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PRÉFACE

La question de l'emploi des ondes électromagnétiques très courtes, 
avant une longueur d’onde de l’ordre du décimètre, est aujourd’hui 
tout à fait à l’ordre du jour. L’une des circonstances qui rendent ces 
ondes particulièrement intéressantes pour la radiotechnique est la 
possibilité de les guider ou de les diriger à l’aide do dispositifs tels que 
guides, cornets ou miroirs permettant d’obtenir des faisceaux dirigés 
analogues à des faisceaux lumineux. Comme il est bien connu, de sem 
blables dispositifs doivent avoir des dimensions supérieures à la lon 
gueur d’onde : tandis que pour les ondes ayant des longueurs d’onde de 
l'ordre de l’heelométre ou même du mètre, on serait obligé d’employer 
des appareils ayant des dimensions trop considérables, des appareils 
d’un encombrement très acceptable suffiront pour les ondes dont la 
longueur d’onde est de l’ordre du décimètre. Les problèmes relatifs à la 
propagation des ondes électromagnétiques dans des tuyaux ou cornets, 
ainsi que la détermination des ondes électromagnétiques stationnaires 
dont des enceintes à parois métalliques peuvent être le siège, pré 
sentent donc aujourd’hui un grand intérêt tant au point de vue pratique 
qu’au point, de vue théorique.

Il est, curieux de remarquer que des problèmes de ce type avaient déjà 
attiré les chercheurs aux environs de iqoo et il est souvent utile actuel 
lement île se reporter à des Mémoires écrits à celte époque et qui avaient 
éli1 un peu oubliés depuis. La raison en est la suivante : au début de 
l'étude expérimentale des ondes électromagnétiques par Hertz et ses 
continuateurs, on avait surtout employé des ondes produites par des 
oscillateurs de petites dimensions et possédant par suite des longueurs 
d’onde de l’ordre du mètre ou du décimètre. L’attention s’était donc 
portée tout naturellement sur les propriétés des ondes de cette catégorie.



PREFACE.

Mais le développement ultérieur de la Radiotélégraphie s’est elfeclué, 
on le sait, dans le sens de l’emploi de plus en plus exclusif d’ondes de 
grandes longueurs d’onde dépassant souvent de beaucoup le kilomètre 
pour lesquelles les problèmes de guidage ne présentent plus aucun 
intérêt pratique; on avait donc presque complètement perdu de vue ces 
problèmes. Depuis une vingtaine d’années, par centre, la technique 
radio télégraphique s’est orientée à nouveau vers l’emploi des ondes 
courtes et les longueurs d’onde de l’ordre de l'hectomètre ou du mètre 
sont celles qu’on utilise le plus fréquemment aujourd’hui.

Dans ces dernières années, continuant à descendre l’échelle des lon 
gueurs d’onde, l’altontion des radioélectriciens s’est portée sur les ondes 
dont la longueur d’onde est de l’ordre du décimètre, et de nombreux 
travaux ont été consacrés non seulement aux moyens de produire et de 
recevoir de telles ondes, mais aussi à l’élude des procédés permettant de 
diriger leur propagation.

Mon attention ayant été récemment attirée sur ces problèmes de pro 
pagation guidée, j’ai étudié les principaux travaux qui y ont été con 
sacrés dans ces dernières années, notamment les beaux Mémoires publiés 
en France par MM. Clavier et Léon Rrillouin.

C’est un résumé de ces travaux que je présente dans ce livre. Je n’y 
prétends nullement à l’originalité car je me suis simplement proposé de 
donner une vue d’ensemble de la question : tout au plus, ai-je sur 
quelques points précisé certaines démonstrations ou certaines idées. 
Mais j’ai l'espoir que, même sous celte forme modeste, cet Ouvrage 
pourra rendre quelques services aux physiciens et aux radioélectriciens 
qui voudront aborder l’examen de problèmes dont l’importance et 
l'intérêt sont maintenant très considérables tant au point de vue 
scientifique qu’au point de vue technique.

VI

Octobre igjo.
bons DK HliCMoblb.



PRÉFACE
1)K LA SKCOAÜK KDITION

Quand la première édilion de cel Ouvrage a 6le publiée en 19^ 1, la 
technique des ondes ullra-courles était déjà très développée aux Etats- 
Unis, niais en l<'rance elle n’avait pas encore fait l'objet de beaucoup de 
travaux ol les conditions où nous nous trouvions alors placés ne per 
mettaient d’ailleurs que des recherches clandestines tout au moins dans 
le domaine expérimental. Depuis lors, l’étude des hyperfréquences s’est 
beaucoup développée dans notre pays, notamment dans les laboratoires 
du (loutre national d'Ktudes des Télécoinniunicalions (C. N. K. T.) et 
dans ceux de certaines sociétés industrielles. La publication du présent 
Ouvrage, qui apportait une vue d’ensemble sur la théorie des guides 
d’ondes et sur des questions voisines alors peu connues chez nous, a pu 
rendre quelques services aux radiocleclriciens qui travaillaient dans ce 
domaine.

Aujourd’hui, la première édilion étant épuisée, nous en donnons une 
deuxième édition. Mais, absorbé par d’autres occupations, nous n’avons 
pas pu voir en détail l'ensemble des innombrables travaux qui ont paru 
à l'étranger sur les sujets traités dans ce livre. Aussi nous sommes-nous 
borné, après avoir rectifié ou amélioré divers passage de la rédaction 
primitive, à donner des indications bibliographiques sur quelques 
travaux parus en b'rancj1 dans ces dernières années, ce qui permettra 
au lecteur de se renseigner davantage et de compléter sur divers points 
les développements contenus dans le texte.

Septembre 1 < > d g.
Louis d u liROGI.JK.

JOO-



PROBLÈMES DE PROPAGATIONS GUIDÉES

DES

ONDES ÉLECTROMAGNÉTIQUES

CHAPITRE I.
GÉNÉRALITÉS SUR LES ÉQUATIONS DE MAXWELL.

I. Les équations de Maxwell en coordonnées rectangulaires carté 
siennes. — Le champ éleclromagnétique est, on le sait, caractérisé par

-N-
les deux vecteurs E et II, champ électrique et champ magnétique, et par

"T*"
les deux autres vecteurs I) et lî, induction électrique et induction magné 
tique, dont les définitions sont bien connues. D’autre part, la présence 
et le mouvement de l’électricité sont caractérisés par la densité d’élec-

tri cité p et la densité de courant électrique i.
Ceci rappelé, nous écrirons les équations de Maxwell qui lient ces 

différentes grandeurs sous la forme

(O

(2)

CD

(41

c àt

r àD 
<: àt

>
div 1! = o

rot E,

it  frot It — t\r. -,

div T) 4 "p-

—!*■ ~^
Ces équations sont écrites en exprimant les grandeurs électriques E et D

!.. DE HDOGLIK.



2 CHAPITRE I.

en unités électrostatiques ainsi que les charges et les courants tandis

que les grandeurs magnétiques II et B sont exprimées en unités électro 
magnétiques. La constante c est le rapport de l’unité électromagnétique 
de charge électrique à l’unité électrostatique.

Les équations ( i ) et (3) constituent le premier groupe des équations 
de Maxwell (groupe sans second membre), les équations (2) et (4) 
constituent le deuxième groupe (groupe avec second membre). Les

équations (i)-(4) sont compatibles parce que l’on a entre p et i. la 
relation

exprimant la conservation de l’électricité.
Dans ce qui suit, nous admettrons toujours que le milieu où nous 

étudions les phénomènes électromagnétiques possède une constante 
diélectrique s et une perméabilité magnétique p. telles que l’on ait

(6)

s et p. étant des constantes caractéristiques de ce milieu qui est ainsi 
supposé homogène et isotrope au point de vue électromagnétique. En 
particulier, nous considérerons souvent le cas du vide où e = p = 1. 

Très fréquemment, nous supposerons que le milieu considéré ne con 

tient ni charges, ni courants (*), ce qui nous conduira à poser p = o. 
De plus, nous envisagerons habituellement des phénomènes électro 
magnétiques harmoniques par rapport au temps, c’est-à-dire où toutes

les grandeurs de champ varient comme ket (ou en notation complexe

comme elkcC), donc avec une fréquence v = ---

En résumé, nous aurons habituellement à utiliser les équations ( 1 )-(4) 
sous la forme suivante :

>
(O ik pH = — rot E,

(3')

«') div E = u.

I1) C’est-à-dire qu’il est isolant et ne contient pas de charges.



GÉNÉRALITÉS SUR LES ÉQUATIONS DE MAXWELL. 3

Comme on le vérifie facilement, les équations de Maxwell entraînent les 
relations

(7)
a k ' ";K

V '2 <)t ) Ail
1 <P\i

V2 TiF

où A est le Laplacien -f- -f- ■ Les équations (7) expriment

que les champs électromagnétiques se propagent dans le milieu carac 
térisé par les constantes e et .u avec la vitesse V et en particulier avec 
la vitesse c dans le vide. C’est là, on le sait, la base de la théorie élec 
tromagnétique de la lumière.

Pour les phénomènes harmoniques dans le temps, les équations (7) 
prennent la forme

( 8 ) AK + /,2 K = o, AH ! k* H = o.

En particulier, on trouve aisément comme solutions des équa 
tions ( 1 ')-(4-/) et des équations (8) qui en dérivent « les ondes planes 
monochromatiques » définies par les formules

/ kc Noù v est la fréquence Régale à — J 01 où a. (3, y sont les cosinus directeurs 

de la direction de propagation normale aux plans d’onde et peuvent être
7*“

considérés coin me les composantes d’un vecteur unité n définissant celte
—--^

direction de propagation. Les vecteurs amplitudes E0 et H0 sont liés par 
les relations

( IO J \«.H0 / rrV
V M-H„ : PvnJ.

Les champs sont transverseaux, c’est-à-dire tous deux perpendiculaires 
à la direction de propagation; ils sont perpendiculaires entre eux et, 
même, dans le vide ils sont, avec les unités choisies, égaux en grandeur.

Naturellement les ondes planes monochromatiques sont des solutions 
d’un Lype très particulier et il existe une infinité d’autres types de 
solutions. Néanmoins, il résulte des théorèmes de Fourier que toutes les 
solutions sans singularité des équations ( i,)-(4’) peuvent être représentées 
comme une « superposition » d’un nombre fini ou infini d’ondes planes 
monochromatiques.
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Nous allons faire maintenant une très importante remarque qui nous 
servira souvent dans la suite. Reporlons-nons aux équations <(]')-(4') et 
posons-y

; ..4“ — y ,— *> , 
< 11 ) K' = K, Il = vfjLlJ, k'=k\ji\i.

Nous pourrons écrire les équations (i,)-(4/) sous la forme

—> • >•
(i") //,'H' = ~ rot K',

. —v
(?/') ik' E'= rotll',

( ü") divll'= o,

( i") divE' = o.

Ces équations ont la même forme qu’auraient dans le vide les équations 
de Maxwell pour un champ électromagnétique harmonique de fré-

k' cquence---- D’où celle conclusion dont nous aurons souvent à faire1 2"
usage :

Si, pour une certaine enceinte ride de matière, on a trouvé une 
certaine solution harmonique des équations de Maxwell correspon 
dant à une certaine valeur de k, on obtiendra une solution valable 
pour la même enceinte remplie d’une matière de constante diélec 
trique £ et de perméabilité magnétique p. en remplaçant (*) dans la

première solution k par k \'sj j ., E par \/ s E et H par y/pll.

Grâce à ce résultat, nous pourrons, quand nous aurons résolu un 
problème de vibrations propres ou de propagation guidée pour une cer 
taine enceinte vide de matière, trouver automatiquement et sans calculs 
nouveaux les solutions valables pour la même enceinte quand elle est 
remplie d’une substance pour laquelle s et p sont différents de i.

Pour terminer ce paragraphe, nous rappellerons la définition de la 
densilé d’énergie électromagnétique et du vecteur de Poynling.

Dans un espace où règne un champ électromagnétique, chaque élé 
ment p dr de charge électrique est soumis à une force électrique égale 
à pEofr et à une force électromagnétique proportionnelle au produit 
vectoriel de la vitesse locale du déplacement de l’électricité par le 
champ magnétique en ce point. Cette dernière force étant perpendi 
culaire à la vitesse ne travaille pas, et le travail accompli parle champ

f1) Toutefois ce changement ne doit pas être fait dans l’exponentielle e'7



électromagnétique sur la matière électrisée pendantle temps dt se réduit à
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C 12 ) <y î; = <it > > d~ = dt tu dx.

Eu supposant le champ électromagnétique nul à l’infini et en rem-

plaçant i par son expression tirée de (2), puis tenant compte de ( 1 ), on 
trouve pour ce travail élémentaire

Si l’on admet la validité des relations (6) entre champs et inductions, 
il vient

II. b ) , à rkE2-h U H2 ,
--------- d 7 = — , - / -------—1------dx.dt J 8 -/ Xu)

La quantité

( 1 f> ) \Y =
k K2 -4- ;j l IP (e .’d ) x ^1.B;

8-

peut donc être considérée comme la densité de l’énergie électromagné 
tique dans le champ.

Si maintenant on considère une région de l’espace du volume fini ‘v? 
limitée par une surface fermée S sur laquelle le champ électromagnétique 
ne s’annule pas, on trouve

où | E x II |„ désigne la composante suivant la normale à S du produit
—>

vectoriel de E par IL L’ on voit alors que le vecteur

doit être interprété comme étant le llux de l’énergie électromagnétique 
par unité de surface : c’est le vecteur radiant de Poynting.
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2. Représentation complexe des grandeurs électromagnétiques. — 
Pour faciliter les calculs en Optique et eu Electricité, il est très souvent 
commode de remplacer les grandeurs réelles par les grandeurs com 
plexes dont elles sont la partie réelle : c’est là un artifice bien connu 
dont le succès provient des propriétés analytiques très simples do la 
fonction exponentielle.

Considérons par exemple une onde électromagnétique plane et mono 
chromatique et soit Ec l’une des composantes de son champ électro 
magnétique. Comme nous l’avons vu plus haut, nous pouvons poser

ou en prenant l’axe des z dans la direction de propagation 

( 19) E.c = [ KJ. j cos[k(ct — z) -i 51,

où [ E“ j est une constante réelle ainsi que 0. E’artifice de calcul indiqué 
plus haut consiste à remplacer la grandeur réelle (iq) par la grandeur 
complexe
(20) Igt = lv“. giku-i—z\ a\ec K". = ' K". j elr.

E“ est l’amplitude complexe qui contient à la fois l’amplitude réelle j E“. j 
et la constante de phase a. Ea fonction k(ct—■ z) qui figure dans l’expo 
sant. de l’exponentielle représente la propagation de l’onde dans le sens 
positif de l’axe des s. Si dans (20), on remplace z par — 3, on obtient 
l’expression complexe d’une onde de même fréquence et de même 
amplitude complexe sc propageant dans le sens négatif de l’axe des z. 
En superposant deux telles ondes se propageant en sens contraire, on

obtiendra des ondes stationnaires où EÆ sera proportionnelle à s,u kzeil;cL.

Tant qu’on n’emploie que des opérations ou des équations linéaires, 
l’usage de la représentation complexe des champs électromagnétiques 
ne peut conduire à aucune erreur et elle est très commode. Mais quand 
on considère des expressions non linéaires, par exemple des exprès-

sions(i5) et ( 17) de W et de S, l’emploi delà représentation complexe 
ne conduit pas aux mêmes résultats que celui de la représentation réelle 
et l’on admet toujours qu’il faut alors en revenir à la représentation 
réelle. Néanmoins quand il s’agit (ce qui est le cas dans cet exposé) des 
ondes électromagnétiques de haute fréquence, l’emploi de la représen 
tation complexe des champs reste très utile pour le calcul rapide des 
valeurs moyennes des expressions quadratiques telles que (10) et (17). 
C’est ce que nous allons montrer.



Soit un champ électromagnétique harmonique. Nous pouvons toujours 
avec la représentation réelle des champs, le mettre sous la forme (')

i-^- —>-
K = r, z) cos (kct • c),

—>-
11 = 110 ( x, y, z ) co? ( kct - - 9 ),

où E„ et il,, sont des fonctions vectorielles réelles de x, y, z. Si nous 
calculons W et S en substituant les formes (ai) dans les formules (i5) 

et (17), nous trouvons

/. ; 1'.^ | ” COS" (Il C/ - L ) -I— O. ! II(, !" CO?" (_ kct —)— ~ I 
---

S — f | !•:„ j. | 1I() | cos2 ( kct -r o ).
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Nous pouvons au contraire tenter d’employer la représentation complexe 
des champs en remplaçant (ai) par

(23;
K = V.yx, r, z) eikv>

( l’o — | C0 j e'

Il = IIoO, .>'■ z.)e‘k'-‘
—y | —>■ I \IIo = | U0 I e'?).

Remplaçons alors les formules (là) et ( 17) par

(24) W= r^-|4-;Ei2+;L: II)2), S Tïï? ' f E*; II [e x iÎ*]!,

où l’aslérisque indique la quantité complexe conjuguée. Voici pour 
quelle raison nous adoptons ces formules (24) : pour les ondes électro 
magnétiques de fréquences élevées, seule la grandeur moyenne dans le

temps des grandeurs W et S est réellement observable: or si l’on calcule 
ces valeurs moyennes d’après (22), ont trouve

( 2r’ ) W = _L | k | I50 |2+;rH0 j* |, S = ~ [ | Ê, | X | So | ]
I O TT o7Z

et ces valeurs sont précisément celles que l’on obtient en substituant ( 23 ) 
dans (24).

Nous voyons ainsi que si nous employons la représentation complexe 
des champs, les formules (24) nous fourniront directement les valeurs

moyennes, seules intéressantes, des grandeurs VV et S ; c’est pourquoi 9

9 peut être une constante réelle ou une fonction réelle de x, y, z.
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ces formules (24) sont aujourd’hui couramment employées par certains 
auteurs.

11 est intéressant de remarquer ici que les théories quanliques les plus 
récentes du champ électromagnétique conduisent à considérer la repré 
sentation complexe des champs comme étant beaucoup plus qu’un 
artifice mathématique et comme avant une signification physique pro 
fonde. Les formules du type (24) jouent dans ces théories un rôle 
essentiel.

3. Les équations de Maxwell en coordonnées curvilignes rectan 
gulaires. — Nous allons avoir constamment à employer, dans la suite, 
des coordonnées curvilignes, mais dans tous les cas étudiés, ce seront 
toujours des coordonnées curvilignes rectangulaires. 11 est donc néces 
saire que nous sachions écrire les équations de Maxwell avec de telles 
coordonnées.

En coordonnées curvilignes rectangulaires, le carré d’un élément de 
longueur peut s’écrire sous la forme

(26) ds- = e'f dx\ -1- e\ dx\ -1- <?J dx\.

xt, x-i. x:. étant les trois coordonnées curvilignes; et. ea, ex trois fonc 
tions de xit x2, x?t.

En considérant une petite surface située dans l'un des plans de coor 
données et, en lui appliquant le théorème do Stokes, on démontre aisé 
ment que la relation vectorielle

(27) A = rot I!

peut se traduire, avec les coordonnées curvilignes envisagées, par les 
relations en composantes

D’autre part, en appliquant à un parallélépipède infiniment petit 
construit sur trois éléments dxt dxdx.t concourants le théorème de 
Green, on voit de même que l’on doit poser ici

divA =
«1 «■; e:; [(29)
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Dès lors, les équations de Maxwell s’écriront en coordonnées curvilignes
rectangulaires

( éo )

u dit, à
c " àt àx-, e"

c du, à
■i - - e—— = •;— /• Il 

c àt àx-,

;a ^ à U , à y
c " 1 àt à./-, 1
S àE, à
- — = -— e. Il

>: àt àx--
<x dû, à

-7: "lCi ~l, ‘ Xx'Kl’

î "K. à
■ e,e-> c -11
c <)t t)x |

.......

<)

<)X\
e-i e-,\ U i -—■ e- l q  ll >

<)X -y
-— e\ e< H*; = o
(JX\\

<)

<)X\

à
(' ■’ C\\ E | —t- - (ïC i E •> - • -

’ <)x <

() r
-— c i e-, E;; = o
<)X-_\

Nous uvous généralement à appliquer ces équations à des champs 
harmoniques par rapport au temps, c’est-à-dire à les écrire en

i i à .,remplaçant - — par lit.

4. Potentiels et vecteurs de Hertz. — On sait que l’on peut taire

dériver les champs électromagnétiques de deux potentiels, l’un A à 
caractère vectoriel, le potentiel vecteur, l’autre V à caractère scalaire, 
le potentiel scalaire. Les champs se calculent à partir de ces potentiels 
par les relations (en supposant e — fj. = i)

-*■ I ()\
Cil ) Il = rot A, E = — grad V — ~ ~ *

Les équations de Maxwell sans second membre se trouvent automati 
quement vérifiées par ces définitions. Quant aux équations avec second 
membre, elles fournissent, quand on y introduit (3i). des relations

permettant de calculer A et V à partir de la distribution et du mouve-

ment de l’électricité représentés par les grandeurs p et i. Voici ces 
relations :

( ’.\i)

_I à*V 

^ àt:1

y <k \ 
c1 àt1

— AV

— AA
>
e

I à 
c àt div V -+-

grad divA
i dV\ 
c ~àt )'
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Or, si l’ou admet que les champs ont seuls le sens physique, les 
potentiels n'étant que des intermédiaires de calcul, ceux-ci sont affectés 
d’une assez large indétermination.

y -y _ -y
En effet, si l’on suppose connus les champs E et II et si A et V sont 

des potentiels dont ces champs dérivent par les formules (3i), on 
obtiendra des potentiels tout aussi acceptables en posant

-y y ------- y i
(33) À' = A + gradF. V' = V - - - ,

e àt

où F est une fonction dérivable quelconque de xyzt. Cette indéter 
mination des potentiels permet de leur imposer une condition supplé 
mentaire. On choisit, depuis Lorenlz, la condition suivante :

(34)
i i)\ 
c i)t

y
div A = o.

qui donne aux équations (32) la forme simplifiée

(33) -L'- O:- i iT- A 
c- àt-

y
AA = 1 ;

On voit que les potentiels, s’ils satisfont à la condition (34) de
Lorentz, se propage dans le vide (p = i = o) avec la vitesse c. La 

condition de Lorentz ne détermine pas d’ailleurs complètement les 
potentiels qui restent encore arbitraires dans une assez large mesure.

Lorsqu’il n’y a, dans le domaine considéré, ni courant, ni charges, 
le second membre disparaît dans les équations du second groupe de 
Maxwell, ce qui fait disparaître la dissymétrie entre les deux groupes, 
et l’on peut alors employer à la place des potentiels des anlipotrnlieh 
que nous allons maintenant définir.

Plaçons-nous encore dans le cas du vide (s = = i). Nous satisferons
aux équations du second groupe de Maxwell, supposées dépourvues de

- -7*-
second membre, en introduisant un antipotenliel-vecteur A' et un 

anlipotentiel-scalaire V' et en posant

y y ->---------y i
(36) K = rot A', H = gradY'-' • - •

~y
Le changement de signe dans la définition de H provient de la différence 

de signe entre les termes en ~ dans les deux groupes de Maxwell.
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Si l’on admet entre les antipotentiels la relation de Lorentz

(37)
i (N' >- ~ -H div A = o, c àt

on voit, en substituant (36) dans le premier groupe de Maxwell, cjue 
l’on a

c’est-à-dire que les antipotentiels se propagent avec la vitesse c.
Tl nous est maintenant utile de définir les vecteurs de Hertz. Consi-

->
dérons les potentiels A et V satisfaisant aux ('quations (34) et (35) et
définissons le vecteur de Hertz électrique (ou vecteur do Hertz tout court)

Il par les formules

i <)\\
Y = — divll.' 3<j) c <)t ’

grâce auxquelles la relation (34) est satisfaite. Il est visible que dans le 
vide

-V

( 4» )

de sorte que II s’y propage avec la vitesse c. Les formules (3i) nous 
donnent

->
( ùu

Il = ml = rot rot]),c (H ’

relations qui expriment les champs à l’aide du vecteur II. On sait que

l’emploi du vecteur II est très utile pour le calcul du rayonnement
d’une antenne rectiligne et plus généralement pour l’étude des champs 
électromagnétiques où l’une des coordonnées est rectiligne. Nous en
verrons plus tard des exemples.

De même qu’aux potentiels on peut faire correspondre le vecteur de 
Hertz électrique, aux anlipotenliels on fera correspondre un vecteur de

Hertz magnétique II' en posant

(O) v= — divir,

ce qui satisfait à la relation de Lorentz (3y). D’après (38) on voit
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que II' se propage dans le vide avec la vitesse c, c'est-à-dire que

I (i'2Jf
<0 0 -77- - "•

Enfin, d’après (36), les champs seront déduis à partir du vecteur II' 
par les formules

(44 )
t,, i '411'1. = rot-----—,

c ot
H = grad divJl'

>
i <P 11 

c- /it-
=■ rot rot H .

Les équations de propagation (4o) et (43) étant de même forme, 
chaque fois qu’on aura trouvé une solution de l’une de ces équations,

cette solution pourra servir dans le vide de vecteur II ou de vecleur II'. 

Si on l’emploie comme vecteur II, les formules (4 0 nous fourniront
—V

un champ électromagnétique E, II, solution des équations de Maxwell : 
on dira que cette solution est du type électrique. Si au contraire on

—V

emploie la même solution de l’équation (4°)-(43) comme vecteur II',

on en déduira par (44) im champ électromagnétique E', II' solution des 
équations de Maxwell et cette solution sera dite du type magnétique. 
Ces notions reviendront constamment dans la suite.

Nous avons, dans ce paragraphe, défini les potentiels et les vecteurs 
de Hertz dans le cas du vide, c’est-dire pour s = p. — i. mais, d’après 
un résultat démontré au paragraphe 1, il nous sera possible, dans tous 
les cas que nous aurons à étudier, de déduire les solutions valables 
pour s, des solutions obtenues pour le cas du vide.

