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PREFACE

Dans cet Ouvrage, nous nous proposons de donner un
tableau d’ensemble de la Mécanique ondulatoire des corpus-
cules matériels, telle qu’elle se présente actuellement, quand
on laisse de c6té les effets de Relativité. Comme dans d’autres
livres, nous avons principalement développé la Mécanique
ondulatoire du corpuscule unique placé dans un champ
donné qui est I'analogue de la Mécanique classique du point
matéricl, nous avons au contraire voulu dans le présent
exposé nous placer dés le début dans le cas général de la
Mécanique ondulatoire des ensembles de corpuscules en
interaction qui est 'analogue de la Mécanique classique des
systémes de points matériels et qui contient naturellement la
Mécanique ondulatoire du corpuscule unique comme cas
particulier.

Dans 'exposé des principes généraux de la Mécanique
ondulatoire des systémes, nous avons cru devoir insister
assez longuement sur la question des intégrales premiéres
ou « constantes du mouvement » dont l'intérét est considé-
rable. Nous avons cru aussi devoir consacrer un chapitre a
la théorie du centre de gravité en Mécanique ondulatorre,
théorie qui, dans beaucoup d’Ouvrages, est passée sous
silence ou sculement effleurée.

Une ¢tude compléte des méthodes de perturbation qui
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jouent un si grand role dans la nouvelle Mécanique nous
aurait entrainé trop loin. Nous nous sommes contenté d’en
faire une esquisse nous permettant d’établir les formules
dont nous avions besoin pour les développements ultérieurs.

Dans les trois derniers chapitres, nous avons étudié les
systémes contenant des particules de méme nature physique.
Pour étudier ces systémes, la Mécanique ondulatoire a é1¢
amencée a introduire des principes nouveaux dont il est plus
facile de donner un énoncé mathématique précis que de
comprendre le sens physique profond. Tel est le mystéricux
et fondamental principe d’exclusion dit & M. Pauli.

La validité de ces principes ne fait aucun doute, car une
grande partie des succés de la Mécanique ondulatoire, succes
dont nous avons donné quelques exemples, esl due & leur
mise en ceuvre.

Parmi les questions qui sont traitées dans le dernier
chapitre, quelques-unes concernent le noyau des atomes.
On est ainsi amené aux confins de cette « Physique du
Noyau» qui, a I’heure actuelle, se place au premier plan des
préoccupations des physiciens : nos connaissances expéri-
mentales commencent & y étre nombreuses, mais nos inter-
prétations théoriques y sont encore partielles et mal assurées.
Nous n'avons pas cru devoir en aborder ici I'¢tude ().

Nous espérons que ce livre donnera & ses lecteurs une
idée d’ensemble du vaste édifice que constitue aujourd’huila
Mécanique ondulatoire des systémes de corpuscules.

Louis pE BrooLiE.

(") On troavera cette étude dans le livre suivant de l'auteur :
De la Mécanique ondulatoire d la théorie du Noyau. Paris,
Hermann, 1943.




LA

MECANIQUE ONDULATOIRE

DES

SYSTEMES DE CORPUSCULES

CHAPITRE L

RAPPEL DE RESULTATS CLASSIQUES
DE LA MECANIQUE RATIONNELLE.

1. La Dynamique classique des systémes de points matériels. —
Nous voulons commencer par donner un apercu sommaire des
grandes lignes de la Dynamique des systémes de points matériels.
Nous considérerons pour cela un ensemble de N points matériels
ou corpuscules. Chacun de ces points matériels est caractérisé par
sa masse. En Mécanique classique, il importe peu que les points
matériels du systéme soient de méme nature et aient par suite la
méme masse ou qu’ils soient de nature différente et aient par
suite, en général, des masses diftérentes.

La Dynamique classique détermine le mouvement des N points
malériels du systéme en appliquant a chacun d’eux I'équation
fondamentale de Newton

(1) ?‘ = m?

et en supposant, bien entendu, que, pour repérer la configuration
de Uensemble des points matériels, on a choisi un systéme de
référence galiléen (c’est-a-dire au repos ou en mouvement recti-
ligne et uniforme par rapport a I'ensemble des étoiles fixes). Ceci

L. DE BROGLIE. 1




2 CHAPITRE 1.

donne pour chacun des N corpuscules trois équations diflé-
rentielles

d?x; oy . d* z;
(2 m; —— = X; m;—— =Y; My —— =
\ ) [3 (/tl 14} < (/l: iy (3

_et le probléme consiste a trouver l'ensemble des 3N fonctions
zi(t), yi(t) et 5;(¢) de la variable « temps » qui satisfont aux
3N équations (2) el qui correspondent a des positions et des
vitesses initiales données des N particules.

Les équations (2) étant du second ordre par rapport au lemps,

. Iz,
1l faut se donner les valeurs z;(0), ¥i(0), s:(0), <%> ) (’,/'/}, >0
2 0

rlz.l- , . .
et | des coordonnées et des composantes de vitesse a un
0

instant initial pris pour origine des temps afin que la solution soit
déterminée d'une facon univoque. Le fait que la donnée des
positions et des vitesses initiales détermine entiérement I’évolution
du systéme quand les forces (X;Y;Z;) sont connues, constituc le
« déterminisme mécanique » de la Dynamique classique.

Maintenant, pour préciser le probléme ainsi posé, il faut étudier
les formes possibles des fonctions X;, Y, Z; qui donnent les
composantes des forces agissant a chaque instant sur les N
constituants du systéme. A priori, on pourrait prendre pour
ces grandeurs des fonctions quelconques de Pensemble des
3N coordonnées z,...sy des N points matériels et du temps.
Mais des considérations physiqaes simples permettent de diminuer
cette généralité excessive qui serait génante. Du point de vue
physique, on peut supposer que chaque point matériel est soumis
a deux catégories de forces :

1° les forces extéricures qui peuvent s’exercer sur le systeme;
pour chacun des N points matériels, la force de cette nature
qui agit sur lui est une certaine fonction vectorielle de ses
coordonnées x;y;5; et du temps;

2° les forces d’interaction, d’actions mutuelles, des N points
matériels les uns sur les autres; il est naturel d’admettre que,
pour chaque point matériel, ces forces s’expriment par des
fonctions vectorielles dépendant de la distance de ce point aux
autres points matériels, chacune de ces forces étant ainsi une
fonction symétrigue des positions de deux des points matériels.
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Ces premiéres hypothéses trés naturelles du point de vue
physique étant admises, nous en introduisons ici une troisiéme
qui est plus particuliécre et qu'on n’introduit pas d’une facon
générale dans les exposés classiques : nous admetirons que toutes
les forces dérivent d’un potentiel. Non seulement cette hypothése
ne s’impose pas, mais il y a des cas physiques bien connus ot elle
n’est pas vérifiée, celui par exemple de points matériels chargés
électriquement qui exercent en raison de leur mouvement des
actions magnétiques les uns sur les autres. Nous admettons néan-
moins cette hypothése parce que nous n’aurons pas a étudier dans
cet exposé de cas o elle n’est pas valable.

Avec les trois hypothéses que nous venons de faire, on voit que
pour tout point matériel du systéme, par exemple, pour le 7™,
les forces appliquées dérivent d’une fonction potentiel de la forme
suivante :

(3) Uilz ..., &ax; 0) =Vi(xs, ¥iy Ziy l)+2‘vij("ij\h
j

ri; étant la distance du ™ point matériel au ;™ et V;; étant nul
par définition. Le premier terme du second membre de (3) est le
potentiel de la force extérieure agissant sur le /™ corpuscule,
tandis que le second terme est le potentiel des forces d’actions
mutuelles. Comme on le voit, le temps ne peut intervenir explici-
tement dans I'expression du potentiel que par intermédiaire des
forces extérieures. ‘

Il nous faut encore ici introduire une hypothése supplémentaire
qui est bien connue en Mécanique rationnelle sous le nom de
« principe de I'égalité de l'action et de la réaction ». Avec notre
systeme de postulats, ce principe a pour expression mathématique
I'égalité

(4) R (rify = Rji(rij).

Elle signifie que la force exercée par le /™ point matériel sur
le j™¢ point matériel est égale a la force exercée par le j**®° point
matériel sur le "¢ point matériel.

Avec tout cet ensemble d’hypothéses, on peut écrire les équa-
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tions (1) sous la forme

! d?x; JV; O IV
Mmi—r = — — — y
dr? dx; d Jdr;
j
([2.1/’1' _ (}n\?i Al d"Ui/ -
(5) ml-dT_—E— Ty (i=1,2, ..., N),
7
g a2 z; . oV, ‘1 ()1’11
dit d3; d t)ul

et il va nous étre maintenant facile de tirer de ces équations les
théorémes classiques de conservation. Ce sont des théorémes qui
fournissent des intégrales premiéres des équations du mouvement,
c’est-a-dire des expressions ne contenant que des dérivées pre-
miéres par rapport au temps qui restent constantes en vertu des
équations du mouvement.

Par exemple, pour trouver la conservation de I'énergie, on

{x;

. . . . s N [z
multipliera les équations relatives au 7i®¢ corpuscule par =,
p p I
&

dt
dy; . dz ) . , T
¢ 8t 7 respectivement, on ajoutera et I'on sommera sur ¢{. En

remarquant que l'on a

s 29 Q. Yl

(6 JV; dx; ) dV; I ' O IV da 1 _r{ v/ i,
dr; dt dt ot dr; 2l i
i ij i

on obtient facilement

. d A : AV;

RIS S
. m

Si le potentiel est indépendant du temps (cas du champ exté-
rieur statique, ou afortior[ nul), on a

(8) S miei +2"s7 " V;;= const.
z/

ou encore

(9) T + U = const.,

. , . . N I 2 el A ) .
T désignant 'énergie cinétique Z 5 miv; du systéme et Ul'énergie

i
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potentielle U :Z‘UH— % 2‘17,-/-. L’énergie potentielle comprend
, -

donc la somme ldes V; in/dividuels et la demi-somme des V;;

d’interactions, c’est-i-dire que chaque terme d’interaction figure

une seule fois dans I'énergie potentielle.

Les ?;; ne peuvent étre attribués ni au /¥, ni au j"*"° corpus-
cule : il y a comme une mise en commun d’une partie de 'énergie
qui est caractéristique des systémes de points matériels en inter-
action.

Le théoréme de la conservation de l'impulsion est tout aussi
facile a démontrer.

En sommant sur 7 la premiére équation (5), on obtient

2 —. Bal
) \ L _ _(i _(/_rl _\ (_‘ IV,
(10) Hml 2 dt Zml ot 2‘ or; ’

i i i

)5 .. AT .
3 (d;x” = o0 en vertu du principe de ’égalité entre I'action et
i
la réaction.

Si done la somme des forces extérieures dans la direction des

car

est nulle, on a
(11) Em,% = const.
i

Il y a conservation de la composante z de I'impulsion totale du
systeme. De méme pour les composantes y et 5. Il en résulte que
si les forces extérieures appliquées au systéme ont une somme
géométrique nulle, Pimpulsion totale du systéme est constante.

A la conservation del'impulsion, se rattache étroitement 'utilité
de la notion de centre de gravité. Par définition, le cenire de
gravité d’'un systéme de points matériels est le point géométrique
dont les coordonnées sont les moyennes pondérées des coor-
données correspondantes des constituants du systéme, les masses
servant de facteurs de poids. On a donc pour les coordonnées du

centre de gravité les délinitions

N\ O 2—1
DARLIT ] : m;yi m; =i
dmd

(12) \:’—j—-, Y:—'—;——, 7=——.
\m[ },_Jm,- Em,i
i
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Ce qui rend cette notion de centre de gravité utile pour Pappli-
cation du théoréme de la conservation de I'impulsion, c’est que
I'impulsion totale du systéme est égale a 'impulsion d’un point
matériel fictif dont la masse serail égale a la masse totale du
systéme et qui coinciderait constamment avec son centre de
gravité. C'est ce que montre immédiatement les équations

/ X dx;
Ny 2N,
(13) ( > mi = mi—r=s 5

i
conséquences évidentes de (12).

. . A Y .
Si I'on désigne alors par M la masse totale Zmi du systéme et
T

> . e , . .
par F la somme géométrique des forces extérieures agissant sur le
systéme (la somme géométrique des forces intérieures étant d’ail-
leurs nulle d’aprés le principe de I'action et de la réaction), les
équations (10) peuvent s’écrire

(14) cff} (M %): F. ou vectoriellement ;(/// MV = F,
>

V étant la vitesse du centre de gravité. Ainsi le systéme se meut de
telle sorte que son centre de gravité se déplace comme un point
matériel de masse M qui serait soumis a la résultante de toutes les

forces extérieures. Si la composante z de %‘ est nulle, la compo-
sante & de I'impulsion du centre de gravité est constante : le mou-
vement du centre de gravité le long de 'axe x est donc alors
rectiligne est uniforme. De méme pour les directions y et 5. Donc

si FEO, Pimpulsion du centre de gravilé est constante, son
mouvement est rectiligne et uniforme dans 'espace. Il en résulte
qu’un systéme isolé (c’est-a-dire un systéme qui, par hypothése,
n’est soumis & aucune force extérieure) peut étre étudié a 'aide
des équations (2) de Newton dans un systéme de référence lié
rigidement au centre de gravité, puisque ce systéme, en raison du
mouvement rectiligne et uniforme du centre de gravité, se trouve
étre un systéme galiléen. Méme dans le cas général ou les forces
extérieures ne sont pas nulles, il est souvent utile de décomposer
le mouvement du systéme en mouvement du centre de gravité et
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mouvement autour du centre de gravité. Le premier est défini par
I'équation -(14) : si les forces extérieures varient trés peu dans le
domaine occupé par le systéme, ce mouvement du centre de
gravité pourra étre déterminé sans se préoccuper du mouvement
autour du centre de gravité. L’étude du mouvement autour du
centre de gravité pourra étre abordée ensuite, mais elle est en
général compliquée par 'intervention de forces d’inertie, centri-
fuges ou centrifuges composées, dues au mouvement non uni-
forme du centre de gravité. La sc¢paration du mouvement du
centre de gravit¢ et du mouvement autour du centre de gravité
est d'ailleurs facilitée par les théorémes dits de Keenig dont nous
parlerons tout a I'heure. '

Disons enfin un mot de la conservation du moment d’impulsion.
A partir des équations (2) de Newton, on obtient facilement

() 2 i — rmas

i

d oy U N . .
= g 2 (G — o) =D
i i

Les forces intérieures, étant deux i deux égales et opppsées,
ont un moment total nul par rapport a I'origine. En désignant

>
par L le moment total des forces extérieures par rapport a ori-

gine, on aura donc

- RN g CdviNY
(16) "t [.;.a"” (" v ’““(_//>J =L

i

o
Si donc une des composantes de L est nulle, la composante

>
correspondante du moment d’impulsion est constante. Si L = o, le
moment d’impulsion est constant.

2. Théorémes de Koenig. — Nous allons nous arréter un
instant sur les théorémes de Keenig qui aident a séparer le mou-
vement du centre de gravité du mouvement autour du centre de
gravité, et dont nous retrouverons l’analogue en Mécanique
ondulatoire.

L'impulsion totale d’'un systéme se réduit, nous Pavons vu, a
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celle de son centre de gravité supposé doué de la masse totale. Ii
n’en est pas de méme de I’énergie cinétique totale du systéme, ni
de son moment d’impulsion total. Cependant, il est possible de
décomposer ces quantités en deux parties, dont I'une est rattachée
au mouvement du centre de gravité, tandis que I'autre est ratta-
chée au mouvement du systéme autour de son centre de gravité.
C’est lal’objet des théorémes de Keenig.

Voici d’abord le théoréme de Kaenig relatif a I'énergie cinétique
totale. Cette énergie est égale a

’ 1 dri\? dyi\2 odzi\?
(7) r=X i () () () |

Or, en introduisant les coordonnées du centre de gravité, nous
pouvons poser

(18) ;= X 4+ £, yi= Y + 14 =1+ %

£y ni et §; étant les coordonnées relatives du /™ point matériel
par rapport au centre de gravité. En multipliant les équations
précédentes par m; et en sommant sur ¢, on obtient, d’apres la
définition des coordonnées du centre de gravité,

(19) Ei)z[ﬁ;i:(), Em,--r”-:n, Zni/:;:u,

i i i
d’out Pon tire évidemment,
. Y dt; ar; O %
(20) ani?/i[—l = o, Zm;—“:u, ‘\_4'”" L.
i i i
Or, on a
dr; [7AN oz

(21) w S a T

ét, par suite,

(22) T =

o | =

N dX % 2+
Zn’ PR
i
N, (N B AN g AT
MY +./-Jml de dt  de e + Adt it

i

) ”IE 2 I{'!‘,f 2 f/:f 2
Zw,ﬁ+7ﬁ+7ﬁ'
i

2| =

DN |-
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Le sccond terme est nul en vertu de (20), ct il reste

- . I N 1 (e
(23) l:;M\‘——kgzml’V}’ R

i

o7 étant la vitesse du "™ point matériel dans un systéme de
référence ayant son origine au centre de gravité et ses axes paral-
leles aux axes galiléens avec lesquels on fait le calcul, ce systéme
de référence n’étant pas lui-méme en général galiléen. Ainsi, la
force vive totale d’un systéme est la somme de la force vive du
centre de gravité et de la force vive dans le mouvement autour du
centre de gravité. C’est la le premier théoréme de Keenig.

Le second théoréme est relatif au moment d’impulsion et se
démontre de méme.

On a, par exemple, pour la composante z du moment d’im-

>
pulsion total M du systéme,
‘ =N (L
(24) M"’“Em’ (‘ dr U
i
O . dZ % , . dY ol
_Z‘m,- [(\ -+ m)(m -+ 7[) — (L +7) <Z + (—/t>]
1

A L dY ~ o dl, dry
=M (Y,‘/z —7 m’) +sz (“fw _""7>’

i

compte tenu de (19) et (20). Ona des formules analogues pour M,
et M. Donc le moment total d’'impulsion du systéme estla somme
géométrique du moment d’impulsion du centre de gravité et du
moment d’tmpulsion du systéme dans son mouvement autour du
centre de gravité (c’est-a-dire dans un systéme d’axes ayant
constamuent leur origine au centre de gravité-et paralléles aux
axes fixes). C’est 1a le second théoréme de Keenig.

3. Principe d’action stationnaire de Hamilton. Equations de
Lagrange. — Toute la dynamique des systémes de points malé-
ricls peut étre ramenée A un principe d’action stationnaire. Pour
énoncer ce principe, on commence par définir une « fonction de
Lagrange » pour le systéme, c’est-a-dire une fonction de la posi-
tion des points matériels, de leurs vitesses et éventuellement du
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temps, donnée par

(25) Lz, oo, ax; =T —U{z, ..., ax5 1),

T étant toujours I'énergie cinétique du systéme et U son énergie

potentielle égale a Z“s?i+2§‘l’gj. Il est facile de constater que
- -

les équations newtoniennes Il)/récédemmem utilisées pcuvent étre

écrites sous la forme

(o6 d (0L _of e N: g = i
(26) 2\ ) = o EEL % e N 2=

Or, ces équations expriment précisément, comme il est bien
Iy
connu, que l’intégralef Lz, ... 5y, t)dt, prise le long de la
. 4

courbe définie par les équations(26), eststationnaire, ¢’est-a-dire
a une variation du premier ordre nulle, quahd on fait varier infi-
niment peu la courbe d’intégration en laissant fixes les extrémités
ainsi que les limites £, et £, de I'intégrale.

On peut préciser ceci en introduisant « P'espace de configu-
ration » du systéeme dont nous aurons a nous servir en Mécanique
ondulatoire. L’ensemble des 3N coordonnées des N points maté-
riels du systéme z, ... 3y, peut, en effet, nous servir a constituer
un espace euclidien & 3N dimensions dans lequel ces 3N coor-
données définissent 3N axes de coordonnédes mutuellement
perpendiculaires. Un point de cet espace correspond a une
certaine valeur de chacune des 3N coordonnées z, . . . zy, et par
suite, a une certaine « configuration » du systéme. L’état instantané
du systéme peut donc toujours étre représenté par un point
figuratif dans 'espace de configuration. Au cours du temps, le
point figuratif décrit une courbe ou trajectoire dans Vespace de
configuration : cette trajectoire est définie par les 3N fonctions du
temps z,(t), ..., 5x(¢). Supposons alors que le point est figuratif
soit & un instant £, en un point A de I’espace de configuration et
qu'a un instant postérieur £, il se trouve en un autre point B de
I'espace de configuration. Dans l'intervalle de temps ¢,— ¢, le
point figuratif s’est donc rendu de A en B en suivant une certaine
courbe G correspondant a certaines formes de fonctions

2 (1), ..., ().
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L5
L’intégralef £2 dt prise le long de la courbe C est une inté-
/D

grale curviligne bien définie. Le principe d'action stationnaire ou
principe d'Hamilion affirme alors que le mouvement réel qui
améne le systéme de la configuration reéprésentée par A &
Uinstant ¢, a la configuration représentée par B a linstant ¢4,

A
correspond a une courbe C telle que l'intégrale £ dt prise le
f
long de C ne varie pas au premier ordre quand on fait varier
infiniment peu la forme de la courbe C sans faire varier les

instants ¢, et ¢y, ni les configurations A et B.

Fig. 1.

Le principe d’action stationnaire et les équations de Lagrange
qui en sont l'expression ont une signification intrinséque inva-
riante. Si, au lieu de définir la configuration du systéme a Vaide
des 3N variables zy ... sy, nous la définissons par 3N variables
(1 .- telles que zy ... 5y s’expriment univoquement a l'aide
des ¢; et inversement, on aura comme expression du principe de
Iaction stationnaire :

1
(27) [ LGy, wovs gan: L) dE =0,
i

la variation étant définie comme nous 'avons vu, et 'on en tirera

o [ IR oL .
(28 ,/z<()7',->z;)z (L=1,72....,3N).

Il arrive fréquemment dans les probléemes de Mécanique ration-
nelle que le mouvement des points matériels composant le systéme
soit soumis a des liaisons. Dans le cas le plus simple (liaisons holo-
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nomes indépendantes du temps), ces liaisons peuvent se représenter
par des équations liant entre elles certaines des 3N coordonnées
des N points matériels, et représentant dans l'espace de configu-
ration des surfaces sur lesquelles le point figuratif est assujelti &
se déplacer. Physiquement, on doit considérer les coordonnées
des points matériels comme pouvant en principe varier librement,
mais dés que leurs valeurs cessent de vérifier les ¢quations expri-
mant les liaisons, il s’exerce sur ces points matériels des forces
trés intenses qui tendent a faire reprendre a leurs coordonnées des
valeurs satisfaisant aux équations de liaison. Parlant le langage de
I'espace de configuration, on peut dire que, dés que le point figu-
ratif du systéme s’écarte d’une des surfaces représentantles liaisons,
il s¢ produit dans le systéme des forces intenscs qui tendent a
ramener le point figuratif sur cette surface. 1l est done naturel de
schématiser la liaison en disant que les coordonnées ne peuvent
prendre que des valeurs en accord avec les équations de liaison.
Le probléme mathématique se trouve ainsi simplifié par une réduc-
tion du nombre des variables indépendantes. Il suffit pour carac-
tériser la configuration du systéme de connaitre les valeurs de n
variables ¢4, ..., ¢g. avec n <C3N, et on peut écrire encore les
équations du mouvement sous la forme lagrangiennc :

d [ IR 728 . . ur
(29) 72(')(1}'):!)—9—;' <z:1,tz,...,n; r/,-:Tﬁ-)-

Toutefois, il est bon de retenir que c’est la une schématisation
correspondant a des forces de liaison infiniment grandes et qu'en
réalité celles-ci ne peuvent étre qu’extrémement grandes. Cette
remarque a une certaine importance pour comprendre le role des
liaisons en Mécanique ondulatoire.

Nous n’insisterons pas ict sur les questions assez délicates qui
peuvent se présenter quand on considére des liaisons dépendant
da temps et surtout des liaisons non holonomes. Ce genre de
questions ne se présente pratiquement pas en Mécanique ondula-
toire, ol pour cette raison on ne parait pas les avoir approfondies.

4. Equations d’Hamilton. Principe de moindre action de Mau-
pertuis. — A coté des équations de Lagrange dont nous venons de
parler, la Mécanique analytique classique utilise fréquemment les
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équations d'Hamilton. Pour écrire les équations d'Hamilton, on~
doit introduire la notion de « variables canoniques ». Si la confi-
guration du systéme est définie a chaque instant par les valeurs de
n coordonnées ¢y, ..., ¢u, on peut définir les « moments de
Lagrange conjugudés de ces coordonnées » par les relations

P L .
(30) ri= g5 (i=1,2, ..., 1),
L(q1y v Gas 1, -+, §u, t) étantla fonction de Lagrange du pro-

bléme, qui s’obtient a partir de la définition (25) en exprimant T
q p p

et U a l'aide des ¢; et des ¢;. Les équations (29) de Lagrange
prennent alors la forme

17 dp; _aL
e ()(]l

(i=1,92, ..., n).

{31)

Avec ces notations, I'énergie du systéme peut s’écrire
(32) E :2 pidi—£.
i

En effet, U ne dépend pas des vitesses et T est une fonction
quadratique homogéne des ¢;, du moins pour les systémes a liaisons
indépendantes du temps auxquels nous nous bornons ici. On a
alors, d’aprés le théoréme d’Euler,

‘ =N LN,

(33) 2=, 9 5 —2“7‘
i 1

et, par suite,

(34) 21)”‘,——L‘“::).T—(T—U):T—*—U:E.

D’ailleurs, le théoréme de la conservation de l'énergie se
démontre aisément a partir de (32), car on a

. dE dg; f/]), 2 L. L2
G5 21’1 ra +Z Tt *2@7!—2@%“7'
i i

D’aprés la définition des p; le premier terme détruit le quatriéme
et d’aprés les équations de Lagrange le second détruit le troisiéme.
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" 47 ne pouvant dépendre explicitement du temps que par U, il

reste
K JU
6y ——
(36) i at’
et si les forces extérieures sont constantes ou nulles, E = const.

La nouvelle définition (32) de E nous permet d’écrire

« 5y N 5
(37) £dt :Zﬁ dgi— E dL.

v

Considérons alors un espace de configuration-temps obtenu en
adjoignant a Pespace de configuration une dimension représentant
le temps. Soit P le point de cet espace qui représente Vinstant ¢,
et I'état du systéme & cet instant, et soit Q le point qui représente
I'instant ¢; et I'état du systéme a cet instant ¢;.

L’intégrale d’action d’Hamilton s’¢cril maintenant

(38) flfdt__f< pl,/qﬁrf/z)

Le principe d’action stationnaire affirme, nous ’avons vu, que
cette intégrale curviligne prise de P a4 Q le long de la courbe de
I'espace de configuration-temps qui représente le mouvement réel,

est stationnalre : on a

2 /
af Edt:f SRl =0
/ G

[

Le principe de laction stationnaire d’Hamilion étant ainsi
énoncé, on peut passer dans le cas important des champs exté-
rieurs constants ou nuls (qui comprend le cas des systémes prati-
quement isolés) au principe de moindre action de Maupertuis.

Pour opérer ce passage, il convient de démontrer d’abord une

formule qui généralise un peu celle d’Hamilton et qui est valable

dans le cas général. Cette formule est souvent appelée « le prin-
cipe de l'action variée ». Pour la trouver, considérons 'intégrale

i
d’Hamilton f £ dt et supposons que l'on fasse varier tres 1égére-
L,

ment non seulement le mouvement entre I’état initial et I’état final
(ou si I'on veut la forme de la courbe qui joint les points P et Q de
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I'espace de configuration-temps), mais aussi les valeurs du temps
et des coordonndes, qui caractérisent I’état initial et’état final (ou
si Pon préfére les points P et Q eux-mémes). On a alors

‘ )
(39) Bftﬁ’(/t:/‘ISEdt+[Zpir)gi~E8t~|l.
i M i 0
L'intégrale du second membre représente la variation due a la
variation du mouvement : elle est nulle en vertu du principe
d’Hamilton. Le crochet du second membre donne la variation d’in-
tégrale d’action due aux variations des valeurs des ¢; et du temps
aux deux extrémités de la ligne d’intégration, c’est-a-dire aux
déplacements infinitésimaux des points P et Q dans Pespace de
configuration-temps. On obtient ainsi la formule exprimant le
principe de 'action variée, savoir )
1
E BI] . '
0 1
e

Foan
(40) i a[ ?(/t:[Zp,»aqi
o i

Revenons maintenant a 'espace de configuration sans le temps.
On peut y considérer I'intégrale

B
{41 Sl:f pidq,
N Z 1 i

dite « intégrale d’action de Maupertuis ». Elle est prise du
point A représentant la configuration initiale au point B repré-
sentant la configuration finale le long de la courbe qui figure le
mouvement (voir fig. 1). Dans le cas ou les actions extérieures
sont constantes ou nulles, 'énergie E du systéme est une constante
et 'intégrale S, est indépendante du temps. Si 'on pose

h ~Q 1A
(42) —S= Ldt = pidg;—Edt } =8 — E dt
J. [ Z[‘, ; v(: ,
on a
[l
(43) _aS=as,ﬁf SRt — (Farl,
Ly

d’o, par comparaison avec la formule (40) de I'action variée,

, 1 4y
(44) Sy = (2 pi aqi> —l—f ok dlt.
i 0 !

o
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Donc si nous maintenons fixes dans la variation les configurations
extrémes (c’est-a-dire les points A et B) et si nous nous astrei-
gnons également dans cette variation ane pas faire varier'énergie E,
nous anrons

(/}5) 651: 0.

L'intégrale S, ou action de Maupertuis est done stationnaire pour
les variations qui ne modifient ni les configurations extrémes, ni
I'énergie totale du systéme. C’est la le « principe de la moindre
action » applicable seulement, rappelons-le, aux systémes conser-
vatifs.

Dans le cas de N points matériels sans liaisons, les p; en coor-
données rectangulaires sont les composantes des quantités de
mouvement, et 'on a
' N
(46) S, :2 Pi dqi:z/. mpl vy dzi+ v AV k=4 0z d 3.

I 1

Arrivons maintenant aux équations d’Hamilton. Elles se pré-
sentent quand on prend comme variables dynamiques non plus
les ¢; et les ¢;, mais les g; et les p;. Les équations (30) permettent
en effet d’exprimer les ¢; a 'aide des ¢; et des p; et éventuellement
du temps sons la forme

(47) Gqi=Jilq, p, t) (L=1,2, ..., nh

L’énergie E doit alors étre considérée comme une fonction des 2n
variables canoniques ¢y, .. ., p, et du temps exprimée par la « fonc-
tion hamiltonienne »

(48) Hig:, pi, 1) zzl'whdf((]h qi 1),

ou a droite les ¢; sont exprimées en fonction des ¢, des p et de ¢.

On a donc
JH U )i AL If; lq
(4w) 1-—=’/'/<-H\«l'ig—l,/?( _’_-’_:”//
p v D Dij D ot
4
el
(50) _l)ﬂ _\ . A . L2 417 Lf, _ ’)}3:,‘, /////;.

'r}q;,«—ﬂllr)_q; /lhz]_;-;‘-drlz dgi g et
i 4

¢
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On a donc le systéme des ¢quations d’Hamilton

sy | dpe om |
(51) 7 ,)[’/;A, = g (k=1,2, ..., n).

On en tire ais¢ment

.. dH _ JH ol dp; 0 dg;\ ol
(o2 7,—W+2<7;;;W+,}gi7>—*’

Jat

d’ou encore la conservation de I’énergie quand les actions exté-
ricures sont constantes ou nulles.

5. Théorie de Jacobi. Analogie optique. — On démontre dans
les traité de Mécanique rationnelle un important théoréme dn a
Jacobi qu’on peut énoncer comme il suit :

« Prenons I'expression hamiltonienne de I'énergie en fonction des
variables canoniques ¢; et p; et du temps, puis remplacons-y les p;

par les dérivés — 95 §une fonction S; enfin posons
Jq;

i

(53 }1(qi,_g§_,[>:i§.

Sinous parvenons a trouver une intégrale compléte de cette équation
aux dérivées partielles, c’est-a-dire une solution de cette équation
dépendant de n constantes arbitraires non additives ay, ..., «,,
nous obtiendrons un des mouvements possibles en éerivant

JS 7]

(91) Pi:—aa> 9%;

=& (t=1,2, ..., 1),
ot les 3; sont n nouvelles constantes.

Les n premiéres équalions nous donneront les moments de
Lagrange correspondant dans ce mouvement au passage du point
figuratif au point ¢, ..., ¢, de l'espace de configuration. Les
n équations du second systéme nous donneront n relations entre
les ¢; et le temps qui détermineront entiérement le mouvement du

systéme au cours du temps ».

Sans donner la démonstration de ce théoréme, nous voulons en
montrer la signification. Le mouvement du systéme dont la confi-

L. DE BROGLIE. 2
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guration esl caractérisée par les n varmables ¢4, ..., g, obéitaux n
équations du second ordre’de Lagrange ou aux 2n équalions du
premier ordre d’Hamilton et dépend d& 22 constantes arbitraires.
Le théoréme de Jacobi periet de diviser ces » n constantes’en deux
groupes de n constantes, les o; et les 8;. Si1'on se donne les valeurs
des constantes «; du premier groupe, il reste les n constantes 3,
arbitraires, c’est-a-dire qu’a des valeurs données des o; corres-
pondent oo ® mouvements possibles. Chaque intégrale complete de
I'équation (53) de Jacobi, quand on y a fix¢ les valeurs des n cons-
tantes o;, correspond donc encore 4 oo’ mouvements différents
caractérisés chacun par un jeu de valeurs des 3;. Le théoréme de
Jacobi fournit ainsi une maniére de classer les divers mouvements
possibles de facon a les grouper en mouvements correspondants
associés & une méme intégrale particuliére de l’équation (53)
oblenue en particularisant dans l'intégrale compléte la valeur des
constantes o;.

Dans le cas important ou les champs extéricurs ne dépendent
pas du temps, on peut trouver des intégrales premiéres de la forme

(55) S=E7—51(g:),

S, ne dépendant plus que des ¢; et non du temps. L’équation de
Jacobi prend alors la forme

. . r}Si>_ s
(56) H<(/”(715, =k,

Silon parvient & trouver une intégrale compléte de cette ¢quation
aux dérivées partielles dépendant de la constante E et de n—1
autres constantes arbitraires non additives oy, ..., &, 4. soit
Si(Gus -+ qny By auy ooy 20.4), onobtiendra un des mouvements
possibles du systéme en posant

dS, . JdS,

) == i=1,2, ..., n); — =03 ({ =2, ..., n—1);
]l ( ? b b el ()1[ 12 ( ? )v

“7) 93,
— =1 —{.

JkE

, . JS8 . . . .
Les n — 1 équations d—al = (3; déterminent la trajectoire du point
~i

. N . . . d5
figuratif dans I’espace de configuration et I'équation 'JITI =t—t,



RAPPEL DE RESULTATS CLASSIQUES DE LA MéCANIQUE RATIONNELLE. 19

détermine le mouvement du point figuratif sur sa trajectoire. Il y
a ainsi séparation entre I’¢tude de la trajectoire du point figuratif
et celle de son mouvement, circonstance qui caractérise le cas des
champs extérieurs constants.

Nous allons maintenant nous borner j jusqu’a nouvel ordre au cas
ot il n’y a pas de liaisons. On supposera alors que les ¢; sont les
3N coordonnées x, ..., 5y des N points matériels du systéme,.

Avec un champ extérieur constant (ou nul), on a alors Péquation
de Jacobi

N

R 1 JN ,)Sx>? TR o _
(JR) Zl—i‘,ﬂl;[<dl > +<f/‘2','/ —+ <{)—:l/) ] —Q—LK.L” gx)—E

1

Il va nous étre commode de remplacer ici espace de configu-

ration par un « espace de configuration pondéré » défini a 'aide
des 3N variables

(39) wu;i=\ H_l,'.l,‘l', v;= y/n_z,»y[, W=\ mis; (i=1,2, ..., N
On a alors
I I]\ (}51\2 /dS1 2 .
6: - v —_— —_—- i iy ©; )= E
(69) 2 H [(()ul > - <rlvi) - (\l)(VL' / :I + Ulus, eg wi) E.
JS, aJS, du; .
Les (*qualmns;;— = p: deviennent—— = (/t', .... Lavitesse du
l

point figuratif dans 1'espace de configuration pondéré est done
dirigée suivant la normale ala surface S, = const. passant au point
qu’il occupe. Si donc on trace 'ensemble des surfaces S, == const.
correspondant a des valeurs fixes des constantes E, ay, ..., a,_,
et I'ensemble des trajectoires correspondantes dans I'espace de
configuration pondéré, on voit que ces surfaces ct ces courbes sont
disposées comme les surfaces d’ondes et les rayons dans une pro-
pagation d'ondes de Poptique géométrique. Le principe de la
moindre action de Maupertuis (qui est ici valable) correspond
exactement an principe de Fermat. Il y a la une analogie entre la
dynamique classique et 'optique géométrique qui avait été apercue,
il y a un siécle, par Hamilton et que nous devons maintenant
étudier.

Une propagation d’ondes dans I'espace des w;, vi, w; est par
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définition déterminée par Péquation de propagation

O /2y (}2 y ZER
(L,

du H /}v; dwt

{(b1) 7 —W’_
V., peut étre appelce la « vitesse de propagation », elle est variable
d’un point & un autre, mais indépendante du temps. 1l faut d’ail-
leurs remarquer qu’en raison de la définition des u;, i, o, V, n'a
pas les dimensions physiques d’une vitesse. On obtiendra des
ondes monochromatiques en posant

(62) Wws, 00 wis 1) = a(ug, o5, w;) @7 =3 vp e,

L’optique géométrique de cette propagation d’ondes s’obtient en
supposant que la fonction a varie assez lentement dans l'espace
des wu;v;w;, pour qu’on puisse négliger les dérivées de a devant
celles de o, et les dérivées secondes de ¢, devant ses dérivées pre-
micres. En substituant la forme (62) de 'onde monochromatique
dans 'équation (61), on obtient aisément alors

. R doy\?2 dz 1)” e _
@) B (FE () ] ==

en désignant par A, la longueur d’onde locale dans l’espace de con-
figuration pondéré, longueur d’onde qui d’ailleurs n’a pas ici les
dimensions physiques d’une longueur. L’équation (63) est 'équa-
tion de Poptique géométrique dans I'espace de configuration pon-
déré, et 'on peut montrer qu’elle est valable chaque fois que V
varie assez lentement dans U'espace des u;v;ww;. Une intégrale com-
pléte de 'équation (63), c’est-a-dire une solution de cette équation
dépendant de la constante v et de 7 — 1 aulres constantes arbi-
traires non additives, o5 (s, ..., v, v, o, ..., o, ) déterminera
une propagation d’ondes (a4 I'approximation de 'optique géomé-
trique) dans Pespace de configuration pondéré. Les surfaces
91 = const. sont les surfaces d’ondes de cette propagation et leurs
courbes orthogonales en sont les rayons. Ces rayons sont déter-
minés par le principe de I'ermat
4774 i >
(64) o — =o [l//‘-’:Z (du? —+ do? + dw?)
1 .

A u
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Pour assimiler la Dynamique des systémes représentée dans
Pespace des w;, v, v; & une optique géométrique, il faut comparer
Péquation (63) a I'équation (6o) de Jacobi. On voit que pour
identifier ces deux équations, il suffit de poser

Fo2 2 _ k2 _

(‘)-}) S|~_—k'\;|, = —E(E

Vi nE

U).

k étant une constante actuellement indéterminée. Si nous dési-
gnons par ¢ la phase vt — ¢, de 'onde (62), comme nous avons
S = E¢ — Sy, il est naturel, ayant posé la premiére équation (65),
de poser plus généralement

{66) S = ke, d’ou E = /v
On a alors, d’apreés la seconde équation (65),

(6’7 ) 1 \/’(lﬁ T* U )

u 1D !
équation qui élablit une relation entre V,, et U en chaque point de
lespace des u;, ¢;, w;. En prenant comme espace de référence

Vespace de configuration pondéré avec U = o, on peut caractériser
chaque champ de force par un indice de réfraction

. (Vou=s V20E=U) E \/ C
68 = = _ - _
( )8 ) n Vu(b‘ ) 5 N N5 1 B ]

qui sera en général variable d’un point a un autre de I'espace u,
v, w. La longueur d’onde sera

. N, RV, 3
{69) /\”—W‘;V—T:\/Tﬁﬁ).

Les surfaces S;=const. sont les surfaces d’ondé¢ de cette
propagation. Les rayons, courbes orthogonales de ces surfaces,
représentent les trajectoires possibles du point figuratif corres-
pondant a lintégrale compléte considérée S, de I'équation de
Jacobi. La forme de ces rayons est donnée par le principe
de Fermat qui nous apprend que le rayon passant par deux
points A et B de l'espace des u, ¢, w est tel que Vintégrale

B
dl . . . .. . . .
f o SOlt stationnaire pour toute variation infiniment petite de la
A i
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forme du rayon respectant la fixité des points A et B et la valeur
de la fréquence v. Or, on a

(- A S E—_Ty =1 / NY (2 -2 -2
(7o) V,L—E\)‘(‘h l)_E\/ Zml(‘r[—f—}i-f—\.i)
t

1
_ 1 /:ﬁ(.% S,
F\/ " L i)
>

Or, v étant fixe, E Dest aussi et si nous désignons par ¢ la

vitesse du point figuratif dans 'espace de configuration pondéré
p g P g P y

1 > .
on aura v = const. ¢ et par suite
"

(71) f ({l /‘ V([l_f < ul-(llli t.‘[//"i_*‘ (-I_(/Wl->
— m ¢ dx; v zoelz;
= N (& dzi+ Y dy i+ 3 dz;).

f i i i i (0%

Le principe de Fermat est donc équivalent au principe de
Maupertuis of dS,=o.

Nous terminerons 'étude de cette analogie dynamico-optique
par la considération des groupes d’ondes et de la vitesse de groupe.
Nous pouvons considérer dans l'espace des w, ¢, w un groupe
d’ondes formé par la superposition d’ondes monochromatiques
correspondant & un trés petit intervalle de fréquence Av, soit

(72) “‘(llb Vi, Wi l) :f (l(‘/) @ITLVI=B Vi, )] oy,
Av

Soit vo la fréquence qui occupe le milieu de intervalle Av. Nous
pouvons écrire
Av
LA

(73) " — / (L(e) @RV E—P g +E, T (e
. Ay

<

Or, dans tout I'intervalle trés petit Av, on peut poser

e
ci{vo+e) = () —f—((()’l)ha
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D’ou

t74) w %f a(e) ews[[_< o >°] de. @FI—1Voe- 1],
Ay

On peut donc considérer le groupe d’ondes comme une onde
monochromatique de fréquence v, dont 'amplitude ne serait pas
_constante, mais serait donnée a chaque instant et & chaque point
par Uintégrale de la derniére formule. Or cette intégrale définie

v
qui dépend du temps et des variables u;¢;w; contenues dans ;.
Désignons par dl une longueur infinitésimale prise le long d’un

. . . . J
est évidemment une certaine fonction de la variable ¢t — < kd >V
0

des rayons de 'onde monochromatique de fréquence v,. En nous
déplacant le long de ce rayon de la longueur d/ dans le temps dt,
nous suivrons une valeur déterminée de 'amplitude du groupe
d’ondes si nous avons la relation

- 7o
(7)) dl = (m>vo (/l,
c’est-a-dire si nous nous déplagons avec une vitesse ¥ telle que
I Jre
6 _— = ——— .
6 : v <dv dl>‘,‘,

C’est la célebre formule de lord Rayleigh donnant Ia «vitesse du
groupe ». Maintenant, I'équation (63) de optique géométrique
nous donne, puisque 'élément d/ du rayon est orthogonal a la
surface o4 = const.,

dzy v

(77) GV
Donc par (76) et (67)

EOR 1 08) R 10 N .
/ VT L \Vy v:vo— JE\V, E:A\;o— 2(E U) E=/kv,

Pour DI¢nergie E = kv, correspond a la fréquence centrale du

——— —_— > >
groupe, la quantité \/2(E—U) est égale & /2T =1¢|, ¢ élant
la vitesse du point figuratif dans l'espace u, ¢, w correspondant &
Vénergie kv,. On a donc

>
(79) v =7
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D’ou le théoréme: « Lavitesse du groupe d’ondes dans 'espace de
configuration pondéré est égale a la vitesse du point figuratif
correspondant & 'onde centrale du groupe d’ondes. »

6. Extension de P’analogie optique au cas ot il existe desliaisons.
— Nous avons développé Vanalogie optique dans le cas ou les
points matériels du systéme ne sont soumis a aucune liaison. Etu-

‘dions maintenant le cas plus général des liaisons holonomes

indépendantes du temps en développant des formules qui con-
tiennent comme cas particulier celut étudié directement plus haut
de I'absence de liatsons.

Nous savons que, si la configuration d’un systéme a liaisons
holonomes, indépendantes du temps, est entierement définie par
variables ¢,. .. ., ¢., I'énergie cinétique est une fonction homogéne
du second degré des vilesses ¢. On a donc

n

&
8o 2T = Mg i
(80) ZH kGG

1
ou Pon suppose (ce qui est loujours possible) mz, = my.. Les m
sont des fonctions des ¢; seulement et non des ¢;. On trouve

i n

. N 1 Y P i
\ L£=T—-U= 5 z“’"/f/’/k’/l* v,
(1) / : |
’ E=1Y i g+ U,
D dmend ||

Par la définition des moments de Lagrange, nous avons

(82) pPi= ()l_? :2 Mg Gk ({f=1,2, ..., n),
s 77 . : ;

1

Désignons par I le déterminant des my; que nous supposcrons
différent de zéro et par M, le mineur de ce déterminant relatif a
I'¢lément my,;. Nous pouvons ‘résoudre les équations (82) par
rapport aux ¢ sous la forme

My, .
(83) «/’f:?l{ﬁp/{ (E=1,2, ..., 1)
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ou en introduisant la notation
1\’][—,‘

i ki 241
(81 » m 55

n
G, = mrip,
! Pk
I3
1

Portons cette expression des ¢; dans 'expression de T. Nous obte-

~—
o
Cr

nons, en tenant compte de propriétés bien connues des détermi-
nants,

. . I : . I .
(86) I'= - Z mygmkn p, mirp . =— E mirpipp.
9 0

Klnr lr

La fonction hamiltonienne du systéme donnant son énergie en
fonction des p; et des g; est donc

Xl -
(87) ”((11, Pi = %)nl/r])/[),‘—i—[)(qi, 1),
ir

et 'équation de Jacobi prend ici la forme

75 =N e ol {—)—b— +Uig, =1L
i 9 md dg! dq’ ’

(88)
Si les actions extérieures sont indépendantes du temps, on peut
employer I'équation de Jacobi raccourcie

£ /r'.’)i (}i ; N =T
(89) s 2 g+ Ulg) =

Si maintenant dans ce cas général nous voulons assimiler la théorie
de Jacobi a une théorie de propagation d’ondes, il nous faut former
un espace de configuration avec les n variables ¢4, ..., ¢,, mais
de plus il faut attribuer a cet espace une métrique riemannienne

définie par un ds? de la forme Zg;j dg; dg;. Cette métrique doit
i

étre choisie en relation avec la forme de I'expression de T en

fonction des ¢, c’est-a-dire définie a I'aide des my;. De plus, dans

le cas de 'absence de liaison ou les ¢; sont les 37 coordonnées

des N points matériels du systéme, on doit retomber sur 'espace

de configuration pondéré avec sa métrique euclidicnne. On y
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parvient aisément en posant

(g90) (ls-‘\ myidqidg;,
e ;

de sorte que 'on a pour un mouvement donné du point figuratif

L . s \2 //a —_

(91) 2[‘:(/—/—[), —\/z]".
- 7> . . - .

La vitesse ¢ du point figuratif dans notre espace de configuration

doué de la métrique (go) est égale a /2T, résultat déja rencontré -
dans le cas particulier traité au paragraphe précédent.

Il est bien connu que dans un espace dont 'élément métrique
est

=S ety
I'élément de volume correspondant aux variations dg,, ..., dg,
des coordonndes est

(92) A==\ g dg...dg,,

& étant le déterminant des g;;. Dans notre espace de configuration
nous aurons donc

(93) dz = V oI w/q, ..dq, (N =y, ).
Pour étudier la propagation d'une onde dans U'espace de configu-
ration que nous avons défini, il faut connaitre la forme du Laplacien

dans un espace riemannien ot le ds? a la forme (o). Ce Laplacien
est le suivant

7 A — ! N A J ik — M .
(94) .A = Vo Z g <\ | O | mi T mik= =
il i I

Je ne donnerai pas la démonstration de cette formule qui se trouve
dans tous les livres sur le Calcul tensoriel ('). L’équation des

(') Nous donnerons plus loin incidemment une justification de cette formule.
Voir note p. 43.
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ondes dans l'espace de configuration sera donc

1 W I J J
- reoer U 2T Y\ y
((‘)0) Ve g \/£ N | E()ql- \\ l ]Lf e ()qA> ‘l,
ik

ou V est la vitesse de propagation, fonction du point considéré de
Iespace de configuration et éventuellement du temps. Si nous
considérons toujours le cas des champs extérieurs constants, Pana-
logue ondulatoire sera le cas ou V est indépendant du temps et
I'équation de propagation admettra des solutions monochroma-
tiques de la forme

(96) UW(qi t) = alg;) e =gl = a(q,) ™99,

llorsque V ne varie pas trop rapidement dans I’espace de confi-
guration, on pourra considérer @ comme sensiblement constant et

L. Jro, doy . . . R
négliger les T devant les T (approximation de I'oplique géomé-
()?1

()qi
y ¢’est-a-dire que la phase de I'onde varie beau-

trique ). Nous supposerons aussi ici que les sont beaucoup plus

dmg
l)(]/
coup plus rapidement que les éléments de la métrique. On
obtiendra dans ces conditions, en substituant (¢6) dans (95),
I'équation de Poptique géométrique

L d91 J31 v2
- ih T = .
(97) E.A S ag =
"

grands que les

Si Pon parvient alors a trouver une intégrale compléte de cette
équation dépendant de la constante v et de n — 1 autres constantes
non additives arbitraires, on aura défini une propagation d’ondes
a 'approximation de I'optique géométrique dans I'espace de confi-
guration. Les rayons de cette propagation d’ondes sont par défini-
tion les courbes orthogonales de surfaces ¢; = const. Ces rayons
seront déterminés par le principe de Fermat suivant lequel le

B g
rayon passant par les points A et B est tel que I’inlégralef %
A

prise le long du rayon soit stationnaire pour toute variation de la
forme du rayon qui n’affecte ni la valeur de la fréquence v, ni la
position des points extrémes A et B.

Comparons maintenant ces propagations d’ondes avec les mou-
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vements possibles du systéme groupés suivant la théorie de Jacobi.

Nous avons trouvé, en supposant U et H indépendants du temps,
it . .

(9™) Hiq:, pi) :Z = mitpipr+Ulq:)
i

et nous en avons tiré I'équation de Jacobi

S‘ nik ()S1 ()b1

7 —_—
] ()([l ()([A
ik

(99) =2(E—U).

Pour identifier cette équation avec I'équation (97 ), nous poserons

. ‘ L
(100) S = ke, Sy = kzcy, E = kv e = — =2E—-U),

/ étant la méme constante que précédemment (page 66). 11 vient
encore

Y o T 55 U k
L_Veb—U) n:\/l»’-- R S
Gon) 3 = P T S

Sy correspond donc a une propagation d’ondes dans Pespace de
configuration. Les surfaces S; = const. sont les surfaces d’'onde :
les rayons sont les courbes orthogonales.

