einstein would have liked to derive the
geodesic equation for classical particles from the gravitational field equations alone.
[42,43]
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some localized non spreading solutions of Maxwell equations moving as
relativistic particles and also toroidal vortex solutions in vacuum [55-57].
However, at very high intensities (photons with very high frequencies)
Maxwell’s equations should be modified by introducing the effects of the
polarization of the quantum vacuum and in this case there would be
additional non-linear terms [58]. The same is true if we consider the
Einstein-Maxwell system [59].

In this paper we want to follow exactly Schrddinger’s suggestion,
showing how the theory of space-time matter waves naturally leads to
non-ergodic and enhancement (linked to variable detection probabilities)
effects, which can produce EPR correlations in Bell-like tests. The cru-
cial point to understand how this local theory can be compatible with
Bell’s theorem is to consider that in these kinds of models we have ei-
ther a violation of statistical independence [60-62] or a violation of the
quantum mechanical predictions [63,64]. This occurs because, during
the experimental runs defining the statistical ensemble, the distribution
of the set of hidden variables is restricted in such a way that it gives rise
to the emergence of properly correlated pairs of particles depending on
the previous orientations of the two pieces of apparatus. In the context
of the Einstein-de Broglie-Schrédinger unfulfilled program (“non-linear
wave mechanics”) these effects could be due to reflected empty waves,
which influence the preparation (in a way similar to the Purcell effect in
“spontaneous” emission) and detection (enhancement effects) of the sub-
sequent particles. Obviously, as correctly understood and pointed out by
de Broglie? [64] and Bell®, these models should have different predictions
from quantum mechanics in specific experimental circumstances and this
implies that these models could be experimentally tested. Indeed, if a
local hidden variable theory had the same identical predictions as quan-
tum mechanics in every possible experimental situation, then it would
be a superdeterministic model, which requires very specific global initial
conditions for each run of the experiment, turning out to be quite implau-
sible. The same is true for models accepting statistical independence,
but assuming finite-speed (not instantaneous) superluminal influences:

2De Broglie underlined that to consider the problem in an adequate way, it is
necessary to precisely indicate all the details of the experimental apparatus and he
insisted both on the importance of the dependence of the distribution of the hidden
variables on the entire context and on the importance of not confusing the eigenvalues
of quantum observables with the real values of the dynamical variables [17,65].

3He wrote[66]: “But if his extension [the double solution theory] is local it will
not agree with quantum mechanics”.
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this kind of models (which reject EPR-locality, but that are nevertheless
compatible with the locality of classical field theory) should disagree with
quantum mechanical predictions for some experimental contexts [67].

These kinds of effects are particularly relevant when the set of possi-
ble configurations for the analyzers is restricted to a few choices (usually
a, a’, b, b’), considering that every configuration must obviously be
chosen many times during the experiment to collect a sufficiently large
sample. We think that the models exploiting these loopholes should not
be underestimated, especially since attacks on secure quantum commu-
nication protocols based on Bell’s inequalities violation is a real threat if
loopholes are not definitely closed [68]. Consequently, it would be nec-
essary to do a new kind of “Big Bell Test”, where each element of the
statistical ensemble (each run of the experiment or each “single event”,
using Barut’s nomenclature [4,69,70]) is collected in a distinct labora-
tory, well separated in space and time from the others and in such a way
that for each of these measurements, the free choice is chosen for the
first time.

The main phenomenon of coherent resonance of the background wave
field can occur in two distinct regions of space in the experimental set-up
shown in figure 4 and it can lead to two independent effects. The first
region is the space between the analyzers and the detectors, where the
resonant empty wave field can lead to the phenomenon of “enhancement”
of the probability that an incoming particle is detected if its polarization
is near the angles where the analyzer was oriented during the whole ex-
periment. On the contrary, there is suppression of detection probability
if the polarization is orthogonal to these angles. The second region is the
space between the analyzers and the source of the entangled particles,
where the resonant empty wave field can lead to a Purcell-like effect [72],
in such a way that the apparently stochastic “spontaneous” emission of
a pair of particles (through a pair production/annihilation or a paramet-
ric down-conversion process), is actually a hidden deterministic emission
process “stimulated” by the “vacuum waves” [73]. In this way the distri-
bution of the hidden polarizations of the pairs of entangled particles is
not uniform, but peaked around the most probable angles parallel to the
orientation directions of the analyzers (the so called “free choices”). In
other words, there is some kind of “memory” in the source of entangled
particles. Another kind of loophole is due to possible memory effects in
the polarizers (analyzers) or detectors [75,76].