Il est facile d écrire les formules précédentes sous une forme tenso- 
rielle. On pose

. v1 '4

avec

II n= II*, Ihi' 

et l’on trouve

A

tir, Il . Il . I I -J - II',. II M =— I

rotn
>-

i (411
c lit div II.

i (4 Y 
c lit

d i v A

;rad div U -

H rot
i dit

747

i iPll 
c- dt'

grad div II' -

>
i (411' 

rut - ,
c lit

i (4- II' 
c- lit- ’

équations qui résument les équations (3q) à ( 44
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o. Les fonctions U de Bromwich-Borgnis. — Nous aurons à utiliser 
•constamment une méthode de dérivation des champs qui a été notam 
ment développée par M. Borgnis ('). Elle s’applique au cas où les 
coordonnées curvilignes rectangulaires employées sont telles que :

i° l’on ail ei — i ; 2° le rapport 2 soit indépendant de la variable . Ces

hypothèses sont très souvent vérifiées dans les problèmes usuels.
Pour exposer la méthode, nous supposerons e = = i puisque nous

savons toujours ramener le cas e , p. pzé i au cas £ = p = i. Les équations 
de Maxwell s’écriront alors pour une onde harmonique avec l’hypo 
thèse e, — i,

(.Y>)

- ike. -"'=dt C:; K;; —
,)

0x7,,
e, IL.

ike i;* i —
r)

O.r
(. IL.:

1 — ike. "-i d
ÔX\

e., E,,

ike. *--k il,
<)

àxt
C;; H , |

- ike. "-k e, E-, -
d

7)x-,
IL.

ike K-. = —
<)x,

CW. 11.
<>

r)x.
H,;

ri
<)x \

ii . " -
,tx.

• II.
,)

<)x.
, 11 =

,)
, H,. -+-

ri
-----<
<)X,

K

O.

O.

Nous allons tenter de trouver une solution que nous appellerons 
solution du type électrique avec II, — o en posant

(46)
le i = k-2 11 -t- ,r- i

JxT

ii,=

U j . 1 r)’’ t
()X\ ÔXi 5 e:\ ()x\ f)x
ki à\J TT il: ()\ii - .
G?, <)Xz e-i ()x->

Avec ces définitions, on constate que les équations (45) de Maxwell 
sont satisfaites si U satisfait à l’équation du second ordre

<47)
<n y
7ïx\

i <) e:: c)( <) <)\j

e.e:1 ô.r-, e, ri.r-i (ix,, e, ()x•

(') Voir bibliographie [GJ. Le principe de cette méthode est dû à M. Bromwicli.



De même, si l’on cherche une solution avec E4 = o, on posera
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(4«)

| E', = o,

| ii', =_ A-ur (W 
<)x'\ ’

ik o\y
;e:1 f!x:

11 L ,)lV'
()X\ <)x« ’

ik <)\i'
- - — )e-, i/.r .
1 <n U'

«3 <)X\<)Xz

en intervertissant dans (46) le rôle du champ électrique et du champ 
magnétique. On constate que (48) est bien une solution de (45) si U 
est solution de l’équation du second ordre (4y) et l’on aura alors obtenu 
une solution du type magnétique.

Bref, chaque fois que l’on aura trouvé une intégrale de l’équation (47) 
on obtiendra par les équations (46) une solution du type électrique et 
par (48) une solution du type magnétique.

Si l’on compare les équations (46) et (48) respectivement avec les 
équations (4 1 ) et (44) du précédent paragraphe, on voit qu’elles présentent 
une parenté évidente si l’on identifie la fonction U avec la composante II, 
d’un vecteur de Hertz électrique et la fonction U' avec la composante 11, 
d’un vecteur de Ilertz magnétique, ces deux vecteurs de Hertz étant 
supposés n’avoir comme composante non nulle que leur composante 
d’indice 1. Cependant l’identification des fonctions U de Broinwich- 
Borgnis avec la composante d’indice 1 d’un vecteur de Hertz, dont les 
deux autres composantes sont nulles, doit dans certains cas être 
effectuée avec précaution comme nous le montrerons à propos des 
coordonnées sphériques.



CHAPITRE II.
PROPAGATION DES ONDES DANS LES GUIDES ÉLECTRIQUES.

1. Définition des guides électriques. — On désigne sous le nom de 
guides électriques (ou souvent sous le nom assez mal choisi de 
guides diélectriques) un tuyau rectiligne de seclion constante à 
l’intérieur duquel se propage des ondes électromagnétiques. Le plus 
souvent le guide sera limité par une paroi métallique dont nous 
supposerons pour l’instant la conductibilité si élevée qu’on puisse sans 
grande erreur la prendre infinie. Nous admettrons qu’alors le champ 
électrique de l’onde qui se propage dans le guide doit en tout point de 
la paroi être normal à celle paroi, sans quoi le champ électrique 
produirait dans la paroi un courant infini, ce qui est physiquement 
impossible. Nous avons là une condition aux limites pour le champ 
électromagnétique, condition dont nous discuterons le sens d’une façon 
plus approfondie au Chapitre IV.

L’étude du champ électromagnétique en propagation dans le tube 
pourra sc faire par la méthode de Bromvvich-Borgnis exposée au para 
graphe précédent. On prendra l’axe rectiligne du tube comme axe des ; 
qui jouera ainsi le rôle de la variable .zy de l’exposé général; dans les 
sections droites du tube, les points seront repérés à l’aide de deux 
variables x-, et .zy qu’on choisira de manière qu’elles soient adaptées à 
la forme de cette seclion droite. L’onde électromagnétique se propagera 
le long du tube : comme on peut toujours représenter la phase d'une
Il . c i[/.y V—/../'J , ,onde plane en propagation par un tacteur e ou K est le vecteur

de propagation dirigé suivant la direction de propagation et égal en 

longueur à — (>. longueur d’onde), on aura ici des champs électro 

magnétiques proportionnels à e',/''^/-') puisque le vecteur de propagation 
se réduira évidemment à sa composante z.
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La fonction U do Bromwich-Borgnis dépendra donc de z par ce 
facteur et l’on aura toujours

6>L 
<)x i

<)U - — ik-, U.

En portant ceci dans les équations (4b) du paragraphe précédent, on 
voit que, pour les ondes du type électrique en propagation dans un 
guide à l’intérieur duquel £ = p = i, on a

2) II,:
/:
k-

k
k-

II,. II-

Ccs relations absolument générales montrent que les champs électrique 
et magnétique transversaux sont perpendiculaires.

De même pour les oudes du type magnétique en propagation dans un 
guide où £ — p = i, on a, d’après (48) du précédent paragraphe,

H) K •• ' Il . K 'j II.. K- K

ce qui exprime aussi la perpendicularité des champs transversaux.
Dans un guide rempli d’une matière pour laquelle £ et p sont 

différentes de i, on obtient immédiatement à la place de (2) et de (3) 
par application d’un résultat général obtenu au Chapitre 1,

<>') 1L = - 'y IC, H:,= ~ li2, H, = o;

fi IJ J( IX
i3') 13,=-:- , l'i'r. = — K'=o.

Introduisons la notation
( -I ) 7.2 = k- — k'i.

L’équation de propagation (4;) du Chapitre I pour U donne, compte 
tenu de ( 1 ),

1 T à e, ÙU à e., éU T
(j ) - T ' — 1--------j— "_ T— -I- a- L — o ;

C, | e./', e:l <)x-, <)X\\ e-.i e./':; j

telle est l’équation dont il nous faudra dans chaque cas particulier 
chercher des solutions pour pouvoir en déduire les ondes du type 
électrique et celles du type magnétique. Les solutions obtenues devronl 
satisfaire aux conditions aux limites imposées au champ électrique sur 
les parois du tube et ceci ne permettra à la constante a que d’avoir 
certaines valeurs particulières «„ correspondant aux divers modes de 
propagation possible de l’onde dans le guide. Nous sommes ici en



présence d’un de ces problèmes de valeurs propres qui se rencontrent 
dans de nombreuses branches de la Physique et qui jouent, on le sait, 
un rôle tout à t’ait essentiel, dans les théories quantiques contemporaines.

Ajoutons encore une remarque intéressante due à M. Léon Brillouin. 
L’équation (5) montre que la constante oc- a les dimensions de l’inverse 
d’une surface; comme dans notre problème la seule surface qui inter 
vienne est celle de la section droite du tube, on en déduit la loi de 
siinilitu de suivante :

Se pour un certain guide électrique dont la section droite a une 
aire S, on a trouvé pour a une valeur possible (valeur propre) égale 
à a,n pour un a.utre guide géométriquement semblable au premier 
dont la section droite est S', on aura une valeur possible telle que

(G) %i s'= s.

2. Étude des guides à section rectangulaire. — Le cas particulier le 
plus simple que nous ayons à étudier est celui des guides à section 
rectangulaire. Nous emploierons pour résoudre le problème la méthode
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du paragraphe 1 en remarquant que dans ce cas, comme dans tous ceux 
qui seront examinés dans le présent Chapitre, la fonction U peut être 
immédiatement identifiée avec la composante s suivant l’axe du guide 
d’un vecteur de Ilertz, électrique ou magnétique suivant les cas.

Soit donc un guide dont la section droite est un rectangle de côtés a
l . in; Hifotii.ii:.
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et b. Nous repérons les points de la section droite par des coordonnées 
rectangulaires x et y.

Comme on a ici

(7) ( /s ~ — ( iX - d \ - —}— < / —• ~ e i = e-> = e- — i.

l’équation (5) a la forme

(8)
à* U
àx-

f)*U
dy- y-L = o

et l’on trouve Immédiatement un système complet de solutions en 
posant

(9)
t t Sin / Sin rU — Ix niv e.' cos cos

(le dernier facleui' représentant la propagation) sous la condition 

(io) -+- /«’- = x!.

De la forme (q) de U, on déduit les solutions suivantes pour le 
champ électromagnétique :

TiiT

C-' 1

ik-1

E,

{ E.,..

Kv= • ikz m

ll-= x- 

||r = —//,•- i 

H, = — ik~ ni

Type électrique :

S111 Ix
cos

sin
//?/>'. r. CCS •

11 - = o ;

C0? Ix 
sin

sin
mv. I,

CO S ■ u'=-e y

Ix
cos

CO s
nii . 1 \

— sin
"■-= l i:,

Type magnétique :

sin
Ix

cos
sin

mi', r. 
cos

t:: = o;

cos
Ix

sin
sin ,,

mv. r, 
cos '

n,

SUt Ix 
co>

cos
. m r. [\

— sin •
i il.,.

avec l’abréviation
( I 3 ) [i =

Nous devons, maintenant, imposer à nos solutions les conditions aux 
limites

j E: = E.c= o, pour y = o et y = b ;
pour x = o et x — <t ■= O;
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Ces conditions nous obligent à choisir sin Ix dans l’expression de Er et 
sin my dans celle de E, . De plus, il faudra avoir

n,\ - //•>“ .
( D ) l =----- 5 ni— —r- \n\ et iu entiers ).<( b

Finalement l’expression des champs sera

(iG) [ I

Type électrique :

Ho T.

Kv

. H\- . ......
sin -----x sin —— )'. la b ‘

.. n i " n \ ~ .ik------- cos ——• x sin —,— r. 1 ;a u b ‘
n-.>- . ti\~ n-i r.

tk- —r~ si n -----x cos —7— y . r ;b a b 1

H, ■ = ik
n>~ . n,

—— x cos —;— r. P a b "
//,- //,' . n*-

ik -----cos------x sin —r— r. Ia a t) •

( i

Type magnétique :

— 0 ; IC =- a- : COS n 1 - x COS
n-i~

Y.. p
a ~b~

n--> ~ //1 r. . "2“ -,.
11.,,=

fl\- . n \ ~ /f o T.
= : ik —— cos----- x sin —;— y. 1 : - -+- ikz -----  sin x COS _I_ y .p

b a b • a a b

= — ik
ti\ r. . /fi r. 

sin----- x cos —— y. r ; 1JV == h - ikz
n-> ~
-y— th ' x sin Y .1

a a b " b a b

avec la condition

(18) -j .'- = k-— k é
n-

On peut nalurellement multiplier les solutions (16) et (17) par une 
constante complexe C arbitraire dont la valeur dépendra des conditions 
de l’excitation.

Nous avons supposé qu’à l’intérieur du guide on pouvait poser 
£ = |j. = i, ce qui sera très sensiblement exact si le guide est rempli 
d’air. Si au contraire le guide était rempli d’une substance telle que s 
et \j. soient différents de 1, on devrait, dans les formules (16) et (17),

remplacer partout (’) k par k\jz\i., E par ^/sE et H par ypH. Nous ne 
prenons pas la peine d’écrire les formules ainsi obtenues. Chaque 
valeur propre de a dépend de deux nombres entiers n, et n2. Pour 
chaque couple de valeurs de ces nombres entiers, il y a une onde du 
type électrique et une onde du type magnétique ou, comme nous dirons 
plus brièvement, une onde (E) et une onde (H) pour chaque valeur

(l) Sauf, rappelons-Ie, dans le facteur 1\
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de k : ces deux ondes correspondent au même k-, c’esl-à-dire à la même

longueur d’onde A — ~ et à la même vitesse de propagation de la phase

(il,) \=Cy_:, C.

Cependant, si l’un des deux nombres nt ou n-2 est nul, l’onde (E) n’existe 
pas : en d’autres termes. les ondes (721, o) et (o. n2) sont uniquement 
du type magnétique.

Les formules précédentes permettent d’étudier en détails les diverses 
sortes de propagations possibles dans le tube. M. Léon Brillouin a 
montré que ces ondes peuvent être représentées par des superpositions 
convenables d’ondes planes. Il a aussi montré que la vitesse de 
propagation de l’énergie électromagnétique le long du tube a pour
valeur

( ?.o) c

Nous reviendrons plus loin sur ce résultat dont nous donnerons une 
démonstration générale pour tous les guides électriques.

La formule (18) nous montre que le guide ne peut pas transmettre 
toutes les fréquences. 11 faut, en elfet, que k- soit réel sans quoi la 
propagation s’accompagnerait d’un amortissement et,Fonde s’évanouirait 
progressivement. 11 y a donc pour chaque type d’ondes earalénsé par a 
nombres entiers n, et n-> une valeur minimum de /, compatible avec une 
propagation sans amortissement. Cette valeur définit pour ce type 
d’ondes la fréquence de coupure au-dessous de laquelle il n’y a prati 
quement plus de propagation. Si a l_^ b, la pl 11 s petite de ces fréquences 
de coupure correspond à

Cn in —■
a

Elle est égale à
C

( ^ '7min  -----e a

Celte fréquence minimum correspond dans le vide à la longueur d’onde

(?-!) >>111M= :>•«;

mais dans le guide la longueur d’onde correspondant à vmiM est infinie 
comme le montrent (18) et (19).

MM. Leigh Page et Adams (4) ont étudié la propagation des ondes

(1 ) Bibliographie [12 .
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dans des guides à section polygonale régulière et montré que les ondes 
du type (E) ne peuvent pas, en général, s’y propager et que les ondes 
du type (II) elles-mêmes n’existent que dans dos cas exceptionnels 
(section triangulaire ou hexagonale). Ces formes de guides ne paraissent 
pas avoir beaucoup d’importance au point de vue pratique, la forme de 
beaucoup la plus employée en dehors de la forme rectangulaire étant 
celle du tube cylindrique que nous allons maintenant étudier à la suite 
de nombreux auteurs.

3. Étude des guides à section circulaire. — .Mous allons étudier le 
cas d'un guide ayant la forme d’un cylindre à section circulaire de 
rayon 11. Nous compterons la variable s le long de l’axe du cylindre

PROPAGATION DES ONDES DANS LES GUIDES ÉLECTRIQUES. 9.1

x.

Fig. 2.

et nous compléterons le système de coordonnées cylindriques par les 
coordonnées p et y dans le plan de la section droite.

Avec ces coordonnées cylindriques, on a

( L> \ ) r/s - = r/z- : do--y z-riz-. c\ = e-j = [. e-— p

et, par suite, l’équaluon de la propagation de la fonction U est ici 

■i I ./ I i ol i ./ I _

et, quand on aura trouvé une solution de (20), on en déduira une onde 
du type électrique par les formules

i ■>.<> 1

K = /. I

11-.= O.

dM
T)A

d-l , PI
àz dp v s riz <)c
ik dl
P Pc'

et une onde du type magnétique par les formules

1

Il /. I P- I
~PP

!• il. dl,
V de ’

II PI

11 = - ik dl

II P l 
rJz Pc 'àz dp



22 CHAPITRE II.

1,’il)

Nous supposerons toujours que U dépend de z et de t par le facteur 
de propagation ei[kcl~k--z) et, suivant un procédé très usité en Physique 
mathématique, on obtiendra un système complet de solutions de (20), 
en posant

(28) U(-8; ?, t) = F ( p ) <!>( p ) eù<v' -M).

En introduisant (28) dans (20), on voit que (20) exprime (prune 
certaine fonction de p est égale à une certaine fonction de cp : ceci n’est 
possible que si ces deux fonctions sont égales à une même constante.

Pour que cela soit réalisé, il faut d’abord avoir ms, où m est

une constante; il faut ensuite que

(.21))
à'F
d7!

i éF 
?l ùpi

V = O , = v//.■-(— ki p = sep.

Quelles sont maintenant les conditions que la fonction U doilsatisfaire? 
Elle doit être évidemment une fonction uniforme et régulière de p, o, z 
à l’intérieur du guide. Or, pour qu’elle soit uniforme, il faudra prendre 
pour la constante m un nombre entier positif ou nul. Il faudra ensuite, 
pour assurer la régularité, choisir une solution de (29) qui soit, partout 
régulière à l’intérieur du cylindre. Or l’équation (29) est une équation de 
Bessel dont toutes les solutions, sauf une seule, présentent une singu 
larité pour p = o, c’est-à-dire sur l’axe du cylindre : la seule solution qui 
soit régulière partout même sur l’axe est la fonction de Bessel d’ordre m, 
J,„(p1) == Jm(ap). Finalement nous trouvons pour U les solutions accep 
tables suivantes :

(3o'i II = J,„l as') 1/1 0 ei!krl -MF avec a = J k-—V 1 - ,.Ai ’

De la solution (do), nous déduisons par les formules (26) 01(27), les 
deux formes d’ondes suivantes (à un facteur constant arbitraire [très) :

Type électrique :

F- = J ( a p )
sin , ,
cos

II; = 0 ;

Ep = -- ikz a J'„, (ap)
sin

m z . r, 
cos

IC = ik-- J,„ fa p')
p

cos 
. m z 

— Slll

E? = -- ikz — J,„(ap)0 ---
COS r-

■
SIM

ns = i'é-— ih a J Jufa 0)
sin

m z
DOS
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et
Type magnétique.

Ht = a- J„i(aP) s,n i>m v. 1\ 
cos K; =

H'p = - il-z * b/iCf)
siri

//> 0 . 1 . E', = A IJ'.. = - m t , x cos ...
ik — J,,/ (y. 0) — . mz A 

p v ‘ smcos

11* = —
., m . , cos k SLtl
ikz — J ( a 0 1

0 ■ ‘ ' - . mo. F.- sm
F/ — _ _ TT' — 

k a_
ik a J J;i(a p) mo . r

Dans eus formules, P désigne toujours le facteur de phase et,lm(w) la 
dérivée de Srn(u) par rapport à l’argument u.

Il nous faul maintenant introduire les conditions aux limites pour le 
champ électrique sur la paroi du guide, conditions qui sont ici

(33) 13. = K0=o. pour p = It.

Ces conditions nous donnent pour les ondes du type électrique (E„,)

(31) (j<H) = o .

et, pour les ondes du type magnétique (II,,,)

(33) ]),( s It ) = o.

Désignons par p1,"0, p.)"' , . . ., p;.'" , . . . les zéros non nuis successifs 
de la fonction J„,(u) et de même par vj'"', .... y" , ... les zéros non 
nuis successifs de J',„(«). Alors la condition (34) pour les ondes (Em), 
nous donne

ué'"-
( 3<W a = = a,ni.

et la condition (35), pour les ondes (Hm), nous donne de même 

(37) » = -TV- = a'mi-

On voit que, dans un cas comme dans l’autre, il existe une série 
doublement infinie de valeurs de a, chacune caractérisée par deux 
nombres entiers, pour lesquelles il y a propagation possible dans le 
guide. Donc pour une valeur donnée de k, c’est-à-dire pour une fré 
quence donnée, il existe toute une série de valeurs de À- possibles telles 
que

(38) /.: = /./• T‘- >; ou
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suivant que l'on considère les ondes (E) ou les ondes (II)- A chaque 
valeur de k-, correspond une longueur d’onde et une vitesse de propa 
gation de la phase dans le guide données par

(A)) k. \
k

,:TZ

On peut encore vérifier ici que la vitesse moyenne de propagation de 
l’énergie électromagnétique le long du guide est égale à

(■io) ■ -■ \

Les relations (38) montrent que, pour chaque type d’ondes, il existe 
une valeur minima de k au-dessous de laquelle aucune propagation n’est 
plus possible le long du guide qui se comporte ainsi comme un filtre 
passe-haut. Pour les ondes (E„(), la valeur minima de k est égale à

, , , , _ A"1 _ , \
{ I O 'unin —

correspondant à une fréquence et à une longueur d’onde dans le vide 
égales à
, , . , • .“. I!
( 1-0 vmin= -----rr J Amn\ — ----- —)’ “ 1 ‘ ' • t

mais naturellement dans le guide, la longueur d’onde correspondant 
à vmill est infinie d’après (38) et (3y).

Pour les ondes du type (Hm), la valeur de kmin est

()3) /'min— 1

où désignant par n le plus petit des vé"1. Mais ici, contrairement à ce qui 
se passe pour les p)"”, le plus petit des v;"': n’est pas v1,"*. En effet, on sait 
que l’on a

et, d’autre part, tous les Jm(u) sont nuis pour u -= o, sauf J„(o) qui est 
égal à i. Il en résulte que les courbes représentant J„ (u), J, (u) — — ,)'(l (u) 
et J\(M) sont disposées comme l’indique la figure 3.

Il en résulte que n = v']- En d’autres termes, et contrairement à 
l’attente, tandis que pour les ondes (E„t) l’onde do plus basse fréquence 
pouvant se propager dans le guide est l’onde (E„), pour les (II,,,.) c’est, 
l’onde (II,) et non l’onde (H0). Ce résultat met en évidence le caractère
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un peu singulier de l’onde (H„), caractère sur lequel nous aurons à 
revenir.

M. Léon Brillouin a fait d’intéressantes remarques sur le fait que la 
fréquence de coupure vmlI1 est plus basse pour (II.,) que pour (H,,). 11 a, 
en effet, comparé le problème du guide électrique cylindrique avec celui 
des vibrations sonores dans un tuyau cylindrique rempli d’air. Si l’on 
assimile la vitesse des molécules d’air au champ magnétique, les vibra 
tions dans le tuyau sonore sont tout à fait assimiliables aux ondes du 
type magnétique obtenues ci-dessus, les équations de propagation et 
les conditions aux limites étant les mêmes dans les deux cas. Mais, dans 
le problème acoustique, il n’y a pas de conditions de divergence nulle

analogues à celles qui existent en électromagnélisme, et ceci permet de 
prendre en acoustique des solutions avec oc = o, donc k — kz. On aura 
donc des solutions possibles avec par exemple pour la vitesse, des 
molécules

«; î n
( i-I ) c- = .1 (o'i m 5 Î>...............

' eus

où c est ici bien entendu la vitesse du son dans l’air. Mais les valeurs 
des J,„(o) et des J'n(o) montre alors que la seule solution de ce t-\pe 
non nulle et compatible avec les conditions aux limites s’obtient en 
faisant m o, ce qui donne

(40) (■; = const. e'/|W—r.,.= rv=o.

C’est là la solution habituellement considérée dans la théorie des tuyaux 
sonores cylindriques : c’est en quelque sorte la solution fondamentale, 
mais il existe une infinité d’autres solutions rentrant dans le type 
général (3a). Or dans le problème électromagnétique, les relations de
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divergence nulle ne permellenl pas de prendre y — o et par suite la 
solution fondamentale analogue à (46) n’existe pas. On voit donc que 
pour les ondes l’onde (H„) n’est pas la véritable solution fonda 
mentale, laquelle se trouve exclue par les relations de divergence nulle. 
On comprend mieux ainsi pourquoi (H0) ne joue pas (ont à fait le rôle 
qu’on attendait.

Pour préciser les idées sur la structure des ondes (3i) et (02), 
éludions celle de (E„) et de (Ho). Pour l’onde (E0), on trouve

(O,)
a'-J0(api,P. E, = + ikz a .1, ( a p ). 1’, ip = i/r a J, ( a p ). I\ 

' H.= Ks=ll0=o.

Le champ électrique dans la section droite est radial; le champ magné 
tique y est circulaire. Pour le champ (H0), on trouve la disposition 
inverse, car on a

(IL)
( H;=a'-J0(a 
I

).l’. 11, - i/c-o. J,(œ p ). 1 *, K
‘ 11, = e ,= ii- =

ika J, ( a p ). I*.

Dans la section droite, le champ magnétique est radial et le champ 
électrique circulaire. Les ondes (E,„) et (H,,,) pour m y> o ont une 
structure plus compliquée.

Toutes les formules de ce paragraphe ont été obtenues en supposant 
qu’à l’intérieur du guide cylindrique s = p. = 1. Si le guide est rempli 
d’une substance do constante diélectrique £ et de perméabilité magné 
tique p, on devra remplacer dans les formules (3i) et (de) k par /, y/sp,

E par \ -z E et II par yp H. Nous ne développerons pas l’étude aisée des 
formules ainsi obtenues.

Pour terminer, nous allons montrer que les ondes susceptibles de se 
propager dans le guide cylindrique peuvent être représentées comme 
une superposition d’ondes planes monochromatiques ordinaires. Pour 
cela, il nous suffira de prouver que l’expression

( J( a 0) e';*--'-**5’

peut s’obtenir par une telle superposition. Or considérons la direction 
définie par l’azimut <p„ et par l’angle 0,, qu’elle fait avec l’axe Os du 
guide. En un point de coordonnées x = p coso, y = p sino et 3, l’onde 
plane ayant cette direction comme direction de propagation pourra 
s’écrire

q ! /:[<■/—r; cosOf,—.v sin0o <'<>s£ ,—y siti0o sincp0j

ou
—c<:<is0o’ Q—ik sinOjp nis'ô cosç() : c. sin3 .
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Envisageons maintenant toutes les ondes planes de ce type dont les 
directions de propagation sont situées sur un cône d’axe Os et d’angle 
au sommet 0o; en les superposant, nous obtiendrons l’inlégrale-de Fourier

./ n( =„,! e 'lk ea-K,0,y

Si alors nous posons

( j.S; ,i< ç„) = e 1 '"'?»= e--""? e* (<•> = ç0 — ÿ)

avec /n entier positif ou nul, on aura l’intégrale

ou encore

en posant

(49)

^ g / [ A' psi lit?,,*-, isro ,-iik ,)1 e/w e-'-*'"? :c S'J«>

r g- i[ïpi-»K(,> e='"'? «*[*••/ -*5î:

/i: = 4 i.-tw 0«. * = 4 sin fl0 = \//r-— À-|.

