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PREFACE

La question de Femploi des ondes ¢lectromagnéliques Lrés courtes,
ayant une longuenr d’onde de l'ordre du décimetre, est aujourd’hui
tont a fait & Pordre du jour. L'une des circonstances ui rendent ces
ondes particulicrement intéressantes pour la radiotechnique est Ia
possibilité de les guider ou de les diviger a 'aide de dispositifs tels que
guides, cornels ou miroirs permetlant d’obtenir des faisceanx dirigés
analognes a des faisceaux lumineux. Comme il est bien connu, de sem-
blables dispositifs doivent avoir des dimensions supdéricures a la lou-
guenr donde : tandis que pour les ondes ayant des longueurs d’onde de
"'ordre de Phectométre ou méme du metre, on serait obligé d’employer
des appareils ayant des dimensions trop considéreables, des appareils
d'un encombrement trés acceptable suffiront pour les ondes dont la
longuenr d'onde est de Uordre du décimeétre. Les problémes relatifs a la
propagation des ondes électromagnéliques dans des luyaux ou cornets,
ainsi que la détermination des ondes ¢électromagnéliques stationnaires
dont des enceintes a parois mdétalliques peuvent ére le sicge, pré-
sentent done aujourd’hui nn grand intérét tant au point de vae pratique
qu’au pomt de vae théorique.

Il est curteux de remarquer que des problemes de ce type avaient déja
attird les chercheurs aux euvirons de 1goo et 1l est souvent utile actuel-
lement de se reporter a des Mémoires éerils i cetle époque el qui avaient
été un peu oublids depuis. La raison en est la suivante : au début de
I'¢tude expérimentale des ondes électromagnétiques par Hertz et ses
continualeurs, on avail surtout employé des ondes produites par des
oscillateurs de petites dimensions ¢t possédant par suite des longueurs
d’onde de T'ordre du meétre ou du décimetre. L’atiention s'¢lait donce

portée tout naturellement sur les propriéiés des ondes de cette calégorie.
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Mais le développement ultéricur de la Radiotélégraphie s'est effectue,
on le sait, dans le sens de 'ecmploi de plus en plus exclusif d'ondes de
grandes longueurs d’onde dépassant souvent de beaucoup le kilometre
pour lesquelles les problemes de guidage ne présentent plus aucun
intérét pratique; on avait donc presque complétement perdu de vue ces
problémes. Depuis une vingtaine d’années, par centre, la technique
radiotélégraphique s’est orientée a nouveau vers Pemploi des ondes
courles et les longueurs d’onde de Pordre de Uhectométre on du métre
sont celles qu’on utilise le plus fréquemment aujourd’hui.

Dans ces derniéres années, continuant a descendre Uéchelle des lon-
gueurs d’onde, Pattontion des radiodlectriciens s’est portée sur les ondes
dont la longucur d’onde est de I'ordre du décimetre, et de nombreux
travaux ont ¢té consacrés non seulement aux moyens de produire et de
recevoir de telles ondes, mais aussi a 'élude des procédés permetiant de
diriger leur propagation.

Mon attention ayant été récemment attirée sur ces problemes de pro-
pagation guidée, j'ai étudié les principaux travaux qui y ontl ¢Lé con-
sacrés dans ces derniéres années, notamment les beaux Mémaoires publicés
en I'rance par MM. Clavier et Léon Brillouin.

(Uest un résumé de ces travaux que je présente dans ce livee. Jen'y
prétends nullement a Poriginalité car je me suis simplement proposé de
donner une vue d’ensemble de la question : tout au plus, ai-je sur
quelques points précisé certaines démonslrations on cerlaines idées.
Mais Jai Pespotir que, méme sous cette forme modeste, cet Ouvrage
pourra rendre quelques services aux physiciens et aux radioc¢leciriciens
qui voudront aborder l'examen de problemes dont Uimpaortance et
I'intérét sont maintenant trés considérables tant au point de vuoe

sclentifique qu'au pomt de vue technique.
que q I 1

Octobre 1940.
Lovis pE BROGLILE,




PREFACE

DE LA SECONDE EDITION

Quand la premiére édition de cel Quvrage a é1é publiée en 1941, Ia
techaique des ondes ultra-courtes était déja tees développée aux Etats-
Unis, mais en France elle n’avait pas encore fait 'objet de beaucoup de
travaux ct les condilions 00 nous nous lrouvions alors placés ne per-
mettaient d’atlleurs que des recherches clandestines toul au moins dans
le domaine expérimental. Depuis lors, Uélude des llprl‘fréqllenccs s’esl
beaucoup développée dans nolre pays, nolamment dans les laboratoires
du Centre national d'FErudes des Télécommunications (C.NUELTL) et
dans ceux de certaines sociéiés industriclles. La publication du présent
Ouvrage, qui apportait une vue d'ensemble sur la théorie des guides
d’ondes et sur des questions voisines alors peu connues chez nous, a pu
rendre quelques services aux radiodlectriciens qui travaillaient dans ce
domaine.

Aujourd’hut, Ia premiére ¢dition étant épuisée, nous en donnons une
deaxiéme édition. Mais, absorbé par d’aulres occupations, nous n'avons
pas pu voir en détail Fensemble des innombrables travaux qui ont paru
aI'éranger sur les sujets traités dans ce livre. Aussi nous sommes-nous
borné, apres avoir rectifié ou amélioré divers passage de la rédaction
primitive, & donner des indications bibliographiques sur quelques
teavaux parus en [‘rance dans ces derniéres anndées, ce qui permelira
an lecteur de se renseigner davantage ot de compléter sur divers points

les dévvlopp«-lm-nls contenus dans le lexte.

Sceptembre 1949.
Louis b BROGLII,




PROBLEMES DE PROPAGATIONS GUIDEES

DES

ONDES ELECTROMAGNETIQUES

CHAPITRE 1.

GENERALITES SUR LES EQUATIONS DE MANWELL.

1. Les équations de Maxwell en coordonnées rectangulaires carté-
siennes. -—— Le¢ champ éleciromagnétique est, on le sait, caractéris¢ par

> >
les deux vecteurs E et H, champ électrique et champ magnétique. et par

> >
les deux autres vecteurs 1) et B, induction électrique et induction magné-
tique, dont les définitions sont bien connues. D’autre part, la présence
et le mouvement de I'électricité sont caractérisés par la densité d’élec-

. ., ) . >
tricité p et la densité de courant électrique 7.

Ceci rappelé, nous écrirons les équations de Maxwell qui lient ces
dilférentes grandeurs sous la forme

i
1 Jb >
— = = =T l.
(1) ply rot I,
> >
T dD > 1)
(2) p W :I‘Otll—/ﬂtz,
>
(3) divB = o,
>
(4) divD = 4=zo.

. . . . . > =
Ces équations sont ¢crites en exprimant les grandeurs électriques E et D

L. DE BROGLIE,




2 CHAPITRE 1.
en unités électrostatiques ainsi que les charges et les courants tandis

que les grandeurs magnétiques ﬁ et ﬁ sont exprimdées en unilés électro-
magnétiques. La constante ¢ est le rapport de 'unité électromagnétique
de charge électrique a I'unité électrostatique.

Les équations (1) et (3) constituent le premier groupe des é¢quations
de Maxwell (groupe sans second membre), les équations (2) et (4)
constituent le deuxiéme groupe (groupe avec sccond membre). Les

>
¢quations (1)-(4) sont compatibles parce que Uon a entre 5 et i, la
q A f P q p
relation

ey

>
+ divi=o0
7

(%)
exprimant la conservation de I’électricité.

Dans ce qui suit, nous admelttrons toujours que le milieu ou nous
étudions les phénoménes électromagnétiques posséde une constante
diélectrique ¢ et une perméabilité magnétique p telles que l'on ait

> > > >
(6) D=c:L, Ii:f*”:

e el ¢ étant des conslanles caracléristiques de ce milicu qui esl ainsi
supposé homogéne et isotrope au point de vue électromagnétique. En
particulier, nous considérerons souvent le cas du vide ou ¢ == p = 1.

Trés fréquemment, nous supposerons que le milicu considéré ne con-

>
tient ni charges, ni courants (1), ce gui nous conduira a poser p = ¢ == o.
s ) f p

De plus, nous envisagerons habituellement des phénoménes électro-
magnéliques harmoniques par rapport au temps, c’est-a-dire o loutes

. sin .
les grandeurs de champ varient comme o ket (ou en notation complexe
cos
. . ke
comme e“ef), donc avee une fréquence v = i‘:r

En résumé, nous aurons habituellement & utiliser les équations (1)-(4)
sous la forme suivante :

o, . > >
(1 thuH = —rotk,
i >
2" ik:X = rotH,
>
(3" divll = o,
>
(4 divE = o.

(1) (Cest-d-dire qu’il est isolant et ne contient pas de charges.
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Comme on le vérifie facilement, les équations de Maxwell entrainent les
relations

> 2T > It

) g 1 021 [ 92

(7) Al = Vi e AH = Vi T )

ot A est le Laplacien -~ —}——’); 2 Les équations (7) expriment
e A2 )z2 .

que les champs éleclromagnétiques se propagent dans le milicu carac-
Lérisé par les constantes ¢ et 1 avec la vitesse V et en particulier avec
la vitesse ¢ dans le vide. C’est la, on le sait, la base de la théorie élec-
tromagnétigue de la lumiére.

Pour les phénomeénes harmoniques dans le temps, les équations (7)

prenvent la forme

> > > >
(8) AL + 2K = o, AH - A2H =o.

En particulicr, on trouve aisémenlL comme solulions des équa-
tions (1')-(4") et des équations (8) qui en dérivent « les ondes planes

monochromatiques » définies par les formules

> > w5 ey 2 -
‘ | D= DPO " [2:\; <t— w) -+ v}
08 A% !
= o> sin R e A
' H ””cos [7,~/</—~—~—T——>7r*],

N L ke . . .
ouvestla fréquence <égnle & %_) el ol a, 3, v sont les cosinus directeurs

()

de ladirection de propagation normale aux plans d’onde et peuvent étre
>
considérés commeles composantes d’un vecteur unité n définissant cette

. . _* _+ .
direction de propagation. Les vecteurs amplitudes E, ¢t H, sont liés par
les relations

o T e e
(10) . Ia(,> =0, n.HU) =0, VirHo= [n.yeEq].

Les champs sonl transverseaux, ¢’est-a-dire tous deux perpendiculaires
a la direction de propagation; ils sont perpendiculaires entre eux el,
méme, dans le vide ils sont, avec les unités choisies, égaux en grandeur.