There is indeed the fundamental question concerning the interpreta-
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tion of “empty branches” of the v-wave after scattering processes. In
the usual interpretation when these empty waves collapse they have no
subsequent physical effects [74]. But according to de Broglie this is un-
tenable: “it is difficult to conclude otherwise that the wave is not a
physical phenomenon in the old sense of the word”. We will show that
exactly these empty waves could be responsible for the local explanation
of the EPR correlations usually explained with non-locality.

Some degree of conspiracy is required to explain current experimental
data in a local way. This has to be expected due to Bell’s theorem. As
F. Laloe said: “no experiment in physics is perfect, and it is always
possible to invent ad hoc scenarios where some physical processes, for
the moment totally unknown, “conspire” in order to give us the illusion
of correct predictions of quantum mechanics [...] One of them is usually
called the “conspiracy of the polarizers” (actually, “conspiracy of the
analyzers” would be more appropriate; the word polarizer refers to the
experiments performed with photons, where the spin orientation of the
particles is measured with polarizing filters; but there is nothing specific
of photons in the scenario, which can easily be transposed to massive
spin 1/2 particles)”[77]. We note that since in de Broglie’s theory a
complete symmetry exists between matter and radiation, that is to say
both photons and electrons are excitations of their respective wave fields,
then these effects are present in all the EPR-like quantum experiments.

The fair sampling assumption [78] (alternatively, the no-enhancement
assumption) is used in regard to the detection loophole. It states that the
ensemble of detected particles pairs is representative of the whole ensem-
ble of pairs emitted from the source. There is no way to experimentally
test whether a given experiment does fair sampling, since the number of
emitted but undetected pairs is by definition unknown. This is why these
hidden variables models have a significant chance to explain direct ex-
perimental data. Indeed, the key point of variable detection probability
models is that new phenomena emerge when the particles are entangled.
This is not as strange as it seems, because we know that particles, when
maximally entangled, do not exhibit the same interference pattern as
single particles in a double-slit experiment. According to the fair sam-
pling assumption, ensembles of photon pairs that have passed through
polarization beam splitters and been identified as pairs using the time
window have the same detection properties, regardless of the orientations
of the splitters. However, there are no reasons to assume that these pairs
of particles have always identical statistical properties[79]. As a conse-
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quence, if we have unfair sampling, then the correlation is higher for the
particles actually detected than for the average pairs produced in the
source.

In a classical gas there could be a small yet positive probability that
we have N-body collisions, with N > 2. In a similar way, in wave
mechanics there is a small yet positive probability to have rogue waves.
If we consider that the background fields where the particles are moving
is composed of real physical “empty waves” [80-83], then we should
consider that this background fields can have physical consequences on
the detection of the particles (the peaks of the wavelets or the solitons
embedded in them).

Real measurements are always accompanied by some noise. There
are three main sources of noise: the internal noise of the detector, en-
vironmental thermal noise and zero temperature vacuum fluctuations.
The internal noise of the detector is large for weak measurements, but
its effect can be reduced by averaging the results of many independent
detectors. In this paper we focus in particular on vacuum fluctuations in
the limit of zero-temperature. Such a vacuum noise can be much larger
than the signal, for example when detecting a single particle, the vac-
uum noise can make it impossible to distinguish between the presence
and absence of the particle [86]. It follows that local hidden variable
theories cannot be excluded once noise and the imprecision in real world
experiments is taken into account. This does not, of course, imply that
such theories are very plausible, but they are possible. These “waves
fluctuations” produce unavoidable noise in threshold detectors [87], but
more importantly empty waves in the background could give rise to co-
herent phenonena that could change the probability that a “particle” is
detected. Indeed according to E. Nelson: “Nature is (perhaps) described
by a family of random fields on space-time, a chaotic family arising from
a classical local relativistic field equation. [...] The random fluctuations
of the field are the quantum fluctuations. They are as real as thermal
fluctuations and may eventually prove to be observable.” [84].

