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PRÉFACE

Dans cel Ouvrage, nous nous proposons de donner un 
tableau d’ensemble de la Mécanique ondulatoire des corpus 
cules matériels, telle qu’elle se présente actuellement, quand 
on laisse de côté les effets de Relativité. Comme dans d’autres 
livres, nous avons principalement développé la Mécanique 
ondulatoire du corpuscule unique placé dans un champ 
donné qui est l’analogue de la Mécanique classique du point 
matériel, nous avons au contraire voulu dans le présent 
exposé nous placer dès le début dans le cas général de la 
Mécanique ondulatoire des cnsémbles de corpuscules en 
interaction qui est l’analogue de la Mécanique classique des 
systèmes de points matériels et qui contient naturellement la 
Mécanique ondulatoire du corpuscule unique comme cas 
particulier.

Dans l’exposé des principes généraux de la Mécanique 
ondulatoire des systèmes, nous avons cru devoir insister 
assez longuement sur la question des intégrales premières 
ou « constantes du mouvement » dont l’intérêt est considé 
rable. Nous avons cru aussi devoir consacrer un chapitre à 
la théorie du centre de gravité en Mécanique ondulatoire, 
théorie qui, dans beaucoup d’Ouvrages, est passée sous 
silence ou seulement effleurée.

Une étude complète des méthodes de perturbation qui
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jouent un si grand rôle dans la nouvelle Mécanique nous 
aurait entraîné trop loin. Nous nous sommes contenté d’en 
faire une esquisse nous permettant d’établir les formules 
dont nous avions besoin pour les développements ultérieurs.

Dans les trois derniers chapitres, nous avons étudié les 
systèmes contenant des particules de même nature physique. 
Pour étudier ces systèmes, la Mécanique ondulatoire a été 
amenée à introduire des principes nouveaux dont il est plus 
facile de donner un énoncé mathématique précis que de 
comprendre le sens physique profond. Tel est le mystérieux 
et fondamental principe d’exclusion dû à M. Pauli.

La validité de ces principes ne fait aucun doute, car une 
grande partie des succès de la Mécanique ondulatoire, succès 
dont nous avons donné quelques exemples, esL due à leur 
mise en œuvre.

Parmi les questions qui sont traitées dans le dernier 
chapitre, quelques-unes concernent le noyau des atomes. 
On est ainsi amené aux confins de cette « Physique du 
Noyau » qui, à l’heure actuelle, se place au premier plan des 
préoccupations des physiciens : nos connaissances expéri 
mentales commencent à y être nombreuses, mais nos inter 
prétations théoriques y sont encore partielles et mal assurées. 
Nous n’avons pas cru devoir en aborder ici l’élude (’ ).

Nous espérons que ce livre donnera à ses lecteurs une 
idée d’ensemble du vaste édifice que constitue aujourd’hui la 
Mécanique ondulatoire des systèmes de corpuscules.

Louis d e  Br o g l ie .

(‘) On trouvera celte étude dans le livre suivant de l'auteur : 
De la Mécanique ondulatoire à la théorie du h'oyau . Paris, 
Hermann, 1943.



LA

MÉCANIQUE ONDULATOIRE
DES

SYSTÈMES DE CORPUSCULES

CHAPITRE I.
RAI'l'EL DE RÉSULTATS CLASSIQUES 

DE LA MÉCANIQUE RATIONNELLE.

1. La Dynamique classique des systèmes de points matériels. —
Nous voulons commencer par donner un aperçu sommaire des 
grandes lignes de la Dynamique des systèmes de points matériels. 
Nous considérerons pour cela un ensemble de N points matériels 
ou corpuscules. Chacun de ces points matériels est caractérisé par 
sa masse. En Mécanique classique, il importe peu que les points 
matériels du système soient de même nature et aient par suite la 
même masse ou qu’ils soient de nature différente et aient par 
suite, en général, des masses différentes.

La Dynamique classique détermine le mouvement des N points 
matériels du système en appliquant à chacun d’eux l’équation 
fondamentale de Newton

> >
( i ) F = m v

et en supposant, bien entendu, que, pour repérer la configuration 
de l’ensemble des points matériels, on a choisi un système de 
référence galiléen (c’est-à-dire au repos ou en mouvement recti 
ligne et uniforme par rapport à l’ensemble des étoiles fixes). Ceci

!.. DE DROGUE. 1



2 CHAPITRE I.

donne pour chacun des N corpuscules trois équalions dilï'é- 
rentielles

(2)
it-.JCi

m‘ UF =
d- Yi v

m‘-dF=lt

et le problème consiste à trouver l’ensemble des 3N fonctions 
Xi{t), yi{t) et Zi{t) de la variable « temps » qui satisfont aux 
3N équations (2) et qui correspondent à des positions et des 
vitesses initiales données des N particules.

Les équations (2) étant du second ordre par rapport au temps,
il faut se donner les valeurs x,-(o), y,-(o), z,-(o), , i^ïf)

et des coordonnées et des composantes de vitesse à un

instant initial pris pour origine des temps afin que la solution soit 
déterminée d’une façon univoque. Le fait que la donnée des 
positions et des vitesses initiales détermine entièrement l’évolution 
du système quand les forces (X;Y;Z;) sont connues, constitue le 
« déterminisme mécanique » de la Dynamique classique.

Maintenant, pour préciser le problème ainsi posé, il faut étudier 
les formes possibles des fonctions Xt-, Y,, Z,- qui donnent les 
composantes des forces agissant à chaque instant sur les N 
constituants du système. A priori, on pourrait prendre pour 
ces grandeurs des fonctions quelconques de l’ensemble des 
3N coordonnées X\ . . . des N points matériels et du temps. 
Mais des considérations physiques simples permettent de diminuer 
cette généralité excessive qui serait gênante. Du point de vue 
physique, on peut supposer que chaque point matériel est soumis 
à deux catégories de forces :

1“ les forces extérieures qui peuvent s’exercer sur le système; 
pour chacun des N points matériels, la force de celte nature 
qui agit sur lui est une certaine fonction vectorielle de ses 
coordonnées x-,y\Zi et du temps;

20 les forces d’interaction, d’actions mutuelles, des N points 
matériels les uns sur les autres; il est naturel d’admettre que, 
pour chaque poinl matériel, ces forces s’expriment par des 
fonctions vectorielles dépendant de la distance de ce point aux 
autres points matériels, chacune de ces forces étant ainsi une 
fonction symétrique des positions de deux des points matériels.



Ces premières hypothèses très naturelles du point de vue 
physique étant admises, nous en introduisons ici une troisième 
qui est plus particulière et qu’on n’introduit pas d’une façon 
générale dans les exposés classiques : nous admettrons que toutes 
les forces dérivent d’un potentiel. Non seulement cette hypothèse 
ne s’impose pas. mais il y a des cas physiques bien connus où elle 
n’est pas vérifiée, celui par exemple de points matériels chargés 
électriquement qui exercent en raison de leur mouvement des 
actions magnétiques les uns sur les autres. Nous admettons néan 
moins cette hypothèse parce que nous n’aurons pas à étudier dans 
cet exposé de cas où elle n’est pas valable.

Avec les trois hypoLhèses que nous venons de faire, on voit que 
pour tout point matériel du système, par exemple, pour le fR'nu', 
les forces appliquées dérivent d’une fonction potentiel de la forme 
suivante :

(3) U,(*, s.x; t) = Vi(xi, rh Z/,

i

i'ij étant la distance du fi,me point matériel au y"‘me et ‘Va étant nul 
par définition. Le premier terme du second membre de (3) est le 
potentiel de la force extérieure agissant sur le iieme corpuscule, 
tandis que le second terme est le potentiel des forces d’actions 
mutuelles. Comme on le voit, le temps ne peut intervenir explici 
tement dans l’expression du potentiel que par intermédiaire des 
forces extérieures.

Il nous faut encore ici introduire une hypothèse supplémentaire 
qui est bien connue en Mécanique rationnelle sous le nom de 
« principe de l’égalité de l’action et de la réaction ». Avec notre 
système de postulats, ce principe a pour expression mathématique 
l’égalité

(4) ‘VL/(n;) = V/i(n/).

Elle signifie que la force exercée par le f"’mc point matériel sur 
le y1, mc point matériel est égale à la force exercée par le yleme point 
matériel sur le i‘,L‘mc point matériel.

Avec tout cet ensemble d’hypothèses, on peut écrire les équa-

RAPPEL DE RÉSULTATS CLASSIQUES DE LA MÉCANIQUE RATIONNELLE. 3



CHAPITRE I.

tions ( i ) sous la forme

à_Vj
à Xt

dt- <)yt Zd âji
l

i

et il va nous être maintenant facile de tirer de ces équations les 
théorèmes classiques de conservation. Ce sont des théorèmes qui 
fournissent des intégrales premières des équations du mouvement, 
c’est-à-dire des expressions ne contenant que des dérivées pre 
mières par rapport au temps qui restent constantes en vertu des 
équations du mouvement.

Par exemple, pour trouver la conservation de l’énergie, on

multipliera les équations relatives au fièmt corpuscule par >
d’y i . dz i . «, . j.
■JY et -j y respectivement, on ajoutera et 1 on sommera sur i. Jhn

remarquant que l’on a

(ti)

on obtient facilement

Si le potentiel est indépendant du temps (cas du champ exté 
rieur statique, ou a fortiori nul), on a

( 8i ,-y = const.

ou encore

(9) T -+- U = const.,

T désignant l’énergie cinétique ^ * m; v\ du système et U l’énergie
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potentielle Ü =2^'+^ 2 L’énergie potentielle comprend
i i)

donc la somme des “V-, individuels et la demi-somme des ‘Vjj 
d’interactions, c’est-à-dire que chaque ternie d’interaction ligure 
une seule fois dans l’énergie potentielle.

Les ‘Vij ne peuvent être attribués ni au «ieme, ni auyiem0 corpus 
cule : il y a comme une mise en commun d’une partie de l’énergie 
qui est caractéristique des systèmes de points matériels en inter 
action.

Le théorème de la conservation de l’impulsion est tout aussi 
facile à démontrer.

En sommant sur i la première équation (5), on obtient

( lo)
VT1 d-Xj d
7 mi —t— - —y.-J dt- dt nii dxi

77T ■2(-
ôVj
()Xi

car =o en vertu du principe de l’égalité entre l’action et

la réaction.
Si donc la somme des forces extérieures dans la direction des x 

est nulle, on a
■v? dxi

( n ) ~ const-

11 y a conservation de la composante x de l’impulsion totale du 
système. De même pour les composantes y et z. II en résulte que 
si les forces extérieures appliquées au système ont une somme 
géométrique nulle, l’impulsion totale du système est constante.

A la conservation de l’impulsion, se rattache étroitement l’utilité 
de la notion de centre de gravité. Par définition, le centre de 
gravité d’un système de points matériels est le point géométrique 
dont les coordonnées sont les moyennes pondérées des coor 
données correspondantes des constituants du système, les masses 
servant de facteurs de poids. On a donc pour les coordonnées du 
centre de gravité les définitions

V

( fA.)
2 niiYi
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Ce qui rend cette notion de centre de gravité utile pour l’appli 
cation du théorème de la conservation de l’impulsion, c’est que 
l’impulsion totale du système est égale à l’impulsion d’un point 
matériel fictif dont la masse serait égale à la masse totale du 
système et qui coïnciderait constamment avec son centre de 
gravité. C’est ce que montre immédiatement les équations

( 13 ) ^ mi

conséquences évidentes de (12).

Si l’on désigne alors par M la masse totale du système et
i

par F la somme géométrique des forces extérieures agissant sur le 
système (la somme géométrique des forces intérieures étant d’ail 
leurs nulle d’après le principe de l’action et de la réaction), les 
équations (10) peuvent s’écrire

(if) f M = F ou vectoriellemem MY = K,
dt\dtj d! ’

V étant la vitesse du centre de gravité. Ainsi le système se meut de 
telle sorte que son centre de gravité se déplace comme un point 
matériel de masse M qui serait soumis à la résultante de toutes les

forces extérieures. Si la composante x de F est nulle, la compo 
sante a? de l’impulsion du centre de gravité est constante : le mou 
vement du centre de gravité le long de l’axe x est donc alors 
rectiligne est uniforme. De même pour les directions y" et.:. Donc

si F = o, l’impulsion du centre de gravité est constante, son 
mouvement est rectiligne et uniforme dans l’espace. Il en résulte 
qu’un système isolé (c’est-à-dire un système qui, par hypothèse, 
n’est soumis à aucune force extérieure) peut être étudié à l’aide 
des équations (2) de Newton dans un système de référence lié 
rigidement au centre de gravité, puisque ce système, en raison du 
mouvement rectiligne et uniforme du centre de gravité, se trouve 
être un système galiléen. Même dans le cas général où les forces 
extérieures ne sont pas nulles, il est souvent utile de décomposer 
le mouvement du système en mouvement du centre de gravité et



mouvement autour du centre de gravité. Le premier est défini par 
l’équation •( i4) : si les forces extérieures varient très peu dans le 
domaine occupé par le système, ce mouvement du centre de 
gravité pourra être déterminé sans se préoccuper du mouvement 
autour du centre de gravité. L’étude du mouvement autour du 
centre de gravité pourra être abordée ensuite, mais elle est en 
général compliquée par l’intervention de forces d’inertie, centri 
fuges ou centrifuges composées, dues au mouvement non uni 
forme du centre de gravité. La séparation du mouvement du 
centre de gravité et du mouvement autour du centre de gravité 
est d’ailleurs facilitée par les théorèmes dits de Kœnig dont nous 
parlerons tout à l’heure.

Disons enfin un mot de la conservation du moment d’impulsion. 
A partir des équations (2) de Newton, on obtient facilement

RAPPEL DE RÉSULTATS CLASSIQUES DE LA MÉCANIQUE RATIONNELLE. 7

{ i

Les forces intérieures, étant deux à deux égales et opppsées, 
ont un moment total nul par rapport à l’origine. En désignant

par L le moment total des forces extérieures par rapport à l’ori 
gine, on aura donc

(iti) d
<n

' <t.r, dvt
= L.0

-V
Si donc une des composantes de L est nulle, la composante

correspondante du moment d’impulsion est constante. Si L = o, le 
moment d’impulsion est constant.

2. Théorèmes de Kœnig. — Nous allons nous arrêter un 
instant sur les théorèmes de Kœnig qui aident à séparer le mou 
vement du centre de gravité du mouvement autour du centre de 
gravité, et dont nous retrouverons l’analogue en Mécanique 
ondulatoire.

L’impulsion totale d’un système se réduit, nous l’avons vu, à
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celle de son centre de gravité supposé doué de la masse totale. Il 
n’en est pas de même de l’énergie cinétique totale du système, ni 
de son moment d’impulsion total. Cependant, il est possible de 
décomposer ces quantités en deux parties, dont l’une est rattachée 
au mouvement du centre de gravité, tandis que l’autre est ratta 
chée au mouvement du système autour de son centre de gravité. 
C’est là l’objet des théorèmes de Kœnig.

Voici d’abord le théorème de Kœnig relatif à l’énergie cinétique 
totale. Cette énergie est égale à

Or, en introduisant les coordonnées du centre de gravité, nous 
pouvons poser

( 18) Xi — X -h y, = Y -+- vu-, Z; = Z £/,

m et Ç; étant les coordonnées relatives du iWmt' point matériel 
par rapport au centre de gravité. En multipliant les équations 
précédentes par m.; et en sommant sur i, on obtient, d’après la 
définition des coordonnées du centre de gravité,

(19) V nii"-l= o, ^TO,T,, = O, Itli = O,

d’où l’on tire évidemment,

(20) y, "11-77 = 0,dA
<u

V >i
Zmi~

dty
it

fi~j
fit

Or, on a

(21)

e't, par suite,

(22) T =

tiXi fi\ t/ïj
Ht = TV 77/' ’

1 Mv+y „„ / ’iy -y ->i + f5>
\ fil fit fit t/l rit fit

■si
It
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Le second terme est nul en vertu de (20), et il reste

(2'jj T = i MV--+- - y»îir!r)\
2 2 1 

i

v'f‘ étant la vitesse du i"'mc point matériel dans un système de 
référence ayant son origine au centre de gravité et ses axes paral 
lèles aux axes galiléens avec lesquels on fait le calcul, ce système 
de référence n’étant pas lui-même en général galiléen. Ainsi, la 
force vive totale d’un système est la somme de la force vive du 
centre de gravite et de la force vive dans le mouvement autour du 
centre de gravité. C’est là le premier théorème de Kœnig.

Le second théorème est relatif au moment d’impulsion et se 
démontre de même.

On a, par exemple, pour la composante x du moment d’im 

pulsion total M du système,

compte tenu de ( 19) et (20). On a des formules analogues pour M, 
et M, . Donc le moment total d’impulsion du système est la somme 
géométrique du moment d’impulsion du centre de gravité et du 
moment d’impulsion du système dans son mouvement autour du 
centre de gravité (c’est-à-dire dans un système d’axes ayant 
constamment leur origine au centre de gravité et parallèles aux 
axes fixes). C’est là le second théorème de Kœnig.

3. Principe d’action stationnaire de Hamilton. Équations de 
Lagrange. —• Toute la dynamique des systèmes de points maté 
riels peut être ramenée à un principe d’action stationnaire. Pour 
énoncer ce principe, on commence par définir une « fonction de 
Lagrange » pour le système, c’est-à-dire une fonction de la posi 
tion des points matériels, de leurs vitesses et éventuellement du
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temps, donnée par

(25) £(xi, zy, t ) = T — U(xi, . . zy, t),

T étant toujours l’énergie cinétique du système et U son énergie

potentielle égale à ^ ‘v’; i ‘Vij. il est facile de constater que
' '/

les équations newtoniennes précédemment utilisées peuvent être 
écrites sous la forme

(26) d(à£\ __ à_£_
dt \ d£i J dxi

N ; x-t = dxi
~dï

Or, ces équations expriment précisément, comme il est bien

connu, que l’intégralej^ £(x{ . . : zy. t) dt, prise le long de la

courbe définie parles équations (26), est stationnaire, c’est-à-dire 
a une variation du premier ordre nulle, quand on fait varier infi 
niment peu la courbe d’intégration en laissant fixes les extrémités 
ainsi que les limites tü et t4 de l’intégrale.

On peut préciser ceci en introduisant « l’espace de configu 
ration » du système dont nous aurons à nous servir en Mécanique 
ondulatoire. L’ensemble des 3N coordonnées des N points maté 
riels du système Xi . . . zy, peut, en effet, nous servir à constituer 
un espace euclidien à 3N dimensions dans lequel ces 3N coor 
données définissent 3 N axes de coordonnées mutuellement 
perpendiculaires. Un point de cet espace correspond à une 
certaine valeur de chacune des 3 N coordonnées x\ . . . zy, et par 
suite, à une certaine « configuration » du système. L’état instantané 
du système peut donc toujours être représenté par un point 
figuratif dans l’espace de configuration. Au cours du temps, le 
point figuratif décrit une courbe ou trajectoire dans l’espace de 
configuration : cette trajectoire est définie par les 3 N fonctions du 
temps Xi(t), . . ., Zy(t). Supposons alors que le point est figuratif 
soit à un instant t0 en un point A de l’espace de configuration et 
qu’à un instant postérieur h, il se trouve en un autre point B de 
l’espace de configuration. Dans l’intervalle de temps t0—*ti, le 
point figuratif s’est donc rendu de A en B en suivant une certaine 
courbe G correspondant à certaines formes de fonctions

Xi (t), . • Z-y(t).
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L’intégrale f i? dt prise le long de la courbe G est une inté-

grale curviligne bien définie. Le principe diction stationnaire ou 
principe d’Hamillon affirme alors que le mouvement réel qui 
amène le système de la configuration représentée par A à 
l'instant ta à la configuration représentée par B à l’instant tt,

£ dt prise le
u

long de C ne varie pas au premier ordre quand on fait varier 
infiniment peu la forme de la courbe C sans faire varier les 
instants tn et tl} ni les configurations A et B.

6

Fis

Le principe d’action stationnaire et les équations de Lagrange 
qui en sont l’expression ont une signification intrinsèque inva 
riante. Si, au lieu de définir la configuration du système à l’aide 
des 3 N variables Xi . . . uN, nous la définissons par 3N variables 
f/, . . . c/;N telles que X\ . . . s’expriment univoquement à l’aide 
des qi et inversement, on aura comme expression du principe de 
l’action stationnaire

( 27 ) </:,>• ; t ) dt = o,

la variation étant définie comme nous l’avons vu, et l’on en tirera

(28 )
d / tW 
dt \ ()f/i

àJS
àqt (t = 1, .., LV).

Il arrive fréquemment dans les problèmes de Mécanique ration 
nelle que le mouvement des points matériels composant le système 
soit soumis à des liaisons. Dans le cas le plus simple (liaisons holo-
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notnes indépendantes du temps), ces liaisons peuvent se représenter 
par des équations liant entre elles certaines des 3N coordonnées 
des N points matériels, et représentant dans l’espace de configu- 
ration des surfaces sur lesquelles le point figuratif est assujetti à 
se déplacer. Physiquement, on doit considérer les coordonnées 
des points matériels comme pouvant en principe varier librement, 
mais dès que leurs valeurs cessent de vérifier les équations expri 
mant les liaisons, il s’exerce sur ces points matériels des forces 
très intenses qui tendent à faire reprendre à leurs coordonnées des 
valeurs satisfaisant aux équations de liaison. Parlant le langage de 
l’espace de configuration, on peut dire que, dès que le point figu 
ratif du système s’écarte d’une des surfaces représentant les liaisons, 
il se produit dans le système des forces intenses qui tendent à 
ramener le point figuratif sur cette surface. Il est donc naturel de 
schématiser la liaison en disant que les coordonnées ne peuveni 
prendre que des valeurs en accord avec les équations de liaison. 
Le problème mathématique se trouve ainsi simplifié par une réduc 
tion du nombre des variables indépendantes. Il suffit pour carac 
tériser la configuration du système de connaître les valeurs de n 
variables </i, . . ., qn avec n < 3N, et l’on peut écrire encore les 
équations du mouvement sous la forme lagrangienne :

Toutefois, il est bon de retenir que c’est là une schématisation 
correspondant à des forces de liaison infiniment grandes et qu’en 
réalité celles-ci ne peuvent être qu’extrêmement grandes. Cette 
remarque a une certaine importance pour comprendre le rôle des 
liaisons en Mécanique ondulatoire.

Nous n’insisterons pas ici sur les questions assez délicates qui 
peuvent se présenter quand on considère des liaisons dépendant 
du temps et surtout des liaisons non holonomes. Ce genre de 
questions ne se présente pratiquement pas en Mécanique ondula 
toire, où pour cette raison on ne paraît pas les avoir approfondies.

4. Équations d’Hamilton. Principe de moindre action de Mau- 
pertuis. — A côté des équations de Lagrange dont nous venons de 
parler, la Mécanique analytique classique utilise fréquemment les



équations d’Hamillon. Pour écrire les équations d’Hamillon. on 
doit introduire la notion de « variables canoniques ». Si la confi 
guration du système est définie à chaque instant par les valeurs de 
n coordonnées qu ..., qn, on peut définir les « moments de 
Lagrange conjugués de ces coordonnées » par les relations
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(3o) Pt =
,ie_
Wi (7 = 1,2, . . ., n),

£{qi, .... qn- f/i, • . ., q,i, t) élantla fonction de Lagrange du pro 
blème, qui s’obtient à partir de la définition (20) en exprimant T 
et U à l’aide des q, et des <■/,-. Les équations (29) de Lagrange 
prennent alors la forme

{ 31
dpi d£ 
dt t)qi (1 = 1,2, . ■ n).

Avec ces notations, l’énergie du système peut s’écrire

(32.) £.

En effet, U ne dépend pas des vitesses et T est une fonction 
quadratique homogène des ÿ,-, du moins pour les systèmes à liaisons 
indépendantes du temps auxquels nous nous bornons ici. On a 
alors, d’après le théorème d’Euler,

(33)

et, par suite,

dfji

(34) ^Pi'/i— ? = 2T — (T — U) = T -+- U = K.

D’ailleurs, le théorème de la conservation de l’énergie se 
démontre aisément à partir de (32), car on a

(35)
d\:.

dt 'H- -2;
,)£

àq, 9t- ~ôt‘

D’après la définition des pi le premier terme détruit le quatrième 
et d’après les équations de Lagrange le second détruit le troisième.
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XD ne pouvant dépendre explicitement du temps que par U, il 
reste

(36) r/E _ <)\J
7h ~~ Tft

et si les forces extérieures sont constantes ou nulles, E=const. 
La nouvelle définition (3a) de E nous permet d’écrire

( 37 ) J? dt = ^ pt dqi — K dl.
J-mi J

Considérons alors un espace de configuration-temps obtenu en 
adjoignant à l’espace de configuration une dimension représentant 
le temps. Soit P le point de cet espace qui représente l’instant t0 
et l’état du système à cet instant, et soit Q le point qui représente 
l’instant et l’état du système à cet instant t^.

L’intégrale d’action d’Hamillon s’écrit maintenant

Le principe d’action stationnaire affirme, nous l’avons vu, que 
cette intégrale curviligne prise de P à Q le long de la courbe de 
l’espace de configuration-temps qui représente le mouvement réel, 
est stationnaire : on a

Le principe de l’action stationnaire d’Hamilton étant ainsi 
énoncé, on peut passer dans le cas important des champs exté 
rieurs constants ou nuis (qui comprend le cas des systèmes prati 
quement isolés) au principe de moindre action de Maupertuis.

Pour opérer ce passage, il convient de démontrer d’abord une 
formule qui généralise un peu celle d’Hamilton et qui est valable 
dans le cas général. Cette formule est souvent appelée « le prin 
cipe de l’action variée ». Pour la trouver, considérons l’intégrale

d’Hamilton J' C dt et supposons que l’on fasse varier très légère 

ment non seulement le mouvement entre l’état initial et l’état final 
(ou si l’on veut la forme de la courbe qui joint les points P et Q de
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l’espace de configuration-temps), mais aussi les valeurs du temps 
et des coordonnées, qui caractérisent l’état initial et l’état final (ou 
si l’on préfère les points P et Q eux-mêmes). On a alors

■(39) 3^ G dt = j^' SG dt -i- dqt — E 8£~J .

L’intégrale du second membre représente la variation due à la 
variation du mouvement : elle est nulle en vertu du principe 
d’Hamillon. Le crochet du second membre donne la variation d’in 
tégrale d’action due aux variations des valeurs des q-t et du temps 
aux deux extrémités de la ligne d’intégration, c’est-à-dire aux 
déplacements infinitésimaux des points P et Q dans l’espace de 
configuration-temps. On obtient ainsi la formule exprimant le 
principe de Faction variée, savoir

( 4 « )
r

G dt = ^ Pi Sqi— E St

Revenons maintenant à l’espace de configuration sans le temps. 
On peut y considérer l’intégrale

< 4 r > ■r? i>i <i(i i

dite « intégrale d’action de Maupertuis ». Elle est prise du 
point A représentant la configuration initiale au point B repré 
sentant la configuration finale le long de la courbe qui figure le 
mouvement (voir fig. i). Dans le cas où les actions extérieures 
sont constantes ou nulles, l’énergie E du système est une constante 
et l’intégrale S, est indépendante du temps. Si l’on pose

(4 ' ) — S = j" G dt —j^ f 2 P‘ dqi— E dt\ = St — Ç E dt,

(43) —SS = oS,—J- SY.dl — (E8t)J,

d’où, par comparaison avec la formule (4°) de l’action variée,

SS, dt.(44)
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Donc si nous maintenons fixes dans la variation les configurations 
extrêmes (c’est-à-dire les points A et B) et si nous nous astrei 
gnons également dans cette variation àne pas faire varier l’énergie E, 
nous aurons

L’intégrale Si ou action de Maupertuis est donc stationnaire pour 
les variations qui ne modifient ni les configurations extrêmes, ni
l’énergie totale du système. C’est là le « principe de la moindre
action » applicable seulement, rappelons-le, aux systèmes conser 
vatifs.

Dans le cas de N points matériels sans liaisons, lespi en coor 
données rectangulaires sont les composantes des quantités de 
mouvement, et l’on a

N

Arrivons maintenant aux équations d’Hamilton. Elles se pré 
sentent quand on prend comme variables dynamiques non plus 
les qi et les r/',, mais les qt et les pi. Les équations (3o) permettent 
en effet d’exprimer les qi à l’aide des qt et des pi et éventuellement 
du temps sous la forme

(47) = u = i, «i.

L’énergie E doit alors être considérée comme une fonction des irt 
variables canoniques qu ... ,p„ et du temps exprimée par la « fon<> 
tion hamiltonienne »

(48) Hl qhj>t, £(qh qh t),
i

où à droite les q; sont exprimées en fonction des q, des p et de t. 
On a donc

■l<lk

et
<)£ _ <!pk

()<] k dt
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On a donc le système des équations d’Hamilton

rlifk du fiptm _ d\l
dt

. ... .

dpk * dt >)qt

On en tire aisément

d\\ _ ,m Y fà H dpi d\\ r/y A dll 
1 * rit <)t "+"\r)j>i rit "+" ôqi dt ) dt *

d’où encore la conservation de l’énergie quand les actions exté 
rieures sont constantes ou nulles.

5. Théorie de Jacobi. Analogie optique. — On démontre dans 
les traité de Mécanique rationnelle un important théorème dû à 
Jacobi qu’on peut énoncer comme il suit :

« Prenons l’expression hamiltonienne de l’énergie en fonction des 
variables canoniques </,• et p,- et du temps, puis remplaçons-y les pi

par les dérivés — ~ d’une fonction S; enfin posons

( 53 ) dS
dt

Si nous parvenons à trouver une intégrale complète de cette équation 
aux dérivées partielles, c’est-à-dire une solution de cette équation 
dépendant de n constantes arbitraires non additives «1( . . ., aa. 
nous obtiendrons un des mouvements possibles en écrivant

tM ) dS_ d S
àqi ’ rJxi (i — 1, 2, ri3,

où les ui sont n nouvelles constantes.
Les n premières équations nous donneront les moments de 

Lagrange correspondant dans ce mouvement au passage du point 
figuratif au point , ..., q,, de l’espace de configuration. Les 
n équations du second système nous donneront n relations entre 
les <ji et le temps qui détermineront entièrement le mouvement du 
système au cours du temps ».

Sans donner la démonstration de ce théorème, nous voulons en 
montrer la signification. Le mouvement du système dont la confi 

L. DE BROC.LIE. 2
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guration esl caractérisée par les n variables ql} . ... qn obéit aux n 
équations du second ordre de Lagrange ou aux in équations du 
premier ordre d’Hamilton et dépend de ni constantes arbitraires. 
Le théorème de Jacobi pertnet de diviser ces a n constantes 'en deux 
groupes de n constantes, les a; et les (3,-. Si l'on se donne les valeurs 
des constantes «,• du premier groupe, il reste les n constantes (3, 
arbitraires, c’est-à-dire qu’à des valeurs données des a,- corres 
pondent oo" mouvements possibles. Chaque intégrale complète de 
l’équation ( 53 ) de Jacobi, quand on y a fixé les valeurs des n cons 
tantes a,, correspond donc encore à ®“ mouvements différents 
caractérisés chacun par un jeu do valeurs des (3,. Le théorème de 
Jacobi fournit ainsi une manière de classer les divers mouvements 
possibles de façon à les grouper en mouvements correspondants 
associés à une même intégrale particulière de l’équation (53) 
obtenue en particularisant dans l’intégrale complète la valeur des 
constantes a.;.

Dans le cas important où les champs extérieurs ne dépendent 
pas du temps, on peut trouver des intégrales premières delà forme

(55) S = E/ — St Ç gf£- ),

S, ne dépendant plus que des qi et non du temps. L’équation de 
Jacobi prend alors la forme

<»• "('"•S)-1-
Si l’on parvient à trouver une intégrale complète de cette équation 
aux dérivées partielles dépendant de la constante E et de n — i 
autres constantes arbitraires non additives <xL, ..., «„_i, soit 

. . ., qn, E, at, .... a„_.1 ), on obtiendra un des mouvements 
possibles du système en posant

dSi àSi .

Les n — i équations —■ = (3, déterminent la trajectoire du point 

figuratif dans l’espace de configuration et l’équation ^ = t — (0



détermine le mouvement du point figuratif sur sa trajectoire. Il y 
a ainsi séparation entre l’étude de la trajectoire du point figuratif 
et celle de son mouvement, circonstance qui caractérise le cas des 
champs extérieurs constants.

Nous allons maintenant nous borner jusqu’à nouvel ordre au cas 
où il n’y a pas de liaisons. On supposera alors que les qi sont les 
3 N coordonnées . . ., des N points matériels du système. 
Avec un champ extérieur constant (ou nul), on a alors l’équation 
de Jacobi
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(58) MSV /ùS, \ 2 /éS,+ \<)Xi ) ^ \>)Zi + f ('t'i, .... £.\) = E.

Il va nous être commode de remplacer ici l’espace de configu 
ration par un « espace de configuration pondéré » défini à l’aide 
des 3N variables

(5g) «f= \mijCi, vi=\,-miyi, w>t = \ mtzt ( i = i, a, .. ., N).

On a alors

( fia ) dS_i
l)U[

m- àS
, (hv:)’] U (Mi, Vt, Wi) = E.

ÙS,
àqi

: pi deviennent^! — , .... La vitesse du
ritLes équations

point figuratif dans l’espace de configuration pondéré est donc 
dirigée suivant la normale à la surface S, = const. passant au point 
qu’il occupe. Si donc on trace l’ensemble des surfaces St= const. 
correspondant à des valeurs fixes des constantes E, a1; . . ., otn_, 
et l’ensemble des trajectoires correspondantes dans l’espace de 
configuration pondéré, on voit que ces surfaces et ces courbes sont 
disposées comme les surfaces d’ondes et les rayons dans une pro 
pagation d’ondes de l’optique géométrique. Le principe de la 
moindre action de Maupertuis (qui est ici valable) correspond 
exactement au principe de Fermât. Il y a là une analogie entre la 
dynamique classique et l’optique géométrique qui avait été aperçue, 
il y a un siècle, par Hamilton et que nous devons maintenant 
étudier.

Une propagation d’ondes dans l’espace des w,-, c;, wt est par
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définition déterminée par l’équation de propagation

(tu) i
(hi'j <)v'f <)w-

Y„ peut être appelée la « vitesse de propagation », elle est variable 
d’un point à un autre, mais indépendante du temps. 11 faut d’ail 
leurs remarquer qu’en raison de la définition des r,-, V„ n’a 
pas les dimensions physiques d’une vitesse. On obtiendra des 
ondes monochromatiques en posant

(G->.) U’(«i, r,-, wt-, /) = «(«/, (>i, w’i) e?“

L’optique géométrique de cette propagation d’ondes s’obtient en 
supposant que la fonction a varie assez lentement dans l’espace 
des UiViWi, pour qu’on puisse négliger les dérivées de a devant 
celles de cp4 et les dérivées secondes de cpi devant ses dérivées pre 
mières. En substituant la forme (6a) de l’onde monochromatique 
dans l’équation (6i ), on obtient aisément alors

(63)
II

en désignant par la longueur d’onde locale dans l’espace de con 
figuration pondéré, longueur d’onde qui d’ailleurs n’a pas ici les 
dimensions physiques d’une longueur. L’équation (63) est l’équa 
tion de l’optique géométrique dans l’espace de configuration pon 
déré, et l’on peut montrer qu’elle est valable chaque fois que V 
varie assez lentement dans l’espace des Une intégrale com 
plète de l’équation (63 ), c’est-à-dire une solution de cette équation 
dépendant de la constante v et de —i autres constantes arbi 
traires non additives, . . ., w„, v, alt . . ., x„ ) déterminera
une propagation d’ondes (à l’approximation de l’optique géomé 
trique) dans l’espace de configuration pondéré. Les surfaces 
cpi = const. sont les surfaces d’ondes de cette propagation et leurs 
courbes orthogonales en sont les rayons. Ces rayons sont déter 
minés par le principe de Fermât
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Pour assimiler la Dynamique des systèmes représentée dans 
l’espace des <v; à une optique géométrique, il faut comparer
l’équation (63) à l’équation (60) de Jacobi. On voit que pour 
identifier ces deux équations, il suffit de poser

<Gâ) S, = À-ç,, ~ =a(K- U).
* a '■ fi

k étant une constante actuellement indéterminée. Si nous dési 
gnons par 9 la phase vt — ©i de l’onde (6a), comme nous avons 
S = E< — Si, il est naturel, ayant posé la première équation (65), 
de poser plus généralement

(GG) S = h, d’où li = k'i.

On a alors, d’après la seconde équation (65),

équation qui établit une relation entre V„ et U en chaque point de 
l’espace des a,, e,, «>,. En prenant comme espace de référence 
l’espace de configuration pondéré avec U = o, on peut caractériser 
chaque champ de force par un indice de réfraction

<08 )
(Vu)t,^„ v/2(li-U)

V „ ( Li ) K '-Ë*

qui sera en général variable d’un point à un autre de l’espace u, 
v, (v. La longueur d’onde sera

(<’9)
k

Les surfaces Si^const. sont les surfaces d’ondé de cette 
propagation. Les rayons, courbes orthogonales de ces surfaces, 
représentent les trajectoires possibles du point figuratif corres 
pondant à l’intégrale complète considérée S, de l’équation de 
Jacobi. La forme de ces rayons est donnée par le principe 
de Fermât qui nous apprend que le rayon passant par deux 
points A et B de l’espace des u, t>, w est tel que l’intégrale

f soit stationnaire pour toute variation infiniment petite de la
■J \ ’ a
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forme du rayon respectant la fixité des points A et B et la valeur 
de la fréquence v. Or, on a

Or, v étant fixe, E l’est aussi et si nous désignons par e la 
vitesse du point figuratif dans l’espace de configuration pondéré,.

i >on aura = const. e et par suite

S'i di’i -f-

-, B
=J ^ m[(£i dxi -+- Xi t/y i -+- zt t/z-i).

Le principe de Fermât est donc équivalent au principe de 

Maupertuis ô / rfS( = o.

Nous terminerons l’élude de cette analogie dynamico-optique 
par la considération des groupes d’ondes et de la vitesse de groupe. 
Nous pouvons considérer dans l’espace des u, e, iv un groupe 
d'ondes formé par la superposition d’ondes monochromatiques 
correspondant à un très petit intervalle de fréquence Av, soit

(72) T(w/, xh wr, t) ti('t) '■H th.

Soit v0 la fréquence qui occupe le milieu de l’intervalle Av. Nous 
pouvons écrire

^ Av
(73) W= f <i(y) e“--<Vy»+e}i-?/y«+s,~-! di.

'' Av

Or, dans tout l’intervalle très petit Av, on peut poser

/ , , s / >h 1r 1 ( v(i £ ) — r( vo ) '
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D’OÙ

(7-1) T : = / ’ 

J Av
a(î)e ch. T>iv

On peut donc considérer le groupe d’ondes comme une onde 
monochromatique de fréquence v„ dont l’amplitude ne serait pas 
constante, mais serait donnée à chaque instant et à chaque point 
par l’intégrale de la dernière formule. Or cette intégrale définie

est évidemment une certaine fonction de la variable t—

qui dépend du temps et des variables w/tqwq contenues dans o,-. 
Désignons par dl une longueur infinitésimale prise le long d’un 
des rayons de l’onde monochromatique de fréquence v0. En nous 
déplaçant le long de ce rayon de la longueur dl dans le temps dt, 
nous suivrons une valeur déterminée de l’amplitude du groupe 
d’ondes si nous avons la relation

<7;0 rit = à2 9 
à'/ àl

,/L

c’est-à-dire si nous nous déplaçons avec une vitesse V telle que

(7O) 1
V àvàl

C’est la célèbre formule de lord Rayleigh donnant la «vitesse du 
groupe ». Maintenant, l’équation (63) de l’optique géométrique 
nous donne, puisque l’élément dl du rayon est orthogonal à la 
surface 91 = const.,
/-I Ùi - —.
('jj) àl ~ v„
Donc par(76)et(67)

(78) V = U (v7,)]v=v0= [dE (y :)]e =/1v q= _v/v (E-U)_ e =/,v 0‘

Pour l’énergie E = kv0 correspond à la fréquence centrale du

groupe, la quantité y/2(E— U) est égale à y/2Ï = je|, v étant 
la vitesse du point figuratif dans l’espace u, e, w correspondant à 
l’énergie kv0. On a donc

(79)
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D’où le théorème: « La vitesse du groupe d’ondes dans l’espace de 
configuration pondéré est égale à la vitesse du point figuratif 
correspondant à fonde centrale du groupe d’ondes. »

6. Extension de l’analogie optique au cas où il existe des liaisons.
— Nous avons développé l’analogie optique dans le cas où les 
points matériels du système ne sont soumis à aucune liaison. Étu 
dions maintenant le cas plus général des liaisons holonomes 
indépendantes du temps en développant des formules qui con 
tiennent comme cas particulier celui étudié directement plus haut 
de l’absence de liaisons.

Nous savons que, si la configuration d’un système à liaisons 
holonomes, indépendantes du temps, est entièrement définie par n 
variables qi. l’énergie cinétique est une fonction homogène
du second degré des vitesses q. On a donc

(80)

n

T=y Hlkl'jk <j h

où l’on suppose (ce qui est toujours possible ) mn/= mn;. Les m 
sont des fonctions des q, seulement et non des q,. On trouve

(81)

n

k 'il—

E = \ ^ "‘t/'/t- '//-+- ('•

Par la définition des moments de Lagrange, nous avons

(82) p,= = 2âkmkilik (, = I> •••> «'•
1

Désignons par JTt le déterminant des m^i que nous supposerons 
différent de zéro et par Mw le mineur de ce déterminant relatif à

'-résoudre les équations (8a) parl’élément, /n/,7. Nous pouvons 
rapport aux q sous la forme

. v M
'"=A5ÏT Pk(8'J) = ..., n )
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ou en introduisant la notation

(8i) mki — M/2
Jtl ’

( 85 ) mil/im 

portons cette expression des y, dans l’expression de T. Nous obte 
nons, en tenant compte de propriétés bien connues des détermi 
nants,

(8<>) T= 1 ^ mm/mk"pn mh p,- =- ^ mlr]>i/>r.

klnr Ir

La fonction hamiltonienne du système donnant son énergie en 
fonction des p; et des y,- est donc

(87) H(qh ph 0= ’ '^,mlrp/pr-¥- U(y,-, t),

li-

Ot l’équation de Jacobi prend ici la forme

(88)
àS
àt

m,r àS
àq!

à S Ui q, ) = E.

Si les actions extérieures sont indépendantes du temps, on peut 
employer l’équation de Jacobi raccourcie

(89.)
1 ^1 (.ÙS, ïr „- > /»/'-— -t- L (y,) = E.
2 ^ t)(l' àq'àq1 àq'

Si maintenant dans ce cas général nous voulons assimiler la théorie 
de Jacobi à une théorie de propagation d’ondes, il nous faut former 
un espace de configuration avec les n variables yt, . . ., q„. mais 
de plus il faut attribuer à cet espace une métrique riemannienne

définie par un ds2 de la forme ^g;j dq, dqj. Cette métrique doit
à

être choisie en relation avec la forme de l’expression de T en 
fonction des y, c’est-à-dire définie à l’aide des De plus, dans 
le cas de l’absence de liaison où les q-, sont les 3 n coordonnées 
des N points matériels du système, on doit retomber sur l’espace 
de configuration pondéré avec sa métrique euclidienne. On y
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parvient aisément en posant

n

(90) ds- = nij/dq, <!q j,

de sorte que l’on a pour un mouvement donné du point figuratif

(91)
fis
fit

T-

La vitesse v du point figuratif dans notre espace de configuration 

doué de la métrique (90) est égale à \! 1 T. résultat déjà rencontré 
dans le cas particulier traité au paragraphe précédent.

Il est bien connu que dans un espace dont l’élément métrique 
est

f/s*- = 'y.giidqidqj,

l’élément de volume correspondant aux variations dqt, . . ., dqn 
des coordonnées est

( ()2> rh = v ff \rlq\ ... clq„,

g étant le déterminant des gjj. Dans notre espace de configuration 
nous aurons donc

( ()3) d~ = ^[JÏT! dq\... dq„ ( .311 = ! m,j \ ).

Pour étudier la propagation d’une onde dans l'espace de configu 
ration que nous avons défini, il faut connaître la forme du Laplacien 
dans un espace riemannien où le ds3 a la forme (90). Ce Laplacien 
est le suivant

Je ne donnerai pas la démonstration de cette formule qui se trouve 
dans tous les livres sur le Calcul tensoriel ('). L’équation des

(!) Nous donnerons plus loin incidemment une justification de cette formule. 
Voir note p. 4-3.
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(IP) L
Vi àt- ! OM I àqt

où V est la vitesse de propagation, fonction du point considéré de 
l’espace de configuration et éventuellement du temps. Si nous 
considérons toujours le cas des champs extérieurs constants, l’ana 
logue ondulatoire sera le cas où V est indépendant du temps et 
l’équation de propagation admettra des solutions monochroma 
tiques de la forme

(<J(3) 'r(<7i, t) = «( 2; ?,!?;)]= a(grt)eww?i*f.'i.

Lorsque V ne varie pas trop rapidement dans l’espace de confi 
guration, on pourra considérer a comme sensiblement constant et

négliger les devant les (approximation de l’optique géomé-

trique). Nous supposerons aussi ici que les ^ sont beaucoup plus

grands que les àmn 
àqi ’ c’est-à-dire que la phase de l’onde varie beau 

coup plus rapidement que les éléments de la métrique. On 
obtiendra dans ces conditions, en substituant (96) dans (90), 
l’équation de l’optique géométrique

(97) iL.à’ji ù?i 
àqj àqk

v-

Si l’on parvient alors à trouver une intégrale complète de cette 
équation dépendant de la constante v et de n— 1 autres constantes 
non additives arbitraires, on aura défini une propagation d’ondes 
à l’approximation de l’optique géométrique dans l’espace de confi 
guration. Les rayons de cette propagation d’ondes sont par défini 
tion les courbes orthogonales de surfaces 91= const. Ces rayons 
seront déterminés par le principe de Fermât suivant lequel le

r\h
rayon passant par les points A et B est tel que l’intégrale J

prise le long du rayon soit stationnaire pour toute variation de la 
forme du rayon qui n’alfecle ni la valeur de la fréquence v, ni la 
position des points extrêmes A et B.

Comparons maintenant ces propagations d’ondes avec les mou 
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vements possibles du système groupés suivant la théorie de Jacobi. 
i\ous avons trouvé, en supposant U et H indépendants du temps,

(98) H (<?,-, Pt) mik pLpii -t- ü(y;)
ik

et nous en avons tiré l'équation de jacobi

, . ■; dSi àSi
(99) — = 2(L — II).

— àqt dqkik

Pour identifier cette équation avec l’équation (97)1 nous poserons

(100) S = A-?, S, = A91, E = A'/, ^ ^ =2(E-U),

le étant la même constante que précédemment (page 66). Il vient 
encore

(loi) ~ V/2(E— U),
E

A
V 21E — li ) ’

Si correspond donc à une propagation d’ondes dans l’espace de 
configuration. Les surfaces Si=const. sont les surfaces d’onde : 
les rayons sont les courbes orthogonales.

Nous voulons montrer que ces rayons coïncident avec les tra 
jectoires du point figuratif. Les composantes (contrevariantes) 
d’un petit élément de trajectoire en un point de l’espace de confi 
guration sont évidemment proportionnelles aux valeurs des y’,: en 
ce point. Il nous faut donc montrer que le vecteur dont les com 

posantes sont est orthogonal à la surface Si = const.
k

Or, dans l’espace où le ds- a la forme (90), deux vecteurs, dont les 
composantes (contrevariantes) sont ai, . . ., a,M a,, . . ., a'n, sont 
orthogonaux quand on a

(102) V
—! niikctici'i- = o.

Prenons pour vecteur ai, .... a,t un vecteur de longueur infini 
tésimale sur la surface Si = const. passant au point considéré et 
pour vecteur a' le vecteur de composantes dk = y*. Nous voulons
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démontrer la relation

03) ^ mik «, y k = ^ mik at V mki pj — 0.

ik ik /

Mais, d’après leur définition, les m obéissent à la relation

(mi) ^ mik mki = 3,y,

k

§ij étant le symbole bien connu de Kronecker égal à i si i—j et 
à o s i j ■

La formule (io3) à démontrer se réduit donc à

(io3) aiPi-
V dS, 

z2jdqi '

Elle est évidemment vérifiée d’après la définition des a,. Les 
trajectoires du point figuratif dans l’espace de configuration 
coïncident donc bien avec les rayons de la propagation d’ondes 
associée.

C11 dsLe principe de Fermât oj iranscrit en notation dynamique, 

donne en vertu de (101) et de (oi)

(106) 3 f \/2(E - -U) ds = 3 f 2 T dl = < 1.

On obtient ainsi une forme bien connue du principe de Maupertuis 
et l’on peut écrire aussi

(107) ^Pk dqk=o. 

k

Reste encore à étudier la question de la vitesse de groupe. Elle 
est toujours définie par la formule (76), où v0 est la fréquence

centrale du groupe. Comme les sont les composantes covariantes

de grad&1:=^, l’équation de l’optique géométrique (97) peut 

s’écrire

(108) -X' — 1
,n ~~ v ’
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et l’on a

_ <)E V V E— /,•/„

I

V li0 — U )

i

T„ étant l’énergie cinétique correspondant à l’onde centrale du 
groupe. Or la formule (80) montre que 2 T est le carré du vecteur 
dont les composantes contrevariantes sont les (ji, c’esl-à-dire du 
vecteur « vitesse » du point figuratif dans l’espace de configuration.

Si v désigne cette vitesse, on a donc finalement 

(110) ■ V = v/27ï\i=|c'|-

Nous retrouvons bien ainsi le théorème : « La vitesse de groupe 
d’un groupe d’ondes dans l’espace de configuration avec la 
métrique (90) est égale à la vitesse du point figuratif dans le mou 
vement correspondant à l’onde centrale du groupe ».



CHAPITRE IL
LA MÉCANIQUE ONDULATOIRE.

