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INTRODUCTION

La Théorie quantique des champs électromagnétiques a
dd son origine, 1l y a plus de vingt ans, aux travaux de
M. Jordan et de MM. Pauli et Heisenberg (*) : on en trou-
vera d’excellents exposés dans les livres de M. Heitler () et de
M. Wentzel (*).

Nous plagant & un point de vue assez différent, nous avons
développé depuis 1934 une Mécanique ondulatoire du photon qui
a 'avantage de bien montrer comment la théorie de la lumiére
vient trouver sa place dans le cadre général de la Mécanique
ondulatoire, tout en permettant de retrouver par l'application
directe de la seconde quantification la plupart des résultats
essentiels de la théorie quantique des champs. Aprés avoir
ébauché cette théorie dans deux fascicules de la collection des
Actualités scientifiques (Paris, Hermann, n° XIII, 1934 et n° XX,
1936), nous en avons fait un exposé d’ensemble dans un Quvrage
en deux volumes. intitulé Une nouvelle théorie de la lumicre : la
Mécanique ondulatoire du photon (Parls, Hermann, 1g40-1942),
puis dans un autre Quvrage intitulé Théorie générale des particules
a spin (Gauthier-Villars, Paris, 1943), ou nous avons rattaché la
Mécanique ondulatoire du photon & la Théorie générale des
particules douées de spin.
~ Aujourd’hui, il nous parait intéressant de reprendre, pour les

(') Zeitschrift fir Physik, 56, 1929, p. 1.
(*) Quantum theory of radiation, Oxford University Press, 1936.
(*) Einfihrung in die Quantentheorie der Wellenfelder, Fr. Dentiche, Vienne, 1943



VI INTRODUCTION

approfondir, les compléter et parfois les rectifier, les résultats
exposés dans le premier des deux Ouvrages que nous venons
de citer, de facon notamment & bien mettre en évidence ce
qui distingue notrc Mécanique ondulatoire du photon, de la
Théorie quantique des champs électromagnétiques telle qu’elle
est usuellement exposée. Nous aurons ainsi I'occasion d’examiner
un certain nombre de difficultés et de critiques que peut soulever
notre point de vue.

Depuis la rédaction de nos précédents ouvrages sur ce sujet,
nous avions eu l’occasion de faire de nouvelles remarques sur
la signification physique des algorithmes de la théorie des
champs (en particulier celles qui sont exposées au Chapitre IX).
Nous avons aussi profité de nos échanges de vues avec les
jeunes théoriciens de I'Institut Henri Poincaré, et surtout avec
M~ M.-A. Tonnelat ct avec M. Gérard Petiau, qui ont apporté
dans ces derniéres années a ce genre de questions de trés
précieuses contributions.

Malgré les points délicats qui subsistent en Mécanique ondu-
latoire du photon et que nous n’avons pas cherché a dissimuler,
il nous semble certain que cette théorie garde le grand mérite de
faire voir clairement le véritable sens physique du formalisme
assez abstrait de la théorie quantique des champs et de préciser
bien des questions qui restent assez obscures dans les exposés
qu’on en fait habituellement.

Louis npg BROGLIE.



MECANIQUE ONDULATOIRE DU PHOTON

THEORIE QUANTIQUE DES CHAMPS

PREMIERE PARTIE

THEORIES NON SUPERQUANTIFIEES.

CHAPITRE I.

EXPOSE SCHEMATIQUE DES DIVERSES FORMES
DE LA MECANIQUE ONDULATOIRE.

1. Conceptions générales. — Nous supposerons connus dans leurs
grandes lignes les principes généraux de la Mécanique ondulatoire
a une fonction d’onde ainsi que ceux de la théorie de Dirac (*). Nous
voulons seulement développer ici un schéma général de ces théories qui
présente sous une forme condensée quelques-uns de ces principes
généraux sans entrer dans les détails.

Dans toutes les formes de la Mécanique ondulatoire (forme primitive
a une seule fonction d’onde, théorie de Dirac, Mécanique ondulatoire
du photon ou du méson), on représente toujours 1'état d’un corpuscule
par une certaine fonction d’onde ¥ (z, y, 3, t) définie en chaque point
de 'espace et a chaque instant ¢ : cette fonction représente donc un
champ au sens habituel de la Physique du champ. D’ailleurs, on le sait,
la grandeur ¥ est une grandeur complexe qui ne correspond pas & une
quantité mesurable (observable au sens de Dirac), mais qui permet
seulement de former des grandeurs qui, elles, représentent des grandeurs

(') Pour approfondir leur étude, on pourra consulter notamment le livre de l'auteur,
Une nouvelle théorie de la lumiére, t. 1, Chap. III et IV, Hermann, Paris, 194o.

LOUIS DE BROGLIE, 1



2 CHAPITRE 1.

observables. Dans la Mécanique ondulatoire primitive, la grandeur ¥
est unique; en théorie de Dirac, elle comporte quatre composantes ¥,
Wy, ¥y, ¥, dont 'ensemble est désigné symboliquement par la lettre W
de la méme facon que I'on désigne symboliquement par A I'ensemble
des trois composantes A;, A,, A° d’un vecteur de l'espace a trois
dimensions. Dans la théorie du photon et dans celle du méson, la
fonction d’onde W a seize composantes; ¢ 'e en a davantage pour les
particules de spin plus élevé.

Dans chaque forme particuliére de la Mécanique ondulatorre,
mtervient toujours,un opérateur dit opérateur hamiltonien qui repré-
senle une certaine opération linéaire effectuée sur une fonction de
I'espace ou est défini le W, c’est-a-dire en fait dans l'espace ordinaire
a trois dimensions quand on considére un seul corpuscule sans spin.
Pour plus de généralité, en vue notamment des applications a la seconde
quantification, nous dirons sans préciser davantage que lopérateur
hamiltonien (qu’'on représente toujours par la letire H) opére dans
I'espace ou est définie la fonction W. L’évolution au cours du temps de
la fonction W est alors représentée par 'équation

h O

(1 = o =W

Dans le cas d’un corpuscule sans spin, cette équation d’évolution
représente une seule équation aux dérivées partielles. Dans le cas d’'un
électron de Dirac (électron doué de spin), la fonction d’onde aura
quatre composantes ¥, el 'opérateur Hamiltonien pourra opérer non
seulement sur les coordonnées x, y, z de I'dleciron, mais aussi sur
Pindice ¢ qui est susceptible de prendre les valeurs distinctes 1, 2, 3, 4.
L’action de I’hamiltonien sur l'indice ¢ de la fonction d’onde se
représentera al’aide des quatre matrices a quatre lignes et quatre colonnes
généralement désignées en théorie de Dirac par «,, as, @, 2;. Dans la
Mécanique ondulatoire du photon et du méson, il y aura seize compo-
santes du W : ces seize composantes pourront étre écrites sous la
forme W, avec o, T =1, 2, 3, 4 et Popérateur H agira a la fois sur z,
v, s et sur les indices o et 7, etc.

On obtiendra ainsi dans le cas de 'électron de Dirac quatre équations
aux dérivées partielles simultanées auxquelles obéissent les quatre ¥'s;
dans le cas du photon et du méson, on obtiendra, comme nous le
verrons, seize équations aux dérivées partielles simultanées auxquelles
obéissent les seize W'y, et dont on pourra déduire seize autres équations
du méme type, etc.
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Pour les particules a spin dont les fonctions d'onde ont plusieurs
composantes, on peut dire que les indices de ces composantes
constituent des variables de spin susceptibles de prendre.un certain
nombre de valeurs distinctes : I'espace ou est définie la fonction
d’onde W et ou elle évolue suivant I'équation (1) est formé par les
variables d’espace z, y, s pouvant prendre toutes les valeurs de —
a + et les variables de spin a4 nombre fini de valeurs dislinctes.
Toute intégration sur les variables z, v, z devra s’accompagner d’une
sommation sur les variables de spin, si 'on veut avoir sommé sur toutes
les variables dont dépend le W. Nous désignerons par D le domaine
total de variation des variables 3, ¥, 3,9, 7, ....

Dans les diverses formes de la \/Iecamque ondulatoire, on peut
définir une grandeur de champ construite & partir du W et jouissant de
la propriété que son intégrale, dans le domaine d’espace ¢ ol esi
défini le W, reste constante en vertu de I'¢quation d’évolution (1).
Cette grandeur, représentée par la letire p, est nommée densité de
probabilité de présence et, dans Pinterprétation physique de la
Mécanique ondulatoire a une fonction d’onde et dans celle de la théorie
de Dirac, 'on admet que p(z, », %, t)dr donne la probabilité pour
qu’une expérience permette de localiser a l'instant ¢ le corpuscule
dans I'élément de volume dr entourant le point z, y, 5. Pour que p dz
donne cette probabilité en valeur absolue, il faut évidemment que

l’intégralefp dr, qui reste constanle au cours du mouvement en vertu
v B

de I'équation (1), soit égale a 'unité. Mais, I'opérateur H étant linéaire,

I'équation (1) l'est aussi et, si W est une certaine solution de (1),

CW¥ ou C est une constante complexe quelconque en est une autre :

on peut donc convenir de choisir la constante C (ou plus exactement
son module) de facon que la condition suivante soit satisfaite

(2) fpd‘t:l.

La fonction d’onde est alors dite normée et la normalisation du ¥ ainsi
réalisée a une importance essentielle en Mécanique ondulatoire.

Le fait quefp dr reste constante en vertu de ’équation: (1) se
; -

>
démontre en prouvant qu’il existe un vectcur f d’espace tel que
I'équation de continuité

) : de
(3) »h;+dnf——o
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soit satisfaite en vertu de I'équation de I’évolution du W. On peut donc
considérer p et f comme définissant localement la densité et le mouvement
d’un fluide fictif de probabilité tel que la quantité p dr de ce fluide fictif
contenue dans I’élément de volume dr mesure la probabilité de présence
de ce corpuscule dans cet élément de volume. Dans les théories rela-
tivistes comme celle de I'¢lectron de Dirac ou celle du photon,
les grandeurs p, fo, fy, f: apparaissent comme les quatre composantes
d’un vecteur densité-flux dans l'espace-temps.
Dans la Mécanique ondulatoire & une fonction d’onde, on a, en
désignant par W* la quantité complexe conjuguée de ¥,
h

T 4mim

—> —_—
(3) p=|¥2=0Y", f (‘1"' grad‘lf—‘l"gradw")

avec la condition de normalisation

(4) f|llf|'-’d-c=1,
D

ou D est simplement le domaine d’espace ¢ ot évolue 'unique fonction
d’onde W. En théorie de Dirac, on a '

L3 &
>
(5) 0 =2 W, f= ——CZ\P;aWa,
g G
1 1
. > . . . .

ou x est un vecteur-matrice dont les trois composantes rectangulaires
sont a,, a,, a3. Ici p et f définissent un quadrivecteur densité-flux dans
’espace-temps et I'on a comme condition de normalisation

4
(6) fdxdydzz VW, =1,
v -
1

car ici-le domaine D comprend & la fois le domaine ¢ de I'espace ou
évolue le ¥ et les quatre valeurs distinctes de la variable de spin o.

2. Opérateurs, valeurs et fonctions propres en Mécanique ondu-
latoire. — L’opérateur hamiltonien est non seulement linéaire, il est
aussi hermitien : ceci signifie que, si g et f sont deux fonctions réelles
ou complexes, mais intégrables et nulles aux limites, des variables qui
définissent le domaine D (y compris toujours les variables de spin),
on a

(7) ff'Agr/T:ng'_f'dt,
n b

ou P'astérisque indique toujours la quantité complexe conjuguée.
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L'introduction en Mécanique ondulatoire d’opérateurs linéaires et
hermitiens est un fait tout a fait général en ce sens qu’on y fait corres-
pondre & toute grandeur physique mesurable (observable au sens de
Dirac) un tel opérateur. L’opérateur hamiltonien H est celui qui corres-
pond a la grandeur érergie. A toute autre grandeur observable, corres-
pond de méme un opérateur linéaire et hermitien que nous désignerons
par la lettre A.

A chaque opérateur A, donc & chaque grandeur observable, on peut
faire correspondre des valeurs propres et des fonctions propres.
Considérons en effet 'équation

(8) A =ay,

dite équation aux valeurs propres de Uopérateur A, ou o est une
fonction des variables du domaine D ou opére A et ou « est une
constante, c’est-d-dire une quantité indépendante des dites variables.
Le temps ¢ peut d’ailleurs figurer comme paramétre numérique dans A,
a et ¢. Par définition, on appelle valeurs propres de Uopérateur A
dans le domaine D, les valeurs de la constante o pour lesquelles
I'équation (8) admet au moins une solution ¢, fonction finie, continue,
uniforme et sommable dans D des variables du domainé D. Cette
solution est une fonction propre de V'opérateur A correspondant & la
valeur propre «.

De l'équation (8) et de I'équation conjuguée, on tire aisément
la relation

(9) f[?'M—QA'?*]dv——-(a—a')f?'?dt,
D )1}

et, comme A est hermitien, le premier membre de (g) est nul, ce qui
montre que « = a*, c’est-a-dire que a est réel.

L’ensemble des valeurs propres d’un opérateur hermitien forme
le spectre de cet opérateur qui peut étre continu (spectre de bandes)
ou discontinu (spectre de raies) ou méme mixte. Si & une méme valeur
propre correspondent plusieurs fonctions propres linéairement indépen-
dantes, la valeur propre est dite multiple ou dégénérée. Dans le cas des
spectres discontinus de valeurs propres non dégénérées, on démontre
aisément que les diverses fonctions propres sont orthogonales entre elles,
c’est-a-dire que, si ¢; et ¢z sont les fonctions propres correspondant aux
valeurs propres distinctes a; et ay, on a

(10) fq),—* ¢k dt = o.
b
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Comme le caractére linéaire de Véquation (8) entraine que, si g; est
une fonctioa propre, Co; 'est aussi; on peul toujours, comme pour les
fonctions d’onde W, supposer que les ¢; ont ¢té normées par la condition

(11) j | 1|2t = o.
D

Nous n’insisterons pas ici sur les complications qui se présentent quand
il y a des valeurs propres multiples, ni sur les questions délicates que
I'on rencontre dans la normalisation des spectres continus; on se
reportera pour les étudier a d’autres exposés.

Rappelons cependant (*) que la normalisation des spectres continus
conduit a introduire la fonction symbolique de Dirac d(2), ainsi que
la fonction

(12) 3(r)=29(x)8(y)o(3z),

r étant le rayon vecteur qui joint 'origine au point de coordonnées zy s
et que l'on a

B -
i s@s@ds=gios I fmsmde=sio),
la derniére intégrale étant étendue a tout I'espace a trois dimensions
ou z, y, 3 sont les coordonnées (espace r) et dr désignant abréviati-
vement I'élément de volume dz dy dz. On est ainsi conduit aux impor-
tantes formules dont nous aurons & nous servir

-+ »

+» )
~ ! —i
14) 6(.7:):;% 5 e—ikx dk; ar)= g;ﬁn e~krdk,
ot dk = dk, dk, dk., formules qui se déduisent aisément de la théorie
des intégrales de Fourier. Les formules (14) sont des formules symbo-
liques signifiant que les deux membres sont équivalents quand ils

figurent sous les signesfdx et fdr.

3. Interprétation physique de la Mécanique ondulatoire. Définitions
diverses. — Rappelons sur quels principes est fondée I'interprétation
physique de la Mécanique ondulatoire.

Pour la Mécanique ondulatoire, I'état d’un corpuscule est défini,

(1) Nouvelle théorie de la lumicre, t. 1, p. 67.
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aussi complétement qu’il peut ’étre, par la connaissance de 'onde ¥ qui
lui est associée. Cette onde ¥ qui représente les connaissances fournies
sur le corpuscule par des observations ou des expériences antérieures
doit étre solution de I'équation d’évolution (1), et nous supposons
toujours que cette solution est normée. La connaissance de 'onde W
ne permet pas d‘attribuer, comme le faisait 'ancienne Physique, une
valeur bien déterminée a chaque grandeur attachée au corpuscule :
elle permet seulement d’attribuer a chacune de ces grandeurs des
valeurs possibles alfectées de probabilités. Elle y parvient en admettant
les principes généraux que nous allons rappeler.

Tout d’abord, a toute grandeur observable attachée a un corpuscule,
la Mécanique ondulatoire fait correspondre un opérateur linéaive et
hermitien. Pour P’énergie, cet opérateur est 'opérateur hamiltonien H :
pour les autres grandeurs telles par exemple que coordonnées, compo-
santes de quantité de mouvement ou de moment cinétique, 'opérateur
se forme, en partant des expressions classiques correspondantes, par des
‘procédés automatiques bien connus que nous ne rappellerons pas ici.
L’opérateur correspondant a une grandeur observable attachée a un
corpuscule étant linéaire et hermitien, il posséde un ensemble de
valeurs propres réelles et un systéme complet de fonctions propres
orthonormales (c’est-a-dire orthogonales et normées). Voici alors les
deux principes fondamentaux que la Mécanique ondulatoire admet
comme bases de son interprétation physique :

1° Les valeurs possibles d’une grandeur observable attachéc a un
corpuscule, c’est-a-dire les résultats possibles d’'une mesure de cette
grandeur, sont les valeurs propres de l'opérateur linéaire et hermitien
correspondant a cette grandeur.

2° Quand l’état d’un corpuscule est représenté par une certaine
fonction d’onde W(z, y, z, t) solution de I'équation d’évolution (1), -
la probabilité pour qu'une mesure précise de la grandeur observable
correspondant & un opérateur A fournisse a I'instant ¢ une certaine
valeur propre « de'A, est égale au carré du module du coefficient de la
fonction propre correspondante dans le développement de la fonclion W
suivant les fonctions propres normées de I'opérateur A. D’une facon
plus précise, si la fonction d’onde W se développe suivant les fonctions
propres de A sous la forme

(15) ‘I"=2 Ci19::
‘
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la probabilité de la valeur propre o; est |¢;|?. On vérifie que, ¥ élant

normée, on a 2 fei{*==1 en accord avec le théoréme des probabilités

13

totales.

On se reportera a des exposés plus détaillés pour voir comment
on doit légérement modifier ce second principe dans les trois cas
suivants : 1° quand le spectre de valeurs propres a est continu;
2° quand Uopérateur A a des valeurs propres multiples; 3° quand V'opé-
ratear A n’intéresse qu'une partie seulement des variables du domaine D.

Nous supposerons connue du lecteur la fagon dont les principes
généraux énoncés ci-dessus permettent de montrer que la quantité W™
est bien la probabilité de présence en chaque point, de justifier le
principe de décomposition spectrale de Born qui détermine les valeurs
quantifiées de I'énergie et finalement de conduire aux inégalités d’incer-
titude de M. Heisenberg. Rappelons seulement que deux grandeurs
correspondant aux opérateurs A et B sont simultanément mesurables
avec précision si les opérateurs A et B commutent (c’est-a-dire si
AB = BA) et dans ce cas seulement.

Arrivons-en a la définition des matrices de la Mécanique ondulatoire.
Ces matrices sont formées & partir des fonctions propres de opérateur
hamiltonien H par la formule

(16) a/k:f‘lf;'AlF/c d= (arj=ajy),
“/n

qui donne les éléments aj; de la matrice engendrée par Vopérateur A,,.
Le domaine D est toujours celui de ’ensemble des variables, y compris
les variables de spin. On obtient les matrices d’Heisenberg ou celles
de Schridinger suivant que Pon inclut et que 'on n’inclut pas dans
el
la définition de la fonction propre Wy le facteur exponentiel eh
Rappelons encore la définition des valeurs moyennes étroitement
apparentée i celle des éléments de matrices. D’aprés les principes
généraux de la Mécanique ondulatoire, la valeur moyenne probable de
la grandeur observable correspondant 4 Dopérateur linéaire et
hermitien A quand le systéme est dans 'état représenté par la fonction

d’onde ¥ _—_2 cipi est
i

(17) K=Y alel,
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puisque les valeurs possibles de A sont les «; et que chaque «; a la

probabilité | ¢; |2. On démontre aisément que A peut aassi s’écrire

(18) X:f‘lf‘A\Udr,
1]

D étant toujours le domaine de 1'ensemble des variables, y compris
celles de spin. Remarquons que dans les phénoménes macroscopiques,
ot intervient un nombre énorme de processus élémentaires, A est
seul accessible a 'expérience.

I1 est évident que si la fonction d’onde ¥ coincide avec 'une des
fonctions propres Wi de I’hamiltonien, on a A= @ik, €€ qul montre
le rapport étroit existant entre la définition des valeurs moyennes et
celle des éléments de matrice.

Les grandeurs ‘I” AW, et WAW (au besoin sommées sur les variables
de spin) apparalssent dans les formules (16) et (18) comme les quantités
qu'il faut intégrer dans P’espace pour obtenir les éléments de matrice
ou la valeur moyenne pour la grandeur A : on peut donc les nommer
densités d'éléments de matrice et densités devaleur moyenne. Ce sont
des grandeurs de champ, c’est-a-dire des fonctions de zyst, alors que
les éléments de matrices et les valeurs moyennes qui en résultent par
intégration ne sont fonctions que de ¢. L’examen de l'interprétation
physique de la Mécanique ondulatoire montre que ces densités n’ont
pas une signification physique aussi bien définie que leurs intégrales :
elles ne sont définies qu’a une divergence d’espace prés et rien ne permet
de choisir entre deux formes de la densité qui sont intégralement équi-
valentes, c’est-a-dire qui donnent les mémes valeurs pour les inté-
grales (16) ou (18), car seules ces intégrales possédent en Mécanique
ondulatoire une signification physique précise. Ce sont cependant ces
densités qui, dans les théories relativistes comme celle de Dirac, ont
une variance bien définie. Elles sont importantes a ce point de vue et
aussi parce qu’elles donnent une image ( peut-étre un peu trompeuse au
point de vue quantique) de I'aspect moyen des phénoménes. Ce sont
également des—quantités de ce type qui définissent les grandeurs
électromagnétiques en Mécanique ondulatoire du photon.

. 4. Evolution au cours du temps des éléments de matrice et des
valeurs moyennes. — Considérons un élément de matrice donné par la
formule (16). Il peut dépendre du temps par ¥}, par Wy et méme pour
Iopérateur A qui peut' contenir dans sa définition le paramétre ¢.
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La dérivée de aj; par rapporl At estdonc

dai ow; r)‘l"k
(19) = —f[ 7 dt + AW+ WPA S ]d,

_f\p[ +'—‘-‘-‘(AH—HA)] v, s,

la derniére formule s’obtenant en tenant compte du fail que W; et

W7 satisfonl respectivement a I'équation (1) et a ’équation conjuguée et

du fait que H est un opérateur réel et hernnitien.?ﬁ est P'opérateur

obtenu en dérivant formellement I'opérateur A par rapport au para-
métre ¢. On a donc

(20)

da,-/;__ ()__A
dt ~ | ot

ani ’
— (AU —HA .
Tl )]ik

Il arrive fréquemment que 'opérateur A ne contienne pas le temps dans
sa définition : on a alors simplement

(21) %:%[AH_HA]M_E%‘[A 11
[A, H]=AH — HA étant le commutateur des opérateurs A et H.

On écrit souvent (21) sous la forme symbolique

dA _ 2mi
22 —_ A, H
(22) = = 7| I
Cette notation est bréve et élégante, mais elle a, comme beaucoup de
notations symboliques, I'inconvénient de masquer un peu le sens

véritable de la formule. La dérivée % n’a, en effet, par elle-méme

aucun sens quand A ne dépend pas de ¢ et la formule (22) est seulement
une représentation symbolique dc la maniére dont les éléments de
matrice dépendent du temps par l’intermédiaire de W; qui n’appa-
raissent pas explicitement dans (22). '

On peut, de méme, dériver par rapport au temps une valeur
moyenne de la forme (18) et obtenir ‘

dA — (g [()A 2%
b d

(23) = oA -—-(AH—HA)J‘IJ'dr

v’on peut écrire symboliquement
q P M q

(24) %; - ’;_A L"_‘(An —TIA),
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ou, quand A ne dépend pas du temps,

dA 27l
(25) a5 = LA HI

mais, ici encore, il ne faut pas oublier que la variation de A dans le
temps provient de celles de W et de W* qui n’apparaissent pas explici-
tement dans la formule symbolique.

5. Remarques sur les valeurs moyennes dans la théorie quantique des
champs. — Les remarques qui précédent prennent une importance
particuliére dans la théorie quantique des champs. Cette théorie fait
intervenir, nous le verrons, la seconde quantification, c’est-a-dire qu’on
y considére un espace ou les coordonnées sont les nombres de corpus-
cules (en Vespéce, de photons) dans les divers états énergétiques
possibles. Tout point figuratif dans cet espace doitavoir des coordonnées
entiéres, fait qui traduit existence méme des corpuscules. On considére
Pévolution dans espace des n d’une certaine fonction d’onde que nous
désignerons par R : c'est la fonction de répartition telle que
{R(ny, ny, ..., t)|* donne la probabilité pour qu’il y ait, a 'instant ¢,
ny photons dans l'état 1, ny dans I’état 2, etc. La fonction R évolue
suivant une ¢quation de la forme type

h JR

armi ot

(26) = %R,
ou J est un opérateur agissant sur les variables n et jouant le réle d’un
Hamiltonien dans 'espace des n.

La théorie quantique des champs électromagnétiques conduit, et ceci
est la chose fondamentale, a considérer toutes les grandeurs électro-
magnétiques comme des opérateurs agissant sur les variables n,
opérateurs qui, par ailleurs, sont des fonctions des variables z, y, 3, ¢
d’espace et de temps. Ce sont donc des opérateurs opérant sur les n
dont V'expression varie d’un point a 'autre de 'espace et d’un instant
a 'autre du temps. '

Si l'on considére la valeur moyenne correspondant a l'un de ces
opérateurs, par exemple a la composante E, du champ électrique,
valeur moyenne prise dans U’espace des n, elle se définira par

(27) Tz,,:Z R*(n, ..., YER(n, ..., 1),
n

la somme Z étant étendue a toutes les valeurs entiéres possibles des n
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et E; étant au second membre l'opérateur de l'espace des n corres-
pondant 4 la composante de champ considérée. La formule (29) nous
fournit au point xyz et & U'instant t pour lesquels nous considérons
lopérateur E, la valeur moyenne de la grandeur électromagnétique
correspondante quand la répartition est définie par la fonetion R(n, ..., f).

C’est la grandeur E, que la théorie quantique des champs considére
comme la valeur observable de la composante z du champ électrique au
point zyz a Vinstant ¢ dans un champ de trés nombreux photons dont
la fonction de répartition est R(n4, ..., t) : E, définit donc la valeur
macroscopique de cette composante de champ,

L’évolution de E, au cours du temps est donnée par la formule
symbolique
(28) %:%‘—”4—%[1&;, 5]
ou, si I'on définit I'opérateur E; de I'espace des n de facon qu’il soit
indépendant du temps

dEzx 2n7
& = T[E %1,

(29)
la variation de E, provenant en réalité de la variation en fonction du
temps de la fonction de répartition R(z, . . . ¢), qui ne figure pas explici-
tement dans la formule symbolique (29).

Ces remarques sont essentielles a retenir si on veut bien comprendre
le sens véritable du formalisme de la théorie quantique des champs.
Nous les examinerons 4 nouveau dans le cadre de la Mécanique ondula-
toire du photon.



CHAPITRE II.

DERIVATION VARIATIONNELLE DES EQUATIONS
DE LA MECANIQUE ONDULATOIRE.

1. Introduction d’une fonction de Lagrange. — On peut rattacher
les équations de la Mécanique ondulatoire sous leurs diverses formes a
un schéma lagrangien permettant d’obtenir automaliquement ces
équations par des procédés de Calcul des variations et, de plus, de
trouver a l'aide de formules générales I'expression des densités de
moyenne les plus importantes intervenant dans ces théories. Ce schéma
Lagrangien est analogue a celui qu’on rencontre dans beaucoup d’autres
branches de la Mécanique et de la Physique.

Nous avons rappelé que la Mécanique ondulatoire introduit systéma-
tiquement une grandeur complexe, la fonction d’onde W, fonction des
coordonnées d’espace et du temps. Dans la Mécanique ondulatoire pri-
mitive, la fonction d’onde n’avait qu'une composante, mais dans la
Mécanique ondulatoire de I’électron, du photon, etc., ¥ devient une
écriture symbolique représentant I'ensemble des composantes ¥,, W,...
de la fonction d’onde. De plus, ¥ est toujours une grandeur complexe
et, a coté de ¥, on doit donc toujours considérer la quantité complexe
conjuguée ¥ dont I'équation d’évolution est conjuguée de celle de W'.

Pour faire rentrer la Mécanique ondulatoire dans un schéma
Lagrangien, on aura & définir une fonction de Lagrange £ dépendant

. . . or, ¥, IV
de Wy, W, ..., des dérivées spatiales et temporelles =", —tv', 5
d\v|

- = W), etc., ainsi que des quantités conjuguées. Si des actions exté-
rieures s’exercent sur le corpuscule considéré, £ pourra aussi dépendre
explicitement de z, y, 5, t. Nous admettrons que £ est toujours une
fonction bilinéaire réelle (') des quantités étoilées et non étoilées,
c’est-a-dire que £ est.une somme de termes dont chacun contient le
produit d’un des ¥, ou d’une des dérivées des W, par un ¥ ou Fune
des dérivées des W;. Ces définitions et hypothéses étant posées, en ce

(') Sur cette hypothése de réalité de £, voir le paragraphe 6 du présent chapitre.
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qui concerne la fonction de Lagrange, nous envisagerons I'intégrale

- .
(1) I—fdtf dtf(@"h’)‘p /)(_L_’ %7 LT PO >,

ou V est le domaine de variation des coordonnées d’espace, ¢’ — ¢' celua
des variations de la coordonnée ¢. Maintenons constants les domaines V
et ¢"— ¢ et imposons (1) aux ¥, et aux W7 des variations ¢W, et dW;
telles que ces variations soient nulles aux limites de V et pour les ins-
tants £ = ¢ et ¢t == 1.

La variation corrélative de I est

.
(2) oI .—_f dthtdr
t v

- 3
; . 9L 5 Wy L . E .
_‘[ dt£d1 ; m‘o‘l 2 )d‘b,, -;—E+’)T(—Toll | s-+»c<m}|.

Cette forme de Jl résulte de I'hypothése que £ est une fonction

bilinéaire réelle des quantités étoilées et non étoilées, de sorte que la
partie de oI qui dépend des 6%, & ——° f)lp"

et 8, est la quantité conjuguée
AL d‘lfq '

de celle qui dépend des 0¥ et 6‘1"

Un procédé d’intégration par partles qui est classique en Calcul des
variations permet de transformer o1 en lui donnant la forme

92 J '«)ﬁ’

Sy ‘ 9 o _J ]

ol = f ¢ tfd‘c OIFGI()‘I" 2‘ Py t)‘la, Ji l)ll ~+ conj.,

ol nous avons posé

(4) Vo= 2=2  (i=1,1,3)

On admet comme postulat que le champ W est tel que I'intégrale T soit

un extremum pour des variations quelconques ¢W; et 3¥'; soumises aux
conditions précisées ci-dessus. On est donc amené a poser

3

L J I d oL

IV, _2,-5»;, L TR
kY

3
L Z Jd J£2 a oL

Ny mdi Oy Mgy I Uy

ox; dl]fa, i Jt ,)lin“'

(') Dans ce paragraphe et dans le suivant, Vindice s représcnte {’enscmble des indices
des W',
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En raison de la forme bilinéaire de £, le second systéme d’équations
nous donne les équations d’évolution des W, et le premier les équations
d’évolution des W;. De plus, en raison de la réalité de £, ces deux
groupes d’équations d’'évolution sont conjugués I'un de I'autr¢, comme
cela doit étre. Finalement, on obtient ainsi pour les W, des équations
aux dérivées partielles simultanées (au plus du second ordre) en nombre
égal a celul des composantes du W. Ce sont les équations d’évolution du
champ W.

On peut remarquer en passant que si I'on ajoute a la fonction de’
Lagrange une cxpression de‘la forme ‘

3

J .
Ei(—)‘_l‘;Al(W1 )+ \0(1}1 )
1

(ce qui revient a ajouter a I l'intégrale d’une divergence d’espace-
temps), rien n’est changé aux équations d’évolution. On peut donc dire
que la fonction de Lagrange n’est définie qu’a une divergence d’espace-
temps preés.

Rappelons qu’en Mécanique analytique ordinaire, on peut définir
I'énergie H a partir de la fonction de Lagrange £ et des moments

pi= e par la formule
J 91

(6) HV=EP1'7'E‘. '——291—————£’
i

~ Tci nous définirons les moments conjugués de W, et de W; en posant

0L x 0L
g =

Tg= — —
(7) ] d‘l’c, ()‘F;’

puis, comme les ¥ et ¥ jouent en chaque point zy 3 le rdle des ¢; de
la Mécanique analytique, nous serons amenés a penser que I’énergie du

champ W doit étre donnée parfw dr avec, par analogie a (6),
v

(-8) _Z‘I 2 +2¢. o _13—2(%%4_%%) 2.

Cette prévision sur la forme de w va se trouver bien vérifi¢e plus loin.
Notons enfin qu’il est souvent commode d’'introduire dans les for-
mules précédentes les coordonnées d’Univers z, =z, z.=y, z,= 3,
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#,=ict, ainsi que la convention bien connue de sommation sur les
indices deux fois répétés, convention qu'on appliquera aux indices
des z; et aussi & ceux des W,. On notera bien cependant que le passage
a I'imaginaire conjuguée représentée par les astérisques ne porte jamais
sur les facteurs ¢ introduits par I'emploi des coordonnées d’Univers.
Nous généraliserons la définition (4) en P'appliquant a Pindice ¢ = 4.
Avec ces convéntions, les équations (3) s’écrivent simplement

() J 9L _ I£ 0 0L _ oL
9 dz; Moy OWs  dxy IWa;  IVs

2. Densités de valeurs moyennes dans le schéma lagrangien. —
Considérons maintenant le tenseur de rang deux

L 902

Tip = — e - 7=
(10) Lk P 6,k d‘Fé,i

w;”k"ﬂ- £ 6”(,
ou d est le symbole classique de Kronecker égal a 1 pouri=+4etao
pour i £k,
T i
Calculons Tz, o0 supposant que £ ne dépende pas de zyzt (pas
d’actions extérieures sur le corpuscule). On trouve

ANT aJ 9L L2 IWs i 9IL .
(1) '(751—=*—5;(m> ok~ G, o, +m‘l‘a,latk
+ oL dlI;‘a,,.S - coni. =\ [_i .i)_?_. _Jz
oWy, oz, ¥ =7 Tk Oz, W,y N}]
+ —dg—[dw“’i — (-)—‘ya—k]+ conj
MWe il dzi dx; J:

Le deuxiéme crochet est visiblement nul, par suite de la commutativité
des dérivations et le premier crochet est aussi nul en vertu de (g).
Il en est de méme des quantités conjuguées et I'on a finalement (ne pas
oublier qu’il y a sommation sur ¢)

JT _

(h=1,23 1)
l}.Tl'

(1)
Cette relation de divergence nulle nous fournit quatre relations qui
{ 1
peuvent étre considérées comme exprimant les conservations de
I'énergie et des composantes de Pimpulsion sil’on regarde T, comme
g p p g
le tenseur impulsion-énergie du champ W. Ce point de vue est confirmé
p ° p p

par le fait que, si /2 dépendait de zys¢, le second membre de (12), au

. . 12
lieu d’étre nul, serait égal a ~—.
i
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Les équations (12) ou k =1, 2, 3 doivent donc exprimer la conserva-
tion des composantes de 'impulsion. On en déduit aisément que T4,
T., et T, sont les densités d’impulsion du champ ¥ multipliées par ic,
tandis que les Ti avec ¢, k=1, 2, 3 sont les composantes du tenseur
des tensions dans le champ.

L’¢quation avec k = 4 doit exprimer la conservation de I'énergie :
Tis, Ty, et T;, sont donc les composantes du flux de 1'énergie mult.i—

plides par IE, tandis que T,, doit étre la densité d’énergie multipliée

par i? =-—1. On vérifie bien, en effet, que T;;=— w, w étant définie
par (8).

Le tenseur Ti; défini ci-dessus n’est pas. symétrique. En particulier,
le tenseur des temsions n’est pas symétrique (Ty125%Tay, ...) et les
composantes du flux de I'énergie ne sont pas égales aux densités des
composantes d’impulsion multipliées par ¢? (car Ty, 5= Tsy, ...). La
plupart des auteurs admettent que Pon doit rendre le tenseur T;; symé-

T+ The

trique. en le remplagant par - Ce n’est pas 'avis de M. Olivier

Costa de Beauregard, qui a donné dans sa Thése des arguments tendant
a faire conserver le tenseur T sous la forme non symétrique (10).
D’accord avec lui, nous conserverons cetle forme non symétrique.

A partir de la fonction de Lagrange, nous pouvons aussi définir un
quadrivecteur d’espace-temps jouant le role de vecteur densité-flux.
Nous le définissons en posant

27 a2 *
= e | —— W —
(13) J h ["wa,i o d‘If:rz ]

(i=1, 2, 3, 4).
En particulier la composante de temps f, donnera la probabilit¢ de
présence
fo  2mi[ O£ .. 9L .

14 =t = | —W— — Wsl.
) f w, ol °

Pour que le quadrivecteur f joue le réle de vecteur densité-flux, on
doit poser ’équation de continuité

(15) Wi,

d.z: i

Or, en tenant compte des équations (9), on trouve aisément

df, _ 2mi[ I€ J [ o8 ) ] .
(16) o o [d‘l"u Yo i+ 5 9z (d‘l",i Wol + conj.
axe | O oL oL o .]
=5 ' e
[d'ra,“"”* I, 7, Vo T

LOUIS DE BROGLIE. 2
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d . .
Pour prouver que 171% est nul, on peut partir de la remarque suivante :

les ¥;, méme normalisés, ne sont jamais définis qu’a un facteur de
phase de la forme €’* prés, ou « est un nombre réel, le facteur e/* étant
le méme pour tous les W,. Certains auteurs nomment cette propriété
Uinvariance de jauge de premiere. espéce. On doit donc admettre
que la fonction et les équations de Lagrange sont insensibles a toute
variation de a. Or pour une variation infinitésimale dx de «, ¥, varie
de 0%, = ¥ efle+da) W eia ~ jdaW,. De méme, on a dW, ;~ i daW, ;;
Wi~ —idaW; et Wy ,~—(daW;, Dans lexpression (16), le
crochet est donc, au facteur 7/ dax prés, égal a la variation qu’éprouve £
quand on fait varier la phase de dz; comme cette variation doit étre

of,

. S .
nulle, on en conclut que %, = 0 ce qui permet de considérer le qua-

drivecteur f comme représentant la densité etle flux d'un fluide fietif
qui se conserve, fluide qui symbolise la probabilit¢ de présence du
corpuscule.

En raison des difficultés qui se présentent pour linterprétation du
vecteur densité-flux ‘dans le cas des corpuscules de spin supérieurs a é,

difficultés dont nous aurons a reparler a propos du photon ('), certains
auleurs préférent considérer systématiquement, au lieu de £, le quadri-
vecteur ¢f, ou ¢ est la charge électrique du corpuscule. Ce quadrivecteur
doit représenter les densités moyennes de charge électrique et de cou-
rant électrique lides au champ W. On remarque alors que le quadri-
vecteur

axie [ 02 . a2
(17) efi= T[mq’a,i“m‘Pc,zJ

serait nul identiquement si les W, ¢taient réels (car alors W= ¥ et
W;i=W;,;) et 'on en conclut : tandis que les particules chargées
doivent étre représentédes par des fonctions d’onde complexes, les par-
ticules neutres doiveant étre représentées par des fonctions ¥ réelles.
Ce point de vue qui se rattache a des questions difficiles sur lesquelles
nous aurons a revenir, ne nous parait pas s'tmposer. On peut, en effet,
trés bien admetire que les particules, qu’elles soient chargées ou
neutres, sont représentées par des fonctions d’onde complexes et que le
vecteur densité-flux d’électricité est nul pour les particules neutres

(') Pounr plus de détails pour ces difficultés, consulter L. pe BrosuiE, Théorie géné-
rale des particules & spin, Chap. IX, Paris, Gauthier-Villars, 1943.
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simplement parce que leur charge électrique [qui figure en facteur
dans (17)] est nulle. Nous nous bornerons pour Uinstant & cette indi-
cation.

3. Application du schéma lagrangien 4 la Mécanique ondulatoire &
une fonction d’onde. — Dans la Mécanique ondulatoire relativiste a
une fonction d’onde, on adopte pour le corpuscule libre la fonction de
Lagrange suivante

1().1‘, d.tl
1

18) £ =—{¢ oW A + kWY = | W —c2grad¥ 2 — A WP,
R+

avec

(19) ko=

£2 est bien une fonction bilinéaire réelle de W, de ¥ et de leurs déri-
vées. On en tire" ’

Py PY: I£ N
1= = P, = s =, o= e
(20) L\l JU JU dx;
- ) Y- L
[ 70 =~ %o v =—RY, ek

Les équations de Lagrange donnent

G O+ =0 (@+¥=o (D=3 —1).

Ce sont les équations de propagation de la Mécanique ondulatoire rela-
tiviste & une fonction d’onde. On trouve également

(22) w:ﬁli'ﬂ+7='l1~'—~f—

2| grad (2 + A5 W2,
et plus généralement

L .
I, Ly FET Y
¥ d‘l" . A S L S 1!
- + kwye N BAIN AT I B
[c dz, dx, ¥ ] i+ C [d.zi Jdxy - ox; da:,(-]

(23) Tw= 1.081[;~

Pour les composantes du quadrivecteur densité--ﬂux, on lrouve

oxt | Jd@ 9L . a5 o ()‘F'
o o | e Y I = — —_ o
(24) Ji h [:)‘1'0,1 U Wy ¥ a] /L et [0.1, o Jx; J
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Nous n’insisterons pas davantage sur la Mécanique ondulatoire rela-
tiviste a une fonction d’onde, qui a Pinconvénient de ne pas rentrer
dans le schéma quantique général, son équation de propagation étant
du second ordre par rapport au temps.

Quant 4 la Mécanique ondulatoire non relativiste, dont I’équation de
propagation est du type canonique, son caractére non relativiste ne
permet pas de lui appliquer dans son ensemble le schéma lagrangien
de forme relativiste développé dans les précédents paragraphes.

4. Le schéma lagrangien de la théorie de Dirac (') (théorie de la
particule de spin 1/2). — La théorie de Dirac est une forme relativiste
de la Mécanique ondulatoire qui satisfait au schéma quantique général :
ses équations paraissent étre valables pour toutes les particules de
spin 1/2. Elle fait intervenir quatre composantes ¥, de la fonction
d’onde et on peut la faire dériver de la fonction de Lagrange

(25) E_kc{ ,*[Idllf'a d - 0

int ot gz Ve ay

J .
e iz a,‘lfg———aa‘lfa——zkoa“lfg]}+con_|.,

ko étant encore défini par (19). Dans cette formule (25), les sym-
boles a«,, @i, a;, @, sont les quatre matrices hermitiennes de Dirac
telles que l'on ait

(26) al=1, Ao - G &= O pour ¢k,
avec la condition d’hermiticité

(27) (a1)gr= (“2);6-

Nous adopterons pour les a; les formes usuelles

o 0 0 1 o o0
o 01 o — o
Xy = 3 Qg = b
o1 o o o I [}
A 1 0 0 o0 —f 0 o0 o
(28)
o o I o —1 [ o
o o —1 —1 o
Uy = y ‘a‘_
1 1 0
o —I1 o o0 I

(1) Pour approfondir la théorie de Dirac, on pourra consulter le livre déjh c\té
Théorie générale des particules & spin, Chap. V et VL.



DERIVATION VARIATIONNELLE DES EQUATIONS DE LA MECANIQUE ONDULATOIRE. 21’

Dans la formule (25), le symbole «; ¥, représente la combinaison
linéaire suivante des ¥, . "

4

(29) ) “iw?':zt(ai)ctwn
1

et 'on posera de méme

4
’ LA
29 qfa-:?.‘lf' Dra-
(29") a®; 11?(“)‘!6’

Avec ces définitions et conventions, on voit que £ est bien une fonction
bilinéaire réelle des W, et des W et de leurs dérivées. On notera en
passant que '

(30) [‘F;«,‘I"q]' = [W;('“l)arwt]" =7 (% )eWo= W;W‘Ifa-
Les équations (9) de Lagrange sont ici

c dt

L4 a, - ) d oy

S ! d__"_= v (a0 Wg) + 7y (azll"q)+ d—(aallf',,)+tkoa;‘lfq
(1) 1 dlm d

¢

(‘Fa“i) + -—(‘Foaz) -+ Jz (wa‘“a) — lkoa&llra

(¢=1,2,3,4)

Ces équations sont bien en accord avec la forme canonique

h o H‘IJ'
ot Jt
si 'on pose
. he [0 ? /]
(32) H= 27‘“’[0‘2_ ‘y“2+ a—-—ad—f—lkoab]

Les équations (31) sont les équations de Dirac pour les W; et W5. Il en
résulte que

(33) £=o.

Les équations de Dirac forment un systéme de quatre équations linéaires
aux dérivées partielles simultanées du premier ordre en W, (et en W5).
Nous n’étudierons pas les solutions de ces équations, renvoyant le lec-
teur aux traitds spéciaux, mais nous allons calculer le quadrivecteur
densité-flux et le tenseur impulsion-énergie.
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Pour le quadrivecteur densité-flux, les formules générales nous
donnent

2xi t s o .
fi='TL[WWG w-. i I ]'—:“*Cq’d’aiq‘o‘ (i=1,2,3),
o,i i
(39 o
= l— ‘L lL'

L’expression de p est I’expression bien connue de la densité de proba-
bilité¢ de présence en théorie de Dirac. En multipliant f; et p par la
charge ¢ ==—¢ de l'électron, on passera au quadrivecteur densité-flux
d’électricité.

Dans le calcul des Ty, on trouve pour ¢, k=1, 2, 3, compte tenu
de (33),

_ w 9 s .
(35) T,‘/;—- -—[ ama,\lf,;-—malll G];
puis, pour k=1, 2, 3,

}l/ *
T/“= ———(‘_ [\]"o.ak —_ T _ak\p' .
47l >

_ hef .. 0¥ L
Ty =— E[qam —%—kq’a]'

(36)

On peut vérifier que les T, sont les composantes de la densité d’impul-
sion, multipliées par ic, tandis que les Ty, sont celles du flux de I'énergie

. 1 i
multipliée par - - Enfin, on trouve

he | / o J .
(37) T,,,,_.—4”"lfq(dx +r}) oy + 7 aq+1koa‘)‘lfa -+ conj.
. h .r)llf,,
= \ = - ———
z\lf.,H Vs —+ conj. i vy -+ conj.,

et Uon vérifie aisément pour l'onde plane menochromatique que T;; est
bien la densité d’énergie changée de signe.

Finalement on a trouvé comme: densités de valeur moyenne pour
I'énergie et pour les composantes de 'impulsion

W= Tyy= ~ [llfr} HW ;- conj.];
38) T I/ oW,
L= Jf - —L W - \
4 &k = T ) LS -+ conj, = ‘P'.;pA ¥y + conj.
5. Le spin de l'électron. — Nous allons maintenant définir le spin

d’une particule ohéissant aux équations de Dirac.
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D’aprés l'expression (38) de g4, on voil que le moment cinétique
orbital sera défini par un tenseur antisymétrique d’espace My de com-
posantes

(39) My =f(xigk—~'tk5"i)(’f
v -

/i IV A W I 5 ’
= —L f [Wr‘z.’l‘,’ o - ‘V;—.)‘k (7-2 -+ :————.I'/- \l",;—« f—%’.r,-‘U,,J <.
v 3 or; L

o 4rc dxy duo; "

Or, on dé¢montre facilement qu’cn théorie de Dirac le moment
d’impulsion ainsi défini n’est pas une intégrale premicre au sens de la
Mécanique ondulatoire, c’est-a~dire que les My, qui sont les parties
réelles des valeurs moyennes correspondant aux opérateurs

h J J

40 I“:———- 0§ e L
(40) ik Qm[ T Ak
ne sont pas constantes au cours du temps. En cffet, on vérifie que les

opérateurs Mi; ne commutent pas avec 'Hamiltonien H donné par (32),
de sorte que

(40 M, = %L[M,-‘., Hj
n’est pas nul. On est alors amené a ajouter aux My des opérateurs S;;
tels que les My, + Six soient des intégrales premiéres et les S;; ainsi
ajoutés définissent le spin ou moment cinétique propre de I'électron.
Pour retrouver par une voie un peu différente la définition du spin,
on peut procéder comme il suit. Nous avons vu que le tenseur T,
adopté précédemment n’est pas symétrique. Cetle non-symétrie entraine
la non-constance du moment d'impulsion. Considérons, en effet, le
tenseur suivant de rang 3, antisymétrique sur ses deux derniers indices

"(42) M= Tz j— Ty zs,
. ] ad J
et calculons la divergence 5—M; ;. Comme d_x',-T""' estnul, on a
; ;
a7 dr; oxy
(43) EMi[k/]—Tik;Z —Ti/%'i‘ =Tt — Ts;# o.