Nous voulons montrer que ces rayons coincident avec les tra-
jectoires du point figuratif. Les composantes (contrevariantes)
d’un petit ¢lément de trajectoire en un point de I'espace de confi-
guration sont évidemment proportionnelles aux valeurs des ¢; en
ce point. Il nous faut donc montrer que le vecteur dont les cor-

posantes sont gL:2 mi p; est orthogonal ala surface S, = const.
- .

Or, dans 'espace ou le ds?* a la forme (go), deux vecteurs, dont les

composantes (contrevariantes) sont @y, ..., du, &, ..., ,, sont

orthogonaux quand on a

(102) E”liﬂlifl'/.-Z 0.

ik

Prenons pour vecteur a,, .... a, un vecteur de longueur infini-
P s

tésimale sur la surface S;= const. passant au point considéré et
pour vecteur a’ le vecteur de composantes &, = ¢;. Nous voulons
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démontrer la relation

5 O .
(103) \,‘m[ka,-r/‘/_.z S m,,vkai\/ mkip;=o.
ammnl sl
it it j

Mais, d’aprés leur définition, les m obéissent a la relation

(104) E myp ks == 0y,

k

d;j étant le symbole bien connu de Kronecker égal a 1 si i = et
dosiizZ].

La formule (103) a démontrer se réduit donc a

(10%) Vaipi:vﬂs—’aizo.
i

Elle est évidemment vérifiée d’aprés la définition des a;. Les
trajectoires du point figuratif dans I'espace de configuralion
coincident donc bien avec les rayons de la propagation d’ondes

associée.
B
.. - N ds . . .
Le principe de Fermat of ~» lranscrit en notation dynamique,
v
A
donne en verlu de (101) et de (ar)

B B
(106) 3 [ Vo (E »-»-U)(/&:Bf 2T dt = o.
LAY A
On obtient ainsi une forme bien connue du principe de Maupertuis
et 'on peut écrire aussi

B

B
(107) 5/ (/S,EBf Zpk dgr=o.
A -

Reste encore a étudier la question de la vitesse de groupe. Elle
est toujours définie par la formule (76), on v, est la fréquence

Jdu .
centrale du groupe. Comme les ﬁ sontles composantes covariantes
i
) , ) . L.
de grado, = %, I'équation de l'optique géométrique (97) peut

s’écrire
}» \
(108) A £ N

a9l v
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et ona

(100) L_[()(v)] _[i(l‘]] _ 1 1
Y VvV ‘/u—— JL V) E:/;'/"—\2(1:'0—[_})_\,2'1'0,

T, étant I'énergie cinétique correspondant a 'onde centrale du
groupe. Or la formule (80) montre que 2 T est le carré du vecteur
dont les composantes contrevariantes sont les ¢;, c’est-a-dire du
vecteur «vitesse » du point figuratif dansI’espace de configuration.

>.
Si v désigne cette vitesse, on a donc finalement
-— |
(110) . ‘1’:\/2'1‘0:, o I

Nous retrouvons bien ainsi le théoréme : « La vitesse de groupe
d’'un groupe d’ondes dans l'espace de configuration avec la
métrique (go) est égale a la vitesse du point figuratif dans le mou-
vement correspondant a 'onde centrale du groupe ».



CHAPITRE IL

LA MECANIQUE ONDULATOIRE.

1. Passage de la Mécanique classique & la Mécanique ondula-
toire. — Les considérations développées a la fin du chapitre
précédent nous mettent & méme d’opérer rapidement le passage de
la Mécanique classique a la Mécanique ondulatoire. On peut en
effet passer de la Mécanique classique des systémes de points
matériels a la Mécanique ondulatoire des ensembles de corpuscules
en introduisant simplement les deux hypothéses suivantes :

1 La constante k& que nous avons introduite précédemmem
sans en préciser la valeur doit étre prise égale a la constante A des
quanla de Planck.

2° On doit prendre comme base rigoureuse de la Mécanique
des ensembles de corpuscules une équation de propagation dans
I'espace de configuration qui admette l'équation classique de
Jacobi comme équation approximative de I'optique géométrique,
de telle sorte que, si pour cette propagation dans l’espace de con-
figuration les conditions d’application de T'optique géométrique
sont satisfaites, on rejoigne la Mécanique classique.

Nous ne reprendrons pas ici en détail toutes les raisons qui ont
conduit a introduire ces hypothéses (). Pour justifier la premiére,
nous nous bornerons a remarquer qu’elle conduit a remplacer la
relation E = kv précédemment posée par la relation

(1) E = /v,

(') Sur ce point, on pourra consulter le livre de l'auteur, /ntroduction a
Uétude de la Mécanique ondulatoire, Paris, Hermann, 193o.
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qui exprime la liaison fondamentale de la théorie des quanta entre
I'énergie et la fréquence. La seconde hypothése appelle quelques
remarques. Il semblerait naturel, en s’inspirant des dévelop-
pements que nous avons faits au cours du chapitre précédent, de
prendre comme base de la nouvelle Mécanique une équalion de
propagation qui soit a4 la fois du second ordre par rapport aux
variables de configuration et par rapport au temps. Mais un
examen plus approfondi de la question montre qu'une équation du
second ordre ne peut convenir que dans une théorie relativiste, et
comme dans ce volume nous voulons développer la Mécanique
ondulatoire en dehors des considérations de relativité, ¢’est-a-dire
en nous en tenant a approximation Newtonienne valable pour les
vitesses faibles par rapport a celle de la lumiére, nous admettrons
que P'équation doit étre du premier ordre par rapport au temps
tout en étant du second ordre par rapport aux variables de confi-
guration. Ceci est d’ailleurs nécessaire si I'on admet, comme nous
serons amends a le faire, (fue la seule donnée de la forme de Ponde &
a4 un instant initial ¢, doit suffire & déterminer toute ’évolution
ultérieure de la fonction d’ordre W.

Ces diverses hypothéses étant admises, nous allons maintenant
étudier la forme générale de I’équation de propagation de la Méca-
nique ondulatoire sans insister sur les raisons qui ont peu a peu
amené a adopter cette forme.

2. Equation fondamentale de la Mécanique ondulatoire. — Soit
un systéme de corpuseules a liaisons holonomes indépendantes du
temps dont la conliguration peut étre définie du point de vue
classique par la donnée de n variables ¢4, ..., g, el dont I'énergie
cinétique définie classiquement a pour expression

(2) 2T :Zm[/‘.rjirj/‘:

ik

I'équation de propagation de la Mécanique ondulatoire dans I'es-
pace de configaration ou la métrique est définie par

(3) 113‘3221)1[/{ dg; dq,=2Tdt,

ik




LA MECANIQUE ONDULATOIRE.
doit s’écrire

1 < f—— ()‘IP 8§=2 . 47!1 d‘I‘
— / [/ S TN . W =" "
(4 Vo] 2‘ g, (~ [N ] m d‘]k) h? Ulgs )1 % o’

ik

ot U(g;, t) est l'énergie potentielle du sysiéme. Le premier lerme
de celte équation est, nous le savons déja, l'expression du
Laplacien de W dans I'espace de conliguration.

Pour que I'équation (4) soit acceptable, il faut qu’elle nous
redonne 'équation de Jacobi pour la phase o d’une onde de la
forme W' = ae*™¢ dont Pamplitude a peut étre considérée comme
trés lentement variable par rapport aux variations de ¢ et ou les
dérivées secondes de o sont négligeables devant les dérivées
premiéres (hypothéses de I'optique géométrique), hypothéses que
nous compléterons comme précédemment en supposant que les
varialions des my; sont, elles aussi, faibles par rapport a celles de o.
On obtient alors aisément par substitution dans (4) I'équation
approximalive

LI A N N
(5) 2 Z’"’ Iqidgr iR koot

En muliipliant par 2* et en posant S = A, on retrouve I'équation
de Jacobi

(6) 3

I JS oS - J8
"y dg; 0k ot

Dans le cas trés important des champs extérieurs indépendants du
temps, on peut considérer les solutions monochromatiques

(7) = a(gq,;) eFvi—iiil,

L’équation de propagation s’écrit alors

I U e " . 8 ' .
(8) V/MT%;)Z<HJ]W m Jq—k>IL+Ti—(E U)¥ = o.

C’esl en particulier 'équation de propagation des systémes isolés.
Il est d’ailleurs facile de vérifier en tenant compte de (7) que
I'équation (8) est équivalente aux équations (g5) et (101) du cha-
pitre précédent. Si l'approximation de loptique géométrique
définie plus haut est valable, I'équation (8) conduit a I'équation

L. DE BROGLIE, 3
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de Poptique géométrique

w9209 2 g gy
(9) Zlnl ()(11 0(1}\ - ]LJ[E U(ql>J7
ik
ou, en posant S; = A g,
O ik 25098 e Glay
(10) Zmz g dgr = 2[E—U(g)l,

ik

on retrouve donc bien I'équation de Jacobi. I’¢quation (8) est
donc acceptable et sa validité a été prouvée par I'ensemble trés
considérable de ses vérifications.

Remarquons ici qu’en passant de I'équation rigoureusc de pro-
pagation a U'équation approximative de l'optique géomeétrique, les
termes que nous avons négligés sont des termes indépendants de 2

1 |
ou contenant - en facteur, les termes conservés étanten - - Il en

1
/i h
résulte que I'équation (5) de loptique géoméirique (inirait
toujours par devenir valable, si £ tendait vers zéro. Autrement dit
st /i était infiniment petit, I'approximation représentée par la
Mécanique classique serait toujours suffisante. C’est la valeur
finie de la constante /v de Planck qui limite le champ d’application
de la Mécanique classique et oblige a employer la Mécanique
ondulatoire chaque fois que la valeur de 4 ne peut pas étre consi-
dérée comme infiniment petite par rapport aux grandeurs mises
en jeu. Gomme la constante / a une valeur extrémement petite par
rapport aux unités a notre échelle (elle vauten effel 6,55.10—27 erg-
seconde), c’est seulement aux trés petites échelles de Pordre
atomique que la Mécanique classique cesse de représenter une
bonne approximation.

Voyons maintenant quelle forme prend l’équation de propa-
gation (4) pour un systéme formé de N corpuscules non soumis a
des liaisons. On peut alors prendre pour variables” de configura-
tion ¢; les 3N coordonnées des N corpuscules du systéme.
[’énergie cinétique a alors pour expression classique

X
1 co .y e
(11) T = 2 A;”zi(‘l‘i__".}'i"*_si_)
(2
1
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el dans nos formules générales, on doit poser

nyp=0 pour A =

,

{ My min = Mg njmq = Mg 5= DY (f=1,2,...,N)

(12)
Le ds? de Vespace de configuration a la forme suivante
N
(13) d.v‘—’.—_z mi(dr? + dyt + dz}).
=
On peut lui donner la forme euclidienne

N
(1) ds :2 (du} + do? + dw?)

2
1

en posant

- /T ) ST —
(13) wp =\ myx;, vi= N\ myy, . owi= \/m,-:.i.

Nous retrouvons ainsi Pespace de configuration pondéré précé-
demment employé. D’autre part on trouve aisément

N

M= |y :rl mp, mkl=o pour A #
(16) ¢ Tt
ISE—2, 802 —— 31,3 — S = (l =1,2, ..., N )

[’équation (4) de propagation s’écrit donc explicitement, dans
ce cas,

N

O 1 /o 2 J2 8n2 4mi W
—{— _ e P — — Y = — —.
(17) 24,- m; <()x,-'-' + dy} + Jdzf ) ! h v hodt

Elle admet comme ¢quation de Poptique géométrique I'équation
de Jacobi

N
. ~ 1 dS \2 JS\ 2 IS\ ) JS
(%) Zliznu[<f—)a—'i> +<(E> +<d—z,> ]+U =
1

A partir de ces équalions on retrouverait aisément a I'approxi-

mation de 'optique géométrique la relation entre les intégrales
complétes de P'équation de Jacobi et les surfaces d’onde, entre les -
trajectoires dynamiques et les rayons, entre le principe de
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Maupertuis et le principe de Fermal, etc., ainsi que le théoréme
sur I'égalité entre la vitesse de groupe des ondes W et la vitesse
corpusculaire.

3. Procédé automatique pour former I’équation d’ondes. Cas des
corpuscules indépendants. -— Nous nous bornerons maintenant an
cas des systémes sans liaisons. Il existe alors une maniére auto-
matique simple d’obtenir I'équation de propagation de la Méca-
nique ondulatoire pour un probléme donné. Elle consiste a écrire
d’abord l'expression hamiltonienne classique de ’énergie pour
ce probléme, soit

N

(19) E=H(gy py, 1) =Z

1

1
2Ny

[[7.%1_*']7;'*_ [’g,-J + U (¢ £),

puis & y remplacer les p,., p,,, p-, par les opérateurs

oo d Lo d e 0
(20) (pl,l_)ap_—-z—;:—i E‘l’ (]’)-i)op——m (7}/—1_! (p:i)’l/)——;ﬂ_i 7:—1
. . , . . —h d
On obtient ainsi un « opérareur hamiltonien » I { ¢;, — -—» t>
eni dy;

et on forme I'équation de propagation en écrivant simplement

e o O
(21) W) = = 20,
H(W) désignant le résultat de I'opération H appliquée a la fonc-
tion W, La forme de I’¢quation (21 ) parait d’ailleurs assez naturelle,
car la théorie de la Relativité nous a habitués a considérer
I'énergiec E comme relite au temps ¢ de la méme facon que
les pu., Py, et ps, sont reliées aux coordonnées Ziyis;, mais avec
une différence de signe. 1l est donc naturel de compléter (20) en
posant

i o
Sni ot

(22) ’ Eop:

et I'équation classique E=H nous conduit alors tout de suite
a (21). Néanmoins, ce genre de raisonnement ne doit étre manié
qu'avec prudence dans les théories guantiques pour des raisons
sur lesquelles nous n’insisterons pas ici (caractére privilégié du
temps dans les théories quantiques).
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Remarquons en passant que, pour former 'équation de Jacobi

en Mécanique classique, on part aussi de I'expression hamilton-
. . JS
nienne de U'énergie et on y remplace les p..py,p-, par les — e

a8 aS 08 , . .
— o o et E par T L’équation de propagation de la

Mécanique ondulatoire s’obtient par une autre opération effectude

sur la méme expression.

Il est facile de vérifier qu’en écrivant explicitement I’équa-
tion (21) en se servant de (19) et de (20), on retombe bien sur
I'équation (17).

Mais il faut bien noter que le procédé antomatique qui fournit
ainsi I'équation de propagation, exacte dans le cas ou les ¢; sont
les 3N coordonnées rectangulaires d’un systéme de N corpuscules,
donnerait un résullat inexact si on appliquait brutalement pour
des ¢; quelconques et notamment pour les systémes assujettis a
des liaisons. En ce cas, en effet, la fonction hamiltonienne a la
forme (87) du Chapitre I et, en appliquant brutalementle procédé
automatique indiqué plus haut, on obtiendrait 'équation

7E O 8§x2 4=t oW
( P S oy = AT
(23) Emz dyidqi h? Ut Lo’

in

laquelle en général différe de (4) parce que m et les m* sont en
géndral fonctions des ¢;.

Comme exemple d’application des formes précédentes, on peut
prendre le cas, évidemment trés particulier, d’'un systéme con-
tenant un seul corpuscule non soumis & des liaisons. En prenant
pour ¢; les trois coordonnées du corpuscule, on trouve I’équation
de propagation
_;_2 W

Y

h it

2 O =

qui est 'équation bien connue de la Mécanique ondulatoire du
corpuscule unique dans un champ donné. On peut d’ailleurs
vérifier sur ce cas particulier que Papplication du procédé auto-
matique pour la formation de I'équation des ondes donnerait un
résultat inexact st 'on employait des coordonnées sphériques r, 8,
¢ au lieu de coordonnées rectangulaires pour repérer le corpus-
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cule. On trouverail alors, en effet,

H

1 /2 1 P2V 1 o2y 8=? 471 o
. e e L N T gy = 7
(>5) < are T e T e do? > n v ot

équation qui différe de I’équation exacle parce que la parenthése
n’est pas égale au AU en coordonnées sphériques < il y manque
2 IV coLB ()‘I
un terme —_—
roar r:
mation de I'équation de propagatlon, c’est don¢ que les coordon-

- Le vrat principe pour la for-

nées d’espace doivent y figurer dans opérateur laplacien. Il se
trouve qu’en coordonnées rectangulaires le procédé automatique
qui a été indiqué donne bien le Laplacien, mais il n'en est pas
de méme en coordonnées curvilignes quelconques.

Nous allons maintenant considérer un systéme formé de N
corpuscules non soumis a des liaisons et de plus sans interactions.
Ces corpuscules peuvent d’ailleurs étre soumis a des champs
extérieurs (que nous supposons toujours dériver d’un potentiel).
Soit Vi(z;y;zi, t) I'énergie potenticlle du /™ corpuscule. On
peut alors évidemment considérer chacun des N corpuscules
isolément, puisque 'absence d’interactions fait que ces corpuscules
s'ignorent mutuellement. On a donc N équations de propagation
individuelles du type (24)

(26) —-AF— S R A L R PR

o A; est le Laplacien des coordonnées du /™ corpuscule. Mais
il est non moins évident que I'on peut aussi considérer les N cor-
puscules comme formant un systéme et écrire pour ce systéme
I'équation de propagation

N N
I 3x2 Ari W
v 2N g AT
(27 2 mlA v h i b= noal’
1
ou W(zi, ..., 5y, t) est la fonction d’ondes du systéme.
Ceci étant, nous pouvons énoncer le théoréme suivant : Si
Wy, ..., Wy sont des solutions des égquations d’ondes indivi-

duelles (26) des N corpuscules, leur produit ¥ = 1[ W, est solu-
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tion de Uéquation (27) du systeme. L'exactitude de ce théoréme
se vérifie immédiatement.

Nous rappellerons bientdt qu’une équation du type (26) admet
une série de « fonclions propres » Wi ..., Wy ..., telle que
toute fonction continuc uniforme et de carré sommable des
variables x;y;; soit développable suivant les Wy par une

formule du type ‘l?;:Za,.‘If‘/'). Autrement dit les W) forment un
-

systéme complet de fonctions de base pour les fonctlions de z; i 5.
1l en résulte facilement que la fonction ¥ du systéme [solution de
’équation (27)] qui doit, nous le verrons, étre continue, uniforme
et de carré sommable, peut se développer sous la forme

(27 biy) U= E TP 2T ST TN

rya

de sorte que toute solution de I'équation (27) du systéme est
N
formée par une somme de fonctions du type I I i) ¢est-a-dire

.
par une somme de solutions du type considéré plus haut. On
peut donc ramener la solution de 'équation (27) du systeme a
celles des équations individuelles (26) des N corpuscules puisque,
connaissant tous les W, on a comme solution générale de (27)
la forme (27 bis), les @ étant des constantes arbitraires.
Néanmoins, il serait tout & fait inexact de dire que toute solution
de I'équation (27) du systéme est le produit de fonctions d’ondes
individuelles des N corpuscules, car la solution générale (27 bis)
est une somme de tels produits qui ne se réduit pas, en général, &
un seul de ces produits. Il y a 12 un point important sur lequel
nous aurons a revenir un peu plus loin quand nous aurons intro-
duit 'interprétation probabiliste de la Mécanique ondulatoire.

4. L’interprétation physique de la nouvelle Mécanique. — Pré-
cisons a nouveau comment la Mécanique ondulatoire se raccorde
avec la Mécanique classique. Reprenons le cas général d'un sys-
téme avec interactions et liaisons. Nous savons que la vitesse de
groupe de Uonde W est égale, quand 'approximation de I'optique
géométrique est valable, a la vitesse du point figuratif dans
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I'espace de configuration défini classiquement. Nous pouvons
considérer dans 'espace de configuration un groupe d’ondes W de
trés petites dimensions. Un tel groupe d’ondes devra cependant
toujours avoir des dimensions grandes par rapport a la longucur
d’onde centrale du groupe, de fagcon que les ondes du groupe
puissent se détruire par interférences aux limites du domaine qu'il
occupe. Mais pour les corpuscules de la Physique atomique, les
longueurs d’onde se trouvent étre toujours trés petites par rapport
a ce que nous pouvons directement mesurer : ¢lles sont infiniment
petites pour léchelle macroscopique. 1l en résulte que, pour
représenter les phénoménes macroscopiques, on pourra supposer
les groupes d’ondes pratiquement ponctuels dans I'espace de con-
figuration. Pour I'étude macroscopique d’un systéme de corpus-
cules, il sera donc permis de considérer dans 'espace de configu-
ration un groupe d’ondes quasi ponctuel sc déplagant avec la
vitesse de groupe. Mais comme la vitesse du groupe est égale a la
vitesse classique du point figuratif, la représentation donnée dans
ce cas par la Mécanique ondulatoire se confond pratiquement avec
celle de la Mécanique classique.

Naturellement, il en est tout différemment pour les phénoménes
microscopiques atomiques : on ne peut plus y considérer les lon-
gueurs d’onde comme infiniment petites, ni les groupes d’ondes
comme ponctuels et, 1a ou la Mécanique classique nous montrait un
point figuratif bien localisé dans Vespace de configuralion, la
Mécanique ondulatoire nous montre un groupe d’ondes étendu et
de dimensions finies dans cet espace. Ici donc les deux Méca-
niques divergent et c’est la Mécanique ondulatoire qui doit étre
considérée comme exacte. Mais quels renseignements nous fournit-
elle sur I'évolution dynamique du systéme? C'est ce que nous
devons examiner.

Nous avons obtenu une équation générale de propagation pour
un systéme de corpuscules. Nous supposons que des observations
ou des mesures nous alent permis d’attribuer une certaine forme a
Ponde W du systéme a un certain instant initial ¢,; soit
W(qi, -..y gy to) cette forme. L’équation de propagation étant du
premier ordre par rapport au temps nous donne alors toute I'évo-
lution de la fonction W a partir de l'instant ¢,, c’est-a-dire que si
nous savons l'intégrer, nous pouvons obtenir W(qy, ..., qy, £). 1l
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s’agit de savoir ce que nous pouvons tirer de la connaissance de
cette fonction. Le développement de la Mécanique ondulatoire a
montré qu’on ne pouvait pas espérer tirer de cette connaissance une
description de la structure des corpuscules ou du systéme, mais
seulement une représentation statistique du résultat des mesures
faites sur un systéme. Nous allons aborder 1'étude de cette 1nter-
prétation de la Mécanique ondulatoire en énoncant deux grands
principes qui nous seront constamment utiles : le principe de
localisation (ou des interférences) et le principe de décomposition
spectrale (ou principe de Born).

5. Principe de localisation (ou des interférences). — En
Mécanique ondulatoire, on ne peut plus localiser en général les
corpuscules d’une fagon exacte. On ne peut plus dire : tel corpus-
cule occupe telle position a tel instant. On peut dire seulement :
st Ion fait une observation pour déterminer la position d’un cor-
puscule, il y a telle probabilité qu’on Ie trouve dans tel élément de
volume dr. Dans le cas d’un corpuscule unique de fonction
d’onde W' (x, y, =, t), la probabilité de trouver le corpuscule dans
I'élément de volume dx dy ds est d’aprés la Mécanique ondula-
toire (1), égale a | W |* dz dy ds. Dans le cas des systémes de cor-
puscules, tandis qu’en Mécanique classique on peut attribuer a
chaque instant une configuralion bien déterminée au systéme et
par suite représenter cette configuration par un point figuratif bien
défini dans Pespace de configuration, en Mécanique ondulatoire
il en est tout autrement : la position des corpuscules n’étant en
général plus bien déterminée, il y a une incertitude sur la position
exacte du point figuratif, incertitude qui est symbolisée par
I'extension linie de I'onde W. On doit donc¢ pouvoir définir une
probabilité pour qu’une observation permette de localiser le point
figuratif dans un élément de volume dr de I'espace de configura-
tion, ct naturellement dans le cas ou le systéme est formé d’un seul
corpuscule, cette probabilité doit se réduire & | W|*dz dy d=.

Pour trouver la probabilité de localisation du point figuratif qui
puisse convenir, nous devons nous souvenir que la probabilité

(') Voir, par exemple, L. pE BrocLig, Infroduction a Uétude de la Mécanique
ondulatoire. Hermann, Paris, 1g3o, Chap. VIIL
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totale d’une position quelconque de ce point figuratif dans'espace
de configuration doit toujours étre ct rester ¢gale a 'unité. Si
donc pdr désigne la probabilité de présence du point figuratif
dans I’élément dr, la fonction p(g;, t) peut étre considérée comme
étant la densité d’un fluide fictif dont la quantité totale doit
se conserver au cours du temps, puisqu’on doit avoir constam-

ment fp dr =1, l'intégrale étant étenduc a tout espace de con-

figuration. St 'on a trouvé une fonction p(g;, ¢) satisfaisant & une
équation de continuité au sens de I'hydrodynamique, en multi-
pliant cette fonction par une constante convenable on pourra

s’arranger pour que /pd’r soit égal a 1 et le p ainsi obtenu

pourra jouer le role de probabilité de localisation. Or notre p doit
évidemment s’exprimer a 'aide de la fonction d’onde W, puisque
nous ne disposons que de cette grandeur pour décrire le systéme.
Bref, nous devons chercher une expression formée a 'aide du ¥
et satisfaisant & une équation de continuité dans 'espace de con-
figuration. .

Mais d’abord quelle est la forme générale de l"équation de
continuité dans 'espace de configuration? Pour le voir supposons
tracées dans cet espace les surfaces g; = const. correspondant a des
valeurs infiniment voisines. Nous divisons ainsi I'espace de con-
figuration en petites cellules. L’une de ces cellules sera par exemple
définie par

qi= ¢y qi+ dg;= c;+ de; (I=1,2, ...}

avec des valeurs données des ¢, et des dg;. Considérons une cerlaine
variable ¢;. Si un fluide de densité p(g;, ¢) remplit Uespace de
configuration, le flux de ce fluide pendant le temps dt a travers la
parot de la cellule considérée correspondant & ¢,= ¢, est égale &
la quantité de fluide contenue dans un cyclindre infinitésimal ayant
celte paroi pour base et ¢;dt pour hauteur, le flux est donc égal a

(28) oL=¢ ‘/Tfl« dgy ... dgr—1 dqisr .. dgqu. g de.

r A travers la paroi opposée ¢ = ¢+ dqz, le flux est

Jdo g B
i‘_qu:s;f+ —:—k(v/JRpr/’/.)d% codyp dt.

(29) Tk oo

it A rm i B s £ e E
N
<
N &
\
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La différence entre le {lux entrant et le flux sortant pour ce couple
de parois est donc

) )5 ) ) — .
(30) — ;’)—q—/kr/q/;:—()—;j;<\9]19r14-) dgy .. .dgndt.

Si I'on considérce tous les autres couples de parois de la cellule
correspondant aux autres ¢;, on obtient au total pour I'excés du
{luide entrant sur le fluide sortant

SNV g N )
(31) P i 1 I—J')f[k(\ Wogir)dgy ... dg,dt.
Pour qu’il y ait conservation du fluide, ceci doit étre égal a
Paugmentation pendant le temps dt de la quantité de fluide
contenue dans I’élément dz, soit a

(32) —())—(// 7 = - \ W dgy ... dgndt.

D’ou
> L N\

(33) Y \/’DT‘L/-“}—“ 3]1‘,[0 =o.
I3

C’est I'équation de continuité cherchée qu’on peut aussi écrire

(34) %% 4 v (2g) = o

Jt
tie (7)

3
du vecteur (p r/) dans V'espace de configuration (').

Nous avons donc a chercher une expression formée al’aide du W
et satisfaisant & Péquation (33). Or la fonction W, qui est une
solution de I'équation (4), est une grandeur essentiellement com-
plexe ayant un module |W'| et un argument que nous pouvons

(\ Mp ) étant la divergence généralisée

N
\1-,"

(') Remarquons cn passant que cette définition générale de la divergence nous
donne

— . 0o
Ag = div gradp = —— <\/:m mkj -—),
*= o Z dq, 9z

ce qui justifie la forme générale du Laplacien admise précédemment.
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aTl

2=P( g,
L

. ¢ - P
écrire ), de sorte que W= |W'e? " Ln substituanl celie

forme du W dans I'équation (4) et en séparant dans I'¢quation
obtenue le réel et Vimaginaire pur, on obtient deux equauons

Ecrivons seulement celle qui vient des termes purement 1magi-
naires

AW 0b 1 W R )W
35 ik 2121 2 /At mt 72
(3%) ZAm Jax Iqi 2 Jon ZM:( (1/:) ac’
m
sl nous posons p = | ¥ |2, nous en tu‘ons atsément, aprés multipli-
cation par | W[,
]
do i Jd — o]
§ R 7 IO mik
(36) = \/‘EEO’W(‘C VIl m ()(M>
ik
Jds 1 d —_—
= ——— — YN (z grad )i =0

l)l \/J\‘L i d(]z[‘/ (x o) )]

ou

do
()/ + div(— g grad @) = o,

c’est 'équation de continuité du fluide fictif, si nous lui attribuons

‘en chaque point une vitesse égale a—grad @; la constante de fp dr

en résulte.
En résumé, en définissant dans Uespace de configuration un
fluide fictif dont la densité et le mouvement sont donnds par

e= W :lvz == P
(37) o= _v; AL ik 1,()‘I" A0
7 Pqgi= mi 07/ 2 m ni oy yr 7
A

ou W est la quantité complexe conjugnée de W', on obtient un
fluide qui se conserve et par suile on peut prendre

? comme

probabilité de localisation du point figuratif, a condition de multi-

c’est-a-dire a

plier W' par une constante telle que /

condition de normer la fonction d’onde ¥'.

Nous parvenons ainsi au principe de localisation (ou des inter-
férences) dont voici 'énoncé : la fonction d’onde W (q;, t) étang
normée & Uunité, Uexpression | W 2 dr représente la probabilité
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(a instant ¢) pour qu’'une observation permette de localiser le
point figuratif du systeme dans U'élément de volume dr de
Uespace de configuration.

En appliquant cet énoncé général au cas trés particulier d'un
systéme formé d’un seul corpuscule non soumis a des liaisons, on
trouve bien que la probabilité de localisation du corpuscule dans
un élément de volume dz dy dz de Pespace physique est donnée
par \W(x, ¥, 5, {)!* dx dy ds, comme nous 'avions annoncé.

Appliquons maintenant le principe général a un systéme formé
de N corpuscules non soumis a des liaisons ct sans actions
mutuelles, ces corpuscules pouvant étre soumis a des champs
extérieurs. Nous avons vu plus haut qu’en ce cas, si les fonctions

Wilzs, 1, 203 4) «ony, Wn{(@n, ¥y, 2x; 1)

sont des solutions des N équations d’ondes individuelles des N
corpuscules, la fonction

N
Wz, ..., ax: 1) :[[ Uil ¥iy 25 0)
i
1

est solution de l'équation de propagation du systéme entier.
D’aprés notre principe de localisation, la probabilité de présence

du point figuralif du systéme a 'instant ¢ dans I'élément de volume
dr—=dzx;...dsy est

N

(38) ey . dax :l] [ (2, yor 3e; 1) 12 dg dy; dzy.
1
1

I1 est donc égal au produit des probabilités de présence respec-
tives du premier corpuscule dans I'élément de volume dz, dy dz,
de Pespace physique, du deuxiéme corpuscule dans I'élément de
volume dzsdys.dsz,y..., ces probabilités étant calculées en
appliquant le principe de localisation & chaque corpuscule consi-
déré individuellement. Ceci esl une conséquence nécessaire de
I'indépendance des corpuscules dans le cas envisagé et du théo-
réme des probabilités composées. Si ce résultat ne se vérifiait pas,
le principe de localisation adopté serait inacceptable.

I1 faut bien remarquer que la solution générale de 'équation du
systéme pour N corpucules indépendants a la forme (27 bis) et
qu’avec cette forme générale (quand elle ne se réduit pas excep-
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tionnellement a un scul de ces termes) la quantité | W :* duey ... dsy
n’est plus un produit de lermes se rapportant chacun i un
seul des corpuscules. N’y a-t-il pas la une difficulté ? Non et voict
pourquoi. Siles corpuscules sont constammem¢ indépendants, on
pourra & un moment donné déterminer les formes de leurs fone-
tions d’onde individuelles W, ..., Wy et les équations d’ondes
individuelles (26) détermineront entiérement I'évolution de ces
fonctions d’onde a partir de leurs formes initiales connues. La

fonction 1If;:l IlF" sera constamment solution de DPéquation

;
d’ondes du systéme et le théoréme des probabilités composées sera
vérifié comme nous 'avons vu plus haut. Les solutions de la forme
générale (27 bis) (avec plus d’un terme dans la somme) ne peuvent
se présenter que si, a un moment donné, il y acu des interactions.
Dans ce cas, comme les interactions sont soumises a certaines lots
(par exemple, nous le verrons, aux lois de conservation de 'énergie
et de Vimpulsion), il y aura aprés la fin des interactions plusieurs
états possibles du systéme, mais dans chacun de ces états possibles,
les états individuels des divers corpuscules ne seront plus indépen-
dants. Si, par exemple, dans V’étal initial avant 'interaction, on a
deux corpuscules d’énergies Ef et E}, aprés Pinteraction, on aura
des états possibles pour ces corpuscules ayant des énergics Iy et E,
telles que E; + E, = E) 4+ E}, etsil’on trouve alors par une mesure
que Vun des corpucules a 'énergie E,, on sera sur parla méme
que autre corpuscule a Pénergic E} + E] -~ E,. Clest ce qu'ex-
prime une fonction d’onde de la forme générale (27 bis) qui veut
dire que si 'on trouve le premier corpuscule dans I'état représenté
par W, on trouvera le '*™° corpuscule dans I’état W+ ql{i figure

dans le méme terme de la sommeE- Les solutions générales (27 bis)
iy

ne peuvent donc se présenter que quand il y a eu des interactions
et que ces interactions ont créé des liaisons nécessaires entre les
états individuels ultérieurs des constituants du systéme. Ces états
ultérienrs n’étant alors plus indépendants, il n’y a plus de raisons
pour que le théoréme des probabilités composées soit vérifié.

On voit donc ainsi que, méme dans le cas des corpuscules sans
actions mutuelles, ’équation de propagation du systéme est, pour
ainsi dire, plus riche de contenu que I'ensemble des équations
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individuelles des corpuscules. Elle admet (et cect est évidemment
nécessaire) des solutions qui représentent tous les mouvements

indépendants possibles des N corpuscules: ce sont les solutions
N

de la forme n.‘lf,'. Mais elle admet en plus des solutions de la
1

N
forme a,.II_‘lf}” qui représente le cas ou, par suite d’interac-
1
r 1

tions antérieures, les élats individuels des constituants du systéme
ne sont plus indépendants. Ces interactions antérieures peuvent
étre d’ailleurs soit des interactions des N corpuscules du systeme
entre cux, soit des inleractions de ces corpuscules avec d’autres
corpuscules extérieurs au systéme et constituant par exemple un
appareil de mesure.

1 ]

6. . Principe de décomposition spectrale {ou principe de Born). —
Considérons un systéme isolé ou soumis & des actions extérieures
indépendantes du temps. Je rappelle qu'une équation aux dérivées
partielles du type de I'équation (8) de propagation ici valable
admet un ensemble d’un nombre infini de solutions W; (¢, .. ., ¢u, )
qui sont continues, uniformes et de carré sommable. Ce sont les
Jonctions propres de cette ¢quation. En général, chaque fonction
propre correspond a une certaine valeur de la constante E qui
figure dans I’équation. Les valeurs de la constante E qui corres-
pondent a des fonctions propres sont appelées les valeurs propres
E,, ..., E, ..., de I'équation (8). Les valeurs propres peuvent
former une suite discontinue (spectre de raies) ou une suite
continue (spectre continu) ou encore une suile continue suivie
d’une suite discontinue. Si a une valeur propre E; correspond une
seule fonction propre U';, E; est une valeur propre simple ou non
dégénérce. Si plusieurs fonections propres W7, ..., W” corres-
pondent 4 une méme valeur propre E;, cette valeur propre est
dite multiple ou dégénérée.

On démontre aisément que deux fonctions propres appartenant
a deux valeurs propres distinctes sont orthogonales, c¢’est-a-dire
que

(39) f‘lr“,-‘ Vide=o pour E;# E;,
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ou l'intégrale est ¢tendue a tout I'espace de conliguration et ot
Pastérisque indique la quantité complexe conjuguée. Pour le
démontrer, il suffit d’écrire

(40) A0+ %(Ei— Uy W= o,

ou A, est le Laplacien dans 'espace de configuration, puis
v 87 o
(41) A,lllﬂj—i—Tz—(E/-——U)‘l/- =0,

d’ou U'on tire facilement

(42) f(ll';s,nn—lrgn WYt = 7}(1;[-_ Ik >fuf; W, .

Or, d’aprés une formule bien connue de Green, formule qui se
généralise aisément a l'espace a n dimensions, la premiére inté-
grale est égale 4 une intégrale de surface prise sur unc surface
rejetée a l'infini dans l'espace de configuration ect, comme les
fonctions propres étant de carré sommable doivent étre nulles sur
cette surface, cette intégrale de surface est nulle. Le second
membre de (42) est donc nul, que 7 soit égal ou dilférent de ;.
Donc pour i=7, on a E;—= E et 'on voit d’abord que les valeurs
propres sont toutes réelles. Puis pour = j, on trouve la formule
(39) exprimant que ¥; et ¥; sont orthogonales.

Toutefois le raisonnement précédent est en défaut si pour
i #j, E; = E;, c’est-a-dire si les fonctions propres W; et W; corres-
pondent & unc méme valeur propre multiple.

Dans e cas des valeurs propres multiples, les fonctions propres
lindairement indépendantes ne sont pas nécessairement orthogo-
nales entre elles. Mais en ce cas il y a une certaine indétermina-
tion des fonctions propres, car si W}V, ... W7 sont p fonctions
propres linéairement indépendantes de I'équation (40), toute
combinaison linéaire de ces p fonctions est évidemment aussi
solution de (40) et peut étre choisie pour fonction propre. On
démontre aisément que celte indétermination suffit pour que 'on
puisse choisir, pour la valeur propre E;, p fonctions propres linéai-
rement indépendantes qui soient orthogonales entre elles. Ainsi.
en choisissant judicieusement les fonctions propres correspondant
aux valeurs propres multiples s’il y en a, on peul toujours supposer
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que Pensemble de toutes les fonctions propres de (8) forme un
systéme orthogonal.

Les W; ne sont évidemnment déterminées qu’a une constante
complexe arbitraire prés (en raison du caractére linéaire des
équations d’ondes). On peul donc toujours choisir le module de
cette constante de fagon que [on ait

(43) fjll’i}ﬂ(l::I.

Les W; sont'dits alors normés a 'unité et nous supposons
toujours qu’il en est ainsi. La normalisation de W; y laisse
d’ailleurs encore arbitraire un facteur e* de module 1, car elle
ne détermine pas 'argument de la constante arbitraire.

On peut résumer les formules (39) et (43) par la formule unique

(45 fu',-* W ds = &y,

d;; #tant le symbole de Kronecker. On dit souvent qu’en vertu
de (44) le systéme des fonctions W'; est un systéme orthonormal.

Enfin, le systéme des W; est un systéme « complet », ¢’est-a-dire
que sous des conditions trés générales, une fonction quelconque
S(q1, - -, qu) est développable al’aide de ’ensemble des fonctions
propres 'V sous la forme

(45) . ,,,I)zzcl Wil gy ooy qn)

i
En particulier, je dis que la fonction d’onde du systéme, solution
de I'équation (4), est développable sous la forme
, - E—iEil
(/16) U ( Gy -y Gn; t) :Zcilp'[<([“ sy ‘]n) e
i

En effet, a Uinstant initial ¢ = o, la forme W (g, ..., ¢.;0) est

développable sous la forme

L] Y £
(‘17) ]I'(([h sy Yy 0) :Zcillji(([h sy (17L)7

i

avec des valeurs bien déterminées des ¢;, a cause du caractére

L. DE BROGLIE, 4
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complet du systéeme des W;. Maintenant, chaque fonction
omi

—E;{ . , .
Wi(qey .5 gn)e” est solution de I’équation des ondes. Donc

e,

. — Kt . . .
1Ifl-_—::Z ¢iWi(quy «.., gn)e ™  estaussisolution, puisquel’équa-
tion est linéaire. Or, pour ¢=o, celte solution prend la forme
initiale donnée W(g, ..., ¢n; 0). Puisque I'équation détermine
entiérement 'évolution de l'onde a partir de sa forme iniuale,

W(qy, ..., qu; t) est bien la solution dont la forme initiale est

W (g, ... qn;0). Le théoréme est ainsi démontre.
o

On peut d’ailleurs comprendre le facteur e/—lw dans la fone-
tion propre W; puisque, méme normée, celle-ci n’est détermingde
qu’a un facteur e/* preés.

Ceci posé, le principe de décomposition spectrale peuts’énoncer
de la maniére suivante : « Etant donné un systéme de corpuscules
isol¢ ou soumis a des actions extérieurcs indépendantes du temps
dont la fonction d’onde W a le développement (46), la probabilité
pour qu’une observation ou une mesure conduise a attribuer a ce
systeme I'énergie E; est | ¢; % »

Ce principe de Born est acceptable puisque, ¥(q1, ..., qu, £)
étant toujours supposée normdée, on a

(48) I:f\,q'gzdzzfzc,t\r;_. e
k
Qi

X o= e
= Y crcjeh W el
ki

o
LT A
= ECZC/G" B,
ki

i

— 1

i Eand
{

; Ept . A—/
d A
E c;l'e

/

/<

d’aprés (44), ce qui donne
(49) zi cp 2=1.
-

Si l'on a un spectre continu, les sommes sont a remplacer par
des intégrales et cerlaines précautions sont a prendre pour la
définition des normalisations et des orthogonalilés. Je n’insiste
pas sur ces sujets assez délicats. D’aprés le principe que nous
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venons d’introduire, seuls les états dont Pénergic est P'un des E;
sont physiquement réalisables. De la la notion de quantification
des systémes corpusculaires et celle d’états stationnaires intro-
duite pour la premiére fois par Bohr dans sa théorie de I'atome
d’hydrogene.

Par des raisonnements qu’on trouvera développés dans d’autres
exposés (1), on peut montrer que les principes de localisation et
de décomposition spectrale entrainent comme conséquence 1'im-
possibilité de mesurer simultanément avec une précision absolue
une coordonnée g et le moment de Lagrange correspondant p.
Ces quantités, lorsqu’on les déduit de mesures effectuées simulta-
nément, sont toujours affectées d'incertitudes Aq et Ap telles (ue
Uon ait

(30) AgAp > h.

Ce sontles célebres relations d’incerlitude dues a M. Heisenberg,
sur lesquelles nous n’insisterons pas ici.

7. Les matrices de la Mécanique ondulatoire. — Nous allons
maintenant introduire la définition des matrices dé la Mécanique
ondulatoire. En mécanique ondulatoire, on est amené a faire
correspondre a toute grandeur mécanique un opérateur linéaire et
hermitique. Un opérateur A est linéaire si l'on a

(51) Alf+a)=A(f)+Alg),  Alcf)=cA(f).

Un opérateur A est hermitique (ou hermitien) dans un
domaine D s1l'on a

(52) ff* Alg) (Z’::fg A s,
D 1)

f et g étant deux fonctions finies, uniformes et continues dans D
et nulles a la Limite de D choisies arbitrairement. Remarquons
que si Yopérateur A est hermitique, 'opérateur A™ est aussi,
comme on le vérifie facilement.

Voyons maintenant quels sont les opérateurs linéaires et hermi-

(') Loc. cit., Chap. XI,




i
!
i
3

52 CHAPITRE 1I.

tiques que la Mécanique ondulatoire fait correspondre aux
grandeurs mécaniques. D’abord aux coordonnées z, y, 5 d’un
corpuscule, on fait correspondre respectivement les opérateurs
Z., ¥+, 3., C’est-a-dire « multiplication par z, par y ou par z ».
Puis, aux composantes p,p,p; de 'impulsion d’un corpuscule,
J

on fait correspondre respectivement les opérateurs — — =
ani dx

h ’ A ) R R
L% et — 2 “. Pour tout systéme ou les ¢; sont les coor-

T amidy 2wl J3

données cartésiennes rectangulaires des corpuscules constituants,
on obtiendra sans ambiguité P'opérateur correspondant a une
grandeur mécanique en formant 'expression classique de cette

grandeur a Paide des ¢; et des p;, puis en remplacant les ¢; et

b}

les p; respectivement par les opérateurs ¢; et — )L_'l U%z Clest
d’ailleurs précisément ainsi que nous avons formé précédemment
Popérateur hamiltonien correspondant a la grandeur « énergie du
systéme ». Nous avons du reste constalé dans ce cas particulier que
le bon opérateur hamiltonien n’est sirement obtenu que si les ¢;
sont les coordonnées cartésiennes rectangulaires des corpuscules
du systéme. Si l'on emploie volontaircment des coordonnées non
rectangulaires, ou bien si 'existence de liaisons oblige a prendre
des coordonndes généralisées ¢;, le procédé qui consiste & prendre
Pexpression classique d’une fonction des ¢, et des p; et a y

remplacer brutalement le ¢; et le p; par les opérateurs g; et
h

rateur associé par la Mécanique ondulatoire & la grandeur consi-
dérée. Il faut en réalité chercher quel est opérateur qui géné-
ralise avec les ¢; employées 'opérateur correspondant au cas
cartésien. Ainsi pour I’énergie, opérateur hamiltonien s’cxprime
dans le cas cartésien par Popérateur laplacien (augmenté du
terme d’énergie potentielle): en coordonnée ¢; quelconque, on
doit prendre, nous I'avons vu, I'opérateur qui généralise le lapla-
cien dans I’espace des ¢;. Pratiquement nous ne¢ rencontrerons pas

ne fournit pas nécessairemenlt d’une fagon exacte opé-

de difficultés pour former les opérateurs correspondant aux gran-
deurs mécaniques.

Soit donc A un opérateur linéaire et hermilique correspondant
4 une certaine grandeur mécanique et soient Wy, ..., W;, ... les
fonctions propres de l'opérateur H correspondant au probléeme
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constdéré. Nous pouvons envisager les grandeurs de la forme
(53) = fllf; AT )ds

pour toutes les valeurs de 7 et de & et former avec ces quantités un
tableau carré (les ¢ numérotant les lignes et les & les colonnes).
Nous dirons que ce tableau est la « matrice » correspondant a la
grandeur mécanique A et que ai; est 1'édlément d’indices ¢k de
cetle matrice.

11 est facile de trouver une interprétation des a;. La fonction
A (W) oblenue en appliquant & ¥, Popération A étant développée
suivant le systéme complet des W;, on a un développement de la
forme '

(54) : A(‘M):Za,-/l-‘l'/.
i

Les coefficients aj; de ce développement s’obtiennent en mulu-
pliant (54) par ¥, et en intégrant dans tout l'espace de configu-
ration. En tenant compte de (44), on lrouve ainsi pour ay la
valeur (53). Nous voyons ainsi que I’élément de matrice a;;. est le
coefficient de W; dans le développement de la fonction A(W;)
suivant les fonctions propres de ’opérateur hamiltonien.

Les matrices définies par (53) sont hermitiennes (ou hermi-
tiques ), ¢’est-a-dire que

(55) ag=aj,

Les termes symélriques par rapport a la diagonale dans le
tablean des a;; sont complexes conjugués et en particulier les
termes placés sur la diagonale (ou termes diagonaux) sont réels.
La formule (55) se déduit immédiatement de la définition (53) et
de la relation (52) qui définit Phermiticité de 'opérateur A.

I1 est facile de voir que les matrices de la Mécanique ondulatoire
jouissent des propriétés bien connues des matrices algébriques.
Ces propriétés sont essentiellement exprimées par les deux lois
d’addition et de multiplication

a. (a—+ b= a;+ by,

(56) b. (ab)ix :Ea”b,k.

!




CHAPITRE III.

PRINCIPES GENERAUX DE LA MECANIQUE ONDULATOIRE
DES SYSTEMES.
INTEGRALES PREMIERES ET TIIEOREMES DE CONSERVATION.

1. Enoncé général des principes de la Mécanique ondulatoire. —
Les principes de la Mécanique ondulatoire peuvent se présenter
sous une forme trés géndérale que je vais indiquer rapidement.

Nous avons vu qu’a toute grandeur mdcanique mesurable on
pouvait faire correspondre un opéra{teur linéaire et hermitique et
nous avons indiqué la maniére de construire cet opérateur. Soit
donc A lopérateur lindaire et hermitique correspondant a une
certaine grandeur dans un probléeme déterminé. Les valeurs
propres de cet opdrateur sont par définition les valeurs de la
conslante «, lelles que I’équation

(1) A(g) =00

admetie au moins une solution continue, uniforme et de carré
sommable. Les solutions de (1) correspondant aux valeurs propres
sont les fonctions propres de A. En généralisant une démonstration
donnée au chapilre précédent, on montre aisément qu’en vertu de
I'hermiticité de A, ses valeurs propres sont réelles et que les font-
tions propres correspondant a des valeurs propres distinctes sont
orthogonales. Les fonctions propres qui correspondent i une
valeur propre multiple peuvent étre supposées orthogonales sil’on
choisit convenablement les fonctions propres linéairement indé-
pendantes relatives a cette valeur propre multiple en profitant de
I'indétermination qui existe pour le choix de ces fonctions propres.
De plus, nous supposerons toujours que les fonctions propres g;
de 'opérateur A ont été normées par la condition

(2) Sieiras=n,
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Enfin, 'ensemble des fonctions propres ¢; forme un systéme
complet, du moins pour les fonctions qui dépendent des variables ¢
figurant dans A_ et par suite dans les o;, c’est-a-dire que Ion a,
sous des conditions trés générales,

(3) S{q1, '--’([11):2“/6?4‘(‘]“'-'vqn)~
k
Toutes ces propriétés sont celles que nous avons déja rencon-
trées dans le cas on l'opérateur A est Popérateur hamiltonien Het
se démontrent comme dans ce cas.
Ceci posé, on peut énoncer les deux principes généraux de la
Mécanique ondulatoire sous la forme suivante :

« Etant donnés un systétme de corpuscules dont la fonction
d’onde est W(q,, ..., ¢gn; t) et une grandeur mécanique relative
a ce systéme qui correspond & Popérateur A de valeurs propres «;
et de fonctions propres ¢;, on peut affirmer que :

« 1° Premier principe ou principe de quantification. —
Toute mesure exacte de la grandeur A fournira Pune des valeurs
Qpy weny Oiy vns

« 2° Second principe ou pi‘incipe de décomposition spectrale
vénéralisée. — Sile développement de la fonction I du systéme
suivant les fonctions propres ¢; de opérateur A est

Wty ooy g5 )= i) o(q1s o5 @),
IS
la probabilité pour qu’une mesure exacte de A faite a l'instant ¢

fournisse les valeurs z; est égale a | a; 2.

« Si les valeurs propres o; forment un spectre continu, on doit
modifier 'énoncé précédent en disant :

W(qg1, ..y qn; t) :fa(a, OY(a; g, .., gn) da

étant le développement de la fonction d’onde suivant les fonctions
propres (%, ¢1, ..., ¢n), la probabilité pour qu’une mesure de A
faite 4 I'instant ¢ donne une valeur propre de A comprise dans
Pintervalle a —> o + do est égale a | a(«, t) ]2 do.
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« Enfin, si Popérateur A ne contient que certaines des coordon-
nées ¢;, disons ¢, ..., et non les autres ¢, ..., 9, dépend seule-
ment des ¢; et le développement de W est de la forme

W(gt, ooy qui )= D@l ghy oo 024, ),
-

Alors la probabilité de la valeur propre oy doit étre prise égale

i flackdg) ...