1. Passage de la Mécanique classique à la Mécanique ondula 
toire. — Les considérations développées à la fin du chapitre 
précédent nous mettent à même d’opérer rapidement le passage de 
la Mécanique classique à la Mécanique ondulatoire. On peut en 
effet passer de la Mécanique classique des systèmes de points 
matériels à la Mécanique ondulatoire des ensembles de corpuscules 
en introduisant simplement les deux hypothèses suivantes :

i11 La constante k que nous avons introduite précédemment 
sans en préciser la valeur doit être prise égale à la constante h des 
quanta de Planck.

2° On doit prendre comme base rigoureuse de la Mécanique 
des ensembles de corpuscules une équation de propagation dans 
l’espace de configuration qui admette l’équation classique de 
Jacobi comme équation approximative de l’optique géométrique, 
de telle sorte que, si pour cette propagation dans l’espace de con 
figuration les conditions d’application de l’optique géométrique 
sont satisfaites, on rejoigne la Mécanique classique.

Nous ne reprendrons pas ici en détail toutes les raisons qui ont 
conduit à introduire ces hypothèses ( 1 ). Pour justifier la première, 
nous nous bornerons à remarquer qu’elle conduit à remplacer la 
relation E = kv précédemment posée par la relation

( i ) E = hv, (*)

(*) Sur ce point, on pourra consulter le livre de l’auteur, Introduction à 
Vétude de la Mécanique ondulatoire, Paris, Hermann, 1930.
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qui exprime la liaison fondamentale de la théorie des quanta entre 
l’énergie et la fréquence. La seconde hypothèse appelle quelques 
remarques. Il semblerait naturel, en s’inspirant des dévelop 
pements que nous avons faits au cours du chapitre précédent, de 
prendre comme base de la nouvelle Mécanique une équation de 
propagation qui soit à la fois du second ordre par rapport aux 
variables de configuration et par rapport au temps. Mais un 
examen plus approfondi de la question montre qu’une équation du 
second ordre ne peut convenir que dans une théorie relativisle, et 
comme dans ce volume nous voulons développer la Mécanique 
ondulatoire en dehors des considérations de relativité, c’est-à-dire 
en nous en tenant à l’approximation Newtonienne valable pour les 
vitesses faibles par rapport à celle de la lumière, nous admettrons 
que l’équation doit être du premier ordre par rapport au temps 
tout en étant du second ordre par rapport aux variables de confi 
guration. Ceci est d’ailleurs nécessaire si l’on admet, comme nous 
serons amenés à le faire, que la seule donnée de la forme de l’onde T 
à un instant initial doit suffire à déterminer toute l’évolution 
ultérieure de la fonction d’ordre M".

Ces diverses hypothèses étant admises, nous allons maintenant 
étudier la forme générale de l’équation de propagation de la Méca 
nique ondulatoire sans insister sur les raisons qui ont peu à peu 
amené à adopter cette forme.

2. Équation fondamentale de la Mécanique ondulatoire. — Soit 
un système de corpuscules à liaisons holonomes indépendantes du 
temps dont la configuration peut être définie du point de vue 
classique par la donnée de n variables ql, . . ., qn et dont l’énergie 
cinétique définie classiquement a pour expression

(2) 2 T
ik

l’équation de propagation de la Mécanique ondulatoire dans l’es 
pace de configuration où la métrique est définie par

(3 ) /7s'1 - mu; dqi dqu = a T dil,
ik
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doit s’écrire

'O -1 - V —
' ' ^<)(n11 1 ! :

V’ [ JTi j ni1
J>F
à<]k

8-- 4 T‘ i JlF—^b{qh tyI

où U(cji, t) est l’énergie potentielle du système. Le premier terme 
de cette équation est, nous le savons déjà, l’expression du 
Laplacien de VL dans l’espace de conliguralion.

Pour que l’équation (4) soit acceptable, il faut qu’elle nous 
redonne l’équation de Jacohi pour la phase o d’une onde de la 
forme *L = ae-”? dont l’amplitude a peut être considérée comme 
très lentement variable par rapport aux variations de o et où les 
dérivées secondes de o sont négligeables devant les dérivées 
premières (hypothèses de l’optique géométrique), hypothèses que 
nous compléterons comme précédemment en supposant que les 
variations des mu- sont, elles aussi, faibles par rapport à celles de cp. 
On obtient alors aisément par substitution dans (4) l’équation 
approximative

(5) 2 J?
àqk

Y
11

i Jç
h. 7)1

En multipliant par h- et en posant S = h cp, on retrouve l’équation 
de Jacobi

(6)
V1 i -, JS JS JS> - m<!' ------ :------h U = -T- •

a r)qt àqk àt

Dans le cas très important des champs extérieurs indépendants du 
temps, on peut considérer les solutions monochromatiques

(7) 'F = a(qi) ïilVi'l.

L’équation de propagation s’écrit alors

(8)
1

v'pîô 2 J_
7)<ji V'I J1I I mit!

àqk
3-:
~lë- (E — u) >r = o.

C’est en particulier l’équation de propagation des systèmes isolés. 
Il est d’ailleurs facile de vérifier en tenant compte de (7) que 
l’équation (8) est équivalente aux équations (90) et (101) du cha 
pitre précédent. Si l’approximation de l’optique géométrique 
définie plus haut est valable, l’équation (8) conduit à l’équation
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de l’optique géométrique

(9)

ou, en posant S4 = ho,,

(io)

on retrouve donc bien l’équation de Jacobi. L’équation (8) est 
donc acceptable et sa validité a été prouvée par l’ensemble très 
considérable de ses vérifications.

Remarquons ici qu’en passant de l’équation rigoureuse de pro 
pagation à l’équation approximative de l’optique géométrique, les 
termes que nous avons négligés sont des termes indépendants de A

ou contenant i en facteur, les termes conservés étant en • Il en 
h ti 

ré suite que l’équation (5) de l’optique géométrique Unirait 
toujours par devenir valable, si h tendait vers zéro. Autrement dit 
si h était infiniment petit, l’approximation représentée par la 
Mécanique classique serait toujours suffisante. C’est la valeur 
finie de la constante h de Planck qui limite le champ d’application 
de la Mécanique classique et oblige à employer la Mécanique 
ondulatoire chaque fois que la valeur de h ne peut pas être consi 
dérée comme infiniment petite par rapport aux grandeurs mises 
enjeu. Comme la constante h a une valeur extrêmement petite par 
rapport aux unités à notre échelle (elle vaut en effet G, 55. io~-7 erg- 
seconde), c’est seulement aux très petites échelles de l’ordre 
atomique que la Mécanique classique cesse de représenter une 
bonne approximation.

Voyons maintenant quelle forme prend l’équation de propa 
gation (4) pour un système formé de N corpuscules non soumis à 
des liaisons. On peut alors prendre pour variables'de configura 
tion qi les 3N coordonnées des N corpuscules du système. 
L’énergie cinétique a alors pour expression classique

x
(•O

«
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(12
j /»//= o pour k ■- /.

( - - ' i i — " i—1 ", / —i - i " ! — I) 2) ...,ÎV).

Le ds- de l’espace de configuration a la forme suivante

N
( 13 ) ds- = ^ m/( dx] + dy\ -+- dzf ).

i

On peut lui donner la forme euclidienne

(O) ds- = ( du] -+- ddj -+- dwf )

en posant
(i 5 ) Ui = \JniiXi, vi=\;miyi, . «7 =

Nous retrouvons ainsi l’espace de configuration pondéré précé 
demment employé. D’autre part on trouve aisément

(i(i
.011 = | nu II

//#."f—1.:t î_—1 = tn-j

mkl = o

I
nii

]>our k l\

(1 = 1,2, .. N).

L’équation (4) de propagation s’écrit donc explicitement, dans 
ce cas,

(D) dxf
d-

àÿf
8 7c-ir _ ' uw =
n'*

4 f r.l'F 
h ât

Elle admet comme équation de l’optique géométrique l’équation 
de Jacobi

x

1

À partir de ces équations on retrouverait aisément à l’approxi 
mation de l’optique géométrique la relation entre les intégrales 
complètes de l’équation de Jacobi et les surfaces d’onde, entre les 
trajectoires dynamiques et les rayons, entre le principe de
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Maupertuis et le principe de Fermât, etc., ainsi que le théorème 
sur l’égalité entre la vitesse de groupe des ondes *F et la vitesse 
corpusculaire.

3. Procédé automatique pour former l’équation d’ondes. Cas des 
corpuscules indépendants. — Nous nous bornerons maintenant au 
cas des systèmes sans liaisons. Il existe alors une manière auto 
matique simple d’obtenir l’équation de propagation de la Méca 
nique ondulatoire pour un problème donné. Elle consiste à écrire 
d’abord l’expression hamiltonienne classique de l’énergie pour 
ce problème, soit

(iy) E = H(?i,0 + Oj

puis à y remplacer les px , pr., p:. par les opérateurs

(20) (Pxi)op1
h

•2 r.i àxi > (Pïi)op --  "
h _J_ 

2 xi, àyt (P-Xp = -
_à_

ÔZ-i

On obtient ainsi un « opérareur hamiltonien » II dL., t

et l’on forme l’équation de propagation en écrivant simplement

(21) H(>I-) h (FP 
2 xi àt ’

H(W) désignant le résultat de l’opération II appliquée à la fonc 
tion 'F. La forme de l’équation (21) paraît d’ailleurs assez naturelle, 
car la théorie de la Relativité nous a habitués à considérer 
l’énergie E comme reliée au temps t de la même façon que 
lespx., etpz. sont reliées aux coordonnées xmais avec 
une différence de signe. 11 est donc naturel de compléter (20) en 
posant

(22)
h à 

2 r.i ôd

et l’équation classique E = H nous conduit alors tout de suite 
à (21). Néanmoins, ce genre de raisonnement ne doit être manié 
qu’avec prudence dans les théories quantiques pour des raisons 
sur lesquelles nous n’insisterons pas ici (caractère privilégié du 
temps dans les théories quantiques).
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Remarquons en passant que, pour former l’équation de Jacobi 
en Mécanique classique, on part aussi de l’expression hamilton-

nienne de l’énergie et l’on y remplace les par les — i

— et E par L’équation de propagation de la

Mécanique ondulatoire s’obtient par une autre opération effectuée 
sur la même expression.

Il est facile de vérifier qu’en écrivant explicitement l’équa 
tion (21) en se servant de (19) et de (20), on retombe bien sur 
l’équation (17).

Mais il faut bien noter que le procédé automatique qui fournit 
ainsi l’équation de propagation, exacte dans le cas où les qi sont 
les üN coordonnées rectangulaires d’un système de N corpuscules, 
donnerait un résultat inexact si on l’appliquait brutalement pour 
des r/,; quelconques et notamment pour les systèmes assujettis à 
dos liaisons. En ce cas, en effet, la fonction hamiltonienne a la 
forme (87) du Chapitre I et, en appliquant brutalement le procédé 
automatique indiqué plus haut, on obtiendrait l’équation

(23) <P 'P
à(Ji')qk

4t u  
h Ot

laquelle en général diffère de (4) parce que m et les mlk sont en 
général fonctions des <7;.

Comme exemple d’application des formes précédentes, on peut 
prendre le cas, évidemment très particulier, d’un système con 
tenant un seul corpuscule non soumis à des liaisons. En prenant 
pour qi les trois coordonnées du corpuscule, on trouve l’équation 
de propagation

(24) -AU(X, y, z - t)lF = ip -J-,
ni h- ' ' h <Jt

qui est l’équation bien connue de la Mécanique ondulatoire du 
corpuscule unique dans un champ donné. On peut d’ailleurs 
vérifier sur ce cas particulier que l’application du procédé auto 
matique pour la formation de l’équation des ondes donnerait un 
résultat inexact si l’on employait des coordonnées sphériques r, 9, 
9 au lieu de coordonnées rectangulaires pour repérer le corpus-
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cule. On trouverait alors, en effet,

i / à- 'F i d- 'F i à-*F
m \ àr- r- dü2 ;--sin-0 d<?- n

h-i
h dt ’

équation qui diffère de l’équation exacte parce que la parenthèse 
n’est pas égale au Aff’ en coordonnées sphériques •: il y manque

2 , cote dlI' r ... ' , ,
un terme r et un terme —— • Le vrai principe pour la for 

mation de l’équation de propagation, c’est donc que les coordon 
nées d’espace doivent y figurer dans l’opérateur laplacien. Il se 
trouve qu’en coordonnées rectangulaires le procédé automatique 
qui a été indiqué donne bien le Laplacien, mais il n’en est pas 
de même en coordonnées curvilignes quelconques.

Nous allons maintenant considérer un système formé de N 
corpuscules non soumis à des liaisons et de plus sans interactions. 
Ces corpuscules peuvent d’ailleurs être soumis à des champs 
extérieurs (que nous supposons toujours dériver d’un potentiel). 
Soit ‘Vi{xiyri z-i, t) l’énergie potentielle du flerac corpuscule. On 
peut alors évidemment considérer chacun des N corpuscules 
isolément, puisque l’absence d’interactions fait que ces corpuscules 
s’ignorent mutuellement. On a donc N équations de propagation 
individuelles du type (a4)

(26)
IHt

■ A, >F, 8 712 
h- V,W,

4 ~ i o>iF, 
h ât [<F/= 'Fi(xi, yh zt \ t)],

où A; est le Laplacien des coordonnées du fll;mu corpuscule. Mais 
il est non moins évident que l’on peut aussi considérer les N cor 
puscules comme formant un système et écrire pour ce système 
l’équation de propagation

(27)

A

1

X

1

«MF
~iH ’

où*F(.ri, t) est la fonction d’ondes du système.
Ceci étant, nous pouvons énoncer le théorème suivant : Si 

ff’i, . . ., ff"). sont des solutions des équations d’ondes indivi-
X

duelles (26) des N corpuscules, leur produit = 11 'F, est solu-
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tion de Véquation (27) du système. L’exactitude de ce théorème 
se vérifie immédiatement.

Nous rappellerons bientôt qu’une équation du type (26) admet 
une série de « fonctions propres » WJ11..., WJ''1 ..., telle que 
toute fonction continue uniforme et de carré sommable des 
variables x,-yiS; soit développable suivant les W/1 par une

formule du type 'F; = '^a,Autrement dit les TFP forment un
r

système complet de fonctions de base pour les fonctions d exifiZj. 
Tl en résulte facilement que la fonction TF du système [solution de 
l’équation (27)] qui doit, nous le verrons, être continue, uniforme 
et de carré sommable, peut se développer sous la forme

bis) ’l‘ = 2
'■i

de sorte que toute solution de l’équation (27) du système est
N

formée par une somme de fonctions du type n Wp1, c’est-à-dire
i

par une somme de solutions du type considéré plus haut. On 
peut donc ramener la solution de l’équation (27) du système à 
celles des équations individuelles (26) des N corpuscules puisque, 
connaissant tous les Wp’, on a comme solution générale de (27) 
la forme (27 bis), les a étant des constantes arbitraires.

Néanmoins, il serait tout à fait inexact de dire que toute solution 
de l’équation (27) du système est le produit de fonctions d’ondes 
individuelles des N corpuscules, car la solution générale (27 bis) 
est une somme de tels produits qui ne se réduit pas, en général, à 
un seul de ces produits. Il y a là un point important sur lequel 
nous aurons à revenir un peu plus loin quand nous aurons intro 
duit l’interprétation probabiliste de la Mécanique ondulatoire.

i. L’interprétation physique de la nouvelle Mécanique. — Pré 
cisons à nouveau comment la Mécanique ondulatoire se raccorde 
avec la Mécanique classique. Reprenons le cas général d’un sys 
tème avec interactions et liaisons. Nous savons que la vitesse de 
groupe de l’onde lF est égale, quand l’approximation de l’optique 
géométrique est valable, à la vitesse du point figuratif dans



4o CHAPITRE II.

l’espace de configuration défini classiquement. Nous pouvons 
considérer dans l’espace de configuration un groupe d’ondes fi' de 
très petites dimensions. Un tel groupe d’ondes devra cependant 
toujours avoir des dimensions grandes par rapport à la longueur 
d’onde centrale du groupe, de façon cjue les ondes du groupe 
puissent se détruire par interférences aux limites du domaine qu’il 
occupe. Mais pour les corpuscules de la Physique atomique, les 
longueurs d’onde se trouvent être toujours très petites par rapport 
à ce que nous pouvons directement mesurer : elles sont infiniment 
petites pour l’échelle macroscopique. 11 en résulte que, pour 
représenter les phénomènes macroscopiques, on pourra supposer 
les groupes d’ondes pratiquement ponctuels dans l’espace de con 
figuration. Pour l’étude macroscopique d’un système de corpus 
cules, il sera donc permis de considérer dans l’espace de configu 
ration un groupe d’ondes quasi ponctuel se déplaçant avec la 
vitesse de groupe. Mais comme la vitesse du groupe est égale à la 
vitesse classique du point figuratif, la représentation donnée dans 
ce cas par la Mécanique ondulatoire se confond pratiquement avec 
celle de la Mécanique classique.

Naturellement, il en est tout différemment pour les phénomènes 
microscopiques atomiques : on ne peut plus y considérer les lon 
gueurs d’onde comme infiniment petites, ni les groupes d’ondes 
comme ponctuels et, là où la Mécanique classique nous montrait un 
point figuratif bien localisé dans l’espace de configuration, la 
Mécanique ondulatoire nous montre un groupe d’ondes étendu et 
de dimensions finies dans cet espace. Ici donc les deux Méca 
niques divergent et c’est la Mécanique ondulatoire qui doit être 
considérée comme exacte. Mais quels renseignements nous fournit- 
elle sur l’évolution dynamique du système? C’est ce que nous 
devons examiner.

Nous avons obtenu une équation générale de propagation pour 
un système de corpuscules. Nous supposons que des observations 
ou des mesures nous aient permis d’attribuer une certaine forme à 
l’onde fi7 du système à un certain instant initial soit 
fi1'(g,, . . ., gN, t0) cette forme. L’équation de propagation étant du 
premier ordre par rapport au temps nous donne alors toute l’évo 
lution de la fonction fir à partir de l’instant t0, c’est-à-dire que si 
nous savons l’intégrer, nous pouvons obtenir fi^g,, . . ., gN., t). Il
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s’agit de savoir ce que nous pouvons tirer de la connaissance de 
cette fonction. Le développement de la Mécanique ondulatoire a 
montré qu’on no pouvait pas espérer tirer de cette connaissance une 
description de la structure des corpuscules ou du système, mais 
seulement une représentation statistique du résultat des mesures 
faites sur un système. Nous allons aborder l’étude de cette inter 
prétation de la Mécanique ondulatoire en énonçant deux grands 
principes qui nous seront constamment utiles : le principe de 
localisation (ou des interférences) et le principe de décomposition 
spectrale (ou principe de Born).

o. Principe de localisation (ou des interférences). — En 
Mécanique ondulatoire, on ne peut plus localiser en général les 
corpuscules d’une façon exacte. On ne peut plus dire : tel corpus 
cule occupe telle position à tel instant. On peut dire seulement : 
si l’on fait une observation pour déterminer la position d’un cor 
puscule, il y a telle probabilité qu’on le trouve dans tel élément de 
volume dz. Dans le cas d’un corpuscule unique de fonction 
d’onde '(x, y, z, t), la probabilité de trouver le corpuscule dans 
l’élément de volume dx dy dz est d’après la Mécanique ondula 
toire (* ), égale à j H’ j- dx dy dz. Dans le cas des systèmes de cor 
puscules, tandis qu’en Mécanique classique on peut attribuer à 
chaque instant une configuration bien déterminée au système et 
par suite représenter cette configuration par un point figuratif bien 
défini dans l’espace de configuration, en Mécanique ondulatoire 
il en est tout autrement : la position des corpuscules n’étant en 
général plus bien déterminée, il y a une incertitude sur la position 
exacte du point figuratif, incertitude qui est symbolisée par 
l’extension finie de l’onde 'I;. On doit donc pouvoir définir une 
probabilité pour qu’une observation permette de localiser le point 
figuratif dans un élément de volume dz de l’espace de configura 
tion, et naturellement dans le cas où le système est formé d’un seul 
corpuscule, cette probabilité doit se réduire à |1F|- dx dy dz.

Pour trouver la probabilité de localisation du point figuratif qui 
puisse convenir, nous devons nous souvenir que la probabilité

il

f1) Voir, par exemple, L. d e Br o g l ie , Introduction à U étude de la Mécanique 
ondulatoire. Hermann, Paris, 1930, Chap. VIII.
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totale d’une position quelconque de ce point figuratif dans l’espace 
de configuration doit toujours être et rester égale à l’unité. Si 
donc p dv désigne la probabilité de présence du point figuratif 
dans l’élément dz, la fonction p{qi, t) peut être considérée comme 
étant la densité d’un fluide fictif dont la quantité totale doit 
se conserver au cours du temps, puisqu’on doit avoir constam 
ment J'p dz = i, l’intégrale étant étendue à tout l’espace de con 

figuration. Si l’on a trouvé une fonction p(qi, t) satisfaisant à une 
équation de continuité au sens de l'hydrodynamique, en multi 
pliant cette fonction par une constante convenable ou pourra
s’arranger pour que fpdz soit égal à i et le p ainsi obtenu

pourra jouer le rôle de probabilité de localisation. Or notre p doit 
évidemment s’exprimer à l’aide de la fonction d’onde lF, puisque 
nous ne disposons que de cette grandeur pour décrire le système. 
Bref, nous devons chercher une expression formée à l’aide du fl" 
et satisfaisant à une équation de continuité dans l’espace de con 
figuration.

Mais d’abord quelle est la forme générale de l’équation de 
continuité dans l’espace de configuration? Pour le voir supposons 
tracées dans cet espace les surfaces qi = const. correspondant à des 
valeurs infiniment voisines. Nous divisons ainsi l’espace de con 
figuration en petites cellules. L’une de ces cellules sera par exemple 
définie par

qi = Ci, q -L + clqi = Ci -4- dei ( i = i, 2, . . . ),

avec des valeurs données des c, et des dq,. Considérons une certaine 
variable q/;. Si un fluide de densité p(</,-, t) remplit l’espace de 
configuration, le flux de ce fluide pendant le temps dt à travers la 
paroi de la cellule considérée correspondant à r//, = C/,, est égale à 
la quantité de fluide contenue dans un cyclindre infinitésimal ayant 
celte paroi pour base et q^dt pour hauteur, le flux est donc égal à

(28) ts/i = p \fdXl dqv . . . dqk—\ dqk+1 ■ ■ ■ dqn . qk dt.

A travers la paroi opposée <7*= c*+ dqn, le flux est



La différence entre le flux entrant et le flux sortant pour ce couple 
de parois est donc

< 3O ) — dqu =---- j^- ( y/JIÏ? <ÿ*) clqx . . . f/qndt.
<><[k àqk

Si l’on considère tous les autres couples de parois de la cellule 
correspondant aux autres qon obtient au total pour l’excès du 
fluide entrant sur le fluide sortant
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( 31 )
àqk

dqi; = -
àqk

( vO)l5 '/k) dql . • • dqndt.

Pour qu’il y ait conservation du fluide, ceci doit être égal à 
l’augmentation pendant le temps dt de la quantité de fluide 
contenue dans l’élément rfr, soit à

( 32 )

D’où

133)

àt<n (h = <h dch--- <hn. dt.

à? 1 -V à __
àl^^mziàfkw^)=o‘

C’est l’équation de continuité cherchée qu’on peut aussi écrire

CM) ^ -I- lùv Gy) = o;

div (p<j) =z -4— V Cy JTtp///■) étant la divergence généralisée
V Jll k Jt

du vecteur (py) dans l’espace de configuration (’).

Nous avons donc à chercher une expression formée à l’aide du W 
et satisfaisant à l’équation (33). Or la fonction VF, qui est une 
solution de l'équation (4), est une grandeur essentiellement com 
plexe ayant un module [ V | et un argument que nous pouvons

(*) Remarquons en passant que cette définition générale de la divergence nous 
d o nne

Acp div gradep = ——_ ^ -j— (\Jd v l  mki 
y OR I k

â<?
ÔX ;

ce qui justifie la forme générale du Laplacien admise précédemment.
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, . 2 T.<b(qt,t) j . lirécrire------y---- ->de sorte que 1J : •I En substituant celti

forme du *F dans l’équation (4) et en séparant dans l’équation 
obtenue le réel et l’imaginaire pur, on obtient deux équations. 
Ecrivons seulement celle qui vient des termes purement imagi 
naires

(35) 2' ,à\V\
àqk

é«I>
àqk

' y i
\/Ôîl 24; (•'*'",u- à>l> 

àqk

<) ; V 

àl

si nous posons p = | *E j-, nous en tirons aisément, après multipli 
cation par J lE j,

c’est l’équation de continuité du fluide fictif, si nous lui attribuons 

en chaque point une vitesse égale à — grad 4* ; la constante de J'p dz 

en résulte.
En résumé, en définissant dans l’espace de configuration un 

fluide fictif dont la densité et le mouvement sont donnés par

..<W>
àqk

où *F* est la quantité complexe conjuguée de U‘, on obtient un 
fluide qui se conserve et par suite on peut prendre p = | *E |‘J comme 
probabilité de localisation du point figuratif, à condition de multi 
plier W par une constante telle que j' | V [-<&■=: i, c’est-à-dire à

condition de normer la fonction d’onde *E.
Nous parvenons ainsi au principe de localisation (ou des inter 

férences) dont voici l’énoncé : la fonction d’onde W (qi, t) étant 
normée à Vunité, l'expression j '1 j- dz reorésente la probabilité

\

II
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(à l’instant t) pour qu'une observation permette de localiser le 
point figuratif du système dans l'élément de volume dz de 
l’espace de configuration.

En appliquant cet énoncé général au cas très particulier d’un 
système formé d’un seul corpuscule non soumis à des liaisons, on 
trouve bien que la probabilité de localisation du corpuscule dans 
un élément do volume dx dy dz de l’espace physique est donnée 
par \ 'F^, y, z, l) - dx dy dz, comme nous l’avions annoncé.

Appliquons maintenant le principe général à un système formé 
de N corpuscules non soumis à des liaisons et sans actions 
mutuelles, ces corpuscules pouvant être soumis à des champs 
extérieurs. (Nous avons vu plus haut qu’en ce cas, si les fonctions

Ti ( æt, fi, 2i ; t) . . ., T\ ( xy, yy, zy ; t)

sont des solutions des N équations d’ondes individuelles des N 
corpuscules, la fonction

N

T(a?i, . . ., z>-: t) = 'EO,-, y,-, zy t")
1

est solution de l’équation de propagation du système entier. 
D’après notre principe de localisation, la probabilité de présence 
du point figuratif du système à l’instant t dans l’élément de volume 
dz = dxi . . . dzs est

N

(38) ; T\”-dx 1 . . . j | | UjVu zr, t) i? rtxi dyt dzi-

1

Il est donc égal au produit des probabilités de présence respec 
tives du premier corpuscule dans l’élément de volume dx, dy^ dz 1 
de l’espace physique, du deuxième corpuscule dans l’élément de 
volume dx* dy* dz2 ■ ■ ■, ces probabilités étant calculées en 
appliquant le principe de localisation à chaque corpuscule consi 
déré individuellement. Ceci esL une conséquence nécessaire de 
l’indépendance des corpuscules dans le cas envisagé et du théo 
rème des probabilités composées. Si ce résultat ne se vérifiait pas, 
le principe de localisation adopté serait inacceptable.

Il faut bien remarquer que la solution générale de l’équation du 
système pour N corpucules indépendants a la forme (27 bis) et 
qu’avec celte forme générale (quand elle ne se réduit pas excep-
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tionnelleinent à un seul de ces termes) la quantité j 'F !- dxx... dzy 
n’est plus un produit de termes se rapportant chacun à un 
seul des corpuscules. N’y a-t-il pas là une difficulté? Non et voici 
pourquoi. Si les corpuscules sont conslammemt indépendants, on 
pourra à un moment donné déterminer les formes de leurs fonc 
tions d’onde individuelles 'F,, .... lFN et les équations d’ondes 
individuelles (26) détermineront entièrement l’évolution de ces 
fonctions d’onde à partir de leurs formes initiales connues. La
fonction 'F | | 'l , sera constamment solution de l’équalion

i
d’ondes du système et le théorème des probabilités composées sera 
vérifié comme nous l’avons vu plus haut. Les solutions de la forme 
générale (27 bis) (avec plus d’un terme dans la somme) ne peuvent 
se présenter que si, à un moment donné, il y a eu des interactions. 
Dans ce cas, comme les interactions sont soumises à certaines lois 
(par exemple, nous le verrons, aux lois de conservation de l’énergie 
et de l’impulsion), il y aura après la fin des interactions plusieurs 
états possibles du système, mais dans chacun de ces étals possibles, 
les états individuels des divers corpuscules ne seront plus indépen 
dants. Si, par exemple, dans l’étal initial avant l’interaction, on a 
deux corpuscules d’énergies E) et EJ, après l’interaction, on aura 
des étals possibles pour ces corpuscules ayant des énergies E, etE2 
telles que Et + E2 = E) -)- E°, et si l’on trouve alors par une mesure 
que l’un des corpucules a l’énergie E,, on sera sûr par là meme 
que l’autre corpuscule a l’énergie E“-+-E“— E,. C’est ce qu’ex 
prime une fonction d’onde de la forme générale (27 bis) qui veut 
dire que si l’on trouve le premier corpuscule dans l’état représenté 
par ’F)'11, on trouvera le /ilcme corpuscule dans l’état 'F);»’ qui figure
dans le même terme de la somme^ Les solutions générales (27 bis)

/q.

ne peuvent donc se présenter que quand il y a eu des interactions 
et que ces interactions ont créé des liaisons nécessaires entre les 
états individuels ultérieurs des constituants du système. Ces états 
ultérieurs n’étant alors plus indépendants, il n’y a plus de raisons 
pour que le théorème des probabilités composées soit vérifié.

On voit donc ainsi que, même dans le cas des corpuscules sans 
actions mutuelles, l’équation de propagation du système est, pour 
ainsi dire, plus riche de contenu que l’ensemble des équations

1
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individuelles des corpuscules. Elle admet (et ceci est évidemment 
nécessaire) des solutions qui représentent tous les mouvements
indépendants possibles des N corpuscules : ce sont les solutions 

v
de la forme Mais elle admet en plus des solutions de la

1
N

forme ^ar II ’b)'1 qui représente le cas où, par suite d’interac-
r 1

tions antérieures, les états individuels des constituants du système 
ne sont plus indépendants. Ces interactions antérieures peuvent 
être d’ailleurs soit des interactions des N corpuscules du système 
entre eux, soit des interactions de ces corpuscules avec d’autres 
corpuscules extérieurs au système et constituant par exemple un 
appareil de mesure.

•

0.. Principe de décomposition spectrale (ou principe de Born).—
Considérons un système isolé ou soumis à des actions extérieures 
indépendantes du temps. Je rappelle qu’une équation aux dérivées 
partielles du type de l’équation (8) de propagation ici valable 
admet un ensemble d’un nombre infini de solutions Wi((/, . . .,cjn,t) 
qui sont continues, uniformes et de carré sommable. Ce sont les 
fonctions propres de cette équation. En général, chaque fonction 
propre correspond à une certaine valeur de la constante E qui 
figure dans l’équation. Les valeurs de la constante E qui corres 
pondent à des fonctions propres sont appelées les valeurs propres 
E,, . . ., E„, . . ., de l’équation (8). Les valeurs propres peuvent 
former une suite discontinue (spectre de raies) ou une suite 
continue (spectre continu) ou encore une suite continue suivie 
d’une suite discontinue. Si à une valeur propre E, correspond une 
seule fonction propre U1’,, E; est une valeur propre simple ou non 
dégénérée. Si plusieurs fonctions propres , ..., 'E/’' corres 
pondent à une même valeur propre E;, cette valeur propre est 
dite multiple ou dégénérée.

On démontre aisément que deux fonctions propres appartenant 
à deux valeurs propres distinctes sont orthogonales, c’est-à-dire 
que

(39) pour E/ÿéE/,J >17 Wj ch = o
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où l’intégrale est étendue à tout l’espace de configuration et où 
l’astérisque indique la quantité complexe conjuguée. Pour le 
démontrer, il suffît d’écrire

(4o) u)T,= o,

où An est le Laplacien dans l’espace de configuration, puis

(40 a „«p; + Ç(E;-U)'r; =o ,

d’où l’on tire facilement

(4L) J =- E/) J d-;>i\d-.

Or, d’après une formule bien connue de Green, formule qui se 
généralise aisément à l’espace à n dimensions, la première inté 
grale est égale à une intégrale de surface prise sur une surface 
rejetée à l’infini dans l’espace de configuration et, comme les 
fonctions propres étant de carré sommable doivent être milles sur 
cette surface, cette intégrale de surface est nulle. Le second 
membre de (42) est donc nul, que i soit égal ou différent de j. 
Donc pour i = y, on a E,= E* et l’on voit d’abord que les valeurs 
propres sont toutes réelles. Puis pour i yé j, on trouve la formule 
(3p) exprimant que VF,- et *Fy sont orthogonales.

Toutefois le raisonnement précédent est en défaut si pour 
i ji Et- = Ey, c’est-à-dire si les fonctions propres *F, et lFy corres 
pondent à une même valeur propre multiple.

Dans le cas des valeurs propres multiples, les fonctions propres 
linéairement indépendantes ne sont pas nécessairement orthogo 
nales entre elles. Mais en ce cas il y a une certaine indétermina 
tion des fonctions propres, car si 'Fjl>, .... Wf> sont p fonctions 
propres linéairement indépendantes de l’équation (4°)j toute 
combinaison linéaire de ces p fonctions est évidemment aussi 
solution de (4o) et peut être choisie pour fonction propre. On 
démontre aisément que celte indétermination suffit pour que l’on 
puisse choisir, pour la valeur propre E,, p fonctions propres linéai 
rement indépendantes qui soient orthogonales entre elles. Ainsi, 
en choisissant judicieusement les fonctions propres correspondant 
aux valeurs propres multiples s’il y en a, on peut toujours supposer



que l’ensemble de toutes les fonctions propres de (8) forme un 
système orthogonal.

Les ’F, ne sont évidemment déterminées qu’à une constante 
complexe arbitraire près (en raison du caractère linéaire des 
équations d’ondes). On peut donc toujours choisir le module de 
cette constante de façon que l’on ait

(43) =

Les 'F,- sont'dits alors normés à l’unité et nous supposons 
toujours qu’il en est ainsi. La normalisation de *Ff y laisse 
d’ailleurs encore arbitraire un facteur e'“ de module i, car elle 
ne détermine pas l’argument de la constante arbitraire.

On peut résumer les formules (3çj) et (43) par la formule unique

(44) yV;<iy/T = àih

ô,-j étant le symbole de Kronecker. On dit souvent qu’en vertu 
de (44) le système des fonctions *F(- est un système orthonormal.

Enfin, le système des fFj est un système « complet», c’est-à-dire 
que sous des conditions très générales, une fonction quelconque 
f((ji, . . ., q„) est développable à l’aide de l’ensemble des fonctions 
propres 'F, sous la forme

(45) /(</!, ■ • -i rJn ) =2c, Ty qu ...,qn).
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En particulier, je dis que la fonction d’onde du système, solution 
de l’équation (4), est développable sous la forme

_ _ ~ 1 £. £

(46) ']’( </i, .. ., qn ; t) =^Ci'F,(r/I, .. ., çn) e A

En ellet, à l’instant initial t = o, la forme *F(i/i, . . ., qn\ o) est 
développable sous la forme

(47) ’IXT'ii ■•■,î»,o)=^Cilh({i) ..., qn),

i

avec des valeurs bien déterminées des c,, à cause du caractère
L. DE BRÜfïLIE. 4
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complet du système des W,-. Maintenant, chaque fonction 

Wi(ql} . . ., qn)e h ' est solution de l’équation des ondes. Donc 

. . ., qn) e k ' est aussi solution, puisque l’équa 

tion est linéaire. Or, pour t = o, cette solution prend la forme 
initiale donnée qn’, o). Puisque l’équation détermine
entièrement l’évolution de l’onde à partir de sa forme initiale, 
VF^j, . . ., qn ; t) est bien la solution dont la forme initiale est 
W(qy . . . qn \ o). Le théorème est ainsi démontré.

On peut d’ailleurs comprendre le facteur e h ‘ dans la fonc 
tion propre W; puisque, même normée, celle-ci n’est déterminée 
qu’à un facteur e1* près.

Ceci posé, le principe de décomposition spectrale peuts’énoncer 
de la manière suivante : « Étant donné un système de corpuscules 
isolé ou soumis à des actions extérieures indépendantes du temps 
dont la fonction d’onde W a le développement (46), la probabilité 
pour qu’une observation ou une mesure conduise à attribuer à ce 
système l’énergie E; est ] c; 2. »

Ce principe de Born est acceptable puisque, ’I • • - , qn, 0 
étant toujours supposée normée, on a

(48) 1= y np h

k /
=^c* c. q ~Y ,K/-i:‘: 

/,-/•

"f 'l’pi

V'' * -r (K * K<)=^2uCkC'e
/

Tn-i,

d’après (44 )• ce qui donne

(49) 2==i'
/■

Si l’on a un spectre continu, les sommes sont à remplacer par 
des intégrales et certaines précautions sont à prendre pour la 
définition des normalisations et des orthogonalilés. Je n’insiste 
pas sur ces sujets assez délicats. D’après le principe que nous
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venons d’introduire, seuls les états dont l’énergie est l’un des E,- 
sont physiquement réalisables. De là la notion de quantification 
des systèmes corpusculaires et celle d’états stationnaires intro 
duite pour la première fois par Bohr dans sa théorie de l’atome 
d’hydrogène.

Par des raisonnements qu’on trouvera développés dans d’autres 
exposés (1), on peut montrer que les principes de localisation et 
de décomposition spectrale entraînent comme conséquence l’im 
possibilité de mesurer simultanément avec une précision absolue 
une coordonnée q et le moment de Lagrange correspondant p. 
Ces quantités, lorsqu’on les déduit de mesures effectuées simulta 
nément, sont toujours affectées d’incertitudes A q et Ap telles que 
l’on ait
( ü o  ) A q Ap A, h.

Ce sont les célèbres relations d’incertitude dues à M. Heisenberg, 
sur lesquelles nous n’insisterons pas ici.

7. Les matrices de la Mécanique ondulatoire. — Nous allons 
maintenant introduire la définition des matrices dé la Mécanique 
ondulatoire. En mécanique ondulatoire, on est amené à faire 
correspondre à toute grandeur mécanique un opérateur linéaire et 
hermitique. Un opérateur A est linéaire si l’on a

(il) A(/-eiy) = A (/)-+- AC g), A (e/) = cA (/).

Un opérateur A est hermitique (ou hermitien) dans un 
domaine D si l’on a

f et g étant deux fonctions finies, uniformes et continues dans D 
et nulles à la limite de D choisies arbitrairement. Remarquons 
que si l’opérateur A est hermitique, l’opérateur An l’est aussi, 
comme on le vérifie facilement.

Voyons maintenant quels sont les opérateurs linéaires et hermi-

(') Loc. cit-, Cliap. XI.
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tiques que la Mécanique ondulatoire fait correspondre aux 
grandeurs mécaniques. D’abord aux coordonnées x. y, z d’un 
corpuscule, on fait correspondre respectivement les opérateurs 
x., y., z., c’est-à-dire « multiplication par x, par y ou par z ». 
Puis, aux composantes p.rpypz de l’impulsion d’un corpuscule,

on fait correspondre respectivement les opérateurs — ——.
/i () () . , i i---------. et-------- . • Pour tout système ou les a-, sont les coor-

2~i oy ‘ir.ioz J 1
données cartésiennes rectangulaires des corpuscules constituants, 
on obtiendra sans ambiguïté l’opérateur correspondant à une 
grandeur mécanique en formant l’expression classique de cette 
grandeur à l’aide des cp et des /»,, puis en remplaçant les q; et

les pi respectivement par les opérateurs cji et —‘ C’est 

d’ailleurs précisément ainsi que nous avons formé précédemment 
l’opérateur hamiltonien correspondant à la grandeur « énergie du 
système ». Nous avons du reste constaté dans ce cas particulier que 
le bon opérateur hamiltonien n’est sûrement obtenu que si les 
sont les coordonnées cartésiennes rectangulaires des corpuscules 
du système. Si l’on emploie volontairement des coordonnées non 
rectangulaires, ou bien si l’existence de liaisons oblige à prendre 
des coordonnées généralisées q-n le procédé qui consiste à prendre 
l’expression classique d’une fonction des q-, et des pt et à y 
remplacer brutalement le cp et le />, par les opérateurs q; et

— ne fournit pas nécessairemenl d’une façon exacte l’opé 

rateur associé par la Mécanique ondulatoire à la grandeur consi 
dérée. Il faut en réalité chercher quel est l’opérateur qui géné 
ralise avec les q,■ employées l’opérateur correspondant au cas 
cartésien. Ainsi pour l’énergie, l’opérateur hamiltonien s’exprime 
dans le cas cartésien par l’opérateur laplacien (augmenté du 
terme d’énergie potentielle) : en coordonnée q; quelconque, on 
doit prendre, nous l’avons vu, l’opérateur qui généralise le lapla 
cien dans l’espace des qi. Pratiquement nous ne rencontrerons pas 
de difficultés pour former les opérateurs correspondant aux gran 
deurs mécaniques.

Soit donc A un opérateur linéaire et hermiLique correspondant 
à une certaine grandeur mécanique et soient 'P,, . . ., 'Jy, . . . les 
fonctions propres de l’opérateur H correspondant au problème
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considéré. Nous pouvons envisager les grandeurs de la forme

(53) ait= f'VÎ MVk)d~

pour toutes les valeurs de i et de k et former avec ces quantités un 
tableau carré (les i numérotant les lignes et les k les colonnes). 
Nous dirons que ce tableau est la « matrice » correspondant à la 
grandeur mécanique A et que a;n est l’élément d’indices ik de 
cetle matrice.

Il est facile de trouver une interprétation des a,<. La fonction 
A('F/,) obtenue en appliquant à 'L/; l’opération A étant développée 
suivant le système complet des 'F,, on a un développement de la 
forme

(54) ' A (»F*) =2 «y*'F/-
/

Les coefficients ajk de ce développement s’obtiennent en multi 
pliant (54) par W; et en intégrant dans tout l’espace de configu 
ration. En tenant compte de (44)i on trouve ainsi pour a,vf la 
valeur (53). Nous voyons ainsi que l’élément de matrice a,-* est le 
coefficient de V; dans le développement de la fonction A(vl1'/,) 
suivant les fonctions propres de l’opérateur hamiltonien.

Les matrices définies par (53) sont hermitiennes (ou hcrmi- 
tiques), e’esL-à-dire que
(55) aïk—a*kl.

Les termes symétriques par rapport à la diagonale dans le 
tableau des a-,k sont complexes conjugués et en particulier les 
termes placés sur la diagonale (ou termes diagonaux) sont réels. 
La formule (55) se déduit immédiatement de la définition (53) et 
de la relation (5a) qui définit l’hermiticité de l’opérateur A.

Il est facile de voir que les matrices de la Mécanique ondulatoire 
jouissent des propriétés bien connues des matrices algébriques. 
Ces propriétés sont essentiellement exprimées par les deux lois 
d’addition et de multiplication

a. (a -h b )u- = «ik + b ik,

b. (ab)ik



CHAPITRE III.
PRINCIPES GÉNÉRAUX l)K LA MÉCANIQUE ONDULATOIRE 

DES SYSTÈMES.
INTÉGRALES PREMIÈRES ET THÉORÈMES DE CONSERVATION.

1. Énoncé général des principes de la Mécanique ondulatoire. — 
Les principes de la Mécanique ondulatoire peuvent se présenter 
sous une forme très générale que je vais indiquer rapidement.

Nous avons vu qu’à toute grandeur mécanique mesurable on 
pouvait faire correspondre un opérateur linéaire et hermitique et 
nous avons indiqué la manière de construire cet opérateur. Soit 
donc A l’opérateur linéaire et hermitique correspondant à une 
certaine grandeur dans un problème déterminé. Les valeurs 
propres de cet opérateur sont par définition les valeurs de la 
constante a, telles que l’équation

(O A ( y ) — a o

admette au moins une solution continue, uniforme et de carré 
sommable. Les solutions de (i) correspondant aux valeurs propres 
sont les fonctions propres de A. En généralisant une démonstration 
donnée au chapitre précédent, on montre aisément qu’en vertu de 
l’hermiticité de A, ses valeurs propres sont réelles et que les fonc 
tions propres correspondant à des valeurs propres distinctes sont 
orthogonales. Les fonctions propres qui correspondent à une 
valeur propre multiple peuvent être supposées orthogonales si l’on 
choisit convenablement les fonctions propres linéairement indé 
pendantes relatives à cette valeur propre multiple en profitant de 
l’indétermination qui existe pour le choix de ces fonctions propres. 
De plus, nous supposerons toujours que les fonctions propres cp; 
de l’opérateur A ont été normées par la condition

(2)
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Enfin, l’ensemble des fonctions propres cp; forme un système 
complet, du moins pour les fonctions qui dépendent des variables q 
figurant dans A et par suite dans les cp,-, c’est-à-dire que l’on a, 
sous des conditions très générales,

(3) /(ÇU • • •> <ln) =2, • • •> Çn)-

k

Toutes ces propriétés sont celles que nous avons déjà rencon 
trées dans le cas où l’opérateur A est l’opérateur hamiltonien H et 
se démontrent comme dans ce cas.

Ceci posé, on peut énoncer les deux principes généraux de la 
Mécanique ondulatoire sous la forme suivante :

« Etant donnés un système de corpuscules dont la fonction 
d’onde est . . ., qn\ t) et une grandeur mécanique relative
à ce système qui correspond à l’opérateur A de valeurs propres a; 
et de fonctions propres cp,-, on peut affirmer que :

« i° Premier principe ou principe de quantification. — 
Toute mesure exacte de la gràndeur A fournira l’une des valeurs
^1 ? • • • i • • * •

« a0 Second principe ou principe de décomposition spectrale 
généralisée. — Si le développement de la fonction T' du système 
suivant les fonctions propres cp; de l’opérateur A est

T(</1, . . ., qn; t) =^rt/-(0 o*(-71, . . ., r/n),

k

la probabilité pour qu’une mesure exacte de A faite à l’instant t 
fournisse les valeurs ak est égale à | ak ]2.

« Si les valeurs propres a; forment un spectre continu, on doit 
modifier l’énoncé précédent en disant :

T(?1, •••,<?«;<)= ja(a, t) ’i(a; qu . . ., qn) da.

étant le développement de la fonction d’onde suivant les fonctions 
propres cp(a, qi, . . ., qn), la probabilité pour qu’une mesure de A 
faite à l’instant t donne une valeur propre de A comprise dans 
l’intervalle a -> a + de/, est égale à | a( a, t)\- da.
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« Enfin, si l’opérateur A ne contient que certaines des coordon 
nées q-t, disons q\, .... et non les autres q\, . . ., ok dépend seule 
ment des q'i et le développement de *T est de la forme

'l'O/i, ..., qn\ t)='Ŝ iak(q'[, . . t) =i(9'i,

k

Alors la probabilité de la valeur propre o.k doit être prise égale 
à/|«/f |- dq\■ ... »

Tel est l’énoncé général des principes de la Mécanique ondu 
latoire. Il est d’abord aisé de vérifier que le second principe 
conduit toujours à un accord avec le théorème des probabilités 
totales, c’est-à-dire que la somme des probabilités de toutes les 
hypothèses possibles est égale à i. Nous laissons au lecteur le 
soin de faire cette vérification, que nous avons déjà précédemment 
effectuée dans le cas de l’opérateur hamiltonien et qui s’appuie 
uniquement sur le caractère ortho-normal des fonctions propres.

Appliqués au cas de l’opérateur hamiltonien H, les deux prin 
cipes précédents montrent : i° que la mesure exacte de l’énergie 
d’un système fournit toujours l’une des valeurs propres de l’opéra 
teur H, ce qui constitue l’essence de la quantification des systèmes 
en Mécanique ondulatoire; a0 que si la fonction d’onde du 
système se développe suivant les fonctions propres de l’opéra 

teur II sous la forme la probabilité pour qu’une

mesure exacte de l’énergie fournisse la valeur E* est égale à [ ck j2. 

Ceci est précisément le principe de Born étudié précédemment.
On peut aussi montrer que le principe de localisation n’est 

qu’un autre cas particulier des deux principes généraux énoncés 
plus haut. Nous n’insisterons pas ici sur cette démonstration.

11 est maintenant facile de définir la valeur moyenne d’une 
grandeur mécanique. Considérons dt systèmes identiques dont 
l’état est décrit parla même fonction d’onde . . . , qn, t), le
développement de 'F suivant les fonctions propres de l’opérateur A 
correspondant à la grandeur mécanique considérée étant

T(ÿi, rk{qi, ■ ■ ?«)■
k
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Supposons qu’à un instant t déterminé on effectue sur chacun 
des 3Z systèmes une mesure exacte de la grandeur A. D’après le 
premier principe, on doit obtenir pour chaque système une des 
valeurs propres a* de A, et d’après le deuxième principe on doit 
obtenir au total DZ j ct - fois la valeur ai: t)Z j c-> j- fois la 
valeur a2, etc. La moyenne des valeurs obtenues pour la gran 
deur A est donc

(4) A j ck 2,
k

car, fl' étant normée, ^ [ c* j- = i. Il est aisé de démontrer que la
k

formule (4) est équivalente à la suivante :

(5)

où l’intégrale est étendue à tout l’espace de configuration. En effet

(6) J<f a rv)d~. = v(V,., } ,h

= 2jchcij ŸÂ-A(ri)^
ik

= ^J c*kCi%l J” 9 *krtfh

ik

= ^Àck£i'i‘ik3-i .
ik

= 2' Ck <2ak■ 
k

La quantité A définie par (5) peut donc être considérée comme 
la valeur moyenne de la grandeur A pour un système dont l’état 
est décrit par la fonction d’onde iju C’est en somme la valeur 
moyenne probable du résultat de la mesure de la grandeur A effec 
tuée sur le système dans l’état envisagé.