Si nous intégrons la formule précédente dans le domaine d’espace V en
supposant toutes les grandeurs nulles aux limites de V, les termes du
premier membre ou £ 3£ 4, donnent une divergence d’espace dont I'inté-
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grale est nulle et il reste

) Mis;
4 T R =f e T s
(44) %), 7o dx A (T,k Tk,) dr.

Le premier membre est,la dérivée par rapport au temps du moment
d’impulsion orbital (3g) : cette dérivée serait donc nulle si T étart
symétrique, mais elle n’a pas de raison d’étrc nulle, piisque T n’est pas
symétrique.

Mais on peut déduire de Ty un tenseur s métrique en posant

(45) =< [T+ Tai],

et 'on peut vérifier que -()—");i Tjx= o. Il résulte alors de ce qui précéde

que le moment d'impulsion

(46) " =f[ _ L’xk] d,

formé a partir de T’, reste constant au cours du temps. On trouve
d’ailleurs

1 h v g - 0¥
o= - —_——_ )] —— —_—
G oMa= () [ - v
Vs s
-+ *d—z—; .qura—— dxk x,lqu] d‘t,
I \h 1 dqfa
;L('_m>[w“(“*x’—a‘x*) o
1 f)lI»"

*

Remplacons dans (47) les dérivées par rapport au temps des W, et Wy
par les valeurs tirées des équations (31) et intégrons par parties (avec
toujours 1’hypothése que les W, sont nulles aux limites de V), il vient

Y N : "o b
(48) Mz H.f e 2 ,(—L’—ﬁ—.,.}dz—&—/ II’q—lzaiakq”a(l‘t,
I H Jy 4=

Mix - Six
On voit donc que, si Uon considére la quantité M, comme étant le
moment total de I'impulsion (ce qui est justifié par le fait que Mj, est
ne constante du mouvement), ce moment total se décompose en un
moment orbital M;; et un moment propre S;; qui est le spin. La densité
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de spin est donc un vecteur d’espace ¢ de composantes

' b . hoypae s h '
4 = L1 = .\ T = — 5 113
4 o:,,—/ln I'y fasasWa; c_y--4ﬁ Iy layoy Wy c,;_/”c o tayo, We.
On montre en théorie de Dirac, que l'on peut adjoindre a ces
trois grandeurs la grandeur
. ol
(ho) q=—ir Uy fay og 23 Wa,
(KO
} . ) .
de facon que ¢ et o, soient les quatre composantes d’un quadrivecteur
d’espace-temps. On montre aussi que pour une onde plane monochro-
p p P
matique, on a

>ie
5 T, = cl._.
G v=1sl3

Le spin de I'électron est donc une grandeur dont les composantes -
rectangulaires correspondent aux opérateurs

. ho. . h . h .
(52) Sp= Z} lasoy, Sy = i Tagay S;= i oy,
. 7
Le spin de Pélectron a donc pour valeur —; Pélectron est un corpus-

4
cule de spin i/2 en unité — et les équations de Dirac paraissent

s'appliquer a tous les corpuscules de spin 1/2 (protons, neutrons).

6. Remarque importante sur le formalisme précédent. — Dans notre
schéma lagrangien, nous avons, avec la plupart des auteurs, adopté
pour la fonction de Lagrange £ une expression réelle de la forme:

zf—o—ﬂ"'.

(53) 2 .

Le formalisme qui en est résulté nous a conduit, pour la densité de
valeur moyenne d’une grandeur A, a des expressions p(A ) de Ia forme

(34) o (B)= L [WsAW, + W, A* WS ).

2

Or, les principes généraux de la Mdécanique ondulatoire nous

conduiraient plutot (voir page ¢} a adopter pour p(A) Pexpression
(55) (A )= WoAW,,

qui correspond au choix £ == T ¢a licu du choix (53).
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Si l'opérateur A opére seulement sur les indices des W, (comme les
opérateurs o de Dirac), les définitions (54) et (55) se confondent,
car WrAW; est réel en vertu de I'hermiticité de A. Si I'opérateur A
contient des dérivées par rapport a z, y, 3, I'expression (55) peut étre
complexe et différer de (54), mais les expressions (54) et (55) restent
intégralement équivalentes, c'est-a-dire donnent la méme valeur si on
les intégre dans V comme le montre encore 'hermiticité de A. Puisqu’en
Mécanique ondulatoire scules les intégrales représentant les valeurs
moyennes ont un sens physique bien défini, on peut considérer dans
tous les cas les expressions (54) et (55) comme équivalentes, et il est
indifférent de choisir 'une ou 'autre.

Mais cette conclusion n’est exacte qu'en Mécanique ondulatoire
non superquantifiée et cesse de ’étre enr Mécanique ondulatoire super-
quantifiée, parce qu’alors le symbole W7 ne désigne plus la quantité
complexe conjuguée (au sens usuel du mot) de ¥';. 11 est alors nécessaire
de choisir entre les expressions (54) et (55), et nous verrons plus loin
(Chap. IX, § 4) I'importance que ce choix peut présenter en. théorie
quantique des champs.

e ) s



CHAPITRE III.

LA MECANIQUE ONDULATOIRE DE LA PARTICULE DE SPIN MAXIMUM 1.

1. Schéma lagrangien de la Mécanique ondulatoire de la particule
de spin 1 en l'absence d’interactions. — Nous avons développé dans
d’autres Quvrages (') une théorie de la particule de spin maximum 1,
particule pouvant avoir les spins o ou 1, én considérant la fusion de
deux particules de spin i/2 dont les spins peuvent s’ajouter ou se
retrancher. Le développement de cette théorie exige l'introduction
d’un ¥ i seize composantes que nous désignerons par Wy, les indices o
et 7 pouvant prendre I'un et Pautre les valeurs 1, 2, 3, 4.

Pour former les combinaisons linéaires des ¥,. dont nous aurons
besoin, il nous sera commode d’utiliser deux séries de 4 matrices a
16 lignes et 16 colonnes que nous définirons a partir des matiéres o, de
Dirac par les formules

(1) (O Yap,vp = (@r N By, (Brip,vp = —(—1)"(%r)up Sivy

avecr—=i, 2, 3, 4etd, p,v,p=1,2, 3, 4.
En vertu des propriétés des matrices « de Dirac, les matrices L et (3
seront hermitiennes et 'on aura de plus

(2) A, A+ A Ar=1.28,, BrBs+ By 03, =1.2 6, a4,.B,—A:Br=0,
ou 1 représente la matrice unité a 16 lignes et 16 colonnes. Le sym-
bole (L, ¥, représentera la combinaison linéaire suivante des ¥y,

13

(3) ar‘liaarEZuv(ar)cr,pvavy

1

et de méme pour B, ¥-.

(') Voir Nouvelle théorie de la Lumiére et Théorie générale des particules a
spin, déj citées.
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Ceci posé, par analogie avec le cas de I'électron, nous adopterons ici
comme fonction de Lagrange '

4

he .
L= —0 iy
ONESS O
1 2_61u+(3‘__ ji(B;ahﬂ-eh(Bi
¢ dt 2 ox 2
~'£1(B‘@h4—61ﬂ32
ay _ 2
_ 9 B+ QB ikoa&s.)qrﬂ_,_ conj.,
Jz 2 :
avec
(5) ko= 27 tacy

{o étant la masse propre de la particule considérée.
D’aprés les formules (9) du précédent chapitre, on trouve comme
équations de Lagrange

d A+ B,

1
(6) Z E Py ]Fm: A
[d ‘B“ﬂj*'dw&h ad (Bﬂa2+4a“ﬁg
= o —_—_———t AR T T2
Jx 2 ay 2 :
fi g&fzijlfﬁfgi—Fikochfa‘]w%1
dz . 2

et les é¢quations conjuguées. Ces équations, qui ont pour conséquence
£ = o, n’ont pas tout a fait la forme canonique habituelle, a cause de la

-+

A+ 03 . .
présence de I'opérateur ——i-;—-—f au premier membre. Néanmoins, nous

définirons 'opérateur hamiltonien en posant

h 9 Ky + (L’!‘ _
(7) i Yor=HWss,
avec
(8) H= he [0 QB+ By - J A0+ B,A,
_-gni Jox 2 dy >
+ 7(1 Ay By + B @A,y +ik0a,,as5] .
0z 2

Nous verrons plus loin que ¢’est bien cet opérateur qui intervient dans
la définition de la densité de valeur moyenne pour I'énergie du photon.

Les équations (6) sont au nombre de seize, correspondant aux
_valeurs 1, 2, 3, 4 de g et de 7. De ce groupe de 16 équations, on peut
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déduire un autre groupe de 16 équations en appliquant aux deux

membres de (6) 'opération ~ 19 &= B Oy obtient ainsi
ot~ 2

. 1
(9) g ——
[d a5a1—$5031 d a;a;—(ﬁ;ag

Jr 2 d_y 2
d A — BBz |1 9 A+ By
tET ]ZE——A Yor.

. .. . . . . A+ G
Si nous introduisons maintenant a droite la valeur de(% -—‘2—‘@'

tirée de (6), nous constaterons que tous les termes s’annulent, sauf ceux
en ko, et il viendra finalement le groupe de 16 équations suivant :

, 1 d a‘—d.’u _ d a;@,—(&a, d a.dﬁg—'dhaz
®) o= Y= [z)?.* 2 Y 2
d AyBy— By A
+dz s 32 (3 "]‘lfﬂ

Nous avons ainsi obtenu ’ensemble des 32 équations fondamentales (6)
et (6') de la particule de spin maximum 1 auxquelles ¢orrespondent
naturellement 32 équations conjuguées.

Il importe de remarquer que le passage de (6) a (6) suppose essen-
tiellement que k,, et par suite p,, sont différents de zéro.

En combinant par addition et soustraction les équations (6) et (6'),
puis en multipliant par (X, et B, les équations obtenues, on peut écrire
les équations de la particule de spin maximum 1 sous la forme

oV J 0 J
(r0) Rt (()zax-'- 7o+ 3—a3+tkoa,,)‘lfm,
(IOI) % d‘gto"t = (d‘.’l‘ B+ dj’ aa-f- 1033+ lkoa;,n )llro-g

aveco,t=—=1, 2, 3, 4. :
Par addition et soustraction de (10) et (10'), on peut encore écrire

1 d‘I"at_ Jd A4+ B, d Ay+ B d As+B; ., A+ By
€) 5= (cfz 2 Tdy 2 T 2 -tk = )W'"’
[0 U—By 9 QAe—By . d As— By . A— By
(C) o= (d_x —-——2 -+ ()‘7 > -+ a—‘z > —fi-lko —2 )‘FGT.

Les équations (E) sont des équations d’évolution qui permettent en
principe de déterminer les valeurs des W, & un instant quelconque si
Pon connait leurs valeurs & un instant initial. Les équations (C) sont
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des équations de condition que les W, doivent satisfaire 4 chaque
instant.

On démontre aisément, par exemple en ilérant les équations (10) et
(10') el en tenant compte des relations (2), que I'on a pour chaque ¥,

1 B2Wse .
o "‘d';gl — AWor = ki Wor,

(11) OW¥gr==
équation qui définit la propagation des W, et montre que, si k; est nul
ou négligeable, cette propagation s’effectue avec la vitesse c.

2. Le quadrivecteur densité-flux. — La formule (13) du chapitre
précédent et expression (4) de £ nous donnent

. o BA+ QLB e G+ Gy
(x2) fi=—ClI‘t;r_‘l——‘—'—lq‘cry P=‘[—"=qdf“_—’.q‘at-
2 c 2
D’aprés le mode méme de formation de ce quadrivecteur, nous savons
que I’équation de continuité

af;

Iz;

>
(13) E%+divf=(,

est vérifide.

La forme de la densité p appelle quelques remarqgues bien connues de
ceux qui ont pratiqué la théorie du photon et la théorie générale des
particules & spin. Le fait fondamental est que la densité p n’est pas ici,
comme en théorie de Dirac, une quaritité définie positive (c’est-a-dire
toujours positive ou nulle, mais jamais négative). Elle peut étre néga-
tive et méme, commnie nous le verrons, pour une onde monochromatique

a énergie négative, elle 'est en tout point. Lorsque fp dr est négatif,
v

on ne peut évidemment pas normaliser la fonction W en posant fp dr=1.
. v

Nous vefrons d’ailleurs que. pour une onde a énergie négative, la

difficulté disparait si 'on norme en énergie en posant /def:/lv
v

car, pour une onde & énergie négative, pW est positif parce que p et W
sont tous deux négatifs.

Dans le cas général d’une onde ¥ quelconque, des difficultés ana-
logues a la précédente pourront se présenter chaque fois que dans la
composition spectrale de 'onde ¥ figureront des ondes a énergie néga-
tive. Mais il y a plus : méme pour des ondes W formées uniquement par
une superposition d’ondes planes a énergies positives, il peut se faire
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(qu’en certains points p soit négatif. Néanmoins la formule de normali-

sation fp dr=1 sera alors encore applicable car, 'intégration annulant
¢

effet des interférences locales et ne laissant subsister que la somme
des contributions dues aux ondes planes considérées isolément, U'inté-

rale dr sera toujours positive. Néanmoins, méme alors, la gran-
g VP ] ) y g

deur p ne peut étre considérée comme donnant la probabilit¢ de
présence de la particule en chaque point, puisqu’elle n’est pas nécessai-
rement positive. Nous aurons I'occasion de revenir plusieurs fois sur les
propriétés de la densité p.

3. Le tenseur impulsion-énergie. — Le schéma lagrangien général
nous a conduil & définir un tenseur impulsion-énergie non symétrique
par la formule (10) du précédent chapitre.

En I'appliquant, compte tenu de la relation £ = o, nous trouvons

Ty : [qrm G‘a,-;— A, 03 ddlf;f - d)‘fin as‘a,:- a,@; ‘I”m],
T, = he [(F;'r B+ OBy 1 Wor conj'],

an { AL )qc gt
Tii=— in [‘I" (,_____,,—;— 4 '();” -+ conj. ]
Tom= — w = — thl ¥ Q-u;— @B, : oljtﬂ L HW.

Nous pourrions mettre d’ailleurs I’expression de Tk sous une forme
plus élégante donnant les 16 Ty en une seule formule, mais, pour
développer les calculs, nous serions toujours amenés i revenir aux
formules (14). Nous savons que le tenseur satisfait aux relations de

’)Tt/r
conservation —~ — o
iy

Nous connaissons le sens physique des Ti. On peut le vérifier aisé-
ment dans le cas simple des ondes planes monochromatiques. Par
exemple, pour T;; comme le ¥, d’'une onde plane monochromatique
est tel que

W étant 'énergie de la particule, on trouve

(15) Ti=—W¥s;

&zﬂqf01=~pw=—w.
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Nous pouvons, si nous le désirons, remplacer le tenseur non symé-

. . . . ) T T
trique T par le tenseur symétrique T, = -i’%—ﬂ De plus, comme

les densités ne sont définies en Mécanique ondulatoire qu'a une diver-
gence d’espace prés, nous pourrions encore remplacer le tenseur T}, par
un autre tenseur qui lui soit équivalent intégralement.

On peut démontrer qu’il en est ainsi pour le tenseur suivant
a[ 05/( -+ 0.’:1 ak
_'_.'T'_"—- ‘FGT

a':@wﬂ (i=1, 2, 3)

my = My = oc*¥ar (4 k=1, 2, 3),

(16) my = my =— Epoc®Wor
My = — oc? Yo Wy

Ce tenseur symétrique d'impulsion-énergie, le tenseur maxwellien, a
une grande importance en théorie du photon, o1 il vient se confondre avec
le tenseur classique de Maxwell a des termes en p; prés. Dans la théorie
classique de I’électromagnétisme, on a considéré i peu prés exclusivement
ce tenseur énergie-impulsion dans le vide et cette circonstance a fait
méconnaitre I'existence du tenseur symétrique T), qui lui est intégra-
lement équivalent et du tenseur non symétrique T, dont T, est la forme
symétrisée. C’est 'un des avantages de la Mécanique ondulatoire du
photon de mettre bien en évidence l'existence de ces divers tenseurs.
On remarquera que la densité d'énergie w=-—m,, est proportionnelle
a W W,., quantité qui,' dans la théorie de la.particule de spin 1, est
donc une densité non pas de probabilité de présence, mais d’énergie.

. 4. Définition du spin. — Nous introduirons le spin comme nous
I'avons fait précédemment en théorie de Dirac. Le moment d’impulsion

' 1 -
(17) - My = l—.éf[,xiTu-———sz“]d: (i, k=1, 2, 3)
v
n’est pas constant au cours du temps a cause de la non-symétrie de Ti;.

Au contraire, le tenseur

, ' 1 1 ' - . y
(18) My = .l.-cf[z,Thkﬁ-ka”]dr (i, k=1, 2, 3)

\ 4
reste constant au cours du temps. Substituant dans les expressions de T',
g I d‘yﬂ 1 !)W;: . ) . . '
et T, les valeurs de - —= et - —-= tirées des équations (10) et (10')

et de leurs conjuguées, on obtient aprés une intégration par parties

(19) Mix = My + Sy,
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avec

-

92

- /i o B A+ A 33
(20) s;k=_%fwgt s+ Ry,
=0 Jy

pour £, k=1, 2, 3. Nous sommes donc conduits a définir la densité de

. > .
spin comme un vecteur d’espace o dont les trois composantes rectan-
gulaires sont '

Qa

fi

e TGO+ 1AL A3, B,
— W ¥oe,

5 9

foo e T@RELA 4+ TAL @03,
(21) oy = 2oyps. 1 BBy

g 3

(AL + (03 03, ¥

Y GT

Ea )8

2w 2

correspondanti aux opérateurs de spin

TG L Q4T 03, @y _

S, =
2 ) }

(22) S.=

h 1'55',(:“(;;(:1[4— 1'(:‘(403305. .

27 2

2% 2

L T3, L L+ AL, 03, 03,

9 2 E

Enfin si 'on considére la grandeur

(@3 LA,+ TAL A3, 03,03

oy

. icle ., -
2R 7, =— — Y5 Uss,
vz

on peut démonltrer que o, o,. o- et o, formenl les quatre composantes
d'un quadrivecteur d’espace-temps.

J. Grandeurs tensorielles attachées a la particule de spin maximum 1
et état d’annihilation. — Nous avons jusqu’ici caractérisé la particule
de spin maximum 1 par les seize composantes W,. de sa fonction
d’onde. Nous allons maintenant étre amends a substituer aux ¥',., seize
grandeurs ayant un caractére lensoriel et permettant d'écrire les
¢quations de la particule sous forme tensorielle. Ces grandeurs ont
notamment une grande importance en théorie du photon, car nous
verrons qu’une partie d’entre elles représentent les polentiels et les
champs de la théorie électromagnétique.

Pour parvenir a introduire les grandeurs tensorielles en question, nous
remarquerons que les photons sont susceptibles de disparaitre en aban-
donnant toute leur éncrgie etleur quantité de mouvement a des éléments
matériels (¢lectrons par exemple), et nous admettrons que toute particule
de spin 1 posséde cette propriété. Ceci nous a conduit a admettre qu’il

LOUIS DI BROGLIE, 3
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existe un état d’annihilation pour ces particules et a chercher a
représenter cet état d’annihilation par une fonction d’onde Wi 11 est
naturel d’admettre que les composantes de cette fonction’ d’onde
doivent étre des constantes indépendantes de zvst et que la forme
de W) doit rester invariante pour une transformation de Lorentz
quand on applique aux composantes ¥ la transformation que subissent
d’une facon générale les composantes W;.lor d’une t lle transformation
de Loreatz. On trouve ainsi (nous en don erns pius loin une justifi-
cation) que 'on doit poser

() Wi=—1,  W=—1, W=-1, W=t

tous les autres W} étant nuls. Si donc on considére les W) comme
les éléments d’une matrice a 4 lignes et 4 colonnes, cette matrice
coincide avec la matrice «, définie pour les équations (28) du précédent
chapitre, et nous pouvons écrire symboliquement

(25) ' Yol = g,

Mais ici se présente une grave difticulté: la fonction W(* ainsi définie
n’est pas solution des équations de la particule. Si, en effet, nous nous
reportons aux équations (6) et (6'), nous voyons que les équations (6')
sont bien satisfaites par les valeurs (25) des W), mais qu'il n’en est
pas de méme des équations (6) en raison de la présence du terme en k.
On pourrait, il est vrai, quand il s’agit des photons, supposer y, et par
suite &, nuls : c’est la une question que nous discuterons. Mais il est
nécessaire de parvenir a une définition des grandeurs tensorielles qui
soit valable pour toute particule de spin 1, en particulier dans le cas
des mésons ou ces grandeurs jouent un réle important : il faut donc
absolument, a notre point de vue, obtenir une fonction W% qui soit
une solution des équations de la particule de spin ¢, méme quand
Ko 0.

Pour lever cette difficulté, nous pouvons employer I'artifice suivant
(qui peut avoir un sens physique profond). Nous admettrons que les
équations de propagation devraient en réalité étre écrites non pas dans
I'espace-temps a quatre dimensions zys¢, mais dans un espace a cinq
dimensions %, z, ¥, 5, ¢, la cinquiéme dimension correspondant a la
coordonnée z, échappant a notre perception. De plus, nous admettrons
que les composantes W,. d’une fonction d’onde représenlant un état
non annihilé ne dépendent de z, que par un facteur de phase de la
forme effo™, '
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On peut alors remplacer les équations (6) par les suivantes :

1 d &+ 33y

:(‘ - ll‘J_
t 2 vt 5 o=
03 A+ 03, N 03, + 03,
T Lar 2 Ay 2
i3, CL,, X, 03y ) N
~+= L)‘ —————( ‘(1“—*_ e, & + CX,QO}!,(— ! a7y
[/ 2 day

en conservant les équations (6'). Les fonctions d’onde des états non
annihilés, ¢lant de la forme

Woo= faelar, ¥, 5, 0) ellare

el satisfaisant a (20), satisferont aussi a (6), mais, de plus, il est évident
que les Wi2=(a,),- étant indépendants de zyzt et de x, satisferont
fgalement a (26), de sorte que le systéme des équations (26) et (6'),
¢quivalent au systéme (6)-(6") pour les fonctions d’onde représentant
des ¢tats non annihilés, admet en plus la solution Wi"'. Ainsi se trouve
levée la difficulte signalée plus haut.

Nous verrons d’ailleurs plus tard que l'introduction de la variable z,
leve également d’autres difficultés relatives a la fonction W)

6. Définition des grandeurs tensorielles comme liées 4 des transitions
d’annihilation. — L’interaction entre un photon et un électron a lieu au
moment ou le photon s’annihile. Il est donc naturel d’admettre que les
grandeurs électromagnétiques traduisant 'action de la lumiére sur la
matiére sont liées a la transition quantique qui fait passer le photon de
son état initial a Iétat d’annihilation et doivent étre définies en fonction
de cette transition. Généralisant cette idée, nous admeltrons que les
grandeurs tensorielles associées a toute particule de spin 1 doivent étre
délinies de cette facon.

Ces idées nous conduisent & penser que les grandeurs tensorielles
doivent étre définies comme des densités d’éléments de matrices corres-
pondant de I’état initial non annihilé ¥ a I’état final d’annihilation Wo},
Il faut, en effet, que ces grandeurs soient des grandeurs de champ,
c’est-a-dire des fonctions de z, 'y, 3, ¢ et, dans la théorie quantique, les
sculés grandeurs de ce type associées & une transition déterminéde, sont
les densités d’éléments de matrice.

Or, il ressort des exemples de densités obtenus au paragraphe précé-
dent lors du calcul du quadrivecteur densité-flux, du tenseur im pulsion-
énergie et des densités de spin, que les densités ont ici la forme
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‘canomquc
654 F1 -+ L‘l; 2 ‘I"‘
R ——— [oh3]

(27) Vo

.ou F, et F, sont des opérateurs de méme forme, mais agissant seulement
I'un sur le premier indice de ¥,;, 'autre sur le second. Par exemple,
pour la composante 5 du spin, on a

Fi=i@,& et F,=i®B®, ....

Nous chercherons donc a définir seize grandeurs de la forme (27) grace
a seize choix différents des opérateurs F.

Combinons, a cet effet, par multiplication, les seize matrices €L, et la
matrice 1 4 16 lignes et 16 colonnes. Nous pourrons ainsi obtenir seize
combinaisons indépendantes susceptibles de jouer le role de F,, savoir:

1, @, b, & G, (G, (@LEL, FOLEAL, TELOLAL, TALALA,.
IAGALA,, (GG, (ALA;, (@A, (AL, A ELALA,,

et en partant des (3, on trouvera de méme seize formes possibles
indépendantes pour F,.

De cette facon, on est conduit a former, sous forme de densités
d’éléments de matrice, les seize grandeurs tensorielles non nulles du
type (27) dont voici la liste :

° Les quatre composantes d'un quadrivecteur d’espace-temps

/ —
Ar= A= —Kup S DiBiy,

)o,amu A, B,

A2= A)-=——K‘If .‘I [ i)

a 3 0 .
Ag= A; _- K‘Fsyo:) 03, €Ly A, 03, ‘I“‘GT’

A=V =K B Sy

Dans ces formules, K désigne une constante que nous choisirons

égale a

y/
(29) K= — =
47y o

de facon & pouvoir rejoindre dans le cas du photon les formules
classiques de I'électromagnétisme, comme nous le montrerons plus loin.
Dans le cas du photon, A,, Ay, A; seront les composantes du potentiel
vecteur et V sera le potentiel scalaire.
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2° Les six composantes indépendantes d’un tenseur antisymélrique

de rang »
i s L o T LA, — T, 03, (35 03,
[ Foy= 1, = — (K A L2 T,
Fapm= U= — (K Ao WS 73, LA A — 7C, B3 03y By "
51 = by = — 57 ]
: 2
F I K o q,k,)\uma.a Oy — 1 A3, U3, 03,][ ’
12 = 3= v g7
2
(30)
‘ - e e LB CL QG — T BB,
Ve — (B = — (R AGY 103 " ! 18 Ve,
. \ i A, — 3
o= — (byom= — (K ey W 0) 103, EL, P60, 03,03, ‘1'5-;,
: 2
. o i €, — L 03303,
l“w:——-llﬂ-::‘-—ll\ﬁ(,\] ¢ l() a; ’ [ ‘lq

u 7 z 2

Dans le cas du photon, II,, ..., E. seront, on le devine, les compo-
santes rectangulaires du champ magnétique et du champ électrique.

3¢ Un invariant [,

G50 =gy S B e @

23

1° Un invariant I, (ou plutot un tenseur complétement antisymdé-

trique de rang 4)

i) Iy= W (GG T SN U ST SR SN IR DN W,
)

» Un quadri\'eclcu‘r (ou plus exactement un tenscur cmnplﬁlomem

antisymétrique de rang “))

! o /u" LU QL+ TOL 3, (3

U,.=U,= Y A
2
» 2 R
U= Uy 0% {03, LA —t- 7E0, 3, ..
33) y i N
Uz Us= g FBLEL QL+ AL BB 3. -
2
. e TR L = T, 03 3, By
U= iU, = (W5 == S

Les grandeurs 1,, I, U,, ..., U, n'ont pas d’analogues dans la
g 5 Loy s P I g

théorie électromagnétique. On remarquera que les grandeurs JMaxrwel-
liennes (28) et (30) sont forinées par des combinaisons antisymé-
triques ot figure le signe —, tandis que les grandeurs non Wazwvel-

liennes (31), (32) et (33) sont formées par des combinaisons
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symétriques ou figure le signe +. Les combinaisons symétriques des
opérateurs ﬁgurant dans (28) et (30), ainsi que les combinaisons anti-
symétriques des opérateurs figurant dans (31), (32) et (33) donneraient,
d’aprés la définition des @,, des 03, et des W§?, des grandeurs identi-
quement nulles.

7. Equations tensorielles de la particule de spin maximum 1. — Les
32 équations (6) et (6') de la particule de spin maximum 1 peuvent
étre transformées en équations de forme tensorielle si on les combine
- linéairement de fagon a faire apparaitre les 16 grandeurs tensorielles
délinies au paragraphe précédent. Le calcul est particuliérement facile
en partant des équations (10) et (10') équivalentes aux équations (6)
et (6'). En effectuant ces combinaisons linéaires, on s’apercoit des
deux faits suivants : 1° I'une des 32 équations obtlenues se réduit a
'identité o = o. de sorte que 'on n’obtient réellement que 31 équations
distinctes; 2° les 31 équations distinctes obtenues se décomposent en
un groupe de 13 équations - ne contenant que les 1o grandeurs maxwel-
liennes Az, ..., E. (équations maxwelliennes) et en un autre groupe
de 16 équations ne contenant que les 6 grandeurs non maxwel-
liennes 1y, ..., U, {¢quations non maxwelliennes).

Voici quels sont ces deux groupes d’équations.

a. E"quatfons maxwelliennes. — En notations d'Univers, elles
s'écrivent :
JA,  JdA; . JF 3 L .
F“_=fﬁ_(7;; (G, k=1,2,3,4); E:-—A%Ak (k=1,2,3,4);
(34) JA; JIFy  JIFy  dFy
= L R =
dxy ) dx; dx; oxy

(i, k, I permutation paire des indices 1, 2, 3, 4).

On remarquera d’ailleurs que les équations de la seconde ligne sont des
conséquences de celles de la premiére ligne.
Avec les notations vectorielles employées en théorie électromagné-
tique, les équations (34) s’écrivent :
JA.

‘ E:’“l-———“nad\ H =rotA,
c Jt
) .
- -1 fB =rotE, divH = 0,
. (5 l)f ’
135 J e
1 « N ) ‘ .
py 7,- = rotH + i} A, ‘dnvE=_k6V,

! ﬂ-o—dl\A—o
¢
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(les ¢quations sont presque identiques a celles de la théorie électro-
magnétique usuelle (y compris la relation de Lorentz entre les potentiels).
Iilles n’en différent, en effet, que par les termes en A}, c’est-a-dire par
des termes de 'ordre du carré de la masse propre p, de la particule.
On obtiendra donc la théoric de la lumiére en supposant que la masse
propre 11, du photon soit nulle ou du moins si petite que les termes
en 42 soient négligeables.

Des équations maxwelliennes précédentes, on tire aisément I’équation
du sccond ordre

36 ] F —+ /.ﬁ I' = o,

valable pour'une quelconque des 1o grandeurs maxwelliennes A, ..., E;.

1l en résulte que chacune de ces grandeurs peut se propager par ondes
{ § p

planes monochromatiques de la forme a ett*—krT avec la relation

37 Jr= k2 k3.

qui assure la vérilication de I'équation (36). La relation (37) n’est autre
que la relation admise par la théorie de relalivité entre I'énergie et
impulsion d’unc particule libre, comme nous le verrons au chapitre
suivant. Si p? est nulle ou négligeable, ona OF =o et A= |k|: la
propagation des ondes s’elfectue alors avec la vitesse ¢ et 'on voit que
ce cas limite correspond a la théorie électromagnétique classique.

b. Fquations non maxwelliennes. — Le groupe des seize équations
non maxwelliennes se décompose lui-méme en deux sous-groupes.

b:. Un premier sous-groupe comprend cing équations ne contenant
que la grandeur I,. Ce sont :

(38) uely =0, %:u (i=1, 2,3, 4).
On voil donc que l'invariant [, est nécessairement unc constante dans
I'espace-temps ct qu’il doit méme étre nul st p, 3£ 0. .
Néanmoins nous devons faire ici une remarque importante. Si 'on
prend W =W dec telle sorte que I, =WJA B ¥, I'équation
poli==0, qui doit étre encore exacte si I'on admet les équations (6),
cesse de I’étre si Uon remplace les équations (6) par les équations (26)
comme nous avons proposé de le faire. '
En effet, multipliant (26) par W32, on obtient non pas

(39) /follfg)-.) a.;dls',‘[‘”(% = 0,
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comme ce serait le cas avec (6), mais bien une idenlité o:=o (parcc

M
(que Jzq = 0).

Cette remérque va d’ailleurs nous permettre de vérifier Vinva-
riance de ¥'") comme nous l'avions promis. En effet, formons avec
W = W= «, les seize grandeurs maxwelliennes et non maxwelliennes :
nous constaterons (fue toutes ces grandeurs sont nulles sauf 1, qui, nous
venons de le montrer, ne l'est pas nécessairement si I'on emploie les
équations (20) et qui, en fait, est alors égal 4 4 comme on le calcule
aisément. L’onde U"" exprimée a l'aide des grandeurs tensorielles se
réduit donc a P'invariant |, et ainsi son caractére d’invariance est bien
mis en lumiére.

Le fait que I'invariant 1, correspondant a " est égal & { et non a o,
nous montre que 1'équation p,1, = o n’est pas vérifiée, ce qui veut dire
que W' n’est pas solution de (6): muais il l'est, par contre. des équa-
tions ( 26). On peut donc dire que la substitution de (26) a (6) rend la
théoric beaucoup plus cohérente et satisfaisante.

bs. Un autre groupe d’équations non maxwelliennes est formé par
11 équations contenant I'invariant I, et le quadrivecteur U. Ce sont :

iodb .
;;T;ZI/W{A A D N A
I){ ’) ;
(G 1-(—}7‘:—)%—.' T AR R AN
(LA 154
' Jdly .
—l == AR R
”".A I/n 2

On remarque que la deuxieme équation résulte de la premiére.

Nous étudierons ultérieurement la signification de ce groupe d’équa-
tions et nous verrous qu’il représente une particule de spin o, alors que
les équations maxwelliennes représentent une particule de spin 1.

Naturellement les six grandeurs non maxwellicunes I,. I,, U satisfont
a I’équation du second ordre

(1]) Dl“-f—/{ﬁ[“:u.
Les grandeurs tensorielles maxwelliennes et non maxwelliennes

~s'expriment par des fonctions bilinéaires des W75L et des W5, Comme
les WY sount des constantes, on peut exprimer les W',. cn fonction
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linéaire des grandeurs tensorielles. On obtient ainsi des formules
inverses de celles qui expriment les grandeurs tensorielles en fonction
des W,.. Ces formules inverses ont été données, il y a quelques années,
par M. J. Géhéniau. Nous ne les transcrirons pas ici ().

(Y) On les trouvera dans Une nouvelle théorie de la Lumitre, t. I, p. 160 et 161.




CHAPITRE 1V.
A MECANIQUE ONDULATOIRE DE LA PARTICULE
DIl SPIN MAXIMUM 1.
(Suite.)

1. Schéma lagrangien de la Mécanique ondulatoire de la particule
de spin maximum 1 avec emploi des grandeurs tensorielles. — Puisque
nous savons exprimer les grandeurs tensorielles en fonction des ',
nous pouvons exprimer la fonction de Lagrange E’ al'aide de ces gran-

)- On trouve

deurs (en admettant toujours pour K Ia valenr

Y ')0
()FI-) A (»)ﬁ
(1) ﬁ:‘:_.—A (().Z‘ +A',A>+ F (F/k— (}.Z'I +!).Z"(.

N RN W SN ST A
-+ gH()C'[llh—‘—]?(]g— Z—‘o ;)Tl‘—/_>-] +U/<U/+ /{u ().Z‘/ -+ conj.

Soit alors Q 'une quelconque des 16 grandeurs tensorielles. Les équa-
tions de Lagrange sont ici

2 L ar o 7254 . a2
(2) dry 79 T9QY Ur I T
(%) (%)

Elles nous donnent

I¥;; IA JA;

= 2A == o el I, =o;
?;/T =— ki A, ik oL ; l).’l‘k, Bofr =0
3 N .
ol = thols, 22— ik Uy,
ax; Az

ainsi que les équations conjuguées.

Or nous avons déja remarqué plus hant que des equauons (3) on
peut déduire loutes les autres équations tensorielles : les 31 équations
tensorielles découlent donc bien de ce schéma lagrangien. On notera
d’ailleurs que les équations ont pour conséquence £ == o.
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Compte tenu de cette derniére relation, on trouve pour le tenseur
impulsion-énergie les composantes suivantes :

(4 o 2 25 JQ “2 a2 JO*
4) k= }(,}()) o i o ()<,)Q~ .

g
¢ \or 77 )
1 « \ . /)F/',- he o, oL
=51F —Aj Ly s
2 [I ().1/l \,/ oy ]+ T [ 20 ~+ [JL Jrr ] -+ COIIJ

Par exemple, on aura pour T';,,

. . 1 . VA L IJE 1 r)U, M .
(3) r“—;_c[<E r)t (A W)]+ x(izz[l"" e + U ]+COHJ'

Pour le quadrivecteur densité-flux, on trouvera de méme

anr [ L
‘0 F= -/7'—[2"()0 ;2()(\' ) J

4,~]+—;[1;Uz+ Uil]
4

lf

lz( - i

= ﬂ[(A'E)——(E'A)]— SV + s L)

he 4
- )
etpourz==1, 2, o

YA N oL Y oL

(50 o= : ;(—;Q_}Q#%WQ
)7“1

[ALF;+Tf; \,]+—n U+ Uf L)

h
_ Tl‘[A. H]+V* E[—O—[H'A]z—\Ez‘+_Il;('i+U;I2]'

-Si I'on fait abstraction des grandeurs non maxwelliennes, les formules
précédentes coincident avec des formules bien connues en Mécanique
ondulatoire du photon.

Les ¢quations tensorielles ont pour conséquences les relations de

. IT J
conservation ()—x“:o et —L’ = o0, comme cela résulte du schéma
[4

%
Lagrangien général.

Le lenseur symétrique maxwellien m, intégralement équivalent au
tenseur T, ne peut pas se déduire directement de la fonction £ de
Lagrange adoptée ici, mais on peut évidemment exprimer les m;; a
'aide des grandeurs tensorielles. On trouve ainsi, par exemple, pour la
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partie dépendant des grandeurs maxwelliennes

;_.m“= [E*H],— [H*E];+ k3(V*A;+ VA})
—mu= ER B BN+ V)

(8)

et, st 'on néglige les termes en A7, la parenté de ces expressions avec
celles de lu théorie électromagnétique est évidente.

De méme, on peut exprimer les composantes du spin sous la forme

= ]‘[E*A]——[A*E]-t—\ H+H'Vi+ ZL(U‘I,—J U),

ay
N’

(9)

Q

/ .
2= ‘(A*H)+(H A),+ Q(U, L—I.’_:U,)
en fonction des grandeurs tensorielles.

Reprenant ici une remarque développée au Chapitre 1I, paragraphe 6,

il convient de noter que le choix d’une fonction de Lagrange réelle de

L2+ £

la forme £ = nous a conduit pour les densités de valeur moyenne

a des expressions réelles telles que

(10) w:——Tnzl)g [(A ?f) <E‘%)]+conj.%

(dans le cas purement maxwellien), tandis que la formule générale de
Mécanique ondulaloire

(11) P(K) = ?;‘TAq.cn

conduirail & poser

' 1 LE LA
(I?.) < (V:E[<A 7}7>~—<E W)]'

Dans la théoric non superquantifiée que nous exposons en ce moment,
les expressions telles que (10) et (12) sont inlégralement équivalentes,
comme on i¢ voit aisément, en développant A et E en ondes planes
monochromatiques et en tenant compte de ce que l'intégration fait dis-
paraitre les interférences. Mais en Mécanique ondulatoire superguan-
tifice, il n’y a plus équivalence. entre les expressions des types (10)
et (12) parce que Q" n’est plus alors la quantité complexe conjuguée
(au sens usuel du mot) de Q. Nous aurons a revenir sur ce point quand
nous étudierons la théorie quantique des champs.
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2. EBtude des ondes planes monochromatiques. — Dans toutes les
formes de la Mécanique ondulatoire, I'étude des ondes planes mono-
chromatiques est particuliérement importante parce que ces ondes cor-
respondent aux mouvements rectilignes et uniformes.

Nous allons chercher directement les solutions des équations tenso-
rielles qui ontla forme d’ondes planes monochromatiques. Les grandeurs
tensorielles d’une telle onde plane dépendront des coordonnées d’espace
et de temps par I’exponentielle

P = gilket—kr]

la correspondance entre les grandeurs mécaniques énergie W et impul-
sion p de la particule et les grandeurs & et k étant donnée par les
relations

TW, k= p.

(13) k= he h

La substitution dans les équations tensorielles montre que /4 et k
doivent étrelides par la relation

‘ R ax
<Li) /‘3:‘1(:24— /x'(',, </fo= T;J.UL').

Cette relation se confond avec la relation relativiste bien connue

W2

o

(15) =|p 2+ ujct
entre I'énergie, 'impulsion ct la masse propre d’une particule. Cette
relation étant supposée satisfaite, on pourra trouver des solutions ondes
planes monochromatiques pour les équations maxwellienncs et les
équations non maxwelliennes.

En prenant la direction de I'onde plane pour axe des 5, on obtient
pour les équations maxwelliennes la solution

N = Gy
.’\_,;2 #:l’, A_\-—-f Q——"———:l.[)r 1\;—'_— C:;", ‘r___ C!;‘—l;_}l’y
(6) { K, = i Gt G P, .= P [DE— A3 0,
N : g 7
L G s
u‘,.:—ikl———c' - P. ll,-=f—i’rk’—————b'+('l‘ Ho= o,

> : P " )

et pour les équations non maxwelliennes la relation

Tk I <
- Eer, v= tfer, L=or

H 2 i
Ly Cu

(7) Uu=Uy=0, L
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Les constantes Ci, C,, C; et C, sont arbitraires et indépendantes.
On peut séparer G; et C, dans I'expression de 'onde plane maxwel-
lienne en écrivant les formules précédentes sous la forme suivante

[ ® Ay—7A=CP, E,—iE=—ikCP, H,—iH=—k|(P
Ap+iAy=o, E,+ (Ey=o, H,+ iHy=o;
G Ay+iA=0CP, E,+iE=—ikCP, W,.+/H=|k|CP
A,—iA,=0, E.—iE,.=o, H,—iH,=o;
(18) ¢ 2 A.=GCy P, V= C; ll: | P, E=—1 % (o Pa
autres grandeurs nulles.
MM 1y=CP, U=— &P U.=— 1EL ¢ p,

/\"n lto
i autres grandeurs nulles.

Les qualre ondes monochromatiques indépendantes @, G, & et
I représentent respectivement : 1° une onde maxwellienne trans-
versale circulaire droite; 2° une onde maxwellienne transversale circu-
laire gauche; 3° une onde maxwelliennc longitudinale; 4° une onde
non maxwellienne

A chaque valeur du vecteur K, correspondent donc quatre ondes
planes monochromatiques indépendantes correspondant a l’énergie

positive donnée par k =/ | K |*+ k;. On peut les considérer comme
des fonctions propres de l'opérateur Hamiltonien pour la valeur

.. , . _ keh :
positive de I'énergie W = v

11 est évident que, pour K donné, on pourrait aussi satisfaire a (14)
en prenant k =—/|K|* + k%, ce qui correspondrait i une énergie
keh . . . .
W = =2 négative. A cette énergie négative, correspondraient quatre
27

fonctions propres indépendantes. Nous aurons a considérer ces solutions
a ¢nergie négative qui sont analogues a celles qui sont bien connues
en théorie de Dirac. Finalement 4 k donné, correspondent donc
huit fonctions propres, quatre & énergie positive el qualre a énergie
négative.

Il est facile de voir comment les fonctions propres (18) sont relides
‘aux diverses valeurs possibles de la composante du spin dansla direétion

. . . . h
de propagation Os. La particule ayant un spin total maximum —, les
v .2 w

: . . h .
composantes du spin ont comme valeurs possibles == — et o. Envisa-

geons alors la valeur de la densilé de spin o; donnée par (g). On,_peut
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~1

Pécrire
. 1 ih .
{(19) 3=~ {EL A, —F A,+\V*H. +,—L [, + conj.
= ;Z-[(E + LBy )" A_,.+ IAy)— (Lo — By ) (AL— 1Ny
/
+£—l-U I, + cony.,

et celte forme nous montre immeédiatement : 1° que o est nul pour les
ondes £ et ILINN; 2° que o, est positif pour 'onde § et négatif pour
I'onde . Nous en concluons que les ondes £ et LI correspondent
a une composante s du spin égale a o, les ondes ¢§ a unc composante =

. . h . .,
du spin égale a — et les ondes (© & une composante s du spin égale

A — —.

o
Une étude plus approfondie (1) montre que les valeurs nulles de &
ont pour les ondes £ et LI des significations différentes. En effet, la
particule de spin maximum 1 décrite par les équations (6) ¢t (6') du
précédent chapitre peut étre considérée comme résultant de la fusion
de deux corpuscules de spin 1/2. Cette fusion peut donner une particule
de spin 1 ou une particule de spin o suivant qu’il y a addition ou com-
pensation des spins des deux constituants. Les grandeurs maxwelliennes
décrivent la particule de spin 1, les grandeurs non maxwelliennes la
particule de spin o, ce Qui explique pourquoi il y a indépendance com-
pléte entre les grandeurs et les équations maxwelliennes d’une part, les
grandeurs et les équations non maxwelliennes d’autre part. Les gran-
deurs non maxwelliennes décrivant une particule de spin nul corres-
pondent nécessairement a une valeur nulle de la composante 5 du spin.
Au contraire, les-grandears maxwelliennes, décrivant une particule de

. . . /
spin 1, correspondent aux trois valeurs possibles = ,—l et o de la com-
posante 5 du spin; a chacune de ces valeurs est lié un type de fOIlC[lOIlS
h
propres : type (@ pour la valeur — 5= type G pour la valeur —+— et

type £ pour la valeur o. Les ondes maxwelliennes longlludmales cor-
respondent donc a une composante nulle du spin suivant O .5, tandis que
les ondes maxwelliennes circulaires gauches et circulaires droites cor-

. h h
respondent respectivement aux valeurs — et — — de cette composante.

Ces considérations expliquent entiérement les résultats obtenus ci-
dessus.

(1) Noir Théorir générale des particules a spin. p. 135 et suiv.




(29)

3

£
o2}
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3. Le vecteur densité-flux pour les ondes planes. Normalisation de
ces ondes. — Nous pouvons écrirc ’expression (6) de la densité o sous
la forme

(20) p=

“’h—[_l(,\ i A ) (Ep+ iE,)
- (Ay— A (Ep— iEy) |+ A;E;] — 213U+ conj.
. E, 177
Nous obtenons donc

Pour Ponde ® :
> k] C
Pour I'onde G -
Pour Ponde £

Pour 'ende 9T :

Pour ¢viter les difficultés relatives aux spectres continus, nous nor-
maliserons les ondes planes en les supposant contenues dans une enceinte
de volume ¢ fini, ce qui est trés approximativement permis si les dimen-
sions de v sonl trés grandes par rapport i la longueur d’onde. Nous
obtiendrons ainsi en supposant k > o

“he

! /" he
o=/ E o=/

< . .
khe - Lo By
'ICg!-—\/Wv Gyl = ok

Les fonctions propres normées (pour A > o) sont donc les suivantes:

Onde ® .

he : he
Q A——-zAJ_‘ Py P Er—IEy= —lk\/ZﬁkOP’ Hy—iHy= _lkl‘/z—ﬂkvP’L
/
)

(21)

Ar+iA,=o0, Ey+iEy=o0, H:+iHy=o.
Onde G : ,
s . ke
Az _HA’—V_)mP ET+LE).=-—zI\-\//?nkV H,+iH,=
Ar—iAy=o0, E.—iE,=o, H.+itHy=0o0.
()ndvm 2

')nl.v

IJLc

As= 411:/.2
Onde ILIN : ,
1.,— zA"P U= &y /20y

: ke

/

fmkliv E: "I 4kl

lk[ / “khe K khe H.=o.