Natucellement les ondes planes monochromatiques sont des solutions
d'un type trés particulier et il existe une infinité d’autres types de
solutions. Néanmoins, il résulte des théorémes de Fourier que toutes les
solutions sans singularité des équations (17)-(4') peuvent étre représentées
comme une « superposition » d’un nombre fini ou infini d’ondes planes
monochromatiques.
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£

Nous allons faire maintenant unc trés importante remarque (ui nous
servira souvent dans la suite. Reportons-nons aux é¢quations {(1')-(4') et
posons-y

J—

. N e = —r
(11) = yek H= yul, K=k e

Nous pourrons écrire les équations (1')-(4') sous la forme

> >
(1") IFH =~ rot £,
. e YL
(2") L= rotll’,
3") di\’l_f’:o,

-
) divE = o.

Ces équations ont la méme forme qu’auraient dans le vide les ¢quations
de Maxwell pour un champ électromagnétique harmonique de fré-

k'e . . . .
quence —- D’oni celte conclusion dont nous aurons souvent a faire

usage :

Sé, pour une certaine enceinte vide de matiere, on a trouvé une
certaine solution harmonique des équations de Mazwell correspon-
dant & une ceriaine valeur de k, on obtiendra une solution valable
pour la méme enceinte remplie d’une matiere de constante diélec-
trique ¢ et de perméabilité magnétique p.en remplacant (1) dans la

— > = >
premiere solution k par ky/ep, B parye E et H par \/p.I[.

Grace a ce résultal, nous pourrons, quand nous aurons résolu un
probléme de vibrations propres ou de propagation guidée pour une cer-
taine enceinte vide de matiére, trouver automatiquement et sans calculs
nouveaux les solutions valables pour la méme enceinte quand elle est
remplic d’'une substance pour laquelle ¢ et p sont différents de 1.

Pour terminer ce paragraphe, nous rappellcrons la définition de la
densité d’énergie électromagnétique et du vecteur de Poynting.

Dans un espace ou régne un champ ¢lectromagnétique, chaque élé-
ment » dr de charge électrique est soumis a une force ¢lectrique égale
a sEdr et a une force électromagnétique proportionnelle au produit
vectoriel de la vitesse locale du déplacement de Iélectricité par le
champ magnélique en ce poinl. Cetle derniére force étant perpendi-
culaire & la vitesse ne travaille pas, ct le travail accompli par le champ

(') Toutefois ce changement ne doit pas étre fait dans I'exponcutielle effct.
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¢lectromagnétique sur la matiére électrisée pendantle temps dt se réduit &

(12) A% = (/tf (?T) sdv = r//f <—l>:?> .

n supposant le champ électromagnétique nul a I'infini et en rem-
pp p

>
plagant £ par son expression Lirée de (2), puis tenant comple de (1), on
tlrouve pour ce lravail élémentaire

ot > > D
(13) G = /le I'],< IHLU—’DZ>] =

. N -
/ > gD > &

- (/l <[{.’i]«>-c<]l.mtE>

4= L 7 .

> =

S f > oh > B
1= E + |\ H.— .

| ot It

Si I'on admet la validité des relations (6) entre champs etinductions,
il vient

d~

(14) o /’.:4{)2‘/ Tu’:.

A #/ (i 1.1>) (n B) 0 [ RkE24 w2
ot

La quantité

BB pH2 (E0)- (15

(15) W=

peut donc étre considérée comme la densité de I'énergie ¢lectromagné-
tique dans le champ.

St maintenant on considére une région de l'espace du volume fini ¥
limitée par une surface fermdée S sar laquelle le champ électromagnétique
ne s"annnle pas, on trouve
A o AED) VL
116) J L e =

-

7l

[ = - [ 11, s,
§ A7

on | E < I[J,, désigne la composante suivant la normale 8 S du produit

e -
vectoriel de E par . I’on voit alors que le vecleur
> ¢ [ >
(17) S = _[li >‘:n}
(=

doit étre interprété comme étant le flux de I'énergie électromagnétique
par unité de surface : ¢’est le vecteur radiant de Poynting.




6 CHAPITRE 1.

2. Représentation complexe des grandeurs électromagnétiques. —
Pour faciliter les calculs en Optique et en Electricité, il est trés souvent
commode de remplacer les grandeurs réelles par les grandeurs com-
plexes dont elles sont la partie réelle : c’est la un artifice bien connu
dont le succés provient des propriélés analytiques trés simples de la
fonction exponentielle.

Considérons par exemple une onde éleciromagnétique plane et mono-
chromatique et soit F, une des composantes de son champ ¢lectro-
magnétique. Comme nous avons vu plus haul, nous pouvons poser
-+

T

. . 1 ' -

. - AL T+ SV +— V3

(18) E,="'E})]cos [2m<t~ -—~'——‘—>
¢

ou en prenant I'axe des 5 dans la direction de propagation

(19) Ee=[E) cos{h(ct —z)-i 2|,

ou | E}| est une conslante réelle ainsi que o. L'artifice de caleul indiqué
plus haut consiste a remplacer la grandeur réelle (1) par la grandeur
complexe

(20) = B0 eikwi—s  avee Bl= £ gis.

E} estPamplitude complexe qui contient a la fois Pamplitude réelle | E! |
etla constante de phase ¢. La fonction & (ct — 5) qui figure dans 'expo-
sant de I'exponentielle représente la propagation de 'onde dans le sens
positif de I'axe des z. Si dans (20), on remplace s par — 3, on obtient
I'expression complexe d’une onde de méme fréquence et de méme
amplitude complexe sc propageant dans le sens négatil de U'axe des .
En saperposant deux telles ondes se propageant en sens conlraire, on

. . . . . . sin ”
obtiendra des ondes stationnaires ou E, sera proportionnelle a ‘ kseilet,
[MIE}

Tant qu’on n’emploie que des opérations ou des équations linéaires,
Pusage de la représentation complexe des champs ¢lectromagnéliques
ne peut conduire 4 aucune erreur et elle est trés commode. Mais quand
on considére des expressions non lindaires, par exemple des cxpres-

sions (15) et (17) de W et de ;7 I'emploi de la représeniation complexe
ne conduit pas aux mémes résultats que celui de la représentation réelle
et I'on admet toujours qu’il faut alors en revenir a la représentation
réelle. Néanmoins quand il s’agit (ce qui est le cas dans cel exposé) des
ondes électromagnétiques de haute fréquence, Pemploi de la représen-
tation complexe des champs reste trés utile pour le calcul rapide des
valeurs moyennes des expressions quadratiques telles que (15) et (17).
C’est ce que nous allons montrer.
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Soit un champ électromagnétique harmonique. Nous pouvons loujours
avec la représentation réelle des champs, le meltre sous la forme (')

>
) E = I’,f,(.r. ¥, z)cos(ket - ),
(21) -
(x ¥, z)eos( ket -— o),
>
ou E, et lI sont des fonctions vectorielles réelles de @, y, 5. St nous

calculons W el S en substituant les formes (21) dans les formules (15)
et (17), nous trouvons

o kTR eos2(fet -+ 5 ) u EH 2 eos2 (et + ¢)
‘ W= Ry ,
(22) f

( '§: ¢ [)lnl |110”m52(l¢z+u)

..\

Nous pouvons au contraire tenter d’employer la représentation complexe
des champs en remplacant (21) par

T \ =
E=Ly(x, v, z)elhd, 1

(=] o, 1= [T ot

= Iy ( ) giket
= Z, ¥V, 5)etrr
(23) I

Remplacons alors les formules (15) et (17) par

, e AN
() W= [AER+p P, S= -I——([L*\/\ ||,
) e . ) -
ot Pastérisque indique la quantité complexe conjuguée. Voici pour
quelle raison nous adoptons ces formules (24) : pour les ondes électro-
magnétiques de feéquences élevées, seule la grandeur moyenne dans le

> )
temps des grandeurs W et S est réellement observable; or si 'on calcule
ces valeurs moyennes d’aprés (22), ont trouve

]

et ces valeurs sonl précisément celles que 'on obtient en substituant (23)
dans (24).
Nous voyons ainsi que si nous employons la représentation complexe

(25) W= B b 2], S = < |lE,

des champs, les formules (24) nous fourniront directement les valeurs

. \ Z .
moyennes, seules intéressantes, des grandeurs W et S; c’est pourquoi

(') o peut ¢tre une constante réelle ou une fonction réelle de x, y, 5.
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ces formules (24) sont aujourd’hui couramment employces par certains
auteurs.

[lestintéressant de remarquer ici que les théories quantiques les plus
récentes du champ électromagnétique conduisent a considérer la repre-
sentation complexe des champs comme étant beaucoup plus qu’un
artifice mathématique et comme ayant une signification physique pro-
fonde. Les formules du type (24) jouent dans ces théories un role
essentiel.

3. Les équations de Maxwell en coordonnées curvilignes rectan-
gulaires. -— Nous allons avoir constamment a employer, dans la suite,
des coordonnées curvilignes, mais dans tous les cas étudiés, ce scront
toujours des coordonnées curvilignes rectangulaires. 1l est done néces-
saire que nous sachions écrire les équations de Maxwell avec de telles
coordonndées.

En coordonnées curvilignes rectangulaires, le carré d’un élément de
longueur peut s’¢erire sous la forme

(26) ds?= e} dz?+ e3 dxi + e} dxi.
Zy, X2, x, élant les trois coordonnées curvilignes: ey. ¢4, ¢, trois fonc-
tions de zy, 24, 2.