De cette définition de la valeur moyenne, nous pouvons déduire 
un corollaire important. Supposons qu’un système soit connu 
comme étant dans l’état stationnaire d’énergie E, : sa fonction 
d’onde W est donc égale à la fll'mc fonction propre 'E, de l’opéra 
teur H (en supposant les valeurs propres non dégénérées). Alors,
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on a

(7) A=J 'F*A('ri)^ = a«,

au désignant comme précédemment le iiemc terme diagonal de la 
matrice de la Mécanique ondulatoire qui correspond à l’opéra 
teur À. D’où l’énoncé suivant qui donne un sens physique aux 
termes diagonaux des matrices de la Mécanique ondulatoire : 
« Le terme diagonal d’indices ii de la matrice correspondant à 
l’opérateur A est égal à la valeur moyenne de la grandeur A quand 
on sait que le système considéré est dans l’état stationnaire 
d’énergie E,. »

2. Intégrales premières (ou constantes du mouvement). — En 
Mécanique classique, une intégrale première pour un problème 
donné est une fonction des variables canoniques qi et pi (et 
éventuellément du temps) qui reste constante au cours du mouve 
ment en vertu même des équations de la dynamique, c’est-à-dire à 
cause de la manière dont les qi et les pi varient au cours du temps.

En Mécanique ondulatoire, on ne peut pas adopter une telle 
définition parce que, les qi et les pi n’ayant pas en général une 
valeur bien déterminée à chaque instant, il en est de même d’une 
fonction de ces variables. Néanmoins, on peut chercher à définir 
des grandeurs jouant le rôle d’intégrales premières en Mécanique 
ondulatoire. Nous avons vu cju’en général une grandeur méca 
nique n’a pas en Mécanique ondulatoire une valeur bien déter 
minée à chaque instant, mais il peut cependant arriver que l’état 
du système soit tel qu’une certaine grandeur A ait sûrement une 
valeur déterminée. C’est ce qui arrivera si le développement du fil’ 
du système suivant les fonctions propres de A pour l’état considéré, 
contient un seul terme (ou du moins seulement des termes corres 
pondant à une seule valeur propre si les valeurs propres sont 
multiples). On a alors

(,S) *F = az-L avec j c,- ’ = 1 ou* =2 avec
p

On dit que cet état est un « cas pur » pour la grandeur méca 
nique envisagée. Supposons alors qu’à un instant initial t0, l’état
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du système soit un « cas pur » pour la grandeur A correspondant 
à n’importe quelle valeur propre a; de A. Si, en vertu même de 
la loi d’évolution du Y (c’est-à-dire de l’équation de propagation 
du système) nous avons à tout instant ultérieur le même cas pur, 
on pourra dire que la grandeur A ayant au début une quelconque 
de ses valeurs possibles a, conservera toujours celte même valeur 
au cours du temps. On pourra alors dire tout naturellement que A 
est une intégrale première (ou une constante du mouvement) pour 
le problème considéré.

Une première condition évidente pour qu’une grandeur A soit 
une intégrale première au sens de la Mécanique ondulatoire est 
que ses valeurs propres a, soient indépendantes du temps, sans 
quoi les valeurs 09 de A possibles au temps t0 ne seraient en général 
plus des valeurs possibles à une époque ultérieure. Seules peuvent 
être intégrales premières les grandeurs mécaniques dont l’opéra 
teur a toutes ses valeurs propres constantes, c’est-à-dire soit les 
opérateurs A indépendants du temps (cas très fréquent), soit les 
opérateurs A dépendants du temps, mais tels que

^ ( 0 Y i = a i y  h

avec les constantes.
Pour éviter de petites complications, nous allons raisonner sur 

des opérateurs A à valeurs propres constantes que nous suppose 
rons non dégénérées. Pour que A soit intégrale première, il faut 
et il suffit que W — c;tp,: soit solution de l’équation de propagation, 
avec Ci constant, pour tous les 9;; car alors un cas pur initial se 
maintiendra indéfiniment. Or, on a

(9)
àT 9 r.

~h

H étant l’hamiltonien du système. Appliquons aux deux membres 
de (g) l’opérateur A; il vient

(i°) 6»r
ot

yA('r)-^ï'=^A H(»F). 
àt ' ’ dt h ' ’

Pour que l’équation de propagation soit vérifiée par *1" = c, cp(, 
d étant une constante et l’une quelconque des fonctions propres
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de A, on doit avoir

(ii) i) =
à\
dt

Or, par définition, on a Acp; = et, puisque aj est constant 
par hypothèse et que satisfait à l’équation de propogation, 
on a

Donc,

(i3)

d’où enfin, d’après ( i i ),

équation qui doit être valable pour toutes les fonctions propres 
de A. Ges fonctions propres formant un système complet, il en 
résulte que l’opérateur entre crochets appliqué à une fonction 
quelconque des r/{- donnera zéro. Cet opérateur est donc équivalent 
à « multiplication par o » et nous pouvons écrire

<■*> ^ + îji',AII-HA)_0.

La condition pour que A soit intégrale est donc identique à la 
condition pour que la matrice A soit indépendante du temps [voir 
formule (65) du chapitre précédent]. Si l’opérateur A ne contient 
pas le temps (cas usuel), cette condition se réduit à

( 16) AH==I1A.

Une grandeur est intégrale première quand son opérateur A est 
indépendant du temps et commute avec l’opérateur hamiltonien 
du problème considéré.

Notre raisonnement suppose l’opérateur A complet, mais on 
peut l’étendre au cas où il est incomplet.

3. Exemples d’intégrales premières. Théorèmes de conser 
vation. — Il est maintenant facile de retrouver des théorèmes de
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conservation analogues à ceux de la Mécanique classique et four 
nissant des exemples d’intégrales premières.

a. Conservation de Vénergie. — A l’énergie d’un système 
correspond un opérateur hamiltonien II. En faisant A = H dans 
l’équation (i5), on trouve comme condition pour que H soit inté 
grale première

Mais l’opérateur H ne peut contenir explicitement le temps que 
par les termes représentant les actions extérieures subies par le 
système. Si les actions extérieures sont indépendantes du temps,
a fortiori si elles sont nulles (système isolé), on a ^ so et

l’énergie est intégrale première. Tel est le théorème de la conser 
vation de l’énergie en Mécanique ondulatoire. L’équation de pro-

pagation admet alors les solutions de la forme a/[(qu .... qn) e h 
qui correspondent à une valeur déterminée et permanente de 
l’énergie du système, en conformité avec notre définition générale 

des intégrales premières.

b. Conservation de l’impulsion. -- Supposons que nous 
ayons affaire à un système de N corpuscules non soumis à 
des liaisons. Nous prenons comme coordonnées qt les 3N coordon 
nées x<, ..., des N corpuscules. Supposons que les forces 
extérieures, s’il y en a, aient une résultante nulle dans la direction 
de l’axe des x et considérons l’opérateur

( 18 ) Px = pIl + ... + avec pæi = — ^ ^ *

Cet opérateur appliqué à la somme des ‘Vfx,-, y,, z-n t) donne 
zéro, d’après l’hypothèse faite sur les forces extérieures. Appliqué 
à un terme d’interaction ‘v)iy(r,y), il donne aussi zéro parce 
que ‘Vij ne dépend que de la combinaison xt — xj, Donc Px com 
mute avec H et, comme il ne contient pas t explicitement, il est 
intégrale première. D’où le théorème analogue à un théorème de 
Mécanique classique : « Si les forces extérieures agissant sur un 
système admettent une résultante dont la composante suivant une



certaine direction est constamment nulle, la composante dans cette 
direction de l’impulsion totale du système est une intégrale pre 
mière. » C’est le théorème de la conservation de l’impulsion en 
Mécanique ondulatoire.

Si le système est isolé, toutes les composantes des forces exté 
rieures sont milles et les trois quantités Px, PY et Pz sont intégrales 
premières.

Dans notre étude de la Mécanique classique, nous avons vu que 
la conservation de l’impulsion était intimement liée à la notion de 
cenLre de gravité. Nous aurons plus loin à nous demander si la 
notion du centre de gravité peut encore être utilisée en Mécanique 
ondulatoire et comment elle se rattache alors à la conservation de 
l’impulsion.
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c. Conservation du moment d'impulsion. — Envisageons un 
système de N corpuscules sans liaisons et supposons que le poten 
tiel des forces extérieures soit indépendant de l’orientation du 
système autour d’une certaine direction oz de l’espace. En 
d’autres termes, les corpuscules du système étant repérés par des 
coordonnées cylindriques r;, cp,-, z, autour de l’axe oz, supposons 
que Zj\ t) soit indépendant de cp,. Les termes d’interaction
sont alors de la forme ‘s,,J (\/—2 r,7'/cos(®,'— + —s/)9) 

et par suite ne dépendant que des différences cp;— oj. L’opérateur 
correspondant au moment d’impulsion total du système autour 
de oz a pour expression

(19) M- h
■ir. iy Xk <->fk - yk à Xk

_h_

ïr.i
\X- r)

■ Uà7k'
k

comme on le voit aisément en tenant compte des relations 

= \jx\ + yl et cp/; = arc tg — ■ Or "V — appliqué aux ‘y’,- donne
k

zéro puisque, par hypothèse, les £y’,: ne dépendent pas des cp; et 
appliqué aux "Vij donne aussi zéro puisque les X/j ne dépendent 
que des différences o, — oj. Donc, M- commute avec la partie 
potentielle de l’opérateur II et par suite avec H tout entier. On a 
donc

(20)

L. DE BKOOUE.

II = HM-,
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et, comme Mz ne dépend pas explicitement du temps, il est inté 
grale première. Donc, si le potentiel des forces extérieures a la 
symétrie cylindrique autour de la direction oz (ou ce qui revient 
au même si les forces extérieures ont un moment nul par rapport 
à os), la composante s du moment d’impulsion du système est une 
intégrale première. C’est le théorème de la conservation dh 
moment d’impulsion en Mécanique ondulatoire.

Si le système est isolé, les forces extérieures sont nulles et les 
trois quantités Mx, Mr, M- sont intégrales premières, ainsi que la 
quantité « carré de la longueur du moment d’impulsion » corres 
pondant à l’opérateur

(2l) M- = Mf-t- >1;.

4-. Autre définition des intégrales premières. — On peut donner 
une autre définition des intégrales premières en disant : une gran 
deur A est intégrale première si, fi’ étant une solution de l’équa 
tion d’ondes du problème considéré, A(fi') en est une autre solu 
tion. En effet, on a par hypothèse

(22)

d’où

(23)

àt
2 - i
h H (fi'),

,V?s 1a (W). 
àt àt K '

dont on tire

04)

Pour que A (fi") soit aussi solution de l’équation de propagation, 

il faut que le premier membre de (24) soit égal à ^3ilIA(fi;) et 

alors on a

Ceci devant avoir lieu quelle que soit la solution’de l’équation 
d’ondes, il faut que l’opérateur entre crochet soit nul. L’équiva 
lence de notre nouvelle définition des intégrales premières avec la 
précédente est ainsi démontrée.

En particulier si H et A sont indépendants du temps et si fi";
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est une fonction propre de II correspondant à la valeur propre E,, 
À(1Fi) est une fonction propre de H pour la même valeur propre E, . 
En effet, par hypothèse, on a

(26) H('l'i) = Epi’, et A II (Ti) = E, A («’,•)•

Pour que À(,Ei) soit fonction propre de H pour la valeur 
propre E/, il faut que HA(T'i) = EjA(lF,). La condition nécessaire 
et suffisante pour qu’il en soit ainsi est

(27) A II('Fi) = II A('IY)-

Celte condition (27) devant être vérifiée pour tous les ’F; qui 
forment un système complet, il en résulte que A et H commutent, 
ce qui est bien la condition pour que A soit une constante du 
mouvement.

Enonçons maintenant un théorème important :

Théorème. — Si A est une intégrale première,

Vest également.

Remarquons d’abord que si l’opérateur A est hermitique, A" l’est 
également. Supposons le théorème vrai jusqu’à la valeurn et mon 
trons qu’il est encore vrai pour n -f- 1. Par hypothèse, nous avons

(28)

d'où

(39)

f)\"

<)t
~j~~ ( A" II — Il A” )so,

dA" M , dA" dA t
àt ôt Ot

= " [A (A " H — H A " ) -i- ( AH — HA ) A n ]

= — -éll r A"+i II— HA"+i|.
n c. q . F. n.

Passons à un autre théorème :

Théorème. — Si ’F est une solution normée de Véquation de 
propagation pour un problème déterminé et si A est une inté 
grale première de ce problème, la fonction (i-f-isA)’F, où £ 
est une constante réelle infiniment petite, est aussi une solution 
normée (au second ordre près).
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En effet, par hypothèse,

2 - i(30)

D’autre part, on a

i '
(31)

<)t If(’i').

, . . , ù>l' . à A .. 4 -yr
^(i-t-jsA)q = -jp -+- ii-jjW iz\ — i

H(i + LA)<F = II(T) + U II V ï"; 

d’où compte tenu de (3o),

r)\ 2 rzi<»*> li-îr")<,-,tA>,,-‘*
àt h (VII — IIA)j'F = o.

La fonction ( i + iz À) 1' est donc bien solution de l’équation de 
propagation. Il reste à prouver qu’elle est normée (au second ordre 
près) si est normée. Or, on a,

(33) /
-I

( i H- i z A )* * ( i -+- i IA ) *1 f/'z

»r* t  dr -+- i t ["—y.v* ( »r* ) q’ dr +~yV* a  ( q* ) ,h
Z-. . ..

Le crochet du second membre est nul à cause de l’hermiticilé 
de A. Ce second membre est. donc bien égal à i au second ordre 
en s près et le théorème est démontré.

Ainsi l’opération ( i -p iz A) représente une transformation infi 
nitésimale qui fait passer d’une solution normée à une autre solu 
tion normée. La connaissance d’une intégrale première fournit 
donc un moyen de passer d’une solution à une solution infiniment 
voisine : c’est là une propriété que possèdent déjà les intégrales 
premières en Mécanique classique.

Il est aisé d’obtenir une transformation finie qui se réduit au 
premier ordre en s à la transformation infinitésimale i + OA. Il 
suffit de considérer l’opérateur

(34) i —t— is A ■ (is)- A2-
(ùy 

3 !
(A)"

A» -

défini comme une série d’opérateurs. On peut le représenter sym 
boliquement par e"A et il est fonction de la variable s. Pour s = o, 
il est égal à i et pour s = z infiniment petit, il se réduit bien à 
i + fsA au premier ordre en s. On vérifie immédiatement que



e!'AlF est solution de l’équation de propagation. En effet, cette fonc 
tion est une somme de termes proportionnels aux A"(V) et, 
puisque A est par hypothèse intégrale première, A" l’est aussi et 
A'^tp) est donc solution de l’équation do propagation, d’après 
notre deuxième définition des constantes du mouvement,

Ainsi la connaissance d’une intégrale première fournit, quand 
on connaît une solution *F de l’équation des ondes, une infinité 
d’autres solutions de la forme e!ï'W où s peut prendre n’importe 
quelle valeur réelle. Toutes ses solutions sont normées si *F est 
normée : ceci résulte d’un théorème général de la théorie des opé 
rateurs et matrices d’après lesquel si A est un opérateur hermitien, 
e',A est un opérateur « unitaire » qui conserve les normes, mais on 
peut aussi le vérifier en écrivant la suite de relations (où l’on tient 
compte de l’hermiticité de A")

( 35 ) f ( e'<A»F)* (e''A'J') dz f A"**1’* e"A 'F dx

= V J'F* A» e« up ,/-

= f q:* e-i'A e/,u ij 'd-= Jqr*q-£/~ = i.

Il est intéressant d’appliquer le théorème auquel nous venons de 
parvenir au cas particulier des systèmes dont l’hamiltonien ne 
dépend pas du temps. Nous avons alors des solutions de la forme

— E;(
T,ÿ,1)e * ,

et d’autre part, l’énergie est intégrale première. Nous aurons donc 
aussi, d’après notre théorème, des solutions de la forme

— K., ALF-n — e ;(
(36) 'F = e1'11 «y qu . .., qn) e h = e tl ate h ,

en remplaçant dans la dernière écriture s par ~ s, ce qui ne change 

rien d’essentiel. Il est alors facile devoir en remplaçant l’opéra-
' “ 'su

teur e A par son développement en série que les solutions (36) 
peuvent s’écrire aussi

— K; (* + .«)
>F = ai(q,, ■ • -, qn)e h
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(37)
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où t est la variable temps et s la valeur particulière du paramètre 
de la transformation. Nous obtenons donc des solutions qui se 
déduisent de l’une d’entre elles par un simple changement de 
l’origine du temps, c’est-à-dire par un simple décalage de la phase. 
Mais, étant donnés les rôles tout à fait symétriques des lettres t 
et s dans l’expression (37), on peut permuter les rôles de ces deux 
lettres et l’on en conclut que, si V,- (<7,, . . ., qn ; o) est la valeur de 
la ilcmo fonction propre de l’hamiltonien du système à l’instant o, 
sa valeur à l’instant t est

—1111
(38) ’f'ds'i, •. qn\t) = e h TF,(yi, . .., </,, : o),

On le vérifie d’ailleurs aisément par un raisonnement direct. De 

plus, comme tout W est de la forme^ CjlFj et que tous nos opé-
i

rateurs sont linéaires, on en déduit facilement que, si

’r’Ctfi, •••,?«; o) = y]c<:,ïr;0/i! • • ?«;<>)
i

est la forme de l’onde 'F à l’instant o, sa forme à l’instant t est 
donnée par

— iu
(3g) ’f’(yi) • • -, qn ; 0 = e '' ,F(s,!> °).

Cette formule fournit, au moins théoriquement, l’expression géné 
rale de la solution de l’équation des ondes VF, qui prend une forme 
donnée à un instant initial donné.

5. Intégrales premières et déplacements d’ensemble du système. 
— Il existe un lien étroit entre l’existence des intégrales premières 
et l’effet des déplacements d’ensemble du système considéré. 
Envisageons par exemple un système soumis à des forces qui ne 
dépendent aucunement d’une des coordonnées x. Cela veut dire 
que, si l’on déplace le systèmes en bloc le long de l’axe des x d’une 
quantité quelconque Ax, le problème mécanique ne sera nullement 
modifié. Choisissons un certain système d’axes cartésiens : soit 
lF(#i, . . t) une solution de l’équation d’ondes du système
(supposé sans liaisons) dans sa première position; après le dépla-
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cernent d’ensemble Ax, on devra avoir la solution

d'Oi -4- A.t , yt, zt, .. xy-h Ax, yy, zy, t).
Donc,

M’( X1 -+- Ax, y,, z,, , , ,. xy -t- Acr, yy, zy, t) — tTQi , . . ., .zx ; t)
Ax

doit aussi être solution de l’équation de propagation. Si Ax est 
infiniment petit, cette dernière fonction est égale à

k

Px étant l’opérateur défini par (18). Donc, siV est solution, P^T) 
l’est aussi. Px est donc alors une intégrale première et nous retrou 
vons le théorème de la conservation de l’impulsion.

Supposons maintenant que nous ayons un système soumis à des 
forces qui ne dépendent pas de l’orientation du système autour 
d’un axe Og , de sorte que, si nous faisons tourner notre système 
en bloc d’un angle Acp autour de Oî, le problème mécanique n’est 
pas modifié. Repérons la position des corpuscules du système par 
des coordonnées cylindriques ©;, z-i autour de Oz. Alors, si 
’FfVi, . . ., Zy, t) est une solution de l’équation de propagation 
pour la première position du système,

'I (/'i, ~i-f-Acp, -St, • • ., Az, zyt')

doit aussi être solution dans le même système de référence et la
quantité

’t'p'i. ?| -4- A?, z 1, ■ . ry, ?X-|- Ao, .Sx; Q— S'(ri, ■ ■ ., zy\ t)
A Zi

est encore une solution. Si Acp est infiniment petit, cette dernière 
solution est égale à

k

l’opérateur étant celui qui a été défini par (19). Donc, si W est 
une solution en est une autre et par suite Mz est une inté 
grale première. Nous retrouvons ainsi la conservation du moment
d’impulsion.
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En particulier, s’il n’y a pas de forces extérieures, les trois 
grandeurs Mx, Mr, M- sont intégrales premières : une rotation 
quelconque du système autour de l’origine ne changera pas le 
problème mécanique et si W(cei, . . . t) est solution dans un 
certain système d’axes de coordonnées rectangulaires, cette même 
forme de solution sera encore valable après une rotation quelconque 
du système autour de l’origine; autrement dit on obtiendra une 
solution dans le nouveau système de référence en remplaçant dans 
VF. . ., Zy, t) les anciennes variables par les nouvelles.

On peut encore appliquer les mêmes idées à la variable temps. 
Il se peut, en effet, que les forces extérieures ne dépendent pas du 
temps ; c’est le cas que nous avons déjà maintes fois étudié. Alors, 
si l’on se déplace le long du temps d’une quantité quelconque A £, 
le problème mécanique n’est pas modifié et, siffr(^r1, . . . qn, t) est 
une solution, une autre solution est fournie par V(q4 . .. qn,t-\-At)

ainsi que par qn, t-1- A t) — »F( g u f)
A t Pour Al

infiniment petit, on voit donc que — - est solution. Or, ff; étant une

solution, ~ est égal à^-^H('F); donc H('F) doit être solution

quand est solution et par suite II est intégrale première. Nous 
retrouvons ainsi la conservation de l’énergie.

Présentons encore une remarque finale. Soit un système admet 
tant Mx M, et Mx comme intégrales premières et soit 'F une solu 
tion de l’équation d’onde qui soit fonction propre de M,,, M... et 
M- pour la valeur propre o. On obtient de nouvelles solutions 
pour les transformations infinitésimales ( i -f- iz M,r) ff’, ( i + is M, ) ff ' 
et (i + ie ) ff- correspondant à des rotations infiniment petites 
autour des trois axes de coordonnées. Ces transformations ne 
changent pas la valeur de W, puisque MX(*F)=: o, .... Donc une 
solution ffN qui est fonction propre des opérateurs Mx, M, et M- 
pour la valeur propre zéro, possède la symétrie sphérique puis 
qu’elle n’est pas modifiée par une rotation quelconque autour de 
l’origine. La fonction d’onde représentant l’état fondamental de 
l’atome d’hydrogène est un exemple de cette proposition.



CHAPITRE IV.
LA THÉORIE DU CENTRE DE GRAVITÉ 

EX MÉCANIQUE ONDULATOIRE (*)•

1. Définition du centre de gravité. — Nous avons rappelé 
l’importance que présente la notion de centre de gravité en Méca 
nique classique et le lien étroit qui unit cette notion au théorème 
de l’impulsion. Nous avons à examiner si ces circonstances se 
retrouvent en Mécanique ondulatoire. Nous rencontrons alors dès 
l’abord la difficulté suivante : la définition ancienne du centre de 
gravité par les équations

(O
Z

x = ——
jnLXi 2,

niiYi

Y =

tlliZi

Z =

avec

=2,
m = nii 

î

n’a plus ici un sens bien net, puisque les corpuscules du système 
ne sont plus à chaque instant bien localisés et que leurs coordon 
nées Xi, }'i, $i n’ont pas à chaque instant une valeur bien déter 
minée. Mais cependant les x-t,'y-t, z-, figurent dans les équations 
de la Mécanique ondulatoire ; elles y figurent comme des sortes 
de « variables aléatoires » représentant les localisations possibles 
des corpuscules. Il est donc naturel de conserver les équations (i) 
comme définissant les variables aléatoires représentant les locali 
sations possibles du centre de gravité.

(l) Plusieurs des résultats exposés dans ce chapitre sont dus à M. Jean-Louis 
Destouches.
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En adoptant ce point de vue, on est amené tout naturellement à 
passer des variables x,, . . .■, aux variables X, Y, Z, L, rn, 
Ç,, .... ;N, y )3, délinies par les relations (i) et par les relations 
suivantes :

■(2) £/=*/—X, = Y, Çt — Zi—’L (i = 1, N).

Les . . ., sont donc les coordonnées des N corpuscules du 
système dans leur mouvement relatif autour du centre de gravité, 
ces coordonnées ayant aussi un sens aléatoire. Par suite de leur 
définition même, ces 3N quantités sont lices par les trois relations

N N N

<3) A = X? mil, = o, B =2.C L ^= o.

Si donc on considère un espace formé par les 3N -+- 3 coordon 
nées rectangulaires X, Y , Z, ? 4, . .., ÇN, le point figuratif du système 
dans cet espace se trouvera toujours sur la multiplicité linéaire à 
3N dimensions définie par les équations (3), le reste de cet espace 
n’ayant pas de sens physique.

Pour montrer que le centre de gravité ainsi défini possède la 
même propriété essentielle que le centre de gravité classique, nous 
considérerons une fonction quelconque o(xi, . . •, ~\) des coor 
données des N corpuscules du système (9 peut être la fonction 
d’onde ff;) et nous écrirons sa différentielle totale par rapport à
Xi,

(4)

X

.r, v, z 1

où S indique une permutation circulaire sur les lettres x, y, c. 
D’après (a), ceci nous donne

x
(5, S

X, Y, Z 1 
£, v;. ^

Mais, à cause des relations (3), les dlj, dru, <Ki ne sont pas indé 
pendants et l’on peut exprimer trois d’entre eux, mettons d£yi dr,y
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et en fonction des autres. On trouve ainsi

(6)
s, y,/..

*-S my OXy j

Comme, au second membre de (6), les différentielles sont mainte 
nant indépendantes, on a

(7)
<)l
dX

y
v
—

<k^
ÙXi ’

do
dX

-y i
-“i 0

do
h'i ’

'h
rïL

v
-V ±t,

et, la fonction o étant quelconque, nous pouvons écrire les rela 
tions entre opérateurs

(8.)
d

Jx
y ±

i < )■' i

à
7x

V JL2ltàyt'
N

() _ ^ à
à'L iàz-i

i

Posons alors

(9) Px Py  =
h d_ 

in i àX ’ Pz =
h d_ 

i - i d'L

Ce sont là les opérateurs corespondant aux composantes de l’im 
pulsion du centre de gravité. En comparant (8) à (g), on obtient

(10)

X X

1

et nous voyons que Px, PY et Pz sont identiques aux opérateurs 
de même nOm introduits au chapitre précédent, formule (18). 
On peut donc bien dire aussi en Mécanique ondulatoire que la 
quantité de mouvement totale du système est égale à la quantité de 
mouvement du centre de gravité.

Si le système est isolé, les trois grandeurs Px, PY, Pz sont, nous 
l’avons vu, des intégrales premières. Si les forces extérieures n’ont 
pas de composantes le long de Ox, Px est intégrale première, etc.

Par contre, nous ne pouvons pas dire jusqu’ici que le centre de 
gravité d’un système isolé se meut d’un mouvement rectiligne et 
uniforme, car le centre de gravité n’est défini jusqu’à maintenant 
que comme un point aléatoire dont la position instantanée, et par
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suite le mouvement, n’est pas bien déterminée. Nous verrons 
cependant plus loin que la « position moyenne » du centre de 
gravité est alors animée d’un mouvement rectiligne et uniforme. 
De même, nous ne pouvons plus dire ici que la quantité de mou 
vement totale du système dans son mouvement autour de son 
centre de gravité est nulle, théorème qui, en Mécanique classique, 
se déduit immédiatement des relations (3) par une simple déri 
vation par rapport au temps. Ici nous n’avons pas nécessairement

Nous ne retrouverons un résultat analogue au résultat classique 
qu’en nous plaçant plus loin au point de vue des valeurs moyennes.

2. Théorème de Kœnig relatif à l’énergie. — Nous allons main 
tenant chercher à écrire l’équation de propagation en employant 
au lieu des variables xu . . ., zy les variables X, Y, Z, .... 
Pour cela, nous pouvons utiliser un théorème qui est l’extension à 
la Mécanique ondulatoire du théorème classique de Kœnig relatif 
à l’énergie cinétique.

Th é o r è me . — Pour écrire la partie cinétique de Vopérateur 
hamiltonien d'un système, il suffit d'ajouter Vhamiltonien 
cinétique relatif au mouvement du centre de gravité et V hamil 
tonien relatif au mouvement du système autour de son centre 
de gravité.

Une première manière de démontrer ce théorème consiste à 
considérer les relations (3) comme exprimant des liaisons entre les 
3 N + 3 variables X, . . ., çN. On a classiquement

N

( K2 -s- \2 -f- Z2 ) y i; z. c)
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La dernière parenthèse étant nulle en vertu des équations (3), 
nous retrouvons l’expression classique du théorème de Kœnig; 
elle nous fournit pour l’expression du ds- dans notre espace de 
configuration de la Mécanique ondulatoire

M
r/s- = -+- <IY* -+- f/'L”-) -+- <h\i -+-</£/)•

Le laplacien généralisé dans cet espace de configuration est donc
N

, . I [ r)1 à1 />- \ 1 / d'- à- à'1 \
(ii) + ^ + + +

i

ce qui nous conduit aisément à
N

(m) Hein. = (px ■+• pr -+- pz) (pL ^ P‘L -*~PÏ>)’

avec les notations toutes naturelles

C1'*) P
h à h à h à

------- . -T3-J Pr,i=------------- ■ 1---- > P",i =---------------: -7T‘■y.T.i dit 2 5ii <)i\i '2.7*1 à,i

Le théorème annoncé est exprimé par (12).
Mais nous voulons développer une autre manière plus détaillée 

et plus instructive de faire cette démonstration. Nous partons 
toujours des formules (1), (2), (.3). Si nous désignons par 
o(\, Y, rL, ct, . . ., Çx; t) la fonction obtenue en substituant dans 
l’expression .... %; t) de la fonction d’onde du système
les valeurs des x.,, . . ., en fonction des X, . . . ,-N, on trouve 
aisément
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d’où l’on tire
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a n / u

(i5) V _L £? _ JL 4-V1 _L_ __ 1 ( "V —
' >-J,; mt Oxf m à\- —iI mt i)Çf ni y <)\k

L’équation d’ondes du système qui était avec les variables 
X\ ! • • ■ ) Zy

(16 )
h iPF 
■ir.i àt

' x
V -1

m— (P% Ph +PÎï) -+- U(x,, O T

devient donc avec les nouvelles variables

(I7) èn'i = S •y.
2 M;

I
2 y

s,5!.

On obtient ainsi une équation de propagation dans l’espace à 
3N + 3 dimensions des variables X, ■ ■ ., Zy dont les solutions 
n’ont, d’après (3), de sens physique que sur la multiplicité (i) 
définie par

08) (2) A = B = G = o.

On peut alors se demander comment, étant partis de définitions 
qui impliquent les relations (18), nous avons pu obtenir une 
équation de propagation valable pour toutes les valeurs des 
ru, Zi meme en dehors de (2). Gela vient de ce que, si nous 
avions posé, au lieu de (2),

(2') xi—X-h a, T)i = y,— Y + 4, Zt = Si—Z -+• c,

a, b, c étant des constantes quelconques, notre raisonnement 
précédent n’aurait été aucunement modifié, les constantes a, b, c 
disparaissant lors des dérivations. Or, avec les définitions (2'), on
aurait

(3') X “j B ='£miTU=b,
i i

C = 2WG«=
i

et, en donnant successivement à a, b, c toutes les valeurs possibles, 
la multiplicité (2) balaierait tout l’espace des 'fi, vn On com 
prend ainsi pourquoi les relations (3) entre coordonnées sont plus
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restrictives que l’équation de propagation obtenue à partir de ces 
relations par des dérivations.

Nous venons d’obtenir une équation de propagation (17) valable 
dans l’espace à 3N + 3 dimensions X, . . ., £x, dont les solutions 
n’ont de sens physique que sur la multiplicité (2). Profitant de 
celte dernière circonstance, nous pouvons faire disparaître dans
l’équation (17) le terme en 77^ ^ Y ^açon a ^tomber

sur le théorème de Kœnig. A cet effet, nous introduirons les nou 
velles variables

(19) «;= Vi—-r,i------ 1 ------ 1

immédiatement calculables en fonction des ;, rh Ç, puis les moments 
conjugués

(20) p„.= h ù_ 
•>,~i <!u.. ’

h _<l_
a TT i ài’i ’ ]>vi =

h _d_ 
2 - i dwi

Considérons la fonction <I»(X, Y, Z, £1, • . ., -x; t) obtenue en 
remplaçant dans l’expression de © les variables £H, par les
variables «1, . . ., (% respectivement, de telle sorte que

(•«) 1»(X, Y, Z; c,, .... /) = ?(*, V, Z; ..., wy t),

«i, . . ., ws étant remplacées dans © par leurs expressions (19). 
Sur la multiplicité (2), A, 15, C étant nuis, vi et 07 coïncident 
respectivement avec £,, z, et tj et <1> coïncide avec o.

Or, on a

1 1

I
•?. m

' N
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On a donc

(24)
C (±n+y -i-p?
U \ irn ._J i'11111 "

i,rb';

U <I»(X, Y, Z; ?„ ....îs; O

',r,z \ 1

x ? (X, Y, Z ; ui, . .., tv\ ; t).

2/"* + u
s 1 /

Si l’on compare cette équation avec l’équation (17), on voit, en 
tenant compte de (21), que le second membre de (a/j) est égal à

(25) h à 
2 r. i ôt 
h à

2 7. i 6U

ç(X, Y, Z; 

4>(X, Y, Z;

"u

y

, «w ; t )

, ix; /).

L’équation (2.4) peut donc s’écrire

(26) h.
2 - i <)t

Gomme la fonction <6 coïncide avec 9 sur la multiplicité (2), on 
peut considérer l’équation (26) comme l’équation d’ondes du 
système. Le théorème de Kœnig énoncé plus haut résulte alors de 
la forme du premier membre de (26).

En résumé, nous pouvons profiter du fait que la fonction 
d’onde dans l’espace X, ...,£* n’a de seus que sur (i), pour 
écrire l’équation d’ondes sous la forme qui correspond au théorème 
de Kœnig. Gela revient à choisir parmi l’infinité des fonctions 
d’onde qui ont même valeur sur (2) la fonction d’onde <D. Cette 
fonction *ï» jouit de la propriété exprimée par les relations

(27) 2. dru-

propriété dont 9 par exemple ne jouit pas. On voit, en effet,



aisément que
N N

V1 d? V dï’
2Li<r^i
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(2,S)

tandis que l’on a

_ dV 
,)it ~ ,)Xi ’

s d<I> _'y <lnk jd?/ »i,\ __ Oo /«,■ xri

2 * Ou ZjkOuk 0\i Zlk <)uk VU m / Oui m 2j
às

k Ouk ’

d’où résulte immédiatement la première relation (27), les deux 
autres se démontrant de même. Ainsi, en Mécanique ondulatoire,

N

on n’a pas la relation opératorielle ^ o, qui correspondrait
l

N

à la relation numérique classique "V pt.= o; mais, néanmoins, si
1

l’on choisit pour fonction d’onde la fonction *ï>, l’opérateur 

appliqué à cette fonction donne zéro.

3. Exemple simple. —• Pour illustrer les considérations déve 
loppées dans le dernier paragraphe, nous allons étudier un 
exemple très simple où les représentations sont possibles dans 
l’espace à trois dimensions. C’est celui de deux corpuscules sans 
interactions assujettis à se déplacer sur une droite Ox. Il y a alors 
deux coordonnées qi : les abscisses x4 et x* des deux corpuscules. 
On a, pour l’abscisse du centre de gravité :

(!o) X = m.\ x1 H- i?u xt 

«1 ( m = «ii -t- m* ),

puis pour les abscisses des deux corpuscules, par rapport au centre 
de gravité,

(10
b = xv — x =

iî=x,— X =

m,
m
m*
m

xi- ra
«ii- Xt,

«ii ;i -t- nu f» = A = o.

avec la relation

(32)
h. d p BROdi.n:. 6
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On peut représenter l’espace X dans noire espace à irois
dimensions.

Dans cet espace, la fonction d’onde n’a de signification que 
dans le plan (2) défini par la relation (32).

Écrivons l’équation de propagation du système, avec les variables 
Xi et x2

Nous avons comme solution de (33) le produit des ondes planes

X

(Z)

Fig.

représentant le mouvement rectiligne et uniforme des deux cor 
puscules, c’est-à-dire

et toute solution de (33) est une combinaison linéaire de solution 
de la forme (34 )•

Passons maintenant aux variables X, ci, i-i- L’équation de propa 
gation devient, comme nous l’avons vu plus haut,

i ()- o i à- 9 i <)- 9 i/O 0 \2 !\~i
m 6>X- mi 0'-\ m-i Oçj /n\0£-, ô^-i) 1 h Ot

La relation (34) devient

[( )
(30)
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el il esl bien facile de voir qu’elle satisfait à ( 35 ), et cela à cause du
i (à à

ternie-------+ ivm\<rq i 0\i
Pour obtenir notre fonction <Ï*(X, %■,, t), nous devons rem-

A
placer dans l’expression de cp, A et £2 respectivement par — —

A , et 'r-,-----------D OUin

(87) «I*(X, Çi, ?■>, t ) = A0 e h LV-™i ïm.,J rn J;

et, d’après notre raisonnement général, (3^) est solution de

(38)

C’est d’ailleurs ce que l’on vérilie facilement.

1 à- *1» 1 ()-<I> 1 à1 <I> 4 ~ i 'AI>
ni >)\- mi i)‘r-\ m-i <)\\ h t)t

On voit ainsi que <J> ne vérifie l’équation (38) fournie par le 

théorème de Kœnig qu’en raison de la présence du terme en —

dans l’exposant de l’exponentielle (37). Mais, comme les fonctions 
d’ondes n’ont de sens physique que sur le plan A — o, cela n’a pas 
d’importance el l’on peut employer <I> à la place de <5. Si l’on 
représente le plan (2) d’équation A=o et la série des plans 
d’ondes des solutions cp et 0, on voit que l’on obtient les plans 
d’ondes <1* en faisant tourner d’un même angle tous les plans d’ondes 
de 9 autour de leur intersection avec le plan (2).

Mais ce passage des plans d’ondes de 9 à ceux de d», ne modifiant 
pas les intersections de ces plans avec (2), ne modifie pas les 
valeurs de la fonction d’onde dans le plan (2); or, ce sont ces 
valeurs seules qui ont un sens physique.
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Comme toute solution de l’équation d’ondes peut être représentée 
par une superposition d’ondes planes monochromatiques, on 
voit qu’une solution quelconque pourra être représentée dans le 
plan (2), aussi bien par une solution $ que par une solution o.

4. Théorème de Kœnig relatif au moment d’impulsion. — Nous 
venons de démontrer l’analogue du théorème de Kœnig pour 
l’énergie cinétique. Existe-t-il aussi en Mécanique ondulatoire 
l’analogue du second théorème de Kœnig relatif au moment de 
quantité de mouvement ? Nous allons montrer qu’il y en a un.

En effet, soit le moment d’impulsion total du système autour 
d’un axe Oz. L’opérateur correspondant est, nous le savons,

x

Introduisons les variables X, V, Z, . . ., Nous aurons

N

(io) m= = -T7ï-2,. | X Or. ' V

d’où, en tenant compte de la première relation (il) et de la rela 
tion analogue en y

(40 M: (X + 0) » H <)
or dy

(Y +v,) >)
i>\

puis, en simplifiant et en tenant compte de (3)

N

1

On a naturellement des formules analogues en Mr et Mr et l’on 
peut énoncer le théorème.

Th é o r è me . — On peut former l'opérateur correspondant à 
l'une des composantes rectangulaires du moment d'impulsion



total d’un système en ajoutant l’opérateur correspondant au 
moment d’impulsion du centre de gravité et Vopérateur corres 
pondant au moment d’impulsion dans le mouvement autour du 
centre de gravité.

Ce théorème est l’analogue du second théorème de Kœnig.
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5. Point de vue des valeurs moyennes. — Nous allons mainte 
nant nous placer non plus au point de vue des opérateurs, mais à 
celui des valeurs moyennes.

La formule donnant la dérivée d’un élément de matrice

(i'i) «;/=yV/[^ ■+■ —jp (Ail — HA)J w,(k

[où l’intégrale est prise sur la multiplicité (2) définie par 
A = Il = C = o | montre que

(il)
•>. - i 
~7T {A11 — HA) MV-.

comme on le voit immédiatement en remplaçant W et lL* parleurs 
développements suivant les T,.

Si alors nous considérons l’opérateur X, qui correspond à la 
coordonnée X du centre de gravité, on a

(i"')
d\
777 AH — H Y) (i~.

Or, comme on peut poser

H = — l>x .> ni
/y

Ht :2 ni d.v +- • ■’

où les termes non écrits commutent avec N on a

( 1<>) Alt- | | \ >■ ( \ » . XA ld d
ÎS -- ni \ OXr OX* / /,-dm dX

d’où

(i;>
d\
777

= -[- f
7/1J

(-£*) W th =
J ni
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Si Px est une intégrale première (résultante des forces extérieures 
nulle dans la direction des x), l’intégrale du second membre 
de (4ÿ) est une constante V,. et l’on a

(48) X = Yxt -t- X0.

Donc alors la partie moyenne du centre de gravité est animée le 
long de l’axe Ox d’un mouvement rectiligne uniforme.

Si les forces extérieures sont milles, Px, PY et P7 sont nulles et 
la position moyenne du centre de gravité est animée dans l’espace 
d’un mouvement rectiligne uniforme.

Il est facile de voir qu’en se plaçant au point do vue des valeurs

moyennes, nous avons une relation = o analogue à la relation

classique ^/»j.= o, alors que nous n’avons pas ^o si les/q. 

sont les opérateurs de la Mécanique ondulatoire. On a

N N

(49) CL
dt nii d-,

dt'1 2,
II

Or H, d’après le théorème de Kœnig, ne contient comme terme ne

. 2 ~ i ) 2 nii ()l 7
. h \ - i à- ,,

commutant pas avec cj que I t z ~-)------- ^ el 1 011 trouve, comme

en (46), 

(5o)

d’où

(50

4 --nii <J-,i

d_ 
~dt.
,y m-=y /V 1 f. h:i)'\-d,

J mi\ d'.i)

\ i /

Or en vertu de (3) H; = o constamment, et par suite

(52) t, I »F d~. = o.

Le premier membre de ( 5 i ) est donc nul et il doit en être de même
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du dernier membre, ce qui s’écrit

(53) 2-/,5i'=0'
1

C’est le résultat annoncé.

6. Séparation du mouvement du centre de gravité et du mouve 
ment autour du centre de gravité. — En Mécanique classique, on 
a le théorème suivant lequel le mouvement du centre de gravité

N

s'effectue comme celui d’un point matériel de masse M = 'V m;
1

qui serait soumis à la résultante générale F des forces extérieures

(5i) = F.

Dans un assez grand nombre de cas, ce théorème permet de 
séparer le mouvement du centre de gravité du mouvement relatif 
autour du centre de gravité. Néanmoins ce cas doit déjà ici en 
principe être considéré comme exceptionnel, car, si l’on se donne 
les champs extérieurs agissants, les forces et par suite la résultante 
des forces dépendent de la configuration du système autour de son 
centre de gravité, de sorte que le calcul du mouvement du centre 
de gravité par la formule ( 54) ne peut pas se faire indépendamment 
de l’étude du mouvement relatif. Mais, en pratique, il arrive souvent 
que les champs extérieurs peuvent être considérés comme sensi 
blement constants en grandeur et direction dans la région de l’es 
pace occupé par le système et que l’on puisse pour cette raison 
calculer la résultante des forces extérieures sans connaître la posi 
tion des points matériels du système autour du cenLre de gravité. 
C’est, par exemple, le cas pour les corps pesants de petites dimen 
sions dans le champ de gravitation à la surface de la Terre; c’est 
aussi le cas, du moins approximativement, pour les planètes dans 
le champ de gravitation du Soleil. De même un système de points 
matériels électrisés (tel que l’atome de Bohr conçu classiquement) 
dont on connaît la charge électrique totale, s’il est placé dans un 
champ électrique uniforme (ou du moins ne variant pas sensible 
ment sur des longueurs de l’ordre des dimensions du système) sera
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soumis à des forces dont la résultante est connue d’avance, car elle 
est égale au produit de la charge électrique totale par la valeur 
supposée uniforme du champ électrique dans la région qu’il 
occupe. On voit ainsi comment il est souvent possible de séparer 
le mouvement du centre de gravité du mouvement autour du 
centre de gravité.

Voyons maintenant comment la question se présente en Méca 
nique ondulatoire. Nous savons que l’énergie potentielle U d’un 
système est de la forme

(55) U(#, —-n ; O = 2 y,

oh la première somme du second membre représente l’action indi 
viduelle des champs extérieurs sur les corpuscules du système 
et la seconde représente les interactions des corpuscules entre 
eux, qui sont uniquement fonctions des distances entre les cor 
puscules.

En introduisant comme précédemment les variables X, Y, Z, 
4i, . . ., Ex, nous voyons que l’énergie potentielle prend la forme 
suivante

Dès lors, le théorème de Kœnig du paragraphe 2 nous donne

h dW
2 t . i dt
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Dans le cas général, la séparation du mouvement du centre de 
gravité et du mouvement autour du centre de gravité sera impos 
sible, parce aue, dans l’expression des “V;, les variables X, Y, Z sont 
mêlées aux variables relatives ti, ru, Mais il peut arriver que 
nous ayons affaire à un système dont les éléments sont très 
rassemblés autour du centre de gravité; alors lafonctionff'ne sera 
différente de zéro que pour des valeurs très petites des coordonnées 
relatives £;, ru, Ki, et ü pourra arriver que les LVi soient sensiblement 
constantes dans le domaine de variation des ru, Ç;, pour lequel 
W est différent de zéro. On pourra alors poser

(58) T = Wg(X, Y, Z, O'IV;?,, .... Sx, t),

en prenant pour ffh, et ff', des solutions des équations

;-X l'x . IS ;■ i'/: • V \.i. Z) vt\, ("X, Y, Z ; /] = h é't\, 
>, t . i àt

( 59) (.Pli-*-Ph +PÏÙ ^ W-)

.......

car, en multipliant la première par ff",. et la seconde par ffX et en 
ajoutant', le produit *F = ffXff', se trouve satisfaire à l’équation de 
propagation du système. De plus, l’ensemble des lFà, fournissant 
un système complet de fonctions de X, Y, Z et l’ensemble des ffX 
un système complet de fonctions de (h, ... ,^N, toute solution ff’de 
l’équation des ondes du système sera la somme de produits de la 
forme ffXff ',.CT 1

Dans le cas où les actions extérieures ne dépendent pas du 
temps, on aura des solutions monochromatiques de la forme

— K„< — F.,. £
(60) 'P\- = a., ( \ , Y, Z ) e u , T,.= ar(h, .... ?x ) e "

et par suite, pour le système entier, on aura des relations de la 
forme

Kl
(Or) V = ag(X, Y, Z)<rr(£«, ..Çx)e * (E = E„-+- E,.).

Dans le cas plus particulier encore où les actions extérieures sont
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milles (système isolé), on a, pour tF^, l’équation (')

(<>•->)

qui admet pour solutions les ondes planes nionocliromatiques

représentant les mouvements rectilignes et uniformes du centre de 
gravité dont les quantités de mouvement sont l’x, l’y, V, et l’énergie

P A + Pi • I'/E m

On a alors pour le système des solutions de la forme

On voit donc qu’ici. comme en Mécanique classique, le centre
de gravité d’un système isolé est susceptible d’un mouvement 
rectiligne et uniforme, avec cette addition particulière à la Méca 
nique ondulatoire que l’on peut avoir une « superposition » de 
mouvements rectilignes et uniformes du centre de gravité corres 
pondant à une solution de la forme générale

E,.i(— l'xX — P, Y —l’zZ]
(6â) ly)e

Vx, l'y, 1'/.

Nous allons rencontrer ici une circonstance analogue à celle que 
nous avons précédemment signalée dans le cas d’un système sans 
interactions. Désignons par a;!’, .... a;"’, . . ., les fonctions propres
de l’équation du mouvement relatif. La solution la plus générale 
de l’équation d’ondes du système pourra s’écrire

/d I'x .Py .Pz

avec Eg- = P*-H Pi-H Pz et cette solution (66) ne peut pas en2 ni

(') Où Px, Py, Pz sont les opérateurs (9).



général se mettre sous la forme du produit d’une fonction des 
coordonnées relatives par une fonction des coordonnées du centre 
de gravité. Cependant, si le système n’a jamais été soumis à aucune 
action extérieure ayant pour effet de lier momentanément le mou 
vement du centre de gravité au mouvement relatif autour de ce 
centre [par suite de l’existence de termes d’énergie potentielle de 
la forme ^(XY + y ],-, Z-f-Ç,)] l’onde W sera nécessaire 
ment de la forme 1Fg-(X, Z) ÎN). Une solution de la
forme générale (f)6) ne peut se présenter que si le système a été 
antérieurement soumis à des actions extérieures liant le mouve 
ment du centre de gravité au mouvement relatif autour du centre 
de gravité, de telle sorte qu’ensuite ces deux mouvements ne soient 
plus indépendants.

Dans le cas où la solution est de la forme *F( ùFg-, ondoitnormer 
la fonction d’onde en posant

(67) «F '2 dX d\ dZ, rfs, ... tfÇx = 1,
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l’intégration étant faite sur la multiplicité (2) définie par les 
équations (3). Mais, comme ’F» et *1, dépendent de variables diffé 
rentes, on peut supposer qu’on les a normées par les conditions

(08 ) fTA, 2 dX d\ dZ = 1, f »I\. 2 d; [ . . . <Cn = 1 ■
J ' ' Jp)

La quantité | 'F\-dX . . . étant la probabilité pour qu’une 
expérience conduise à attribuer au centre de gravité une certaine 
position (dans l’élément dXdYdL) et au système une certaine 
configuration autour de ceLte position, si l’on ne s’intéresse qu’à 
la position du centre de gravité et non à la configuration du 
système autour de ce centre, on pourra dire que

(fia) lF 2</(, ...dly
('-)

dX cfX dZ

est la probabilité de présence du centre de gravité dans l’élément 
de volume dX dY dï. Cette expression est égale à

| IF „ 12 dX dX dZ ( I AF ... dX, N = T „ 2 dX dX dZ,
J('-)(7°)
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d’après (68). La fonction Hfg permet donc de décrire le mouve 
ment du centre de gravité de la même manière que la fonction lF 
d’un corpuscule décrit le mouvement de ce corpuscule. Nous 
retrouvons là la même idée qu’en Mécanique classique. En d’autres 
termes, quand le mouvement du centre de gravité et le mouvement 
relatif du système autour de ce centre peuvent être « séparés » 
l’un de l’autre, le mouvement du centre de gravité peut être repré 
senté comme étant celui d’un corpuscule fictif de masse m égale à 
la masse totale du système pour lequel il existe une fonction d’onde 
dont le carré du module donne la probabilité de localisation en 
chaque point.