Il suffit alors de se souvenir que dans la théorie des fonctions de Bessel 
on démontre l’nnportanle formule

(5<>) (:■./) J' g-tlto =

pour voir que la dernière intégrale est bien égale, à une constante près, 
à l’expression (47)- H en résulte bien que les ondes susceptibles de se 
propager dans les guides cylindriques sont représentables par une 
superposition convenable d’ondes planes monochromatiques homogènes 
du type usuel.

4. Étude du câble coaxial. — On nomme câble coaxial le dispositif 
formé par deux cylindres métalliques coaxiaux de ray ons R! et R2 servant 
à guider une onde électromagnétique qui se propage dans l’espace 
annulaire compris entre les cylindres.

Nous prendrons bien entendu des coordonnées cylindriques z, p, o. La 
fonction U devra donc encore être solution de ( 20 ) et de chaque solution 
acceptable de (20), nous déduirons encore une onde du type électrique 
et une onde du type magnétique par les formules (26) et (27)- Les 
solutions uniformes de (20) seront de la forme

(5l) U (s, p. ç, /) = F(p) H> p
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F(p) devant satisfaire à l’équation (29). Mais c’est, ici que le problème 
diffère du précédent. En elle!, ici, l’axe des ^ n’est plus compris dans 
le domaine de propagation de fonde, de sorte que nous n’avons plus à 
imposer à F(p) d’être régulière pour p = o, mais seulement d’être 
régulière pour Ri< p < fiF. Or le point p = o étant le seul pôle des 
coefficients de (29), toute solution de (29) est régulière pour pyè o et 
nous pouvons prendre pour F(p) une solution quelconque de (29). On 
obtient une telle solution en formant une combinaison linéaire de la 
fonction de Bessel Jm(pt) et d’une autre solution de (29) linéairement 
indépendante de J,„, par exemple la fonction dite de Neumann Km(p,).

Fig.

Naturellement la fonction Km a une singularité sur O-, mais cette cir 
constance n’importe pas ici. Finalement on obtient pour U les solutions 
uniformes et régulières dans le domaine de propagation

(5:0 F = [ A FK„,(ap)] p" m ? ( x2 = k1 — kl),

A et B étant deux constantes complexes arbitraires.
De (02), on déduit les deux types d’ondes suivants :

Type électrique :

y. [ A .1 m ( y.p ) -r~ lv/y, ( *?')] ; /-i/ioe1
ro<

, M; = o

— ikz -y [A.);/t(ap)-:- IÏK;^( *?)]
sin

ni 9.1 \
FUS

Il 0 = —

— ikz [ A J ( 10 ) -1- B K ( y. p ) 1
DOS

m z . 1 \
- <111

lls =

et
Type magnétique :

-j.- f A .T( sco) - • - l!K„, ( x? )J
MM

m 9

— ikz -j . [ UNfzrO-l- 1itK;,, 0?)]
Mil m 9

. //( ri(.
- ikz r \ A.I,„0) + 1 > 1' m (*?)] _ . H) Z , -III

F.- = o;

l'è
k
k. Mi;

k
k. Mi:
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•Kn(u) et étant les dérivées de J„, (w) etK,„(w) par rapporta la
variable u.

11 nous faut maintenant introduire les conditions aux limites sur les 
parois supposées parfaitement réfléchissantes du câble coaxial

(->'>) R: = Ks= o, pour p = U, et pour p = R2.

Pour les ondes (E,„) du type électrique, elles nous donnent

( lOj -V .t //i é I * 2 ^1 - r— R R 2 B , ) O. A,l,,y3cR2l -I— I > Ivi ü 1 » o ) — O.

Ces deux équations linéaires en A et B 11’admettent de solution non nulle 
que si leur déterminant est nul, ce qui nous fournit la relation

(5; ) J„i(*Ki) K„,(aH2)= Jm(aR2) K„,(aRi).

Les valeurs acceptables de a sont les racines .... a)'"1 ... de
cette équation transcendante. Si a = af‘\ il suffira de prendre

j...1> _ Ri)
■J'; t\m(a'/“)R,)

pour obtenir une solution acceptable du type (53).
De môme, pour les ondes (H,;l), les conditions aux limites (55) 

donneront

( 69) A JJ„(a Ri)-;- l!KJ„(ïli|) = o, \ J'(i( -j . H 2 - B ( a RA = 0,

d’où la condition
((m) a R.) K',„(a R-‘)= ■lm(aR->) R«i(aRi)

pour déterminer les valeurs acceptables ff. 
il suffira de prendre

< < > 1 )
B
A

(3;.mi. . . de -j ,. Si a = (3

pour obtenir une solution acceptable du type (54).
En résumé, nous avons ici encore pour chaque valeur de m 

(m = o, 1,2, . . .) une suite de valeurs acceptables (ou valeurs propres) 
de a. Par suite, à chaque valeur de m correspond une valeur de k égale 
à la plus petite des valeurs propres de a qui est la plus petite des valeurs 
de /» pour laquelle la propagation du type d’ondes considéré est 
possible. ( )n serait tenté d’en conclure, comme au paragraphe précédent, 
à l’existence d’une fréquence de coupure au-dessous de laquelle toute 
propagation le long du câble coaxial est impossible; en réalité il n’en 
est rien car pour le câble coaxial existe encore un mode de propagation
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qui n’existait pas dans le cas du guide cylindrique et qui correspond 
précisément à la vibration fondamentale dont il a été question à la fin 
du paragraphe précédent.

Nous obtiendrons la solution fondamentale en question en portant la 
forme (5i ) dans l’équation (20) et en supposant a - o. ce qui donne 
pour U

{61 ) 1 dU
? 4"

(iquation dont la solution générale sera

(c,:!) U = [Ae« + Sl" m z,
c‘,os

D’après (26), on déduit de la solution (63) l’onde du type électrique 

K- = o.

K p, = [ G p —1 — 1 > p
, sm

1 mo. 1';
cos

cost:- = [C?"' 1 - D p— 1 . /NO. l‘;
— S1 ! 1

k- Ks, lf3 = kz
"? = — k >•-? = - k

Les conditions aux limites (55) obligent à poser m — o et montrent en 
plus qu’il n’existe pas d’onde acceptable du type magnétique correspon 
dant à (63). Bref, on obtient ainsi la seule solution acceptable

<<») K. = IÇ = e'k"'' Il- = Mo = o. 1I?=IÇ.

On peut d’ailleurs vérifier sans difficulté par un calcul direct l’existence 
de cette solution des équations de Maxwell. La présence du facteur p au 
dénominateur dans Ep explique tout de suite pourquoi la solution (65) 
n’est pas acceptable dans le cas du guide cylindrique puisqu’elle 
comporte une singulatité sur O-, mais ici cette singularité ne nous 
gêne plus. Or toutes les fréquences peuvent se propager dans le câble 
coaxial sous forme d’onde du type (65), de sorte qu’il n’y a plus ici, à 
proprement parler, de fréquence minima au-dessous de laquelle la 
propagation est impossible (4).

(l) On trouvera une étude plus complète des ondes guidées dans une ligne coaxiale 
dans un article de MM. Goudet et Lignon (Bibliographie n° [191).



PROPAGATION DES ONDES DANS LES GUIDES ÉLECTRIQUES. 3l

5. Étude des guides à section elliptique et de la stabilité des ondes 
dans les guides usuels. M. Léon Brillouin a étudié la propagation 
des ondes dans les guides à section elliptique et s’est servi des résultats 
de cette étude pour aborder l’importante question de la stabilité des 
propagations dans les guides usuels à section circulaire. Nous allons 
donner un aperçu de ces problèmes.

Pour étudier les guides à section elliptique, on comptera toujours la 
coordonnée z suivant l’axe du guide et l’on repérera les points M(a?, y) 
de la section droite par des coordonnées elliptiques X\ et x2 définies 
par les relations

(()(’>) x = <! ch -C\ rusa;.), r = o?sli.'i’i siii.r..

Les lignes a?t-= const. sont alors données par

<“’> (.7É)'-(fe)’-"

Ce sont donc des ellipses dont les axes a et b sont égaux à

((18) a = il cli X\, b = (/i li.ri. = lhx<.
u,

La distance 2\J a-—b- des foyers est égale à 2d.
Les lignes const. sont des hyperboles et le système des

coordonnées Xi, x-i est orthogonal. On trouve

< (><) ) fis-= tl:-- h c y flx j 1- er, <!x\ avec e, = e.= tl çch-.t'i — v. 1. -.

La fonction 1J doit alors être solution de l’équation

(70)
'(.H cli*.-/:,

fp\: 
<)x 'f

U
üxl x-1 = O (/,■-- /4 = ay).

Si l’on pose comme d’habitude

U = <I>, (,T,).<I>i(.r2) =

on voit qu’une certaine expression dépendant de xt seulement doit être 
égale à une certaine expression dépendant de x2 seulement et ceci no 
peut avoir lieu que si ces deux expressions sont égales à une même 
constante IL On obtient ainsi les deux équations
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La seconde équation (71) appartient au Lype des équations de Mathieu 
et la première se ramène au même type en prenant ixf comme variable 
à la place de x.,. Les constantes y. et 11 doivent être les mêmes dans les 
deux équations et la valeur de R doit être choisie en fonction de a de 
telle manière que la solution soit périodique de période 2 7r en x2. 
Quand R est choisi de cette façon, la seconde équalion (7 1 ) admet pour 
solutions uniformes les fonctions de Mathieu

Ce, (x2’>. S e, < :c.,_ 1............. Ce,, f j. Sr „<.............

dont la forme dépend de la valeur du paramètre 7. et qui, pour a tendant 
vers zéro, tendent respectivement vers les fonctions

J. Rns.r.j. <in./c.............. r<>-//./.>. '■inn/c..............

Finalement, on a donc

Î
t’(c. .r,. xî} /)= Cf„ixs,i. P

ou

l (;. X|. Xj, /)= S«„(/X|) i.P.
M. Brillouin a donné un graphique -représentant les variations des 

valeurs de R en fonction de a2 correspondant à G e„ et à S e„.
La paroi du guide est définie par une certaine valeur Xt de la 

variable xx. Pour cette valeur de X\, les composantes E_- et E,, du 
champ électrique doivent être nulles : telles sont les conditions aux 
limites.

Pour les ondes du type électrique, on a

CF' K- : i'L 'F, ikz Ce,, , . Lc„
— ( /x, i , ( x.,). r

>‘\ ÏS <‘n ' Î5 f„

Les conditions aux limites conduisent donc à chercher pour quelles 
valeurs de 0. les fonctions Ce„(t’X1) et Se„(fX1) sont nulles. On trouve 
ainsi pour c/. deux séries de valeurs acceptables y.,. m et a, „ d’où 
deux séries d’ondes du type électrique qu’on noiera (Ec> „ ,,,) et (E,,„im). 
A chaque valeur propre de a, correspondra pour k un certain mode de 
propagation le long du guide et l’on pourra faire à ce sujet des remarques 
tout à fait analogues à celles qui furent faites aux paragraphes précédents.

Pour les ondes du type magnétique, on a

Ci) K - :
ik Ce;, 
e, Se’„

Ce,,
IX I ) . I X-i >. P

et l’on a à chercher les valeurs de y. qui annulent soit Ce,, (fXQ,
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soil Se',(/X|). On obtient ainsi deux séries d’ondes du type magnétique 
qu’on noiera (II,,, „) et II,

M. Léon Brillouin a calculé la valeur de x- en fonction du grand axe 
de l'ellipse de section quand on déforme cette ellipse en maintenant sa 
surface constante et ceci pour les diverses ondes E(), E, , Ec. , II0, II,,, 
H,. . II, et II, . Ils’ est servi des résultats de celle étude pour apprécier 
le degré de stabilité des propagations qui peuvent avoir lieu dans un 
guide cylindrique. Supposons, en effet, que deux des ondes étudiées 
plus haut se trouvent avoir la même vitesse de propagation quand la 
section du guide se réduit à un cercle, mais des vitesses sensiblement 
différentes dés que la section est une ellipse d’excentricité un peu 
différente de 1. Alors une des propagations possibles dans le guide 
circulaire sera inslablc car, dès qu’en un endroit la section de guide par 
suite d'un aplatissement accidentel sera devenue légèrement elliptique, 
l’onde en question pourra se scinder en deux ondes de vitesses diffé 
rentes. En somme, la stabilité des propagations dans le guide à section 
circulaire dépend de la manière dont peuvent varier les vitesses de 
propagation quand on déforme légèrement le tube. Pour résoudre 
rigoureusement ce problème, il faudrait étudier la variation des valeurs 
propres de x quand on déforme les frontières du domaine intérieur au 
guide : c’est là un cas particulier d’un problème général assez difficile 
dont la solution a été abordée par M. Léon Brillouin et à sa suite par 
M. Nicolas Cabrera; le développement de leurs méthodes doit permettre 
de résoudre l’important et difficile problème de la stabilité des 
propagations possibles dans les guides électriques.

Quoi qu’il en soit, la simple comparaison avec le cas du guide à 
section elliptique a permis à M. Brillouin de conclure que les ondes (E0) 
et ( 11„) du guide à section circulaire sont stables et l'onde (HQ presque 
stable : au contraire les ondes (E,) et (II,) seraient instables et 
probablement aussi l’onde (II;l). La stabilité de l’onde (Hn) qui avait 
été mise en doute peut présenter de l’intérêt pour la radiol.echnique car, 
nous le verrons plus loin, l’onde II0 possède la propriété remarquable, 
quand elle se propage dans un guide aux parois imparfaitement 
conductrices (ce qui est le cas de tous les guides réels), de correspondre 
à une perle d’énergie dans la paroi qui diminue quand la fréquence 
augmente. Néanmoins l’onde (H,,), bien qu’étant stable pour une petite 
déformation de la section du tube, pourrait ne pas être stable pour 
une courbure latérale du guide, pour un coude de ce tube. En effet, 
l’onde (II,,) a la môme vitesse de propagation que l’onde (EQ pour 
une meme valeur de /.', comme cela résulte de l’égalité de p.)11 et de vQ

i.. m: b  b  orti.i il
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(voir p. a5). Or, à l’endroit où le guide est coudé, la composante Es 
d’une onde (A(l) aura une petite composante longitudinale; cette 
composante sera cependant nulle dans le plan qui contient l’axe légè 
rement incurvé du guide, elle sera donc identique à la composante 
électrique longitudinale de l’onde ( Ei) ayant une ligne nodule dans le 
plan en question. 11 en résulte que le coude pourra transformer une 
partie de l’onde (H,,) en onde (E(). Si le guide présente plusieurs 
coudes, les effets de ce genre pourront s’accumuler à cause de l’égalité 
des vitesses de propagation pour (E,) et (H„). égalité qui maintiendra 
l’accord des phases nécessaire à l'accumulation. Les coudes peuvent 
donc être dangereux pour la stabilité de (il,,).

M. ilrillouin a aussi signalé un autre phénomène qui peut être gênant 
en pratique pour la stabilité des propagations dans les guides. La 
fréquence de coupure, est, en effet, rapidement variable avec la forme 
de la section du guide. Une onde de fréquence, très peu supérieure à la 
fréquence de coupure, peut donc se trouver complètement arrêtée par 
une portion légèrement déformée de ce guide.

On voit combien des questions intéressantes tant en théorie qu’en 
pratique sont soulevées par le problème do la stabilité des propagations 
dans les guides. Elles paraissent encore loin d’être toutes résolues (1 ).

(). Vitesse de phase, vitesse de groupe et vitesse moyenne de l'énergie 
dans les propagations guidées. — Toutes les propagations d'ondes que 
nous avons étudiées dans le présent chapitre sont toutes représentées 
par le facteur de propagation

( ÿ5) P = e'è'w ^~ avec k1 = />'; : v.-.

Chaque propagation possible est caractérisée par une des valeurs 
propres de la constante a correspondant au type de guide considéré. 
Pour une valeur possible donnée de 7, il correspond à chaque valeur 
de k une valeur de k- et une vitesse de propagation de la phase

Pour deux valeurs très voisines de /., mettons k0 et k„ 4- dk, nous aurons

f1) L'influence de la courbure des guides sur la propagation des ondrs a l’ait l'objet 
des études étendues de M. Mare .lou^uet ( bibliographie j 20!). Sur la t héorie de la per 
turbation des valeurs propres par déformation de la frontière et son application aux 
guides, on pourra consulter des notes de M. R. Gourtel [21 . La thèse de M. Nicolas 
Cabrera n’a malheureusement pas été publiée.
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deux valeurs très voisines de k-, savoir k°, et sensiblement k" + k dk.

Nous pouvons alors considérer la superposition d’une infinité d’ondes 
appartenant au très petit intervalle kn-> k° + dk. Celle superposition 
est nommée un groupe d’ondes et est représentée analytiquement par 
l’intégrale

PROPAGATION DES ONDES DANS LES GUIDES ÉLECTRIQUES.

(77) r l(k) —/':;1 flk = r >t ( £ ) e -X i fil QÎ'Kktf'i—kl

Le dei’nier facteur en dehors de l’intégrale est le facteur de phase 
correspondant à k„. Quant à l'intégrale, elle représente une amplitude 
fonction de l'argument placé entre crochets dans l'exposant de l’expo 
nentielle : il est évident que les valeurs de cette amplitude se déplacent 
en bloc le long de l’axe des 3 avec la vitesse u définie par la formule

La vitesse u est la vitesse de groupe correspondant à la valeur kn de k. 
Or ici nous avons

<)k- k 
-,/ /.

et, par suite, la vitesse de groupe correspondant à k est

l No u
k

<■

V

Les relations obtenues ainsi sont tout à fait analogues à celles qu'on 
rencontre en Mécanique ondulatoire. Dans celle théorie, en effet, on 
représente le mouvement rectiligne et uniforme d’un corpuscule de 
masses propre p.„ par la propagation d’une onde plane monochromatique, 
l’onde 'I1' du corpuscule. Cette onde peut s’écrire, en choisissant la 
direction de propagation comme axe des z, sous la forme

i N i) *1’ = A. erce—/■;.-)

avec

( *'• ) A2— kj = ;j .-,

où h est la constante des quanta de Planck. On trouve alors pour la 
vitesse de phase V et la vitesse de groupe u de l’onde W précisément les 
expressions (76) et (80) avec la relation bien connue

(S'I ) u\ = c-.
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Comme on admet que les corpuscules de lumière ou pilotons ont une 
masse propre nulle ou évanouissante, l’onde ’L du photon doit corres 
pondre à k = A;, c’est-à-dire à la propagation avec la vitesse c; ceci 
correspond bien à In propagation de l’onde électromagnétique dans le 
vide indéfini. Mais si l’onde électromagnétique est enfermée dans un 
guide, nous avons entre k et k- la relation (-5), où a est différent de 
zéro et doit avoir l’une de ses valeurs propres correspondant à la forme 
du guide utilisé. Tout se passe alors, au point de vue de la Mécanique 
ondulatoire, comme si le photon possédait une masse propre déterminée 
par la forme du guide et le numéro de la valeur propre a,- considérée.

On peut donc dire que dans un guide donné le photon possède toute 
une série de masses propres possibles et cet énoncé est extrêmement 
suggestif en ce qui concerne les développements de la théorie de la 
masse pour les particules matérielles.

Laissant de côté ces considérations qui nous éloigneraient, de notre 
sujet, nous allons définir dans un guide, à côté des vitesses de phase et 
de groupe, la vitesse moyenne de propagation de l’énergie v. Par 
définition, cotte vitesse sera égale au quotient du llux moyen de l’énergie 
électromagnétique le long de l’axe du guide à travers sa section droite 
par la valeur moyenne de l’énergie contenue dans l’unité de longueur 
du guide : cette définition est toute naturelle. D’après les formules (a/|) 
du Chapitre I, nous écrirons donc

/ î i K !2->-1 u i2 J,h
j -x >

V étant le volume de l’unité de longueur du guide et S la surface de sa 
section droite.

Dans un certain nombre de cas simples (guides à section rectangu 
laire, circulaire, etc.), on peut vérifier que la vitesse c est égale à la 
vitesse de groupe (do). Nous allons démontrer d’une façon générale 
que, quelle que soit la forme de la section droite du guide, cette égalité 
a toujours lieu. Nous développerons la démonstration dans le cas des 
ondes du type électrique, la démonstration se faisant d’une manière 
tout à fait semblable dans le cas des ondes du type magnétique.

Pour les ondes du type électrique, nous avons les formules suivantes :

(85)
E-= ?ùU, 

II-= O,

ikz ÙU 
e-, ôx-L

ik: ,)\
>7 77’

b
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U étant uue solution acceptable de l’équation (5). La relation à 
démontrer est la suivante

(«D ^l|.K\lt]5 + | K.Il* I- V (k= ^ Q !-V~|U ;M th.

et, en introduisant les valeurs de LL et IL, d’après (8.5), elle s’écrit 
encore

(<S; ) \ 'o 51 <<-- e -> + rh,

ou encore, d’après les valeurs des lé,.

( K,S ) r PT) PE
e\ <)./■■> <).!•■>

1 PL* PL
; 0./', p.r;.

Comme on doit avoir E.- — o sur la paroi du guide, U est nulle 
partout sur cette paroi d’après la première équation (85). En remar 
quant que l’on a

( N<J) <h = e->e:; rf.r-i </.r« ilz.

il vient aisément, en intégrant par parties le second membre de (88), 

. . f , , I P r, Pt P e, PI
/ • - -j— ------ e -------- - —

| i/.r-, e-, i/.r-, o.r e-, n.r:-]— — -r— H- e-, e-\ a2 L //.r-, it.ï-, r/z = o.

Telle est la relation à démontrer : or elle est évidente puisque U est 
solution de l’équation (5). Donc, quelle que soit la forme de la section 
droite du guide, la vitesse moyenne de propagation de l’énergie dans le 
guide est égale à la vitesse de groupe.

7. Conditions d’excitation et régimes transitoires. — Nous avons 
étudié les régimes stables de propagation qui peuvent s’établir à 
l’intérieur des guides diélectriques, mais sans nous préoccuper de la 
façon dont ces régimes peuvent s’établir. Il est évident que, pour que 
de telles propagations puissent s’établir dans un guide, il faut qu’il y 
ait quelque part dans le guide un émetteur d’ondes électromagnétiques. 
Ceci revient à dire qu’il doit exister en certains points à l’intérieur du 
guide des charges et des courants électriques. Nous aurons dans le 
guide une certaine distribution de charge représentée par la densité 
p(ai, y, 3, t) et une certaine distribution de courants représentée par la
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densité vectorielle i(x, y, z, t); les quantités p et « sont d’ailleurs reliées 
par la relation de conservation de l'électricité

<h ^-H- (I iv i o. ot(;)• )

En partant des équations générales
>

nous tirons

F(.r, .i-, ! i.

où F est une certaine fonction vectorielle supposée connue de x,v, z, t.
Maintenant il est facile de démontrer que si IJ„, et U„ sont deux 

solutions acceptables de l’équation (5) correspondant à deux valeurs 
propres dilférentes a.m et de oc, on a, entre U„, et LJ,,, la relation 
d'orthogonalité

où ‘s? désigne toujours le volume de l’unité de longueur du guide. On 
démontre la formule (qj)en écrivant l’équation ( 5 ) pour U„ et l’éqmil ion
complexe conjuguée par LJ*,, en multipliant la première de ces équations 
par LJ*, et la seconde par U„, puis en soustrayant la première relation 
ainsi obtenue de la seconde et en intégrant dans CV. Nous admettrons de 
plus (pie les fonctions Um [fonctions propres de l’équation (f>)|, dont 
nous avons plus haut calculé la forme exacte dans certains cas parti 
culiers, forment un système complet, c’est-à-dire qu’une solution 
acceptable quelconque de l’équation (5) peut toujours se représenter 
comme une somme de fonctions U,„.

Ceci posé, de la fonction U,„, nous pouvons dériver un champ
----->-

électrique E1"0 qui appartiendra soit à une onde du type électrique, 
soit à une onde du type magnétique; désignons par E/" les trois

composantes de E1 "ù dans le système de coordonnées curvilignes
orthogonales utilisé. En employant les formules qui permettent de

dériver E m) de Um et en inLégrant par parties, on voit aisément que (9 j ) 
entraîne la relation d’orLhogonalité

(n /H ),
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valable aussi bien pour les ondes du type magnétique que pour celles 
du lype électrique. De plus, le caractère complet des U,„ permet que. 
pour une onde quelconque se propageant dans le guide, on puisse poser

k , = ^ (:„,(<) K)"'1,

où les C,„(/) représentent les degrés d’excitation des ondes corres 
pondant aux Los Cm sont indépendantes de l’indice i et sont
généralement fonction du temps en raison des phénomènes d’émission 
(ou d’absorplion) qui peuvent se produire dans le guide par suite de la 
présence de charges et de courants.

Portons (96) dans (q3) et tenons compte du fait que l’on a

,)V.
( I —— -- ikc AF. = — k '- F

<)( ' • '

lïn désignant par un point la dérivation par rapport au temps, nous 
obtenons

m

Multiplions celte équation par El"'1, sommons sur i de i à h et intégrons, 
il vient

1

avec la notation

........ i N„ = fy\ | F;'o p ,h.
, A’ t i

1

Comme le second membre de (99) est calculable d’après les données, 
celle équation nous permet de suivre les variations de C„ au cours du 
temps à partir de conditions initiales données telles que par exemple

<;h Oj = <C(o) = o.

L’équation (99), qui s’applique aussi bien aux ondes du type magné 
tique qu’aux ondes du type électrique, contient toute la théorie des 
régimes transitoires et permet de voir facilement quel dispositif on doit 
employer pour exciter telle ou telle onde dont la propagation est possible 
dans le guide.

"Nous allons étudier comme exemple le cas très important où l’émission
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des ondes dans le guide est due à un oscillateur harmonique de fré-

quence v(l. Dans ce cas, les fonctions p et i sont proportionnelles (en 
notation complexe) à e-mVo' e,/]°cl et l’équation (pp) s’écrit alors

où bu est une constante calculable à partir des données. L’intégrale 
de (io i) est

( ro ' ) C„(() = Ki e--i/{r,-h Ki— ^i t ehh„-k,,-i_

où K, et Ko sont des constantes arbitraires que nous choisirons de 

façon à satisfaire aux conditions initiales C„(o) _- C„ (o) = o, ce qui 
donne
(Io3) '*<'> = if=r&i*-- Tkibnr)i'-e

Pour k voisin de A„, le premier terme est prépondérant : si k tend 
vers k0, ce premier terme devient séculaire tandis que le second reste 
périodique.