En considérant une petite surface située dans I'un des plans de coor-
données et en lui appliquant le théoréme de Stokes, on démontre aisé-
ment que la relation vectorielle

o ES
(27) A=roth

peut se traduire, avec les coordonnées curvilignes envisagées, par les
relations ¢n composantes

A= ! <'—()—€;;)\;;”'L€g:\-_->,

esey \ Jx, dr.,
[ d 7] 3
28) Ag= —- [ — L ea AL ).
(%) Az eye ((}x;; i dz, & )

1 0 J A
\'\_: —_— — e, Aa— - e A -
o ¢ e <()th T r).r._,’“ :

D'autre part, en appliquant a un parallélépipéde infiniment pett
construit sur trois é¢léments dz, dz, dx, concourants le théoréme de

Green, on voit de méme que 'on doit poser ici

Nive I J Jd J
(29) divA = e I:;)——L] e,eq Ay —- Iz erey N+ o ¢ |r~;.\::]-
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Dés lors, les équations de Maxwell s’écriront en coordonnées curvilignes

rectangulaires

> JH, J I ¥
- — Oy — = —— gy Ly —— ey tua,
¢ 7 dt . s dua, 2
B Jl, J o
ey ey = — ¢, 1, — 20 1B
SOt g T g et g il
u, JH, 7 I J \
S e e = -, K — e
: e Jt des ! o, <
: JL, J 7
ey mem = —— e - e 1
- o fae 72 . erdh day eall;
v ' b M D)
e g = g e e e B
z 710 7 J
Terer D= 2 e,y e 1
« “re At ) ¢ 1l ()x._,cl '
. )
’ iﬂ—leze;;l[,- [_):72(?;;1111[._,—‘—Ix::e.egl[;;:o;
) 17 7]
Ceves Ceser Ky - e es By = o,
,}.mge_.l |-+—_dw2 erey 1, ’}x:‘(lf_l,, O

Nous avons généralement a appliquer ces équations a des champs
harmoniques par rapport au lemps, c’est-a-dire a les dcrire en

1 d .
remplaqnnl, oo bar ih.

k. Potentiels et vecteurs de Hertz. -—— On sait que l'on peut faire

dériver les champs électromagnétiques de deux potentiels, I'un K A
caractére vectoriel, le potentiel vecteur, 'autre V a caractére scalaire,
le potentiel scalaire. Les champs se calculent a partir de ces potentiels
par les relations (en supposant ¢ = p =1)

>
e e kS > 10A

o = rot . D= oradV — - 2.

(31) H = rotA, 1 gradV o It

Les équations de Maxwell sans second membre se trouvent automati-
quement vérifides par ces définitions. Quant aux équations avec second
membre, elles fournissent, quand on y introduit (31). des relations

sermettant de caleuler A et V a partir de la distribution et du mouve-
I p

>
ment de Ué¢lectricilé représentés par les grandeurs o et ¢. Voict ces
relations :

12V . , 1 Jd .71 JV

N e é()[<dn,\+;7ﬁ>,
(32 -

AT : 1 JdV

— — AA = = — 0o S o -

prilTn A i=p grad <d|vA 5 >
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Or, si l'on admet que les champs ont seuls le sens physique, les
potentiels n'étant que des intermédiaires de calcul, ceux-ci sont affectés
d’une assez large indétermination.

> >
En effet, si on suppose connus les champs E et Il et si A et V sont
des potentiels dont ces champs dérivent par les formules (31), on
obtiendra des potentiels tout aussi acceptables en posant

- > N
%) R=A+gaar, v=v_ '

¢ Jt’

ot F est une fonction dérivable quelconque de ays2. Cette indéter-
mination des potentiels permel de leur imposer une condition supplé-
mentaire. On choisit, depuis Lorentz, la condition suivante :

1 dV .
(34) - + divA = o.

qui donne aux équations (32) la forme simplifiée

>
AN =420t
&g T T T,

Y

@

<

I

- 1 .
(33) Ty - AV = {=¢,

On voit que les potentiels, s'ils satisfont a la condition (34) de

Lorentz, se propage dans le vide <p:i:o> avee la vitesse ¢. La
condition de Lorentz ne déterminc pas d’ailleurs complétement les
potenticls qui restent encore arbitraires dans unc assez large mesure.

Lorsqu’il n’y a, dans le domaine considéré, ni courant, ni charges,
le second membre disparait dans les équations du sccond groupe de
Maxwell, ce qui fait disparaitre la dissyméltrie entre les deux groupes,
et 'on peut alors employer a la place des potenticls des antipotentiels
que nous allons maintenant détinir.

Placons-nous encore dans le cas du vide (¢ =—— 2 == 1). Nous satisferons
aux équations du second groupe de Maxwell, supposées dépourvaes de

-7
second membre, en introduisant un antipotentiel-vecteur A' et un

—
antipotentiel-scalaire V' et en posant
P p

>
> -> > > 4
(36) E =rotA’, H = grad V' ! ’3[)\’ .
L/ 4

. L e e s . .y
Le changement de signe dans la définition de H provient de la différence

. Jd
de signe entre les lermes ¢n 5 dans les denx groupes de Maxwell.
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51 Von admet entre les antipotentiels la relation de Lorentx

. 1 dV’ .7,
(‘)’/) E—(}T—Fdl\t\._O;

on voit, en substituant (36) dans le premier groupe de Maxwell, que
I'on a

>
J2 A’

PA A=
prE A/ 0,

AV =0,

(38)

a
Sl =

c’est-a-dire que les antipotentiels se propagent avec la vitesse c.
Il nous est maintenant utile de définir les vecteurs de Hertz. Consi-
> ’
dérons les potentiels A et V satisfaisant aux ¢quations (34) et (35) et
définissons le vecteur de Hertz électrique (ou vecteur de Hertz tout court)
> b
II par les formnules

>
> 1 J

- . }
(39) A== V =—divll.

grace auxquelles la relation (34) est satisfaite. Il est visible que dans le

vide
>

. 1 2 >
4 - — AIl,
(40) ¢t Jdie ’

‘> . o
de sorte que Il s’y propage avec la vitesse ¢. Les formules (31) nous
donnent
> >
> r dll > . L J2Il >

(41) H = rot - :,ﬁ’ I = grad div Il — el rot rotll,

EN
relations qui expriment les champs a 'aide du vecteur II. On sail que
q { p q

Pemploi du vecteur ﬁ est trés utlile pour le calcul du rayonnement
d’une antenne rectiligne et plus généralement pour 'étude des champs
électromagnéiiques ou 'une des coordonnées est rectiligne. Nous en
verrons plus tard des exemples,

De méme qu’aux potentiels on peut faire correspondre le vecteur de

Hertz électrique, aux antipotentiels on fera correspondre un vecteur de
) P
) >
Hertz magnétique Il en posant

'

=v

>
AL T

. }r
(42) A= o7

Q-

ce qui satisfait & la relation de Lorentz (37). D’aprés (38) on voit
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.
que II' se propage dans le vide avec la vitesse ¢, c'est-a-dire que

(43) - = —All'=o0.

¢ Jt*

Enfin, d’aprés (36), les champs seront défiuis & partir du vecteur 1w
par les formules

>
>, -3 ) >,
TR H'=— grad divi’ = ’/”_: = rotrotll.

> e
(44) 1 = rot ~ ° !
C

Les équations de propagation (4o0) et (43) étant de méme forme,
chaque fois qu’on aura trouvé une solution de 'une de ces équations,

-
cette solution pourra servir dans le vide de vecteur Il ou de vecteur 11

>
Si on 'emploie comme vecteur II, les formules (41) nous fourniront
-

A
un champ électromagnétique E, H, solution des équations de Maxwell :

on dira que cette solution est du type éleclrique. Si au contraire on
—_

emploie la méme solution de I'équation (40)-(43) comme vecteur 11,
on en déduira par (44) nn champ électromagnétique Fj’, i solution des
équations de Maxwell et cette solution sera dite du type magnétique.
Ces notions reviendront conslamment dans la suite.

Nous avons, dans ce paragraphe, défini les potenticls et les vecteurs
de Hertz dans le cas da vide, c¢’est-dire pour ¢ = p. == 1, mais, d'apreés
un résultat démontré au paragraphe I, il nous sera possible, dans tous
les cas que nous aurons & étudier, de déduire les solutions valables
pour &, u =1 des solutions obtenues pour le cas du vide.

Il est facile d'écrirve les formules précédentes sous une forme tenso-
rielle. On pose

~ )
\]:Z o, M
i
avec
1, = g, I, = U, 1L, =11-. o= —1,. I =— 1. 1 = —11,
A . 2y
et 'on trouve
>
> > 1 Jdll . . AY e
A =—rotll'+ - (——, V= —divil. b 4+ divA =0,
¢ it o ot
puis
. >
ke e T g2 v ol
E = grad divil — — Sorot Sy
E c? ot ¢ Jt
Al 1
> 1 ol > 1 g2
l{ = I s = € i ol
rot - o grad divIl' - Pl vl

équations qui résument les équations (39) a (44).
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5. Les fonctions U de Bromwich-Borgnis. — Nous aurons a utiliser
constamment une méthode de dérivation des champs qui a ¢té notam-
ment développée par M. Borgnis ('). Elle s’applique au cas ou les
coordonnées curvilignes rectangulaires cmployées sont telles que

2

i ]
. e . . -
1°lon ait e =13 2° le rapport - soit indépendant de la variable ;. Ces
hypothéses sont trés souvent vérifiées dans les problémes usuels.

Pour exposer la méthode, nous supposerons ¢ = p1 == 1 puisque nous
savons toujours ramener le cas g, p 21 au cas ¢ = p == 1. Les équations
de Maxwell s’écriront alors pour une onde harmonique avec I'hypo-

thése e, ==,

| 7 7
e dhesen ) = oy By — —— ey 19,
! iheseq ’}J_;‘(_, 3 r).l:;;(}' 2.
) Pl
7P DR | S L
e, e 1 ’)lev,“‘, T e, H,
o J
—iley y= - i = ——ey Iy
ke, H, ¥ o [ VEN
] J
ey o= — ;- oy Hyp s
i, ike, e= R PRERE
49)
il Wy= B,
x, o, ’
o} ()
ey o= —ec, . - — 1y,
ihes Today Feh oz, .
e.zrf;]hy‘f(~ ey H, L’,’g}[j;:().
Jay o oy ’
7} l" ‘ I) AR /) l .
| ’}J: Co gy - ‘)l: a1y ()[ Corluy =0

Nous allons tenter de trouver une solution que nous appellerons
solution du type électrique avec 11, == o en posant

( ) 7L 1 U I U
=AU ’— Ly = e — B, = Iy
o) s E S dai ’ E. ey day ()x.l’ " ey O, das
(46) ki JU il U
‘ = o, =4+ - —, Hy=— -~ = .
’ ey dxs e, Jdx,

Avec ces définitions, on constate que les équations (45) de Maxwell
sont satisfaites si U satisfait a I'équation du second ordre

a2 L I [ d e, U d ey JU ] U — o

dry ey drs  dxy ey Dy

(47)

dri e, ey

(') Voir bibliographie [G1. Le principe de cette méthode est da 4 M. Bromwich.
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De méme, si l'on cherche une solution avec E; = o, on pesera

ke ! e U’
gE":o, w, = kU v, = R
) T e das ' €x Ja,
(48 . . U
A ¥ (A W,-_ - 2= = L Y
?\ n K dxi ? B e ()JM(}.,CQ’ It ey dxydas

en intervertissant dans (46) le role du champ électrique et du champ.
magnélique. On constaie que (48) est bien une solution de (43) si U
est solution de 'équation du second ordre (47) et Uon aura alors obtenu
une solution du type magnétique.

