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RÉSUMÉ. Dans un volume précédent des annales, nous avons proposé
une équation de Schrödinger non-linéaire qui, couplée à un ansatz dit
de factorisation, permettait de construire des solitons qui suivent les
trajectoires de de Broglie-Bohm associées à l’onde pilote, elle même
solution de l’équation de Schrödinger linéaire. Ici nous entendons ex-
poser une version synthétique de ce modèle, et nous nous intéressons
aussi aux questions suivantes: en quoi notre modèle conforte t’il les
idées originales de de Broglie sur la double solution? et en quoi s’en
démarque t’il?

ABSTRACT. In a previous issue of the annales, we proposed a non-
linear Schrödinger equation which, coupled to the so-called factorisation
ansatz, allowed us to build solitons which follow the de Broglie-Bohm
trajectories associated to the pilot wave, the latter being solution of
the linear Schrödinger equation. Here we intend to present a synthet-
cic version of this model, and we also tackle the following questions:
whereby does our model comfort de Broglie’s original assumptions re-
garding the double solution? and whereby does it differ from it?

Key words double solution, soliton, non-linear Schrödinger equa-
tion, wave monism, trajectories in configuration space.
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1 Introduction: a solution of de Broglie’s double so-
lution program.

1.1 Double solution program.

Louis de Broglie proposed in 1927 [1] a realistic interpretation of the
quantum theory in which particles are guided by the solution of the lin-
ear Schrödinger equation (ΨL). The theory was generalised by David
Bohm in 1952 [2, 3]. Certain ingredients of de Broglie’s original idea
disappeared in Bohm’s formulation, in particular the double solution
program, according to which the particle is associated to a wave u dis-
tinct from the pilot-wave ΨL, u being sometimes treated as a moving
singularity [4], and sometimes as a solution φNL of a non-linear equation
of very high amplitude, a “hump” ([5, 6, 7]). In a previous paper [8] we
focused on the second alternative (“hump”) that would be associated to
a non-linear wave equation about which de Broglie wrote [6]

“ ... a set of two coupled solutions of the wave equation: one, the Ψ
wave, definite in phase, but, because of the continuous character of its
amplitude, having only a statistical and subjective meaning; the other, the
u wave of the same phase as the Ψ wave but with an amplitude having
very large values around a point in space and which (· · · ) can be used to
describe the particle objectively.”...

We are thus looking for a solitonic solution of a non-linear self-
focusing equation, represented here by φNL, which supposedly has a
very small size, which is reminiscent of Bohm’s description of particles
as material points.

The pilot wave interpretation (also commonly called de Broglie-Bohm
(dBB) interpretation or simply Bohm interpretation [2, 3] ) which is the
backbone of the double solution program postulates1 that

-(i) particles follow trajectories which obey the guidance equation (or
the quantum potential in Bohm’s approach);

-(ii) the distribution of positions at a certain time t0 obeys the Born
rule

-(iii) each measurement is in the last resort a measurement of posi-
tion.

As the guidance equation is derived from the equation of conservation
associated to Schrödinger’s equation, combining postulates (i) and (ii)

1Mathematical details and precise definitions can be found in appendix.
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ensures that the Born rule is satisfied at any time, at least when the
observable that we consider is the position of the particle (this is the
so-called equivariance property).

Taken together, (i), (ii) and (iii) ensure that the dBB interpretation
leads to exactly the same predictions as the orthodox quantum theory.

1.2 Single particle case

In our model [8], the particles are represented by solitons (the φNL wave-
functions) which are supposedly localized over tiny regions of space. In
accordance with de Broglie’s double solution program, the solitonic tra-
jectories obey the guidance equation (see appendix for more details about
these concepts). This means that if we write the pilot wave2 in polar
form:

ΨL(x, t) = RL(x, t)ei ϕL(x,t), (1)

where RL(x, t) and ϕL(x, t) are two real functions, then the velocity of
the solitons obeys at all times the guidance equation:

dx(t)

dt
= v(x, t) =

~
m
∇ϕL(x, t)

∣∣∣∣
x=x(t)

(2)

In the single particle case, our model is based on three conditions
(which admit a straightforward generalisation to the configuration space
when several particles are present):

1. Factorisation ansatz: it is assumed that the “full” wave function
denoted Ψ is the product of the pilot wave ΨL with the particle wave
φNL

Ψ(t,x) = ΨL(t,x) · φNL(t,x), (3)

where ΨL, the so-called “pilot” wave, is a solution of the linear
Schrödinger equation:

i~
∂

∂t
ΨL(t,x) = (

−~2

2m
∇2 + V L(x, y, z, t))ΨL(t,x), (4)

while φNL(t,x) is supposed to be localized over a very small region of
space, and V L represents usual interactions (e.g. electro-magnetic).