Pour l’onde caractérisée par l’indice a, la quantité d’énergie électro 
magnétique est évidemment proportionnelle à j C„ |2. Calculons donc 
cette quantité en laissant de côté le terme périodique; on trouve

(mi) . Kù.Of-
b„

(/M,m k)-
\ — ■> cos<” /«n — /.' 1 cl

( kn — k V-
\ bn - si n -1' /, (l—l )cl 

\ i , -, k )- I, /. „ /. - )

Si n(k) dk désigne le nombre des ondes pouvant se propager dans le 
guide pour lesquelles k est compris dans un intervalle k rk-\-dk, 
l’énergie totale du champ électromagnétique sera de la forme

( mVi \V„ = consl. j i C„(t) n(k) dk

r'- sin-é/■„ — /■ ) et
= cmist. / .------- 7—, h„ -mk\dK.

J„ + kp (k,, -- kp

Pour des valeurs croissantes de t, les valeurs de k qui dans l’intégrale 
contribueront sensiblement au résultat se serreront de plus en plus 
autour de k„. Au bout d’un temps d’excitation égal à At. les seules 
vibrations électromagnétiques réellement excitées seront celles qui 
seront contenues dans un intervalle spectral :
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Colle formule est analogue à une formule bien connue en Mécanique 
ondulatoire sous le nom de qnalrième relation d’incertitude d’IIeisenherg.

Pour l très grand, on aura donc sensiblement pour l’onde [n) de 
fréquence /. n

\V„ ( / ,1 = COIISI . si n-( /, ,, - - k ')d
//,- Colis!■'/ s m-./;------ //./;,

x"-

w „ croit donc proportionnellement à l. Comme l’onde émise par l’oscil 
lateur occupe à l’inslant l le volume Scé où S est l’aire de la section 
droite du guide et e la vitesse de groupe avec laquelle se déplace le front 
d’onde, on voit que la densité de l’énergie électromagnétique pour

l’onde n égale à ~ devient uni* constante quand l’état de régime est 
établi.

Vu début de l’excitation, les ondes de fréquences sensiblement dilfé- 
renlos de sont aussi excitées. Ceci correspond au fait que l’onde émise 
dans le guide par un oscillateur a un front d’onde qui se propage en 
s’éloignant de l’oscillateur avec la vitesse v : une telle onde limitée par 
un Iront d’onde ne peut pas être monochromatique, elle doit être 
formée par une superposition d’ondes monochromatiques telle que si Al 
est à l’instant At la longueur du train d’ondes, on ait

à]
( i oS ; A ( - J A/ ~ - _ ou Av A/ ~ - _ ,

où Av est la largeur de l’intervalle spectral représenté dans la super 
position. Or ou a ici

ol
( i o«i ) A/ = i'A/, -- =

et nous sommes ainsi ramenés à la relation (106).
Les formules du présent paragraphe permettent donc, en principe, 

de suivre en détail les étapes de l’excitation des ondes dans un guide 
électrique par un oscillateur placé quelque part dans ce guide (' ).

I1) La propagat ion d’une perturbation brusque dans un guide a été étudiée par 
M. Maurice Cotte. MM. II on ri Gutton et Jean Orlusi ont fait diverses études sur les 
ondes électromagnétiques guidées et sur leur filtrage (voir bibliographie [221 à [‘25G.



CHAPITRE III.
ÉTUDE I)K Qlj K KO IJ K S PROBLÈMES I)K VIBRATIONS PROPRES.

1. Problèmes de vibrations propres. — Soit une cavité fermée limitée 
par une surface métallique parfaitement conductrice. Dans cette cavité 
peuvent s’établir des états électromagnétiques stationnaires qui cons 

tituent les vibrations électromagnétiques propres de cette cavité. Chaque 
fois que les conditions d’application de la méthode de Broimvich-llorgnis 
seront remplies, on pourra obtenir par son application toute une série 
de vibrations propres du type électrique et toute une autre série de 
vibrations propres du type magnétique.

Le problème général de la détermination des vibrations propres est 
très compliqué dès que la cavité n’a pas une forme simple. Mous 
n’étudierons ici que quelques exemples particuliers qui présentent un 
inlérèt assez grand pour la radiotechnique des ondes très courtes.

Tout d’abord, nous traiterons quelques problèmes dont la solution 
s’obtient immédiatement à partir des Calculs du chapitre précédent. 
Considérons, en effet, un guide électrique et. limitons-le par deux parois 
conductrices perpendiculaires à son axe et situées à une distance / l’une 
de l’autre, on aura ainsi constitué une cavité fermée dont il est facile de 

lion ver les vibrations propres si l’on a préalablement déterminé les pro 
pagations '-possibles dans le ty pe de guide considéré. Ces propagations 

sont représentées par le facteur

( I I I’ = g'i'" / •*= = )

qui correspond à une propagation dans le sens positif de l’axe des S: En 
changeant /, - en on obtient donc une propagation dans le sens
négalif de l’axe des ; et, en superposant les deux ondes se propageant en 
sens inverses, on obtient une onde stationnaire dépendant de s par un
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facteur de la forme k:z. En écrivant que le champ électrique de

l’onde est normal aux deux parois extrêmes (dont on peut toujours 
supposer les abscisses égales à s = o et à ; == l), on achèvera de déter 
miner les ondes stationnaires possibles qui seront les unes du type 
magnétique, les autres du type électrique.

Après avoir étudié cos problèmes simples, nous étudierons deux pro 
blèmes un peu différents.

2. Vibrations propres d’un parallélépipède rectangle. — En opérant 
sur le guide à section rectangulaire comme cela a été indiqué au para 
graphe !, on obtient une enceinte parallélépipédique d’arêtes a, b, l.

Pour trouver les ondes stationnaires de cette enceinte, on partira dos 
formules (16) et (17) du chapitre précédent que l’on combinera avec les 
mêmes formules où l’on aura changé k- en —kz de façon à faire

apparaître les combinaisons k-z. Puis on choisira celles de ces solu-
1 1 COS '

tions qui satisfont aux nouvelles conditions aux limites

(2) K r = r.,-= . pour 3 = o cl ; = /.

On est ainsi amené à choisir dans les expressions de E.r et de E, le 
facteur sin/r-c et de plus à poser

(3) /,, = i /o, entier ).

Posons pom1 plus de symétrie

(■o

Pour les ondes du type électrique, nous obtiendrons

(5)

; eu„ /_

; e'1'1'.

IC- = ( k’1 — v i] ) siny 1 x >in y^ ) ■cos■

1èr = — Va Y i cos y \X si 11 y g Y Mil ■
K v = — Ti si (i y i x 00s y^ Y s i U '

IP — 0.

If, .= ik-;. si 11 y i x cos y-> _) CMS •

II, ■ = — ro*y 1 x sin *y- Y Cos

Nous voyons aisément que les ondes de ce type correspondant aux 
ensembles de nombres entiers (o, o, o), (o, o, 1 ), (o, 1, o), (1, o, o),



ÉTUDE DE QUELQUES PROBLÈMES DE VIBRATIONS PROPRES. 45

(1,0, i) eL (o, i, i) sont milles. L’onde stiilionnaire de pins basse 

fréquence correspond à (i, i. o),
On calculera les fréquences en remarquant qu’en vertu de la for 

mule (18) du Chapitre précédent, nous avons ici

Pour les ondes du type magnétique, on trouve de même

; IC = o.
1 K.,. = — ik-;-i cos‘,'1 x sin ‘;-, y si» s eikr'- 

F.,- = //>■■; i si11 7i x cos-'^r si» z eikrl ;

II; = i k! — 7 3 ) cos y l  x co s 72 r si n 7 :l ; eikrl,
11,.— — 71 si n 71 x cos y3y cos 7. g  e '/: ■ ';.

IIv = — 7-7•> cosy,x sia 7.7 cos7- s eikcl.

Ici les ondes de plus basse fréquence correspondent à (1,0, i ) et 
à (o, 1, 1), les fréquences étant d’ailleurs toujours données par la for 

mule (6 ).
On voit d’ailleurs que les ondes (o) et (7) font jouer un rôle particulier 

à l’axe des ^ en raison même de la façon dont elfes sont obtenues. En 
raison du rôle symétrique des trois arêtes du parallélépipède, on 
obtiendra d’autres ondes stationnaires en permutant le rôle des axes

•o y, z-

3. Vibrations propres du cylindre circulaire droit. — En limitant un 
guide à section circulaire comme if a été indiqué au paragraphe I, 011 
obtient une cavité en forme de cylindre circulaire droit.

Les ondes stationnaires s’obtiennent en partant des équations (3i) 
et (3a) du Chapitre précédent que l’on combinera de façon à faire

apparaître les facteurs ' kzz. Puis on tiendra compte des nouvelles 

conditions aux limites

f 83 ^ K- = K0 = o, pour 3 = o cl ; = /,

ce qui conduit à choisir sin/,7; dans les expressions de E_ et de et 
de plus à poser

(n entier).
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Pour les ondes du type électrique, on trouve ainsi

(10)

avec

00

E- = y- J,„(>?) cos nz z ..
. ni z co? —i— ellrkMil ‘ l■

Ep = — fl Z
a T •i ™0? »

COS
S J11 ni z M II

nz z
l

eitr

K n ni z
J nt ( )

— si n
ni z

n z z „ f
i? cos t

IL = u,

H? = —
i k ni

J m ( 7.? ) siu
m z cos

nz z P//'
? — cos t

11. = — i h y j;„('7?) cos
Mil

m z cos
nz z etkr

K- /-

/

où p./" est toujours le zéro non nul de la l’onction .
Chaque onde stationnaire est caractérisée par trois nombres («, ni, i). 

L’onde de plus liasse fréquence est l’onde ('o, o, i ), cotte vibration 

stationnaire, dont le champ électrique est longitudinal et dont le champ 
magnétique est circulaire, correspond à une oscillation électrique 
s’eflectuant le long des génératrices du cylindre et peut se comparer à la 
vibration d'une antenne en denn-onde ou d’un condensateur circulaire. 
Pour les ondes du type magnétique, on trouve de même les formules

OO

avec

03)

i
!

IL

<

i k m
•L„Op;

'•III n z z= ------ /// ^ '•III ~reP --  CO?

— i k y. ^ m 1 y? )
COS n z zni z "111 
'■m ~rtil

J m ( Z? )
CO? n z z= y- m z "in —-— e'Mil /

n z
J/// ( 2 P

CO? n z z
= 7x m z co«i ---T' e'"in

n ni z
• ■! m ( Z-? )

— - i 11 n z z
/? m z c< »" 

co? — «■

yr. ,__ y,.., + _r _ _ H-~-

où v;.'"' est toujours le zéro non nul de la fonction J' .
Ici encore chaque onde stationnaire est caractérisée par trois nombres
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entiers (//., in, i). MaiuLoiiiint l’onde de plus basse fréquence est 
l’onde (i, i, i ). L’onde ( i , u, i) a une fréquence plus élevée 
( parce que ~j “ v); (die a son champ électrique circulaire et son 
champ magnétique longitudinal sur l’axe et elle correspond à un oscil 
lateur électrique s’effectuant le long du contour des sections droites du 
cylindre; on peut la comparer à la vibration d’un solénoïde à spires 

jointives.

i. Vibrations propres du tore à section rectangulaire. — Nous ne 
nous attarderons pas à discuter les vibrations propres du cylindre ellip 
tique, que l’on |)ourrait aisément obtenir à partir do la théorie esquissée 
au paragraphe .'> du Chapitre If. Par contre, nous appliquerons les con 
sidérations du paragraphe I du présent Chapitre au cas du câble coaxial. 
Or, eu limitant un câble coaxial aux deux bouts, on obtient un tore à 
section rectangulaire ; nous allons donc chercher maintenant les vibra 

tions propres du tore à section rectangulaire.
11 ne nous est pas nécessaire d’écrire explicitement les lormules 

donnant dans ce cas les champs électromagnétiques des ondes station 
naires |)our le type éleelrique et pour le type magnétique. 11 résulte, en 
elfel, de notre étude antérieure du câble coaxial, que l'on passe du ces 
du cylindre circulaire à celui du câble coaxial en remplaçant dans les 

lormules obtenues pour les champs dans le premier ras la fonc 
tion .) ( ao ) |>ar la combina i.son linéaire AJm ( ocp ) H- BK„, (»o). Il suffira 
donc de faire le même changement dans les formules (io) et ( 12) pour 
obtenir les ondes stationnaires du tore à section rectangulaire, les côtés 
du rectangle de section étant l et R2—11, où lu et Fb> sont les rayons 
des deux cylindres du câble coaxial.

Pour les ondes du type électrique ainsi obtenues, on devra prendre 
pour oc au lieu de la valeur ( 1 1 ) une des racines de l’équation transcen 

dante
i 1 \ 1 .1 ,„i a I ! 1 ) 1\ m ( 7. Il j ) = .1 1 7. IV ) lv,„ ( 7 H 1 ).

comme cela résulte immédiatement de la théorie du câble coaxial. Si 
oc"' , oc'" , . . . sont ces racines, la fréquence sera donnée par la formule

Ici encore, chaque onde stationnaire sera déterminée par trois nombres 
entiers (/<, ni, i). L’onde de plus basse fréquence sera l’onde (o, o, 1 ), 
elle correspondra à une vibration électrique comparable à l’oscillation 

d’un condensateur annulaire.
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Pour les ondes du Ljpe magnétique,, on devra prendre pour a, au 
lieu de la valeur (i3), une des racines de l'équation Iranscendanle

(iO) J;„(a Ki ) IL) = y,„i' -j . IL) K’„,' y. !i i i.

Si p/"1, pi"'. . . sont ces racines, les fréquences seront données par

0 7 J />•-- + 31-= ;q. h -----—•

Chaque onde stationnaire sera définie par trois nombres entiers (n, m, i). 
L’onde de plus basse fréquence sera l’onde (i. i, i). L’onde (t, o, i) 
aura une fréquence plus élevée, elle peut se comparer à l’oscillation de 
deux solénoïdcs coaxiaux.

5. Vibrations propres du tore à section circulaire. — L’élude des 
vibrations propres du tore à section rectangulaire nous amené tout

naturellement à penser aux vibrations propres du tore à section circu 
laire. Mais c’est la un problème beaucoup plus compliqué dont nous 
ignorons si la solution rigoureuse, qui ne peut plus .s’obtenir comme 
pour les problèmes précédents, a pu être calculée.

On obtiendra une solution approximative du problème de la façon 
suivante : on considérera le tore comme obtenu en incurvant un cylindre 
droit de façon que son axe prenne la forme d'un cercle et que les deux 

bouts se rejoignent et l’on tentera d’utiliser les solutions obtenues poul 
ie guide à section circulaire.

Pour appliquer celte méthode, nous repérerons les points des sections 
méridiennes circulaires de rayon 11 du tore par des variables polaires p 
et o. La position d’une de ces sections méridiennes sera repérée par son 
azimut G autour de l'axe de révolution du tore. Le lieu des centres des



cercles méridiens esl un cercle de rayon a le long duquel nous repérerons 
les points à l’aide de la variable ; = a0.

Pour appliquer la méthode approximative, nous partirons de l’expres 
sion des ondes dont la propagation est possible dans un guide à section 
circulaire (1e rayon R en posant, dans les formules z = a0. Nous combi 
nerons ces expressions avec celles qu’on obtient en changeant kz en — kz

de façon à faire apparaître les ondes stationnaires en kzz = '"/.gctO.

Nous aurons à exprimer que les champs électromagnétiques sont 
donnés par des fonctions uniformes à l’intérieur du tube, ce qui nous 
fournil la condition
/ / . il(|N ) i> z'< ~ — n - ou /»•- = < n entiers i.

Voici les formules que l’on obtient ainsi pour les ondes du type 
électrique :

ÉTUDE DE QUELQUES PROBLÈMES DE VIBRATIONS PROPRES. 4g

Ktt = Z'1 ■! /»(*?
Mil

) m z
ros

SI II . . ,
n \) elk< '

rusl ""

" r ■■ 
a

.-in
m z * ! n U eikr/.

-ni

( I(j)
t:., = 

/ •

n m
----- .!/„( *pa p

) ' V m z
-m

1 il 0 e’kr! ;
S 1 II

i Hrj = o.

n, - ikm _
------- —•>///(

— ro<
. m z

-m
sin f ., , 

n 0 elkr/.

n, = — il a \'/n ( ap
sin

m z
-in

n0
ni-

avec

( ‘>ü )
iAn)’JÀ

OT’ /ï = a - n- k\ =
P'"" n‘-

R- ^ ‘

l)e même on obtient, pour les ondes du type magnétique

O = O.

K, = i/éin
*p.

— ro-
. m z 

-ni
sin , ., .

n 0 e/kr\

F... = //ta .1 i ap )
si n

m z
nos

-in . .. ,
n 0 e>krl ;

r< i-

Us - a- J m{ ap
-in

m z
f‘U-

;;%o e^.v/;

Uï = n -
J"‘(^

-i n
m z ' *. u 0 eikr/.

SI II

(1- = nm
----  J/?/(ap

--- Cil'
. M Z . /i f)e/k<‘:\

i.. DK nnotiui:.
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avec

Il importe maiuleuant devoir dans quelles limites ces solutions approxi 
matives peuvent être utilisées. Or il est évident qu’elles supposent que 
sur une longueur égale à plusieurs fois la longueur d’onde de la propa 

gation, le tore puisse être confondu avec un cylindre droit; ceci exige 

que l’on ail

A „

Il faut donc que n soit grand par rapport à l’uni té. Seules les vibra 
tions d’ordres supérieurs pour lesquels il y a un grand nombre de nœuds 

et de ventres des champs le long du tore sont correctement représentées 
par les formules précédentes.

La solution rigoureuse valable pour tontes les valeurs de n, qui 
pourrait présenter un intérêt pratique en Radiotechnique, exigerait, des 
calculs compliqués et ne sera pas recherchée ici.

0. Vibrations propres de la sphère. — Un problème intéressant est 
de déterminer les vibrations électromagnétiques propres de la cavité 
intérieure à une sphère métallique supposée parfaitement conductrice. 

La méthode de Borgnis s’appliquera encore ici. On posera

(l >4) ./O r. a . 0. / o. t/s - = f/r--4- r- e/U- r- -111’ U ,/o-.

en prenant des coordonnées sphériques autour du centre de la sphère. 

On aura donc

(■>/>) e’, = l. e>—f\ A;; = r ~i II U

et les conditions nécessaires pour l’application de la méthode de Borgnis 

seront satisfaites.
L’équation { \~]) du Chapitre I qui définit la loncliou 1J prend ici la 

forme

( a*')
<n u 1 r,) . ( du <) _i_ <n_ 1 k,y
àr- + /■- suit) f/l) 111 1 dû ' do ~i 11 f) do |

Les ondes du type électrique sont définies par les formules

0-7)

H,/. -1 +

II,.= o.

, r- u
dï^o

1 ,r- u . __ __ d-1 ; _
r <ir dU ’ Y r h  11 U d/1 do ’

Ho
__ 4_ dl.
r 'in U do

. /. dU
‘ r dO ‘
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De même, on a, pour les ondes dn type magnétique,

( :'S)
iu =

/■ si il 0 àr t)z,

k ,tL é 
r ’ 

i ,)• L

Dans Ions les problèmes traités jusqu'ici, la fonction U pouvait consi 
dérer comme la composante z d’un vecteur de Hertz [vecteur de Hertz 
électrique pour les ondes du type (E), magnétique pour les ondes du 
type (H) |. Ici l’inspection des formules (27) et (28) montrent quel] est 
assimilable à la composante radiale d’un vecteur de Hertz dont les 
autres composantes sont milles. Toutefois ce vecteur n’est pas, dans le 
cas actuel, tout à fuit défini suivant le schéma développé au para 
graphe 3 du Chapitre I. Montrons-le pour le cas des ondes du type 
électrique, des considérations tout, à fait, analogues s’appliquant au cas 
des ondes du type magnétique.

-V
Soit II un vecteur de Hertz n’ayant comme composante non nulle que 

la composante II,. D’après le paragraphe 3 du Chapitre 1 nous devrions
poser

(U)) A,-= —r~ 1 A~ = Af)=o. N = — div II = — —r— + - II,- ■' ' <: i)l ‘ P ür r

Or les formules (27) et (28) correspondent aux définitions suivantes :

<>\\r , . v élC . -7I )ll ) \ , ■ = --— , A - — A lj = O. V = -- —-- /: --  cil v II.
r <)l • <)r '

et ces définitions, contrairement aux définitions (27), ne satisfont pas à 
la relation de Loreutz entre les potentiels. Rien n’empêche cependant 

de les utiliser, mais alors comme cela résulte de la formule (32) du

zi 1 ' 1 1 I f)~ V , 1 • 5(jhnml.re I. on n'aura nas---------- AA = o o.l nar suite, on 11 aura nas

dans l’équation de propagation de LJ = 11,. Or il se trouve qu'avec ces 
termes supplémentaires l’équalion en U prend la forme (26), forme plus 
simple que celle qu’elle prendrait si ces termes supplémentaires n’exis 
taient pas : il y a donc avantage ici, comme nous l'avons fait implici 

tement en suivant la méthode de Borgnis, à adopter les définitions (80) 
plutôt que les définitions habituelles (ai)).

Cette remarque faite, reprenons l’application de la méthode de 
Borgnis eu cherchant, comme d’usage, une solution de l’équation ( 26)
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qui se présente comme le produit d’une fonction de 0 et de 9 par une 
fonction de r et qui soit régulière et uniforme dans toute la sphère. En 

portant la forme U = F1(r)F2(0, s) dans l’équation (5), on voit une 
fois de plus qu’une certaine expression ne dépendant que de r doit être 
égale à une certaine expression ne dépendant que de 0 et 9 : ceci n’est 
possible que si ces deux expressions sont égales à une même constante y 
eL l’on obtient ainsi

(30 I ') ^ flét0 
>i n 0 éü <Hï

1 <LF
sin-0 <)z-

= o. /■-—----------- h- /■
t)r-

T F, = <>.

Il est bien connu que la première équation n’a de solutions partout 
régulières en o et 0 que si l’on a

( 3'> ) y = /«(/t-i-l) < II = o. I, •>. ... )

et, si y a l’une de ces valeurs, l’équation a comme solutions régulières 

et uniformes en 0 et es les fonctions de Laplace Y„.m(0, 9) donnée par

S I 11
(33) 5 „.,«(&, ?) = ’ . (.-(isO; 1/irLiii.

Les P"'(cosO) sont des polynômes associés de Legendre qui se 
déduisent des polynômes de Legendre ordinaire P*(cos(J) par la formule

(34 "1 lO'ieosO) sin"' 0 <(m I’„( cosd ) 
(//rus O)"1

Les fonctions de Laplace forment d'ailleurs un système complet de 
fonctions orthogonales sur la sphère de rayon 1.

Lorsque y aura l’une des valeurs propres (3a), la seconde équation (3i) 
s’écrira

Posons

(3G) F 1(7')= \ r f(r ), u = kr ;

/,s- ■ l)

il vient

(37)
, 1 r!f_

r/'1 II U l/ll f f).

C'est encore l’équation de Pessel et la seule solution de cette équation 

qui reste régulière pour r = o est la fonction de Bessel .1 , (a). Finale 
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ment nous obtenons comme solutions uniformes et régulières de 
l’équation (26)

138) U = \ r .1 ,(kr) 111 mz I>"'(cos0) e**c' 1/1 — o. 1, m<n).

A. l’aide des formules (27) et (2.8), on déduit alors pour les ondes 
stationnaires possibles à l’intérieur de la sphère les formes suivantes :

(3yï

Type électrique :

1: /.
u ( n -+--1 .1

i kr ) 1

.. 1 \ kr JKo= r <)r

ni ,) ' \Jkr .1
r sin 0 <)r

H,.= 0.

llf,=
. k

1 ——
m

.

I J b ni z P"VCuti 0 )

sin <)
ni z -- PJÎ* 1 i1 <>^ 0 1 elkré 

eus 1 nu

' ni z P;"(VosfJ) e'*'*';

\I kr "in 0

. b1 -----
ykr

■f | (kr)
n -•— ' M

cos 0 ) eikd

K, = 0,

K(, = i

ï'ype magnétique :

K, =

1 <») {'

. /y m 
\kr «i 11 0 

k*
JTr

u 1 n h - 1)

I /i/‘ )
L
/’ ùr

ni ()

.1
n -4-

, 1' Xv 1
(“Os

. /X? w
- • '■111 l’mO'iisO 1 e'kd

.1
n f-

1 t év J
-in

ni z
nis

^ i>;;'(cosfj ) eikei

.1
// i-

11 kr )
"in

/xx 9 I}/// ( c< i" 0 1 elkct

kr. 1
n -b

1 ( kr 1
"in

ni z
a ü

.1 1 i kr 1
(Mis

ni. z
— "in P"1 (nos 0 ) elkcf

Vous avons maintenant à introduire les conditions aux limites 

1 » 1) Ks = Kr, — o pour /■ = li.

Pour les ondes stationnaires du type électrique, les conditions (/ji) 
nous donnent



Or les fonctions de Bessel vérifienl la relation
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(43) xi p^i(x) = xi',,(je) -t- pi/A-*')

qui, introduite dans (4a). fournit

J , ( />’ H )
«T /.I!

Cette équation transcendante possède en A'R une suite de racines que
(n+-) (n

l’on nommera '(î - ya '^... et l’on aura pour /,• les valeurs propres

J-;)
( 45 ) kn.i = ‘-----p----- ;

équation donnant les fréquences propres électromagnétiques pour la 
cavité sphérique. Chaque onde stationnaire correspond à trois nombres 

entiers (n, m, i), mais les fréquences propres ne dépendent pas de m.
Les ondes E, , ont la fréquence la plus basse et comme on a y /'1 = a, 7 \, 

on voit aisément que la longueur d’onde dans le vide correspondant à

cette fréquence est égale à j“J’ ou à 2,29 R.

Pour les ondes stationnaires du type magnétique, les conditions (4 1) 
donnent

( 4<> ) .1 , ( /■ it,) = o ;

si l’on désigne toujours par p.!'" le f"‘"le zéro non nul de J,,,, on a ici

d’où l’on déduit les fréquences propres qui sont indépendantes de m. 
Ce sont encore les ondes (1, m, 1) qui ont la plus petite fréquence propre

et comme ,u/ ’ ’ — 4, jf), cette fréquence propre correspond à la longueur 

d’onde dans le vide À - - , = 1 .A R.
4: l<)

Il pourrait sembler que les ondes stationnaires (3q) et (4«) 11e sont pas 
les seules possibles, puisqu’elles dépendent du choix de l’axe polaire, 
choix qui est arbitraire. Si nous prenions à la place de ()~ un autre axe 
polaire O:', nous aurions de nouvelles coordonnées J et t;' d;m.s ce 
nouveau système de repérage et nous obtiendrions d’autres tonnes
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d'ondes stationnaires en remplaçant dans (3y) et (4°) les lettres 9 et 0 
par les lettres J et 0'. Mais en réalité chacune des nouvelles ondes 
stationnaires ainsi obtenues esL une combinaison linéaire des anciennes 

ondes stationnaires (3q) et (4°)- les coefficients de la combinaison 
dépendant naturellement de la rotation dos axes autour du centre de la 
sphère qui a lait passer des coordonnées o et 0 aux coordonnées rJ et 0b 

Les ondes stationnaires (3<>) et (.fo) forment donc un système complet 
d’ondes stationnaires en ce sens que toute onde stationnaire peut être 

représentée par une superposition d’ondes stationnaires des types (3q) 
et ( io) (1 ).