Bref, chaque fois que I'on aura trouvé une intégrale de Péquation (47)
on obtiendra par les équations (46) une solution du type électrique et
par (48) une solution du type magnélique.

Si Yon compare les équations (46) et (48) respectivement avec les
équations (41)et(44)du précédent paragraphe, on voit qu’clles présentent
ane parenté évidente si Pon 1dentitie la fonction U avec la composante 11,
d’un vecteur de Hertz électrique et la fonction U avee la composante 1L
d’un vecteur de Hertz magnétique, ces deux vecleurs de Hertz étant
supposés n’avoir comme composante non nulle que leur composante
d’indice 1. Cependant 'identification des fonctions U de Bromwich-
Borgnis avec la composante d’indice 1 d’un vecteur de leriz, dont les
deux autres composantes sont nulles, doit dans certains cas éure
effectuée avec précaution comme nous le montrerons & propos des
coordonnées sphériques.



CHAPITRE 11.

PROPAGATION DES ONDES DANS LES GUIDES KLECTRIQUES.

1. Définition des guides électriques. — On désigne sous le nom de
guides électriques (ou souvent sous le nom assez mal choisi de
guides diélectriques) un tuyau rectiligne de section constante i
I'intérieur duquel se propage des ondes électromagnétiques. Le plus
souvent le guide sera limité par une paroi métallique dont nous
supposcrons pour linstant la conductibilité si élevée qu’on puisse sans
grande erreur la prendre infinie. Nous admettrons qu’alors le champ
électrique de l'onde qui se propage dans le guide doit en tout point de
la paroi éwe normal a cette paroi, sans quoi le champ électrique
produirait dans la paroi un courant infini, ce qui est physiquement
impossible. Nous avons la une condition aux limites pour le champ
électromagnétique, condition dont nous discuterons le sens d'une facon
plus approfondie au Chapitre IV.

[’éinde du champ éleciromagnétique en propagation dans le tube
pourra s¢ faire par la méthode de Bromwich-Borgnis exposée au para-
graphe précédent. On prendra Uaxe rectiligne du tube comme axe des =
qui jouera ainsi le role de la variable x; de Uexposé général; dans les
sections droites du tube, les points seront repérés a l'aide de deux
variables x, et 2, qn’on choisira de maniére qu’elles soient adaptées a
la forme de cette section droite. L’onde électromagnélique se propagera
le long du tube : comme on peut toujours représenter la phase d'une

ke 7]

>
onde plane en propagation par un facteur e ou k est le vecteur

de propagation dirigé suivant la direction de propagation et égal en
2

longueur :‘17—“(). longucur d’onde), on aura ici des champs électro-

magnétiques proportiennels a ¢“~** puisque le vecteur de propagation

se réduira évidemment a sa composante s.




R . A

R P heh T o Sk
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La fonction U de Bromwich-Borgnis dépendra donc de z par ce
facteur et Pon aura toujours
A% 718

(1) —_— = = = — k. U.
S Jay Js

En portant cect dans les équations (46) du paragraphe précédent, on

voit que, pour les ondes du Lype d¢lectrique en propagation dans un
guide a U'intérieur duquel e = p =1, on a

2, H, = I*Ez, Hy==H.=o.

e

(2)

Ces relations absolument générales montrent que les champs ¢lectrigue
et magnélique transversaux sont perpendiculaires.
De méme pour les ondes du type magnétique en propagation dans un
guide ol ¢ == p =1, on a, d’apres (48) du précédent paragraphe,
k k

(3) By=— 5, Ei=— k£nc_,. I = I, = o,

ce qui exprime aussi la perpendicularité des champs transversaux.,
Dans un guide rempli d'une matiére pour laquelle ¢ et p sont
différentes de 1, on obtient immédiatement a la place de (2) et de (3)

par application d’un résultat général obtenu au Chapitre 1,

L e ke .

(2") Hy=— = s, H, = 7 s, Hi=o0;
., TR . kw o, .

3 I, =-- i HY. 19, = — " H’, 19, = o.

Introduisons la notation

) 22 = k2 — kI,

[’équation de propagation (47) du Chapitre I pour U donne, compte

lenu de (1),

1 [ d e, JU Jd e r)U] o
i —+ 221

o) e s m— J = 0!
o, dxs ey day ’

eses | des ey das

telle est 'équation dont il nous faudra dans chaque cas particulier
chercher des solutions pour pouvoir en déduire les ondes du type
électrique et celles du type magnétique. Les solulions obtenues devront
satisfaire aux conditions aux limites imposées au champ électrique sur
les parois du tube et ceci ne permettra a la constante « que d’avoir
certaines valeurs particuliéres «, correspondant aux divers modes de
propagation possible de l'onde dans le guide. Nous sommes ici en
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/

présence d’un de ces problémes de valeurs propres qui se rencontrent
dans de nombreuses branches de la Physique et qui jouent, on le sait,
un role tout i faitessentiel, dans les théories quantiques contemporaines.

Ajoutons encore une remarque intéressante due a M. Léon Brillouin.
L’équation (5) montre que la constante o* a les dimensions de I'inverse
d’une surface; comme dans notre probléme la seule surface qui inter-
vienne est celle de la section droite du tube, on en déduit la loi de
similitude suivante :

8¢ pour un certain guide électrique dont la section droite a une
aire S, on a trouyé pour o une valeur possible (valeur propre) égale
a o, pour un autre guide géométriquement semblable auw premier
dont la section droite est S', on aura une valeur possible o, telle que

(6) 22§ = o} S,
2. Etude des guides & section rectangulaire. — Le cas particulier le

plus simple que nous ayons a étudicr est celui des guides a section
rectangulaire. Nous emploierons pour résoudre le probleme la méthode

Fig. 1.

du paragraphe 1 en remarquant que dans ce cas, comme dans tous ceux
qui scront examinés dans le présent Chapitre, la fonction U peul étre
immédiatement identifiée avec la composante z suivant axe du guide
d’un vecteur de Hertz, électrique ou magnétique suivant les cas.

Soit donc un guide dont la section droite est un rectangle de cotés a

L. DE BROGLIE. 2
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et b. Nous repérons les points de la seclion droite par des coordonnées
rectangulaires x et y.
Comime on a ict

= st = dar+ ofy2 4 32, e\ =¢Ci=¢y=1.
/ s 3

Iéquation (5) a la forme

(8) + 2 el =o0

et l'on trouve immédiatement un sysiéme complet de solutions en
posant

sin sin .
(9) U= la my elhrt—k:3]

Ccos cOs

(le dernier facteur représentant la propagation) sous la condition
(10) I2 4+ 2= 22,
De la forme (g) de U, on déduit les solutions suivantes pour le
champ électromagnétique :
Type électrique :

sin sin

1. = o? | & my. P, . =o0;
cos cos -
. . cos sin
(11) {F=— k-1 e my . P =
-— 81N cos ‘
R . sin cos roL
Ko= -ik.m lr Sy ", = =1,
: cos — sin ’ : /-
Type magnétique :
| sin sin i
H.= z? @ ey .= 0:
cos cos -
o . cos sin N R k
(12} F W=l ! . Az my . P, | DI ]
— sin cos - k.
\ sin cos , . A
Hy=—1ik,m lx SN Foe=—--H,
: cos -——sin 7 - k-
, ..
avec abréviation
(13) P = gilkei—izi,

Nous devons, maintenant, imposer a nos solutions les conditions aux

limites

g E:=LE,=o, pour ¥ =o0 et ¥ = b;
{14) T

{ By= L, =0, pour £ =0 el @ = .

H
%
»
I
<
£
&
!
3
&
|

¥
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Ces conditions nous obligent & choisir sin {z dans Uexpression de E,. et
sin my dans celle de E,. De plus, il faudra avoir

- n = nyw L
(19) = — m = —— (71 el ny entiers).
o o b ’

Finalement Uexpression des chawmps sera

Type électrique :

. . E . Nawm
. = %2 sin — & sin — . P H.=o0;
= « b
. . Lo = nmso . naw o Hem . T naw
(16) # Kp=--ik; —cos z sin — 1. 1’; H,= [k —sin— 2 cos — -
ot 17 Lo b « [
. LoMem . o Ny Lo = M. naw
Iy =--iks:—= sin — z cos—— 1.P; Hy=- ik Ccos rsin —— )
A} - b
- 0 « b - t « b
Type magnétique :
o , n =
15, = o; Hy, = a? cos Zeos —— 17,
\ 7 b
) . L Nam ma . e LR . Ny nazw
(17 Bp=- [k —=cos — z sin —— 1.1 W=+ ik:~—— sin &€ Cos ¥
e 0 « H - % @ b -
. LomE . Iw e ) LN mE L .
’ E,=—1ik <N — & cos y.P: H, =+ ik —= cos & sin —— 17,
P ot « bH : b b
avec la condition
R )
Y ni "3
(18) PEEy CR N e e A
? b?

On peut naturellemenl multiplier les solulions (16) et (17) par une
constante complexe G arbitraire dont la valeur dépendra des conditions
de I'excitation.

Nous avons supposé qu’a l'intéricur du guide on pouvail poser
g==p =1, c¢ (ui sera lrés sensiblement exact si le guide est rempli
d’air. St au contraire le guide était rempli d’une substance telle que ¢
el p. soient différents de 1, on devrait, dans les formules (16) et (17)

S > o — > ’
remplacer partout (V) & par fy/ep, E par /e E et H par y i H. Nous ne
prenons pas la peine d’écrire les formules ainsi oblenues. Chaque
valeur propre de « dépend de deux nombres enliers n, el n,. Pour
chaque couple de valeurs de ces nombres entiers, il y a une onde du
type électrique et une onde du type magnélique ou, comme nous dirons
plus briévement, une onde (E) el une onde (H) pour chaque valeur

(') Sauf, rappelons-fe, dans le facteur I’.

P



20 CHAPITRE 1.

de & : ces deux ondes correspondent au méme /-, ¢’est-a-dire a la méme

. 9T . . . .
longueur d’onde » — et la méme vitesse de propagation de la phase
A

(19)

Cependanl, si I’'un des deux nombres ny ou n, estnul, l'onde () n’existe
pas : en d’autres termes. les ondes (ny, 0) et (0. ny) sont uniquement
du type magnétlique.