2The pilot wave is a particular solution of Schrödinger’s linear equation associated
to the quantum system of interest; in more conventional descriptions it is called the
wave function or quantum state of the system.
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2. Phase harmony: it is assumed that the particle (soliton) is
represented by a purely real function: Im.φNL(t,x) = 0. Taking the
factorization ansatz into account, this implies that the phase of the full
wave function Ψ is equal to the phase of the pilot wave ΨL, which is
reminiscent of a condition baptised by de Broglie as the “phase harmony”
condition.

3. Finally, Ψ(t,x) is assumed to obey a non-linear evolution equa-
tion which reads

i~
∂Ψ(t,x)

∂t
= −~2 ∆Ψ(t,x)

2m
+ V L(t,x)Ψ(t,x) + V NL(Ψ)Ψ(t,x), (5)

where V L represents an arbitrary linear potential, of the type commonly
considered when solving the linear Schrödinger equation (for instance an
electro-magnetic potential) while V NL represents a non-linear potential
which we assume to be equal to the difference between the so-called
quantum potential evaluated3 at the level of the pilot wave ΨL with its
counterpart evaluated at the level of the “full” wave function Ψ4:

V NL(Ψ) = V Q
L (ΨL)− V Q(Ψ) =

−~2

2m

∆ | ΨL(t,x) |
| ΨL(t,x) |

+
~2

2m

∆ | Ψ(t,x) |
| Ψ(t,x) |

(6)

Writing the soliton in polar form:

φNL(x, t) = RNL(x, t)ei ϕNL(x,t), (7)

where the amplitude of φNL is denoted RNL and its phase ϕNL, and
making use of the factorization ansatz, one can check easily that the
non-linear potential can also be expressed as follows:

V NL(Ψ) =
~2

2m
· (∆RNL(x, t)

RNL(x, t)
+ 2
5RL(x, t)

RL(x, t)
· 5RNL(x, t)

RNL(x, t)
) (8)

As we have shown previously [8], this choice for V NL has three con-
sequences:

3Let us denote V Q(f) the “quantum potential evaluated at the level of the function

f(t,x)”. By definition, V Q(f) = −~2
2m

∆|f(t,x)|
|f(t,x)| . See appendix for more details.

4Obviously this potential is NOT linear because V NL(Ψ1 + Ψ2) · (Ψ1 + Ψ2) 6=
V NL(Ψ1) · (Ψ1) + V NL(Ψ2) · (Ψ2).
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i) it concentrates the wave function of the particle over a tiny region
of space, in accordance with de Broglie’s double solution program.

ii) if phase harmony is realized at an arbitrary time t = 0, it is still
true at any time t. In other words, our choice of potential guarantees
that the soliton φNL remains a pure real function at all times, provided
it is real at a given time t0.

iii) the velocity of the (barycentre of) φNL(t,x) obeys the guidance
equation (2), which completes the fulfillment of de Broglie’s program.

1.3 Main features of our model.

Combining equations (3,4,5), expressing ΨL(x, t) in function of its mod-
ulus and its phase through RL(x, t)eiϕL(x,t), and also making use of
the identity 5ΨL(x, t) = (5RL(x, t))eiϕL(x,t) +ΨL(x, t)i5ϕL(x, t), it is
straightforward to show that φNL obeys the non-linear equation

i~ · ∂φNL(x, t)

∂t
=

− ~2

2m
·∆φNL(x, t)− ~2

m
· (i5ϕL(x, t) · 5φNL(x, t)

+
5RL(x, t)

RL(x, t)
· 5φNL(x, t)) + V NL(Ψ)φNL(x, t). (9)

This allows us to replace equation (5) by equation (9).