U ———‘—]ﬂ )kop Un:=U'\'=O-

kY ke ? ko ko

Ces expressions sont importantes i connailre.
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Sil'on préféere décomposer les ondes maxwelliennes transversales en
ondes rectilignement polarisées a angle droit, les ondes normées sont
caractérisées par les grandeurs suivantes:

| Onde & vibration électrique paralléle a O« :

_ he . . he _ he |
A'Y._\/Aﬂ]f‘)l7 h.'v—"‘l'k\//”ckury ]I"——L!kl\//nAp ‘

Ay=A;=V=o0,
Onde & vibration électrique paralléle 8 Oy :

hc . . he _ he
/\.,'_—_\/mp, h‘,._—zk\/mp, H.= ij|\//””w

] A.=A,=V =0,

(23)

les valeurs trouvées plus haut pour l'onde longitudinale restant
évidemment les mémes. - :
Nous remarquerons que les valeurs obtenues pour p sont toujours
proportionnelles & & : elles sont donc négatives pour les ondes a énergie
négative et le procédé de normalisation employé échoue pour ce genre
d’ondes (car il donnerait pour les |C;| des valeurs imaginaires !).

Né¢anmoins le produit Wp = écn—hp est toujours poéitifpuisqu’il esl pro-

portionnel & 4%, et 'on peut toujours normer en énergie en posant

e /‘A)clzp[, kv = kel
v 2

2% )
Nous avons déja signalé ces circonstances importantes qui rentrent
comme cas particuliers dans des résultats généraux de la théorie des

particules a spin.

Nous avons obtenu l'expression des ondes planes monochromatiques
(fonctions propres de ’hamiltonien) en supposant la direction de pro-
pagation prisg pour axe des 5. S'il n’en était pas ainsi, les expressions
convenables s’obtiendraient facilement en tenant compte de la transfor-
mation des grandeurs tensorielles quand on opére une rotation des axes
d’espace. '

On pecut donc considérer I'expression des ondes planes normées
comme connue d'une facon générale a l'aide des grandeurs tenso-
rielles. Les expressionsde ces ondes a l'aide des Y. s’obtiendraient
ensuite en substituant Uexpression des grandeurs tensorielles en fonction
des ;.. Si nous désignons par W', I'une quelconque de ces fonctions
propresnormées correspondant d unc valeur donnée de K et une valeur

LOUIS DE UBROGLIE, 4
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connue de o, 'onde ¥ pourra se développer sous la forme

(25) q,:zc‘_ ¥y,

/;
ou, plus explicitement,

(26) W= ¥oek (Wi
-

et, dans ce développement, pourront figurer en principe toutes les ondes
planes a énergie positivé ou négative. Si I'on admet que la fonction
d’annihilation W est solution de I'équation d’ondes (ce qu’on réalise
de Ia fagon que nous avons expliquée), on devra avoir

(27) Ut == ¢y W+ X7 o Uy,

la somme X' portant sur les états non annihilés (). Les ¢ sont des cons-
tanles complexes qui, si I'on pouvait normer la fonction d’onde pour
une seule particule, obéirait a la relation

R < s
(aR) {('M‘-’-—#—Z[C’Hﬂ:l.
k

Mais I'état d’annihilation doit étre considéré comme un réservoir iné-
puisable de particules (de photons dans le cas de la lumiére), de telle
sorte que 'on a jamais affaire & une scule particule. Il est donc néces-
saire de recourir a la théorie de la seconde quantification, et ceci
entraine, nous le verrons, une modification profonde du role des c.
Nous aurons & revenir longuement sur cette question.

Notons enfin que, si Uon calcule pour les ondes planes normées se
propageant suivant O < le vecteur tlux de composantes fr. fy, f:, on
trouve pour tous les types d’ondes

clk! Iple

(9'(.)> Lfv,,.:‘/)-:(), . =7 I :P—W'— =3,

car la vitesse v du corpuscule obéit en Dynamique relativiste a la
relation

t {

(3u; o=t b

! W
(') Pour éviter les difficultés relatives aux ondes & énergic nigutive, nous serous

plus loin amenés a admettre que dans le dévceloppement (27) ne doiveni figurer «
cité de la fonction d’annihilation W'y que les ondes W, a énergie positive.
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Le vecteur d’espace f est donc bien le flux du fluide fictif de probabi-
lité dont la densité est p, flux s'opérant dans la direction de propagation.
C’est bien le résultat que I'on pouvait attendre.

4. Champs réels et champs complexes. Valeur de la constante K. —
Dans ce paragraphe, nous allons porter particuliérement notre attention
sur la théorie du photon. Les grandeurs A, V, E et H doivent alors
étre (en supposant pj nul ou négligeable) les potentiels et champs élec-
tromagnétiques de l'onde lumineuse. Cependant ces grandeurs sont
essentiellement complexes alors que les champs ou potentiels de la
théorie électromagnétique usuelle sont des grandeurs réelles. D’ou
provient cette dilférence ? A notre avis, et ¢’est un point sur lequel nous
aurons longuement & revenir, les champs complexes représentent les
phénoménes microscopiques tandis que les champs réels représentent a
I'échelle macroscopique les phénomeénes statistiques ou interviennent
un grand nombre de photons.

La correspondance a laquelle nous serons ainsi conduits entre les
champs complexes et les champs réels nous aménera & définir le champ
réel F, en fonction du champ complexe F par la formule

(31 F,=F + F*.

Par excmple, la composante « du champ électrique étant représentée
en Mécanique ondulatoire du photon par la grandeur complexe E,7., la
grandenr réelle EY" qui lui correspond ponr les phénoménes a grand
nombre de photons sera

i
hesd
C
..I.
=
Y

(32}

De la correspondance générale (31), résulte qu’a une grandeur élec-
rromagnétique réelle de la forme monochromatique plane

l"/- = l“() cOs ( ket —Kr + ? )

~_ Fo i
correspond la grandeur complexe IF == — eflke-kr+2), de telle sorte que

Pamplitude réelle IV, de I, est égale a 2| F .

(lonsidérons mauintenant une onde plane monochromatique contenant
un grand nombre de photons. Elle est décrite macroscopiguement par
des champs réels de la forme

(3 E, = Ejcos(lel —kr -+ <),

D’aprés la théorie électromagnétique classique, 'on a pour la valeur
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moyenne dans le temps de la densité d’énergie électromagnétique (en

unité d’Heaviside)

(34) w:;[Ef%—_‘—H;—f]:T}r_z‘ Bl

SR

car E, et H, ont méme amplitude. Le champ cdmp]exe correspondant
a B, est '

(35) . E=Acilkt—kr+3]  avec |Al=|E|= ;IEOL
d’ou
(36) » . w:2|E!2_

Or, si nous nous reportons a I’expression précédemment trouvée
(37) —my= B+ HE+ G([APR—V2)

qui doit nous donner la densité w de I'énergie en Mécanique ondula-
toire-d photon et si, pour effectuer le raccord avec la théorie électro-
magnétique usuelle, nous supposons A2 nul ou négligeable, nous voyons
que '

(38) w= B2+ |H]l=2|E],
car alors k=|k| et l'on voit, en se reportant aux formules (18),
que |E|=|H|.

La coinciderce de cette expression (38) de la densité microscopique
d’énergie avec la densilé macroscopique moyenne (36) nous montre
que Pexpression de m;, est bien celle (ui est nécessaire pour pouvoir
raccorder la théorie macroscopique des champs réels avec la théorie
microscopique des champs compleéxes grace a la relation (31).

Or cette expression (37) de m,, a é1é obtenue en posant la cons-

h

i Vi

tante K figurant dans la définition des champs complexes égale a
Le choix de cette valeur de K se trouve ainsi justifié.

D’une fagon générale, les expressions adoptées par la Mécanique
ondulatoire'du photon sont égales aux valeurs moyennes dans le temps
des expressions classiques, valeurs moyennes qui seules sont acces-
sibles a 'observation dans le cas des rayonnements. Bien que nous
ayons raisonné sur le photon, la défipition (31) des grandeurs tenso-
rielles réelles a partir des grandeurs tensorielles complexes parait,
d’ailleurs, devoir étre étendue a toules les particules de spin 1.
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5. Remarques sur I'expression des champs complexes. — La repré-
sentation des champs par des grandeurs complexes appelle quelques
remarques. Pour représenter un nombre complexe a + ¢b, il faut se
donner deux nombres réels a et b. De méme, pour représenter un
vecteur complexe E, il faut se donner deux vecteurs réels Bt et E2
tels que

(39) E = Et)+ {E®

Si E est le champ électrique complexe‘ de la théorie du photon, le champ
réel correspondant est E,— 2B d’aprés la définition (31) du champ
. réel.. v

Soit une onde plane monochromatique dont la direction de propa-
gation est prise pour axe os. Si 'onde est transversale, E-= o et
les vecteurs E*) et E® sont contenus dans le plan zoy. Posons

<40) Cj= 2ﬁv<t—v>+0/ (.]'zx;)")v

nous aurons

(41) Ej=1E;|e® (j==¥)

d’ou

(42) ( B =1Ex|cosvn, E@=|E|sing,
i { Ef’=|E, | cosgy, E_(.‘g) = | Ey | sing,

Pour une onde rectilignement polarisée, nous pouvons toujours
prendre la direction du champ électrique pour axe oz. Alors E(” E‘f’
et |E,| sont nuls et E{'=|E,|cos¢,, ES’=|E,]|sing,. Les deux
vecteurs réels E(') et E* vibrent donc suivant oz et sont déphasés
de g

Pour une onde circulaire gauche, nous avons E,={E, ou, ce qui
revient au méme, B’ + (EY = /E{" — E{?, d’ou

(43) E()= —E{®  EQ =Ej".
Alors (42) nous donne

| Ex]cosgn=—|Ey|sing,

et
|Ey | cosoy=|E,|sinen,

d’ou ’on tire

T
(44) |Ex|=|Eyl, 9y=9z— ;-
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Si nous posons ¢, = 9, |E, | =|E, | =E, on trouve
45 E'=Ecosz, Ei» = E sin’g,
45 . .. Sl
EV = Esinz, L =—Ecosz.
I o o,
Les deux vecteurs EV') = —E; et E® siiués dans le plan d’onde sont
5 P

de méme longueur et tournent en sens inversc des aiguilles d’une
montre avec un décalage d’un quart de période.
Pour une onde circulaire droite, E,——(E,; on trouve alors que

1 . .
les deux vecteurs BV —= S E, et E® sont situés dans le plan d’onde,

ont la méme longueur et tournent dans le sens des aiguilles d’une
montre avec un décalage d'un quart de période

Ces quelques remarques précisent la représentation d’un champ
a Paide d’un vecteur complexe.



CHAPITRE V.
L.A MECANIQUE ONDULATOIRE DU PHOTON.
ENAMEN DE DIFFICULTES.

. Quelques caractéristiques de la Mécanique ondulatoire duphoton. —
Jusqu’a présent, nous avons envisagé le cas géndéral de la particule
q p , g g I
de spin maximum i qu’on peut considérer comme formde par la tusion

1 3 . . 1 .
de deux corpuscules élémentaires de spin - et qui comprend les cas

(qui se révélent indépendants) de la particule de spin 1 et de la parti-
cule de spin 0. Le premier cas est représenté par les grandeurs maxwel-
liennes et les équations correspondantes : on dit souvent que la particule
de spin 1 est une particule vectorielle parce que toutes les grandeurs
maxwelliennes qui la représentent dérivent du quadrivectenr potentiel
de composantes A, A,, A;, V. Le second cas, celui de la particule
de spin o, est représenté par les grandeurs non maxwellicnnes et
les équations correspondantes : on dit souvent que la particule de spin o
est une particule pseudo-scalaire parce que les grandeurs qui la repr¢-
sentent dérivent de la grandeur I; qui est un pseudo-invariant. c’est-
a-dire un pseudo-scalaire, d’espace-temps. Ainsi, dans le cas du méson
qui est une particule de spin entier a masse relativement grande
(de lordre de 200 fois celle de 1'électron), on distingue aujourd'hui
un méson vectoriel de spin 1 représenté par des équations du type
maxwellien el un méson pseudo-scalaire de spin o représenté par
des équations du type non maxwellien.

Pour faire rentrer la théorie de la lumiére dans le cadre de la théorie
générale des particules de spin 1, il suffit de supposer que y; et par
suite k] sont nuls ou négligeables. Les équations maxwelliennes viennent
alors coincider avec les équations classiques de Maxwell (complétées
par la relation de Lorentz entre potentiels) : elles représentent une
particule de spin 1. de masse propre nulle ou négligeable. ¢u’on peut
identifier avec le photon tel qu’il existe dans les ondes lunineuses ou
plus généralement électromugnétiques. Onant aux  déqualions  non
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maxwelliennes, elles représentent alors un photon pseudo-scalaire
de spin o, qui n’est pas encore expérimentalement connu, mais le sera
peut-éire un jour.

Le fait que les équations maxwelliennes, quand on y néglige les termes
en k;, prennent exactement la forme des équations de Maxwell, entraine
naturellement que les ondes associées au photon ont alors toutes les
propriétés des ondes électromagnétiques lassiques. Néanmoins, si
I'on admet que A} est extraordinairement p Lii sans étre tout a fait nul,
toutes les expressions de la théorie électr: nugnétique classique seront
complétées par des termes de cet ordre de grandeur. Reportons-nous
par exemple aux formules (16) du précédent Chapitre qui donnent
les potentiels et les champs de 'onde plane monochromatique maxwel-
lienne. Elles nous montrent que si A, est nul et & égal a |Kk|, les
champs E et H sont normaux a la direction de propagation, perpendi-
culaires entre eux et égaux en grandeur : c’est le cas classique de 'onde
électromagnétique transversale. Comme E.=H.—=o, l'onde longi-
tudinale s¢ réduit & une onde de potentiel qui, au point de vue de
la théorie classique pour laquelle le potentiel n’est qu’'une grandeur
intermédiaire, n’a pas de sens physique. Mais, si k, tout en étant petit
n’est pas rigoureusement nul, & différe de |k | par un terme de l'ordre
de ki, les champs électrique et magnétique de 'onde transversale,
tout en restant rectangulaires, ne sont plus tout a fait égaux entre eux et,
de plus, comme E; n’est plus rigoureusement nul, I’onde longitudinale
comporte un faible champ électrique. Bien que la différence entre
les deux cas soit trés petite, la question de savoir si la masse p, est
nulle ou simplement extrémement petite, est théoriquement trés
importante.

2. Le point dé vue de la théorie éleciromagnétique usueile et cdlui
de la Mécanique ondulatoire du photon. — La théorie classique pose
implicitement que la masse propre p, du photon est nulle. Elle ignore
donc les termes en k; de la théorie des particules de spin 1. De plus,
elle admet que seuls les champs ont un sens-physique parce que, seuls,
ils interviénnent dans l'interaction entre le champ électromagnétique
et la matiére, les potentiels n’étant a ses yeux que des intermédiaires
de calcul servant a évaluer les champs. Méme si I'on impose aux
potentiels de satisfaire a la relation de Lorentz, ces potentiels restent
encore trés largement indéterminés car, si certaines valeurs de A et
de V satisfaisant a la relation de Lorentz conviennent pour fournir
les valeurs supposées connues des champs E et H, les grandeurs
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A+gra.dF et V1 %E donneront les mémes valeurs des champs

et satisferont aussi 4 la relation de Lorentz si F est une solution
quelconque de JF =o. Le postulat qui enléve aux potentiels toute
signification physique est ‘souvent désigné sous le nom d’invariance
de jauge ou parfois d’invariance de jauge de seconde espéce (1).
Ce postulal nous apparait comme assez arbitraire.

La Mécanique ondulatoire du photon, partant pour établir la théorie~
de la lumiére des équations générales de la particule de spin 1, doit
avoir naturellement tendance a supposer que la masse propre p, du
photon ne doit pas, a priori, étre considérée comme nulle, mais seule-
ment comme asscz petite pour que les termes en A; puissent étre
regardés comme pratiquement négligeables. En effet, si £, était nul,
certaines difficultés apparaitraient dans Uapplication de la théorie géné-
rale des particules de spin 1. Nous avons vu notamment que les équa-
tions (6') du Chapitre TH ne peuvent se déduire des équations (6) que
st ky5#0 (voir p. 29).‘Effectivem'en(, si ko5% 0, les équations (6) en

" question nous fournissent les relations vectorielles :

/ 1 JA ,

’ H =rot A, E—-—ETt—grad\,

) 1 JE 5
plr =rotH + A} A, divE =— &2V,

d’ou 'on déduit les équations du groupe (6')

(2) divH = o, —«Z{%_r tE, é%\?—kdiVA:O;

mais, si A, 6tait nul, ou ne pourrait pas tirer des équations (6)
les équations de définition des champs, ¢’est-a-dire les deux premiéres’
équations (1) et par suite on ne pourrait plus en déduire les deux
premiéres équations (2). Nous verrons aussi que d’autres difficultés
graves apparaissent quand on 7yeut passer a la théoric superquantifiée
ou quand on veut interpréter les interactions coulombiennes par des
échanges virtuels de photons.

En outre, la Mécanique ondulatoire du photon nous a conduit tout
naturellement i mettre sur un pied d’égalité les potentiels etles champs,
par suite a considérer les potentiels comme des grandeurs physiques
au méme titre que les champs. Elle définit, en eflet, les potentiels et

(') Pour la distinguer de linvariance de jauge de premdére espéce dont il a été
question p. 18. )
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les champs par certaines combinaisons linéaires de W, ou, si 'on veut,
par certaines densités d’éléments de matrice associés au passage du
photon d’un état initial non annihilé a un état final annihilé. Il n'y a
dés lors aucune raison d’attribuer plus de sens physique aux champs
qu’aux potentiels. Le fait que, dans P'état actuel de nos connaissances,
fes potentiels n’interviennent pas dans les interactions entre le champ
électromagnétique et la matiére, ne peut rien changer a cela.

SiTon admet que Ay5%£-0, les formules
(3) A:Zf—ﬁ[é ’fTPj‘-—mzH], Ve /—:gdivE
permettent de calculer A et V en fonction de E et de H. Il n’y a donc
plus alors d’invariance de jauge. Toutefois, si A} est extrémement petit,
A et V ne seronl plus en pratique calculables par les formules (3),
car une trés petite incertitude sur la valeur des champs E et H conduira
a une incertitude énorme sur celle des potentiels; pratiquement 1l y
aura invariance de jauge. Mais il n’en reste pas moins vrai que pour
la Mécanique ondulatoire du photon, il y a toujours en principe
de véritables valeurs des potentiels, méme quand l'extréme pelitesse
de %k, ne permet pas pratiquement de déterminer ces valears & partir
de celles des champs par les équations (3).

3. Objection contre I'hypothése p, 3% 0 tirée de linvariance de
la vitesse de la lumiére. — La tendance naturelle de la Mécanique
ondulatoire est donc d’admettre que [+, n’est pas rigoureusement nulle
et corrélativement de rejeter le postulat de I'invariance de jauge.

Cependant il est absolument certain que la masse propre p2, du photon
doit étre extraordinairement petite, énormément plus petite que la masse
propre m,==0,G.107%" gramme de l'éleciron. Il est, en effet, certain
que les équations du photon doivent s’écarter extrémement peu de celles
de Maxwell. Si g, n’était pas exiraordinairement petit, la vitesse de
dénlacement du photon devrait varier avec sa fréquence suivant les
formules

R woc? wi ek
4) vy = —————, p=ck/ 1- 50,
\/ o2 hiz?

¢ Srant 1ci la vitesse de Pénergie (ou vitesse de groupe) des ondes
lumineuses. Il y aurait donc une dispersion du vide, la vitesse du front

d’ondes éiant plus éleviée pour les grandes fréenences one pour les
B H i }
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petites. Lie fait que cette dispersion du vide n’a pu étre observée, méme
lors de la désoccultation des étoiles trés lointaines, impose a 4o une
limite supérieure. On peut se rendre compte par le calcul que cette
limite est certainement inférieure a 107> gramme (*). Certaines consi-
dérations cosmogoniques (*) conduisent méme a penser que 1, pourrait
étre de l'ordre de 107%% gramme. Cés valeurs sont évidemment extré-
mement petites, mais elles n’ont rien d’'inacceptable a priori.

Avec des valeurs aussi faibles de p.,, 1l sera impossible de mettre en
évidence par'observation des vitesses de propagation des rayonnements
dans le vide inférieures a ¢, car pour avoir un’écarl par rapport a ¢ qui
soit observable, il faudrait employer des rayonnements de fréquences
si basses que I'étude de leur propagation serait impossible. Il est vrai
que l'on pourrait se demander si I'existence de vitesses ¢ inférieures a ¢
pour des fréquences trés basses ne modifierait pas sensiblement les lois
classiques des phénoménes éleciromagnétiques statiques ou quasi
statiques d’une maniére qui serait en contradiction avec les données
expérimentales, mais I'étude du cas le plus défavorable, celui des
interactions statiques (v ==0) pour lequel la formule (4) donne pour ¢
une valeur imaginaire de sorte qu’il n’y a plus alors de propagation
vrale, montre que, si I'on attribue a p, une valeur non nulle, on est

simplement amené a remplacer le potentiel de Coulomb en;par un

. i Loy N 4
potentiel en —e™"" : c’est la une question que nous reprendrons plus

loin. Or, pour pouvoir effectivement observer 'influence du facteur
exponentiel e, c’est-a-dire pour mettre en évidence un écart par

rapport a la loi de Coulomb, il faudrait se mettre a une distance du corps

I h 1037
- o~

ko 2muge Yo

métre et, si U'on suppose 1o < 10-*% gramme, toute vérification expéri-

mentale se trouve exclue.

électrisé, source du champ, qui soitdel'ordre de centi-

On pourrait cncore objecter a I'’hypothése p,# o que si dans un
certain systéme de référence galiléen la vitesse du photon était assez
voisine de ¢ pour ne pouvoir en étre distinguée, il suffirait de faire
une transformation de Lorentz correspondant a une vitesse relative
voisine de ¢ pour obtenir un photon qui, dans le nouveau systéme
de référence, aurait unc vitesse trés inférieure a c¢. Pour lever cette
objection, il soffit de développer sous une forme plus précise les consi-
dérations exposées plus haut.

(') Yoir Nowuvelle Théorie de la FLumicre, 1, p. 39-7o.
(*y Yoir Théorie générale des particules & spin, p. 1gr1.
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D’ahord nous pouvons admettre que la propagation et éventuellement
les effets quantiques d’un rayonnement ne peuvent étre mis en évidence
que si sa fréquence est supérieure a une certaine fréquence vo. De plus,
la vitesse de groupe 0 — (3¢ d’un rayonnement ne peut étre discernée
de ¢ que si-

03) 4% 1 — 1o ((zz_),

N étant un nombre trés inférieur a un. Les nombres v, et n, peuvent
dépendre de I’état de perfectionnement actuel de la technique expéri-
mentale, mais on peut admettre qu’ils ont a une époque donnée mémes
valeurs dans tous les systémes de référence, puisqu’'un observateur
dispose dans tous ces systémes des mémes moyens d’investigation
expérimentale.

Ceci posé, pour que la propagation d’un rayonnement soit susceptible
d’étre ‘étudiée expérimentalement, il faut que ses photons aient une
énergie supérieure a Av,, ce qui nous donne

Mo C 2

Vi—p

D’autre part, pour que la vitesse de ces photons soit indiscernable
de ¢, il faut que la relation (5) soit vérifiée et pour que (5) soit une
conséquence de (6) il faut que

————— v
)" ~ c?‘o V2T,

(6) = Jevs.

Donc si p, (qui est une constante de la nature par hypothése) est
assez petite pour que l'inégalité (7) soit vérifiée, tout photon qui, dans
un systéme galiléen, posséde une énergic suffisante pour que son
existence soit décelable, y posséde une vitesse indiscernable de c.
Ce résultat nous permet donc de supposer 1, o a condition que cette
masse propre soit suffisamment petite.

Comme les constantes v, et v, dépendent de 'état de perfection de
la technique expérimentale, il ne serait pas, en principe, interdit
d’espérer que les progrés de cette technique permettent un jour, grice
a une diminution des valeurs de v, et n,, de mettre en défaut l'iné-
galité (5) : ce jour-la, la mise en évidence de vitesses du photon
inférieures a ¢ ct, par suite, la mesure de 2, deviendrait possible.
Néanmoins si p, avail une valeur aussi faible que, par exemple,
107%% gramme, cet espoir resterait sans doute chimérique.
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4. L’hypothdse 11,52 o et la définition de la vitesse c en théorie de la
Relativité. — On pourrait encore étre tenté de faire a I'hypothése po5£ o
une objection apparentée aux précédentes. Les raisonnements qui ont
permis & M. Einstein ‘de jeter les premiéres bases de la Relativité
invoquent le fait que les signaux lumineux sont les plus rapides de tous
les signaux possibles. Ils admettent aussi, conformément aux résultats
de la fameuse expérience de Michelson et des autres expériences
analogues, que dans tout systéme de référence galiléen la lumiére
posséde la méme vitesse ¢ de propagation dans le vide et obéit par suite
toujours a ’équation de propagation

(8) Op ==o.

De ces hypothéses, se déduisent les formules de la transformation
de Lorentz ou figure la vitesse ¢, puis les lois de la cinématique et de
Ia dynamique relativiste. La variation de la masse avec la vitesse en
dynamique relativiste montre alors que la vitesse ¢ ne peut étre atteinte
par aucune particule de masse propre non nulle. Comment peut-on
concilier cette chaine de déductions avec I’hypothése p, 5 0, laquelle
- implique que les photons ont une vitesse inférieure a ¢ et variable avec
la fréquence ? \

En réalité, il ne nous semble pas qu’il y ait la une difficulté véritable.
On peut, en effet, reprendre avec 'hypothése p,52 0 tous les raison-
nements d’Einstein en désignant par ¢ la vitesse limite supérieure de
tous les signaux possibles, vitesse supposée existante et de méme valeur
dans tous les systémes galiléens, et’ en admettant que les photons
d’énergie suffisante pour étre décelée ont toujours dans le vide une
vitesse pratiquement égale a c, c’est-a-dire qu’ils obéissent pratique-
ment 4 I'équation de propagation (8) comme le prouve I'expérience de
Michelson. Ainsi la vitesse ¢ qui s'introduit dans les formules de Lorentz
et dans celles-de la cinématique et de la dynamique relativistes est
une vitesse limite qu’aucune particule ne peut rigoureusement atteindre,
mais dont elle peut approcher quand son énergie devient trés grande.
En raison de leur masse propre extraordinairement petite, les photons
décelables auraient toujours pratiquement, comme nous l'avons vu,
une vitesse indiscernable de ¢ et qui, d’ailleurs, tendrait vers ¢ quand
la fréquence du photon croitrait indéfiniment.

Aucune difficulté sérieuse ne nous parait donc exister de ce coté.
Pour éviter toute équivoque, il suffit de désigner la constante ¢ sous
le nom de vitesse limite de U'énergie et nou sous celui de vitesse de
la lumiére qui peut préter & confusion.
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5. Objection contre I'hypotheése p,7 o tirée de la théorie du rayon-
nement noir. — Quand on développe la théorie de la répartition
spectrale de I'¢nergie dans le rayonnement noir par la méthode de
M. Jeans, on est conduit, sil'on tient compte de I'existence des quanta,
a attribuer a chaque onde stationnaire dans le rayonnement noir
la méme énergie moyenne

— I
(9) ‘V:%v

PLL
ou T est la température absolue de Penceinte, A la constante de
_Boltzmann, v la fréquence des ondes stationnaires. Or, dans une
enceinte vide de volume ¢, il y a
(10) dn, = m(

p
ondes stationnaires possibleés de polarisation déterminée correspondant
a lintervalle de fréquence v->v + dv. Si 'on admet que les ondes
lumineuses sont loujours rigoureusement transversales, le nombre
des ondes staticnnaires possibles de Uintervalle v-»v - dv s'obtiendra
en doublant l'expression (10), parce qu’il y a toujours deux états
indépendants de polarisation possible pour chaque onde transversale
(circulaire, droite et circulaire gauche par exemple). On est donc ainsi
conduit a I'expression suivante de la densité d’énergie dans le rayon-
nement noir pour 'intervalle de fréquence v -> v +- dv

ER A 1
- —ph(/v'
fsi) vll
L

(1) o(v)dv =

C’est la loi de Planck bien vérifiée par 'expérience.

Mais, si nous admettons I'hypothése £ o, il doit exister aussi
des ondes longitudinales stationnaires dont le nmombre sera donné
par (10) et alors la densité¢ de Vénergie devrait étre

(12} “iv)

ce qui est contraire I'expérience.

Il semble que l'on puisse répondre a cette objection de la fagon
suivante. La mesure d’unc énergie rayonnante (telle que celle qui
s’échappe d’'un four maintenu a température uniforme) s’effecine
toujours par l'intermédiaire d’une action du rayonnement sur des
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¢léments matériels : or cette action ne dépend que des champs et non
des potentiels et ne peat, par suite, déceler I'énergie électromagnétique
présente que si elle estreprésentée par des champs d’intensité suffisante.
Reprenons alors I'expression de la densité de 1'énergie en Mécanique
ondulatoire du photon

(13) w=—my= B |H 2+ k(| A 12— V),

Pour une onde monochromatique transversale (circulaire droite ou
gauche), on a

(14) Ay iA,=CP;  E,5iE,=—ikCP; M, iH,==|k}CP
Ec=H.=\.=V =o,
et par suite

(15) w=|Cl2[A2+ |k[2]+ 4} | Cl2=2k2|C 2.

I est donc visible que le premier terme provenant des champs est
beaucoup plus grand que le second provenant des potentiels : ceci
résulte de la trés petite valeur de A, et du fait que, les rayonnements
mesurés ayant toujours des fréquences élevées, &~ |k| est grand.
[’énergie est donc presque exclusivement présente sous forme de champs
et elle est décelable expérimentalement.

Il en est tout autrement pour les ondes longitudinales car on a pour
elles

ki
k ’ = IS

”‘l.:: ”‘: E.t: Ejz _\.,_.: \‘: 0,

(16) A= CP; V=0C

el par suile

3 / 2
(17} n’:%’{Cf‘l—o—k;—}(uk-J/]f%)\C;‘!::zk;{fC:?.

Ici ¢’est le second terme provenant des potentiels qui est visiblement
beaucoup plus grand que le premier provenant des chauips : Uénergie
est donc concentrée dans les poteniiels et par suite pratiquement
indécelable.

I faut d’ailleurs ajouier que l'énergie des ondes longitudinales ne
peut étre émise qu’extracrdinairement lentement par la iaatiére puisque,
pour ces ondes, le terme de couplage enlre matiére ¢t rayonnement
(qui dépend de E;) est extrémement faible. L’équilibre thermo-
dynamique ne peut donc, en ce qui les concerne, étre atteint que fort
lentement, ce qui peut aussi contribuer a les rendre indécelables.
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Il semble donc bien que la vérification expérimentale de la loi (11)
du rayonnement de Planck n’est pas en contradiction avec I'hypo-
thése po £ 0 si po est suffisamment petit. -

Bref, de I’ensemble des considérations développées dans ce chapitre,
résulte 4 notre avis qu’aucune objection insurmontable ne s’oppose
a hypothése suivant laquelle la masse propre du photon ne serait pas
rigoureusement nulle (1),

(1) Note ajoutée a4 la seconde édition. — Dans une note parue dans les Procecdings
of the Royal Society (series A, N 1182, 11 octobre 1955, vol. 232, p. 1), MM. Bass ct
Schrodinger ont montré que I'hypothése d’une masse propre non nulle du photon n’est
pas inconciliable avec Ja loi de Planck. Leur raisonnement est enti¢remeint analogue a
celui que nous avions développé dans le paragraphe ci-dessus dés la premiére édition du
présent ouvrage (1949).



CHAPITRE VL

QUESTIONS RELATIVES AU SPIN DU PHOTON.

|. Le moment dimpulsion dun rayonnement. - Mous allons déve-
P ¥
» quclques remarques an sujet d’un probléme étudié dams on
article de M. J. Humblet (*), on Vavieur, se plagant au point ds vne

in théorie électromagnétique classique, critique cevtains
obtenus en Mécanique ondalatoire du photon par M. Géhéniau.

Nous avons vu que les tenseurs Ty et my, sont intégralement dqui-
valents. En particulier, les vecteurs d'espace de composanies Ty 2t my;,
avec k=1, 2, 3 sont intégralement équivalents. II n’en rdsulte pas
que les moments de ces vecteurs pur rapport & un méme point le solent
aussi et, en fait, ils nc le sont pas @ le momest d'impulsion d'un
rayonnement, que nous avons défini & Vaide du vecteur Tj; ne
coincide pas avec celui qu’on peut définir a aide de m4. Or clest ce
dernier qui correspond au moment d’impulsion d’un rayonnement
défini par la théorie classique.

Pour préciser ce point, plagons-nous d’abord en théorie électroma-
gnétique classique. Cette théorie emploie les champs réels E, et E, et

. . L e . I -
attribue a la densité d’impulsion d’un rayonnement la valeur E{_Erhr J.
En désizgnant par B le vecteur qui joint Yorigine & un élément de

g P qur j 8
volume dr, elle adopte donc tout naturellement comme moment
d’impulsion d'un ravonnement par rapnort a I'origine des coordonnées

P ) I
le vecieur

f{REH[, ds.

Mej=

t
(}n,.

v éiant le volume total occupé par le rayonnement. Décomposons B, et
¥ en unc scmme de quantités complexes conjuguées suivant le schéma

{1y Physica, X, T, 1043, p. 3%

LOUVIR DY BROGLIE
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adopté précédemment
(2) E,=E + E’,

et prenons la moyenne dans le temps de M¢;, moyenne qui seule est
accessible a I'observation. Les termes en [EH ] et en [E'H"] donnant
zéro en moyenne, il reste

(3) ﬁ(:1=£f[R[E'H]-Ia’ + conj.

Remplagons H par rot A et intégrons par parties, nous obtenons

4) M= -I-fZ.E,’[RxgradJA,-d-:ﬁ——If[E'A]dr
g “Jo

(4
o

+%/[RAJGIVE*111—% f[RA](E'n>ds+conj.,

S étant la surface qui limite le volume v et n le vecteur unitaire porté
en chaque point sur la normale a cette surface. La troisiéme intégrale
est nulle-parce qu’en théorie classique divE = o.

Nous pouvons naturellemnent reprendre le méme calcul en Mécanique
ondulatoire du photon. Nous savons que les valeurs moyennes dans le
temps des grandeurs classiques coincident en général avec les expressions
obtenues en Mécanique ondulatoire du photon. Si donc I'on adoptait

. . . S m;j .
comme densité d’'impulsion du rayonnement le vecteur —l%"— tel qu'il est

défini en théorie du photon, le moment d'impulsion aurait pour
composante k

(5) f[RE:;—k-] dx
avec o

(6) il—cm"k: {[E"H]/ﬁ— k3V A, } -+ conj. (k=1,2,3)

1
c

En remplagant H par rot A et en intégrant par parties, on trouverait

3
'\ —>
(7) f[R“l‘.;"] = %j ziE;[Rxgrad]Aidr
v 1

+-:_-f[E'A](l-:+ %f[RA]divE’ dr

+-z;f[RA]k'éV',rlt—%f[RA](E"n)ds—ﬁ-conJ
v E}
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Les troisiéme el quatriéme intégrales se compensent en vertu de la
relation div B' ==-— k2 V', et le résultat ainsi obtenu coincide bien avec
Uexpression (4) de M¢;, comme on pouvait s’y attendre.’

Mais, et voici le point essentiel, la Mécanique ondulatoire doit définir
‘le moment d’'impyision d’un rayonnement a partir de la densité

. . I o . i’ )
d’impulsion o T,: et non a partir de ém“. Elle pose donc

1 .
(8) M=‘[[R%T‘k]d~,

el celte expression n’est pas égale a (5). Son calcul donne en effet
. >
I P R B e . 1 * :
9) M= 5[ EiE,. [Rx glad]A,d.—f— c/‘, [E*A]d=+ C[v H ds +conj.
1

M différe donc de M, par 'absence de l'intégrale de surface et parla.
présence du terme supplémentaire %fV'H dr. Dans Vexpression (())

de M, le premier terme correspond au moment orbital du photon,
les deux suivants au moment propre du spin.

Il y a entre les expressions (1) et (8) une grande différence, la
premiére satisfait a Pinvariance de jauge, la seconde ne le fait pas.
Que M, soit invariante de jauge, cela résultc immédiatement du fait que
sa définition ne fait intervenir que les champs et non les potentiels; ‘
on peut d’ailleurs vérifier 'invariance de jauge de ’expression (4) en y

remplacant A par A -+ é:;?lF el en constatant que les termes en F se
compensent. Au contraire, 'expression (8) de M admise par la Méca-
nique ondulatoire du photon n’admet pas Iinvariance de jauge comme
on le vérifie aisément : son adoption implique donc que 'on considére
les potentiels comme de véritables grandéurs physiques ayant des
valeurs bien déterminées. '

Si I'on tient absolument a conserver 'invariance de jauge, il faut donc
adopter pour le moment d’impulsion du rayonnement I'cxpression M/,
mais alors ('), pour les particules de spin 1 4 masse propre certainement
non nulle comme le méson, il faudra adopter lexpression (8) du
moment d’impulsion et pour le photon I'expression (5). Cette maniére
de faire qui traite différemment deux particules de spin 1 ne nous parait
pas irés satisfaisantes. L’examen du cas simple de I’onde plane mono-

(*) Poir HumsLET, loc. cit., p. 587.
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chromatique {étudiée aussi par M. Humblet dans son Mémoire) va
également nous montrer que I'emploi de l'expression classique (1)
conduit a des conclusions physiquement moins satisfaisantes que celui
de I'expression (8).

2. Etude du cas de l'onde plane monochroinatique. — Nous allons
étudier le moment d’impulsion d’ane onde plane monochromatique en
nous servant tout d’abord des formules de la Mécanique ondulatoire du
photon.

Nous prendrons toujours la direction de propagation de l'onde plane
pour axe des z et nous considérerons le volume délimité par une sphére

de centre O et de rayon R, volume égal a ¢ == g—‘rcR“. Cherchons le

1y

moment d'impulsion par rapport & lVorigine O de la portion de
rayonnement contenue dans cotte sphére en adoptant le point de vue de
la Mécanique ondulatoire du photon. Le moment orbital est nul, ¢’est
évident par ratson de symétrie et il est aisé¢ de le vérifier par le calcul.
Si nous supposons 'onde photonique transversale, nous pourrons poser
V=0 et M se rédnira 3

1 .
(10) M — Ef[E*A} + conj.
v
Faisons le caicul pour une onde polarisée circulairement, par exemple
cicculaire gauche. Nous avons

(11) A=A, Ay=—1A, E,.=—tkA, E,=—kA, E.=o,

et la normalisation de londe plane dans un volume ¥ dont les
dimensions sont supposées trés supérieures a la longueur d’onde et
a B nous donne

/ R he
(12) RS ey Tk
Nous trouvons donc
I k A v
S, & [ rEXA. B2 . i A= 8
() ?NL . chL 2Ay - EyAz)ds +conj = - |Alre = =

M,=M,=o.
Ce résultat est satisfaisant, il exprime que la composante 5 de la densité
h 1

de spin a la valeur uniforme 5= ? e qui est nalurel puisque le photon

. . S h
d’une onde circulaire gauche a un spin S; = — et que I'onde plane est
27
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homogéne. Pour une onde circulaire droite, on trouverait

h v

(14) h’lz:—;:aj’

. h
correspondant au spin — — du photon.

Si maintenant nowns faisons le méme calcul avec les formules de la
théorie classique, nous allons arriver a un résultat assez paradoxal.
Nouws devons, en effet, écrire alors

3
v 1 . —>
(15) M, — Z-f ZIE, [R > grad ). A o
“ 1
f‘r——é-/[E*A]zdrw —;f[RA}z(E*n)dsﬂ—conj.,
[t $

et appliquer cette formule a la sphére. Le premier terme est nul par
raison de syméirie. Pour une onde circulaire gauche, le second terme

. ; . h . .
augmenté de son conjugué a la valeur — 2 trouvée plus haut. Mais il
© o V

reste les intégrales de surface qui nous donnent
(16) — 'lc‘ f[RA]z(E’n) ds —+ conj.
§
.1 «lz « Y Ra s
=z ‘/:(JAJ'—O’A.r) [Eﬂc'ﬁ ~+ E"T{] R? dQ + conj.

zaéw[e [(xmzy)(x+zy)RdQ+con}.

k 2 . k hoo
—— A2 2} - =4 20 = — e o
= c[&|3‘/sR3dO + conj 4c|A|v T

Cette valeur étant égale et de signe contraire a celle que fournit la
seconde intégrale de (15), on a finalement

(17) Mz:().

D’ou cette conclusion paradoxale que dans une onde plane monochro-
matique polarisée circulairement, la densité du moment d’impulsion et
par suite la densité de spin sont nulles.

On peut chercher a atténuer cette difficulté en remarquant qu’une
onde plane est une fiction et que l'on a toujours affaire en pratique
a un groupe d’ondes de dimensions limitées. En considérant alors une
surface S située tout entiére .a I'extérieur du groupe d’ondes, on
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annulera l'intégrale de surface dans (15) et il restera

(18) ﬁ:

1
€

f[E'A] dx + conj.,

. 1 h . .
ce qui donnera bien = — pour I'ensemble d’une onde circulairement

polarisée. Mais avec ce point de vue la densité de moment d’impulsion
se trouve entiérement localisée aux limites du groupe d’ondes, &
I'endroit ou 'onde n’est plus homogéne, au licu d’étre uniformément
répartie dans toufe 'onde plane comme I'enseigne la Mécanique ondu-
latoire du photon. Un tel résultat nous parait peu satisfaisant au point
de vue physique, et cela d’autant plus qu’on peut supposerles limites du
groupe d’ondes aussi éloignées qu’on veut du point O. La Mécanique
ondulatoire nous semble se tenir plus prés de la réalité physique, son
point_de vue permet d’ailleurs de démontrer immédiatement une
formule célébre due a M. Sommerfeld, qui a joué naguére un role
important dans I'établissement des régles de sélection de l'ancienne
théorie des quanta. La théorie classique ne permet de retrouver cette
formule que par des raisonnements beaucoup plus détournés et un peu
embarrassés (1).

3. Formule de Sommerfeld donnant pour une onde plane monochro-
madtique le rapport entre la densité de moment d’impulsion et la densité
d’énergie. — Considérons une onde plane monochromatique se
propageant le long de 0z et supposons ., assez petit pour qu’on puisse
négliger les termes en p}. Les potentiels de I'onde plane sont avec ces
hypothéses

(19) Az=a,6®P, Ay=a.e®P, A,=aye®P, V=A, (P=ellkci—iz),

les constantes ai, ai, a;, 91, qﬁ,, @, étant réelles. Pour les champs,
on lrouve :

) Er=—ika,e®P, E,=—ika,e®P, E,=o,
(20) Hy= ikase®P, H,=—ika,emP, H;=o.

En Mécanique ondulatoire du photon, la densité de spin'est donnée par
la formule

>
(21) a:lc{[E*A]—f—V‘H}—f-conj.»

(1) Voir la fin du Mémoire de M. Humblet.
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Calculons d’abord o,

(22) ov= =[BEj}A,—E2A,]+ V*H,+ conj.

T,

= 3 thasas ei(@s—9s)
I, .
+ 2 tkas a; el®—%) + conj.

2 ika-_\ as

€0s( 93— P2) 4 conj. = o.,

On trouve de méme o, = o.
Reste a calculer o.

4k .
ARa gy sin (g2 — 91).

(23) %::%[E;A,~—E;Ax]4—cmq.=—-

Or la densité d’énergie est, en néghigeant les termes en u?,

(24) w=—Tu=—nmu=|E]2+ |H|*=2|E 2= 2k2(a} + a}),

d’ou enfin

(25)

2@, Sin( 91— 939)
ke(ai + a3)

gl

Posons ay=a et a, = b; souvenons-nous que Ac= 27v = « pulsation
de I'onde. 1l vient

__ 2ab sin(gs— 1)
w(at+ b?)

(26)

gl2

C’est la formule de Sommerfeld, compte tenu du sens des axes employés
ici,
Pour une onde polarisée circulairement, ona b.= a, ¢, — ¢s ==& g et

par suite

als

=t L2

-

gl
El=
&

<

(27)

comme cela doit étre puisque I'énergie totale vaut kv et le moment
d’impulsion total =+ 5= (suivant le sens de la polarisation circulaire)

et que, d’autre part, les densités w et . sont constantes dans I'onde
homogéne. ‘

En Mécanique ondulatoire du photon, tout cela est trés clair. Par
contre, comme nous I'avons dit, la démonstration de la formule (26) par
la théorie classique est beaucoup moins directe.
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Ajoutens encore une remarque. Comme I'a noté M. Humblet (),
st 'on néglige les termes en 4}, les formules de la Mécanique ondulatoire
du photon ne raménent pas toujours & celles de la théorie de Maxwell.
Méme, si l'on suppose pratiquement négligeables dans les calculs les
termes en kg, une définition comme celle du moment d’impulsion M
par la formule (8) qui se présente naturellement en Mécanique ondula-
toire du photon ne rentre pas dans le cadre de la théorie classique
parce qu’elle ne posséde pas I'invariance de jauge.

4. Etude de 'onde dipolaire électrique circulairement polarisée. —
Considérons un dipole circulaire placé dans un plan pris pour plan
des zy. Soient \

(28) Po= aelk, P, == o= i eltel, P.= o,

les composantes de son moment dipolaire. Le signe — correspond & un
dipdle circulaire gauche, le signe 4 a un dipéle circulaire droit. On
trouve aisément les formules

@ Ly

(Plr=|Pelit [Pof [ bo aPy = D g,
AE] 'Z‘;‘—'— 2 2
(aP)r=""Ltap,
(297 Ll ket
{ o, s
[P"sz)o, nP)=/ %cveiA"
2':— la?
Fariags, f Voo

r étant la distance du point considéré a l'origine el n le vecleur unité
porté suivant le rayon vecteur.
L’onde émise par ce dipéle circulaire comporte un champ électrique
et un champ magnétique qui, en négligeant les termes d’ordres supérieurs
1 . . .
en -, s’expriment & grande distance par

k2

4Grr

(30) E= e~tkr(P—(nP)n); H == T/S e~ [nP].

Ces champs dérivent des potentiels suivants (calculés par la méthode

1

(1) Loc. cit., p. 593.
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des potentiels retardés, toujours en se limitant aux termes en r—4)

. ik ik >
(a) A= ____e-—-zkrpezlcu V=(DA)= ____e—xkr(np)elckt_
4nr 4mr :
Si I'on admet l'invariance de jauge, on peut remplacer ces potentiels a
par d’autres équivalents et en particulier par les suivants :

(b) A=Z—l1r—k—e—""(P~(nP)n)e“” V =o.

"Il importe de faire la remarque suivante : Avec le choix a des
potentiels, on a une onde transversale a laquelle-est superposée une
onde longitudinale (qui, avec ces expressions classiques supposant
implicitement ko= o, se réduit 4 une onde de potentiels avec champs
nuls ). Par contre, les potentiels b sont caractérisés par le fait que I'onde
correspondante est purement transversale, sans mélange d’onde longitu-
dinale. Naturellement, avec la conception classique qui refuse loute
réalité aux potentiels, les choix o et b sont équivalents.