Les formules précédentes permettent d’étudier en détails les diverses
sortes de propagations possibles dans le tube. M. Léon Brillouin a
montré que ces ondes peuvent étre représentées par des superpositions
convenables d'ondes planes. 1l a aussi montré que la vitesse de
propagation de l'énergie électromagnétique le long du tube a pour
valeur

~

(\‘).O) (‘:ff»—:—‘:—

roxs
5 A)

Nous reviendrons plus loin sur ce résultat dont nous donnerons une
démonstration générale pour tous les guides électriques.

La formule (18) nous montre que le guide ne peal pas transmettre
toutes les fréquences. 1l faut, en effet, que k. soit réel sans quoi la
propagation s’accompagnerait d’'un amortissement ct.l'onde s’évanouirait
progressivement. Il y a donc pour chaque type d'ondes caratérisé par 2
nombres entiers n, et n, une valeur minimum de A compatible avec une

ropagation sans amorlissement. Cette valeur définit pour ce type
g A
d’ondes la fréquence de coupure au-dessous de laquelle il n’y a prati-
quement plus de propagation. Si @ .. b, lIa plus petite de ces fréquences
de coupure correspond a

(i)‘I\i /"min: ;t
Elle est égale a

(')l’\ Yinin = o

Cette fréquence minimum correspond dans le vide i lalongueur d’onde
(23) Amax = 2,
mais dans le guide la longueur d’onde correspondant a v, est infinic

comme le montrent (18) et (19).

MM. Leigh Page et Adams (*) ont étudié la propagation des ondes

(') Bibliographie {12 .
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dans des guides a section polygonale réguliére et montré que les ondes
du type (E) ne peuvent pas, en général, s’y propager et que les ondes
du type (H) elles-mémes n’existent que dans des cas exceptionnels
(section triangulaire ou hexagonale). Ces formes de guides ne paraissent
pas avoir beaucoup d’importance an point de vue pratique, la forme de
beaucoup la plus employée en dehors de la forme rectangulaire étant

celle du tube cylindrique que nous allons maintenant étudier a la suite
de nombreux auteurs.

3. Etude des guides & section circulaire. —— Nous allons étudier le
cas d'un guide ayant la forme d’un cylindre & section circulaire de
rayon 1. Nous compterons la variable s le long de 'axe du cylindre

P /

)(M ?

Fig. o.

¢t nous compléterons le systéme de coordonnées cylindriques par les
coordonnées p ct o dans le plan de la section droite.
Avec ces coordonnées cylindriques, on a

(1) lst==olz2 0 gt st )= ¢, =1. oy =7

et, par suite, Péquation de la propagation de la fonction U est ici

DL WA ¥ 1 JU 1 21

UrE It 2 7); l:j e

(95

LU = o.

el, quand on aura trouvé une solution de (22), on en déduira une onde
du type électrique par les formules

)21 728 1ol
DI ] R b, = 2. .= ' :
" ‘ b Loz Ydzd: T dzde’
{0
H. = o. oot . .()[
' H,= o ’}T« Hy= -1k 7

et une onde du type magnétique par les formules

y dkat , LU
/ s I8l = 0. ]‘(,—‘l,l_;.:,’ “1?_%”l dg’
(27) .
2 , oL , s , VIS
( Wos-ll =S Wo=—g W= o
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Nous supposerons toujours que U dépend de 5 et de ¢ par le facteur
de propagation eflkct=/:3) e, suivant un procédé trés usité en Physique
mathématique, on obtiendra un systéme complet de solutions de (25),

en pOSElﬂt

(%) Uls. 2. 5, 1) = F (o) Dg) e e,

v

En introdnisant (28) dans (25), on voil que (25) exprime u’une
certaine fonction de p est égale a une certaine fonction de ¢ : cecl n'est
possible que si ces deux fonctions sonl égales & une méme constante.

. L ye . - . sin .
Pour que cela soit réalisé, il faut d’abord avoir @ = os 11095 0L est
COs !

une constante; il faut ensuite que

[

(2y)

o} ot o !

2 [ o 2
gl L (l— ﬂ->F:n avec oy = VA2 — ki o = ag.

B}
|

-a

Quelles sont maintenantles conditions que la fonction U doitsatisfaire?
Elle doit ¢tre évidemment une fonction uniforme et réguliére de ¢, o, =
a Pintériear du guide. Or, pour qu’elle soit uniforme, il faudra prendre
pour la constante m un nombre entier positif ou nul. Il faudra ensuite,
pour assurer la régularité, choisir une solution de (29) qui soit partout
réguliére a U'intéricur du cylindre. Orl'équation (29) est une équation de
Bessel dont toutes les solutions, sauf une seule, présentent unc singu-
larit¢ pour p == o, ¢’est-a~dire sur Paxe du cylindre : la scule solution qui
soit réguliére partout méme sur I'axe est la fonction de Bessel d’ordre m,
Im(p1) =Jdn(2p). Finalement nous trouvons pour U les solutions accep-

tables suivantes :

. _sin ) —
(30) U=1J,(ug) o mg ellkel ~kezl avec % — \'//"'—’—"—
: ©0s

De la solution (30), nous déduisons par les formules (26) et (27), les
deux formes d’ondes suivantes (a un facteur constant arbitraire prés) :

Type électrique :

! sin . .
I, = at J(ag) moetlhet—kz 1, = o0;
cos - ’
) . . , R sin Lo, ., M . cos
30y L Ep=—iks 2 1, (20) my. P, HWo=—-"Fy= =T, (a) . “mo.
s ‘ cos : k; o N —sin
., m . cos k . sin
Lp=— th:—J,(ac) meo. P H,= —VE,=—ikal)lao mew.,
¥ S ml®8) __ G ¥ i L. ® m(xe) cos
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et
Type magnétique.
sin .
Hi= a2 J,(xp) meo. P, E. = o;
cos
. sin k m cos )
(32 U, =—1dh.a ), (20) o. P V= —H.=—1ik=J,(z0)— . mz.P:
(32) < Hy, ihsa Jy, (ag) COsmg).l. DA /{sz IAF m(2E) = g S
, L Mo, COs ) . ko, . , sin
= 0 - A = - o mo.P.
\ [} ¥ thy : UNCIYNE <in mz, P, » 7 H; th o ), (ag) o 18

Dans ces formules, P désigne toujours le facteur de phase et ]
dérivée de J,,,(u) par rapport a 'argument .

(u) la

’
i (\

Il nous faul maintenant introduire les conditions aux limites pour le
champ électrique sur la paroi du guide. conditions qui sont ici

(33) 15, = E,=o0. pour z = R.
Ces conditions nous donnent pour les ondes du type électrique (E,,)
(31 J(aR)=o.

el, pour les ondes du type magnétique (11,,)

(53) '];n,(“l)‘):“‘
Désignons par p!™, 4, ... ", ... les zéros non nuls successifs
de la fonction J,, (u) el de méme par v, ... v/”, ... les zéros non

nuls successifs de J), (). Alors la condition (34) pour les ondes (E,),
nous donne

it
PR I
(5(!) U = ﬁ— — Ui

et la condition (35), pour les ondes (H,,), nous donne de méme

. v’_mj ,
<57) =L = Gy

On voit que, dans un cas comme dans Uautre, il existe une série
doublement infinic de valeurs de «, chacune caractérisée par deux
nombres entiers, pour lesquelles il y a propagation possible dans le
guide. Donc pour une valeur donnée de A, c’est-a-dire pour une fré-
quence donndée, il existe toute une série de valeurs de /- possibles telles
que

(38)

a

— g Ja 12
=2}, ou hi= k2 — 202,
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suivant que l'ou considére les ondes (E) ou les ondes (). A chaque
valeur de k-, correspond une longueur d’onde el une vitesse de propa-

gation de la phase dans le guide données par
0w k

(39) A= V=c7—>c

On peut encore vérifier ici que la vitesse moyenne de propagation de
I'énergie électromagnétique le long du guide est ¢gale a

’ R e S PN
(40) P = e

Les relations (38) montrent que, pour chaque type d’ondes, il existe
une valeur minima de A au-dessous de laquelle aucune propagation n’est
plus possible le long du guide qui se comporte ainsi comme un filtre
passe-haut. Pour les ondes (E,.), la valeur minima de & est égale a

( i[) /"min: r—‘— - '—‘

correspondant a une fréquence et a une longueur d’onde dans le vide
q 8

égales a

PN 2 ke -
(%4 Ymin = T30 Amax =
C$2) min SE R

mais naturellement dans le guide, la longueur d’onde correspondant
A v, estinfinie d’aprés (38) et (39).
Pour les ondes du type (H,,), la valeur de £, est

n

(;3) kl]lin: E

bl

ou désignant par »n le plus petit des v."?. Mais ici, conlrairement a ce qui
3 P 3 i

i
()

n’est pas v\". Ln effel, on sait

Nty e

se passe pour les p!™, le plus petit des v
que U'on a
dVy(w)

= he,

(11
et, d’autre part, tous les J,,(u) sont nuls pour u = o, sauf J,(0) qui est
égal a 1. llen résulte que les courbes représentant J, (u), Jy (n) = — J, (n)
et J' (u) sont disposées comme U'indique la figure 3.

Il en résulte que n =" En d’autres termes, el conlrairement a
I'attente, tandis que pour les ondes (E,,) 'onde de plus basse fréquence
pouvanl se propager dans le guide est Ponde (E,), pour les (1,,) c'est
I'onde (H,;) et non Ponde (H,). Ce résultat met en évidence le caractere
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un peu singulier de 'onde (H,), caractére sur quuel nous aurons a
revenir.