Let us consider the temporal evolution of the imaginary part of the
soliton.

− ∂Im.(φNL(x, t))

∂t
=

1

~
Re.(i~ · ∂φNL(x, t)

∂t
) =

1

~
Re.(− ~2

2m
·∆φNL(x, t)− ~2

m
· (i5ϕL(x, t) · 5φNL(x, t)

+
5RL(x, t)

RL(x, t)
· 5φNL(x, t)) + V NL(Ψ)φNL(x, t)) (10)

Making use of the equation (8), we find that if at any time the soliton
is a purely real function of space, then

− ∂Im.(φNL(x, t))

∂t
= 0. (11)
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so that it remains so at all times. We shall always assume here that it is
well so so that φNL(x, t) = RNL(x, t). This establishes phase harmony.

It is worth noting at this level that in previous attempts to realize
the double solution program phase harmony had to be postulated inde-
pendently of the dynamics [9]. Here it appears to be a consequence of
the dynamics.

Then, equation (9) reduces to a system of two equations

Im.(φNL) = 0 (12)

∂Re.(φNL(x, t))

∂t
=
∂RNL(x, t)

∂t
= − ~

m
5ϕL(x, t) · 5RNL(x, t) (13)

Assuming, in accordance with de Broglie’s program, that the width
of the peaked soliton is quite smaller than the typical scales of variation
of ϕL(x, t), equation (13) is nothing else than the guidance equation (2).
Indeed, imposing that 5ϕL(x, t) = 5ϕL(x0(t)), with x0(t) = x0(t =

0) +
∫ t

0
dtvdB(t) and vdB(t) = ~

m5ϕL(x0(t)), it is straightforward to
check that the solution of (13) is a solitary wave (we call in the present
context a solitary wave a wave that keeps the same shape at all times,
what is sometimes called a soliton in other contexts):

RNL(x, t) = RNL(x− (x0(t)− x0(t = 0)), t = 0).

Remarkably, there is no constraint, at this level, concerning the shape
of the soliton RNL(x, t = 0), excepted that ϕL(x, t) varies very slowly
over the region where the soliton is concentrated. In our previous paper
[8], we studied two particular cases where the guidance equation is ex-
actly fulfilled, which happens when 5ϕL(x, t) does not depend on the
position. This occurs when the pilot wave is a plane wave, in the free
particle case, or when it is a coherent state of a harmonic oscillator. In
that case, the Laplacian of ϕL(x, t) cancels everywhere and the pilot
wave also behaves as a solitary wave, in virtue of the conservation equa-

tion which then reads ∂RL(x,t)
∂t = − ~

m5ϕL(t) ·5RL(x, t). It also admits
solutions of the type RL(x, t) = RL(x−(x0(t)−x0(t = 0))), t = 0) where
x0(t) represents the barycentre of the pilot wave.

1.4 Analysis of the 2nd order in time dynamics.

At this level, it is worth to put into evidence some qualitative features
of the non-linear potential which help to understand in a less formal
way how at the end we succeed in realizing de Broglie’s double solution
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program. To do so, let us consider a particular case: the pilot wave is a
gaussian packet of which the size is supposedly quite larger than the size
of the soliton which is also supposed to be gaussian (such a soliton is a
so-called “gausson”). For the sake of simplicity we shall limit ourselves
here to 1 dimension of space, but the generalisation to 3 dimensions is
straightforward.

The quantum potential in the case of a gaussian wave function
exp−(Ax2+Bx+C) is equal, up to a constant factor, to

4(Re.A)2(x− < x >)2.

Therefore, up to an irrelevant additive constant, V Q
L (ΨL) = −k

2 (x−
xL0 )2, and −V Q(Ψ) = + k̃

2 (x− x0)2 where xL0 represents the peak of the

gaussian pilot wave while x0 represents the peak/barycentre of Ψ; k̃ is
an effective spring constant associated to Ψ. Because of the factorisa-
tion ansatz, it is the sum of k with the spring constant associated to the
soliton (gausson-RNL). k̃ is quite larger than k because the gausson is
supposedly quite narrower than the pilot wave so that in good approx-
imation the barycentre of the gausson is not distinguishable from the
barycentre of Ψ.