Tel est 'énoncé général des principes de la Mécanique ondu-
latoire. 1l est d’abord ais¢ de vérifier que le second principe
conduit toujours a un accord avec le théoréme des probabilités
totales, c’est-d-dire que la somme des probabilités de toutes les
hypothéses possibles est égale a 1. Nous laissons au lecteur le
soin de faire cette vérification, que nous avons déja précédemment
eflfectuée dans le cas de 'opérateur hamiltonien et qui s’appuie
uniquement sur le caractére ortho-normal des fonctions propres.

Appliquds au cas de Vopérateur hamiltonien H, les deux prin-
cipes précédents montrent : 1° que la mesure exacte de 'énergie
d’un systéme fournit toujours I'une des valeurs propres de 'opéra-
teur H, ce qui constitue Pessence de la quantificalion des systémes
en M¢canique ondulatoire; 2° que si la fonction d’onde du
systéme sc développe suivant les fonctions propres de l'opéra-

teur 1 sous la forme 1[)":20;{11?’;(, la probabilité pour qu’une

mesure exacte de I'énergie fournisse la valeur E; est égale a | cx |2
Cect est précisément le principe de Born étudié précédemment.

On peut aussi montrer que le principe de localisation n’est
qu'un autre cas particulier des deax principes généraux énoncés
plus haut. Nous n’insisterons pas ici sur cette démonstration.

11 est maintenant facile de définir la valeur moyenne d’une
grandeur mécanique. Considérons IT systémes identiques dont
Pétat est décrit par la méme fonction d’onde W(g,, ..., gn, t), le
développement de ¥ suivant les fonctions propres de Popérateur A
correspondant a la grandeur mécanique considérée étant

R —~
‘1'(1117 ---7711;!):? "K’T"/f((llr "')qfl)'
k
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Supposons qu’a un instant ¢ déterminé on effectue sur chacun
des IU systémes une mesure exacte de la grandeur A. D’apres le
premier principe, on doit obtenir pour chaque systéme une des
valeurs propres a; de A, et d’aprés le deuxiéme principe on doit
obtenir au total IU|cy ? fois la valeur oy, ICjca;* fois la
valeur a3, etc. La moyenne des valeurs obtenues pour la gran-
deur A est donc

car, W étant normée, 2 ler?=1. ll est aisé de démontrer que la
k
formule (4) est équivalente a la suivante :

(5) K:f‘[‘*;\(‘l’)d:,

ou I'intégrale est étendue a tout I'espace de configuration. En effet

O e[ Sea(Se) -
k i

CEC[] SiA(30)d=

cre; 1if:p,t.gsi &

P
CrCi0ik%;

I

o S/ N Bl N

lex 2oy,

La quantité A définie par (3) peut donc étre considérée comme
la valeur moyenne de la grandeur A pour un systéme dont I'état
est décrit par la fonction d’onde ¢. C’est en somme la valeur
moyenne probable du résultat de la mesure de la grandeur A effec-
tuée sur le systéeme dans I’état envisagé.

De cette définition de la valeur moyenne, nous pouvons déduire
un corollaire important. Supposons qu’un systéme soit connu
comme étant dans I'état stationnaire d’énergie E; : sa fonction
d’onde W est donc ¢gale a la ™ fonction propre W'; de I'opéra-
teur H (en supposant les valeurs propres non dégénérées). Alors,
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on a

(7) A :J WA = = ag,

a;; désignant comme précédemment le "™ terme diagonal de la
matrice de la Mécanique ondulatoire qui correspond a 'opéra-
teur A. D’oa I'énoncé suivant qui donne un sens physique aux
termes diagonaux des matrices de la Mécanique ondulatoire :
« Le terme diagonal d’indices /i de la matrice correspondant &
lopératear A est égal 4 la valeur moyenne de la grandeur A quand
on sait que le systéme considéré est dans 'état stationnaire
d’énergie E;. »

2. Intégrales premiséres (ou constantes du mouvement). — En
Mécanique classique, une intégrale premiére pour un probléme
donné¢ est une fonction des variables canoniques ¢; et p; (et
éventuellément du temps) qui reste constante au cours du mouve-
ment en vertu méme des équations de la dynamique, c’est-a-dire a
cause de la maniére dont les ¢; et les p; varient au cours du temps.

En Mécanique ondulatoire, on ne peut pas adopter une telle
définition parce que, les ¢; et les p; n’ayant pas en général une
valeur bien déterminée a chaque instant, il en est de méme d’une
fonction de ces variables. Néanmoins, on peut chercher & définir
des grandeurs jouant le role d’'intégrales premiéres en Mécanique
ondulatoire. Nous avons vu qu’en général une grandeur méea-
nique n’a pas en Mécanique ondulatoire une valeur bien déter-
minée & chaque instant, mais 1l peut cependant arriver que 1'état
du systéme soit tel qu'une certaine grandeur A ail siirement une
valeur déterminée. C'est ce qui arrivera si le développement du W
du systéme suivant les fonctions propres de A pour 'état considéré,
contient un seul terme (ou du moins seulement des termes corres-
pondant & une seule valeur propre si les valeurs propres sont
multiples). On a alors

N
(8) We=1c;5; avec j¢; =1 <ou = E clPlall) avec 2 | 7 f'2=1).
P )

On dit que cet état est un « cas pur » pour la grandeur méca-
nique envisagée. Supposons alors qu’a un instant initial ¢, Pétat
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du systéme soil un « cas pur » pour la grandeur A correspondant
a n’importe quelle valeur propre «; de A. Si, en vertu méme de
la loi d’évolution du W (c¢’est-a-dire de I’équation de propagation
du systéme) nous avons a toul instant ultérieur le méme cas pur,
on pourra dire que la grandeur A ayant au début une quelconque
de ses valeurs possibles o; conservera toujours cetle méme valeur
au cours du temps. On pourra alors dire tout naturellement que A
est une intégrale premiére (ou une constante du mouvement) pour
le probléme considéré.

Une premiére condition évidente pour qu’une grandeur A soit
une intégrale premicére au sens de la Mécanique ondulatoire est
que ses valeurs propres «; soient indépendantes du temps, sans
quot les valeurs «; de A possibles au temps ¢, ne seraient en général
plus des valeurs possibles a une époque ultérieure. Seules peuvent
étre inlégrales premiéres les grandeurs mécaniques dont l'opéra-
teur a toutes ses valeurs propres constantes, c’est-a-dire soit les
opérateurs A indépendants du temps (cas trés fréquent), soit les
opérateurs A dépendants du temps, mais tels que

A= a3,

avec les o; constantes.

Pour éviter de petites complications, nous allons raisonner sur
des opérateurs A a valeurs propres conslantes que nous suppose-
rons non dégénérées. Pour que A soit inlégrale premieére, il faut
et il suffit que W == ¢;o; soit'solxltion de l’équation de propagation,
avec ¢; constant, pour tous les o;; car alors un cas pur initial se
maintiendra indéfiniment. Or, on a

AN anl
97 _ 2 N ew
(9) o 5 W),
H étant I'hamiltonien du systéme. Appliquons aux deux membres
de (9) Popérateur Aj; il vient
JA 25

9 <l
TAy— Sy = 200 Uy,
r)tA(l> ()t‘l 7 A H(UY)

JW
(10) =
Pour que I’équation de propagation soit vérifide par W' = c; ¢,
¢; étant une constante et ¢; I'une quelconque des fonctions propres
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de A, on doit avoir

J . dN  axi _
(11) ;),fA(-’i):<_()—g+_/L_AH> Pie

Or, par définition, on a Ag; = 2;¢; el, puisque «; est constant
par hypothése et que g; satisfait a I'équation de propogation,

on a

(12) "(%A(‘?i)=1i(~)j7i :“iz'/t;';[:H(?i)'
Donc,

(13) %'\(?i): 2—}?“(%m=2,;;iﬂ Az,

d’ot enfin, d'aprés (11),

[()‘\ + 2-7'_‘-(.\11 — HA)] o =o.
(3

(14) o

équation qui doit étre valable pour toutes les fonctions propres
de A. Ces fonctions propres formant un systéme complet, il en
résulte que l'opérateur entre crochets appliqué a une fonction
quelconque des ¢; donnera zéro. Get opérateur est donc ¢quivalent
a « multiplication par o » ct nous pouvons écrire

ZAN L2
5) e = ( — HA)=o.
(15) pTR (MI—HA)=0

La condition pour que A soit intégrale est donc identique a la
condition pour que la matrice A soit indépendante du temps [voir
formule (65) du chapitre précédent]. Si 'opérateur A ne contient
pas le temps (cas usuel), cette condition se réduit a

(16) ‘ AH = HA.

Une grandeur est intégrale premiére quand son opérateur A est
indépendant du temps et commute avec Popérateur hamiltonien
du probléme considéré.

Notre raisonnement suppose 'opérateur A complet, mais on
peuat Pétendre au cas ou il est incomplet.

3. Exemples d’intégrales premiéres. Théoromes de conser-
vation. — Il est maintenant facile de retrouver des théorémes de
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conservation analogues a ccux de la Mécanique classique et four-
nissant des exemples d’intégrales premiéres.

a. Conservation de Uénergie. — A Vinergie d’un systéme
correspond un opérateur hamiltonien H. En faisant A = H dans
’équation (15), on trouve comme condition pour que H soit inté-
grale premiére ’

J1
(17) ot

fl

0.

Mais 'opérateur H ne peut contenir explicitement le temps que
par les termes représentant les actions extérieures subies par le

systéeme. Si les actions extéricures sont indépendantes du temps,
L. . . , JH
a fortiori si elles sont nulles (systéme isolé), on a o =oet
’énergie est intégrale premiére. Tel est le théoréwe de la conser-
vation de I'énergie en Mécanique ondulatoire. L’équation de pro-
N
. . X S
pagation admet alors les solutions de la forme ax(q4, ... qu)e
qui correspondent & une valeur déterminée et permanente de
I’énergie du systéme, en conformité avec notre définilion générale
) y ) g

des intégrales premiéres.

b. Conservation de l'tmpulsion. -- Supposons que nous
ayons affaire & un systéme de N corpuscules non soumis a
des liaisons. Nous prenons comme coordonnées ¢, les 3N coordon-
nées zy, ..., 3y des N corpuscules. Supposons que les forces
extéricures, s’il y en a, aient une résultante nulle dans la direction
de Paxe des z et considérons 'opérateur

h ]
27 Ddx)

(18) Px=po +.. =+ Py avec pu, = — .
Cet opérateur appliqué a la somme des V;(z;. yi, 5;, t) donne
zéro, d’aprés Phypotheése faite sur les forces extérieures. Appliqué
a un lerme d'interaction V;;(ri;), il donne aussi zéro parce
que V;; ne dépend que de la combinaison z; — z;, Donc Py com-
mute avec H et, comme il ne contient pas ¢ explicitement, il est
intégrale premiére. D’ou le théoréme analogue a un théoréme de
Mécanique classique : « Si les forces extérieures agissant sur un
sysiéme admettent une résultante dont la composante suivant une
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certaine direction esl constamment nulle, la composante dans cette
direction de 'impulsion totale du systéme est une intégrale pre-
miére. » Cest le théoréme de la conservation de 'impulsion en
Mécanique ondulatoire.

Si le systéme est isolé, toutes les composantes des forces exté-
rieures sont nulles et les trois quantités Py, Py et P, sont intégrales
premiéres.

Dans notre étude de la Mécanique classique, nous avons vu que
la conservation de 'impulsion ¢était intimement lice a la notion de
centre de gravité. Nous aurons plus loin a nous demander sila
notion du centre de gravité peut encore étre utilisée en Mécanique
ondulatoire et comment elle se rattache alors a la conservation de
I'impulsion.

¢. Conservation du moment d'impulsion. — Envisageons un
systéme de N corpuscules sans liaisons et supposons que le poten-
tiel des forces extéricures soit indépendant de l'orientation du
systéme autour d’une certaine direction o3 de Despace. En
d’autres termes, les corpuscules du systéme étant repérés par des
coordonnées cylindriques r, ¢;, z; autour de 'axe 0z, supposons
que V;(ri, 55 t) soit indépendant de ¢;. Les termes d’interaction

sont alors de la forme V;; (\/rf—{— ri—ariicos(evi—q;)—+ (:-i—sj)‘-’>
et par suite ne dépendant que des différences 9;— v;. L’opérateur
correspondant au moment d’impulsion total du systéme autour
de 05 a pour expression

h ~ 7] J h  d
M. = — — Y —— ) = — —_—
(19) ~ 2:1?)—4(”‘())% “lkz).m> Qxi‘-ld;k’
k e

comme on le voit aiséiwent e¢n tenant compte des relations

= Vi <B4 .
rpe= V/a:[. - yi el g =arc g x_i Or Z T appliqué aux <; donne
~ 05

zéro puisque, par hypothése, les ?U; ne dépendent pas des o; et
appliqué aux ?;; donne aussi zéro puisque les Vy; ne dépendent
que des différences ; — o;. Donc, M, commute avec la partie
potenticlle de T'opérateur I et par suite avec H tout entier. On a
donc

(20) M. I = HM;,

L. DE BROGLIE.

ot

bl
|
t
!



66 CHAPITRE 1I1.

et, comme M; ne dépend pas explicitement du temps, il est inlé-
grale premiére. Donc, s1 le potentiel des forces extéricures a la
symétrie cylindrique autour de la direction 05 (ou ce qui revient
au méme si les forces extérieures ont un moment nul par rapport
a03), la composante 5 du moment d’impulsion du systéme est une
intégrale premiére. C’est le théoréme de la conservation dh
moment d'impulsion en Mécanique ondulatoire.

Si le systéme est isolé, les forces extérieures sont nulles et les
trois quantités M, M,, M sont intégrales premiéres, ainsi que la
quantité « carré de la longueur du moment d’impulsion » corres-
pondant a Popérateur

(21) M2=MZi+ M7+ M2,

4. Autre définition des intégrales premiéres. -— ()n pcut donner
une autre définition des intégrales premiéres en disant : une gran-
deur A est intégrale premiére si, I étant une solution de I'équa-
tion d’ondes du probléme considéré, A(W) en est unc autre solu-
tion. En effet, on a par hypothése

N 271 .-
(22) 9F = —IL—II(‘I),
d’on
\
(23) ,,\’)TH-E_ AW )———(‘I')_——All(ll)?

dont on tire

d&
(24) 2

J =L
0y = 2rt I8
SA) = [ o+ A\HJ .
Pour que A(W") soit aussi solution de I’équation de propagation,

il faut que le premier membre de (24) soit égal a 2—'/:—’:IIA(‘I") et

alors on a

(23) [% +2/'—:L(A\HAH;\)}‘I/‘:0.
Ceci devant avoir lien quelle que soit la solution'de I'équation
d’ondes, il faut que I'opérateur entre crochet soit nul. L’équiva-
lence de notre nouvelle définition des intégrales premwres avec la
précédente est ainsi démontrée.
En particulier si I et A sont indépendants du temps et si ¥;
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est une fonction propre de Il correspondant a la valeur propre E;,
A (W) est une fonction propre de H pour la méme valeur propre E;.
En effet, par hypothése, on a

(26) ) =E0; et AHT,)=EAQF).

Pour que A('F;) soit fonction propre de H pour la valeur
propre E;, il faut que HA(W;) = E;A(¥)). La condition nécessaire
et suffisante pour qu’il en soit ainsi est '

(27) ATL(W,) = H AW,

Celte condition (27) devant étre vérifiée pour tous les 'I'; qui
forment un systéme complet, il en résulte que A et H commutent,
ce qui est bien la condition pour que A soit une conslante du
mouvement.

Enoncons maintenant un théoréme important :

Turtorime. — S¢ A est une intégrale premigre, An=A..... A
Se——"

n

I'est également.

Remarquons d’abord que sil’opérateur A est hermitique, A" 'est
également. Supposons le théoréme vrai jusqu’a la valeur n et mon-
trons qu'tl est encore vrai pour n + 1. Par hypothése, nous avons

DA 2nl
(28) e+ (A — AN =0,
d’on
A+t A A
o)y g = A A
XN

7 [A(AH — HA%) 4 (ALl — HA) A ]

9L
=— 2T [ An I HA),
h C. Q. F. D.
Passons héore ;
‘assons a un aulre theoreme
Tutorime. — S W est une solution normée de U'équation de

propagation pour un probléme déterminé et si A est une inté-
grale premiére de ce probleme, la fonction (1—icA)W, ot ¢
est une constante réelle infiniment petite, est aussi une solution
normée (au second ordre prés).
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En effet, par hypothése,

. N 27t
(30) = HOW).
D’autre part, on a
-
. s (I+lc\)lr “ + ()\‘If' zy\’)——l—,
(31) ot o

H(1+ (e AW = TI(U) + /s HA W

d’on compte tenu de (30),

d 2% . . A 2%t }
3 = AT =i =
(32) ( ; A 11><I+l AU t [_dt (\l[ HA) U = o.

La fonction (1+ (e A) W est donc bien solution de I’équation de
propagation. Il reste a prouver qu’elle est normée (au second ordre
prés) si W est normée. Or, on a,

(33) j (L s A YU (1 72 AW oo
:/T”I'dr—i—is [wa\*(\r*>qwr+ & :\(11')4:] e

Le crochet du second membre est nul a cause de 'hermiticité
de A. Ce second membre est. donc bien ¢gal & 1 au second ordre
¢ prés et le théoréme est démontré.

Ainsi Uopération {1 -+ e A) représente une transformation infi-
nitésimale qui fait passer d’une solution normée a une antre solu-
tion normée. La connaissance d’une inlégrale premicére fournit
donc un moyen de passer d'une solution a une solution infiniment
voisine : c’est 12 une propriélé que possédent déja les intégrales
premiéres en M¢écanique classique.

Il est aisé d’obtenir une transformation finie qui se réduit au
premier ordre en ¢ & la transformation infinitésimale 1 +zZe A, 11
suffit de considérer 'opérateur '

(34) I 18 A+ —— (”) (i_s?fj\g+' (”)” A

défini comme une série d’opérateurs. On peut le représenter sym-
boliquement par e** et 1l est fonction de la variable s. Pour s = o,
il est égal & 1 et pour s = ¢ infiniment petit, il se réduit bien &
1+ Z¢A au premier ordre en ¢, On vérifie immédiatement que
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e“*W est solution de I'équation de propagation. En effet, cette fonc-
tion est une somme de termes proportionnels aux A" (W) et,
puisque A est par hypothése intégrale premiére, A I'est aussi et
A* (W) est donc solution de I'équation de propagation, d’aprés
notre deuxiéme définition des constantes du mouvement,

Ainsi la connaissance d’unc intégrale premiére fournit, quand
on connait une solution W de 'équation des ondes, une infinité
d’autres solutions de la forme ¢**W on s peut prendre n’importe
quelle valeur réelle. Toules ses solutions sont normées si W est
normée : cect résulte d’un théoréme général de la théorie des opé-
rateurs et matrices d’apreés lesquel st A est un opérateur hermitien,
e”* est un opérateur « unitaire » qui conserve les normes, mais on
peut aussi le vérifier en écrivant la suite de relations (o 'on tient
comple de¢ 'hermiticité de A»)

(35) /‘( eI * (@8 A1) :2 f (—nl.ys‘)n, AP s\ ofz

:E fll'* (jli‘:')” A e\ /=

= flr* e—BA @is AP (/7 :f‘F*‘F dz =1.

Il est intéressant d’appliquer le théoréme auquel nous venons de
parvenir au cas particulier des systémes dont ’hamiltonien ne
dépend pas du temps. Nous avons alors des solutions de la forme.

o

Ay
=« (qr,...,qn0€"
et d’autre part, I'énergie est intégrale premiére. Nous aurons done
aussi, d’aprés notre théoréme, des solutions de la forme
) 2_,_11‘[%/ 2:1"“ 27
(36) ' == eislt zzi(q,,...,q,l)elt =e ! wel ,

. (Y . 27 .
en remplagant dans la derniére écriture s par %) ¢e quine change
rien d’essenticl. Il est alors facile de voir en remplagant 'opéra-
?ﬁ{\'l[
teur e”  par son développement en série que les solutions (36)
peuvent s’éerire ausst

27l

E; ({4 )

(37) T=a/(q,...,qn)e " )
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ou ¢ estla variable temps et s la valeur particuli¢re du paramétre
de la transformation. Nous obtenons donc des solutions qui se
déduisent de 'une d’entre elles par un simple changement de
Porigine du temps, c’est-a-dire par un simple décalage de la phase.
Mais, étant donnés les roles tout & fait symétriques des lettres ¢
et s dans 'expression (37), on peut permuter Ies roles de ces deux
lettres et I'on en conclut que, si W;(q,, ..., ¢,; o) estla valeur de
la 7™ fonction propre de I’hamiltonien du systéme a Uinstant o,
sa valeur a I'instant ¢ est

o

e
(38) Wi( g, .., qnst) =¢€ " Yi(qi, ooy gui o),

On le vérifie d’ailleurs aisément par un raisonnement direct. De

plus, comme tout W est de la formez ¢;W; et que tous nos opé-
i

rateurs sont linéaires, on en déduit facilement que, si

» | N
T(q, -~-,f1~90)=26z‘1”i((/u S gn0)
i
est la forme de 'onde W a Uinstant o, sa forme a 'instant 7 est

donnée par

°Ti

BRIy
(39) Y(qi,...,qn;t)=e€h (g1, ..., qu;0).

Cette formule fournit, au moins théoriquement, 'expression géné-
rale de la solution de I'équation des ondes W, qui prend une forme
donnée a un instant initial donné.

5. Intégrales premiséres et déplacements d’ensemble dusystéme.
— Il existe un lien étroit entre existence des intégrales premiéres
et leflet des déplacements d’ensemble du systéme considéré.
Envisageons par exemple un systéme soumis a des forces qui ne
dépendent aucunement d’une des coordonnées z. Cela veut dire
que, sil’on déplace le systémes en bloc lelong de 'axe des # d’une
quantité quelconque Az, le probléme mécanique ne sera nullement
modifié. Choisissons un certain systéme d’axes carlésiens : soit
W(zi, ..., zy; ) une solution de I'équation d'ondes du systeme
(supposé sans liaisons) dans sa premiére position; aprés le dépla-
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cement d’ensemble Az, on devra avorr la solution

Uz + Az, Y1, 51y oo oy N+ AZ, YNy BN 1)
Done,

Wi+ Aw, vi, 510 .. @x—+ A, oy, oy, 8) — W, ..., 2x; t)
Az

doit aussi étre solution de I'équation de propagation. Si Az est
infiniment petit, cette derniére fonction est égale a

POp e N SH
Py étant Popérateur défini par (18). Donc, si W est solution, Py (W)
I'est aussi. Py est donc alors une intégrale premiére et nous retrou-
vons le théoréme de la conservation de I'impulsion.

Supposons maintenant que nous ayons un systéme soumis a des
forces qui ne dépendent pas de l'orientation du systéme autour
d’un axe O 5, de sorle que, si nous faisons tourner notre systéme
en bloc d’un angle Ag autour de O 5, le probléme mécanique n’est
pas modifié. Repérons la position des corpuscules du systéme par
des coordonnées cylindriques ri, g;, z; autour de Oz. Alors, si
W(ry, ..., 5y, t) est une solution de l’équati(;n de propagation
pour la premiére position du systéme,

W(ri, 314489, 51, .05 7N, 9N+ A3, 3x5 )
doit aussi étre solution dans le méme systéme de référence et la
quantité

W(ry, g1+ A2, &1, -0, Py, 3N+ Ao, ax; ) —W(ry, ..., 25, 1)
Ao

est encore une solution. Si Ag est infiniment petit, cette derniére
solution est égale a
o 2%l .
27 = T M,
-

Popérateur M étant celut qui a é1é délint par (1g9). Donc, si W est
une solution M. (¥) en est une autre et par suite M est une inté-
grale premiére. Nous retrouvons ainsi la conservation du moment
d’impulsion.
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En particulier, §'il n'y a pas de forces cxtérieures, les trois
grandeurs M, M,, M. sont intégrales premicres : une rotation
quelconque du systéme autour de lorigine ne changera pas le
probléme mécanique et si W (a4, ... 5y;¢) est solution dans un
certain systéme d’axes de coordonnées rectangulaires, cette méme
forme de solution sera encore valable aprés une rotation quelconque
du systéme autour de lorigine; autrement dit on obtiendra une
solution dans le nouveau systéme de référence en remplacant dans
U2y, ..., 5y ) les anciennes variables par les nouvelles.

On peut encore appliquer les mémes idées a la variable temps.
Il se peut, en effet, que les forces extérieures ne dépendent pas du
temps; c’est le cas que nous avons déja maintes fois étudié. Alors,
st 'on se déplace le long du temps d’une quantité quelconque A¢,
le probléme mécanique n’est pas modifié et, siW (g, ... ¢, ¢)est
une solution, une autre solution est fournie par W(gy . .. ¢, ¢+ Af)
W1, o oosgm t A — gy, .

At

infini . L d LA
miniment petit, on voit donc gue Jr
L 9%l

solution, % est égal & —— H(W); donc H(W) doit étre solution

quand W est solution et par suite I est intégrale premiére. Nous
retrouvons ainsi la conservation de I'énergie.

- Présentons encore une remarque finale. Soit un systéme admet-
tant M, M, et M. comme intégrales premiéres et soit ¥ une solu-
tion de I'équation d’onde qui soit fonction propre de M, M, et
M. pour la valeur propre o. On obtient dc¢ nouvelles solutions
pour les transformations infinitésimales (1 4 (e M)W, (1 4 7e M )T
et (14 7e M)W correspondant a des rotations infinimeut petites
autour des trois axes de coordonnées. Ces transformations ne
changent pas la valeur de W, puisque M.(¥)==o0, .... Doncune
solution ¥, qui est fonction propre des opérateurs M, M, et M
pour la valeur propre zéro, posséde la symétrie sphérique puis-
qu’elle n’est pas modifiée par une rotation quelconque autour de
P'origine. La fonction d’onde représentant ’état fondamental de
I'atome d’hydrogéne est un exemple de cette proposition.

.. s U 1
amsi que par I ') Pour At

est solution. Or, ¥ étant une
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CHAPITRE 1V.

LA THEORIE DU CENTRE DE GRAVITE
EN MECANIQUE ONDULATOIRE (1).

1. Définition du centre de gravité. — Nous avons rappelé
I'importance que présente la notion de centre de gravité en Méca-
nique classique et le lien étroit qui unit cette notion au théoréme
de Pimpulsion. Nous avons a examiner si ces circonstances se
retrouvent en Mécanique ondulatoire. Nous rencontrons alors dés
Pabord la difficulté suivante : la définition ancienne du centre de
gravité par les équations

N N N
> >
m;x; m;yi n; s
] ; i i
1 1 1
(l) X = y Y = 3 7 = 9
2L " m
avee
N
—
m = ng,

{
1

n’a plus ici un sens bica net, puisque les corpuscules du systéme
ne sont plus a chaque instant bien localisés et que leurs coordon-
nées 2y, )i, 5; n'ont pas a chaque instant une valeur bien déter-
minée. Mais cependant les z;," i, 5; figurent dans les équations
de la Mécanique ondulatoire; elles y figurent comme des sortes
de « variables aléatoires » représentant les localisations possibles
des corpuscules. Il est donc naturel de conserver les équations (1)
comme définissant les variables aléatoires représentant les locali-
sations possibles du centre de gravité.

(') Plusieurs des résultats cxposés dans ce chapitre sont dus a M. Jean-Louis
Destouches.
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En adoptant ce point de vue, on est amené tout naturcllement

passer des variables zi, ..., 5y aux variables X, Y, Z, %y, »,,
Zyy .+ -+ iy, Ty, Cy définies par les relations (1) et par les relalions
suivantes : -

(2) Ei:xi_xz ni:}'i”—Yz Li= g~ 1 (i:“‘)'a-'-awj'

Les £,, ...,y sont donc les coordonnées des N corpuscules du
systéeme dans leur mouvement relatif autour du centre de gravité,
ces coordonndes ayant aussi un sens aléatoire. Par suite de leur
définition méme, ces 3N quantités sont lices par les trois relations

N N N
Zﬁ r
(3) A= mt;=o, B= min;= 0, C:: mli=o.
i i i
1 1 1

Si donc on considére un espace formé par les 3N + 3 coordon-
nées rectangulaires X, Y, 7,2, ..., ¢y, le point figuratif du systéme
dans cet espace se trouvera toujours sur la multiplicité linéaire a
3N dimensions définie par les équations (3), le reste de cet espace
n’ayant pas de sens physique.

Pour montrer que le centre de gravité ainsi défini posséde la
méme propriéié essentielle que le centre de gravité classique, nous
considérerons une fonction quelconque o(xy, ..., zy) des coor-
données des N corpuscules du systéme (5 peut étre la fonction
d’onde W) et nous écrirons sa différentielle totale par rapport a

Ly o0 os By

Jz
/ _—t
) S Z or 0N

a3, 5

ou S indique une permutalion circulaire sur les lettres z, y, =
D’aprés (2), ceci nous donne

. 05
b Z i (N ).
1

X, Y, 7
g1,3

s T

(% 3

Mais, & cause des relations (3), les %, /vy, 7, ne sont pas indé-
pendants et 'on peut exprimer trois d’entre eux, mettons diy, dny
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et dzy, en fonction des autres. On trouve ainsi

N-—-1
. A > Jo do m; Jy
o = T2 ax + — .
(6) @3 \b/ 2‘ t)LL{] 2 <(}11 ().l‘y) @
1
81,3

Comme, au second membre de (6), les différentielles sont mainte-
nant indépendantes, on a

N N N
(7) N N R N e
OX e O \ 10y A A-l dz;
1 1

et, la fonction 4 étant quelconque, nous pouvons écrire les rela-
tions entre opérateurs

) s 0 5o )~ 0
f. Wl s N 1. Wl 14
(&) K= T N =2ar o= Xin
1 1 1
Posons alors
h 0 h J h 0

= —— — e —— —— Py = ——

(0 Px=—omoe Py smioy’ 2 27t JZ

Ce sont la les opérateurs corespondant aux composantes de I'im-
pulsion du centre de gravité. En comparant (8) a (9), on obtient

N N N
Ql LY
(10) P“:Zi’)"'” py_—,-zi,).‘.“ PZ:ZI},:“
1 1

1

et nous voyons que Py, Py et P, sont identiques aux opérateurs
de méme nom introduits au chapiire précédent, formule (18).
On peut donc bien dire aussi en Mécanique ondulatoire que la
quantité de mouvement totale du systéme est égale a la quantité de
mouvement du centre de gravité.

Si le systéme est isolé, les trois grandeurs Py, Py, P;sont, nous
Pavons vu, des intégrales premicres. Siles forces extérieures n’ont
pas de composantes le long de Ox, Py est intégrale premiére, etc.

Par contre, nous ne pouvons pas dire jusqu’ici que le centre de
gravité d’un systéme isolé se meut d’un mouvement rectiligne et
uniforme, car le cenlre de gravité n’est défini jusqu’a maintenant
que comme un point aléatoire dont la position instantanée, et par
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suite 18 mouvement, n'est pas bien déterminée. Nous verrons
cependant plus loin que la « position moyenne » du centre de
gravité est alors animée d’'un mouvement rectiligne et uniforme.
De méme, nous ne pouvons plus dire ici que la quantité de mou-
vement totale du systéme dans son mouvemenl autour de son
centre de gravité est nulle, théoréme qui, en Mécanique classique,
se déduit immédiatement des relations (3) par une simple déri-
valion par rapport au temps. Ici nous n’avons pas nécessairement

N
N O
Z =0
0% ’
1

Nous ne retrouverons un résultat analogue au résultat classique
qu’en nous placant plus loin au point de vue des valeurs moyennes,

2. Théoréme de Koenig relatif a I’énergie. — Nous allons main-

tenant chercher & écrire I'équation de propagation cn employant

sy

Pour cela, nous pouvons utiliser un théoréme qui est’extension a

au lieu des variables #y, ..., zy les variables X, Y, 7, 7;,

la Mécanique ondulatoire du théoréme classique de Keenig relatif
a 'énergie cinétique.

Tatorime. — Pour écrire la partie cinétique de Uopérateur
hamiltonien d’un systéeme, il suffit d’ajouter I’hamiltonien
citnétique relatif au mouvement du centre de gravité et I hamil-
tonien relatif au mouvement du systéme autour de son cenire
de gravité.

Une premiére maniére de démontrer ce théoréme counsiste a
considérer les relations (3) comme exprimant des liaisons entre les
3N - 3 variables X, ..., Z5. On a classiquement

N
2T :Z m (a7 430

N

ani[(i *51))"‘(\ i)+ (2 + :t>ql

1

f

~

= (R V2 ) =W (87 e if = 2) (VA = VB 20,
i

i



LA THEORIE DU CENTRE DE GRAVITE EN MECANIQUE ONDULATOIRE. 77

La derniére parenthése étant nulle en vertu des équations (3),
nous retrouvons l'expression classique du théoréme de Kanig;
elle nous fournit pour I'expression du ds® dans notre espace de
configuration de la Mécanique ondulatoire

N
ds? = m(dX? 4+ A2+ d12) +2 g (AEE = i} + d7)-
i
1

Le laplacien généralisé dans cet espace de configuration est donc
. ) ) a7
1 )2 J? o Y I o2 o)? 2
11) A= —{ 5 + =5 + =53 +\—__—,+—_+—_—,
(1) n <a\: g ()l,i> e ; 1 <05; dnz I >’
1

ce qui nous conduit aisément &

(13) Mgy o=

2N

N
‘ ) ) O I ; )
(Px—+P§+Pi) +>_,l_ oo PE P+ %),
1

avec les notations loutes naturelles

.
(1%) o d ] ho 0 h o

)G = Jp . T= o e —— 3 P
re 2wl JE; 1 2me d1y; I

Le théoréme annoncé est exprimé par (12).

Mais nous voulons développer une autre maniére plus détaillée
et plus instructive de faire cetle démonstration. Nous partons
toujours des formules (1), (2), (3). Si nous désignons par
o(N, Y, 7, %, ..., Zy; &) Ja fonction obtenue en substituant dans
Pexpression W(zy, ..., zy; t) de la fonclion d’onde du systéme
les valeurs des z,. ..., sy en fonction des X, ... %y, on trouve
aisément

[ m; 0 J m; d -\ |
DT = 2 E — z,
r; m oI\ 73 m < JEr :

Tmpooor mp Z 7] Jd
[ A o _ 1 —
IERZAN T < dE; | ON
A
mi 0 0 " m? 2 J 0\ 2
a2 — — _ —_
R JE; dX I It

2

o2 m; d /N I
e — 2 — Z - o
' Js} m J%; ( JE: ™

k
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d’on I'on tire

n n A 2

. 1 ) 2 o2 1 E Jd )
(13) Ei my; m JINZ + imy JE} m i IEk &
I

1 1 N

L’équation d’ondes du systéme qui était avec les variables

Liy o vuy By

- N
oo 1 ) ) ) >
(16) oy Em(p-?i_*'pﬁ_*_[)i)_'_ Ulai, ...,2x; 8) |0
i

devient donc avec les nouvelles variables

N N 2
I do I ~ ¥ N 1 S o)
7) — —% = — P3 -+ — i — — — |+ U fo.
(17 a2ni Jt S om N —Jimn[[’” 2 2.1:)55 i
a 1 1

On obtient ainsi une équation de propagation dans Vespace a
3N -+ 3 dimensions des variables X, ..., 2y dont les solutions
n’ont, d’aprés (3), de sens physique que sur la multiplicité (X)
délinie par

(18) (,\.:) A=B=C=o.

On peut alors se demander comment, ¢lant partis de définitions
qui impliquent les relations (18), nous avons pu obtenir une
équation de propagation valable pour toutes les valeurs des &,
niy & méme en dehors de (X). GCela vient de ce que, si nous
avions posé, au liea de (2),

(2%) Li=z—X +aq, Ni=Yi

Y + 0, li=z,—1 + ¢,

a, b, ¢ d¢tant des constantes quelconques, notre raisonnement
précédent n’aurait ¢té aucunement modifié, les constantes a, b, ¢
disparaissant lors des dérivations. Or, avec les définitions (2'), on
aurait

(39 A:Zmizl«:a, BZZ’”M[:[): C:Zm,-:,»z(;,
i i i

et, en donnant successivementa a, b, ¢ toutes les valeurs possibles,
la multiplicité (X) balaierait tout Yespace des %, ;, ;. On com-
prend ainsi pourquoi les relations (3) entre coordonndes sont plus
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restrictives que I'équation de propagation obtenue & partir de ces
relations par des dérivations.

Nous venons d’obtenir une équation de propagation (17) valable
dans 'espace 4 3N + 3 dimensions X, ..., Zy, dont les solutions
n'ont de sens physique que sur la multiplicité (Z). Profitant de
cette derniére circonstance, nous pouvons faire disparaitre dans

Péquation (17) le terme en — (Zdt > g, de facon a retomber

sur le théoréme de Keenig. A cet effet, nous introduirons les nou-
velles variables

N
Wl
: I}I,[Ei
(19) A . | B . C
I u; :’l—-—-::'—————-, Vi —;— — W, = ;— —
V) He= < " ! m M m TR m

immdédiatement calculables en fonction des 2, 0, ¢, puis les moments

conjuguds
) ho d h d hoJd
20 = e— —— = — ——— ——— ) gy, == ——— L —
( Pui axi du; Poi Swi dvy P 2Rl dwy
Considérons la fonction ®(X, Y, Z, &1, ..., %; ¢) obtenue en
remplacant dans I'expression de ¢ les variables Z;, ..., Zy par les
variables wy, . .., wy respectivement, de telle sorte que
(21) PN, Y, 258 BN O)=2(X, Y, L g, e, N ),
Ui, ..., vy Gtant remplacées dans o par leurs expressions (19).

Sur la multiplicité (2), A, B, C étant nuls, u;, ¢; et «w; coincident
respectivement avee Z;, 7; et §; et @ coincide avec ¢.
Or, on a

7 N

N U
pad = pue— Bl <
g ;g m /_I’ux 7y

1

(22) 3 e
PR =iy — 2 p, kauk Fa ':2_ 3 Ptu)?;
N
d'ou
N 2
|l N\
(23) Z'ﬁ”’ @ *\ STl ,,,,( \ D) %

1 N



8o CHAPITRE IV.
On a donc
r \ .
1 2 YU N e .
(24) S (2/7LPX+‘_,)42,,Z,F& +U [N, Y, 258, .., 85 2)
4 1
3,3 ] )
| Bl
N N -
1 — 1 1
AL S (S ) (S )
S am ¥ ,»'zm,,-/“n 9 m A_j g
ER NI 1 A y
A
< o(X, Y, Z; wyy ..., wy; t).

Si 'on compare cette équation avee 1'équation (17), on voit, en
tenant compte de (21), que le second membre de (24) est égal A

. h 0 S
(25) s SO YV Ly e )
h d . . Y
~m()7(b(xz Y, Z; &, ..., Ini ).

L’équation (24) peut donc s’écrire

N
I 52 N _E Ay N o
(26) S (—‘ o )7V =g w

Comme la fonction @ coincide avec ¢ sur la multiplicité (£), on
peut considérer I'¢quation (26) comme I'équation d’ondes du
systéme. Le théoréme de Keenig énoncé plus haut résulie alors de
la forme du premier membre de (26).

En résumé, nous pouvons profiter du fait que la fonction
d’onde dans I'espace X, ..., ¢ n’a de sens que sur (X), pour
écrire I'équation d’ondes sous la forme qui correspond au théoréme
de Keenig. Cela revient a choisir parmi linfinit¢ des fonctions
d’onde qui ont méme valeur sur () la fonction d’onde @. Cette
fonction @ jouit de la propriélé exprimée par les relations

N N N
,, L .
(27) (05 T togn, I
1 1

1

propriété dont o par exemple ne jouit pas. On voit, en effet,
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aisément que
N

N
(2%) dg W do J
’ (}EL‘ - I).l'i’ i(}Ei _21(7‘;; 70
1 1

tandis que I'on a

N N N
. 224 N ds duy do [ m; o ny do
o) = L DL S (g M) L ey Oy
J%; rdugp Jz; e . UL m du; m rduy
! )

1

d’ou résulte immédiatement la premiére relation (27), les deux

autres s¢ démontrant de méme. Ainsi, en Mécanique ondulatoire,
N

on n’a pas la relation opératorielle 2 P, = 0, qui correspondrait
P

1
N

a la relation numérique classique Z‘pg’i: 0; mais, néanmoins, si
12
. 1
I'on choisit pour fonction d’onde la fonction ®, Popératcur Zpg

appliqué a cette fonction donne zéro.

3. Exemple simple. — Pour illustrer les considérations déve-
loppées dans le dernier paragraphe, nous allons é¢tudier un
exemple trés simple ou les représentations sont possibles dans
I'espace a trois dimensions. Gest celui de deux corpuscules sans
interactions assujettis 4 se déplacer sur une droite Oz. 11y aalors
deux coordonndes g;: les abscisses x; et x; des deux corpuscules.
On a, pour Pabscisse du centre de gravité :

My Xy~ Ma Ly

(30) X= (m = mi+ ms),

m
puis pour les abscisses des deux corpuscules, par rapport au centre

de gravilé,
HE] e
Xy— —— X,
m m

ma ny
— )&y — — 1,
m m

Il
R
{
v
Il
—~
I
|

(30)

oY

|
B
\
P
[l
—~
|

avec la relation

(32) my 5y 4 mnka=A = o.

L. DE BROGL!E. 6
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On peut représenter I'espace £y, £, X dans notre espace a trois
dimensions.

Dans cet espace, la fonction d’onde n’a de signification que
dans le plan (2) défimi par la relation (32).

Ecrivons 'équation de propagation du systéme, avec les variables
xy et o
(35) IR Aty |

> -+ 5 =
my Jx} my dxj h Jt

Nous avons comme solution de (33) le produit des ondes planes

()

5

Fig. 2.

représentant le mouvement rectiligne et uniforme des deux cor-
puscules, ¢’est-a-dire

R P 2
— L4 ! ) L prg Uy oy 0
(54 ) Y= Aye S Sy ce

)

et toute solution de (33) est une combinaison linéaire de solution
de la forme (34).

Passons maintenant aux variables X, Z,, Z,. équation de propa-
gation devient, comme nous I'avons vu plus haut,

0 T

JE5 m oo

(35) 1 2o 1 J%o 1 J2e I Jd J \? dwi JW
3 — = = x o= .
m X2 my i3} ma JE3 )

La relation (34) devient

37”[( I 4 /'?.)/ ( X x J
i P — (e M= Sy — sy
(3(‘») © Aje” Sy 2y ' ’ Lss

)
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el il est bien facile de voir qu’elle satisfait a (35), et cela a cause du
J J \?
termo——l—< ‘ -+ ‘ ) .

m \ J5 JE,

Pour oblenir notre fonction ® (X, £, £,, ¢), nous devons rem-
, . S . . A
placer dans P'expression de ¢, %, el Z, respectivement par £, — -~

- A .
etf,— =. D’ou
' m

e 2 2 A W

3 ) q (\r E .4 \ e',%l(.f:—/'[ +;;l;ﬁ‘ t"‘(ﬂl'kﬁz)x+‘:”1+/‘2)f”_/7151*‘/73§2:|
- () [ Snty o 2

o) Ny Gy gy L) = e

b
et, d’aprés notre raisonnement général, (35) est solution de

1 2D 1 20 1 20 imi JP

m JX\z my JE} ms JE h ot

(38)

C’est d’ailleurs ce que 'on vérifie facilement.

Fig. 3.

On voit ainsi que ® ne vérifie 'équation (38) fournie par le
A . . A
théoréme de Koenig qu’en raison de la présence du terme en —
Vg

dans I'exposant de I'exponentielle (37). Mais, comme les fonctions
d’ondes n'ont de sens physique que sur le plan A = o, celan’a pas
d’'importance et 'on peut employer ® a la place de o. Si l'on
représente le plan (L) d’équation A=o0 et la série des plans
d’ondes des solutions ¢ ct @, on voit que 'on obtient les plans
d’ondes ® en faisant tourner d’'un méme angle tous les'plans d’ondes
de ¢ autour de leur intersection avec le plan (2).

Mais ce passage des plans d’ondes de ¢ a ceux de @, ne modifiant
pas les intersections de ces plans avec (X), ne modifie pas les
valeurs de la fonction d’onde dans le plan (2); or, ce sont ces
valeurs seules qut ont un sens physique.
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Comme toute solution de I'équation d’ondes peut éire représentée
par une superposition d’ondes planes monochromatiques, on
voit qu’une solution quelconque pourra étre représentée dans le
plan (X), aussi bien par une solution ® que par une solution .

4. Théoréme de Koenig relatif au moment d’impulsion. -— Nous
venons de démontrer l'analogue du théoréme de Kewnig pour
Pénergie cinétique. Existe-t-il aussi en Mécanique ondulatoire
I'analogue du second théoréme de Keenig relatif au moment de
quantité de mouvement? Nous allons montrer qu’il y en a un,

En effet, soit M. le moment d’impulsion total du systéme antour
d’un axe O 3. L’opérateur correspondant est, nous le savons,

~

R h J d N
(39) Mo=-- :z::izk <T/!)_}—”/7”’7’—A)
1
Introduisons les variables \, Y, Z, £,,. .., Zy. Nous aurons
/ o J )
. [ NI PR , e
’ e e e N oy —— — (Y ThE)— |»
(40) M, ST e [OH—, )) ( +nx),m]

d’ou, en tenant compte de la premiére relation (14) et de la rela-
tion analogue en y

~
It g my; o my
/7 _— — po—
(1) M.= 2:[2/{‘ (\+’/)[111 1)Y+r)r/ nL(Z()r,,)]
| 2 o 0 e 1 0"
(Y | A P i
(Y + 1) t m JN - 5y m < E }

puis, en simplifiant et en tenant compte de (3)

< -
I J 7 U o 7
42 ) PR R A N
(42)  Ma o= | Yoy ‘d\+ﬂﬁ-<’ﬁr)'r‘4— ’”n;g)
1

On a naturellement des formulcs analogues en M, et My et I'on
peut énoncer le théoréme.

Tutorkme. — On peut former Uopérateur correspondant i
U'une des composantes rectangulaires du moment d'‘mpulsion
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total d'un systéme en ajoutant Uopérateur correspondant au
moment d'impulsion du centre de gravité et 'opérateur corres-
pondant au moment d’impulsion dans le mouvement autour du
centre de gravité.

Ce théoréme est 'analogue du sccond théoréme de Koenig.

5. Point de vue des valeurs moyennes. — Nous allons mainte-
nant nous placer non plus au point de vue des opérateurs, mais a
celut des valeurs moyennes.

La formule donnant la dérivée d’un élément de matrice
(43) i =f‘lf,* ['f)} + 3% (AN — HA)] Wy s

[oa lintégrale est prise sur la multiplicité (Z) définie par
A =B =C= o] montre que

E2N

A : JA a7
) —_— = L id —_ i —_— £ 'S ’:

4D — / I [’)t+ (AL 11\)]1(1,
comme on le voit immédiatement en remplacant W et W par leurs
développements suivant les \I';.

Si alors nous considérons 'opérateur X, qui correspond a la
coordonnée X du centre de gravité, on a
dX 9Ri

10 — = ' (NH—UX) W ax.
(45) fa /Lfl (NH—1X) ¥ o

Or, comme on peut poser

ot les termes non éerits commutent avec \, on a

. h? o2 7 h2 o
i N —HN =— [ N— . —
(o) & S72m < JXz2 J\2 \>

d’ou

d\ [ o0 * Py
g = yr{ - W — / U 2 /-
G ot mbf ( 0l ()\> ¥ s . ' m v
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Si Py est une intégrale premiére (résultante des forces extérieures
nulle dans la direction des z), l'intégrale du second membre
de (47) est une constante V, et Uon a

(48) X = V.t -+ X,.

Donc alors la partie moyenne du centre de gravité est animée le
long de 'axe Oz d’un mouvement rectiligne uniforme.

Si les forces extérieures sont nulles, Py, Py et I, sont nulles et
la position moyenne du centre de gravité est animée dans I'espace
d’un mouvement rectiligne uniforme.

Il est facile de voir qu’en se placant au point de vue des valeurs

movyennes, nous avons une relation ¥ p: — o analogue a la relation
} ) P s D

. Wl .
classique Zpgi— o, alors que nous n’avons pas Zpai: ostiles ps,
sont les opérateurs de la Mécanique ondulatoire. On a

N X

N
AN X d; 2TL . -
(49) T Zim[Ei:ngi(—/—tE[ZEimi Tf‘lf [ — 1% | Wds.
t

1 i

Or H, d’aprés le théoréme de Keenig, ne contient comme terme ne

. o\ 1 0
commutant pas avec Z; que <—~> —— et l'on trouve, comme

27/ 2my; Ji7
en (46),

I 17
3 U —HE = —— -
( )0) >t +t 47:3111,[ ()2[,
d’ou
' ~
d AN [ o Jd )
. @ Ere= ) e R |
(51) dt Z[ st e ; mlt m; ( Y r)’:f,») «
1 1

\ .
.
—_-f\F’ Z p;.,;) LANCR
N L ! /

Or en vertu de (3) zm,{i: 0 constamment, et par suite

13

(52) bY I}L;El-:fllf"* <y ln,-’_{[) Tz = o.
e ; . dmd
i

i

Le premier membre de (51) est done nul etil doiten étre de méme
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du dernier membre, ce qui s’écrit

4

N

(53) Z'pz_,-zo.
1

C’est le résultat annoncé.

6. séparation du mouvement du centre de gravité et du mouve-
ment autour du centre de gravité. — En Mécanique classique, on

a le théoréme suivant lequel le mouvement du centre de gravité
N

s'effectue comme celui d'un point matériel de masse M —= N m;
H[
1

qui serait soumis a la résultante générale F des forces extérieures

G
M2 T
ot

o~
[
-~

Dans un assez grand nombre de cas, ce théoréme permet de
séparer le mouvement du centre de gravité du mouvement relatif
autour du centre de gravité. Néanmoins ce cas doit déja 1ci en
principe étre considéré comme exceptionnel, car, si l'on se donne
les champs extéricurs agissants, les forces et par suite la résultante
des forces dépendent de la configuration du systéme autour de son
centre de gravité, de sorte que le calcul du mouvement du centre
de gravité par laformule (54) ne peut pas se faire indépendamment
del'étude du mouvement relatif. Mais, en pratique, ilarrive souvent
que les champs extérieurs peuvent étre considérés comme sensi-
blement constants en grandeur et direction dans la région de Pes-
pace occupé par le systéme et que 'on puisse pour cette raison
calculer la résultante des forces extérieures sans connaitre la posi-
tion des points matéricls du systéme autour du centre de gravité.
Clest, par exemple, le cas pour les corps pesants de petites dimen-
sions dans le champ de gravitation a la surface de la Terre; c’est
ausst le cas, du moins approximativement, pour les planéies dans
le champ de gravitation du Soleil. De méme un systéme de points
matériels électrisés (tel que atome de Bohr concu classiquement)
dont on connait la charge électrique totale, sl est placé dans un
champ électrique uniforme (ou du moins ne variant pas sensible-
ment sur des longucurs de Pordre des dimensions du systéme) sera
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soumis a des forces dont la résultante est connue d’avance, car elle
est égale au produit de la charge électrique totale par la valeur
supposée uniforme du champ électrique dans la région qu’il
occupe. On voit ainsi comment il est souvent possible de séparer
le mouvement du centre de gravité¢ du mouvement autour du
centre de gravité.