M. Léon Brillouin a fait d’intéressantes remarques sur le fait que la
fréquence de coupure v, est plus basse pour (L) que pour (H,). Il a,
en eflet, comparé le probleme du guide électrique cylindrique avec celui
des vibrations sonores dans un tuyau cylindrique rempli d’air. Si 'on
assimile la vilesse des molécules dair au champ magnétique, les vibra-
tions dans le tuyau sonore sont tout a fait assimiliables aux ondes du
type magnélique obtenues ci-dessus, les équations de propagation et
les conditions aux limites élant les mémes dans les deux cas. Mais, dans
le probléme acoustique, il n’y a pas de conditions de divergence nulle

_\«/% )
v V‘ill V(lo’
(4] ! k’l'l ' w

1 t
H )

Fig. 3.

analogues & celles qui existent en électromagnétisme, et ceci permel de
prendre ¢n acoustique des solutions avec o — o, donc k== k.. On aura
donc des solutions possibles avec par exemple pour la vitesse, des
molécules

. L sin .
(4 vo=J,(0) mg glhwi=z
COs
ol ¢ est ict bien entendu la vitesse du son dans 'air. Mais les valeurs
des J,.(0) et des J), (o) montre alors que la seule solution de ce type
non nulle et compatible avec les conditions aux limites s’obtient en
faisant m == o, ce qui donne

{46) ¢ = const. gikri—3l, fp= ¢y =0,

Clest I la solation habituellement considérée dans la théorie des tuyaux
sonores cylindriques : c’est en quelque sorte la solution fondamentale,
mais il existe une infinité d’autres solutions rentrant dans le type
général (32). Or dans le probleme électromagnétique, les relations de
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divergence nulle ne permettent pas de prendre x = o et par suile la
solution fondamentale analogue a (46) n’existe pas. On voil donc que
pour les ondes (H,,), I'onde (H,) n’est pas la véritable solution fonda-
mentale, laquelle se trouve exclue par les relations de divergence nulle.
On comprend mieux ainsi pourquoi (Hy) ne joue pas tout a fait le role
qu’on attendait.

Pour préciser les idées sur la stracture des ondes (31) el (32),
¢tudions celle de (E,) et de (I1,). Pour 'onde (E,), on trouve

S L= a2g(az),P. E,=—+ ihoal (xg). D, Hy=ikali{ap). P,

v
(Eo) M= E,=1l,=o.

Le champ électrique dans la section droite est radial; le champ magné-
tique y est circulaire. Pour le champ (H,), on trouve la disposition
inverse, car on a

( Ho=oa2Jo(az).P. W, =il;alti(ap). b, Fop=—ilalylxs). P,

§ 5
<I[ﬂ> | II:_—_ ]‘:?: l[;: 0.

Dans la section droite, le champ magnélique est radial et le champ
électrique circulaire. Les ondes (E,.) et (Il,) pour m > o0 ont une
structure plus compliquée.

Toutes les formules de ce paragraphe ont ¢té obtenues en supposant
qu’a Uintérieur du guide cylindrique e — p =1. Si le guide est rempli
d’une substance de constante di¢lectrique ¢ ct de perméabilit¢ magné-

tique p, on devra remplacer dans les formules (31) et (32) & par k& \/5}1

. _> > >
/ / i ' ' .
E par e E et II par y/p H. Nous ne développerons pas U'étude aisée des
formules ainsi obtenues.
Pour terminer, nous allons montrer que les ondes susceplibles de se
propager dans le guide cylindrique peuvent éire représenlies comme
une superposition d’ondes planes monochromatiques ordinaires. Pour

cela, 1l nous suffira de prouver que I'expression
( 17) J m % .9) @ -imy giihel—hz

peut s’obtenir par une telle superposition. Or considérons la direction
définic par Vazimut ¢, et par angle 0, qu’elle fait avec 'axe Oz du
guide. En un point de coordonnécs # =5 cosw, y = p siny et 3, Ponde
plane ayant cette direction comme direction de propagation pourra
s’écrire

@ik lrt—z cosly—a sinf); coso —y sinfy sing, ]

ou

eihict—s cosly! etk .\inf)”[i: COSDC08T, b o sinDsing,”
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Envisageons maintenant toules les ondes planes de ce type dont les
directions de propagation sont situées sur un cone d’axe Oz et d’angle
au sommet0,; en les superposant, nous obtiendrons I'intégrale-de Fourier

o
AT

] ,,( K] f/“l’ls'lll()‘,r()\\i‘ﬂﬂ— -5 ,/3“ ei/.'u‘/f——:m:gon"
[

Si alors nous posons
(i8) W(zg) =@ imIi= gtimz gl (o= gy )

avec m entier positif ou nul, on aura 'intégrale
b

o=

/ e i[k(,sinf)‘,t'm‘/n o’ foy @iy eilivi—3se s,
.

o

ou encore
EF N
/‘ e ilageostmmmt ofiy @=imy gilketr -ko2]
<o

en posanl,
(49) Joo= Keosly,  z= K sinly=k*— k2.

Il suffit alors de se souvenir que dans la théorie des fonctions de Bessel
on démontre I'importante formule

o -~
27

(5()) (: L ,') -m f e -iwersm @limm (fuy = _Im(_p )
1

2T

pour voir que la dernicre intégrale est bien égale, & une constante pres,
a 'expression (47). 1l en résulte bien que les ondes susceptibles de se
propager dans les guides cylindriques sont représentables par une
superposition convenable d’ondes planes monochromatiques homogenes
du type usuel.

4. Btude du cable coaxial. — On nomme cible coaxial le dispositif
formé par deux cylindres métalliques coaxiaux de rayons R, et R, servant
a guider une onde électromagnétique qui se propage dans l'espace
annulaire compris entre les cylindres.

Nous preadrons bien entendu des coordonnées cylindriques s, p, v. La
fonction U devra donc encore étre solution de (25) et de chaque solution
acceptable de (23), nous déduirons encore une onde du type électrique
et une onde du type magnétique par les formules (26) et (27). Les
solutions uniformes de (25) seront de la forme

For T N . sin et
(51) U(s, 5.2, )=F(p) m = @iikel—iss)
/ ’ ’ cos '



28 CHAPITRE 1I.

I°(5) devant satisfaire a 'équation (29). Mais c’est ict que le probléme
différe du précédent. En ellel, ici, 'axe des 5 n’est plus compris dans
le domaine de propagation de I'onde, de sorle que nous n’avons plus a
imposer a I'(p) d’étre régulicre pour o =o, mais sculement d’éire
régulicre pour Rigpélh. Or le point p =0 ¢tant le seul pole des
coefficients de (20), toute solution de (2g) est réguliére pour p 5= o ct
nous pouvons prendre pour I'(p) une solution quelconque de (29). On
obtient une telle solution en formant une combinaison linéaire de la
fonction de Bessel J,,(p1) et d'une autre solution de (29) lindaircment
indépendante de J,,,, par exemple la fonction dite de Neumann K, (p,).

b -1

A

el
N
—]
N

~~

Naturellement la fonction K, a une singularité sur Oz, mais celle cir-
constance n’importe pas ici. I'inalement on obtient pour U les solutions
uniformes et régulicres dans le domaine de propagation

(30)  U=[ATu(ae)+ BK,(22)] “_“ Mmoo eilhetks (2= fr— 2,
COs

A et B érant deux constantes complexes arbitraires.
De (52), on déduit les deux types d’ondes suivants :

Type électrique :

s

. = 22 [ AJ(22)+= BK,, (22)] mgel kil ks =0
B N N O
o | . . ., N <in s
(3 K= — ke 2 [N (28) - BR,(22)] mo. P, H,=— .
' cCON ¢ /.': :
. LM . . . cos JA
{ Ko=— ke =[A )V (22)+ BK,, (20)] ome P ", = //|39;
i 5 7 — <in 7 L
et
Type magnétique :
A . L stn .
\ H. = 22 AT, (22)-- BK,, (23)] mo. P, 12 = o;
[SBR
s . . . - sin Ny L
O W, =ik 2 [N, (25) 1= BK), (22)] meo. P, 12, = J He:
’ o8 ' ’ ‘ (PR
, T . D “0s . Lo
, Mo =— f. [N (2z)+ B, (22)] IR I UJ:—»/ .
\ T Z ’ : — =N ' ' -
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J(w) et K, () étant les dérivées de J, (u) et K, (w) par rapport a la
variable u.

Il nous faut maintenant introduire les conditions aux limites sur les
parois supposces parfaitement réfléchissantes du cable coaxial

(H5) F.=E,=o, pour = R, et pour = R..
Pour les ondes (E,,) du type ¢lectrique, elles nous donnent
(36) AL (aR)-- B, (2R0=0.  AJ,(2R)+ BK,(2Rs) = o.

Ces deux équations linéaires en A et B n’admettent de solution non nulle
que st leur déterminant est nul, ce qui nous fournit la relation

(57) Jo (2B K (aRy) = T (aRo) Wy (2 Ry).

mn ()

Les valeurs acceptables de « sont les racines &™) a7, ..., 2 ... de
cette équation transcendante. Si o = o', il suffira de prendre

]i . J m.( 1!17”” R

(H8) \ - km("‘i’l”]’{\)

pour oblenir une solution acceptable du type (53).
De méme, pour les ondes (H,,), les conditions aux limites (53)
donneront

i 59) A (2R BR, (2R =0,  AJ,(2Ry)=- BK}, (2R} = o,

d’ou la condition
(o) V(xR W (2 By = 3 (2 10) W (2 Ry)

pour déterminer les valeurs acceptlables 7. 6. . de 4. St a = 3",
il suffica de prendre
b e

R A W, (575 Ry

pour obtenir une solution acceptable du type (54).

En résumé, nous avons ici encore pour chaque valeur de m
(m=o0,1, 2, ...)une suite de valeurs acceptables (ou valeurs propres)
de 2. Par suite, a chaque valeur de m correspond une valeur de & égale
a la plus petite des valeurs propres de o qui estla plus petite des valeurs
de & pour laquelle la propagation du type d’ondes considéré est
possible. On serait tenté d’en conclure, comme au paragraphe précédent,
a Iexistence d’une fréquence de coupure au-dessous de laquelle toute
propagation le long du cable coaxial est impossible; en réalité il n'en
est rien cav pour le cible coaxial existe encore un mode de propagation
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qui n’existait pas dans le cas du guide cylindrique et qui correspond
précisément a la vibration fondamentale dont il a été question a la fin
du paragraphe précédent.

Nous obtiendrons la solution fondamentale en question en portant la
forme (51) dans Uéquation (235) et en supposant  :— o, ce qui doune

pour U

72 1 U m?
61 + — - U =0,
(6r) ot  dz 22
¢quation dont la solution générale sera
. . sin .
((l‘;) U :[ A Pm - |;F7m] "o @i ki~ st
Cos

D’aprés (26), on déduit de la solution (63) Ponde du type électrique

. <in
\ 1440:[0‘511171*])? e ll /Nvi."».l';
* COs
(61) ‘ i o N Cos
L, =[Carm 1= D) . omol P
: — S '
k- . ks )
H.=o. I, =— i Fy=— kg, Ho= P L, =1,

Les conditions aux limites (53) obligent a4 poser m = o et montrent en
plus qu’il n’existe pas d’onde acceptabledu type magnétique correspon-
dant & (63). Bref, on obtient ainsi la seule solution acceptable

Cu
(65) K= Bgmo. M= Cleder s N

On peut d’ailleurs vérifier sans difliculté par un calcul direct Pexistence
de cette solution des équations de Maxwell. La présence du facteur p au
dénominateur dans E, explique tout de suite pourquoi la solution (65)
n’est pas acceptable dans le cas du guide cylindrique puisqu’elle
comporte une singulatité sur O35, mais ici cette singularité ne nous
géne plus. Or toutes les fréquences peuvent se propager dans le cible
coaxial sous forme d’onde du type (65), de sorte qu’il n’y a plusici, a
proprement parler, de fréquence minima au-dessous de laquelle la
propagation est impossible (1).