V Q
L (ΨL) plays relatively to the gausson the same role here as an

external time-dependent potential because it does not depend on the
wave function of the gausson. It is accelerating but not self-focusing. In
virtue of Ehrenfest’s theorem it contributes to the acceleration of Ψ just
in the same way as the quantum potential of the pilot wave estimated
at the location of the gausson. It is self-antifocusing in the present case
because it is a repulsive quadratic potential centered around the peak of
the pilot wave.

On the contrary, −V Q(Ψ) is not self-accelerating:
1
m < Ψ | ∇V Q(x, t) | Ψ >= 0, because when we integrate the gra-

dient of a gaussian function symetrically around its peak, it cancels by
symmetry5.

5The use of brackets here does not mean that we are estimating statistical averages
as is usually done in standard quantum mechanics. Our idea is, as already explained
previously [8], to estimate the localisation of the soliton by computing its barycen-

tre, evaluated through the expression
<Ψ|x|Ψ>
<Ψ|Ψ>

. Now, the equation of evolution (5)

preserves the norm and we chose to normalize Ψ to unity in the present paper, for
the sake of simplicity, so that the barycentre is < Ψ | x | Ψ > but other choices
are possible [8]. In any case, if we would choose for instance a weight in |Ψ|4 and
not in |Ψ|2 for estimating the position of the barycentre, there would be no notable
difference because the soliton is peaked inside a small region of space.
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This result can actually be generalised to all cases where the potential
is an analytic function of the modulus of the wave function as we have
shown in our previous paper [8].

It can also be established in full generality as has been shown recently
by collaborators in Marseille [10]. The proof goes as follows

< Ψ | ∂xV Q(x, t) | Ψ >= −~2

2m

∫
d3x | Ψ(t,x) |2 ∂x(∆|Ψ(t,x)|

|Ψ(t,x)| )

Integrating by parts, we find that −~
2

2m

∫
d3x | Ψ(t,x) |2 ∂x(∆|Ψ(t,x)|

|Ψ(t,x)| )

= −~2

2m

∫
d3x(−2) | Ψ(t,x) | ∂x(| Ψ(t,x) |)(∆|Ψ(t,x)|

|Ψ(t,x)| )

= −~2

2m

∫
d3x(−2) | Ψ(t,x) | ∂x(| Ψ(t,x) |)( (∂2

x+∂2
y+∂2

z)|Ψ(t,x)|
|Ψ(t,x)| )

= ~2

m

∫
d3x(∂x(| Ψ(t,x) |)(∂2

x + ∂2
y + ∂2

z ) | Ψ(t,x) |
Now,
~2

m

∫
d3x(∂x(| Ψ(t,x) |)(∂2

x | Ψ(t,x) |)= ~2

2m

∫
d3x∂x(∂x | Ψ(t,x) |)2

~2

m

∫
d3x(∂x(| Ψ(t,x) |)(∂2

y | Ψ(t,x) |)=

=−~2

m

∫
d3x(∂y∂x(| Ψ(t,x) |)(∂y | Ψ(t,x) |)

=− ~2

2m

∫
d3x∂x(∂y | Ψ(t,x) |)2.

In the same fashion we get
~2

m

∫
d3x(∂x(| Ψ(t,x) |)∂2

z | Ψ(t,x) |=− ~2

2m

∫
d3x∂x(∂z | Ψ(t,x) |)2.

As the wave function cancels at infinity, < Ψ | ∂xV Q(x, t) | Ψ >
is identically equal to 0, independent of the expression of Ψ(t,x). The
generalisation to < Ψ | ∂yV Q(x, t) | Ψ > and < Ψ | ∂zV Q(x, t) | Ψ > is
straightforward.

−V Q(Ψ) is however self-focusing, it is an attractive quadratic po-
tential centered around the barycentre of Ψ which is itself very close to
the barycentre of the gausson; its presence guarantees that the gausson
keeps a quasi-gaussian shape throughout time.

When the soliton is quite smaller than the typical variation scale of
the pilot wave, in the case of quasi-gaussian shapes for the soliton, the
self-focusing of −V Q(Ψ) largely dominates the possible self-defocusing

of V Q
L (ΨL) which explains qualitatively why our solitonic solutions are

stable.