Consequently, in these models involving variable detection probabil-
ities, we typically have undetected events of the kind: Py o, Py + and
Py,0 in addition of the usual joint probabilities Py 4 used to calculate the
correlations. However, since the number of undetected pairs of entan-
gled particles Py o is by definition unknown (just like the total number of
emitted pairs, which are emitted by stochastic processes) and since we
can’t experimentally distinguish the enhanced dark counts from the pre-
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dicted joint probabilities P+ ¢ and Py 4, then we can have a full class of
local models agreeing with observed data. Furthermore, as remarked by
Santos, if we attempt to minimize the false negative we should increase
the sensitivity of the detectors, but this would increase the probability
of false positives. Thus in detectors there is a trade-off between high
efficiency and dark rate, that may be associated to vacuum fluctuations.
Indeed, the detector may record a count either due to the arrival of a
signal or the arrival of an eventual intense vacuum fluctuation (a kind
of rogue wave) [85].

In the following sections of the paper we will mathematically describe
two toy models that exploit the two above-described independent effects
caused by empty waves, namely memory effects at the source (which
cause a non-ergodic distribution of hidden variables) and enhancement
(which causes the variable detection probability phenomenon). We will
show that these kinds of models can lead to the experimentally observed
EPR correlations in two distinct yet compatible ways, i.e., there could
also exist models that exploit both the memory and the detection loop-
holes simultaneously. We emphasize that these two effects are auto-
matically and naturally implied by the Einstein-de Broglie-Schrodinger
theory of matter waves, although they seem to conspire for roughly re-
producing the EPR correlations observed in the usual experimental con-
texts.

2 Quantum predictions

We shall comsider the simplest case of photon pairs with maximal en-
tanglement.

1
V2

state : ¢ = (IMV) + |H)|H))

observables : Pa, 155,

where P, and ]55 are projectors onto the directions «, §, and |V') and
|H) are the vertical and horizontal polarization states. The quantum
prediction for the probability of a single count by Alice, P,, and Bob,
Py, are:

Po= (Y|P 8) = 5 = B, (1)
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and the probability of a joint detection is:

Pay = (| PaPs| ) = 5 cos? (a = ). 2

This applies to ideal detectors. For detectors with efficiency n < 1 the
probabilities are:

U Uk
Pasz:§,Pab:?cos2(a—ﬁ). (3)
As it is well known [89,90], Bell’s inequalities may be violated if the
efficiency is 7 > 0.83. In this context we can assume either that the
efficiency is the same for the two detectors and that it is constant or we

could say that it changes as a consequence of the influence of the the
background field [27,76].

3 The simplest classical model consistent with Malus’s
law

If we take the validity of the Malus’s law and a uniform distribution for
the (hidden) polarizations of the two photons, we will obtain the follow-
ing joint probabilities for the various combinations of horizontal /vertical
outcomes given the two “free measurements” of polarization (a,b) car-
ried out by Alice and Bob respectively:

1+ $cos2(a — B)]

4
(4)
This classical model gives joint probabilities differing from those given

by quantum mechanics, but they have a similar form. This is clear if we
note that:

P(H,Hla,b) = l/ cos®(a — N)cos? (B — \) d\ =
T Jo

cos?(a — B) _ 1+ cos[2(a — B)]
2 4

4 A simple non-ergodic model with reflected “empty”
waves

We present here a “toy model” compatible with the Einstein-de Broglie
theory, to explain what a “non-ergodic model” is and how it rejects the
condition of statistical independence through memory effects. Probably
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Figure 4: Illustration of the experimental setup of an EPR-type
experiment.

this model is not compatible with all the EPR experiments so far car-
ried out, however it is a simple model useful to explain how a natural
effect, automatically included in the 3+1 matter wave theory, can lead
to a violation of Bell’s inequalities for certain pairs of “free choices”.
Let us consider a source of pairs of particles in a Bell state: they can
be two photons, of which we measure the vertical or horizontal linear
polarization, or two particles emitted by a radioactive process, of which
we measure the position and momentum; the situation is conceptually
the same. In both cases the process of creation of the particles is a decay
process caused by quantum fluctuations in the vacuum and as such it
is an unpredictable stochastic process [88]. Let us suppose we have a
succession of N pairs of maximally entangled particles heading towards
their respective measurement apparatuses, as shown in figure 4.