(' ) Les oscillai ion*; électromagnétiques des ca\ ités ont de étudiées par Al. .lean lU'rnier 
*>0;, ,'éTj. I ne théorie mathématique générale a été dé\eloppée par M, P. Nicolas dS! 

M Mare Jougud a calculé les vibrations fies ea\ités td li psoïda les ['!{) ).



CHAPITRE IV.
CALCUL DES PERTES DANS LES GUIDES ÉLECTRIQUES.

1. Première méthode approximative pour le calcul des pertes. — 
Nous avons jusqu’ici supposé que les parois métalliques limitant un 
guide électrique étaient parfaitement conductrices. 11 en résultait que 
les ondes doul la propagation était possible le long du guide se propa 
geaient sans affaiblissement. En réalité, la conductibilité des parois d’un 
guide est toujours finie : il eu résulte que les ondes électromagnétiques 
pénétrent légèrement dans ces parois et y provoquent des courants 
donnant lieu à des pertes d’énergie par effet Joule. Comme ces pertes se 
renouvellent, tout le long du tube, les ondes s'affaiblissent en se propa 
geant; leurs expressions doivent donc contenir des facteurs de la 
forme e-D'e'7'' dont l'un traduit la propagation et l’autre l’affai 
blissement. Pour étudier ces propagations avec affaiblissement, on peut 
employer deux méthodes : la première est moins rigoureuse et conduit 
à des calculs plus simples que la seconde, mais la seconde a l’avantage 
d’être rigoureuse cl d’analyser de plus près les phénomènes physiques. 
Nous allons d’abord exposer la première méthode qui est la plus 
usuellement employée.

Dans celle première méthode, on remarque que y doit toujours être 
très petit devant kz (sans quoi il n’y aurait plus réellement propagation) 
et l’on garde comme expressions des champs celles qui ont été obtenues 
en supposant les parois parfaitement réfléchissantes. Il y a là une 
approximation qui n’est pas absolument logique, car les solutions obte 
nues précédemment correspondent à la condition que, sur les parois du 
guide, le champ électrique tangentiel s’annule et alors la composante 
normale à la paroi du vecteur de Poynling est partout nulle : donc pas 
de llux d’énergie du l’intérieur du guide vers l’épaisseur de la paroi et 
par suite pas de pertes par effet Joule dans cette paroi, ce qui est
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contraire à l'hypothèse. La deuxième méthode, plus rigoureuse, tiendra 
compte du l’ait que les champs n’ont pas exactement la forme étudiée 
précédemment quand la paroi n’csl pus parfaitement conductrice.

Voici maintenant quel est, dans la première méthode présentement 
étudiée, le principe du calcul des perles. Désignons par \V,„ la quantité' 
d’énergie qui passe en moyenne par unité de temps à travers la section 
droite du guide. Cette quantité s’obtiendra en calculant le llux du 
vecteur de l’oynting à travers celte section droite et comme le vecteur 
de Poynling est fonction quadratique des champs. \V„, dépendra de 5 
par le facteur e--1'. On aura donc

Comme la diminution de \Vm correspond â une dissipation d'énergie 
par elfcl. Joule dans les parois, on voit que si Q„, dz représente la valeur 
moyenne de la chaleur de Joule (exprimée en unités mécaniques) qui 
se dégage en une unité de temps dans la portion de longueur dz des 
parois, on aura

A parler rigoureusement Q,„ et W„, dépendent de z, mais nous admet 
tons qu’elles varient très peu en fonction de z : notre approximation 
consistera à négliger celte variation et à calculer Q,„ et \V,„ à partir des 
valeurs des champs calculées pour le cas des parois parfaitement 
conductrices. Bien qu’il y ait une sorte de cercle vicieux dans ces 
raisonnements, ils nous conduiront cependant à des résultats exacts.

Le calcul de Wm sera immédiat à partir des valeurs admises pour les 
champs grâce à l’expression du vecteur de Loynling : il ne pourra être 
entravé que par des difficultés pratiques d’intégration dans certains cas.

Quant à Q,„, son évaluation exige la connaissance de la théorie de la 
pénétrai ion des ondes dans les conducteurs. iNous devons donc consacrer 
un paragraphe à cette théorie.

2. Pénétration des ondes électromagnétiques dans les conducteurs. 
— Considérons un métal de perméabilité p. et de conductibilité n. 
A l’intérieur de ce métal, sera valable l’équation de Maxwell (• )

(A
,)\i
<)i

rot 11
->

roi JI
->
K:

Rappelons que E, i et par suite 7 sont exprimées ici en unités électrostatiques.
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si l’on envisage toujours une onde électromagnétique harmonique dont 
les champs sont proportionnels à on peut écrire

' \)

avec la définition

I à 
ü i)t

: I = rot 11.

( "> i — i kc '

Tout se passe donc comme si le métal possédait une constante diélec 
trique complexe, fonction de la fréquence de l’onde.

Supposons le métal limité par une face plane. Une onde électro 
magnétique plane dont les plans d’onde seront parallèles à la face 
d’entrée du métal pénétrera en lui suivant l'équation

(•'>)
i'j. 0- K <)- K
F- F)F ~ JF

z étant comptée suivant la normale à la face d’entrée. Comme en chaque
> -s

point, ou a i — crE, on a aussi

i
J. ()- i t)'1 Î

F FF- ~ JF

et cette équation représente l.a pénétration du courant provoqué par 
Fonde dans l’épaisseur du métal.

Nous poserons alors
y -y

(S ) i = ùi Jkrl-

où isera une constante complexe de la forme //_ — ikl. En substituant 
dans (8), on a
( () ) o

et. en séparant le réel et 1 imaginaire.
< in ! AJ-JJ. /, /. —/F.

Tour les métaux très conducteurs, la pénétration est en fait toujours 

petite (*) par rapporL à la longueur d’onde dans le vide indéfini >. = •

f1 j Tout ;iu moins ceci est-il vrai pour toutes les ondes électromagnétiques dont la 
longueur d’onde dépasse le centimètre.



6o CHAPITRE IV.

Si le métal n’est pas très magnétique, celte circonstance permet de 
négliger p/r2 devant kl2 et par suite de poser Ai = A\. Il vient alors

(ii) / l
/■> - ■j. k 3

Considérons alors dans la masse du métal une lame parallèle à la face 

d’entrée dont la longueur i^dans le sens des vecteurs E et i) soit L, la 

largeur l et l’épaisseur dz. Sa résistance électrique sera ■ L’énergie 

consommée en moyenne par unité de temps dans cette lame est

(m) ÏÏTTl TTS = n.e dz.

Pour toute la profondeur du métal, on trouve, comme énergie con 
sommée en moyenne par unité de temps rapportée à une plage superfi 
cielle de longueur Ii et de largeur l

(l'C Q™ = ~ f b“!/'= -■ d3 = ~ /„ y.

Maintenant l’intensité totale du courant dans la portion du métal 
correspondant à la plage étudiée est

( 14 ) 1 = jT ildz = i„leu'rl j e dz = —r

d’où

(■'’’) 'o !2=-yf-! 1 i2

et par suite

OC) Q„, = ,r;-= {

avec la définition

(i7)

La formule (17) est duc à lord Kelvin : elle nous permettra de cal 
culer Q„, si nous admettons qu’on peut l’appliquer à la paroi d’un 
guide, même dans le cas général où cette paroi 11’est pas plane, ce qui 
constitue encore une approximation.

Le calcul des pertes effectuées à l’aide de la formule sera naturelle 
ment différent suivant le type de guide que l’on considère. Nous ne
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développerons les calculs que dans le cas du guide cylindrique, très 
important dans la pratique.

3. Calcul de l’affaiblissement pour l’onde (E„) d’un guide cylindrique. 
— Nous supposerons toujours cpie l’on a à l’intérieur du guide s = p. = i. 
M. Clavier a d’ailleurs montré que, si l’on remplit le guide d’un diélec 
trique, les pertes par hystérésis diélectrique sont beaucoup plus grandes 
que les pertes par elFel Joule dans la paroi, de sorte que l’on n’a jamais 
intérêt à mettre un tel diélectrique.

Pour calculer W„, pour l’onde (E0), nous nous reporterons aux for 

mules (31) du Chapitre 11, que nous multiplierons par une constante

représentant l’intensité d’excitation de l’onde. En prenant alors le flux 
du vecteur de Poynting à travers une section droite du guide, nous 
aurons

(iS) \v„, = ^rj (E*H-— k ?It;)^:*e J

en tenant compte de

(II)) .)l(x) = — —■

Le calcul de l’intégrale de (18) conduit, en tenant compte de la condi 
tion à la limite ,J0(a II) = o, à la valeur

rv li-
(eo) / J;(ap) p r/p = — J 7 ( a t J> ).

J 0 ~

d’où, pour W,„, la valeur

( a i ) W/h = 1 Lo I " P2 ■< r ( sc K )•
0 2-

a ayant l’une des valeurs quantifiées •

Le courant I a lieu le long (les génératrices de la paroi et est donné 
par la formule

— l-= 'nlîict U).

obtenue en considérant la figure 6a suivante et en appliquant la loi

d’Ainpcre au circuit indiqué, le champ II étant nul dans la portion 
située à l’intérieur de la paroi. On a donc

I - = -- 11 - ( li ) = — / — ( .1, ( oc lî ) eVr/-h ='.■>. * \ a(23)
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Eh  faisant dans la formule (i~) L = i et l— 271 11. 011 a (1 )

(ai)

et par suile

(■->-'>) = - r I- ;2= /l„
o y 7 y.-

d’où enfin

(a(i) :’.W, TüV
i
Th V

A«_

En annulant i—gL, on trouve des ininima de 
au

pour /. = \
- a\"n
3 ‘-4— et les

1 ''-7 L

b
Fig. (i.

valeurs correspondantes de yK(j sont de la forme consl. • On obtien 

dra le plus petit minimum de yK en prenant

A celte fréquence, correspond la longueur d’onde dans le vide indéfini

(28; À = — = 1 , j lî environ.

4. Calcul de l’affaiblissement pour l’onde ( 11,,) d’un guide cylindrique. 
— Le calcul de l’affaiblissement pour l’onde (IL) présente un intérêt 
particulier. Celte onde, dont nous avons déjà noté le caractère un peu 
singulier, est en elfet la seule à posséder la propriété suivante : son 
affaiblissement diminue quand la fréquence augmente. Cette propriété 
pourrait avoir des applications techniques intéressantes.

En partant des formules (32) du Chapitre Tl, on trouve ici la for-

(1 ) [j. est la perméabilité magnétique de la paroi
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irmlo (18), innis maintenant, c'est .1 ± (aR) — J(aR) cjvii est nulle sm1 
la paroi. Le calcul de l’intégra le de (18) conduit alors à la valeur

r 11 i ; 2
( <[) ) ! I ! i y.', i 'h. -- - - .1. ■ y ! 1 )

au lieu de (au). D’où, au lieu de (21),

l'iuî \Y„, — <■—-------( !„ -.11 ( -j . H 1.
s 7.-

Ici, 011 a dans la paroi un courant circulaire et en appliquai! 1 la loi 
d'Vmpèro au circuit indic[ué sur la figure ()b, on trouve

(Mi I l- = ~ |[,= .1,17. Si )
1 - 1 ■-

Ce courant I. indépendant de la fréquence, contrai renient à ce qui 
se passait pour le courant Is du paragraphe précédent.

Nous appliquerons la formule (17) avec L = 2~R et /= 1, ce qui 
nous donne

(">>.)

d’où

i >> )

-“fiv-

et par suite

>1 )
> \\

^ 1 roiist.
h V -'-u \ kk- ~ \ /. (/.-— *.-1’

Pour une valeur propre donnée de x. y„ décroît donc quand la fréquence 
croît et c’est là le résultat qui donne à l’onde (II,,) un caractère singulier.

On peut interpréter ce résultat de la façon suivante, comme l’a fait 
remarquer Scliellkunoll. L’onde (II,,) est la seule qui ait une compo 
sante IL et n’ait pas de composante IL [voir les formules (3a) du Cha 
pitre Il |. ICIle est la seule pour laquelle il y ait dans la paroi un courant 
se réduisant à la composante ï? provoquée par l’action de EL. Or quand 
/,' croît, II- tend toujours vers zéro par rapport aux autres composantes 
du champ; ceci s’explique aisément puisque, quand \ devient très petit, 
l’intérieur du guide mesuré à l’échelle de la longueur d’onde devient 
très grand et l’onde se propageant dans un espace qui pour elle est 
([uasi indéfini, tend à devenir transversale comme dans la propagation 
libre. Cele décroissance relative de II- quand k augmente explique
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pourquoi, pour (H0) et pour (H0) seule, l'affaiblissement diminue 
quand la fréquence augmente.

5. Calcul de l’affaiblissement pour l’onde (IL) dans un guide cylin 
drique. — M. Clavier a égalemet indiqué le calcul de l'affaiblissement 
pour l’onde (IC) qui est plus compliqué que les précédents.

Tout d’abord, on a

(3’>) W m = qjp; jf* '/ÿjf [ K0 1— K? Il * -i - conjuguée] p <(y

'<rj‘

Les E; contiennent en facteur un terme mcp qui donne - en moyenne, 
d’où

(30) W ,
“ «j! 1 —,— i()-+-J?(2p) p'/?■

r/intégrale vau l

(30)

- ( 1 — |,„ j .1 ; ( a II) et par suite

_ C, Mj(aK) U, ■ ,,
lO -jL- l y.’ Iî-

Ici il y a dans la paroi un courant électrique ayant une composante I. 
et une autre composante L. Elle sont données par les formules

(3<S)

CcVal! I ■u--/e

//■, C, c,\ i ( a R ) mm ç e'

Les valeurs moyennes efficaces correspondantes sont

(C)c,v= 1 — / | C ,lz = c* 4t —

(C>L= 1 C pL , ^
a - , ; ' T ~ lOL

( »,) I

La formule ( i~) donne pour les résistances
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d’où, pour lus pertes dans la paroi par unité de longueur,

( 41 )

et, pour le coefficient d’affaiblissement

Q 'Vj a- ]
^ kFz R

En remplaçant k- par y k- — a-, où a. a une de ses valeurs propres, on 
obtient

Le premier terme qui diminue avec k provient de Iç et de H;, le second 
qui augmente avec k et devient prépondérant pour k très grand provient 
de 1- et de 1 . C’est à en use de la présence de ce dernier terme que (Hi)
ne possède pas la même propriété singulière que (H#). Le coefficient y„ 
possède en fonction de k un minimum très aplati.

(i. Seconde méthode pour le calcul de l’affaiblissement. — La première 
méthode exposée ci-dessus n’est pas absolument logique, parce qu elle 
est en contradiction, comme nous l’avons noté au début de son exposé, 
avec l’application du théorème de Poynting. Nous allons exposer une 
seconde méthode plus rigoureuse qui tienne compte de la modification 
des champs par suite du caractère non parfaitement conducteur de la 
paroi et qui décrive la pénétration de l’onde dans cette paroi. Pour pré 
ciser les idées, nous développerons cette seconde méthode pour le cas 
du guide cylindrique bien qu’elle soit tout aussi générale en principe 
que la première.

Nous supposerons toujours qu’à l’intérieur du guide, on a e = y. i. 
Dans la paroi, y a une certaine valeur donnée et e a la valeur (5) où a est 
la conductivité du métal constituant la paroi. Par suite des pertes, l’onde 
en propagation dans le guide contiendra un facteur mais avec une
valeur de k- différente de la valeur k" correspondant au cas des parois 
parfaitement conductrices. On aura

k. = k°- -+- 5k. —
I-. DE B ROC. LIE.
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Nous supposerons que 8fcz 
posera ici

( \ 'i '} 7 = V k- — k: ,

et y sont très petits devant k

= V / /.

On

d’où approximativement
, . „ k"- ,< ,|(.) ) 7 = Xf! a- 07 CS' 7„------s ( --- , ; \

7

Dans la paroi, on devra avoir une onde qui, pour pouvoir se raccorder 
avec l’onde intérieure au guide, devra contenu- le facteur

( i;,1
if r!

e' e_,/‘ = = c ok.-z e—yr. 0i/ r/

Dans la paroi, l’argument des solutions de l’équation de Bessel figurant 
dans l’expression des champs doit être a'o avec

très approximativement en raison de la grande valeur attribuée à c t  et de 
la valeur (5) de s.

Maintenant dans la paroi, rien ne nous oblige à prendre pour l’expres 
sion des champs [uofr foi-mules f 3 i ) et (3a) du C lia pi Ire II ] la fonction 
de Besselcomme solution de l’équation de Bessel, car les points o-^o 
de l’axe du guide ne sont pas dans la paroi. Physiquement on voit qu’il 
faut au contraire choisir une solution de l’équation de Bessel susceptible 
de représenter une onde cylindrique divergente allant s’absorber dans 
l’épaisseur de la paroi. La solution de l’équation de Bessel qui jouit ici 
de celte propriété est bien connue : c’est la première fonction de Ilankel 
dont la définition est donnée à l’aide des fonctions de Bessel et de 
Neumann par la formule

( i<é> = .),„(«) il<„,(n).

Nous aurons donc, pour former l’expression des champs à l’intérieur 
de la paroi à y faire figurer la fonction II;('!(«'p). Nous rappellerons que 
la forme asymptotique de H^’fa'p) pour les grandes valeurs de l’argu 
ment a1 p est

(5°) II,,1, e ' ■ ’ ' (aV-,.-.--1 ).

formule qui nous sera utile plus loin.
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Ayant ainsi forme les expressions des champs électromagnétiques 
dans le guide et dans la paroi du guide, on aura, suivant un théorème 
bien connu de la théorie électromagnétique, à exprimer la continuité 
des composantes langentiolles des champs et des composantes normales 
des inductions quand on passe de l’intérieur du guide à l’intérieur de sa 
paroi. On obtient ainsi pour l’intensité de l’onde dans la paroi des 
valeurs qui ne sont compatibles que si une certaine condition est satis 
faite. Cette condition, qui est complexe, permet en principe de déter 
miner les deux constantes réelles oks et y et par suite détermine 
l’affaiblissement.

Nous allons faire les calculs pour le cas des ondes ( E„ t et ( H0 ) et 
montrer qu’on retrouve en première approximation les résultats obtenus 
parla première méthode. Pour les ondes ( E,„ ) et (H,,,) avec m _i. la 
méthode actuelle conduirait à des calculs compliqués que nous ne déve 
lopperons pas, nous contentant d’en donner une idée au paragraphe 9.

7. Nouveau calcul de l’affaiblissement pour l’onde (E„ i du guide 
cylindrique. — Pour faire ce calcul, nous poserons d’abord à l’intérieur 
du guide (s = p. == i )

(5i ) Kz= Kp= '-Al, O). P, ll. = — A K*.

les autres composantes du champ étant toutes nulles 
Dans la paroi, on posera

(m) Ks= \H'„' (A?.. P, Kr/= '~FZ AH AAj.P, ]Ç

avec les valeurs (4b) et (48) de a et oc’.
En écrivanL la continuité à la surface de la paroi de Er, et Dp, on 

obtient les deux conditions distinctes

(53) Jo(*!D = Atr;i'i(a']t), *-.I,(aR) = | Ail..' y. II'..

Pour que les relations (53) soient compatibles, il faut avoir

.l,i( 7 li ) c 111,1 l 'J- R )
( 3 1 * .1,(7. H) ” 7 II .' • y. I! '

Mais on a, très approximativement.,

r/(ïlî) J 7 = (7 — 70) U = Ji(7 R ) —~ (3/c- — )( a 5 ) b) 17 R ) Çtf 1 u ( 7 u R ) -t-
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et l’équation (54) s’écrit

( üfï ) lî k'I(ô/i; — i7 ) a’ H,,1 (VK)_^ i— I Y 7: 11
F fl ,41; ^ ”5T7 [F7~ TT7

TT~

Or la forme asymptotique de la fonction de Ilankel (5o) montre qu’on 
peut poser approximativement (car a'R> i )

d’où

H'iFP'1*) _ i _ ■
HPP'H)- ..lî-'’ 

e -

( :)8 ) i:K( àkz— i O-O;

d’où encore, en séparant le réel de l’imaginaire,

On retrouve bien ainsi la valeur de vE obtenue par la méthode précé 
dente | formule (26) |.

8. Nouveau calcul de l’affaiblissement pour l’onde (II,,) du guide 
cylindrique. — Pour ce calcul, on posera dans le guide

(601 11, = J0(3to) e't‘'Ht 1I?= j - J,tas).F. Kç — X‘ U(J,

les autres composantes des champs étant milles.
Dans la paroi, on devra poser

<611 h ;= a h ,;p'oj.i’, nf= F7\|[i a~irr.= * isP.

La continuité des composantes EL, Eç et Bp à la limite de la paroi nous 
fournit deux conditions distinctes

(6<) J„(alî) = AHpp'H). -- .11 ( 2 K ) = u -, 11 1 ( 7.' li ),a a

d’où la condition de compatibilité

,,,u. .LplL 2' H-;,' (a' K;
l,r>' ^ .), ( a K ) y lIpp'H)'

Grâce à (48) et(3o), on trouve aisément pour le second membre de (63)
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la valeur approximative — ■ '( ( 1 -f- i). Reste à calculer le premier

membre de (63), mais ici c'est J 1 (a0R) qui est nul et non plus Jo(a0R). 
( )n écrira donc

( ( i i 1 ■li {y. lî ) ~ J 1 ( H ) 

RH

<H 11 -x K ]
rf(aK )

<l\ x H) Jz = xlt

x__ H i -J. -------- 2„)

( okz— i~: ).

Or la formule (43) du Chapitre III nous donne, en y faisantp — i et
x - ■- y.u R,

d\ , 1 x. I! ) ■

dom

r tic i

■loi' 2,i I! 1 = ,/yxW)

.1 , t z K ) ;
k'i li

.10, t 2 0 lî )1 àkz — (y),

de sorte que la condition (63) devient

((i;,

d'où aisément

/, " l ( 1 -- i )( o/.-j— /■; ).

( tift 1 ’■ k
1

La valeur (68) de y,, coïncide bien avec la valeur (34) que nous 
avions obtenue par la première méthode et qui montre la diminution 
des pertes quand la fréquence augmente.

0. Résultats nouveaux pour les ondes d’indices supérieurs à zéro (4). 
— Si nous cherchons à continuer l’application de la seconde méthode 
pour les ondes d’indices supérieurs à zéro, nous arrivons à une différence 
un peu inattendue avec les résultats précédents. En effet, pour ces ondes, 
les composantes E? et sont toutes deux différentes de zéro, ainsi que 
l’une des composantes E- ou IR. En écrivant la continuité des champs 
Langentiels, on obtient trois conditions distinctes, la continuité des 
inductions normales 11c donnant, comme précédemment, rien de plus. 
Mais, pour chaque onde (E,„) ou (II,,,), nous ne disposons que d’une 
constante A analogue à celles employées dans les deux derniers para-

(') Les résultats donnés dans ce paragraphe nous ont été signalés par M. Maurice 
Cotte.
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graphes. Celte constante devrait satisfaire à trois équations distinctes et 
l’on ne peut le réaliser par l’introduction d’une condition analogue à (54) 
ou (63) : le problème parait donc insoluble.

On peut eependanlparvenir a une solution que nous allons exposer en 
raisonnant sur le cas de l’onde (Ei). Nous sommes amenés à supposer 
que la conductibilité imparfaite do la paroi a pour cll'ct de déformer 
légèrement l’onde (EÇ en y faisant apparaître une petite composante 
longitudinale H- ou, si l’on préfère, il faut, pour pouvoir satisfaire aux 
conditions sur la paroi, considérer la propagation dans le guide d’une 
onde (E() du type électrique très voisine de (E, ) et d’une faible onde de 
type magnétique (H, ), La superposition des deux ondes f E)) et (II') fait 
intervenir une constante complexe B qui représente la proportion et la 
différence de phase des deux ondes dans la superposition. L'onde (II, ) 
correspond aux mêmes valeurs de a et de / - que (E, ); elle est donc très 
différente de ( II, ). L’onde résultante a quatre composantes langen- 
tielles E-, EL, E- et IL non nulles et la continuité de ces quatre com 
posantes à travers la paroi nous donne quatre conditions. Ces quatre 
conditions contiennent la constante B et les deux constantes du type A 
relatives aux deux ondes (E, ) et (H',), on peut donc les rendre compa 
tibles grâce à une relation analogue à (54), relation qui détermine et 
par suite le coefficient d’affaiblissement y. Des considérations semblables 
sont valables pour toutes les ondes (E,„) [ou (H,,,)] d’indices supérieurs 
à zéro. Sans développer les calculs, nous voyons donc que, par suite de 
la conductibilité imparfaite de la paroi, ces ondes (E,,,) [ou (TT,,,)] 
cessent d’appartenir strictement au type électrique (ou au type magné 
tique), l’effet delà conductibilité imparfaite de la paroi est de créer une 
sorte de couplage entre les deux types d’ondes, résultat que la première 
méthode employée pour le calcul des pertes ne pouvait pas faire 
prévoir (' ).

10. Théorie du câble diélectrique. — Nous allons rattacher aux calculs 
précédents la théorie du câble diélectrique. Par définition, un câble 
diélectrique sera un tube cylindrique à section circulaire de rayon li 
constitué par une substance de constante diélectrique îi plongé dans un 
milieu indéfini de constante diélectrique s2. Nous supposerons câble et 
milieu non magnétiques (p, = p3== i ). Souvent le milieu extérieur sera

(l) Sur les pertes dans les guides d'ondes, voir un travail de M. .!. ôswald i flildin- 
grapliie [30;).
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l'air et Fou pourra poser -2 — 1, mais, pour plus de généralité, nous ne 
ferons pas celte hypothèse.