In virtue of Eherenfest’s theorem, the peak (barycentre) of Ψ under-
goes an acceleration resulting from three potentials, the classical, linear
potential, and the two quantum potentials.
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To begin with, let us take account of the presence of the linear po-
tential V L at the level of equation (5). Its contribution is equal to the
local acceleration resulting from the classical potential, estimated at the
level of the soliton.

-this is equal to the classical acceleration in good approximation:
1
m < Ψ | (−)∇V L(x, t) | Ψ >≈ −1

m ∇V
L(x0, t) where x0 represents

the peak/barycentre of Ψ;

-the second one is the self-acceleration of the gausson for which only
V Q
L (ΨL) contributes:

1
m < Ψ | (−)∇V NL(x, t) | Ψ >= 1

m < Ψ | (−)∇V Q
L (x, t) | Ψ >≈

−1
m ∇V

Q
L (x0, t).

Remaining in the limit case where we may neglect the variation of
the gradient of V Q

L (ΨL) over the size of the soliton, the resulting self-
acceleration is equal in good approximation to the acceleration under-
gone by a particle of which the trajectory obeys the guidance equation
(2) (this acceleration obeys indeed the constraint (18) as explained in
appendix); again, the small size of the soliton is a key ingredient for
guaranteeing that the dBB dynamics (2,18) is satisfied.

1.5 Composite systems

It has also been shown in the past [11] that when more than one particle
is present, a straightforward generalisation of conditions 1,2,3 makes it
possible to generalize the single particle model to a multiparticle model
endowed with the same properties as in the single particle case (i,ii,iii):
then, the particles are represented by a product of localized solitons,
while the pilot wave is, as usually, defined over the configuration space.

For instance, in the case of a double Stern-Gerlach interferometer,
the full wave function takes the form

|Ψ〉 = |ΨL〉 · |φNL〉,
where |ΨL〉 = ψ++((t,xA,x

′
B)|+A +B〉+ ψ+−((t,xA,x

′
B)|+A −B〉

+ ψ−+((t,xA,x
′
B)| −A +B〉+ ψ−−((t,xA,x

′
B)| −A −B〉,

while |φNL〉 = φANL(t,xA) · φBNL(t,x′B).

It is straightforward to extend this model to the N particles case.
In the rest of the paper, we will assume that electrons, neutrons and
protons are the elementary particles on which our model is based, and
that the associated solitons have a size comparable to their Compton
wavelength. We will also assume that their shape is gaussian (other
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choices are possible but we will stick to these choices for the sake of
simplicity).

2 Whereby does our model comfort de Broglie’s
original assumptions regarding the double solu-
tion?

2.1 Phase harmony

Phase harmony is a key ingredient of our model: the soliton possesses no
complex phase but the full wave (Ψ) is the product of the soliton with
the pilot wave. Its phase is thus equal to the phase of the pilot wave.

2.2 Factorisability of the wave associated to a composite sys-
tem into individual components

In the way we treat composite systems, the solitonic contributions are
a product of all individual solitonic contributions. From this point of
view, each component possesses its own individuality. Even in the case
of undistinguishable particles, two electrons for instance, each electron
is endowed with a well-defined position and at the solitonic level they
are thus distinguishable [12].

3 Whereby does our model differ from de Broglie’s
original assumptions regarding the double solu-
tion?

3.1 Factorisability of the wave associated to a composite sys-
tem into individual components

The pilot wave however is in general entangled. Non-separability and
non-locality naturally appear in our model because solitonic trajecto-
ries belong to the configuration space. Even tough our model respects
phase harmony, the phase of the pilot wave is defined at the level of the
configuration space in the case of composite systems.

It is not sure that de Broglie would have appreciated our model for
these reasons because, already in 1927 [1], but also later with Andrade
e Silva [13] and actually for the rest of his life [14], de Broglie tried to
get rid of the configuration space6, without notable success.

6For instance, in the 50’s, he wrote the following [6]: ...“Or, la méthode de
Schrödinger implique nécessairement l’emploi de l’espace de configuration et ne per-
met pas de se représenter le phénomène physique constitué par le mouvement des
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3.2 Interplay between the soliton and the pilot wave.