Celte circonstance ne semble pas se retrouver quand on cherche 
à constituer une Mécanique ondulatoire relativiste des systèmes. 
Même quand il est possible de définir sans difficultés le centre de 
gravité, il ne paraît pas possible de trouver une fonction d’onde 
jouissant de la propriété fondamentale que le carré de son module 
donne là probabilité de localisation du centre de gravité en chaque 
point. C’est là une circonstance qui semble devoir jouer un grand 
rôle en théorie du photon, mais c’est un sujet que nous ne pouvons 
aborder ici.

7. Mouvement d’un système de deux corpuscules par rapport à 
des axes de référence de directions fixes liés à un des corpuscules 
du système. — Il est souvent commode, en Mécanique, classique, 
d’étudier le mouvement d’un système de deux points matériels 
isolés en se servant, comme référentiel, d’axes de directions fixes 
(par rapport à l’ensemble des étoiles) dont l’origine coïncide tou 
jours avec l’un des points matériels. Dans ce système de référence 
qui, en général, n’est pas Galiléen, car le point matériel pris pour 
origine est en général accéléré, les équations gardent une forme 
simple. C’est ce que montre le théorème bien connu suivant :

« Si l’on repère le mouvement d’un système de deux points 
matériels isolé à l’aide d’axes de directions fixes dont l’origine 
coïncide constamment avec l’un des points matériels, le mouve 
ment de l’autre point matériel est donné par l’équation classique 
F = p.y(comme si les axes de référence étaient Galiléens), mais à 
condition d’attribuer à ce second point matériel non pas sa masse
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réelle 7n2î mais une masse réduite définie par la formule

T I I JH\ nu<711 - =------- !-------ou ;x = -------------------- 5
' ;j. ni\ ni» ni 1 -+- ni»

m 1 étant la vraie niasse du point matériel choisi comme origine ».

La démonstration de ce théorème est très simple. Les équations 
du mouvement dans un système Galilécn sont, en n’écrivant que 
ce qui concerne l’axe des x,

( m, il- X |

~dF IJ !.. mi il'1

1/t1 = (Fîl).C!

avec (Fi.>).r = — (l'ai).,, d’après le principe d’égalité entre l’action 
et la réaction. En prenant des axes de directions fixes dont 
l’origine coïncide constamment avec le point matériel numéroté i 
et en désignant par u, <>, w les coordonnées du deuxième point 
matériel dans ce système, on a

(73) ill1~i'f) '■
fl1

ilt1

1
m, l/h-<Y t

(Fi.),

ou, d’après la définition ( — i ),

( 71 )
il'1 u
ilt1

- =<1^0,

et deux équations analogues en e et en w. Le théorème est donc 
démontré.

On sait que M. Bohr s’est, servi de ce théorème dans sa théorie 
quantique primitive de l’atome pour expliquer la variation de la 
constante de Rydberg, quand on passe par exemple de l’hydrogène 
à l’hélium ionisé. Dans cette théorie, en efiét, on emploie, confor 
mément aux méthodes de l’ancienne théorie des quanta, les équa 
tions de la Mécanique classique, que l’on complète un peu artifi 
ciellement par des conditions de quanta. Si l’on considère un 
atome d’hydrogène formé d’un proton de masse M et d’un électron 
de masse m et si l’on considère le proton comme restant immobile 
à cause de sa grande masse (M = 185o m environ), on trouve par la 
théorie de Bohr la formule fondamentale suivante, pour les énegies 
des états quantifiés de l’atome H, e étant la charge de l’électron

-,
.,7») =--------- x t t - (71 = 1,2,...)/t- /!-
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et les différences de ces énergies quantifiées, divisées par la cons 
tante h de Planck donnent les fréquences des raies de l’hydrogène, 
conformément à la « règle des fréquences » énoncée par M. Bohr

(76)
î^/ne* / 1

h3 I h '
1

11' («'> n).

En rapprochant celte loi de la loi expérimentale de Balmer don 
nant les fréquences des raies de l’hydrogène atomique, savoir

(77) «),

où n eL n1 sont entiers et où R est la constante de Rydberg, on 
voit que la théorie de Bohr permet d’interpréter la loi de Balmer 
si l’on a numériquement

et celte relation est en effet très approximativement vérifiée. Cette 
vérification fut le premier grand succès de la théorie de Bohr.

Si l’on refait le même calcul pour un atome d’hélium ionisé 
formé d’un noyau d’hélium de masse quadruple et de charge 
double de celles du noyau H, on trouve, pour les énergies des 
étals stationnaires quantifiés,

, ,, 2 me1 , ,(79) h„ =-------p—x 4 (n = 1,2,...);

d’où

(80) 'inn 2 x- me3

h:3 x 4 1
n'1

( n! > n).

Les résultats expérimentaux de la spectroscopie permettent, à 
l’aide de cette formule, de calculer la constante R. Or, on trouve 
ainsi une valeur un peu plus grande que celle qui convient pour 
le spectre de l’hydrogène : on a, en effet,

R11 = 1,096 78. io5 cm—1

d’où
(81) ^=i..oo4,

H|I

et Un,. = 1,01)7 ?.•?.. 1 or’ cm—1,

Rh ,:— Ru ,

Cette différence entre Rn et Ru,, s’explique très bien, comme l’a
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montré M. Bohr, si l'on tient compte du mouvement du noyau. 
Si l’on tient compte de ce mouvement, on peut en effet refaire 
tous les calculs précédents dans un système d’axes liés au noyau, 
mais à condition d’attribuer à l’électron la masse réduite p fournie 
par l’application de la formule (71 )

M étant la masse du noyau. On aura alors

(«3) ■•'« = -

ce qui donne

f «d )

On trouve aisément 

rn.Mn

h- 'hm ' —
9. U. e y / I

k-’ V n- n'-

R = h'

(85) un

puis

/«.Mu
;_;m i—-..-b p„c = V1 

III —I— AI 1 [ \ M n / ni -+- iMiie

13 Un _ [Min

ldi pu
Mm- / 1 i-----  ^i + m b.----- -TT— l=illl \Mh  Mlle

3 m
4 M7i’

Mi,
1 > n,— R K ! ni 'i t

K u 4 M„ iX5o ^4.10-

L’accord est bon et la variation de la constante de Rydberg, 
quand on passe de H à He, est ainsi expliquée.

Nous avons maintenant à nous demander si l’on peut transposer 
les considérations précédentes en Mécanique ondulatoire. La 
réponse est affirmative, comme nous allons le voir en démontrant 
le théorème suivant de Mécanique ondulatoire.

« Si le mouvement d’un système isolé formé de deux particules 
est repéré à l’aide d’axes de référence de directions fixes dont 
l’origine est liée à la première particule, le mouvement de la 
seconde particule par rapport à ce système de référence non 
Galiléen est décrit par la même équation d’ondes que si le système 
de référence était Galiléen et si la seconde particule possédait la 
masse réduite définie par (71 ). »
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En effet, le système considéré étant par hypothèse isolé, nous 
pouvons séparer le mouvement du centre de gravité du mouvement 
relatif autour de ce centre et l’équation d’ondes pour le mouve 
ment autour du centre de gravité sera, d’après le théorème de 
Kœnig,

(87)
9. m 1

q- = izitW
T ~oi

Introduisons notre système de référence lié au premier corpus 
cule; les coordonnées du second corpuscule sont alors

(88) « = p = T-.,— T]|, w = L—7i,

et si ’F ( w, e, w, t) est la fonction d’onde dans le mouvement relatif 
dans ce système de référence, on aura

| cfiF dï' Ou d'F d»T Ou d>r
) ' Ou 01 ; Ou ’ dfi Ou 0\u Ou

(P T d-»F
( Cr ' Ou- ’ ou Ou- ’

relations analogues pour les dérivées relatives aux

(Sy)

ri et Ç.
L’équation de propagation devient donc

(90)
SL ——''l pi (lr ) -+- U( a. p, w 1 *r = ——. ■ 

r“' - -i.r.i 01

Pu ■■
h 0 

>. t . i Ou

ou, en introduisant la masse réduite (71)

(91) ^ + p, pp)'I’= h (PY 
i Ot

C’est bien l’équation d'ondes du second corpuscule supposé 
doué de la masse [J. dans un système Galilcen. Le théorème énoncé 
plus haut est ainsi démontré.

Ce théorème permet de retrouver immédiatement le résultat de 
Bohr sur les variations de la constante de Rydherg. Si l’on consi 
dère en Mécanique ondulatoire un atome contenant un noyau et 
un électron et si le noyau est supposé fixe et portant la charge
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positive Ne (e étant la charge de l’électron en valeur absolue), 
états stationnaires de cet atome sont les valeurs propres de l’éq 
tion

<«•> S

.v,y,z

où pr —------ %■ et où /• = Jx--f- y2 -+- z2 est la distance de
' 2 r. i àx v

l’électron au noyau. M. Schrodinger a le premier calculé ces 
valeurs propres, qui sont

. ... ., ni N2 eK
(9^) K =-------- ~nÿ~fvL =

Si l’on fait N i, on a le cas de l’hydrogène ; si l’on fait N = 2, 
on a le cas de l’hélium ionisé. On retombe donc exactement sur le 
résultat primitif de Bohr avec la valeur (78) de la constante de 
Rydberg. Pour expliquer la différence entre les valeurs expéri 
mentales de R pour l’hydrogène et l’hélium ionisé, il est donc 
toujours nécessaire de tenir compte du mouvement du noyau, ce 
que l’on fera en utilisant le théorème précédent. Dans le système 
d’axes de directions fixes liés au noyau, l’équation d’onde sera

(94) S 4^ p“( **+ u ( ^H~ + + wl )11
h <hT 

2 t . i àt ’

p étant la masse réduite. Cetle équation étant la même que (92), 
avec un changement de nom des variables et avec substitution de 
[i à m, on trouve ainsi la valeur (84) de R, d’où l’on déduit comme 
précédemment (85) et (86), c’est-à-dire que l’on retrouve en 
Mécanique ondulatoire l’interprétation des variations de la cons 
tante de Rydberg proposée par M. Bohr dans le cadre de l’ancienne 
théorie des quanta.

L. DK BROOLU5. 7



CHAPITRE Y.
EXEMPLES DK PROBLÈMES EX .MÉCANIQUE ONDULATOIRE 

DES SYSTÈMES.

1. Choc d’un corpuscule contre un rotateur (Fermi). — La 
Mécanique ondulatoire des systèmes décrit donc, autant que 
décrire se peut en Mécanique ondulatoire, l’évolution d’un 
système dans le cadre de son espace de configuration. L’espace de 
configuration étant en général à plus de trois dimensions, il est, la 
plupart du temps, impossible de se représenter l’évolution de 
l’onde W dans ce continuum. Tl n’en est que plus instructif d’étu 
dier en détail un cas où l’espace de configuration n’a que trois 
dimensions. C’est ce qu’a fait, il y a plusieurs années déjà, 
M. Fermi, dans le cas du choc d’un corpuscule contre un rotateur 
plan. Nous allons exposer cette étude.

Par définition, on appelle « rotateur plan » un point matériel de 
masse M assujetti à se déplacer dans un plan ,z;Oy en restant à une 
distance fixe R d’un point O que nous prenons comme origine des 
coordonnées rectangulaires dans ce plan. Le rotateur est caracté 
risé au point de vue mécanique par son moment d’inertie J = MR-. 
Nous supposons qu’un corpuscule de masse m, dont le mouvement 
initial s'effectue suivant la droite du plan xOy faisant l’angle ^ avec 
l’axe Oa?, vienne passer au voisinage du rotateur, de telle façon 
qu’une interaction, un choc au sens large du mot, ait lieu entre 
les deux. Nous désignerons par x et y les coordonnées du cor 
puscule, par 9 l’angle polaire définissant la position du rotateur, 
par U(x, y, 9) la fonction potentielle représentant l’action 
mutuelle des deux constituants du système. La fonction U sera 
supposée n’ètre différente de zéro que pour les valeurs très petites 
de x et dey et présenter par rapport à 0 la période 27r.

Ceci posé, le problème à résoudre est le suivant : sachant qu’au
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début de son mouvement, le corpuscule, dont la masse est m, a un 
mouvement rectiligne et uniforme dans la direction du plan xOy 
qui fait l’angle ^ avec Ox, déterminer les divers résultats pos 
sibles du choc entre le corpuscule et le rotateur.

La force vive 2 T calculée à la façon classique est

(1) :>T = m{ x- y-) -1- J 0-.

11 est donc tout indiqué de former un espace de configuration à 
l’aide des variables

(2) %=\]mx, Ti = sfmy, ^ = v/j 0,

car alors la force vive devient

(3) 2T = ?*--!-t ,s h-Ç*.

On a donc

(4) mu = 1, mik= o 'mik\= \.

L’équation de propagation des ondes dans cet espace de configu 
ration euclidien est donc simplement

(3)
«
<)?- U (5, r„ 0]1; = <).

La fonction U (£. v, K) est nulle dès que E et c ne sont pas tous 
deux très petits et présente la période 27ïy/j en Ç.

La fréquence de l’onde V étant v= nous pouvons écrire

(6)
8--
h-

E»F =— \ (P
avec

et, par suite, l’équation (5) peut se mettre sous la forme

(7)
<r- <r <)■- >r 1 ,pw
dÇ- drt- dZ,- V- dt- Z)W.

En raison du fait que U n’est différent de zéro qu’au voisinage 
immédiat de l’axe des Ç et qu’il est périodique en Ç avec la période 

27rp J, tout se passe comme si l’axe des Ç.jouait dans l’espace de 
configuration à trois dimensions £, rj, Ç le rôle d’un réseau à une 

dimension de période spatiale 27rp\J, susceptible de diffuser l’onde
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ff" incidente. Celte remarque très ingénieuse de M. Fermi va nous 
permettre de calculer la diffusion subie par l’onde ff1' incidente 
quand elle passe près de Oç.

Avant tout, nous devons trouver la forme de l’onde W incidente 
dans l’hypothèse adoptée. Remarquons d’abord que l’onde ff'i, qui 
représente le corpuscule incident dans son mouvement initial, est

(«) *Fi = ai e k
[Kj /— mt’C s*^.r —m'’sin / v]

“T“[Ki l~v'* E»C sy.Ç —v'ïKiSin '/.al

E( étant l’énergie du corpuscule incident; car, en passant des 
variables x et y aux variables \ et r), on a

mv x = m pÇ = \/?,Ei E,

et de même pour mvy.
Soit maintenant w0 la vitesse angulaire initiale du rotateur. 

L’onde 'F2(0) du rotateur est

(\) f>. h
..)cü„0l 7 11'-,: v -ù

où E2= ' est l’énergie initiale du rotateur. On a tenu compte

de Jw„0 = y/aE2Ç. Pour justifier (9), il suffit de remarquer que 
ff'2 est solution de l’équation

(u>)
r)’-'F
<K-

8--

If
i; T = o

pour E = E2, cette équation représentant le mouvement à énergie 
constante du rotateur isolé. Mais V2 doit être une fonction uni 
forme de Ç, c’est-à-dire reprendre la même valeur quand Ç aug 
mente de insjS. Ceci exige que

(11) ^ y/:>.E2.?.K \fî = n.in (» entier)

ou
, 1 , , n-h- , .
ii'O E,= - J(Oû = pj (n = 1, 2, . . . ).

C’est la formule bien connue donnant la quantification du rota 
teur. La vitesse angulaire initiale co0 du rotateur doit satisfaire
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l’équation précédente; autrement dit, l’état initial du rotateur est 
nécessairement quantifié.

Nous obtiendrons maintenant la forme initiale de l’onde 'F du 
système rotateur-corpuscule, en faisant le produit de *F2, par 'F,,

(i3 ) 1F(', y ). f ) = a, a» e 71
■■•»'/-r, »lo •/'-» ïK, il

Posons alors

(Ü K., ' si il a = V - h 
" " v '-TTk TTbô '

L’expression de l’onde incidente devient ainsi
_ T Kt-t-K., ssin a t r, sin / sin a — ^ n s a I

(i5 ) *T = a e I- h A L

E H- Koù - ' -jj- -■ = v est la fréquence de l’onde M'. Celte onde ( 15) repré 

sente dans l’espace de configuration une onde plane do fréquence v 
et de longueur d’onde /. dont la normale fait l’angle a avec OÇ.

F‘g- i-

A-!,0.N = a.

\ on = y

On peut alors, d’après la remarque de M. Fermi, considérer 
l’interaction entre le rotateur et le corpuscule comme produisant 
une diffusion de l’onde lF dans l’espace de configuration et les 
directions de diffusion privilégiée sont données par la relation



d’accord de phase correspondant à l’existence d’un réseau de 

périodicité 2.Tiy.f le long de l’axe Oï, savoir 

(i(i) •>. - \j~S ( cos x'—cos a)=AÀ (/rentier),

comme cela se lit aisément sur la figure suivante :
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Fig. 5.

OÂ = AB = iîG = 2-V/j 
\n\> — A> A j = A B ( cos a — cos a)

Après l’interaction, l’onde 'F aura donc la forme
^ _ TK, -U K H *'.is [’sin —-r, sin ’// stn O.'—sCi sCC,'j

(17) T = ri ez', y') e L h /. J,

l’angle '/! pouvant prendre toutes les valeurs et l’angle a' les 
valeurs définies par l’équation ( 16).

En revenant aux variables x, y, 0 et en remplaçant 7, par sa 
valeur, on peut remplacer (17) par

fl N I *F = ^ c( a, y' )

n\ /'
| (Kj -• K„i l — v ~ ■ i‘-i — K., ' (e s y/sin a’ .r-f- sin ’/' sin a’ v) 4- v - J (Kj -h  K2', c o s  OC'Ol

x e '
K ]’

La fréquence v = Jt de l’onde n’est pas modifiée par la

diffusion, ce qui exprime ondulatoirementla conservation de l’éner 
gie. Si l’on détermine par une expérience les états de mouvement
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du corpuscule et du rotateur après l’interaction, on trouvera 
nécessairement, d’après les principes de la Mécanique ondulatoire, 
des états de mouvement représentés par l’une des ondes planes

monochromatiques de la somme ^ en ( 18). Or, l’une de ces ondes 

planes représente un mouvement du corpuscule d’énergie Ej et de 
quantité de mouvement ^mE' égale à ^«(E, H- E2) sin a'; ce 
mouvement a donc une énergie Ej = (Ei + E2) sin-’a' et il s’effec 
tue dans la direction du plan xOy défini par l’angle yj avec l’axe 
Ox. La même onde plane correspond à un mouvement du rotateur 

d’énergie E', et de quantité de mouvement y/ïJEj égale à 
\/2 J (E2-f-E2) cosa'; ce mouvement du rotateur correspond donc 

à une énergie Ej = (E, E2 ) cos-a'. On vérifie de suite la conser 
vation de l’énergie

( 19) Ej -+- Ej = (Ei -4- lî, ) ( sin-a'-t- cos-a' ) = K, -H F.».

De plus, des équations ( 16) et ( 14), on tire aisément

, , 1 , h(20) cosa=cosa-i---------— k -
2"t/j t/'ffF.+ lv,

Or, d’après ( i4) et (12),

. / lî-, i nh

d’où
/ \ /~------TT" . ( II -i- k ) il(22) v Ei -+- 1% c.os 2 = ------- ----->

2 T. S! 2.1

et finalement
. . T,, , _ _ . • , ( Il k )-h-(23 ) F, = (E, -t- E» ) cos-a =   ——------ («, A entiers ).

Si donc on détermine exactement par une expérience les étals de 
mouvement après le choc, on trouvera toujours que l’effet du choc 
a été de faire passer le rotateur de l’état quantifié final caracté 
risé par le nombre entier « à un état quantifié final caractérisé par 
un nombre entier n + k, de sorte que pour le rotateur on reste 
toujours dans le domaine des états quantifiés. Trois cas peuvent 
d’ailleurs se présenter :

i° k = 0. ■.— Le corpuscule et le rotateur conservent alors leurs

104
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énergies initiales. Le choc a lieu sans échange d’énergie : il est 
élastique.

2° k > o. — Le corpuscule cède de l’énergie au rotateur, qui 
passe dans un état d’énergie plus grande que celle de l’étal initial. 
Le choc est un « choc inélastique de première espèce ».

3° k < o. — Le rotateur passe de son état quantifié initial à un 
état quantifié de moindre énergie en cédant de l’énergie au cor 
puscule. Depuis un travail important de MM. Klein et Rosseland, 
on dit qu’il y a alors « choc inélastiquo de seconde espèce ».

On retrouve ainsi tous les résultats déjà prévus par l’ancienne 
théorie des quanta qui sont en accord avec les faits.

Nous trouvons ainsi un exemple d’un fait précédemment étudié. 
L’onde initiale ( 13 ) et l’onde finale (17) sont toutes deux solutions 
de l’équation sans terme d’interaction (U = o)

04) d*-w
()%- ~l"~ dr\- "+" <)X,-

8 jc '2 E*F = o,

mais l’onde initiale est le produit d’une onde plane du corpuscule 
par une fonction propre du rotateur, tandis que l’onde finale est 
une somme de tels produits. Cette forme de l’onde finale corres 
pond au fait que, si l’on détermine l’état de mouvement du cor 
puscule après le choc et si on lui trouve la valeur Ej, l’énergie du 
rotateur est par là même connue et égale à E< +E2 — E',, de telle 
sorte que les états finaux du corpuscule et du rotateur ne sont pas 
indépendants, l’interaction soumise au principe de la conservation 
de l’énergie ayant établi une relation entre eux.

On peut encore remarquer que le choc étudié n’a pas lieu avec 
conservation de la quantité de mouvement, car cette conservation 
exigerait que l’on ait dans le cas élastique x el- x'=<x- Cela 
vient de ce que nous avons supposé le rotateur fixe dans le 
planjrOj'; nous avons donc admis implicitement l’existence d’une 
force de liaison qui empêche le rotateur de prendre un mouvement 
d’ensemble lors de l’impact du corpuscule. Il ne peut donc pas y 
avoir conservation de l’impulsion. Si l’on voulait tenir compte du 
recul du rotateur, il faudrait deux nouvelles coordonnées pour 
représenter la position, maintenant variable, du centre du rotateur 
dans le plan xOy et l’on n’aurait plus un espace de configuration 
à trois dimensions.
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2. Nécessité d’employer l’espace de configuration. — L’emploi 
obligatoire de l’espace de configuration pour traiter les propaga 
tions d’ondes de la Mécanique ondulatoire, est quelque chose 
d’étrange pour celui qui était habitué à l’emploi des méthodes de 
la Physique classique. Il est cependant absolument certain qu’on 
ne peut l’éviter et qu’il est impossible par exemple de traiter un 
problème de choc en cherchant à attacher à chaque corpuscule 
une onde individuelle se propageant dans l’espace ordinaire à trois 
dimensions. M. Darwin en a donné un très instructif exemple que 
nous allons résumer ( ').

Soit un écran plan percé d’une ouverture en A. Sur celte ouver 
ture, on place un film très mince d’une substance homogène dont 
les atomes ont une masse m et l’on fait tomber normalement sur 
l’écran un flot de particules de masse M et de vitesse V.

On suppose que les atomes m et M sont susceptibles d'exercer 
des forces les uns sur les autres à très petite distance, c’est-à-dire 
de se choquer. Décrivons d’abord le phénomène observable en 
nous servant des images de la Physique classique. Lors du choc 
entre un atome incident M et un atome m au repos dans le film, 
les deux atomes sont projetés vers le haut avec conservation de 
l’énergie et de l’impulsion. Il en résulte que, si M est projeté sur 
une certaine direction AB, m est projeté sur une direction bien 
déterminée AG et les vitesses des deux particules sont bien déter 
minées. On a donc, après le choc, deux particules dont les mouve 
ments sont liés : c’est là ce que M. Darwin appelle une « paire 
cohérente » de particules. Supposons alors qu’à l’aide d’un 
miroir M, nous réfléchissions les atomes M venant de A le long de 
AB vers le point G de la trajectoire des atomes m qui viennent 
directement de A le long de AG (fig- 6).

Nous disposons un deuxième écran percé d’un trou en G et 
derrière cet écran, nous observons l’arrivée des atomes sur un 
écran à scintillations. En général, nous observerons sur l’écran à 
scintillations l’arrivée le long de AB d’atomes M qui marqueront 
leur point d’impact en M et le long de AG l’arrivée d’atomes m 
qui marqueront leur point d’impact en m. Mais dans le cas très (*)

t o 6

(*) Collision problème in Wave Mechanics (Proc. ïioy. Soc., 1929, t. 124, 
p. 3-5).



particulier où, les atomes M après la collision en A ayant une 
vitesse supérieure à celle des atomes m, le temps mis par les 
atomes M pour suivre le trajet brisé ABC se trouve être le même 
que le temps mis par les atomes m pour aller directement de A 
en G, les atomes M et m qui auront eu une première collision en A 
en auront une seconde en C, en sorte que l’écran à scintillations 
pourra recevoir des atomes ailleurs qu’en M et en m. Donc, pour 
une certaine position du miroir B, il peut se produire un phéno 
mène tout différent de celui qu'on observe pour les autres posi 
tions. Voilà ce que nous apprend la représentation corpusculaire 
classique.
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Voyons maintenant comment on peut décrire le même phéno 
mène en introduisant des ondes. L’idée la plus simple serait 
d’associer à chacun des atomes M et m après leur choc une onde 
se propageant sphériquement à partir de A. Le fait qu’un phéno 
mène particulier se produit pour une cerLaine position du miroir B 
serait alors à interpréter comme une interférence se produisant en 
C entre l’onde de M venant de A par réflexion en B et l’onde de m 
venant directement de A. Mais une semblable interprétation est 
totalement impossible. En effet, une telle interférence supposerait 
qu’il y ait une différence de phase privilégiée en C pour les deux 
ondes qui s’y croisent. Or, nous pourrions placer deux miroirs en E 
et en F de façon que l’onde liée à l’atome M arrive enC après deux 
réllexions en E et F en y ayant la même phase que précédemment : 
il suffirait que la différence EBF — EF des trajets dans les deux 
cas soit égale à un nombre entier de fois la longueur d’onde de
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l’onde M. Les conditions d’interférence en C seraient restées les 
mêmes, et cependant il est certain que les chocs en C ne se produi 
raient plus, car les atomes M arriveraient en C avant les atomes m. 
Au contraire, si l’on plaçait un miroir en E et l’autre en G, de façon 
que le parcours AEGG soit égal au parcours ABC, il y aurait tou 
jours des chocs observables en G, tandis que les conditions d’inter 
férence en C se trouveraient complètement modifiées, puisque les 
ondes s’j croiseraient sous un angle différent de celui réalisé dans 
l’expérience originelle (avec miroir en B). Enfin, au point de vue des 
intensités, il y aurait aussi un désaccord, car il est évident au point 
de vue corpusculaire que la probabilité d’un choc en G doit être 

en raison inverse du carré de AG, tandis qu’une interférence en C 
donnerait une intensité proportionnelle au produit des intensités

des ondes interférentes, soit à la quatrième puissance de

Bref, on ne peut expliquer le résultats des chocs en considérant 
des ondes individuellement associées à chaque particule. Mais cela 
ne veut pas dire qu’on ne peut pas en Mécanique ondulatoire, 
expliquer les chocs qui se produisent en G, mais seulement qu’on 
ne peut représenter l’évolution des ondes dans l’espace à trois 
dimensions. On doit en réalité associer au système des deux par 
ticules M et m une onde unique dans son espace de configuration 
à six dimensions. Dans le mémoire cité, M. Darwin a fait le calcul 
de cette onde W du système, calcul que nous ne reproduirons pas 
parce qu’il est long et compliqué. Il a montré ainsi qu’il est pos 
sible de représenter le fait de la deuxième collision en C pour une 
certaine position du miroir B par les propriétés de l’onde T" dans 
l’espace de configuration à six dimensions, alors que cela n’était 
pas possible à l’aide de la propagation de deux ondes dans l’espace 
à trois dimensions. Ainsi se trouve illustrée par un exemple la 
nécessité d’employer l’espace de configuration dans les problèmes 
de Mécanique ondulatoire des systèmes.

3. Les trajectoires visibles de particules dans les chambres de 
Wilson. — L’emploi de l’espace de configuration permet aussi de 
rendre compte de phénomènes qui autrement seraient impossibles 
à interpréter en Mécanique ondulatoire. Telle est l’existence 
des trajectoires rectilignes de particules visibles dans les chambres



à expansion de Wilson. Les calculs pour ce cas onl été faits par 
M. Heisenberg : nous allons les reproduire ici.

Le phénomène à expliquer est en somme le suivant. Soient deux 
molécules d’un gaz situées en A et B et une particule de grande 
énergie (beaucoup plus grande que l’énergie d’ionisation des 
molécules) qui arrive sur ces molécules. Il faut expliquer pourquoi 
la molécule B n’a de chance d’être ionisée, quand la molécule A 
l’a été, que si A et B sont sensiblement en ligne droite avec la 
direction d’incidence de la particule ionisante, tandis que l’ionisa 
tion de B n’a pas de chances de se produire après celle de A si B 
n’est pas du tout dans le prolongement de la direction d’incidence 
à partir de A.

Pour traiter le problème, nous devons regarder la particule 
incidente et les deux molécules A et B comme formant un seul 
système. Nous supposons les molécules A et B trop lourdes pour 
être mises en mouvement par impact et trop éloignées l’une de 
l’autre pour agir directement l’une sur l’autre. Il y a seulement 
interaction entre la particule incidente d’une part et chacune des 
molécules A et B d’autre part.

L’état interne de chacune des deux molécules est représenté par 
un ensemble de coordonnées q que nous désignerons par qA et qlt. 
Les coordonnées de la particule incidente sont x, y, z\ sa masse 
est m. L’Halmitonien de la particule incidente est

h- / t)- à'1 à- \ _ h-
\ àx'i "+" dy- "+" àz- j Sr.-m ’

ceux des molécules A et B considérées isolément sont HA !(gA) et 
Hy ’ ( «7k )- Les termes d’interaction entre la particule incidente et les 
molécules A et B respectivement sont de la forme >.HA !(:r, y, z, qx) 
et Àllj,1 (.r, y, z, qu), 1 étant un paramètre très petit introduit 
pour indiquer que les termes de perturbation dus à l’interaction 
sont très petits devant les termes correspondant aux états non per 
turbés en l’absence d’interactions. Finalement, dans l’espace de 
configuration formé à l’aide de x, y, z, des qA et des qv, on a 
l’équation de propagation

(W [- Hÿ’U.O + Hb s(y«)

-+- h a  ’ (*,r, z;q\) -+■ (x,y, z\q B) — T = o.
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On peut essayer de développer lF suivant les puissances du petit 
paramètre A en posant

l :>.t> ) fl' = To + ÀÏ’i -I- A-fl\-t- . . . -+- À" flr„ -+-___

En substituant (26) dans (25) et en égalant à zéro les facteurs 
de chacpie puissance de A, on trouve la suite d’équations

hî
X j t - m 

h
(27 1 { | N r.'1 m

11= ",

,J[

A-k IIa  }(<jw)— -—^^jfl

777; Ha V/a ) H-Hii'Tfyu) — -7^1 ~()t \ = — (Ha  ' -+- Hn' VCi,

•S xl m AH-llx">(yA)-t-Il,l'’,(</lp-
■> -1 à! J — ( IJ a  11 -e II if 0 fl':

La première équation correspond au mouvement sans interaction 
entre la particule et les molécules. Les fonctions propres ont la 
forme suivante :

(»«) ,r»=e '• e >< (r/A)?».(r/H),

et étant des fonctions propres pour les molécules non per 
turbées. Les fonctions , fl'2, ... peuvent être développées 
suivant le système des fonctions 9„Aç/iB. système complet par 
rapport aux variables qA et </„. Nous avons ainsi

(2'J ) fl'i=^ P«A(«n{ X, Y, ü) cp„A(//A ) ç„„( </» ).

n A , " B

De plus, on peul, comme d’habitude, définir les éléments de 
matrice correspondant aux termes d’énergie de perturbation par 
les formules

( 3o 1

l H À11 ( ryA ) = ^ Aï/,)», ( J, s) 5«,,('y0,

' "La

I Hi( ?«„(</«) =2 .13 ?/«.' ïii )•

Comme état non perturbé nous considérons celui où la particule a

un mouvement rectiligne et uniforme d’impulsion p 11 et où les 
molécules A et B sont respectivement dans les états stationnaires
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définis par les valeurs reA = rix: et nlt= «B°:. On a, comme énergie 
de cet état non perturbé,

En substituant (29) dans la seconde équation (27), on obtient

Pour pouvoir éliminer le facteur en t. nous devons poser

et il restera alors facilement

Le second membre de l’équation (34) peut être interprété 
comme représentant les sources de l’onde Si ces sources
sont partout nulles, sera nulle. Or, d’après sa défini 
tion, j W),’!,, (te, y, z) |2 représente la probabilité pour que le cor 
puscule incident se trouve en x, y, z, la molécule A ayant l’état nx 
et la molécule B l’état n„. On voit donc que cette probabilité est 
nulle si l’on a à la fois nx0' et nBy^ nB !, à cause de la présence 
des facteurs 0 dans le second membre de (34). Ainsi, en première 
approximation, la probabilité de l’excitation simultanée de A et 
de B est nulle. Ceci se comprend très aisément, puisque les pro 
babilités d’excitation de chacune de ces molécules sont considérées 
d’après les hypothèses de départ comme du premier ordre de 
petitesse : l’excitation simultanée des deux molécules est alors 
naturellement du second ordre de petitesse- C’est donc seulement r
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en passant aux perturbations du second ordre que nous trouverons 
le phénomène de l’excitation simultanée des deux molécules qui 
nous intéresse.

Avant d’aborder la seconde approximation, il convient d’étudier 
les propriétés des fonctionsW('solution de l’équation (34). Or, 
cette équation peut s’écrire

(35) A\\/,'a '„b -+- \Y«4(«B = F(a-, y, z),

à condition de poser

(36)

V- h I

m 17 ( 0 ) 17 ' (1 ) I |.,i— L„a  — L„b-(- — , p0

F(æ -, y, z) = const. «A ^'à'nn S«i“V'A

xe

La fonction F joue dans (35) le rôle d’une fonction de répar 
tition de sources. Or, d’après l’hypothèse que la particule incidente 
possède une énergie beaucoup plus grande que l’énergie d’ionisa 
tion des molécules A et B, on a

(37)
17 ( 0 ) r-> ( 0 ) 17 ( 0 ) i" ( 0 ); E m — E« -F* ESjn— EU

et, par suite, sensiblement

(38) = longueur d’onde de la particule incidente.

A cause du facteur exponentiel figurant dans F, la répartition 
des sources varie périodiquement dans la direction d’incidence 
avec une période spatiale sensiblement égale à A. Il en résulte 
que W(I) ne sera différent de zéro que dans les directions qui sont 
à peu près dans le prolongement de la direction d’incidence. 
F n’est différent de zéro que pour nx=nlx) ou pour «.„ = n(j)). 
Dans le cas nx= n(0), la fonction F se réduit à

et d’après sa définition même h\'àjj(iB n’est différent de zéro qu’à
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l’intérieur de la molécule B. Nous avons donc dans ce cas un W(‘o> „ 
qui ne diffère de zéro qu’à l’intérieur d’un canal presque cylin 

drique dont l’axe est parallèle à pin> et qui s’appuie sur le contour 
de la molécule B.

De même, dans le cas nB= nBiix^én'Aa), nous trouvons 
un qui ne diffère de zéro qu’à l’intérieur d’un canal

presque cylindrique d’axe parallèle à p0 qui s’appuie sur le contour 
de la molécule A. Précisons que ces résultats ne sont valables qu’en 
raison de l’hypothèse exprimée par (?>’])■

(o)P

Fig. -

Commençons maintenant le calcul des perturbations du deuxième 
ordre en partant de la troisième équation (27). Nous poserons

trc) = ^ \v'" a (?-0n

13«)

En substituant ces expressions dans la troisième équation (27) et 
en égalant les coefficients des fonctions yniyn„, on trouve

Pour qu’il y ait en deuxième approximation possibilité d’exci 
tations simultanées des deux-molécules, il faut que W^’„B soit

8L. PB BROüI.IE.
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différent de zéro pour /iA^A0i et . D’après les propriétés
des W”, on voit alors que pour nxyé raA"' et n'B', le dernier 
membre dé (4o) se réduit à

114

-w$>. a(æ, y, s)/Q, nt(x,y, s) ■ \V„ )(x,y, z ) ,!B (>, y,

car chacune des deux sommes a un seul terme non nid. Pour que W 2' 
soit non nul, il faut donc que, soit WjU; et hjy 7Jl, soit Wn2, „m,> 
et h'\MD „ soient simultanément différents de zéro dans une même 
région de l’espace. Or, h\}y. n n’est différent de zéro qu’à l’intérieur 
de la molécule A et /idin ne l’est qu’à l’intérieur de la molécule B.

Pour que VV 2: soit différent de zéro, il faut donc ou que la molé 
cule B soit située dans le canal qui s’appuie sur le contour de la 
molécule A ou que la molécule A soit située dans le canal qui 
s’appuie sur le contour de la molécule B; autrement dit, on doit 
être dans l’un des deux cas de figure suivants.

Fig. 8.

Dans un cas comme dans l’autre, les deux molécules A et B se 
trouvent sensiblement en ligne droite avec la direction du mouve 
ment de la particule incidente : c’est bien là le résultat que 
l’on cherchait.

Si l’on a une file de molécules A, B, C, D, . . ., on voit, en 
répétant le même calcul pour chaque paire, qu’il ne peut y avoir 
ionisation de toutes les molécules A, B, C, D, . . ., que si elles 
sont toutes à peu près en ligne droite avec la direction de la parti 
cule incidente, Ainsi se trouve interprétée l’apparition des trajec 
toires rectilignes dans les chambres de Wilson.



Naturellement, les relations d’incertitude sont en accord avec 
la théorie précédente, parce que plus les dimensions des molé 
cules A et H sont petites, plus les « canaux » sont coniques et plus 
leurs angles d'ouverture sont grands, comme l’indique la figure 
ci-dessous.
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fig- 9-

Plus l’ionisation d’une des molécules permet de localiser exac- 
tementla particule incidente, plus la direction exacte de l’impulsion 
de la particule après l’ionisation est incertaine.



CHAPITRE VI.
APERÇU SUR LES MÉTHODES DE PERTURBATIONS 

EN MÉCANIQUE ONDULATOIRE.

1. Généralités. —■ Il arrive fréquemment en Mécanique ondu 
latoire que l’on ne sait point résoudre exactement un problème. 
On peut alors souvent employer une méthode approximative de 
perturbations et dans le problème que nous venons de traiter à la 
lin du précédent chapitre, nous avons justement rencontré un 
exemple de ces méthodes de perturbations. Les méthodes de 
perturbations employées en Mécanique ondulatoire consistent 
essentiellement à couper en deux l’Hamiltonien du problème de 
façon à distinguer, quand cela est possible naturellement, une 
partie principale ou Hamiltonien non perturbé qui ne dépend pas 
du temps et définit un problème d’états stationnaires dont on 
connaît exactement les solutions et une partie accessoire beaucoup 
plus petite ou terme de perturbation dont l’intervention provoque 
de petits écarts par rapport aux solutions connues de l’Hamiltonien 
non perturbé. En considérant les termes de perturbations comme 
très petits du premier ordre, on obtient une série d’approximations 
successives donnant des corrections du icr, du 2e, . . ., du nieme 
ordre. Nous en avons vu un exemple dans le problème traité plus 
haut. La question de la convergence des approximations succes 
sives a naturellement une grande importance pour le développe 
ment logique de la méthode. Cette question n’est pas encore, 
semble-t-il, élucidée aujourd’hui dans toute sa généralité, mais il 
est certain que même dans le cas où la convergence ne paraît pas 
exister, les premières approximations peuvent donner des résultats 
exacts. Nous n’avons pas l’intention de faire dans ce volume une 
étude approfondie des méthodes de perturbations en Mécanique
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ondulatoire. Nous voulons nous contenter d’exposer un certain 
nombre de résultats qui nous seront utiles dans la suite.

(I y a essentiellement deux méthodes de perturbations en Méca 
nique ondulatoire. L’une d’elles, la méthode de MM. Schrodinger 
et Born, est applicable au cas où le terme perturbateur dans 
l’Hamiltonien est indépendant du temps (perturbation perma 
nente). La méthode consiste à chercher les états stationnaires 
de l’Hamiltonien perturbé en supposant par continuité que ces 
états sont très voisins de ceux supposés connus de l’Hamiltonien 
non perturbé : on les déterminera en calculant les petites correc 
tions qu’il faut apporter aux élats stationnaires non perturbés 
pour tenir compte de l’existence de la perturbation. On obtient 
ainsi des résultats indépendants de l’instant considéré : énergie 
des élats stationnaires en présence de la perturbation, nombre 
de particules déviées dans une certaine direction, etc.

La seconde méthode de perturbations, la méthode de variation 
des constantes due à M. Dirac, est plus générale, car elle s’applique 
à des perturbations variables avec le temps : elle permet d’étudier 
des phénomènes non permanents tels par exemple que le régime 
transitoire d’établissement qui suit immédiatement le début d’une 
perturbation ensuite permanente. Elle doit être employée pour le 
calcul des probabilités de transition, d’émission, d’absorption, etc., 
qui ne peuvent être définies qu’en considérant des élats variables 
avec le temps.

La méthode de variation des constantes consiste essentiellement 
à prendre comme système de fonctions de base les fonctions 
propres d’Hamiltonien non perturbé, à exprimer la fonction fi 
du système à chaque instant à l’aide d’un développement suivant 
ces fonctions de base et à étudier comment \arientles coefficients 
de ce développement en fonction du temps.

2. La méthode de perturbations de Born-Schrodinger. — Nous 
ne donnerons ici qu’un aperçu très rapide de cette méthode. 
Soient H10' l’Hamiltonien, indépendant du temps, du système non 
perturbé, V le terme perturbateur également indépendant du 
temps et supposé très petit du premier ordre. Nous supposerons 
que H1") possède un spectre discontinu et n'a pas de valeurs 
propres dégénérées. L'étude des cas où H,n| a des valeurs propres
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dégénérées doit être considérée à part. Les valeurs propres de 
l’Hamiltonien perturbé H = H 0!-(-\ sont les E,- tels que

(I) V)'I',-= F,*!",, •

VF,- étant finie, uniforme et continue ('). La perturbation étant 
faible, il est justifié de considérer que les *F; et les E, sont voisins 
respectivement des 'F/* et des EJ° , fonctions et valeurs propres de 
l’Hamiltonien non perturbé IL1’1. On peut donc poser

(■> \ )

j K,= K;»>+ +

chaque terme étant par rapport au précédent de l'ordre de petitesse 
du terme perturbateur. En substituant (2) dans ( 1 ) et en égalant 
les termes du même ordre de grandeur, il vient

(«) if»i>r;o)=
(b) (iiw— f ;01 + v'r;.<»= E'"viy\
(C) (EOi'L’i
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Cette suite d’équations définit les approximations successives. 
La première montre que XF(U> est la fonction propre de
l’Hamiltonien non perturbé, comme cela doit être d’après nos 
hypothèses. C’est l’approximation zéro.

En multipliant l’équation (3) (b) par W’0 * et en intégrant dans 
tout l’espace de configuration, nous obtenons

»]•<11 'F!,,:v /t — y f /0:)1f ,.'^/t .

La dernière intégrale est nulle car, en raison de l’hermiticité 
de H 01, elle peut s’écrire

ir-15 ( — iî;.°i )»]’;.»;* </-,

et ceci est nul en vertu de la conjuguée de (3) (a). D’où

( 5 ) e <<>= J
(*) Dans ce paragraphe et dans le suivant, nous désignons par XV, la k]hme fonc 

erai' ,, , , --- • E(. I
tion propre de l’énergie débarrassée du facteur exponentiel e ,l
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VJ,0 étant le t1,;mo élément diagonal de la matrice correspondant à 
Y dans le système des ’F}t0). On retrouve ainsi un résultat bien 
connu de la Mécanique classique d’après lequel la perturbation de 
l’énergie en première approximation est égale à la moyenne de la 
valeur du potentiel perturbateur calculé pour l’état non perturbé.

Nous avons pu calculer la perturbation de l’énergie au premier 
ordre sans être obligés de connaître la perturbation correspon 
dante de là fonction propre. Mais nous ne pourrons calculer la 
perturbation du deuxième ordre de l’énergie que si nous connais 
sons la perturbation du premier ordre de la fonction propre. Cette 
circonstance se retrouverait à tous les stades du calcul de pertur 
bation, c’est-à-dire que pour calculer la perturbation du nlème 
ordre de l’énergie, il nous faudrait connaître la perturbation du 
(n— i)ll!mc ordre de la fonction propre.

Pour calculer vtJ'jl), nous nous servirons de l’équation (3) (b), 
mais nous ferons la remarque que si est une certaine solution 
de (3) (b), nous en obtiendrons une infinité en ajoutant à W”1 un 
terme de la forme a W;01. où a est une constante complexe quel 
conque. Nous nous servirons de ce fait pour imposer à la fonction 
propre de première approximation Tj0', -+- Vj” d’être normée,, 
ce qui s’exprime au premier ordre par la relation

(6) d+

'F<l)*d"<°> d~ + conj.

Comme ’F)U! est normée par hypothèse, nous imposons ainsi à 
lF;.11 la condition
(7) f *Fj'fh = o,

=f 11IT)! I2 d~ (

c’est-à-dire que nous admettons pour VFj.11 un développement 
suivant les 'F;t0> de la forme

(«) ,i7,=2c«HI’*01
k-/zi

sans terme b = i. Eu substituant alors (8) dans (3) (b), nous 
obtenons

(9) • («{”- V)V>.
k-±i
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Multiplions par Wjül* (y i) et intégrons dans tout l’espace de 
configuration. Il vient

( 10)

d’où

(■U

■VU’i0’ dx V/70)

<r,= «F] «i+2

1 1 9^ J )>

Telle est l’expression de la perturbation du premier ordre par 
la i"'mn fonction propre de l’Hamiltonien. L’ayant obtenue, il est 
facile de calculer la perturbation du deuxième ordre pour l’énergie. 
11 suffit de multiplier (3) (c) par et d’intégrer dans tout
l’espace de configuration. Le premier terme obtenu s’annule à 
cause de l’hermiticilé de H<°), le dernier à cause de l’hypothèse 
faite sur lF;0!. II reste

(12) E|’> = ■2/k y - /

>E;° .vv-’ity;
dx =2r

d’où en deuxième approximation,

<i3) i^y+v^+y
E,"!— EyI k

Nous ne continuerons pas au delà la série des approximations.
Tel est le processus simple de ces calculs d’approximations 

successives quand l’Hamiltonien non perturbé admet un spectre 
discret et non dégénéré. Si les valeurs propres sont multiples, il se 
présente une complication, caries fonctions propres correspondant 
à une valeur propre dégénérée ne sont alors déterminées qu’à une 
transposition linéaire près. Les fonctions propres perturbées sont 
respectivement voisines de certaines fonctions propres non per 
turbées, mais il faut commencer par déterminer quel est le système 
des fonctions propres non perturbées vers lequel tendent les fonc 
tions perturbées quand la perturbation tend vers zéro. La méthode 
se présente alors sous un aspect un peu plus compliqué. Il en est 
de même quand l’Hamiltonien non perturbé, tout en ayant un 
spectre discret, a des valeurs propres si rapprochées que la
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moindre perturbation produit des variations de ces valeurs propres, 
qui sont de l’ordre de leurs distances : il est évident qu’on ne 
peut plus alors considérer isolément les perturbations des diverses 
valeurs propres. Nous ne nous étendrons pas sur ces diverses 
complications, dont l’élude détaillée exige des développements 
assez longs. Le cas des valeurs propres dégénérées sera d’ailleurs 
traité plus loin par la méthode de variation des constantes.

3. Méthode de variation des constantes. — Dans la méthode de 
variation des constantes, nous supposons toujours que nous avons 
un Hamiltonien H(u> indépendant du temps correspondant aux 
états non perturbés du système considéré. Mais ce système est 
soumis à des actions perturbatrices représentées dans l’Hamil 
tonien total H du système par un terme perturbateur qui, ici, peut 
dépendre du temps. Nous avons donc, pour le système, l’équation 
d'ondes

( 14 )

Naturellement, à tout instant C, la fonction d’onde !bdu système 
peut être développée suivant les fonctions propres T/' de l’opéra 
teur H1"1 sous la forme

cx-Ul'I’/’e *

avec

On suppose toujours la fonction propre normée, ce qui entraîne

j c/f y = i à tout instant. En substituant le développement ( i 5)
k

dans ( 14), on obtient
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Comme par définition lFA" est une fonction propre de H'°), on 
peut barrer le premier terme de chaque somme et il reste

{ iH ) mmi () t 1
y^ci|,lVIIV’e ''

Multiplions par *F;." '* et intégrons dans l’espace de configuration. 
Nous obtenons

{191

avec

( ->o \

Pour V = o, les c/ sont constants et dans le développement on 
a une superposition avec coefficients constants des fonctions 
propres de II*01. Si YT^o, les c* varient avec le temps; d’où le 
nom de méthode de variation des constantes.

L’équation ( 19) est rigoureuse, mais en général on ne sait pas 
la résoudre exactement. Un procédé approximatif qui permet de 
trouver une solution approximative valable pendant un certain 
temps est le suivant. Supposons que pour t — o, on se donne 
C/f=c/“i pour tout k, ce qui revient à se donner *F(o). Si la per 
turbation qui s’exerce sur le système à partir du temps t = o est 
assez faible pour qu’on puisse considérer les variations des C/ 
comme restant très petites pendant un certain temps, on pourra 
obtenir une solution approximative des équations (10) valable 
pendant un certain temps en remplaçant dans le second membre 
de ces équations les c* par les c'/!.