(') On trouvera une étude plus complite des ondes guidies dans une ligne coaxiale
dans un article de MM. Goudet et Lignon (Bibliographie n° {19]).
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5. Etude des guides a section elliptique et de la stabilité des ondes ;
dans les guides usuels. - - M. Léon Brillouin a étudié la propagation
des ondes dans les guides a section elliptique el s’est servi des résultats
de cetle ¢tude pour aborder Pimportante question de la stabilité des
propagations dans les guides usuels a section circulaire. Nous allons
donner un apercu de ces problémes.

Pour ¢tudier les guides a section elliptique, on comptera Loujours la
coordonnée s suivanl 'axe du guide et I'on repérera les points M(z, 1)
de la section droite par des coordonnées elliptiques 2y et z, définies
par les relations

(66) & = churycosx,y, = dshay sinar.

Les lignes 2, === const. sont alors données par

. ; :.Z' 2 ) .1,‘ ‘l_
("/) (\([(;h‘:m) -:W<([Sh.l’/‘1> -

Ce sont donc des ellipses dont les axes @ et b sont égaux a

: /
(68) a=dcha, b=dshaz, : = thz,.
"

La distance 24/«*— b* des foyers est égale a 2d.
Les lignes x,==const. sont des hyperboles et le systéme des
coordonnées x4, x. est orthogonal. On trouve

(69) dst=rlz2+ ¢} da} v e} avec e = e,= dychiz — cos2ur,.

La fonction U doit alors étre solution de U'équation

1 72U U ali . o
(7o) d2{ch2ua, — cosry) [/)J,"f N ()(rfi;’,] cali=o (2 — kg = 22).

Sil'on pose comme d’habitude
U = @y (). Dy (o) @iike—hem,

on voit qu'une certaine expression dépendant de 2y seulement doit étre
égale & une certaine cxpression dépendant de @z, seulement et ceci ne
peut avoir lieu que si ces deux expressions sont égales 8 une méme
constante R. On obtient ainsi les deux équations

2, 22¢/2
o2, 222
r/;l‘::: : (7

Ch‘"’.lfl — R > ‘I’| = 0,

(VRY)

2

cos2r, 4+ R > ®, = o,
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La seconde équation (71) appartient au type des équations de Mathieu
et la premiére se raméne au méme type en prenant iz, comme variable
a la place de x.. Les constantes 2 et R doivent étre les mémes dans les
deux équations ct la valeur de R doit étre choisie en fonction de o de
telle maniére que la solution soit périodique de période 21 en ..
Quand IR est choisi de cette facon, la seconde équation (1) admet pour
solutions uniformes les fonctions de Mathieu

Geo(as). Cei(e). Sey{wa, oo Ce, (o, Se, ),

dont la forme dépend de la valeur du paramétre » et qui, pour o tendant
vers zéro, lendent respectivement vers les fonclions

I, CORZu.  SINLa. oL COSAL,. SIS,
Finalement, on a donc

Uz, 2.y 1) = Ge, (iry) Ce, () P
{72) ou

Uz 2. @a, )= Se,(ixy)Se, (). P,

M. Brillouin a donné un graphique .représentant les variations des
valeurs de R en fonction de o, correspondanta Ce, eta Se,.

La paroi du guide est définic par une certaine valenr X de la
variable z,. Pour cetle valeur de zy, les composantes E. et E, du
chamyp électrique doivent étre nulles : telles sont les conditions aux
limites.

Pour les ondes du type électrique, on a

PN s T , iks Ce, . Ge), ,
=39 I. =220, K, = . (iz)) (a24). 17,
7 E ; ) )

’ . ey Ney, Sl

Les conditions aux limites conduisent donc & chercher pour quelles
valeurs de « les fonctions Ce, (1 X,) et Se, (¢ X,) sont nulles. On trouve
ainsi pour « deux séries de valeurs acceptables o, , . el oy, 0 d’on
deux séries d’ondes du type électrique qu’on notera (E; ., ) et (K, 4 ).
A chaque valeur propre de a, correspondra pour & un certain mode de
propagation le long du guide et I’on pourra faire a ce sujet des remarques
tout a faitanalogues a celles qui furent faites aux paragraphes précédents.

Pour les ondes du type magnétique, on a

) . . ¢, . Le
(/_i) k.= o0, b, = . :/ (raxy) . "
’ : ey Sey, “Ney,

ik Ce, .
- (. P,

el Pon a a chercher les valeurs de 2 qui annulent soit Ce), (¢/X,),
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soit Se) (iXy). On obtient ainsi deux séries d’ondes du type magnétique
qu’on notera (g, o, n) eV 0.

M. Léon Brillouin a calculé la valeur de «* en fonction du grand axe
de Uellipse de scetion quand on déforme cetle ellipse en maintenant sa
surface constante et ceci pour les diverses ondes E, Ii;, E., H,, 11, ,
H, . I et .. Il s’est servi des résultats de cette étude pour apprécier
le degré de stabilité des propagations qui peuvent avoir hieu dans un
guide cylindrique. Supposons, en effet, que deux des ondes éludides
plus haut se trouvent avoir la méme vitesse de propagation quand la
secction du guide se réduit a un cercle, mais des vitesses sensiblement
différentes dés que la section est une ellipse d’excentricité nn peu
diftérente de 1. Alors une des propagations possibles dans le guide
circuliaire sera instable car, dés qu’en un endroit la section de guide par
suite d'un aplatissement acctdentel sera devenue légérement elliptique,
I'onde en question pourra se scinder en deux ondes de vitesses diflé-
rentes. kin somme, la stabilit¢ des propagations dans le guide & section
circulaire dépend de la maniére dont peuvent varier les vitesses de
propagation quand on déforme légérement le tube. Pour résoudre
rignurcusement ce probléme, 1l faudrait étudier la variation des valeurs
propres de 2 quand on déforme les frontiéres du domaine intérieur au
guide : c’est 1a un cas particulier d’un probléme général assez difficile
dont la selution a été abordée par M. Léon Brillouin et & sa suite par
M. Nicolas Gabrera; le développement de Ieurs méthodes doit permettre
de résoudre Ummportant et difficile probléme de la stabilité des
propagations possibles dans les guides électriques.

Quot qu'il en soit, la simple comparaison avec le cas du guide a
section elliptique a permis & M. Brillouin de conclure que les ondes (L)
et (1) du guide a section circulaire sont stables et 'onde (H,) presque
stable @ au contraire les ondes (BE,) et (H,) seratenl instables et
probablement aussi Vonde (). La stabilité de Ponde (H,) qui avait
été mise en doute peut présenter de U'intérét pour la radiotechnique car,
nous le verrons plus loin, l'onde I1, posséde la propriété remarquable,
quand elle se propage dans un guide aux parois imparfaitement
conductrices (ce qui est le cas de tous les guides réels ), de correspondre
a une perte d’énergic dans la parot qui diminue quand la fréquence
augmente. \éanmoins Uonde (Hy), bien qu’étant stable pour une petite
déformation de la section du tube, pourrait ne pas étre stable pour
une conrbure latérale du goide, pour un coude de ce tube. En eflet,
Ponde (H,) a la méme vitesse de propagation que 'onde (E;) pour
une méme valenr de &, comme cela résulte de égalité de p” et de v\

L. DY BROCGLIE, 3
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(%)

(voir p. 25). Or, a Pendroit ou le guide est coudé, la composante I,
d’une onde (A,) aura unc pelite composante longitudinale; cette
composante sera cependant nulle dans Ie plan qui contient 'axe lége-
rement incurvé du guide, elle sera donc identique a la composante
dlectrique longitudinale de Ponde (Eq) ayant une ligne nodale dans le
plan en question. Il en résulte que le coude pourra transformer une
partic de I'onde (1) en onde (E;). St le guide présente plusieurs
coudes, les effets de ce genre pourront s’accumuler i cause de égalite
des vitesses de propagation pour (L) et (Hy). ¢galié qui maintiendra
laccord des phases nécessaire 4 'accnmulation. Les coudes penvent
donc étre dangereux pour la stabilité de (1,).

M. Brillouin a aussi signalé un antre phénoméne qui peut éire génant
en pratique pour la stabilité des propagations dans les guides. La
fréquence de coupure, est, en cflet, rapidement variable avee la forme
de la section du guide. Une onde de fréquence, trés peu supéricure i la
fréquence de coupure, peut done se trouver complétement arrétée par
une portion légérement déformée de ce guide.