The picture that is often given of the double solution is the following
[6] : the pilot wave and the soliton (often denoted the “u” wave in
the literature) bounce together in the tiny region where the soliton is
located. The amplitude of the soliton is supposedly quite larger than
the amplitude of the pilot wave in this region. Outside this region, the
non-linearity is not activated, linearity is reestablished and the tails of
the soliton merge into the pilot wave. In this picture it is implicitly
taken for granted that the full wave is the sum of the pilot wave with
the u (solitonic) wave. Obviously there is a major flaw in this approach:
in the case of non-linear equation the superposition priciple is no longer
valid. In our approach the picture is totally different: the tails of the full
wave (Ψ) are, like everywhere in space, the product of the soliton with
the pilot wave. The non-linearity does not disappear far away from the
soliton. This reflects a well-known property of the quantum potential:
V Q(f), the “quantum potential evaluated at the level of the function

f(t,x)”being defined to be equal to V Q(f) = −~2

2m
∆|f(t,x)|
|f(t,x)| , it does not

depend on the scaling of f (it is invariant under rescaling). The non-
linearity, in our model, does not vanish far away from the place where
the soliton is concentrated...

3.3 Relativistic invariance.

Finally it is not clear at all how one could generalize our model in order
to comply with relativistic invariance. Here again, it is not sure that de
Broglie would have appreciated our model because relativistic invariance
was at the core of all his research [7]. Like Einstein, de Broglie remained
during all his life what we call today a “local realist” [16]

corpuscules dans le cadre de l’espace physique. Sans doute la Mécanique classique se
servait-elle souvent, elle aussi, de l’espace de configuration, mais ce n’était pas pour
elle une nécessité: elle pouvait raisonner en considérant le mouvement des points
matériels du système dans l’espace à trois dimensions et elle n’employait l’espace
de configuration que comme un artifice mathématique permettant de présenter plus
élégamment ou d’effectuer plus aisément certains calculs. Dès l’apparition des
Mémoires de Schrödinger, tout en reconnaissant l’exactitude des résultats obtenus
par sa méthode, j’avais trouvé paradoxal le principe même de cette méthode”... In
ref.[15] he added: ...the fictitious space has never satisfied me , and I have done
great work on this. In particular, one of my students, Mr Andrade e Silva, did a
doctoral thesis to show how one can interpret this with our ideas, that is to say that
everything happens in a physical space and it is only a certain representation in the
configuration space...



12 T. Durt

4 Conclusions

As we have shown, it is possible to find a non-linear potential which,
coupled with the factorization ansatz, ensures that one can find solitons,
located in tiny regions of space which move according to the guidance
equation. Together with recent results about quantum equilibrium (see
appendix for more details), our model provides a possible explanation of
the properties of quantum systems at least in the non-relativistic limit.
It is not sure that de Broglie would have approved our approach however
for several reasons:

-our model remains intrinsically non-local because we did not find
our way out of the configuration space;

-it does not possess any relativistic generalisation;

-the non-linearity remains huge far away from the tiny region where
the soliton is located.

Finally, as we noted previously [8], the model is not really a wave
monistic model because the non-linearity clearly establishes a distinction,
to begin with, between the pilot wave and the soliton. Particles do not
spontaneously “emerge” from the waves in our approach. One could
argue that, as in standard mechanics the pilot wave is in the last resort
determined by the preparation process. while the position of the soliton
is out of control for the experimentalist. However, the double nature of
the quantum object, wave and particle, here wave and soliton, is already
implicit from the beginning, at the level of the non-linear potential (6).

Appendix: the (deterministic) de Broglie-Bohm dy-
namics; equivariance, guidance equation and quantum
potential.

Pilot wave interpretation.