En particulier, appliquons cette méthode approximative au cas 
où V est indépendant du temps. Il en est alors de même des 
éléments de matrice V;?’. En supposant que E;01 soit une valeur 
propre non dégénérée de Hl’intégration approximative donnera

(2,) i<n = c n ; a --1 / 0 . ’V1 \"0!' a ~Tci k

k ,

Le terme en l constitue une « perturbation séculaire », au sens 
qu’on donne à ce mot en Mécanique céleste; le dernier terme
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constitue une perturbation périodique. Comme les Vj” sont petits, 
les amplitudes des perturbations périodiques sont faibles et ce 
sont surtout les perturbations séculaires qui comptent. On peut 
donc en première approximation ne tenir compte que de la pertur 
bation séculaire et faire l’intégration de l’équation approchée

(22)
dcj
dt

— __3l_ V(°> r-— I, V/7 C/’

obtenue en ne gardant que le terme A= j dans le second membre 
de (19), intégration qui donne

(23)

et par suite

(24)

:----V1.'.’) !
Cj = aj e h “ ,

— (E1.0'-*-V.P>) / 0! p /, v ; 11 '

Mais dans cette expression, les aj ne sont pas rigoureusement 
des constantes, à cause de l’approximation faite en négligeant les 
termes périodiques au second membre de (19).

On peut tenir compte do la variation des ctj en écrivant

(25) da

k / J

rr^nV-v-t-y^h

En désignant par aj1” la valeur moyenne de aj on a pour solu 
tion approximative de (20)

(26)
_ -, V 0) ,.(!)) P hV* ' jk ak e

—-v A 4-4- , JJ >

k~ j
. , __ _i^(<» j yenk ^ V k h l 'j //

En substituant (26) dans l’expression (24) de lF, on trouve

(El 01 V'»'),(27) T = /, ^ 11 >

V"< -v - ViV e h
- --

k-f-i

2\r< 0 > ip* » ) V ki 1 *

k ’/: j
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La seconde expression s’obtient de la première par permutation 
du rôle des indices j et k dans la seconde somme. En négligeant 
les corrections du second ordre, (27) s'écrit

(28) ' / H 1 (

i

Nous voyons sur cette expression qu’au premier ordre, la pertur 
bation sur la valeur propre Ej0) est égale à V)0), et la perturbation

sur la fonction propre ,LJ0) est égale à X-,*/-■ F(»»' Ce sont les
, ,. / kkj-I

résultats obtenus précédemment par la première méthode d’ap 
proximation. On pourrait poursuivre.

4. Cas des valeurs propres multiples. — Nous allons maintenant 
supposer que l’Hamiltonien non perturbé H101 a des valeurs propres 
dégénérées. Soit EK” une valeur propre dégénérée de H,u) à 
laquelle correspondent p fonctions propres linéairement indépen 
dantes (valeur propre d’ordre p). Nous supposerons que 
Wj.”’, ..., forment un système orthonormal de fonctions
propres linéairement indépendantes correspondant à la valeur 
propre EJ,01. Nous savons qu’il y a une infinité de manières de 
choisir ce système car, si nous le soumettons à une transformation 
linéaire unitaire (c’est-à-dire qui conserve normalisation et ortho 
gonalité), nous obtenons un autre système de p fonctions propres 
orthonormales et linéairement indépendantes relatives à la valeur 
propre E|,0).

Nous pouvons écrire le développement de 'F en mettant à part 
ce qui concerne la valeur propre E(0) sous la forme

(29) ^=2.c^C)'noie h Et<+Vc((0'l?>e“
l-ptk

(3o)

Comme précédemment, on obtient

dc/;. 2, ~ 1

dt.
21 v^.cty(o+2v^c;(0 h

Si l’on se borne aux perturbations séculaires, qui sont les plus
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importantes, on aura l’équation approximative 

O" -TT = ll = l, •>;■■■, />>■

Dans (3o) et (3i ), on a, bien entendu, 

(32) V#,-/Ve  

n d u s allons chercher à quelles conditions la perturbation de 
première approximation E)’! de l’énergie correspondant à la fonc 
tion propre 'Fj01 a une valeur constante bien déterminée, quel que 
soit i. Pour cela, d’après ce que nous avons vu plus haut, il faut 
que l’on ail à l’approximation des équations (3i )

5 71 / , , ,
---- El '(33 ) cki( 1 ) = akt e " ‘ ( ; = i/' ).

d’où, en substituant dans les équations (3i),

p

(34) =2y***)0*/'^ i*=i>—p)-
i J

Ces équations ne peuvent être vérifiées à tout instant que si l’on a

(35) yU=° pour ki^kj- K^=V^,

Ces conditions sont toujours suffisantes.
Or, les conditions Yj"( = o pour k-,p^kj signifient qu’il faut 

choisir parmi les systèmes possibles de fonctions propres ortho 
normales ’F^ un système tel que la matrice Y1"1 soit diagonale. I ne 
étude plus approfondie, que je laisse de côté, montre que l’on peut 
toujours trouver un jeu de fonctions propres orthonormées ’F/" tel 
que ces conditions soient réalisées. On dit que ces fonctions sont 
« adaptées » à la perturbation représentée parle terme V. Naturel 
lement elles varient avec la nature de la perturbation. Le jeu des 
fonctions fFj.1!’ adapté à la perturbation V est unique si les E/1 sont 
tous différents. On dit alors que la perturbation Y lève entière 
ment la dégénérescence de la valeur propre E/ car elle transforme 
les p valeurs propres confondues avec E/0 en p valeurs propres 
distinctes E* = E^"’+ E,.) (en première approximation). Si au
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contraire tous les E/.” ne sont pas distincts, la perturbation V ne 
lève certainement pas entièrement la dégénérescence de la valeur 
propre E/1 et le choix des Uy"’' n’est pas alors déterminé univo 
quement par les conditions = o.

On voit donc qu’il est possible de choisir un jeu de fonctions 
propres orthonormales 'Lj0’ (avec j — i, 2, . . p), relatives à la 
valeur propre Ej!”, de telle façon que la valeur propre de l’énergie 
en première approximation ait, pour chaque fonction propre Wj0’, 
la même valeur

que si E^ n’était pas dégénérée et si l'\V était la fonction propre 
correspondante. Le choix convenable des permet donc de 
résoudre le problème comme dans le cas de non-dégénérescence.

On voit aussi que si l’on connaît un ensemble complet de fonc 
tions propres normées, orthogonales et linéairement indépendantes, 
*F<"' correspondant à la valeur propre dégénérée E(° d’un système 
non perturbé, pour voir si cet ensemble de ,Iy“1 est adapté à une 
perturbation V, on peut vérifier si les conditions

sont exactes. S’il en est bien ainsi, les pourront servir de 
fonctions propres d’approximation zéro dans le calcul de pertur 
bations. Nous aurons à nous servir de ce résultat dans l’étude des 
dégénérescences produites par l’identité de nature de deux ou 
plusieurs corpuscules constituants du système.

Faisons encore une remarque. Soit E(° une valeur propre dégé 
nérée de l’Hamiltonien non perturbé du système. Supposons pour 
simplifier que ce soit une valeur double correspondant à deux 
fonctions propres linéairement indépendantes. Soient et 'ly01 
deux telles fonctions. L’onde 1* a pour développement

( 38 1

Si l’on applique au système une perturbation qui lève la dégé 
nérescence, il y a deux fonctions et qui sont fonctions
propres, orthonormales et linéairement indépendantes, qui sont
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adaptées à la perturbation Y et que nous supposerons ne pas 
coïncider avec et On a

(3g) 'II.11 = ÏUi'F;

où par hypothèse bvi et b1K sont différents de zéro. On a donc, 
d’après (38),

(4°) ff = c1'F(ii'+c2»Fi»i' +

avec

(4i) c\ = (iib^-h a-ib1\, c-i= ai bn-h a^b»*.

Les b sont constants, les a et c variables par suite de la pertur 
bation. La théorie précédente nous apprend que

(42) Cl : (K^O

Les a sont des fonctions linéaires des c comme on le voit en 
résolvant par rapport aux a les équations (4* ) dont le déterminant 
ne peut être nul, sans quoi ff))1 et 'L^11 ne seraient pas linéaire 
ment indépendantes. On a donc

(43) = du e ■ <l\ ï e h
O1' a.L = d.LX e • d.,., e

où dKo et d2i sont différents de zéro parce que bi > et b21 le sont. 
La probabilité de trouver le système dans l’état ff /,)'1 est donc

( 44 ) I at - — ! du fi] ; ~ - a di Ois e ■ quantité conj.

Puisque d^y^o, elle est donc périodique avec la fréquence

(4Y ni,,= I(Ein-]<<;>).

De même, on voit que la probabilité | a2 [- de trouver le système 
dans l’état ff"(0* est périodique avec la fréquence (45)-

Donc, les probabilités de trouver le système dans des états 
stationnaires qui ne sont pas états adaptés à la perturbation V 
fluctuent avec une fréquence égale au quotient par h de la diffé 
rence des perturbations du premier ordre de l’énergie.
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Comme exemple concret, considérons deux corpuscules de 
nature différente (par conséquent susceptibles d’être distingués 
l’un de l’autre) sans actions mutuelles. Ces corpuscules sont 
soumis à- des actions extérieures : ils peuvent par exemple faire 
partie d’édifices atomiques distincts. Soient EJ"1, . . ., E}“', ... les 
valeurs propres des états stationnaires du premier corpuscule, 
VF}01, ..., 'F)"', ... les fonctions propres correspondantes. Pour 
le second, on a E;0’, . . ., E;°’, ... et ’F,0), . . ., fi")!,’:, .... S’il arrive 
que l’on ait *

(46) EJ?1 ■

E},1’1 est une valeur propre double du système formé par les deux 
corpuscules à laquelle correspondent les deux fonctions propres 
linéairement indépendantes lF}0) et W/V W£j,y la première fonc 
tion propre représentant l’état du système où le premier corpuscule 
est dans l’état É; et le second dans l’état mj et la seconde fonction 
propre représentant I’élat du système où le corpuscule est dans 
l’état li’ et le second dans l’état my. La fonction d’onde *F du sys 
tème a un développement de la forme

(47) T = .

\ciij \ est la probabilité (constante) de trouver le premier corpus 
cule dans l’état li et le second dans l’état mj) | a;»y |2 est la proba 
bilité de trouver le premier corpuscule dans l’étal li> et le second 
dans l’état my. Ces faits sont constatables puisque, par hypothèse, 
on peut distinguer les deux corpuscules.

Supposons maintenant qu’une légère interaction, représentée 
par un petit terme perturbateur V dans l’Hamiltonien du système, 
existe entre les deux corpuscules. Alors à la valeur propre 
double EJ0) correspondront deux fonctions propres adaptées à la 
perturbation Y, qui seront des combinaisons linéaires de Wt. Wm. et 
de 'F,., W,„., et auxquelles correspondent pour l’énergie des pertur 
bations du premier ordre E}’ et E}11. Le *F du système sera alors 
de la forme

(48) T = . ..+ c,/(<) h - crj'(l) 'FJ?!

A'pfa,
où dj et j' sont des combinaisons linéaires de e4 1 et

L. DE 11ROÜLIE. 9
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de e h H ; d’où il résulte que les 

et litiriji fluctuent avec la fréquence

probabilités des états 

On peut dire

h rrij 

que

les deux corpuscules passent alternativement des étals li et rrij aux 
états lti et irij' en échangeant leurs énergies avec conservation de 
l’énergie totale. Les états lirrij et l^my du système sont en réso 
nance, et ce phénomène d’échange d’énergie est comparable à celui 
que l’on étudie en Mécanique classique dans le problème du double 
pendule (pendules sympathiques).



CHAPITRE VII.
ÉTUDE DES SYSTÈMES CONTENANT DES PARTICULES 

DE NATURE IDENTIQUE.
CAS DES PARTICULES DÉNUÉES DE SPIN.

1. Généralités. —■ Jusqu’ici nous avions supposé implicitement 
que les systèmes dont nous faisions l’étude étaient composés de 
particules que l’on pouvait expérimentalement distinguer les unes 
des autres par leurs propriétés physiques. Nous allons maintenant 
nous occuper des systèmes où deux ou plusieurs particules ont 
une nature physique identique et ne peuvent être distinguées les 
unes des autres que par une localisation différente dans l'espace. 
Nous allons alors voir apparaître des circonstances entièrement 
nouvelles et tout à fait caractéristiques de la nouvelle Mécanique.

L’idée essentielle qui s’est montrée nécessaire pour l’étude de 
ces systèmes, c’est que, les particules de même nature étant 
impossibles à distinguer, les phénomènes physiques observables 
doivent rester exactement les mêmes quand on permute les rôles 
joués dans le système par deux quelconques d’entre elles. Comme 
la fonction d’onde 'F a pour mission en Mécanique ondulatoire 
de nous donner une liste des phénomènes observables possibles, 
il en résulte que les fonctions 'F d’un système où figurent des par 
ticules doivent être construites de manière à traduire l’impossi 
bilité de distinguer deux de ces particules.

Pour aborder l’étude de cette question assez délicate, nous 
commencerons pas examiner le cas extrêmement simple d’un sys 
tème formé de deux particules de nature identique sans inter 
actions.

2. Cas d’un système de deux particules de même nature sans 
interactions. — Nous considérons un système formé par deux 
parlicules de même nature physique n’agissant pas l’une sur
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l’autre, mais pouvant être soumises à un champ extérieur qui agit 
naturellement de la même façon sur les deux particules, puisqu’elles 
ont les mêmes propriétés physiques. Nous savons former l’équation 
d’onde de ce système qui est

( 1 ) ^ |Ar, Pyt -+- PS, + Pl, Py, PÎ, 1 ’I'-

/ ,,, v,,, h f/*rs’Oi.ji, ^i)’f -+- v(^5, >•«, s2)'t = — ,

m étant la masse de chacune des deux particules, p , . . ., pZi les 
opérateurs bien connus. Les particules étant indépendantes, nous 
pouvons considérer leurs ondes individuelles dans l’espace à trois 
dimensions. Soit x^~x(xuy^, :-x ; t) une solution de l’équation des 
ondes pour la première particule, solution qui à chaque instant 
n’est différente de zéro que dans un certain domaine A. de l’espace. 
Soit lbij(a;2, y2, ; t) une solution de l’équation des ondes pour
la seconde particule, solution qui à chaque instant n’est différente 
de zéro que dans un domaine B. Au cours du temps, les 
domaines A et B se déplacent et il peut arriver qu’ils se recouvrent 
partiellement ou totalement. Nous supposerons qu’au temps t ~ o, 
les domaines A et B sont complètement séparés.

Nous pouvons prendre comme solution de l’équation (î) du 
système

(2) ..., 3z; t) = 'I'a  (se,, yu Si; O'Fuftfs, y», 3S; t),

solution qui exprime que pour £ = o la particule 1 est quelque 
part dans le domaine A correspondant à cet instant o et la parti 
cule 2 quelque part dans le domaine B correspondant à cet ins 
tant o. Mais, à cause de l’indiscernabilité des particules, la solu 
tion

(3) lFl>i, ..., S2; 0 = 72, 5i\ () 'IV-zi, y,, Si; 1)

représente tout aussi bien le même état de chose puisque, par 
hypothèse, la seule chose que nous puissions vérifier, c’est qu’il y 
a une particule dans A et l’autre dans B à l’instant t — o, 
sans que nous puissions effectivement attribuer un numéro à 
chacune d’elles.

Nous pouvons d’ailleurs tout aussi bien prendre comme solution



de (i) une combinaison linéaire des solutions (i) et (2) de la 
forme

( 4) Tr(>,, Zi\ t) = c 'I’a  (ai,, y 1, zt ; <)11’b (>î, y«, zt ; t)
-+■ dW^x», y,, z-2 ; t) xïu(xI, yi, z, ; t).

Mais nous pouvons préciser davantage, si nous admettons que la 
quantité |T(aq, qui est observable ne doit pas
changer lorsqu’on permute le rôle des deux particules, puisque 
cette permutation ne doit pas avoir de conséquences observables. 
En écrivant explicitement cette condition, on voit aisément qu’elle 
ne peut être satisfaite qu’en posant

(5) \c\ = \d\, c*U= (fc.

La seconde de ces équations nous montre que c et d ont même 
argument et, comme les fonctions ne sont jamais déterminées 
qu’à un facteur eprès, on peut prendre cet argument égal à o. 
c et d sont alors tous deux réels et la première équation (5) donne

i 6) c = ± d.

La solution (4) prend alors la forme

(7) V'.... zt-, t) = e[<tv.r,, y,, s,; y°, z-2; O
± 'i\v(Xî, yt, Zi-, t) 'I’bOo  Xh Z\ ; O]-

Le facteur réel c sera déterminé par la condition de normalisation

(S) J. . . I S M'i'2 r/jri ... dzi=i.

Or, en écrivant celte condition pour l’instant t = o (nous savons 
qu’elle subsiste ensuite), on trouve, en tenant compte de ce que le 
produit *P’A(.r, y, z-, t) Wv(x,y, z; t) est partout nul à cet instant,

1
( () ) 1 c- = I OU C = -7= •

V'2

En définitive, on obtient pour la fonction d’onde normée du 
système

| 'ibOi, yu si ;O i'b (*2, yti ss> O | 
l ±*I’Ap2, yt, z-2; QM!’b(^i, y,, z, ; 0 i

v 2

CAS DES PARTICULES DENUEES DE SPIN. 13 3

(10) W(æi, .... z? ; t) =
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On peut donc dire que 1F est nécessairement soit symétrique, soit 
antisymétrique par rapport aux deux particules, c’est-à-dire que 
cette fonction doit ou ne pas changer du tout ou changer seule 
ment de signe quand on permute le rôle des deux particules (*). 
Mais laquelle de ces deux possibilités devons-nous choisir? Nous 
verrons plus loin que cela dépend de la nature physique des parti 
cules : il existe des lois naturelles qui nous obligent pour tel ou 
tel type de particules à choisir soit la solution symétrique, soit la 
solution antisymétrique. D’ailleurs pour les particules douées de 
spin, il y aura lieu, pour faire ce choix, de tenir compte du spin.

Nous voici donc arrivés à la conclusion que pour un système 
formé par deux particules de même nature sans interaction nous 
devons toujours prendre une fonction d’onde soit symétrique, soit 
antisymétrique suivant la nature physique des particules. Nous 
voulons examiner de plus près ce que signifie ce résultat. Suppo 
sons que, si nous traitons le problème en considérant isolément le 
corpuscule i parlant de l’état , y,, z, ; o) et le corpuscule 2
partant de l’état<Flj(,z:2, y.2, • o), nous trouvions que les domaines
mobiles A et B balaient au cours du temps des volumes (que nous 
représenterons hachurés), sans qu’il y ait jamais entre eux empiè 
tement même partiel.

Fig. 10.

Si, à l’instant £, A étant venu en A' et B en B', on parvient à 
localiser une des particules en M et l’autre en N on pourra affirmer

(l) On peut d’ailleurs démontrer aisément que si la fonction H* est soit symé 
trique soit antisymétrique, non seulement la grandeur | 'I* |- mais toutes les 
autres grandeurs observables sont insensibles à une permutation du rôle des deux 
particules.
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que la particule trouvée en M est celle qui se trouvait quelque part 
dans A à l’instant initial et que la particule trouvée en N est celle 
qui se trouvait quelque part dans B à l’instant initial. Dans les 
conceptions classiques, nous pouvons constamment distinguer les 
deux particules de même nature physique, parce que nous pouvons 
toujours, du moins en principe, suivre constamment leurs locali 
sations successives exactes dans l’espace. Ici, bien que les locali 
sations ne soient plus, en général, précises, le fait que les zones de 
localisation possible des deux particules n’empiètent jamais nous 
permet encore de les suivre et de les distinguer. Aussi, dans ce cas, 
peut-on soit utiliser les équations individuelles et les ondes indivi 
duelles des deux particules, soit envisager l’onde du système en 
prenant la forme dissymétrique *FA(a?i,y\, z, ; l) y2. z2 ; t).
En particulier, ceci serait évidemment licite s’il existait une 
cloison G infranchissable pour les particules et les séparant 
entièrement l’une de l’autre.

M ais, quand il n’existe pas de cloison telle que C, il arrivera 
souvent (ce sera même le cas général) qu’au cours du temps les 
zones de localisation des deux particules viendront à empiéter 
l’une sur l’autre comme sur la figure suivante.

Quand A vient en A' et B en B', il y a une région C de l’espace où 
l’une et l’autre particules peuvent se trouver. Si alors nous par 
venons plus tard à localiser l’une des particules en M et l’autre 
en N, nous ne pouvons plus aftirmer que celle qui a été trouvée 
en M se trouvait à l’instant initial dans A et que celle qui a été 
localisée en JN se trouvait initialement dans B. En effet, les parti 
cules ont pu bifurquer en C. Nous pouvons ici seulement affirmer 
que, deux particules de même nature se trouvant initialement
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en A et B, on en retrouve deux en M et en N à la fin sans pouvoir 
suivre leur personnalité dans l’intervalle. Pour tenir compte de 
cette impossibilité, nous devons alors obligatoirement considérer 
l’équation d’ondes du système et ses solutions de la forme (io) 
(symétriques ou antisymétriques suivant la nature des particules).

Comme l’empiètement des zones de localisation possible peut 
toujours se produire dans le cas général (où il n’y a pas de 
cloison C), c’est donc toujours dans l’espace de configuration que 
nous devons poser le problème, avec emploi obligatoire des solu 
tions symétriques ou antisymétriques. En particulier, cela est 
toujours nécessaire pour des particules de même nature engagées 
dans les liens d’un système atomique ou moléculaire, où elles 
occupent en quelque sorte le même voluiiie de l’espace.

Nous avons ici déjà une importante différence avec le cas des 
particules de natures physiques différentes. En effet, pour des. 
particules de natures différentes sans aucune interaction, nous 
pouvons considérer les particules isolément, l’emploi de l’espace 
de configuration étant toujours facultatif. Au contraire pour des 
particules de même nature, à cause de l’impossibilité de suivre 
leurs individualités quand leurs zones de localisation empiètent ou 
ont empiété, l’emploi de l’espace de configuration et des solutions 
symétriques ou antisymétriques est toujours obligatoire dans le 
cas général. Néanmoins dans le cas où les particules sont sans 
interaction, on pourrait encore admettre que la particule localisée 
en M était celle qui primitivement était dans A et que la particule 
localisée en N était celle qui primitivement était dans B (Jig. 11), 
mais ceci devient tout à fait impossible s’il y a des interactions, 
cas dont nous allons maintenant nous occuper.

3. Système formé de deux particules de même nature interagis 
santes. — Au paragraphe précédent, nous avons supposé que nos 
deux particules de même nature n’exerçaient pas l’une sur l’autre 
d’interaction. Si, au contraire, elles sont susceptibles d’exercer 
l’une sur l’autre une interaction fonction de leur distance, il pourra 
y avoir entre elles des phénomènes de choc au sens large du mot 
et, en ce cas, si l’on part d’une forme initiale de la fonction W qui 
soit symétrique ou antisymétrique par rapport aux deux particules, 
on aura, après le choc une forme beaucoup plus compliquée du ff"
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qui traduira tous les résultats possibles du choc. Mais il existe un 
théorème général dont nous donnerons la démonstration un peu 
plus loin d’après lequel, si la fonction d’onde T est initialement 
symétrique, elle reste symétrique après l’interaction et, si cette 
fonction est initialement antisymétrique, elle est encore antisymé 
trique après l’interaction : en d’autres termes, l’évolution du sys 
tème définie par son équation d’ondes respecte le caractère initial 
de symétrie ou d’antisymétrie de la fonction d’onde. C’est ce 
théorème qui permet de considérer la symétrie ou l’antisymétrie 
des fonctions d’onde comme une propriété caractéristique et 
permanente liée à la nature physique des particules.

Etudions maintenant de plus près l'effet de l’interaction entre 
les deux particules de même nature. Supposons d’abord que-nous 
puissions négliger en première approximation l’interaction des 
deux particules et que ces deux particules se trouvant alors sou 
mises uniquement à un même champ extérieur aient une suite 
d’états stationnaires possibles, suite qui est la même pour chacune 
des particules en raison de leur identité. Soient , 'IC, . . . les 
fonctions propres, E!, E2, ... les valeurs propres pour l’une et 
l’autre particule. On peut réaliser pour le système des deux parti 
cules un état d’énergie globale E; + E/( de deux façons différentes, 
soit en supposant la première particule dans l’état E; et la seconde 
dans l’état E/,, soit en supposant la première particule dans l’état E/,, 
et la seconde dans l’état E,;. L’état global du système est représenté 
dans le premier cas par la fonction d’onde ff'= lF;(i) ^.(2) où 1 
et 2 représentent respectivement xl: yK, et ,r2, y2. zy le second 
cas correspond au contraire à la fonction d’onde ^,-(2) lF/,(i)- 
Donc, à la valeur propre E,-E^- du système correspondent les 
deux fonctions propres linéairement indépendantes ff;,(i) *1^(2) 
et ,F,(2 )’E/, (i)- Il y a donc une dégénérescence d’un type parti 
culier due uniquement à l’identité de nature des deux particules, 
à la possibilité de les échanger sans rien changer : on lui donne le 
nom de «dégénérescence d’échange». Notons que les deux fonc 
tions d’onde ff:’,-(i) ff'/.^a) et ff(2) ff'/(( 1 ) sont normées et orthogo 
nales puisque tous les TF; le sont.

Maintenant nous devons tenir compte dans l’Hamiltonien du 
système d’un terme d’interaction entre les deux particules : nous 
supposerons toujours que ce terme d’interaction ne dépend que
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de la distance des deux particules, c’est-à-dire est une fonction 
symétrique de ces particules. Nous allons chercher à appliquer la 
méthode de perturbations exposée au chapitre précédent.

Nous devons nous demander tout d’abord quelles sont les deux 
combinaisons linéaires des fonctions *F,-( i ) ly ( 2 ) et ’F;( 2 ) 'F/,. ( 1 ) 
que nous devons prendre comme approximations d’ordre zéro 
dans notre calcul de perturbation. Nous pouvons voir aisément 
que ce sont les deux combinaisons 'F,-(i)1F*(2) ± ’F^a) 'F/((i) qui 
nous sont déjà familières. D’après l’équation (3^) du chapitre 
précédent, il suffit de prouver que I on a

(h ) J[tf'i(i)tFi(2)±ï'i-(2)^(i)rv[»rI-(i)trit(2)rFiF((2)'r<.(i)] <1- = 0,

V étant l’énergie d’interaction fonction seulement de la distance i\-, 
des deux particules, car alors la matrice V à 2 lignes et 2 colonnes 
correspondant aux fonctions propres de la valeur propre Ei-j-E* 
sera diagonale. Or, la formule (11) est facile à vérifier. Prenons 
par exemple les signes supérieurs. Le premier et le deuxième 
facteur sous le signe d’intégration sont alors symétriques, tandis 
que le troisième est anlisyrnélrique. Donc, si nous permutons dans 
l’intégrale les indices 1 et 2, celle-ci doit changer de signe; mais 
permuter les indices 1 et 2 dans l’inlégrale revient seulement à 
changer le nom des variables d’intégration, ce qui ne peut pas 
modifier la valeur de l’intégrale. Par cette permutation l’inlégrale 
doit donc à la fois changer et ne pas changer de signe, et 
ceci n’es't possible que si elle est nulle. On démontrerait de 
même que la formule (11) est vérifiée quand on y prend les signes 
inférieurs.

Les deux fonctions propres normées à l’approximation zéro 
adaptée à la perturbation due à l’interaction des deux particules 
sont donc

h' ( I ) *F* ( 2 ) -t- ll 'i ( 2 ) 'F/; ( I )
--- —----------- ---------------- - 1

V 2
lF,-( 1 ) h"/- ( 2 ) — h*,-( 2 ) *]'/■ ( 1 )

V72

Les perturbations au premier ordre de l’énergie correspondant à
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ces deux états sont, d’une part 

(i3) E<J>= J 'F'V'I'V/t

J I UWn |» | wk(2) |=+ I HTffa) j2 ; v A

)3q

■J M'/Vi ) '!'/* ( ?.) ’l’d a) 'F/-(i) -+- quantité conjuguée
V ch.

ou encore en posant

(14) C = [ ! V,(i) p j T/,(2) |-+ ! ^(2) j* î >r,(i) p] Vrf-

= f ip !'F/(2);-v di

el
(15) A = CH f' 17(1) >n(2)V >I';(2) 'IA-(i) di,

(Kl) Ey)=C-f-A,

et, d’autre part,

(17) EL1 ! = J'F* V'F -<h

j ! M’Ai) P ! *14(2) |2 -+- I ffy 2) I2 j in-CQ I2 v

'F,* Ci) *F< ( 2) V '!’,■( 2 ) ’14 (1) -f- quantité conjuguée

OU

(18) EL1 ! = C — A.

V eh

Le terme G est celui qui existerait seul s’il n’y avait pas de 
dégénérescence d’échange. Le terme A, caractéristique de cette 
dégénérescence, est nommé le terme d’énergie d’échange : il est lié 
à l’échange possible des deux corpuscules comme cela se voit sur 
sa définition (i:ï). Si les deux formes, symétrique et antisymé- 
trique, de la fonction d’onde étaient toutes deux admissibles pour 
une même particule (et nous verrons que cela a effectivement lieu 
pour les particules à spin si l’on définit la symétrie comme nous 
l’avons fait jusqu’ici, c’est-à-dire sans tenir compte desspins), une 
démonstration faite à la fin du chapitre précédent nous montrerait 
que la probabilité de trouver la première particule dans l’état E; par 
exemple, et la seconde dans l’état E* (l’énergie total étant Ei —j— E/f)



CHAPITRE Vil.

fluctue avec la fréquence ^ (E1^1 — fréquence double

de celle qui correspond par la relation de Planck à l’énergie 
d’échange A. Toutefois, ici cette interprétation est d’ordre pure 
ment analytique, puisqu’il est expérimentalement impossible d’af 
firmer si c’est la première particule qui est trouvée dans l’état E; 
et la seconde dans l’état E* : autrement dit, les fluctuations 
d’échange sont inobservables à cause de l’indiscernabilité des 
particules.

L’existence de l’énergie d’échange est extrêmement importante 
car elle montre que la possibilité d’échange du rôle de deux parti 
cules de même nature se traduit par une modification des valeurs 
propres, c’est-à-dire par des phénomènes parfaitement obser 
vables. Nous verrons que la stabilité de la molécule d’hydrogène 
(et plus généralement des molécules homopolaires) repose sur 
l’existence de l’énergie d’échange.

Il y a une remarque importante à faire au sujet de l’énergie 
d’échange. Si les fonctions ff;,'(a;y.3) et ^Yk^xyz') de l’approxi 
mation d’ordre zéro sont telles que pour aucun point xyz elles 
ne soient toutes deux différentes de zéro, l’intégrale A est évidem 
ment nulle. Ceci vient dire que l’énergie d’échange est nulle si 
pour les états vF;(i) W*(2) et ffy(2) W;(i) ou les combinaisons 
linéaires de ces états, il n’y a aucun point de l’espace où les deux 
particules puissent se trouver à la fois. L’énergie d’échange n’est 
donc différente de zéro que s’il y a empiètement des zones de 
localisation possible pour les deux particules. Comme l’impossi 
bilité de suivre l’individualité de chaque particule, l’existence de 
l’énergie d’échange est donc liée à cet empiètement.

Considérons par exemple deux centres de force identiques 
fixes N et IN' autour de chacun desquels gravite une particule 
(P et P'). P et P' sont supposées de même nature. Soit C 
une cloison imperméable aux particules P et P' placée entre N 
et N' (fig- 12). Alors P peut posséder des étals stationnaires autour 
de N et P' autour de N' sans qu’il puisse y avoir empiètement des 
ondes ff" stationnaires correspondantes, ni par suite des zones de 
localisation possible. S’il y a une interaction entre P et P', les 
perturbations du premier ordre en énergie E'jj et E1! sont égales 
toutes deux à C puisque l’énergie d’échange A est nulle. Dans ce

i4o
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cas l'interaction ne lève donc pas la dégénérescence d’échange et 
rien ne nous oblige à prendre comme fonction d’onde 'F,-( i ) T'a -( 2 ) 
± Wi( 2 ) 'F/,■( 1 ) plutôt que les fonctions d’onde dissymétriques 
telles que ll ,(i) '1*4(2), ce qui veut dire que l’on peut ici traiter le 
problème en conservant l’individualité des particules, puisque la 
particule qui est à droite de G au début reste forcément à droite 
de C et inversement. L’énergie d’échange disparaît donc quand il 
y a possibilité de suivre l’individualité des particules. De ce qui 
précède, résulte que, pour qu’il soit nécessaire d’abandonner 
l’individualité des particules et d’employer uniquement les fonc 
tions d’onde symétriques ou antisymétriques, il faut qu’il y ait à la 
fois interaction et empiètement des régions de présence possible, 
c’est-à-dire que l’énergie d’échange A soit différente de zéro.

P'

N’

Fis. 12

Si l’on parvient à tirer un jour complètement au clair cette 
notion assez mystérieuse d’énergie d’échange, il faudra, pour le 
faire, certainement tenir compte de la remarque précédente.

Toutes les considérations que nous venons d’exposer concernent 
le cas très particulier d’un système de deux particules de nature 
physique identique. Elles ont l’intérêt de nous avoir clairement 
montré tout un ensemble de circonstances nouvelles qui se pré 
sentent en raison de l’identité de nature des deux particules et de 
l’impossibilité de suivre constamment leur individualité, du moins 
quand il y a empiètement de leurs zones de localisation possible. 
Nous allons maintenant étudier le cas général d’un système conte 
nant un nombre quelconque de particules de même nature et 
montrer que l’on retrouve toujours les mêmes circonstances que
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dans le cas de deux particules. Chemin faisant, nous ferons 
certaines démonstrations générales qui justifieront quelques affir 
mations contenues dans l’exposé précédent.

4. Systèmes contenant un nombre quelconque N de particules 
identiques. — Nous allons maintenant considérer un système 
contenant N particules de même nature physique. Naturellement 
dans ce système peuvent aussi se trouver d’autres particules de 
nature différente, mais nous ne préciserons rien sur ces autres 
particules, dont la présence ne modifierait aucunement les raison 
nements que nous allons faire, et nous écrirons la fonction d’onde 
W sous la forme t) sans même inscrire les coordon 
nées des autres particules, s’il y en a, car cela ne ferait qu’allonger 
inutilement l’écriture. Nous emploierons généralement une nota 
tion abrégée en écrivant ^'(i, 2, . . ., N, t), où 1 représente l’en 
semble des coordonnées x{, yK, zt, etc.

Nous dirons qu’une fonction des 3N coordonnées de N parti 
cules de même nature est symétrique par rapport à toutes ces 
particules si, quand on permute le rôle de deux quelconques 
d’entre elles, la fonction ne change pas, c’est-à-dire si l’on a 
/( ï J • • • î L • • • ? 4, • . ., N ) ;=t/*( 1, ..., A, ...,£, . . ., N ) pour 
tout i et tout k. De même, nous dirons qu’une fonction des 3N 
coordonnées de N particules semblables est antisymétrique par 
rapport à toutes ces particules si, quand on permute le rôle de 
deux quelconques des particules, la fonction garde sa valeur 
absolue en changeant de signe, c’est-à-dire si l’on a

pour tout i et tout k.
L’opérateur Hamiltonien du système peut être considéré comme 

une certaine fonction des 3 N' coordonnées des N particules. Il se 
compose, nous le savons, de trois parties : i° la partie cinétique 
qui est ici

N

où m est la masse commune des N particules de natures iden-
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tiques et où
v_( jp_ ü

4 "2 \ àxf + àyr + d*?

43

a" la partie venant de l'énergie potentielle due au champ exté 
rieur, s’il en existe. Comme l’action du champ extérieur sur des 
particules identiques est la même, cette partie potentielle de 
l’Hamiltonien est de la forme

N

^(37, y'i, -3,-),

'V étant la même fonction dans tous les termes de la somme; 
3° les termes d’interaction qui sont de la forme

2^7 (r,7) =y|£v' (r,7),

"V étant la même fonction dans tous les termes de la somme. Au 
total, on a donc

<I,J) l[=iZ(^ -Pl^Pii) '
■2/

V(xi, yh zt) - V '(rr,).

11 est alors évident que si nous permutons deux quelconques des 
particules de même nature, c’est-à-dire deux quelconques des 
indices i et k dans les sommes 2, H n’est pas modifié. L’opérateur 
Hamiltonien est donc symétrique par rapport aux N particules, car 
on a H(i, . . ., A-, . .., N) — H(i, . . ., k, .. ., i, . . ., N)
pour tout i et tout k. Cette symétrie de l’Hamiltonien est à la base 
de toute la théorie qui va suivre.

Soit maintenant *F(i, 2, . . ., N) une certaine solution de l’équa 
tion d’ondes du système (où nous avons omis la variable t). Celte 
fonction satisfait par définition à l’équation

(20) 2, N) = ^H(i, 2, ..., N) T(i, 2, ..., N).

Permutons d’une manière quelconque le rôle des N particules : 
nous passerons ainsi de la fonction W(i, 2, . . ., N) à une fonc 
tion ’F(i, k, . . . ) dans laquelle les arguments 1,2, . . ., N repré 
sentant chacun l'ensemble des trois coordonnées d’une particule
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sont rangés dans un ordre différent. Nous pouvons représenter 
cette nouvelle fonction par le symbole P1"(i, 2, . . ., N), P sym 
bolisant une certaine permutation opérée sur les nombres 1, 
2, . . ., N. La symétrie de l’Hamiltonien nous permet alors de 
démontrer l’important théorème suivant :

Th é o r è me . - SiW( I, 2, ...,N) est une solution de Véqua 
tion d’ondes du système, la fonction P VP"( 1, 2, . . ., N) en est 
également solution, quelle que soit la permutation P.

En effet, si dans l’équation (20) nous opérons la permutation P 
sur les variables 1, . . ., N, nous obtiendrons encore une équation 
vérifiée, puisque nous aurons tout simplement changé le nom des 
variables. Cette équation est

(21) Jjpw(i, N) = "—jp PH 'È(i, ... N),

la permutation du second membre s’appliquant à chacun des 
facteurs H et A cause de la symétrie de II, on a

PH(i, ..., N) = H(i, .... N),
d’où
(22) ^PT(i, ..., N)= ^IlPfff .... N).

On en conclut en passant qu’en vertu de la symétrie de II, on 
peut poser la relation entre opérateur

(2!) PH = IIP.

C’est cette relation (2.3) que M. Dirac traduit en disant que 
« les permutations sont des constantes du mouvement ». En effet,
(23) montre que les permutations P satisfont à la délinitiou des 
intégrales premières.

L’équation (22) exprime que PlF(i, . .., N) est solution de 
l’équation des ondes, ce qui démontre le théorème énoncé.

En particulier, si W(i, ..., N) est une certaine fonction propre 
du système supposé isolé, on a

(24) H(i, ..., N)«Fy(i, ..., N) = E,-W/(I, ..., JN)

et, d’après le théorème qui vient d’être démontré, on a aussi,

Ci



quelle que soit I’,

(2:,) H(i, N) P'!•/(!, ..., N) = E/PWy(i, N).

Donc P'I"y(i, . . N) est aussi fonction propre pour la même 
valeur propre E/, quelle que soit P.

Si aucune valeur propre de H n’était dégénérée, on en conclurait 
que ffy est soit symétrique, soit antisymétrique; car si Ey est une 
valeur propre simple, on a une seule fonction propre correspon 
dante et, par suite, P'F^i, ..., N) doit être proportionnelle à 
lFy(i, . . ., N). On a donc, A étant une constante,

(20) P .... N) = A N).

Gomme II est un opérateur réel, ses fonctions propres pour une 
valeur propre simple peuvent être supposées réelles (car oa peut 
prendre égal à i le facteur e,a que la normalisation laisse arbi 
traire). Alors, W/ étant réel, P d 'y l’est évidemment aussi et il en 
est de même de A. Mais nous avons

( 27 ) J' d'y !- t/xi ■ . ■ f/z-s = ^ | P d’/ - (lx1 . ■ . (Izy,

car la valeur d’une intégrale définie ne dépend pas du nom que 
l’on donne aux variables. En remplaçant dans (27) PW par sa 
valeur (afi), on trouve (A étant réel) A2= 1 et, par suite,

(28) \ = • i-

d’où, par (26),

(29) l>,r/(>> •••> *)==*•,-(i, .... N).

Si l’on prend pour la permutation P celle qui correspond au 
simple échange des particules i et /r, on voit que pour Ey non 
dégénéré. 'E/ est nécessairement soit symétrique, soit antisymé 
trique pour l’cchange des particules i et k. Il en résulte aisément 
que XF/ est alors symétrique ou antisymétrique par rapport à 
l’ensemble des particules de même nature du système. En effet, 
pour permuter les deux particules l et m, nous pouvons d’abord 
permuter l et i d’une part, k et m d’autre part, puis permuter i et k 
et enfin permuter à nouveau i et l d’une part, k et m d’autre part 
suivant le schéma

—>... I. k...i......i. . .k. . . rn... I....
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De ces cinq permutations successives ainsi effectuées pour 
arriver à permuter l avec m, deux sont des échanges simples de i 
et de l et deux des échanges simples de k et de m. Or, d’après ce 
qui fut démontré plus haut, chacun de ces échanges simples a 
pour effet de multiplier ff’y par ± i, de sorte qu’au total ces quatre 
échanges simples ne modifient pas W/. Finalement on voit que 
l’échange de l et de m produit sur *Fy le même effet que l’échange 
de i et de k. Comme i, k, l, m sont quelconques, on voit que ff', 
est nécessairement soit symétrique, soit antisymélrique pour tout 
échange des particules de même nature.

En résumé, si les valeurs propres de H étaient toutes simples, 
toute fonction propre serait soit symétrique, soit anlisymétrique. 
Mais, à l’approximation zéro, quand on néglige les interactions 
entre particules, il y a toujours des valeurs propres multiples dues 
à la dégénérescence d’échange. Le résultat précédent n’est donc 
pas immédiatement applicable en général à cause des dégénéres 
cences. Il est cependant valable dans le cas, précédemment 
étudié, d’un système formé de deux particules de même nature. 
En effet, dans ce cas, l’interaction entre les particules lève en 
général la dégénérescence d’échange. Les valeurs propres doubles 
se dédoublent sous l’action de la perturbation comme nous l’avons 
vu dans le dernier paragraphe, et les fonctions propres correspon 
dant à ces valeurs propres dédoublées sont soit symétriques, soit 
antisymétriques en vertu des raisonnements précédents. Si nous 
faisons tendre vers zéro l’interaction des particules d’une façon 
continue, les fonctions propres conservent leurs caractères de 
symétrie ou d’antisymétrie et à la limite, quand les valeurs propres 
dédoublées viennent se confondre, les fonctions propres viennent 
se raccorder avec les fonctions propres de l’approximation zéro qui 
doivent donc être aussi soit symétriques, soit antisymétriques. 
Nous avons vu que les fonctions propres de l’approximation zéro 
adaptées à la perturbation créée par l’interaction sont :

h'A(l)ff,li(2)±>I'1!fl)ff'A(2).

Nous trouvons donc finalement le théorème suivant :

Th é o r è me . — Pour les systèmes contenant deux particules de 
même nature physique, toutes les fonctions propres sont soit
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symétriques, soit antis ymétriques par rapport à ces deux par 
ticules (à condition de choisir convenablement les fonctions 
propres correspondant aux valeurs propres dégénérées).

Ce théorème ne s’étend pas au cas de N > 2, car alors l’inter 
action entre les particules ne lève jamais complètement la dégéné 
rescence d’échange et le mode de raisonnement indiqué plus haut 
n’est plus valable. Dans ce cas général de N > 2, les fonctions 
propres symétriques et antisymétriques réunies ne forment plus 
un système « complet », nous le montrerons plus loin sur un 
exemple simple. En général, une fonction d’onde quelconque 
'F(i, ..., N) non seulement n’est ni symétrique, ni antisymé 
trique, mais n’est meme pas développable en une somme de fonc 
tions propres symétriques augmentée d’une somme de fonctions 
propres anlisymétriques.

Néanmoins, on peut encore énoncer le résultat suivant : « pour 
un système do particules contenant plus de deux particules de 
même nature, il existe toute une suite de fonctions propres symé 
triques et toute une suite de fonctions propres antisymétriques 
par rapport à ces particules ».

En clfet, soient Ej une valeur propre et ltry( 1,2, ..., N) une fonc 
tion propre correspondante telle que

(3o) II(I, N)>r/(I, N) = lv ij'/d, N).

Nous savons que toute fonction Pfyji, . . ., N) est aussi fonction 
propre pour la valeur propre E/ : il en est donc de même de toute 
combinaison linéaire des P¥( 1, . . ., N ) en comprenant dans les P 
la permutation identique P = 1, telle que

ld'(l, .... N) = ’F(I, N).

En particulier, on a une solution de la forme

no • ••, n ),
P

la sommation étant faite sur toutes les permutations P possibles, 
y compris la permutation identique. Celte fonction propre est visi 
blement symétrique, car elle contient toutes les variables 1, ..., N 
symétriquement. On a donc ainsi, pour l’ensemble des valeurs
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propres E|, . . ., Ey, ... un ensemble de fondions propres symé 
triques . . ., ....

De même, on peut trouver de la façon suivante une fonction 
propre antisymétrique correspondant à la valeur propre Ey. On 
sait que les permutations de IN objets, qui sont en nombre N ! se

N ! .divisent en deux catégories contenant chacune 1 - permutations,

savoir : i° les permutations paires, qui s’obtiennent en faisant un 
nombre pair d’échanges simples dans la suite i, . . ., N, la permu 
tation identique étant rangée par définition dans celte catégorie 
(ce qui revient à ranger zéro parmi les nombres pairs); 2" les per 
mutations impaires, qui s’obtiennent en faisant un nombre impair 
d’échanges simples dans la suite 1, . . ., IN. Formons alors la fonc 
tion propre

(32) Tj"! =2±p'Fy(t, .... Ni,

l»

où les permutations paires sont affectées du signe + et les per 
mutations impaires du signe—. 11 est facile de voir que 'E/'ï| est 
antisymétrique, car si l’on échange le rôle de deux particules, 
l’ensemble des permutations P se change en lui-même, mais les 
permutations qui étaient paires deviennent impaires et inverse 
ment. La fonction obtenue à partir de l'y'" ( 1, . . ., iN ) par échange 
de deux particules aura la même expression que lI mais avec le 
signe -f- pour les permutations impaires et le signe — pour les 
permutations paires : elle sera égale et de signe contraire, c’est- 
à-dire que l’on aura

(33) • ../... N).

W"1 est donc bien antisymétrique et, pour l’ensemble des valeurs 
propres Et, . . ., Ey, . . ., nous avons bien un ensemble de fonc 
tions propres anlisymétriques 'lr!1"), ■ • ■, 1,

Comme exemple simple de ce qui précède, prenons le cas 
de N = 3. Soit fby(i,2,3) une fonction propre correspondant à 
une valeur propre Ey. Pour les trois objets 1, 2, 3, nous 
avons 3 ! = 6 permutations différentes dont 3 sont paires.

1, 3 3; 3, 1, 2 ; 2,3, 1 ;
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et trois sont impaires,

i, 3, a; 2, i, 3; 3, 2, i.

Nous avons donc, d’après les résultats démontrés, six fonctions 
propres correspondant à la valeur propre Ey, savoir

j Wy(i, a, 3); Wy(3, i, 2); Wy(2, 3, i);
4 ( Wy(i, 3, a); Wy(a, i, 3); Wy(3, a, i).

Ces six fonctions (34) ne sont pas toujours linéairement indépen 
dantes, mais nous avons toujours une combinaison linéaire qui est 
symétrique, savoir :

(35) 2. 3i= 'Fy(i, 2, 3) + 'Fy(3, i, 2)-eW/(a, 3, i)
Wy ( 1, 3, 2) + Wy(2, I, 3)-t-Wy(3, 2, l)

et une combinaison linéaire antisymétrique, savoir :

(3G) W)">(i, 2, 3)= y(1, 2, 3)-i-Wy(3, i, 2) + Wy(2, 3, i)
— 'Ey(1, 3, a) —Wy(2, i, 3) — M'y(3, a, i).

Mais, en général, on ne peut pas exprimer toutes les fonctions 
propres (34) à l’aide des deux seules combinaisons Wj‘” et Wÿ"!. 
L’ensemble des fonctions Wj'-, même augmenté de l’ensemble 
des 'F)"1, ne forme donc pas un système complet de fonctions 
propres et une fonction d’onde T quelconque, qui peut se déve 
lopper suivant l’ensemble des fonctions propres de la forme (34), 
ne peut pas en général s’exprimer comme une somme de fonc 
tions Wj'1 augmentée d’une somme de fonctions Wy"1. Cela n’est 
toujours possible que pour N = 2.

Nous pouvons maintenant préciser la forme des fonctions 
propres symétriques et antisymétriques dans le cas de N particules 
en interaction faible, si nous nous en tenons à l’approximation 
d’ordre zéro. Soient donc N particules dont nous négligeons 
l’interaction. Chacune de ces N particules de même nature placées 
dans le même champ extérieur sont susceptibles d’états station 
naires, que nous supposerons non dégénérés correspondant à des 
valeurs propres Ea, Ep, Ey, . . ., avec des fonctions propres Wa, 
Wp, Wy, .... Le système des N particules aura une valeur propre

N termes.
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qui pourra être réalisée par N! répartitions des énergies indivi 
duelles Ex, Ep, . . ., entre les particules et à lacjuelle correspon 
dront N ! fonctions propres en général linéairement indépendantes

'l'a(i') ^3(2)... >1^(2) tÿRi)... WhŒ), ....

On obtiendra une solution symétrique en faisant la somme de ces
fonctions propres. Quant à la solution antisymélrique, elle 
s’obtiendra en formant la combinaison

p

Or, on peut remarquer que cette combinaison peut s’écrire sous la 
forme d’un déterminant

Ta(i) dbd 2) ... 'F*(N )
1*3 ( i ) d’s ( 2 ) ... 'F p ( N )

(38) - ..., N) =

U\(i) »F>,(2) ... tf\(N)

car l’alternance des signes dans les termes du déterminant corres 
pond exactement à la combinaison à former. Sur l’expression (38),
on voit immédiatement que si deux ou plusieurs des états station
naires a, (3, sont les mêmes, *F)"' est nul, car le déterminant
a alors deux ou plusieurs lignes identiques. Tout état stationnaire 
possible devant correspondre à une fonction ’F non nulle, nous 
parvenons à la conclusion suivante, dont nous verrons plus loin 
toute l’importance : « Dans un système contenant des particules 
de même nature, il ne peut exister d’état antisymétrique dans 

lequel deux ou plusieurs de ces particules sont dans le même état 
individuel >>.