Voyons maintenant comment la question se présente en Méca-
nique ondulatoire. Nous savons que l'énergie potentielle U d’un
systéme est de la forme

N iy
=~ - T _71 bl »-1 [l
(55) Ul, ... 2x; z):Z Vi(zi, Vo 55 t)+z 055 (ri),

1 ij

60 la premiére somme du second membre représente Paction indi-
viduelle des champs extérieurs sur les corpuscules du systéme
et la seconde représente les interactions des corpuscules entre
cux, qui sont uniquement fonctions des distances entre les cor-
puscules. '

En introduisant comme précédemment les variables X, Y, Z,
i, +.-, £y, Dous voyons que 'énergie potenticlle prend la forme
suivante

N

(36)  U(X, ... Ey;t)= Z[Q>i<X+gi, Y -y, L+ 0)
1
17

!
ad ; . . .
-+ 2 Vijli—Ej, ti—mj, G—4))-
ij

Deés lors, le théoréme de Keenig du paragraphe 2 nous donne

h 0w 1 s N 5

(57 — — = | — (Px+ Py ’7

(57) 2mL Ot zm( S+ Py D7)
N

I 2 2 2
+212mi (]]E-i+[)"'i+ /)5»i>

1
N

¥ - ' r;
-+ 2 Vi X+E, Y+, L+50)
i
1

=~/ .
E B . E.

-+ ‘vij(E.i—:]'; i 1), t.i”“§/> w.
i,j
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Dans le cas général, la séparation du mouvement du centre de
gravité et du mouvement aulour du centre de gravité sera impos-
sible, parce que, dans Pexpression des 9;, les variables X, Y, Zsont
mélées aux variables relatives ¢;, =, £;. Mais il peut arriver que
nous ayons affaire & un systtme dont les éléments sont trés
rassemblés autour du centre de gravité; alors lafonction W ne sera
diftérente de zéro que pour des valeurs trés petites des coordonnées
relatives Z;, i, ¢, etil pourra arriver que les 9; soient sensiblement
constantes dans le domaine de variation des %;, n;, %, pour lcquel

W est différent de zéro. On pourra alors poser
(38) lF:l[j‘g<X> ‘r’ Z, t)“”l‘,? ey :N7 t),

LS1

en prenant pour W, et W', des solutions des équations

/ N h
—1(1’%—'—[’&2'—1—1";)—0—2 VAN, Y, D) | W XY, 2] == LAFS
am ' g s wmil Jt
- 1
(.« . N iAf
99) QI 2 ° 2 N!
ey (l)i;+pﬁ;+1):;) +Z Evi/'(ii*‘sh ni— T, ci‘:/’)
T
P i
o o,
=< W, (k s &N = —
< I(\Iﬂ : &\ t) ani It ’

car, en multipliant la premiére par W, ct la seconde par ¥, el en
ajoutant, le produit \I' = W, ', sc trouve satisfaire a I'équation de
propagation du systéme. De plus, Uensemble des W, fournissant
un systéme complet de fonctions de X, Y, Z et I'ensemble des W',
un systéme complet de fonctions deéy, ..., Ly, toute solution ¥ de
I'équation des ondes du sysiéme sera la somme de produits de la
forme W',

Dans le cas ou les actions extérieures ne dépendent pas du
temps, on aura des solutions monochromatiques de la forme

on i 2Tl

il [ — E.t
(60) Wy=ay(X,Y,Zjer ©, We=anf, ..., &)el

3

et par suite, pour le systéme entier. on aura des relations de la

forme
ST

— It
(61)  We=a,(X,Y, L1 (5, ..., lx)e " (E=E,+E,).

Dans le cas plus particulier encore ou les actions extérieures sont
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nulles (systéme isolé), on a, pour ¥, Iéquation (!)

B 3 9 I
(62) —I'(P:\"""Pi'—i—Pi)lI/' h oW,

am T unl It

qui admet pour solutions les ondes planes monochromatiques

r

g;;iLP%+I‘%+P',j’ —
(63) ¥, =ae"

PyX— Py \'—vzzJ

2

représentant les mouvements rectilignes et uniformes du centre de
gravité dont les quantités de mouvement sont Py, Py, P, et Uénergic

Pi+ i+ P
2m

E,=
4

On a alors pour le systéme des solutions de la forme

R Bl . , ,
N . - (Eg+ KBl — = IPXX+Py Y= Py}
(()f;) W= (t,-(’::l, ey t_\) eh ® e e

On voit donc qu’ici, comme en Mécanique classique, le centre
de gravité d’un systéme isolé est susceptible d’un mouvement
rectiligne et uniforme, avec cette addition particuliére a la Méca-
nique ondulatoire que on peut avoir une « superposition » de
wmouvements rectilignes et uniformes du centre de gravité corres-
pondant & une solution de la forme générale

i

.
(63) ‘F:Zar(’ét, L x)e k

Px, Py, Iz

[l Bt — Py X — Py ¥ — by 2)

Nous allons rencontrer ici une circonstance analogue a celle que
nous avons précédemment signalée dans le cas d’un systéme sans

interactions. Désignons para,'’, ..., al”, ..., lesfonctions propres
de I'équation du mouvement relatif. La solution la plus générale

de 'équation d’ondes du systéme pourra s’écrire

wTi
) >3 I g 1) e —Px X— Py Y = PyZ]
@) w= B o, (P)awz, .., )6
1, Px, Py, Pz
P{+ Py + Pj

avec Eo— —— 5 et celle solution (66) ne peut pas en

(') Ou Px, Py, Pz sont les opérateurs (9).
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général se mettre sous la forme du produit d’une fonction des
coordonnées relatives par une fonction des coordonnées du centre
de gravité. Cependant, si le systéme n’a jamais été soumis a aucune
action extéricure ayant pour effet de lier momentanément le mou-
vement du centre de gravité au mouvement relatif autour de ce
centre | par suite de P'existence de termes d’énergie potentielle de
la forme V;(N4-%;, Y +n;, Z+2;)] Ponde W sera nécessaire-
ment de la forme W, (X, Y, Z) W',.(%,, ..., Zy). Une solution de la
forme générale (66) ne peut se présenter que si le systéme a été
antéricurement soumis & des aclions extérieures liant le mouve-
ment du centre de gravité au mouvement relatif autour du centre
de gravité, de telle sorte qu’ensuite ces deux mouveéments ne soient
plus indépendants.

Dans le cas ou la solution est de la forme W, W, on doit normer
la fonction d’onde en posant

(67) f WX dY dE s .. dix=1,
I'intégration étant faite sur la multiplicité (X) définie par les
équations (3). Mais. comme Wget W, dépendent de variables diffe-
renltes, on peut supposer qu'on les a normées par les conditions

(68) f;q‘g‘z(l,\'d\'(lZ:I, f W, 2els .. dy =1
()

La quantité [U[*dN...d:; étant la probabilité pour qu’'une
expérience conduise & atiribuer au centre de gravité une certaine
position (dans I'élément dX dY dZ) et au systéme une certaine
configuration autour de cette position, si 'on ne s’intéresse qu’a
la position du centre de gravité et non a la configuration du

systéme autour de ce centre, on pourra dire que
(69) [f g, ...dc_y] dX dY dL
LV (E)

est la probabilité de présence du centre de gravité dans I'élément
de volume dX dY dZ. Cette expression est égale a

(;0) W, 2aX d\'dzf W= W, N dY d,
®)
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d’aprés (68). La fonction W, permet donc de décrire le mouve-
ment du centre de gravité de la méme maniére que la fonction W
d’un corpuscule décrit le mouvement de ce corpuscule. Nous
retrouvons la la méme idée qu'en Mécanique classique. En d’autres
termes, quand le mouvement du centre de gravité et le mouvement
relatif du systéme autour de ce centre peuvent étre « séparés »
Pun de Pautre, le mouvement du centre de gravité peut étre repré-
senté comme étant celui d’un corpuscule tictif de masse m égale a
la masse totale du systéme pour lequelil existe une fonction d’onde
dont le carré du module donne la probabilité de localisation en
chaque point.

Celte circonstance ne semble pas se retrouver quand on cherche
a constituer une Mécanique ondulatoire relativiste des systémes.
Méme quand il est possible de définir sans difficultés le centre de
gravité, 1l ne parait pas possible de trouver une fonction d’onde
jouissant de la propriété fondamentale que le carré de son module
donne la probabilité de localisation du centre de gravité en chaque
point. C’est 1a une circonstance qui semble devoir jouer un grand
role en théorie du photon, mais ¢’est un sujet que nous ne pouvons
aborder ici.

7. Mouvement d’un systéme de deux corpuscules par rapport i
des axes de référence de directions fixes liés & un des corpuscules
du systéme. — [l est souvent commode, en Mécanique classique,
d’étudier le mouvement d’un systéme de deux points matériels
isolés en se servant, comme référentiel, d’axes de directions fixes
(par rapport & I’ensemble des étoiles) dont 'origine coincide tou-
jours avec I'un des points matériels. Dans ce systéme de référence
qui, en général, n’est pas Galiléen, car l¢ point matériel pris pour
origine est en général accéléré, les équations gardent unec forme
simple. C’est ce que montre le théoréme bicn connu suivant :

« St Pon repére le mouvement d’un systéme de deux points
matériels isol¢ a I'aide d’axes de directions fixes dont P'origine
coincide constamment avec I'un des points matériels, le mouve-
ment de Pautre point matériel est donné par I'équation classique
F = py (comme si les axes de référence étaient Galiléens), mais a
condition d’attribuer a ce second pormnt matériel non pas sa masse
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véelle m., mais une masse réduite définie par la formule

. 1 I I ny N
(7 = e — ou = —
L 11 Ny my—+ m;

my ¢tant la veaie masse do point matériel choisi comme origine ».
La démonstration de ce théoréme est trés simple. Les équations

du mouvement dans un systéme Galiléen sont, en n’éerivant que
ce qui concerne l'axe des z,

o . 2y .
(=9 my —— = (Fi,, My —— = (Fa)
72) e 12 ) 2 (2t )ay
avec (Iyy), =— (Vyy)., d’apres le principe d’égalité entre’action

et la réaction. En prenant des axes de directions fixes dont
Iorigine coincide constamment avec le point matériel numcéroté 1
et en désignant par u, ¢, v les coordonnées du deuxiéme point
matériel dans ce systéme, on a

ol ?

. . ) 1 Cd I t
=3 ——={u)y = Ay ) = T e— —(Fip=1{ — — ) (Fa)e
{=3) ekl g 1) (Fae 12)¢ P + (Fai)e

s ny My
ou, d’apreés la définition (71),

N ?u
=

- u———:tF-_q
b = (Fa,

et deux équations analogues en ¢ ct en (v. Le théoréme est done
démontré.

On sait que M. Bohr s’est servi de ce théoréme dans sa théorie
quantique primitive de I'atome pour expliquer la variation de la
constante de Rydberg, quand on passe par exemple de ’hydrogéne
4 hélium 1onisé. Dans cette théorie, en effet, on emploie, confor-
mément aux méthodes de Uancienne théorie des quanta, les équa-
tions de la Mécanique classique, que I'on compléte un peu artifi-
cicllement par des conditions de quanta. Si 'on considére un
atome d’hydrogéne forin¢ d’un proton de masse M et d’un électron
de masse m ct si 'on considére le proton comme restantimmobile
a cause de sa grande masse (M = 1850 m environ), on trouve par la
théoric de Bohr la formule fondamentale suivante, pourles énegies
des états quantifiés de 'atome H, e étant la charge de I'électron

) | 22 met )
(79) “”:ﬁjﬁlz"-’— (n=1,2, ...)
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et les différences de ces énergies quantifices, divisées par la cons-
tante 2 de Planck donnent les fréquences des raies de 'hydrogéne,
conformément a la « régle des fréquences » énoncée par M. Bohr

-2
27"

 w2met [ 1 1 )
6 V= ———— | — — > .
(76) “ h3 nt ont (=)

En rapprochant celte loi de la lot expérimentale de Balmer don-
nant les fréquences des raies de ’hydrogéne atomique, savoir

. [
(57) ‘/=R<f‘.,—<.:) (n'=n),

ot n el n' sont entiers et ou R est la constante de Rydberg, on
voit que la théorie de Bohr permet d’interpréter la loi de Balmer
st 'on a numériquement

(78) R= 25

et celte relation est en effet trés approximativement vérifiée. Cette
vérification fut le premier grand succes de la théorie de Bohr.

Si V'on vefait le méme calcul pour un alome d’hélium ionisé
formé d’'un noyau d’hélium de masse quadruple et de charge
double de celles du noyau H, on trouve, pour les énergies des
états stationnaires quantifiés,

A 272 met
(79) . 1‘411=*T></| (Il:I,i!, P
d’ou
2% met I [ I 1 , .
(80) vpw=—— x4l — 5 )=4R{ 5 — 5 (n'>n).
I n? n'? n? n'z ’

Lés résullats expérimentaux de la spectroscopie pernietient, &
Paide de cette formule, de calculer la constante R. Or, on trouve
ainsi une valeur un peu plus grande que celle qui convient pour
le spectre de ’hydrogéne : on a, en effet,

Ru=1,09678.10% cm—1! et Rie= 1,097 22. 107 c—1,
d’ou
(81) — =1,004, — = .107%,
Ry I

Cette différence entre Ry et Ry, s’explique trés bien, comme l'a
i : piq y
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montré M. Bohr, si l'on tient compte du mouvement du noyau.
St 'on tient compte de ce mouvement, on peut en effet refaire
tous les calculs précédents dans un systéme d’axes liés au noyau,
mais a condition d’attribuer al’¢lectron la masse réduite p fournie
par Papplication de la formule (1)

mM

(52) S Vi

M étant la masse du noyau. On aura alors

PR

(83) Fp=— 220

ce qui donne

(84) R= 02,
On trouve aisément

= m My m n My "
(83) wn= ——— > m(1 > Blle= ——— = m(1— = s

‘ m =My My m—+ Mype My, |
puis
. m
Rue e N, 1 I 3 m
—_— = e Y NI 4 — e ) =14 - ——
] u B m " My )l]|c> 4 1\11[’
(86) 1=
/ My
Rye— R 3 om 3 1
L—"'\: 7]77:77>< — ™ 410
Ru 4 My 41 1850

L’accord est bon et la variation de la constante de Rydberg,
quand on passe de H a He, est ainsi expliquée. '

Nous avons maintenant a nous demander si 'on peut transposer
les considérations précédentes en Mécanique ondulatoire. La
réponse est affirmative, comme nous allons le voir en démontrant
le théoréme suivant de Mécanique ondulatoire.

« St le mouvement d’un systéme isolé formé de deux particules
est repéré a laide d’axes de référence de directions fixes dont
Porigine est lice a la premiére particule, le mouvement de la
secconde particule par rapport a ce systéme de référence non
Galiléen est décrit par la méme équation d’ondes que sile systéme
de référence était Galiléen et si la seconde particule possédait la
‘masse réduite définie par (71). »
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En effet, le systéme considéré étant par hypothése isolé, nous
pouvons séparer le mouvement du centre de gravité du mouvement
relatif autour de ce centre et 'équation d’ondes pour le mouve-
ment autour du centre de gravité sera, d’aprés le théoréme de
Keenig, '

87) [ S <?‘ ]Inlpg’ﬁ— T’In—_)pg> UG —Ey, i —na ,71_:)] T — 2};! ’i{}

¥

L0,8

Introduisons notre systéme de référence lié au premier corpus-

cule; les coordonnées du second corpuscule sont alors
(88) w=ft-—%, v=rt—rn, W=l

v
=1y

et si W (u, ¢, v, t) est lafonction d’onde dans le mouvement relatif
dans ce systeme de référence, on aura

‘ AU O de  IF A A
\ 95 du JE du’ JE, T du 05 Ju
(89) e - e

2w 2y R A

JdEE T dur’ JdEl T dur’

et des relations analogues pour les dérivées relatives aux variables
et .
[’équation de propagation devient donc

1 I - . .
S ( +———>]>E(\I)+L(u. v, )W = .
21y DI ’

4 O\) NN
(90, o ho 0
Pu=""570 r)u>

ou, en introduisant la masse réduite (1),

I Jvr
aml I

(91) S 5 ra )+ Ul o w0 =

u, e,

C’est bien I'équation d’ondes du second corpuscule supposé
doué de la masse 12 dans un systéme Galiléen. Le théoréme énoncé
plus haut est ainsi démontré.

Ce théoréme permet de retrouver immédiatement le résultat de
Bohr sur les variations de la constante de Rydberg. Sil’on consi-
dere en Mécanique ondulatoire un atome contenant un noyau et
un électron et si le noyau est supposé fixe et portant la charge




LA THEORIE DU CENTRE DE GRAVITE EN MECANIQUE ONDULATOIRE.

positive Ne (e ¢tant la charge de 1’électron en valeur absolue),
états stationnaires de cet atome sont les valeurs propres de I'équa-

tion
’ A\ Ne2
. gy 2y — Ry
(92) LS tun,p“'"l[ r v =EW,
.0, 5
. h 0 . T .
ol p,==—— - ct ou r:\/x-—i—vy‘—kz est la distance de

I’électron au noyau. M. Schridinger a le premier calculé ces
valeurs propres, qui sont

az2mN2et

(93) B,=— (n=1,2,...)

n2h

Sil'on fait N =1, on a le cas de ’hydrogéne; si I'on fait N = 2,
on a le cas de ’hélium ionisé. On retombe donc exactement sur le
résultat primitif de Bohr avec la valeur (78) de la constante de
Rydberg. Pour expliquer la différence entre les valeurs expéri-
mentales de I pour ’hydrogéne et I'hélium ionisé, il est done
toujours nécessaire de tenir compte du mouvement du noyau, ce
que l'on fera en utilisant le théoréme précédent. Dans le systéme
d’axes de directions fixes liés au noyau, I'équation d’onde sera

(9% S ip,‘-}(‘[’)ﬁ—U(\/1¢9+v‘l—+—w2)‘l':2{—;%,
Pt :

p élant la masse réduite. Cetle équation étant la méme que (g2),
avec un changement de nom des variables et avec substitution de
@ & m, on trouve ainsi la valeur (84) de R, d'oti'on déduit comme
précédemment (85) et (86), c’est-a-dire que l'on retrouve en
Mécanique ondulatoire I'interprétation des variations de la cons-
tante de Rydberg proposée par M. Bohr dans le cadre de ancienne
théorie des quanta.

L. DE BROGLIE. 7
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EXEMPLES DE PROBLEMES EN MECANIQUE ONDULATOIRE
DES SYSTEMES.

1. Choc d’un corpuscule contre un rotateur (Fermi). — La
Mécanique ondulatoire des systémes décrit donc, autant que
décrire se peut en Mécanique ondulatoire, Vévolution d’un
systéme dans le cadre de son espace de configuration. L’espace de
configuration étant en général a plus de trois dimensions, il est, la
plupart du iemps, impossible de se représenter I'évolution de
I'onde W dans ce continuum. Il n’en est que plus instructif d’étu-
dier en détail un cas ou l'espace de configuration n’a que trois
dimensions. C'est ce qu’a fait, il y a plusieurs anndes déja,
M. Fermi, dans le cas du choc d’un corpuscule contre un rotateur
plan. Nous allons exposer cette étude.

Par définition, on appelle « rotateur plan » un point matériel de
masse M assujetti a se déplacer dans un plan #Oy en restanta une
distance fixe R d’un point O que nous prenons comme origine des
coordonnées rectangulaires dans ce plan. Le rotaleur est caracté-
risé¢ au point de vue mécanique par son moment d’inertie J = MR*.
Nous supposons qu’un corpuscule de masse m, dont le mouvement
initial s’effectue suivantla droite du plan 2O y faisant Pangle y avec
l'axe Ox, viennc passer au voisinage du rotateur, de telle facon
qu’une interaction, un choc au sens large du mot, ait lieu entre
les deux. Nous désignerons par x ety les coordonnées du cor-
puscule, par 9 'angle polaire définissant la position du rotateur,
par U(x, y, 9) la fonction potentielle représentant Vaction
mutuelle des deux constituants du systéme. La fonction U sera
supposée n’étre différente de zéro que pour les valeurs trés petites
de z et de y et présenter par rapport & 0 la période 27,

Ceci posé, le probléme a résoudre est le suivant : sachanl qu’an
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début de son mouvement, le corpuscule, dont la masse estm, a un
mouvement rectiligne et uniforme dans la direction du plan 20y
qui fait I'angle 3 aveec Oz, déterminer les divers résultats pos-
sibles du choc entre le corpuscule et le rotateur.

La force vive 2T calculée a la facon classique est

(1) 2T = m(x?+ y2)+ J 02,

Il est donc tout indiqué de former un espace de configuration &
I'aide des variables

(2) t= ma, n=\my, {=I9,
car alors la force vive devient

(3) | DT = Bk 2 12,

On a donc

(4 my=1, mg=o0 ((Fk), 'my =1.

L’équation de propagation des ondes dans cet espace de configu-
ration euclidien est donc simplement

UL (N EL (N

(5) e ,)—r‘,—"‘ 7 [E—U(E m, HIF =o.

La fonction U (%, =, ¢) est nulle dés que £ et 7 ne sonl pas tous
deux trés petits et présente la période a7/ en ¢.

n

La fréquence de Ponde W étant v — 7

y nLous pouvons écrire

N

. 8x?. 1 W , E
(6) — E¥ =— Ve g avec V _\/;,,

et, par suite, I’équation (5) peut se mettre sous la forme

728 N R 2 1 U 8z ..
- — T L TRy, e, Dy
(/) ()E_, -+ ()TAZ -+ d:_, \/2 ()[2 /L;' U(,7 rn 5)
En raison du fait que U n’est différent de zéro qu’au voisinage
immeédiat de I'axe des £ et qu’il est périodique en ¢ avec la période
2my/J, tout se passe comme si 'axe des £ jouait dans 'espace de
configuration a trots dimensions £, 7, ¢ le role d’'un réseau i une

dimension de période spatiale 2my/J, susceptible de diffuser I'onde
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¥ incidente. Celte remarque trés ingénieuse de M. Fermi va nous
permettre de calculer la diffusion subie par I'onde W incidente
quand elle passe prés de O¢.

Avant tout, nous devons trouver la forme de 'onde ¥ incidente
dans ’hypothése adoptée. Remarquons d’abord que 'onde ¥y, qui
représente le corpuscule incident dans son mouvement initial, est

e
—— By {—mye syx—mysing y]

(8) ‘I"x:a:e"‘
3?[I‘3,l~\/21€,c s‘/.EAy’S]isIn"/_vﬂ
=ae" 5
E, étant Pénergie du corpuscule incident; car, en passant des
5 ; s
variables z et y aux variables £ et n, on a

myx = ¢;Z vE = \/;EE,

et de méme pour mey. .
Soit maintenant o, la vitesse angulaire initiale du rotateur.
[onde W, (0) du rotateur est

eri

ori — -
. Byt —Jwy 0] T{Egz—y':’hg:]
(g) We=cse = e R

LT 1 2 . « .
ou E, = ;.l o, est ’énergie initiale du rotateur. On a tenu compte

de Ju,0 = \/Q-E:C Pour justifier (g), 1l suffit de remarquer que
W, est solution de I’équation

21
(10) k.

’ 72

pour E = E,, cette équation représentant le mouvement a énergie
constante du rotateur isolé. Mais W, doit étre une fonction uni-
forme de ¢, c’est-a-dire reprendre la méme valeur quand ¢ aug-

mente de 27\/J. Ceci exige que

(r1) :IZ \/:T’V: \/jzn.:m (n entier)
ou

. . 1 ,  nih?
(12) la‘_):;.]w(-,:—_x:” (n=1,2, ...)

C’est la formule bien connue donnant la quantification du rota-
teur. La vitesse angulaire initiale w, du rotateur doit satisfaire
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Péquation précédente; autrement dit, I'état initial du rotateur est
nécessairement quantifié.

Nous obtiendrons maintenant la forme initiale de 'onde W du
systéme rotateur-corpuscule, en faisant le produit de W, par W,

2R : ‘v % : o0
. . . e DBy By 2K Zens Y - hsin s —y 2L G
(13) W n Lit)=aiase ” .

Posons alors

. E , K, Y h
(Il) cosx = T T SIS = i L= = = e
i Ey—+ k. o+ E, v

Vol +E)

L’expression de I'onde incidente devient ainsi

.[li‘»l<lj/vit‘ SZSIn% s rsinygsin % —Zers I

QT
(135) T =aqae I .

N

B+ by . . - .
oi ———= =y est la fréquence de I'onde W. Cette onde (15) repré-

sente dans 'espace de configuration une onde plane de fréquence v
et de longueur d’onde 2, dont la normale fait angle o avee O7.

3
N
3
o
Y
X
n
£
Fig. 4.
"\
ZON = a
PN
Eon=y

On peut alors, d’aprés Ia remarque de M. Fermi, considérer
I'interaction entre le rotateur et le corpuscule comme produisant
une diffusion de 'onde W dans l'espace de configuration et les
directions de diffusion privilégiée sont dounédes par la relation

.
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d’accord de phase correspondant & l'existence d’un réseau de

périodicité 2my/J le long de I'axe O, savoir
(16 0% x/jncosz’ﬁcosa‘):k)\ (k entier),

comme cela se lit aisément sur la figure suivante :

IS
c

Aprés Pinteraction, 'onde W aura donc la forme

- DR B Zens Y sind <1 sin " sino’ —Jees &’
g wni I i sin Y

(17) T=Ncia. e L4 7

(17) = M cia.y)e ,
oy

I'angle 7' pouvant prendre toutes les valeurs et 'angle o les
valeurs définies par Véquation (16).

En revenant aux variables &, y, 0 et en remplacant % par sa
valeur, on peut remplacer (17) par

_
(18) =N cla',y")
e -
',y
emir . ———— - e — ,
e I [ By Eql =y 220K — Byifer s sin &' sin " sin &' v -4 2 ) (Ey + Ey)cos QJ
Ei+ L, » ’ e

La fréquence v = — de l'onde n’est pas modifiée par la

diffusion, ce qui exprime ondulatoirementla conservation de I'éner-

gic. Si Von détermine par une expérience les états de mouvement
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du corpuscule et du rotateur aprés linteraction, on trouvera
nécessairement, d’aprés les principes de la Mécanique ondulatoire,
des états de mouvement représentés par Pune des ondes planes

. Wl
monochromatiques de la somme 2‘ en (18). Or, I'une de ces ondes

planes représente un mouvement du corpuscule d’énergie E' et de
quantité de mouvement /2 mE] égale a {/am(E, - E,) sin o/; ce
mouvement a donc une énergie B\ =(E, 4 E,) sin?«’ et il s’effec-
tue dans la direction du plan #Oy défini par Pangle y' avec I'axe
Oz. La méme onde plane correspond & un mouvement du rotateur
d’énergie E, et de quantité de mouvement y/2JE, égale a
\/2J (E.+ E.) cose’; ce mouvement du rotateur correspond donc
a une ¢nergie E, = (E, + E,) cos?a’. On vérifie de suite la conser-
vation de I'énergie

(19) By + B, = (E;+ Ep) (sin%a + cos?a’) = 5+ L.
De plus, des équations (16) et (14), on tire aisément

1 /]

(20) | cosa = cosu + —h—
251 Vo (B + By

Or, d’aprés (14) et (12),

(a1) cosa \/ E, 1 nh
2 - 3 5 = g ———— )
BB VETSTE, om /o)
d’ou
—_ ) Y
(22) §/E1+lig cosa’ = (—"—+—]\-'—L,
am /2l
et finalement .
(23) E}, = (E;+ Es) cos?a’ = (n—:-%)@: (n, & entiers).

Si donc on détermine exactement par une expérience les états de
mouvement aprés le choc, on trouvera toujours que Ieffet du choc
a été de faire passer le rotateur de I’état quantifié final caracté-
risé par le nombre entier 2 & un état quantifié final caractérisé par
un nombre entier n + k, de sorte que pour le rotaleur on reste
toujours dans le domaine des états quantifiés. Trois cas peuvent
d’ailleurs se présenter :

1° k=o. — Le corpuscule et le rotatear conservent alors leurs
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énergies initiales. Le choc a lieu sans échange d’énergie : il est
élastique.

2° k> o0. — Le corpuscule céde de 1'énergie au rotateur, qui
passe dans un état d’énergie plus grande que celle de I'état initial.
Le choc est un « choc inélastique de premiére espéce ».

3° k <Co. — Le rotateur passe de son état quantifié initial & un
état quantifié de moindre énergie en cédant de Vénergie au cor-
puscule. Depuis un travail important de MM. Klein et Rosseland,
on dit qu’il y a alors « choc inélastique de seconde espéce ».

On retrouve ainsi tous les résultats déja prévus par ’ancienne
théorie des quanta qui sont en accord avec les faits.

Nous trouvons ainsi un exemple d’un fait précédemment étudié.
L’onde initiale (13) et 'onde finale (17) sont toutes deux solutions
de I’équation sans terme d’interaction (U = o)

A S S

g/ — _—
(24) PN PO SR ®

EW¥ = o,

mais I’onde initiale est le produit d’une onde plane du corpuscule
par une fonction propre du rotateur, tandis que 'onde finale est
une somme de tels produits. Cette forme de onde finale corres-
pond au fait que, si 'on détermine 'état de mouvement du cor-
puscule aprés le choc et si on lui trouve la valeur E', 'énergie du
rotateur est par la méme connue et égale a E, +E, — E/, de telle
sorte que les états finaux du corpuscule et du rotateur ne sont pas
indépendants, I'interaction soumise au principe de la conservation
de 'énergie ayant établi une relation entre eux.

On peut encore remarquer que le choc étudié n’a pas lieu avec
conservation de la quantité de mouvement, car cette conservation
exigerait que l’on ait dans le cas élastique y'=y el &= . Cela
vient de ce que nous avons supposé le rotateur fixe dans le
plan 20 y; nous avons donc admis implicitement 'existence d’'une
force de liaison qui empéche le rotateur de prendre un mouvement
d’ensemble lors de I'impact du corpuscule. Il ne peut donc pas y

avoir conservation de 'impulsion. Si 'on voulait tenir compte du
recul du rotateur, il faudrait deux nouvelles coordonnées pour
représenter la position, maintenant variable, du centre du rotateur
dans le plan 20y et I'on n’aurait plus un espace de configuration
a trois dimensions.
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2. Nécessité d’employer I’espace de configuration. — L’emplot
obligatoire de V'espace de configuration pour traiter les propaga-
tions d’ondes de la Mécanique ondulatoire, est quelque chose
d’étrange pour celui qui était habitué a 'emploi des méthodes de
la Physique classique. Il est cependant absolument certain qu’on
ne peut I'éviter et qu’il est impossible par exemple de traiter un
probléme de choc en cherchant a attacher a chaque corpuscule
une onde individuelle se propageant dans I'espace ordinaire a trois
dimensions. M. Darwin en a donné un trés instructif exemple que
nous allons résumer ().

Soit un écran plan percé d'une ouverture en A. Sur celte ouver-
ture, on place un film trés mince d’une substance homogeéne dont
les atomes ont une masse m et Uon fail tomber normalement sur
Iécran un flot de particules de masse M et de vitesse V.

On suppose que les atomes m et M sont susceptibles d’exercer
des forces les uns sur les autres a trés petite distance, c'est-a-dire
de se choquer. Décrivons d’abord le phénoméne observable en
nous servant des images de la Physique classique. Lors du choc
entre un atome incident M et un atome m au repos dans le film,
les deux atomes sont projetés vers le haut avec conservation de
I'énergie et de I'impulsion. Il en résulte que, si M est projeté sur
une certaine direction AB, m est projeté sur unc direction bien
déterminée AG et les vitesses des deux particules sont bien déter-
minées. On a done, aprés le choc, deux particules dontles mouve-
ments sont liés : c’est la ce que M. Darwin appelle une « paire
cohérente » de particules. Supposons alors qu’a l'aide d’un
miroir M, nous réfléchissions les atomes M venantde A le long de
AB vers le point C de la trajectoire des atomes m qul viennent
directement de A le long de AC (fig. 6).

Nous disposons un deuxiéme écran percé d’un trou en C et
derriére cet écran, nous observons l'arrivée des atomes sur un
é¢cran a scintillations. En général, nous observerons sur 'écran a
scintillations l'arrivée le long de AB d’atomes M qui marqueront
leur point d’impact en M et le long de AC I'arrivée d’atomes m
qui marqueront leur point d’impact en m. Mais dans le cas trés

(1) Collision probleme in Wave Mechanics (Proc. Roy. Soc., 1929, t. 124,
p- 375).
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particulier ou, les atomes M aprés la collision en A ayant une
vitesse supérieurc a celle des atomes m, le temps mis par les
atomes M pour suivre le trajet brisé ABC se trouve étre le méme
que le temps mis par les alomes m pour aller directement de A
en G, les atomes M et m qui auront eu une premiére collision en A
en auront une seconde en G, en sorte que ’écran a scintillations
pourra recevoir des atomes ailleurs qu’en M et en m. Donc, pour
une cerlaine position du miroir B, il peut se produire un phéno-
mene tout différent de celui qu'on observe pour les autres posi-
tions. Voila ce que nous apprend la représentation corpusculaire
classique.

Ecran a
scintillationg

Fig. 6.

Voyons maintenant comment on peut décrire le méme phéno-
mncéne en introduisant des ondes. L’idée la plus simple serait
d’assocter a chacun des atomes M et m aprés leur choc une onde
se propageant sphériquement a partir de A. Le fait qu’un phéno-
meéne particulier se produit pour une cerlaine position du miroir B
serait alors a interpréter comme une interférence se produisant en
C entre Ponde de M venant de A par réflexion en B et Ponde de m
venant directement de A. Mais une semblable inlerprétation est
totalement impossible. En effet, une telle interférence supposerait
qu'il y ait une différence de phase privilégiée en C pour les deux
ondes qui s’y croisent. Or, nous pourrions placer deux miroirs en E
et en I de facon que I'onde lide a Patome M arrive en C aprés deux
réflexions en E et F en y ayantla méme phase que précédemment :
il suffirait que la différence EBF -— EF des trajets dans les deux
cas soit égale 4 un nombre entier de fois la longueur d’onde de
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I'onde M. Les conditions d’interférence en C seraient restées les
mémes, et cependant il est certain que les chocs en C ne se produi-
raient plus, car les atomes M arriveraient en C avant les atomes m.
Au contraire, si l'on plagait un miroir en E et 'autre en G, de fagon
que le parcours AEGC soit égal au parcours ABG, il y aurait tou-
jours des chocs observables en C, tandis que les conditions d’inter-
férence en G se trouveraient complétement modifiées, puisque les
ondes s’y croiseraient sous un angle différent de celui réalisé dans
I'expérience originelle (avec miroir en B). Enfin, au point de vue des
intensités, il y aurait aussi un désaccord, caril est évident au point
de vue corpusculaire que la probabilité d’un choc en C doit étre

en raison inverse du carré de AC, tandis qu’une interférence en G
donnerait une intensité proportionnelle au produit des intensités

des ondes interférentes, soit a la quatriéme puissance de -

Bref, on ne peut expliquer le résultats des chocs en considérant
des ondes individuellement associées a chaque particule. Mais cela
ne veut pas dire qu’on ne peut pas en Mécanique ondulatoire,
expliquer les chocs qui se produisent en G, mais seulement qu’on
ne peut représenter 'évolution des ondes dans 'espace a trois
dimensions. On doit en réalité associer au systéme des deux par-
ticules M et m une onde unique dans son espace de configuration
a six dimensions. Dans le mémotre cité, M. Darwin a faitle calcul
de cette onde ¥ du systéme, calcul que nous ne reproduirons pas
parce qu’il est long et compliqué. Il a montré ainsi qu’il est pos-
sible de représenter le fait de la deuxiéme collision en G pour une
certaine position du miroir B par les propriétés de 'onde W dans
I'espace de configuration a six dimensions, alors que cela n’était
pas possible a I’aide de la propagation de deux ondes dans 'espace
a trois dimensions. Ainsi se trouve illustrée par un exemple la
nécessité d’employer Pespace de configuration dans les problémes
de Mécanique ondulatoire des systémes.

3. Les trajectoires visibles de particules dans les chambres de
Wilson. — L’emplot de 'espace de configuration permet aussi de
rendre compte de phénoménes qui autrement seraient impossibles
a interpréter en Mécanique ondulatoire. Telle est l'existence
des trajectoires rectilignes de particules visibles dans les chambres
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a expansion de Wilson. Les calculs pour ce cas onl été faits par
M. Heisenberg : nous allons les reproduire ici.

Le phénoméne a expliquer est en somme le suivant. Soient deux
molécules d’un gaz situées en A et B et une particule de grande
énergie (beaucoup plus grande que l’énergie d’ionisation des
molécules) qui arrive sur ces molécules. Il faut expliquer pourquoi
la molécule B n’a de chance d’étre ionisée, quand la molécule A
'a été, que si A et B sont sensiblement en ligne droite avec la
direction d’'incidence de la particule ionisante, tandis que '1onisa-
tion de B n’a pas de chances de se produire aprés celle de A si B
n’est pas du tout dans le prolongement de la direction d’incidence
a partirde A, v

Pour traiter le probléme, nous devons regarder la particule
incidente et les deux molécules A et B comme formant un seul
systéme. Nous supposons les molécules A et B trop lourdes pour
étre mises en mouvement par impact et trop éloignées I'une de
l'autre pour agir directement I'une sur lautre. Il y a seulement
mnteraction entre la particule incidente d’une part et chacune des
molécules A et B d’autre part.

L’état interne de chacune des deux molécules est représenté par
un ensemble de coordonnées ¢ que nous désignerons par g, et g,.
Les coordonnées de la particule incidente sont z, y, z; sa masse
est m. L'Habmitonien de la particule incidente est

h2 o? oJ? 02 _ h?
T 8mm <d.r- d_y'z_'_(ﬁ - 8rm

;

‘ceux des molécules A et B considérées isolément sont HY"' (g,) et
Hy"(¢y). Les termes d’interaction entre la particule incidente et les
molécules A et B respectivement sontde laforme AH}V (2, 1, 5, ¢,)
et M} (2, ¥, 5, ¢4), » étant un paramétre trés petit introduit
pour indiquer que les termes de perturbation dus & l'interaction
sont trés petits devant les termes correspondant aux états non per-
turbés en l'absence d’interactions. Finalement, dans I'espace de
conﬁgulatlon formé a laide de z, y, 3, des g, et des Gy, OD 2

I'équation de propagation

Ity
(25) [“ s~' A+ HY' (g1) + HE (1)

‘ h 9
+ 20\ (2, p, 2590) + 2B (2, y, 35 g8) — ?ml, d(t] =0
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On peul essayer de développer ¥ suivant les puissances du petit
paramétre i en posant

{26 Yo P+ 20 4 22 W 4+ W L

7

En substituant (26) dans (25) et en égalant a zéro les facteurs
de chaque puissance de 4, on trouve la suite d’équations

: h2 h 0
~ [ e mA—&—ll\ ((/\)—f—H]; ((/.;»~2—‘_~—I, ;l]ll 0= 0,

/ /Z ), - Y { ’
[ \7_ m —— A+ H “)((‘/\ +H]; ((/1;)¥ —_—, ;’)[]1[1:;([—]}‘\'/*_““”)1];”,

- e s { ) . .
[ e~ A+ H: “'((/A\,)—!-H];”"((jn)— 71'— ! ]q‘QZ-—-(”_\U—PH‘];l))‘F].

La premiére équation correspond au mouvement sans interaction
entre la particule et les molécules. Les fonctions propres ont la
forme suivante :

9T VT,
{ 2R) Wy i g ST Sunl gn),
9n, el 9,, étant des fonctions propres pour les molécules non per-
turbées. Les fonctions W, W,, ... peuvent éire développces
suivant le systéme des fonctions o,,,,. systéme complet par
rapport aux variables ¢, et ¢,. Nous avons ainsi

N - Y S . N N
{ 29) ‘L = Z vhla‘,”l:( Ay 1/ z) Prua ‘ qs ) ?’/n( (/“ )‘

L

De plus, on peul, comme d’habitude, définir les éléments de
matrice correspondant aux termes d’énergie de perturbation par
les formules

0 O v :
H_\ ) 1:’«/1‘( (/\):> lllll‘illl‘\(l'7 ¥ 3) Tyl (/\),
1y

<
Hi' ey (q0) = Y B (s v ) oyl g
B y/ll;(lli - /m"”u L B L) Gyl ).
|
\

nig

o —

(30)

Comme étal non perturbé nous considérons celui ou la particule a

_——
un mouvement rectiligne et uniforme d’impulsion p* et ou les
molécules A et B sont respectivement dans les états stalionnaires
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définis par les valeurs ny = n\"’ et ny= ny"’. On a, comme ¢énergie
de cet état non perturbé,

9 - — W — o -+ :
(i[) 1> vm’ ) = ILU = L/—zﬁ— E“An, —+ 1‘//',,'” '

nin)

Hn2

(p +pyt - ptt) = E o+ E o

T om

En substituant (29) dans la seconde équation (27), on obtient

he ) h Jd7 ,
' ) (1) p f e ) ‘
(32) [457' ”IA—FLHA—FLHR—*:TL.()—} (’rzA‘rzg(l‘,_}, 33 1) N
— e ;o , o) s
- [hn("’ na (l" RS ) 8//3”)’/11; -+ /[u;;l”’nn onf‘““'n‘\]
o
/R Lhu“)[*/’ 1_1)3“_\-_/;;0):}
>x e

Pour pouvoir éliminer le facteur en £, nous devons poser

ol

LUASYEIR
PN ' it X
(33) "V”I,\),“n(\ws Y.50)= W ”.\),“B(‘T7 Y, z)e A ’
et il restera alors facilement
34 h A F(”") L, 'y L" n — E!» + — po2 w5,
—_— —_— PR 1/1 - i 2 I‘ ‘y
( 4) Sr2m N A ne . 7 “\ 3 é)
ey Y s
— [/L”(u/ " (x, ¥ u) S nl (o) /1;+ }I,l;‘ll)‘”l;(fz‘,‘) N -) OII(All-J“]
‘—:)Tl(/’;}”.'L"w/I‘[),U}—v/l;‘”:)
xe

Le second membre de I'équation (34) peut étre interprété
comme représentant les sources de Ponde W.!', . Si ces sources
sont partout nulles, W, = sera nulle. Or, d'aprés sa défini-
tion, | W', (z, y, 5)!? représente la probabilité pour que le cor-
puscule incident se trouve en z, y, 5, lamolécule A ayantl'état n,
et la molécule B I'état n,. On voit donc que cette probabilité est
nulle sil'on a a la fois ny =2 nY' et ny== ny’, a cause de la présence
des facteurs 3 dans le second membre de (34). Ainsi, en premiére
approximation, la probabilité de l'excitation simultanée de A et
de B est nulle. Ceci se comprend trés aisément, puisque les pro-
babilités d’excitation de chacune de ces molécules sont considérées
d’aprés les hypothéses de départ comme du premier ordre de
petitesse : l'excitation simultanée des deux molécules est alors
naturellement du second ordre de petitesse. C’est donc seulement
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en passant aux perturbations du second ordre que nous trouverons
le phénomeéne de V'excitation simultanée des deux molécules qui
nous intéresse.

Avant d’aborder la seconde approximation, il convient d’étudier
les propriétés des fonctions W', solution de 'équation (34). Or,
cette équation peut s’écrire

4

-2 .
‘- r(1) PR
P W u,\’unz F(w, Y »),

2k 201
(33) . AW “A,”B+ Ky

a condition de poser

h 1
A= — y
Vaom IC) 210) (0) S0 1
A DRERTN DA NN hi - 12
210 —+ Llli«x“] En’\ L M ey Po:
(36) o o
o R I Y 1
F(z, y, z)= const. [hn,‘\‘”,ru o,“r‘w’ wp T lz,“;‘u)’”u 5,,<Aa,’"‘]

°ond
— — (e) 8, )4
e e+ pt v pth s
7 (rk Py "X+ 4

= e

La fonction F joue dans (35) le role d’une fonction de répar-

tition de sources. Or, d’aprés ’hypothése que la particule incidente

posséde une énergie beaucoup plus grande que I'énergie d’jonisa-
tion des molécules A et B, on a

r . i 0 (0) 0
2 0] ‘a~_ 'Y __ Rim (o) 2(0)
(37) 5 m A E”‘(‘) E"A + En‘n‘”‘ En

et, par suite, sensiblement

(38) A g;o = longueur d’onde de la particule incidente.

A cause du facteur exponentiel figurant dans I¥, la répartition
des sources varie périodiquement dans la direction d’incidence
avec une période spaliale sensiblement égale a A. Il en résulte
que W"' ne sera diflérent de zéro que dans les directions qui sont
a peu prés dans le prolongement de la direction d’incidence.
F n’est différent de zéro que pour n,=n\" ou pour n,=ny".
Dans le cas n,= n'"’, ny, ny”’, la fonction F se réduit a

L kD)

1)
Ity (=] r
(DA

et d’aprés sa définition méme A, n’est différent de zéro qu’a

ne
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Pintérieur de la molécule B. Nous avons donc dans ce cas un Wi,

qui ne difféere de zéro qu’a l’intérieur d’un canal presque cylin-

drique donlt l'axe est paralléle ap g

de la molécule B.

et qui s’appuie sur le contour

De méme, dans le cas ny=—ny’, n,¥ny’, nous trouvons
un Wi o qui ne différe de zéro qu’a lintérieur d’un canal

n,\ ny

—>

presque cylindrique d’axe paralléle 4 p,y quis’appuie surle contour
de Ia molécnle A. Précisons que ces résultats ne sont valables qu’en
raison de 'hypothése exprimée par (37).

(o)

Fig. 7

/

Commencons maintenantle calcul des perturbations du deuxiéme
ordre en partant de la troisi¢me équation (27). Nous poserons

E"J‘”/,
‘ qm_z\v”\"ne o o (qs) $m(gs)s .

; 1ty
(39) ( N

(-’xiF(n)l
P2l — 7(2) Lt
( rei= 3 Willne F O om0 gl

Ha g
A

En substituant ces expressions dans la troisiéme équation (27) et
en égalant les coefficients des fonctions ¢,, ¢n,, on trouve

2 ( ) I
‘r ~(0) ~(0) <(0) My (2) ( I
(40) [— o A (B — B+ Bl — Eil) - — pI[2 ) Wi (.7, 3)

2: A0y R 0 0
—_ W ml\’nz“(:l/‘, ¥V, 53) [/ll]lj,ll,\(x, ¥ S) BIUB,HB -+ Ilm;’nt‘ (‘Z',_}’, Z) am/\’u,\]

2w

W - ; {
= Z\\f 51})’11,\(-’1’)7‘}’, Z)]lg:lzl\)’u.‘(-l'“}’, z) ~Z \V\n],\)ym,,(w:.)/v z)hj’]ln),“u<x7.y7 z).

"y mg

Pour qu’il y ait en deuxiéme approximation possibilité d’exci-
tations simultanées des deux-molécules, il faut que W3, soit

L. DB BROGLIE, 8

i
o
A
i
i
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différent de zéro pour n,== et nyz£, . D'aprés les propriétés
des W', on voit alors que pour n\%é n' et ny= ny’, le dernier
membre dé (40) se réduit a

—\\7511&2))771"(.2?, e “)h/z!)' Iu(“c e 8)— W II‘A/" Wz, Ve “)h (” ne (e, VRS

car chacune des deux sommes aunseulterme nonnul. Pourque W'
soit non nul, il faut donc que, soit Wi, et h) soit W'*

A na,nk

(333

et A\l . soient simultanément diflérents de zéro dans une méme

région de Pespace. Or, 4}, n’estdilférent de zéro qu’a l'intérieur

BN
de la molécule A et A} o ne Pestqu’alintérieur de la molécule B.

Pour que W™’ soit différent de zéro, il faut donc ou que la molé-
cule B soit située dans le canal qui s’appuie sur le contour de la
molécule A ou que la molécule A soit située dans le canal qui
s’appule sur le contour de la molécule B; autrement dit, on doit

étre dans I'un des deux cas de figure sulvanls.

—_ . @)
A B
i
—— e o
B A
Fig. 8

“Dans un cas comme dans 'autre, les deux molécules A et B se
trouvent sensiblement en ligne droite avec la direction du mouve-
ment de la particule incidenie : c’est bien la le résultat que
I’on cherchait.

Si l'on a une file de molécules A, B, ..., on voil, en
répétant le méme calcul pour chaque palre. qu ‘il ne peut y avoir
ionisation de toutes les molécules A, B, C, D, ..., que si elles
sont toutes a peu prés en ligne droite avec la direction de la parti-
cule incidente, Ainsi se trouve interprétée I'apparition des trajec-
toires rectilignes dans les chambres de Wilson.




EXEMPLES DE PROBLEMES EN MECANIQUE ONDULATOIRE DES SYSTEMES. 115

Naturellement. les relations d’incertitude sont en accord avec
la théorie précédente, parce que plus les dimensions des molé-
cules A et B sont petites, plus les « canaux » sont coniques et plus
leurs angles d'ounverture sont grands, comme U'indique la figure
ci-dessous.

Fig. g.

Plus I'ionisation d’une des molécules permet de localiser exac-
tementla particule incidente, plus la direction exacte de 'impulsion
de Ia particule aprés 'ionisation est incertaine. .




CHAPITRE VI.

APERCU SUR LES METHODES DE PERTURBATIONS
EN MECANIQUE ONDULATOIRE.

1. Généralités. — 1l arrive fréquemment en Mécanique ondu-
latoire que l'on ne sait point résoudre exactement un probléme.
On peut alors souvent employer une méthode approximative de
perturbations et dans le probléme que nous venons de traiter a la
fin du précédent chapitre, nous avons justement rencontré un
exemple de ces méthodes de perturbations. Les méthodes de
perturbations employées en Mécahique ondulatoire consistent
essentiellement & couper en deux 'Hamiltonien du probléme de
fagon a distinguer, quand cela est possible naturellement, une
partie principale ou Hamiltonien non perturbé qui ne dépend pas
du temps et définit un probléme d’états stationnaires dont on
connait exactement les solutions et une partie accessoire beaucoup
plus petite ou terme de perturbation dont l'intervention provoque
de petits écarts par rapport aux solutions connues de I'Hamiltonien
non perturbé. En considérant les termes de perturbations comme
trés petits du premier ordre, on obtient une série d’approximations
successives donnanl des corrections du 1, du 2% ..., du p®*™*
ordre. Nous cn avons vu un exemple dans le probléme traité plus
haut. La question dela convergence des approximations succes-
sives a naturellement une grande importance pour le développe-
ment logique de la méthode. Cette question n’est pas encore,
semble-t-il, ¢lucidée aujourd’hui dans toute sa généralité, mais il
est certain gue méme dans le cas ou la convergence ne parait pas
exister, les premiéres approximations peuvent donner des résultats
exacts. Nous n’avons pas l'intention de faire dans ce volume une
¢étude approfondie des méthodes de perturbations en Mécanique
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ondulaloire. Nous voulons nous contenter d’exposer un certain
nombre de résultats qui nous seront utiles dans la suite.