The dBB interpretation [17] is a dynamical and deterministic formula-
tion of quantum mechanics in which it is assumed that the positions of
the particle exist at all times, i.e. independently of the observer. We will
consider, in what follows, a single spinless and non-relativistic particle
for which a quantum wave function (also called the pilot wave) ΨL(x, t)
solves the (linear) Schrödinger equation:

i~
∂ΨL(x, t)

∂t
= − ~2

2m
∆ΨL(x, t) + V L(x, t)ΨL(x, t), (14)
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where V L(x, t) is an external potential7. In the standard formulation of
quantum mechanics, the probability distribution of all particle positions
PdB(x, t) obeys the Born rule PdB(x, t) = |ΨL(x, t)|2. For convenience,
let us express the wave function in polar form:

ΨL(x, t) = RL(x, t)ei ϕL(x,t), (15)

where RL(x, t) and ϕL(x, t) are two real functions. The probability
distribution is then given by PdB(x, t) = RL(x, t)2 and is conserved
through the continuity equation:

∂RL(x, t)2

∂t
+ ∇ ·

(
RL(x, t)2 ~∇ϕL

m

)
= 0, (16)

By analogy with classical hydrodynamics, the phase-function ϕ(x, t) is
associated to a velocity field v(x, t) given by:

dx(t)

dt
= v(x, t) =

~
m
∇ϕL(x, t)

∣∣∣∣
x=x(t)

, (17)

which is also called the guidance equation of de Broglie. This equation
expresses how the pilot wave guides the trajectories of the particles. Af-
ter integration of (17), the deterministic dB trajectory x(t) is obtained.

In order to mimick the distribution of positions in (RL)2 predicted
in the standard interpretation, that is to say in order to mimick the
Born rule, it suffices to impose that at a certain time t0, PdB = (RL)2

everywhere. Then, in virtue of equations (16) and (17), PdB = (RL)2

everywhere at any time, which is also called the equivariance property.

Another ingredient of the dBB interpretation is the idea that every
measurement is, in the last resort, a measurement of position. Combin-
ing this with equivariance, no experiment makes it possible to distinguish
dBB predictions from the standard ones.

Quantum equilibrium

Some years ago, important results were obtained by Antony Valentini
and coworkers [18, 19, 20, 21, 22, 23, 24, 25], who established that the
Born rule is the consequence of the guidance equation: after a sufficiently

7We attributed the label L to this potential because it is assumed that it does not
depend on Ψ. It acts thus linearly on the wave function, due to the fact that complex
multiplication is distributive relative to addition and commutative.
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long time, for nearly any initial distribution of position, the chaotic
nature of the dBB dynamics ensures that the distribution will converge to
the distribution in |Ψ|2, in accordance with the Born rule. This process
is called the onset of quantum equilibrium [26].

The validity of this mechanism has been established for a very large
class of hamiltonians and wave functions: the distributions of positions
will converge in time to the Born distribution PdB = (RL)2, even when
initially they depart from it. Ultimately the onset of the quantum equi-
librium is due to the chaotic nature of the dBB dynamics in the vicinity
of zeros of the pilot wave [25].

In virtue of the equivariance property, it suffices that the guidance
equation is fulfilled in order that all the predictions of the dBB interpre-
tation or, more generally, of the double solution approach coincide with
the standard predictions.

Note that the guidance equation (17) is of the first order in time be-
cause it deals with velocities. David Bohm considered the accelerations
associated to these velocities and showed that they derive from a non-
classical potential, the so called quantum potential [2, 3], here denoted

V Q
L in order the emphasize the fact that it is related to the pilot wave ΨL.

As can indeed be shown by a lengthy but straightforward computation,
combining equations (14), (15) and (17), implies that

m
d2x(t)

dt2
= −∇(V L(x, t) + V Q

L (x, t)), (18)

where

V Q
L (x, t) =

−~2

2m

∆RL(x, t)

RL(x, t)
(19)

Remark: dB versus dBB dynamics.

As already noted, de Broglie’s guidance equation is of the first order
in time while Bohm’s equation is of the second order. Following conven-
tions introduced in our previous paper [8] we refer to this fine structure
in the dynamics by labelling by the label dB “de Broglie” velocities and
dynamics as encapsulated in the guidance equation (17).

It is worth noting at this level a very important result demonstrated
by Colin and Valentini [27]: equilibrium is reached after a sufficiently
long time ONLY when initial velocities obey equation (17). On the
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contrary, when velocities are distributed arbitrarily, while accelerations
obey equation (18), quantum equilibrium does not occur and is even
unstable in the sense that when the initial distribution of positions and
velocities is out of equilibrium it will converge to equilibrium ONLY if
the initial distribution of velocities obeys de Broglie’s guidance equation.
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