Remarquons en passant que, dans le cas de deux particules, 
nous avions trouvé des fonctions propres antisymétriques de la 
forme

T,(l)'F/,(2)-^(2)dT(l),

qui sont bien égales aux déterminants

T;(i) T;(-0
*F*(i) ’Fi(2)
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5. Théorème fondamental. Démonstration et conséquences. — 
Nous sommes parvenus à cetle conclusion que, pour un système 
de particules de natures identiques, tout au moins dans le cas 
général où N est supérieur à 2, il existe bien une suite de 
fonctions propres symétriques et une suite de fonctions propres 
antisymétriques, mais que l’ensemble de ces suites ne forme 
pas un système complet permettant d’exprimer n’importe quel T. 
Dès lors, il pourrait sembler qu’il n’est pas légitime de fixer 
son attention uniquement sur les fonctions propres symé 
triques et antisymétriques, puisqu’elles ne permettent pas à elles 
seules d’exprimer un état quelconque du système. Mais il existe 
un théorème fondamental suivant lequel les étals symétriques 
d’une part, les états antisymétriques d’autre part, jouissent de 
propriétés très particulières, permettant de leur attribuer une 
importance spéciale. Ce théorème est le suivant :

Th é o r è me . — Si la fonction d'onde d'un système contenant 
des particules de même nature physique est initialement symé 
trique par rapport à toutes ces particules, elle reste ensuite 
symétrique ; si elle est initialement antisymétrique, elle reste 
antisymétrique. Autrement dit, le caractère initial de symétrie 
nu d'antisymétrie de la fonction d’onde est respecté par 
Vévolution du système.

Ce théorème fondamental résulte, comme les précédents, de la 
symétrie de l’IIamiltonien par rapport aux particules de même 
nature présentes dans le système. En effet, l’équation des ondes 
du système est

(3y) 1, 2, ..., N ; 0=^II(i, 2, ..., N; t) V(i, ..., X; t).

i5i

Supposons qu’à l’instant initial t0, lF soit symétrique. HetTr(£0) 
étant symétriques, Hff;(è0) l’est aussi et par suite, d’après (3g),
ifJt) également. Or à l’instant t0 + dt, on a, au premier ordre,

(4») T(/„•+- dt) = ff’(q,) -1- ( j^' dt.

Donc ^(bi) et (tiz) étant symétriques, ■1F( t0 + dt) l’est aussi
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En partant de l’instant t0-\-dt, on démontrera alors de la même 
façon que *F( t0 i dt ) est symétrique et par récurrence 
que ^'(fo + n d-t) l’est aussi. Finalement, on voit que, W(<0) étant 
symétrique par hypothèse, à un instant ultérieur quelconque t, 
W(f) l’est aussi.

Si lF(t0) est antisymétrique, II’î™() l’est aussi et il en est de 
même de ^ — ^ j d’après (3<j). On en conclut comme précé 

demment que lF(t0 + dt) est antisymétrique et l’on voit par 
récurrence que, *1(0) étant antisymétrique par hypothèse, à un 
instant ultérieur quelconque t, fF(<) le serq aussi. Le théorème 
fondamental se trouve ainsi démontré.

On peut déduire de ce théorème qu’un système parti d’un état 
symétrique ne peut passer qu’à d’autres états symétriques et 
qu’un système parti d’un état antisymétrique ne peut passer qu’à 
d’autres états antisymétriques. En effet, si le système est initiale 
ment dans un certain état stationnaire symétrique, sa fonction 
d’onde 'F coïncidera à l’instant initial avec une certaine fonction 
propre symétrique. A un instant ultérieur t quelconque, la fonc 
tion lF étant restée symétrique d’après le théorème fondamental, 
son développement suivant les fonctions propres du système ne 
contiendra que les fonctions propres symétriques. Gomme les 
coefficients de ce développement donnent (par le carré de leur 
module) les probabilités des états possibles du système à l’ins 
tant t, on voit que le système ne peut passer de l’état symétrique 
initial qu’à un autre état symétrique. On démontrerait de même 
que, si l’état initial était antisymétrique, le système ne peut passer 
qu’à d’autres états antisymétriques. La transition d’un étal station 
naire à un autre correspondant à une « combinaison » au sens du 
principe de combinaison de Ritz, on peut dire que les états symé 
triques ne peuvent se « combiner » qu’avec des états symétriques, 
et les états antisymélriques qu’avec des états antisymétriques.

Ainsi, bien que dans le cas général, les fonctions propres d’un 
système contenant des particules de même nature ne soient ni 
symétriques, ni antisymétriques et que par suite une fonction 
d’onde TF quelconque du système ne puisse se développer suivant 
un système complet de telles fonctions, néanmoins il existe un 
ensemble de fonctions propres symétriques et un ensemble de
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fonctions propres anlisymétriques et chacun de ces deux ensembles 
forme une sorte de système fermé possédant son autonomie, en ce 
sens qu’une fonction d’onde tp initialement représentable par un 
développement où no figurent que des fonctions propres symé 
triques reste toujours représentable par un tel développement et 
qu’une fonclion 'F initialement représentable par un développe 
ment où ne figurent que des fonctions propres antisymétriques 
reste toujours exprimable de cette façon. Nous voyons donc que 
si, à un instant donné, pour un certain type physique de particules, 
toutes les fonctions d’onde fi7 se trouvaient être symétriques 
(ou antisymétriques), elles se trouveraient, toujours par la suite 
être toutes symétriques (ou antisymétriques). Ainsi, il est permis 
de supposer que, pour chaque type de particule, nous ne puissions 
rencontrer, par suite d’une loi de la nature, que des fonctions 
d’onde symétriques ou bien que des fonctions d’onde antisymé 
triques. En adoptant cette hypothèse, on introduit naturellement 
un principe nouveau, qui est tout à fait étranger aux postulats sur 
lesquels nous avons fait reposer jusqu’ici la nouvelle Mécanique. 
Ce principe n’est aucunement une conséquence des lois générales 
de la Mécanique ondulatoire, mais les théorèmes précédents 
montrent qu’il est compatible avec elles. C’est naturellement à 
l’expérience qu’il appartient de nous dire si l’introduction de ce 
principe nouveau est justifiée.

Or, il résulte clairement des résultats expérimentaux que, 
pour chaque type de particule, les fonctions d’onde sont toujours 
soit symétriques, soit antisymétriques. Ainsi les pholons, les 
particules a et un certain nombre de noyaux atomiques n’ont que 
des états symétriques, alors que les électrons, les protons et 
d’autres noyaux atomiques n’ont que des états antisymétriques. Il 
en résulte de grandes différences entre les propriétés statistiques 
des deux catégories de particules. Pour les particules à états 
symétriques, rien ne s’oppose à ce qu’un nombre quelconque des 
particules se trouvent dans le même état individuel; on devra 
donc développer les propriétés statistiques des ensembles de telles 
particules en tenant compte de l’impossibilité de les discerner 
l’une de l’autre, mais sans imposer aucune restriction au nombre 
des particules qui peuvent se trouver dans le même état individuel; 
on aboutit ainsi à la statistique de Bose-Einstein qui est valable
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par exemple pour les photons et conduit à la loi de Planck pour 
le rayonnement noir. Pour les particules à fonctions d’onde 
antisymétriques, il faut tenir compte du fait signalé plus haut 
que deux de ces particules ne peuvent se trouver dans le même 
état individuel; on devra donc alors développer la statistique non 
seulement en tenant compte de l’impossibilité de discerner les 
particules, mais aussi en limitant à une le nombre des particules 
qui peuvent se trouver dans chaque état individuel : on obtient 
ainsi la statistique dite de Fermi-Dirac qui, appliquée aux élec 
trons, conduit notamment à expliquer les propriétés des électrons 
de conductibilité dans les métaux (').

Chaque catégorie physique de particules est donc caractérisée 
par le fait d’avoir toujours des fonctions d’onde symétriques ou 
des fonctions d’onde antisymétriques, et nous venons d’indiquer 
« en gros » comment les particules réelles se partagent entre les 
deux types. Mais en réalité, pour énoncer correctement d’une 
façon générale les propriétés de symétrie ou d’anlisymélrie des 
fonctions d’onde, il est nécessaire de faire intervenir un élément 
qui n’est pas contenu dans les équations de la Mécanique ondula 
toire (telles que nous les avons écrites) et dont nous n’avons tenu 
aucun compte jusqu’ici : le « spin ». Pour arriver à une définition 
correcte de la symétrie et de l’antisymétrie des fonctions propres 
de l’électron et énoncer d’une manière précise le « principe 
d’exclusion de Pauli » qui traduit cette antisymétrie, il est abso 
lument nécessaire de définir le spin et d’en tenir compte dans la 
spécification des étals stationnaires. C’est ce que nous devons 
examiner maintenant, les considérations développées dans le pré 
sent chapitre n’étant valables rigoureusement que pour des parti 
cules dénuées de spin. (*)

(*) Voii\ par exemple, Lé o n  Br il l o u in , Les statistiques quantiques (Collec 
tion des Confèrences-Rapports), Presses Universitaires, t. 2-



CHAPITRE VIII.
ÉTUDE DES SYSTÈMES CONTENANT DES PARTICULES 

DE MÊME NATURE.
CAS DES PARTICULES DOUÉES DE SPIN.

1. Introduction du Spin. —■ L’étude des propriétés des parti 
cules matérielles, et en particulier celle des électrons, a amené les 
physisiens à reconnaître que les propriétés d’une particule maté 
rielle n’étaient pas en général entièrement caractérisées par la valeur 
de sa masse et celle de sa charge électrique. Il faut y adjoindre un 
troisième élément, le « Spin », ou « moment de rotation propre » 
de la particule auquel est d’ailleurs lié un « moment magnétique 
propre ». En se servant des images classiques, on peut dire qu’il 
faut se figurer une particule telle qu’un électron non pas comme 
analogue à un globule d’électricité sans mouvement interne, mais 
plutôt comme analogue à un globule animé d’un mouvement 
d’ensemble autour de l’un de ses diamètres, rotation qui cause 
l’apparition d’un mouvement cinétique et d’un moment magné 
tique étroitement liés l’un à l’autre. Naturellement, cette représen 
tation classique ne doit pas être prise à la lettre dans la théorie 
quantique : il faut la transposer comme toutes les autres réprésen 
tations classiques.

Nous ne rappelons pas ici en détail toutes les raisons qui ont 
conduit à admettre l’existence du spin, telles que la complexité des 
structures fines des raies spectrales que ni la théorie quantique, 
ni la Mécanique ondulatoire ne peuvent expliquer, telles encore 
que la complication des effets Zeeinan dits anormaux, telles 
enfin que la constatation des anomalies gyromagnétiques ('). 
L’examen de tous ces faits auparavant inexplicables ont conduit

(J) Sur ces questions, on peut consulter le livre de l’auteur : L'électron 
magnétique, Mermann, Paris, 1934*
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dès 1926 MM. Uhlenbeck et Goudsmit à admettre l’existence pour 
l’électron d’un moment cinétique et d’un moment magnétique 
propres. Pour pouvoir interpréter à l’aide de cette hypothèse les 
structures fines spectrales, les effets Zeeman anormaux et les 
anomalies gyromagnétiques, ils ont été conduits à supposer que, m 
et e étant la masse et la charge de l’électron, le moment magnétique 

propre avait pour l’électron la valeur quantique normale -■

(ou magnéton do Bohr), tandis que le moment cinétique avait 

pour valeur —•> c’est-à-dire la moitié de l’unité quantique liabi-
h

tuelle de moment cinétique —• MM. Uhlenbech et Goudsmit ont

développé leur théorie dans le cadre semi-classique de l’ancienne 
théorie des quanta. Ensuite ces théories ont ôté été étendues par 
MM. Thomas, Frenkel, etc. Mais déjà à cette époque l’ancienne 
théorie des quanta faisait place à la Mécanique ondulatoire et il y 
avait lieu de chercher à introduire le spin en Mécanique ondula 
toire. La chose ne se fit pas sans quelques difficultés. M. Pauli est 
parvenu d’abord à une Mécanique ondulatoire de l’électron avec 
spin qui, bien que très intéressante, était encore incomplète et 
non relativiste. Guidé par cette tentative, M. Dirac a pu déve 
lopper sa très remarquable Mécanique ondulatoire relativiste de 
l’électron à spin. Cette théorie permet de donner une définition 
du spin qui est en accord avec les idées générales de la nouvelle 
Mécanique et de plus d’exprimer d’une manière exacte comment 
le spin intervient dans la spécification des états de l’électron. Nous 
ne pouvons développer ici cette théorie de Dirac qui, d’ailleurs, 
ne s’applique qu’à l’électron. Nous allons exposer une théorie 
générale un peu schématique qui, sans préciser exactement l’inter 
vention de spin dans les fonctions d’onde, permet néanmoins de 
tenir compte de son existence dans la définition des états symé 
triques et antisymétriques.

2. Représentation du spin en Mécanique ondulatoire des sys 
tèmes. — En Mécanique ondulatoire, le spin de l’électron doit être 
défini de la façon suivante : c’est un moment de rotation propre 
de l’électron qui, évalué autour d’une direction quelconque Os ne
peut avoir que l’une des valeurs + ~ et — ^ •
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L’état de l’électron est un cas pur pour le spin suivant O z si 
dans cet état la composante O z du spin a certainement soit la

valeur > soit la valeur — • Un état stationnaire de l’élec-4~
tron sera donc représenté par une fonction Wj (æ , y, z~, c), où u 

représente le spin et a l’une des deux valeurs dr fonction qui 

satisfait à l’équation

(1) lUx, y. z; 5)'I/= E/T/'

H (a?, y. z-, a) étant l’Hamiltonien qui peut dépendre du spin a. 
Les théories de Pauli et de Dirac dont nous avons parlé au dernier 
paragraphe, rentrent dans ce schéma général.

Plus généralement (' ), une particule douée de spin possédera une

composante z de spin qui sera toujours un multiple entier de ± •'

Un cas pur pour le spin sera réalisé pour les états tels que 
<t  = zh 71 ^ j n étant un nombre entier pouvant prendre un certain

nombre de valeurs. Un état stationnaire de la particule sera repré 
senté par une fonction propre y, z\ a), où <7 aura l’une des

valeurs ± n ~ et qui sera solution de (1).

Enfin, un système contenant N particules de même nature 

physique pour lesquelles on a a = ± n avec certaines valeurs

entières possibles de n aura des états stationnaires représentés par 
des fonctions propres de la forme lL(ir,, ri Si ; en ; x*.y2, z2 \ ;...)
que nous représenterons simplement par ^'(1, 2, ..., jN ) en 
convenant pour l’instant de désigner par 1 l’ensemble des coor 
données d’espace et du spin de la première particule, par 2 
l’ensemble des coordonnées d’espace et du spin de la seconde

hparticule, etc. Dans V/, chacun des 07 a l’une des valeurs ± n — 
et l’on a
(2) H(i, 2, ..., X)Vj=E,Wj,

H étant un opérateur s’exprimant à l’aide des coordonnées et des 
spins des N particules. Nous supposerons toujours que les inter-

157

(') Sur la théorie générale du spin, on pourra consulter le livre de l’auteur, 
Théorie générale des particules à spin, Paris, Gautliier-Villars, 1943.
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actions entre les N particules sont symétriques pour toutes ces 
particules, c’est-à-dire que les termes d’énergie potentielle figurant 
dans H ne changent pas quand on permute à la fois les coordonnées 
et les spins de deux particules.

On voit alors aisément que, si Wy est une fonction propre de H 
correspondant à la valeur propre Ey, la fonction P W/, où P corres 
pond à une permutation quelconque des X particules, est aussi 
une fonction propre pour la valeur propre Ey. On en conclut 
comme au dernier chapitre qu’il existe toute une suite de fonc 
tions propres symétriques de la forme

(3) iF(.j,=^r.ir/(l; 2> N)i
V

la somme ^ portant sur toutes les permutations possibles des
p

nombres i, . . ., N, y compris la permutation identique et qu’il 
existe aussi toute une suite de fonctions propres antisymétriques 
de la forme

(4) V'b>=2± P'r'(l’ •••’ N)’
1'

où la somme ^ s’étend à toutes les permutations y compris la
p

permutation identique et où l’on prend pour chaque terme le 
signe + ou le signe — suivant que la permutation correspondante 
est paire ou impaire. A ces fonctions propres symétriques et anti- 
symétriques, correspondent par définition des états symétriques 
et antisymétriques, mais un état stationnaire quelconque n’est en 
général ni symétrique, ni antisymétrique, ni même représentable 
comme une superposition d’ctats symétriques et d’états antisy 
métriques.

Dans le cas où l’on peut négliger, du moins en première approxi 
mation, les interactions entre les particules, les fonctions ’E1'0 sont 
ici encore exprimables sous la forme d’un déterminant

'l'a(l) ’JV.a) ... ’I’a(N)
'EtO) tTp(2) ... 'IqipM)

lE.(0 ( 2 ) ... M >.(N)

(5)
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, *I'; ctanl les fonctions propres (compte tenu du spin) 
relatives aux états stationnaires individuels supposés non dégé 
nérés et l’on voit encore sur l’expression (5) qu’il ne peut y avoir 
d’otat antisymétrique où deux particules sont dans le même état 
individuel ('F)"’ est nul si deux des a, (3, ... À sont égaux).

On peut ici encore démontrer que les états symétriques d’une 
part, les états antisymétriques d’autre part, forment deux groupes 
autonomes. On part de l’hypothèse que l’équation d’ondes est de 
la forme

H étant un opérateur Hamiltonien portant sur les coordonnées et 
sur les spins (dont la forme exacte n’est d’ailleurs pas connue 
aujourd’hui dans toute sa généralité). On démontrera alors faciler 
ment en s’appuyant sur la symétrie de l’opérateur H qu’une fonc 
tion *F primitivement symétrique reste toujours symétrique et 
qu’une fonction W primitivement antisymétrique reste anlisjrné- 
trique, la symétrie et l’antisymétrie étant, bien entendu, main 
tenant toujours définies en tenant compte du spin. On en conclut 
que les états symétriques ne peuvent se « combiner » qu’avec 
d’autres états symétriques et que les états antisymétriques ne 
peuvent se combiner qu’avec des états antisyunétriques. Ces théo 
rèmes nous autorisent à introduire un principe nouveau d’après 
lequel, pour les particules douées de spin, seuls sont réalisés soit 
les états symétriques, soit les états antisymétriques suivant la 
nature des particules considérées. Nous retrouvons ainsi le principe 
déjà introduit précédemment, mais avec cette importante modifi 
cation que, pour l’énoncer d’une façon satisfaisante dans le cas 
des particules douées de spin, nous avons dû faire intervenir le 
spin dans la définition de la symétrie et de l’antisymétrie des 
fonctions d’onde.

Comme nous l’avons dit déjà, les électrons, les protons et cer 
tains noy^aux d’atomes sont des particules à états exclusivement 
antisymétriques; les photons, les parlicules oc et certains autres 
noyaux d’atomes sont des particules à états exclusivement symé 
triques. La raison pour laquelle tel ou tel genre de particules est 
du type symétrique ou au contraire du type antisymétrique semble
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bien provenir de la constitution même de la particule, c’est-à-dire 
de la façon dont elle est formée par l’assemblage des corpuscules 
élémentaires (électrons, protons, neutrons, éventuellement neu- 
trinos). La discussion complète de cette question ne pourrait se 
faire qu’en étudiant de près la constitution probable des divers 
noyaux d’atomes. Celte discussion nous entraînerait hors du cadre 
de cet Ouvrage, et d’ailleurs elle serait loin de pouvoir conduire 
aujourd’hui à des résultats certains. Néanmoins une idée générale 
paraît se dégager de nos connaissances actuelles : « Les corpuscules

élémentaires seraient tous doués (comme l’électron) du spin zh et

posséderaient exclusivement des états antisymétriques ; les particules 
complexes seraient à états symétriques ou à états antisymétriques 
suivant qu’elles seraient formées d’un nombre pair ou d’un nombre 
impair de corpuscules élémentaires ». Cette conclusion avait paru 
d’abord confirmée par le fait que les noyaux atomiques dont la 
charge électrique est un multiple pair de celle du proton suivent 
la statistique de Bose-Einstein, tandis que les noyaux atomiques 
dont la charge est un multiple impair de celle du proton suivent 
la statistique de Fermi-Dirac. Si, en effet, Nj. désigne le nombre 
de protons contenus dans un noyau et NK le nombre des électrons, 
et si e désigne la charge positive élémentaire (charge du proton), 
la charge totale du noyau considéré est évidemment

(7) Ze = (NP-N,Oe,

où Z est le « nombre atomique ». Si Z est pair, N,, et Nu sont soit 
tous doux pairs, soit tous deux impairs et NP+NK est pair; si Z 
est impair, NP et NE sont l’un pair et l’autre impair, et NP-f- Nl:est 
impair. Les noyaux à Z pair contiennent donc un nombre total 
pair d’électrons et de protons, tandis que les noyaux à Z impair 
contiennent un nombre total impair d’électrons et de protons. 
Ensuite on s’aperçut que la règle reliant la nature de la statistique 
à la parité de Z n’était pas sans exception, ce qui constituait une 
difficulté. Aujourd’hui on peut lever cette difficulté en tenant 
compte de la présence des neutrons dans la structure des noyaux. 
Nous reviendrons plus tard sur ces questions (4), mais pour l’ins- (*)

1 60

(*) Voir Chap. IX, à la fin du paragraphe 6.
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tant nous admettrons que la symétrie ou l’antisymélrie des états 
d’un noyau est liée à la parité ou à l’imparité du nombre de 
corpuscules élémentaires qu’il contient.

Nous allons d’ailleurs justilier théoriquement la règle que nous 
venons d’admettre en démontrant le théorème suivant :

Th é o r è me . — Si une particule complexe est formée d'un 
nombre impair de corpuscules élémentaires à étals antisymé 
triques, elle est elle-même à états anlisymélriques. Si une par 
ticule complexe est formée d'un nombre pair de corpuscules 
élémentaires à états antisymétriques, elle est à états symé 
triques.

Soient en effet deux particules identiques formées chacune par 
N corpuscules élémentaires à états antisymétriques. La fonction 
d’onde du système constitué par l’ensemble des deux particules 
sera (i, 2, . . ., N; i', a', . . ., N’), où les nombres 1,2, . . ., N 
désignent les coordonnées et les spins des corpuscules consti 
tuant la première particule, tandis que les nombres i', 2', . . ., N' 
désignent les coordonnées et les spins des corpuscules constituant 
la seconde particule. Les corpuscules 1 et L, 2, et 2', .... N et N’ 
respectivement sont de même nature, puisque les deux particules 
ont la même constitution. Maintenant, si nous permutons succes 
sivement 1 et i', 2 et 2'. . . ., N et N', chacune de ces permutations 
simples change le signe de puisque 1 et 1', 2 et 2', ... sont des 
paires de corpuscules de nature identique à états antisymé 
triques. On a donc

(8) H* (1, 2, N ; 1', 2', = (— i^TiV, 2', ..., N'; 1, 2, ..., N).

Nous voyons alors que, si N est pair, la permutation des deux 
particules (1,2, . . ., N) et (1', 2', . . ., N’) ne change pas la fonc 
tion d’onde du système et que, si N est impair, cette permutation 
change le signe de la fonction d’onde.

Il en résulte immédiatement que les particules envisagées, 
formées de N corpuscules élémentaires, quand elles figurent à 
plusieurs dans un même système, ont toujours une fonction 
d’onde antisymétrique si elles contiennent chacune un nombre 
impair de corpuscules et une fonction d’onde symétrique si

h. DE DHOOLIE. U
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elles en contiennent un nombre pair. Le théorème est ainsi 
démontré (1 ).

3. Cas particulier des électrons. Principe d’exclusion de Pauli. 
— Nous allons maintenant fixer notre attention sur le cas très 
important des électrons. Dans l’état actuel de nos connaissances, 
nous devons considérer les électrons comme des corpuscules élé 

mentaires possédant le spin ±—■ Les considérations générales

exposées plus haut nous conduisent donc à admettre que les sys 
tèmes formés d’électrons ne peuvent posséder que des états anti 
symétriques. II en résulte, nous l’avons vu, que, quand dans un 
système formé d’électrons on peut attribuer au moins approxima 
tivement des états aux divers électrons, il ne pourra jamais y avoir 
deux électrons dans le même état.

Bien entendu, cet énoncé n’est valable que si l’on comprend le 
spin dans la spécification des états de l’électron. Sous celte forme, 
la nature antisymétrique des états électroniques conduit au « prin 
cipe d’exclusion » dû à M. Pauli. Nous allons d’abord indiquer 
comment ce principe trouve sa justification expérimentale dans 
l’étude de la répartition des électrons dans l’atome.

Dans les atomes, les électrons se répartissent en un certain 
nombre de groupes que l’on nomme par ordre d’énergies de liaison 
décroissantes : électrons K, électrons L, électrons M, etc. D’après 
le schéma atomique de Bohr, l’arrachement par une cause exté 
rieure d’un de ces électrons crée une « place libre » sur le niveau 
d’énergie où il était placé et met ainsi l’atome en état d’émettre 
une des raies de la série Rontgen correspondante. Si, par exemple, 
un électron L est arraché de l’atome par une cause extérieure, un 
électron atomique plus périphérique (M, N, . . . ) peut, d’après les 
idées de Bohr, venir prendre la place de l’électron arraché en per 
dant de l’énergie et l’énergie qu’il perd dans ce processus de tran 
sition est rayonnée sous forme d’un quantum d’énergie radiante 
dont la fréquence est celle d’une raie de la série L. Les diverses 
raies de la série L correspondent aux diverses transitions possibles

(1 ) On trouvera une démonstration plus approfondie de ce théorème dans 
l’ouvrage déjà cité : De la Mécanique ondulatoire à la théorie du Aoyaur 
t. I, p. 90 et suiv.



CAS DES PARTICULES DOUÉES DE SPIN. 163

des électrons périphériques vers la place inoccupée. Or, l’expé 
rience prouve qu’à l’exception de la série K, toutes les séries 
Rontgen sont complexes, c’est-à-dire que leurs raies se répartissent 
en sous-séries. On est ainsi nécessairement amenés à penser que 
les groupes d’électrons atomiques désignés par L, M, . . ., se 
divisent en sous-groupes correspondant à des niveaux d’énergie 
voisins, mais un peu différents. On dit souvent que les électrons 
d’un même groupe forment une « couche » et l’on parle des élec 
trons de la couche K, de la couche L, etc. En employant ce 
langage, on peut dire que la « couche » K est simple, mais que la 
« couche » L se subdivise en trois « niveaux » Lj, Ln et Lm, la 
« couche » M en cinq « niveaux » M,, Mu, Mm, M1V,MV, etc.

Pour pouvoir comprendre la structure et la stabilité de l’édifice 
des électrons dans l’atome, il est alors nécessaire d’admettre une 
sorte de « saturation » des niveaux et par suite des couches, c’est- 
à-dire d’admettre que pour chaque niveau il y a un nombre maxi 
mum d’électrons pouvant y trouver place. Si cela n’était pas, en 
effet, tous les électrons devraient dans l’état normal de l’atome se 
trouver sur le niveau de moindre énergie conformément au prin 
cipe de Boltzmann : or, il n’en est certainement pas ainsi, comme 
le prouvent par exemple l’existence des propriétés périodiques des 
éléments le long de la série de Mendeleeff et l’étude des spectres 
Rontgen. La saturation des niveaux étant au contraire admise, on 
voit que, quand on passe d’un élément au suivant dans la liste de 
Mendeleeff, un électron supplémentaire vient s’ajouter à la struc 
ture de l’atome et ce nouveau venu doit se placer sur le niveau de 
plus faible énergie où il y a encore une place libre. En suivant 
ainsi pas à pas la complication progressive de l’édifice atomique à 
travers les quatre-vingt-douze éléments de la série de Mendeleeff, 
on doit pouvoir interpréter les variations pour l’ensemble des 
éléments de toutes les propriétés chimiques, optiques, Rontgen et 
même magnétiques. C’est ce que M. Bohr a très bien vu. Mais 
comme l’étude théorique a priori de la complication progressive 
des édifices atomiques au moyen de la Mécanique quantifiée est 
impossible, il a suivi, ainsi que ses imitateurs, la voie inverse : 
partant des données expérimentales sur les propriétés chimiques, 
optiques, Rontgen ou magnétiques des éléments, ils ont cherché 
comment les niveaux et les couches devaient successivement se
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remplir d’électrons, au fur et à mesure que l’édifice atomique se 
complique, de façon à rendre compte des propriétés des divers 
éléments ( 1 ).

Les efforts faits en ce sens, notamment par MM. Bohr, Stoner 
et Main Smith, ont abouti à préciser la répartition des électrons 
entre couches et niveaux et à fixer par suite le maximum d’élec 
trons que chaque niveau peut porter.

Le dépouillement des spectres de rayons X a montré que l’on 
peut caractériser chaque niveau électronique dans l’atome par 
trois nombres n, l et j.

Le premier, le nombre quantique total «, peut prendre 
toutes les valeurs entières de = i à n = cc. Pour un n donné, 
l peut prendre les valeurs o, i, . . ., n— i ; le nombre l est le 
nombre quantique azimutal que la théorie interprète comme mesu-

rant en unités — le moment cinétique orbital de l’électron dans

l’état considéré. Enfin, le nombre quanlique j (ancien nombre 
quantique interne de Soinmerfeld) peut, pour une valeur donnée

de l, prendre les deux valeurs l + ^ et l— ' ■ La théorie permet

aujourd’hui de l’interpréter comme donnant en unité L le moment

cinétique total de l’électron, compte tenu de son spin, dans l’état 
considéré; en effet, ce moment total s’obtient en ajoutant au

moment orbital l le moment propre de spin égal à ± 1 • Notons

que pour l = o, j toujours positif n’a que la valeur * ■

Le nombre quantique total n caractérise la « couche ». Ainsi 
pour la couche K : n = i, pour la couche L : n = 2,pour la couche 
M \n= 3, etc. Les nombres quantiques l et j caractérisent les 
divers niveaux à l’intérieur des couches.

Pour la couche K(/i = 1), on ne peut avoir que l = o ety = 

il y a donc un seul niveau K. Pour la couche L( n = a ), on peut 
avoir / = o ety = ^1 ou l = 1, j = ^ ou encore Z = 1, y = ^; il y

(‘) Voir notamment N. Bo h r , Les spectres et la structure de V atome, 
Hermann, Paris, iq z 3.
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a donc trois niveaux L, savoir :

n = i, / = o

Lju ln=i,l=i,j 3

De même, pour la couche M(« = 3), on trouve cinq niveaux, 
savoir :

On voit facilement que, d’une façon générale, pour une 
couche définie par le nombre entier n, il y a 1 + 2(11 — 1) = 2 n — 1 
niveaux différents, puisque le cas 1 = o donne un seul niveau, 
tandis que les cas l—i, . .., n — 1 donnent chacun deux 
niveaux.

Maintenant se pose la question capitale : « Puisqu’il existe une 
saturation des niveaux, quel est le nombre maximum d’électrons 
que peut porter chaque niveau ? ». A cette question, les travaux do 
Bohr, Stoner, Main Smith, etc., ont permis d’apporter avec certi 
tude la réponse suivante : « Le nombre maximum d’électrons qui 
peuvent trouver place sur le niveau d’énergie caractérisé par les 
trois nombres quantiques n, l, j est égal à 2j -+- 1 ». C’est là la 
règle de Stoner.

Or on savait, avant la découverte de la règle de Stoner, que la 
couche de nombre quantique total n porte 2 n'1 électrons (2 élec 
trons K, 8 L, 18 M, etc.). Il est facile de vérifier que ce résultat 
est bien en accord avec la règle de Stoner, car d’après celle-ci le 
nombre total d’électrons sur la couche de nombre quantique total n
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doit être

a+ 2 [2(/+0+i^2(*-0H 
/=1

l—ll — 1
V / / 7 X !\n(n — i)= 2+ V (/|I+2) = 2H  --------- -1-2 (/l—l) = 2/i2.

Appliquée aux différents niveaux, la règle de Stoner aboutit au 
tableau suivant pour la répartition des électrons dans un atome 
donné :

Couches. Niveaux.

K(«=i) k (i, o, ~) 

1 L, (»..,!) 

b( = 2) ' Lu ^2, 1. 0

Lui^2, i, ~

M, (\ o, I

1
2 

3

Mu 3, i,

Mjy ^3, 2,

MV (3, 2,

Nombre 
d’électrons 
par niveau

W + O-

Nombre total 
d’électrons 
pur couche 

(2 /C).

18

Nous n’insisterons pas ici sur la manière dont, en étudiant le 
développement progressif du système des niveaux au cours de la 
série des éléments, on parvient à faire correspondre les étapes de 
ce développement avec les particularités chimiques, optiques ou 
magnétiques des éléments. Ce qu’il s’agit pour nous d’interpréter, 
c’est la règle de Stoner. Nous allons voir qu’elle s’explique par le 
principe de Pauli.
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Considérons un atome et supposons qu’on puisse envisager iso 
lément les divers électrons de cet atome. Soit E(/i, l, y) l’énergie 
quantifiée d’un de ces électrons définis par les trois nombres 
quantiques n, l, y. On peut facilement se rendre compte que la 
valeurpropreE(n., l,j) est dégénérée. Si, en effet, nous soumettons 
l’atome considéré à l’action d’un champ magnétique faible, la 
théorie quantique de l’effet Zeeman (que nous ne développerons 
pas ici) montre que la valeur propre E(«, l, j) se décompose en 
2y + 1 valeurs propres distinctes

i "e HE„0, l, j) - K(«, l, j) m-f— - 
(9) 4 " mo c

I ("* =—j, — j + ••■.y — i,z);

g est le facteur de Landé, /n0 désignant ici la masse de l’électron. 
La formule (9) montre que la décomposition Zeeman est due 
à l’orientation quantifiée de l’atome par rapport à la direction 
du champ magnétique; le nombre quantique m, ou nombre

. , h , ...
quantique magnétique, mesure en unité — le moment cinétique 

total (spin compris) de l’électron dans la direction du champ 
magnétique H. Cette projection peut varier par valeurs demi- 
entières de — y à + j, les valeurs extrêmes correspondant aux 
cas où le moment cinétique total est soit antiparallèle, soit paral 
lèle à la direction du champ H. Ce qui nous intéresse ici, c’est 
de constater que le niveau d’énergie E (n, l, j) est ay + i dégénéré 
et que, si la dégénérescence se trouve levée par exemple par 
l’action du champ magnétique extérieur H, on obtient 2y + i 
valeurs propres distinctes, chacune caractérisée par quatre 
nombres quantiques n, l, y, m, tels que

/j = 1, a, . . ., ao ; L = o, 1, . . ., n — 1 ; y = l ± ^ ; 

m = —j, -hj.

Pour retrouver la règle de Stoner, il suffit d’admettre le prin 
cipe d’exclusion de Pauli énoncé sous la forme suivante :

Principe d'exclusion. — Sur chaque niveau simple caractérisé 
par les quatre nombres quantiques n, l, y, m, il ne peut y avoir 
qu’un seul électron.

Si, en effet, on suppose l’atome plongé dans un champ magné 
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tique qui lève la dégénérescence, les 2 j 4-1 niveaux correspon 
dant à une valeur déterminée des nombres n, l et j et aux 2y + 1 
valeurs possibles de m sont distincts et portent chacun un électron 
au maximum. Si le champ extérieur tend vers zéro, les 2y + 1 
niveaux distincts viennent se confondre en un seul /îiveau dégé 
néré d’énergie E(t &, l, j) qui porte 2 j + 1 électrons au maximum. 
On retrouve donc bien la règle de Stoner pqur les atomes dans 
leur état non perturbé, et cette règle peut être considérée comme 
une conséquence du principe d’exclusion.

On peut énoncer le principe de Pauli en disant que la présence 
d’un électron sur un niveau non dégénéré exclut la présence de 
tout autre électron sur ce même niveau : d’où le nom donné au 
principe.

Remarquons que dans le cas du niveau K, on a 

7 1 , 1
77 = I, 1 = 0, J = - , 777 = ± - ■

Il y a deux électrons sur le niveau R, parce qu’il y a deux orienta 
tions possibles du spin.

4. Application du principe d’exclusion à un gaz d’électrons. — 
Nous venons de voir que le principe d’exclusion de Pauli pour les 
électrons est nécessaire pour expliquer l’édification et la stabilité 
des édifices atomiques. On peut dire que la structure de la série 
de MendeleefF et tout l’ensemble des propriétés chimiques, 
optiques, Rôntgen et magnétiques des éléments sont garants de 
l’exactitude de ce principe. Une autre preuve en sa faveur a été 
apportée par le succès de la nouvelle théorie électronique des 
métaux : elle a en effet montré la nécessité d’attribuer aux assem 
blées d’électrons la statistique de Fermi-Dirac, qui dérive du prin 
cipe d’exclusion ou, ce qui revient au même, du fait que les 
élecLrons sont des corpuscules à fonctions d’onde antisymôtriques. 
Pour préciser ce point, nous devons d’abord dire quelques mots 
de l’application du principe de Pauli à un gaz d’électrons.

Pour cela, considérons en premier lieu le cas schématique 
simple d’électrons assujettis à se mouvoir sur un axe O.% dans 
l’espace compris entre deux parois réfléchissantes P et P'normales 
à Ox.
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Ces électrons possèdent (en dehors des chocs) des mouvements 
rectilignes et uniformes qu’on peut représenter par des ondes 
planes monochromatiques se propageant le long de Ox entre P 
et P' dans un sens ou dans l’autre. Gomme la fonction d’onde *!' 
correspondant à l’une de ces ondes doit être continue et qu’elle

doit être nulle dans l’intérieur des parois P et P', où par hypothèse 
les électrons ne peuvent pas pénétrer, il faut qu’elle devienne 
nulle à la surface de la paroi. Les états stationnaires des électrons 
considérés seront donc représentés par des ondes stationnaires 
dues à la superposition d’ondes planes se propageant en sens 
inverse le long de Ox et telles que la fonction d’onde soit nulle 
sur P et sur P'. Ceci n’est possible que pour les ondes station 
naires dont la longueur d’onde À est reliée à la distance D des

plans P et P' par la relation D = n où n est un nombre entier.

La relation ~k = — fournit donc la suite des états stationnaires n
possibles pour les électrons. Soit W,, la fonction d’onde correspon 
dant à l’état stationnaire défini par le nombre n. Pour pouvoir 
appliquer le principe d’exclusion, il est nécessaire, nous le savons, 
d’introduire le spin. Par rapport à une certaine direction de réfé 

rence, Ox, par exemple, le spin a deux valeurs possibles ±

Donc à une fonction d'onde stationnaire Wn correspondant à un 
des états stationnaires possibles défini sans tenir compte du spin, 
correspondent deux états stationnaires possibles définis en tenant
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compte du spin. Dans chacun de ces états stationnaires définis en 
tenant compte du spin, le principe de Pauli nous apprend qu’il ne 
peut y avoir qu’un électron au maximum. Donc à chaque fonction 
d’onde stationnaire 'F,,, ne peuvent correspondre que deux élec 
trons au maximum.

Si maintenant nous considérons le cas le plus général d’un gaz 
d’électrons enfermé dans un récipient de forme quelconque à 
parois parfaitement réfléchissantes, les états stationnaires seront 
également définis par les ondes stationnaires qui peuvent s’établir 
dans le récipient et qui ont des nœuds sur les parois. Un calcul 
bien connu, développé par M. Jeans dans le cas d’une enceinte 
parallélépipédique et ensuite par M. Weyl pour des formes plus 
générales de l’enceinte, montre que le nombre des ondes station 
naires qui peuvent s’établir dans une enceinte de volume V 
est (J)

(10) n ( v ) ch 4 nv!(/v
vu; ’

V et U étant respectivement la vitesse de phase et la vitesse de 
groupe correspondant à la fréquence v. Le nombre des états 
stationnaires, spin compris, qui sont possibles pour les électrons 
dans l’enceinte considérée, est donc

(1.) =

En appliquant alors les méthodes générales de la Mécanique 
ondulatoire, compte tenu du principe d’exclusion, c’est-à-dire du 
fait qu’il ne peut y avoir plus d’un électron sur chaque état station 
naire défini avec intervention du spin, on arrive pour les électrons 
aux formules de la statistique de Fermi-Dirac.

Comme nous l’avons déjà dit, la validité de la statistique de 
Fermi-Dirac pour les électrons a permis d’améliorer beaucoup la 
théorie électronique des métaux. La théorie électronique des 
métaux, fondée par Drude et développée par Lorentz, admettait 
en effet que les propriétés conductrices des métaux s’expliquent par 
la présence dans les métaux d’électrons libres qui, s’étant affranchis

(') Voir Lé o n  Bb ii.l o u in , loc. cit., Chap. II.
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des liens atomiques, s’y trouvaient former une sorte de gaz. En 
admettant qu’il y avait environ un électron libre par atome, on 
avait pu retrouver ainsi certaines propriétés caractéristiques des 
métaux, en particulier la loi de Wiedemann-Franz sur le rapport 
des conductibilités électriques et thermiques. Mais toute cette 
théorie se heurtait à une grosse difficulté en ce qui concernait les 
chaleurs spécifiques. Car, si l’on appliquait le théorème classique 
de l’équipartition de l’énergie aux atomes du métal, on trouvaitun 
résultat généralement satisfaisant, mais il fallait négliger la pré 
sence des électrons libres, sans quoi on trouvait une chaleur spéci 
fique beaucoup trop grande. Ainsi pour expliquer les propriétés 
de conductibilité des métaux, il fallait admettre l’existence dans 
les métaux d’un grand nombre d’électrons libres (environ 1 par 
atome), et pour expliquer la valeur des chaleurs spécifiques, il 
fallait supposer qu’il n'y avait pas d’électrons libres dans les 
métaux. Cette contradiction a été levée le jour où M. Sommerfeld 
a repris cette théorie des métaux en appliquant aux électrons libres 
la statistique de Fermi-Dirac au lieu de la statistique classique. 
En elfel, avec la statistique de Fermi-Dirac, le théorème de l’équi- 
partition de l’énergie n’est plus vrai d’une façon générale pour un 
gaz de particules soumis à cette statistique : il n’est plus vrai que 
pour des valeurs suffisamment petites par rapport à l’unité de la

quantité ^.p'y, dite « paramètre de dégénérescence », où N est

le nombre d’électrons par centimètre cube, h la constante de 
Planck, k celle de Boltzmann bien connue en Thermodynamique 
statistique, m la masse des particules, T la température absolue. 
Or si l’on admet, conformément à l’indication fournie par les 
valeurs des conductibilités électriques des métaux, qu’il y a dans 
un métal à peu près autant d’électrons que d’atomes, on obtient 
pour les températures usuelles, en raison de la très faible valeur de 
la masse de l’électron, une valeur du paramètre de dégénérescence 
très grande par rapport à l’unité, de l’ordre de 2000. On voit alors 
que le gaz des électrons libres dans un métal est dans un état tout 
à fait inconnu de l’ancienne théorie statistique des gaz, état où le 
théorème de l’équipartition de l’énergie n’est plus du tout appli 
cable. En particulier, les électrons dans cet état ne doivent pas 
contribuer d’une façon sensible à la chaleur spécifique du métal :

171
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toute la chaleur spécifique provient donc des atomes et l’on com 
prend pourquoi, quand on voulait appliquer le théorème del’équi- 
partition, on ne pouvait obtenir des résultats satisfaisants qu’en 
négligeant la présence des électrons. Le développement de la 
nouvelle théorie des métaux a montré qu’elle constituait un pro 
grès très net par rapport à l’ancienne. De ce côté aussi, le principe 
d’exclusion a donc reçu une confirmation importante.

Nous allons maintenant avoir à étudier, comme autre confirma 
tion du principe de Pauli, la très intéressante interprétation du 
spectre de l’hélium due à M. Ileisenberg. Cette interprétation 
apporte, nous le verrons, une preuve très frappante et très directe 
du fait que les électrons sont des corpuscules à fonctions d’onde 
antisymétriques et, par suite, du principe de Pauli qui en découle. 
Comme préliminaire indispensable à l’exposé de la théorie 
d’Heisenberg, il nous faut d’abord étudier la manière dont on 
peut représenter d’une façon approchée les états de spin d’un 
système de deux électrons.

0. Représentation approchée des états de spin pour un système 
de deux électrons. — Nous allons envisager un système formé de 
deux électrons seulement et chercher à représenter approximati 
vement les états de spin de ces deux électrons. 11 serait aisé de 
généraliser les résultats obtenus pour le cas de N électrons : cela 
n’entraînerait que des complications d’écriture sans introduire 
d’idées vraiment nouvelles et nous pouvons nous contenter du 
cas N = 2 qui nous suffira pour l’élude du spectre de l’hélium.

Nous avons écrit l’équation d’ondes d’un système de particules 
avec spin sous une forme (6) qui, pour N = 2, devient

h cùF
(12) ^ W(I, 2, 0=H(I. 2, O,

où 1 et 2 représentent l’ensemble des coordonnées et du spin du 
premier et du deuxième électron respectivement et où H(i, 2) est 
l’opérateur hamiltonien opérant à la fois sur les coordonnées et 
les spins des deux électrons.

Revenant maintenant à une notation antérieure, nous allons 
désigner par 1 et 2 l’ensemble des coordonnées d’espace du premier 
et du second corpuscule respectivement sans les spins et nous



désignons les deux spins par et a,. Alors l’équation d’onde (12) 
s’écrira

<i'D ■~i ^'I'(i, 2, cr,, a,, t) = H ( I, 2, en, c 72)T(i , 2, s1; s,, t).
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Dans II figurent les ternies cinétiques relatifs aux deux électrons, 
les termes potentiels traduisant l’existence des champs extérieurs 
s’il y en a et ceux qui expriment l’interaction coulombienne entre 
les deux électrons, enfin des termes dépendant du spin et tradui 
sant notamment les interactions entre les électrons qui peuvent 
résulter de l’existence des moments magnétiques propres ('). Les 
termes du spin ne jouent en général dans les conditions usuelles 
(c’est-à-dire notamment quand les corrections de relativité sont 
négligeables) qu’un rôle secondaire par rapport aux autres termes 
de H : autrement dit, les écarts par rapport à la Mécanique ondu 
latoire sans spin sont généralement faibles. Nous obtenons une 
bonne première approximation en négligeant dans II les termes 
dépendant des spins. On doit alors supposer que les fonctions 
d’onde 'l ( 1, 2. c j,, <j.2, t) sont de la forme

04) 'i\i, 2, cr1; s,, 0 = ?0i, sD'l’O, 2, 1),

^(i, 2, t) étant une solution de l’équation habituelle de la Méca 
nique ondulatoire où l’on néglige les spins, c’est-à-dire de l’équa 
tion d’ondes

(12)
h

9 7Z
6>>r(i, ?.. 0

<>t = H(I )T(, 0,

H(i, 2) étant l’IIamiltonien sans termes de spins. L’hypothèse 
exprimée par (i4) est d’ailleurs confirmée par une étude plus 
approfondie faite à l’aide des théories de Pauli et de Dirac sur 
l’électron doué de spin.

Nous ne pouvons pas préciser ici la forme exacte de la fonction 
o^, cr2), mais nous savons que ci et a3 n’ont chacune que deux

valeurs possibles : savoir + que nous désignerons par a et

— ~z que nous désignerons par b. Si donc *I'/(i, 2) est une fonc-

(') Nous désignerons les interactions entre les moments magnétiques propres 
des électrons par le nom ^interactions du spin.
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tion propre de l’équation

( 16) II(1, 2) d'(i, 2) = E 'I’( 1, 2);

pour la valeur propre Ey, nous obtiendrons comme fonctions 
propres du système des électrons pour cette valeur propre en 
tenant compte du spin les quatre fonctions

, . ) ?(«, 2); r(a) b) W/( 1, 2);
{?(6,a)'17(1,2); ?(*, 6)'I’/( 1,2).

Gomme, d’après un résultat précédemment démontré, on obtient 
à partir de toute solution une autre solution en permutant le rôle 
des deux corpuscules, on aura également comme fonctions propres 
pour la valeur Ey :

rig) i r(a> «)lI;'/(2, 1); ç(b, a)'V;(■>., i);
I rO, ô)1’/(2, 1); o(b, ô) »!••/(a, O-

On a naturellement à interpréter toutes ces solutions (17) et (18) 
en disant par exemple que la fonction 9(a, b) 'Iy(i , 2) correspond 
au cas où l’état de deux électrons est représenté quant aux coor 

données d’espace par 'Iry(i, a), le spin du premier étant et celui

du second — —- , etc.
4..

A l’aide des huit solutions (17) et (18), nous pouvons former 
quatre solutions symétriques et quatre solutions antisymétriques 
que l’on obtiendra en formant à partir des solutions (17) les 
combinaisons

^P'r(i, 2, Si, ?,) et ^±P'l'(i, a, T|,TS), 
p p

avec deux P seulement : la permutation identique et l’échange des 
deux électrons.

On trouve ainsi huit fonctions d’onde :

I ç(a,a)[Wj( 1, 2)±'I’/(2, i)J;
, \ 1<b,b)[Vi( i, 2),h'P/(2J 1)];

I îO, b)'Vj(i, 2)d-o(ù, d)xVj(i, 1); 
f ? (b, a ) W/ ( 1, 2. )±o(«, b)xI-’yCa, 1).

174

Les signes + correspondent aux fonctions propres symétriques, les
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signes — aux fondions propres antisymétriques. On peut naturel 
lement remplacer certaines des fonctions propres (19) par certaines 
de leurs combinaisons linéaires. Ainsi nous pouvons remplacer 
les fonctions propres des deux dernières lignes par leur somme et 
leur différence. Il vient ainsi les huit fonctions :

ç(«, «)['r,-(i, 2) ± «!’/(?., 1)]; 
ç(b, /3)[tr;(i, 2)±'T;(2, i )];

[ç(«, b) ■+■ z(b, a)] ['!’,■( 1, a)dzT/('2, 1)];
[?fè, 0) — z(b, «)]['ry(l, 2)±ff’y(2, 1 )].