Calculons la densité p correspondant a Yonde dipolaire en Mécanique
ondulatoire du photon. Quel que soit le choix @ ou b des potentiels,
on trouve

(31) p= %(A'E)—k conj.

aw k3 1 k3| a2
= e — 2} — 9
= 7 167r2r“'P[ (@ Py} <+ conj. /ﬂhcr2(1+cos 0),

6 étant Vangle 30M si M est le point ot P’on calcule ¢. Pour normer
Ionde dipolaire, nous supposerons qu'elle posséde un front d’onde
et que, par suite, elle est a4 chaque instant entiérement contenue dans
une sphére 2 de rayon R (avec R>1). Nous considérons I'instant ou

. . khe R .
cette sphére contient exactement un quantum /zv:;;— d’énergie

radiante moyenne et nous écrivons, R étant le rayon de X A cet instant

32) o di = R‘(z'fﬂdﬂkz”"' c0s20) 27 12 sin 8
(32) j,‘\:k“—o,o Tk (1+cos?b)2xmr2sinf =1,

d’onr

3he
AR

(33) |aj2=

Telle est la relation liant le rayon R défini ci-dessus 4 Pamplitude a du
dipdle.
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Nous allons maintenant envisager les trois intégrales suivantes dont
nous avons signalé I'importance

. 3
\ Ii=%fZ.E/’[r—g;\?i]zz\jdt—i-conj.;
s

Ig:lf[E"A]zd'cq-couj. Iy = lfV‘szt + conj.
c ¥ c ho}

(34)

‘Les intégrales analogues se rapportant aux axes oz et oy sont nulles
comme on le démontre aisément. Avec le choix a des potentiels, -
le calcul de lc[E* A] donne

1
1672 r2

1 . k3 .
(35)  Z[E'A]+conj. = T{[P'P] —(nP*)[nP]} + conj,

d’ou, pour la composante z d’aprés (20) et (33),

1 2 k3
1672r2 "¢
—_t 1
16x2re

(36) S[E*A];+ conj. == | @ |2 (14 cost0)

3h
— 20).
2R(1—+—co~3. 9)

Avec le choix b des potentiels, on troave

r
1672 r?

r k3
(37) %[E'A]z+00nj-= l—f—{[P"P]—,z(nP)"[nP]}+con_|.,

d’ou, pour la composante z,

\ ;
E—r{’_ﬂ -A—c{c—lalfcosi(i:-*- ——l—éﬁcosze.

rge e
(38) C[E Al;+ conj. =& Tt R

Intégrons dans la sphére X; il vient
‘ avec le choix a des potentiels I, ===

(39) ‘
( » b » Iy=

al= 3=

H
=

Passons maintenant au calcul de I;. Avec les potentiels @, on a

I

L2 R N .
rer ¢ (P[P +con,

(o) ~ V'H +conj. = —

d’ou, pour la composante 3,

3
16_1:‘37’_ -9%- ja|*(1—costb) = — iﬁ sin%6.

, . N
\41)' EV H;+conj. =1 16222 2R
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Avec le choix b des potentiels, on a évidemment
(42) SV'H =0

R "
En intégrant dans 3, on obtient donc

1(43) ’ avec le choix @ des potentiels I;== Z’% .
'\ « b. « I3==o.

Pour calculer enfin I, nous aurons a considérer I’expression
.3 .
1 . —> .
ZZ;Ei r x grad | A; + conj.
1

On se rend compte facilement que les seuls termes non nuls de cette
expression proviennent des dérivations des composantesde n : elle est
donc nulle avec le choix a des potentiels puisque alors A ne dépend pas
de n. Avec le choix b des polentiels, on trouve

3
. 1 * - 1 'k3 * . *
(44) EZ;,Ej [r>< grad]z‘A;Ajcom.: 16—1:7?5 l—c—(nP)[P n]=—--:;V H.
" )

On a donc en intégrant dans 2

avec le choix a des potentiels I;=o,

(45) ’ e b « L= 2.

. . h h
“ avec le choix a desvpotenuelqs ILi=o, L=z o’ L=z o’
« b « 11_—_’—_F-’f-', 12=i_"., Ii=o
4 47

Or la valeur moyenne dans le temps du moment d’impulsion du
rayonnement d’aprés la théorie classique est

(M, )§1= I, + I+ une intégrale de surface qui est nulle (1),

(47)
’ | (Mz)er=T11+ 1,

(*) Voir HumsreT, p. 593.
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tandis que la composante z du moment d’impulsion en Mécanique
ondulatoire du photon est

(48) M= [+ I+,

Iy représentant le moment orbital, I, 41, le spin. D’aprés les propriétés
de V'onde dipolaire, les grandeurs (M), et M, doivent étre égales
a = ;’i—, moment d'impulsion perdu par le dipole lors de 'émission du

quantum Av. Or, on a

avec le choix a des potentiels (M;)g==*= %, M;==% Zh_n'

(49) ) A
« b « (M; )=k —, M, =+ —.

2% 2%

Les valeurs de (M;).; sont insensibles au choix des potentie]s, comme
cela devait étre d’aprés lUinvariance de jauge : elles sont égales

a -k —2% comme prévi. Au contraire, les valeurs de M; dépendent du

choix des potenticls parce que la Mécanique ondulatoire du photon
n’admet pas 'invariance de jauge : seul le choix b des potentiels nous

fournit la valeur correcie = 2. Ce fait a été signalé, il y a quelques
2%

années, par M. Géhéniau dans sa these.

Donc, pour obtenir en Mécanique ondulatoire du photen, la valeor
correcte du moment d’impulsion d’une onde dipolaire circulairement
polarisée, il faut acdopter les potentiels qui_représentent une onde
purement transversale débarrassée de toute onde longitudinale.

Au premier abord, 'adoption des potentiels & de préférence aux
potentiels a peut paraitre soulever des difficultés. En effet, on est
habitué dans la théorie des potentiels retardés a calcyler le phénomeéne
de rayonnement dipolaire en partant des formules

(50) V___.ﬁ[ﬂ AT A:.ic'//‘{-g:,—]ck,
,

ou les quantités entre crochets sont les quantités retardées de — - -

Or ce mode de calcul conduit aux potentiels a qui pourraient ainsi,
abstraction faite de l'invariance de jauge, paraitre avoir une réalité
physique plus grande que les potentiels & contrairement a notre
conclusion. Mais il faut remarquer qu’aujourd’hui la théorie classique
de 'émission des rayonnements fondée sur les formules (50) doit étre
remplacée par la théorie quantique de I'émission, ou ’émission des
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ondes transversales et celles des ondes longitudinales apparaissent
comme des processus quantiques indépendants. C'est 1a un aspect du
fait (bien connu de ceux qui ont étudié le principe de correspondance)
que la théorie classique lie ensemble des processus que la théorie
quantique considére coinme indépendants.

Les potentiels @ peuvent d’ailleurs s’écrire svus la forme

k .
B = A A= oom g—‘llﬂ(P ——-—(n‘P)n) ik e—thr(n P)n elket,
4nr r ‘

(51)

V= Vir+ Vim 0+ K omikr(n P etice,

4%r
ot Vémission des ondes transversales et longitudinales caractérisées
respectivement par les potentiels A, V., et A, 'V, doivent étre des
processus quantiques indépendants. L’onde dipolaire lumineuse émise
lors d'une transition quantique du dipéle, onde qui emporte le moment

. . . h s i
d’impulsion == — perdu par le dipéle, est donc caractérisée par les
potentiels A, et V,==0 et ceci parait justifier le point de vue de I
Mécanique ondulatoire dn photon.

Pour compléter le calcul des grandeurs relatives & 'onde dipolaire

en Mécanique ondulatoire du photon, notons que 'on obtient, quel que
soit le choix @ cu b des potentiels

(52) f:—-f-L—{[A*H]+V‘E5+conj
717

k3
=15 — [P~ |(aP)pP]n =pen,

1611: r2

comme on pouvait s’y attendre, puis

i * . 4 k3 1 ) . >
(53) si= (A H)+con3.=_c_mia‘_cos(;:‘cl.

La derniére égalité est en accord (pour v=c) avec la formule
->[ v ) ’
,,,,, r - 3 P P
o=|o|- valable pour 'onde plane, ce qui s’explique si Von remarque
qu’a grande distance de Vorigine 'onde dipolaire est assinilable & une

onde plane.

5. Remarque sur le spin du photon. — M. A. Kastler (1) a montré
que la lumiére émise perpendiculairement au champ par une source

(') Journ. de Phys., sér. VII, t. 11, 1931, p. 159-164.
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placée dans un champ magnétique uniforme peut étre absorbée par une
. autre source placée dans un champ magnétique paralléle, mais de sens
opposé : il en tirait la copclusion que le photon n’a pas de spin. Cette
conclusion serait valable si I'on avait le droit de se représenter le spin
du photon comme une rotation interne d’un petit objet presque ponctuel.
Mais cette représentation n’est pas admissible. Pour le photon comme
pour 'électron de Dirac, le spin doit étre défini plus abstraitement en
‘introduisant les opérateurs de spin, les valeurs possibles des compo-
.santes et leurs probabitités respectives. De plus, on doit tenir compte du
fait que la conservation du moment d’impulsion est toujours défini par
rapport 4 un point et porte toujours sur la somme du moment orbital et
du spin. Si 'on tient compte de ces remarques, on voit que les intéres-
santes expériences de M. Kastler prouvent non pointla non-existence du
spin du photon, mais seulement l'impossibilité d’en conserver la
représentation grossiére par la rotation interne d'un corpuscule.

D



DEUXIEME PARTIE.

THEORIES SUPERQUANTIFIEES.

CHAPITRE VIL

THEORIE DE LA SECONDE QUANTIFICATION.

1. Bases de la théorie. — La théorie de la seconde quantification
constitue une méthode pour traiter dans le cadre de 'espace ordinaif.
a trois dimensions les problémes ou interviennent des ensembles de
particules de méme nature physique.

On sait que pour développer la dynamique des ensembles de parti-
cules en interaction, la Mécanique ondulatoire a dd envisager une pro-
pagation d’ondes dans un espace de configuration a 3N dimensions,
N étant le nombre des particules de 'ensemble. De plus, quand on a
affaive 2 des parucules de méme nature physique, on est amené pour
étre en accord avec l'expérience, a me conserver qu’une partie des
solutions possibles de I'équation d’ondes de I'espace de configuration,
savoir pour certaines catégories de particules (photons, mésons,
particules «, certains noyaux, etc.) les solutions a caractére symétrique,
c’est-a-dire telles qu’elles ne sont pas modifiées quand on permute
le réle de deux particulés, et pour certaines autres catégories de parti-
cules (électrons, protons, neutrons, certains noyaux, etc. ) les solutions
a caractére antisymétrique, c’est-a-dire telles qu’elles changent de signe
pour toute permutation du réle des deux particules. On peut démontrer
que les ‘particules de la seconde espéce sont soumises au principe
d’exclusion de Pauli et suivent la statistique de Fermi-Dirac tandis
que celles de la premiére espéce échappent au principe de Pauli et
suivent la statistique de Bose-Einstein. De plus, I'expérience prouve

que les particules de la premiére espéce ont un spin de la forme n—’f—

2%
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{n entier) et celles de la scconde espéce un spin de la forme (n+ é) ;’i’_,
fait d'un iniérét capital que Pon parvient a interpréter en terant compte
de la nature simple ou complexe des particules et qui joue un rdle
fondamiental en théorie du Noyau (%).

Ainsi, la Mécanigue ondulatoive des systémes de parlicules de méme
nalure ne peut représenter 'évolution d'nn tel systéme qu’en se placant
dans un espace de configuration & caraciére abstrait et en introduisant,
a preori, des régles qui limitent le choix des fonctions d’onde suivant
}a netare des particules.

La médthode de la seconde quantification cherche, au contraire, a
représenter Pévolution d'un systéme de particules de méme nature dans
le cadre de Pespaee physique & trois dimensions, mais, pour y parvenir,
elle est obligée d'sitribuer A Ia fonction W le caractére d'un opérateur,
reperdant ains: awu point de vae intuitif du c6té de la fonction d’ende ce
qu'elle gagne du coté de Pespace. Elle se développe d’ailleurs difte-
remment suivant qu’il s’agit de particules obéissant ou n’obéissant pas
au principe de Pauli. Comme nous nous occupons ici des particules de
spin 1 et spécialement des photons, nous fixerons surlout notre attention
sur la forme de la seconde quantification qui est applicable nnx rarticules
A état symétrique échappant au principe d'exclusion.

2. Caractére complémentaire des amplitudes ¢t des phases quand
on représente un emsemble de particules do méme nature dans l'espace
physique 4 trois dimensicns. - Nous allons commencer Uexposé de
la seconde quantification par de irés importantes considérations sur
la représentation d’un ensemble de N particules dans le cadre de
Pespace a trois dimensions.

Si nous cherchons a représenter un tel ensemble par une onde ¥

dans Pespace ovdinsire, il sera naturel de normer cette onde W en

E}Q&&ﬂl

+ %
{ :l/J ﬂ : w ,2 dr = 1\./

ot de supposer que, si l'on a

(23 ‘I‘*::};Cz?i;
¢

() Sur toutes ces questions, on pourra consulter le livre de Vauteur : De fa Mécanique
ondulatoire & la théorie du Noyau, 1, Chap. IL, III et 1V, Hermann, Paris, 1943.



THEORIE DE LA SECONDE QUANTIFICATION. 81

les p; étant les fonctions propres d’un opérateur A, le nombre probable
des particules pour lesquelles une détermination de la grandeur A
donnera A = «; sera donné par | ¢; |>. L’on aura donc Z[ ci|?=N.

. i

Considérons maintenant deux grandeurs observables A et B dont
les valeurs propres et les fonctions propres sont respectivement a;, ¢;
et B4, xx Le systéme des ¢; et celui des y: forment chacun un systéme
complet de fonctions orthonormales et le passage de 'un a 'autre est
I’analogue dans I’espace fonctionnel d’'un changement de coordonnées
orthogonales dans I’espace ordinaire.

On a donc des formules de transformation du type

(3) ?I=Z'Skw (232,-3ki= 51/>,
k

k

ou les s;; sort les éléments d’une maltrice s orthogonale du domaine
complexe, c’est-a-dire unitaire. Si une fonction W se développe suivant
les ¢; sous la forme

(4) W:Zc,;[,
i

on aura ainsi

(5) '[’=20i23kixk =2d/:)(_k~
» i k &

avec

(6) di =25kch-

i

et cette formule donne I'expression des coefficients du développement
du ¥ suivant les x+ en fonction des coefficients du développement selon
les 9;. On vérifie aisément que la condition (1) de normalisation imposée
au ¥ entraine

€) Nlei=Yldl=N.
_ ) k

¢

Ceci posé, soit un ensemble de N particules de méme nature sans
interactions mutuelles. Nous voulons représenter cet ensemble par
une fonction d’onde W(z, y, z, £) normée par (1).

A Uinstant initial, 'onde ¥, qui représente donc un nuage de
particules, occupe une certaine région limitée R de I'espace a trois
dimensions et se déplace dans une certaine direction. Nous supposons

LOUI8 DE BROGLIE, 6
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que ce nuage arrive sur un dispositif D qui permet d’attribuer, par

~ la constatation d’un phénomeéne observable, une valeur bien déterminée

a la grandeur B attachée a une particule. Le dispositif D permettra donc
de dire que, pour chaque valeur propre $, de B, il y a n; des N parti-
cules pour lesquelles B aura la valeur 3.

Supposons encore que sur le trajet entre R et D puisse étre placé
un dispositif D’ permettant d’assigner une valéur déterminée a une
autre grandeur A attachée a chaque particule, valeur qui sera néces-
sairement l'une des valeurs propres o; de 'opérateur A. Nous nous
proposons d’évaluer le nombre des particules qui, aprés passage
a travers le dispositif D, posséderont certainement leur grandeur B
égale a (3, sachant que 'onde ¥ a I'état initial ot clle occupe la région R
a la forme

" B N\ 4
(8) W(z, y, 2, 1) =Zcz~?i=2‘sm0zxk =Zduk,
i Lk k

Ies ¢; et dy vérifiant la relation (7).

~

D D
e}
1
[
[
[
i
i
L4

Mesure A Mesure B

F}j_‘, i.

Nous allons maintenant distinguer deux cas.

1° Le dispositif D' n’est pas interpesé sur le trajet I-> D.

Eu étendant i 'onde W normée par (1) les principes généraux de
la Mécanique ondulatoiré, on doit admettre que le nombre prchable
des particules qui, aprés action sur D, posséderont leur grandeur B
6gale a 3; est donné par

(9} ’l/\‘:é"”:’fi‘:f

. Al . ) .
<e gui donne };m =.- N comme i se doit.

i
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2° Le dispositif D' est interposé entre R et D : il laisse passer toutes
les particules se dirigeant vers D, mais permet d'assigner a n; d’entre
elles la valeur a, pour la grandeur A, a n, d’entre elles la valeur «,, etc.
On doit alors avoir n;==| ¢; |* et les n; particules pour lesquelles on sait,
apreés leur passage a travers D', que A est égale & «; auront entre D’ et D
une onde W se réduisant a ¢;¢;- Le nombre de ces particules qui, lors de
leur action sur D, se révélent comme ayant leur grandeur B égale a 3¢
s’obtient en remarquant que, leur onde étant

(10) lr:ctqp,-zz s“c,-‘)(_k,
k

ce nombre doit étre égal a nji=s;c;|*. Le nombre total probable 7
des N pacticules incidentes qui, aprés passage dans D, auront leur
grandeur B égale a (3, est donc

~ N\ R
(11) /zkzzm/‘-:Z[s’“c; [?:ZISMPIQ 2,
i i

i

et 'on aura encore

.
(12) Z’L/{ZZ!CL BN sr=Y e Y st s =2‘Cz‘|"=
i i I3

k i

parce que s est une matrice unitaire (§}, == 5%, )-

Voici maintenant le point essentiel : il existe une différence fonda-
mentale entre les résultats obtenus dans les cas 1° et 2°. En eflet,
chaque ¢, est une grandeur complexe qu’on peut donc écrire |¢; | e,

12
0; étant Pargument de ¢; Or la grandeur Esmci} de la formule (9g)
i
dépend des arguments des ¢; car elle vaut

i~

(13) z,w1—*11:’+Zs/.,|msmc,vew—

- Autrement dit, cette probabilité dépend des différences de phase entre
les composantes du développement du W suivant les fonctions propres
de A. Il y a alors interférences des probabilités, circonstance capitale
tout a fait caractéristique de la Mécanique ondulatoire. Au contraire,
dans la formule (11) correspondant au cas 2°, n; ne dépend plus des
arguments des ¢;, mais seulement de leur module : les différences de
phase entre les composantes du développement duW suivant les fonctions.
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propres de A n’interviennent plus et il n’y a plus d’interférences des’
probabilités.

Or, ce qui distingue physiquement les cas 1° et 2°, ¢’est 'intervention
dans le second cas du:dispositif D’ permettant d’assngner a A une valeur
bien déterminée et, par suite, de répartir les N particules incidentes
en groupes correspondant aux diverses valeurs possibles de A. Nous
parvenons ainsi a la conclusion capitale suivante : quand il se produit
un phénomene observable permettant de répartir les N particules
incidentes entre les divers états propres correspondant & une méme
grandeur A, les relations de phase entre les composantes du dévelop-
pement du ¥ suivant les Sfonctions propres de A se trouvent par la
méme complétement effacées. La connaissance ‘des |c;|* est donc
incompatible avec celle des 8; : quand on cherche a représenter un
ensemble de N particules de méme nature par une onde ¥ dans I’espace
physique a trois dimensions, I'amplitude et la phase d’une méme
composante spectrale du W sont donc des grandeurs complémentaires
au sens de Bohr et, suivant les idées générales de la Mécanique ondu--
latoire, on doit représenter ces grandeurs par des opérateurs qui ne
commautent pas. C’est ce que nous ferons plus loin.

Remarquons que les considérations qui précédent s’appliquent
seulement aux particules non soumises au principe de Pauli puisque
nous avons supposé qu’il pouvait y avoir un nombre quelconque de
particules par état.

Notons aussi que les raisonnements développés plus haut se rattachent
étroitement a I'idée précisée tout d’abord par M. von Neumann suivant
laquelle la mesure d’une grandeur A a pour effet de transformer le cas .

pur représenté par la fonction d’onde W initiale en un mélange de

cas purs (%).

3. La seconde quantification pour un ensemble de particules a états
symétriques (Dirac). — Dans notre représentation d’un ensemble
de N partjcules par une seule fonction d’onde ¥(z, y, 5, t) normée
par (1), nous avons admis implicitement qu’il pouvait y avoir un nombre

-entier quelconque n; de particules dans chaque état g;. Nous savons

qu’une telle hypothése n’est valable que pour les particules a états
symétriques suivant la statistique de Bose-Einstein. Nous allons donc
pour l'instant nous borner a considérer ce genre de particules. Nous

(*) Voir Baukr et LonpoN, La théorie de lobservauon en Mecnmque quantique
(Act. scientifiques, 775, Hermann, 193g).
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supposerons de plus que nous nous intéressons seulement a la mesure
de la grandeur énergie et par suite que nous développons toujours
la fonction d’onde ¥ suivant les fonctions propres de I'opérateur hamil-
tonien H, opérateur défini pour une particule considéréé isolément.

"Soit donc un ensemble de N particules indépendantes obéissant &
la statistique de Bose. Si W(z, y, 3, t) représente cet ensemble dans
’espace a trois dimensions, on écrira le développement de cette fonction
d’onde suivant les fonctions propres orthonormales de Vopérateur
‘hamiltonien sous la forme

(lé) lIr=2(’ilvl'7
{

formule ou nous supposons que chaque W; contient le facteur expo-
2w

. —-E;t .
nentiel e # . Les ¢; sont des constantes complexes qu’on peut écrire
en mettant en évidence nodule et argument

(15) cr=|o|efi=eBi|c .

Nous admettrons que le nombre n; des particules' qu'une mesure de
I’énergie montrera se trouver dans 1’état d’énergie E; est

(16) ny=lei|t= ¢} cy= e;cf.

Dans les formules (14) et (16), comme nous I'avons indiqué, I'ordre
des facteurs est indiﬂ'érent puisque, jusqu’ici, nous considérons les ¢;
comme des grandeurs numériques complexes ordinaires. Nous allons
étre amenés maintenant A considérer les c; et ¢; comme des opérateurs
et alors l'ordre des facteurs cessera d’étre indifférent. C’est pourquoi

nous allons convenir de toujours écrire les formules précédentes sous
la forme ’

(17) cr=efi) ¢, n,=cj .

Nous avons montré que les grandeurs n; et §; se comportent comme
des grandeurs complémentaires au sens de Bohr, puisque la détermi-
nation simultanée des nombres de répartition n; et des phases 6; est
impossible. Mais il ressort des principes de la Mécanique ondulatoire
que, quand deux grandeurs sont complémentaires (comme le sont deux
grandeurs canoniquement conjuguées p; et ¢;), si I'une est considérée
comme une grandeur numérique, 'autre doit étre regardée comme
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un opérateur égal, a un facteur prés, a l'opérateur dérivation par
rapport a la premiére grandeur. Ainsi g; el p; étant 'une des coor-
données et le moment de Lagrange conjugué, sil’on considére ¢; comme

une variable numérique, p; doit étre assimlé a opératenr — ko9,
271 dqi
L’on peut d’ailleurs développer aussi les formules de la Mécanique

ondulatoire en considérant p; comme une variable numérique et en

.. o p)
assimilant g; a lopérateur — s —
27 dp;
Nous sommes ainsi amenés, si nous considérons les n; comme des
. . . .. . .0 .
variables numériques, & assimiler §; a Popérateur — wmultiplié par
. I)Ili :

.. . LI . A
un facteur constant que nous choisirons égal 4 -, ce choix devant étre

justifié. par P'exactitude de ses conséquences ('). Nous supposons donc
I¢l qu’'a priori n; est une variable continue par rapport a laguelle on

. , . . Z . .
peut définir I'opérateur de dérivation (—;7; il nous rvestera a montrer
1

qu’en fait les variables n; ne peuvent prendre, conformément a leur
sens physique, que des valeurs quantifiées entiéres. Avec l'ordre des
facteurs adopté en (17), nous poserons

0

(18) er=c"iyn;.

Comme ¢; = e %] ¢;], la connaissance simultanée de ¢; et de ¢; équi-
vaudrait a celle de n; et de 0;, ce qui est impossible. On en conclut
que ¢; et ¢ représentent des grandeurs complémentaires dont la connais-
sance simultanée exacte est impossible : donc ¢; doit, lui aussi, étre
transformé en un opérateur qui ne doit pas commuter avec l'opéra-
teur (18). Comme wous devons avoir n;=¢;c; et quil est naturel
d’admettre la relation

L)
(19) e On;er)n;:h

. 1 N . .
(') Remarquons que le fait de poser (8:)op = = entraine la relation de commutation

J
i dn;
1
[0;, n;] = L—.v
et par suite la relation d’incertitude

Ab;Ani~,

qui exprime Pimpossibilité de connaitre simultanément la phase d’une onde monochroma-
tique et le nombre des particules qui lui sont associées (Voir la suite de la note page 103).
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nous sommes amenés a poser

9

/

{20) ¢t = \ne .

Il est extrémement important de noter qu’une fois transformés en
opérateur par les définitions (18) et (20), les symboles ¢; et ¢ ne repré-
sentent plus des quantités conjuguées au sens usuel du mot ().

Une des caractéristiques essentielles de deux grandeurs complémen-
taires, c’est que le commutateur des opérateurs correspondants n’est
pas nul, ce fait traduisant dans le formalisme de la nouvelle Mécanique
I'impossibilité de mesurer simultanément avec précision les deux
grandeurs. Ici nous devons donc avoir pour les opérateurs ¢; et ¢;

(21) [¢fs ci]l=c¢fci—ecic] #o.

Pour voir, s’il en est ainsi avec (18) et (20), nous devons préciser
L0
la définition des opérateurs e " en posant

+.9 0 )2
(22) € OMimyi Sy -

1 1P 1 JP
dn; 2V dni 77 31 Jgnf

+...+(i[)P1—)—' FrvERRERE
M 3

c’est-a-dire en nous servant du développement usuel de e?. Avec
la définition (22) on vérifie aisément que la relation (19) est satisfaite.
Considérons alors une fonction continue et indéfiniment déri-

vable ¢(ny, ns, ...) des variables numériques n;. Nous aurons
]
=+ J 1 2
23 e Mig(ny, Ay o) =1 e
(23) 7 (1, 12, ' [ dn; 2! 9n}
4y X J P
+...+(_u.l) ;—' m-{-..., o{ny, N, ...,).

Or la formule de Taylor appliquée a la fonction ¢ nous donne

(?4) Plry, ..., n,+8m, ey = :p(n,, ceey Mgy sy
N d dn} J2g | S/
w2 —;’—-—‘f,+...+——'ani—%
n; 2! dnf p! an!

ou les dérivées au second membre sont prises pour les valeurs
niy, ..., Riy .., des variables. En faisant successivement dans (24)

() Cependant ci et ¢ sont des opérateurs adjoints dans V’espace des n, d’ol résulte
que ¢k + cf est liermiticn dans cet espace.
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on;:=1 et dn;= —1, on obtient
P o :
(25) V e%ig(ny, ooy nyy o) = 3( Ry, s, AT, L)
2
e Mio(ny, .o, ngy o) =90y, ooy RE—T, L),
)

L’opérateur e appliqué & une fonction ¢ d :s variables n; a donc pour
effet d’augmenter d’'une unité la valeur d¢ ’argument »; dans I'expres-

0

sion de ¢, tandis que l'opérateur ¢ °% a, au contraire, pour effet de

diminuer cette valeur d’une unité.

Formons maintenant le commutateur de ¢; et de ¢;; nous obtenons

. ) )
(26) e}, ci] = ny— einje O%,

Appliquons I'opérateur (26) a une fonction ¢ des n:; il vient

P )
(27) (efei—eic}) §(Rey ooy gy o)) = Ry — €®Minge Mg =—g(ny, ooy ny, .o
car
2 9 .2
(28) ene dni?(nh sy Ry -"7)=edn‘ni?(nh cees Rity seey)
’ =(+1)2(Ry, ..., By ..y

On peut donc écrire I'égalité opératorielle

(29) lefy ci]=—1.

Comme nous n’avons aucune raison de supposer que »; et 6; pour ¢ 2 k
ne soient pas simultanément mesurables, nous devons penser que c;

el ¢c; commutent et poser

(30) [ef, ck]l=0 (& # k).

Les régles de commutation des opérateurs ¢; el ¢, peuvent donc se

résumer par la formule

- (3n [ef, ck] =— 8.

Nous y ajouterons les régles suivantes dont la vérification est aisée :

(32) !c:> c[:]=0) [cl; ck]=°:
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et nous aurons ainsi obtenu Fensemble des régles de commutation pour
la seconde quantification des particules a états symétriques (*).

4. Autre manidre de trouver les régles de commutation des ¢;. —
Nous allons maintenant développer une autre maniére, trés importante
par ses conséquences, de retrouver les régles précédentes.

Partons de I'idée que si, dans une théorie non quantifiée, p; est la
grandeur canoniquement conjuguée de g¢;, la quantification consiste
a remplacer p; et g; pour des opérateurs tels que

h
(33) [Pb qk]EPqu_ql‘Pl=_———.51k.

27

11 suffira alors de montrer qu’en Mécanique ondulatoire non super-
. . h . . .
quantifi¢e, les vanablesmc, et ¢; doivent étre considérées comme

canoniquement conjuguées pour voir que la seconde quantification
doit consister a remplacer les nombres ¢; et ¢; par des opérateurs tels
que

o, A .k
(34) TR G kT kel =— o8y

formule équivalente a l’équatién (31).

(1) On dit d’une fagon générale qu’'un: opérateur A+ est U'adjoint d’un opérateur A
dans un domaine D si Pon a

ff'Agdr:ng'*/"dt,
» »

/ et g étant deux fonctions continues et uniformes dans D et nulles aux limites de D.
Cette définition entraine que la condition nécessaire et suffisante pour gu'un opérateur
soit hermitien est qu'il soit son propre adjoint, c’est-a-dire que A+= A.

Avec les définitions (18) et (20) de (¢i)op et de (€] )op, ON trouve aisément

ff'(n., nay L) (Copg Ry Ray L) ARy, dis,
= f g(m, nsy ...} (€ Yopf* (N1, 02y ...)dm, dns, ...,

Pintégrale étant étendue i tout I'espace des i et f et g étant des fonctions uniformes et
continues des 7 s’annulant & Vinfini. On a donc

(e Yop= (€ )5
d’ou lemploi par beaucoup d’auteurs de la notation ¢ au'lieu de ¢; en seconde

quantification.
Commie (¢} )op # (Ci)op, U'opérateur ci n’est pas hermitien et ne correspond donc pas & une

. . T
observable au sens de M. Dirac. Ce qui.est mesurable, c’est ni =c¢] ¢i et ;= — log(cic} 1),
2
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h . ) . . .
Pour prouver que -— ¢/ et ¢; sont canoniquement conjuguées, nous

devons rappeler briévement ce qu’on nomme, en Mécanique ondulatoire
non supergnantifiée, la méthode de variation des constantes. ‘

Soit H») Popérateur hamiltonien d’un systéme qui n’est soumis a
aucune action extérieure tel que ’ensemble de nos particules indépen-

dantes. Cet hamiltonien admet des valeurs propres E,, ..., E;, ..., et
des fonctions propres W', ..., W ..., et ’équation d’onde s’écrit
h O
—_ s (DR 08
(35) ami Ol =1

La fonction d’onde W est une solution de cette équation qu’on peut
développer sous la forme

(36) R —-2 e,

les ¢}’ étant des constantes complexes indépendantes du temps.
Supposons maintenant qu’a partir d’une époque ¢,, on soumette le

systéme a laction d’un champ extérieur dérivant du potentiel
Vg, q2y - - -, t). L’équation des ondes deviendra

/1 ZLo

{0 1]
P = HOW 4 V()W

(37)
ou ¥ pourra toujours & chaque instant se développer suivant le systéme
des fonctions propres W'" de I’hamiltonien non perturbé H(?). Seule-,
ment maintenant, sous 'action du potentiel perturbateur V(t), les coef-
ficients du développement du W sont variables avec le temps et I'on
aura

(38) i1"=20i(‘z)ll'\i‘“.
i

Ea substituant dans (37) et en se souverant que lps ¥ sonl solu-
tions de I'équation (33), on trouve
h ~ de; AN . o
¢ 1 '/0) o AL AL
(39) MZ W =W a(OV(OWP.

i

Multiplions W} et intégrons dans D, domaine de variation des
variables du probléme : il vient, en tenant compte des conditions
d’orthonormalité des W™
Dirac

. le; oz . )
(40) ll(/ = 'ZV"(”CM/)

, les équations de variation des constantes de
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avee
(4n) Vigi(e) =fwy'>*v<r)w<i0> d=,
b

V“’)(t) est donc I'élément d’indices ;7 de la mairice engendrée par
Popérateur V(¢) dans le systéme des fonctions propres de H(®). Silon
suppose connues les valeurs initiales c;(¢,) =¢'’ des c;, les équa-
tions (41) permettent de suivre les variations des ¢;(¢) au cours du
temps sous I'action du potentiel perturbateur V (¢).
Il importe pour nous de remarquer que la théorie précédente
s'applique au cas du photon, bien que nous ayons défini ’hamiltonien
du photon par la formule

h J C'L, -+ (’3;
— L T iy gy
(42) 2R 2 v ¥
avec lopérateur bl Tl L premier meimbre. Nous savons, en effet,

que pour le photlon les fonctions propres de 1'énergie, qui sont les ondes
planes monochromatiques, doivent étre normées par la relation

(43) f e et T

b

el que l'on vérifie aisément pour I 3£ 7 la relation
q p J

(44) flrgw* -'oi‘“_','—a"‘f W) dx = o.
| TR =

Les calculs précédents sont encore valables, V(¢) étant le terme que
les interactions avec la matiére introduisent en supplément dans
Ihamiltonien du photon.

En prenant I'équation conjuguée de (40) et en tenant compte de
Phermiticité de la matrice Vi?), nous obtenons
dcj

15 i A
(45 7

—V%ZV;‘}’*(t)c (t)y=— ——Zc (Vi

{ i

Introduisons maintenant la fonction bilinéaire suivante des ¢; et
des ¢}
(46) Blcy, ....ci .. )= “c (VR (£)ej(0).
,,,
. . N - ] e
Les équations (40) et (43) peuvent s’écrire

il .4 de’; r)5€
£ —_— - —_—
(i7) E A 7,
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(48) cj(t)= 2"Tl,c;-(z).

Les équations (47) ont la méme forme que les équations canoniques
classiques de Hamilton
dq; .’ZE_ dp;  oH

(49) & op &

. . h .
Nous pouvons donc bien considérer YT ¢; comme le moment conjugué

de ¢;, la fonction ¥ jouant le réle de fonction hamiltonienne. Dés lors, -
comme nous l'avons remarqué, nous sommes ramenés aux régles de
commutation des c¢; et des ¢} trouvées au paragraphe précédent.

5. Egquation de propagation dans I’espace des n. Extension du forma-
lisme de/la Mécanique ondulatoire. — Pour passer de la Mécanique
classique a la Mécanique ondulatoire non superquantifiée, on remplace
les équations canoniques (49 ) par I’équation de propagation

._}f_ OW(qa, ooy Ghy ooy 1)

(30) 2mi dt
. h o h d .
. =H(q|,..., qk"”"—;x—iﬁ’ LIERE ] -—2—7:},’)7"_) "'°‘p t)ll‘
la fonction hamiltonienne H(q1, ..., quy -« oy Pry ooy Piy -+, t) dela

Mécanique classique ayant ét¢, comme il est bien connu, transformé en
opérateur hamiltonien par la substitution a chaque p;. de Vopéra-

: h o
teur — — —.
2mL Jq;

De méme, pour opérer le passage de la Mécanique oundulatoive non
superquantifiée & la Mécanique ondulatoire superquantifiée, il est tout
indiqué de remplacer les ¢quations canoniques

de;  93C dc’; axK
(47) == —= —t =
dt I t dej

obtenues plus haut dans la théorie non superquantifiée par 'équation
de propagalion suivante définie dans I'espace des n

L R(ny. ..., 0. ... 0)
ari Jt

(48)

=3 R(my, .o g, .05 1)

avec

(49) 360]7=2v(l‘-‘;)(t)(c;)up(cj)ll[ly

¥



THEORIE DE LA SECONDE QUANTIFICATION, 93

les (¢} )op L (€j)op 6tant définies par les équations (18) et (20). L'opé-
rateur J¢,, eést donc obtenu en substituant dans 'expression non super-
quantifiée de la foncticn hamiltonienne (46) aux grandeurs numé-
riques ¢, et ¢, les opérateurs correspondants définis dans espace des n
par (18) et (20).

La fonction R(ny, ..., t) est la fonclion d’onde dans 'espace des n :
en raison du réle qu’elle va jouer, nous lui donnerons le nom de fonc-
tion de répartition. Nous la supposerons normée par la formule

(50) ER‘(n,,...;t)R(nl, ety =1,

odZest une sommation étendue a toutes les valeurs des n; el repré-
n
sentant une intégration dans I'espace des n. L’hérmiticité de I'opéra-

teur (49) assure d’ailleurs, comme on le vérifie aisément, la permanence
de la condition de normalisatiou (50), car on tire de (48)

d *p __
(51) EER R =o.
n

Ayant obtenu ainsi une équation de propagation et une fonction d’onde
dans l'espace des n, rien ne nous empéche de transposer a cet espace
~ tout le formalisme de la Mécanique ondulatoire. En particulier, 'expres-

sion R*(ny; ..., ¢). R(ny, ..., &) =|R(ny, ..., t)|* nous donnera la
probabilit¢ pour qu’il y ait n, particules dans l'état E;, n. dans
I'état E,, .. .. Nous verrons tout & I'heure que, conformément a I'idée

méme de particule, les nombres n; pour lesquels |R[* est différent
de zéro sont toujours des nombres entiers, ce que nous admettrons des
maintenant

Comme en Mécanique ondulatoire ordinaire, on peut définir le carac-
tére hermitien d’un opérateur dans I'espace des » et admettre qu’a toule
grandeur mesurable de ’espace des n correspond un opérateur lindaire
et hermitien dans cet espace. On définira les valeurs propres et les
fonctions propres d’un tel opérateur A par une équation aux valeurs
propres de la forme

(452) Aoi(ng, ooy iy o0) =au3p( Ry oeny Ry 222,

les ¢; formant dans I'espace des n un systéme complet de fonctions
orthonormales telles que '

- <
(3 Z;,(n., e Ry e IR e Ry e b= 8y
"
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h
(48) | ¢ (t)= =—cj(0).

Les équations (47) ont la méme forme que les équations canoniques
classiques de Hamilton

dq; oH. dpj . 7H

@ T 9p; A& 9q

(49)

. . h .
Nous pouvons donc bien considérer VYT ¢; comme le moment conjugué

de ¢, la fonction I jouant le réle de fonction hamiltonienne. Dés lors, -
comme nous 'avons remarqué, nous sommes ramenés aux régles de
commutation des c; et des ¢] trouvées au paragraphe précédent.

5. Eguation de propagation dans 'espace des n. Extension du forma-
lisme de/la Mécanique ondulatoire. — Pour passer de la Mécanique
classique a la Mécanique ondulatoire non superquantifiée, on remplace
les équations canoniques (49) par I’équation de propagation

_h_ (G, ooy ity ooy t)

(30) 2L Jt
. h o h 0 .
. =H(q1, veey Ghy oe ey ——a—n-; I)—q—l’ eoey -—-;—ﬂ—i ;)_';_’k, .'..‘, t)ll,
la fonction hamiltonienne H(gy, ..., @iy -« oy Pty « ooy Piy -+, t) dela

Mécanique classique ayant été, comme il est bien connu, transformé en
opérateur hamiltonien par la substitution a chaque p; de Popéra-

teur — 2, 9.
axi dq;

De méme, pour opérer le passage de la Mécanique ondulatoire non
superquantifiée 4 la Mécanique ondulatoire superquantifice, il est tout
indiqué de remplacer les ¢quations canoniques

de; 073C de’; (/74
(47) — = —L = =
dt dey dt de;

obtenues plus haut dans la théorie non superquantifide par l’équation
de propagation suivante définie dans l'espace des n

_/_l_ OR(nq. ..., npe ..o )
27 dat

(48)

=Iop Ry, oo i, .00, )

avec

(49) aeop':zv(,"‘})(t)(c;)np(c/'\my
i
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les (c; )op €t (C;)op 6tant définies par les équations (18) et (20). L'opé-
rateur JC,, est donc obtenu en substituant dans 'expression non super-
quantifiée de la fonction hamiltonienne (46) aux grandeurs numé-
riques ¢, et ¢}, les opérateurs correspondants définis dans I'espace des n
par (18) et (20).

La fonction R(n,, ..., t) est la fonction d’onde dans l'espace des n :
en raison du réle qu’elle va jouer, nous lui donnerons le nom de fonc-
tion de répartition. Nous la supposerons normée par la formule

(50) ER"(n,,...,t)R(_n,, e t) =1,

on‘xzest une sommation étendue & toutes les valeurs des n; et repré-
n
sentant une intégration dans 'espace des n. L’hérmiticité de I'opéra-

teur (4g) assure d’ailleurs, comme on le vérifie aisément, la permanence
de la condition de normalisatiou (50), car on tire de (48)
d
5 % PRk =o.
(51) 7 ©
n

Ayant obtenu ainsi une équation de propagation et une fonction d’onde
dans l'espace des n, rien ne nous empéche de transposer a cet espace
- tout le formalisme de la Mécanique ondulatoire. En particulier, Pexpres-

sion R*(ny; ..., ¢). R(ny, ..., &) =|R(n, ..., ¢)|? nous donnera la
probabilit¢ pour qu’il y ait n, particules dans 1'état E,, n, dans
Pétat E,, . ... Nous verrons tout & I'heure que, conformément a I'idéc

méme de particule, les nombres n; pour lesquels |[R[* est différent
de zéro sont toujours des nombres entiers, ce que nous admettrons dés
maintenant

Comme en Mécanique ondulatoire ordinaire, on peut définir le carac-
tére hermitien d'un opérateur dans I'espace des n ct admetire qu'a toute
grandeur mesurable de 1’espace des n correspond un opérateur linéaire
¢l hermitien dans cet espace. On définira les valeurs propres et les
fonctions propres d’un tel opérateur A par une équation aux valeurs
propres de la forme

(52) Avi( Ry evey Ry o) =Ry oy R L),

les ¢; formant dans l'espace des » un systéme complet de fonctions
orthonormales telles que '

. O . .

(13) \_;,(m. R Y SRS T T IR | F SR T
/! L i i
h
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Les «; seront les valeurs propres de la grandeur A dans Pespace des »
et, si la fonction R se développe svus la forme

(58) R{ny, ..., ngy ooy t)=20i(t);i(/zi, Ceey Py o)y

{

suivant le systéme complet des ¢;, la quantité | ¢;(¢) |> donnera la proba-
bilité pour qu’une mesure fournisse pour la grandeur A la valeur «; &
l'instant ¢. Il en résulte que la valeur moyenne de A a les deux expres-
sions ¢quivalentes

(55) K:Ea,]ci}":zR*(nh...,t)AR(ni,...,1,).

Nous reviendrons plus loin sur la signification et I'importance de ces
valeurs moyennes.

Nous devons faire remarquer (1) que les opérateurs ¢, et ¢; ne sont
pas des opérateurs hermitiens dans I'espace 7 et, par suite, ne corres-
pondent pas a des grandeurs mesurables, tandis quc les opérateurs

(56) check= N, b= ; d—(r)ﬁ
sont, au conlraire, hermitiens et correspondent a des grandeurs mesu-
rables. On vérifiera aisément ces affirmations en tenant bien compte
du fait que ¢ et c; ne sont pas des grandeurs conjuguées, mais que
chacun d’eux est un opérateur réel. On pourra également vérifier que
V'opérateur ¢, - c; est hermitien.

Nous noterons encore que l'opérateur J€ défini par (49) peut éwre
remplacé par le suivant

¢ N 4 s * N
(49") 5¢ = 3 [H + Vi ()] (¢] Jon () D,
y
H% étant I'élément de matrice f W HOW, de formé a Paide de
14
Phamiltonien non perturbé H'®). En effet, les W étant fonctions
propres de H!'*}, nous avons H;}’ = E; ;; et par suite (49') ne différe
de (49) que par la seule adjonction des termesEEg 6ijC;Cj:anEj.

i [
La modification de I’hamiltonien a donc pour seul effet de nous obliger

eRi

i 2

a remplacer la fonction R par la fonction Re ® 7 ', mais nous savons

(1) Voir Noic page 8g.
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qu’une fonction d’onde méme normée n'étant jamais définte qu’a un fac-
teur complexe de module unité prés, cette modification n’a aucune
importance. Nous nous servirons tantét de 'hamiltonien (4g), tantot
de 'hamiltonien (4g'), ainsi que des fonctions d’onde correspondantes.

6. Laseconde quantification exprime existence des particules.—L’op«-
rvateur J€ de la seconde quantification n’est pas comme hamiltonien H
de la Mécanique ondulatoire non superquantifiée un opératenr diffe-

"
o

rentiel : il est, en effet, une combinaison bilindaire des opérateurs e

o
an;

et " qui, appliqués & une fonction des n, augmentent ou diminnent
d'une unité la valeur des variables.

Le second membre de U'équation (48) est donc une combinaison
linéaire des valcurs de R correspondant a des valeurs des variables »
différentes d’une unité. Il en résulte que st R(ny, ..., g, ..., t) n'est
a Pinstant ¢, différent de zéro que pour les valeurs entiéres des ny, il en
sera ensuite toujours de méme. Ce fait nous autorise a supposer que les
¢ariables 4 évoluent exclusivement dans le domaine des valeurs entiéres,
ce qui est en accord avec le sens physique que nous avons attribué i ces
variables.

Nous pouvons préciser cette idée en la présentant sous une aulre
forme. Nous partirons de la remarque suivante : 'une des propriélés
essentielles des fonctions d’onde de la Mécanique ondulatoire ordinaire

est que la grandeur |W(g\”, ..., ¢, ..., £)|* donne la probabilité
pour que les grandeurs ¢y, ..., g, ... soient trouvées a l'instant ¢
avoir les valeurs ¢{"', ..., ¢/, . ... Il parait donc naturel de supposer,

comme nous avons fait plus hant, que la fonction d’onde dans Fespace
des n, c’est-a-dire R(ny, ..., ny, ..., t), jouit de la propriété que la
grandeur |R(n{". ..., n{", ..., ¢)]* donne la probabilit¢ des valeurs
n®o o, ni, L. pour les variables ny, ..., ni ..o Pinstant 7. La
fonction R donne a chaque instant la répartition probable des diverses

particules entre les divers états d’énergie, ce qui justifie le nom de

Sfonction de répartition que nous lui avons donné.

Puisque 'on peut supposer que R est constamment nulle dans I'espace
des n, excepté pour les points de cet espace dont les coordonnées sont
des numbres enliers, on peut supposer que les secules valeurs des
variables n; ayant une probabilité différcnte de zéro a un instani quel-
conque sont les valenrs eptiéres. Le formalisme de la seconde quantiti-
cation perwmet dnnc bien de traduive le fail que, si Pon détermine lo
nombire des particules du sysiéme qui se trouvent dans Pétat W' | on
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trouve alors un nombre entier : il traduit donc analytiquement Pexis-
tence des particules, et ¢’est la son grand intérét.

On peut démontrer ce fait d’une fagon plus rigoureuse par la méthode
suivante. Comme n; et 0; sont des grandeurs complémentaires, nous
avons supposé que les n; étaient des grandeurs numériques el nous
avons remplacé les 0; par les opérateurs

57) (B)op =} -

()Ilt
Mais nous pouvons tout aussi bien laisser a 9; le caractére d’une gran-
deur numérique et remplacer la variable »; par 'opérateur

d

- ) 1
(38) (7 Jop = T

Alors une valeur propre »; de cet opérateur sera définie par I'équation
1 i B
(59) (ridopz:(8) = 7 == = nion

L’équation (59) admet la solution générale
(60) 2:(8;) = ¢ etnhi,

Comme 9; est ici un angle de phase, il faut pour que ¢;(6;) soit une
fonction uniforme de 9; de période 27 que n; soit un nombre entier.
L’opérateur (58) admet donc comme valeurs propres I’ensemble des
nombres entiers. Or ces valeurs propres sont les résultats possibles
d’une observation fournissant le nombre des N particules de I'ensemble
qui se trouvent dans I'état W' : ce nombre est donc toujours entier,
conformément & la conception méme de particule.
La définition (58) conduit d’ailleurs a poser

, L d N I 0
(61) (Cl)op= Cle'\/z '—)—a- (ci )"p::‘/_i. ()—6_18 10,,

d, . .. .
Popérateur {/ = —= étant défini par la condition que son application

i d4;
deux fols répétée soit équivalente a -i Nous trouvons alors
. 1 4J . 14d ,
(62) cici=7 T czci.=e’°-»ia—6;e—i°t, [efyei]=—1,

et nous retrouvons ainsi avec la nouvelle représentation (61) des¢; et ¢}
la régle de commutation de ces opérateurs.
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7. Forme explicite de I’équation (48). Equivalence de la Mécanique
ondulatoire dans l'espace de configuration et de la théorie de la seconde
quantification. — L’équation d’évolution (48) peut s’écrire

/
(63) o dt l{(nl, ng, .. )__ZV"‘,{’ Yop(€kopR{ 71, nay 0y 8),

avec les définitions (18) et (20) des opérateurs c; et c;.
On vérifie facilement que ’'on a

(64) (e )op(ChYop R(7L « ooy By ooy Tty oo 1)
Vai(ng+1) Ry, oo, mi—1, ooy np+1, 0
| ngR(nyy ooy Ry veey Mgy ooy 1),

suivant que ¢ est différent de & ou lui est égal.
Posons donc par convention

(65) R(nyy...,mi—1, .., ne+1,. ., )=R(ny, ... ,n, o ne, 0000 si i=k

Avec celte convention, on peut poser

(66) ng‘,{ Dop(ckdop R( 7, .-, £)

=ZV§2’ V(e +1—0u) R(ny, oo vy ma—1, oo, Re=1, ..., £),
d’ou

/L
(67) by ’)—tR(n[, o )

\\1/. viilng+1—38; ) R{ny, ..o, ni—1, oo, np=1, 000, 1),

1!