We now associate the respective polarization vectors to the individual
photons of the various pairs, which in this case assume the role of hidden
variables?. The two photons of each pair will have the same polarization

4In order to further explain the observed statistics, that is to justify Malus’s law,
further hidden variables could be considered, such as the phase of the pilot wave
and the location of the central peak representing the particle, but also the complex
microscopic configuration of the apparatus. In this paper we limit ourselves to a
local probabilistic hidden variable model which is in a sense a minimal extension of
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if they propagate in the opposite direction along the z axis and if the
initial state of the atom from which they are produced is spherically
symmetrical. This is a consequence of the symmetries of the problem
and of the fact that electromagnetic interactions conserve parity. We are
therefore considering an entangled state for photon pairs of the type:

_IMIV) + [H)|H)
W+> - \/§

where |V) is the pure state with vertical polarization along z and |H)
is the pure state with horizontal polarization along y. The state |1)
is symmetrical (it is even for spatial reflections) and can be obtained
from the de-excitation of an atom in an excited state with S = J =
0 which decays with two successive electric dipole transitions, that is:
(J=0)— (J=1) — (J =0) with a process called atomic cascade SPS.
Alternatively, we could consider the antisymmetric state

_ WA — [H)V)
lp-) = 7

which is obtained from the annihilation of positronium in two photons
and whose ground state has intrinsically negative parity. In this case the
polarizations of the two photons will be orthogonal to each other [93].

We suppose as well that the law of interaction between photon and
polarizer is the same as in the case of single photons prepared with a
defined polarization, namely Malus’s law: if a photon propagates along
the z axis with a vector of polarization X which lies on the plane orthog-
onal to the direction of propagation and subsequently enters a polarizer
oriented along the vector 3, the probability for the photon to pass is
P = cos*(0), where 6 is the angle between A and j.

This is what we would obtain with a one-channel polarizer, but in
modern experiments we have two-channel polarizers (beam splitters),
which transmit one polarity and reflect the other one, emulating a Stern-
Gerlach device for charged particles. Once a photon has passed, its
polarization will change to the polarizer angle. If it doesn’t pass, its
polarization will change to the perpendicular to the polarization angle
of the polarizer.

The hypothesis of the model is that, when the wave-particle pairs in-
teract with the polarizers, the guiding wave packet separates into one of

orthodox quantum mechanics [91] [92].
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the two components parallel or orthogonal to the direction along which
the polarizer is placed, that is to say the «a and 8 angles [65] [5]. The
reflected parts of these waves on the polarizer will return to the parti-
cle source and affect the process of “spontaneous” emission of the new
pairs of particles. The peak of the wave, that is the particle, will remain
confined within one of the two components of the transmitted part, with
vertical or horizontal polarization relative to the orientation of the po-
larizer, with the relative probabilities P and 1 — P = sin?(f). Hence for
the A at the source there will be a probability distribution which will be
equally distributed® around the most probable values: a, 8, a+m/2 and
B+ 7/2. In other words, we assume that the so-called stochastic pro-
cesses, such as the emission of particles or the choices of pseudo-random
generators, are actually determined by a hidden deterministic (“sub-
quantum”) dynamics. In this model, the physical situations in which
the correlations predicted by quantum mechanics occur are analogous to
states of thermodynamic equilibrium, towards which out-of-equilibrium
states rapidly tend due to the fast hidden dynamics, which is signifi-
cantly influenced by the procedures of preparation and measurement.
As it can be verified through the formula:

P(A, Bla,b) = /A Pala, \) Pa(B,)) p(Ala, 3) dA (5)

where in this case we will have p = p(\, a, 8), integrating on the distribu-
tion of the hidden variables A we obtain the joint probabilities predicted
by quantum mechanics:

sin(a—5) (6)

2(q—
Pyy=Pyy= w
Pyyv =Pyg= 5

The p(\) distribution should be modified if two different angles are con-
sidered for each measurement on A and B («, o/, 8 and '), as in exper-
imental tests designed to close the “locality loophole” [94]. If o/ = a+F
and ' = 84 T the predictions of the model are still the same as those
of quantum mechanics, but there will be particular angles for which,
with appropriate experimental precautions, the predictions will differ
and therefore it is a falsifiable model. For example in the case o' = a+ %

51t is assumed that every possible change in the polarization of the reflected waves
occurs for quantities that are multiples of /2, which would be reasonable to assume
provided that only total internal reflections or reflections on mirrors are involved.
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and ' = 847 we have the same predictions of the simple classical model
of the previous section with half the correlations of those predicted by
quantum mechanics. So this effect alone is not able to explain all the
experiments with fast-switching of the analyzers for arbitrary choice of
o and 3.