Pour qu’une onde puisse se propager dans le câble diélectrique, il 
faut pratiquement qu’il y ait réllexion totale à la surface du câble, sans 
quoi l’alfaiblissemenl par passage partiel de l’onde dans le milieu exté 
rieur serait si fort qu’il n’y aurait plus véritablement propagation. Il faut 
floue que l’onde électromagnétique pénétrant dans le milieu extérieur 
soit évanescente.

Nous allons étudier la propagation d’une onde du type (E„) dans le 
câble diélectrique en effectuant des calculs assez analogues à ceux des 
derniers paragraphes, mais avec o--=o. Dans le câble, nous poserons

('(«,1 IA = .U7.^)0"^'-^;), K, = .1,(7, s). 1\ H. = - iiiKj,
21 ‘ « C

avec

Dans le milieu extérieur, on posera

(-1 » K - -- A 11 ( -j-, s ). I’. K, = 'h: Ail é (2-i.P. II0 = — -p- E,

a vec

(;,i

La continuité des composantes E-, H-, et D? à la surface du câble donne 
deux conditions distinctes:

i“‘i) J(lfX|lî)= \ 11( a., It 1. - 1 .1 j ( y., K) — A11,- ( -j .-l  H ).
" ' a 1 y.-i

d’où la condition de compatibilité

y | .101 y 1 H 1 y.-: 11 (l' ' { y- K i

'JTT^TTT, = s, TT" ,47 '

Pour (pie l’onde s’échappant dans le milieu extérieur soit évanescente, 
il faut que l’argument a2ll des fonctions de Hankel soit purement ima 
ginaire. Soient alors p et i</ des valeurs de a, R et a2ll respectivement 
telles (pic la condition ( ”4 ) soit satisfaite, p et q étant des nombres 
réels. Nous avons
;é />':= t k- ci - a{ = S'tPli—3cJ.

et ces conditions nous donnent
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Comme k est réel, on doit avoir

(77)

inégalité toujours vérifiée pour un câble diélectrique plongé dans l’air. 
La vitesse de propagation de la phase dans le câble est

(78) \
k
k: =n V’- + <!-

c iff-hhp-'

Eludions deux cas limites.
Si q est très petit, sc, est très petit et l’onde évanescente pénètre loin 

dans le milieu extérieur; la vitesse V est alors sensiblement -—•> c'osL-

à-dire égale à la vitesse de propagation extérieure. Si, au contraire, y est 
très grand, il en est de même de a2 et l’onde évanescente pénètre très 
peu loin dans le milieu extérieur; la vitesse Y est alors sensiblement

-4=îC’est-à-dire égale à la vitesse de propagation dans le câble. Tous ces 
v'£'
résultats sont assez intuitifs. L’élude des autres ondes (Em) ou (fl„, ) 
donnerait des résultats analogues.



CHAPITRE Y.
PROPAGATION DANS LES CORNETS.

1. Généralités sur le problème des cornets. — Nous appellerons 
cornets électriques des tuyaux métalliques à section progressivement 
croissante dans lesquelles se propagent des ondes électromagnétiques. 
Le type le plus simple de cornet est le cornet conique analogue à un 
cornet de phonographe. Nous aurons à étudier d’autres formes plus 
compliquées de cornets, notamment de cornets biconiques ; le miroir 
en forme de paraboloïde de révolution rentre aussi dans la catégorie des 
cornets. Nous supposerons dans ce Chapitre les cornets ayant une 
extension indéfinie et nous étudierons les propagations qui peuvent 
s’établir dans ces cornets indéfinis. Mais bien entendu, les cornets, 
comme d’ailleurs les guides précédemment étudiés, ne sont en pratique 
jamais indéfinis : ils se terminent par une embouchure à travers laquelle 
s’échappent les ondes qui se sont propagées à leur intérieur. Il se pro 
duit alors à l’embouchure des phénomènes de diffraction qui sont très 
importants à évaluer si l’on veut se rendre compte de l’effet directif 
des diverses sortes de cornets ou de guides sur les ondes électro 
magnétiques.

Il est utile de bien se rendre compte d’une différence essentielle qui 
existe entre le problème des cornets et celui des guides. Dans le pro 
blème des guides, nous avons pu considérer des ondes se propageant le 
lontr (l’un çruide indéfini en satisfaisant constamment aux conditions auxD O
limites du problème : celte étude a pu se faire tout à fait indépendam 
ment des conditions d’excitation dont nous nous sommes seulement 
ensuite préoccupés. Pour les cornets, il en est en général tout autre 
ment : on ne peut en général obtenir une propagation possible dans un 
cornet qu’en supposant l’existence d’une source d’ondes quelque part à 
l’intérieur du cornet. Ceci est très visible sur l’exemple du cornet.
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conique : nous ne pouvons pas imaginer des ondes se propageant le long 
de l'axe d’un tel cornet et s’éloignant de son sommet sans imaginer qu’il 
j ait quelque part près du sommet, un émetteur d’ondes qui fournisse 
constamment aux ondes l’énergie qu’elles emportent avec elles. Mathé 
matiquement cette circonstance se traduit parle fait qu’on ne peut plus, 
en général, trouver des types d’ondes régulières dans tout l’intérieur du 
cornet et s’y propageant en satisfaisant partout aux conditions aux 
limites sur les parois.

Pour un cornet, nous pourrons parfois trouver des solutions satisfai 
sant aux conditions aux limites sur la paroi, mais elles présenteront 
toujours une singularité à l’intérieur du cornet, singularité qui traduira 
la présence d’un émetteur d’ondes placé dans le cornet. Nous étudierons 
des solutions de ce genre dans les prochains paragraphes. Mais ces 
solutions qu’on ne parvient à former qu’accidentellement ne se trouvent 
pas correspondre en général à un type d’émetteur donné a priori. Si le 
type d’émetteur placé dans le cornet est connu, l’onde émise par lui est 
une donnée du problème et constitue l’onde incidente sur les parois du 
cornet considérées comme des miroirs : à cette onde incidente, on 
devra superposer une onde réfléchie formée parla superposition d’ondes 
sans singularités susceptibles de se propager dans le cornet; la détermi 
nation des coefficients du développement de l'onde réfléchie, suivant les 
divers types d’ondes susceptibles de se propager dans le cornet, se fera 
en écrivant que les conditions aux limites sont satisfaites sur les parois 
et ce calcul fournira la forme de l’onde réfléchie provenant de la réflexion 
de l’onde envoyée par l’émetteur sur les parois du cornet.

On peut, pour les cornets comme pour les guides, calculer les perles 
dues aux effets Joule dans les parois, quand on tient compte de la con 
ductibilité finie de ces parois; les méthodes de calcul utilisables sont 
tout à fait analogues à celles employées pour les guides et nous n’y 
reviendrons pas ici. Nous supposerons donc dans tout ce Chapitre que 
les parois des divers types de cornets considérés sont parfaitement 
conductrices, et nous écrirons toujours comme conditions aux limites 
que le champ électrique est partout normal à la paroi.

2. Étude des cornets en forme de cônes circulaires droits. — Consi 
dérons un cornet en forme de cône circulaire droit.

Nous repérerons les points à l’intérieur du cornet par les coordonnées 
sphériques r, 0, cp prises autour du sommet O du cône, l’axe Oc de ce 
cône étant pris comme axe polaire. Nous désignerons par Ü„ le demi- 
angle d’ouverture du cône. En reprenant les calculs qui ont été faits au

7i
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Chapitre III, paragraphe 0, à propos des vibrations propres de la sphere, 
on voit qu’on obtiendra des solutions représentant des ondes se propa-

Fig. 7-

géant ou s’éloignant du sommet si l’on remplace dans les formules (3g) 
et (4o) la fonction de Bessel J , (/./') par la fonction de Ilankel

II ' , (kr). Mais il est facile de voir que les ondes ainsi obtenues, pour

lesquelles le point O est une singularité, ne satisfont pas en général aux 
conditions aux limites. Eu effet, ces conditions s’écrivent ici 

( i 1 17,.= E~ = o, pour 0 = 0„,

ce qui donne, pour les ondes du type électrique (3g), 

(2) P ( cos 0 o ) = o

et pour les ondes du type magnétique (4°);

r,> [â,,"'lcos0|]o = oo = °-

En général, 0„ qui est une donnée du problème ne satisfait ni à (2), 
ni à (3), de sorte que nous n’avons pas ainsi obtenu une véritable 
solution.

Il y a cependant une solution asymptotique qui est physiquement

Doublet 
o

Fig. S.

très intéressante : c'est la solution bien connue 
Maxwell

pik{rl—r)
(1) Ko=H? =  -— sinû, Il 0 — l'-ç = F, = !(,.=

des équations de 

O,
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qui représente le rayonnement à grande distance d’un dipôle électrique 
placé en O suivant l’axe On. Cette onde satisfait évidemment aux condi 
tions aux limites (i ) quel que soit Q0 : elle glisse sur le miroir sans se 
réfléchir. Si donc on a la disposition montrée sur la ligure 8, avec un 

cornet en tronc de cône tel que la distance UA soit très grande par rap 
port à la longueur d’onde de la radiation émise par le dipôle placé en O 
le long de On, l’onde (4) se propage dans le corneL sans modification. 
Mais ce n’est là encore qu’une solution asymptotique obtenue acciden 
tellement. 11 suffirait de placer le doublet en O, normalement à Oc, 
pour voir combien le problème ainsi modifié serait plus difficile à 
résoudre.

Pour donner un premier exemple de résolution rigoureuse d’un pro 
blème de réflexion, supposons qu’en un point M sur l’axe du cornet 
conique (OM = a > o) soit placé le long de l’axe un petit dipôle émetteur 

(voir Jig. 7). Le rayonnement du dipôle étant connu, on peut calculer 
en tout point intérieur au cornet le champ électrique E rayonné par le 
dipôle; c’est le champ incident qui va se réfléchir sur la paroi intérieure 
du cornet considérée comme un miroir parfait : par raison de symétrie 
ce champ est évidemment indépendant de l’azimut 9 et sa composante E3 
est nulle. En tout point de la paroi du cornet, sur laquelle — la

(juantilé r~ E,f est une fonction delà seule variable r et comme E( reste 
évidemment finie quand r tend vers zéro, celte fonction tend alors vers

zéro, au moins comme r~. On peut développer cotte fonction de r sui 
vant le système complet des fonctions J , (kr) par la formule

■■A «e

(5) r-e ;:' = y an} \{kr) eikci = 'V an J i ( Z>r) eik,:/.

1» " i
ou I on est passé de la première expression à la seconde en remarquant 

que a„ doit être nul parce que J, (kr) tend vers zéro comme y r pour r 

tendant vers zéro.

L’onde réfléchie est caractérisée par un champ électrique E qui, lui 
aussi, doit par raison de symétrie être indépendant de l'azimut 9 et dont 
la composante E^ est partout nulle. Au contraire, la composante E, 11e 
doit pas être partout nulle puisque sur la paroi on doit avoir E( + E, - o

et que E;!’ n’est pas nulle en général. Gomme E doit être une fonction 
vectorielle régulière dans tout le cornet, elle doit se représenter par une 
superposition d’onde des types (3p)et(4o) du Chapitre III et les condi-
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lions auxquelles E doit satisfaire montre que ce doit être une superposi 
tion d’ondes du type électrique (3g) avec m = o. On a donc

r- = /i(n-i- i)c„ J /Ær) Puf cos 0 ) e1*’’1,
“■n ' H-i--'0

à\'n

(C)
I l)

(h-
0

y <■„=-£
i/Av

10 =

v'AvJ ,(kr)
n 4- -

dP,

dO e!kcl,

^/Av « + i dO 

iO= n,.= ii0 = o.

D’après les conditions aux limites (i), on doit alors avoir pour toute 
valeur de r

d’où nécessairement

«.„+ n(n -+- i)cnP„(cos0o)] J i(L-) = o,

(8)
i

//(n -h ij i\,(eosOo)
a, ( n = i, 2, 3,

Les an étant des données, en substituant (8) dans (<î), on obtient 
l’expression de l’onde réfléchie. On remarquera que les constantes an 
et c„ sont complexes, et c’est cette circonstance qui permet aux expres 
sions (5) et (6) de représenter des ondes en propagation.

Pour traiter le même problème dans toute sa généralité, on imaginera 
un émetteur quelconque d’ondes électromagnétiques placé quelque part 
à l’intérieur du cornet conique et l’on supposera que l’on sait calculer 
l’onde émise par cet émetteur et en particulier son champ électrique E('\ 
Ici ce champ E(,/' peut dépendre de la coordonnée a et sa composante 
Eç’ ne sera pas nulle en général. Sur les parois du cône, où 0 = 0„, on 
pourra donc poser

r1 E;I-' = 2 •“>•> m ç n’„m eos m 9 ) J , (Àv) eikcl,
n m

v '/-E|!=2 sin m 9 + ^cosms)! ,(1t ) eik<-‘,

où les a cl b sont des constantes complexes qu’on peut considérer comme 
des données. L’onde réfléchie devant être partout régulière à l’intérieur 
du cornet s'obtiendra par une superposition d’ondes des types (3g) et 
( fo) du Chapitre III, mais ici, pour avoir à notre disposition le nombre
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de constantes arbitraires dont nous avons besoin, nous devrons faire 
figurer dans la superposition, à côté des ondes du type électrique (3g), 
les ondes du type magnétique (4o). Ceci nous amène à écrire

(ro)

r- E,. = ^^n(n H-i) i c„„, sin «iï cî((lleos «( ç; P;"(cos 0 ) J , (kr) e‘kct,

I y r E- sin m ç -+- rf;„„cos m?)P;;‘(cos 0;J j(Àr) eik‘‘'.

Le premier développement est évident : le second s’obtient en remar 
quant que, dans les formules (39) et (4°) en question, les expressions 
de E? peuvent se développer suivant le système complet des fonctions 
P'/( cosO) e-""T J , (kr) avec n,m = o, 1, a, .... De plus, comme nous

faisons effectivement figurer les ondes du type magnétique (4°) à côté 
des ondes du type électrique (39), les constantes d„m et d’nm sont indé 
pendantes des constantes cnm et c'nm. Les conditions aux limites (1) nous 
donnent donc ici

^ sin/«ÿ -1- a’„mcosm?)

a ni

ni n 1) ( c„„, sin rn 9 -4- c’nm cos m 9) P)“( cos l)0 )] J ,( kr) — o,

sin m 9 + b’in,i cos m 9 )

! — (dnm sin mz d'„mc.osm 9 ) P"'(eosft(>)] J ,ikr) — o.
H H- -

Ces conditions, devaient être vérifiées quels que soient o et r, nous 
donnent

Cri m — Cp m — Cn ni — n(n -+- i)P',“(cos0o~j ~ »f »> >G)' ( «*«.)
(n = 1, a, .n> = °) lL>- ■ • •

l
p;;'(cos0o) d’„

P"'( cos O,,)
(11, ni = o, 1, 2, ... 0.

Grâce aux formules (1a), l’onde réfléchie se trouvera déterminée. Les 
calculs effectifs seront souvent pénibles, mais dans beaucoup de cas, on 
pourra les simplifier par des considérations de symétrie : ainsi, si l’émet 
teur est un doublet placé en un point de l’axe du cône perpendiculaire 
ment à cet axe, les seules valeurs de m qui interviendront dans les 
développements précédents seront les valeurs m= o, 1 et 2.
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3. Étude des cornets biconiques. — On appelle « cornets biconiques » 
les dispositifs représentés par la ligure 9, où une onde électromagnétique 
divergente se propage dans l’espace extérieur aux deux nappes d’un 
cène métallique d’angle au sommet 0o.

En somme, un émetteur placé en O rayonne dans la région (D) vers 
l’extérieur.

Pour traiter le problème, on prendra des coordonnées sphériques 
autour du point O, 1 axe du cône servant d’axe polaire et 1 on aura 
encore à reprendre les calculs faits au paragraphe G du Chapitre 111.

Seulement à cet endroit, nous avions dû prendre, comme solution de 
l’équation (‘)

ut)

la solution

1 à ■ fi01'------  - «m i) —
sinO ÙÛ ÙO sin-Oj

0,

< ri ) !•%( 0) = P“( cos 0),

qui est la seule solution de (i3) restant régulière pour 0 — n. Ici cette 
solution ne s’impose plus parce que l’axe polaire n’estplus compris dans 
l’espace où les ondes se propagent. Nous pourrons remplacer P'"(cos0) 
par une combinaison linéaire de ce polynôme et d’une autre solution 
Q"'(cos0) de (i3) linéairement indépendante de P"'. De plus, pour 
avoir des ondes en propagation divergente, nous devrons, dans les for 
mules (3q) et (4°) du Chapitre III, remplacer les fonctions ,1 de Bessel

Se reporter aux équations (31), (3:>), (33) du Chapitre III.
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par les fonctions de Ilankel, de sorte que finalement nous obtenons 
les ondes du type électrique

JC,. = k>-„ n ( il - i ')
H^) Akr)

(krf
mo L'"(cos 0) eltct.

Eq =

i;..

i d_ 
r dr \ kr 11

on f.™(cos,)) eitcl,

m 0

115 i ( r sin 0 dr

H, = o.
le- m

\k~rH<2i x(kr m z E"'(cos 0) eik''1 ;

Ilfj = i . , H-'” (kr) \"mz E"‘( cos 0 > e17^.
V/c/'sinO « + -' —-sni

SJ kr n-T-- d(j ^«‘(eosO) eikcl

et les ondes du type magnétique

E,. = o. 

Efj = -

E.., = /

. te ml •—z------
\ kr sin 0
k-

I T ' •) ' /?■ EUSJr- | ( kr) . m o L"'icos 0 ) eikct.
n ~ - — SI Ii

i t  -i / , v sin i —- U - , (k/-) mz
V kr + cos • onr L"'( cos 01 ei/'<,i ■

n i n ---- i i

(ArV

Tf .•) 1 . T MilH‘-) A(kr) mz> L"l( cos 0 ) eikc,+
/i-r- cos '

IIrj = I d
i- di-

IJ- = w, à

d 0 L™(cos 0 )

r sin 0 ât-Akr IJ''2) x(kr) . »i; J,"'i cos 0 t e’kctsin

avec la notation

li:1 l ;;!(c o s 0) = a p;;'(c o s 0) 4- bq ;«(COSo ).

Les conditions aux limites sont 

(IfL E,.= Eç=o. pour 0 = 0U.

soit pour les ondes du type électrique

(1 lJ) AP"'(cos0d ) -+- liQ"VcosOo > = o

et pour les ondes du type magnétique

L-'-oj do i;AP;;'4- HQ"1)
0=0o
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Dans un cas comine dans l’autre, nous pouvons satisfaire à ces condi 
tions aux limites par un choix convenable du rapport^ - Il est donc ici

toujours possible de trouver des ondes divergentes des types (ià) et (16) 
obéissant partout sur les parois aux conditions aux limites. Toutefois, 
ces solutions qui ont une singularité en O correspondant à l’existence 
en O d’un certain type d’émission et si l’on suppose placé en O un type 
d’émeileur donné a priori, par exemple un certain petit doublet, les 
solutions ([5) et (16) ne représenteront pas l’onde rayonnée dans le 
cornet bicouique. On y parviendra en employant des méthodes ana 
logues à celles qui ont été développées au paragraphe précédent.

11 est intéressant de noter que le problème du cornet biconique admet 
comme solution l’onde transversale

81

!•:„= n,=
r si n fl I,.= E,.= UI= H0= o,

qui satisfait aux conditions aux limites (18) quel que soit 0o et même si 
le cornet n'était pas symétrique par rapport à son plan équatorial. La 
•solution ( 21) rentre d'ailleurs comme cas particulier dans les for 
mules ( 16 1 en y faisant u = rn ----- o et en se souvenant que

I 22)

quel que soit r.

H i kr ) =
)

i. Étude du cornet sectoral. — On appelle « cornet sectoral » le dis 
positif indiqué sur la ligure io .

II s’agit en somme d’une enceinte métallique ayant la forme d’un 
secteur découpé dans un cylindre droit et ouverte vers la droite. On 
considère des propagations d'ondes dans ce cornet qui divergent à partir 
de l’axe O

l’our étudier les propagations dans ce cornet, on prendra un système 
de coordonnées cylindriques autour de O^. Comme on a

I 2) ) t/s-— dz- tlz*- - dz- ( f i = eL— I. t':;— p

on peut faire jouer à p le rôle de la variable sc, dans la méthode générale 
de Borgn is (voir Chapitre I, paragraphe il. La fonction U, qui sera la 
composante flp d’un vecteur de Hertz, obéira à l’équation

I 24 tP 1 éH
<)a - àz -

T fp_L
"TT fd I = o,

!.. UK HROCI.IK.
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et l’on trouvera la solution

(25)

avec

(26) q- = - y h' — k

Dans (25), nous avons choisi comme solution de l’équation de Bosscl 
la fonction H(2), de façon à représenter une onde qui diverge à partir 
de O La constante p n’est pas nécessairement ici un nombre entier 
car, 9 ne variant que de o à dans le cornet, il n’y a pas de condition

Fig. 10,

d’uniformité en 9. De la condition, on déduira des ondes du type élec 
trique et d’autres du type magnétique; à ces ondes, on devra imposer 
les conditions aux limites suivantes :

hK- = o, pour z — ti et 
F- = o. pour ÿ  = o et

Si l’on veut borner son attention aux solutions qui ne dépendent pas 
do z, on voit aisément que les solutions du type électrique sont à rejeter 
[car alors la première condition (29) ne peut pas être satisfaite par Er>], 
En tenant compte de la condition k-~ o que l’on s’impose, on obtient 
les ondes du type magnétique

ll?= p*-? - II = - (/cp ) e‘*'‘
11, = J-[vyll'/'(ko )|-^ .-in/■ .. e "

V.- = ik1>? - H(7-'-(/.■ 9) énj,zeiUl
iy = !•' = H = o.

(28)
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Les concluions (27) nous fournissent ici In seule condition

(29 ) . jl — HT. DU // = /»- •• ( Il = l, ’>, ...I.

Si cette relation est satisfaite, les formules (28) nous donnent des ondes 
en propagation divergente dans le cornet sectoral qui satisfont partout 
aux conditions aux limites.

MM. Harrow ei Cdiu (1) ont remarqué que l’onde du type (28) a une 
forte composante longitudinale près de O^, mais que cette composante 
longitudinale diminue beaucoup plus rapidement que les autres quand p 
augmente, de sorte que dans la partie évasée du cornet l’onde tend à 
devenir transversale comme elle le serait dans un espace indéfini, ce 
qui est assez intuitif.

Pour les grandes valeurs de ko on voit, en utilisant l’expression 
asymptotique des fonctions H -’1 de Hankel, que dans la région évasée du 
cornet (région de transmission de Barrow et Chu), les champs ont sen 
siblement la forme

( ‘ q ! k>c!—p '

correspondant à une onde cylindrique divergente dont l’amplitude 
décroît comme o~l. Pour les petites valeurs de ko (région d’atténuation 
de Barrow et Chu'), la variation des champs est plus compliquée : elle 
a été analysée par les auteurs que nous venons de citer.

Si l’on ne se borne plus à l’étude des champs indépendants de z, on 
obtient, à partir de (:<5), des ondes pour lesquelles les conditions aux 
limites i 27) donnent, en plus de ( 29), la condition

don

h étant la hauteur du cornet sectoral. Pour une valeur donnée de l, il y 
aura une valeur minima de k

( '$■> ) /D„i„ =
I-
h

au-dessous de laquelle les ondes correspondant au nombre entier l ne

r1) Voir l>ibliu£i apli ie 4 •
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pourront plus se propager dans le cornet : c’est une fréquence de 
coupure.

5. Étude du miroir parabolique. — Un miroir en forme de parabo- 
loide de révolution constitue un cornet d’une forme particulière dont 
nous voulons maintenant faire l’étude.

En prenant comme origine des coordonnées le foyer du paraboloïde, 
nous repérerons tout point M situé à l’intérieur du miroir soit par ses

Fig. ii.

coordonnées rectangulaires x, y, z, soit par ses coordonnées cylin 
driques 0, O, Z.

On a évidemment les relations suivantes :

(33) /*- = -] - _r- -f- z-, p- = /*-—.f = 3i;o Sy ; = p^inp.

L’équation de la parabole méridienne est

(34)

où a est le paramètre de la parabole égal au double de la distance OS.
Dans nos calculs, nous allons avoir avantage à nous servir de coor 

données paraboliques -, et adaptées à la forme du miroir et définies 
par la formule

(35) ; - éi = ( i'Ç, >- 

que nous donne

(36) = = ;(Ï§-ÉÎX ? = bh, /■ = r, (Çt -;-51)

ou inversement

La parabole méridienne est alors simplement définie par
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de sorLe que les points situés sur le miroir sont repérés à l’aide des deux 
seules variables o et

L’axe Oc a pour équation Ho = o à gauche de O et = o à droite 
de O.

Avec les variables g, », le carré de l’élcment de longueur est 
donné par

(3g) du- = d.c--+- dy'1 -4-) (dçl dl'\ ) -+- Tj dz-,

d’où

(4°) r, = e.2 = y ç 1 -t- IL e:1=çi ço,

et nous avons là un système de coordonnées curvilignes orthogonales.
AvanL d’aborder rigoureusement le problème à résoudre, disons un 

mot de la façon dont l’optique géométrique envisage la réflexion sur un 
miroir parabolique d’une onde issue de son foyer. L’approximation 
réalisée par l’optique géométrique consiste essentiellement à négliger 
le caractère vectoriel du rayonnement et à ne pas tenir compte des 
variations supposées lentes de l’amplitude dans l’espace en comparaison 
des variations rapides de la phase. Lne source étant placée au foyer O

/,cdu miroir et émettant une onde de fréquence v = —, l’onde émise sera

simplement représentée par la quantité scalaire Nous
pourrons alors représenter l’onde réfléchie par le miroir à l’aide de la 
fonction scalaire B car si nous imposons à l'onde résultant de la
superposition de l’onde incidente et de l’onde réfléchie de s’annuler sur 
le miroir, nous aurons à satisfaire une condition aux limites de la forme

(/ji) A e—ikr—— lie-"'*, sur le miroir,

condition qui est réalisable parce que sur le miroir parabolique, on 
a r = « + c et qu’il suffit par suite de prendre B =—Ae-1*". On 
parvient ainsi au résultat suivant bien connu en optique géométrique : 
Un miroir parabolique, transforme une onde sphérique émise par 
une source placée à son foyer en une onde plane se propageant le 
long de son axe. Mais les solutions de ce genre oll'ertes par l’optique 
géométrique sont insuffisantes parce qu’elles ne tiennent compte ni du 
caractère vectoriel de l’onde électromagnétique, ni des variations de 
son amplitude. C’est pourquoi nous devons aborder ce problème par 
d’autres méthodes.