[ vy a essentiellement deux méthodes de perturbations en Méca-
nique ondulatoire. L'une d’elles, la méthode de MM. Schridinger
el Born, est applicable au cas ou le lerme perturbateur dans
I'Hamiltonien est indépendant du temps (perturbation perma-
nente). La méthode consiste a chercher les éiats stationnaires
de I'Hamiltonien perturbé en supposant par continuité que ces
états sont trés voisins de ceux supposés connus de I'Hamiltonien
non perturbé : on les déterminera en calculant les petites correc-
tions qu’il faut apporter aux états slalionnaires non perturbés
pour tenir compte de I'existence de la perturbation. On obtient
ainsi des résultats indépendants de I'instant considéré : énergie
des élats stationnaires en présence de la perturbation, nombre
de particules déviées dans une certaine direction, ele.

La seconde méthode de perturbations, la méthode de variation
des constantes due & M. Dirac, est plus générale, car elle s’applique
a des perturbations variables avec le temps : elle permet d’étudier
des phénoménes non permanents tels par exemple que le régime
transitoire d’établissement qui suit tmmédiatement le début d’une
perturbation ensuite permanente. Elle doit étre employée pour le
calcul des probabilités de transition, d’émission, d’absorption, etc.,
qui ne peuvent étre définies qu’en considérant des élats variables
avec le temps.

La méthode de variation des constantes consiste essentiellement
a prendre comme systéme de fonctions de base les fonctions
propres d’Hamiltonien non perturbé¢, a exprimer la fonction W
du systéme a chaque instant a I'aide d’un développement suivant
ces fonctions de base et a étudier comment varientles coefficients
de ce développement en fonction du temps.

2. La méthode de perturbations de Born-Schrodinger. — Nous
ne donnerons ici qu'un apercu trés rapide de cettc méthode.
Soient HY' I'Hamiltonien, indépendant du temps, du systéme non
perturbé, V le terme perturbateur également indépendant du
temps et supposé trés petit du premier ordre. Nous supposerons
que H!" posséde un spectre discontinu et n'a pas de valeurs
propres dégénérées. L'étude des cas on H'*' a des valeurs propres
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dégénérdes doit étre considérée a part. Les valeurs propres de
I'Hamiltonien perturbé H=H!"'4- V sont les E; tels que

(I) (}l“”ﬁ—\')‘l',«: E[II‘MZ', L]

W; étant finie, uniforme et continue ('). La perturbation étant
faible, il est justitié de considérer que les U'; et les E; sont voisins
respectivement des W;" et des E}"', fonctions et valeurs propres de
I’'Hamiltonien non perturbé H®'. On peut donc poser

(W= W

(2) | Bo= B0 B

chaque terme étant par rapportau précédent de 'ordre de petitesse
du terme perturbateur. En substituant (2) dans (1) et en égalant
les termes du méme ordre de grandeur, il vient

(@) HOP = [0y,

(6) (IO — B0 W0 VAP = EOge

(C) (Il(m__ ]<:’(()))1l'}2)+ VT]L'I(_]): lc;ﬂ)[l'wl\.\))_*_ E;1711r‘]:1l

(3)

Cette suite d’équations définit les approximations successives.
La premiére montre que W," est la {*™ fonction propre de
I’'Hamiltonien non perturbé, comme cela doit étre d’aprés nos
hypothéses. C’est Papproximation zéro.
En multipliant 'équation (3) (b) par W,* * et en intégrant dans
tout 'espace de configuration, nous oblenons 4

%) fuf;“r*lc,’.mr;“wh _fu';'*f*v\r;“ = :J WO (T — B0 /s,

La derniére intégrale est nulle car, en raison de ’hermiticité
de H'o', elle peut s’écrirve

flr,«'ﬂ(lw*—13[:(%)11';0" o=,
et ceci est nul en vertu de la cbnjuguée de (3) (a). D'ou

(5) l‘:;w:fuf‘;w\‘qf;w e = Vi,

(') Dans ce paragraphe et dans le suivant, nous désignons par W, la A**me fonc-
eni'F“
tion propre de l'énergie débarrassée du facteur exponentiel e 4 .
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Vi’ étant le *™ élément diagonal de la matrice correspondant &
V dans le systéme des W. On retrouve ainsi un résultat bien
connu de la Mécanique classique d’aprés lequel la perturbation de
I'énergie en premiére approximation est égale & la moyenne de la
valeur du potentiel perturbateur calculé pour I’¢tat non perturbé.

Nous avons pu calculer la perturbation de I'énergie au premier
ordre sans étre obligés de connaitre la perturbation correspon-
dante de la fonction propre. Mais nous ne pourrons calculer la
perturbation du deuxiéme ordre de I'énergie que si nous connais-
sons la perturbation du premier ordre de la fonction propre. Cette
circonstance se retrouverait a tous les stades du calcul de pertur-
bation, c’est-a-dire que pour calculer la perturbation du n'*m*
ordre de I'énergie, il nous faudrait connaitre la perturbation du
(n—1)"*" ordre de la fonction propre.

Pour calculer W;"’, nous nous servirons de I'équation (3) (),
mais nous ferons la remarque que si W'’ est une certaine solution
de (3) (b), nous en obtiendrons une infinité en ajoutant 8 ¥} un
terme de la forme ¢ W;”. ou a est une constante complexe quel-
conque. Nous nous servirons de ce fait pour imposer a la fonction
propre de premiére approximation W.", 4 W!" d’étre normée,
ce qui s’exprime au premier ordre par la relation

(6) f(‘*"é‘”“r‘1’2‘-”)*(‘1“%‘”+‘I’é”)"T

;’\ifl U2 ds +- <fllr'£.'>"‘l/"l?”) dz + COI]j.> =1.

Comme W}" est normée par hypothése, nous imposons ainsi &
W:" la condition

(7) f‘l‘;' N

c’est-a-dire que nous admettons pour YV

i

un développement
suivant les W3 de la forme

(8) 11'[1‘;__.20['_/2111,-(/?)
kti
sans terme k =1¢. Eu substituant alors (8) dans (3) (b), nous.
obtenons
(9) N (B — B = (= Ve,

kosi
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Multiplions par Wi"" (j £ i) et intégrgns dans tout I'espace de
configuration. Il vient

['1"}““ VYo g V 0
14
(10) :/U— = ]f:r»o),_]g\/_(r, l‘ 0, l‘/-l” (eZ7)
1
d’ou
70 0
(”) I -—-—l}”‘) Z ()lIw .
EY—EW

Telle est Pexpression de la perturbation du premier ordre par
la /*m° fonction propre de 'Hamiltonien. L’ayant obtenue, il est
facile de calculer la perturbation du deuxiéme ordre pour I'énergie.
Il suffit de multiplier (3) (¢) par Wi"'" et d’intégrer dans tout
I'espace de configuration. Le premier terme obtenu s’annule &
cause de 'hermiticité de H!®)| le dernier a cause de I’hypothése
faite sur W:"'. Il reste

o - . I (\,t‘\ (H]I 0/
(12) ]“5‘):_[1]'\'“ vy /——\ f g dt _2 i

k=1

d’ou en deuxi¢me approximation,

o
}\K'i 2

U S0

E T —E]

(3 b= 104 Vi 3

bt

Nous ne continuerons pas au dela la série des approximations.

Tel est le processus simple de ces calculs d’approximations
successives quand 'Hamiltonien non perturbé admet un spectre
discret et non dégénéré. Si les valeurs propres sont multiples, il se
présente une complication, car les fonctions propres correspondant
a une valeur propre dégénérée ne sont alors déterminées qu’a une
transposition linéaire prés. Les fonctions propres perturbées sont
respectivement voisines de certaines fonctions propres non per-
turbées, mais il faut commencer par déterminer quel est le systéme
des fonctions propres non perturbées vers lequel tendent les fone-
tions perturbées quand la perturbation tend vers zéro. La méthode
se présente alors sous un aspect un peu plus compliqué. Il en est
de méme quand I’'Hamiltonien non perturbé, tout en ayant un
spectre discret, a des valeurs propres si rapprochées que la
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moindre perturbation produil des variations de ces valeurs propres,
qui sont de Pordre de leurs distances : il est évident qu'on ne
peut plus alors considérer isolément les perturbations des diverses
valeurs propres. Nous ne nous étendrons pas sur ces diverses
complications, dont I'étude détaillée exige des développements
assez longs. Le cas des valeurs propres dégénérées sera d'ailleurs
traité plus loin par la méthode de variation des constantes.

3. Méthode de variation des constantes. — Dansla méthode de
variation des constantes, nous supposons toujours que nous avons
un Hamiltonien H{) indé¢pendant du temps correspondant aux
états non perturbés du systéme considéré. Mais ce systéme est
soumis a des actions perturbatrices représentées dans I'Hamil-
tonien total Il du systéme par un terme perturbateur qui, ici, peut
dépendre du temps. Nous avons donc, pour le systéme, I'équation
d’ondes

o I

( 3 1) v 1 = .
14 [+ Veopt 2l Jt

Naturellement, a tout instant ¢, la fonction d’onde ¥ du systéme
peut étre développée suivant les fonctions propres W' de l'opéra-
teur H'*' sous la forme

v —
ST g
~E

. e, Q , 1
113) ‘I(t):}_‘c/\-(z)‘l‘k‘“eﬁ
avee
(16) cp () :f‘l“k‘“*‘l’(t) d~e

On suppose toujours la fonction propre normée, ce qui entraine

21 ¢t *=1 a tout instant. En substituant le développement (15)
k
dans (14), on obtient

2T g

g
(17) 2@(”(11‘0‘—1— VU le h '

LAl

n
LT
- . . Coh dep =ESY
= el HEMY Y g gn o L e/
Z[A M 4 oamt ot .
I3



LES METHODES DE PERTURBATIONS EN MECANIQUE ONDULATOIRE. 123

Comme par délinition W," est une fonction propre de H®), on

peut barrer le premier terme de chaque somme et il reste

AN ey - {Z,’HL"‘I o Ve = - lpy
(%) o Tie = e
I3 IS

Multiplions par ', et intégrons dans I’espace de configuration.
Nous obtenons

-

i

)’,. ) 7 ‘—, F,‘“‘——lf"“" /
(19) ')Ll’z’/'\\“(tu(f (R V)
1, (3
k
avee
(20) \"‘A’_‘(u:fll‘}.“*\'(’tn‘l*‘;‘,‘”,/-..

Pour V=0, les ¢; sont constants et dans le développement on
a une superposition avec coefficients constants des fonctions
propres de L™, Si V 2£o0, les ¢; varient avec le temps; d'ou le
nom de méthode de variation des constantes.

L’¢quation (19) est rigoureuse, mais en général on ne sait pas
la résoudre exactement. Un procédé approximatif qui permet de
trouver une solution approximative valable pendant un certain
temps est le suivant. Supposons que pour ¢t =o0, on se donne
cr=c," pour tout k, ce quirevient & se donner W(o). Si la per-
turbation qui s’exerce sur le systéme a partir du temps £ = o est
assez faible pour qu’on puisse considérer les variations des ¢
comme restant trés petites pendant un certain lemps, on pourra
obtenir une solution approximative des équations (10) valable
pendant un certain temps en remplacant dans le second membre
de ces équations les ¢; par les ¢/, :

En particulier, appliquons cette méthode approximative au cas
ot V est indépendant du temps. Il en est alors de méme des
éléments de matrice V. En supposant que E;* soit une valeur’
propre non dégénérée de H'"', I'intégration approximative donnera

'—'/—( . DY

ani )
() glty=c" 4+ Vit 7 ¢ I 1—0—\ \/,\ el TEpan S
' J

/.

Le terme en ¢ constitue une « perturbation séculaire », au sens
qu'on donne a ce mot en Mécanique céleste; le dernier terme
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constitue une perturbation périodique. Comme les V|;’ sont petits,
les amplitudes des perturbations périodiques sont faibles et ce
sont surtout les perturbations séculaires qui comptent. On peut
donc en premiére approximation ne lenir compte que de la pertur-
bation séculaire et faire I'intégration de I'équation approchée

('/é/ 2R Gy
(22) PR AL
obtenue en ne gardant que le terme k = dans le second membre
de (19), intégration qui donne

(23) szccjeT e

el par suite

(24) W 22(61 e e_"TJ(l‘;‘jmw;"ﬂ})’.
i

Mais dans cette expression, les @; ne sont pas rigoureusement
des constantes, a cause de 'approximation faite en négligeant les
termes périodiques au second membre de (19).

On peut tenir compte de la variation des «; en écrivant

. da; =i Vi -V
(25) r/t/ =7 ?an“/‘ el e
A,*/
En désignant par @;” la valeur moyenne de a; on a pour solu-
tion approximative de (273)
‘:ﬂi(l‘:(km_’_‘v;_lf\l_\_l‘:‘/omﬁvtj;l}y)[

o) A% O)avn et
(26) wj= ;" + 2 B+ Vi) — B0 — Vo
vy k = ii

En substituant (26) dans Pexpression (24) de ¥, on trouve

(27) W — 2“0 RTRCIR ( lo»+\w) )

i

e

100 i}
Vi ) g = BV
-+ IP\O) [0 0
Z ZLA —f—\“\—(l ’+V 7
k7]
2 :‘-'n_,_ 0y ¢ AYARRR Rl
— vn\o\ et j J/ 11 \“)—"Z ki &
- - / S0 Ty 0y ___ N
h/d/ 1/11 -+ ¥ 0 — Vi
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La seconde expression s’obtient de la premiére par permutation
du réle des indices j et & dans la seconde somme. En négligeant
les corrections du second ordre, (27) s’écrit

iy plol ‘/0/ 740 II
(2%) 1],-_2‘(‘(0 e /, ( -+ )/<1Lm0 Zhw) E(Q

i =¥}

Nous voyons sur cette expression qu’au premier ordre, la pertur-

bation sur la valeur propre E}*’ est égale a Vi, et la perturbation
. VIO W)
sur la fonction propre Wi est égale aE-»W‘ Ce sont les
kzj )
résultats obtenus précédemment par la premiére méthode d’ap-

proximation. On pourrait poursuivre.

4. Cas des valeurs propres multiples. — Nous allons maintenant
supposer que I'Hamiltonien non perturbé H*' a des valeurs propres
dégénérées. Soit E}” une valeur propre dégénérée de HI") a
laquelle correspondent p fonctions propres linéairement indépen-
dantes (valeur propre d’ordre p). Nous supposerons que
W, oL, ‘If}‘l’,) forment un systéme orthonormal de fonctions
propres linéairement indépendantes correspondant a la valeur
propre E{".

choisir ce systéme car, si nous le soumettons & une transformation

Nous savons qu’il y a une infinité de maniéres de

lindaire unitaire (c¢’est-a-dire qui conserve normalisation et ortho-
gonalité), nous obtenons un autre systéme de p fonctions propres
orthonormales et linéairement indépendantes relatives a la valeur
propre E[

Nous pouvons écrire le développement de W en mettant a part
ce qui concerne la valeur propre E’ sous la forme

4 eRi e
! KE"Z al I
(29) v= E k() Wi e \ c()FM e h
i ’ e '
1

Lk

Er/

Comme précédemment, on obtient

2. o~ 0} ‘(AO)
(30) ‘%-/“_ 2r Z Vilhe (t)+ZV“”cl(t)e T B

1=k

Si 'on se borne aux perturbations séculaires, qui sont les plus
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importantes, on aura I'équation approximative
dey, axi

31 i = TZ/-\"’"‘:/"/‘(:/{’(” (l=1,2, ..., ph

1

Dans (30) et (31), on a, bien entendu,
(32) Vi, = f LR SUR7CR

Nous allons chercher a quelles conditions la perturbation de
premiére approximalion E;!’ de I'énergie correspondant a la fonc-
tion propre W} a une valeur constante bien déterminée, quel que
soit ¢. Pour cela. d’aprés ce que nous avons vu plus haut. il faut
que 'on ait a approximation des équations (31)

(33) cr(t)y=ageht (I=1T1,2 ..., p).

d’ou, en substituant dans les équations (31),
/l

(34 5}.-1"%,(1) =E/\'}\.‘:/f.l_ck/.(l) (i=1,2,...,p)
1

Ces équations ne peuvent éire vérifiées a tout instant que sil'ona
(35) V}\,':/E.I_z() pour k;# kj; 1= \'}\‘;A‘j.

Ces conditions sont toujours suffisantes.

Or, les conditions V};?Z,: o pour ;= k; signifient qu’il faut
choisir parmi les systémes possibles de fonctions propres ortho-
normales W,”’

étude plus approfondie, que je laisse de coté, montre que I'on peut

un systéme lel que la matrice V("' soit diagonale. Une

toujours trouver un jeu de fonctions propres orthonormées ‘I,‘/’ tel
que ces conditions soient réalisées. On dit que ces fonctions sont
« adaptées » a la perturbation représentée par le terme V. Naturel-
lement elles varient avec la nature de la perturbation. Le jeu des
fonctions ‘If‘";.‘l’? adapté & la perturbation V est unique siles E,/"sont
tous différents. On dit alors que la perturbation V léve entiére-
ment la dégéncrescence de la valeur propre E;” car elle transforme
les p valeurs propres confondues avec E’" en p valeurs propres
distinctes Ek/: E” +E; (en premiére approximation). Si au
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contraire tous les E;’ ne sont pas distincts, la perturbation V ne
léve certainement pas entiérement la dégénérescence de la valeur
propre E/ et le choix des W) n’est pas alors déterminé univo-
quement par les conditions \'7)"(:]“/' = o.

On voit donc qu'il est possible de choisir un jeu de fonctions
propres orthonormales ‘F;.‘/’." (avec j=1, 2, ..., p), relatives a la
valeur propre E;, de telle facon que la valeur propre de I’énergie
en premiére approximation ait, pour chaque fonction propre ‘I/"‘k‘;’,
la méme valeur

(36) B = Vi = j WV
que si B’ n’était pas dégénérée et si 1)’ était la fonction propre
correspondante. Le choix convenable des ‘I";‘;) permet donc de
résoudre le probléeme comme dans le cas de non-dégénérescence.
On voit aussi que si I'on connait un ensemble complet de fonc-
tions propres normdes, orthogonales et linéairement indépendantes,
¥, correspondant & la valeur propre dégénérée E|" d’un systéme
non perturbé, pour voir si cet ensemble de ‘I’"fk‘;’ est adapté a une
perturbation V, on peut vérifier si les conditions

(37) /VII‘A.(ZM\’Y‘F,’,‘.(;;’I/T:() kit )

sont exactes. S’il en est bien ainsi, les ‘I"k.‘]‘_) pourront servir de .
fonctions propres d’approximation zéro dans le calcul de pertur-
bations. Nous aurons a nous servir de ce résultat dans 'étude des
dégénérescences produites par Uidentité de nature de deux ou
plasieurs corpuscules constituants du systéme.

Faisons encore une remarque. Soit E}’’ une valeur propre dégé-
nérée de ’'Hamiltonien non perturbé du systéme. Supposons pour
simplifier que ce soit une valeur double correspondant a deux
fonctions propres linéairement indépendantes. Soient W0 et W,
deux telles fonctions. L’onde W' a pour développement

(38) U = a,‘lf'k.(:)—t— 72 S S

Si Uon applique au systéme une perturbation qui léve la dégeé-
nérescence, il y a deux fonctions W, et W',"" qui sont fonctions
propres, orthonormales et linéairement indépendantes, qui sont
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adaptées. a la perturbation V et que nous supposerons ne pas
coincider avec W;! et W}, On a

W(0) . w(0)/ 0y (0} A0} a00)7
(39) WO =03 WL + 0.0, W = 0 WY 4 001,

ot par hypothése b,, et by, sont différents de zéro. On a donc,
d’aprés (38),

. 0y a0y
(40) gy _—_011[}\_" +c, W ke e

avec

(41) c1= arby+ arbay, o= @1 bys+ s bys.

Les b sont constants, les @ et ¢ variables par suite de la pertur-
bation. La théorie précédente nous apprend que

Wi, oni
R 0 1 0 “ka A1 pIg
(4?) o= c(1 ) e h , ¢ = cl ) e I (]41)“) £ lu/{ﬂ))l

i

Les a sont des fonctions linéaires des ¢ comme on le voit en
résolvant par rapport aux a les équations (41) dont le déterminant
ne peut étre nul, sans quoi W}]' et W ne seraient pas linéaire-
ment indépendantes. On a donc

SRip, Sﬂih‘“’/ STy, 2T

. Ok 3 e
(45) (11=d11 e f ' +(Z|»_»€ bk , (L::(/-“ e

ot dy, et dy, sont différents de zéro parce que by» et b4y le sont.
La probabilité de trouver le systéme dans 'état W

. est donc
BRI E“‘mn(”’),

(44) 1 52::(111}2"‘3({12;2'*‘(?‘ dyidipe "7 4 quantité CO“.i')-

Puisque d,, # o, elle est donc périodique avec la fréquence

H I ;- f Al
(45) vih, = 7 (B’ 1.

De méme, on voit que la probabilité | a,

¢ de trouver le systéme
dans Pétat Wi est périodique avec la fréquence (45).

Donc, les probabilités de trouver le systéme dans des états
stationnaires qui ne sont pas élats adaptés a la perturbation V
fluctuent avec une fréquence égale au quotient par / de la diff¢-
rence des perturbations du premier ordre de I'énergie.
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Comme exemple concret, considérons deux corpuscules de
nature différente (par conséquent susceptibles d’étre distingués
I'un de lautre) sans actions mutuelles. Ces corpuscules sont
soumis a des actions extéricures : ils peuvent par exemple faire
partie d’¢difices atomiques distincts. Soient E;”, ..., Ej"’, ... les
valeurs propres des états stationnaires du premier corpuscule,
WL W, L es fonctions propres correspondantes. Pour
lesecond,ona B, . L ER, Looet W, L, WL Lo Sl arrive
que l'on ait ‘

(46) E)" + B = EY + B0 = B,

0 ;'
v ”m

o

i’ est une valeur propre double du systéeme formé par les deux
corpuscules a laquelle correspondent les deux fonctions propres
linéairement indépendantes W) ‘If,,‘,’}‘ et W ‘I,,‘,)‘, la premiére fonc-
tion propre représentant ’état du systéme ou le premier corpuscule
est dans 'dtat /; et le second dans I’état m; et la seconde fonction
propre représentant I'état du systéme on le corpuscule est dans
Pétat l; et le second dans I'état mj.. La fonction d’onde W du sys-
téme a un développement de la forme

A . [0y pte .. 0 o
(47) W= .+ a,-,‘lf"h/llml_) + ay Y 1!«,,,}_’,—4—. R

|ai;| estla probabilité (constante) de trouver le premier corpus-
cule dans I'état {; et le second dans état m;; | ay v |? est la proba-
bilité de trouver le premier corpuscule dans ’état Ii/ et le second
dans 'état m .. Ces faits sont constatables puisque, par hypothése,
on peut distinguer les deux corpuscules.

Supposons maintenant qu’une légére interaction, représentée
par un petit terme perturbateur V dans ’Hamiltonien du systéme,
existe entre les .deux corpuscules. Alors a la valeur propre
double E}” correspondront deux fonctions propres adaptées a la
perturbation V, qui seront des combinaisons linéaires de W', ‘ij et
de W,, W, et auxquelles correspondent pour I'énergie des pertur-
bations du premier ordre E}’ et E;!’. Le W du systéme sera alors
de la forme

(49) W= g (4) W0 W) ey (£) WO WG

e
(1)
Bt

ou ¢;; et ¢y sont des combinaisons linéaires de e et

L. DE BROGLIE. 9
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LIPS
de e’ " ; d’ou il résulte que les probabilités des états im;

1) nl

, E; i .
et lym;j fluctuent avec la fréquence _‘/—“— On peut dire que
v

les deux corpuscules passent alternativement des étals /; et m; aux
états I et m; en échangeant leurs énergies avec conservation de
I'énergie totale. Les états {;m; ct {;ym; du systéme sont en réso-
nance, et ce phénoméne d’échange d’énergie est comparable a celui
que l'on étudie en Mécanique classique dans le probléme du double
pendule (pendules sympathiques).



CHAPITRE VIL

ETUDE DES SYSTEMES CONTENANT DES PARTICULES
DE NATURE IDENTIQUE.
CAS DES PARTICULES DENUEES DE SPIN.

1. Généralités. — Jusqu’ici nous avions supposé implicitement
que les systémes dont nous faisions I’étude élaient composés de
particules que 'on pouvait expérimentalement distinguer les unes
des autres par leurs propriétés physiques. Nous allons maintenant
nous occuper des systémes ot deux ou plusieurs particules ont
une nature physique identique et ne peuvent étre distinguées les
unes des antres que par une localisation différente dans I'espace.
Nous allons alors voir apparaitre des circonstances entiérement
nouvelles et tout a fait caractéristiques de la nouvelle Mécanique.

L'idée essentielle qui s’est montrée nécessaire pour 1'étude de
ces systémes, c’est que, les particules de méme nature étant
impossibles 4 distinguer, les phénoménes physiques observables
doivent rester exactement les mémes quand on permute les réles
joucs dans le systeme par deux quelconques d’entre elles. Comme
la fonction d’onde W a pour mission en Mécanique ondulatoire
de nous donner une liste des phénoménes observables possibles,
il en résulte que les fonctions W d’un systéme ou figurent des par-
ticules doivent étre construites de maniére a traduire I'impossi-
bilité de distinguer deux de ces particules.

Pour aborder Pétude de cette question assez délicate, nous
commencerons pas examiner le cas extrémement simple d’un sys-
téme formé de deux particules de nature identique sans inter-
actions.

2. Cas d'un systéme de deux particules de méme nature sans
interactions. — Nous considérons un systéme form¢ par deux
particules de méme nature physique n’agissanl pas l'une sur
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l'autre, mais pouvant étre soumises & un champ extérieur qui agit
naturellement de la méme facon sur les deux particules, puisqu’eclles
ont les mémes propriétés physiques. Nous savons former I'équation
d’onde de ce systeme qui est

(1) S|P3, Py P+ pa, oy, s Y
R e L hoIaT
-+ \’(.Z&,}/“ 21)11’ -+ \/(.Z'g,‘}’g, Zg)ll' = ;:i -71‘,-7
m ¢étant la masse de chacune des deux particules, p,.. ..., p., les

opérateurs bien connus. Les particules étant indépendantes, nous
pouvons considérer leurs ondes individuelles dans Vespace a trois
dimensions. Soit W,(x,, ¥4, 5¢; t) une solution de 'équation des
ondes pour la premiére particule, solution qui a chaque instant
n’est différente de zéro que dans un certain domaine A de’espace.
Soit Wy (&3, ¥2, 523 t) une solution de équation des ondes pour
la seconde particule, solution qui & chaque instant n’est différente
de zéro que dans un domaine B. Au cours du temps, les
domaines A et B se déplacent et il peut arriver qu’ils se recouvrent
partiellement ou totalement. Nous supposerons qu'au temps ¢ = o,
les domaines A et B sont complétement séparés.

~ Nous pouvons prendre comme solution de Véquation (1) du
systéme

(2) Wy, ..., 523 0) = W@y, ¥1, 515 ) W22, ¥, 525 1),

solution qui exprime que pour ¢ =o la particule 1 est quelque
part dans le domaine A correspondant & cet instant o et la parti-
cule 2 quelque part dans le domaine B correspondant a cet ins-
tant o. Mais, & cause de 'indiscernabilité des particules, la solu-
tion

(3) Wiy, .., 505 0) = Wa (w32, 523 ) Wiz, 1, 15 1)

représente tout aussi bien le méme ctat de chose puisque, par
hypothése, Ia seule chose que nous puissions vérifier, ¢’est qu’il y
a une particule dans A et l'autre dans B a linstant ¢=o,
sans que nous puissions effectivement attribuer un numéro a
chacune d’elles.

Nous pouvons d’ailleurs tout aussi bien prendre comme solution
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de (i) une combinaison linéaire des solutions (1) et (2) de la
forme

(4) U(zy, ...,3:;8)= cU\(zy, y1, 515 ) Wp(@s, ya, 525 1)
+ AW (x2, Y, 525 &) Wpl@s, Y1, 513 1)

Mais nous pouvons préciser davantage, si nous admettons que la
quantité [W(zy, ..., 52; ¢)|* qui est observable ne doit pas
changer lorsqu’on permute le role des deux particules, puisque
cetle permutation ne doit pas avoir de conséquences observables.
En écrivant explicilement cette condition, on voit aisément qu’elle
ne peut étre satisfaite qu’en posant

(3) fej="'d/|, et =" e.
[.a seconde de ces équations nous montre que c et d ont méme
argument et, comme les fonctions ¥ ne sont jamais déterminées

qu’a un facteur ¢’* prés, on peut prendre cet argument égal a o.
c et d sont alors tous deux réels et la premiére équation (5) donne

(6) c====d.
La solution (4) prend alors la forme

(7) W{(riy ..., 325 1)=c[Wilwey, yi, 515 )Wy 22, Yo, 325 £)
2 Wa(ze, o, 225 £) Wal@n, y1, 205 )]

Le facteur réel ¢ sera déterminé par la condition de normalisation

(8) f.../ill”“'z(/;l‘l...(/ng:I.

Or, en écrivant cette condition pour I'instant £ = o (nous savons
qu'elle subsiste ensuite), on trouve, en tenant compte de ce quele
produit W, (z, v, 53 t) Wy(x, ¥, 5; t) est partout nul & cet instant
l A y U ’ B I )/, ’ P bl

-

™|

(9) 2¢? =1 ou c= N
En définitive, on obtient pour la fonction d’onde normée du
systéme
Walzn, 1, 515 8) Up(@e, yoy 525 8)
I =W (zg, Vo, 22; £) W xi, ¥, 315 1) S

(10) W(ay, ..., 32;1)= = .
V2
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On peut donc dire que W est nécessairement soil symétrique, sott
antisymétrique par rapport aux deux particules, c’est-a-dire que
cette fonction doit ou ne pas changer du tout ou changer seule-
ment de signe quand on permute le réle des deux particules (*).
Mais laquelle de ces deux possibilités devons-nous choisir ? Nous
verrons plus loin que cela dépend de la nature physique des parti-
cules : il existe des lois naturelles qui nous obligent pour tel ou
tel type de particules a choisir soit la solution symétrique, soit la
solution antisymétrique. D’ailleurs pour les particules douées de
spin, il y aura lieu, pour faire ce choix, de tenir compte du spin.

Nous voici donc arrivés a la conclusion que pour un systéme
formé par deux particules de méme nature sans interaction nous
devons toujours prendre une fonction d’onde soit symétrique, soit
antisymétrique suivant la nature physique des particules. Nous
voulons examiner de plué prés ce que signifie ce résultat. Suppo-
sons que, si nous traitons le probléme en considérant isolément le
corpuscule 1 partant de I'état Wy (@4, »y, 54; 0) et le corpuscule 2
partant de I'état Wy( x4, ¥y, 323 0), nous trouvions que les domaines
mobiles A et B balaient an cours du temps des volumes (que nous
représenterons hachurés), sans qu’il y ait jamais entre eux empié-
tement méme partiel. ’

> _

’

Si, & Uinstant ¢, A étant venu en A’ et B en B’, on parvient a
localiser une des particules en M et Pauntre en N on pourra affirmer

© (') Oa peut d’ailleurs démontrer aisément que si la fonction ' est soit symé-
trique soit antisymétrique, non seulement la grandeur [¥ [* mais toutes les
autres grandeurs observables sont insensibles a une permutation du role des deux
particules.
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que la particule trouvée en M est celle qui se trouvait quelque part
dans A & l'instant initial et que la particule trouvée en N est celle
quli se trouvait quelque part dans B a I'instant initial. Dans les
conceptions classiques, nous pouvons constamment distinguer les
deux particules de méme nature physique, parce que nous pouvons
toujours, du moins en principe, suivre constamment leurs locali-
sations successives exactes dans Uespace. Ici, bien que les locali-
sations ne soient plus, en général, précises, le fait que les zones de
localisation possible des deux particules n’empiélent jamais nous
permet encore de les suivre ct de les distinguer. Aussi, dans ce cas,
peut-on soil utiliser les équations individuelles et les ondes indivi-
duelles des deux particules, soit envisager onde du systéme en
prenant la forme dissymétrique Wy (zy, ¥4, 515 £) Wy (x2, ya. 225 ).
En particulier, ceci serait évidemment licite s’il existait une
cloison C infranchissable pour les particules et les séparant
entiérement Vune de ’autre.

Mais, quand il n’existe pas de cloison telle que C, il arrivera
souvent (ce sera méme le cas général) qu’an cours du temps les
zones de localisation des deux particules viendront a empiéter
I'une sur Pautre comme sur la figure suivante.

Quand A vient en A’ et B en B/, il y a une région C de 'espace ot
P'une et l'autre particules peuvent se trouver. Si alors nous par-
venons plus tard a localiser 'une des particules en M et l'autre
en N, nous ne pouvons plus affirmer que celle qui a été trouvée
en M se trouvait & 'instant initial dans A et que celle qui a été
localisée en N se trouvait initialement dans B. En effet, les parti-
cules ont pu bifurquer en C. Nous pouvons ici seulement affirmer
que, deux particules de méme nature se trouvant initialement
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en A et B, on en retrouve deux en M et en N a la fin sans pouvoir
suivre leur personnalité dans l'intervalle. Pour tenir compte de
cette impossibilité, nous devons alors obligatoirement considérer
I’équation d’ondes du systéme et ses solutions de la forme (10)
(symétriques ou antisymétriques suivant la nature des particules).

Comme l'empiétement des zones de localisation possible peut
toujours se produire dans le cas géncéral (on il n’y a pas de
cloison C), c¢’est donc toujours dans I'espace de configuration que
nous devons poser le probléme, avec emploi obligatoire des solu-
tions symétriques ou antisymétriques. En particulier, cela est
toujours nécessaire pour des particules de méme nature engagées
dans les liens d’un systéme atomique ou moléculaire, ou elles
occupent en quelque sorte le méme volume de I'espace.

Nous avons ici déja une importante différence avec le cas des

- particules de natures physiques différentes. En effet, pour des.

particales de natures différentes sans aucune interaclion, nous
pouvons considérer les particules isolément, 'emploi de Vespace
de configuration étant toujours facultatif. Au contraire pour des
particules de méme nature, a cause de impossibilité de suivre
leurs individualités quand leurs zones de localisation empiétent ou
ont empiété, emplot de 'espace de configuration et des solutions
symétriques ou antisymétriques est toujours obligatoire dans le
cas général. Néanmoins dans le cas on les particules sont sans
interaction, on pourrait encore admettre que la particule localisée
en M était celle qui primitivement était dans A et que la particule
localisée en N était celle qui primitivement était dans B ( fig. 11),
mais ceci devient tout & fait impossible s’il y a des interactions,
cas dont nous allons maintenant nous occuper.

3. Systéme formé de deux particules de méme nature interagis-
santes. — Au paragraphe précédent, nous avons supposé que nos
deux particules de méme nature n’exercaient pas 'une sur lautre
d’interaction. Si, au contraire, elles sont susceptibles d’exercer
I'une sur 'autre une interaction fonction de leur distance, il pourra
y avoir entre elles des phénoménes de choc au sens large du mot
et, en ce cas, si 'on part d’une forme initiale de la fonction W qui
soit symétrique ou antisymétrique par rapport aux deux particules,
on aura, aprés le choc une forme beaucoup plus compliquée du W
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qui traduira tous les résultats possibles du choc. Mais il existe un
théoréme général dont nous donnerons la démonstration un peu
plus loin d’aprés lequel, si la fonction d’onde W est initialement
symétrique, elle reste symétrique aprés I'interaction et, si cetle
fonction est initialement antisymétrique, elle est encore antisymé-
trique aprés l'interaction : en d’autres termes, 'évolution du sys-
téme définie par son équation d’ondes respecte le caractére initial
de symétrie ou d’antisymétrie de la fonction d’onde. Clest ce
théoréme qui permet de considérer la syméirie ou 'antisymétrie
des fonctions d'onde comme une propriété caractéristique et
permanente liée  la nature physique des particules.

Etudions maintenant de plus prés eflet de I'interaction entre
les deux particules de méme nature. Supposons d’abord que nous
puissions négliger en premiére approximation linteraction des
deux particules et que ces deux particules se trouvant alors sou-
mises uniquement a un méme champ extérieur aient une suite
d’états stationnaires possibles, suite qui est la méme pour chacune
des particules en raison de leur identité. Soient Wy, W,, ... les
fonctions propres, E;, Ey, ... les valeurs propres pour l'une et
lautre particule. On peut réaliser pour le systéme des deux parti-
cules un état d’énergie globale E; - E; de deux facons différentes,
soit en supposant la premiére particule dans 'état E; et la seconde
dans I'état I, soit en supposant la premiére particule dans I'état E;,
et la seconde dans I'état E;. L’état global du systéme est représenté
dans le premier cas par la fonction d’onde W= W;(1) W;(2) ou 1
et o représentent respectivement &y, ¥y, 51 et ., ¥a, %2} le second
cas correspond au contraire a la fonction d’onde W;(2) W, (1).
Done, a la valeur propre E;+ E; du systéme correspondent les
deux fonctions propres linéairement indépendantes W;(1) W;(2)
et Wi(2)W;(1). Il y a donc une dégénérescence d’un type parti-
culier due uniquement a U'identité de nature des deux particules,
a la possibilité de les échanger sans rien changer : on lui donne le
nom de « dégénérescence d’échange ». Notons que les deux fonc-
tions d’onde W; (1) W;(2) et W;(2) W (1) sont normées et orthogo-
nales puisque tous les ¥ le sont.

Maintenant nous devons tenir compte dans I’'Hamiltonien du
systéme d’un terme d’interaction entre les deux particules : nous
supposerons toujours que ce terme d’'inleraction ne dépend que
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de la distance des deux particules, c’est-a-dire est une fonction
symétrique de ces particules. Nous allons chercher a appliquer la
méthode de perturbations exposée au chapitre précédent.

Nous devons nous demander tout d’abord quelles sont les deux
combinaisons linéaires des fonctions W;(1) W;(2) et W;(2) W, (1)
gque nous devons prendre comme approximations d’ordre zéro
dans notre calcul de perturbation. Nous pouvons voir aisément
que ce sont les deux combinaisons W; (1) Wi (2) &= W (2) W (1) qui
nous sont déja familiéres. D’aprés U'équation (37) du chapitre
précédent, il suffit de prouver que I'on a

(11) /[lL"i(x)lm(z)i11‘1»<2)11s“k(1)]*\’[11‘,-(1)lmz);1F,-(2) (D] = = o,

V étant Pénergie d’interaction fonction senlement de la distance ry.,
des deux particules, car alors la matrice V a 2 lignes et 2 colonnes
correspondant aux fonctions propres de la valeur propre E;+- E,
sera diagonale. Or, la formule (11) est facile & vérifier. Prenons
par exemple les signes supérieurs. Le premier et le deuxiéme
facteur sous le signe d’intégration sont alors symétriques, tandis
que le troisiéme est antisymétrique. Donc, si nous permutons dans
I'intégrale les indices 1 et 2, celle-ci doit changer de signe; mais
permuter les indices 1 et 2 dans l'intégrale revient seulemient a
changer le nom des variables d’intégration, ce qui ne peut pas
modifier la valeur de I'intégrale. Par cette permutation Uinlégrale
doit donc a la fois changer et ne pas changer de signe, et
ceci n’est possible que si elle est nulle. On démontrerait de
méme que la formule (11) est vérifiée quand on y prend les signes
inférieurs.

Les deux fonctions propres normées a I'approximation zéro
adaptée a la perturbation duc a I'interaction des deux particules

sont donc
. W) Wi(2)+ Yic2) ()
v, = ! ,
Vo2
(12) v W) — W) W)
_ G

Les perturbations au premier ordre de I'énergie correspondant a
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ces deux Ctats sont, d’une part

(13) EU— f TV, o
o[ MR PNy
2
N / YWAHOWE(2) Wi(2) Wi (1) + quantité conjuguée

2

Vax,

ou encore en posant

G0 = [TV ] Wela) o (Wil2) 2 Wa(1) ]V s
= f?‘l’f(l)i"’ |1 W (2) 2V

ct

(13) /\:J{/ W)WY (2)V U(2) Welt) o,

(16) ED=C+ A,

ct, d’autre part,

(17) K= f WV

_ f!mmpwunw+mmﬂmwm

2

)Pth

#/' () We(2) VW,(2) W (1) + quantité conjuguée V ot
> ({4

ou

(18) E=C—A,

Le terme C est celui qui existerait seul s’il n'y avait pas de
dégénérescence d’échange. Le terme A, caractéristique de cette
dégénérescence, est nommé le terme d’énergie d’échange : 1l est lié
a 'échange possible des deux corpuscules comme cela se voit sur
sa définition (15). Si les deux formes, symétrique et antisymé-
trique, de la fonction d’onde étaient toutes deux admissibles pour
une méme particule (et nous verrons que cela a effectivement lieu
pour les particules a spin si Pon définmit la symétrie comme nous
I'avons fait jusqu’ici, ¢’est-a-dire sans tenir compte des spins), une
démonstration faite a la fin du chapitre précédent nous montrerait
que la probabilité de trouver la premiére particule dans I'état E; par
exemple, et la seconde dans I'état E;(I'énergie total étant E; - Ey;)
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fluctue avec la fréquence %(ET—E’P) = %, fréquence double

de celle qui correspond par la relation de Planck a I'énergie
d’échange A. Toutefois, ici cette interprétation est d’ordre pure-
ment analytique, puisqu’il est expérimentalement impossible d’af-
firmer si c’est la premiére particule qui est trouvée dans I'état E;
et la seconde dans 'état E; : autremenl dit, les fluctuations
d’échange sont inobservables a cause de Pindiscernabilité des
particules.

L’existence de I’énergie d’échange est extrémement importante
car elle montre que la possibilité d’échange du réle de deux parti-
cules de méme nature se traduit par une modification des valeurs
propres, c'est-a-dire par des phénoménes parfaitement obser-
vables. Nous verrons que la stabilité de la molécule d’hydrogéne
(et plus généralement des molécules homopolaires) repose sur
Pexistence de I'énergie d’échange.

Il y a une remarque importante a faire au sujet de l'énergie
d’échange. Si les fonctions W;(zyz) et Wi(zyz) de Vapproxi-
mation d’ordre zéro sont telles que pour aucun point zyz elles
ne soient toutes deux différentes de zéro, 'intégrale A est évidem-
ment nulle. Ceci vient dire que l'énergie d’échange est nulle si
pour les états W;(1) Wi(2) et W;(2)W;(1) ou les combinaisons
linéaires de ces états, il n’y a aucun point de 'espace ou les deux
particules puissent se trouver a la fois. L’énergic d’échange n'est
donc différente de zéro que s’il y a empiétement des zones de
localisation possible pour les deux particules. Comme l'impossi-
bilité de suivre U'individualité de chaque particule, I'existence de

"I'énergie d’échange est donc liée a cet empiétement.

Considérons par exemple deux centres de force identiques
fixes N et N’ autour de chacun desquels gravite une particule
(P et P). P et P’ sont suppostes de méme nature. Soit G
une cloison imperméable aux particules P et I’ placée entre N
et N' (fig. 12). Alors P peut posséder des étals stationnaires autour
de N et " autour de N’ sans qu'il puisse y avoir empiétement des
ondes W stationnaires correspondantes, ni par suile des zones de
localisation possible. S’il y a une interaction entre P et P/, les
perturbations du premier ordre en énergic E'' et E''’ sont égales
toutes deux a G puisque I’énergie d’échange A est nulle. Dans ce
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cas l'interaction ne léve donc pas la dégénérescence d’échange ct
rien ne nous oblige a prendre comme fonction d’onde W;(1) Wi (2)
+= W;(2) W, (1) plutét que les fonctions d’onde dissymétriques
telles que W (1) W, (2), ce qui veut dire que 'on peut ici traiter le
probléeme en conservant U'individualité des particules, puisque la
particule qui est a droite de G au début reste forcément a droite
de C et inversement. L’énergie d’échange disparait donc quand il
y a possibilité de suivre individualité des particules. De ce qui
précede, résulte que, pour qu'il soit nécessaire d’abandonner
I'individualité des particules et d’employer uniquement les fonc-
tions d’onde symétriques ou antisymétriques, il faut qu'il y aitala
fois interaction ct empictement des régions de présence possible,
c¢’est-a-dire que I'énergie d’échange A soit différente de zéro.

.N N’

Fig. 12.

Si I'on parvient a tirer un jour complétement au clair cette
notion assez mystérieuse d’énergie d’échange, il faudra, pour le
faire, certainement tenir compte de la remarque précédente.

Toutes les considérations que nous venons d’exposer concernent
le cas trés particulier d'un systéme de deux particules de nature
physique identique. Elles ont Pintérét de nous avoir clairement
montré lout un ensemble de circonstances nouvelles qui se pré-
sentent en raison de 'identité de nature des deux particules et de
Pimpossibilité de suivre constamment leur individualit¢, du moins
quand il y a empiétement de leurs zones de localisation possible.
Nous allons maintenant étudier le cas général d'un systéme conte-
nant un nombre quelconque de particules de méme nature et
montrer que Pon retrouve toujours les mémes circonstances que

Etptat  sstamre e
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dans le cas de deux particules. Chemin faisant, nous ferons
certaines démonstrations générales qui justifieront quelques affir-
mations contenues dans 'exposé précédent.

4. Systémes contenant un nombre quelconque N de particules
identiques. — Nous allons maintenant considérer un systéme
contenant N particules de méme nature physique. Naturcllement
dans ce systéme peuvent aussi se trouver d’autres particules de
nalure différente, mais nous ne préciserons rien sur ces aulres
particules, dont la présence ne modifierait aucunement les raison-
nements que nous allons faire, et nous écrirons la fonction d’onde
¥ sous la forme W(z,...5y, t) sans méme inscrire les coordon-
nées des autres particules, s’il y en a, car cela ne ferait qu’allonger
inatilement I'écriture. Nous emploierons généralement une nota-
tion abrégée en écrivant W(x, 2, ..., N, ¢), o0 1 représente l'en-
semble des coordonnées z,, y., 54, etc.

Nous dirons qu’une fonction des 3N coordonnées de N parti-
cules de méme nature est symélrique par rapport a toutes ces
particules si, quand on permute le role de deux quelconques
d’entre elles, la fonction ne change pas, c’est-a-dire si l'on a
SO, d, oo ko0, NY=Ff(n, oo k8, 00, N) pour
tout ¢ el tout k. De méme, nous dirons qu’'une fonction des 3N
coordonnées de N particules semblables est antisymétrique par
rapport & toutes ces particules si, quand on permute l¢ réle de
deux quelconques des particules, la fonction garde sa valeur
absolue en changeant de signe, ¢’est-a-dire st l'on a

FOy 2 ety ey ky i NY=— F(L, ey Ky oy N

pour tout I et tout 4.

L’opérateur Hamiltonien du systéme peut étre considéré comme
une certaine fonction des 3N coordonnées des N particules. 1l se
compose, nous le savons, de trois parties : 1° la partie cinétique
qui est ici

N

z ! 2 2 2
j2m (p1i+P»"i+1):i)’
1

ou m est la masse commune des N particules de natures iden-
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tiques et ol
st N Y
p.r; p»\',- P:i—' 452 ()‘Zz_, ()jfljz dZL‘) 2

2" la partie venant de I'énergie potentielle due au champ exté-
rieur, s’il en existe. Comme action du champ extérieur sur des
particules identiques est la méme, cette partie potentielle de
I’Hamiltonien est de la forme

N
va(ﬂfz‘; Yoy Bi)s
l
1

Q) étant la méme fonction dans tous les termes de la somme;
3° les termes d’interaction qui sont de la forme

2‘1%/(&'/) =2 V(rij)s

= iy
' ¢lant la méme fonction dans tous les termes de la somme. Au
total, on a donc

2m

N
(19) U= — zi(P.if“lef*"]?:ﬂ.i) +Zi°~’(1‘i» Yis Bi) +>: V(rif).
! 1 i)

11 est alors ¢vident que si nous permutons deux quelconques des
particules de méme nature, c’est-a-dire deux quelconques des
indices 7 et £ dans les sommes Z, H n’est pas modifié. L’opérateur
Hamiltonien est donc symétrique par rapport aux N particules, car
ona H(ey oo dy cooi by oo oy, NV=HG, ook ol 0, o0 N)
pour tout ¢ ct tout k. Cette symétric de I’'Hamiltonien est a la base
de toute la théorie qui va suivre.

Soit maintenant W' (1, 2, ..., N)une certaine solution de I'équa-
tion d’ondes du systéme (ot nous avons omis la variable ¢). Cette
fonction satisfait par définition a I’équation

2,

). . 271 e .
(20) ’;74(1,9 o Ny =Sl 2, Ny, 2, N,

Permutons d’une maniére quelconque le role des N particules :
nous passerons ainsi de la fonction W(r, 2, ..., N) a une fonc-
tion W(/, &k, ...) dans laquelle les arguments 1, 2, ..., N repré-
senlant chacun l'ensemble des trois coordonnées d'une particule

i
i
i
i
H

it b i o
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sont rangés dans un ordre différent. Nous pouvons représenter
cette nouvelle fonction par le symbole PW (1, 2, ..., N), P sym-
bolisant une cecrfaine permutation opérée sur les nombres 1,
2, ..., N. La symétrie de 'Hamiltonien nous permet alors de
démontrer 'important théoréme suivant :

Tutoriwe., — St W(1, 2, ..., N) est une solution de l'équa-
tion d’ondes du systéme, la fonction PW (1, 2, ..., N) en es¢

également solution, quelle que soit la permutation P.

En effet, si dans I’équation (20) nous opérons la permutation P
sur les variables 1, ..., N, nous obtiendrons encore une é¢quation
vérifiée, puisque nous aurons tout simplement changé le nom des
variables. Cette équation est

(21) %P‘V(I, U p - ZTT;LPI]‘[J‘(I, co N,

la permutation du second membre s’appliquant a chacun des
facteurs H et W'. A cause de la symétrie de I, on a

PH(1, ..., N)=H(1, ..., N),

d’ou
7 271

(22) —P‘F(I,...,N):THP‘F(I,...,N).

On en conclat en passant qu'en vertu de la symétrie de 11, on
peut poser la relation entre opérateur

(23) PH = 1IP.

Clest cette relation (23) que M. Dirac traduit en disant que
« les permutations sont des constantes du mouvement ». En effet,
(23) montre que les permutations P sotisfont a la définitiou des
intégrales premiéres.

[’équation (22) exprime que PW (1, ..., \) est solution de
Iéquation des ondes, ce qui démontre le théoréme énoncé.

En particulier, st ¥'(1, ..., N) est une certaine fonction propre
W; du systéme supposé isolé, on a

(24) H(t, ..., YW1, ..., N)=E; ¥;(1, ..., N)

et, d’aprés le théoréme qui vient d’étre démontré, on a aussi,
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quelle que soit P,
(23) H(t, .., N)P U1, ..., Ny=E;Pw;(1, ..., N)

Done PW;(1, ..., N) est aussi fonction propre pour la méme
valeur propre E;, quelle que soit I’

Siaucune valeur propre de HH n’était dégénérée, on en conclurait
que W; est soit symétrique, soit antisymétrique; car si E; est une
valeur propre simple, on a une seule fonction propre correspon-

dante et, par suite, PW;(1, ..., N) doii étre proportionnelle a
Y(1, ..., N). On a donc, A étant une conslante,
(26) PU(1, ..., Ny= AW, ..., N).