Pour classer ces huit fonctions linéairement indépendantes, 
nous poserons :

( I 'If1 (l,2) = Ty(l,2) + T/(2,I),

| »r)">(l,a)=»ry(l,2)-ïy(2,l).

Nous aurons alors d’abord quatre fonctions propres ffy(i, 2, a,, a2), 
qui seront symétriques par rapport à l’ensemble des coordonnées 
et des spins des deux électrons ; ce sont :

,I,y,1(i,2,31, 9j) = 9(a, a)'V}*>(i,2);

TA' (1,2, cr,, cr» ) = 9 ( b, b ) IF-S) (1,2.); 

uy>!(i,2, au S.>) =[z(a, b) -h 9(6, a)] 'ty(i (1,2);

[ „,)=[?(«, 6)-ç(6,«)]r/> (i,2).

Les trois premières de ces fonctions propres sont le produit 
d’une fonction symétrique des spins par une fonction symétrique 
des coordonnées, tandis que la quatrième est le produit d’une 
fonction antisymélrique des spins par une fonction antisymélrique 
des coordonnées.

Nous avons ensuite quatre fonctions propres antisymétriques 
par rapport à l’ensemble des coordonnées et des spins qui sont:

! ffy<‘,(i,2, à,, s.) = 9 (a, a) Tf!(i,2); •
\ Vf*'(i,->., a,, (TS) = 9 {b, b) Vf‘}( 1,2); 

j 'F^(i,2, *) = [ç>(er, ô ) + 9(6, a)] Vf >(i, 2);

( Vf'\i,z, 3,, ü2) = f 9(a, b) — 9(6, a)] Vf’ (1, 2);

Les trois premières sont le produit d’une fonction symétrique
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des spins par une fonction antisymétrique des coordonnées; la 
quatrième est le produit d’une fonction antisymétrique des spins 
par une fonction symétrique des coordonnées.

Nous avons vu que, par suite de la symétrie toujours postulée 
de l’opérateur H par rapport aux coordonnées et aux spins, les 
états symétriques et les états antisymélriques forment deux 
ensembles totalement indépendants, et nous savons que cela nous 
autorise à supposer que pour chaque type de particules un des 
deux ensembles seulement se présente dans la nature. Pour les 
électrons, le principe d’exclusion de Pauli nous apprend que seuls 
les états antisymétriques représentés par les fonctions propres (28) 
ont une réalité physique.

Les états réellement existants pour notre système de deux élec 
trons sont donc décrits par l’ensemble des fonctions propres tpj"1 
correspondant à toutes les valeurs propres E;. Ces fonctions 
propres Wf se divisent en deux catégories : les fonctions des 
types q/ye) ei ipy») sont antisymétriques par rapport aux coor 
données d’espace et seront nommées « fonctions propres antisy 
métriques d’espace » ; les fonctions du type ’ sont symétriques 
par rapport aux coordonnées d’espace et seront nommées « fonc 
tions propres symétriques d’espace ». Il est bien entendu qu’elles 
sont toutes antisymétriques par rapport aux coordonnées d’espace 
et aux spins. Les fonctions propres symétriques d’espace sont au 
nombre de 3 sur i\.

Or, si nous négligeons complètement les termes de spin, 
l’équation d’ondes (i5), où H est symétrique en 1 et 2, nous 
montre, nous l’avons vu, que les états symétriques d’espace d’une 
part et les états antisymétriques d’espace d’autre part ne se com 
binent pas. Donc dans l’ensemble des états réellement existants 
du système des deux électrons (étals qui sont tous antisymétriques 
par rapport aux coordonnées et aux spins), il faut distinguer deux 
catégories d’états, les états symétriques d’espace et les états anti 
symétriques d’espace, qui ne se combinent pas en première 
approximation, quand on néglige les interactions dues aux spins. 
Maintenant, les interactions dues aux spins, bien que généralement 
faibles, existent cependant et, à cause de ces interactions, les 
transitions d’un état symétrique d’espace vers un état antisymé 
trique d’espace ou inversement ne sont pas complètement exclues,
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car l'Hamiltonien complet H(i, 2, <7,, <j 2) n’est pas tout à fait 
symétrique pour les permutations qui échangent les coordonnées 
d’espace 1 et 2 sans échanger les coordonnées de spin et cr.2. Il 
en résulte que toutes les raies spectrales intenses émises par un 
ensemble de système à deux électrons correspondent aux passages 
soit d’un état symétrique d’espace à un autre état symétrique 
d’espace, soit d’un état antisymétrique d’espace à un autre état 
antisymétrique d’espace. Mais il doit aussi exister dans ce spectre 
des raies très faibles correspondant aux passages très rares d’un 
état symétrique d’espace à un état antisymétrique d’espace ou 
inversement.

Nous savons maintenant tout ce qui nous est nécessaire pour 
aborder l’étude théorique du spectre de l’hélium.

0. — Théorie du spectre de l’hélium (Heisenberg). — Voyons 
tout d’abord ce que l’expérience nous apprend au sujet du spectre 
de l’hélium.

Uu fait fondamental, c’est que le spectre de l’hélium se com 
pose, du moins en première approximation, c’est-à-dire en négli 
geant quelques raies très faibles, de deux catégories de raies 
complètement distinctes formant comme deux spectres juxtaposés 
qu’on nomme « spectre de l’orthohélium » et « spectre du parhé- 
lium ». Ce qui permet de dire que ces deux spectres sont complè 
tement distincts, c’est que si l’on dresse la liste des niveaux (ou 
des termes spectraux) du parhélium et de l’orthohélium, il n’y a 
(si l’on néglige quelques raies très faibles) aucune combinaison 
entre les niveaux du parhélium et ceux de l'orthohélium. Tout se 
passe donc en première approximation comme si le gaz hélium 
était formé par un mélange de deux gaz, le parhélium et l’ortho 
hélium, à propriétés physiques et chirpiques identiques, mais de 
spectres différents; on a même cru pendant un certain temps qu’il 
en était réellement ainsi. Or non seulement on n’a pas pu séparer 
ces deux héliums, mais on a eu de plus en plus la certitude que 
les mêmes atomes d’hélium pouvaient suivant les circonstances 
émettre les raies de l’orthohélium ou celles du parhélium. Enfin 
une étude plus détaillée des raies de l’hélium a montré l’existence 
de raies très faibles provenant de la combinaison d’un niveau du 
parhélium avec un niveau de l’orthohélium, ce qui prouve indubi 

L. DE BROGI.Ii:. 12



78 CHAPITRE VIII.

tablement que ces niveaux peuvent exister pour un même atome. 
Mais alors s’est posée la question de comprendre pourquoi les 
deux spectres du parhélium et de l’orthohélium sont presque tota 
lement séparés. Il y avait là une circonstance mystérieuse que 
seule la Mécanique ondulatoire a pu expliquer.

Si l’on emploie des spectroscopes à pouvoir séparateur pas trop 
grand, les raies du parhélium et del’orlhohélium paraissent toutes 
simples et, si l’on calcule les niveaux d’énergie pour le parhélium 
et pour l’orthohélium, on trouve que ces niveaux se correspondent 
deux à deux (à une exception près), le niveau de l’orthohélium 
étant un peu plus profond, d’énergie un peu moindre, que le 
niveau homologue du parhélium. On a donc un schéma tel que 
celui indiqué par les traits pleins de la figure suivante.

77.=4
n=3

t u 2

TL=1

71- ù

E
Parhélium. Orlhohélium.,

Fig.

Un fait très remarquable visible sur le schéma précédent est que 
le niveau le plus profond (marqué n= 1) dans le spectre du 
parhélium est le seul à ne pas avoir d’homologue dans le spectre 
de l’orthohélium.

Une étude plus détaillée du spectre de l’hélium, faite avec des 
appareils de plus grand pouvoir séparateur, montre que, tandis 
que les niveaux du parhélium sont bien réellement simples, ceux de 
Porlhohélium sont en réalité triples, c’est-à-dire que chacun des 
niveaux primitivement indiqués en traits pleins sur notre schéma 
est en réalité ilanqué de deux autres niveaux extrêmement voisins 
(indiqués en pointillé sur la figure i/\). Ainsi, tandis que le spectre 
du parhélium est un spectre de singulots, celui de l’orthohélium 
est en réalité un spectre de triplets (et serait même un spectre de
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nonuplets si l’on pouvait mettre en évidence le caractère triple 
des niveaux de départ et d’arrivée pour chaque raie).

Enfin, comine nous l’avons déjà indique, les procédés spectro 
scopiques sensibles dccèlent l’existence de raies faibles dues au 
passage d’un niveau de l’orlhohélium à un niveau du parhélium 
ou inversement.

Tel est l’ensemble des faits expérimentaux relatifs aux spectres 
de l’hélium. Voyons maintenant comment la Mécanique ondula 
toire permet de les interpréter.

D’après la conception générale actuelle des atomes, nous devons 
nous représenter l'atome d'hélium comme formé d’un noyau, dont 
la charge positive est égale au double de la charge élémentaire e 
du proton, et de deux électrons satellites. Si donc nous négligeons 
la réaction des électrons sur le noyau (qui est très faible, la masse 
du noyau d’hélium valant 4 fois celle du proton, soit environ 
7400 fois celle de l’électron), nous avons pour le système atome 
d’hélium l’équation d’ondes suivante :

(M) 7T7 ~f, r12, t)

h'- æ-
S m \ dx\

ir- / () ’-
S m \ <).r 'i

<n
àv j

<r-
àvi

à*

1L\
,)z\l

?.e~ 2e- e- TT ... .
-----  — —-h ----- H— II ' * ' ( -> 15 '/■ 1 i- n-2

v* 2)] T(l,2, 7,, 7-j , t),

X\, Vi, étant les coordonnées du premier électron, æ2, y2, z2 

celles du second, r, la distance \Jx'\ + y ] + cj du premier électron 
au noyau supposé placé à l’origine des coordonnées, r2 la 

distance (x't 4- tv\; + s'i, du second électron au noyau, rl3 la

distance \/{xi — x., )-' -f- ( y, —v2)‘ + (z, — z2)'J des deux élec 
trons, Hll>(i, 2, c t  1, c t 3) la partie de l’Hamiltonien opérant sur le 
spin dont nous ne préciserons pas la forme ici.

Nous allons tout d’abord supposer négligeable dans ( 24 ) le terme 
H11 )'T et faire complètement abstraction des spins. Nous avons alors

h 0
2 r.i <)t. T(I,2,0

r — L (A. + AO
2 e' 
rv

(25)

£]*'(!, 2,
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Nous pouvons maintenant employer la méthode connue d’ap 
proximations successives en commençant, à l’approximation zéro, 
par négliger l’interaction entre les électrons, c’est-à-dire le terme

en • Il nous est alors permis de considérer chacun des deux 

électrons isolément dans le champs coulombien du noyau de 
charge 2e. Nous trouverons par chaque électron une série d’états 
stationnaires définis par des valeurs propres El5 . . ., E„, . . ., et 
des fonctions propres y,, . . ., , .... Ces valeurs propres et
ces fonctions propres sont d’ailleurs connues, car, avec cette seule 
différence que la charge du noyau est double, nous avons affaire 
ici au problème de l’aLome d’hydrogène, problème complètement 
résolu. Chaque état stationnaire est défini par trois nombres 
quantiques (re, l, y), mais nous pouvons numéroter les états à 
l’aide d’un seul indice de façon que Ei <E3<E3,.... L’énergie E, 
est alors celle de l’état K d’énergie minimum. Pour le système 
formé par deux électrons, nous aurons les états stationnaires 
d’énergie Enm= E;(-t- E,fl avec le système complet de fonctions 
propres ( i ) ff;m (2 ) où figurent toutes les combinaisons des 
nombres entiers m et n tous deux compris entre i et +go .

Nous savons que le niveau K d’énergie minimum peut toujours 
porter deux électrons (à cause des deux valeurs possibles du spin). 
Dans l’état normal d’énergie minimum pour l’atome d’hélium, les 
deux électrons seront donc sur le niveau K. D’après les idées de 
Bohr, l’atome d’hélium pourra émettre une raie de son spectre 
lorsqu’une excitation ayant porté un des électrons sur un niveau 
d’énergie E„y>E|, cet électron reviendra ensuite sur le niveau 
d’énergie E,„<< E„ par une transition accompagnée par le rayon 

nement de la raie spectrale de fréquence ^ • Les états sta 

tionnaires de l’atome d’hélium qui vont intervenir pour le calcul 
des fréquences présentes dans son spectre seront donc ceux où 
l’un des électrons est sur le niveau K alors que l’autre électron est 
sur l’un quelconque des niveaux d’énergie supérieure. Évidemment 
il pourrait arriver qu’une forte excitation de l’atome écarte simul 
tanément les deux électrons du niveau K : les raies émises à la 
suite de celte double excitation auraient des fréquences déter 
minées par les énergies des étals stationnaires de l’atome He où 
les deux électrons se trouveraient sur des niveaux dont l’énergie
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est supérieure à celle du niveau K. Mais la probabilité de telles 
excitations doubles de l’atoine est très faible dans les conditions 
usuelles d’excitation et les raies normalement observées dans le 
spectre d’arc de l’hélium correspondent à une excitation simple 
où seul un des électrons est écarté du niveau K. Pour cette raison 
nous nous bornerons à ce cas.

Les états stationnaires cjue nous avons à étudier sont donc les 
états d’énergie E|„ = Et + E„ avec n ^ i auxquels correspondent 
par suite de la dégénérescence d’échange les fonctions propres 
^(1)^(3) et '10(2)110,(1).

Si maintenant nous voulons aller plus loin et tenir compte de 
l’interaction entre les deux électrons, c’est-à-dire du terme pertur 

bateur ~ dans l’équation (26), nous devrons pour calculer la

perturbation du premier ordre de l’énergie partir des fonctions 
propres d’approximation zéro qui sont « adaptées » à la perturba 
tion. Nous avons vu précédemment (') que ces fonctions propres 
sont les deux combinaisons par addition et soustraction des fonc 
tions Ih ( 1) 'Fn (2) et Tj (2) V„( 1 ), soit (à la constante de norma 
lisation près)

j T(I' 9) = 1r.(i) 'IL(2) o- 11*1(2/, T„(I),
(2 1 \ 2) = 'I',(i)if „(2) — ivs) ir„(i).

A l’état symétrique représenté par 1 ,' „ correspond une énergie 
perturbée égale en première approximation à

{27 ) K,/, — I .,, o- C — A = 1 .1 -t- l'.n -h G H- A.

A l’étal antisymétrique représenté par W,") correspond une 
énergie perturbée égale en première approximation à

(28) E'y;, = E,,„+ C — A = E, + E„+ C — A,

les constantes C et A ayant les valeurs suivantes :

<•■>.<)) c= - f fi'ivi) ï.;ir,1(2)i»-t-|ir1(2)[-*.-i’,1(I)|i] — </-
‘ï- J ■

= f |ir, (1)'-. I'„(2)p ~ r/xu.. r/s■>

(l) Se reporter au Cliap. VU, § 5.
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et

(3o) A = JL [ f 'I»i) ï 7,(2) ^ 'IM» 'F») ,lx,. .. dst J,

où cR. désigne la partie réelle. C’est l’intégrale d’échange corres 

pondant au potentiel d’interaction •

Comme est positif, on voit aisément que A est aussi positif.

Donc les états symétriques et anlisymétriques se correspondent 
deux à deux, l’énergie d’un état antisymélriquc étant légèrement 
inférieure (de la quantité 2 A) à l’énergie de l’état symétrique 
homologue. D’autre part, les théorèmes précédemment démontrés 
nous permettent d’affirmer qu’à l’approximation à laquelle nous 
nous tenons en ignorant complètement les spins, il n’y pas de 
combinaisons entre états symétriques et les étals anlisymétriques. 
Il doit donc y avoir à cette approximation deux ensembles de raies, 
deux spectres, complètement distincts correspondant l’un aux états 
symétriques fi-1,2), l’autre aux états antisymctriques1I;(lnJî(i, 2).

Si maintenant nous comparons ces résultats aux faits expéri 
mentaux, l’accord qualitatif est tout à fait frappant. Nous sommes 
immédiatement amenés à penser que l’un des spectres du 
parhélium ou de l’orthohélium correspond aux états symé 
triques 'F*,*1 (1, 2) et l’autre aux états anlisymétriques 'Fj"'(( 1, 2). 
Doit-on attribuer au parhélium les états symétriques et à l’orlho- 
hélium les états antisymétriques ou inversement? La réponse est 
immédiate, car d’une part les états symétriques el anlisymétriques 
se correspondent deux à deux, l’étal antisymélrique ayant toujours 
une énergie un peu plus faible que son homologue, et d’autre part 
les niveaux du parhélium et del’orthohélium se correspondent aussi 
deux à deux, chaque niveau de l’orthohélium ayant une énergie 
un peu plus faible que son homologue du parhélium. Dès lors 
nous pouvons dire avec certitude : les états symétriques corres 
pondent au spectre du parhélium et les états antisymétriques au 
spectre de l’orthohélium.

Cette conclusion est corroborée d’une façon remarquable par 
le fait suivant : si dans l’expression (2G) de 'Fj'1», 2) nous 
faisons n = 1, nous obtenons un 'F,' , (1,2) qui n’est pas nul, tandis 
que si dans l’expression (2G) de 'Fj";j(i, 2) nous faisons h — 1,
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nous obtenons ’Fj'0, (i, 2) = o. Donc à n = 1 correspond un état 
symétrique, mais pas d’état antisymétrique. Il doit donc y avoir 
dans le spectre du parhélium un niveau d’énergie minimum qui 
n'a pas d’homologue dans le spectre de Vorthohélium. Nous 
avons vu que c’est bien là un fait très caractéristique révélé par 
l’étude du spectre de l’hélium.

Ainsi la théorie approximative développée plus haut, théorie qui 
ne tient aucun compte de l’existence du spin, parvient à expliquer 
plusieurs faits fondamentaux : existence des deux spectre séparés 
de l’orthohélium et du parhélium, correspondance deux à deux 
des niveaux de ces deux spectres, valeur légèrement plus faible de 
l’énergie de chaque niveau de l’orthohélium comparée à celle du 
niveau homologue du parhélium, enfin absence très singulière au 
premier abord d’un homologue dans le spectre de l’orthohélium 
pour le niveau fondamental du parhélium.

A la théorie précédente, on pourrait être tenté d’objecter que, 
l’électron étant un corpuscule à états antisymétriques, les états 
correspondant au spectre du parhélium ne devraient pas exister 
du tout.

Ce serait une erreur puisque l’antisymélrie des états de 
l’électron doit être définie en tenant compte du spin, ce que nous 
n’avons pas encore fait. Les fonctions Wj!)n(i, 2) et (1, 2) uti 
lisées plus haut sont dés fonctions « symétriques et anlisymé- 
triques d’espace » au sens qui a été donné précédemment à celte 
locution.

Pour compléter notre théorie, il est maintenant indispensable 
de tenir compte du spin.

L’étude préliminaire que nous avons faite au paragraphe précé 
dent de la représentation approchée du spin pour un système à 
deux électrons nous apprend que, si nous négligeons les inter 
actions dues aux spins, les fonctions propres symétriques et 
antisymétriques correspondant à l’approximation zéro pour la 
valeur propre E1j;, sont les suivantes :

z (a, a) 2);

[r(«> h) -+- ç(b, a)Wf>n(i, 2);
[?(«) b) — t (6> 2)

2, ai, a-, ) = 
2, a,, a2) = 

’Ff’U1! 2, a,, a») = 
2, a„ a/) =
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et
/ 2) «i> Oî) = =(a, a) 2) ;
\ '^(i, 2, U, »i) = o(b, b) 2);

j TftKi, 2, a„ 30) = tr(«, &) -+- ?(&, «IW.Ï.D» 2);
l 2, 3,, 3,,) = [ = («, 6) — ?(C «)]’rï',/,(l; 2).

Ayant ainsi tenu compte du spin, nous pouvons maintenant 
introduire le principe d’exclusion, c’est-à-dire le fait que les élec 
trons sont des corpuscules à fonctions d’onde antisymétriques. 
Nous devons donc considérer que les fonctions (3i) symétriques 
par rapport à l’ensemble des coordonnées et des spins ne corres 
pondent pas à des états physiquement existants et nous ne devons 
retenir que les fonctions d’onde (82) antisymétriques par rapport 
à l’ensemble des coordonnées et des spins.

Or nous savons que les trois fonctions propres'F1"1,’, 'F1"*) et1!’;";] 
sont antisymétriques pour les coordonnées d’espaces et symé 
triques pour les spins, tandis que est au contraire symétrique 
pour les coordonnées d’espace et antisymétrique pour les spins. 
Comme les niveaux du parhélium correspondent aux fonctions 
propres symétriques d’espace et les niveaux de l’orthohélium aux 
fonctions propres antisymétriques d’espace, nous voyons que, si 
l’on tient compte des spins, les niveaux simples prévus par la 
théorie sans spin doivent correspondre à une seule fonction propre 
pour le parhélium et à trois fonctions propres pour l’orthohélium. 
Autrement dit, si l’on tient compte de l’existence des spins, tout 
en négligeant les interactions qui leur sont dues, les valeurs 
propres du parhélium sont simples tandis que celles de l’ortho 
hélium sont dégénérées, plus précisément triples.

Maintenant si l’on veut tenir compte des interactions dues aux 
spins (ce que d’ailleurs on ne sait pas faire rigoureusement), on 
devra faire un calcul de perturbation en partant des fonctions (32) 
comme fonctions propres d’approximation d’ordre zéro et en tenant

compte de l’interaction Coulombienne en et des interactions de

spins. Pour les niveaux du parhélium, on obtiendra ainsi au lieu 
de la valeur Ei E„ -+■ C + A donnée par la théorie sans spin une 
valeur de la forme Et E„-|- C + A + e, le terme s provenant des 
interactions dues aux spins. De même pour les niveaux de l’ortho 
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hélium, on obtiendra à la place de la valeur E1 + E„ + G — A 
donnée par la théorie sans spin trois valeurs voisines :

E i -f- E n "+~ G — A -4- E ], Ei4- L„-t- C — A -H Z-> Cf. Ei-+- E„ + C — A -H = r, ;

où s,, £■> et £;s sont de petites corrections dépendant des inter 
actions dues aux spins et généralement inégales : ces trois énergies 
voisines correspondent respectivement aux trois états W1";]
et W1"*’ dont l’interaction de spin a levé la dégénérescence. Tandis 
que les niveaux du parhélium restent simples, même en tenant 
compte de toutes les interactions, ceux de l’orlhohélium sont au 
contraire triples et doivent présenter précisément la structure 
révélée par l’expérience et indiquée sur la figure i4. Donc, le fait 
que le spectre du parhélium est un spectre de singulets et celui de 
l’orthohélium un spectre de triplets peut être considéré comme 
une preuve directe de la nature antisymétrique des fonctions 
propres des électrons.

11 est intéressant de voir ce que nous aurions obtenu si nous 
avions supposé que l’électron est un corpuscule à états symé 
triques. Alors nous aurions rejeté les fonctions propres (3a) 
comme ne correspondant pas à des états réels et nous aurions au 
contraire conservé les fonctions propres (3i ). Mais sur les quatre 
fonctions propres (3i) correspondant à la valeur propre E-t + E„ 
de l’approximation zéro, les trois premières sont symétriques à la 
fois par rapport aux coordonnées et aux spins, tandis que la 
quatrième est antisymétrique à la fois par rapport aux coordonnées 
et aux spins. Il en résulte que, si l’électron était un corpuscule à 
fonctions d’onde symétriques, ce seraient les niveaux du parhélium 
qui seraient triples, ceux de l’orthohélium étant simples. Cette 
stucture n’est pas celle qu’on observe réellement : ce sont 
les niveaux de l’orlhohélium qui sont triples, de sorte que 
la nature antisymétrique des fonctions propres de l’électron 
est en quelque sorte inscrite dans la structure fine du spectre 
de l’hélium.

Enfin, si nous tenons compte des interactions de spin, il n’y a 
plus de raison pour que les combinaisons entre états symétriques 
d’espaces et états antisymélriques d’espace soient prohibées d’une 
façon absolue : les transitions correspondantes sont relativement 
rares à cause de la faiblesse des interactions de spin, mais elles
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peuvent exister. Dans le spectre de l’hélium, ceci doit se traduire 
par l’existence de raies faibles correspondant au passage d’un 
niveau du parhélium à un niveau de l’orthohélium ou inversement. 
Nous savons que ces raies faibles existent elfeclivement.

Telle est sous sa forme qualitative la belle théorie du spectre de 
l’hélium due à M. Ileisenberg. II est possible de la développer 
sous une forme plus quantitative. Le calcul des intégrales C et A 
est en effet, possible puisque les fonctions propres des électrons 
considérés isolément à l’approximation zéro sont connues. Plus 
délicat est le calcul des structures fines dues aux interactions de 
spin parce qu’on ne sait évaluer ces interactions que d’une façon 
approchée. Nous ne développerons pas ces calculs dont les 
résultats quantitatifs sont en accord satisfaisant avec les données 
expérimentales sur le spectre de l’hélium.



CHAPITRE IX.
APPLICATIONS ET COMPLÉMENTS.

1. La Mécanique ondulatoire et la théorie de la valence homo- 
polaire. —■ Les édifices moléculaires présentant une grande sta 
bilité, on est amené pour en expliquer la formation à admettre 
l’existence de «.forces » au sens le plus général du mot qui main 
tiennent les divers atomes de la molécule dans l’association molé 
culaire. Telle est l’idée primitive que l’on s’est faite de l’équilibre 
des atomes dans uue molécule. Mais cette conception soulève de 
grosses difficultés à divers points de vue. D’abord on ne voit pas 
clairement dans tous les cas quelle peut être l'origine des forces 
assurant la liaison moléculaire. Il existe des cas nombreux où l'on 
peut considérer les atomes do la molécule comme ayant cédé 
ou au contraire capturé des électrons à leurs voisins, de telle 
sorte que les différents atomes de la molécule sont transformés 
en « ions » exerçant autour d’eux un champ Coulombien. Tel est 
par exemple le cas de la molécule Na Cl où l’on peut admettre que 
l’atome Na a cédé son électron extérieur de valence à l’atome Cl 
qui complète ainsi sa ceinture périphérique d’électrons : la molé 
cule NaCl serait donc formée en réalité de l’ion Na+ et de l’ion CD 
et la stabilité de la molécule Na Cl serait alors interprétée, du moins 
sous une forme qualitative, par l’existence d’une attraction Cou 
lombienne des deux ions de signes contraires qui, pour de très 
petites distances des noyaux, serait contrebalancée par la répul 
sion des nuages électroniques. Malheureusement, ce genre de 
liaisons dites « liaisons hétéropolaires » n’est, pas le seul existant. 
Il existe aussi des molécules pour lesquelles on 11e peut pas 
admettre que les atomes y sont à l’état d’ions. Telles sont, par 
exemple, les molécules biatomiques de la plupart des corps simples 
à l’état gazeux (02, N.,, etc.). La plus simple de toutes, la molé 
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cule d’hydrogène II2, ne peut être considérée comme formée d’un 
ion H+ et d’un ion H- en raison de l’identité des propriétés des 
deux atomes H qui la constituent. Ce genre de liaisons molécu 
laires, les « liaisons homopolaires », ne paraît donc pas explicable 
par l’action des forces Coulombiennes et, comme les forces gravi- 
fiques sont ici beaucoup trop faibles pour pouvoir intervenir, 
on ne voit pas quelles sontles forces qui peuvent assurer la stabilité 
de la molécule.

D’autre part, les combinaisons moléculaires sont soumises à des 
règles particulières que la Chimie est parvenue à représenter par 
l’introduction delà notion de valence. Dans la mesure où la notion 
de valence est applicable, un atome de valence n se comporte 
comme s’il portait n crochets susceptibles d’être accrochés à des 
crochets portés par des atomes voisins. Chaque crochet ne pourrait 
se lier ainsi qu’à un seul autre crochet voisin. Un atome dont les 
crochets se sont accrochés à des crochets appartenant à des atomes 
voisins n’est plus susceptible de se lier à aucun autre atome. Dans 
cette image, chaque crochet correspond à ce que les chimistes 
nomment une « valence » et le phénomène dont nous venons de 
parler est la saturation des valences. Or, ce phénomène de la satu 
ration des valences, qui est une des hases essentielles de la Chimie 
théorique, est tout à fait impossible à expliquer par l’hypothèse 
que la liaison moléculaire est due à des forces du type classique, 
Coulombiennes par exemple, s’exerçant entre les atomes; car, si 
plusieurs forces du type classique s’exercent en même temps, elles 
se composent suivant la loi du parallélogramme et ne peuvent 
jamais donner lieu à des phénomènes de saturation permettant 
d’expliquer la saturation des valences. On voit donc, en définitive, 
que les liaisons moléculaires doivent être en général d’une nature 
tout à fait différente de celle qu’on peut imaginer à l’aide des forces 
du type classique.

L’explication de la véritable nature des liaisons moléculaires 
paraît aujourd’hui fournie par la Mécanique ondulatoire. Elle a, 
en effet, montré que la liaison moléculaire est liée au phénomène 
de l’échange entre électrons d’atomes différents, que l’énergie de 
liaison chimique est en grande partie une énergie d’échange, 
qu’elle n’a pas d’analogue classique et ne correspond pas à des 
forces du type classique obéissant à la règle du parallélogramme.
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L’étude complète de la question de la formation des molécules, 
faite à l’aide des méthodes de la Mécanique ondulatoire des sys 
tèmes d’électrons, a conduit à expliquer le lien moléculaire par la 
formation de paires d’électrons à spins antiparallèles. Dans la struc 
ture normale d’un atome, la plupart des électrons sont, en effet, 
groupés par paires ayant des spins antiparallèles : ainsi, sur le 
niveau K, nous savons qu’il y a seulement deux électrons dont les 
spins doivent être antiparallèles pour satisfaire au principe de 
Pauli. Mais dans la structure périphérique de l’atome, où il y a en 
général des niveaux non saturés, peuvent se trouver des électrons 
ne faisant pas partie d’une paire à spins antiparallèles. On a 
donné à ces électrons le nom quelque peu humoristique d’électrons 
«célibataires». Quand deux molécules possédant chacune des 
électrons célibataires se trouvent au voisinage l’une de l’autre, il 
peut se former avec ces électrons des paires à spins antiparallèles, 
et à chacune de ces formations de paires correspond une énergie 
d’échange (négative) qui joue le rôle d’une énergie de liaison. 
Tout atome est donc susceptible de se lier à autant d’électrons 
célibataires appartenant à d’autres atomes qu’il aura lui-même 
d’électrons célibataires. La valence d’un atome est donc égale au 
nombre de ses éléctrons célibataires. Dans l’atome d’un gaz rare, 
tous les électrons forment des paires, il n’y a pas d’électrons céli 
bataire et la valence est zéro; dans un atome d’alcalin, tous les 
électrons forment des paires, sauf un, le plus périphérique, et la 
valence est un, etc. Le fait fondamental est que, quand un certain 
électron célibataire d’un atome a formé une paire avec un électron 
célibataire d’un autre atome, la possibilité de liaison molécu 
laire qui existait pour le premier atome en raison de la présence 
de son électron a disparu : la valence est saturée. Ainsi se trouve 
expliquée ce mystérieux caractère de « saturabilité » des valences 
qu’aucune image classique ne parvenait à interpréter.

La théorie générale de la valence qui exige la considération de 
systèmes contenant un nombre quelconque d’électrons est natu 
rellement très compliquée au point de vue analytique. Les faits 
qu’elle doit parvenir à représenter sont d’ailleurs extrêmement 
nombreux et extrêmement complexes : beaucoup de corps sont 
polyvalents et pour les molécules compliquées, notamment pour 
celles de la Chimie organique, il y a un grand nombre de propriétés
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qui sout plus ou moins exactement représentées par les formules 
développées et par la stéréochimie et dont une théorie complète 
devrait rendre compte.

Nous ne pouvons aborder dans son ensemble cette théorie 
quantique des liaisons moléculaires. Le lecteur qui voudrait en 
connaître les résultats peut se reporter à l’Ouvrage de M. Heitler, 
« Quantentheorie und chemische homeôpolare liindung ( Aka- 
demische verlagsgesellschaft, Leipzig).

Nous nous contentons d’étudier ici le cas le plus simple : celui 
de la molécule d’hydrogène. C’est d’ailleurs ce cas qui, traité en 
premier lieu par MM. Heitler et London, a servi de point de 
départ à la théorie quantique générale des liaisons chimiques. 
L’atome H n’ayant qu’un seul électron, celui-ci est nécessairement 
célibataire et, si deux atomes d’hydrogène se trouvent voisins, il 
peut s’établir un lien moléculaire entre eux correspondant à la for 
mation d’une molécule H2 si les deux électrons célibataires en 
présence se combinent pour former une paire à spins antiparallèles. 
C’est ce que le calcul va pouvoir nous montrer assez facilement.

2. Théorie de la molécule d’hydrogène (Heitler et London). —
Nous allons considérer deux atomes d’hydrogène dont les noyaux, 
désignés respectivement par les lettres a et b, sont situés à la dis 
tance R l’une de l’autre. Les deux électrons de masse m de ces 
atomes d’hydrogène sont désignés respectivement par i et 2; x1, 
y\, z\ et x2, y2, z2 sont leurs coordonnées et

r 12 = v ( Xi — a-2 ')- -+- (j'i — y 2 J2 + (ci — )2

est leur distance; ra<\ est la distance de l’électron 1 au noyau a, 
r„2 la distance de l’électron 2 au noyau a, r/,i la distance de l’élec 
tron 1 au noyau b et r*2 la distance de l’électron 2 au noyau b.

Ceci posé, l’équation d’ondes pour le système formé par les 
deux atomes d’hydrogène, système contenant les deux noyaux a 
et b et les deux électrons 1 et 2, est la suivante :

h _ r tr- / à- <>- ,n <>- oy &- \
1 ir.i àt [_ <ÏT.-in \ d.rf ày\ "+" <)z j "+" <)x\ t)y\ <)z\ )

e- e- e- e- e- 1 ...
r;—^--------- ;— — -;-------- ; ;— I •K /'12 t'a 1 t /,i f a2 1 bl J
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Si est une fonction propre correspondant à la valeur propre E 
de l’énergie, cette fonction satisfera donc à l’équation

(V Ai -+- Ai -+- <S -- ni c- <■'■
K “ n

e- e- e2 1 )------P----- P — -P — , lI :'■«i '7,i rlri r/y> J I

Cette équation ne peut pas être étudiée par la méthode ordinaire 
des perturbations parce qu’on ne peut pas diviser l’Hamiltonien 
en un Hamiltonien non perburbé et un petit terme perturbateur. 
Néanmoins, nous allons voir qu’on peut appliquer à la résolution 
de l’équation précédente une méthode d’approximation très 
semblable à la méthode générale des perturbations et qui conduit 
à des formules très analogues.

Pour appliquer celte méthode, nous considérerons d’abord les 
deux atomes d’hydrogène séparément en négligeant complètement

leurs interactions c’est-à-dire les termes en A, — , —, — des
L H r/,1

équations (1) et (a)J' Alors l’atome formé du noyau a et de

l’électron 1 aura un état normal d’énergie minimum défini par la 
fonction propre u„( 1) telle que

(A A, a,A1 ) /lî0~ ^ Un( 1) = o,

E„ étant la plus petite valeur propre. De même l’atome formé du 
noyau b et de l’électron 2 aura un état d’énergie minimum 
représenté par la fonction U/,(2) satisfaisant à l’équation

(4) A-, U,/, ( ■> ) h -----— K0-------u.,, {2 ) = o.
«- \ l'/rl J

Les fonctions propres ua( 1) et a*(2) sont représentées autour des 
noyaux a et h respectivement par la fonction bien connue qui 
donne l’état fondamental de l’atome d’hydrogène, soit à une

constante de normalisation près par e "«où aa est le

rayon de l’anneau K dans la théorie primitive de Bohr.
Si maintenant nous envisageons le système formé par nos deux 

atomes d’hydrogène sans interactions, nous voyons que nous 
avons pour ce système la valeur propre minimum 2E0 corres 
pondant à la fonction propre u„ ( 1 ) U/,(2). Par suite de l’identité
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des deux électrons, nous avons aussi pour la même valeur propre 
2 E() la fonction propre u„(2) Ub( 1) : c’est toujours là la dégéné 
rescence d’échange.

Nous savons que, pour traiter un problème de perturbation, 
nous devons prendre comme fonction propre d’approximation zéro 
la fonction propre symétrique

(5) I, 2) = lla(l) U/, (-2) -b Ua( 2) 77./, ( I)

et la fonction propre antisymétrique

(6) ’f’o'C I, 2) = Ua(l') 111,(2) ~ U„ (2) 77/,(i).

Nous savons aussi que, si nous introduisons le spin et le prin 
cipe de Pauli, il y a trois fonctions propres antisymétriques par 
rapport aux coordonnées et aux spins correspondant à Wj'1 (1, 2), 
savoir

! ’bj'ilCl, 2) = ç(a, a)'r;!(i, 2),

(7) *) = ?(*,
I ( 1, 2 ) = [ 9 ( a, b ) -1- 9 ( b, a )] H’1,") ( 1, 2 ),

et qu’il y a une fonction propre anlisymétrique par rapport aux 
coordonnées et aux spins correspondant à lF(j) ( 1, 2), savoir

(8) *!■(«.>( 1, 2) = [?(«, b)-c(b, 2).

Comme nous le verrons mieux dans un prochain paragraphe, les 
solutions (y) correspondent au cas où les deux électrons ont leurs 
spins parallèles ( j-), tandis que la solution (8) correspond au
cas où les spins des deux électrons sont antiparallèles ( j f )• 
Comme nous n’allons pas introduire explicitement le spin dans ce 
qui va suivre, nous retiendrons seulement que d1 ( 1, 2 ) représente 
un état triple, c’est-à-dire trois états confondus en l’absence d’in 
teractions de spin, où les spins des électrons sont parallèles, 
tandis que xïr(0v) ( 1, 2) représente un état simple où les spins des 
deux électrons sont antiparallèles.

En supposant que la distance R des 2 noyaux a et b est donnée, 
nous allons maintenant chercher à résoudre approximativement 
l’équation complète du système où figurent les termes d’inter- 

. e- e2 e- e- . ,. . , ,. ,action T,-) — , — j — îusqu ici négligés.
R /-,, r„.î 77,1 J ^ 00

ICJ2
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Nous admettrons que les fonctions W-^ (1, a) et 'F1"1 (1,2) peuvent 
nous servir de fonctions propres d’approximation zéro dans ce
calcul. Ceci serait vrai pour R tendant vers l’infini d’après la
théorie habituelle des perturbations, mais ce n’est pas évident ici. 
Le succès justifiera cette hypothèse.

Pour R fini, les fonctions propres ua( 1) 14(2) et u„( 2) 14(1) 
ne sont pas rigoureusement orthogonales comme elles le seraient 
pour R infini. L’intégrale

{9) J ■■■ j' n„(i) u b (2) 1/4(1) dxi. . ,dz-! = A(R)

est une fonction de R non nulle (tendant seulement vers o quand 
R tend vers l’infini). Pour normer à l’unité des fonctions propres 
,FI1)'1 et 'F'"1, il faut alors les affecter respectivement des facteurs

1 et — 1— car on a, ua et 14 étant réels, 
y/2(i-+-A) v^H1 — A)

(10) j' ■■■ J'] 11,1 (i) «//la) ± u„(2) 111,(1) - dxi... riz»

=J" ’ f E ««(1) r i l y ; ««(a)]2

ih 2 ««(i) £t/,(a) Mé(i)j<n(2)]rfj'1..-dz-> = 2(1 ± A).

Finalement, on a donc pour les fonctions *F!0s! et W0“’ normées, les 
expressions

«4(2) -+- ua(i) «4(1)],

[m„(i) «4(2) — M«(2) 4/4(1)]-

Remarquons que pratiquement A est toujours une quantité très 
petite de sorte que ua( 1) 1/4(2) et w„(2) 1/4(1) sont presque 
orthogonales.

Ayanl ainsi adopLé les fonctions tpM et 1Fl“1 comme fonc 
tions propres d’approximation zéro correspondant à la valeur 
propre 2E„, nous allons chercher deux fonctions lFlJ) et ^F'") 
respectivement très voisines de tF'jJ'1 et de 1F(f et satisfaisant 
à l’équation (2) pour des valeurs de E très voisines de 2E0.

!.. DE DROGUE. 13
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Nous poserons donc

(12) <1*M = »>,, Il'(«) = ç'ÿ)+ (va, E'*) = îsEo-E-t„ K(") = 2 E0

les w et les s étant considérées comme des quantités très petites 
du premier ordre. En définissant l’opérateur L par

(i3) Lsi, + i,+
>’l2

e-
rn 1 f’b\

"1’
J

on obtient, en substituant (n) dans (2 ) et en négligeant les termes 
du second ordre, les équations

(14) \/2(! -+- A) L(ws) = e1
H ~ rlâ

e- e2
T'ai l'bl

e- e-
■— —l- — 

rn l f'ù2

U„( I ) lll,( 2) 

Un{2) “*(1 )

Uni 9.) Uh{ I )]

et

(iô) y'2(i — A) L(«>«)
e-
R

e-
rn

0«(l) Ub( 2) ~ Ua('ï) It-b(l)

H- ( ---- H------ ) Ua (i) llfj{ 2 )
\ l'b\ J

) UniV Ul,(l )■\r«i n,«)

Les seconds membres de ces équations peuvent être considérés 
comme très petits quand R est suffisamment grand ; en effet, les
termes ^ «a(i) «4,(2) par exemple sont alors très petits

parce que la fonction ua( 1) ub(2) n’a de valeurs sensibles que 
quand l’électron 1 est près du noyau a et l’électron 2 près du

noyau b et en ce cas — et — sont très petits.
ra% rbi r

Si nous laissions de côté les seconds membres dans les équa 
tions ( i4) et ( io), nous obtiendrions des équations homogènes 
admettant pour solutions deux fonctions différant très peu de ffll('! 
et de respectivement. Pour que les équations (i4) e1 (i5) 
admettent des solutions, il est donc nécessaire d’après un théorème 
connu que leurs seconds membres soient orthogonaux à ces deux
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fonctions. On peut donc écrire au second près ( après division par

les deux conditions nécessaires :

e-
/‘12

(e2 + et) Ua(l) ub{i)
ni) -h A)

+
e- ^ «„(2)M/,(l)‘

V m rbi y/a ( n- A) _

(e* e- > ua(i)u,
m/ 2 ( I H- A)

(e% + e*-\ ua(l) Ub( l)“
s.ra i ri,i) Va (i — A) _

'ît)* di = o,

ipf * ch = o.

Ces équations conduisent tout de suite par un calcul tout à fait 
analogue à celui que nous avons fait en introduisant l’énergie 
d’échange aux formules

, . 0 -t- A C — A
/ T - \ . ----- ------------------  * - ----- ------------------

avec

08)

i
>'!■>

I
r 12

I
rai

i
rai

Ha{ i) |2 i M&(2V[2 rh,

Ua ( I ) Uh ( 2 ')]* Ua ( 2 ) U( I ) dz .

Les formules (18) sont obtenues en remarquant qu’une intégrale 
définie ne change pas de valeur quand on y change seulement le 
nom des variables d’intégration.

Le résulat obtenu est tout a fait semblable à celui qu’on obtient 
dans la théorie ordinaire des perturbations. Le terme C représente 
le potentiel électrostatique d’interaction correspondant à la distri 
bution moyenne d’électricité définie par le ] tfr]-. L’intégrale A est 
l’énergie d’échange. La seule différence avec le cas de la théorie 
usuelle des perturbations est l’apparition du terme A tenant à la 
non-orthogonalité dès fonctions propres prises comme fonctions 
d’approximation zéro. Encore ce fait n’a-t-il guère d’importance 
réelle, car, A étant pratiquement très petit devant l’unité, on peut 
pour calculer les corrections du premier ordre et sa négliger les 
termes A qui donneraient des corrections du second ordre et poser
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simplement :
(19) £.< = C -t- A, e„=G-A.

Comme les intégrales C et A, e, et s„, sont naturellement des fonc 
tions de la distance R des noyaux a et b.

D’après ( 19), il y a donc pour chaque distance R deux valeurs 
possibles (en négligeantles multiplicités dues au spin) de l’énergie 
du système. Le calcul des intégrales C et A permet de suivre la 
variation de ces énergies 2E0 + s.,(R) et 2E0 + £„(R) en fonction 
de R. Or ce calcul montre que C est positif ou négatif, mais que A 
est négatif : contrairement à ce qui se passe dans le cas de l’hélium, 
l’énergie d’échange est ici négative. R en résulte que c’est l’état 
anLisymétrique d’espace, d’énergie 2E0+C— A, qui a l’énergie 
la plus grande. Pour tracer la courhe représeptant les variations 
de £s et de s(l en fonction de R, on peut d’abord tracer la courbe 
représentant C (R) qui a la forme indiquée ci-dessous :

196

Energie

Pour de grandes distances R, celte courbe tend vers l’axe des 
abscisses parce qu’alors les interactions dont G (R) est la moyenne 
tendent vers zéro. R diminuant, l’interaction commence à devenir 
sensible et, comme les interactions entre chaque électron et l’autre 
noyau l’emportent, l’énergie potentielle G (R) est d’abord néga 
tive; mais quand la distance R diminue encore, les interactions
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répulsives enlre les deux noyaux d’une part, les deux électrons 
d’autre part, l’emportent et l’énergie potentielle devient positive. 
Pour R tendant vers zéro, l’énergie potentielle positive de répul 
sion tend vers l’infini, ce qu’on peut considérer comme l’expression 
de l’impénétrabilité des deux noyaux.

Pour construire les courbes représentant e ,(R) et ea(R), il faut 
pour tout point de la courbe G (R) porter sur une parallèle à l’axe 
des ordonnées dans un sens et dans l’autre une longueur égale à 
1 A (R) |. Le point d’ordonnée C(R) + | A (R) | = C(R)—A(R) 
donne £„ (R) ; le point d’ordonnée G (R) — | A (R) ( = G (R) + A (R) 
donne s.,(R). Il se trouve alors que j À(R) | augmentant quand 
Rdécroît, s„(R)est une courbe monotone décroissante, l’augmen 
tation de |À(R)j compensant la diminution de C(R) avant son 
minimum. Au contraire la courbe donnant £.,(R) présente un 
minimum dû à ce que, malgré l’augmentation de j A(R) | quand R 
décroît, la croissance rapide de C(R) près de l’axe des ordonnées 
entraîne une croissance de £., = G— j A J quand R tend vers zéro.

Ou obtient ainsi des courbes ayant les allures représentées sur 
la figure 10. 11 existe une certaine valeur R0 de R pour laquelle 
£,(ll) est minimum. La distance R0 des noyaux a et b corres 
pondra donc à un état d’équilibre stable du système des deux 
atomes dans l’état d’énergie aE0 + £, tandis qu’il n’existera aucun 
état d’équilibre stable dans l'état d’énergie 2E0+e „. Mais l’état 
symétrique d’espace d’énergie 2E() + e,( est, nous le savons, anti 
symétrique par rapporL aux spins des deux électrons. Dans cet 
étal, les deux électrons des deux atomes d’hydrogène forment 
donc une paire à spins anliparallèles ( f | ). Nous voyons ainsi que 
la formation de la molécule homopolaire EL correspond à l’orga 
nisation des deux électrons célibataires des deux atomes H en une 
paire à spins anliparallèles.

La théorie permet d’ailleurs, grâce au calcul numérique de e s et 
de e„, de calculer la valeur R(l de la distance des noyaux a et b 
dans la molécule stable H3 et la valeur de l’énergie de dissociation 
de cette molécule. R„ et l’énergie de dissociation sont en effet pré 
cisément l’abscisse et l’ordonnée du minimum de la courbe e.,(R).
On trouve ainsi, d’après Heitler, pour R0 la valeur i,6a0 ^avec 

a0— -r—-—-, = rayon de l’anneau K de l’atome II dans la théoriek,-me- J
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primitive de Bohrj et pour le travail de dissociation 3,2 clectron- 

volts alors que Inexpérience donne R0 = 1 ,5 a0 et travail de disso 
ciation = 4)38 électron-volts. L’accord est qualitatif sans être 
excellent. De même à l’aide de la forme de la courbe ss(R) au 
voisinage de R = R0, on peut déduire la fréquence d’oscillation 
des deux atomes H autour de leur position d’équilibre dans la 
molécule H2 telle qu’elle se révèle dans les spectres de bandes : 
l’accord est aussi assez bon. Mais on peut obtenir des résultats 
numériques bien meilleurs en n’employant pas la méthode de 
perturbation développée plus haut, mais en cherchant à trouver 
directement les fonctions propres du système formé par la molé 
cule H2. L’avantage de la méthode de perturbation, c’est do bien 
montrer pourquoi et de quelle façon la molécule stable H3 peut 
se former.

Avec la molécule H2, nous venons de voir sur l’exemple le plus 
simple comment deux atomes ayant chacun un électron célibataire 
(atomes monovalents) peuvent former une molécule quand deux 
de leurs électrons se réunissent pour former une paire à spins 
antiparallèles. On peut aussi voir facilement qu’il ne peut pas se 
former de molécule entre un atome n’ayant pas d’électron céliba 
taire (atome de valeur zéro) et un autre atome. Le cas le plus 
simple est celui d’un atome d’hélium dans l’état normal où les 
deux électrons K forment une paire à spins antiparallèles et un 
atome d’hydrogène. Un calcul analogue à celui que nous venons 
d’exposer montre qu’il n’existe qu’une sorte d’interaction entre un 
atome He normal et un atome H et que cotte interaction est répul 
sive : en accord avec la théorie de la valence, on trouve donc qu’il 
ne peut pas se former de molécule HeH.