Nous allons encore essayer de définir les propagations d’ondes à 
l’intérieur du miroir à l’aide d’une fonction U qui sera la composante s
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d’au vecteur de Hertz dont les autres composantes seront milles. Cette 
fonction devra être solution de l’équation de propagation

( i ') Al 1 idl 
F1 <)t-

/■-l .

Le.en considérant toujours des ondes harmoniques de fréquence • 

Ecrite en coordonnées curvilignes orthogonales, l’équation ( fa) prend
la forme

i > > ta e-, e-
() e-, e:i 01

d,r i e i ÔX\ d.
d c:;c, 01 0 r,c, OL] ...

o, o./ " o.r| / 1 °-

d’où, en coordonnées paraboliques d’après (.jo),

.,, i r o,_ oidU >) r y OL
ci —Of

■ — C o-u 
5,?. FF L-1

De cette équation, nous allons, comme d’habitude, chercher des 
solutions de la forme

l/ta ) T’ I- >- I- >- SHIL1 = r 11 ci ) r -ii c-. ) m c eroi

où m est un nombre entier. Si nous substituons ( là) dans (fj), nous 
voyons qu’une certaine fonction de doit être égale à une certaine 
fonction de ce qui ne peut se réaliser qu’en égalant ces deux 
fonctions à une même constante X. On obtient ainsi les deux équations

i 4*> i

d-n-, i dv i r
CI ~dh 1

4 I
d’- F-, . 1 >/vi - r
dU A ~ ç •_> —

r, = o.

Posons maintenant

(47)
/,

ii i : ( r — z i. ’;,F= f(r-M):

il vient, après ce changement de variables,

(48)

d*V, ■ d Fl r m- /.
du\ U\ du\ L 4 " T x A’Wj
d-Y, , dF» I m-
(lll T, ii, du-, L 1 i» t u t :

r, = o.

En posant dans (48) À = o, m = i, on obtient facilement pour U la 
solution suivante

i9» l = .1,
r/f r /■

i - ( — z ) H r lv'-s).
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Celle solution est singulière tout le long du segment OS où r z o, 
mais près de la partie positive de l’axe des z, elle est sensiblement 
proportionnelle à l'exponentielle e'A ',~z en vertu de la formule (22) el 
du fait que près de la partie positive de Taxe O;, 011 a 3 ca r. Bien 
qu’elle représente une onde projetée par le miroir, cette solution, avec 
sa singularité tout le long de OS, correspond à un type d’excitation qui 
n’est pas réalisée en général, et elle ne pourra pas en général satisfaire 
aux conditions aux limites sur le miroir. Pour résoudre le problème de 
la réllexion sur le miroir de l’onde émise par un type donné d’émetteur 
placé en un point donné, il est nécessaire de considérer la forme la 
plus générale d’une onde réllécltie par le paraboloïde et de voir comment 
on peut particulariser cette forme générale de façon à obtenir une onde 
réllécltie qui se raccorde avec l’onde incidente donnée à la surface du 
miroir en y satisfaisant aux conditions aux limites. L’onde réfléchie 
devant être une onde sans singularités, nous sommes donc amenés à 
étudier les solutions régulières des équations (48).

Si, dans les équations (48), nous posons

A

• /.

nous trouvons aisément des solutions intéressantes correspondant 
à m -- 1, savoir

(5o) l'i 1 «1 1 = \ u\ t"'i. Fsi'M2i = u± e—

d’où nous tirons

('5 0 L = v;«i «- o1 e,<v' 111 i = const.s e,*tw_51 =.
COS ■ 1 COS 1

Ce résultat ne peut pas nous suffire, mais il nous invite à considérer 
pour la constante /. des valeurs purement imaginaires. Posons donc

( ae :
■2 k

('o. réel !

Nous sommes ainsi amenés à étudier les équations

(53 ; 1 dV
duj Uj duj

1 - - (— 1 )
11 a -1- m - ( )

i «v J o (y =1,2),

mais nous pourrons nous borner à considérer la seule équation

(54)
d '- Y 
du-

1 dY 
u du

m - - 0 1 ll~ 1 
ta- J
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car, si nous trouvons une solution sans singularités F(w) de (54), nous 
poserons

(55) L',1 ’i i , i = Fin,), F-j (u 2) =

et nous obtiendrons pour U une solution régulière

(,50) l = F ( ut )F* ( a-, ) ' m o e'*1''.
^ ('Ils *

Il s’agit donc de trouver une solution régulière de (54)- Or la théorie 
des équations différentielles linéaires nous apprend que les solutions 
de (54) ont en général une singularité à l’origine, et le théorème de 
T’uchs précise qu’il existe au plus deux solutions de (&4) se comportant 
près de l’origine comme u’. Les valeurs possibles de r sont les racines 
de l’équation déterminante

m-(371 >■< r — 1 ) —(— /*-----— = o.
I

soit r = zn — • Il existe donc une seule solution de l’équation (54) qui
W

soit régulière à l’origine et elle se comporte à son voisinage comme n". 
Ceci nous incite à poser

m
1.58) = U - e>«fy,t,n{u).

Si nous cherchons une solution de (5q) sous la forme

Lu substituant (58) dans (54), il vient

( 5>) 1 je- —-—■ - a il /y—

( Oo '1

nous trouvons aisément pour les c„ la relation de récurrence

-> ! ( U --  Il )1 < ) I C„~ 1 = 1 n 1 )(« + /«-:- i )

Si p est un nombre entier positif, on obtient ainsi pour f,um un polynôme 
de degré p en u. Ce polynôme Pest donné par la formule

(<>>-) l’;,..,,,) Il ) =V ( 3 I )n

n : ( — n ) ! ( m /m
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avec un choix particulier de la constante arbitraire c0[cH 

Finalement nous parvenons à la solution régulière

((>'!) I' = (i«1Mo)ï l’ij..,,, (lit ) l’û. ït-l I m £ giku-!—z)_

avec p et m entiers positifs ou nuis.
Nous admettrons que l’on a ainsi obtenu un système complet de 

solutions régulières, c’est-à-dire que la solution régulière la plus 
générale de l’équation (14) peut s’écrire

' v'- ?!!

(04) U = 2, Zj ("»M« ,,0S! /'* r -+- ":-V« ^i" m r) («i Ms)s
ni0 1 o

Avant d’aller plus loin, nofls remarquerons que les fonctions

è r>5 ) ( « i = k * e~'" (m tixe: ;j . = o. i. ...)

forment un système de fonctions orthogonales pour la variable u. En 
effet, d’après (54). on a

(00;

^(v;« »>«<<»)+-

<1- / ■ ' \ -1—, l V"- I* u>) -hdu1

i ( l > ;j l  - - m -+- î ) ni'- — i 
u \ u -

i( a ;r' ■ - m i i m- — i
u. i u -

\ « l>.„, I «'i = <>■ 

V" l"';x',wf " 1 =

Multiplions la première équation par y/ u Fj*/.», et la seconde par y/ u Fu. : 
soustrayons les relations obtenues et intégrons sur u de o à ce. Nous 
obtenons

(0;j
[■Il 0 lit ~(j ! : ( V ^ ^ [J.,11/ ) V ^ ^ [I-II* (la " ^ ^ '!■’-nf ) du

■ï)

On vérifie facilement par intégration par parties que le premier membre 
est nul, et si les entiers p et p' sont différents, on a

è 08 i J Fij.'.,,, l’a,™ du = <> (h -'Ap).

Nous admettrons que les F,j.jm forment pour un m donné un système 
complet de fonctions orthogonales pour la variable u, et il en sera de 
même des FÛ„,.
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De la solution (63), on déduira une onde du type électrique par les 
formules

i G;) i
K_- = k -1 

H,= o.

,PV
[•:

il

,) -1 
,h ' 

a üi: 
? <h

i-;.

il..

<)z ,h ’

ik
"ih

et une onde du type magnétique par les formules

i jo")
le- = o.

H; = — k~ t - à- y

ik
V- à? ’

\
Oz

h
ik- L
irai'

mais il faudra exprimer les dérivées par rapport à p et à z en fonction 
des dérivées par rapport à u, et à u2 en se servant dos formules

ce qui ne soulève pas de difficultés particulières. L’onde du type 
électrique et l’onde du type magnétique dérivant de la solution (63) 
dépendront au total des quatre constantes arbitraires. Sans entrer dans 
le détail des calculs, on voit qu’une composante quelconque du champ 
électromagnétique d’une onde régulière, par exemple de l’onde réfléchie,

sera développable suivant les fonctions ^ mo avec des coefficients qui

seront eux-mêmes développables suivant les fonctions F),„(//.,,). Pour 
une composante Ev du champ électrique, on aura par exemple

i 7:1 ) F, =2*^ ( a,jsiu m ~ rus m ; ; \ 'u , \eik''' ;
t» ‘ 0

les coefficients a.,Jn et o) sont encore des fondions de la variable u,.

mais sur le miroir parabolique on a ut ~ et par suite, sur la surface

du miroir parabolique, on a des développements de la forme (7e) avec 
des coefficients a el a! constants.

Supposons maintenant que quelque part a l’intérieur du miroir 
parabolique soit placé un émetteur d’ondes dont nous savons calculer 
le rayonnement. Cet émetteur envoie sur le miroir un champ électrique

incident E1' qui est une donnée du problème. En chaque point du 
miroir, chaque champ a une composante d’indice 9 tangente au miroir 
le long d’un parallèle et une composante d’indice t tangente au miroir
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le long de la parabole méridienne. En particulier, les composantes EJ 
et E/ de Fonde incidente auront sur tout le miroir des développements 
de la forme ( 72 )

KE=y v
- Zj ,,. ‘

2 - v
^•:j. m

MH WÇ -+- i/a.1,1 cos Mi 9 ) [ril.,„i m iei/{1''.

où les cê, b. // sont des constantes connues. Pour Fonde réfléchie, 
on aura de même des développements valables à la surface du miroir de 
la forme

où ici les c et d sont des constantes à priori arbitraires au nombre de 
quatre pour chaque couple de p, m puisqu’il y a quatre constantes 
arbitraires pour chaque solution du type (63). Or, sur la surface du 
miroir parabolique, 011 a les conditions aux limites

( 7‘ï 1 E7! -i- E- = o. E/ - E, = o.

qui doivent être vérifiées pour toutes les valeurs de «2 et de o 
(o . J o . 7 2 7t, o ^ u.y 00). _N ou s avons donc

t 7*’ 1 f'[Xjn — O., . r 'iS:: — ,J '!./,■ - ^J. ■ 'éJv. = h l}!n.

et ces formules permettent en principe de trouver la forme de Fonde 
rélléchie.

Des considérations de symétrie permettent très souvent de limiter le 
nombre des termes à considérer dans les développements (72) à (74). 
Néanmoins, même dans les cas les plus simples (doublet placé au 
foyer O le long de Faxe ou normalement à l’axe), les calculs rigoureux 
paraissent devoir être pénibles.

Quand le phénomène étudié a la symétrie de révolution (cas du 
doublet placé en O le long de Faxe par exemple ), les composantes E- 
doivent être nulles, et ceci conduit à prendre dans l’expression de Fl 
uniquement des termes du type (63) avec m o et à n’utiliser que les 
ondes du l\pe électrique. La solution (63) avec p. = m = o ne donne
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lien (l’intéressant parce que les champs sont tous nuis. La solution 
avec m = o. p. = i est au contraire intéressante : en un point situé au 
voisinage de O-ï, mais à une distance très grande par rapporL à la 
longueur d’onde ( A'g i ), 0n trouve approximativement

i 77 i l' ~ i i — •>.ikz -+- '''_:l.

d’où
(781 K- = — 4 k-eik!<■(—;', = — :> se,/:('0—-■ == IJ-,

les autres composantes étant milles. On voit que le champ longitudinal 
est constant au voisinage de l’axe, tandis que le champ électrique radial, 
nul sur l’axe, croît comme 0 à son voisinage. En un point non situé sur
l’axe (orzéo)) le rapport J. est proportionnel à A--1, c'est-à-dire à la

longueur d’onde dans le vide indéfini; quand celte longueur d’onde 
tend vers zéro, l’onde tend à devenir transversale.

La solution du type ((33) correspondant à p. =. o, m ~ 1, est la 
solution déjà considérée dans la formule (ôi). Elle conduit à la solution 
du type électrique

li- ,, ■/ sill COS ,\ h- = o, r—- ~i/c z "K L =—t/c z el/'(c/~z^ :
i -\) i < ' ' r — si 11 ‘

( lI.- = o, II-, = 1I;=E0.

et à une solution du type magnétique qui n’est pas réellement distincte 
de la précédente.

L’onde (79) est transversale : on vérifie facilement que sa polarisation 
est rectiligne, les vecteurs électriques étant partout parallèles. Il est 
d’ailleurs évident qu’elle 11e satisfait pas à elle seule aux conditions aux 
limites.

9'2



CHAPITRE VI.
LE PRINCIPE D’IIUYGIIENS

ET LA DIFFRACTION DES ONDES ÉI.EC.TROM AGNÉT1QUES 
a [,’EMiioi;cm:uE d 'u n g u id e  o u d t n  c o r n e t .

I. L'application de la formule de Kirchhoff aux ondes électro 
magnétiques. — On sait que Kdrchholl a donné un énoncé mathématique 
précis du principe dMIuyghens et que cet énoncé sert de base dans les 
traités d'Optique à l’élude des phénomènes de diffraction.

Dans les traités d’Optique. la théorie de Ivirchholf est développée en 
admettant qu’on peut représenter la lumière à l aide d’une fonction 
scalaire u(x, y, t). On fait ainsi abstraction du caractère vectoriel et 
électromagnétique du ravonnemenl. On part du fait que la fonction u 
doit satisfaire l'équation de propagation

r <) - u
III Ail = —-— )

<■- lit1

el si l’onde est monochromatique de fréquence on pourra écrire 

( i i A», -!- />■- u = o.

La démonstration de la formule de Kircliholf repose alors sur 
l’a[iplicïitii>n d’une formule bien connue de Green. Si U et V désignent 
deux fonctions continues ainsi que leurs dérivées premières et secondes 
à l’intérieur d’un domaine D limité par une surface S, cette formule de 
Green est la suivante

où '! représente la dérivée prise suivant la normale à S dans le sens qui 

fait sortir de D. Soit maintenant un point fixe P pris à l’intérieur de D
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et un autre point quelconque M; r désignant la distance de M à P. nous 
considérerons la fonction W(M) du point M définie pur

(1)

Cette fonction est continue, ainsi que ses deux premières dérivées, 
partout excepté au point P; elle satisfait partout, sauf en P. à l'équation

( é ) A']’: i)r-
<t'V
tir

comine on le vérifie aisément.
Entourons alors le point P d’une sphère 2, infiniment petite de rayon e. 

Les deux fonctions u et 'F étant continues ainsi que leurs deux premières 
dérivées dans tout le domaine D limité par S et par 2, nous pourrons 
appliquer la formule de Green (3) en y faisant U =.= u et Y ='P. Eu 
vertu de (a) et de (4), l’intégrale triple du premier membre sera nulle 
et il nous restera

Il est aisé d’évaluer la valeur que preud la seconde intégrale quand on 
fait tendre vers zéro le rayon £ de la sphère —. En elfe!, tout d’abord
comme ^ est finie au point P, le deuxième terme de l’intégrale tend

évidemment vers zéro en même temps que £; quant au premier terme, 
comme

(7)

il est égal à
Jn

è>r
Or

u( l’î

ik

ik

et tend vers 47Tm(P) quand £ tend vers zéro, finalement, en faisant 
tendre £ vers zéro, on tire de la formule (fi) la célèbre formule de 
Kirchhoff

(8) 4 r. m I* i = — d'P <)u\
{ On]<h

Elle nous donne la valeur de la fonction u en un point P intérieur au 

domaine D quand on connaît les \aleurs de u et de sur la surface S.

Voici maintenant comment en Optique on applique la formule de 
Kirchhoff au problème de la diffraction. Considérons un écran percé



d’une ouverture. Sur la face antérieure do cet écran tombe une onde 
monochromatique correspondant à une fonction u supposée connue, 
l/onde traverse l’ouverture en se diffractant et il s’agit de calculer la 
valeur de la fonction u en un point P quelconque de l’espace situé 
derrière l’écran. On délimite un domaine D contenant le point P en 
prenant pour surface S la surface de l’ouverture, celle de l’écran 
supposé indéfini et celle d’une surface quelconque placée infiniment 
loin, s’appuyant sur l’écran et englobant tout l’espace situé derrière 
l’écran. A ce domaine D et à cette surface S, on applique la formule (8) 
qui donne la valeur de k (P1 si l’on fait les hypothèses suivantes :

i° u et ont sur la surface de l’ouverture les valeurs qui se déduisent

de la forme connue de u pour l’onde incidente ; a" u et sont supposées

nuis sur toute la surface de l’écran et naturellement sur toute la partie 
de la surface S qui est rejetée à l’infini. Le calcul ainsi effectué donne, 
on le sait, des résultats qui sont en général vérifiés d’une façon très 
satisfaisante par l’expérience.

Malgré le succès de ce mode de calcul, il est évident qu’il est sujet à 
de graves objections. D’abord il u’est nullement certain que, si l’on fait 
tendre le point P vers un point de l’ouverture, les valeurs obtenues 
pour u IP) tendront vers celles qu’on a admises à priori comme existant 
dans l’ouverture : de même il n’y aura pas en général coïncidence entre
le ^ ainsi calculé en un point de l'ouverture et la valeur admise pour

en ce point. De plus, le calcul conduit à trouver des valeurs non nulles 
de u pour la face postérieure de l’écran, ce qui est assez naturel puisque, 
eu raison meme de la diffraction, il n’y a aucune raison pour que cette 
face postérieure soit totalement obscure : il est même évident que sur 
les bords de l’ouverture, la fonction u sera 1res sensiblement différente 
de zéro. On a essayé, pour atténuer cette difficulté, de considérer le 
mode de calcul indiqué plus haut comme une première approximation. 
Une deuxième approximation consistera alors à refaire le calcul de u à 
partir de la formule (8), mais en prenant cette fois, comme valeurs de u
et de ^ dans l’ouverture et sur la face postérieure de l’écran, les valeurs

fournies par la première approximation. On pourrait continuer ce calcul 
d’approximations successives, mais rien ne garantit que ces approxi 
mations soient convergentes ('). C’est là une question qui ne paraît pas

LE PRINCIPE D’HUYGHENS. l)5

i 'i \f. Duram! a signalé <{ue ce procédé d’approximations successives envisagé par
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avoir été tirée complètement au clair, et tous les développements exposés 
dans le présent chapitre laisseront subsister cette première difficulté 
soulevée par la théorie de la diffraction. Néanmoins, il ne faut pas 
s’exagérer l’importance de cette difficulté puisque, pratiquement, les 
résultats obtenus par la méthode usuelle de calcul sont très suffisants.

Il y a deux autres graves objections que l’on peut adresser au mode 
de calcul usuel de la diffraction, L’une d’elles est relative à la continuité 
de la fonction u sur la surface S. En admettant que u a dans l’ouverture 
la valeur correspondant à l’onde incidente et sur la face postérieure de; 
l'écran la valeur o. on attribue à u une discontinuité tout le long du 
contour de l’ouverture, et celle discontinuité empêche d’appliquer à la 
fonction u la formule de Green, ce qui enlève à la formule (8) sa base 
logique. L’autre objection, à laquelle nous avons fait allusion, se rattache 
à la nature électromagnétique du rayonnement. Nous savons que les 
équations de Maxwell entraînent, pour la propagation dans le \ idc des

champs E et ld, les équations

<0> Al-
1 Ù-H 
c - ’ Ail

,)• Il

Chacune des six composantes du champ électromagnétique obéit 
donc à l’équation (1), et il semble que l’on puisse lui appliquer les 
raisonnements faits au début du paragraphe et parvenir ainsi à la 
formule (8) pour chaque composante. On pourrait donc calculer les

champs E et H au point P par application de la formule (8). Mais les 
champs ainsi obtenus obéiraient-ils aux équations de Maxwell dont les 
équations (9) dérivent, mais qui sont plus restrictives car elles imposent 
certaines relations entre les composantes des champs ? Quand on a voulu 
calculer la diffraction des ondes électromagnétiques en appliquant à la 
manière usuelle la formule (8) de Kirchhoff à chaque composante de 
champ, on s’est aperçu qu’en fait on obtenait des champs qui ne 
satisfaisaient pas aux équations de Maxwell, et l’on peut d’ailleurs le 
vérifier directement. Si la déduction de la formule (8) était rigoureuse 
dans les conditions où on l’applique, il y aurait là une contradiction 
puisque chaque composante de champ obéissant à la formule (1) devrait 
nécessairement être donnée par (8) au point P. Mais nous avons vu 
qu’il y avait des objections contre la déduction de la formule (81 de

M. Boni nr pourrait conduire'«au résultat cherche car, dés le second slade d'approxi 
mation, il fournirait toujours les mômes valeurs.
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Kirchhoff à partir de (i) dans les conditions où l’on applique celle 
formule.

“T*
Pour obtenir des expressions de E(P) et de H(P) satisfaisant aux 

équations de Maxwell, on a dû suivre une méthode différente de celle 
de Kirchhoff et compatible avec l’existence d’une discontinuité des 
données sur l’écran. Au lieu de considérer l’onde dans l’espace 
postérieur à l’écran comme déterminée par les valeurs aux limites de u

et de on la considère comme due à l’existence de sources fictiveson
distribuées sur la partie libre de l’onde incidente dans l’ouverture. Celle 
méthode est très supérieure à la précédente parce qu’elle fournil des 
champs satisfaisant aux équations de Maxwell, et parce qu’elle tient 
compte dos discontinuités se produisant sur le contour de l’ouverture. 
Grâce à cette méthode qui serre de près les idées mises initialement 
par Iluyghcns à la base de son célèbre principe, on parvient à lever 
d’un seul coup les difficultés liées à la discontinuité de u sur le contour 
de l’ouverture et celle qui provient de la nécessité de satisfaire aux 
équations de Maxwell.

En liaison avec la question de la diffraction des ondes électro 
magnétiques à l’embouchure des cornets, ces questions ont été 
récemment étudiées dans un important Mémoire de MM. Stratton et 
Chu qui ont retrouvé des formules antérieurement proposées par 
M. Kolller pour remplacer la formule (8) (1). Nous allons démontrer 
ces formules de Kolller dans le prochain paragraphe.

Remarquons que nous avons constamment supposé plus haut avoir 
affaire à des propagations s'effectuant dans le vide ou tout au moins 
dans un milieu où l’on peut poser e = p. = i. S’il en était autrement, on 

aurait simplement à remplacer k par k dans les formules (i) à (8). 
Nous continuerons à raisonner en supposant s = y =:i, car c’est là le 
cas pratiquement le plus important.

2. Démonstration des formules de Kottler. — Pour parvenir à 
trouver les formules qui, pour les champs électromagnétiques, doivent 
remplacer la formule (8), nous partirons des équations de Maxwell,

mais nous les écrirons en supposant qu’à côté des densités p et i de

charge et de courant électriques existent des densités ô et j de charge

(J) Voir bibliographie [13] et [18].

T.. DK BROGLIi;. 7
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et de courant magnétiques. Dans ces conditions, nous aurons les 
équations

(10)

i_ dt: 
c àt

rot 11

div t: : 4"?,

àt
- div i = o,

i dH 
c àt

rot K

div H = — 4 ~o ;

do
dt

div j — i

Les équations de la troisième ligne sont des équations de conservation 
qui résultent des équations des deux premières lignes. Soient mainte-

nant V et A les potentiels, V' et A' les anlipotenliels tels que l’on ail

i d\ ------- ^7
(n) K =------ —- — sradV rot A
v ; c àt

avec
, . i àV ->
(ra) ~ -i div A = o,

Il =
à A' 
àt

;rad V' -+- rot A

i dV' 
c àt

d i v A ' = o.

Par substitution de (i i) et (12) dans (10), on obtient aisément

( 13 )
1 d- A -> 4 " t 1 à- A

, ——------AA — - 1 —-—
c- àt2 c c'- àl-

- AA '
/, - >

.. ./•

Pour une onde monochromatique de fréquence :l,_, les formules (1 1) 

prennent la forme

04)

-> y -> ->
K =— ikA -i- .j grad div A e rot A', ik

^ t 1
H = ik A----- 7j grad divA’-i- rot A.

Envisageons maintenant une surface S limitée par un contour C. 
Nous supposerons qu’au point M situé au voisinage immédiat d’un

des côtés de S, les champs E et II soient nuis taudis qu’ils auront 

certaines valeurs non milles au point M' situé en face de M au voisinage 
immédiat de l’autre côté de la surface. Prenons en M un axe des 2 
normal à la surface et dos axes x et, y contenus dans le plan langent. 
Nous pouvons écrire

(i5)

1 dis. 
c àt

dit, __ dllv 
àv _ ~iTz

d i v É = dIA
àx

1 àV.y _ <)\\x d11~
c àt àz àx

dt:,- diÿ,
ày ' à z
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Or les dérivées par rapport à x et à y sont finies tandis que les dérivées 
par rapport à z sont extrêmement grandes et, en intégrant sur la 
normale de M à M', nous avons

(16) l élO 
c t)T ;h v

i àV.Y' 
c <)t H M' 

M ’ di v E dz = ' E M'
M •

En comparant, ces lormules aux équations générales

„ i i)VjX ?V \~ . i éE, ■> ,\ - .(17) - —- = rotr II — ir, = rot,-H — divli. = .\r.a,- c (H c c r)t ’ c ’ ’ n

ori voit que les intégrales des premiers membres de (16) ont les mêmes

valeurs que si II était continu à travers S et si la surlace portait des 
densités supcrlicielles de courant et de charge électriques égales à

(.8) « x H

n désignant un vecteur unité porté suivant la normale à S dans la

direction de M' vers M et les champs E et H ayant les valeurs corres 
pondant au point M'.

On montrerait de même que l’intégrale de —é ^ et ce^e divH 

prises de M à M' le long de la normale à S ont les mêmes valeurs que

si E était continue au travers de S et que si cette surface portait des 
densités superficielles de courant et de charge magnétiques égales à

( M») ./ = y_ [« X e ], S = — 7^ («.II).