Comme II est un opérateur réel, ses fonctions propres pour une
valeur propre simple peuvent étre supposées réelles (car on peut
prendre égzal a 1 le facteur ¢ que la normalisation laisse arbi-
traire ). Alors, W, étant réel, PY; I'est évidemment aussi et il en
est de meéme de A. Mais nous avons

(27) f Wttdey ... dax= [\ PW; rdzxy...dzy,

car la valeur d’une intégrale définie ne dépend pas du nom que
lon donne aux variables. En remplacant dans (27) PW par sa
valeur (26), on trouve (A ¢élant réel) A2 =1 et, par suite,

(28) A == 1,
d’ot1, par (26),
(29) P, .., NY === W(r, L., N

Si 'on prend pour la permutation P celle qui correspond au
simple échange des particules ¢ et &, on voit que pour E; non
dégénéré, \U; est nécessairement soit symétrique, soit antisymé-
trique pour 'échange des particules ¢ et £. Il en résulte aisément
que W; est alors symétrique ou antisymétrique par rapport a
I'ensemble des particules de méme naturc du systéme. En cffet,
pour permuter les deux particules / et m, nous pouvons d’abord
permuler I et 7 d’une part, & et m d’autre part, puis permuter 7 et &
et enfin permuter a nouveau ¢ et [ d’une part, & et m d’autre part
suivant le schéma

L. DI BROGLIE. 10
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De ces cinq permutations successives ainsi effectudes pour
arriver & permuter [ avec m, deux sont des échanges simples de ¢
et de [ et deux des échanges simples de & et de m. Or, d’aprés ce
qui fut démontré plus haut, chacun de ces échanges simples a
pour effet de multiplier W; par &= 1, de sorte qu’au total ces quatre
échanges simples ne modifient pas ¥;. Finalemenl on voit que
I'échange de [ et de m produit sur W; le méme effet que I'échange
de ¢ et de k. Comme ¢, k, [, m sont quelconques, on voit que ¥,
est nécessairement soit symétrique, soit antisymétrique pour tout
échange des particules de méme nature.

En vésumé, si les valeurs propres de H étaient toutes simples,
toute fonction propre seraitl soit symétrique, soit anlisymétrique.
Mais, a I"approximation zéro, quand on néglige les interactions
entre particules, il y a toujours des valeurs propres multiples dues
a la dégénérescence d’échange. Le résultat précédent n’est donc
pas immédiatement applicable en général & cause des dégénéres-
cences. Il est cependant valable dans le cas, précédemment
étudié, d'un systéme formé de deux particules de méme nature.
En effet, dans ce cas, 'interaction entre les particules léve en
général la dégénérescence d'échange. Les valeurs propres doubles
se dédoublent sous 'action de la perturbation comme nous 'avons
vu dans le dernier paragraphe, et les fonctions propres correspon-
dant a ces valeurs propres dédoublées sont soit symétriques, soit
antisymétriques en vertu des raisonnements précédents. Si nous
faisons tendre vers zéro l'interaction des particules d’une facon
continue, les fonctions propres conservent leurs caractéres de
symétrie ou d’antisymétrie et a la limite, quand les valeurs propres
dédoublées viennent se confondre, les fonctions propres viennent
se raccorder avec les fonctions propres de 'approximation zéro qui
doivent donc étre aussi soit symétriques, soit antisymétriques.
Nous avons vu que les foncuons propres de approximation zéro
adaptées a la perturbation créée par l'interaction sont : ‘

() Pg(2) = W) Wi (2).
Nous trouvons donec finalement le théoréme suivant :

Tatorime. — Pour les systémes contenant deux particules de
méme nature physique, toutes les fonctions propres sont soil
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symétriques, soit antisymétriques par rapport & ces deux par-
ticules (i condition de choisir convenablement les fonctions
propres correspondant aux valeurs propres dégénérées).

Ce théoréme ne s’étend pas au cas de N > 2, car alors I'inter-
aclion entre les particules ne léve jamais complétement la dégéné-
rescence d’échange et le mode de raisonnement indiqué plus haut
n’est plus valable. Dans ce cas général de N > 2, les fonctions
propres symétriques et antisymétriques réunies ne forment plus
un systéme « complel », nous le montrerons plus loin sur un
exemple simple. En général, une fonction d’onde quelconque
W (1, ..., N) non seulement n’est ni symétrique, ni antisymé-
trique, mais n'est méme pas développable en une somme de fonc-
tions propres symétriques angmentée d’une somme de fonctions
propres antisymétriques.

Néanmoins, on peut encore énoncer le résultat suivant : « pour
un systéme de particules contenant plus de deux particules de
méme nature, il existe toute une suite de fonctions propres symé-
triques et toule une suite de fonctions propres antisymétriques
par rapport & ces particules ».

En cffet, soient E; une valeur propreet W;(1, 2, ..., N) une fonc-
tion propre correspondante telle que

(30) i, ..., NyWi(t, .., N)y=E; W(r, ..., N).
Nous savons que toute fonction PW,(r, ..., N) est aussi fonction
propre pour la valeur propre E; : il en est donc de méme de toute

combinaison linéaire des PW (1, ..., N)en comprenant dans les P
la permutation identique P =1, telle que

(1, ..., Ny=%(, ..., N).

En particulier, on a une solution de la forme

(31) \L";:J:ZP wit, ..., N),
P

la sommation étant faite sur toutes les permutations P possibles,
y compris la permutation identique. Cette fonction propre est visi-
blement symétrique, car elle contient toutes les vartables 1, ..., N
symétriquement. On a donc ainsi, pour I'ensemble des valeurs

S o 1
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propres K, ..., E;, ... un ensemble de fonctions propres symé-

triques W0, ., WL L
De méme, on peut trouver de la fagon suivante une fonction
propre antisymétrique correspondant a la valeur propre E;. On

sait que les permutations de N objets, qui sont en nombre N! se
divisent en deux catégories contenant chacune -~ permutations,
savolr : 1° les permutations paires, qui s’obliennent en faisant un
nombre pair d’échanges simples dans la suite 1, ..., N, la permu-
tation identique étant rangée par délinition dans celte calégorie
(ce qui revient a ranger zéro parmi les nombres pairs); 2° les per-
mutations impaires, qui s'obtiennent en faisant un nombre impair
d’échanges simples dans la suite 1, ..., N. FFormons alors la fone-
tion propre

(32) W =W P W, N,
-

ou les permutations paires sont affectées du signe + et les per-
mutations impaires du signe —. Il est facile de voir que W est
antisymétrique, car si 'on ¢change le réle de deux particules,
l'ensemble des permutations P se change en lui-méme, mais les
permu{ations qui étaient paires deviennent impaires et inverse-
ment. La fonction obtenue & partir de W, (i, ..., N) par échange
de deux particules aura la méme expression que W}, mais avec le
signe -+ pour les permutations impaires et le signe — pour les
permutations paires : elle sera égale et de signe contraire, c¢’est-
a-dire que l'on aura

(33) - W (r..do ko Ny =—WY0 (kLN

W est donc bien antisymétrique et, pour I’ensemble des valeuars
propres Eq, ..., E;, ..., nous avons bicn un ensemble de fonc-
tions propres anlisymétriques Wi, ..., W, ...

Comme exemple simple de ce qui précéde, prenons le cas
de N=3. Soit ¥,(1,2,3) une fonction propre correspondant a
une valeur propre E;. Pour les trois objets 1, 2, 3, nous
avons 3 ! = 6 permutations différentes dont 3 sont paires.

I, 2 3 3, 1, 2; 2, 3, I;
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el trois sont impaires,

1, 3, 2; 2, 1, 3; 3, 2, 1.

Nous avons done, d’apreés les résultats démontrés, six fonctions
propres correspondant a la valeur propre E;, savoir

W1, 2, 3); Wi(3, 1, 2)5 Wy(2, 3, 1);
/ / /

34
G0 { ]X‘/(IJ 3, 2); W/‘(2, 1, 3); u'/<3: 2, 1).

Ces six fonctions (34) ne sont pas toujours linéairement indépen-
dantes, mais nous avons toujours une combinaison linéaire qui est
symétrique, savoir :

(35) ‘IJ"f/:“)(I, 2, 3)= W;(1, 2, 3)+W,;(3, 1, 2) +W;(2, 3, 1)
+ W, 3, 2)+ W, (2, 1, 3)+W,(3, 2, 1)

et une combinaison linc¢aire antisymétrique, savoir :

(36) W (t, 2, 3)= W1, 2, 3)+ (3, 1, 2)+ ¥;(2, 3, 1)
— W, 3, 2) —W(2, 1, 3) —W,(3, 2, 1).

Mais, en général, on ne peut pas exprimer toutes les fonctions
propres (34) a l'aide des deux seules combinaisons W et Wi
L’ensemble des fonctions W)", méme augmenté de 'ensemble
des W), ne forme donc pas un systéme complet de fonctions
propres et une fonction d’onde W quelconque, qui peut se déve-
lopper suivant I'ensemble des fonctions propres de la forme (34),
ne peut pas en général s’exprimer comme une somme de fonc-
tions ;" augmentée d’une somme de fonctions W, Cela n’est
toujours possible que pour N = 2.

Nous pouvons maintenant préciser la forme des fonctions
propres symélriques et antisymétriques dans le cas de N particules
en interaction faible, si nous nous en tenons a I'approximation
d’ordre zéro. Soient donc N particules dont nous négligeons
Pinteraction. Chacune de ces N particules de méme nature placées
dans le méme champ extéricur sont susceptibles d’états station-
naires, que nous supposcrons non dégénérés correspondant a des

valeurs propres I, Es, Ey, ..., avec des fonctions propres W¥,,
W, Wy, .... Le systéme des N particules aura une valeur propre
N termes,

P N
(37) Ej=E;+E3+ Ev+...,
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qui pourra étre véalisée par N ! répartitions des énergies indivi-
duelles E,, Eg, ..., entre les particules et a laquelle correspon-
dront N'! fonctions propres en général linéairement indépendantes

o () W3(2). .. W (N), Wy(2)Ws(r)... W, (N),

On obtiendra une solution symétrique en faisant la somme de ces
fonctions propres. Quant a la solution antisyméirique, elle
s’obtiendra en formant la combinaison

2 = PW, (1) Wy(2) ... Wy (N).
"

Or, on peut remarquer que cette combinaison peut s’écrire sous la
forme d’un déterminant

Wal) Wa(2) ... Wal(N)
o U Pu(N)

) e L Ny = (1) Ws(2) ... Wy(N)|
Uh (1) U4 (2) ... UN(N)

car Palternance des signes dans les termes du déterminant corres-
pond exactement & la combinaison a former. Surl’expression (38),
on voit immédiatement que si deux ou plusieurs des états station-
naires «, (3, ..., A sont les mémes, W}’ est nul, carle déterminant
a alors deux-ou plusieurs lignes identiques. Tout état stationnaire
possible devant correspondre a une fonction W non nulle, nous
parvenons & la conclusion suivante, dont nous verrons plus loin
toute 'importance : « Dans un systéme contenant des particules
de méme nature, il ne peut exister d’état antisymétrique dans

lequel deux ou plusieurs de ces particules sont dans le méme état
individuel ».

Remarquons en passant que, dans le cas de deux particules,
nous avions trouvé des fonctions propres antisymétriques de la

forme
W) Wr2)—W;(2) Wi(x),

qui sont bien égales aux déterminants

U (1) Wi(2)

Wi(s) Wi(2)
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5. Théoréme fondamental. Démonstration et conséquences. —
Nous sommes parvenus a cette conclusion que, pour un systéme
de particules de natures identiques, tout au moins dans le cas
général ou N est supérieur a 2, il existe bien une suite de
fonctions propres symétriques et une suite de fonctions propres
antisymétriques, mais que 'ensemble de ces suites ne forme
pas un systéme complet permettant d’exprimer n’importe quel W,
Dés lors, il pourrait sembler qu’il n’est pas légitime de fixer
son attention uniquement sur les fonctions propres symé-
triques el antisymétriques, puisqu’elles ne permettent pas a elles
seules d’exprimer un état quelconque du systéme. Mais il existe
un théoréme fondamental suivant lequel les états symétriques
d’une part, les états antisymétriques d’autre part, jouissent de
propriétés trés particuliéres, permettant de leur attribuer une
importance spéciale. Ce théoréme est le suivant :

Tutoniime. — St la fonction d’onde d’un systéeme contenant
des particules de méme nature physique est initialement symé-
trique par rapport & toutes ces particules, elle reste ensuite
symétrigue; si elle est initialement antisymétrique, elle reste
antisvmétrique. Autrement dit, le caractére initial de symétrie
ou dantisymétrie de la fonction d’onde est respecté par
U'évolution du systeme.

Ce théoréme fondamental résulte, comme les précédents, de la
symétric de I'HHamiltonien par rapport aux particules de méme
nature présentes dans le systéme. En effet, 'équation des ondes
du systéme est
{39) i)—1If(1, 2, ..., N; )= —QL—";II(I, 2, ..., Ny &) W(1, ..., N; ¢).

Jt h

Supposons qu’a 'instant initial ¢y, ¥ soit symétrique. Het W (¢,)
étant symétriques, HW(¢,) Pest aussi et par suite, d’apreés (39),

J¥ T .
<_)t—> également. Or a P'instant ¢, + d¢, on a, au premier ordre,
C t=t,

(40) W (ty—+dt)=W(ty) -+ <()_IL> dt.
()t 1=,
y ) @ .
Done W(¢,) et ('—i}—i > dlant symétriques, W(t,+- dt)est anssi
=1l
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En partant de l'instant ¢,+ dt, on démontrera alors de la méme
fagon que W(t,+ 2dt) est symétrique el par récurrence
que W(ty,-+ ndt) est aussi. Finalement, on voit que, W(¢,) étant
symétrique par hypothése, a un instant ultéricur quelconque ¢,
¥ (¢) est aussi.

Si W(t,) est antisymétrique, ITW (¢,) U'est aussi et il en est de
v
Jt
demment que W(¢,+ dt) est antisymétrique et lon voit par
récurrence que, W(¢,) étant antisymétrique par hypotl}ése, i un
instant ultérieur quelconque ¢, W(¢) le serg aussi. Le théoréme

méme de ( > y d’aprés (3¢g). On en conclut comme précé-
=1,

fondamental se trouve ainsi démontré.

On peut déduire de ce théoréme qu’un systéme parti d’un état
symétrique ne peut passer qu’a d’autres états symétriql‘les et
qu’'un systéme parti d’un état antisymétrique ne peul passer qu’a
d’autres états antisymétriques. En effet, sile systéme est initiale-
ment dans un certain ¢tat stationnaire symétrique, sa fonction
d’onde W coincidera a l'instant initial avec une certaine fonction
propre symétrique. A un instant ultérieur ¢ quelconque, la fone-
tion W étant restée symétrique d’aprés le théoréme fondamental,
son développement suivant les fonctions propres du systéme ne
contiendra que les fonctions propres symétriques. Comme les
cocfficients de ce développement donnent (par le carré de leur
module) les probabilités des états possibles du systéme a P'ins-
tant ¢, on voit que le systéme ne peul passer de I’état symétrique
initial qu’a un autre état symétrique. On démontrerait de méme
que, si 'état initial était antisymétrique, le systéme ne peut passer
qu’a d’autres états antisymétriques. La transition d’un état station-
naire & un autre correspondant & une « combinaison » au sens du
principe de combinaison de Ritz, on peut dire que les élats symé-
triques ne peuvent se « combiner » qu’avec des états symétriques,
et les états antisymétriques qu’avec des ¢tats antisymétriques.

Ainsi, bien que dans le cas général, les fonctions propres d'un
systéme contenant des particules de méme nalure ne soient ni
symétriques, ni antisymétriques et que par suile une fonction
d’onde ¥ quelconque du systéme ne puisse se développer suivant
un systéme complet de telles fonctions, néanmoins il existe un
ensemble de fonctions propres symétriques et un ensemble de
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fonctions propres anlisymétriques el chacun de ces deux ensembles
forme une sorte de systéme fermé possédant son autonomie, en ce
sens qu’'une fonction d’onde W' initialement représentable par un
développemeht ou ne figurent que des fonclions propres symé-
triques reste toujours représentable par un tel développement et
qu'une fonction W initialement représentable par un développe-
ment ou ne figurent que des fonctions propres antisymétriques
reste toujours exprimable de cette facon. Nous voyons donc que
st, & un instanl donné, pour un certain type physique de particules,
toutes les fonctions d’onde W se trouvaient étre symélriques
(ou antisymétriques), elles se trouveraient toujours par la suite
étre toutes symétriques (ou antisymétriques ). Ainsi, il est permis
de supposer que, pour chaque type de particule, nous ne puissions
rencontrer, par suile d’une loi de la nature, que des fonctions
d’onde symétriques ou bien que des fonctions d'onde antisymé-
triques. En adoplant cetle hypothése, on introduit naturellement
un principe nouveau, qui est tout a fait étranger aux postulats sur
lesquels nous avons fait reposer jusqu’ici la nouvelle Mécanique.
Ce principe n’est aucunement une conséquence des lois générales
de la Mécanique ondulatoire, mais les théorémes précédents
montrent qu’il est compatible avec elles. G’est naturellement a
I'expérience qu’il appartient de nous dire si U'introduction de ce
principe nouveau est justifice.

Or, il résulte clairement des résultats expérimentaux que,
pour chaque type de particule, les fonctions d’onde sont toujours
soit symétriques, soit antisymétriques. Ainsi les pholons, les
particules « et un cerlain nombre de noyaux atomiques n’ont que
des états symétriques, alors que les électrons, les protons et
d’autres noyaux atomiques n’ont que des états antisymétriques. II
en résulte de grandes différences entre les propriétés statistiques
des deux catégories de particules. Pour les particules a états
symétriques, ricn ne s’oppose a ce qu’'un nombre quelconque des
particules se trouvent dans le méme état individuel; on devra
donc développer les propriétés statistiques des ensembles de telles
particules en tenant compte de Uimpossibilité de les discerner
I'une de Pautre, mais sans imposer aucune restriction au nombre
des particules qui peuvent se trouver dans le méme étatindividuel;
on aboutit ainsi a la statistique de Bose-Einstein qui est valable
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par exemple pour les photons et conduit a la loi de Planck pour
le rayonnement noir. Pour les particules a fonctions d’onde
antisymétriques, il faut tenir compte du fait signalé plus hant
que deux de ces particules ne peuvent se trouver dans le méme
état individuel; on devra donc alors développer la statistique non
seulement en tenant compte de 'impossibilité de discerner les
particules, mais aussi en limitant 4 une le nombre des particules
qui peuvent se trouver dans chaque état individuel: on oblient
ainsi la statistique dite de Fermi-Dirac qui, appliquée aux ¢lec-
trons, conduit notamment a expliquer les propriétés des ¢lectrons
de conductibilité dans les métaux ().

Chaque catégorie physique de particules est donc caractérisée
par le fait d’avoir toujours des fonctions d’onde symétriques ou
des fonctions d’onde antisymétriques, et nous venons d’indiquer
« en gros » comment les particules réelles se partagent entre les
deux types. Mais en réalité, pour énoncer correctement d’une
facon générale les propriétés de symétrie ou d’antisymélirie des
fonctions d’onde, il est nécessaire de faire intervenir un élément
qui n’est pas contenu dans les équations de la Mécanique ondula-
toire (telles que nous les avons écrites) et dont nous n'avons tenu
aucun compte jusqu’ici : le « spin ». Pour arriver a une définition
correcte de la symétric et de antisymétrie des fonctions propres
de Pélectron et énoncer d’une maniére précise le « principe
d’exclusion de Pauli » qui traduit cetle antisymétrie, il est abso-
lument nécessaire de définir le spin et d’en tenir comple dans la
spécification des états stationnaires. C'est ce que nous devons
examiner maintenant, les considérations développées dans le pré-
sent chapitre n’étant valables rigoureusement que pour des parti-

" cules dénuées de spin.

(1) Voir, par exemple, Liox BriLrLouly, Les statistiques quantiques ( Collec-
tion des Conférences-Rapports), Presses Universitaires. t. 2.




CHAPITRE VIII

ETUDE DES SYSTEMES CONTENANT DES PARTICULES
DE MEME NATURE.
CAS DES PARTICULES DOUEES DE SPIN.

1. Introduction du Spin. — L’étude des propriétés des parti-
cules maltérielles, et en particulier celle des ¢lectrons, a amené les
physisiens 4 reconnaitre que les propriétés d’une particule maté-
rielle n’étaient pas en général entiérement caractérisées parlavaleur
de sa masse et celle de sa charge électrique. Il faut y adjoindre un
troisiéme élément, le « Spin », ou « moment de rotation propre »
de la particule auquel est d’ailleurs lié un « moment magnétique
propre ». En se servant des 1mages classiques, on peut dire qu’il
faut se figurer une particule telle qu’un électron non pas comme
analogue & un globule d’électricité sans mouvement interne, mais
plutét comme analogue a un globule animé d’'un mouvement
d’ensemble autour de 'un de ses diamétres, rotation qui cause
I'apparition d’un mouvement cinétique et d’'un moment magné-
tique étroitement liés I'un a 'autre. Naturellement, cette représen-
tation classique ne doit pas étre prise a la lettre dans la théorie
quantique : il faut la transposer comme toutes les autres réprésen-
tations classiques.

Nous ne rappelons pas ici en détail toutes les raisons qui ont
conduit & admettre I'existence du spin, telles que la complexité des
structures fines des raies spectrales que ni la théorie quantique,
ni la Mécanique ondulatoire ne peuvent expliquer, telles encore
que la complication des effets Zeeman dits anormaux, telles
enfin que la constatation des anomalies gyromagnétiques ().
L’examen de tous ces faits auparavant inexplicables ont conduit

z

(') Sur ces questions, on peut consulter le livre de l'auteur : L’électron
magnétique, Hermann, Paris, 1934.
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dés 1925 MM. Uhlenbeck et Goudsmit a admettre existence pour
I'électron d’'un moment cinétique et d’'un moment magnétique
propres. Pour pouvoir interpréter a 'aide de cette hypotheése les
structures fines spectrales, les effets Zeeman anormaux et les
anomalies gyromagnétiques, ils ont été conduits a supposer que, m

et e étant la masse et la charge de I'électron, le moment magnétique

. . . Y/
propre avait pour l'électron la valeur quantique normale en

T
L= me
(ou magnéton de Bohr), tandis que le moment cinétique avait

h Vg ., .., . .
pour valeur —, c’est-d~dire la moitié de 'unité quantique habi-
47w

P / .
tuelle de moment cinétique Z—L_ MM. Uhlenbech et Goudsmit ont

développé leur théorie dans le cadre semi-classique de I'ancienne
théorie des quanta. Ensuite ces théories ont ¢été été étendues par
MM. Thomas, Frenkel, etc. Mais déja a cette époque anciennc
théorie des quanta faisait place a la Mécanique ondulatoire et il y
avait lieu de chercher a introduire le spin en Mécanique ondula-
toire. La chose ne se fit pas sans quelques difficultés. M. Pauli est
parvenu d’abord & une Mécanique ondulatoire de I'électron avec
spin qui, bien que trés intéressante, était encore incompléte ct
non relativiste. Guidé par cette tentative, M. Dirac a pu déve-
lopper sa trés remarquable Mécanique ondulatoire relativiste de
I'électron a spin. Cette théorie permet de donner une définition
du spin qui est en accord avec les idées géncérales de la nouvelle
Mécanique et de plus d’exprimer d’une maniére exacte comment
le spin intervient dans la spécification des états del'électron. Nous
ne pouvons développer ici cette théorie de Dirac qui, d’ailleurs,
ne s’applique qu’a I'électron. Nous allons exposer unc théoric
générale un peu schématique qui, sans préciser exactement Uinter-
vention de spin dans les fonctions d’onde, permet néanmoins de
tenir compte de son cxistence dans la définition des états symé-
triques et antisymétriques.

2. Représentation du spin en Mécanique ondulatoire des sys-
témes. — En Mécanique ondulatoire, le spin de I'¢lectron doit étre
défint de la fagon suivante : ¢’est un moment de rotation propre

de I'électron qui, évalué autour d’une direction quelconque O s ne

. h h
peut avoir que 'une des valeurs + —et— —-
47

-
(e
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L’état de I'¢lectron est un cas pur pour le spin suivant Oz si
dans cet état la composante Oz du spin a certainement soit la

7 . / -, . . A
valeur 4+ —/L_a soit la valeur — 42 Un état stationnaire de 1'¢lec-
4w~

tron sera donc représenté par une fonction W;(x, y, 5; ¢), ou g
h

représente le spin et a 'une des deux valeurs == =

, fonction qui
satisfait a 'équation
(1) II(‘Z‘7 .}/: 3z g)]r/‘:E/q'm/v

H(z, y, 5; o) étant 'Hamiltonien qui peut dépendre du spin o.
Les théories de Pauli et de Dirac dont nous avons parlé au dernier
paragraphe, rentrent dans ce schéma général. _
Plus généralement ('), une particule douée de spin possédera une
. . . . . [ 2N
composante 3 de spit qul sera toujours un multlple entier de == —.
Un cas pur pour le spin sera réalisé pour les ctats tels que
n . . . .
¢ —===n —, n étant un nombre entier pouvant prendre un certain
%

nombre de valeurs. Un état stationnaire de la particule sera repré-
senté par une fonction propre W;(z, y, 5; ¢), ot o aura 'une des

h . .
,I—i et qui sera solution de (1).

valeurs = n
Enfin, un systéme contenant N particules de méme nature
. : . h .
physique pour lesquelles on a ¢ ====n — avec cerlaines valeurs
4=

entiéres possibles de n aura des élats slationnaires représenlés par
des fonctions propres de la forme W (z, 1 515 01} Ta. ¥, 523 00}.-.)
que nous représenterons simplement par W(r, 2, ..., N) en
convenant pour I'instant de désigner par 1 I'ensemble des coor-
données d’espace et du spin de la premiére particule, par 2
I'ensemble des coordonnées d’espace et du spin de la seconde

. /
particule, etc. Dans W;, chacun des o; a Pune des valeurs == n 4—1_
etl'on a
(2) H(1, 2, ..., N)¥ = E, W),

H étant un opérateur s’exprimant a I'aide des coordonnées et des
spins des N particules. Nous supposerons toujours que les inter-

(') Sur la théorie générale du spin, on pourra consulter le livre de l’auteur,
Théorie générale des particules & spin, Paris, Gauthier-Villars, 1943.
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actions entre les N particules sont symétriques pour toutes ces
particules, c’est-a-dire que les termes d’énergie potentielle figurant
dans H ne changent pas quand on permute a la fois les coordonnées
et les spins de deux particules.

On voit alors aisément que, si ¥; est une fonction propre de H
correspondant i la valeur propre E;, la fonction PW;, ou P corres-
pond a une permutation quelconque des N particules, est aussi
une fonction propre pour la valeur propre E;. On en conclut
comme au dernier chapitre qu’il existe toute une suite de fonc-
tions propres symétriques de la forme

(3) Ll =2 PW(r, 2, ..., N),
-

la somme 2 portant sur toutes les permutations possibles des
P

nombres 1, ..., N, y compris la permutation identique et qu’il

existe aussi toute une suile de fonctions propres antisymétriques

de la forme

(4) gt :Ziplr/’(“Z: co N,
P .

ou la somme 2 s’étend a toutes les permutations y compris la
s

permutation identique et ou l'on prend pour chaque terme le
signe +-ou le signe — suivant que la permutation correspondante
est paire ou impaire. A ces fonctions propres symétriques et anti-
symétriques, correspondent par définition des états symétriques
et antisymétriques, mais un état stationnaire quelconque n’est en
général ni symétrique, ni antisymétrique, ni méme représentable
comme une superposition d’états symétriques et d’'états antisy-
métriques.

Dans le cas o 'on peut négliger, du moins ¢n premiére approxi-
mation, les interactions entre les particules. les fonctions W' sont
ici encore exprimables sous la forme d’un déterminant

Yel1) Wal2) ... WelN)
Wg(1) Wg(2) ... Ws(N)

(3) Yty —

() Wh(2) ... ¥5(N)




—
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W,, Wy, ..., W, ¢tant les fonctions propres (compte tenu du spin)
relatives aux élats stationnaires individuels supposés non dégé-
nérés et 'on voit encore sur I'expression (5) qu’il ne peut y avoir
d’état antisymétrique ou deux particules sont dans le méme état
individuel (W) est nul si deux des «, 3, ... % sont égaux).

On peut ici encore démontrer que les états symétriques d’une
part, les états antisymétriques d’autre part, forment deux groupes
autonomes. On part de Phypothése que 'équation d’ondes est de
la forme

. L N
(6) o=

-

H étant un opérateur Hamiltonien portant sur les coordonnées et
sur les spins (dont la forme exacte n’est d’ailleurs pas connue
aujourd’hui dans toute sa géndéralité). On démontrera alors facile-
ment en s’appuyant sur la symétrie de Uopérateur H qu’une fonc-
tion W primitivement symétrique reste toujours syméirique et
qu’une fonction W primitivement antisymétrique reste antisymé-
trique, la symétrie et 'antisymétrie étant, bien entendu, main-
tenant toujours définies en tenant compte du spin. On en conclut
que les états symétriques ne peuvent se « combiner » qu’avec
d’autres états symétriques et que les états antisymétriques ne
peuvent se combiner qu’avec des ¢tats antisymétriques. Ces théo-
rémes nous autorisent a introduire un principe nouveau d’aprés
lequel, pour les particules douées de spin, seuls sont réalisés soit
les états symétriques, soit les étals antisymétriques suivant la
nature des particules considérées. Nous retrouvons ainsi le principe
d¢ja introduit précédenrment, mais avec cette importante modifi-
cation que, pour I'énoncer d’une facon satisfaisante dans le cas
des particules douées de spin, nous avons di faire intervenir le
spin dans la définition de la symétriec et de I'antisymétrie des
fonclions d’onde.

Comme nous l'avons dit déja, les électrons, les protons et cer-
tains noyaux d’atomes sont des particules a états exclusivement
antisymétriques; les photons, les particules « et certains autres
noyaux d’atomes sont des particules a états exclusivement symé-
triques. La raison pour laquelle tel ou tel genre de particules est
du Lype symétrique ou au contraire du type antisymétrique semble
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bien provenir de la constitution méme de la particule, ¢’est-a-dire
de la fagon dont elle est formée par Passemblage des corpuscules
élémentaires (électrons, protons, neutrons, éventuellement neu-
trinos). La discussion compléte de cetle (uestion ne pourrait se
faire qu’en étudiant de prés la constitution probable des divers
noyaux d’atomes. Celte discussion nous entrainerait hors du cadre
de cet Ouvrage, et d’ailleurs elle serait loin de pouvoir conduire
aujourd’hui a des résultats certains. Néanmoins une idée générale
parait se dégager de nos connaissances actuelles : « Les corpuscules

1, . . , , . h
¢lémentaires seraient tous doués (comme I’électron) du spin == =t

posséderaient exclusivement des états antisymétriques;lesparticules
complexes seraient a états symétriques ou a élats antisymeétriques
suivant qu’elles seraient formées d’un nombre pair ou d’un nombre
impair de corpuscules élémentaires ». Gette conclusion avait paru
d’abord confirmée par le fait que les noyaux atomiques dont la
charge électrique est un multiple pair de celle du proton suivent
la statistique de Bose-Einstein, tandis que les noyaux alomiques
dont la charge est un multiple impair de celle du proton suivent
la statistique de Fermi-Dirac. Si, en effet, N, désigne le nombre
de protons contenus dans un noyau et Ny, le nombre des électrons,
et si e désigne la charge positive élémentaire (charge du proton),
la charge totale du noyau considéré est évidemment

(7) Z(,’:(NP N|{i)e,

ou Z est le « nombre atomique ». Si Z est pair, N, et N;; sont soil
tous deux pairs, soil tous deux impairs et N, -+ Ny est pair; si Z
est impair, N, et Ny sont 'un pair et Pautre impair, et Nj,-+ Ny est
impair. Les noyaux 4 7Z pair contiennent donc un nombre total
pair d’électrons et de protons, tandis que les noyaux a Z impair
contiennent un nombre total impair d’¢lectrons et de protons.
Ensuite on s’apercut que la régle reliant la nature de la statistique
a la parité de 7 n’était pas sans exception, ce qui constituail une
difficulté. Aujourd’hui on peut lever cette difficulté en tenant
compte de la présence des neutrons dans la structure des noyaux.
Nous reviendrons plus tard sur ces questions ('), mais pour I'ins-

(1) Voir Chap. IX, & la fin du paragraphe 6.
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tant nous admettrons que la symétrie ou Pantisymétrie des élats
d’un noyau est liée a la parité ou a I'imparité du nombre de
corpuscules élémentaires qu’il contient.

Nous allons d’ailleurs justifier théoriquement la régle que nous
venons d’admetire en démontrant le théoréme suivant :

Tutonime. — Si une particule complexe est formée d’un
nombre impair de corpuscules élémentaires & états antisymé-
triques, elle est elle~-méme i états antisymétriques. St une par-
ticule complexe est formée d’un nombre pair de corpuscules
élémentaires & états antisymétrigues, elle est a états symé-
triques.

Soient en effet deux particules identiques formées chacune par
N corpuscules élémentaires a états antisymétriques. La fonction
d’onde du systéme constitué par Pensemble des deux particules
sera W (1,2, ..., N; 1,2, ..., N'), oules nombres 1, 2, ..., N
désignent les coordonnées et les spins des corpuscules consti-
tuant la premicre particule, tandis que les nombres 1/, 2/, ..., N
désignent les coordonnées et les spins des corpuscules constituant
la seconde particule. Les corpuscules 1 et 1/, 2, et o/, ..., Net N
respectivement sont de méme nature, puisque les deux particules
ont la méme constitution. Maintenant, si nous permutons succes-
sivement 1 et 1', 2 et 2/, ..., N et N, chacune de ces permutations
simples change le signe de W, puisque 1 et 1/, 2 et 2/, ... sont des
paires de corpuscales de nature identique a états antisymé-
triques. On a donc

(8) W(r,2, ..., N;12, ..., N)=(—1)¥U (1,2, ...,N;1,2,...,N)

Nous voyons alors que, si N est pair, la permutation des deux
particules (1, 2, ..., N)et(1/, 2/, ..., N') ne change pas la fonc-
tion d’onde du systéme el que, si N est impair, cette permutation
change le signe de la fonction d’onde. '

Il en résulte immédiatement que les particules envisagées,
formées de N corpuscules élémentaires, quand elles figurent &
plusieurs dans un méme systéme, ont toujours une fonction
d’onde antisymétrique si elles contiennent chacune un nombre
impair de corpuscules et une fonction d’onde syméirique si

L. DE BROGLIE. 11
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elles en contiennent un nombre pair. Le théoréme est ainsi
démontré ().

3. Cas particulier des électrons. Principe d’exclusion de Pauli.
— Nous allons maintenant fiser notre attention sur le cas trés
important des électrons. Dans ’état actuel de nos connaissances,
nous devons considérer les électrons comme des corpuscules ¢lé-

. . 7 . .
mentaires possédant le spin == Z_L: Les considérations générales

exposées plus haut nous conduisent donc a admettre que les sys-
témes formés d’électrons ne peuvent posséder que des étals anti-
symétriques. Il en résulte, nous I'avons vu, que, quand dans un
systéme formé d’électrons on peut attribuer an moins approxima-
tivement des états aux divers ¢lectrons, il ne pourra jamais y avoir
deux électrons dans le méme état.

Bien entendu, cet énoncé n’est valable que si P'on comprend le
spin dans la spécification des états de 1'¢lectron. Sous cette forme,
la nature antisymétrique des états électroniques conduit au « prin-
cipe d’exclusion » da & M. Pauli. Nous allons d’abord indiquer
comment ce principe trouve sa justification expérimentale dans
I'étude de la répartition des élecirons dans 'atome.

Dans les atomes, les électrons se répartissent en un cerlain
nombre de groupes que I'on nomme par ordre d’énergies de liaison
décroissantes : électrons K, électrons L, électrons M, etc. D’aprés
le schéma atomique de Bohr, I'arrachement par une cause exté-
rieure d’un de ces électrons crée une « place libre » sur le niveau
d’énergie ou il était placé et met ainsi Vatome en état d’émettre
une des raies de la séric Réntgen correspondante. Si, par exemple,
un électron L est arraché de 'atome par une cause extérieure, un
électron atomique plus périphérique (M, N, ...) peut, d’aprés les
idées de Bohr, venir prendre la place de I'électron arraché en per-
dant de I'énergie et énergie qu'il perd dans ce processus de tran-
sition est rayonnée sous forme d'un quantum d’énergie radiante
dont la fréquence est celle d’une raie de la série L. Les diverses
raies de la série L correspondent aux diverses transitions possibles

(') On trouvera une démonstration plus approfondie de ce théoréme dans
Pouvrage déja cité : De la Mécanique ondulatoire a la théoric du Noyau,
t. I, p. go et suiv.
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des électrons périphériques vers la place inoccupée. Or, l'expé-
rience prouve u'a l'exception de la série K, toutes les séries
Rontgen sont complexes, ¢’est-a-dire que leurs raies se répartissent
en sous-séries. On est ainsi nécessairement amenés 3 penser que
les groupes d’électrons atomiques désignés par L, M, ..., se
divisent en sous-groupes correspondant i des niveaux d’énergie
voisins, mais un peu différents. On dit souvent que les électrons
d’un méme groupe forment une « couche » et 'on parle des élec-
trons de la couche K, de la couche L, etc. En employant ce
langage, on peut dire que la « couche » K est simple, mais que la
« couche » L se subdivise en trois « niveaux » L;, L;; et L, la
« couche » M en cinq « niveaux » M;, M;;, Myy;, My, My, etc.

Pour pouvoir comprendre la structure et la stabilité de I'édifice
des électrons dans Patome, il est alors nécessaire d’admettre une
sorte de « saturation » des niveaux et par suite des couches, ¢’est-
a-dire d’admettre que pour chaque niveau il y a un nombre maxi-
mum d’¢lectrons pouvant y trouver place. Si cela n’était pas, en
effet, tous les électrons devraient dans I’état normal de I'atome se

“trouver sur le niveau de moindre énergie conformément au prin-
cipe de Bolizmann : or, il n’en est certainement pas ainsi, comme
le prouvent par exemple 'existence des propriétés périodiques des
éléments le long de la série de Mendeleell et I'étude des spectres
Ronlgen. La saturation des niveaux étant au contraire admise, on
voit que, quand on passe d’un élément au suivant dans la liste de
Mendeleeff, un électron supplémentaire vient s’ajouter a la struc-
ture de 'atome et ce nouveau venu doit se placer sur le niveau de
plus faible éncrgie ou il y a encore une place libre. En suivant
ainsi pas a pas la complication progressive de I'édifice atomique a
travers les quatre-vingt-douze éléments de la série de MendeleefT,
on doit pouvoir interpréter les variations pour l'ensemble des
éléments de toutes les propriétés chimiques, optiques, Rintgen et
méme magnétiques. C'est ce que M. Bohr a trés bien vu. Mais
comme ’étude théorique ¢ priori de la complication progressive
des édifices atomiques au moyen de la Mécanique quantifiée est
impossible, il a suivi, ainsi que ses imitateurs, la voie inverse :
partant des données expérimentales sur les propriétés chimiques,
optiques, Rontgen ou magnétiques des éléments, ils ont cherché
comment les niveaux et les couches devaient successivement se
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remplir d’¢lectrons, au fur et & mesure que I'édifice atomique se
complique, de facon a rendre compte des propriétés des divers
éléments ().

Les efforts faits en ce sens, notamment par MM. Bohr, Stoner
et Main Smith, ont abouti a préciser la répartition des électrons
entre couches et niveaux et a fixer par sutte le maximum d’élec-
trons que chaque niveau peut porter.

Le dépouillement des spectres de rayons X a montré que 'on
peut caractériser chaque niveau électronique dans I'atome par
trois nombres n, et J.

Le premier, le nombre quantique total n, peut prendre
toutes les valeurs cntiéres de 2 =1 a n — . Pour un n donné,
! peut prendre les valeurs o, 1, ..., n—1; le nombre [ est le

nombre quantique azimutal que la théorie interpréte comme mesu-
q q
h

w~

rant en unités

le moment cinéuque orbital de I'¢lectron dans

I'é¢tat considéré. Enfin, le nombre quantique j (ancien nombre
quantique interne de Sommerfeld) peut, pour une valeur donnée

de I, prendre les deux valeurs 7+ % et [ — [) La théoric permet

. . . . h .
aujourd’hui de I'interpréter comme donnanten unité — le moment

cinétique total de 'électron, compte tenu de son spin, dans I'état
considéré; en effet, ce moment total s’obtient en ajoutant au

. . , N 1
moment orbital / le moment propre de spin égala == . Notons
. . .. 1
que pour [ =0, j toujours positif n’a que la valeur S

Le nombre quantique total n caractérise la « couche ». Ainsi
pour la couche K : n =1, pourlacouche L.: 7 = 2, pourla couche
M:n =3, etc. Les nombres quantiques [ et j caractérisent les
divers niveaux a I'intérieur des couches.

" N . . 1,
Pour la couche K(n =1}, on ne peut avoir que [=o0 et j = S
il y a donc un seul niveau K. Pour la couche L{(n = 2), on peut

. . I . I . 3 .
avon‘l:oet]::;,oul:l,j:;ou encore [=1, j="~;ily

(1) Voir notamment N. BonRr, Les spectres et la structure de I'alome,
Hermann, Paris, 1923.
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a donc trois niveaux L, savoir :

L; <n=1,l:0,j=(

(SRR
S~—”
.o

L]](ﬂ:I,Z:I,j:

Nl NI
~— e

L)n(]t:],l:l,j: :

De méme, pour la couche M(z == 3), on trouve cing niveaux,
savolr :

My (n=3, l:z,j::%>;
. 2

On voit facilement que, d’unc fagon générale, pour unc
couche définie parle nombre entier n,ilya 1 4 2(n—1)=2n-—1
niveaux diflérents, puisque le cas [=o0 donne un seul niveau,
tandis que les cas [=1, ., n-—1 donnent chacun deux
niveaux.

Maintenant s¢ pose la question capitale : « Puisqu’il existe une
saturation des niveaux, quel est le nombre maximum d’électrons
((ue peut porter chaque niveau? ». A cette question, les travaux de
Bohr, Stoner, Main Smith, etc., ont permis d’apporter avec certi-
tude la réponse suivante : « Le nombre maximum d’électrons qui
peuvent trouver place sur le niveau d’énergie caraclérisé par les
trois nombres quantiques 7, I, j est égal a 25 41 ». Clest lala
regle de Stoner.

Or on savait, avant la découverte de la régle de Stoner, que la
couche de nombre guantique total n porte an? électrons (2 élec-
trons K, 8 L, 18 M, etc.). Il est facile de vérifier que ce résultat
est bien en accord avec la regle de Stoner, car d’aprés celle-ci le
nombre total d’électrons sur la couche de nombre quantique tolal »
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doit étre
{=n—1
2 - 2‘ [ < )—6—14—‘)&(——;—)—1—1]
i=1
l=n—1
=2+ 2 (4l+2):2+i('j;1>—+—‘>,(n—1):2n‘-’.
/=1 -

Appliquée aux différents niveaux, la régle de Stoner aboutit au
tableau suivant pour la répartition des électrons dans un atome

donné : . _
Nombre Nombre total
d’¢lectrons d’électrons
par niveau par cooche
Couches. Niveaux. (2/+1). (2n%).
K(n=r1) K((,o,%) 2 2
s It < 0, £> 2
9
I
L< :‘)) { Ll] <‘ 1, ;B 2 8
3
' Lm( 1, ~> 4
2
s <3, o, 5) 0
2
1
M]] <3, I, —) 2
2
3 ]
M(n=3 Mm{ 3, L - 4 ) 18
3
)IIV<3, 2, 7> 4
2
My (3, ), i) 6
2

Nous n’insisterons pas ici sur la maniére dont, en étudiant le
développement progressif du systéme des niveaux au cours de la
série des éléments, on parvient a faire correspondre les étapes de
ce développement avec les particularités chimiques, opliques ou
magnétiques des éléments. Ce qu’il s’agit pour nous d’interpréter,
c¢’est la régle de Stoner. Nous allons voir qu’ellé s’explique par le
principe de Pauli.
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Cionsidérons un atome et supposons qu’on puisse envisager 150-
lément les divers électrons de cet atome. Soit E(n, [, j) I'énergie
quantifiéce d'un de ces électrons définis par les trois nombres
quantiques n, [, j. On peut facilement se rendre compte que la
valeur propre E(n, [, j) est dégénérée. Si, en effet, nous soumettons
Patome considéré a Paction d’un champ magnétique faible, la
théorie quantique de l'effet Zeeman (que nous ne développerons
pas ici) montre que la valeur propre E(n, [, j) se décompose en
2] =1 valeurs propres distinctes
ge H

5 Ei(n, &, 7)) =L(n, L, j)+m fdrmee

(9)
a (m=—j, —J+1, ..o, J—1,]);

& estle facteur de Landé, m, désignant ici la masse de Vélectron.
La formule (g) montre que la décomposition Zeeman est due
a lorientation quantifiée de Patome par rapport & la direction

du champ magnétique; le nombre quantique m, ou nombre
h

quantique magnétique, mesure en unité -— le moment cinétique

total (spin compris) de I'électron dans la direction du champ
magnétique H. Cette projection peut varier par valeurs demi-
entiéres de — 7 4 4+ j, les valeurs extrémes correspondant aux
cas ou le monient cinétique total est soit antiparalléle, soit paral-
lele a la direction du champ H. Ce qui nous intéresse ici, c’est
de constater que le niveau d’énergie E(n, I, j)est 2 + 1 dégénéré
et quye, si la dégénérescence se trouve levée par exemple par
laction du champ magnétique extérieur H, on obtient 25 +1
valeurs ‘propres distinctes, chacune caractérisée par quatre
nombres quantiques r, /, j, m, tels que

R=1, 2, .., 0} {=0,1, ..., n—1; i

fl
+
o[-

m=—7j, ..., +j.

Pour retrouver la régle de Stoner, il suffit d’admettre le prin-
cipe d’exclusion de Pauli énoncé sous la forme suivante :

Principe d’exclusion. — Sur chaque niveau simple caractérisé
par les quatre nombres quantiques 7, I, j, m, il ne peut y avoir
qu’un seul ¢lectron.

Si, en effet, on suppose 'atome plongé dans un champ magné-
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tique qui léve la dégénérescence, les 27 + 1 niveaux correspon-
dant 4 une valeur détermincée des nombres n, let j et aux 27 +1
valeurs possibles de m sont distincts et portent chacun un électron
au maximum. Si le champ extérieur tend vers zéro, les 27 41
niveaux distincts viennent se confondre en un seul piveau dégé-
néré d’énergie E(n, [, j) qui porte 27 -+ 1 électrons au maximumn.
On retrouve donc bien la régle de Stoner paur les atomes dans
leur état non perturbé, et cette régle peut étre considérée comme
une conséquence du principe d’exclusion.

On peut énoncer le principe de Pauli en disant que la présence
d’un électron sur un niveau non dégénéré exclut la présence de
tout autre électron sur ce méme niveau : d’ou le nom donné au
principe.

Remarquons que dans le cas du niveau K, on a

. I 1
n=i, l=o, _I:j,'a I)l:i;-

Il y a deux électrons sur le niveau K, parce qu’il y a deux orienta-
tions possibles du spin.

4. Application du principe d’exclusion 4 un gaz d’électrons. —
Nous venons de voir que le principe d’exclusion de Pauli pour les
¢électrons est nécessaire pour expliquer Pédification et la stabilité
des édifices atomiques. On peut dire que la structure de la série
de Mendeleefl et tout l'ensemble des propriétés chimiques,
optiques, Rontgen et magnétiques des ¢léments sont garants de
I’exactitude de ce principe. Une autre preuve en sa faveur -a été
apportée par le succés de la nouvelle théorie électronique des
mdétaux : elle a en effet montré la nécessité d’attribuer aux assem-
blées d’électrons la statistique de Fermi-Dirac, qui dérive du prin-
cipe d’exclusion ou, ce qui revient au méme, du fait que les
élecirons sont des corpuscules a fonctions d’onde antisymétriques.
Pour préciser ce point, nous devons d’abord dire quelques mots
de Papplication du principe de Pauli a un gaz d’électrons.

Pour cela, considérons en premier lieu le cas schématique
simple d’électrons assujettis & se mouvoir sur un axe Oz dans
Pespace compris entre deux parois réfléchissantes P et P’ normales

a Oux.
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Ces électrons possédent (en dehors des chocs) des mouvements
rectilignes et uniformes qu’on peut représenter par des ondes
planes monochromatiques se propageant le long de Oz entre P
et P’ dans un sens ou.dans autre. Comme la fonction d’onde W
correspondant & 'un¢ de ces ondes doit étre continue et qu’elle

%‘

doit étre nulle dans Uintérieur des parois P et P’, o par hypolhése
les ¢lectrons ne peuvent pas pénétrer, il faut qu’elle devienne
nulle a la surface de la paroi. Les états stalionnaires des électrons
considérés scront donc représentés par des ondes stationnaires
dues & la superposition d’ondes planes se propageanl en sens
inversc le long de Oz et telles que la fonction d’onde soit nulle
sur P et sur P’. Ceci n’est possible que pour les ondes station-
naires dont la longueur d’onde % est reliée a la distance D des

. X . .
plans P et P/ par la relation D = n =) ot n estun nombre entier.

. 2D . . . .
La relation A = -)”— fournit donc la suite des états stalionnaires

possibles pour les ¢lectrons. Soit W), la fonction d’onde correspon-
dant a l'état stationnaire défini par le nombre n. Pour pouvoir
appliquer le principe d’exclusion, il est nécessaire, nous le savons,
d’introduire le spin. Par rapport & une certaine direction de réfé-

. . h
rence, Oz, par exemple, le spin a deux valeurs possibles == =

Donc a une fonction d’'onde stationnaire ¥, correspondant 4 un
des élats stationnaires possibles défini sans tenir compte du spin,
correspondent deux états stationnaires possibles définis en tenant

-
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compte du spin. Dans chacun de ces états slationnaires définis en
tenant compte du spin, le principe de Pauli nous apprend qu’il ne
peut y avoir qu’un électron au maximum. Donc & chaque fonction
d’onde stationnaire W,, ne peuvent correspondre que deux élec-
trons au maximum,

St maintenant nous considérons le cas le plus général d'un gaz
d’électrons enfermé dans un récipient de forme quelconque a
parois parfaitement réfléchissantes, les états stationnaires seront
également définis par les ondes stationnaires qui peuvent s’établir
dans le récipient et qui ont des nocuds sur les parois. Un calcul
bien connu, développé par M. Jeans dans le cas d’une enceinte
parallélépipédique et ensuite par M. Weyl pour des formes plus
générales de enceinte, montre que le nombre des ondes station-
naires qui peuvent s’établir dans une enceinte de volume %V

est (1)

(10) n(vydy=

492y

007

V et U étant respectivement la vitesse de phase et la vitesse de
groupe correspondant a la fréquence v. Le nombre des états
stationnaires, spin compris, qui sont possibles pour les électrons
dans ’enceinte considérée, est donc

(11) 3‘(/(‘1)1/‘1:8—2;;2[)&‘1’.

En appliquant alors les méthodes générales de la Mécanique
ondulatoire, compte tenu du principe d’exclusion, ¢’est-a-dire du
fait qu'il ne peut y avoir p]us’ d’un électron sur chaque étal station-
naire défini avec intervention du spin, on arrive pour les électrons
aux formules de la statistique de Fermi-Dirac.