We note that in this toy model the memory loophole is not invoked as
a consequence of a path-memory induced by an underlying medium (the
Lorentz-Dirac aether)[25,95], but as a consequence of the continuously
propagating empty waves in the background physical space.

5 A simple semiclassical model with variable detec-
tion probability

Let us consider two correlated signals arriving to Alice and Bob with
polarization A\ perpendicular to the direction of propagation.

After crossing polarizers placed with polarizations in directions at
angles «, 8 with respect to the horizontal, the amplitudes arriving at the
respective detectors will be:

Alice : A = <|X|cos)\ cos a 4 |X|sinA sin a)

- R (7)
Bob: B = (|)\|cos)\ cos B + |A|sinA sin,@’)

and the field intensities will be the squares of the amplitudes. Actually,
the relevant amplitudes should be the averages over a time interval [0, 77,
or rather the Fourier transforms of the time-dependent amplitudes.

In this simple model we assume that the detection probabilities are
proportional to the intensities, a plausible hypothesis as shown in Ap-
pendix A. Of course, the amplitudes in equation (7) will need to be
added to the amplitudes due to the background field.

We have already seen in the previous chapter how the influence of
the reflected waves on the polarizers can change the distribution of hid-
den variables on the source, in such a way as to give rise to quantum
mechanical probabilities. Now we want to see how the same result can
be obtained considering that empty waves of the background field can
enhance the detection probabilities for some particles and reduce the
detection probabilities of other particles. Let us therefore assume, as de
Broglie did, that “the empty wave of one particle is able to affect the
full wave of another”.
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Let us consider that once the particle has passed the polarizer it
has a certain probability of being detected depending on the alignment
of its polarization with the background field. Let us suppose that this
probability is equal to cos?(a — \) or sin?(a — \) depending on whether
the particle passed with one polarization or with the other perpendicular.

In this case using formula 4 we obtain for the joint probability:

P(H,Hla,b) = 1 /7r cos*(a— N)cos* (B — \) d\ =
0

_ 184 16cos[2(a — B)] + cos[4(a — B)]
128

(8)

Now let us consider that each probability of detection is enhanced by
a normalizing factor %. The physical meaning of this factor greater than
one is that if we exclude from the statistical ensemble the particles emit-
ted but not detected from the favorable cases we should as well remove
them from the total cases. We think that variable detection probabili-
ties (and more generally “hidden probabilities” [96]) is the only rational
way to interpret quasiprobabilities [69]. The detailed calculations for all
the other joint probabilities are reported in Appendix B with additional
explanations.

With this correction applied to the previous calculations we find for
the joint detection probability:

PUH. Hla,b) 1+ Scos2(a — ﬁ)L"F Leos[d(a — B)] )

which is only slightly different from quantum mechanical predictions.

The correlation coefficient e is proportional to:
(number of concordant pairs) — (number of discordant pairs)
which in terms of probabilities gives:
e=Pgug+Pyv—Pgv—Pvpg
By using quantum mechanical joint probabilities we find that

e = cos®(a — B) — sin*(a — B) = cos[2(a — B)]
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Considering the enhanced variable detection probability model we find

e = %cos[Q(a — )], which is only slightly different from quantum me-

chanical correlations.

In this context we should also count the enhanced dark counts which
were not emitted by the source. The phenomenon of enhancement of
dark counts is supposed to be caused by the effects of the background
empty field on the fluctuations in the detectors. Indeed, some detected
coincidences might be due to accidental counts (i.e., two detections mis-
takenly interpreted as an entangled pair), so the rate of these accidental
coincidences should be subtracted. However, in this simple toy model we
will neglect this complication. A more realistic one should also account
for noise. In this case, the noise could depend on the background field.
As such, there is a wider range of possible variable detection probability
models.