Notons enfin le fait suivant. Dans une molécule hétéropolaire, 
telle que la molécule NaCl formée de l’ion Na+ et de l’ion Cl-, les 
deux ions ont la même configuration électronique externe que 
l’atome d’un gaz rare comme l’hélium, en ce sens que leurs élec 
trons périphériques sont tous répartis en paires à spins antiparal 
lèles. Les deux ions ayant la valence zéro, les interactions 
d’échange entre eux sont répulsives comme elles le sont entre 
deux atomes Ile par exemple. Mais les ions ayant des charges 
égales et de signes contraires exercent aussi l’un sur l’autre une 
attraction Coulombienne, et c’est l’équilibre entre cette attraction

198
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et la répulsion d’échange qui permet la formation de la molécule 
hétéropolaire. Cet exemple montre que, même pour les molécules 
hétéropolaires, les interactions quantiques d’échange interviennent 
d’une façon essentielle.

3. L’intervention du spin dans la classification des états symé 
triques et antisymétriques (*). — Dans la Mécanique classique, le 
moment de quantité de mouvement d’un système est représenté

—V
par un vecteur M de composantes rectangulaires Mr, M.-. 
Aucune restriction n’est imposée aux valeurs possibles de ces 
quantités.

Dans l’ancienne théorie des quanta, le moment de rotation 
d’un système est quantifié. D’abord sa longueur |M| doit être 
égale à un nombre entier de fois l’unité quantique de moment de 

hrotation — 
a t u

(20) M ] = (1 = o, 1, a, ...).

Ensuite, s’il y aune direction privilégiée Oz (par exemple : direc 
tion du champ magnétique extérieur dans l’effet Zeeman), la com-

■ h ,
posante M- doit avoir une valeur de la forme M-= m — iin étant 

un nombre entier compris entre ■— l et 4- L Ceci s’interprétait en 
disant qu’il y avait « quantification dans l’espace ». On se repré-

sentait le vecteur M de longueur l— comme devant nécessaire 

ment prendre des orientations quantifiées autour de Os de telle 

façon que l’angle s;OM ait pour cosinus ™ (fig- 16).

Ces idées, qui avaient conduit à des résultats satisfaisants dans 
l’étude d’un grand nombre de problèmes atomiques, n’étaient pas 
sans soulever des difficultés graves. S’il n’y avait pas de direction 
privilégiée (comme cela arrive dans l’effet Zeeman quand on fait 
tendre le champ extérieur vers zéro), comment devait-on exprimer 
la quantification dans l’espace ? On ne pouvait évidemment pas

admettre que la composante de M le long d’un axe quelconque

(*) Pour approfondir les questions traitées dans ce paragraphe, on pourra se 
reporter au livre de l'auteur : Théorie générale des particules à spin, Gauthier- 
Villars, 1943-
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valait m—; en particulier, on ne pouvait admettre, avec le modèle

employé pour la représentation du moment cinétique, que Mx, 
M,, M- sont tous trois de la forme précédente.

La nouvelle Mécanique a levé ces difficultés en introduisant son 
mode tout à fait nouveau de représentation des grandeurs pLy 

cos a = cos^OM 

Fig. 16.

m
7'

siques. A chacune des composantes rectangulaires du moment 
cinétique, elle fait correspondre l’un des opérateurs M,., M,-, etM- 
dont nous avons appris à former l’expression et au carré de la 
longueur du moment cinétique elle fait correspondre l’opérateur

(21) M2 = MJ. -+- M ;2 -t- MJ.

L’étude des opérateurs M-‘,Mr,Mr,M; montre que l’opéraleurM-

a des valeurs propres de la forme 1(1 + 1) "avec 1= 0,1,2,...,

et que les opérateurs M,., M,, M_- ont des valeurs propres de la

forme où m, pour l donné, peut prendre les valeurs —l,
—y

— f+i, ..., I—1, l. On voit donc que la longueur de M n’a 

plus des valeurs de la forme i-~i mais bien \/l(l 4- 1) De plus,

il n’y a plus ici contradiction parce qu’on ne peut plus parler que 
des valeurs possibles de M.r, M,., M;. Or ces trois grandeurs ne 
sont pas simultanément mesurables car les opérateurs correspon 
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dants ne commutent pas et, par suite, on ne peut mesurer à la fois 

pour deux d’entre elles des valeurs m — et m! — , de sorte qu’on* 2X 2ÎC 1
ne sera jamais en contradiction avec le modèle vectoriel.

Passons maintenant à la représentation du spin d’un système.
Le « spin » est une grandeur qui a la nature physique d’un moment

, . . h . hcinétique, mais dont limité quantique est — au lieu de — • Pour

représenter le spin, raisonnons comme dans l’ancienne théorie 
des quanta. Soit un système contenant N électrons et admettons 
que les spins s’ajoutent algébriquement pour former le spin

total, c’est-à-dire que chaque électron apporte la contribution ±

au spin total. Nous aurons alors deux cas à distinguer : celui de N 
pair et celui de N impair. Si N est impair, la valeur absolue du 
spin total (ou longueur du vecteur spin résultant) est de la

forme S — avec S = -, :>, Dans le cas où N est pair,
1T. 2 2 2 2 . 1

h s Nla valeur absolue du spin total est S — avec S = o, 1,2,

La projection du spin total sur un axe Os de référence sera de la 

forme m~ avec m variant par unités de — S à + S pour S donné.

Donc, dans le cas de N pair, m sera un entier variant de — S à + S ; 
dans le cas de N impair, ce sera un demi-entier variant de — S 
à + S. On peut représenter ceci à l’aide du modèle vectoriel 
classique suivant (fig. 17)-

Naturellemcnt cette représentation vectorielle du spin dans 
l’ancienne théorie des quanta y soulève les mêmes difficultés que 
la représentation analogue du moment cinétique ordinaire. Ln 
direction Os pouvant être prise quelconque autour de O, on ne

comprend pas comment la quantification de la position du vecteur s 
par rapport à Os est possible.

En Mécanique quantique, on représentera chaque composante 
rectangulaire du spin d’un système par un opérateur 2r, 2,-, 1- et 
au carré de la longueur du vecteur spin, on fera correspondre 
l’opérateur
(22) =

Par analogie avec le moment cinétique ordinaire (orbital) et en
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accord avec les propriétés du spin énoncées plus haut, nous admet 

trons que l’opérateur 22 a pour valeurs propres 

avec

S = o, i, 2, si N est pair,

c i 3 5 N . AT . .
» = si IN est impair.

2 2 2 2

ni
cos a = -g-.

Fig. i7.

Nous admettrons aussi que les opérateurs 2,., —- ont les 
valeurs propres m-^, m pouvant varier par unités de — S à + S.

Les composantes 2X, 2V, n’étant pas simultanément mesurables, 
les opérateurs correspondants ne doivent pas commuter et l’on 
peut faire les hypothèses précédentes sans être en opposition avec 
le modèle vectoriel entendu au sens quantique. Les théories qui 
permettent de préciser la représentation mathématique quantique 
du spin conduisent à des opérateurs 2,., 2V, et 22 jouissant 
effectivement des propriétés précédentes que nous admettrons 
ici.

Considérons d’abord le cas N = i. Le nombre S a alors la
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valeur unique — = i2 a pour valeur propre unique

i / i
•i

3 !h_
4 \2X

Chacun des opérateurs i.r, ir et 1- a les deux valeurs propres

i h
•i 2!î

en accord avec ce que nous avons toujours admis pour le spin 
d’un électron.

Passons maintenantau cas de deux électrons, N = 2. Le nombre S 
a les valeurs possibles o et 1. Pour S = x, l’opérateur i2 a la 
valeur propre

,(1 + I)(i)’=2(à)";
les opérateurs i,., -r, 2- ont alors les trois valeurs propres pos 

sibles — o, + Pour S = o, I2 a la valeur propre o ; ix,

2,. et 2- ont alors la seule valeur propre o. Si nous définissons les 
états de spin du système comme correspondant aux cas purs par 
rapport à i- (comme nous l’avons toujours fait précédemment), 
nous voyons qu’à l’hypothcse S = 1, correspondent trois étals avec
2- =-----—-1 o, ou + ^ tandis qu’à l’hypothèse S = o correspond

un seul état avec i; = o.
Or nous avons vu que l’on peut représenter les états de spin 

d’un système de deux électrons par les quatre fonctions :

?(«, a), -il b, b), ÿ(>, b) -h o(b, a), 9 ( a, b) — ? (b, a).

La fonction w(a, a) représente le cas où les deux électrons ont

pour spins, le long de 0,5, + tp(è, b) représente le cas où les

deux électrons ont pour spins, le long de O5, — Les fonctions
4

<p(a, b) et <p(fe, a) correspondent aux cas où les spins des deux
électrons le long de Oz sont opposés.

---
Désignons par i!1> l’opérateur de spin du premier électron, par 

i<2") celui du second : l’opérateur « spin total » serai = i(i> + i!2).
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On doit évidemment avoir :

1
1

1
1 Sd)
l '

9(a, a) = h
4-

?(", «); V(_2) 9(«, a) =
/<

?(«> «);

1 2(-'} ? (b, b) = —
h
Tt . o(b, b)', V' 2 ) 9(6, b) _ - a

— 77- 9(6, 6);
(23) /

1 ’

14 4.

h
'1 '*
/,

9(0, b) = ?(«, b)\ V'2) ?(", b) = - ï(«, 6);1 4 "

D"' 9(b, a) = —
h

4^ f(b, a); v ' 2 ; 9(6, a) =
A
4^ 9(6, a);

puis

h?(«, «) =
h

; 9 (", a ) 2=9(6, b) =
h

2 “ 9(6, 6);
(24) <

1 ?(«, b) = 0 ?( a, b) ; 2=9(6. a) = 0 ? ( é., «);
(

S, [9 (a, b) -+~ (?(6, a)} == o[?(« , b):J 9 (*, «)].

Donc, nous avons quatre états dont deux correspondent à 1- = o, 
un à ^ et un à 2- = — —• D’après nos considérations géné 

rales, il faut donc que les deux derniers états et Vun des 
états 23=o correspondent à S = i, c’est-à-dire au cas de spins 
parallèles (cas |f), tandis que l’autre état 2;= o correspondra au 
cas S = o, c’est-à-dire aux spins antiparallèles (cas ||).

Les théories qui permettent de préciser la forme des opéra 
teurs — et des fonctions de spin permettent do calculer K2©. On 
trouve ainsi :

-2?(a, a) = 2 (J^;j ?(«,«); S2 9 (O b) — 2 r(C b);

22 [ 9 (a, b) -+- g  (b, a)] = 2^^) [ 9 (<7, b) -h y (b, «)]; 

22[9(a, b) — 9(6, a)] = o [o(a, b) — 9(b, a) |.

Ceci montre que les fonctions o(a, a), <s(b, b) el y (a, b) ■+■ o (b, a) 
correspondent à S = 1, tandis que ©(a, b)— <?(b, a) correspond 
àS = o.

Nous avons vu précédemment que les fonctions propres d’un 
système de deux électrons doivent être antisymétriques par rap 
port à l’ensemble des coordonnées d’espace et des spins (principe 
de Pauli). Nous avons vu également qu’en première approximation 
elles se présentaient sous la forme d’un produit d’une fonction o
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des spins par une fonction des coordonnées des deux électrons. Si 
celte dernière fonction est symétrique, la fonction des spins doit 
être antisymétrique et inversement. Puisque les fonctions symé 
triques des spins correspondent à S = i et les fonctions antisymé 
triques à S = o, nous voyons que les fonctions propres du système 
qui sont symétriques d’espace correspondent àS = o, tandis que 
les fonctions propres antisymétriques d’espace correspondent 
à S = i. Reportons-nous alors à la théorie de la molécule H2 donnée 
au paragraphe précédent : ce sont bien, nous le voyons, les états 
symétriques d’espace qui sont les seuls à correspondre au cas des 
spins antiparallèles (cas |^), et la possibilité de formation d’une 
molécule H2 a bien pour condition nécessaire et suffisante l’anti 
parallélisme des spins des deux électrons.

•4. Interactions apparentes dues à l’exclusion de Pauli. — Dési 
gnons maintenant par et cf{s’) les trois fonctions symétriques
des spins qui correspondent à S = i. par Ç"1 la fonction anti- 
symétrique des spins correspondant à S = o. D’après les résultats 
obtenus dans le cas d’un seul électron (N = i), on doit avoir, 
pour un cp quelconque,

(20) +

et de même
(27) = |(st*,)î+(s',?,)î+(si!,)îJ? = | (à)V 

Or
(28) s-? =

par définition. D’où :
--y--

(29) 2^9 = ( 2(0 )-' 9 -1- ( 2<-' )29 -+- 2 2<>). 2") 9

avec

(3o)
--
V(|J ^ V(e) v' 1 ; v 2-0 vm+ vij ) 2(.-].

Dans (3o), l’ordre des facteurs est différent, car 2(1> et 2‘-> opérant 
sur des variables de spin différentes commutent. De (a8). (29) 
et (3o), on tire

Cii)
----------V^(1)^(2) 5

9
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Si a est l’un des trois on a donc 

( 32 ) ,iisi = i £? ol-'i! — t

•çi).

et finalement

(33) 5&.£iV<’=i(A)V'f! (i = i,2, 3).

Pour cp'“!, on a, au contraire,

---------^ I 3 / /i
( 34) SW. S«««s'"* = - S<« ©<«> — - ( —‘ 2 ' 4 \2JC

et finalement

(35) vif). visijta) =_ ^

Les formules (33) et (35) vont nous permettre de considérer la 
différence d’énergie entre un état symétrique et l’état anlisvmé- 
trique correspondant comme due à une sorte d’interaction entre 
les spins, même en négligeant les véritables interactions de spin, 
c’est-à-dire celles qui sont ducs à l’existence des moments magné 
tiques propres.

Pour le voir rappelons quelques résultats pour un système de 
deux électrons. Soient EJ, EJ, . . ., EJ’, . . ., EJJ, . . . les énergies 
des états stationnaires de chacun des deux électrons quand on 
néglige entièrement leurs interactions. Par suite de la dégénéres 
cence d’échange, la valeur propre EJ + E;°„ pour le système est 
dégénérée et il lui correspond les deux fonctions propres 
^(i) lF„,(2) et fiLJa) 1Em(i), en commençant tout d’abord par ne 
pas parler des spins.

Si maintenant nous voulons tenir compte des interactions Cou 
lombiennes existant entre les deux électrons, nous pouvons 
prendre comme point de départ d’un calcul de perturbation les 
fonctions propres d’approximation zéro.

j •2)='F/(l)fi’m(2) + tr„!(l)T/(2),

I irn,i(L 2) = 1C(i)’Fm(2) - Tm(i)iF,(2).
(36)
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Ce sont les combinaisons symétriques et antisymétriques 
d’espace des fonctions propres ,F/(i)lFm(2) et (2)( 1 ).

Les valeurs des énergies correspondant en première approxima 
tion à l’état symétrique et à l’état antisymétrique respectivement 
sont E" + E,°(I + £j et E° -+- E°t ea avec

(37) — G -t- À, £0 — G — A,

où
le = f i V/(i)|!|Vm(a)|*VrfT,

<38)
/ A = Jl /’1'7 ( 1 ) 'F;*« (2 ) V *!*/ ( 2 ) lF „, ( 1 ) d~

V étant le potentiel d’interaction Coulombienne — •r,2
Si, de plus, nous voulons tenir compte de l’existence du spin 

dans la définition des états du système, nous sommes amenés à 
introduire les quatre fonctions des spins *

(39)
cp!.'-,; (a, a); = o(b, b); 9'>'■'= ^(a, £»)-t-ç(£>, a);

?(a) = ?(«, b) — 9(ù, a).

En vertu du principe de Pauli, à la valeur propre d’approximation 
zéro E" +E^ correspondent maintenant quatre fonctions propres 
d’approximation zéro, savoir :

‘rte1 (G 2, <n, a,) = œù.) >F^(i, 2) |

(g 2, Ol, 2) Ef-t-EJ,
VT,f(èt3' 
^ lin (g 2, cr1; ».) = ?WÏ|S(G 2) )

’1'&'(G 2, tn, 2) J E" -t- E“,

les trois premières fonctions étant symétriques de spin et anti 
symétriques d’espace et la quatrième étant antisymétrique de spin 
et symétrique d’espace.

Si nous continuons à négliger les interactions dues à l’existence 
du spin, ce que nous allons toujours faire dans la suite, l’inter 
action Coulombienne ne lèvera que partiellement la dégénéres 
cence, les trois premières fonctions propres (4o) correspondant à la 
même énergie perturbée de première approximation E“ + E,°H + e„,
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la dernière fonction propre (4o) correspondant de même 
à E° + E“n + es. Ici on peut écrire, à la place des définitions (38),

( C= f [9(2)]* V[ ?'I’Ki) (a)] d-,

(40
/ À = en

avec cp = cp(,Çtl, cp(,îs) ou cp(a| suivant l’étal considéré. Mais les W1"*’ 
de (4o) étant normées, nous devons supposer que les quatre cp 
sont tels que | cp |-’ = i et, en somme, nos nouvelles définitions (41) 
sont identiques aux anciennes définitions (3g).

Je dis maintenant que nous pouvons écrire la perturbation du 
premier ordre de l’énergie sous la forme suivante, valable pour les 
quatre ( i , 2, 04, u.,)

(42) f = C-iA-Çoi[J [?¥,(i) «-«(a)]* V3i». 2® ? *0(2) tr,„(i) <h] 

ou, ce qui revient au même,

(43) £ = G — - A
2 k- A.c* 2

—>•
V(l) v (-2;

/ [?'i-Ki)liO(2)]*v[?u-/(2)'rm(i)]^

où l’opérateur il1 >. 21-1 est toujours défini par (3o).
En effet, pour calculer la perturbation du premier ordre de 

l’énergie pour l’un des trois états antisymétriques d’espace, nous 
devons prendre pour cp l’un des trois et alors, d’après (33), 
nous avons

(44)
—^ ^ i h-V(i) V{2) — t _ I

‘ ' ‘ ' 4 4"-
A-

el (43) nous donne

(45) .£a=G--A-HA'-^ = C-A,
2 h- 4 --

ce qui est bien en accord avec la seconde formule (3y).
Pour calculer la perturbation du premier ordre de l’énergie 

pour un état symétrique d’espace, nous devons prendre cp = cp(n’ et 
alors, d’après (35), nous avons
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et, par suite, (43) nous donne ici

(47) 4^) = c + A-

Nous retrouvons bien ainsi la première formule (37).
La formule (4a) étant ainsi justifiée, regardons bien cette for 

mule : mq s voyons qu’elle exprime la perturbation s du premier 
ordre en fonction du produit scalaire des spins des deux électrons, 
c’est-à-dire en somme de leur angle. Ainsi, par suite de la manière 
dont le principe de Pauli lie les états symétriques d’espace aux 
états antisymétriques de spin et inversement et, bien que nous 
n’ayons tenu compte que des interactions Coulombiennes en 
négligeant entièrement les interactions dues à l’existence du spin 
(c’est-à-dire les interactions dues aux moments magnétiques 
propres), nous en arrivons à considérer la différence de valeur 
de ss et de z„ comme traduisant une sorte d’interaction apparente 
entre les spins. Ces interactions apparentes, dont l’existence est 
due en réalité à l’intervention de l’exclusion au sens de Pauli, 
peuvent être appelées « interactions d’exclusion ». Suivant que la 
quantité A sera positive ou négative, ce sera soit l’état à spins 
antiparallèles (||) correspondant à zs, soit l’état à spins parallèles 
(||) correspondant à z,n qui sera stable.

Il faut noter que les véritables interactions de spin dues aux 
moments magnétiques propres des électrons et les interactions
magnétiques provenant du mouvement orbital sont tout à tait

—-------- ^

négligeables devant les termes en dans l’expression de z.
En d’autres termes, les pseudo-interactions magnétiques qui 
traduisent le principe de Pauli sont beaucoup plus intenses que 
les véritables interactions magnétiques.

Les considérations précédentes ne s’appliquent qu’au cas de 
deux électrons. On peut, au moins approximativement, en étendre 
les conclusions au cas d’un grand nombre d’électrons faisant partie 
soit d’un même atome, soit même par exemple des divers atomes 
d’un corps solide. On voit alors qu’il existe entre les divers atomes 
d’un corps solide des actions tendant à orienter les uns par rap 
port aux autres les moments magnétiques des divers atomes, et ces 
actions d’orientation qui dérivent des pseudo-interactions de spin 
exprimant le principe de Pauli sont beaucoup plus énergiques que

L. DIÎ BROCLIE. 14
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les actions d’orientation proprement magnétiques dontles anciennes 
théories pouvaient tenir compte. Or, l’on sait que M. Pierre Weiss, 
pour développer la théorie du ferromagnétisme, avait été amené à 
postuler l’existence d’actions mutuelles d’orientation des moments 
magnétiques entre les atomes d’une substance ferromagnétique. 
Malheureusement, à l’époque où M. Weiss développait sa 
théorie, on ne pouvait imaginer comme actions orientantes que les 
actions magnétiques ou électriques ordinaires et, si l’on calculait 
l’ordre de grandeur des actions de ce genre pouvant s’exercer 
entre les atomes d’une substance ferromagnétique, on trouvait des 
actions beaucoup trop petites pour pouvoir expliquer l’importance 
réelle des phénomènes ferromagnétiques. Mais, depuis lors l’intro 
duction du principe de Pauli et des conséquences que nous venons 
d’en déduire a levé, du moins en principe, la grande difficulté ainsi 
rencontrée par la théorie de M. Weiss, car les forces d’orientation 
nécessaires au développement de sa théorie du ferromagné 
tisme peuvent aujourd’hui être interprétées par les pseudo-inter 
actions entre spins qui sont la conséquence du principe de Pauli. 
C’est autour de cette idée directrice que M. Werner Heisenberga 
développé sa belle théorie quantique du ferromagnétisme. Bien 
qu’un développement quantitatif exact de cette théorie soit très 
difficile, on peut dire qu’elle rend bien compte dans ses grandes 
lignes du phénomène du ferromagnétisme. Son étude sortirait 
naturellement du cadre du présent ouvrage.

5. Le spin des noyaux d’atomes. — Il est intéressant de 
compléter ce que nous venons de dire sur le spin des électrons 
par l’élude sommaire du spin des noyaux d’atomes. Quelle que 
soit la structure intime exacte des noyaux d’atomes, il est aujour 
d’hui certain qu’ils possèdent en général un moment de rotation

propre, un spin, qui a une valeur de la forme I , I pouvant avoir 

suivant la nature du noyau considéré une des valeurs o, 1, ~

Par exemple, les noyaux He et O ont un spin égal à zéro, le 
noyau Hou proton a un spin ~, le noyau N le spin i ^en unités ■

La valeur du spin d’un noyau peut être déduite de l’étude du 
spectre de bandes d’une molécule formée de 2 atomes possédant
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ce noyau : par exemple, le spin du noyau N pourra se déduire de 
l’étude du spectre de bandes de la molécule N2. C’est ce que nous 
expliquerons plus loin.

Dans le cas de l’électron dont le spin a la valeur à ce spin 

est associé un moment magnétique égal au magnéton de Bohr,

Si pour les noyaux on admet que l’onsoit à 4 ~ m c
obtienl également le moment magnétique propre d’un noyau en

chsr^c •
multipliant la valeur de son spin par le rapport-------5—i on voit1 i i i r masse X c
que les noyaux, en raison de leurs masses beaucoup plus élevées 
que celle de l’électron, auront un moment magnétique propre 
beaucoup plus petit que le magnéton de Bohr. La relation entre le 
spin et le moment magnétique ne paraît pas en réalité être toujours 

aussi simple : dans le cas du noyau H (proton) dont le spin est 

l’expérience a indiqué que le moment magnétique propre est supé 
rieur à celui qu’on calcule à partir de la règle précédente. Mais, 
quelle que soit l’origine de ces anomalies, il est certain que le 
moment magnétique des noyaux est de l’ordre de grandeur prévu, 
c’est-à-dire très inférieur au magnéton de Bohr. Le champ magné 
tique dîi à ce moment magnétique propre est donc beaucoup plus 
faible que le champ correspondant pour l’électron. Or, ce sont ces 
champs magnétiques dus aux moments magnétiques propres qui 
constituent ce que nous avons appelé les « interactions de spin ». 
Ces interactions de spin sont donc beaucoup moins importantes 
entre noyaux qu’entre électrons, et il est bien plus souvent encore 
justifié de les négliger pour les noyaux que pour les électrons. 
Néanmoins, si faibles que soient les champs dus au magnétisme 
des noyaux, leur action suffit à provoquer certains dédoublements 
très fins dans les niveaux d’énergie des atomes et l’étude de ces 
structures « hyperfînes » des spectres atomiques fournit des indi 
cations sur la valeur du moment magnétique propre des noyaux et 
par suite sur la valeur de leur spin, dans la mesure où l’on peut 
appliquer la relation précisée plus haut entre spin et moment 
magnétique propre.

L’extrême petitesse des champs magnétiques dus aux moments 
magnétiques propres des noyaux nous autorise, encore bien plus 
que pour les électrons, à faire en première approximation abstrac-



212 CHAPITRE IX.

lion complète des interactions entre moments magnétiques propres- 
pour l’étude des ensembles de noyaux. Pour un ensemble de 
noyaux, on pourra donc très légitimement considérer la fonction 
d’onde de cet ensemble comme le produit d’une fonction 9 dépen 
dant uniquement des spins et d’une fonction 'F dépendant unique 
ment des coordonnées des noyaux; on pourra par suite poser

(48) ’Ffan, zh xy, rx, zy ; g ,, g ,, . . ., Gy ; t)

= ?(?,, • • -, trx) VT(xh zy; t).

Ceci posé, on doit s’attendre à trouver deux catégories de 
noyaux : pour les uns, un système formé de noyaux de même 
nature sera toujours représenté par une fonction symétrique au 
total, compte tenu des spins; pour les autres, un système formé 
de noyaux de même nature sera toujours représenté par une fonc 
tion d’onde antisymétrique au total, compte tenu des spins. Les 
premiers suivront la statistique de Bose-Einstein, les seconds la 
statistique de Fermi-Dirac. La possibilité de diviser les noyaux en 
deux catégories de ce genre repose toujours sur le fait que, les 
interactions entre noyaux étant représentées dans l’Hamiltonien du 
système par un terme symétrique, les états symétriques ne peuvent 
se combiner qu’entre eux et les états antisymétriques ne peuvent 
également se combiner qu’entre eux. Les fonctions d’onde des 
noyaux à états symétriques seront soit le produit d’une fonction 
symétrique des spins par une fonction symétrique d’espace, soitle 
produit d’une fonction anlisymétrique des spins par une fonction 
antisymétrique d’espace. Au contraire, les fonctions d’onde des 
systèmes de noyaux à états antisymétriques seront soit le produit 
d’une fonction symétrique des spins par une fonction anti- 
symétrique d’espace, soitle produit d’une fonction antisymétrique 
des spins par une fonction symétrique d’espace.

Comme les interactions dues au magnétisme propre sont très 
faibles, nous pouvons considérer, à un haut degré d’approximation, 
les états correspondant à une fonction W[xi, . . Zy, t) comme 
coïncidant quel que soit l’état de spin et nous pouvons aussi con 
sidérer que les états symétriques d’espace ne se combinent qu’aux 
états symétriques d’espace et les états antisymétriques d’espace 
qu’aux états antisymétriques d’espace : nous avons vu en effet que 
cette affirmation est valable qnand on peut négliger dans l’Hamil-

/
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ionien les termes traduisant les interactions de spin, ce qui était 
déjà légitime en première approximation pour les électrons et l’est 
encore bien davantage pour les noyaux. A ce degré d’approxi 
mation, chaque état défini par une fonction d’onde d’espace 
W(aq, ..., ,zN, t) est en général dégénéré et sa multiplicité est égale 
au nombre des fonctions de spin qui peuvent se combiner avec la 
fonction d’onde considérée. Dans le cas d’un système de 2 élec 
trons, nous avons vu que les états symétriques d’espace sont 
simples [ parce que la fonction d’onde correspondante ne peut se 
combiner qu’avec l’unique fonction de spin y(a, b) — tp(è,a)] 
tandis que les états antisymétriques d’espace sont triples [parce 
que leur fonction d’onde peut se combiner avec les 3 fonctions de 
spin o(a, a), 9(b, b) et 9(a, b) + 9(6, a)]. Nous allons reprendre
ce problème pour deux noyaux de spin 1^* En faisant I = b dans

les résultats obtenus, nous devrons retomber sur le cas de l’élec 
tron qui est aussi celui de noyaux comme le proton.

Soient deux noyaux ayant chacun le spin 1^-* De combien

d’états de spin indépendants ce système est-il susceptible ? Tout 
d’abord, chaque noyau considéré isolément estsusceptible de 21 -f-1 
états de spin indépendants. En effet, l’état de spin doit se définir 
par la valeur de la composante du spin dans une certaine direction

de référence Os et cette valeur doit être de la forme m~,
2 -

m variant par unités de — I à + I. Deux cas sont à distinguer : 

ou I est entier ou 1 est de la forme Si I est entier, m peut

prendre les valeurs positives 1, 2, ..., I et les valeurs néga 
tives — 1, —2, ..., —I ainsi que la valeur o, soit bien en 

toute 21 +1 valeurs distinctes. Si I est de la forme ln~^ 1 > m peut

prendre les valeurs . . ., I, soit I 4- i valeurs positives, et les

valeurs —..., —I, soit I + i valeurs négatives : cela fait

encore au total 2I + 1 valeurs distinctes. Chaque noyau ayant 
ainsi 2I + 1 états de spin indépendants, l’ensemble des deux 
noyaux aura ( 21 —1 )- états de spin indépendants, car tout état de 
spin d’un des noyaux peut se combiner avec tout état de spin de 
l’autre. Maintenant, sur ces (2I4-1)2 états de spin indépendants
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dont le système est susceptible il y en a évidemment 2I + 1 qui 
sont obtenus en combinant un certain état de spin de l’un des 
noyaux avec le même état de spin de l’autre noyau et ces 2I + J 
états de spin global sont évidemment symétriques. Ces états symé 
triques mis àpart, il reste (2I -j- i)-’— (2I + 1) = 21(21 —f— 1 ) états 
de spin indépendants qui se divisent en deux groupes égaux d’états 
symétriques et antisymétriques. Finalement il y a donc au 
total 21 —t- 1 -p-1(21 —(—1 ) = (I —f— 1 ) (21 H- 1 ) états symétriques de 
spin et I(21 —f— 1 ) états anlisymétriques de spin.

Vérifions ce résultat pour le cas de l’électron, 1= i- Chaque

électron a deux états de spin possibles, ce qui est bien égal à 21+1. 
Le système des deux électrons a ( 21 —1 )- = 4 états de spin pos 
sibles. Sur ces quatre états, il y en a 21 -f-1 == 2 qui sont obtenus 
en combinant un certain état de spin du premier électron avec le 
même état de spin du second électron : ce sont les états corres 
pondant aux fonctions ®(a, a) et 0(6, b). Il reste

( 2 I -l-I )'2--  (2l-t-l) = 2l(2l-4-l) = 2

états de spin dont l’un est symétrique et l’autre antisymétrique : 
ce sont les états correspondant respectivement aux fonctions 
o(a, b) + 9(b, a) et a(a, b) — 0(6, a). Finalement il y a au 
total (I H— 1 ) (21 —f— 1 ) = 3 états symétriques de spinctl(2l + 1) = 1 
état antisymétrique de spin. Ce sont bien les résultats que nous 
avions obtenus pour l’électron.

Le rapport p du nombre des étals antisymétriques de spin au 
nombre des états symétriques de spin est donc

Maintenant, les noyaux que nous considérons suivent soit la 
statistique de Fermi, soit celle de Bose. Supposons d’abord que 
nos noyaux suivent la statistique de Fermi : le système des deux 
noyaux n’a donc que des états antisyrnélriques au total, spin com 
pris. Une fonction symétrique d’espace doit donc se combiner avec 
une fonction antisymétrique des spins et une fonction antisymé 
trique d’espace avec une fonction symétrique des spins. Donc les 
états correspondant à des fonctions symétriques d’espace sont 
I(21 —f— 1 ) fois dégénérés, tandis que les états correspondant à des
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fonctions antisymétriques d’espace le sont (I —(— 1 ) (2 f. —1— 1 ) fois. 
D’où, pour le cas de la statistique de Fermi, la formule

._ poids des états symétriques d’espace I
(PO) —Ç-j—-------- jr--------- • = ;------ = P-poids des états anlisymetriques d espace 1 -+-1

Pour des noyaux obéissant à la statistique de Bose, nous allons 
trouver le résultat inverse. Les fonctions d’onde devant alors être 
symétriques au total, spin compris, les fonctions d’onde symé 
triques d’espace doivent se combiner avec les fonctions d’onde 
symétriques de spin et les fonctions d’onde antisymétriques 
d’espace avec les fonctions antisymétriques de spin. Donc les états 
correspondant à des fonctions d’onde symétriques d’espace 
sont ( I —1 ) ( 21 H— 1 ) fois dégénérés et les états correspondant à 
des fonctions d’onde antisymétriques d’espace le sont I(2Ï + i) 
fois. D’où pour le cas de la statistique de Bose, la formule

poids des états antisymétriques d’espace I 
' 1 poids des états symétriques d’espace I -+-1 ^

Si l — o, il n’y a pas d’étals symétriques d’espace dans le cas 
de la statistique de Fermi et, de plus, les états anlisymétriques 
d’espace sont simples : dans le cas de la statistique de Bose, il n’y 
a pas d’états antisymétriques et les états symétriques d’espace sont 
simples. Ce dernier cas est celui de la molécule O2 et de la molé 
cule instable IIe2 car les noyaux O et He ont un spin nul et 
obéissent à la statistique de Bose.

Si 1 = les poids sont 3 et 1 comme nous le savons par l’élude

du cas de l’électron. Pour des noyaux à états antisymétriques, les 
niveaux symétriques sont uniques et les niveaux antisymétriques 
triples. C’est ce que nous avons trouvé pour l’électron dans la 
théorie du spectre de l’hélium et ce résultat est donc valable pour

le proton. Notons qu’ici p =

Pour I = i, les poids seraient 3 et 6 et l’on aurait p = j » etc.

6. Application aux spectres de bandes. — Les raies des spectres 
de bande sont dues aux variations des états de rotation quantifiés 
des molécules, variations qui peuvent s’accompagner de variation
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des états quantifiés d’oscillation des noyaux les uns par rapport 
aux autres et même de variations des états de l’ensemble des 
électrons entourant le noyau. Considérons alors une molécule 
formée de deux alomes de même nature H2, 02, N2, etc. Les 
fonctions propres en représentant les états stationnaires de cette 
molécule seront les unes symétriques, les autres antisymétriques 
par rapport aux coordonnées des deux noyaux. On aura des raies 
correspondant aux transitions entre états symétriques et des raies 
correspondant aux transitions entre états anlisymétriques. Ces 
raies sont intercalées les unes entre les autres dans le spectre. 
Celles de la première catégorie ont, toutes choses égales d’ailleurs, 
une intensité proportionnelle au poids des états symétriques 
d’espace, soit I(aI + i)ou(I-|-i)(2l-|-i) suivant que les noyaux 
considérés obéissent à la statistique de Fermi ou à celle deBose; 
les raies de la deuxième catégorie ont, toutes choses égales 
d’ailleurs, une intensité proportionnelle au poids des états anti 
symétriques, soit (I + 1 ) (21 -\- 1 ) ou I(21 —(— 1 ) suivant que les 
noyaux obéissent à la statistique de Fermi ou à celle de Bose. De 
toutes façons, on aura donc dans les spectres des raies à intensités 
alternées, une raie faible étant toujours intercalée entre deux raies 
fortes comme le montre le schéma suivant :

2 16

Fig. ,8.

Si l’on peut mesurer le rapport de l’intensité d’une raie faible à 
celle d’une raie forte, ce nombre inférieur à l’unité sera dans tous
les cas égal au rapport p = j—j-y et l’on pourra (si I n’est pas trop

grand) en déduire avec sécurité la valeur de I. En particulier, il 
peut arriver que les raies observées soient deux fois plus écartées 
que ne l’indiquerait la théorie sommaire des spectres de bandes :
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cela signifie que les raies faibles manquent complètement, sont 
d’intensité nulle, et que l’on ap = o,l = o. Les noyaux de la molé 
cule ont en ce cas un spin nul : c’est ce qui arrive pour 03 etHe2.

Pour le proton II, on a I = ~ comme pour l’électron.

On peut aller plus loin en s’appuyant sur la théorie quantique
des spectres de bandes que nous ne pouvons développer ici. Cette
théorie permet en effet de numéroter les raies d’un spectre débandés
et de dire quelles sont celles qui proviennent d’une transition entre
états symétriques d’espace et celles qui sont dues à une transition
entre états antisymétriques d’espace. On peut donc dire si p est
. . poids des états symétriques d’espaceégal au rapport -h-:—,----;---------- ------- r-L------- --------- ou au rapport
0 1 1 poids des états antisvrnetriques d espace 1 1

inverse en comparant l’alternance d’intensité des raies avec leur
numérotage théorique. On verra alors si les deux noyaux de la
molécule étudiée obéissent à la statistique de Fermi ou à celle de

Bose. Ainsi pour le noyau H de spin I = on trouve qu’il suit la

statistique de Fermi, que c’est une particule à états antisy 
métriques.

Le proton est donc analogue à l’électron en ce qui concerne le 
spin et la statistique. Far contre, le noyau N de l’azote est à états 
symétriques et suit la statistique de Bose. Ce résultat créait une 
difficulté d’interprétation avant la découverte du neutron, car alors 
on supposait les noyaux formés de protons et d’électrons et le 
noyau N de masse atomique i4 et de nombre atomique 7 devait 
contenir 14 protons et 7 électrons, soit 21 constituants au total : il 
devait donc suivre la statistique de Fermi. La découverte des 
neutrons a permis de lever la difficulté en admettant que les noyaux 
sont formés de neutrons et de protons, les électrons n’apparaissant 
sortir du noyau que lorsqu’un neutron intranucléaire se trans 
forme brusquement en proton : avec cette hypothèse, le noyau N 
doit être considéré comme formé de 7 protons et 7 neutrons, 
soit i4 constituants au total : il doit bien suivre la statistique 
de Bose.

Les molécules 02 et IIe2 (celte dernière instable) ont, nous 
l’avons vu, une raie sur deux d’intensité nulle dans leur spectre 
de bandes. On en déduit I = o. L’interprétation théorique du 
spectre montre que les raies d’intensité non nulle doivent
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correspondre aux combinaisons entre états symétriques d’espace. 
Il en résulte que les noyaux O et He suivent la statistique 
de Bose.

7. L’orthohydrogène et le parahydrogène. — Quand nous 
avons étudié le spectre de l’hélium, nous avons trouvé deux séries 
de niveaux pour l’atome He entre lesquelles les combinaisons 
étaient très rares. Ces deux séries de niveaux sont les niveaux du 
parhélium et ceux de l’orthohélium auxquels correspondent deux 
spectres presque complètement séparés. Seules quelques raies 
faibles correspondent à des transitions d’un niveau de l’ortho- 
héliuin à un niveau du parhélium ou inversement. Rappelons que 
le schéma des niveaux est le suivant :

Para Ortho
fonctions propres fonctions propres anti-

symétriques d’espace. symétriques d’espace.
Niveaux simples. Niveaux triples.

Fig- 19.

L’état fondamental de l’atome He est le niveau inférieur du 
parhélium, lequel n’a pas d’homologue dans l’orthohélium. 
Lorsque des atomes d’hélium sont soumis à des actions excitatrices 
extérieures (élévation de température, excitation électrique, etc.), 
un des électrons passe sur un niveau d’énergie supérieure à celle 
du niveau fondamental. Si cet électron excité se trouve ainsi porté 
sur un niveau du parhélium, il revient rapidement sur le niveau 
fondamental après émission d’une ou de plusieurs raies du spectre 
du parhélium. Si au contraire l’électron excité se trouve porté sur 
un niveau de l’orthohélium, il revient rapidement vers le niveau 
inférieur de l’orthohélium' après émission d’une ou de plusieurs 
raies du spectre de l’orthohélium. Puis, peu à peu, par l’émission
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des raies faibles mais cependant existantes qui permettent de 
passer des niveaux de l’orthohélium à ceux du parhélium, tous les 
dtomes excités primitivement reviennent, du moins si on les 
maintient alors à très basse température, au niveau fondamental 
du parhélium.

Nous allons trouver des circonstances tout à fait analogues pour 
la molécule H2. Les deux noyaux H ayant même spin et même 
statistique que l’électron, on retouve pour les deux noyaux de la 
molécule H2 les mêmes circonstances que pour les deux électrons 
de l’atome He. Si l’on fixe son attention sur le rôle de ces deux 
noyaux dans la fonction d’onde de H2, on trouvera pour le spectre 
de rotation une série de niveaux simples du type para avec 
fonctions d’onde symétriques d’espace et une série de niveaux 
triples du type orlho avec fonctions d’onde antisymélriques 
d’espace. Les transitions entre un niveau ortho et un niveau para 
ou inversement sont dues, nous le savons, aux interactions de 
spin et celles-ci sont beaucoup plus faibles pour le proton que 
pour l’électron (à cause, nous l’avons vu, de la masse beaucoup 
plus grande du proton). Les spectres ortho et para sont donc 
beaucoup plus complètement séparés pour H2 que pour He et l’on 
aura, pour H2 plus encore que pour He, l’impression qu’il existe 
deux hydrogènes différents : le parahydrogène et l’orthohydrogène. 
Lorsqu’après une excitation suivie d’émissions de raies, des 
molécules H2 seront revenues à l’état d’énergie minimum de 
l’orthohydrogène, cet état présentera un caractère métastable très 
prononcé, le retour à l’étal fondamental du parahydrogène (qui 
correspond au minimum absolu de l’énergie) ne pouvant se faire 
que par une transition dont la probabilité est extrêmement faible. 
En maintenant l’hydrogène préalablement excité à une tempé 
rature extrêmement basse, où pratiquement la totalité des 
molécules H2 devraient se trouver dans leur état d’énergie mini 
mum, il faudra près d’une semaine pour qu’en fait toutes les 
molécules reviennent en cet état à cause de la très grande 
inétastabilité du niveau inférieur de l’orthohydrogène.

L’existence des deux spectres moléculaires presque entièrement 
séparés du parahydrogène et de l’orthohydrogène se manifeste aussi 
d’une autre manière. Si nous excitons brutalement par action de la 
température des molécules H2, nous voyons apparaître le spectre
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de rotation complet avec raies ortho et raies para, les premières 
étant, toutes choses égales d’ailleurs, 3 fois plus intenses que les 
secondes, car le poids des niveaux (triples) de l’orlhohydrogènc 
est 3 fois celui des niveaux (simples) du parahydrogène. Mais, si 
nous commençons par maintenir de l’hydrogène liquide à très 
basse température pendant un temps très long de façon à amener 
toutes ses molécules à l’état fondamental du parahydrogène, puis 
si nous portons l’hydrogène ainsi préparé dans un tube de Pliicker, 
l’excitation électrique portera presque toujours les molécules H2 
de l’état fondamental du parahydrogène à un autre état à du para 
hydrogène à cause de la difficulté des transitions para -> ortho; 
l’on obtiendra donc d’abord uniquement les raies du parahydro 
gène, celles de l’orthohydrogène qui normalement sont trois fois 
plus intense étant absentes. Peu à peu cependant, ces raies appa 
raîtront quand des molécules H2 ayant subi une transition 
para—v ortho seront en état do les émettre.

La difficulté du passage para -> ortho et inversement a pour effet 
que les équilibres thermodynamiques ne peuvent s’établir rapi 
dement qu’entre molécules H2 à l’état para d’une part eL entre 
molécules II2 à l’état ortho d’autre part. Il en résulte que dans les 
mesures faites rapidement à pas très basse température (mesures 
de chaleurs spécifiques de Dennison par exemple), l’hydrogène 
moléculaire ne se comporte pas comme un gaz unique, mais 
plutôt comme deux gaz différents mélangés dans la proportion 
de i à 3. Ceci explique bien les anomalies qui avaient été constatées 
dans les mesures de chaleur spécifique pour les molécules II2.

Tout comme le parhélium et l’orthohélium ne sont pas réel 
lement des éléments distincts, mais simplement deux catégories 
d’états quantifiés du même atome He, de même le parahydrogène 
et l’orlhohydrogène ne sont pas des corps distincts, mais simple 
ment deux catégories de niveaux quantifiés de la même molé 
cule Ho. Il en est tout différemment de l’hydrogène lourd ou 
deutérium D dont le noyau (ou deuton) a une masse égale à 2, 
mais une charge unité, ce qui le rend isotope de l’hydrogène 
ordinaire. Le deutérium est vraiment un élément chimique diffé 
rent de l’hydrogène.

FIN.



TABLE DES MATIERES

Pr é f a c e

CHAPITRE I.

Ra ppe l  d e r é s u l t a t s  c l a s s iq u e s  d e l a  mé c a n iq u e  r a t io n n e l l e .

1. La dynamique classique des systèmes de points materiels............................ i
2. Théorèmes de Kœnig.................................................................................................... 7
3. Principe d’action stationnaire d’Hamilton. Equation de» Lagrange............  9
4. Equations d’Hamilton. Principe de moindre action de Maupertuis..........  12
5. Théorie de Jacobi. Analogie optique...................................................................... 17
0. Extension de l'analogie optique au cas où il existe des liaisons................ 24

CHAPITRE II.

La  mé c a n iq u e o n d u l a t o ir e .

1. Passage de la Mécanique classique à la Mécanique ondulatoire.................. 3i
2. Equation fondamentale de la Mécanique ondulatoire....................................... 32
3. Procédé automatique pour former l’équation d’ondes. Cas des corpus 

cules indépendants....................................................................................................... 36
i. L’interprétation physique de la nouvelle Mécanique......................................
5. Principe de localisation (ou des interférences).................................................. 41 2 3 4 5
6. Principe de décomposition spectrale (ou principe de Born )......................... 4t
7. Les matrices de la Mécanique ondulatoire........................................................... 5i

CHAPITRE III.

Pr in c ipe s  g é n é r a u x  d e l a  mé c a n iq u e o n d u l a t o ir e  d e s  s y s t è me s . 
In t é g r a l e s pr e miè r e s  e t  t h é o r è me s  d e  c o n s e r v a t io n .

1. Enoncé général des principes de la Mécanique ondulatoire.......................... 5~
2. Intégrales premières (ou constantes du mouvement)....................................... 61
3. Exemples d’intégrales premières. Théorèmes de conservation..................... 63
4. Autre définition des intégrales premières............................................................. 66
5. Intégrales premières et déplacements d’ensemble du système..................... 70



222 TABLE DES MATIÈRES.

CHAPITRE IV.

La  t h é o r ie  d u  c e n t r e  d e g r a y it é  e n  mé c a n iq u e  o n d u l a t o ir e .
P;i«es.

1. Définition du centre de gravité................................................................................. 7-3
2. Tlicorème de Kœnig relatif à l’énergie..................................................................  76
3- Exemple simple.............................................................................................................. 81
4. Théorème de Kœnig relatif au moment d’impulsion.................  84
5. Point de vue- des valeurs moyennes....................................................................... 85
G. Séparation du mouvement du centre de gravité et du mouvement autour

du centre de gravité................................................................................................. 87
7. Mouvement d’un système de deux corpuscules par rapport h des axes de

référence de directions fixes liés à un des corpuscules du système.... 92

CHAPITRE V.

Ex e mpl e s  d e pr o b l è me s  e n  mé c a n iq u e  o n d u l a t o ir e  d e s  s y s t è me s .

1. Choc d’un corpuscule contre un rotateur (Fermi)............................................ 99
2. Nécessité d’employer l’espace de configuration.................................................. 106
3. Les trajectoires visibles de particules dans les chambres de Wilson........  108

CHAPITRE VI.

Ape r ç u  s u r  l e s  mé t h o d e s  d e pe r t u r b a t io n  e n  mé c a n iq u e o n d u l a t o ir e .

1. Généralités........................................................................................................................ 117
2. La méthode de perturbations de Born-Schrodinger............ ............................ 11S
3- Méthode de variation des constantes..................................................................... 122
4. Cas des valeurs propres multiples........................................................................... 120

CHAPITRE VIL

Ét u d e  d e s  s y s t è me s  c o n t e n a n t  d e s pa r t ic u l e s  d e n a t u r e  id e n t iq u e .
Ca s  d e s  pa r t ic u l e s  d é n u é e s  d e s pin .

1. Généralités........................................   i3i

2. Cas d’un système de deux particules de même nature sans interactions.. i3i
3. Système formé de deux particules de même nature interagissantes..........  136
4. Système contenant un nombre quelconque N de particules identiques... 141 2
5. Théorème fondamental. Démonstration et conséquences............................... i5o

CHAPITRE VIII.

Ét u d e d e s  s y s t è me s  c o n t e n a n t  d e s  pa r t ic u l e s  d e  mê me n a t u r e .
Ca s  d e s  pa r t ic u l e s  d o u é e s  d e  s pin .

1. Introduction du spin.................................................................................................... i55
2. Représentation du spin en Mécanique ondulatoire des systèmes................ 156
3- Cas particulier des électrons. Principe d’exclusion de Pauli........................ 162



TABLE DES MATIÈRES. 223

Pages.

4. Application du principe d’exclusion à un gaz d’électrons.............................. 168
5. Représentation approchée des états de spin pour un système de deux

électrons.......................................................................................................................  172
6. Théorie du spectre de l’hélium (Heisenberg)...................................................... 177

CHAPITRE IX.
*

Appl ic a t io n s  e t  c o mpl é me n t s .

1. La mécanique ondulatoire et la théorie de la valence homopolaire...........  187
2. Théorie de la molécule d’hydrogène (Heitler et London)............................. 190
3. L’intervention du spin dans la classification des états symétriques et

antisymétriques.......................................................................................................... 199
4. Interactions apparentes ducs à l’exclusion de Pauli........................................ 200
ô. Le spin des noyaux d’atomes..................................................................................... 210
6. Application aux spectres de bandes....................................................................... 210
7. L’orthohydrogène et le parahydrogène................................................................... 218

Ta b l e d e s ma t iè r e s .................................................................................................................... 221

FIN DE LA TABLE DES MATIÈRES



PARIS. - IMPRIMERIE GAUTIIIER-VILLARS 

Quai des Grands-Augustins. 55.

122326

Dépôt légal imprimeur ig49. 11" 520. 

Dépôt légal éditeur r949? n° 259. 
Achevé d’imprimer le 10 octobre 1 g49•