Comme nous 'avons déja dit, la validité de la statistique de
Fermi-Dirac pour les électrons a permis d’améliorer beaucoup la
théorie électronique des métaux. La théorie électronique des
métaux, fondée par Drude et développée par Lorentz, admettait
en effet que les propriétés conductrices des métaux s’expliquent par
la présence dans les métaux d’électrons libres qui, s’¢tant aflranchis

(') Voir Ltox BrirLouix, loc. cit., Chap. TL.
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des liens atomiques, s’y trouvaienl former une sorte de gaz. En
admettant qu’il y avait environ un électron libre par atome, on
avait pu retrouver ainsi certaines propriétés caractéristiques des
métaux, en particulier la loi de Wiedemann-Franz sur le rapport
des conductibilités électriques et thermiques. Mais toute cette
théorie sc heurtait & une grosse difficulté en ce qui concernait les
chaleurs spécifiques. Car, si Pon appliquait le théoréme classique
de I’équipartition de I'énergie aux atomes du métal, on trouvaitun
résultat généralement satisfaisant, mais il fallait négliger la pré-
sence des électrons libres, sans quol on trouvait une chaleur spéci-
fique beaucoup trop grande. Ainsi pour expliquer les propriétés
de conductibilité des métaux, il fallait admetire Uexistence dans
les métaux d'un grand nombre d’¢lectrons libres (environ 1 par
atome), et pour expliquer la valeur des chaleurs spécifiques, il
fallait supposer qu’il n'y avait pas d’électrons libres dans les
m¢étaux. Cette contradiction a été levée le jour ou M. Sommerfeld
a repris cette théorie des métaux en appliquant aux électrons libres
la statistique de Fermi-Dirac au lieu de la statistique classique.
En cifet, avec la statistique de Fermi-Dirac, le théoréme de I'équi-
partition de I'énergie n’est plus vrai d’une fagon générale pour un
gaz de particules soumis a cette statistique : il n’est plus vrai que
pour des valeurs suflisamment petites par rapport a I'unité de la

quantité dite « paramétre de dégénérescence », ou Nest

N A®
(2mmhk T )2
le nombre d’¢lectrons par centimétre cube, A la constante de
Planck, 4 celle de Boltzmann bien connue en Thermodynamique
statistique, m la masse des particules, T la température absolue.
Or si U'on admet, conformément a I'indication fournie par les
valeurs des conductibilités électriques des métaux, qu'il y a dans
un métal a peu prés autant d’'électrons que d’atomes, on obtient
pour les températures usuelles, en raison de la trés faible valeur de
la masse de I'électron, une valeur du paramétre de dégénérescence
trés grande par rapport a I'unité, de 'ordre de 2500. On voit alors
que le gaz des ¢lectrons libres dans un métal est dans un état tout
a fait inconnu de P'ancienne théorie statistique des gaz, état ou le
théoreme de I'équipartition de I'énergie n’est plus du tout appli-
cable. En particulier, les électrons dans cet état ne doivent pas
contribuer d’une fagon sensible a la chaleur spécifique du métal :
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toute la chaleur spécifique provient done des atomes et ’'on com-
prend pourquoi, quand on voulait appliquer le théoré¢me de 'équi-
partition, on ne pouvait obtenir des résultats satisfaisants qu’en
négligeant la présence des électrons. Le développement de la
nouvelle théorie des métaux a montré qu’elle constituait un pro-
grés trés net par rapport a 'ancienne. De ce coté aussi, le principe
d’exclusion a donc re¢u une confirmation importante.

Nous allons maintenant avoir a étudier, comme autre confirma-
tion du principe de Pauli, la trés intéressaunte interprétation du
spectre de l'hélium due a M. Ieisenberg. Cette interprétation
apporte, nous le verrons, une preuve trés frappante et trés directe
du fait que les électrons sont des corpuscules a fonctions d’onde
antisymétriques et, par suite, du principe de Pauli qui en découle.
Comme préliminaire indispensable a l'exposé de la théorie
d’Heisenberg, il nous faut d’abord étudier la maniére dont on
peut représenter d’une facon approchée les états de spin d’un
systéme de deux électrons.

5. Représentation approchée des états de spin pour un systéme
de deux électrons. — Nous allons envisager un systéme formé de
deux électrons seulement et chercher a représenter approximati-
vement les états de spin de ces deux électrons. 1l serail aisé de
géndraliser les résultats obtenus pour le cas de N électrons : cela
n’entrainerait que des complications d’écriture sans introduire
d’'idées vraiment nouvelles et nous pouvons nous contenter du
cas N = 2 qui nous suffira pour I'étude du spectre de 'hélium.

Nous avons écrit I'équation d’ondes d'un systéme de particules
avec spin sous une forme (6) qui, pour N = 2, devient

h W .
(I?‘> E'EZ(I727 t)':—H(I,?,)]I’(I,Q,l),

ou 1 et 2 représentent 'ensemble des coordonnées et du spin du
premier et du deuxiéme électron respectivement et ou H(r, 2) est
l'opérateur hamiltonien opérant a la fois sur les coordonnées et
les spins des deux ¢lectrons.

Revenant maintenant & une notalion antérieure, nous allons
désigner par 1 et 2 ensemble des coordonnées d’espace du premier
et du second corpuscule respectivement sans les spins el nous
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désignons les deux spins par g4 et o,. Alors I'équation d’onde (12)
s’écrira
(13) % ;())tll"(l, 2, 51, 62, t) = H(1, 2, a1, 52) W(1, 2, 51, 50, £).

Dans H figurent les termes cinétiques relatifs aux deux électrons,
les termes potentiels traduisant I'existence des champs extérieurs
s’il y en a et ceux qui expriment l'interaction coulombienne entre
les deux électrons, enfin des termes dépendant du spin et tradui-
sant notamment les interactions entre les électrons qui peuvent
résulter de Uexistence des moments magnétiques propres (*). Les
termes du spin ne jouent en général dans les conditions usuelles
(c’est-a-dire notamment quand les corrections de relativité sont
négligeables) qu’un role secondaire par rapport aux autres termes
de H : autrement dit, les écarts par rapport a la Mécanique ondu-
latoire sans spin sont généralement faibles. Nous obtenons une
bonne premiére approximation en négligeant dans 1I les termes
dépendant des spins. On doit alors supposer que les fonctions
d’onde W' (1, 2, 7y, 54, ¢) sont de la forme

(14) U1, 2, 01, 59, 1) = 3(3y, 62) W'(1, 2, ¥),

(1, 2, t) ¢tant une solution de 'équation habituelle de la Méca-
nique ondulatoire ou P'on néglige les spins, c’est-d-dire de I'équa-
tion d’ondes

h (1,2 1) _ H(r, 2)W(1, 2, 1),

(1%) 97 1723
H(1, 2) étant 'Hamiltonien sans termes de spins. L’hypothése
exprimée par (i14) est d’ailleurs confirmée par une étude plus
approfondie faite a 'aide des théories de Pauli et de Dirac sur
Iélectron doué de spin.

Nous ne pouvons pas préciser ici la forme exacte de la fonction

¢ (o4, 62), Mais nous savons que oy el &, n’ont chacune que deux

. . h , . ‘
valeurs possibles : savoir + 7= que nous désignerons par a et

/ . . .
— F—L_— que nous désignerons par b. Si donc W;(1, 2) est une fonc-
i~

(') Nous désignerons les interactions entre les moments magnétiques propres
des ¢lectrons par le nom d’interactions du spin.
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tion propre de 'équation
(16) COH(r, 2)¥(1,2)=EW(1, 2);

pour la valeur propre E;, nous obtiendrons comme fonctions
propres du systéme des électrons pour cette valeur propre en
tenant compte du spin les quatre fonctions

§ola @)Wl )5 e, b) W1, 2);

(17) ( z(b, (l)lrj(I, 2); ¢(0, 6)W;(1, 2).

Comme, d’aprés un résultat précédemment démontré, on obtient
a partir de toute solution une autre solution en permutant le role
des deux corpuscules, on aura également comme fonctions propres
pour la valeur E; :

povlas a)Wi(2, 1); o, @)Wl 1);

(18
19 cla, )Wy(o 1) 9(b, b)W(o, 1),

On a naturellement a interpréter toutes ces solutions (17) et (18)
en disant par exemple que la fonction ¢ (a, &) W;(1, 2) correspond
au cas ou l'état de deux électrons est représenté quant aux coor-

. . . I .
données d’espace par ¥';(1, 2), le spin du premier étant?‘% et celut
h
du second — i ete.

A Vaide des huit solutions (17) et (18), nous pouvons former
quatre solutions symétriques et quatre solutions antisymétriques
que Pon obtiendra en formant a partir des solutions (17) les
combinaisons

ZP‘I’(_I, 2, 51, 92) et Et PW(1, 2, 7,5),
P P

avec deux I’ seulement : la permutation identique et I'échange des
deux électrons.
On trouve ainsi huit fonctions d’onde :
(e, a)[WFi(r, 2) =2, 1)];
\ ‘ 900, 0)[W;(1, 2) 2=Wi(2, 1)];
(19) ‘( c(a, bY)W(1, 2) 2= o(b, @) W2, 1);
L e (0, a)Wi(1, 2y o(a, b)yW(a, 1).

Les signes + correspondent aux fonctions propres symétriques, les
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signes — aux fonctions propres antisymétriques. On peut naturel-
lement remplacer certaines des fonctions propres (1g) par certaines
de leurs combinaisons linéaires. Ainsi nous pouvons remplacer

les fonctions propres des deux derniéres lignes par leur somme et
leur différence. Il vient ainsi les huit fonctions :

e, )[Wj(1, 2) = W02, 1)];

(0, b)[Wi(r, 2)=W;(2, 1)];
[3Ca, b)+5(b, )] [W; (1, 2) =W;(2, 1)];
200, b)— (b, a)] {1, 2) =W, (2, 1)].

(20)

Pour classer ces huit fonctions linéairement indépendantes,
nous poserons :
(21) % W (1,2) = U1, 2) + (2, 1),
(21
U5(r,2) = Uy(1,2) — W2, 1).
Nous auronsalors d’abord quatre fonctions propres W'; (1, 2, 7y, 54)
qui seront symétriques par rapport a 'ensemble des coordonnées
et des spins des deux électrons; ce sont:
1,9, 9) = o(a, a)ll "(1,2);
‘I"“‘(I,A,c 72) =0 (b, bYW (1,2);
( W (1,9, 01,5 ): a7b)+;(b,a)]‘[’/’-‘” (1,2)
Yl (1,9,6, 5 ¢(b, @)W (1,2).

\ 7

Les trois premiéres de ces fonctions propres sont le produit
d’une fonction symétrique des spins par une fonction symétrique
des coordonnées, tandis que la quatriéme est le produit d'une

fonction antisymétrique des spins parune fonction antisymélrique
des coordonnées.

Nous avons ensuile quatre fonclions propres antisymélriques
par rapport a ensemble des coordonnées et des spins quisont:
/ II‘;-““‘\(.I,:A, 51,52) = 9(a,a) V% (1,2);
1{';”2’(1,‘)_, 61, 02)=0(b, ) 11')’“ (1,2);
11;‘\/13)0 2, 0,0) = [o(a, b) + (b, a)] W' (1,2);
m (0,81, 00) =[3(a, b) —<(b,a) W} (1,2);

{23)

Les trois premiéres sont le produit d’une fonction symétrique
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des spins par une fonction antisymétrique des coordonnées; la
quatriéme est le produit d'une fonction antisymétrique des spins
par une fonction symétrique des coordonnées.

Nous avons vu que, par suite de la symétrie toujours postulée
de Popérateur H par rapport aux coordonnées ct aux spins, les
états symétriques et les états antisymétriques forment deux
ensembles totalement indépendants, et nous savons que cela nous -
autorise a4 supposer que pour chaque type de particules un des
deux ensembles seulement se présente dans la nature. Pour les
électrons, le principe d’exclusion de Pauli nous apprend que seuls
les états antisymétriques représentés par les fonctions propres (23)
ont une réalité physique.

Les états réellement existants pour notre systéme de deux élec-
trons sont donc décrits par I'ensemble des fonctions propres W',
correspondant & toutes les valeurs propres E;. Ces fonctions
propres W
types Wi, ‘IF}”” et 1]?}’-”3’ sont antisymétriques par rapport aux coor-

se divisent en deux catégories : les fonctions des

données d’espace et seront nommées « fonctions propres antisy-
métriques d’espace »; les fonctions du type U/ sont symétriques
par rapport aux coordonnées d’espace et seront nommées « fonc-
tions propres symétriques d’espace ». Il est bien entendu qu’elles
sont toules antisymétriques par rapport aux coordonnées d’espace
et aux spins. Les fonctions propres symétriques d’espace sont au
nombre de 3 sur 4.

Or, si nous ndégligeons complétement les termes de spin,
Péquation d’ondes (15), on H est symétrique en 1 et 2, nous
montre, nous 'avons vu, que les états symétriques d’espace d’une
part et les états antisymétriques d’espace d’autre part ne se com-
binent pas. Donc dans I'ensemble des états réellement existants
du systéme des deux électrons (étals qui sont tous antisymétriques
par rapport aux coordonnées et aux spins), il faut distinguer deux
catégories d’états, les étals symétriques d’espace et les états anti-
symétriques d’espace, qui ne se combinent pas en premiére
approximation, quand on néglige les interactions dues aux spins.
Maintenant, les interactions dues aux spins, bien que généralement
faibles, existent cependant et, A cause de ces interactions, les
transitions d’un état symétrique d’espace vers un élat anlisymé-
trique d’espace ou inversement ne sont pas complétement exclues,
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car 'Hamiltonien complet H(1, 2, o4, v2) n’est pas tout a fait
symétrique pour les permutations qui échangent les coordonnées
d’espace 1 et 2 sans échanger les coordonnées de spin o4 et o,. 11
en résulte que toutes les raies spectrales intenses émises par un
ensemble de systéme a deux électrons correspondent aux passages
soit d'un état syméirique d’espace a un autre état symétrique
d’espace, soit d’un état antisymétrique d’espace a un autre élat
antisymétrique d’espace. Mais 1l doit aussi exister dans ce spectre
des raies trés faibles correspondant aux passages trés rares d’un
état symétrique d’espace a un état antisymétrique d’espace ou
inversement.

Nous savons maintenant tout ce qui nous est nécessaire pour
aborder I’étude théorique du spectre de Phélium.

L}

6. — Théorie du spectre de I’hélium (Heisenberg). — Voyons
tout d’abord ce que U'expérience nous apprend au sujet du spectre
de I’hélium.

Uu fait fondamental, ¢’est que le spectre de 'hélium se com-
pose, du moins en premiére approximation, ¢’est-a-dire ¢n négli-
geant quelques raies trés faibles, de deux catégories de raies
complétement distinctes formant comme deux spectres juxtaposés
qu’on nomme « spectre de U'orthohélium » et « spectre du parhé-
lium ». Ce qui permet de dire que ces deux spectres sont complé-
tement distincts, c’est que si 'on dresse la liste des niveaux (ou
des termes spdctraux) du parhélinm et de 'orthohélium, il n'y a
(si Pon néglige quelques raies trés faibles) aucune combinaison
entre les niveaux du parhélium et ceux de Porthohélium. Tout se
passe donc en premiére approximation comme si le gaz hélium
était formé par un mélange de deux gaz, le parhélium et 'ortho-
hélium, a propriétés physiques et chimiques identiques, mais de
spectres différents; on a méme cru pendant un certain temps qu’il
en était réellement ainsi. Or non seulement on n’a pas pu séparer
ces deux héliums, mais on a eu de plus en plus la certitude que
les mémes atomes d’hélium pouvaient suivant les circonstances
émettre les raies de 'orthohélium ou celles du parhélium. Enfin
une é¢tude plus détaillée des raies de 'hélium a montré Iexistence
de raies tres faibles provenant de la combinaison d’un niveau du
par\hélium avec un niveau de Uorthohélium, ce qui prouve indubi-

L. DE BROGLIE. 12
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tablement que ces nivcaux peuvent exister pour un méme atome.
Mais alors s’est posée la question de comprendre pourquoi les
deux spectres du parhélium et de 'orthohélium sont presque tota-
lement séparés. 1l y avait 1a une circonstance mystérieuse que
seule la Mécanique ondulatoire a pu expliquer.

Si I'on emploie des spectroscopes a pouvoir séparateur pas trop
grand, les raies du parhélium et delorthohélium paraissent toutes
simples et, sil'on calcule les niveaux d’énergie pour le parhélium
et pour 'orthohélium, on trouve que ces niveaux se correspondent
deux a deux (& une exception prés), le niveau de 'orthohélium
¢tant un peu plus profond, d’énergie un peu moindre, que le
niveau homologue du parhélium. On a donc un schéma tel que
celui indiqué par les traits pleins de la figure suivante.

Parhélium. Orthohélium.,
Fig. 14.

Un fait trés remarquable visible sur le schéma précédent st que
le niveau le plus profond (marqué n=1) dans le spectre du
parhélium est le seul & ne pas'avoir‘ d’homologue dans le spectre
de I'orthohélium.

Une étude plus détaillée du spectre de I’hélium, faite avec des
appareils de plus grand pouvoir séparateur, montre que, tandis
que les niveaux du parhélium sont bien réellement simples, ceux de
lorthohélium sont en réalité triples, ¢’est-a-dire que chacun des
niveaux primitivement indiqués en traits pleins sur notre schéma
est en réalité flanqué de deux autres niveaux extrémement voisins
(indiqués en pointillé sur la figure 14). Ainsi, tandis que le spectre
du parhélium est un spectre de singulets, celul de 1’orthohéli:nn
est en réalité un spectre de triplets (et serait méme un spectre de
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nonuplets si 'on pouvait mettre en évidence le caractére triple
des niveaux de départ el d’arrivée pour chaque raie).

Enfin, comme nous Pavons déja indiqué, les procédés spectro-
scopiques sensibles décélent l'existence de raies faibles dues au
passage d'un niveau de l'orthohélium a un niveau du parhélium
ou inversement.

Tel est I'ensemble des faits expérimentaux relatifs aux spectres
de 'hélium. Voyons maintenant comment la Mécanique ondula-
toire permet de les interpréter.

D’aprés Ia conception générale actuelle des atomes, nous devons
nous représenter l'atome d’hélium comme formé d’un noyau, dont
la charge positi{/c est ¢gale au double de la charge élémentaire e
du proton, et de deux électrons satellites. Sidonc nous négligeons
la réaction des électrons sur le noyau (qui est trés faible, la masse
du noyau d’bélium valant 4 fois celle du proton, soit environ
=400 fois celle de I'électron), nous avons pour le systéme atome
d’hélium I'équation d’ondes suivante :

(20) % ’% YWi(t,2, 0,12, 1)
h? a2 J? J?
:[_ 8=2n <E st 57)
I 02 J? o2
T REm <r RACTERMEEY,
i LU 172)]114‘(’1,2, 51, 92, 1),

Zy, Y1, 51 élant les coordonnées du premier électron, za, ¥a, 5o
celles du second, r; la distance \/x, ~+ y7% -+ 57 du premier ¢lectron
au noyau supposé¢ placé a lorigine des coordonnées, r, la
distance /(2 +4- v3 + 5: du second électron au noyau, r, la
distance /(21 — @)? -+ (1) —2)* + (31— 3,)* des deux élec-
trons, H'V (1, 2, ¢,, ;) la partie de 'Hamiltonien opérant sur le
spin dont nous ne préciserons pas la forme ici.
Nous allons tout d’abord supposer négligeable dans (24) leterme
HiOW et faire complétement abstraction des spins. Nous avons alors
h L}_
27 Ot

S yozer  ver ey .
_[ o (M A) "”r._]“~"2”)

(25) (1,4, 1)
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Nous pouvons maintenant employer la méthode connue d’ap-
proximations successives en commencant, a approximation zéro,
par négliger l'interaction entre les électrons, c’est-a-dire le terme

e . .
- Il nous est alors permis de considérer chacun des deux

€en

électrons isolément dans le champs coulombien du noyau de
charge 2e. Nous trouverons par chaque électron une série d’états
stalionnaires définis par des valeurs propres E,, ..., E,, ..., et
des fonctions propres ¥, ..., W,, .... Ces valeurs propres et
ces fonctions propres sont d’ailleurs connues, car, avec celte seule
différence que la charge du noyau est double, nous avons affaire
ici au probléme de 'atome d’hydrogéne, probléme complétement
résolu. Chaque état stationnaire est défini par trois nombres
quantiques (n, [, j), mais nous pouvons numéroter les élats &
I'aide d’un seul indice de facon que E; << E, <ZE,, .... L’énergie E,
est alors celle de I’état K d’énergie minimum. Pour le systéme
formé par deux électrons, nous aurons les états stationnaires
d’énergie E,,=E,4- L, avec le systéme complet de fonctions
propres W, (1)W, (2) ou figurent toutes les combinaisons des
nombres entiers m et n lous deux compris entre 1 el - .

Nous savons que le niveau K d’énergie minimum peut toujours
porter deux électrons (4 cause des deux valeurs possibles du spin).
Dans I'état normal d’énergie minimum pour 'atome d’hélium, les
deux électrons scront donc sur le niveau K. D’aprés les idées de
Bohr, Vatome d’hélium pourra émettre une raic de son spectre
lorsqu’une excitation ayant porté un des électrons sur un niveau
d’énergie E,>E,, cet électron reviendra ensuite sur le niveau
d’énergie I, <K, par une transition accompagnée par le rayon-

. , s, K,
nement de la raie spectrale de fréquence ’T’i |

tionnaires de 'atome d’hélium qui vont intervenir pour le calcul
des fréquences présentes dans son spectre seront donc ceux ou
l'un des électrons est sur le niveau K alors que I'autre électron est
sur I'un quelconque des niveaux d’énergie supérieure. Evidemment
il pourrait arriver qu’une forte excitation de atome écarte simul-
tanément les deux électrons du niveau K : les raics émises a la
suile de cette double excitation auraient des fréquences déter-
minées par les énergies des étlals stationnaires de 'atome He ou
les deux électrons se trouveraient sur des niveaux dont I'énergie

Les états sla-
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est supdrieure a celle du niveau K. Mais la probabilité de telles
excitations doubles de ’atome est trés faible dans les conditions
usuelles d’excitation et les raies normalement observées dans le
spectre d’arc de 'hélium correspondent a une excitation simple
ou seul un des électrons est écarté du niveau K. Pour cette raison
nous nous bornerons i ce cas.

Les états stationnaires que nous avons a étudier sont done les
états d’énergie E,, = E; + E, avec n > 1 auxquels correspondent
par suite de la dégénérescence d’échange les fonctions propres
W) W(2)et Wy(2)W,(1).

Si maintenant nous voulons aller plus loin et tenir compte de
I'interaction entre les deux ¢lectrons, ¢’est-a-dire du terme pertur-

e . . o
bateur — dans I'équation (25), nous devrons pour calculer la

12

perturbation du premier ordre de 'énergie partir des fonctions
propres d’approximation zéro qui sont « adaptées » a la perturba-
tion. Nous avons vu précédemment (1) que ces fonctions propres
sont les deux combinaisons par addition et soustraction des fonc-
tions ¥y () Wy (2) et Wy (2) W, (1), soit (& la constante de norma-
lisation prés)

W3 (1 2) = Wy ()W (2) = Wi (2) T (),

206
(26) Uy (x, 2 =W (DT, (2) — Wi (2) V(1)

A Pétat symétirique représenté par W;”, correspond une énergie

1,n

perturbée égale en premiére approximation a

{27) Ey, =E, ,+C+A=E-+E,+C+ A,

‘a)

/., correspond une
énergie perturbée égale en premiére approximation i

A Tétal antisymétrique représenté par W

(28) Ef,=E, ,+C—A=E+T,+C—A4,

les constantes G el A ayant les valeurs suivantes :

(29) C= ;] [ (1) 2.0, (2) (2 + (ll'l<;~,z‘)g->._'11‘“(1‘)(:]:;({:
VAN 12

- ]pr,gw. q',l(g)lz;‘f‘;//.zi...f/;z
12

(!) Se reporter au Chap. VII, § 5.
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et

(30) A:u’\[[llf} 1)11';(2)f_‘uf'i(g)q',,(l)(/x,...dz.QJ,
12

e

ou (R désigne la partie réelle. Cest Pintégrale d’échange corres-

B}

el

pondant au potentiel d’interaction

12

e? C . ., . o
Comme — est positif, on voit aisément que A est aussi positif.

12

Donc les états symétriques et anlisymétriques se correspondent
deux a deux, U'énergie d'un état antisymélrique élant légérement
inférieure (de la quantité¢ 2A) a I'énergie de I'état symétrique
homologue. D’autre part, les théorémes précédemment démontrés
nous permettent d’affirmer qu’a Papproximation a laquelle nous
nous tenons e¢n ignorant complétement les spins, il n’y pas de
combinaisons enlre états symétriques et les étals antisymétriques.
Il doit donc y avoir a cette approximation deux ensembles de raies,
deux spectres, complétement distincts correspondant 'un aux états
symétriques U, (1, 2),1’autre aux états antisymétriques '), (1, 2).

S1 maintenant nous comparons ces résultats aux faits expéri-
mentaux, l'accord qualitatif est tout a fait frappant. Nous sommes
immédiatement amenés a4 penser que l'un des spectres du
parhélium ou de lorthohélium correspond aux états symé-
triques W7 (1, 2) et 'autre aux états antisymétriques W', (1, 2).
Doit-on attribuer au parhélium les états symétriques et a ortho-
hélium les états antisymétriques ou inversement? La réponse est
immeédiate, car d’une part les états symétriques el anlisymétriques
se correspondent deux 4 deux, I'étal antisymétirique ayant toujours
une énergie un peu plus faible que son homologue, et d’autre part
les niveaux du parhélium et del’orthohélium se correspondentaussi
deux a deux, chaque niveau de l'orthohélium ayant une énergie
un peu plus faible que son homologue du parhélium. Deés lors
nous pouvons dire avec certitude : les états symétriques corres-
pondent au spectre du parhélium et les états antisymétriques au
spectre de 'orthohélium.

Cette conclusion est corroborée d’une fagon remarquable par
le fait suivant : si dans I'expression (26) de I’ (1, 2) nous
faisons n =1, nous obtenons un W', (1, 2) quin’est pas nul, tandis
que si dans 'expression (26) de W (1, 2) nous faisons n =1,

L,n
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nous obtenons W/, (1, 2) =o0. Donc & n =1 correspond un état
symétrique, mais pas d’état antisymétrique. Il doit donc y avoir
dans le spectre du parhélium un niveau d’énergie minimum qui
n’a pas d’homologue dans le spectre de Uorthohélium. Nous
avons vu que c’est bien la un fait trés caractéristique révélé par
I'étude du specire de I'hélium.

Ainsi la théorie approximative développée plus haut, théorie qui
ne tient aucun compte de l'existence du spin, parvient a expliquer
plusieurs faits fondamentaux : existence des deux spectre séparés
de l'orthohélium et du parhélium, correspondance deux a deux
des niveaux de ces deux spectres, valeur légérement plus faible de
I'énergie de chaque niveau de l'orthohélium comparée a celle du
niveau homologue du parhélium, enfin absence trés singuliére au
premier abord d’un homologue dans le spectre de I'orthohélium
pour le niveau fondamental du parhélium.

A la théorie précédente, on pourrait étre tenté d’objecter que,
I'électron étant un corpuscule a états antisymétriques, les états
correspondant au spectre du parhélium ne devraient pas exisler
du tout.

Ce serait une erreur puisque l'antisyméirie des états de
I'électron doit étre définie en tenant compte du spin, ce que nous
n’avons pas encore fait. Les fonctions W’ (1, 2) et W) (1, 2) uti-
lisées plus haut sont dés fonctions « symétriques et antisymé-
triques d’espace » au sens qui a été donné précédemment a cette
locution.

Pour compléter notre théorie, il est matntenant indispensable
de tenir compte du spin.

L’étude préliminaire que nous avons faite au paragraphe précé-
dent de la représentation approchée du spin pour un systéme a
deux ¢lectrons nous apprend que, si nous négligeons les inter-
actions dues aux spins, les fonctions propres symétriques et
antisymétriques correspondant a l'approximation zéro pour la
valeur propre E, ,, sont les suivantes:

‘1"‘i‘jl/(1, 2,61, 02) = 2 (@, a) Wi, (1, 2);

Wy (1,2, 01, 00) = 3 (b, D) Wy, (1, 2);

U (12, 00, 00) = [3(a, b) + £ (b, a) W), (1. 2);
U2, 0,00 = [3(a, 0) — (b, @) J¥Y5,(1, 2)

(31)
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11’”1”,%(‘7 27 T, 0'-3) = ".”(“7 “) ‘F:l’l,)z(h 2)7
W (1,2, 91, 02) = 7(6, 6) W (1, 2);
Wi (1,2, 81, 32) = [3(@, b) + 5(b, a) WY, (1, 2);

\ ‘I"’{’",)L(I, 2,5, 52) =[s(a,b) —3(b, «)] W), (1, 2).

(32)

Ayant ainsi tenu compte du spin, nous pouvons maintenant
introduire le principe d’exclusion, ¢’est-a-dire le fait que les élec-
trons sont des corpuscules a fonctions d'onde antisymétriques.
Nous devons donc considérer que les fonctions (31) symétriques
par rapport a Uensemble des coordonnées ct des spins ne corres-
pondent pas a des états physiquement existants et nous ne devons
retenir que les fonctions d’onde (32) antisymétriques par rapport
a 'ensemble des coordonnées et des spins.

Or nous savons que les trois fonctions propres 'y, W) et Wi
sont antisymétriques pour les coordonnées d'espaces et symd-
triques pour les spins, tandis que W) est au contraire symétrique
pour les coordonnées d’espace et antisymétrique pour les spins.
Comme les niveaux du parhélium correspondent aux fonctions
propres symétriques d’espace et les niveaux de U'orthohélium aux
fonctions propres antisymétriques d’espace, nous voyons que, si
l'on tient compte des spins, les niveaux simples prévus par la
théorie sans spin doivent correspondre a une seule fonction propre
pour le parhélium et a trois fonctious propres pour Porthohélium.
Autrement dit, si 'on tient compte de l'existence des spins, tout
en négligeant les interactions qui leur sont dues, les valeurs
propres du parhélium sont simples tandis que celles de V'ortho-
hélium sont dégénérées, plus précisément triples.

Maintenant si 'on veut tenir comple des interactions dues aux
spins (ce que d’ailleurs on ne sait pas faire rigonrensement), on
devra faire un calcul de perturbation en partant des fonctions (32)
comme fonctions propres d’approximation d’ordre zéro et en tenant

. . . e? . .
compte de 'interaction Coulombiennc en —- et des interactions de

12
spins. Pour les niveaux du parhélium, on obtiendra ainsi au lieu
de la valeur E; + E, + C -+ A donnée par la théorie sans spin unc
valeur de la forme E; + E,,+ C + A +-¢, le terme ¢ provenant des
interactions dues aux spins. De méme pour les niveaux de Portho-
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hélium, on obtiendra a la place de la valeur E; 4+ E,+C —A

donnée par la théorie sans spin trois valeurs voisines :
Ei+E,+C—A+¢q, E\+E,+C—A+:m et Ei+E;+C— A+,

ol &, & et & sont de petites corrections dépendant des inter-
actions dues aux spins ¢t généralement inégales : ces trois énergies
voisines correspondent respectivement aux trois états Wi, Wit
et Wi dont l'inleraction de spin a levé la dégénérescence. Tandis
que les niveaux du parhélium restent simples, méme en tenant
compte de toutes les interactions, ceux de I'orthohélium sont au
contraire triples et doivent présenter précisément la structure
révélée par expérience et indiquée sur la figure 14. Donc, le fait
que le spectre du parhélium est un spectre de singulets et celui de
Porthohélium un spectre de triplets- peut étre considéré comme
une preuve directe de la nature antisymétrique des fonctions
propres des électrons.

Il est intéressant de voir ce que nous aurions obtenu si nous
avions supposé que l’électron est un corpuscule a états symé-
triques. Alors nous aurions rejeté les fonctions propres (32)
comme ne correspondant pas & des états réels et nous aurions au
contraire conservé les fonctions propres (31). Mais sur les quatre
fonctions propres (31) correspondant a la valeur propre E; + E,
de I'approximation zéro, les trois premiéres sont symétriques a la
fois par rapport aux coordonnées et aux spins, tandis que la
quatriéme est antisymétrique a la fois par rapport aux coordonnées
et aux spins. Il en résalte que, si I'électron était un corpuscule a
fonctions d’onde symétriques, ce seraientles niveaux du parhélium
qui seraient triples, ceux de l'orthohélium étant simples. Cette
stucture n’est pas celle qu'on observe rdellement : ce sont
les niveaux de DPorthohélium qui sont triples, de sorte que
la nature antisymétrique des fonctions propres de l'électron
est en quelque sorte inscrite dans la structure fine du spectre
de I'hélium. (

Enfin, si nous tenons compte des interactions de spin, il n’y a
plus de raison pour que les combinaisons entre états symétriques
d’espaces et états antisymétriques d’espace soient prohibées d’une
facon absolue : les transitions correspondantes sont relativement
rares & cause de la faiblesse des interactions de spin, mais elles

i
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peuvent exister. Dans le spectre de I'hélium, ceci doit se traduire
par l'existence de raies faibles correspondant au passage d’un
niveau du parhélium & un niveau de Uorthohélium ou inversement.
Nous savons que ces raies faibles existent effectivement.

Telle est sous sa forme qualitative la belle théorie du spectre de
Ihélium due & M. Heisenberg. Il est possible de la développer
sous une forme plus quantitative. Le calcul des intégrales C et A
est en effet, possible puisque les fonctions propres des électrons
considérés isolément a 'approximation zéro sont connues. Plus
délicat est le calcul des structures fines dues aux interactions de
spin parce qu’on ne sait évaluer ces interactions que d’une facon
approchée. Nous ne ddévelopperons pas ces calculs dont les
résultats quantitatifs sont en accord satisfaisant avec les données
expérimentales sur le spectre de I'hélium.




CHAPITRE IX.

APPLICATIONS ET COMPLEMENTS.

1. La Mécanique ondulatoire et la théorie de la valence homo-
polaire. — Les d¢difices moléculaires présentant une grande sta-
bilité, on est amené pour en expliquer la formation a admettre
Pexistence de «forces» au sens le plus général du mot qui main-
ticnnent les divers atomes de la molécule dans 'association molé-
culaire. Telle est I'idée primitive que on s’est faite de I'équilibre
des atomes dans une molécule. Mais cette conception souléve de
grosses diflicultés a divers points de vue. D’abord on ne voit pas
clairement dans tous les cas quelle peut étre I'origine des forces
assurant la liaison moléculaire. 1l existe des cas nombreux ou 'on
pcut considérer les atomes de la molécule comme ayant cédé
ou au contraire capturé des dlectrons a leurs voisins, de telle
sorte que les différents atomes de la molécule sont transformés
en «ions» exergant autour d’cux un champ Coulombien. Tel est
par exemple le cas de la molécule NaCl ou I'on peut admettre que
I’atome Na a cédé son électron extérieur de valence a I'atome CI
qui compléte ainsi sa ceinture périphérique d’électrons @ la molé-
cule NaCl serait done formée en réalité de 'ion Na~* et de 1'ion Cl—
etla stabilité de la molécule Na Cl serait alors interprétée, du moins
sous une forme qualitative, par 'existence d’une attraction Cou-
lombienne des deux ions de signes contraires qui, pour de trés
petites distances des noyaux, serait contrebalancée par la répul-
sion des nuages électroniques. Malheureusement, ce genre de
liaisons dites « liaisons hétéropolaires » n’est pas le seul existant.
Il existe aussi des molécules pour lesquelles on ne peut pas
admettre que les atomes y sont & Vétat d’ions. Telles sont, par
exemple, les molécules biatomiques de la plupart des corps simples
a Iétat gazeux (O, \,, etc.). La plus simple de toutes, la molé-
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cule d’hydrogéne H?, ne peut étre considérée comme formée d’un
ion H+ et d’un ion H- en raison de¢ I'tdentité des propriétés des
deux atomes H qui la constituent. Ce genre de liaisons molécu-
laires, les « liaisons homopolaires », ne parait donc pas explicable
par Vaction des forces Coulombiennes et, comme les forces gravi-
fiques sont ici beaucoup trop faibles pbur pouvoir intervenir,
on ne voit pas quelles sontles forces qui peuvent assurer la stabilité
de la molécule.

D’autre part, les combinaisons moléculaires sont soumises a des
régles particuliéres que la Chimie est parvenue a représenter par
Iintroduction dela notion de valence. Dans la mesure ou la notion
de valence est applicable, un atome de valence n se comporte
comme s’il portait n crochets susceptibles d’étre accrochés a des
crochets portés par des atomes voisins. Chaque crochet ne pourrait
se lier ainsi qu’a un seul autre crochet voisin. Un atome dont les
crochets se sont accrochés a des crochels appartenant a des atomes
voisins n’est plus susceptible de se lier 4 aucun aulre atome. Dans
cette image, chaque crochet correspond i ce que les chimistes
nomment une « valence » et le phénoméne dont nous venons de
parler est la saturation des valences. Or, ce phénoméne de la satu-
ration des valences, qui est une des bases essentielles de la Chimie
théorique, est tout a fait impossible & expliquer par I'hypothése
que la liaison moléculaire est due a des forces du type classique,
Coulombiennes par exemple, s’exercant entre les atomes; car, si
plusieurs forces du type classique s’exercent en méme temps, elles
se composent suivant la loi du parallélogramme et ne peuvent
jamais donner licu & des phénomeénes de saturation permettant
d’expliquerla saturation des valences. On voit donce, en définitive,
que les liaisons moléculaires doivent étre en général d’une nature
tout & fait différente de celle qu’on peut imaginer a I'aide des forces
du type classique.

[explication de la véritable nature des liaisons moléculaires
parait aujourd’hui fournie par la Mécanique ondulatoire. Elle a,
en effet, montré que la liaison moléculaire est liée au phénomeéne
de I'échange entre électrons d’atomes différents, que I'éncrgie de
liaison chimique est en grande partie une énergie d'échange,
qu'elle n’a pas d’analogue classique et ne correspond pas a des
forces du type classique obéissant a la régle du parallélogramme.
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L’é¢tude compléte de la question de la formation des molécules,
faite a 'aide des méthodes de la Mécanique ondulatoire des sys-
témes d’électrons, a conduit & expliquer le lien moléculaire par la
formation de paires d’électrons & spins antiparalléles. Dans la struc-
ture normale d’un atome, la plupart des électrons sont, en effet,
groupés par paires ayant des spins antiparalléles : éinsi, sur le
niveau K, nous savons qu’il y a seulement deux électrons dont les
spins doivent étre antiparalléles pour satisfaire au principe de
Pauli. Mais dans la structure périphérique de 'atome, ou il yaen
général des niveaux non saturés, peuvent se trouver des électrons
ne faisant pas partie d’une paire a spins antiparalléles. On a
donné a ces électrons le nom quelque peu humoristique d’électrons
« célibataires ». Quand deux molécules possédant chacune des
¢lectrons célibataires sc trouvent au voisinage 1'une de 'autre, il
peut se former avec ces électrons des paires a spins antiparalleles,
et a chacune de ces formations de paires correspond une énergie
d’échange (négative) qui joue le réle d’une énergie de liaison.
Tout atome est donc susceptible de se lier a autant d’électrons
célibataires appartenant a d’autres atomes qu’il aura lui-méme
d’électrons célibataires. La valence d’un atome est donc égale au
nombre de ses éléctrons célibataires. Dans 'atome d’un gaz rare,
tous les électrons forment des paires, il n’y a pas d’électrons céli-
bataire et la valence est zéro; dans un atome d’alcalin, tous les
électrons forment des paires, sauf un, le plus périphérique, et la
valence est un, ctc. Le fait fondamental est que, quand un certain
électron célibataire d’un atome a formé une paire avec un électron
célibataire d’un autre atome, la possibilité de liaison molécu-
laire qui existait pour le premier atome en raison de la présence
de son électron a disparu : la valence est saturée. Ainsi se trouve
expliquée ce mystéricux caractére de « saturabilité » des valences
qu’aucune image classique ne parvenait a interpréter.

La théorie générale de la valence qui exige la considération de
systémes contenant un nombre quelconque d’électrons est natu-
rellement trés compli({uée au point de vue analytique. Les faits
qu’elle doit parvenir a représenter sont d’ailleurs extrémement
nombreux et extrémement complexes : beaucoup de corps sont
polyvalents ct pour les molécules compliquées, notamment pour
celles de Ia Chimic organique, il y a un grand nombre de propriétés
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qui sont plus ou moins exactement représentées par les formules
développées et par la stéréochimie et dont une théorie compléte
devrait rendre compte.

Nous ne pouvons aborder dans son ensemble cette théorie
quantique des liaisons moléculaires. Le lecteur qui voudrait en
connaitre les résultats peut se reporter & 'Ouvrage de M. Heitler,
« Quantentheorie und chemische homeispolare Bindung (Aka-
demische verlagsgesellschaft, Leipzig).

Nous nous contentons d’étudier ici le cas le plus simple : celui
de la molécule d’hydrogéne. CG'est d’ailleurs ce cas qui, traité en
premier lieu par MM. Heitler et London, a scrvi de point de
départ a la théorie quantique générale des liaisons chimiques.
L’atome H n’ayant qu’un seul électron, celui-ci est nécessairement
célibataire et, si deux atomes d’hydrogéne se trouvent voisins, il
peut s’établir un lien moléculaire entre eux correspondant a la for-
mation d’une molécule H, si les deux électrons célibataires en
présence se combinent pour former une paire a spins antiparalléles.
C’est ce que le calcul va pouvoir nous montrer assez facilement.

2. Théorie de la molécule d’hydrogéne (Heitler et London). —
Nous allons considérer deux atomes d’hydrogénc dont les noyaux,
désignés respectivement par les lettres @ ct b, sont situés a la dis-
tance R Pune de lautre. Les deux électrons de masse m de ces
atomes d’hydrogéne sont désignés respectivement par 1 et o; x4,
Y15 31 CL Za, ¥a, 52 sont leurs coordonnées et

rrz== (&1 — 02 A (J1— )2 ) 4 (51— G2 )?

est leur distance; r,, est la distance de I'électron 1 au noyau «,
I'ws la distance de I’électron 2 au noyau «, ry,y la distance de I'élec-
tron 1 au noyau b et ry, la distance de ’électron 2 au noyau b.

Ceci posé, 1'équation d’ondes pour le systéme formé par les
deux atomes d’hydrogéne, systéme contenant les deux noyaux a
et b et les deux électrons 1 et 2, est la suivante :

(0 Lo oW 2 02 o2 )2 o2 - o . o*
) — 5 =g\t g2+t + 573 e -
aml Ot Sz2m \dri dyi J33 2% Y3 s3
o2 &2 P P P o2 .
o e — — e
R 12 a1 i a2 b2
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Si W est une fonction propre correspondant a la valeur propre E
de I'énergie, cette fonction satisfera donc a 'équation
¢ 5 N 5

S=2m |, e? et e? e? e? e? .
(2) A1+ —/——— 1 E— = — — + + — A+ )1I.=o.
. h? R "1z Tu b1 a2 h2 s

Cette ¢quation ne peut pas étre étudiée par la méthode ordinaire
des perturbations parce qu'on ne peut pas diviser I’Hamiltonien
en un Hamiltonien non perburbé et un petit terme perturbateur.
N¢anmoins, nous allons voir qu’on peut appliquer a la résolution
de Déquation 'précédente une méthode d’approximation trés
semblable 4 la méthode générale des perturbations et qui conduit
a des formules wrés analogues.

Pour appliquer cette méthode, nous considérerons d’abord les
deux atomes d’hydrogeéne séparément en négligeant complétement

. . T q- e e er e?
leurs interactions lc est-a-dire les termes en —y —; —, —— des
R rp’ rea rp
équations (1) et (?)] - Alors I'atome formé du noyau a et de

I'électron 1 aura un état normal d’énergie minimum défini par la
fonction propre u, (1) telle que

8=2m
(3) Av (1) + m <l<‘,0

P
i I——]) wa(1) = o,

o

E, détant la plus petite valeur propre. De méme 1’atome formé du
[ P

noyau b et de D'électron 2 aura un dtat d’énergie minimum

représenté par la fonction u,(2) satisfaisant a I'¢quation

\ Sz2m /. & A
(4) Avrey(2) + - <qu~ — Jup(2)y=o.
) h? Pha y ’

Les fonctions propres u,(1) et u;(2) sont représentées autour des
noyaux a et b respectivement par la fonction bien connue qui
donne Vétat fondamental de Vatome d’hydrogéne, soit a une

7

featt R - h?
constanle de normalisation prés par ¢ o a,=— -——— est le

«

J = me?
rayon de l'annean K dans la théorie primitive de Bohe.

Si maintenant nous envisageons le systeme formé par nos deux
atomes d’hydrogéne sans interactions, nous voyons que nous
avons pour ce systéme la valeur propre minimum 2E, corres-
pondant a la fonction propre w.(1) u,(2). Par suite de 'identité
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des deux électrons, nous avons aussi pour la méme valeur propre
2E, la fonction propre w,(2) us(1) : c’est toujours la la dégéné-
rescence d’échange.

Nous savons que, pour traiter un probléme de perturbation,
nous devons prendre comme fonction propre d’approximation zéro
la fonction propre symétrique

(5) U1, 2) = wa (1) tp(2) + ta(2) 1wy (1)
et la fonction propre antisymétrique
{6) Wiel(1, 2) = wa (1) up(2) — wa(2) uy(1).

Nous savons aussi que, si nous introduisons le spin et l¢ prin-
cipe de Pauli, il y a trois fonctions propres antisymétriques par
rapport aux coordonnées et aux spins correspondant a Wi (1, 2),
savolr

LW (1, ) = g (a, )T, ),
(7) o Wl (1, 2) =5 (b, LYW (1, ),

Wi, o)y =[c(a, b)+ (b, a)|WN(1, 2),

et qu'il y a une fonction propre antisymétrique par rapport aux
coordonnées et aux spins correspondant a W (1, 2), savoir

(8) Wi (1, 2) == [9(a, b) = 5(b, @)W1, 2).

Comme nous le verrons mieux dans un prochain paragraphe, les
solutions (7) correspondent au cas ou les deux ¢lectrons ont leurs
spins paralléles (4 4 ), tandis que la solution (8) correspond au
cas ou les spins des deux électrons sont antiparalleles (. 1 ).
Comme nous n’allons pas introduire explicitement le spin dans ce
qui va suivre, nous retiendrons seulement que W'y (1, ) représenta
un élat triple, ¢’est-a-dire trois élats confondus en Pabsence d’in-
teractions de spin, od les spins des électrons sont paralléles,
tandis que W% (1, 2) représente un ¢tat simple ot les spins des
deux électrons sont antiparalléles.

En supposant que la distance R des 2 noyaux a et b est donnce,
nous allons maintenant chercher & résoudre approximativement
Iéquation complete du systéme ou figurent les termes d’inter-

action &, &, 2, 25 ‘ici négligé
c i = -— jusqu’ici négligés.

) )
I"ta T'ex T

9
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Nous admettrons que les fonctions W' (1, 2) et W (1, 2) peuvent
nous servir de fonctions propres d’approximation zéro dans ce
calcul. Ceci serait vrai pour R tendant vers l'infini d’aprés la
théorie habituelle des perturbations, mais ce n’est pas évident ici.
Le succés justifiera cette hypothése.

Pour R fini, les fonctions propres u, (1) us(2) et u.(2) uy(1)
ne sont pas rigoureusement orthogonales comme elles le seraient
pour R infini. L’intégrale

(9) / . -fu,,lm wi(2) wa(2) 1y (1) das. . .dar= A(R)

est une fonction de R non nulle (tendant seulement vers o quand
R tend vers linfini). Pour normer a 'unité des fonctions propres
et Wi, il faut alors les affecter respectivement des facteurs
1
! et
Valt+4) o (1—a)

, car on a, u, et u; étant réels,

(10) / . -f,‘ Ua(1) wy(2)E 1w, (2) wy (1) 2dey. .. d3s

:f---f{-: wa(1) 2L rp(2) [ L (1) 2 (2) ]2

Foua(Dup(2)up(Dua(d)]de;. . .dzy=2(1 3 A).

Finalement, on a donc pour les fonctions W' et W normdes, les
cxpressions

W (1, 2) [ua(1) up(2) + wa(2) up(1)],

- \/‘)/(1 + A)

(11) : '
in} 1 .7)__.. ——
o ( ) V"_———L)‘(I——A)

[wa(t) up(2) — wa(2) up(1)].
Remarquons que pratiquement A est toujours une quantité trés
petite de sorte que u.(1) uy(2) et u.(2) ur(1) sont presque
orthogonales.

Ayant ainsi adopté les fonctions Wy et W{’ comme fonc-
tions propres d’approximation zéro correspondant a la valeur
propre 2E,, nous allons chercher deux fonctions W) et Wi
respectivement trés voisines de W et de W et satisfaisant
a Péquation (2) pour des valeurs de E trés voisines de 2E,.

L. DIl BROGLIE. 13
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Nous pdsérons donc

(12) W) = W)+ oy, ll"\(”)z P4 wo, LW =0Es+e, ElW=aE;+¢,,
les w et les ¢ étant considérées comme des quantités Lrés petites
du premier ordre. En définissant 'opérateur L par

8=2m s er g2 e? e? e? e?
(13) L=A+A+ " |oBj— 5 — — 4+ - + 4 |y
h2 R "1a Iat Ta2 i1 'p2

onobtient, en substituant (11) dans (2) et en négligeant les termes
du second ordre, les équations

12

(14) V2(r+A)L(w;) = < g e >[It(l(1)lt/,(:!) “+ wa(2) 1w, (1)]

[
-~
~

wal( 1) uy(2)

=)
+ <—e-)— + & >ltu(’l)l‘b(l)

et

(15) ya(1—A) L(w,)= <sn— % — -:j';)[ua(x)u/,(z)—— wa(2)uy(n)
12

+<€ + Eg)bta(l)ltb(‘-")

a2 "p

e? e? .

— + — J U (2) Uyl ).
<"al 7'/;2) a() ]l( )

Les seconds membres de ces équations peuvent éire considérés

comme trés petits quand R est suffisamment grand; en cffet, les
e?

termes (r + :—) ug.(1) u,(2) par exemple sont alors trés petits
@2 b1

parce que la fonction u,(1) u,(2) n’a de valeurs sensibles que

quand DI'électron 1 est prés du noyau « et 'électron 2 prés du

1
noyau b et en ce cas

i . .
et — sont tres pelits.
b1

ra2

Si nous laissions de coté les seconds membres dans les équa-
tions (14) et (15), nous obtiendrions des équations homogénes
admettant pour solutions deux fonctions différant trés peu de W'
et de W respectivement. Pour que les équations (14) et (15)
admettent des solutions, il est donc nécessaire d’aprés un théoréme
connu que leurs seconds membres soient orthogonaux a ces deux
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fonctions. On peut donc écrire au second prés <aprés division par

I

> les deux conditions nécessaires :

f-<5\.—€:—p2> _(d)+(ez . )ua()ub(z)
: R s \Ta2 Th1 ‘/?(I_,_A)
+<ﬁ N > Ug(2 )ltb(I) IIJ'(S)* dr :;.-‘ [s]
I'at "h2 \/)lI‘*‘A) ’ ’
(16) .
St e (2 - 2) ettty
]{ 719 a2 ‘/2<I+A)
| _( 2 + e ua( )ubﬁl)w 1[4““/11\3* dw = o.
\ra1 b2 \/2(I—A) -

Ces équations conduisent tout de suite par un calcul toul a fait
analogue a celul que nous avorns fait en introduisant I’énergie
d’¢change aux formules ’

17 fo GAL G A
1-+4A7 T—A
avec
1 1 1
(:::2 r v _r 1 ) )
(18) \ ¢ f[l{““,_“ o T ]\u (1) |2 L g (22 dx,

<

1 I I I
(A_e"J{f + L1
| R ri2 Tas rp1

Les formules (18) sont obtenues en remarquant qu’une intégrale
définie ne change pas de valeur quand on y change seulement le
nom des vartables d’intégration.