On voit combien des questions intéressantes tant en théorie qu’en
pratique sont soulevées par le probléme de la stabilité des propagations
dans les guides. Elles paraissent encore loin d’étre toutes vésolues (1),

6. Vitesse de phase, vitesse de groupe et vitesse moyenne de 1'énergie
dans les propagations guidées. — Toutes les propagations d’ondes que

nous avons étudiées dans le présent chapitre sont toutes représentées
par le facteur de propagation

o

(75) P = elikct- kg avee  kr= AF

~
e

Chaque propagation possible est caractérisée par une des valeurs
propres de la constante o correspondant au type de guide considéré.
Pour une valeur possible donnée de =z, il correspond a chaque valear
de & unc valeur de 4. et une vitesse de propagation de la phase

(6) V=cp >0

Pour deux valeurs trés voisines de &, meltons kg el A, 4+ d/, nousaurons

(1) I’influence de la courbure des guides sur la propagation des ondes a tait Fobjet
des é¢tudes étendues de M. Mare Jouguet (bibliographie [20]). Sur la théorie de la per-
turbation des valeurs propres par déformation de la fronticre et son application aux
vuides, on pourra consulter des notes de M. R. Courtel [21°. La these de M. Nicolas
Cabrera n’a malhcureusement pas été publice.
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deux valears trés voisines de k., savoir £° et sensiblement A0 4 <T>k dk.
- -~ (IR

Nous pounvons alors considérer Ia superposition d’une infinité¢ d’ondes

appartenant au trés petit intervalle &0-» k0 + dk. Celle superposition

est nommce un groupe d’ondes el est représentée analytiquement par

I'intégrale
Vil Bk i’[l‘/7< 5/@) ]
(7. / (L) efrket=kzh g :f ale)e Ak o "1 g elikect—251,
ik o

Le dernier facteur en dehors de Pintégrale est le factenr de phase
correspondant a /. Quant a I'intégrale, elle représente une amplitude
fonction de Fargument placé eutre crochets dans Pexposant de Pexpo-
nenticlle : il est évident que les valeurs de cette amplitude se déplacent
en bloc le long de axe des z avee la vitesse w délinie par la formule

(%) I _l('()/f:>‘.

w e\ dk

La vitesse v est la vitesse de groupe correspondant a la valeur &, de A,
Or ici nous avons
dk- k

) ok T ks

et, par suite, I vitesse de groupe correspondant i k est

{ NU‘;) " =c =

l.es relations oblenues atnsi sont lout & fait analogues a celles quion
rencontre cn Mécanique ondulatoire. Dans cetle théorie, en effet, on
represente le mouvement rectiligne et uniforme d’un corpuscule de
masse propre u, par la propagation d'unc onde plane monochromatique,
Ponde W du corpuscule. Celte onde peul s’éerire, en choisissant la
direction de propagation comme axe des 5, sous la forme

i ﬂl) . ' = \ ellhel—h3
avec

{2
(82) ke L2 = e TEN

ot /o est la constanle des quanta de Planck. On trouve alors pour la
vitesse de phase V et la vitesse de groupe u de Ponde W précisément les
expressions (76) et (80) avee larelation bien connue

(83 wV =2,
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Comme on admet que les corpuscules de lumiére ou photons ont une
masse propre nulle ou évanouissante, Uonde W du photon doit corres-
pondre a k= /k;, c’est-d-dire a la propagation avec la vilesse ¢; ceci
correspond bien & la propagation de onde ¢lectromagnétique dans le
vide indéfini. Mais si Ponde électromagnétique est enfermdée dans un
guide, nous avons entre & et A la relation (55), ou « est différent de
zéro el doil avoir 'une de ses valeurs propres correspondant a ln forme
du guide utilisé. Tout se passe alors, au point de vue de la Mécanique
ondulatoire, comme si le photon possédait une masse propre déterminée
par la forme du guide et Ie numcéro de la valeur propre «; considérée.

On peut donc dire que dans un guide donné le photon posséde toute
une séric de masses propres possibles ¢l cet ¢noncé est extrémement
suggestif en ce qui concerne les développements de la théorie de la
masse pour les particules matérielles.

Laissant de ¢oté ces considérations qui nous éloigneraient de notre
sujet, nous allons définir dans un guide, & coté des vitesses de phase et
de groupe, la vitesse moyenne de propagation de DIénergie ¢. Par
définition, cetle vitesse sera égale au quotient du flux moyen de 'énergie
électromagnétique le long de I'axe du guide a travers sa section droite
par la valeur moyenne de I’énergie contenue dans 'unité de longucur
du guide : cette définition est toute naturelle. D’apres les formules (24)
du Chapitre I, nous écrirons donc

o[l T
\

(810 p= —2 - )
j Ve s
- |

 étant le volume de Punité de Tongueur du guide et S la surface de sa

section droite.

Dans un certain nombre de cas simples (guides a section rectangu-
laire, circulaire, etc.), on peut vérilier que la vitesse ¢ est égale a la
vitesse de groupe (80). Nous allons démontrer d’une facon geéncérale
ue, quelle que soit la forme de la section droite du guide, cetie égalité
a toujours lieu. Nous développerons la démonstration dans le cus des
ondes du type électrique, la démonstration se faisant d’une maniére
tout & fait semblable dans le cas des ondes du Lype magnétique.

Pour les ondes du type électrique, nous avons les formules suivantes :

. ik, U ile. ot
.= 22U e = | D
85 b=t s e, da, ’ ’ ey day’
(%) k. L
H.=o, I, =— 'S I, I, = . 1%,
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U élanl une solution acceptable de I'équation (5). La relation a
démontrer est la suivante

(%6 [olEal

S
SRTCH IR f[ B2 s,
. k. o LS

et, en introduisant les valeurs de H, et H; d’apres (83), elle s'écrit
encore

(47) B /._’ "/‘vl“l;‘_,‘»«_'_iluj;‘»]//’. :V/_(,{ IL: T ( L-g"—’—\]ﬂ:;l')(l':‘ /\:_,)wjl f/’.,

oun encore, d’apres les valeurs des 1,

(83 f»,;."[; A :‘/l T_) U 9L {772 A =
RI ' o Les das iy e3 day ’)"‘fﬁ

5

Comme on doit avoir E.==o0 sur la paroi du guide, U est nulle

partoul sur cette parot d’aprés la premiére équation (85). En remar-
quant que Pon a

(89) = eseyclrs drs s,

il vient aisément, en intégrant par parties le second membre de (88),

(g0) ‘/l"l e N -+ ’—) 2 i G eaey 2 U | dduy oy oz = o.
‘L1

ey ey duy day ey dry

Telle est la relation a démontrer : ov elle est évidente puisque U est
solution de U'équation (5). Done, quelle que soit la forme de la section
droite du guide, la vitesse moyenne de propagation de I'énergie dans le
guide est égale a la vitesse de groupe.

7. Conditions d’excitation et régimes transitoires. — Nous avons
étudié les régimes stables de propagation qui peuvent s’établir a
Pintéricur des guides diélectriques, mais sans nous préoccuper de Ia
tacon dont ces régimes peuvent s’¢tablir. 1l est évident que, pour que
de telles propagations puissent s’établir dans un guide, il faul qu’il y
ait quelque part dans le guide un émetteur d’ondes électromagnétiques.
Ceci revient & dire qu’il doit exister en certains points a U'intérieur du
guide des charges et des courants électriques. Nous aurons dans le
guide une certaine distribution de charge représentée par la densité
o(«, ¥, 3, ¢) et une certaine distribution de courants représentée par la
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7 . > . .
densité vectorielle i(z, y, 2, t); les quantités p et ¢ sont d’ailleurs reliées
par la relation de conservation de I'électricité

) >
(91) D divi+o.

Jt

En partant des équations générales

> >
. 1 Jd\ e > 1= 1 )2
2 =— - L —uaradV, V =4=2 A= — ( = — - — >
(92) Y grad ¥ O ime, O p \Ij prippe Al
nous lirons
N 5
SE ) >
(93) (lf) ’—7- —Al=—4= (% :}; 4 grade | (e, 0y 2,700
= b 4

oit I est une certaine fonction vectorielle supposce connuc de x, 1, 5, L.

Maintenant il est facile de démontrer que si U, et U, sont deux
solutions acceptables de I'équation (5) correspondant a deux valeurs
propres dilférentes o, ¢t a, de a, on a, entre U, ct Uy, la relation
d’orthogonalité

(1) f LUy, dr :f U U, eaes drsde, dz = o,
v v

ou ¥V désigne toujours le volume de Punité de longueur du guide. On
démontre la formule (94 ) en écrivant Péquation (5) pour U, et I'équation

*

complexe conjuguée par U),, en multipliant la premiére de ces ¢quations

par U

my

73

et la seconde par U,, puis en sousteayant la prewicre refation
ainsi obtenue de la seconde ct en intégrant dans L. Nous admetirons de
plus que les fonctions U, [fonctions propres de U'équation (5)}, dont
nous avons plus haut calculé Ia forme exacle dans certains cas parti-
culiers, forment un systéme complel, c'est-a-dire qu’une solution
acceptable quelconque de I'équation (5) peat toujours s¢ représenter
comme une somme de fonctions U,,.

Ceci pos¢, de la fonction U,,, nous pouvons dériver un champ

— >

électrique B0 qui appartiendra soit & une onde du type électrique,
soit & une onde du Lype magnélique; désignons par K les trois

>
composantes de E dans le systéme de coordonnées curvilignes
orthogonales utilisé. En employant les formules qui permettent de
dériver B de U, el en inlégrant par parlies, on voilaisé¢ment que (g4)
entraine la relation d’orthogonalité

3

'j N F(m.)* ]“(u) /, P i

(95) 0 K St =0 (n 52 m),
N i

/¢

1
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valable aussi bien pour les ondes du type magnélique que pour celles
du type ¢lectrique. De plus, le caractére complet des U, permet que,
pour une onde quelconque se propageant dans le guide, on puisse poser
- . 1 -
ey I, :2‘ Cop(2) 1,
11
ou les G, (¢) représentent les degrés d’excitation des ondes corres-
pondant aux o,. Les € sont indépendantes de Vindice ¢ et sont
géndéralement fonction du temps en raison des phénomenes d’¢mission
(ou d’absorption) qui peuvent se produire dans le guide par suite de la
présence de charges et de courants.
Portons (6) dans (g3) et tenons compte du fait que Pon a
IRz

(497
L4 It

— rhe 0 AE"/H‘ — /\.g Jom
i i i

lin désignant par un point la dérivation par rapporl au temps, nous

obtenons

. o G vik s .
N (B ik ),
ry c
1t

\

Multiplions ¢ette équation par I8, sommons sur Z de 1 a 3 et intégrons,

il vient

[ ok . ] .'ﬂ - 1 S E > B
(999 -, = o Z K"K = ,__\/ (]:‘“"".]‘ > o=
o c Ny S i Ny Jo
1

’

avec la notation

Y
( N, — / K |2 o
100 ) P , zi‘ ; l ¢
1

N

Comme le second membre de (gg) est caleculable d’aprés les données,
celle équation nous permet de suivre les variations de C,, au cours du
temps a pactir de conditions initiales données telles que par exemple

Culo)=C,(0)=o.

L'équation (gg), qui s'applique aussi bien aux ondes du type magné-
tique qu'aux ondes du type électrique, contient toute la théorie des
régimes transitoires ct permel de voir facilement quel dispositf on doil
employer pour exciter lelle ou telle onde dont la propagation est possible
dans le guide.

Nous allons étudier comme exemple le cas trés important on ’émission
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des ondes dans le guide est due a un oscillateur harmonique de fré-

>
quence v,. Dans ce cas, les fonctions o el ¢ sont proportionnelles (en

notation complexe) a e?™™/ = gfloct et I'équation () s’écrit alors

I ailk

(1o1) i —— = b, elike—kr
. > .

c?
ot b, est une conslante calculable a partic des donndées. L'intégrale
de (101) est

(102) Cu(t)y=Kye 2kt Ny — L —
! S
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