Or la Mécanique ondulatoire des ensembles de particules développée
par la méthode habituelle de ’espace de configuration conduit, quand
on I'applique & un ensemble de particules de méme nature & forctions
d’onde symétrique, a retrouver exactement 'équation (67) ('). Il y a
donc équivalence entre la méthode de I'espace de configuration et celle
de la seconde quantification en ce qui concerne la prévision des réparti-
tions entre les états d’énergie, puisque cette répartition est donnée par
la fonction R que les deux méthodes définissent finalement par la méme
équation (67).

Il n’en faut cependant nullement conclure qu’il y ait une coincidence

(') On trouvera le raisonnement complet dans Une nouvelle théorie de la lumicre,
t. I, p. 227 et suiv.

LOUIS DE BROGLIE,.

~t
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compléte entre les deux méthodes. La théorie de la seconde quantifi-
cation introduit, en effet, un élément nouveau qu’ignorait entiérement la
Mécanique ondulatoire de I'espace de configuration. Cet élément, c’est
la phase 9;, élément canoniquement conjugué de n;. E'n seconde quan-
tification, les phases 9; sont des observables au méme titre que les n,
et c’est la U'apport essentiellement nouveau de la seconde quantifi-
cation nour les particules a fonctions d’or le symé.riques.

8. La fonction d’onde W superquantifié. et les relations de commu-
tation qui lui sont relatives. — Pour opérer la seconde quantification,
nous sommes partis du développement de la fonction d’onde ¥ suivant
les fonctions propres W; de lopératenr H. En transformant les ¢; en
opérateurs de l'espace des n, nous n’avons pas modifié le caractére
des ¥; qui restent des fonctions numériques, mais d’apres le développe-

ment ¥ __2 & Wi, on voit qu’en transformant les ¢; en opérateurs, nous
i
transformons aussi le ¥ en opérateur ('). Ce W superquantifié satisfait

a des relations de commutation qui dérivent de celles des c; et que nous
allons établir.

Repérons chaque point M(z, ¥, 5) de'espace physique a trois dimen-
sions par le rayon vecteur r qui le joint a Vorigine des coordonnées et
désignons par W' (r) la valeur de ¥ en M. Ceci posé, nous allons mon-
trer d’abord que, les fonctions propres W; de 'énergie formant un sys-
téme orthonormal complet, on a

(68) D W(X)Wur)=3(r—r)=8(x— &) 3(y —))8(s =),

les ¢ étant les fonctions singuliéres de Dirac. En effet, le caractére
complet du systéme des W; peut s’exprimer de la maniére suivante :
si une fonction f(r) se développe sous la forme

(69) F(x) =P diu(r),
i

on a
*( dr = | 2t = i .
(70) AJ (r)f(r)ds f S(x) [ 2 :

C’est la relation de Parscval.

(1) L’'opérateur W({,;:Z\lf,- (&, ¥, 3, ) (¢;)op est un opérateur de 'espace n dont Pexpression
i
vavie suivant le point z, ¥, 5 que Uon considére dans lespace physique et le temps ¢
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Or les d; sonl donnés par les formules
(1) di= [ Wi (x)f(r)d=.
: f. (r)/(x) s
On doit donc avoir

(72) Z [ Vy(r) f(r) ds f W () fH(r) dv = j;f*(r,»fer)dv,

ou encore

( * Ve AN YRR ’ v * A
o[ drfn[;‘lfiarmz(r)]f(r)dv = [ 1@
Comme ceci doit étre vrai pour Loute fonction f(r), il faut avoir
(74) Y (x)Wi(r) Y =f (1),

(76 A[Z )W (e ]f(r ()

ce qui montre que le crochet est bien égal a B(r—r’) et justifie la rela-
tion (68).

Utilisant cette relation, il est maintenant facile de trouver les for-
mules de commutation entre les W qui se rapportent & deux lieux diffé-
rents. On a, en effet,

(75) [W*(x"), ¥(r)] =

;Wi (r), chllf'k(r)]

k

}‘_,[ ciy ok W} (x)Wa(r),
tk

d’ot, d’apreés les relations de commutation entre les ¢;

(76) [, W] =— D Bu W} (F)Wa(r) = — 3, W (r)Wi(r)
ik !

et (68) nous donnent la formule chercho. -
(77) [(W*(x'), W(r)] =—8(r —1).

Telle est la formule fondamentale concernant la commutation des
valeurs du W superquantifi¢ en deux lieux différents, ces valeurs étant
considérées comme des opérateurs de l'espace des n. Le symbole W’
représente, en effet, maintenant un opérateur de I'espace des n dont la
valeur varie suivant le licu et le temps considérés.

;\r\{“ DeS "",;
ARCHIVES &
Ty pg £RARS




100 CHAPITRE VII.

9. Grandeurs physiques observables et valeurs moyennes dans
I'espace des n. — Le fait d’avoir transformé les ¢; et par suite le ¥ en
opérateurs de 'espace des n a pour conséquence que les éléments de
matrice et les valeurs moyennes deviennent aussi des opérateurs de cet
espace. Quant aux densités correspondantes, elles deviennent des opé-
rateurs de 'espace des n, variables suivant le lieu de I'espace considéré.
Toutes ces grandeurs ne peuvent donc plus avoir le caractérc de gran-
deurs physiques observables puisque loute grandeur observable doit
étre susceptible d’avoir une valeur numérique, alors qu’un opérateur n’a
pas de valeur numérique. Pour retrouver des grandeurs physiques
observables, la théorie de la seconde quantification est amenée a envi-
sager les valeurs moyennes dans Uespace des n des grandeurs que la
théorie non superquantifiée considérait comme des grandeurs physiques
observables.

Pour préciser cette idée, considérons un ensemble de particules iden-
tiques dont la fonction de répartition au sens de la seconde quantifica-
tion soit R(ny, ..., ¢). Si A est une grandeur physique observable
définie par la théorie non superquantifiée, cette grandeur se trouve
transformée par la seconde quantification en un opérateur de 'espace
des n, et ce que I'on doit dés lors considérer comme une grandeur phy-
sique macroscopiquement observable, c¢’est

(78) X:ZR'(ni, o DAR(Ry, .., ),
n

la moyenne étant ainsi prise dans ’espace des n. Le signez représente,’

n
nous l’avons vu, une sommation sur toutes les valeurs entiéres possibles
des variables n, de sorte que cette sommation équivaut a une intégration
dans 'espace des n. '

Comme exemple, considérons la grandeurf[‘IfP dz qui, dans la
D

théorie non superquantifiée, représente le nombre N total des particules

de 'ensemble considéré. Aprés la seconde quantification, elle devient

Zc; ckfll”; Wy dr, les ¢; et ¢; étanl les opérateurs définis plus haut
D

ik '

dans l'espace des n. En vertu de 'orthogonalité des W;, ceci se réduit

d’ailleurs éZc;ci. Pour retrouver une grandeur observable, il nous

i

faut donc prendre la valeur moyenne de l’opéraleuch{ci dans l'espace

1
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des n, soit
(79) ZR*(M’ ceey t)zc;c;R(ni, e ) :Zni= N,
n i i

en vertu de la normalisation de la fonction de répartition. On retrouve
bien ainsi la grandeur physique N.

Nous aurons A revenir sur cette question quand nous définirons, en
Mécanique ondulatoire du photon superquantifiée, les grandeurs
électromagnétiques comme des valeurs moyennes prises dans I’espace
des n.

10. La seconde quantification pour les particules i fonction d’onde
antisymétriques. — On a pu généraliser la méthode de seconde quanti-
fication de diverses facons, notamment en montrant, comme 1'a fait
M. Fock, qu’elle peut se développer en partant de I’expansion du ¥
suivant les fonctions propres d’un opérateur hermitien autre que 'opé-
rateur Hamiltonien, c’est-a-dire correspondant a une grandeur mesu-
rable autre que I'énergie. Mais I'extension la plus importante est celle
qui permet de superquantifier la Mécanique ondulatoire des particules
a états antisymétriques obéissant a la statistique de Fermi-Dirac.

Pour ce genre de particules, il faut exprimer qu’il ne saurait 'y avoir
plus d’une particule par état d’énergie (principe de Pauli). Pour tra-
duire ce fait, MM. Jardan et Wigner ont montré qu’il fallait remplacer
les relations de commutation des ¢ et c; employées jusqu’ici pour les
particules a états symétriques par les suivantes

(80) [037 C/c]+= Bik, ‘ [C;, C/:]—k: Lei, Ck]+‘= 9,

pour toul 7 et tout k, avec la définition que voici de lanticommutateur
deaeth '

(81) [a, l)]+;ab+/)(4.
En effet, comme nous posons toujours ¢ ¢;== n;, nous aurons ici
(82) ni=clepxelo=cl(1—cle)) =l ei— el el eier,
mais comme ¢; ¢; + ¢; ¢/ doit étre nul d’apres (80), ¢ ¢; est nul et il reste
(83) ni=cle=n,

d’ot Pon conclut n;= o ou n;=1 conformément au principe de Pauli.
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Les relations (80) de Wigner-Jordan conduisent pour le W' super-
quantifié aux relations de commutation suivantes :

(84) [W*(x'), ¥(r)lh=3(r—1r'), [¥* (), ¥*(0)=[¥(r), ¥(r)]=o.

Dans le cas des particules a fonction d'onde symétrique, M. Dirac’
avait obtenu une représentation simple des opérateurs ¢ et ¢; & l'aide
des formules (18) et (20). Il est plus difficile de trouver une représen-
‘tation des opérateurs obgissant aux relations (80). M. Wigner y est
cependant parvenu de la facon suivante.

Considérons d’abord les matrices a deux lignes et deux colonnes

0 1 0o O
(85) d= dr = .
o o 1 0
On trouve aisément les formules
ard=|° "‘, dav=| " °l
(4] 1 0o O l
(86) S
! o o ‘11 o
dd = d+d+= ‘:(), dd+—+ d+d = =I.
0o o 0 1
On a aussi
(87) v=1—a2dtd= o T e 0': e ], pr=1—2d+d=y.
o 1 o 2 0 —1

Si nous opérons la fusion des matrices relatives aux divers étals
quantifiés, nous obtiendrons des matrices dj, telles que

(88) [dy, dnlh=djdn+dndi=1, [df, dn]=[dm, dn]=[dh, df]=o.

Posons
n—t

(89) Cp= d"]i[/; k.

1
n-—-1

Pour m > n, d,, et d}, commutent avecIIkvk, d’ou
’ ’ 1

’ : n—1 n-—ll
(g90) c;t=| Ikvzd“,::(f,‘;l Ikvk,
1 1

d’ou

n—1t n—t

(91) cf;c,,+c,,cj;= d;;l Ikt'k d"l IL(:‘;
1 -1

n—1 n— n—

1 1 [y
-+ dnl—lk_vk d:],—Ik [ [d,t, ({,, ]+<Hk Vlc> =1.
1

1 1
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De méme pour m > n, on trouve

m—\ n--1%
(g2) chen+ench = z/j;ll[km X dp II lp/
1 1
n—1 m—1 n—1 m—1
+d,l[] o X dh, Cr=...+ dy r/j;ll I v1| I TR
] k . 1 k
1 1 1 1
Orona
-1 m—1"
— - I
(93) l[ Vi dy == v,y Yk,
- k k
1 1

T'accent excluant la valeur £ == n. D’ou

[vn, dnle=[1—2d} dn, dn]-=2dn—2[d;, dn]+ dr= o,

m-—1 nt-—1

(94) vpdn=-— n ¥, I I-L‘)k (/n: v ([nl IAV/U

1 1

et finalement

Hme—i ne—1

(98) chentcnch=(dnd}— dydn) I IL g l I Iv,: 0 pour n # m.
1 1

On trouve aussi

[C;;l, c?;t]‘f“: [dﬁn d/‘n] 1= 0, [Cm: Um]- = [({m, dm]l =0,

n—1 n—i

leir ehle= L, G| o] ], oe=0  Len enli=o.
i ot

(46)

Toutes les conditions imposées aux ¢ et ¢” par les relations de Jordan-
Wigner sont donc bien satisfaites par cette représentation si 'on prend
pour (c*),, 'opérateur c*.

Nous n'insisterons pas davantage sur la seconde quantification des
particules & états antisymétriques dont nous ne nous servirons pas dans
la suite de cet Quvrage. -

Suite de la Note de la page 86 :
On peut retrouver la relation d’incertitude An.A¢ > 2= par un raisonnement qui la
rattache & la 4° relation d’incertitude AE.A¢ > . L'incertitude sur la phase est Ap==a2wvAl,

/ . amh . . .
Orat> K;—i y Pou de > ZZF Y. MaisE=n hv, Aot AE = hv An et Pon en tire Ap. An>s2 7.
L 2z h 13 rows
On pourrait ainsi écrire Ag = - As avec Az > — = » d’ou encore Ag.An 2.

ap: g—LAn

S § G




CHAPITRE VIIL

APPLICATION DE LA SECONDE QUANTIFICATION
A LA MECANIQUE ONDULATOIRE DU PHOTON.

1. Retour sur la définition des grandeurs maxwelliennes et sur I’état
d’annihilation. — Nous avons défini précédemment les grandeurs
maxwelliennes lides a un photon qui se trouve initialement dans un état
représenté par une certaine fonction d’onde ¥ comme étant des densités
d’éléments de matrice correspondant a la transition de 'état W a 1'état
d’annihilation W%, Ce point de vue nous a conduits a adopter pour ces
grandeurs maxwelliennes des expressions de la forme KWOFW, ou
F est I'opérateur correspondant a la grandeur envisagée et ou K est une
constante que, afin d’effectuer le raccord nécessaire avec la théorie

h .
47V

Si nous supposons que I’état W initial est formé par une superposi-
tion d’ondes planes monochromatiques normées et indépendanies ¥
(chacune définie par son vecteur de propagation k et par son étal de
polarisation, par exemple onde transversale rectilignement polarisée ou
onde longitudinale), nous poserons

(1) G =2ck\m
k

et chaque grandeur maxwellienne sera de la formeZK‘If(")Fc,;.‘F/..,
&

classique, nous avons €té amenés a choisir égale &

chaque terme de la somme se rapportant 4 une onde plane monochro-
matique de polarisation définie.

Mais, en réalité, I'état d’annihilation doit étre considéré comme un
réservoir contenant un nombre immense et sensiblement constant n,
de photons. Donc, méme lorsqu’on considére, comme nous I'avons fait
jusqu’a présent, un seul photon dans I'état non annihilé initial, il faut
cependant toujours tenir comple du nombre immense n, des photons
dans U'¢tat d’annihilation.
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Cette remarque conduit a considérer une fonction d’onde initiale de
la forme

(2) ¥ = e WO+ 3 ex W,
k

c’est-a-dire & ajouter & 'expression (1) un terme qui tient compte de
I'état d’annihilation, puis une fonction d’onde finale de la forme

(3) W =, W1,

de sorte que les grandeurs maxwelliennes doivent avec nos hypothéses
“avoir la forme

(4) Ecq;\mo)x'Fw,
k
K’ étant une constante a déterminer.

Puisque, méme dans le cas d’un seul photon non annihilé initial,
nous avons toujours affaire & un nombre énorme de photons, il est
nécessaire d’introduire systématiquement en Mécanique ondulatoire du
photon la seconde quantification. Comme les photons sont des parti-
cules 4 états symétriques, nous devons poser

2]

a [ a
(%) o= e Vo, cy= ﬁ;e*ﬁ’, cx= eIk Vv, c,’;=\/rT/;e~5’T’f.
Seulement ¢, et ¢ jouissent d’une propriété particuliere en raison de
la valeur énorme et presque constante du nombre n, des photons dans
I'état d’annihilation. La variation d’une unité de no ne peut, en effet,
apporter aucune modification sensible de la situation, de sorte que co
et ¢, se réduisent sensiblement a 'opération multiplication par Vn, et,
comme ¥'(®) est réel, on peut écrire pour les grandeurs maxwelliennes,
ala place de (4), 'expression approximative

(6) Zur(om"/h“omkwk.
’ k

On voit alors qu’en posant

K h
(7) K= o=~ ___,
\/no 4% \/no Mo
on retombe sur lexpression adoptée antérieurement, ce qui nous
montre que la constante K précédemment utilisée doit étre considérée
comme le produit d’une constante extrémement petite K’ par le nombre

extrémement grand /7.
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Dans l’expressionzK‘P‘“"Fck‘F,{ des grandeurs maxwellieanes,
k

figurent maintenant les ¢; qui sont devenues des opérateurs de 'espace
des n. Ces grandeurs Maxwelliennes sont donc devenues, elles aussi,
des opérateurs de I'espace des n dont la valeur varie d'ailleurs suivant
le lieu zyz et le temps ¢, puisque les ¥, dépendent de ces variables.
Nous arrivons ainsi a la conception fondamentale de la théorie quan-
tique des champs électromagnétiques suivant laquelle ces champs
doivent étre considérés comme des opérateurs de I'espace des n, fonc-
tions de zys¢t. Nous aarons I'occasion d’approfondir plus complétement
cette concaption nouvelle des grandeurs électromagnétiques : pour
I'instant, nous allons nous occuper de rechercher quelles sont les rela-
tions de commutation existant entre ces grandeurs congues comme
opérateurs dans Uespace des n.

2. Relations de commutation entre les potentiels électromagnétiques
des ondes planes. — Considérons une onde plane monochromatique de
polarisation bien définie ayant un vecteur de propagation k et choisis-
sons un systtme d’axes rectangulaires O'2’ y 3 tel que Oz ail la
direction k. Posons comme d’habitude

(8) P ‘= ez(ht—kr)'

En effectuant la normalisation des ondes ¥ dans un volume ¢, on

trouve (') pour l’expression des potentiels {en prenant ¢ pour unité de
volume) :

a. pour une ondea vibration électrique paralléle a Oz
“he .
(9) A.r: Cl;\/mp, A).Z-' A_-"—‘:\ = 0,
b. pour une onde & vibration électrique paralléle a O »
(9,) A_v‘=ck _P: Ar=A.= = 0]

c. pour une onde longitudinale

. o khe _ ik //'khc N A
(9") Az_c"\/dnk;-;l’ V=c T \, FTI Ar=A,=o0.

(') Voir Chapitre 1V, paragraphe 3.
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Les expressions (g) et (¢') montrent que pour ¢, j'—1, 2, 0on a

~

he
8irjr.
frk

* hc *
(10) [Al, Ap]l= m[ck, cr]dpjr=—

Comme [c},, ¢x] = o pour k'5£ k, on peut aussi écrire

o bk — K,

an (A7), Ajo(k)] =—

Le méme mode de raisonnement appliqué aux autres expressions (g),
(9') el (9") nous conduit aisément a I’ensemble des relations de commu-
tation sulvantes :

. /i Lo
( [Ai’(k,): A/'(k)lz_:fc_al/ 8<k k, (1,7.]’:172)}
(A} (k). Aj(k)]=0  (¥=1,2; 5 =3, 4 ou inversement),
o w as o he R )
(12) /[A.Mk), As'(k)]_—mko(k k'),
’ . ‘ he .y
[A3 (), V(K)] =— ;=g [k |6k~ k),
he |k\

[V*(K), V(A (k' —k).

=—._ /m:kl “x

On voit sur ce tableau que A}, et V ne commutent pas : ceci vient de ce
que ces grandeurs sont loutes deux liées au méme type d’onde, les ondes
longitudinales, et dépendent par suite d’une méme constante arbitraire.

Les relations de commutation (12) sont valables dans le systéme
d’axes rectangulaires O' 2’ y' 2 tels que Oz’ coincide avec la direction du
vecteur k de propagation. Cette hypothese est évidemment trop parti-
culigre et pour pouvoir traiter le cas général d'une superposition d'ondes
planes, nous devons savoir écrire les relations de commutation dans un
systtme d’axes rectangulaires quelconques Ozyz.

Remplagons z' y' z' par & x;w; el ZyZ par &y, Za, Z3.

Prenons trois vecteurs égaux a I'unité sur chacun des trois axes O'z|,
0'z,, O'z) et soient 1’, @' et 3' ces vecteurs. Dans le systtme Oz, zyz,,
les vecteurs i’ ont pour composantes a;y, @y et ajry et 'on a la relation
bien connue

3

-
(13) Zﬂar,‘a:'k= 8jks

1

exprimant que les vecteurs 1', 2 et 3' sont orthogonaux et. égaux a
Punité.
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Quand on passe du systéme de référence primé au systéme de réfé-
rence non primé, les composantes du potentiel vecteur se transforment
suivant la formule

3
(1) A= anhr (i=1,2,3),
1
1

tandis que le potentiel scalaire V, composante de temps du quadrivec-
teur potentiel, reste immuable.

X3

Fig. 2

On a

3

3
(5) (A} (k'>,A<k>J=2 Z i AL, A

he
.“i't“// 41](51/

khe
+(13'i£13'l‘<—— 47‘.‘/((‘;)]8(1{, k).

Or
e 3

16 Agrilirs Ogrir= i1y Oyt —= OlgryOlasj == Op5 — Olg7;00a77e
( ) Zl"f'hll 'y ;i'” i 31{X3’§ 15 3'i%3Y;
Donc

. s ) he he khe s
() AT, (0] = — Fp by avisrs (g — 1) 206 = o).
Mais de A?=|k|*+ A}, on tire

he khe he (k|2

. I
R e e e =m .
a ixk  4nk; = ki3’
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et comme
(19) ayqasj | K[P= oy | K|as; | K| = kikj,
1l vient
’ he kll'(' o ,
(30) (45, A =— 2 (3 + 250 ) ok 10,

On trouve de méme

3
(20) [AZ(K), V()] =D ari[AL(K), V()]

ke " he oo o,
:——4n/(i.;aﬂ’tlkia(k_k)——mlﬁo(k k)

Enfin il est évident que [V*(k'), V(K)] ne change pas par suite du
changement d'axes.

Finalement, on a donc dans un systéme d’axes rectangulaires
quelconques

- ke (s kikiNsow wn i
ALK, A (0] = — o (3 + Sl ok —K)  (0j=1,,3),
b ,
(2) ¢ [A? (K, V(k)] = — 415:3 k3(k —K),
- he |k ,
[V (), VO] = - o s — 0,

Telles sont les relations fondamentales de commutation entre les compo-
santes du quadrivecteur potentiel pour les ondes planes monochro-
matiques en Mécanique ondulatoire du photon (et plus généralement
pour la particule de spin 1). A

3. Autres relations de commutation entre grandeurs électroma-
gnétiques. — En partant des relations de commutation (22), il est
facile de former les relations analogues entre une composante de
potentiel et une composante de champ ou entre deux composantes de
champ. En vertu des relations qui lient les champs aux potentiels, les
amplitudes spectrales E(k) et H(k), s'expriment linéairement en
fonction des amplitudes spectrales A (k) et V(K), les coefficients de
proportionnalité étant les quantités ik et tk;.

Prenons comme exemple les relations de commutation entre les
composantes de A (k) et celles de E(k), relations qui ont une forme

trés simple. Pour une onde plane, nous avons

(23) E,‘:———————l=—i/\‘A]'+L'/€,'V.
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En combinant les relations de commutation (22), on trouve aisément

he

(24) [Al(K'), E/‘(k)]Z—:,”:—iazjﬁ(k—k'H
relation qui nous servira.
4. Invariance relativiste des relations de commutation (22). — Il est

essentiel de démontrer que les relations de commutation (22) sont
invariantes pour une transformation de Lorentz. Pour cela, nous nous

appuierons sur denx théorémes préliminaires.
1k, dky, dk- k . . .. N .
i———r——z—y— = (—A- est un invariant relativiste. En eflet,

k. ky k: et k élant les composantes d’un vecteur d’espace-temps, le

a. La quantité

numérateur et le dénominateur de V’expression considérée sont inva-
riants pour une simple rotation des axes d’espace : il suffit donc de
démontrer que celle expression est invariante pour une transformation
simple de Lorentz comportant sculeinent un mouvement relatif le long
de 'axe O z. Or, pour une telle transformation, ona

(23) Ko ko, Ke=hy, M=, W= Ko et

oufs = ;est le parameétre classique de la transformation de Lorentz.
On calcule aisément la valeur du déterminant Jacobien

D( kg, Ky k) 1 k—PRks _ K
- "7

D(ke, by, k2) ~ K i@ K

(26)

d’ou, par un théoréme bien connu de Jacobi, I'on tire

(27) ‘ "k’=%dk
ou
(38) =%

ce ui démontre le théoréme.

b. La quantité ko(k — k') = A 3(k,— K..) 6(ky— k') 8(kz — K'.) est
un invariant relativiste.
En effet, d’aprés les propriétés de la fonction singuliére de Dirac,

Uintégrale ﬁa(k—k’) dk est ¢gale @ unité dans tous les sysiémes

de référence. Or, cetie intégrale pent s’écrire ///'kr)(k——k") 'I/k Le

BT . %7
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second facteur sous le signe somme est invariant d’aprés le premier
théoréme : il faut donc que le second le soit aussi, ce qui démontre le
second théoréme.

Du théoréme a, nous pouvons déduire le corollaire suivant : S7 Ay,
A, Ay, A, sont les quatre composantes d’un vecteur d’espace-temps
telles que U'on act

1 N
(29) Adr, )= T [ﬂ Ay KD g (i=1, 2, 3, 4),

les expressions kA (k) se transforment comme les composantes d’un
vecteur d’espace-temps. Pour le voir, il suffit de multiplier et de
diviser par & l'expression figurant sous le signe somme dans (29).
Ecrivons maintenant sous une forme plus condensée les relations de
commutation (22) entre les potentiels en nous servant des notations
d’Univers, c’est-a-dire des coordonnées zy, s, s, 2, = ict. Le quadri-
vecteur potentiel d'Univers et le quadrivecteur de propagation ont

respectivement pour composantes :

o A1= Aly;, A’: Ay: 1\3: Az7 AAZ l‘\r,
0) - .

£30) ko= ko Iy= ke, ky= ki ko= ik

Les relations de commutation (22) peuvent alors s’écrirent sous la
forme condensée

.(2) f2)
AT ke s e — e,
0 /

(1) TAWAZC), KA (k)] = 2 (3

ou { et/ peuvent avoir les valeurs 1, 2, 3, 4.

Effectuons maintenant une transformation quelconque de Lorents.
Dans ’Univers de Minkowski, cette transformation se traduit sim-
plement par une rotation d’ensemble des axes, c’est-a-dire par
une transformation orthogonale telle que les composantes de tout
quadrivecteur F dans le second systéme de référence soient liées a ses
composantes dans le premier systéme par les relations

4

(32) F;= E .Ol)'F)'y (11:172)37‘5):
7
1

les o;; satisfaisant a la relation classique

4

. -
33) 2 01i Omi = Stm-
i N

1
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En vertu du théoréme a et de son corollaire, les deux termes du
commutateur (31) se transforment comme des composantes de vecteur
et nous avons -

(34) (A A (B0, KA, (K'W)]
&

:2. 0110m; [KV AL (BM), kP A; (k™))
1 1)
Si donc nous admettons la validit¢ de (31) dans le premier systéme
de référence, nous trouverons

(35) [RED AP (R, K8 AL (2))

he 1 PILSpALH
= 2213 owom(30+ S ) [hi o —eny
47 - ij 0 :

he k2 ki
8Im -+ ——

= — 1\0

/-

4%

] 4D (K — KN,

la derniére égalité étant obtenue a 'aide du théoréme b.

Nous voyons alors que les relations de commutation ont la méme
forme dans le second systéme que dans le premier, ce qui démontre
Pinvariance de ces relations pour une transformation de Lorentz.

5. Relations de commutation « locales » entre les grandeurs électro-
magnétiques. — Les relations de commutation envisagées jusqu’ici
sont des relations de commutation spectrales en ce sens qu'elles
portent sur des coefficients de développement de Fourier. On peut
aisément en déduire des relations de commutation locales entre les
grandeurs électromagnétiques relatives aux divers points de l'espace.
Ces grandeurs se trouvent, en effet, transformées par la seconde quanti-
fication en opérateurs de 'espace des n, fonctions du lieu et du temps
considérés, et 'on peut rechercher si ces opérateurs commutent ou non.

Pour donner un exemple de ces relations de commutation locales,
partons de la formule )

(36) [A7 (K, V()] =— 7= 5 ok — k)
{

et utilisons les développements de Fourier de la forme (29). 1l vient
(37)  [AI(m 0, V(5 0]= g5 f K’ f dk[A7 ('), V (k)] flE=FIe=erD
—ik (r—r')
4rk gm0 f ke dk

—= /-—1k1r—r
47'1/(0 811‘ dzi
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Nous savons (') que la derniére intégrale vaut 8n% d(r —1r'), ce qui
nous donne

he ad

=ikt oz 3(r—r') (i=1, 2, 3),

(38) [A7 (), V(r)] =
la variable £ que nous sous-entendons ayant méme valeur dans A et
dans V.

On trouve des formules analogues pour les autres composantes de
potentiel. Sans nous attacher a les écrire, passons aux relations de
commutation entre les composantes de A et celles de E.

Nous avons

(39) [A7(r),E;(r)]= 8‘_, [dk’ftlk[A;(k'j, El_(k)]ei[(k-—k')a—(kr—k’r')]

hc ik he
.
Ici se présente dans 1a théorie habituelle (ot 'on se place implicitement

dans le cas limite po=o0) une trés grave difficulté. En effet, si nous
3

appliquons a la relation (39) 'opération ch%,-’ nous obtenons
1

he 0

(40) LA (e, divE(r)] == 75 o

8(r—r').

Or, avec les équations classiques de Maxwell, cette relation est inad-
missible, car, div E étant partout nulle dans le vide, le premier membre
de (40) est nul, tandis que le second ne I'est pas.

Nous verrons comment la théorie quantique des champs s’efforce de
lever cette difficulté en changeant le sens de la relation div E = o, mais
le moyen qu’elle emploie et qui nous parait artificiel est tout a fait
inutile en Mécanique ondulatoire du photon si 'on admet g, 5~ 0. En
effet, les relations (38) et (40) nous donnent

(41) [AF ("), divE(r)] =-— k3[ A7 (x"), V(1)],

et cette relation est bien vérifiée en Mécanique ondulatoire du photon,
puisque 'on a non pas divE =o, mais divE = —4;V. Cest donc
parce qu'elle pose brutalement py==o0 que la théorie quantique des
champs usuelle se heurte ici a une difficulté. Celle-ci est évitée par la
Mécanique ondulatoire du photon en posant 5% o et cela si petite que

() Voir Chapitre I, formule (14).

LOUIS DE BROGLIE. 3
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soit la massé propre du photon. 1l est curienx de constater qu’il ya
ici une discontinuité, la difficulté en question apparaissant brusquement
quand on pose p, = 0.

Nous donnerons enfin les relations de commutation locale entre les
composantes de H et de B. Sii, &, [ est une certaine permutation paire
des indices 1, 2, 3, on a

JA JA
w o= -
De (39), on tire alors
(43) (B (), By(0)] = 1 o 0ny — 5=y 3(x =)
A = Axi(dz, ki = 9y ’

relation classique en théorie quantique des champs.
Notons enfin la relation facile a vérifier

(44) [A;(l"), Hi(r)]=0.

6. Relations d’incertitude pour les champs électromagnétiques. —
M. Heisenberg a montré, il y a longtemps déja, comment I'existence
des photlons conduit 2 admettre que les champs électromagnétiques
observables a grande échelle ne sont pas des grandeurs mesurables avec
précision en un point de I'espace. De la, on peut conclure que les
grandeurs électromagnétiques doivent, en théorie quantique, étre
soumises i des relations de commutation.

Considérons avec M. Heisenberg un petit volume dv de D'espace
physique que, pour préciser, nous imaginerons étre un cube d’arétes 3/,
de sorte que dv =: (dl)*. Supposons que ce volume soit parcouru par
une onde électromagnétique de longueur d’onde A et que ’on cherche a
mesurer le champ électrique et le champ magnétique de cette onde a
Vintérieur de dv grace a un dispositif occupant dv et indiquant la valeur
moyehne de ces grandeurs dans dv. Pour que ces valeurs moyennes
puissent étre différentes de zéro, il faut avoir A /. D’aprés la théorie
électromagnétique, I'énergie et la quantité de mouvement du rayonne-
ment contenu dans év seront données par les formules
(45) p(W)au-_—.E’LzHiau; p(@) 80 ="[EH]2-

Si l'on diminue d¢, on peut rendre ces quantités aussi petites que
Pon veut et 'on arrive ainsi 4 une contradiction avec l'idée que la
(4

radiation de fréquence v= X

est formée de photons d’énergie Av = Z;—c
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. h .. .
et de quantité de mouvement £ C’est en somme la la contradiction qui

oppose les conceptions classiques de la Physique du champ & celles de
la Physique corpusculaire.
Pour une valeur donnée de &/, la plus haute fréquence dont les

champs sont observables est de I'ordre de v= Bﬁl’ puisque A doit étre
supérieur a d/; d’ou pour le plus grand quantum correspondant la
valeur Av= };—; Si 'on’ veut pouvoir considérer les valeurs moyennes

fournies par les formules de Maxwell sans se trouver en contradiction
avec la structure corpusculaire de la lumiére, il faut donc que les

. - . . . . L R
expressions (45) soient affectées d’incertitudes au moins égales a B_‘l: et

a 5 respectivement. Ceci signifie que les champs E et H (qui sont ici

les champs observables a I'échelle microscopique), ne peuvent, tout
comme les quantités canoniquement conjuguées p et g en Mécanique
ondulatoire ordinaire, &tre mesurées simultanément qu’avec des incer-
titudes AE et AH telles que

b

Bp(W)dw = v [(E AE)~+(H AH)+ i(AE)2+ i(AH)z] S

(46) Ap(G) 80:1_0{[EAH]+[AEH]+[AEAH]};§.

\

o;l
oy
>

Ces inégalités doivent rester exactes quand E et H tendent vers zéro,
puisque la structure quantique du rayonnement subsiste, méme pour
une intensité trés faible. Les termes indépendants de E et de H doivent
donc suffire pour assurer les inégalités (36), ce qui donne en partant
de la deuxiéme inégalité

he he
(47) AE.AHy > e = m’

ou a fortiori,

(48) AE; AH) > == = =
et deux autres inégalilés obtenues par permutation circulaire. Ces
relations constituent les relations d’incertitude d’Heisenberg pour les
champs ¢lectromagnétiques.

Si les inégalités (48) sont satisfaites, non seulement la seconde iné-
galité (46), mais aussi la premiére se trouvent vérifiées. C'est ce dont
on se rendra compte aisément.
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Conformément aux idées générales de la Mécanique quantique, les
relations d’incertitude (48) pour les champs nous conduisent & dire
que la composante du champ électrique dans une certaine direction
el une composante du champ magnétique au méme point dans une
direction perpendiculaire ne sont pas simultanément mesurables avec
précision et doivent correspondre 4 des opérateurs qui ne commutent
pas. Nous pouvons préciser davantage, car on sait (') que les relations
d’incertitude : :

h
(49) Aglp > —~

dérivent des relations de commutation

A
(50) (gp — Pq)p=

Aux relations d’incertitude (48) pour les composantes de champs, nous
pouvons donc nous attendre  voir correspondre la relation de commu-
tation

(51) [(Ez)op, (Hv)op] = “’

a laquelle on adjoindra naturellement celles qui s’en déduisent par
permutation circulaire sur z, ¥, 2

Nous allons voir maintenant que les relations de commutation
obtenues aux paragrdphes précédents conduisent bien a retrouver (51).

7. Pagsage des relations de commutation pour les champs microsco-
piques a celles valables pour les champs macroscopiques. — Les consi-
dérations du paragraphe précédent dues a M. Heisenberg portent sur
les champs observables & I'échelle macroscopique, champs qui sont
nécessairement des grandeurs réelles. Or, nous avons antéiigurement
défini des champs macroscopiques complexes E et H et nous avons
admis que les champs macroscopiques réels devaient s’en déduire par
les relations

(52) Ef=E+E, H?"=H+H"
Reprenons le raisonnement d’Heisenberg en considérant une onde

plane monochromatique de propagation k qui traverse un petit volume d¢
de 'espace dont les dimensions sont trés petites par rapport a lalongueur

() Voir, par exemple, Théorie générale des particules a spin, p. 3o.
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d’onde A de 'onde. Partons de la formule démontrée précédemment .
" * 1 ) - h NN ’ »
(53) [AZ(F), B0 = — 723808 — 1),

dans laquelle les rayons vecteurs I' et r” repéreront les positions M’ .
et M" de deux points intérieurs a 6¢. Par hypothése, le volume 8¢ est
occupé par un dispositif de mesure dont les indications fournissent les
valeurs moyennes des champs dans d¢. En intégrant les formules
précédentes dans d¢ sur I et P’ et en divisant ensuite par (d¢)?, on a

¥ il My b Li(r 4
(54) l‘"wfa..A‘ (r') dr, BK/B‘VE,(r)dr]
he I ¢ ; “om g »
=_Zn_fa,,-za—v)§‘/a"¢lr ‘[;"(lr s(r'— ")

Mais on a

(55) f :lr'f (lr”a(r’—r”)=f dr' =3¢
By 0 Sn

et, puisque l'on suppose la longueur d’onde beancoup plus grande que
les dimensions de d¢, on aura

. . . ; he
(76) [A7(x), Ej(x)] =— T—-sijT’

r repérant la position d’un certain point pris dans d¢ et les grandeurs
entre crochets désignant désormais des valeurs moyennes dans d¢.
Choisissons maintenant 'axe des z dans la direction du vecteur k et
placons-nous dans le cas limite Maxwellien ou I'on a p,~ 0, A ~ | K|.
ficrivons la formule (56) en y faisant par exemple /= j = 1. Il vient
\

" b, N he 1
(97) ‘A.,.(l‘), }u(r)]——m E:'
Or, on a alors
(%) My =— kA W= kAL
Il vient done
. R R _ Lhe I
(H9) [Hi(r), Be(r)] =— i

La relation obtenue s'applique aux champs microscopiques complexes.
A partie de la relation (59), si I'on tient compte de la différence entre
les champs réels et les champs complexes qui introduit vu factenr 2, on
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peut apercevoir I'origine des relations d’incertitude d’Heisenberg

(60) AE,AH, > g‘—:

8. Introduction des fonctions D et A de MM. Pauli et Heisenberg (*).
- Nous allons donner aux relations de commutation des grandeurs
électromagnétiques réelles une forme qui met bien en évidence le carac-
tére invariant de ces relations, grace a I'introduction de fonction D et A
jouant dans Despace-temps un rdle analogue a celui que joue dans
'espace la fonction singuliere d(r) de M. Dirac.

Pour faire nos raisonnements, nous admettrons : 1° que la correspon-
dance entre les grandeurs électromagnétiques complexes et réelles est
donnée par les formules du type (52); 2° que les grandeurs électroma-
gnétiques peuvent étre représentées par des développements de Fourier
ou figurent seulement les ondes planes & énergie positive. Ces hypo-
theéses feront bientot I'objet d’une étude approfondie.

Considérons deux points P, et P, de I'espace-temps. Soient ¢, et ¢,
leurs coordonnées de temps dans un certain systtme de référence
Galiléen; x4, y4, 31, symbolisées par Iy, Z,, ¥a, 32, symbolisées par r,
sont leurs coordonnées d’espace dans ce systéme. Nous posons

(61) t=ta— ), r=r.—7r, r=ir—r|
et nous cherchons la valeur du commutateur

(62) LA (2, 1), A (1, 12)]
=[Al(T, &)+ A7 (G &), Aj(Te, 1) + AJ(xe, 1))

Conformément a ’hypothese 2°, nous allons représenter les potentiels
complexes par des développements de Fourier suivant les ondes planes
a énergie positive sous la forme

(63) ATy, ) = —

(2m)?

fdk1 A[(k| ) ei(hien—kry),

La régle de commutation (31) pour les amplitudes spectrales des
potentiels peut s'écrire

he KR

-\ * N ~ I
(60 187k, Ayl =— 7% (3 + "l ) Lotk — k),

(') Dans Une nouvelle théorie de la Lumiére, tome I1, dla fin, nous avons introduit
les fonctions D et A. Malheureusement notre rédaction est incorrvecte, parce que nous
avons raisonné sur les grandeurs complexes ¢t non sur les grandeurs réelles.
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d’ou l'on tire
(65)  [Au(k), Aj(ke)] =—[Aj(Ke), Ai(ky)] =—[A] (ki) Aj(ky)),

la derniére égalité venant de la symétrie en et j de la formule (64).
Pour passer de (64) a (65), il faut bien se souvenir que A; et A} sont
des opérateurs distincts et ne sont pas des quantités complexes conju-
guées : si I'on oubliait ce point essentiel, on serait amené, puisque le
second membre de (64) est réel, & prendre le signe + au lieu du
signe —- au second membre de (63), ce qui serait erroné.

Comme les A commutent entre cux et que les A* commutent entre
eux, on trouve
(66) | Ai"(x, 11), AV (1, 1))

= [fdk.A;(k.)e—uk.u.—k.r,), f»dk.zA,-(k,)ei(hct,—k,r,) ]

(27)?

-+ (———2::3)[‘/ dk, A (k) eithicti—k 1), jdk?A;(k") g—i(k,cl,—k,r,)J

he i 1 J? ) 1
- Aa\ VT ki oz dz;/ =
> [ﬂdkl dkg eic(hy ty,—k b)) e—i(l, T~k 1) -B—Qk—lk_-_k:-z — conj.]

__ hefy 1o )_x_ flk eilker—kr)
- Gr\ Y ki dziox; ] 8= : k ¢ J'_

ns la derniére formule, nous avouns écrit A au licu de As, l'indice
Dans la derniére formule, avo LA licu de A, lindic
devenant 1nutile. Posons

i(ket —Kr) ’
(67) I(x, )= [f(mﬂrl —cnnj.] avec A= |k|[t+ A}

_ L " sin(ket—k.r)
= J ————dk.

[l vient
. . he 1 J?
. () UV p o)== — P, .
(68) LAY (e, 00, A (g, 1)] 3,_.-.',;(81/ % dﬁﬂ”‘/) D(r, )

Cette formule met bien en évidence I'invariance relativiste des relations
de commutation, entre potentiels, parce que D(r, ¢) est un invariant
d’espace-temps. L'invariance de D résulte, en effet, de sa définition (67)

. . . k . .
et de Uinvariance du quotient e précédemment démontrée.

Si, au lien de partir de la relation de commutation entre potentiels,
nous détions partis de la relation (24), le méme raisonnement nous efit
conduil a la formule

. . . he I
6y AV o B e ) = — 8 — - =~ Dy, 1.
9 R - s Amd Yoz et




120 CHAPITRE VIIIL.

[ifdk eilkci—kr) __ (:onj.],
et par suite

. 1 D _ 1 —ikl‘"
(71) (z ;,-t—)tzo_—mfdke :

et d’aprés la formule (14) du Chapitre I,

Or, d’aprés (67), on a

) 1 dD
(7o) - o=

i
c dt 472

(7) (L5),_,=—dmsr)y=—indm—r) ()

Donc, en faisant dans (69) ¢, = ¢, =1, ’'on obtient
(73) [API(Ey, ), B (1, <) = — 25880 —11)
73) i (r, ), Ey 2y, T)| = e AL 1)

Cette formule correspond a la formule (39) donnant la commutation
locale des grandeurs complexes A et E; prises en des points différents
de l'espace au méme instani. Les formules (73) et (3g) différent
cependant par un facteur 2 au second membre, cela provient de la
subtitution des grandeurs macroscopiques réelles aux grandeurs micro-
scopiques complexes.

Les formules précédentes sont générales et applicables a toute
particule de spin 1 telle que le méson. Sil'on admet que la masse 1, est
nulle ou négligeable (ce qui est possible pour le photon), on a & = k|
et la fonction D(r, ¢t) prend une forme particuliére introduite par
MM. Jordan, Pauli et Heisenberg en théorie des champs. Nous dési-
gnerons cette forme dégénérée de D par A(r, ¢). D’aprés (67), on a

A
. i eilket—kr) .
(74) - A\l‘, t): Z;[fdk k —COD].],

avec k= k|
Calculons 'intégrale qui figure dans (74). En désignant par 6 I'angle
des vecteurs K et r, elle s’écrit

eilket—kr)
k

P b1
(78) f cl|klf 2% [k |2 sin6 d9
0

Yo

(1) Les dérivées (((;7> pour { =1, 2, 3 sont nulles, ainsi que toutes les dérivées
Jt=0

secondes de D pour ¢ = o.
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En intégrant d’abord sur 9, il vient

+a o N +1
(76) f dlklﬁlkk—l e:kctf etk |re gy
[} —1

on © k| . )
=F./; dlkILZ—-e““”[e”kl’—e""kI’],

et puisque novs admettons que k = | k|,

Lkict+r) __ gt ct—r) = 2%
(77) f [etktctrr) — ¢ ’]dA = Jim pe R pr g

[elk(cl—l—r)_l elkict—ri— ]
r Ix}w

Portons cette valeur de I'intégrale dans (74), nous trouvons

I[sink(ct+r) sink(et—r)
(78) A(r, t)—l;,.l [ w(ct+ 1) z(ct—r) ]
Oron a

‘ ) . sinkzx
(79) Ijgg —5 = =)

comme cela résulte de la premlere formule (14) du Chapitre 1. Donc
enfin’

8(ct+r)—8(ct—r‘)_
r

(80) Alr, 1) =

Telle est la fonction singuliére g'ér‘léralisant celle de Dirac dans I’espace-
temps qui a été introduite par MM. Jordan, Pauli et Heisenberg en
théorie quantique des champs.

9. Propriétés diverses des fonctions D et A. Interprétation des
relations de commutation obtenues. — La fonction D(r, ¢) définie
par (67), est une fonction paire de ', mais une fonclion impaire de ¢,
comme on le voit aisément en changeant ¢ en —¢ et k en —4 dans (67).
On a donc

(81) D(r, —¢t)=—D(r, t), D(r,0)=o0.

On a naturellement aussi A(r, 0) = o0, comme on peut d’ailleurs le
vérifier sur Uexpression (80)..

La'fonction A n’est différente de zéro que sur le cone de lumiére
relatif au point r=1+¢=o0 de I'espace-temps. Elle correspond a des
actions qui se propagent avec la vilesse de la lumiére. Elle satisfait
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d’ailleurs a l’équation [JA =0, ce qui se voit tout de suite sur la
définition (74).

Au contraire, la fonction D(r, ¢) correspondant au cas général ou A,
n’est pas nul, satisfait a 'équation

(82) OD + k3D =o.

11 y a donc un phénomeéne de tratnage dans la propagation de D, seul
le front des ondes se propage avec la vitesse ¢, le reste de l'onde
s’éparpillant a I'arriére de ce front. Il en résulte que D(r, ¢) n’est nulle
qu’a Uextérieur du céne de lumiére relatif au point d’espace-temps
t=T=o0 et a, en général, une valeur différente de zéro, & l'intérieur
de ce céne.

On peut voir que D(r, t) est bien nulle a I'extérieur du céne de
lumiére relatif a 'origine par le raisonnement suivant. Nous savons
que D(r,o0)=:0; or tout point de l'espace-temps qui se trouve en
dehors du double c6ne de'lumiére relatif a ’événement origine peut étre
rendu simultané de cet événement origine par une transformation
convenable de Lorentz, transformation qui ne modifiera pas la
fonction D, puisque celle-ci est un invariant relativiste, il en résulte
que D doit étre nulle pour tout point extérieur au dit céne de lumiére.