Aux densités superficielles de courant i et y, correspondent des solu 
tions des équations (i3) données par les formules de potentiels retardés

(■>0) \='- jj i'ïdz, A' = ~ Ij j'V du,

où a la signification (4).
Pour calculer les champs à partir de ces potentiels, nous devrons 

appliquer à ceux-ci des opérateurs tels que grad, rot, etc., qui agissent

sur les coordonnées du point P où l’on considère A et A'. Mais dans 
l’expression des potentiels, ces variables sont seulement contenues dans 
l’expression de la distance r du point P au point M centre de l’élément dz,
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distance qui figure dans la définition de *F. Si Or est un opérateur 
agissant sur les coordonnées de P et 0M le même opérateur agissant sur 
les coordonnées de M, on a
(21) Op = — Oj i ,

et finalement on pourra écrire, d’après ( 14 et (20),

(22) K = — lkc jj i'1- ch + ~ jj grad^ (1 iv,,, ( é>1’) ,h - ' .jj rol,lr (y t ) du, 

et de même

(23) Il = jj'j'Vdu — ~ fj grad,p. divllr (/1f ) du — ' fj rotip. ( é'I')

où l’indice 'F sert à marquer que les dérivations portent sur les coor 
données du point M centre de l’élément du, mais seulement dans 
l’expression de *F.

En portant dans (22) les expressions (18) et (19) de t et de j, il vient

(24) K(P) = - j/"\ /,

+ jfjj. fj S'ad,]- di' rd" < d]'!') du 

— jj rol,j. (| « X Iv] M’) du.

Or, il est facile de vérifier que

(aà) rot |j. ([« x 14 |'I') = — [J /t x 14 | x grad'I'J

et que

(26) fj grad,p. divy.. (( n x H j'!') du

= (f) gradtP. (iL/s) - - fl (/x rôtit) grad'fVa-

= (f grad'î’. (tlxés) -j- ik H («. 14) grad '1' du,
•A: '* s

d’où, en portant dans (24),
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1

et un raisonnement tout à fait analogue donnerait 

(:<8) IFI’j = -- . (/) grad U*. (e .«&)
l

i //. | h  x !•:] T | | n x II] :
gracPF n. Il) grad 'F J ch.

Telles sont les formules obtenues par Kottler qui doivent donner les 
champs au point P, même quand il y a sur S des discontinuités pour les 
champs.

Nous allons enlin transformer les équations (27) et (28) pour montrer 
leurs relations avec les formules de Kirchboff. Pour simplifier un peu 
les calculs, nous supposerons que la surface S est plane, ce qui 
correspond au cas usuel d’une ouverture percée dans un écran plan. 
Pc plan de la surface S sera alors le plan des xy et l’intégrale double

de (27) pourra s’écrire facilement après remplacement de —f/cH
->

par rolE : 011 Irouve ainsi par exemple pour E.„

> >
n rot K grad »F ] (h

dd' )
àx \ c/x cl ) .

car zi,. = ny -- o et 1.
D’où, aisément.

(:jo) 1 - K,-(P, ./élfï > t\.
x;

>F àV.,r
dn ■ E.,; àn cli

avec des expressions analogues pour Ev et E-, de sorte que l’on peut 
écrire

(3 F) =p;'''àxf-FrO'-X +£'ifFFÂ]

et, pour le champ magnétique, l’on trouve de même

Ox 4701(1’, = - ^ <jj gi^d>F(t;.^)-(^ tr[iix*]+ U'(^i
an on/

Précisons que dans toutes les formules précédentes l’intégrale <j) estune 

intégrale curviligne prise le long du contour G dans le sens inverse des
7.
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aiguilles d’une montre par rapport à un observateur se trouvant du côté 
de la lumière diff'ractée. C’est cette convention qui a déterminé les 
signes que nous avons adoptes pour ces intégrales.

Les formules (3i) et (32) montrent que les intégrales doubles de 
Kirchhoff prises sur la surface de l’ouverture doivent être complétées 
par des intégrales curvilignes prises le long du contour de l’ouverture 
si l’on veut tenir compte des discontinuités des données sur ce contour.

Etant donné la façon un peu détournée dont nous avons obtenu les 
formules (3i) et (32), il est, important de vérifier directement que les

expressions obtenues par E et H vérifient bien les équations de Maxwell. 
Nous allons la vérifier en raisonnant sur les expressions (27) et (28) qui 
sont équivalentes à (3i) et (3?.). Vérifions d’abord que l’on a

(33)
àt

= — iktl >
ro t K.

Désignons par rol\ç l’opérateur rotationnel agissant sur la fonction *E 
en un point de l’ouverture; nous trouvons, à partir de (2-),

( 34) 4 - rotp É = — 4 ” rotjj. E = — jj j [ |_/i x II j X grad 'J-']

-r- rot,j. £[11 x e ] x gradU^I ch.

Nous allons calculer le rotationnel de la seconde intégrale en prenant 
encore le plan de l’ouverture comme plan des xy\ pour la composante a? 
de ce rotationnel, nous trouvons

[h  x E 1„ AT + I

d’où, en intégrant,

<n T T
<)./:' ' <)x <)y

(35) ch

^ é;) d’E )
n . rot E) -7— :• rh ■ 

<)x

En revenant aux formes vectorielles, on voit qu’on peut écrire (3)) de 
la manière suivante

(36) 4 - rot !•:
-J W[' h ] X grad T



LE PRINCIPE D'HUYGHENS. io 3

Il suffit maintenant de multiplier l’expression (28) de II par —ik 
pour vérifier que, si l’équation (33) est satisfaite sur l’ouverture par 
les données, elle est satisfaite partout. Pur des calculs tout à fait 
analogues, on étendra la même conclusion à l’équation

-V
1 f) F, X x- 

(3;) ~ - =i/cE = rotH.
v ' ; c <)t

Restent à vérifier les équations en divergence. De (27) nous tirons

(38) 4- divp 1. = --4-1ilivll:.E
1 f (-> //“WX X\ (\X XI \ j
iki'c

Jix h J . grad'Fyf r/7,

car
.. ry ^ I f r> \ rr> XI

(3f>) aiVrç. | 11 x 11 k== CL" X H_|. gradU'J, (1|ViFLL" x E | x grad'F | = 0.

Mais on a aussi

(V(X >- \ (f* f X X N r /x ~X\
(do) .// !" tr J. grad'I'J (h = jj rot II ) 'F de (pr{n . ds ).

Portons celte valeur dans (38) et tenons compte de (5) et de (87) : 
nous voyons aisément que le second membre de (38) est nul, de sorte

X
que l’équation divE = o est satisfaite. On vérifie de même, à partir

de (28), que divll est nulle. La présence des intégrales de contour dans 
les formules de Rouler est essentielle pour que ces vérifications se 
fassent.

Résumons maintenant en quelques mots la marche du raisonnement 
que nous avons fait pour parvenir aux formules de Kolller. Nous avons 
coupé l’onde incidente sur la surface de l’ouverture, introduisant ainsi

“i>- X
sur cette surface des discontinuités des champs E et H, et nous avons 
compensé les discontinuités ainsi introduites en distribuant des densités 
de courants magnétiques et électriques sur toute l’ouverture. Puis, 
conformément à l’esprit du principe d’Huyghens, nous avons considéré 
ces courants distribués à la surface du front d’onde comme servant de 
sources pour le rayonnement qui existe du côté postérieur de l’écran, et 
cette hypothèse nous a permis immédiatement le calcul de ce rayon 
nement par les formules des potentiels retardés.

Il est encore très intéressant d’analyser l’origine des différents termes 
dans les expressions (27) et (28). Si l'on compare les termes sous le
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signe intégrale double dans ces expressions avec l’expression des 
densités (18) et (19)., on voit que les intégrales doubles représentent les 
champs créés au point P par les distributions superficielles (18) et (19). 
Quelle est donc alors l’origine des intégrales simples figurant dans (27 A 
et (28)? Elles sont dues à l’existence sur le contour (1 d’une charge 
linéaire fictive équivalente à la brusque discontinuité des champs sili 

ce contour. Montrons-le pour la formule (27). une explication analogue

étant valable pour (28). Désignons par /?4 le vecteur unité porté 
normalement au contour C en un point Al de ce contour dans le plan 
langent à la surface S en AJ. Au point Al nous pouvons décomposer le

vecteur i en trois composantes rectangulaires in, is et i„r Considérons 
le petit élément n de la surface S collé au contour C au point AI, comme 
l’indique la figure suivante :

I(>4

La relation de conservation de l’électricité nous permet d’écrire 

(4u ikcjj' P ,h <ln> = -£ (i H- È-ë) '/ni

Si nous faisons tendre dnt vers zéro, les deux premiers termes du

second membre tendront vers zéro, car i est continu, d’après son expres 
sion, dans le sens s et dans le sens 11, mais le troisième terme reste fini à

—y . >-
cause de la variation infiniment, rapide de II et par .suite de i quand on 
atteint le contour C dans le sens ni. On voit ainsi qu’il faut attribuer à 
l’élément ds du contour C une charge linéaire p.s égale à

CD) p, — ,.;. , x n])--,1 il .
l/œ J àn 1 \~ 1 k " L J/ \-ik ■

r>
IIj, d’après le sens positif choisicar

sur C.

[ n x H J,) = Qlj n, x n JJ —
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On vérifa alors immédiatement que l'intégrale simple de (27 ) 
représente le champ créé par la distribution électrique fictive (4a) 
distribuée sur le contour G et correspondant à la discontinuité du
champ électromagnétique sur ce contour. Interprétation analogue pour

- >-

l’intégrale simple de (28). Il est remarquable que si dans le calcul de E

et de II nous étions partis non pas des formules (22) et (23), c’est-à-dire 
des relations (ij), en faisant seulement appel aux expressions (18) et

(19) de t et de y, mais bien des relations (11) en calculant les potentiels 
scalaires V et V' avec emploi des valeurs (18) et (19) de p et de ô, nous 
aurions trouvé les expressions (2-) et. (28) sans les intégrales de 
contour, et les champs ainsi calculés n’auraient pas été solutions des 
équations de Maxwell. Le calcul précédent est donc, par certains côtés, 
assez délicat, et ceci explique pourquoi les auteurs qui ont voulu 
l’ellectuer ont pas mal talonné avant d’arriver aux expressions exactes 
(28) et (29).

15. Diffraction des ondes à l’embouchure des guides et cornets. — 
Les formules de Kottler sont aujourd’hui utilisées en radiotechnique 
pour le calcul de la diffusion des ondes électromagnétiques à l’embou 
chure des guides et des cornets, afin d’évaluer l’effet directeur des 
diverses formes qui peuvent être adoptées pour ces dispositifs. Un 
émetteur d’ondes placé quelque part dans le guide ou le cornet sert de 
source à une propagation d’ondes qui se déroule dans le guide ou le 
cornet suivant les lois précédemment étudiées. A l’embouchure du 
guide ou cornet se produisent d’importants phénomènes de diffraction 
qui ont pour ellet de diminuer le caractère dirigé de la propagation et 
qu’il est. par suite, très important de pouvoir évaluer assez exactement. 
Pour cela, on admet que la propagation d’ondes, calculée dans le guide 
ou cornet d’après les conditions d’excitation, se maintient jusqu’à 
l’embouchure, de sorte que les champs aient sur la surface de l’embou 
chure les mêmes valeurs que si le guide ou cornet était indéfini. Natu 
rellement c’est là une hypothèse ayant le caractère d’une approximation. 
Ensuite on admet que la diffraction à l’embouchure peut être calculée 
en assimilant cette embouchure à une ouverture percée dans un écran. 
On appliquera donc les formules ( 3 1 ) et (3?,) eu admettant pour valeurs 
des champs sur l’embouchure les valeurs résultant de l’hypothèse 
précisée plus haut. Rappelons que dans les formules (31 ) et (32) la 
variable n est comptée normalement à la surface S de l’embouchure
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dans le sens de l’intérieur du guide ou cornet, et que les intégrales^)

doivent être prises le long du contour de l’einbouchure en tournant 
dans le sens des aiguilles d’une montre pour un observateur qui 
observe cette embouchure de l’extérieur. Les calculs effectués de cette 
manière ont donné de bons résultats, et les hypothèses qui leur servent 
de bases paraissent pratiquement satisfaisantes.

Ces calculs de diffraction ont été notamment effectués pour les guides 
à section rectangulaire par MM. Harrow et Green, pour les cornets 
secloraux par MM. Barrow et Chu, et pour les cornets biconiques par 
MM. Barrow. Chu et Jansen (*). Nous nous contenterons ici de 
reproduire les calculs relatifs à un cas très simple, celui des guides à 
section rectangulaire parcourus par une onde H,,.

4. Diffraction à l’embouchure d’un guide à section rectangulaire pour 
l’onde II,,. — On se reportera au Chapitre 11, paragraphe 2 et à la

figure i. Nous considérerons l’onde obtenue en faisant n-2 = o dans les 
formules (17) du paragraphe en question et nous écrirons simplement 
rn au lieu de Mais, comme nous prendrons désormais pour origine 
le centre de l’embouchure comme l’indique la figure i3, nous écrirons 
l’expression des composantes non nulles du champ électromagnétique 
de l’onde considérée sous la forme suivante

(4L»
E - C If, :

n 1 G m t . siu DIT. ... , ..---- - -----X ei[kct-kxz
k a cos a

(') Voir bibliographie [2], [4] et [5J.
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avec

(41) a-

Dans les formules (43), C est une constante complexe arbitraire et 
l’on doit prendre dans l’expression Ey le cosinus ou le sinus, suivant 
que l’entier m est impair ou pair, pour que Ev satisfasse aux conditions 
aux limites.

Nous repérerons la position du point extérieur P par les valeurs du 

rayon vecteur R = OP et par les angles polaires 0 et ;p.
Nous introduirons les abréviations

( O 1 A = sin 0,
kb

sin 0, M V1-

et nous ell'ectuerons le calcul du champ électrique E au point P à l’aide 
de la formule (31 ) : le calcul du champ magnétique H(P) se feraitd’une 
façon tout à fait analogue à l’aide de la formule (3a). Nous supposerons 
que le point P est très éloigné de l’embouchure, c’est-à-dire que la 
distance R est très grande par rapport aux longueurs a, b et Les 
coordonnées de P étant

(' {6) xy = H sin 0 cos 9, j p = R sin 0 sin 9, = R cos 0,

la distance r du point P à un point M de coordonnées x, y de l’embou 
chure à la valeur approximative

(r — ! {.Vf—x')--h(yy—r)2 = R— sin ft(a; cos 9 -1- y sin 9 ),

et l’on a ainsi approximativement sur toute l’embouchure

(Y,*) cos /(, r ~ cos 0.

Nous pouvons maintenant calculer l’intégrale double (intégrale de 
Kirchhotf) des formules (3i). Pour les composantes x et z, nous 
aurons zéro, d’après (43), et pour la composante y, nous trouvons, en 
négligeant les termes en R~-,

Ùl(K’ ï-ifi*

illi ew (<•(-»)( cos 0 -4- M) f dx f dy C°~ x e«sin0(.co! sf+ysii^l, 
4-R V „ J b su, «

(49)



CHAPITRE VI.108

L'intégrale double, au second membre de (4q )j <‘l pour valeur

b sin ( l> sin 9 ) 1 
1» sin 9

ou encore

a sin ( A cos :

A cos s -h ni r.

a si 11 A cos w —

A cos ï - h - m t .

( — ni ~ ab i
sin 1 B si 11 9) 

l> sin :

sin A cos :

A- cos- z — ni2 --

On en conclut que l’intégrale double de KirchhofV conduit à un champ 

électrique ËA> de composantes rectangulnircs

( 5o)

KJ = KJ

b .(cosü -h M)—jV-
sin ( \ cos

I > sin; \ - cos- z — ni- ~-
Qi/,{r/ -H).

Passons maintenant au calcul de la première intégrale de contour

dans la formule (3 i ). Cette intégrale nous donne un cliarnp E(2) purement 
radial dont la valeur au même degré d’approximation est

( 51) K;2 : = — (J) e -'*>■ 11 , dx

K/i- ... , J' COS VIT. .. .
-î-/clt Jc sin a

iCkz 
4 - k J !

i ( i kz 
> - k B

( I! si n 9 ) j

'ri ,i,

x eWsi"l)rc>.*? d.r ««(<•' 11 )

sia ( A cos c
sin ( lî sin 9 ) -

( A cos ç )- — ni- ~-
( — m ~ n ) (■■/--it);

d’où

(25)

Kÿ)=Ei)2!=oI

i/nCabk sin(Bsino) 
4 K B si n 9

sin ( A cos c -t-

A - cos2 o — ni-t .'1
M si n f) sin c e/2 J7 11 .

Enfin, il reste à calculer le champ E(:|) correspondant à la seconde 
intégrale de contour de la formule (3i). Ce champ n’a comme eompo-
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sanie rectangulaire différente de zéro que la composante g  qui a pour 
valeur
(54) Kl:,î =-------— e:t<rl (f dx

4-R sin a '

d’où

(O)
K

i f
sin ( A ros e —

-,—rr sin( iî sin 9) ——------ -
4 - K A - cos-1

( — /mi a) 6‘*M-

im C abk si 11 ( I! si 11

I . = lv;?: = o, 

sin ( A cos :

i H Iî A- cos-
sin 0 sin e e7 r! R .

Munis des résultats ( 5o), (5a) et (54), nous sommes en état de calculer 
le champ résultant E au point E. c’est-à-dire les composantes Er, E? 
et Efj de ce champ. Nous partirons des formules

S
I’.,! = l'i,'. cos 9 sin B — K,'1 sin 9 sin 6 -1- F/.' cosO,

V.y = F(,; cos9 — E 4 sin 9,

F (J = F; cos 9 cos U l'i/ cos 0 sin 9 — F7; sin 0,

valables pour i — i; a, 3. On trouve d’abord

(Mi) K,. = F,!: sin ç sin# -+- Fr2io- TvJi: cos 0 = o.
ce qui établit le caractère transversal de l’onde diffusée, résultat auquel 
on devait s’attendre puisque les formules de Kotller satisfont à la rela 
tion divE =- o. On voit que cette dernière relation 11e serait pas satisfaite 
et que la transversalité n’existerait pas si l’on négligeait les intégrales 
de contour.

Grâce aux formules (55), on trouve encore

F 9 = F).11 cos 9 

iw (dibk

07 J
il!

cosio + àn -in ( Iî sin 9 )
on A

Iî sin e A - cos- z — m-r.-

Ffj = F,1 cos # sin 9 — FJ1 s i 11 (

111 A cos c
i//>(', abk , , , sin (H sine)
----- m-----0 F.MCOS#)------ -----------------------------------------------—

4 Iî Usine A-cos-e — m-zz1

cos e e'7!'7 -H)

sin e e'îl'V-a).

On trouverait d’une manière analogue 

(58) II,. = 0. Hfj = — F-, IE= ii0.
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En particulier, dans le plan de symétrie xz où l’on a <p = o, il vient

(5g) E0=H?=o, Eç = -IIfl=Ey>

et dans le plan de symétrie yz où cp =

(60) E^=ll0=o, Ko = Hç = E^l‘ cos0 — EL3,cosO.

Sur l’axe des s, les intégrales de contour des formules "(31) et (3a) ne 
donnent aucune contribution, ce qui peut se prévoir par des raisons de 
symétrie.

o. Démonstration d’une formule due à Darbord. — Darbord avait 
étudié, il y a quelques années, le rayonnement projeté par un miroir en 
forme paraboloïde de révolution quand on tient corap Le de la diffraction (').

A

Cette élude, qui demanderait à être reprise d’une façon plus rigoureuse, 
l’avait conduit à une intéressante formule que nous allons démontrer en 
nous plaçant dans un cas plus général.

Nous considérons un cornet limité ayant une forme de -révolution 
autour'd’un axe O^. L’embouchure de ce cornet sera donc un cercle 
perpendiculaire à l’axe Oi et de rayon a. Nous voulons calculer le 
champ électrique envoyé par ce cornet en un point b de l’axe situé à 
une distance D de l’embouchure très grande par rapport aux dimensions 
du cornet.

Nous prendrons le centre de l’embouchure pour origine des coor 
données et nous supposerons qu’en un point C de l’axe du cornet est

placé un émetteur harmonique de fréquence égale à

Nous ferons alors les trois hypothèses suivantes :

i° Le rapport ^ est très petit devant l’unité ainsi que le rapport (*)

(*) Bibliographie [ 11 ].
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2" Le rapport ~ ^où /. est la longueur d’onde dans le vide corres 

pondant à la fréquence —'j est assez petit pour que y ^ soit très petit, 

devant l’unité;
3° Le rapport ? est assez grand pour que le champ électrique envoyé

en un point M de l’embouchure puisse être représenté aux environs de 
ce point par

(C>i) K(M)=

E„ variant avec le point considéré de l’embouchure, mais étant indé 
pendant de 5. Ces hypothèses sont compatibles et usuellement réalisées. 
Elles le seront, par exemple, si l’on a

car alors

n = inl,5o. D = ikl" X = i1'"1.

a 1,5
D iooo’

a _ a a 2,2.5
X — ' ’ X I ) ioo

Dans ces conditions, en vertu des hypothèses i° et 3°, on aura, en un 
point de l’embouchure,

(02.;
é'r_ __

()n ()r
f)E
à 7i l)z ikM0 e‘irl.

Dans la formule de Kottler donnant le champ E au point IJ, les intégrales 
de contour donneront une contribution nulle par raison de symétrie dans 
un très grand nombre de cas, par exemple quand l’émetteur est un 
doublet placé en G le long de l’axe ou perpendiculairement à l’axe. Nous 
supposerons qu’il en est ainsi eL nous écrirons

(c,:s) 12(1’) = - y-h.lll->é>i'
<ÿn

'1' ^ \dz.
ili

soit, d’après (62 ),
-> ik fT e~ikr>( 64 ) E ( P) ^ ~ eikct jj —J- E0 <h.

En vertu de l’hypothèse i°, j peut être remplacé par ^ • D’autre part, 

sur la surface de l’embouchure, la variable r varie de la valeur D en O 

à la valeur y/D'- -f- a- ~ D + sur le pourtour : en vertu de l’hypo 

thèse 20, on peut donc remplacer l’exponentielle e-1/,r sur toute l’embou 
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chure par sa valeur au centre e Si alors nous désignons par E(l la 

valeur moyenne de E0 sur l’embouchure telle (pie

la formule (64) deviendra

(05) K ( P ) ^ ^ Ko S e«-p' 11 ' = K„ ,

car S = r. a2.
La formule (65) correspond au calcul de Darbord pourle paraboloïde. 

Elle montre que, pour un cornet donné et une forme donnée de l’onde 
sur l’embouchure, le champ électrique en P sera proportionnel à /', 
c’est-à-dire en raison inverse de la longueur d’onde À.

Supposons maintenant que nous enlevions le cornet sans loucher 
à l’émetteur. Celui-ci enverra directement en I’ un champ élec-

Irique E,/(P) dont la valeur sera, bien entendu, différente de E(P). 
Comme les champs rayonnés diminuent en raison inverse do la

V

distance, on obtiendra une évaluation du champ E.,/(P) (pii sera très 
souvent exacte, du moins en ordre de grandeur (notamment dans le cas 
envisagé par Darbord d’un doublet perpendiculaire à l’axe) en posant

(60) F-./é P ) ~ K„ 1 '■ e'/'i',/-i|)
1)

/’„ étant la distance de l’émetteur au centre de l'embouchure. En substi 
tuant dans (65), on aura alors

(67)

Si l’on pose

(68)

on trouve enfin
(69) |m

K(P)^^MP).
2. 7\)

~ —|CKP)I MP)

où le produit T.a est un nombre de l’ordre de l’unité.
La formule (69) nous montre que le rapport des champs rayonnés 

avec et sans cornet est proportionnel au rapport du rayon de l’embou 
chure à la longueur d’onde : pour un cornet donné, il varie en raison 
inverse de la longueur d’onde.
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C’est Lien là im. des résultats essentiels qu’avait obtenu Darbord. 
Il est démontré ici d’une façon plus générale, mais sa démonstration est 
soumise à la réalisation d’assez nombreuses hypothèses.

(>. Travaux récents sur le principe d’Huyghens et le théorème de 
réciprocité (' ). — Le principe d’Huyghens a lait en France l’objet de 
divers travaux intéressants dans ces dernières années. Xous citerons un 
article de M. Yves Hocard [31 | et surtout trois notes de M. F. Croze 
faites avec la collaboration respective de MM. F. Durand, P. Boillet et 
Georges Darmois |32j. Dans la première de ces notes, MM. Croze et 
Durand, s’appuyant sur les développements du paragraphe 2 du présent 
chapitre, ont monlré qu’ou peut obtenir en parlant des relations (22) 
et (2.1) les formules proposées autrefois par Love, Larmor et Broimvich. 
Dans la seconde note, MM. Croze et Boillel ont prouvé que les mêmes 
formules se retrouvent en supposant que chaque élément de la surface 
d’onde porte un petit doublet électrique et un petit doublet magnétique 
convenablement choisis. Enlin, faisant la synthèse des résultats précé 
dents, la note de \1M. Croze et G. Darmois précise les conditions que 
doit remplir un énoncé exact du principe d’Huyghens pour les ondes 
électromagnétiques et montre que toutes les formules exactes sont équi 
valentes à celles données plus haut, les formules qui ne leur sont pas 
équivalentes étant inexactes. Cet important ensemble de uoles est d’un 
haut intérêt et, si le lecteur s’y reporte, il y trouvera un complément 
très instructif des considérations développées dans le présent chapitre.

Nous signalerons encore les travaux de M. G. Goudet | 33] qui a 
notamment donné une forme asymptotique des formules de Kolller très 
utile pour la pratique et exposé comment le principe des écrans com 
plémentaires de Babinet trouve d’importantes applications pour les 
ondes centimétriques. Dans le même ordre d’idées, on pourra lire aussi 
avec profiL un article de M. Henri Gutton sur les projecteurs d’ondes 
centimétriques [34].

Pour terminer, nous noterons l’emploi dans la technique des émis 
sions d’ondes ultra-courtes d’une relation que Lorentz avait obtenue en 
généralisant le théorème de réciprocité de lord Rayleigh et qui a été 
utilisée en Radiotélégraphie par MM. Sommerfeld et Carson. La for 
mule de réciprocité de Lorentz s’applique en chaque point de l’espace 
aux vecteurs électriques et magnétiques de deux champs électromagné-

I l3

(1 ) Paragraphe ajouté à la seconde édition.
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liqu es de même fréquence distingués par les indices i el. 2 : elle s’écrit 

(70) (li v [ Ei x IL ] = di v [ E2 x Ui ]

et se démontre aisément à partir des équations de Maxwell. Sur l’utili 
sation de cette relation en Radioélectricité, on pourra consulter un 
article de MM. H. Gutton et J. Ortusi [35] et un article de M. J. Mail 
lard [36].

Enfin, on trouvera un exposé de différentes questions touchant les 
ondes centimétriques dans un petit volume publié par les Éditions de la 
Revue d’Optique et contenant des mises au point faites par d’éminents 
spécialistes [37].

i  i  4
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