Taking into account the basic variable detection probability model
without enhancement, that is to say the one used in equation (4), but
with the non-uniform distribution of hidden variables used in the non-
ergodic model, we find the same correlations of quantum mechanics since:
e = cos*(a— ) — sin*(a— B) = cos[2(a— B)]. This is a very interesting
fact, since it means that we can have local models that exploit a combi-
nation of the two effects, that is to say exploiting at the same time the
memory and detection loopholes.

Santos has shown that the memory loophole alone cannot account for
the EPR correlations for any given pair of measurement settings (ana-
lyzer orientations). We agree with this analysis [85], however, to the best
of our knowledge, no model has ever been proposed that simultaneously
exploits both the detection and the memory loopholes. Our conjecture
is that such a model could explain the EPR correlations for any choice
of measurement settings, provided we exploit the two loopholes in a
complementary manner.

To clarify what we mean when we say that the effects of the afore-
mentioned mechanisms should act in a complementary manner, we sug-
gest, for example, that memory effects primarily occur when the angle
between the pairs of chosen measurement bases is close to integer mul-
tiples of 7/2, while enhancement effects primarily occur when the angle
is closer to 0. We do not currently have such a model, but we consider
its existence to be plausible.

Of course many experiments have been done in the past to close the
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locality loophole [97-99] and also the detection loophole[100], but to our
knowledge no experiment has ever been conducted in which all the ex-
perimental precautions are simultaneously taken to completely close all
the loopholes. We emphasize that they must be closed without invoking
indirect mechanisms that may introduce other additional loopholes, as
it happens for example with the experiments using the technique called
entanglement swapping[101].

We understand that we should give a detailed list of the experimen-
tal precautions to be taken to exclude such a class of models rejecting
both fair sampling and statistical independence, but these questions go
beyond the scope of this paper and we reserve the right to address these
complex issues in a subsequent paper, where a specific model will be
presented. However, we have proposed in the introduction a way to de-
sign this new “Big Bell test” where, in addiction to the fast-switching of
the analyzers and the avoidance of post-selection/data rejection, there
is also the caution to choose the free choices for the first time and so to
collect the statistics in different measuring apparatuses. We understand
also that this would be very expensive.

To conclude, we ask ourselves what it means for this model to be con-
sidered “conspiratorial”. From a mathematical perspective, it implies a
violation of the condition of statistical independence or the condition
of fair sampling (conspiracy of the detectors). However, from a physi-
cal standpoint, the apparent conspiracy is merely a consequence of the
fact that we did not expect a mechanism, naturally implied by the wave
theory of matter, acting in such a way as to produce those correlations.
After all, the mechanism of the instantaneous collapse of the wave func-
tion is certainly no less strange from a physical point of view.

6 Conclusion

We have seen that current experiments used to test Bell-like inequalities
are not conclusive in order to exclude all local models. We have pro-
vided some physical local mechanisms, compatible with the matter wave
theory by Einstein-de Broglie-Schrodinger, which are able to roughly re-
produce EPR-Bohm correlations. This suggests that there is no reason
to think that quantum mechanics cannot be modified in the way envi-
sioned by de Broglie, Einstein and Schrodinger [2,36,102-104], in such
a way as to be recovered as an approximation through a sub-quantum
hidden thermodynamics of fast wave fields excitations. Indeed, it is un-
fortunate that today most Bohmians have forgotten what even Bohm
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later recognized [105,106], that is to say the importance of finishing the
double solution program by de Broglie, where particles are nothing but
classical solutions of non-linear wave equations defined on space-time.
The basic starting point of de Broglie was that these non-linear terms
in the wave equations must not be introduced ad hoc, but they come
from relativistic terms of interaction and self-interaction (environmental
and general relativistic effects) between the local excitations of the fields
and the rest of the universe [105,106]. The self-fields of the particles are
always present since the particles have an extended structure [48,49].