Ces diverses remarques permettent d’interpréler physiquement le
sens des relations de commutation des potentiels et des champs. Ces
relations contenant au second membre la fonction D (ou ses dérivées),
les commutateurs des premiers membres ne peuvent étre différents de
zéro que si les grandeurs électromagnétiques se rapportent a des points
d’espace-temps ry ¢y et ryts tels que D(ry — 1y, £o— £s) (ou ses dérivées)
soit différente de zéro. Il en résulte que ces commutateurs sonl néces-
sairement nuls si 'un des points en question est en dehors du cone de
lumiére de Pautre. En ce cas, les deux grandeurs électromagnétiques
sont en priacipe toutes deux mesurables exactement. Physiquement, ce
résultat signifie que deux grandeurs ¢leclromagnétiques sonl nécessai-
rerient toutes deux mesurables exactement st les points d’cspace-temps
auxquels elles se rapportent sont sans intluence possible 'un sur autre,
¢noncé dont I’exactitude est évidente a priori.

Dans le cas oti 'on peut négliger 42 et ot Aremplace D dans les formules,
on voit que deux grandeurs électromagnétiques seront Loujours simul-
tanément connaissables si elles se rapportenta des points d’espace-temps
qui ne sont pas e¢n onde 'un avec l'autre, c’est-a-dire qui ne sont pas
sur un méme cone de lumiere : ce résultat, lui aussi, est nécessaire



APPLICATION DE LA SECONDE QUANTIFICATION A LA MECANIQUE ONDULATOIRE. 123

a priori, car la mesure effectude en ry au tewmps ¢, ne peut alors troubler
la mesure effectuée en r, au temps ¢, que si |Py—7Py|=c(t,— ).

La fagon dout les relations de commutation des champs traduisent
Pimpossibilité dans certains cas de mesurer ces grandeurs en des lieux
et des temps différents a ¢été analysée de prés pac MM. Bohr et
Rosenfeld. On trouvera un aper¢u de ces intéressanles considérations
danslelivre de M. Heitlec[Quantum theory of radiation (p.55etsuiv.)].




CHAPITRE IX.

LA MECANIQUE ONDULATOIRE DU PHOTON
ET LA THEORIE QUANTIQUE DES CHAMPS ELECTROMAGNETIQUES.

1. Définition des grandeurs électromagnéticjues comme valeurs
moyennes dans Vespace des n. — Considérons une grandeur électro-
magnétique définie par la Mécanique ondulatoire du photon, par
exemple 'une des composantes du potentiel-vecteur A;. Nous pouvons
la développer suivant le procédé de Fourier en une somme d’ondes
planes monochromatiques de la forme

(1) Adz, ¥, 5 8) =20191 eilkic—Xr))
l

a; étant un coefficient de normalisation des ondes planes. La seconde
quantification transforme les ¢, et par suite les A; en opérateurs de
I'espace des n. Gomme nous l'avons précédemment expliqué, on est
alors amené a-définir la grandeur physique A; comme moyenne prise
* dans P'espace des n suivant le schéma .

(2) Ai(r, t) _—.ER*A,-(r, HR =2R'Zc,a1 eilkict—kT} R
n : n

14

Nous avons vu que la fonction de répartition R obéit a I'équation
d’évolution

II

(3) o 2% —seR,  avec x:E(c;)ovvg;n(z)(c,-)o,,.
i

Mais, pour le photon dans le vide, il n’y a ni interaction mutuelle,
ni action extérieure, de sorte que V(0 est nul et que R est indépendant
du temps. La fonction de répartition ainsi définie est donc la forme
R(n,, ny, ...) et est indépendante du temps. 11 est alors visible

que A;(r,t) varie en fonction des variables d’espace et de temps
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exactement comme A;(r, t) : les grandeurs électromagnétiques, définies
comme valeurs moyennes dans I'espace des n, satisfont donc a toutes
les équations maxwelliennes.

On peut se placer a un autre point de vue pour définir les valeurs .
moyennes dans I'espace des n. D’aprés une remarque faite & la fin du
paragraphe 8 du Chapitre VII, nous pouvons aussi dsfinir la fonction R
comme solution de Péquation

(4) =2 =%R, avec ¥ =Z(c;)o,ugl9>(c,~)o,,.
i

Pour le photon dans le vide, on aura H};?"—_— hv;d;j et par suite

(5) 9c=2c; hv,S,icj=2c}'cihvi=2n;hvi,
U 7 ] -
d’on

E:Liznlhvlt
(6) R(.’lh Na,y ...y t)= R,(ni, na, . .‘)e ] .

R((ni, ny, ...) étant la fonction de répartition telle qu’elle avait été
définie plus haut. La définition (2) s’écrira maintenant

(7) AT, ©) =ER;(n,, Ry, - ) Au(x, ) Ry (g, nay-. . ).

Montrons que cette expression est équivalente &

(8) AT, t):ZR*(n,, na, ooy ) Ag(T, ©)RY(n1y ma, ..o, 8)

< —%Euihvit
:ZR:(HQ, ng,...,)e i
n

E:—iZn,,,hv,,t
xzclale—‘kl“Ri(nl, ng,...)e ™
]

En effet, Popérateur ¢, commutant avec tous les n;, sauf n,, la derniére
expression est égale a . !

(9) ZR;(n,, ng, .. .)Ze—’""”"l‘cza;e’“"‘l"l‘Ri(n,, ny, ... ) eI,
n . l .
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soit, encore d’apres les propriétés de 'opérateur ¢; &

O , O ) )
(10) ZR;(n,, na, ..‘.)Zalcle‘-”“"l'e—-lkll‘Rl(n., na,y ...)
1

n
_=2R,(n., o)A, O Ry ),
n

de sorte que I'équivalence annoncée est démontrée.

Ainsi, l'on peut définir une grandeur ¢lectromagnétique F comme
valeur moyenne dans l'espace des n de deux manidres équivalentes :
1° en prenant la valeur moyenne de l'opérateur dépendant du temps

F(r, ¢) :—.2 cia; & ket—krl gvec cmploi de la fonction de répartition
]

indépendante du temps R(n,, rs, ...) (représentation de Schridinger);
2° en prenant la valeur moyenne de I'opérateur indépendant du temps
F(r)=2c,a, e—~%r avec emploi de la fonction de répartion dépendante
l
du temps
2T Y nyv il
JR(ny, ey oo t) = Ri(ny, ney .0 ) e
(représentation d’Heisenberg).
On a donc, d’aprés ce qui précéde,
LI 2w,
(1) F(r,t)=e * TF(rye’

Les définitions (7) et (8) sont équivalentes. La premiére est celle qui
se présente le plus naturellement en Mécanique ondulatoire du photon,
tandis que la seconde est celle qui est usuellement utilisée en théorie
quantique des champs.

La dérivée dir F(r, t) est donnée par la formule générale

ci— JF X411
(12) Z = w Tt w

T, %]

Comme ici I'intégration est faite dans 'espace des n (et non sur zy z),
dF
dt

de F, on doit poser J€ = o et par suite

Ia dérivée reste fonction de zyz. Sil’on emploie la premiére définition
Y p p

- le l}_l—“ vx x
(13) 71?_71'_44“‘(”1'

n

N O . ) . .
=ZR',‘(n., . )Zgzzvlc'la/Ptl"‘l"‘—klflR|l nyeL)

" !

JF
...)7)73.(11._....)
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.. .. dF
Avec la deuxiéme définition, o5 =—oet I'on a

dF X%
(14) —(-l?=—h—[F,5€]

—21:!2 nEvrt

27 N
= ..Z_‘ER,(;“, )e E
n

< [zclal e—dir, Zn,'hv,'] Ri(ny, ...)e

{ /

N N
22 Yt
m

=2 Ri(ny, .. .)Zznivlclale'ﬂ‘lf‘—klﬂ Ri(ny, e, . ..),
1

de sorte qu’on trouve bien la méme valeur (13).

1l est facile de voir que nos définitions font correspondre la grandeur
électromagnétique F a Vabsorption d’un photon et la grandeur F*
a V'émission d’un photon, point de vue que nous retrouverons dans
I'étude des interactions entre matiére et rayonnement. En effet, si
- P'on pose

(15) F =chal efkict—kir],
{
on aura

(16) F=2R7(nh sy R )2 cia et iMIR, (ny, ..., ny...)
n I

N eee——
=2R:(n1, R 73 ..‘)2‘\/111-4-1 a;elhirt=KiTIR, (ny, ... ,onp+1,...).
n {

Cette formule montre bien que la composante d’ordre I de F correspond
au passage d’une répartition ou il y a n;+ 1 photons dans I'étal k; a
une répartition ou il n’y a plus que n; photons dans cel état.

De méme

(7) F* =2R;(n,, vy Ny, )2 e a; e~k MR, (ny, ..., 0y ...)
1

n
=2R:(n,, R 7 ...)2\/11.1 a} e=The=wiXIR (ny, ooy np—1, ... ),
n I

ce qui montre que la composante [ de F* correspond au passage d’une
répartition ou il y a n;— 1 photons, dans I’état k; & une répartition ou
i1 y a n, photons dans cet état. Comme I'exponentielle 4 exposant
négatif de (17) représente un état a énergie négative du photon, nous
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voyons que les étaws a. énergie négative sont liés au processus de
I’émission tandis que les états a énergie positive correspondent au
processus de 'absorption, remarque que nous aurons a approfondir.

2. Développements de Fourier. Point de vue de la théorie quantique
des champs. — Comment devons-nous écrire les développements de
Fourier et quel sens devons-nous leur attribuer? Pour répondre a cette
question délicate, nous pouvons adopter deux points de vue différents.
Le premiér qui coincide (a quelques détails de formalisme prés) avec la
forme usuelle de la théorie quantique des champs, fait figurer dans les
développements de Fourier les ondes a énergie négative, mais n’introduit
pas 'état d’annihilation. Le second point de vue, qui est propre a la
Mécanique ondulatoire du photon, ne retient dans les développements
de Fourier que les ondes a énergie positive, mais elle fait intervenir
P'état d’annihilation. Nous allons étudier successivement ces deux points
de vue pour en faire la comparaison.

Commencons pour exposer le premier point de vue.

Dans cette méthode, on représente toutes les grandeurs lides a une
particule de spin 1 par des développements de Fourier contenant non
seulement toutes les ondes planes a énergie positive, mais aussi toutes
les ondes planes a énergie négative. On utilise donc des développements
de la forme

F = 2 e Oy eilkct—Kr] +2 d;‘ a’l: 'e‘—z[kz-1~-kr]’

k k
(18)
F*= Z cl;a;: e—fkei—kr] +Z dk ay ez[ket—kr],
. - -
avec
(9) k=+VEF+A,

k, étant supposé nul dans le cas du photon
Dans (18), les termes de la premiére somme représentent des ondes

khe
planes a énergie positive 5. ayantune quantité de mouvement%, tandis

que les termes de seconde somme représentent des ondes planes
khe

a énergie négative — 55 2yant une quantité de mouvement — !‘—:

Les ax sont des coefficients de normalisation. Quant aux ¢y et dy.

ce sont des opédrateurs de l'espace des n dont la signification va varier

suivant qu’on a affaire a une particule de spin 1 susceptible de deux états
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de charge égale et de signe contraire ou a une particule non chargée.
Nous avons donc & distinguer deux cas :

a. Cas d’une particule de spin 1 possédant deux états de charge
opposée. : '

Ceci est le cas des mésons qui portent tantétla charge e de I'électron
positif, tantot la charge — e de I'électron négatif.

Si I'on adopte les développements de Fourier (18), la question qui se
pose est celle de savoir comment on doit interpréter les termes a énergie
négative de la seconde somme, étant donné qu’il ne parait pas exister
réellement d’états a énergie négative dans la nature. La théorie
quantique des champs adopte pour ces termes U'interprétation suivante :
tandis que chaque terme a énergie positive représente une particule

chargée positivement d’énergie positive g:—? et de quantité de

/ . . .
mouvement %;l, I'onde d’énergie négative —fﬁfet de quantité de

ki ca . .
mouvement — ——~ devrait étre interprétée comme représentant une
. . . ... khe
. b4
particule chargée négativement, possédant I'énergie positive oo et
. k/ e » o
la quantité de mouvement q—:- Ainsi, il n’y aurait plus, conformément

i Pexpérience, que des particules a énergie positive, les ondes a
énergie négative n’étant qu’une représentation symbolique de particules
A énergie positive dont la charge électrique serait égale et opposée de
celle des particules que représentent les ondes a énergie positive,

Selon cette ingénieuse interprétation, la quantité n = cx ¢ donnera

le nombre des particules chargées positivement ayant I’énergie /;—}:? etla

. . kh . - ,
quantité de mouvement —— tandis que le nombre ng = dicdy donnera

le nombre des particules chargées négativement ayant la méme énergie
et la méme impulsion.
On posera donc

0 N
(20) = a Vo %= Vake ",
_ 0 A
Nag=e" Jng,  dp=ynge O,
d’on résulte
(21) Cp O — OO =—1;  dyay—dpdp=-—1.

1L.0UIS DE BROGLIE. o
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b. Cas d’une particule de spin 1 électriquement neutre.

‘C’est le cas des mésons neutres et des photons.

Ici, 'interprétation précédente des termes a énergie négative n'est plus
possible, puisqu’il n’y a plus lieu de distinguer deux états de charge
électrique pour la particule. S’appuyant sur des idées que nous avons
exposées a la fin du paragraphe 2 du Chapitre II, la théorie quantique
des champs admet que la grandeur F pour une particule ncutre doit
étre rcelle, ¢’est-a-dire que 'on doit avoir i i

(22) e=dy, k= o
de sorte que

(23) FeF'e 2 [(exctye etlh =101 - ey eilhor=kr |,
k

On justifie 'hypothése (22) en montrant que le calcul de la charge
électrique totale du champ considéré se trouve alors toujours nulle,
nous le vérifierons plus loin. Cette valeur nulle de la charge se trouve
obtenue par une compensation de charges opposées, les particules
neutres apparaissent ainsi comme des sortes de racémiques, neutres
par compensation. Nous verrons cependant qu’on peut, avec la Méca-
nique ondulatoiré du photon, se placer a un point de vue différent.

3. Conséquences des définitions adoptées au paragraphe précédent. —
Adoptant les définitions et hypothéses qui viennent d’étre précisées, nous
calculerons la valeur que la théorie quantique des champs est amenée &
attribuer a certaines grandeurs importantes liées & la particule de spin 1.

a. Cas des particules chargées. — Calculons d’abord I'énergie du
champ, c’est-a-dire de Pensemble des particules, par la formule

0w (A TE) (e A (a2 (gOA
(21) W= fg;[(A T)7>—<E 7,—>+(A = >——(E = )]d-:.

Cette intégrale se réduit & la somme de celles qui se rapportent anx
divers vecteurs k considérés isolément, car les termes provenant de la
combinaison de deux vecteurs Kk dillérents disparaissent par intégration.
Pour les grandeurs normées relatives a un vecteur k donné, on trouve,
"apres (18),

/i

(X5
& Ak: ak\//iﬁ/x'l’

' A . e -
R

Ll
(2)) .
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ay étant un vecteur unité définissant la direction du potentiel;vecteur
et Py ¢tant le facteur de phase eflf%r), :

En portant (23) dans (24), on trouve pour les termes se rapportant
au vecteur k, compte tenu du fait que les termes en Px et P’ donnent

zéro par intégration, la valeur "
e

! khe ., . . khe _

{26) W = —/,_;lckck_'_ dy dy + ey cp+ dl;dk]z -;_:(nﬁ«}— nk+1>.

Pour obtenir la derniére expression, on a fait intervenir les rela-
tions (a1).

Le résultat (26) n’est pas trés satisfaisant, car on devrait évidemment
avoir dans la derniére parenthése, ‘nit+ ni. Le terme 1 supplémcntaire
est certainement parasite et sa présence peut faire douter de I'exactitude
rigoureuse du point de vue adopté par la théorie des champs.

Calculons maintenant l« quantité de mouvement totale du champ.

Elle est donnée. par les formules du type

1 « 0B , OA JE* JA*
(27) Gnr——[;(; [(A d_x) —(E %) + (A — )— (E = )] dr.

Avec les expressions (25}, on trouve aisément

(28) Go= k;xh (nis+ ng+1).
k

Ici encore, apparait un terme parasite, mais il n’est pas génant, car il est
évident qu’il disparait dans la sommation sur toutes les valeurs de k,.
Il reste donc

. ki
(29) G =Z;T—:(.nf;+ i)
k

formule trés satisfaisante, étant données les hypothéses admises.
Enfin calculons V'intégrale

(30) fp e =f ZZL(ATE)— (B*A)]d.
Nous trouvens
I * - * *
(31) fp dz =2 E[chk+ Oy Cpp ~— g e — n’k] =2(nl‘;— ng)s
v k. : k '

Nous obtenons donc la différence entre le nombre des particules chargées
‘positivement et celui des particules chargées négativement.
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Ce résultat découle du fait, déja précédemment signalé, que pour
une onde a énergie négative I'intégrale (31) est négative et égale & — 1
si I'onde est normée. En présence de ce fait, la théoric quantique des

champs se refuse a attacher a I'intégrale fp dr le sens physique d’un

nombre de particules, mais elle continue a définir la charge électri ique

totale des particules liées au champ par l'intégrale [ps dr, ou¢ est

o

la charge d’une des particules en valeur absolue. On trouve, en eflet,
our cette derniére intégrale d’aprés (31
P g P

(32) Q =fps d= :2 s(ni’{—— ng)s
i k

résultat satisfaisant.

b. Cas des particules neutres. — Ici 'on admet les relations (22).
Le formalisme employé par la théorie quantique des champs (*) conduit
alors a des résultats qui se déduisent des précédents en posant
ni = ng == ny et en divisant par 2. On obtient ainsi

kh
(33) W :2-2.§<nk+ §>,
k

13

. . . 1 -
résultat qui contient encore un facteur parasite 5 Puis on trouve

(36) G= Z <nk+ >=an¥‘.
k

Dans G, comme précédemment, le facteur parasite disparait par
sommation. Enfin, on a '

(35)- 0 22 ¢(ny—ng) =o.
k

L.a charge totale du champ se trouve nulle par suite d’une sorte
de compensation des charges. C’est la le résultat annoncé qui sert
a justifier le formalisme adopté pour les particules neutres par la théorie
quantique des champs. Néanmoins, on peut observer quc’on obtiendrait
aussi Q =o0 en exprlmant naivement la neutralité électrique des parti-
cules par la relation' e = o. Celte remarque nous conduit A aborder

(") Le facteur — résalte de la facon dont est définie la normalisation,
2
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maintenant 'examen du point de vue de la Mécaniqur ondulatoire
du photon.

4. Point de vue de la Mécanique ondulatoire du photon. — Nous
allons nous placer d’abord dans le cadre de la Mécanique ondulatoire
du photon proprement dite, théorie qui ne s’occupe que des photons,
c’est-a-dire de particules électriquement neutres.

En Mécanique ondulatoire du photon, on est naturellement conduit
a adopter le point de vue suivant lequel les grandeurs électromagné-
tiques complexes F liées au photon daivent se représenter par des
développements de Fourier limités aux ondes planes a énergie
positive, c’est-a-dire de la forme

(36) F =2ckakei(1\‘cl—kr), F':ch’;al‘{e—i{k“—kr).
k k

Pour notre théorie, les grandeurs sont toujours essentiellement
complexes et c’est seulement les grandeurs macroscopiquement obser-
vables dans les champs a grands nombres de photons qui peuvent
se représenter par les grandeurs F' =F 4 F*.

Nous commencerons par calculer avec notre hypothése le nombre

“total N des photons présents dans le champ, nombre qui doit toujours
étre donné par l'intégrale (30). Avec les développements du type (36),
le calcul donne

(37) N:Zcickzznk,
k k .

ce qui est tout a fait satisfaisant. ,

St nous voulons calculer W et G, il se pose & nous une question
préliminaire trés importante : quelles expressions devons-nous adopter
pour ces grandeurs? Plus haut nous avions adopté, comme le fait
implicitement la théorie quanlique des champs sous sa forme usuelle,
les expressions (24) et (27), qui résultent des valeurs des compo-
sanies T du ténseur énergle—lmpulsmn données par les formules (4)
du Chapitre IV. Ces formules résultaient de 'introduction d’un schéma
Lagrangien général, avec emploi d’une fonction de Lagrange réelle.
Mais, comme nous I'avons remarqué a la fin du paragraphe 4 du
Chapitre IV, il est plus conforme aux idées générales de la Mécanique
ondulatoire d’adopter une fonction de Lagrange complexe et de prendre
pour les expressions des Ti des valeurs noh nécessairement réelles,
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telles que la valeur de la densité d’énergie donnée par la formule (12)
du paragraphe en questioxi. Ceci revient en somme a partir des formules
générales

W= / Yo H Wy rls = [ gy 2 MWos

a2l dt

(38) ‘ . e f It J .
( G = fu G,(— )—_—15;> | 7
d’ou l'on tire, en exprimant les W . a I'aide des grandeurs électro-

magnétiques,
. I L IE JIANT
\\\_ [Z[<A ’—}E>—<E 7)]4.,

W e[ )
' L D dr

Dans les expressions (39), comme toujours en Mécanique ondulatoire
du photon, on a les produits d’une grandeur étoilée placée a gauche
par une grandeur non étoilée placée a droite. Dans la théorie non
superquantifiée, les expressions (3g) sont équivalentes aux expres-
stons (24) ct (27) utilis¢es par la théorie quantique des champs, mais
il n’en est pas de méme en théoric superquanlifiée, parce que Popéra-
teur ¢ n’est pas conjugué de 'opératcur ck. 1l y a donc un certain
arbitraire dans le choix des expressions (24) et (27) fait par la théorie
des champs et il semble licite d’adopter en Mécanique ondulatoire du
photon les valeurs (3¢).
Si nous adaptons les expressions (3¢), le calcul fournit aisément

. O Ll 2 : 4/
(40) W :Zuk )’_t y G :}-J“k .’;,
k k

valeurs enticrement satisfaisantes.

Le formalisme adopté par la Mécanique ondulatoire du photon nous
parait plus pres de la réalité physique que celui de la théoric quantique
des champs. Nous allons le préciser en faisant intervenir Pélat d’annihi-
laton ct les moyenncs dans Uespace des #. Ceci nous conduira a I'idée
que le véritable role des ondes planes i énergie négative est de reprd-
senter les processus d’émission, tandis que celui des ondes planes
énergie positive est de représenter les processus d’absorption.
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5. Valeurs moyennes dans l'espace des n. Processus d’absorption et
d’émission. — Nous allons maintenant reprendre systématiquement
le point de vue de la Mécanique ondulatoire du photon esquissé au
paragraphe précédent, mais en y introduisant les notions d’état
d’annihilation et de valeurs moyennes dans 'espace des 7.

Reprenons toute la suite des idées. En Mécanique ondulatoire du
photon non superquantifiée, I'on associe a chaque grandeur électro-
magnétique un opérateur F. Un photon, qui se trouve dans l'état
représenté par une fonction d’onde W, peut s’annihiler au contact de
la matiére en eédant toute son énergie a la matiére et en passant dans
un état d’annihilation que I'on représente par une fonction d’annihi-
lation constante et invariante Wi, La grandeur électromagnétique F
correspondant a 'opérateur & est égale par définition a

1) F="WLtilse=U"FV,

la deuxi¢me expression ¢tant une forme symbolique simplifice de
la premiére. La grandeur I correspond a la transition quantique qui
améne dans I’¢tat d’annihilation le photon primitivement dans U'état 0.
c’est-a-dire qu’elle correspond i I'absorption de ce photon par la maticre.
Réciproquement, la grandeur complexe conjugucée (1)

(: 12) *= l]";T 5 l]‘,'rl»:', = YT

représente [a grandeur ¢lectromagnélique associée a I'éinission d’un
photon dans I’état W,

Nous admettrons que P'onde T" la plus générale doit étre représentie
parla superposition de 'onde W' et des ondes planes monochromatiques
a énergie positive du type

(13 ‘I'k = (lkff’“'"’“k/'),
avec A== |k *+ AZ. Nous laissons donc de cété systématiquement

les ondes planes a ¢nergie négative conformément au point de vue
développé dans le dernier paragraphe (*) et nous poserons

Ci4) W= Yo U
k

(') Pour passer de (41) & (42), s¢ souvenir que F est hermitien.

%) L'hypothése qui consiste a ‘carter les ondes & ¢uergie négative pour ne conserver
que celles i énergie positive présente une certaine analogie avee Phypothése que Pon
fait dans Ia théorie classique du ravonnement quand on niglige les potentiels avances
pour ne garder que les potentiels retavdds,
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les ¥y étant normées. Nous obtenons donc pour la densité de valeur
moyenne correspondant a 'opérateur & de I’espace ordinaire

r N e\ o A »
(45) (F) = <c:, o +}_‘0k‘1'k> 7 <c0‘l m+zekuk>.
K k
Introduisons maintenant la seconde quantification : les ¢ et ck
deviennent des opérateurs de U'espace des n définis par les formules

g g
anye

r R
(46) =By, ef = nge
et o(J) se trouve ainsi transformé en un opérateur de 'espace des n
Nous devons alors remarquer que le nombre n, des photens dans
I’état d’annihilation doit étre considéré comme énorme et pratiquement

+9 )

constant. Les opérateurs ¢ 9%, qui font varier n, d’une unité en-plus
ou en moins, ne modifient donc pratiquement pas les fonctions de »
auxquelles ils sont appliqués et sont, par suite, équivalents a I'opéra-
teur 1. On a donc

(47) Co Cf \/E

Revenons i I'expression (45) et observons que, d’aprés la forme des
opérateurs & introduits par la Mécanique ondulatoire du photon dans
lexpression des grandeurs électromagnétiques et d’aprés la valeur
de ¥'"), on a toujours

(48> Yo} F 0 = o,

comme on le vérifie aisément. De plus, comme 7, est extrémement
grand, on peut dans Uexpression (45) négliger les termes qui ne con-
tiennent ni ¢,, 0l ¢, et éerire

(49) B(F)=ciWWT W oW+ ) i Wi ey W,
k k

Comme p(F) est maintenant un opérateur de 'espace des n, on devra,
pour lui faire correspondre une grandeur numérique, prendre sa valeur

moyenne F = o (& ) dans I'espace des 7, ce qui donnera

(50) FEP(_9)=2RI(NO, ey N ‘.;)p(ﬁ)lh(ng. T I

n
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Tenant compte des propriétés des opérateurs (46), on trouve

(51) ;(9):2 23;@0, S
e k
> ['\‘/’/zkvi——l Yo FWY Ry (g, ooy 10 .00
-+ \/;I—k— 1[,-12“7 1y Ry (/2(\3 sy M1, .. )]

Mais on peut absorber la constante \/n, dans la définition de &F,

. . . /i
ce (ui revient a remplacer la constante K'= . par la cons-
b :
— \ oy
tante K = /n,K’, les notations étant celles du Chapitre VII, para-

graphe 1. On peut donc écrire

G2) Fesp @)=Y S RI(0 oo me—1, o) VP By (. -

RS ""k""t’,
g k
—f—“?(ll()u...Hk—l"l,“.‘) v/nk—.—rFﬁﬂx(no,...,nk,...‘)]
avee '
(53) Vp=UoFu,, Fp="UgFVUe,

La formule (52) nous montre que la grandeur Fy, définie pour
‘un seul photon, multipliée par la racine carrée du nombre initial
des photons dans I'état k, correspond au processus de 1'absorption
d’un photon k, tandis que la grandeur conjuguée Fi multipliée par
la racine carrée du nombre des photons dans l'état final correspond
au processus inverse de 'émission d’un photon k.

Ainsi, nous sommes amenés en Mécanique ondulatoire du photon
superquantifiée, & considérer, par définition, la quaniité (52) comme
nous donnant les valeurs de la grandeur électromagnétique F pour
I'ensemble des processus quantiques possibles, les grandeurs Fy & expo-
nentielles e’k<*—kr) correspondent aux processus d’absorption, tandis que
les grandeurs Fy & exponentielles e—i(ke—kr) correspondent aux processus
d’émission. Ces conclusions nous semblent dégager le sens physique
prefond de la différence entre termes a énergie positive et termes i
¢énergie négative dans le cas des photons (1). ( Voir 1a Note page 147).

Comparons maintenant ces résultats avec le formalisme de la théorie
quantique des champs. Celle-ci, nous le savons, représente toute
grandeur électromagnétique par un développement de Fourier ou
w'iniervient aucune fonction d’annihilation, mais ot figurent les ondes
planes a ¢nergie négative; nous écrirons ce développement sous la forme

(54) F =D e Fie+ epFr ).
k
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On considére que tous les photons liés & l'onde de vecteur k ont
I'énergie positive & et les ny des formules de la seconde quantification
représentent les nombres de photons par onde plane. La valeur moyenne
de la grandeur électromagnétique I est alors définie par la formule

(55) Fm Y RI( g FRi( g ),
k
ce qui donne

6 F =X BRI ) [ e TR R i)

ek
+\V'/1kF12“1(>-'-, T 1, )]

En comparant (56) avec (51), on voit que 'on peul identifier le I de
la théorie quantique des champs avec le p(F ) de la théorie du photon
si Pon définit les grandenrs Fy et Iy par les formules (53), ce qui
concorde bicn avec nos conception antéricures.

Donc, bien qu'on ne le fasse pas toujours remarquer dans les
expos¢s usuels de la théorie quantiqué des champs, dans cette
théorie comme en Mécanique ondulatoire du photon superquantifiée,
les termes & énérgie positive correspondent aux processus d’absorption
et les termes a énergie négative aux processus d’émissidn : sur ce point,
il y a donc concordance entre les deux théories.

La ou elles divergent, c’est sur {a facon d’écrire les développements
de Fourier. La Mécanique ondulatoire du photon y introduitla fonction
d’annihilation et en rejette les ondes a énergie négative; la théorie des
champs ignore I’état d’annihilation et fait figurer céte a céte les ondes
a énergie positive et celles a énergie négative, en cherchant i donner
aux développements de Fourier, par la formule (54), 'aspect de gran-
deurs réelles. La méthode de la Mécanique ondulatoire du photon,
nous parait serrer de plus prés la réalité physique : elle évite I'appari-
tion de termes parasites dans les expressions de I'énergie et de la quan-
tité de mouvement globale du champ et, sans cherchera donner a prior:
aux grandeurs électromagnétiques une apparence de grandeurs réelles,
elle met mieux en évidence la linison des termes a énergie positive avec
les phénoménes d’absorption et celle des termes i énergie négative
avec les phénoménes d’émission.

G. Pourquoi les grandeurs électromagnétiques macroscopiques sont-
elles des grandeurs réelles ? — Considérons les développements équi-
valents (52) et (56). En quel sens peut-on dire qu’ils représentent
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une grandeur réelle? Ceci n'est pas immédiatement évideat car, ainsi
que nous l'avons 'plus d’une fois noté, les opérateurs cix et ¢k ne sont
pas complexes conjugués au sens usuel du mot. Mais ces opérateurs
sont des opérateurs adjoints dans P'espace des n et par suite cx—+cx
cst hermitien dans cet espace. Pour cette raison, F valeur moyenne de
(54) dans I'espace des n doit étre réelle. Vérifions-le.

La quantité complexe conjuguée de

VR’(..., Mo ...)\(/nk—i—leIh(..., Ry +1, ...)

d !
”k
est

2 RY(..., nE+1, ...)\,=",zk+1F1*{R,(..., Ny - on)
!lk

0

NS * ST Yok

=>_‘ Ri(o e ) V”kl'kR'("'*”k“‘I’ )

Ilk .

1]

On obtient la seconde somme a partir de la premiére en remplacant
dans la sommation ny par nx—1 el en remarquant que le terme relatif
a nx=o dans la seconde somme est nul. Il est alors évident que les
deux termes relatifs 4 une méme valeur de k dans (56) sont complexes
conjugués et que I’on peut écrire

7) F=Z l’kE Ri(oy My «v) Viag+ 1R (oo ne+ 1, o) + cnnj.]A
k Nk
Considérons maintcnant un champ électromagnétique macroscopique
ou tous les ny sont trés grands, mais ou les phases 0 sont bien définies.
Nous définissons un tel champ par une sorte de « groupe d’ondes »
dans l'espace des n que nous représenterons par
PN Oy e
Ri(ooo,ny, oo)=e & Rao ..oy Ry -2 )
ot R, n'est différent de zéro que pour des valeurs trés grandes et relati-
vement voisines de chaque ny et varie trés peu quand ny varie d’une

unité. En substituant dans (37), on obtient alors aprés incorporation
des phases Oy dans Uexpression des Fy,

(58) F =Z PR (oo g o) By T [Fre+ Fi )
"k k
N ‘ e
ZZE!HY 3\ Ilkllé‘= A Ilkl‘l;)
"e k k
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ou Fi = F. + Fx est la grandeur électromagnétique réelle définie dans
le cas d’un seul photon par la Mécanique ondulatoire du photon
non superquantifiée (). Nous voyens qu’en multipliant ce champ réel
par \/n_k, en faisant la somme pour tous lesvecteurs k et enfin en prenant
la moyenne dans l'espace des n, nous obtenons le champ macroscopique
moyen F qui est une grandeur réelle au sens propre du mot.

7. Généralisation au cas des particules de spin 1 chargées électri-
quement. — Ce qui précéde s’applique aux photons et plus généralement
aux particules de spin 1 électriquement neutres. Nous allons maintenant
montrer comment l'on peut tenter de généraliser les mémes considé-
‘rations au cas des particules chargées de spin 1.

Nous avons vu au paragraphe 2 qu’en ce cas la théorie quantique
des champs écrit le développement d’une grandeur I sous la forme

(59) F =W [exFie+ i Fg
k

y

les termes Fy a énergie négative représentant les particules a charge néga-
tive, de telle sorle que.cxcx donne le nombre ni des particules chargées

positivement d’énergie positive & el de quantité de mouvement g—:‘,

tandis que di di donne le nombre nx des particules i charge négative
. . . h \

d’énergie positive & et de quantité de mouvement 12%5 Dés lors, la gran-

deur F obtenue en faisant la moyecnne dans I'espace des n est

.o I~ N - -4 - X X g X —
(o) F= 2‘ Ry (... om0 ) 2[('ka+(/kI*k]R,(...,nﬂ,nk,.v.>
" k
=ZZ Ry (cooinpgong, ..) ( v/n§+leR1(...,nf(+l,Ilﬁ)
n k
+ \/’/EFQR,(...,nf;,ng—l. ))

=Z Z[R?(....ni;——-l,ni. I P \/EFK—{— Ri(o.ngong+1...0)
k

> \/,zz;—r— 1 Ff(l Ry (.. nge g, -on).

(t) II faut toutefois bien noter que dans (58) les phases des Fy ct Ff: sont ici bien
définies. :
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La formule (60) montre que le terme Fy correspond a 'absorption
d’une particule positive el le terme Fi a Vémission d’une particule
négative, fait qui n’est pas toujours bien mis en lumiére dans les exposés
usuels de la théorie quantique des champs.

Cherchons maintenant a nous placer 4 un point ‘de vue analogue a
celui que nous avons adopté plus haut en Mécanique ondulatoire du
photon. Nous considérons les particules positives et.les particules
négatives comme des entités physiques distinctes représentées par des
fonctions d’onde distinctes ¥+ et W—. Pour ¥+, nous admettrons un
développement de la forme

{61) P+ = collf‘(o)—f—ch‘Fk (e = nx)s
k

et nous calculerons, comme en Mécanique ondulatoire du photon,
la quantité p(F) correspondant a Vopérateur & de Pespace ordinaire

6 T =D e ) WA F R (o i g )
n
=ZB;(',.., ny, i, ...)<05TLO)+ZCR\L~]‘*>
n k

< 3"<co‘lf(°)+ ck‘IJ'k> R,(..., ng, ng, e
‘k

D’ou, en remarquant qu’en raison de I’énormité du nombre n, des
particules annihilées, on peut négliger tous les termes ne contenant

pas ¢, ou c; et que I'on peut absorber le facteur y/n, dans la définition
de Popérateur F

(63) p(@)=2}:m(...,n;, g )
n k

< [P +TYOFWLR (..., ml+ 1, ng, L)
+ /A YR FWOR (.., ng—1, ng. )]s

formule qui nous montre que W0 F Wy multiplié par la racine carrée
du nombre des particules positives dans I'état initial correspond a
I'absorption de ces particules, tandis que Wi & W) multiplié par la
racine carrée du nombre des particules positives dans l'état final
correspond & I'émission d’une de ces particules.

Plus instructive est P'étude de la quantité p( F ) relative aux particules
négatives. Ici nous pouvons écrire pour le W soit le développemeat
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suggéré par la théorie quantique des champs

(64) W= o Wi+ Y LW,
k

soit plutét le développement plus naturel au point de vue physique:

(65) W= oy W+ 3y 13
k

les y, représentant les ondes planes a énergie positive de la particule

chargée négativement. Nous supposerons, dans un cas comme dans
Pautre, que dji dix donne le nombre nj des particules a charge négative
dans I'état k.

Avec le développement (64), on obtient

k

n

(66)"  o(F) =E Ri(..s nip g - )[05 lL'wJ-;—de‘Fk]

X F| WO+ Y 3 Wy | Ry(..., 0y, ngy ...
k*k k' "k .
k

=3 VR (o i nige) [/ WO F WLR (o) iy mg—1,000)
n k .

+\/n;+1le3"‘If(°’R1(..., ng, ng+1, )]

Le premier terme du crochet correspond visiblement a I’émission d’une
P P )
particule négative et le second a I'absorption d’une telle particule.

Avec le développement (65), nous obtenons

(67) p(F) =2 FRi(-eo ol n, --2)
k

n
> [\/"E+ I 1[‘(°>$XkR,(. ey Y, MR, )
/PR F WO R, 1y np—1, )]

Ici le premier terme entre crochets se rapporte 4 une absorption ct
le second & une émission. La comparaison de (66) et de (67), conduit
a assimiler d’une part WO F W et y; F WO et d’autre part WO Fy
et ¥ FW 0, On peut traduire ce résultat en disant : I'émission (ou
I'absorption) sur 'onde k d’une particule positive a énergie négative
correspond a I’absorption (ou I'émission) sur cette onde k d’une parti-
cule négative a énergie positive.

Il semble que cette conclusion soit a rapprocher du fait qu’en théorie
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de Dirac I'électron positif n’est pas assimilable 4 un électron négatif
dans un état d’énergie négalive, mais bien & un mangue d’électron
négalif dans un tel état.

L’ensemble des considérations des derniers paragraphes nous parait
faire pénétrer assez profondément la signification véritable qu’il faut
attribuer au formalisme assez abstrait de la théorie quantique des
champs. Ce formalisme est sans aucun doute trés élégant et mathémati-
quement correct, mais il masque peut-étre un peu le sens des phéno-
ménes physiques qu’il représente; de plus, il conduit toujours pour les
énergies globales a des expressions contenant un terme parasite. 1l nous
parait plus conforme a la réalit¢ physique de n’introduire dans les
développements de Fourier que des termes a énergie positive, ce qui
fait disparaitre tout terme parasite dans I’expression de I’énergie. Peut-
étre, d’ailleurs, le probléme du rapport des particules complémentaires
de charges égales et opposées (électron et positon, méson positif et
méson négatif, etc.) n’est-il pas encore entiérement bien posé et la
construction d’un nouveau formalisme sera-t-il nécessaire pour traduire
ce rapport plus exactement ().

¥. Complications qu’entraifie dans la théorie quantique des champs
Thypothése implicite o= 0. — Nous avons déja vu que, contrairement
a la Mécanique ondulatoire du photon, la théorie quantique des champs
admet implicitement que la masse propre du photon est rigoureusement
nulle, de facon a retrouver les équations de Maxwell sans les termes
additionnels en u;. Mais, ce faisant, elle tombe dans de graves compli-
cations en ce qui concerne les relations de commutation de la seconde
quantification. Nous avons vu, en effet, notamment que la relation
divE = o n’est pas compatible avec les relations de commulation de la
théorie superquantifiée des particules de spin 1. Pour sortir de ces
difficultés, la théorie quantique des champs est amenée a regarder le
cas du photon comme tout 4 fait différent du cas général des particules
de spin 1, alors que la Mécanique ondulatoire du photon, en admettant
que la masse y, est extraordinairement petite, mais non rigoureusement
nulle, a I'avantage de pouvoir faire rentrer entiérement le cas du photon
dans la théorie générale des particules de spin 1.

Voici quelles sont les hypothéses particuliéres qu’introduit la théorie
quantique des champs dans le cas du photon. Dans la théorie générale

(') Voir 4 ce sujet l'exposé de M. Dirac (Proc. Roy. Soc., série A, vol. 180,
mars 1942, p. 1-40). -
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des particules de spin 1 (et aussi, bien entendu, en Mécanique ondula-
toire du photon), on considére toutes les équations Maxwelliennes
.comme vérifiées en chaque point de I'espace-temps aussi bien aprés
qu’avant la seconde quantification, c’est-a-dire aussi bien quand on
considére les grandeurs Maxwelliennes comme des opérateurs de
Pespace des n que quand on les considére comme des grandeurs numé-
riques. La théorie quantique des champs admet ce fait pour toutes les
particules de spin 1 autres que le photon (par exemple pour les mésons);
mais pour le photon, elle suppose que seules les équations

. . __' 1 JH
(68) divH =o, oo =rotE

sont vérifiées en tout point de P'espace-temps, mais, selon elle, il n’en
serait pas de méme des équations

(64) divE = o, —Ié %};; —rotH = o, % -0;—\; +divA =o.

qui ne seraient pas vériliées en tant que relations en z, y, z, ¢ Le
premier membre des équations (69) définirait seulement des opérateurs
de lespace des n qui, appliqués a la fonction de répartition R des
photons, donnerait zéro. En d’autres termes, on aurait non pas les
égalités (69), mais les suivantes :

(dvE)Ri(n, ... ) =05 (i ()T? _‘I‘OtH) Ri(n, ...)=0;
C ot -
(70)
\ (é ’g +d|\A> 1{1(/1’ __.):“.

Ce serait Ia des conditions 1mposées a la fonction R. Les auteurs
disent souvent que, pour le photon, les relations (69) sont « des
conditions sur le W ». Il fant bien comprendre que le W dont il est
question est la fonction d’onde de I'espace n, c’est-a-dire la fonction de
répartition IR, et non pas le W du photon dans 'espace ordinaire.

Cette maniére de changer profondément le sens d’une partie seulement
des équations Maxwelliennes, quand il s’agit du photon, nous parait
personnellement trés artificielle. Elle’introduit une diflérence, logique-
ment peu satisfaisante, entre le photon et les autres particules de spin 1 :
les équations de toutes ces particules auraient en apparence la méme
forme, wmais une partie d’entre elles s’interpréterait tout différemment
suivant qu’il s'agirait d’an photon ou d’une particule de spin 1 de
masse différente de zéro : voili gqui ne nous semble guére satisfaisant.
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Quoi qu’il en soit, en définissant toujours la valeur moyenne des

opérateurs F dans 'espace des » par la formule

(71) ¥ :ZR’,‘(n, L OF(a, y, z, ) Ra(n, L),

on obtiendra toujours les équations de Maxwell et la relation de
Lorentz sous la forme

1 JH = ]
g-—-z‘?t—:mtE, divH = o,
) 1 JE )
Les rotH; di\']—?.zog I iX 4 div. 4—0,
¢ ot c Jt

mais, répélons-le, en théorie quantique des champs, les deux
premiéres équations (72) sont obtenues parce que l'on a en tout
point zy st de 'espace-temps les relations (68), tandis que les trois
derniéres équations (72) résulteraient non pas des relations (69), mais
des conditions sur R exprimées par (70).

Bien que la théorie quantique des champs retrouve les équauons (72),
il n’en’ est pas moins certain qu'en admettant implicitement pour les
photons la relation wo=o, elle est obligée, pour éviter des contra-
dictions, de rompre I'unité de la théorie générale des particules de spin 1
et de recourir a ’hypothése assez arbitraire qu’exprime la substitution
de (70) & (69).

La position adoptée par la Mécanique ondulatoire du photon en
posant p, > o nous parait préférable ().

9. Remarque sur la relation [E, N] = E. — Rappelons (2) que st A
et B sont deux opérateurs hermitiens d'un certain espace correspondant
a des grandeurs observables a@ et b et st 'on a entre eux la relation de
commutation [A, B] =C, les grandeurs a et b obéissent aux relations

(') On peut encore remarquer que l'interprétation de la théorie quantique des champs.
est incompatible avec une théorie non superquantifiée ol les grandeursi %? —rotH
et divE seraient nulles en tout point xyzt, car, si ces grandeurs étaient nulles, la
seconde quantification les transformerait en opérateurs de Pespace des n nuls en tout
point de ’espace-temps, contrairement & linterprétation de la théorie quantique des
champs : il y a li une difficulté i laquelle il semble qu’on ne puisse échapper qu’en
supposant p,% o

(*) Théorie générale des particules a spin, p. 3o & 32 (Gauthier-Villars, 1943).

LOVUIS DE BROGLIE. 10
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d’incertitude
— /:__.“‘__
(+3) AaAb;;TI) iCl avec Aa:\/(A — X)) A=V (B-B)*,

la moyenne de C étant prise dans I'espace ou sont définis A et B.
Soit alors I* une grandeur électromagnétique de la théorie du photon.

On a
~ W a
(7/|> If =chbk’

k

les I'y étant des nombres complexes définis comme éléments de malrice
liés a la transition de 'état k & P'état d’annhilation. I' est un opérateur
de l'espace des n, mais, comme les ¢y, il n’est pas hermilien et ne
correspond pas a une grandeur directement observable.

. . < ——
Soit encore N :ch ¢ le nombre total des photons non annihilés

k
présents dans un champ électromagnétique. On trouve
- ~ \ oo N \T i {\ — | . S ..1 . . % Lx \ R
(79 | ¥, NJ==FN — NI —Z(kI kzck"k’”’\"_l"k’"k'szl K
k - X K k
3‘ N x 10
:‘-‘l I SE (‘k"'k"'kl B "
kK
Comme {ck, cx] == o0 si k7 K et que [ex, el — 1, 1l vient
. ~ T W * . | > _ ~ . A . N
(76 [N = D e e o Py = ey = 1

k k

d’ou, par exemple, pour le champ électrique E,

<—-,) [E\,:E'

s

Ayant oblenu cette relation de commutation, la théoric quantique des
champs (vor HeirLer, Quantum theory pf radiation, p. 67) veut en
déduire la relation d’incertitude

(78) AEAN~E (')

Mais, du point de vue de la Mécanique ondulatoire du photon, cette
relation n'apparait pas comme exacte, parce que E est un opérateur non

(') La relation précise serait AE AN ‘: B .
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hermitien (') ne correspondant pas i une grandeur observable de
I'espace des n. On peut, il est vrai, définir pour les phénoménes & treés
grand nombre de photons un champ macroscopique observable

E\/E((Ek+ Ei), comme nous ['avons pllis haut, mais ce champ
Kk
macroscopique défini par une moyenne prise dans espace des n est un
nombre ordinaire et 'on ne peut parler pour lui de relation de
commutation. ;

Quant a I'opérateur E, = E + E’ (sans moyenne dans l'espace des n),
on vérifie facilement ¢u’il est hermitien et que P'on a

(79) [Eq N]=E—E*,

mais il ne parait pas qu’il soit intéressant de considérer cette relation
d’incertitude.

Bref, il nous semble que la relation (78) admise par la théorie
quantique des champs usuelle ne¢ doil pas élre conservée : on échappe
ainsi aux conclusions assez étranges qu’on déduisait de cette relation
(voir HerrLEr, loc. cit.).

(') Diailleurs, si E était hermitien, la relation (77) serait contradictoire, car le
commutateur de deux opérateurs hermitiens est antihermitien.

Note de la page 137 : ‘

(') On peut retrovver les mémes résaltats comme il suit. Considérons lu transi-

. 7 " Yoy . . . ’
tion nye-> ny. L'élément de matrice correspondant & opérateur e est

Z 6(;1k— ni’c) Vi G(Hk—»'— (— ni{),
n
k

Or ceci nest diflérent de zéro (N égal i \/ﬁk) que si ny = i 1. cest-dadive pour les
processus d’absorption.

5 s . N, we e : . : .
De méme, Uélénrent de matrice L o(rzk— M) VA S — 1 — ny ) qui correspond
Ilk
. ’ * . oy v . 4 . N . -
Fopérateur ¢y n'est diflérent de zéro que si g = ng—-1. cestdadive pour les processus

d’émission.

e




TROISIEME PARTIE
INTERACTIONS ENTRE MATIERE ET RAYONNEMENT.