I.e résulat obtenu est tout a fait semblable a celui qu’on obtient
dans la théorie ordinaire des perturbations. Le terme C représente
le potentiel électrostatique d’interaction correspondant a la distri-
bution moyenne d’électricité définie par le | W' |2. L'intégrale A est
I'énergie d’échange. La seule différence avec le cas de la théorie
usuelle des perturbations est I'apparition du terme A tenant a la
non-orthogonalité des fonctions propres prises comme fonclions
d’approximation zéro. Encore ce fait n’a-t-il guére d’importance
réelle, car, A étant pratiquement trés petit devant I'unité, on peut
pour calculer les corrections du premier ordre ¢, et ¢, négliger les
termes A qui donneraient des corrections du second ordre et poser

] lwa (1) (2] wa (2)uy (1) d=.
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simplement :
(19) g=C+ A, o= C—A.

Comme les intégrales G et A, ¢, et ¢, sont naturellement des fonc-
tions de la distance R des noyaux « et b.

D’aprés (19), il y a donc pour chaque distance R deux valeurs
possibles (en négligeantles multiplicités dues au spin) de 1'énergie
du systéme. Le calcul des intégrales C et A permet de suivre la
variation de ces énergies 2 E, + ¢,(R) et 2E, 4 ¢, (R) en fonction
de R. Or ce calcul montre que G est positif ou négatif, mais que A
est négatif : contrairement a ce qui se passe dans le cas de I'hélium,
I'énergie d’échange est ici négative. 11 en résulte que c’est 'état
anlisymétrique d’espace, d’énergie 2E,+ C—A, qui a Pénergie
la plus grande. Pour tracer la courbe représentant les variations
de ¢, et de ¢, en fonction de R, on peut d’abord tracer la courbe
représentant C (R) qui a la forme indiquée ci-dessous :

Energre

Fig. 15.

Pour de grandes distances R, cette courbe tend vers l'axe des
abscisses parce qu’alors les interactions dont G (R) est la moyenne
tendent vers zéro. R diminuant, 'interaction commence a devenir
sensible et, comme les interactions entre chaque électron et l'autre
noyau Vemportent, I'énergie potentielle C(R) est d’abord néga-
tive; mais quand la distance R diminue encore, les interactions
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répulsives cntre les deux noyaux d’une part, les deux électrons
d’autre part, Pemportent et I'énergie potentielle devient positive.
Pour R tendant vers zéro, I'énergie polentielle positive de répul-
sion tend vers I'infini, ce qu’on peut considérer comme I'expression
de I'impénétrabilité des deux noyaux. ‘

Pour construire les courbes représentant e,(R) et ¢,(R), il faut
pour tout point de la courbe C(R) porter sur une paralléle a 'axe
des ordonnées dans un sens et dans autre une longueur égale a
'A(R)|. Le point d’ordonnée C(R)+]|AR)|=C(R)—A(R)
donnee,(R);le pointd’ordonnée G(R) — [A(R) | = G(R) + A(R)
donne & (I}). 1l se trouve alors que |A(R)| augmentant quand
R décroit, ¢,(R) est une courbe monotone décroissante, I'augmen-
tation de |A(R)| compensant la diminution de G(R) avant son
minimum. Au contraire la courbe donnant &(R) présente un
minimum di & ce que, malgré Paugmentation de [A(R) | quand R
décroit, la croissance rapide de C(R) prés de I'axe des ordonnées
entraine une croissance de 'e;= (G — | A| quand R tend vers zéro.

On obtient ainsi des courbes ayant les allures représentées sur
la figure 15. 1l existe une certaine valeur R, de R pour laquelle
e,(R) est minimum. La distance R, des noyaux a et & corres-
pondra donc a4 un état d’équilibre stable du systéeme des deux
atomes dans I'état d’énergie 2, + ¢, tandis qu’il n’existera aucun
état d’équilibre stable dans 1'état d’énergie 2E, +¢,. Mais I'état
symétrique d’espace d’énergie 2E, + ¢, est, nous le savons, anti-
symélrique par rapporl aux spins des deux électrons. Dans cet
¢étal, les deux électrons des deux atomes d’hydrogéne forment
donc une paire a spins antiparalléles (4 ) ). Nous voyons ainsi que
la formation de la molécule homopolaire H, correspond a l'orga-
nisation des deux électrons célibataires des deux atomes H en une
paire a spins anliparalléles.

La théorie permet d’ailleurs, grace au calcul numérique de ¢; et
de e,, de calculer la valeur R, de¢ la distance des noyaux a et b
dans la molécule stable Hy et la valeur de V'énergie de dissocialion
de cette molécule. R, et 'énergie de dissociation sont en effet pré-
cisément U'abscisse et 'ordonnée du minimum de la courbe &(R).

On trouve ainsi, d’aprés Heitler, pour B, la valeur 1,6a, (avec

h2 '
4_:)“,2 — rayon de l'anneau K de I'atome H dans la théorie

Ay =

R e
E e
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primitive de Bohr) et pour le travail de dissociation 3,2 électron-

volts alors que 'expérience donne Ry==1,5 a, et travail de disso-
ciation == 4,38 électron-volts. L’accord est qualitatif sans étre
excellent. De méme a l'aide de la forme de la courbe ¢ (R) au
voisinage de R =R,, on peut déduire la fréquence d’oscillation
des deux atomes H autour de leur position d’¢quilibre dans la
molécule H, telle qu’elle se révele dans les spectres de bandes :
Vaccord est aussi assez bon. Mais on peut obtenir des résultats
numériques bien meilleurs en n’employant pas la méthode de
perturbation développée plus haut, mais en cherchant a trouver
directement les fonctions propres du systéme formé par la molé-
cule H,. [’avantage de la méthode de perturbation, c’est de bien
montrer pourquoi et de quelle facon la molécule stable Hy peut
se former.

Avec la molécule H,, nous venons de voir sur 'exemple le plus
simple comment deux atomes ayant chacun un électron célibataire
(atomes monovalents) peuvent former une molécule quand deux
de leurs électrons se réunissent pour former une paire a spins
antiparalléles. On peut aussi voir facilement qu’il ne peut pas se
former de molécule entre un atome n’ayant pas d’¢lectron céliba-
taire (alome de valeur zéro) et un autre atome. Le cas le plus
simple est celui d’'un atome d’hélium dans ’état normal ou les
deux électrons K forment une paire a spins antiparalléles et un
atome d’hydrogéne. Un calcul analogue a celui que nous venons
d’exposer montre qu’il n’existe qu'une sorte d’interaction entre un
atome He normal et un atome H et que cette interaction est répul-
sive : en accord avec la théorie de la valence, on trouve donc qu’il
ne peut pas se former de molécule HeH.

Notons enfin le fait suivant. Dans une molécule hétéropolaire,
telle que la molécule NaCl formée de I'ion Na+ et de I'ion Cl—, les
deux ions ont la méme configuration électronique externe que
I'atome d’un gaz rare comme ’hélium, en ce sens que leurs ¢lec-
trons périphériques sont tous répartis en paires a spins antiparal-
leles. Les deux ions ayant la valence zéro, les interactions
d’échange entre eux sont répulsives comme elles le sont entre
deux atomes He par exemple. Mais les ions ayant des charges
égales et de signes contraires exercent aussi I'un sur autre une
attraction Coulombienne, et ¢’est 'équilibre entre cette attraction



APPLICATIONS ET COMPLEMENTS. 199

et la répulsion d’¢change qui permet la formation de la molécule
hétéropolaire. Cet exemple montre que, méme pour les molécules
hétéropolaires, les interactions quantiques d’échange interviennent
d’unc facon essentielle.

3. L’intervention du spin dans la classification des états symé-
triques et antisymétriques (!). — Dans la Mécanique classique, le

moment de quantité de mouvement d’un systéme est représenté
-
par un vecteur M de composantes rectangulaires M., M,, M..

Aucune restriction n’est impos¢e aux valeurs possibles de ces
quantités,

Dans l'ancienne théorie des quanta, le moment de rotation
d’un systéme est quantifié. D’abord sa longueur |M| doit étre
égale a un nombre entier de fois 'unité quantique de moment de

. h
rotation —_

2R

(20) Ml—_—l,,/—L_ (I=o0,1,2,...)

Ensuite, s’'tly aune direction privilégiée O z (par exemple : direc-
tion du champ magnétique extérieur dans 'effet Zeeman), la com-
posante M; doit avoir une valeur de la forme M. = m;h;_’ m élant
un nombre entier compris entre — [ et - /. Ceci s’interprétait en
disant qu’il y avait « quantification dans U'espace ». On se repré-
sentait le vecteur M de longueur l;—l_ comme devant nécessaire-

menl prendre des orientations quantifiées autour de Oz de telle

fagon que 'angle @ ait pour cosinus  ( fig. 16).

: 7

Ces 1dées, qui avaient conduit & des résultats satisfaisants dans
I'étude d’un grand nombre de problémes atomiques, n’étaient pas
sans soulever des difficultés graves. S’il n’y avait pas de direction
privilégiée (comme cela arrive dans l'effet Zeeman quand on fait
tendre le champ extérieur vers zéro), comment devait-on exprimer
la quantification dans I’espace ? On ne pouvait évidemment pas

—
admettre que la composante de M le long d'un axe quelconque

(') Pour approfondir les questions traitées dans cc paragraphe, on pourra se
reporter au livre de auteur : Théorie générale des particules ¢ spin, Gauthier-
Villars, rg43.
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. h . . . .
valait m -3 en particulier, on ne pouvait admettre, avec le modéle

“employé pour la représentation du moment cinétique, que Mg,

M, M; sont tous trois de la forme précédente.
La nouvelle Mécanique a levé ces difficultés en introduisant son
mode tout & fait nouveau de représentation des grandeurs phy-

o

SN m
cosa = coszOM = 7

Fig. 16.
siques. A chacune des composantes rectangulaires du moment
cinétique, elle fait correspondre I’un des opérateurs M, M., et M.

dont nous avons appris a former Pexpression et au carré de la
longueur du moment cinétique elle fait correspondre I'opérateur

(21) M2 = M2+ M2+ M2

L’étude des opérateurs M?, M, M, M. montre que 'opératear M?
ades valeurs propres de la forme /(I 1) (;—;)23\'% l=o0,1,2,...,
et que les opératecurs M,, M,, M. ont des valeurs propres de la
forme m;—w ou m, pour ! donné, peut prendre les valeurs — [,
—1Il+1, ..., l—1, . On voit donc que la longueur de ﬁ n'a
h

2%

lus des valeurs de la forme I -, mais bien /7 {+1)—-. Deplus,
p P \ p

il n’y a plus ici contradiction parce qu’on ne peut plus parler que
des valeurs possibles de M., M,, M.. Or ces trois grandeurs ne
sont pas simultanément mesurables car les opérateurs correspon-
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dants ne commutent pas el, par suite, on ne peut mesurer a la fois
h h

pour deux d’entre clles des valeurs m— et m’;, de sorte qu’on
T 7

ne sera jamais en contradiction avec le modéle vectoriel.
Passons maintenant a la représentation du spin d’un systéme.
Le «spin » est une grandeur qui a la nature physique d’un moment

. . . ., . h .. h
cinétique, mais dont I'unit¢ quantique QStE: au lieu dez——- Pour
x

représenter le spin, raisonnons comme dans l’ancienne théorie
des quanta. Soit un systéme contenant N électrons et admettons
que les spins s’ajoutent algébriquement pour former le spin

total, ¢’est-a-dire que chaque électron apporte la contribution = 4/—1'
au spin total. Nous aurons alors deux cas & distinguer : celui de N
pair et cclui de N impair. Si N est impair, la valeur absolue du
spin total (ou longueur du vecteur spin résultant) est de la

h 1 3 5 N . .
forme S — avec S= -, >, *, ..., =+ Dans le cas ot N est pair,
T 2 2 2 2 .

. h . N
la valeur absolue du spin total est S;—_ avec S=o0, I, 2, .. e

La projection du spin total sur un axe O 5 de référence sera de la
h L . N '
forme m S avee m variant par unités de — S a 4- S pour S donné.

Donc, dans le cas de N pair, m sera un entier variant de — S a + S;
dans le cas de N impair, ce sera un demi-entier variant de — S
a + 3. On peut représenter cect a Paide du modeéle vectoriel
classique suivant ( fig. 17).

Naturcllement cette représentation vectorielle du spin dans
'ancienne théorie des quanta y souléve les mémes difficultés que
la représentation analogue du moment cinétique ordinaire. La
direction Os pouvant étre prise quelconque autour de O, on ne

comprend pas comment la quantification de la position du vecteuri
par rapport & O s est possible.

En Mécanique quantique, on représentera chaque composante
rectangulaire du spin d’un systéme par un opérateur 2, X, Z; et
au carré de la longueur du vecteur spin, on fera correspondre
'opérateur

)

(22) 2= I+ X} + I2.

Lo

&

Par analogie avec le moment cinétique ordinaire (orbital) et en
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accord avec les propriétés du spin énoncées plus haut, nous admet-

, ) ‘ ho\e
trons que Popérateur X2 a pour valeurs propres S(S 1) <:L;>

avec

N C .
S=o, 1, 2, R si N est pair,
1 3 5 . . .
S oy 2y Dy vy —y si N est impair.
2 2" 2 2
z

Nous admettrons aussi que les opérateurs X,, X,, X. ont les
h . o s
valeurs propres m —; m pouvant varier par unités de —Sa—+-S.

Les composantes X, X,, . n’étant pas simultanément mesurables,
les opérateurs correspondants ne doivent pas commuler et on
peut faire les hypotheses précédentes sans étre en opposition avec
le modéle vectoriel entendu au sens quantique. Les théories qui
permettent de préciser la représentation mathématique quantique
du spin conduisent a des opérateurs X,, X, I_ et X2 jouissant
effectivement des propriétés précédentes que nous admettrons
icl. '

Considérons d’abord le cas N=1. Le nombre S a alors la
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.

. N 1 < .
valeur unique — = —:1 X2 pour valeur propre unique

o)

G0 (E) ()

Chacun des opérateurs X, X, et X: a les deux valeurs propres

L3

+
27 4=

ol -

en accord avec ce que nous avons toujours admis pour le spin
d’un électron.
Passons maintenantau cas de deux électrons, N == 2. Le nombre S

a les valeurs possibles o et 1. Pour S=1, Uopérateur X% a la

valeur propre
1) < h : ho\?
1(1+1) P _2<2x),

les opérateurs X, X, . ont alors les trois valeurs propres pos-

. h h
sibles — ——; 0, 4 —- Pour S =0, X2 a la valeur propre o; X,

2, et X. ont alors la seule valeur propre o. Si nous définissons les
états de spin du systéme comme correspondant aux cas purs par
rapport & X; (comme nous l'avons toujours fait précédemment),
nous voyons qu’a I'hypothése S =1, correspondent trois étals avec
. —=— 5/%, 0, ou -+ % tandis qu’a 'hypothése S = o correspond

un seul état avec 2. = o.
Or nous avons vu que 'on peut représenter les états de spin
d’un systéme de deux électrons par les quatre fonctions :

v(a, @), 9(b,b), $(a,b)+o(b,a), s(a, b)—-o(b, a).

La fonction ¢(a, a) représente le cas ou les deux électrons ont

. h
pour spins, le long de Oz, + 4—1_-; o(b, b) représente le cas ou les
deux électrons ont pour spins, le long de Oz, — 711: Les fonctions
49

¢(a, b) et 9(b, a) correspondent aux cas ou les spins des deux
¢lectrons le long de O z sont opposés.

B . ~_>. . .
Désignons par X1 opérateur de spin du premier électron, par

—— > - —
22 celul du second : 'opérateur « spin total » sera X —= Ztt) 4 Z2),
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On doit évidemment avoir :

/ /_1 h

(Igla )= Telm @) Me(r @)= tela a)
It e(b, b)*——c(l) b); T o(b, Z)):—/—/Ié_-?(b, b);

(23) v
Se(a, By = g, by Y o(a b) = — Lo ola, b);
4: ’ * ‘ z v bl /;TE* H *

N h . I
| X Yo(b, a)y =— E?(b, a); Ie(h, a)= Z;@(b, a);

puis

| vt @)= st @i Sorh by =— {2 es, 0);

(24) ¢ S.0(a, b)y= o o9(a, b); L.9(b,a)y= o o(h, a);
[ et 6y o0, ) = oLetr 6) 55, ],

Donc, nous avons quatre étals dont deux correspondent a X.=— o,

I h C . .
un & 2, = - etun a X, — — o D’aprés nos considérations géné-

rales, il faut donc que les deux derniers états et Pun des

é

, c’est-a-dire au cas de spins
paralléles (cas 44, tandis que lautre état .= o correspondra aun
cas S = o, c’est-a-dire aux spins antiparalléles (cas 4).

Les théories qui permettent de préciser la forme des opéra-
teurs X et des fonctions de spin permettent de calculer 32¢. On
trouve ainsi :

(25) 22[9(a, b) + ¢ (b, a>]=l<*/‘;>2[¢<n, by+9(b, s
s2o(a 0)—2(b, @)= o [s(a.b)— (b, )

Ceci montre que les fonctions ¢ (a, a), o(b, b)eto(a, b))+ o(b,a)
correspondent 4 S =1, tandis que ¢(a, b)— o (b, a) correspond
aS—=o.

Nous avons vu précédemment que les fonctions propres d’un
systéeme de deux ¢électrons doivent étre antisymélriques par rap-
port a Pensemble des coordonnées d’espace et des spins (principe
de Pauli). Nous avons vu également qu’en premiére approximation
elles se présentaient sous la forme d’un produit d’une fonction ¢
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des spins par une fonction des coordonnées des deux électrons. Si
cette derniére fonction est symétrique, la fonction des spins doit
étre antisymétrique et inversement. Puisque les fonctions symé-
triques des spins correspondent & S =1 et les fonctions antisym¢-
triques 4 S = o, nous voyons que les fonctions propres du systéme
qui sont symétriques d’espace correspondent a S = o, tandis que
les fonctions propres antisymélriques d’espace correspondent
a4 S = 1. Reportons-nous alors ala théorie de la molécule H, donnée
au paragraphe précédent : ce sont bien, nous le voyons, les états
symétriques d’espace qui sont les seuls a correspondre au cas des
spins antiparalléles (cas 1)), el la possibilité de formation d’une
molécule H, a bien pour condition nécessaire et suffisante 'anti-
parallélisme des spins des deux électrons.

4. Interactions apparentes dues a I’exclusion de Pauli. — Dési-
gnons maintenant par ¢!, ¢ et ¢ les trois fonctions symétriques
des spins qui correspondent a S=1. par ¢/ la fonction anti-
symétrique des spins correspondant a S= o. [Yaprés les résultats
obtenus dans le cas d’un seul électron (N =1), on doit avorr,
pour un ¢ quelconque,

() (g = L (S (S = (22 ) e

et de méme

‘o 3/ h\?
(>7)  (SERg = (34 (B =3(%)
JN27
Or
(28) Mo = [(X 4+ D)2 (D B (B0 X2 o
par définition. D’ou :
>
¢ B2p = (ZM)20 + (X220 + 2B X2y
{29) ; A : :
avece
— ——
(30) 01N = SR 4 BIU XD 4 51D R,

Dans (30), PPordre des facteurs est différent, car 1) et Z1* opérant
sur des variables -de spin différentes commutent. De (28), (29)
et (30), on tire

, T T, 3k
(31) . *-;=2'.‘-3:——»—4— ol L2

[
14|
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Si g est 'un des trois ¢“, on a done

i 1 3/ 0\
32 I, B@ s = B2l — D (s3)
(32) pitl= - 229 4<2ﬁ> ?
I N2 3/ A \?2
— olsh_ 2 1 ;
_52<T,—) 4(27:) P,
et finalement
o ediern Tl 1/ h\2 | .
(33) T S0 glsi — Z('F) il (i=1,2,3).

Pour ¢/, on a, au contraire,

— 2 ' 2
(34) Em_)_;(z)?"n): iye);;,(n)_ ; (/_l> ?:m: é 0— 2 (_’L) ?M)’

[~

27

et finalement

> > 2
(33) E(l)‘E(‘_’)-&(ﬂ):_é _/_l_ ol
’ 4\2=x/ "

Les formules (33) et (35) vont nous permettre de considérer la
différence d’¢nergie entre un état syméirique et I'état anlisymé-
trique correspondant comme due & une sorte d’interaction enire
les spins, méme en négligeant les véritables interactions de spin,
c’est-a-dire celles qui sont ducs a I'existence des moments magne-
tiques propres.

Pour le voir rappelons quelques résaltats pour un systéme de
deux électrons. Sotent EY, ES, ..., E), ..., E!, ... les ¢nergies
des états stationnaires de chacun des deux électrons quand on
néglige enticrement leurs interactions. Par suite de la dégénéres-
cence d’échange, la valeur propre E] +-E) pour le systéme est
dégénérée et 1l lui correspond les deux fonctions propres
W, (1) Wn(2) et Wy (2) W, (1), en commencant tout d’abord par ne
pas parler des spins.

St maintenant nous voulons tenir compte des interactions Cou-
lombiennes existant entre les deux électrons, nous pouvons
prendre comme point de départ d’un calcul de perturbation les
fonctions propres d’approximation zéro.

ll,‘(ﬂ

lm(l? 2) = \F[(I> q"m(2) -+ ‘l"Hl(I\) II"/(Q)z

G0 ‘ W1, 2) = ‘fz(l) W, (2)— W (1) We(2).

Im
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Ce sont les combinaisons symétriques et antisymétriques
d’espace des fonctions propres W, (1) W, (2) et W;(2) W, (1).

Les valeurs des énergies correspondant en premiére approxima-
tion a I'état symétrique et a 1’état antisymétrique respectivement
sont E} - E? ~-&, et E} -+ B, 4~ ¢, avee

(37) gs=C+ A, o= G — A,
on

C= [ W [ Wa(2) ]2V s,

(38) )
A=®R [f‘l’;(l)l";,l(z)Vll'/(z)‘I’,,I(I)er,

V étant le potentiel d'interaction Coulombienne ;—
1

Si, de plus, nous voulons tenir compte de l'existence du spin
dans la définition des états du systéme, nous sommes amenés i
introduire Ies quatre fonctions des spins ‘

gy L F=sl@a)y en=5(b,b); = g(a, b)+e(b, a);
S o' =g(a, b)— (b, a).
En vertu du principe de Pauli, a la valeur propre d’approximation
zéro E) +- E;, correspondent maintenant quatre fonctions propres
d’approximation zéro, savoir :

Wi(1, 2, o1, 02) = ol W (1, 2)
(50) ,m(l, 2, a1, 02) == 9B Wi (1, 2) J+ ES, + ea,

Yiosl(n, 2, 61, 03) = gl W (1, 2)

\[:]z“ (1, 2, 03, 32) = o'W (1, 2) } E} +E) + ¢,
les trois premiéres fonctions étant symétriques de spin et anti-
symétriques d’espace et la quatriéme étant antisymétrique de spin
et symétrique d’espace. .

Si nous continuons a négliger les interactions dues & Uexistence
du spin, ce que nous allons toujours faire dans la suite, Uinter-
action Coulombienne ne lévera que partiellement Ja dégénéres-
cence, les trois premiéres fonctions propres (40) correspondant a la
méme énergie perturbée de premiére approximation E] +E), 4¢,,
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la derniére fonction propre (40) correspondant de méme
a E) +E,, +¢,. Ici on peut écrire, a la place des définitions (38),

C= [ T3W(1) Wi (2)1° VI #Wo(3) Wan(2) ] 5,
(41)
A=a [f[mo)wm(z)]*va<z>‘rmmwv

avec ¢ = ¢, ol o) ou ¢'® suivant I'état considéré. Mais les Wied
de (40) ¢tant normées, nous devons supposer que les quatre o
sont tels que | ¢ |*=1 et, en somme, nos nouvelles définitions (41)
sont identiques aux anciennes définitions (3g).

Je dis maintenanl que nous pouvons écrire la perturbation du
premier ordre de I'énergie sous la forme suivante, valable pourles
quatre W (1, 2, 5, 7y)
8§x2
h?

) e=C—ta—TEa[ [T e VI o) P

ou, ce qui revient au méme,

82 o

Ag* );(1).};(27?7

I

ou 'opérateur ST est toujours défini par (30).

En effet, pour calculer la perturbation du premier ordre de
I'énergie pour I'un des trois états antisymétriques d’espace, nous
devons prendre pour ¢ l'un des trois o"*? et alors, d’aprés (33),

nous avons

” it S0 @t = L e LA
(44) g~ -—"?«”“:ZFI?H‘:ZE;
et (43) nous donne

. 3 “ 1 8=z 1 A&
(43) = C— SA— AL S = C— A,

ce qui est bien en accord avec la seconde formule (37).

Pour calculer la perturbation du premier ordre de I’énergie
pour un état symétrique d’espace, nous devons prendre ¢ = ¢! et
alors, d’aprés (35), nous avons

(46) ot X0 S g = gl (3 N i
‘ A ; '
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el, par suite, (43) nous donne ici

I E N W PN

Nous retrouvons bien ainsi la premiére formule (37).

La formule (42) ¢tant ainsi justifiée, regardons bien cette for-
mule : nons voyons qu’elle exprime la perturbation ¢ du premier
ordre en fongtion du produit scalaire des spins des deux électrons,
c’est-a-dire en somme de leur angle. Ainsi, par suite de la maniére
dont le principe de Pauli lie les états symétriques d’espace aux
élats antisymétriques de spin et inversement ct, bien que nous
n’ayons lenu compte que des interactions Coulombiennes en
négligeant entiérement les interactions dues a I'existence du spin
(c’est-a-dire les interactions dues aux moments magnétiques
propres), nous en arrivons a considérer la différence de valeur
de ¢ et de ¢, comme traduisant une¢ sorte d’interaction apparente
entre les spins. Ces interactions apparentes, dont Vexistence est
due en réalité a lintervention de 'exclusion au sens de Pauli,
peuvent étre appelées « interactions d’exclusion ». Suivant que la
quantité A sera positive ou négative, ce sera soit I'état a spins
antiparalléles (4]) correspondant a ¢, soit ’état a spins paralléles
(11) correspondant a ¢,, qui sera stable.

Il faut noter que les véritables interactions de spin dues aux
moments magnéliques propres des électrons et les interactions
magnétiques provenant da mouvemenl orbital sont tout a tait

négligeables devant les termes en 2(?)2(3 dans 'expression de ¢.
En d’autres termes, les pseudo-interactions magnétiques qui
traduisent le principe de Pauli sont beaucoup plus intenses que
les véritables interactions magnétiques.

Les considérations précédentes ne s’appliquent qu’au cas de
deux électrons. On peut, au moins approximativement, en étendre
les conclusions au cas d’un grand nombre d’électrons faisant partie
soit d’'un méme atome, soit méme par exemple des divers atomes
d'un corps solide. On voit alors qu’il existe entre les divers atomes
d’un corps solide des actions tendant a orienter les uns par rap-
port aux autres les moments magnétiques des divers atomes, et ces
actions d’orientation qui dérivent des pseudo-interactions de spin
exprimant le principe de Pauli sont beaucoup plus énergiques que

L. DE BROCLIE. 14
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les actions d’orientation proprement magnétiques dontlesanciennes
théories pouvaient tenir compte. Or, I'on sait que M. Pierre Weiss,
pour développer la théorie du ferromagnétisme, avail é1é amené &
postuler Pexistence d’actions mutuelles d’orientation des moments
magnétiques entre les atomes d’une substance ferromagnétique.
Malheureusement, a l’époque ou M. Weiss développait sa
théorie, on ne pouvait imaginer comme actions orientantes que les
actions magnétiques ou électriques ordinaires et, si 'on calculait
lordre de grandeur des actions de ce genre pouvant s’exercer
entre les atomes d’une substance ferromagnétique, on trouvaitdes
actions beaucoup trop petites pour pouvoir expliquer 'importance
réelle des phénoménes ferromagnétiques. Mais, depuis lors 'intro-
duction du principe de Pauli et des conséquences que nous venons
d’en déduire a levé, du moins en principe, la grande difficulté ainsi
renconirée par la théorie de M. Weliss, car les forces d’orientation
nécessaires au développement de sa théoric du ferromagné-
tisme peuvent aujourd’hui étre interprétées par les pseudo-inter-
actions entre spins qui sont la conséquence du principe de Pauli.
C’est autour de cette idée directrice que M. Werner Heisenberg a
développé sa belle théorie quantique du ferromagnétisme. Bien
qu’un développement quantitatif exact de cette théorie soit trés
difficile, on peut dire qu’elle rend bien compte dans ses grandes
lignes du phénoméne du ferromagnélisme. Son étude sortirait
naturellement du cadre du présent ouvrage.

5. Le spin des noyaux d’atomes. — Il est intéressant de
compléter ce que nous venons de dire sur le spin des électrons
par I'étude sommaire du spin des noyaux d’atomes. Quelle que
soit la stracture intime exacte des noyaux d’atomes, il est aujour-
d’hui certain qu’ils possédent en général un moment de rotation

propre, un spin, qui a une valeur de la forme I‘;l—f_, I pouvantavoir
suivant la nature du noyau considéré une des valeurs o, é, 1, z,
Par exemple, les noyaux He et O ont un spin égal a zéro, le
noyau H ou proton a un spin é, le noyau Nle spin 1 <en unités ;é) .

La valeur du spin d’un noyau peut étre déduite de 1’étude du
spectre de bandes d’une molécule formée de 2 atomes possédant
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ce noyau : par exemple, le spin du noyau N pourra se déduire de
I'étude du spectre de bandes de la molécule N2. C’est ce que nous
expliquerons plus loin.

Dans le cas de V'électron dont le spin a la valeur .—, a ce spin

4T

est associé un moment magnétique égal au magnéton de Bohr,
oit A h_ (2 ) Si pour les noyaux on admet ' ue 'on

s a frme me\ 4= p J q
obtient également le moment magnétique propre d’un noyau en
. e . charge .
4 spin e ——2°__, onvoi
multipliant la valeur de son spin par le rapport —— =5 © t

que les noyaux, en raison de leurs masses beaucoup plus élevées
que celle de l'électron, auront un moment magnétique propre
beaucoup plus petit que le magnéton de Bohr. La relation entre le
spin et le moment magnétique ne parait pas en réalité étre toujours
aussi simple : dans le cas du noyau H (proton) dontle spin estzf%y
I'expérience a indiqué que le moment magnétique propre est supé-
rieur 4 celui qu'on calcule a partir de la régle précédente. Mais,
quelle que soit l'origine de ces anomalies, il est certain que le
moment magnétique des noyaux est de I'ordre de grandeur prévu,
¢’est-a-dire trés inférieur au magnéton de Bohr. Le champ magné-
tique di & ce moment magnétique propre est donc beaucoup plus
faible que le champ correspondant pour I’électron. Or, ce sont ces
champs magnétiques dus aux moments magnétiques propres qui
constituent ce que nous avons appelé les « interactions de spin ».
Ceés interactions de spin sont donc beaucoup moins importantes
entre noyaux qu’entre électrons, et 1l est bien plus souvent encore
justifié de les négliger pour les noyaux que pour les électrons.
Néanmoins, si faibles que soient les champs dus au magnétisme
des noyaux, leur action suflit a provoquer certains dédoublements
trés fins dans les niveaux d’énergie des atomes et 'étude de ces
structures « hyperfines » des spectres atomiques fournit des indi-
cations sur la valeur du moment magnétique propre des noyaux et
par suite sur la valeur de leur spin, dans la mesure ou 'on peut
appliquer la relation précisée plus haut entre spin et moment
magnétique propre.

L’extréme petitesse des champs magnétiques dus aux moments
magnéliques propres des noyaux nous autorise, encore bien plus
que pour les ¢lectrons, a faire en premiére approximation abstrac-
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tion compléte des interactions entre moments magnétiques propres
pour U'étude des ensembles de noyaux. Pour un ensemble de
noyaux, on pourra donc trés légitimement considérer la fonction
d’onde de cet ensemble comme le produit d’une fonction ¢ dépen-
dant uniquement des spins et d’une fonction W dépendant unique-
ment des coordonnées des noyaux; on pourra par suile poser

(48) Wy, ¥, Z1y «ovy &N, ¥N, BN 51, G2, ooy ON; 1)

= (51, «.., 0x) W2y, ..., 2N ).

Cect posé, on doit s’attendre a trouver deux catégories de
noyaux : pour les uns, un systéme formé de noyaux de méme
nature sera toujours représenté par une fonction symélrique au
total, compte tenu des spins; pour les autres, un systéme formé
de noyaux de méme nature sera toujours représenté par une fonc-
tion d’onde antisymétrique au total, compte tenu des spins. Les
premiers suivront la statistique de Bose-Einstein, les seconds la
statistique de Fermi-Dirac. La possibilité de diviser les noyaux en
deux catégories de ce genre repose toujours sur le fait que, les
interactions entre noyaux étant représentées dans'Hamillonien du
systéme par un terme symétrique, les états symétriques ne peuvent
se combiner qu’entre eux et les états antisymétriques ne peuvent
également se combiner qu’entre eux. Les fonctions d’onde des
noyaux a états symétriques seront soit le produit d’une fonction
symétrique des spins par une fonction symétrique d’espace, soitle
produit d’une fonction antisymétrique des spins par une fonction
antisymétrique d’espace. Au contraire, les fonctions d’onde des
systémes de noyaux a états antisymétriques seront soit le produit
d’une fonction symétrique des spins par une fonction anli-
symétrique d’espace, soit le produit d’une fonction antisymétrique
des spins par une fonction symétrique d’espace.

Comme les interactions dues au magnélisme propre sont trés
faibles, nous pouvons considérer, a un haut degré d’approximation,
les états correspondant i une fonction W(zy, ..., 5y, {) comme
coincidant quel que soit 'état de spin et nous pouvons aussi con-
sidérer que les états symétriques d’espace ne se combinent qu’aux
états symétriques d’espace et les états antisymétriques d’espace
qu’aux étals antisymétriques d’espace : nous avons vu en effet que
cette affirmation est valable qnand on peut négliger dans I’'Hamil-
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tonien les termes traduisant les interactions de spin, cc qui était
déja légitime en premiére approximation pour les électrons etl’est
encore bien davanlage pour les noyaux. A ce degré d’approxi-
mation, chaque état défini par une fonction d’onde d’espace
W(zy,..., 5y, £) est en général dégénéré et sa multiplicité est égale
au nombre des fonctions de spin qui peuvent se combiner avec la
fonction d’onde considérée. Dans le cas d’un systéme de 2 élec-
trons, nous avons vu que les étals symétriques d’espace sont
simples [ parce que la fonction d’onde correspondante ne peut se
combiner qu’avec 'unique fonction de spin ¢(a, b)—¢(b,a) ]
tandis que les états antisymétriques d’espace sont triples | parce
que leur fonction d’onde peut se combiner avec les 3 fonctions de
spin 2(a, a), 2(b, b) et g(a, b) + ¢(b, a)]. Nous allons reprendre
h
an

ce probléme pour deux noyaux de spin 1

. En faisantI = % dans

les résultats obtenus, nous devrons retomber sur le cas de 'élec-
tron qui est aussi celul de noyaux comme le proton.

h - .

21-- De combien
-d’¢tats de spin indépendants ce systéme est-il susceptible ? Tout
d’abord, chaque noyau considéréisolément estsusceptiblede 2l —+1
états de spin indépendants. En effet, ’état de spin doit se définir

par la valeur de la composante du spin dans une certaine direction

Soient deux noyaux ayant chacun le spin I

h
b
2%
m variant par unités de —I a4 1. Deux cas sont a distinguer :

2n +1

de référence O3 et cette valeur doit étre de la forme m

ou I est entier ou 1 est de la forme

- Si I est entier, m peut

prendre les valeurs positives 1, 2, ..., I et les valeurs néga-

tives —1, —2, ..., —1I ainsi que la valeur o, soit bien en

toute oI -1 valeurs distinctes. Si I est de la forme 221

» m peut

1 3 . I ..
prendre les valeurs -, IRERT 1, soit I 4- - valeurs positives, etles

1 . 1 . .
valeurs — IR — 1, soit I+ 5 valeurs négatives : cela fait

encore au total al 41 valeurs distinctes. Chaque noyau ayant
ainsi 2l—41 états de spin indépendants, I'ensemble des deux
noyaux aura (21 4-1)? états de spin indépendauts, car tout état de
spin d’'un des noyaux peut se combiner avec tout état de spin de
l'autre. Maintenant, sur ces (21 -1)? états de spin indépendants




214 CHAPITRE IX.

dont le systéme est susceptible il y en a évidemment 21 + 1 qui
sont obtenus en combinant un certain état de spin de 'un des
noyaux avec le méme état de spin de I'autre noyau et ces 21 41
états de spin global sont évidemment symétriques. Ces élats symé-
triques mis a part, il reste (21 +1)? — (2l 1) = 2I(21--1) états
de spin indépendants qui se divisent en deux groupes égaux d’états
symétriques et antisymétriques. Finalement il y a donc au
total 2l 41+ I(2l+1)=(I+41)(2l+ 1) états symétriques de
spin et I(21 4-1) états anlisymétriques de spin.

Vérifions ce résultat pour le cas de I'électron, I = % Chaque

électron a deux états de spin possibles, ce qui est bien égala 21+-1.
Le systéme des deux électrons a (21 +4-1)?== 4 états de spin pos-
sibles. Sur ces quatre états, il y en a 21 -+1 = 2 qui sont obtenus
en combinant un certain état de spin du premier électron avec le
méme état de spin du second électron : ce sont les états corres-
pondant aux fonctions ¢ (a, a) et ¢(b, b). Il reste

(2l +1)2— (ol 41)=2l(2l +1) =2

états de spin dont I'un est symétrique et autre antisymétrique :
ce sont les états correspondant respectivement aux fonctions
o(a, b) -+ (b, a) et o(a, b) —o(b, a). Finalement il y a au
total (I 4 1) (21 4 1) = 3 états symétriques de spinet (2l + 1) =1
état antisymétrique de spin. Ce sont bien les résultats que nous
avions obtenus pour ’électron.

Le rapport p du nombre des états antisymétriques de spin au
nombre des états symétriques de spin est donc

(49) p=r— <1

Maintenant, les noyaux que nous considérons suivent soit la
statistique de Fermi, soit celle de Bose. Supposons d’abord que
nos noyaux suivent la statistique de Fermi : le systéme des deux
noyaux n’a donc que des états antisyméiriques au total, spin com-
pris. Une fonction symétrique d’espace doit donc se combiner avec
une fonction antisymétrique des spins et une fonction antisymé-
trique d’espace avec une fonction symétrique des spins. Donc les
états correspondant a des fonctions symétriques d’espace sont
I(21—41) fois dégénérés, tandis que les états correspondant a des
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fonctions antisymétriques d’espace le sont (I+4-1)(2l—4-1) fois.
D’ou, pour le cas de la statistique de Fermi, la formule

poids des états symétriques d’espace 1
poids des états antisymétriques d’espace ~ [ —+1

(50) =o.

Pour des noyaux obéissant a la statistique de Bose, nous allons
trouver le résultat inverse. Les fonctions d’onde devant alors étre
symétriques au total, spin compris, les fonctions d’onde symé-
triques d’espace doivent se combiner avec les fonctions d’onde
symétriques de spin et les fonctions d’onde antisymétriques
d’espace avec les fonctions antisymétriques de spin. Donc les états
correspondant a des fonctions d’onde symétriques d’espace
sont (I4-1) (2l -+ 1) fois dégénérés et les états correspondant a
des fonctions d’onde antisymétriques d’espace le sont I(214-1)
fois. D’on pour le cas de la statistique de Bose, la formule

(51) poids des états antisymétriques d’espace I
1 - — — = = 0.
poids des états symétriques d’espace [

SiI=o, il n’y a pas d’¢lats symétriques d’espace dans le cas
de la statistique de Fermi et, de plus, les états antisymétriques
d’espace sont simples : dans le cas de la statistique de Bose, il n’y
a pas d’états antisymétriques et les états symétriques d’espace sont
simples. Ce dernier cas est celui de la molécule O et de la molé-
cule instable Ile, car les noyaux O et He ont un spin nul et
obéissent a la statistique de Bose.

. 1 . '
Sil= -, les poids sont 3 et 1 comme nous le savons par I'étude

du cas de I'électron. Pour des noyaux a états antisymétriques, les
niveaux symétriques sont uniques et les niveaux antisymétriques
triples. C’est ce que nous avons trouvé pour l'électron dans la
théorie du spectre de 'hélium et ce résultat est donc valable pour

le proton. Notons qu’ici p = %
Pour I =1, les poids seraient 3 et 6 et 'on aurait p == é, ete.
6. Application aux spectres de bandes. — Les raies des spectres

de bande sont dues aux variations des états de rotation quantifiés
des molécules, varialions qui peuvent s’accompagner de variation
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des_ états quantifiés d’oscillation des noyaux les uns par rapport
aux autres et méme de variations des élats de D’ensemble des
électrons entourant le noyau. Considérons alors une molécule
formmée de deux alomes de méme nature Ha, O,, N,, etc. Les
fonctions propres en représentant les élats stalionnaires de ceite
molécule seront les unes symétriques, les autres antisymétriques
par rapport aux coordonnées des deux noyaux. On aura des raies
correspondant aux transitions entre états symétriques et des raies
correspondant aux transitions entre élats antisymétriques. Ces
raies sont intercalées les unes entre les autres dans le spectre.
Celles de la premiére catégorie ont, toutes choses égales d’ailleurs,
une intensité proportionnelle au poids des états symétriques
d’espace, soit I(2l 4-1) ou (I 4-1) (21 +4- 1) suivant que les noyanx
considérés obéissent a la statistique de Fermi ou a celle de Bose;
les raies de la deuxiéme catégorie ont, toutes choses dégales
d’ailleurs, une intensité proportionnelle au poids des états anti-
symétriques, soit (I+4-1)(2l+41) ou I(2l41) suivant que les
noyaux obéissent a la statistique de Fermi ou a celle de Bose. De
toutes fagons, on aura donc dans les spectres des raies a intensités
alternées, une raie faible étant toujours intercalée entre deux raies
fortes comme le montre le schéma suivant :

Fig. 8.

Sil'on peut mesurer le rapport de Uintensité d’une raic faible a

celle d’une raie forte, ce nombre inférieur a 'unité sera dans tous
I .

les cas égal au rapport p = e I'on pourra (si I n’est pas trop

grand) en déduire avec sécurité la valenr de I. En particulier, il
peut arriver que les raies observées soient deux fois plus écartées
que ne 'indiquerait la théorie sommaire des spectres de bandes :
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cela signifie que les raies faibles manquent complétement, sont
d’intensité nulle, et que 'on a p = 0, [ = 0. Les noyaux de la molé-
cule ont en ce cas un spin nul : c’esl ce qui arrive pour O, et He,.

Pour le proton H, ona I = - comme pour 'électron.

On peut aller plus loin en s’appuyant sur la théorie quanthue
des spectres de bandes que nous ne pouvons développer ici. Cette
théorie permet en effet de numéroter les raies d’un spectre de bandes
et de dire quelles sont celles qui proviennent d’une transition entre
états symétriques d’espace et celles qui sont dues 4 une transition
enlre étals antisymétriques d’espace. On peut done dire sip est

poids des ¢tats symétriques d’espace
poids des états antisymétriques d’espace
inverse en comparant l'alternance d’intensité des raies avec leur

égal au rapport ou au rapport

numérotage théorique. On verra alors si les deux noyaux de la
molécule étudide obéissent a la statistique de Fermi ou & celle de

Bose. Ainsi pour le noyau H de spin I = ;, on trouve qu’il suit la

statistique de Fermi, que c’est une particule a états antisy-
métriques.

Le proton est donc analogue a I’électron en ce qui concerne le
spin et la statistique. Par contre, le noyau N de 'azote est a états
symétriques et suit la statistique de Bose. Ge résultat créait une
difficulté d’interprétation avant la découverte du neutron, car alors
on supposait les noyaux formés de protons et d’électrons et le
noyau N de masse atomique 14 et de nombre atomique 7 devait
contenir 14 protons et 7 ¢lectrons, soit 21 constituants au total : il
devait donc suivre la statistique de Fermi. La découverte des
neutrons a permis de lever la difficulté en admettant que les noyaux
sont formés de neutrons et de protons, les électrons n’apparaissant
sortir du noyau que lorsqu’un neutron intranucléaire se trans-
forme brusquement en proton : avec cette hypothése, le noyau N
doit étre considéré comme formé de 7 protons et 7 neutrons,
soit 14 constituants au total : il doit bien suivre la statistique
de Bose.

Les molécules O, et He, (cette derniére instable) ont, nous
I'avons vu, une raie sur deux d'intensité nulle dans leur spectre
de bandes. On en déduit 1 =10. L’interprétation théorique du
spectre montre que les raies d’intensité non nulle doivent
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correspondre aux combinaisons entre états symétriques d’espace.

Il en résulte que les noyaux O et He suivent la statistique
de Bose.

7. L’orthohydrogéne et le parahydrogene. -— Quand nous
avons étudié le spectre de I’hélium, nous avons trouvé deux séries
de niveaux pour Patome He entre lesquelles les combinaisons
étaient trés rares. Ces deux séries de niveaux sont les niveaux du
parhélium et ceux de I'orthohélium auxquels correspondent deux
spectres presque complétement séparés. Seules quelques raies
faibles correspondent a des transitions d’un niveau de I'ortho-
hélium a un niveau du parhélium ou inversement. Rappelons que
le schéma des niveaux est le suivant :

Para Ortho
fonctions propres fonctions propres anti-
symétriques d’espace.  symétriques d’espace.
Niveaux simples. Niveaux triples.
Fig. 19.

L’é1at fondamental de I'atome He est le niveau inférieur du
parhélium, lequel n’a pas d’homologue dans Porthohélium.
Lorsque des atomes d’hélium sont soumis & des actions excitatrices
extérieures (élévation de température, excitation électrique, etc. ),
un des électrons passe sur un niveau d’éncrgie supérieure a celle
du niveau fondamental. Si cet électron excité se trouve ainsi porté
sur un niveau du parhélium, il revient rapidecment sur le niveau
fondamental aprés émission d’une ou de plusieurs raies du spectre
du parhélium. Si au contraire 'électron excité se trouve porté sur

un niveau de I'orthohélium, il revient rapidement vers le niveau
inférieur de Porthohélium apreés émission d’unc ou de plusieurs
raies du spectre de I'orthohélium. Puis, peu a peu, par I’émission
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des raies faibles mais cependant existantes qui permettent de
passer des niveaux de 'orthohélium & ceux du parhélium, tous les
dlomes excités primitivement reviennent, du moins si on les
maintient alors & trés basse température, au niveau fondamental
du parhélium.

Nous allons trouver des circonstances tout a faitanalogues pour
la molécule H,y. Les deux noyaux H ayant méme spin et méme
statistique que 1’électron, on retouve pour les deux noyaux de la
molécule H, les mémes circonstances que pour les deux ¢électrons
de 'atome He. Si I'on {ixe son attention sur le rdle de ces deux

noyaux dans la fonction d’onde de H,, on trouvera pour le spectre

de rotation une séric de niveaux simples du type para avec
fonctions d’onde symétriques d’espace et une série de niveaux
triples du type ortho avec fonctions d’onde antisymétriques
d’espace. Les transitions entre un niveau ortho et un niveau para
ou inversement sont dues, nous le savons, aux interactions de
spin et celles-ci sont beaucoup plus faibles pour le proton que
pour l'électron (& cause, nous 'avons vu, de la masse beaucoup
plus grande du proton). Les spectres ortho et para sont donc
beaucoup plus complétement séparés pour Hs que pour He et I'on
aura, pour H, plus encore que pour He, 'impression qu’il existe
deux hydrogenes différents : le parahydrogéne et 'orthohydrogéne.
Lorsqu’aprés une excitation suivie d’émissions de raies, des
molécules H, seront revenues a Pélat d’énergie mimimum de
Porthohydrogéne, cet état présentera un caractére métastable trés
prononcé, le retour a I'état fondamental du parahydrogéne (qui
correspond au minimum absolu de I’énergic) ne pouvant se faire
que par une transition dont la probabilité est extrémement faible.
En maintenant I’hydrogéne préalablement excité a une tempé-
rature extrémement basse, ol pratiquement la totalité des
molécules I, devraient se trouver dans leur état d’énergie mini-
mum, il faudra prés d’une semaine pour qu’en fait toutes les
molécules reviennent en cet état a cause de la trés grande
métastabilité du niveau inféricur de 'orthohydrogéne.

L’existence des deux spectres moléculaires presque entiérement
séparés du parahydrogéne et de 'orthohydrogénc se manifeste aussi
d’une autre maniére. Si nous excitons brutalement paraction dela
température des molécules H,, nous voyons apparaitre le spectre
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de rotation complet avec raies ortho et rales para, les premiéres
étant, toutes choses égales d’ailleurs, 3 fois plus intenses que les
secondes, car le poids des niveaux (triples) de I'orthohydrogéné
est 3 fois celui des niveaux (simples) du parahydrogéne. Mais, si
nous commencons par maintenir de '’hydrogéne liquide a trés
basse température pendant un temps trés long de fagon & amener’
toutes ses molécules a I'état fondamental du parahydrogéne, puis
si nous portons I’hydrogéne ainsi préparé dans un tube de Plucker,
I'excitation électrique portera presque toujours les molécules H,
de U'é¢tat fondamental du parahydrogéne a un autre état a du para-
hydrogéne & cause de la difficulté des transitions para — ortho;
Pon obtiendra donc d’abord uniquement les raies du parahydro-
géne, celles de 'orthohydrogéne qui normalement sont trois fois
plus intense étant absentes. Peu & peu cependant, ces raies appa-
raitront quand des molécules H, ayant subi une transition
para — ortho seront en état de les émettre.

La difficulté du passage para — ortho etinversementa pour effet
que les équilibres thermodynamiques ne peuvent s’établir rapi-
dement qu’entre molécules H, a I'état para d’une part et entre
molécules H, a I’état ortho d’autre part. Il en résulte que dans les
mesures faites rapidement a pas trés basse température (mesures
de chaleurs spécifiques de Dennison par exemple), I'hydrogéne
moléculaire ne se comporte pas comme un gaz unique, mais
plutdt comme deux gaz différents mélangés dans la proportion
de 1 a 3. Ceci explique bien les anomalies qui avaient 616 constatées
dans les mesures de chaleur spécifique pour les molécules Ho.

Tout comme le parhélium et orthohélium ne sont pas réel-
Iement des éléments distincts, mais siraplement deux catégories
d’états quantifiés du méme atome He, de méme le parahydrogéne
et I'orthohydrogéne ne sont pas des corps distincts, mais simple-
ment deux catégories de niveaux quantifiés de la méme molé-
cule Hy. 11 en est tout différemment de Phydrogeéne lourd ou
deutérium D dont le noyau (ou deuton) a une masse égale a 2,
mais une charge unité, ce qui le rend isotope de I’hydrogéne
ordinaire. Le deutérium est vraiment un ¢lément chimique diffé-
rent de ’hydrogéne.

FIN.
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