We conclude by noting that these local models have remarkable im-
plications for recent applications of quantum theory to computation and
cryptography. As a consequence, since these models can be experimen-
tally tested, we suggest that we should pay more attention to the possi-
bility that there could be a local model (not excessively conspiratorial)
that is able to explain the correlations in measurements carried out in
typical EPR-type experiments. As for this point, we would like to quote
Feynman who reminded us that Nature has always got better imagi-
nation than we have: “A very interesting question is the origin of the
probabilities in quantum mechanics. Another way of puttings things is
this: we have an illusion that we can do any experiment that we want.
We all, however, come from the same universe, have evolved with it, and
don’t really have any “real” freedom. For we obey certain laws and have
come from a certain past. Is it somehow that we are correlated to the
experiments that we do, so that the apparent probabilities don’t look
like they ought to look if you assume that they are random. There are
all kinds of questions like this, and what I'm trying to do is to get you
people who think about computer-simulation possibilities to pay a great
deal of attention to this, to digest as well as possible the real answers
of quantum mechanics, and see if you can’t invent a different point of
view than the physicists have had to invent to describe this. In fact the
physicists have no good point of view.” [107].

7 Appendix A

Here we report a naive model of a detector suggested by E. Santos [85,
108] and consisting of an harmonic oscillator driven by an external time-
dependent force. The equation of the model with obvious notation is:

i+ wir = f(t). (10)
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We assume that the probability of detection during the time interval
[0,T7] is proportional to the energy transferred to the oscillator that is
initially at 2(0) = 0. The energy will be the time integral of the power,
that is:

T
W= / Bf(t)dt (1)
0

The solution of the ODE eq.(10) with the appropriate initial condition
is:

1/t

x(t)= —/ sinfw (t — )] f (') dt’
W Jo

S (1) = /0 cos [ (t— )] f (') dt’

whence eq.(11) gives:

T t
W:/O f(t)dt/o cos [ (t — )] f (') dt

1T T , Ny
:5/0 dt/o cosfw (t —t)] f(t) f () dt (12)
T 2
:% /0 exp [iwt] f (t) dt

We may identify the force on the charged oscillator with the product
of the charge times the electric field of the light beam arriving at it, that
is to say f = eFE. Hence a detection model might be obtained assuming
that a detection event takes place whenever W reaches some fixed value
(the threshold). However, we may simplify the model postulating that
the probability of a count is proportional to W, i.e. to the square of
the amplitude of the wavelet arriving at the detector, provided that the
frequency of the arriving signal belongs to the band width of the detector.

8 Appendix B

Here we report the details of the calculations for the variable detection
probability model firstly suggested by Delgado [27] and futher developed
in chapter 5, where we gave a physical interpretation of the model in
terms of interference effects between the resonant background field and
the incoming wavelets. In figure 8 we reported the spreadsheet with all



20 F. Comparsi

B1 v i fx =1/128%(16*C0S (2#A12)+C0S (4%A12)+18)
A B c D E F G
1 |P{H,H] | 0,0799403_' - > 0,14211614
2 |P(HV) 0,1919587 - > 0,341259969
3 |[P(V,V) 0,0799403 - > 0,14211614
4 |P(V,H) 0,1919587 --> 0,341259969
5 |P(H,0) 0,1031009 multiply by normalizing constant
6 (P(V,0) 0,1031009
7 |P(OH) 0,1031009
8 |P(OV) 0,1031009
9 |P(00) 0,0437981
10
11 |angle(a-b) SUM(B1;B9) SUM(D1;D4)
12 45 1 1

the calculations for all the joint probabilities analogous to the one in
equation 8, for example P(H,Vl|a,b) = L [ cos*(a— \)sin*(8— \) and
so on for all the combinations.

The normalizing constant is required in the case of data rejection
because the probabilities of all events must sum to 1. The central point
here is how the detection efficiency is usually defined for detectors, i.e.
n= % Of course this definition requires that we can control exa-
cly the number of emitted particles and that this efficiency is a constant
property of the detector. However, in the case of a Bell test we do not
control the emitted particles and it could be that the detection proba-
bility is not a constant, but it could depend on the configuration of the
background field. This is why the operations of post-selection or data
rejection are very problematic. We know that even by using detectors
with high efficiency, undetected events can occur, and in any case the
probability Ppg cannot be controlled. Indeed, the basic idea of variable
detection probability is that some quantum probabilities are different
for different individual quantum systems, so that new physical features
arise only for two (or more) correlated systems[24]. This hypothesis is
not so strange if we consider the fact that in a double-slit experiment
conducted with maximally entangled particles, the interference pattern
is not observed on the screen.
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