———D e ———

CHAPITRE X.

_ THEORIE NON SUPERQUANTIFIEE DES INTERACTIONS
ENTRE MATIERE FT RAYONNEMENT.

1. Préliminaires. —.En Mécanique ondulatoire, I’étude des interac-
lions entre le rayonnement et la matiére doit se ramener essentiellement
a 'équation d’ondes du systéme photon + électron, puisque I'action du
rayonnement s’exerce sur les particules électrisées de la matiére dont
I'électron est le type.

Rappelons donc d’abord quelques généraliiés sur les équations d’ondes
de P’électron. Pour un électron libre (non soumis & un champ électro-
- magnétique), 'équation d’ondes s’écrit : '

(1) horo¥s A (:_xa'+ ';iyag+ (;iza;,) Yot moca, ¥y (6=1,2,3,4).

) v 0 “ho0 .
(2) Wop= —= o3 (Pilw=—sm o =123
nous_pourrons écrire (1) sous la forme
. I . >
(3) p WopWo—+ popa o= myca, ¥y,

> . . :
o élant une matrice-vecteur aux trois composantes &y, &, 3.

Mais on sait qu’en Mécanique relativiste, 1'énergie d’un électron de
charge —e placé dans un champ électromagnétique dérivant des
mgyc?

Vi—g

. . - .
— eV, somme de son énergie cinétique et

potentiels A et V est




150 CHAPITRE X.

de son énergie polentielle; de méme, sa quantité de mouvement est
myVv

\/l — %

e . . myv
— - A, somme de la quantité de mouvement cinétique ——

Vi1— 3

el

. . [
d’une sorte de quantité de mouvement potentielle — ;A.

Des lors, il parait toul naturel, quand on passe du mouvement de
Uélectron libre a celui de Pélectron soumis a un champ électromagné-
lique dérivant des potentiels A et V, de transformer I'équation (3) en y

remplacant W par W + eV et p,, par p,,+ ?A, ce qui conduit, en

tenant compte de la diflérence entre composantes covariantes el compo-
santes contrevariantes, i Véquation de propagation

h d A . ~ hJ e . R
1

Telle est, en effet, I'équation d’ondes que, guidé par Panalogie avec

—_

les expressions classiques, M. Dirac a adoptée pour fe mouvement de
P'électron dans le champ électromagndtique.

Pour distinguer les coordonnées de Pélectron de eclles du photon,
nous désignerons les premitres par XYZ et les seeondes par zyz. Nous
éerirons donce les équations de Dirac

~ I)
%) SR ot

:lh.‘l'q——e[\’—(;A)] U, (g=1,2. 3. {n

ot H, e¢st 'Hamiltonien de Dirac en Pabsence du champ

G o — he [0 o o ..
(b) “_—9,—7:—[ ’)T1|+;)—‘Yi‘1y_+ ’721;; = g ct .

Le lerme -—elV—(ZA)J de (5) et le terme d’interaction entre
¢lectron et rayonnement qui nous intéresse ])arliculi(n-mnvn( ici.

D’apreés la définition du vecteur densité-flux en théorie de Dirace,
nous obtenons les relations

3

4
' > 3 . >
(7) UWs(—r1)Wg; w/'(-v:\, Waeex .
G

ot 1 désigne fa matrice unité & 4 lignes et 4 colonnes et on z est le
vecteur-matrice de composantes oy, oy, a5 On peut considérer les
expressions (7) comme donnant les densités de valeur moyenne pour la
charge ct le courant électriques associés & Pelectron dans Pétat W, On
est done ainsi conduit & faire correspondre i la charge de Pélectron

Popérateur - - e 1 et an courant dican mouvement de Uéleetron Popé-
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>

raleur eca. Posons donc
N >
(%) Cop=—¢1, iy = ecca

Les termes d’interaction dans (3) pourront alors s'¢erire

Dans Dlexpression (¢), les grandeurs se rapportant & P'électron se
présentent sous la forme d’opérateurs, tandis que les grandeurs relatives
au champ électromagnétique ont gardé le caractére de fonctions de point
que Von suppose connues par ailleurs. On fait ainsi jouer, comuic
d’aillenrs dans la théorie classique, un role trés dissymétrigue al'électron
et au photon. La Mécanique ondulatoire du photon va nous permettee
de faire disparaitre cette dissymélrie peu satisfaisonte.

2. Formation de 1I’Hamiltonien pour le systéme photon-électron. —
Nous rappellerons d’abord que nous avons mis les équations v photon
dans le vide svus la forme

/B G WL

(16} — W = Hp Y- (ot =1.2.79. |
270 2 7 R : :

o T, est 'Hamiltonicn du photon défini pav la formule -

(ar (" he [ 0 Gd3, 4+t A QL dd, =+l
1) V= Y — E—
PTSE or 2 AN 2
o A dd 5030, , !
nal P A Y 7 TR B A
(7 &4

Cherchons alors quel doit étre, du point de vue de la Méeanique
ondulatoire du photon, I'llamiltonien du systéme photon - - électren.
Tout d’abord, considérons un photon et un ¢lectron en néghgeant
leur interaction. L'onde W' de Vélectron satisfail a I'équation (39, celle
du photon a I'équation (10). En posant
(12 Wege(w 0, 50 Xy Y 2, O =W (N Y 2, W, o 50 70

nous définissons une fonction d'ondes & 64 composantes pour le systéme
électron + photon. Cetie fonction d’onde satislera ¢videmment a
I'équation
. L 0 [+ a3\, A, -+ (@, .
(13) (—'—)\1 e = [n.. B n.,]u -
: " .

anl N 2 ‘

qui représente nn systéme de 6.4 équations.
La tiche essentielle que nous avons maintenant & remplir est d'intro-
duire Uinteraction entre P'électron et le photon en ajoutant un terme
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supplémentaire dans 'équation (13). Pour cela, nous devons inspirer
du terme (g) que nous avons rencontré cn théorie de Dirac, mais, afin
de traiter symétriquement photon et électron, nous allons remplacer les

fonctions V et A par des opérateurs V,, et A, qui agiront sur les

>
indices se rapportant au photon, comme les opérateurs 1 el « agissent

sur les indices se rapportant a I’électron. Toutefois, cela ne suffira pas
encore, car il nous faudra de plus exprimer ue le ch imp électromagné-
tique cu un point agit sur la charge élect: qr e qui se trouve au méme
point de I'espace. Si nous admettons que :t.e mrconstance est réalisée
d’une facon tout a fait rigoureuse, il nous faudra faire mtervemr dans le
terme d’interaclion un facteur de la forme

B(X —2)3(Y —1)8(Z —3)=3(R —1),

de sorte que le champ électromagnétique au point X, Y, Z agisse uni-
qucmem sur la charge électrique se trouvant au pomt r=X,y=Y,
s L.

Finalemen!. nous écrirons done le terme d’interaction sous la forme
g H{“:_e[vnplﬁ(ZAnp)‘Ia(R—r)'

Or nous avons été amenés précédemment a prendre pour opérateurs
<ervant a définir les potentiels les opérateurs suivants () :

- >
a3, — A, aAdG, — BA,
(3) '.I,—l\'—)L—, A,.|.=~I\’————?————a

oy kK . X . .
R’ étant la constante — qui, aprés la seconde quantification, se trouvera
ny .

multipliée par Vﬁ;. et donnera K. Nous obtiendrons donc pour (14)
i > >
(16) “‘,:_K,ela.‘—zakw(zaas‘—asa‘ﬂa(n_”’
E 2 -

et, par suite, pour 'équation d’ondes photon - électron.

(1- —_lt_ 7 (.l;—i—(i’nq

ami dt 2

) > -> N
= H..——a‘tab+llp——k’e a?,.:a‘_F(;aash:osa,,))a(R_n Year,

jd et

avee . o, t=1, 2, 3, 4. Cette équation représente 64 relations entre
lesw 6] | PP

(') Voir Chapitre III, formule (28).
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3. Etude des éléments de la matrice Hit). — Dans Péquation
d’ondes (17), nous voyons figurer-le terme perturbateur défini par
Popérateur (16) a c6té de 'Hamtltonien non perturbé

Hy as-’: @3,

-+ Hp.

Les fonctions propres de I’'Hamiltonien non perturbé seront fournies
par les produits Wi, W d’une onde plane du photon par une fonction
propre de I’électron. Les ondes planes du photon sont données par les
formules

. 2z
(18) Yl = all eilkter—lar] ki= =i kP = | kif2+ k2,

les «if) étant des constantes liées par des relations que nous avons précé-
demment étudiées.

Pour I’électron, les fonctions propres ne sont des ondes planes que si
Pélectron est libre : elles ont alors la forme

0 R . o= L 47,
(19 qp(Pm.)= (t(pﬂ)el;Kmrt ) 8 G Kn= E\V'"; KL =1Kn, 2+ -—h_—zml-)c-,
les al étant des constantes lides par des relations que nous connaissons.
Mais; si I'électron est placé dans un champ permanent, par exemple
dans le champ du noyau d’un atome, les W représenteront des états
stationnaires de I'électron dans ce champ et 'on aura

(20) Yimi= all(X, Y, L) enet,

les a§” (X, Y, Z) étant les amplitudes complexes des fonctions propres,
amplitudes qui sont en général variables d’un point & un autre. La
forme (20) est générale et contient la forme (19) comme cas particulier.-

Considérons la transition' quantique du systéme électron + photon de
'état symbolisé par (I, m) a Pétat symbolisé par (I, m'). L’élément de
la matrice H*) correspondant a cette transition a pour valeur

Hﬂ;’m,zm=ff‘lf“"'(r)W"’"”'(R)H“"P"”(l')‘l”"”(R)der

: > >
’ . e By—A AB, — BA
(an) =—K efv[wm (x) Wim' (R)[ = ‘+<2 = ‘)]
% 8(R — ) Wi (r) Won)(R) dR dr

=—ef[V,',pm:,,l+<A1r18m7"’-')] dr
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avec les définitions suivantes :

”__ ING \ q-w/\i< ) ‘lk‘l /\( >,
0'7
(22) y A[,/z_l\-rz‘l-g’m( )CLU‘ ——GZ’dkllﬂ/‘( r),

g

v \Jriatiygeim . AR ‘>| st
o= ¥, l(; ] o fm'uz:“— c If’ A Ia .

4 4

Ve et Ay sont done les densités d’éléments de matrice correspondant
aux potentiels /' du photon, tandis que pu, et £, sont les densités
d’éléments de matrice correspondant aux composantes du quadrivecteur
densité-flux poar la transition m — m' de 'électron.

A toute transition {— ! subie par le photon d'un état [ a un état /,
correspondent des quantités Vy; et Ay, mais, ainsi qu'il résulte des
considérations du chapitre précédent, seuls les éléments V. et Ay
tels que P'un des états { ou /' soit I'état d’annihilation interviendront
effectivemnent, car seules ces grandeurs contiendront le facteur
énorme \/n, aprés passage a la seconde quantification, ce qui assurera
leur entiére prépondérance. Les seules quantités du type Vi ou Ay
qui interviendront vraiment seront V., et A,; d'une part, V; et Ay
d’autre part, correspondant respectivement a I'absorption d’un photon
primitivement dans I'état [ ¢t & 'émission d’un photon dans cet état.

11 est visible que V,, et A, sont les potentiels V, et A; que nous
avions précédemment définis comme attachés a l'état [ du photon,
tandis que V,, et Ay sont les grandeurs conjugudées de celles-la. Sinous
considérons les qnantités réclles

(23) ‘”/.) =1 \'[+ \; == \'0[—{»- ‘7/0’. A,”: A[-+— A_; == A-()l+ A/(l)

il est évident que le premjer terme correspond au processus d’absorption
el 'c second 4 un processus d’émission. Nous avons insisté sur ce point
au tome II de notre Noucelle théorie de la Lumiere (p. 76 4 79). en
nous appuyant sur le calcul explicite des éléments de matrice I}, ,,
et Hy,. ... que nous ne reprendrons pas ici.

Toutes ces considérations sont en parfait accord avec les conclusions

du chapitre précédent.

4. Difficultés soulevées par lUemploi de l’équation non superquan-
tifiée (1~). — Si l'on veul se servir de I’équation que nous venons
d’obtenir pour le systéme électron-photon, on est amené a utiliser, pour
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étudier Pévolution de ce systéme, la méthode de variation des constantes
de Dirac. Mais dans 'application de cette méthode, on se heurte a un
cerlain nombre de difficultés comme nous l'avons déja signalé au
Tome 11 de notre Nouvelle théorie de la Lumiére. En particulier,
I'hypothésé que les ondes sont normées est cssentielle pour la validité
de la méthode de variation des constantes : or, ici, la normalisation de
I’onde W' souléve des difficultés, car elle conduirait a écrire

—+ =
/ oz =1.

— =

Voict une autre difficulté qui nous a été signalée par M. Jacques
Courtois. Les 64 ¢quations symbolisées par 1'équation (17) sc
divisent cn deux ensembles en multipliant successivement par

A 3.\ 2 A, — 03, \2 . . .
<—%—‘> et par <——"—;———") - On obtient nne déquation d’évolution et

une équation de condition de la forme (*)

A h d‘-—@’a“
B) smg = a e
) d @3\
_ ‘ "Dah—+- d3, 4 <CU+ i ) 0,
: 2 2
> > N
AR, — BE Q— BN ]
a4y ! +K'e 2M 3(R—r) = Yooz,
(24) > 2

o [z,

’

A, — B, [ Ay — B\
+K;e(0‘3‘—aal_:a65'»:0 -‘< 5_2' "‘> )5(R-—I’) Yogo= 0.
2 s -

Les équations (C) sont des équations de condition ou n’interviennent
pas les dérivées des W ,. par rapport au temps : l'existence de ces
conditions fait que les W, ne peuvent pas, en général, étre considérées
comme des combinaisons linéaires des solutions de Péquation non
perturbée (13), ce qui rend illégitime P'application de la méthode de
variation des constantes.

Néanmoins, il convient d’observer que, comme le montrent des

2 2

> -
. -, [ ram,—aa, A, — B\
calculs simples, les termes I\’e(aau‘ Be ) <a‘ > (R—r)
\ /

2 — @B 2 .
(') Le fait que (cl,-t—(la,> —+—<a‘ - < ‘> =1 prouve que les équations (1) et ()

sont équivalentes A I'équation (17).
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figurant dans les équations (E) dépendent uniquement des ondes trans-
versales, tandis que les termes '

Ay — > BE, — ¢ G 2
Ko [m - asbl <aawu - acm) <aHz_ cB,,) ] 5(R—1)

figurant dans les équations (C) dépendent uniquement des ondes longi-
tudinales. Il en résulte que la difficulié signalée n’existe que si Uon fait
intervenir les ondes longitudinales et disparait si 1on se borne a
considérer les ondes transversales.

Cependant, méme si 'on se borne a considérer les ondes transversales,
I'emploi des équations non superquantifides est toujours, en principe,
illégitime. Il y a, en effet, toujours un nombre immense de photons dans
I’état annihilé susceptibles de donner lieu a des phénoménes d’émission
puisqu’on n’a jamais constaté une saturation de ces phénoménes : il
n’est done jamais légitime de considérer que 'on a affaire a un seul
photon.

Autrement dit, dans tout probléme relatif a l'interaction entre la
matiére et le rayonnement, il est toujours nécessaire d’introduire pour
les photons la seconde quantification, et cette conclusion va nous
conduire a ecnre sous une autre forme I'équation du systeme électron
—+rayonnement.



CHAPITRE XI.

THEORIE SUPERQUANTIFIEE DES INTERACTIONS
ENTRE MATIERE ET RAYONNEMENT.

1. Evolution de la fonction R de répartition en théorie superquan-
tifiéke. — Nous avons vu que I'évolution de la fonction de répartition R
est donnée par une équation de la forme

.,) -
(1) ’—)-t-R(n,,...,n,,,...,n,,l,...,t)
2%

= 2 N V(e + T 80)

nm

: eni

_;” \En—E,)¢

X R(ny, ..o, np—1. ..., mp1, ..., t)e s

ou Ht) est le potentiel perturbateur et H('), I'élément d’indices nm de
la matrice (de Schriodinger) engendrée par opérateur H') dans le sys-
téme des fonctions propres de I’hamiltonien non perturbé.

Pour étudier I'évolution de R dans le cas le plus usuel, supposons
que Von connaisse la répartition des particules entre leurs états pos-
sibles d’énergie a un instant initial ¢ = o : cette répartition est repré-
sentée par un certain jeu de nombres entiers ny, ..., fn, ...y, . en
Donc a linstant ¢ = o, la fonction R est nulle partout dans l'espace
des n sauf au point qui est spécifié par le jeu de nombres entiers en
question et en ce.pointon a R =1. La probabilité pour qu’une transi-
tion n—> m se soit produite a I'inslant ¢ est donnée, d’aprés la signifi-
cation méme de la fonction R, par la quantité

[R(Ry, ooy Rp—1, oo, A+ 1k, .. E) 2
Pour suivre I'évolution de cette probabilité pendant un certain temps,

nous pouvons utiliser I'équation approximative

dJd
(2) : ()—tR(n.,...,n,,—x,...,n,,,-q-l, vy )

Y .3
—
HL), ;/n,,(u,,l—;- t)e "

2w L (K — K1

2
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car, si H" est une perturbation faible, ce que nous supposerons,
R(ny, ..., nuy ..., num, ..., t) reste assez longtemps sensiblement
égal a 1, les autres valeurs de R restant sensiblement nulles.

La solution de I'équation (2) telle que la valeur initiale

R{ny, ....n0—1, ...y ~+1. ..., 0)

soit nulle est

SRl R
i (Ey —E, i

, e — 1
3) R{ngy, ..., ny—1, ..., ny+1.....0)=H) \/n,,(n,,l+1)——F——E—-——--
/A n

Pendant Pintervalle de temps ou cette solution est valable, 'expression
de la probabilité pour qu’'une particule ait subi sous 'action de la per-
turbation pendant P'intervalle de temps ¢ la transition n —> m est

(4) [R(7gy ooy =1, oo, A1, oo, 1) ]2
o Hit) |2 ) .
= (E ml;' e I— COS "—(Lu hm)t I’L,,(Il,,,v-Q—I’).

n— Lp )7 .

Cette probabilité est proportionnelle au carré de I'élément de matrice H),,
et c’est ce qui donne a cette quamité une importance particuliére.

I1 peut arriver que certains H{}) soient nuls. Cela signifie que la tran-
sition n — m ne peut s’effectuer directement : il n’en faut toutefois pas

mi

conclure que le passage de I’état n a 'état m soit impossible, il peut
s’effectuer avec étapes intermédiaires, par exemple avec une étape inter-
médiaire dans un état psi Hi!! et Hj)) sontdifférents de zéro. Plus géné-
ralement, nous supposerons qu’il y ait plusieurs états p possibles suivant
le schéma
AP
n /1P \5‘1 m.
p /
NG

Dans ce cas, I'équation (2) doit étre remplacée par les équations

o
5 R(ng, oooonpg—1, .00 =1, ooy By ooy 1)
ani , (Eu—l'ﬂ —_— e
~ TII},’,,‘& \/n,,(n,,—e—l)

(5) —R(nl. e My L e Ry ey BT, e )

= _};—ZH(Hilj)l V (’Lnl+1)("/;+1)
P

SRRy voey By— 1, ooy, HpT, oo, Rygy ooayl)e

bl
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L’intégration de la premiére équation (5), avec la condition initiale

R(ny, ..oy ne—1. oy mp+1t, ..., By ..., 0) = 0, donne
(6) R(ny. oo, my—1, o, 1, ooy Ry oy )
e, ~E
—— e —1
—-}I},n \/ﬂ,,(ﬂ/;—f-l)—'—r‘,—-‘[‘,ﬁl
‘. p

et la seconde équation devient

7
(7) I)—tR(n,. e g — T Ry Ry 1, L )
”'(E —Eml L (By— Bl
L33 . e " —e
= _—" Z"mp Hnu \/”u(nm —+ 1) (n/;+ I) 5 E
“n P
/I
D’oa, en intégrant avec la condition initiale
(8) BRlr, .., =1 oo, e ooy Rpp4=1. L., 0) =0,
il vient
(9) R oo ng—1, .00, Ny ooy Ryg+1, ..., 1)
QYA T ——
pH
L (N1 (N
.J l‘ll — ]‘4’,, kY ALY/ )( r )
swi
e (Ba— B -—(F —E,,\¢
9 h n — e I 4 —y
E,—E, Ep_ En
Posons
(10) g, =Y
i T
dined b, — lt,,

G

nous trouvons pour la probabilité de passage de 1'état n a I’état m dans
Vintervalle de temps o -> ¢ par Pintermédiaire de I'un quelconque des
états p une expression de la forme

(1) Ry, ooy =10 o, R oy 1, o, E) ]2

2 1, 2 LRI, . Y
(I—m-:’_"i‘T [1 — cos == (K, — Is,,l)[] Ry 1) (1) + 1)+ ..,
les termes non écrits n’intervenant pas effectivement dans les calculs
usuels.

On pourrait développer des calculs analogues pour les cas ou le pas-
sage n ->m s'effectuerait avec plusieurs élapes intermédiaires succes-
sives.




160 CHAPITRE XI.

2. Probabilités de transition par unité de temps. — La notion de
probabilité de transition par unité de temps intervient quand on a
affaire a des spectres continus.

Supposons que I'état final m appartienne a un intervalle extrémement
petit AE d’un spectre continu et plagons-nous d’abord dans le cas o la
transition 7 — m est directement possible. Alors la probabilité totale du
passage de 'état » a 'un quelconque des états m de U'intervalle d’énergie
E > E + AE sera ‘
[Hiiu

(12) Pagn(t)=2 AE(E—=E7)_2

”"(”,'"'"')[I— cos ?Ex(b‘, — E,l)t] »(E)dE

LT N
4w smz(h-—h,,)t

= LI )
T YAe

¢(E)dE.

T

~(E—E,)

7 )

Par définition, la probabilité de transition par unité de temps sera

(13) ' PAk= lim Par.(t)
= fim =
si cette limite existe.

Or, on voit facilement que si E, n’appartient pas & P'intervalle AE, la
quantité Py, , (2) Aprend pour ¢ —co une valeur constante proportionnelle
a AE, tandis que si E, appartient & AE, les éléments de I'intégrale (12)
correspondant aux valeurs de E voisines de E, sont prépondérants et
la limite de Pay,(¢) croit comme ¢ pour ¢ trés grand. Dans le premier
cas, la probabilité de transition par unité de temps est donc nulle, dans
le second elle a une valeur finie.

Plus précisément, si E, appartient & AE, les ¢léments d’intégration
extérieurs a U'intervalle 6E = E — E,, apportent a I'intégrale une contri-
bution négligeable dés que le temps ¢-est trés supérieur A la valeur

h
*=
Alinsi, il n’y a probabilité de passage par unité de temps sensiblement
différente de zéro que vers les états m du spectre continu dont I'énergie
© est presque égale a 'énergie E, de I’état initial, ce qui permet d'écrire
Pg, . ala place de Py ,.
Ce résultat exprime la conservation de I'énergie en Mécanique ondu-
latoire et I'on voit qu’aprés avoir attendu un temps d¢ a partir du début
de la perturbation, on ne peut prévoir I'énergie deI’état final qu’avec une

incertitude qui est au moins égale a - C'est la un aspect de ce que

927 ot
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l'on nomme souvent la quatriéme relation d’incertitude d’Heisenberg.
Pratiquement, la conservation de I'énergie est réalisée presque instanta-
nément et I'on peut dire que la probabilité de transition par unité de
temps n’a une valeur différente de zéro que si I'état final m a méme
énergie E, que I'état initial. L’expression de cette probabilité est la sui-
vante

sin 7 (E—Eg,)¢

. . s h( n) JE.

VAT i : /l

S A 2 (1) p(EY) -

L g | Bt et ] Z(E—En)
N

(l/;) !l,,n—h
car 'élément d’intégration contenant la valeur E = E, est enti¢rement
prépondérant dans l'intégrale (12), et 'on peut, sans erreur sensible,
remplacer p(E) par p(E,), puis étendre l'intégration a toutes les
valeurs de E.

En posant u = 7 (E—E,l)t, il vient
. . I 4w? ht (77 sinu
(13) PEu,n = ll;"; 7 e ! mn I ’Ln<nm+ 1)9 (Ell) - [r 122 du
im0, .\
=T ), Pro(n,+1Ds(kK,).

Telle est la formule fondamentale donnant, dans la théorie superquan-
tilide, la probabilité de transition par unité de temps quand I'état final
appartient 4 un spectre continu et que la transition de l'état initial a
Pétat final est possible directement.

Si c’est I'état initial » qui appartient & un spectre continu, la transi-
tion n > m étant toujours directement possible, on trouve

2
<

(16) l'm}' = [ Hi)) 2 ”/1("1:;"‘"‘)9([‘:»:)-

“m

Si le passage n—>m n'est pas directement possible, mais peut
s’effectluer avec étape dans un état intermédiaire p, il faut reprendre le
calcul en partant de la formule (11). Mis & part certains cas exception-
nels ou il y aurait résonance entre les états m et p, les termes non
écrits de la formule (11) ne donnent aucune contribution appréciable et
I'on peut les négliger. On obtiendra donc les formules applicables ici
en remplacant dans (15) et (16) les quantités H) et \/7.(rm+ 1) res-
pectivement par H/, et \/n, (1, =+ 1) (n,-+ 1), ce qui donne

°

EEN

(17) Pin= e i 00, 120, (4 1) (1 120 (En).
n 5 Is

/

LOUIS DI BROGLIE.
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Il est trés important de remarquer qu’i! y a encore conservation de
’énergie dans le processus global de passage de I'état n & m, mais qu’il
n'y a pas nécessairement conservation de I'énergie dans les processus
partiels n — p et p — m.

On pourrait naturellement généraliser la théorie pour les cas ou le
passage n -» m s’effectuerait avec plusieurs étapes intermédiaires suc-
cessives. On aboutirait ainsi & une classification des phénomenes de
transit‘on qui a une grande importance d- us I'¢tuce des phénomenes
d’interaction entre matiére et rayonnemer [ :s processus de transition
directe 7 — m sont dits du premdier ordre : leurs probabilités sont des
fonctions du second degré des éléments de la matrice Hi*). Les processus
de transition du type n — p — m avec une étape intermédiaire sont dits
du deuxiéme ordre : leurs probabilités s’expriment par des fonctions
du quatriéme degré des éléments de la matrice H*). Plus généralement,
les processus de transition faisant intervenir £ — 1 étapes intermédiaires
sont dits du £'*"° ordre etleurs probabilités s’expriment par des fonctions
de degré 2k des éléments de la matrice H(*).

3. Equation d’évolution de la fonction R pour le systéme électron-

. rayonnement. — Nous savons que pour le systéme électron + photon le
terme perturbateur de ’'Hamiltonien peut s’écrire (1)
_ @B 2561 403 V
(18) ”m:__]\’,,v["_:a_"l_<Z.._';_?_‘l‘__’:)]6(R—r)
avec
. A
(19) K= K= :

Ve Anyiton
Nous savons aussi, d’apres le dernier paragraphe du précédent Chapitre,
(que ce terme perturbateur peut se décomposer en deux parties, I'une
relative aux ondes transversales, 1’autre aux ondes longitudinales,
suivant le schéma (2),

Hio = HD + Hily,

v P
;0 =_n'p( oa4+aas ) <a““’3‘> 3R —r),
(20) \
. -> -
Hilg=—K'e l_—@‘:a‘ | — (a "m‘ja“}‘) <a“:"3">'Ja(R—r)
4 4

(') Formule (16) du chapitre X.

(?) La difficulté signalée page 153 pour la méthode de variation des constantes sans
seconde quantification wexiste plus ici si Pon pose @ priori comme postulat la validité
de Véguation ().
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Pour introduire dars ce probléme la seconde quantification, il serail
logique de I'appliquer a la fois aux électrons et aux photons. Néanmoins
pour n’avoir pas a utiliser le formalisme assez compliqué de la
seconde quantification pour les €électrons, on peut se contenter, comme
on le fait usuellement en théorie quantique des champs, d’introduire la
seconde quantification pour les photons.

SiR(ne, ..., niy ..., t) est la fonction de répartition des photons,
on se conlentera d’écrire comme équation d’évolution pour R

o
(21) ;};R(llu,...,IL[,...,IL[',...,I)

277 O
(1 T
3 2 l]['l;l’,llll vy +1—0y)

I dm

i, . N
S R E gy By B

X R(ny, ..o, ny—1, .., np+1.... e 4

les éléments de matrice étant définis, a la maniére de Schridinger, par
les fonctions propres débarrassées des facteurs exponentiels dépendant
du temps.

Mais nous savons (u’en raison de la valeur pratiquement infinie
de ny, nous pouvons ne garder au second membre de I'équation d’évo-
lution que les termes o 'un des indices est égal a zéro. Nous poserons
donc

(22) ”~tR(no, ey l)

]

251 . _—
= —u[ EH’\O‘,,’U,,,,L \/no(n[—f-l)R(no—l. ces R, L 1)

m'm

e
S [+ Ep— Bt

< e’
+2H},’,2,,(,," Vit + DR (ne+1. ..., ny—1, ... 1)
m'm
e_ e—h—-"‘i [B1+Ep —Eplt

ot nous avons vu que l'on a (car ny+ 1 > n,)

" ) foume
"(f’il/l’./flt \/Il():—ej [vl Qmm'— <A[ _Z— (ll‘;

(23)
13 fvee fm n’ &1 R
Honir o Vi =— ef [V; Pmm’'— (A; T')] dr ~ H[,,l)r,o,,, Vie+1,

"

V, et A, étant les potentiels attachés a Ponde ! (définis a 'aide de la
constante K =K' \/;1:) et V; et A; étant les quantités complexes coniu-
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guées. On pourra d'aillenrs décomposer ces expressions en termes se
rapportant aux ondes transversales et ne contenant que les composantes
transversales du potenticl-vecteur et en termes se rapportant aux ondes
longitudinales et contenant seulement le potentiel scalaire et la compo-
sante longitudinale du potentiel-vecteur (!).

Par la méthode esquissée au paragraphe précédent, I'équation d’évo-
lution de R permet d’étudier les transitions provoquées par les inter-
actions entre matiére et rayonnement. D’aprés ce qui vient d’étre dit,
cette étude peut se décomposer en I’étude des effets des ondes transver-
sales et en celle des effets des ondes longitudinales. Dans ces études,
on aura d’ailleurs a distinguer les processus du premier ordre s’opérant
directement sans étape intermédiaire, les processus du second ordre
s'opérant avec étape dans un état virtuel intermédiaire..., les processus
du n'*™“ ordre s'opérant avec étapes dans n — 1 états virtuels intermé-
diaires, etc.

Dans tous les cas, au bout d’un temps extrémement court la conser-
vation de ['énergie sera réalisée dans le processus global de passage de
Iétat initial a I’état final, sans d’ailleurs que cette conservation ait lieu
nécessairement dans les états intermédiaires. Finalement, l'énergie
perdue (ou gagnée) par le photon est toujours gagnée (ou perdue) par
I’électron.

%. Interactions matiére-rayonnement dues aux ondes transversales.
— Nous avons fait une étude assez détaillée de ’action des ondes trans-
versales au tome Il de notre Nouvelle théorie de la Lumiére. Elle
montre que les phénoménes d’émission et d’absorption de la lumiére
par la matiére ainsi que l'effet photoélectrique sont des processus du
premier ordre s’opérant directement sans passage par un état virtuel
intermédiaire, tandis que les phénoménes de diffusion (diffusion cohé-
rente de Rayleigh, effets Raman et Compton) sont des processus du
second ordre impliquant I'intervention d’un état virtuel intermédiaire.
Des processus d’ordres supérieurs au second se présentent aussi dans
cette théorie : ainsi I'émission par onde d’accélération (fond continu

(') On remarquera ici, ce qui est trés important, que les potentiels V, et A, qui
interviennent dans l'équation d’évolution (22) sont précisément les potentiels définis
par la Mécanique ondulatoire du photon sans seconde quantification. Ce sunt donc les
grandeurs électromagnétiques complexes des types I' et F* (et non leur valeur moyenne
dans I'espace des n) qui réglent les probabilités des transitions quantigues : ceci montre
que ce sont les grandeurs complexes qui sont les véritables grandeurs électromagné-
tiques de Péchelle microscopique.
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des rayons X par exemple) est un processus du troisiéme ordre impli-
quant I'intervention dé deux états virtuels intermédiaires.

Les expressions que fournissent les calculs pour Uintensite de ces
divers phénoménes se raccordent avec celles que faisait prévoir 'appli-
cation du principe de correspondance en partant des formules fournies
par la théorie électromagnétique classique du rayonnement : elles sont
en bon accord avec I’expérience.

Sans insister sur le détail des calculs, nous nouas bornerons a rappeler
un point important. Les formules du paragraphe précédent montrent
que la probabilité d’absorption d’un photon, primitivement dans 1’état
d’énergie E,, est proportionnelle a la valeur initiale de n,, tandis qué la
probabilité d’émission d’un photon d’énergie E, est proportionnelle a la
valeur initiale de n,-~ 1. Ce fait se rattache directement au célébre rai-
sonnement qui a permis en 1916 & Einstein de relier la loi du rayonne-
ment noir de Planck a la loi des fréquences de Bohr.

Einstein envisage un trés grand nombre d’atomes de méme espéce se
trouvant en équilibre thermodynamique avec le rayonnement noir
ambiant dans une enceinte maintenue & la température uniforme T.
Soient E, et E,, > E,, deux niveaux d’énergie quantifiée de ces atomes.
Désignons par N, et N,, les nombres d’atomes dans chacun de ces états
quantifiés. Si nous admettons la loi des fréquences de Bohr, les atomes
qui se trouvent dans I'état d’énergie E,, peuvent passer dans I'état
d’énergie E, en cédant au rayonnement un quantum Av;=E,—E,
d’énergie radiante de fréquence v; et inversement les atomes qui se
trouvent dans I'état E, peuventpasser dans }état d’énergie supérieure Ep,
en ewpruntant au rayonnement un quantum Av, d’énergie radiante de

_fréquence v;. Le second processus se produira. en moyenne par unité
de temps un nombre de fois qui sera proportionnel : 1°a N,; 2° au

nombre moyen n, de photons :dans 1'état d’énergic hv,. De méme, le

premier processus se produira en moyenne par unité de temps en

nombre de fois qui sera proportionnel : 1° & N,,; 2° en nombre moyen ne
des photons d’'énergie hv; augmenté d une unité. Pour que I'état

d’équilibre ne soit pas troublé par ces échanges d*énergic entre matiére
et rayonnement, ce qui est thermodynamiquement nécessalre, il faudra
donc avoir

(24) Nm(;il'f'l):Nn—I;[.

D’aprés la loi de répartition bien connue de Maxwell-Boltzmann, dans
un état d’équilibre thermodynamique cdractérisé par la valeur T de la

i e T DD —
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température absolue, on doit avoir

) o
T Epm—E hv
i N, e KT m_n jadj
(25) = ~ =¢ T = ek,
N _‘;_’,'l: ’

la derniére expression provenant de la loi des fréquences de Bohr. 11 en
résulte que

Az
(ah) Hi-1=n,ek",

ou

1

o= —
tEa M=

.

ekt — g

Tel est le nombre moyen des photons d’énergie Av, dans le rayonne-
menl noir a la température absolue T.

Si 'on considére un trés petit intervalle speciral v, le nombre des
états distincts dont des photons enfermés dans une enceinte vide de
volume ¢ sont susceptibles et dont les fréquences sont comprises dans
I'intervalle spectral trés petit 6y, est d’aprés une formule ¢tablie par
sir J. 1. Jeans

8xv?
— OV .

(28 29 =

Chacun des états possibles étant occupé en moyenne par le nombre (27)
de photons dans I’état d’équilibre thermodynamique a la température T,
il ¥ aura

(g 59C. L : —-!-—— vy

3]

kT ekt g

photons ayant des fréquences comprises dans l'inlervalle spectral
v — v+ dv. Comme dv est trés petit, chaque photon de cet intervalle a
sensiblement ’énergie Av et 'on obtiendra la densité spectrale del’énergie
dans le rayonnement noir en multipliant par v le nombre des photons
de intervalle 3v, puis en divisant par ¢, ce qui donne

30 e(v) oy = §-‘—LL; le

ekT —

o
09,

¢’est-a-dire la formule bien connue de ’lanck.
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Le raisonnement précédent a ici pour nous le grand intérét de nous
montrer comment la formule de Planck dérive de I'introduction des
facteurs 722, et n;+ 1 par la théorie de la seconde quantification appli-

quée aux photons considérés comme des particules a fonctions d’onde
symétriques.

5. Interactions dues aux ondes longitudinales. — Les termes corres-
pondant aux ondes longitudinales dans I’équation d’évolution de R sont
susceptibles d’une interprétation particuliére qui est bien connue en
théorie quantique des champs : ils correspondent aux actions électro-
magnétiques entre particules chargées et notamment aux actions Cou-
lombiennes. Mais dans la théorie quantique des champs sous sa forme
usuelle, cette interprétation a quelque chose d’un peu paradoxal. En
effet, la théorie des champs admet que l'on a rigoureusement g, = o et
elle postule I'invariance de jauge qui enléve toute réalité physique aux
potentiels. Or si py= o0, les champs des ondes longitudinales sont nuls
et 'onde longitudinale se réduit toujours a une onde de potentiels. St
donc les potentiels n’ont aucune réalité physique, ces ondes peuvent
étrc considérées comme inexistantes et il est paradoxal de les faire
intervenir pour expliquer quoi que ce soit. En Mécanique ondulatoire
du photon, ou nous admettons que ., n’est pas rigoureusement nul et
que les potentiels ont un sens physique, les ondes longitudinales com-
portent a la fois des potentiels et un champ électrique : elles ont donc
un sens physique et leur intervention pour expliquer certains phéno-
ménes cesse d’éire paradoxale. Ici la supériorité du point de vue de la
Mécanique ondulatoire du photon sur celui de la théorie quantique des
champs nous parait certain (').

Nous allons donc calculer, en Mécanique ondulatoire du photon,
Uinteraction de deux particules électrisées de charges ¢, et e, par
I'intermédiaire des ondes longitudinales. Nous désignerons par ¢ I'état
initial du systéme formé par les deux particules et le rayonnement et
par f I’état final de ce systéme. Nous savons que la probabilité d’une
transition faisant passer le systéme de I'état ¢ a 'état f par I'intermé-
diaire d’un état virtuel p est fournie par le carré d’un élément de

(*) Beaucoup d’auteurs disent que les ondes longitudinales ne sont pas quantifiées
puisqu’elles se trouvent éliminées quand on introduit & leur place 1’énergie coulom-
bienne. Nous ne partageons pas cette opinion. Le fait méme d’interpréter I'interaction
couloinbienne par des ¢changes virtuels de photons montre que I'on admet 'existence
des photons longitudinaux, donc la quantification des ondes longitudinales.
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matrice H'; dont expression est
(1‘ (l)

(31) ""‘_2 - HypHpi. T
—E,

H!") ¢tant la matrice d’interaction correspondant au potentiel pertur-
bateur qui provoque les transilions.

Considérons donc I'onde électromagnétique longitudinale définie par
le vecteur k. Prenons l'axe des z dans la direction de k. Nous avons
comme expressions des potentiels longitudinaux

(32) A= \/Tf_% P, V=y, ,E‘kk’_“ P (P = et ¥r),

La transition élémentaire par laquelle la particule de ch.arge eji(j=1,2)
céde de I'énergie et de la quantité de mouvement a 'onde longitudinale
considérée en passant d’'un état m de quantité de mouvement K,n~h—
4 un état m' de quantité de mouvement Km,f% a une probabilité pro-

portionuelle au carré du module de I'élément de matrice (')

J——
he
(33) "/mf Onz—e/\/ f\ g g g— LXK ~Kun re—ikr oz
4 .

=kiv A

7 1 P . . }
+ vk 2 At ayalt e~ Ku-Kulf g~ikr gs
. g
i

ot @ et @) sont les amplitudes pour I'étal initial et I’¢tat final de la
particule électrisée.

Sur Texpression (33), on voit que la transition n’a une probabilité
différente de zéro que si

{ 3./)) K)y—K,= k:

c’est-a-dire s’il y a conservation de la quantité de mouvement. Mais il
est facile de vérifier qu’il n’y a pas alors conservation de I’énergie : celte
transition ne peut donc pas se produire senle. Par contre, deux trangi-
tions de ce type, dont chacune conserve la quantité de mouvement sans
conserver I'énergie, peuvent se produire successivement en formant au
total un processus qui conserve a la fois ’énergie et la quantité de mou-
vement et dont la probabilité sera donnée par le carré du module de
Pélément de matrice (33).

(*) Nous avons au second membre supprimé les indices / pour 4 et k-
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Nous allons considérer un tel processus formé par deux tramsitions
successives subies par l'une, puis par lautre des particules et ayant

comme résultat global quune énergie E et une quantité de mouve-

ment l—i—' = i‘—f sont cédées par la particule (1) a la particule (2). Ce

processus peut s'effectuer de deux maniéres différentes que nous allons
successivement analyser.

Voici d’abord un premier mode d’accomplissement de cette cession
d’¢nergie et de quantité de mouvement. La particule (1) subit d’abord
la transition (o1) -+ (1) en cédant 2 Uonde longitudinale considérée une

. kh . . . .
quantité de mouvement —. Comme il doit y avoir conservation de la

e

quantité de mouvement, nous aurons
(35) K, —K =k

Le photon ainsi émis sur 'onde longitudinale k sans conservation de
I'énergie est ensuite absorbé, toujours sans conservation de I'énergie,

par la particule (2) qui passe ainsi d’'un état (02) a un état (2) avec
conservation de la quantité de mouvement exprimée par la relation

(36) ) K.— K=k
Le processus global doit conserver 1'énergie, ce qui nous donne

) ke
(37 E=E01*1‘4|=E2—-‘E02='\£’

équation qui définit les grandeurs E et K.
L’élément de matrice correspondant au processus global est donc

(38) Hpi=e ei—f,f—o;
= <‘/—|—l-z—f(l)n,01+ Vk(a; )1.01><\/'—]%E(1)2,oz+ \/z(aa)z,oz)
B —E,
avec par exemple )
(30) (a3)1‘01=f'2a$}’a, P g, ete-
T

ou encore (1)

(40) Hji=c e, ET'I%—V (\/ '—12—]2- (1,014 k(“s)l,M)(‘/“'% (1)2,02+ k(ds)z,obz) .

(1) Car E,—E,= Eo, — (E,+ hv)= (K ~k) :if;_d’gpl-és 3.
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Mais I’équation de continuité

d O

+divl, =0
()t llll",

(A1)

appliql.lée successivement aux transilions (01)— (1) et (o2)}—(2)
donne

(32) l\(l)y,n))=:k (asi)lylllg K(l)z,oz,=jkl(13)2,(;2,
d’on
, (23).0f K . N
I r—— =5 2
(WER (U707 K (J=1,2)

el par suite

(44 L\/—"(I)i ar —+ /11(11)101 lt

'k kK
[ _.+_‘/ ](Ulm(l)wnq

VE

Ik 2 '
k 2,02 \/lt(azz);',on

d’ou enfin
I 1 AR |2 .
RN ollyi= e e, 2k3p K’_‘[\/A “ ] (1,01 (1)2,02-
4 lj N H

Voici maintenant une seconde maniére d’opérer entre les deux parti-
cules chargées le méme échange global d’énergie et de quantité de
mouvement. Tout d’abord, la particule (2) angmente son énergie de E

. Y/ .. .
et sa quantité de mouvement de k;s; en passant de I'état initial (02) a
I'état (2). Comme il doit y avoir conservation de la quantité de mouve-
ment, cette particule doit céder I'impulsion — k z—: a Ponde longitudi-

nale — Kk sous forme d’un photon de recul et 'on a bien, en accord

avec (36),
(16 >K02-‘Kz=-—k~

Le photon ainsi émis sur l'onde longitudinale —k sans conservation
de 'énergie est ensuite absorbé par la particule (1) qui passe alors de

I'état (o1) a I'état (1); il y a alors bien conservation de Yimpulsion-
puisque I'on a d’aprés (35)

(".'47) ' K, — Ko =—k.
Il est évident que le processus global conserve aussi 'énergie puisque

(18) Eopy+ Egpo = E;+ E..
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Ici, nous avons
. . : . he
(40 E;i~E,=Ep— (Es+ hv)=—E — hv =— ;;(/\4- K).
Comme les formules de normalisation sont visiblement les mémes pour

Ponde k et pour l'onde — k, I'él¢ment de matrice correspondant a ce
second processus global est donc

I
3¢ agHYi= — ey €3 —5—
(50y  (9HY, iy

< k2 (2) )<\/ Tk |2 (l):,uz+k(°la)~:,oz>
7 . (%3)1,01 7
> N

K-+ k&

La conservatien de I'électricité fournit encore la relation (43), ce qui
nous conduit finalement a la formule

. , I {k kK
{51) (:)Hﬂ=—-exe»?k > K+A[ l ~ ] (1)1,01(1)2,02.

e

Au total pour I'ensemble des deux processus, la probabilité¢ du
transfert de U'énergie E et de la quantité de mouvement k-;’; de la

premiére a la seconde particule par I'intermédiaire des ondes longitudi-
nales sera déterminée par I'élément de matrice

ves | k| WsK I I
5v[¢k i O e =Y

1 I [(k, +/€K]- R
/f;;v 3 Ki— 7= (11,01 (1)a,00-

(:)’)) I[}', = “)”j‘,' -+ (:)!I/"[

l\J

a

lci, nous allons faire intervenir une approximation qui concorde avéc
les hypothéses habituelles’ de I'électrostatique. On peut voir alsément

que K — estl’énergle que perd I'une des particules quand elle cede au

rayonnement Pimpulsion k2. 1l en résulte que pour les particules
2%

suffisamment lourdes, cette énergie. est pratiquement négligeable,
autrement dit que les particules ne sont pas sensiblement mises en
mouvement par les processus considérés plus haut : on a alors le cas de
lélectrostathue Pour étudlel ce cas, nous devons poser K = o dans
Pexpression (50), ce qui nous donne

(73)" Hfj=— /{A (1)1 01(1)s 0
0
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et, en tenant compte de la relation fondamentale k2 — |k |*-} &?
(54) Hffz =— ei;; (11,01 (1)s00 + o1 % 7:; (11,01 (1)2,02.

L’élément de matrice obtenu se compose de deux termes : le premier
dépendant de p, est caractéristique de la théorie du photon, mais le
second, étant presque indépendant de y,, doit avoir une interprétation
classique. Laissant de coté pour P'instant I'étude du premier terme sur
laquelle nous reviendrons'ensuite, nous allons montrer que le second
terme de (34) correspond a Dcxistence entre les deux particules de
Tinteraction Coulombienne légérement modifice.

6. Le potentiel de Coulomb. — Nous voulons interpréter le second
terme de H); que nous écrirons

€y € I
a7 (Dner(1)e,0e
‘ L o

(585)

¢

ou, d’aprés la conservation de la quantité de mouvement dans la transi-
tion (o1)—> (1)

. €y € 1
(56) - m(l)l,ol(l)z,oz-
Soit r = [Py | =|ry —r,| la distance des deux particules. Considérons
Ie potentiel
. eq es ekt
(57) n: >

en unités d’Heaviside : c’est le potentiel de Coulomb, complété par un
facteur exponentiel qui est trés peu différent de zéro pour une distance
pas trop grande. Nous allons calculer 'élément de matiére correspondant
a la transition globale(01)(02) — (1)(2) du systéme des deux particules
et nous constaterons que cet élément est égal a (56).

Les ondes planes corresponddnt aux états (o1,02) et (1,2) sont, en
omettant le facteur de temps et en normant toujours dans le volume ¢

Qg1 A2
[4

e~ (Enri+Kursl; 2192 o i(KircrKord,
[4

(38).

L’¢lément de matricé a calculer est donc

€4 €2 e—"o" .
(59) - ﬂ' 2 oK —E) roHeEa ildlry dlr (1)1,01(1)s 00
X2/
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En prepant comme variable d’intégration
(60) Ty =Tt =T, 8i2== T+ Iy,

cetie expression s’éerit
. K+ K:— Ko — Koo i Ki—K;— Ko+ K,

; ey e 18,0 e— kol ) ST
(61) (1)5,01(1)2,02 Z-;TZ[(ll‘mf sl € 2 82 H

L’intégrale en 8,, n’est différente de zéro que s’il y a conservation de la
quantité de mouvement et, dans ce cas, elle est égale a 8¢. L'élément de
matrice cherché est donc

" — kot
N ey s ko . ) .
(62) L [ R e (1)1 s
(4

g

Pour faire I'intégration en ry,, prenons le vecteur K, — K, comme
axe polaire : nous trouvons

e, e % ket =
1 €3, . . 2 T AR 1 cos0 o3
(63) — (11,01 (1)2,022% — 12 dr el Ky—Kau 7 cosD gin § /8
J7 " 7 Jo
¢y ,{)2( . . “ ol ' Ki—Ko1r — o—1 | Ki—Ka!» P /
= ——=(1)1,01(1)2,002% T el dr
2% " l!K1—K01
€q € 1
= = {I)3,01(1)2,02 = 5"
= o (o g

Nous retombons bien ainsi sur 'expression (56).

Nous sommes donc parvenus au résultat suivant : en raison des inter-
actions entre le rayonnement et les particules électrisées, tout se passe
comme s'il existait entre deux particules chargées de charges ¢, et e,
situées 4 la distance r 'une de 'autre une action électrostatique dérivant
du potentiel quasi coulombien

~kor

. L £y Ca O [}
(64) Vilr)= —= —
.‘7'! 7

toujours en unités d’Heaviside.

Etant donnée la valeur extraordinairement petite que peut au
maximum posséder la masse pq(po << 10-*gr), il faudrait se placer a
des milliers de kilométres d’une charge électrique pour que le facteur
exponentiel commence a étre un peu différent de I'unité. C’est dire que

le potentiel V, se confond pratiquement toujours avec le potentiel de
Coulomb.

7. Le potentiel de coincidence. — Il nous reste a interpréter le
premier terme de 'expression ()4), ce que nous ferons en suivant ia
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méme voie que pour le potentiel Coulombien. Nous allons, en effet,
montrer que le terme en question représente l'élément de matrice
qui, pour un potentiel proportionnel a 3(r), correspond & la transi-
tion (01,02) —> (1,2) du systéme des deux particules.

Pour cela, nous n’avons qu’a reprendre des calculs analogues a ceux
du paragraphe précédent. 5'il existe un potentiel de la forme

(6) Ao(ria)=Ad(zy— 24) a(.)fi—-—]‘g)a(z1—;-_»)

entre les deux particules, I'élément de matrice a calculer est

A g . .
(66) ;_ﬂ 3(Pys) UK K T Ba—Bad 14 1 4 dlra(1)y 01 (1) 00

B
5

En introduisant comme précédemment les variables 1y, €L 844, 1l vient

(1812 R i Ki+EKo— Ko —Koe re K "‘K!:‘Kﬂl"’Ku!, s,

.. A )
(67) 5(1)1,01(1)2,02\/‘611'“/‘-——8 d(rpe g ¢ :

L’intégrale en S, n’est différente de zéro que s'il n’y a conservation
de la quantité de mouvement et vaut alors 8¢. On a done

: A - y A
(68) I; (1)1,01(1)270:‘.f0(1‘1-3) elBi—Kalrs: dryy = -‘;(1)1.01(1)2.02,
S
d’aprés les propriétés de la fonction 3(rys).
Il suffit alors de poser A —=— %;ipour retrouver le premier terme
0

de Pexpression (54) de H),. Nous pouvons donc interpréter ce terme en
disant : tout se passe comme s'il existait entre les particules (1) et (2),
en plus du potentiel électrostatique quasi coulombien (64), un autre
potentiel d’inleraction statique de la forme (')

[ W

ki

) €y

&

(690 Va(r)y=— o(r)=— (&) — X2 ) 8y — ¥y2) 6z — 52).

Ce potentiel dépend & la fois de la constante & des quanta et de la
masse propre du photon p,, toutes deux contenues dans la définition
de ko. Il est nul pour toule distance finie des particules, mais serail
infini si les deux particules se trouvaient au méme point de U'espace.

On peut donc le considérer comme un potentiel de coincidence.

(t) Dans une Nouvelle théorie de la Lumiére, t. Il, p. +3. on a imprim: par
evreur 5(r,,) au lieu de 3(r,), ce qui peut préter & confusion.
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Le potentiel V, peut d’ailleurs s’exprimer aussi par la formule

€4 €2 I

(7o) Va(r) = == —

8(r),

(=

ol &'(r) est la dérivée par rapport & r de la fonction singuliére ¢ de
Dirac de 'argument r (). L’emploi, un peu hardi au point de vue de
la rigueur mathématique, de cette fonction &'(r) conduit, comme !'a
montré M. Dirac lui-méme, 4 des conséquences exactes. L’application
a.d'(r) de la formule d’intégration par parties permet de lul attribuer la
propriété qu’exprime la formule

(71) f ==/'(/“)6’(1‘)0’r=——‘/~ v_/"t‘r)t?(r)dr =— f'(0).

Pour voir que les expressions (69) et (70) sont équivalentes, il suffit
de montrer que les fonctions o(r) et — %6’(1) sont elles-mémes
¢quivalentes, c’est-a-dire en somme qu’en appliquant a une fonction f(r)
les opérations f&(r)dr et f (—- 2—}; "’(r)) dr, on obtient le méme
résultat. i

Or, la définition de 6(r) donne tout d’abord

—=

(r2) /*l/'(r)S(r)(/r ::v/” zf(r)a(:t) 3(y)8(3)dx dy dz = f(o),

puis en tenant compte du fait que f(r) = f(|r|) est une fonction paire
de r 'A

(73 f tf(r‘»(- 2;,_5'(,») iy

—_—

[~y ) srisrdr=—a [ T3 piedr
i - . , o

. , . .y

— =

[ rf ey fOr))e=o = flo).

L’égalité des résultats (72) et (73) démontre I'équivalence annoncée.
En adoptant I'expression (70) de V. on obtient pour l& potentiel

(') Notre attention a ¢té attirée sur ce point par un travail de M. Gérard Petiau.
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électrostatigue total

(74) VOr) = Vi) + Vatr) = 2 [t 2200

A toute distance qui n’est ni nulle, ni extraordinairement grande, le
potentiel se réduit au potentiel de Coulomb %
o 4

Nous avons signalé ailleurs (') comment 'apparition du potentiel de
coincidence est en relation avec le fait qu’en Mécanique ondulatoire du
photon, divE n’est pas nulle, mais égale a 4}V et nous avons souligné
I'intérét de cetle constlatation.

8. Formule de Moller. — Nous avons calculé lexpression de
I'élément de matrice H, relatif a 'interaction des deux particules par
I'intermédiaire d’une onde longitudinale de vecteur k. Nous voulons
maintenant calculer les termes supplémentaires qui s’introduisent si
Pon tient compte aussi des ondes transversales.

Les potentiels normés représentant 'onde transversale de vecteur k
quand la direction de propagation est prise pour axe des s sont

(75) Ar—\//i‘iv A, _\/ e _ (P = etiker—Iklzn,
47

Nous devons faire des calculs trés analogues a ceux des paragraphes
précédents et, en particulier, nous devons encore distinguer les deux
modes d’échange d’énergie et de quantité de mouvement entre les deux
particules rencontrées plus haut. Dans le premier mode d’échange,
ona

1/
(76) E—E,= " (K—Fk)

et 'élément de matrice pour le processus global d’échange d’énergie et
d’impulsion par 'intermédiaire de I'onde transversale s’écrit

eren he (o) or( @ )aoa— (22)1.01 (02202

(77) = —= = B, —L,
_eren (a1)1,01(a1)2,oz+(9‘:)1.01(“2)2.02.
T oke K—7

On calculera de méme I'élément de matrice (,H ; relatif a Paction des

(1) Voir Nouvelle théorie de la Lumiére, t. I1, p. 125-127.
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ondes transversales dans le second mode d’échange d'énergie et
d’impulsion pour lequel on a A

he
(77) E—BE,= —(K~+#)
et 'on trouvera
- oo eres (@1)r010a1 2,00 (X )01 s haoe
(7%) My =— ke K~k ’

Finalement, poar linteraction totale par intermédiaire des ondes
transversales == k, ’on obtient

e ey (ay) @1 Va0t + (&2 01 (22 Ve 02
(59) Hy = By + o HYy = I‘, 1o (e 0~_ /‘: 1o1(2eiz0

puis, en ajoutant I'interaction quasi coulomblenne Vy due aux ondes
longitudinales

€y €

( 9 -4 3) 2 e 02
(80) HY = (o )1,01( @ da0a =+ (221 01( &2 )0 02 ] .

T
[E(I)l.()l(l)i,l)? - K

> >
sotent alors oy, et oy, les vecteurs dont les composantes rectangulaires
sont

(a1)1,01(,°<2’)1,o|(0!; h,01 et (ai\)z,o:(&:’)z,oz(l:: J2, 62,

Le produit scalaire
. > . ) Lo )
(81) (au) .au)) = (1)1,00 (%1 2,00+ (21,01 (@2 )2,00 4+ (31,01 (%3 )2 00

est invariant pour une rotation des axes de coordonnées, ce qui permet
de I'évaluer en placant 'axe des z dans la direction du vecteur k. Or,
nous avons vu que dans 'un et I'autre mode d’échange des énergies et
des impulsions, les relations (43) étaient valables, ce qui nous donne

(82) (aﬂ, 0|(0(|)309+(Clo)1 01((10)2’09—(!1[1) ad(e )—(a3)1 01(0( )7 02
= (%) ) — 'klz(x).o.m

d’ou, en portant ce résultat dans (80),

> >
;o i€ L K2 ey |
(83)  H == [(A e ) ONIUAS A_—T]

Si nous négligeons les termes en u;, nous obtenons la formule valable
dans tout systéme de référence Galiléen

€ 8'2(1)1»01([)2.02—(011%,01(“1) )7—(Oh)1 o1{ % )1 (»)—-(1- W.or{%s ) .02
¢

ko Kq '

LOUIS DE BROOLIE. 12

(8%) W=
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C’est la formule de Moller. On peut Iinterpréter aisément. Le
K\? . - e, 2 .
rapport (71) est une correction de relativité de I'ordre de (g) - Sil’'on

néglige cette correction, ce qui revient a admetire la propagation
instantanée des actions électromagnétiques, on peut barrer K? au déno-
minateur de (84). De méme que le second terme de I’expression (34) a
pu s'interpréter par l'existence d’un potentiel pratiquement identique
au potentiel de Coulomb, les trois derniers termes de (84) pourront ici
s'interpréter comme traduisant le fait que les deux charges électriques
en mouvement sont équivalentes 4 des courants de convection exergant
I'un sur I'autre les actions bien connues de Laplace et que, de plus, ces
charges ont des moments magnétiques propres (dus au spin) possédant
une énergie mutuelle. C’est ce qu’on prouverait aisément en rappelant

la signification physique de la matrice vecteur a qui en théorie de
Dirac, correspond au courant total di au mouvement d’un électron,
¢’est-d-dire a I'ensemble du courant de convection et du courant lié a
I'existence du magnétisme propre (). On voit ainsi que la formule de
Moller représente, dans la limite des approximations admises, les
interactions électromagnétiques des deux particules électrisées en
mouvement.

I est intéressant de souligner que les interactions entre particules
résultent, d’aprés ce qui précéde, d’une transition double faisant au
total passer le photon de l'état d’annihilation a I'état d’annihilation.
Nous aurons I'occasion de revenir sur ce point.

9. Difficultés soulevées par les théories précédentes. — Les expres-
sions obtenues pour les énergies d’interaction de deux particules sou-
levent une grave difficulté qui n’a pu jusqu’ici étre levée par aucune
forme de la théorie quantifiée des champs électromagnétiques : elles
conduisent a attribuer a toute particule électrisée une énergie propre
infinie. En effet, cette énergie propre doit s'obtenir en appliquant les
formules précédentes au cas ou les particules (1) et (2) coincident. La

présence des facteurs rIT et d(ry.) dans les formules telles que (54)

donnent bien alors une valeur infinie pour I’énergie propre. De plus,
st les calculs d’approximations successives donnent souvent en premiére
approximation de bons résultats, par contre les approximations supé-

(') Sur ce point, voir, par exemple, Théorie générale des particules & spin, p. 39
et saiv.
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rieures donnent en général des intégrales divergentes. Par exemple, si
I'on évalue I'énergie propre d'un électron résultant de son interaction
avec les ondes transversales, on trouve zéro en premiére approximation,
ce qui est satisfaisant, mais en seconde approximation, on trouve une
intégrale divergente donnant une valeur infinie.

La Mécanique ondulatoire conduit donc ici exactement aux mémes
difficultés que la théorie quantique des champs usuelle, mais il semble
qu'elle permette d’en préciser I'origine. Les valeurs infinies trouvées
par les énergies propres résultent en effet de ’hypothése implicitement
admise suivant laquelle il peut y avoir des interactions entre I’électron
et toutes les composantes du rayonnement si élevée que soit leur
fréquence. Or, d’aprés la formule de Jeans, le nombre de ces compo-
santes croit indéfiniment avec la fréquence et de la résulte la divergence
des intégrales auxquelles conduisent les calculs d’approximations
successives. Mais la Mécanique ondulatoire du photon, en écrivant
I'expression H!!) de 'opérateur d’interaction entre électron et rayonne-
ment y introduit, nous ’avons vu, le facteur (R — r) qui traduit le
caractére rigoureusement ponctuel de 'électron. Or il est aisé de se
rendre compte que toute la difficulté vient de ce facteur.

Cette constatation a suggéré a I'auteur du présent Ouvrage une idée
qu'il avait exprimée dés 1933 (*). Cette idée consiste a4 remplacer
dans le terme d’interaction électron-rayonnement la fonction singu-
liere (R —r), qui est nulle pour toute valeur de R autre que r
(aiguille infiniment fine), par une fonction qui serait nulle partout sauf
au voisinage immédiat de R = r (aiguille trés fine). Les dimensions de
la région ou cette fonction ne serait pas nulle correspondraient a

I'ancienne notion de « rayon de I’électron ». A titre d’essai (*), il était
_(R—rxp
suggéré de remplacer (R —r) par e °  ou o serait une longueur

trés petite jouant le role du rayon r, de ’électron au sens classique. On

éviterail ainsi la plupart des divergences facheuses signalées plus haut
et il est facile d’en comprendre la raison. Ces divergences résultent,
nous l'avons vu, du fait que les ondes électromagnétiques réagissent sur
I’électron quelque petite que soit leur longueur d’onde, et ceci en

raison du caractére strictement « ponctuel » de la fonction 4 : mais, si
_ (R—rp
I’'on substitue a ¢ une fonction telle que e ~ o , dés que le longueur

(*) C. R. Acad. Sc., . 200, 1935, p. 361.
(?) On pourrait aussi considérer une fonction constante 3 Pintérieur d'une sphére de
trés petit rayon et nulle an dehors.
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d’onde descendra sensiblement au-dessous de la valeur o, les grandeurs
électromagnétiques de I'onde subiront plusieurs oscillations a Pintérieur
de la sphére de rayon o et, par suite d’une compensation d’effets,
Paction de I'onde sur I'électron sera nulle. ,

Avec cette hypothése, les ondes en nombre indéfiniment croissant

qui forment 'extrémité du spectre du rayonnement du c6té des grandes
fréquences n’agiraient plus sur P'électron et les divergences génantes
seraient évitées. On ne reviendrait pas ainsi, a proprement parler, a
V'idée classique d’'un électron ayant une structure et occupant une
région finie de l'espace avec des dimensions de I'ordre de r,. Grace a
I'introduction de longueur ¢, on définirait une nouvelle sorte de
« rayon de I'électron » correspondant a une « incertitude » sur le point
d’application exact du champ électromagnétique sur la charge et cette
définition, qui éviterait toute image structurale, parait conforme aux
conceptions générales des théories quantiques actuelles.
_ Malheureusement les idées précédentes se heurtent a des difficultés
du point de vue de l'invariance relativiste. Ces difficultés sont liées au
caractére « spatial » du nouveau rayon de I’électron ¢. On ne rencontre
pas ces difficultés de variance si 'on garde dans le terme d’interaction
la fonction 4, mais alors, comme on introduit implicitement le caractére
ponctuel de 'électron, les difficultés d’énergie infinie surgissent.

Ne sachant comment échapper a ce dilemne, 'auteur n’avait pas
poursuivi dans celte voie. Mais récemment deux autres auleurs qui ne
connaissaient pas la note citée plus haut ont repris des 1dées analogues.

Dans une série de trés intéressants mémoires et exposés ('),
M. Arthur March, aprés avoir approfondi la notion de « plus petite
longueur » introduite par M. Heisenberg, a proposé une nouvelle
maniére de tenir compte, dans les termes d’interactions entre matiére et
rayonnement, du rayon de I'électron. Cette maniére de voir est appa-
rentée a celle que nous avons exposée, mais pour éviter les difficultés
d’invariance relativiste, M. March réintroduit sous une forme nouvelle
la « contraction de Lorentz » de I'dlectron et montre qu'on parvient
ainsi a écarter un grand nombre d’obstacles rencontrés par la théorie
quantique des champs. Bien que la théorie de M. March ne soit pas a
I'abri de toute objection et gu’il ait dii déja en modifier certains points,
il y a la une tentative trés intéressante qu’il ne faut pas perdre
de vue.

_—

(') Naturwissenchaften, 31, 1943, p. 49; Acta physica austriaca, 1, 1947, p. 19;
Quantentheorie der Wellenfelder und kleinste Linge. Jora, Innsbriick, 1947.
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Dans un récent travail, M. Nathan Rosen ('), sans avoir connaissance
de notre Note de 1935 a introduit dans le terme d’interaction entre
matiére et rayohnement une exponentielle de forme gaussienne. 1l a
rattach¢ 'introduction de ceite fonction a une intéressante distinction
entre « I'espace abstrait » et « 'espace observable » et il a cherché a se
débarrasser des difficultés d’invariance relativiste en admettant que cette
invariance n’est valable que dans l’espace abstrait.

Les travaux de MM. March et Rosen n’apportent sans doute pas la
solution définitive du probléme des énergies infinies, mais ils indiquent
d’intéressantes voies a suivre et ces voles présentent de 'analogie avec -
celle que suggérait la Mécanique ondulatoire du photon:

(') Physical Review, 72, 1947, p. 298.

—— O CE———e




CHAPITRE XIL

PASSAGE DES CHAMPS MICROSCOPIQUES COMPLEXES
AUX CHAMPS MICROSCOPIQUES REELS.

1. @énéralités. — Par définition, nous appelons échelle microsco-
pique celle ou il est nécessaire de tenir compte de l'existence’ des
quanta. A cette échelle, les interactions donnent lieu 4 des processus
quantiques discontinus dont la représentation fait intervenir les fonctions
d’onde de la Mécanique ondulatoire du photon qui sont des grandeurs
essentiellement complexes. La Mécanique ondulatoirc du photon est
ainsi amenée, en étudiant les interactions a I'échelle microscopique
des photons et des particules électrisées, & introduire des champs et des
potentiels complexes et a écrire une équation d’ondes du systéme
photon —+ électron permettant de calculer les probabilités des transitions
quantiques provoquées par les interactions photon-particule électrisée.

Les considérations des chapitres précédents nous ont d’ailleurs appris
que les grandeurs électromagnétiques complexes F représentent les
phénoménes d’absorption, tandis que les grandeurs conjuguées F*
représentent les phénoménes d’émission. Ces roles respectifs des F
et F* correspondent exactement aux roles que le principe de correspon-
dance fait jouer depuis longtemps aux composantes complexes conju-
guées du moment électrique de 'atome (*).

Or, lorsqu’on décrit les interactions a grande échelle de la matiére
électrisée et du champ électromagnétique, on fait toujours usage des
champs réels, aussi bien dans la théorie de Maxwell q{li décrit les
phénoménes observables a notre échelle que dans la théorie la plus fine
de Lorentz qui cherche a représenter les phénoménes a I'échelle des
particules élémentaires. Nous considéronsici ces théories, méme celle de
Lorentz, comme des théories macroscopiques, parce qu’elles ne tiennent
pas compte des quanta et qu'elles ne peuvent, par suite, s’appliquer
qu’a des phénoménes mettant en jeu un nombre immense de quanta et

(') Yoir Une nouvelle théorie de la Lumiére, t. II, Chap. 111, p. 59.
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ot une apparente conlinuité statistique vient masquer la réalité
discontinue.

Nous allons raisonner sur la théorie de Lorentz qui serre de plus prés
les faits élémentaires que la théorie de Maxwell. Il est bien connu
qu’elle décrit I'interaction entre champ électromagnétique et particules
électrisées de la fagon assez dissymétrique suivante. D'une part, elle
considére le mouvement des particules électrisées dans le champ
électromagnétique comme s'effectuant suivant les lois classiques du
point matériel (modifiée par les corrections de relativité si les vitesses
sont voisines de c), la force subie par une particule de charge ¢ étanlt
ia force de Lorentz définie par la formule

(1) f:e[E+[vH]].

Les champs E et H dérivent des potentiels A et V par les formules

-5
(2) E:——grad\/—»:-_’)d—?, H =rotA,

toutes ces grandeurs étant essentiellement réelles. D’autre part, la
théorie de Lorentz représente 'influence exercée sur le champ électro-
magnétique par la présence et le mouvement des charges électriques par
les équations

! E:rntE, divH = o,
e dt
(3) 1 JE v
- —=rot H-—2 divE = ¢,
e dt v

p étant la densité de I'électricité en chaque point, v sa vitesse, les unités
employées étant celles d’Heaviside.

I s’agit de savoir comment l'équation d’ondes du systéme
électron — photon de la Mécanique ondulatoire du photon, qui contient
des grandeurs électromagnétiques complexes. peut permettre, quand on
passe du microscopique quantique au macroscopique de Lorentz, de
retrouver la représeutation des interaclions entre matiére et rayon-
nement de la théorie électromagnétique classique, représentation
ou interviennent les champs réels. Dans cette tentative, nous allons
étre guidé par le résultat obtenu précédemment suivant lequel on a
allaire a un phénomeéne mettant en jen un nombre immense de photons.
la valeur moyenne dans l'espace des » d’une grandeur électromagné-
tique F, valeur moyenne seule observable a I'échelle macroscopique.
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est donnée par la formule (1)
4) F=Y Vi =3 Vi (Fy+ Fp).
k x

ou Fy est la grandeur électromagnétique complexe détinie pour un
photon dans P'état k par la Mécanique ondulatoire du photon super-
quantifiée.

Nour allons commencer par étudier le mr .v:ment d’un électron dans
un champ electromagnéthue a un trés - -ar d nombre de photons et
montrer qu'on peut ainsi retrouver I'expression (1) de la force de
Lorentz. Puis nous chercherons a retrouver de méme les équations (3)
de Loventz pour les champs électromagnétiques réels en partant de
Pélectron d'ondes du systéme photon —+ électron dans le cas on
I’électron est animé d’un mouvement macroscopiquement observable,
c’est-a-dire correspondant a un trés grand nombre de quanta.

2. Mouvement d’un électron dans um champ électromagnétique
a grand nombre de photons. — Rappelons d’abord la forme générale
(donnée p. 152) de Uéquation d’ondes non superquantifiée du systéme
photon -+ électron

h 9 Q04

(3 po Ueo-
- 3 M a____,,-:a?»,, +Hp—Ke

B— @ > RA,— AB |
— &, 5 —_ Ly,
= [——")——' 1——((1‘—"_;-—(—‘)] (R ~r)s ¥ege

Nous allons introduire la seconde quantification pour les photons,
mais sans l'introduire pour I'électron. Cette méthode un peu batarde
est justifiée par la nécessité de considérer toujours un nombre énorme
de photons comme présents dans 1’état d’annihilation. Ténant compte

. . k a (‘3', . .
de la normalisation des W du photon en —‘—_";—, nous sommes ainsi
amendés a écrire & la place de (5)

(6) —h——‘l(X Y,Z, ng, 0y, oo, 8)=[Hp=+=8p s 3¢ W(X, Y, Z, ng. ..., ¢),

ont M

(') Chapitre IX; formule (58).
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ou Jp et JCY sont les opérateurs de l'espace des n définis par les
formules

(7) 3p 22(01" Jop( H)ij( € Jops 3€<1)=2(c; Jop "fj”(cj)op;
if y
avece
: A
® R ["’4;“*IH<Z‘V’“TC“’%>],

les éléments de matrice Hj/' étant toujours calculés dans le systéme des
fonctions propres du photon non perturbé.

Dans (6), la fonction ¥ est la fonction d’onde du systéme formé par
I'électron et les photons et, si Wi") désigne les fonctions propres de
I'électron, on pourra toujours écrire

) WX, Y. Z no ng, ..., l)-:zcmyl(l)‘l'l"“(X, Y, 7, 1) RO (o, ny, ..., t).

m

Mais le nombre des photons non annihilés présents est par hypothése
immense. Il en résulte que I'évolution’ de I'électron modifie infiniment

Al
peu la valeur des n de sorte que tous les termes de la sommez

mn

contiennent des formes de R extrémement voisines : on est donc
autorisé & poser approximativement

(10) W(X.Y, Z, no, nsy ..., )= Rino, ny. ..., l)Zc,,,,(,,)(z)\1f<~n(x, Y, 7, 0)
n

= R(no, ny, ..., HWIN. Y, Z, 1),

ou (n) désigne P'ensemble des valeurs des n figurant dans R et

on W(X,Y,Z,¢) définie par le dévcloppementz est la fonclion d'onde

de U'électron. L’expression de la fonction d’onde du systéme est ainst
décomposée en un produit de deusx termes, dont 'un se rapporte aux
photons et l'autre a l'électron. La perturbation subie par le champ
électromagnétique par suite de la présence de l'électron étant prati-
quement négligeahle, nous pouvons écrire

AN
J . '.'ﬂ/‘\,_‘nj‘ll-l
= Wino, gy oo, 1) = 8p R{n,, 1y, ... 1), R=Ri(ny. n,....0e / )

(n) i

et tenant compte de calculs faits précédemment (p. 136), 'équation (6)
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peut s’écrire

h ) v,
(12) '2—7?2.81(”07 n;, ..,)—d-t‘— ‘
. + 3
= Rq(ny, 1, ...).Hn‘lp—e[V{,., 1+(1 Am)] Ri(no. ny, .. )W,
ou
(13) Vo= (e Vier Vi) A= (o A+ g Ag).
k k

Multiplions (12) par R et sommons sur les n en tenant compte de la
condition de normalisation

(14) DirE=iRpe=1,

il vient
o, — > o
(]')) —-h—,——i:H|;‘('5-——e[VI+<1A>:, y., .
201 Jt ; ‘
avec

\ v :2\/;71 V=Y Vr(Vie+ Vic).
(16) . .
N ):

' A=Y r Ay =YV (B AL,
k

ou Vi et Ay sont les potentiels (scalaires et vecteurs) complexes
définis pour un photon dans I'état k par la Mécanique ondulatoire du
photon non superquantifiée.

On remarquera que dans la définition de Vi et de Ay, les facteurs K’
et \/;‘; se sont unis pour donner la constante K = K’\/n_f,, comme nous
I'avons précédemment expliqué.

Si maintenant nous explicitons I'opératear Hy qui est Hamiltonien de
Dirac pour un électron libre, nous trouvons

oo e " h d e =
SRS 7 ¥ | T LIRS W DR | L
(17 <2:il)/ CV)I" 2/(:).:’1' dr; (:A’>1/I-‘+1'mc‘~‘

(g =1,2,3. 1)

Nous retombons ainsi sur les équations de Dirac pour un électron placé
dans un champ électromagnétique dérivant des potentiels réels V ct A.
Or nous savons que, quand les approximations de optique géométrique
sont valubles, ces équations de Dirac nous raménent aux mouvements
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classiques de P'électron soumis aux champs électromagnétiques réels

dérivant des potentiels V et A, mouvements tels qu’ils sont déerits par
I'ancienne Dynamique des électrons quand on admet I'existence de la
force de Lorentz (1).

Finalement, on retrouve donc bien la maniére classique de décrire
les mouvements de I'électron qui consiste a lui appliquer les ¢quations
de la Dynamique ponctuelle et 2 admetire Vexistence de la force de
Lorentz définie par les champs macroscopiques réels.

3. Justification des équations (3) de Lorentz pour les champs réels. —
IInous reste a chercher comment nous pouvons faire dériver de I’équation
d’onde du systéme photon-électron les équations (3) de Lorentz qui
lient les valcurs des champs macroscopiques réels et leurs variations
a la position et au mouvement des charges ¢lectriques.

Nous partirons encore de I'équation (3) du systéme photon-électron,
mais nous supposerons maintenant que nous avons affaire & un électron
dont le mouvement correspond a un trés grand nombre de quanta de
sorte que ce mouvement soit extrémement pen troublé par I'interaction
avec le rayonnement. Nous pouvons alors poser (1)

(18) Uoge ~ “'p\lrr;'.-

et admettre que U'équation

I
(1) ani i

2 = Hy 11'.[27

qui serait valable rigoureusement en l'absence d’interactions de
I’électron avec le rayonnement, reste lrés approximativement satisfaite.
Nous pouvons donc écrire

I J (:h-+—03/.
. oy, O R PRy
(20) 2mL lp()l V-
B, — AB,
— > U3CEL, — A0S o .
=W e — K o a3, - A, P (; + - 4 ) IO(R_r) U, W

Considérons un état de 'électron cxtrémement voisin de I'état que
représente 1',. Soient W', les composantes de la fonction d’onde ¥’ liée
A cel état. Nous avons trés sensiblement

-

o SI""\' -~ D M

(1) t[’_‘lplpd /‘\ll dz=1
2 2

() 1 suffit pour le voir de transposer ooraisonpement fait aw débat du précedent
paragraphe.
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Multiplions ’équation (20) par W', sommons sur p et intégrons sur R
dans V. En introduisant les densités d’éléments de matrice

>
(22) lc=——eZ‘~If"rf e, i= ecz v e ¥y,
? p

relatives a la transition W', — W’ et rapportées au pointr, nous obtenons

' > >
3y He DBy [a_s_—_a p +<5 u)]q

27l Jt 2 2 J

avec la définition

(24) H]‘-= e [i a103/,+0.,’1€(/,+i agd§4+03gd,,

271 | dr 2 Jdy 2
A5 03 A .
+ 0 G+ B ;/;f,aaas;].
0z 2
Pour tirer de 'équation obtenue les équations de Lorentz, nous allons
avoir & utiliser un certain nombre de remarques.

Soit d’abord W'® la fonction d’annihilation du photon telle que
(25) ¥t = (as)or-
Nous vérifions aisément les relations
(26) Zw A BT =, Ewgp 2= 4.
7T [ 24

Si maintenant €U désigne I'une des matrices "a seize lignes et seize
~ colonnes (autre que la matrice unité) obtenues en faisant le produit de
matrices (L, et si 03 désigne de méme I'une des matrices a seize lignes
et seize colonnes (autre que la wnatrice unité) obtenues en faisant le
produit de matrices 33,, on véritie que 'on a

(27) Z‘I‘a“—‘ AQ, 03 WY = o, ngpasa&osé W — o,

5T

Enfin, en tenant compte des définitions des matrices (1, et @,
on trouve que

Ew y A= ‘B’aoswﬂ~211~"‘ ’w (J=1,02,3).

Woe éLant les composantes de la fonction d’ onde d’un état non annihilé
quclconque.
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Armés de 'ensemble de ces remarques, revenons a I'équation (23)
et cherchons par exemple a en tirer ’équation de Lorentz divE =op.

Pour faire disparaitre de I'équation (23) les termes en nous

J
at’
commencerons par la multiplier €L,— @3,, car

(20) (Q— B.) (A + By) = A3 — Bt = o.

Puis nous multiplierons par W3l a gauche et nous sommerons sur s et
et sur t. Nous obtiendrons ainsi (en utilisant la convention de sommation
des indices)

(30) Z /I_C.m(") J 65/651(:1',—(:1/(:1503', - U?'/ L \["G—
' j2mi oz 2 2 ;
1

/z c - L,
2

b /. \pm Yy

’ — _}2, — ._;
- . icl+as ic 3
= I\'\Lngr:)[(l—dim,,;;‘_ (_ _.__)_¢<} __i__,> a,'a,,.:i Wy
c 2 c 2

Ecrivons maintenant le développement de W,. (en ne conservant
suivant notre régle que les ondes a énergie positive)

(31) Voo = oW +2 e Wi,
k

¢, et les ¢y étant les opérateurs de la seconde quantification respecti-
vement proportionnels a \/n, et aux \/ny. Rappelons-nous que n, est
extrémement grand et évaluons 'ordre de grandeur des divers termes
de notre équation Au premier membre, nous avons des termes de la

forme W AL qui sont finis.

dx;
Au second membre, comme le coefficient K/= —K—est extrémement
[
petit de 'ordre de », 13, nous trouvons :
° des termes de la forme W§Y ... W o wk g qui sont
de l'ordre de n:%
2° des termes de la forme W ... WO, qui sont finis.

Finalement, nous ne pouvons conserver dans les deux membres
de 'équation que les termes finis ce qui, en introduisant la constante
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K =K'y ry, nous conduit a écrire

3

R CL; A
(32) he Z 2 yriw [%’hd&dﬁh+ 6—5’—2—9—’] chwﬁ,lg) ~+ termes en Ay
.

a2%i ;ox;
1

 F.d \
= 1\[1&'49(1_&@4) Wi o _<1 gy *2‘ A, BB Wi )
C‘ 7/

o dad
(gl *+® o
<cl{r'ff 9 at N

D’aprés les remarques faites précédemment, les deux termes du crochet
dans le premier membre sont égaux et, dans le second membre, les
deuxiéme et troisiéme termes du crochet sont nuls. Quant au premier
terme du crochet, dans le second membre, il vaut 8p. Bref, on a en
négligeant les termes en £,

he < 0 B QA B A
(33) 5 g YW YW= ke
o <

Or la définition des champs en Mécanique ondulatoire du photon (')
donne

‘ - Y PP "t“( 034— ; 4 :‘( . .
(36) 1= Kk vy BB BB gl (=1, 3,
k

ce qui, en multipliant (33) par K4,, permet d’écrire

(35) AivE = "75 K2 ks

Or, ona

(36) |<=4z”v;;, k=2F e,  Keko= "%,
et par suite

(37) divE=:.

Ici E et o sont les grandeurs complexes définies par (22) et (34).
En passant aux grandeurs réelles correspondantes suivant le schéma
général F, = F 4 F*, nous oblenons

(38) divE,=div(E+E*)=p +p"'=3,

E, est donc ici le champ électrique réel superquantifié : c’est un
opérateur de U'espace des n. Pour obtenir une équation numérique,

(1) Voir Chapitre 111, formules (30).

B T T I SO
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raultiplions les deux membres de (38) en avant par R{(no, ny, .. .) et
en arriére par R,(ng ny, ...) et sommons sur n. Nous souvenant
queZ {Rs |>=1, nous trouvons finalement
— / — ‘
39 divE =, ( E =2 Vg Elé') y
AN Kk

ou H est la valeur moyenne dans V'espace des n du champ électrique E.
Nous savons que, pour les champs & trés grand nombre de photons,
E représente le champ macroscopique observable : il coincide donc
avec le champ B de la théorie de Lorentz et I'équation div B =p se
irouve aussi justifiée ().

Un raisonnement analogue fournirait de méme (en négligeant toujours

>
. 1 JB v

les termes en k, ) 1’équation de Lorentz - ’—07 =rotH —o-. Enfin, en

conservant cette fois les termes en 4, on pourrait tirer de 'équation (20)

les relations

(10) H= l‘OlK, E=—- — — grad V,
dont on tirerait ensuite les équations

(41) divH = o, —

L’ensemble des équations de Lorentz peut ainsi étre retrouvé a partir
de I'équation d’ondes du systéme photon-¢électron.

Notons que, conformément a une remarque faite a la fin du para-
graphe 8 du chapitre précédent, les interactions entre particules
électrisées apparaissent, a la lumiére de la théorie précédente, comme
liées & des transitions qui font passer le photon d’un état d’annihilation
a4 un autre : c'est ce que montre le role des termes de la forme

U, ..., W dans les raisonnements précédents.
N , . ..
4. Remarque sur la relationz YL, 03, 9L =— 4. — La premiére
g

relation (26) (ue nous écrirons avec sommation des indices

(42 ll"TDT Cl'.‘q".ll‘ﬂﬂt—————i

(') Notons ¢n passant que les champs de la théorie de Lorentz apparaissent ici, du
point de vue quantique comme macroscopiqices alors que, comparés aux champs de la
théorie de Maxwell, ils apparaissaient au contraire du point de vue classique comme
microscopiques.
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est aisée a vérifier d’aprés les définitions de X, et B,. Elle souléve une
difficulté étroitement apparentée a la difficulté relative a la fonction Wio!
que nous avons discutée au Chapitre III, paragraphe 5.

Ecrivons, en effet, les équations d’ondes du photon sous la forme

A \
1 MWer _ (i A+ ia,+.i Q- i ko @, ) W,
c Jt Jdx dy Js
(43) Lo 0
L _ (2 y il NoN L .
i (dwa}'_*—r)yas + }“653+Ll.o( )lm

La difficulté que nous connaissons déja est que les ‘P#l_(a.)UT éLant
des constantes, ne sont pas solutions des équations (43) si I'on pose
ko= 0.

Voici maintenant en quoi consiste la difficultérelative a Péquation (42).
Multiplions les deux équations (43) respectivement par ‘F"’) G, et

¥’ &,, sommons sur les indices et ajoutons. Les termes contenant des
dernvées sont tous nuls en vertu des définitions des ¥, des L, et
des (3, ; il nous reste

(4 21./50@.%0‘4:)(51&035‘1“'0'1= O
ou si kyZ£ 0
(45) A, B Ve = o.

Introduisons le développement (31) de W, : il vient

(46) co W52 QL B U +zck11<°>a,,m,,qf{,‘§’=o,
k

¢o étant proportionnel a \/n,le second terme de (46) est négligeable
" devant le premier et nous trouvons

(472 UG AL B Y ~ o,

relation visiblement inconciliable avec (42).

Pour lever la difficulté relative a ¥'¥, nous avons introduit, au Cha-
pitre III, I'hypothése suivante : nous avon: supposé que 'espace-temps
constitue une coupe & x, constant dans un espace a cinq dimensions
Zoxyst et nous avons attribué aux fonctions d’onde représentant des
états non annihilés la forme

(48) Vo= for(@, ¥, 5, 1) ellore,
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Dans ces conditions, si nous remplagons les équations (43) par les
suivantes
! ”Tt" = (I.)i_);a,-f- ;)’-f QA+ ---a + d—ocl >lr,,7_.
(49) o p) ) p) p)
- _()t— = ((7; 0%y + ’T‘ 03y + gs @By + m(fﬁ)‘l‘,ﬁ.
qui présentent une agréable symétrie, il devient évident que les fonc-
tions Wl = (a,),. sont solutions de (49), tandis que les fonctions d’onde
des états non annihilés ayant la forme (48) restent solutions de (43).
Mais il se trouve, ce qui est trés intéressant, que la substitution de,
(48) a (43), en permettant de lever la difficulté relative a ¥, permet
aussi de lever la difficulté relative & I’équation (42). Reprenant le pro-
cédé qui avec les équations (43) nous menait a la difficulté en question,
nous multiplierons les équations (49) respectivement par ¥ (3, et
W €L;, nous sommerons sur les indices et nous ajouterons, ce qui nous
donnera

(50) WY, mﬁ”"f R e @, <coll'")+2c' q"k)> = R QL B, T
k
ou
( ,'”) II-:J'T =chq'-£rl{:)
k

représente I’état non annihilé du photon. Si 4, est différent de zéro, on
en déduit

(52) YA 3, U = o.

Or le premier membre de (32) est égal d’aprés la définition (31) du
Chapitre III & Pinvariant I, de la Mécanique ondulatoire du photon.
Nous retrouvons donc seulement ainsi le résultat déja connu suivant
lequel, si la masse propre g1, n’est pas nulle, I'invariant I, est nul, résul-
tat qui n’est aucunement en contradiction avec la relation (42). La dif-
liculté relative a cette relation se trouve donc levée par la substitution
des équations (49) aux équations (43).

A —— () R ————

LOUIS DL BROGLIE. | 13




CHAPITRE XIIL

THEORIE MULTITEMPORELLE DE MM. DIRAC, FOCK ET PODOLSKY.

1. Idées générales. — Nous allons maintenant examiner rapide-
ment une théorie intéressante développée primitivement par MM. Dirac,
Fock et Podolsky (*) et approfondie par divers auteurs, notamment par
M. Félix Bloch (2) et M. Wentzel (). Le but de cette théorie est essen-
tiellement de mettre bien en évidence le caractére d’invariance rela-
tiviste des équations d’interaction entre photons et électrons.

Pour saisir le principe de la méthode, considérons n électrons en
interaction avec des rayonnements. Suivant le point de vue adopté anté-
rieurement, nous appliquerons aux photons la seconde quantification
sans Pappliquer aux électrons. Les photons sont alors repérés par un
seul jeu de coordonnées zyz et les électrons par les coordonnées
X, Y.Z,, X;Y,Z, ..., X,Y,Z,: de plus, on fait intervenir un seul
temps ¢, temps de 'observateur ou du systéme. Mais cet emploi d’un
temps unique & c61é des 3(n + 1) coordonnées d’espace brise la symé-
trie entre espace et temps qui caractérise la théorie de Ia relativité. Pour
rétablir cette symétrie, les auteurs de la théorie multitemporelle ont eu
I'idée suivante : il convient d’attribuer a chaque particule un temps
spécial de facon a obtenir 4(n—+1) coordonnées d’espace-temps, mais
en remarquant que toutes nos observations sont faites pour une valeur
commune de tous ces temps, valeur égale au temps ¢ de I'observateur,
de telle sorte que les équations utilisables s’expriment finalement &
'aide de ce temps unique. On développera donc la théorie et ses formules
en distinguant le temps ¢ des photons et les temps individuels ¢, ¢, . . .,
t, des électrons, ce qui mettra en évidence U'invariance relativiste ; puis
a la fin des calculs, pour en arriver & la prévision des faits observables, -

(') Phys. Zeitschr. d. Sowjetunion, 2, 1932, p. 468.
(?) Phys. Zeitschr. d. Sowjetunion, 51, 1934, p. 3o1.
(%) Zeitschr. f. Phys., 86, 1933, p. 479 et 87, 1934, p. 720.
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on devra poser dans toutes les formules oblenues
(I) L=tly=...=Ilp=1,

ce temps commun étant le temps de observateur.
Les auteurs de la théorie multitemporelle 'ont développée dans le
cadre de la théorie quantique des champs usuelle oit 'hypothése impli-

cite po=o oblige, nous Pavons vu, & admettre que les opérateurs

divE eté %EE —rotH de l'espace des n, au licu d’étre identiquement

5 . JH
égaux & zéro comme lesopérateurs divH et % '71:- -+ rotE, donnent seu-

lement zéro quand on les applique a la fonction de répartition R (ce
sont des conditions sur R et non des identités en chaque point zy st de
I'espace-temps des photons). Comme ici nous adoptons le point de vue
- de la Mécanique ondulatoire du photon suivant lequel tous les opé-
rateurs

1 JH

s U + rotE, divE + A3V, divH,

JBE

I 2
o or —rotH — kA

sont identiquement nuls en lout point de l'espace-temps zyszt, nous
allons pouvoir éviter quelques complications qui se renconirent dans les
démonstrations usuelles de la théorie multitemporeile.

2. Equations de la théorie multitemporelle. — Considérons un
électron en présence d’un champ électromagnétique contenant beaucoup
de photons. En reprenant les calculs exposés au paragraphe 2 du cha-
pitre précédent, on peut écrire pour 'électron 'équation d’ondes

h

(2) Ri(ng, ny, .. )27” o‘t p(R )
= Ri(ng, 01, ...) Ho W, (R, t)——e[\/;-l—k-(al> Aa')] Ry (rg, iy o) W (R, 1),
ou
(3) V,.=2_(cka+02Vi.>; A,.=E(ckAk+c,‘;A,’;). ,
K Kk

Vi et Ay sont les potentiels normés de 'onde k, ¢y et cx les opérateurs
de la seconde quantification. Ry(ny, ny...) estla fonction de répartition

q‘:lz”
des photons débarrassée du facteur de phase e et par suite indé-

pendante du temps.
Mais supposons qu’il y ait n électrons et attnbuons 4 chacun un
temps ¢,. Représentons par n ’ensemble des nombres n,, 7y, ... et par
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Ty, Ty ... T, les rayons-vecteurs qui définissent la position des divers
électrons. La fonction d’onde du systéme sera définie par

() Wag.w(n, T, 81,05, by, oy Toy L) =Ry () Wi (1, 1)) W%jz)(rh ts) ... WD (X, 1),

et ne dépendra pas du temps ¢ des photons. La théoric multitemporelle
écrit cuela fonction d’onde (4) doit satisfaire aux n équations suivantes

h d .. R >
(5) 2_;i E?U’aﬁ...v= 1;,”1Fags...v-e[v,~(r,~, ¢) i+ (a(/’Ar(rj, l,‘))]ll—"gpm,,,
7

f=1,2, ..., n, ot HJ est 'bamiltonien de Dirac du j° électron

; he [ 0 Jd o Jd ;
. in R 9 o T imacaddt ]
(6) HY' = ‘uri[dz,-a‘ -+ ()yja._, -+ dz,-a“ “+ imgcay ]
Les n équations (5) possédent évidemment V'invariance bien connue des
équations de Dirac, invariance qui se trouve ainsi mise en évidence par
Pintroduction des temps individuels ¢,, ..., ¢,
Au sujet des équations (5), M. Félix Bloch a fait I'intéressante

remarque suivante. Ecrivons-les

h ‘)"Fmﬁ...v . .
—_— e = HNY —_
(7) i Hi'Wag..w  (J=1,2, ..., 0),
avec
. _ N
(8) Hi = HY — e[ V,(xj, )10 — Can Anry, )]

On trouve pour deux valeurs j et &k de l'indice

d dWe3..v _ oni oWe3..v 27

el ARDid | 11 il AR * (73 ¢ (FAR)
(9) at; Jtx h H dt; h HUH I“ie""”
9 . .
* 0 Weg.» 2mi .. dWa .y ITL
il IEN LA | (7 ol AL g } I0) ¢ (V3] .
dty e A HY dti ok HO A8 Wag....y

Pour que les équations (g) soient compatibles, il faut donc avoir
(10) [HU), HA] =0

pour tout j et tout k. Orla seule chose qui puisse empécher HY de com-
muter avec H®, c’est la non-commutation des potentiels électromagné-
tiques relatifs aux licux r; et r¢. Nous avons vu qu'il ne peut y avoir
non-commutation que si les deux événements x;y;5;t; et 2xyx 54 lx peun-
vent agir 'un sur l'autre : il y a toujours commutation si chaque événe-
ment est en dehors du cone de lumiére de I'autre. En d’autres termes,
les équations (5) d’indices j et & ne sont compatibles que si les événe-
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ments x;y;5;t; et z; y1. 5, L peuvent étre rendus simultanés par un choix
convenable du systéme de référence.

Il est évident que siPoun identifie tous les Lemps dans les équations (3),
on est ramené, dans le cas d’un seul électron, a ’équation (2), ce qui
établit U'accord des équations de la théorie multitemporelle avec celles
de la théorie a un seul temps.

3. Introduction des potentiels de Wentzel. — Nous devons main-
tenant définir les grandeurs électromagnétiques non plus dans I'espace-
temps 4 4 dimensions des photons, mais dans I’espace-temps mul-
tiple & 4(n—+1) dimensions du systéme envisagé. Ici ces grandeurs
vont étre fonctions non seulement des coordonnées zyzt relatives aux
photons, maisausside’ensembledes coordonnées z, 154 ¢, . .. ZnYnsnta
des n charges électriques. Le développement de la théorie multitem-
porelle a amené MM. Dirac, Fock et Podolsky a introduire des
potentiels d’un type nouveau dont M. Wentzel a ensuite souligné
I'importance. Avec M. Dirac, nous les nommerons les potentiels de
Wentzel.

Pour introduire ces nouvelles grandeurs, nous nous servirons d’abord
des conceptions classiques qui attribuent a chaque charge électrique
ponctuelle uue ligne d’Univers bien déterminée. Sur la ligne d’Univers
de la j° particule de chargec; (si c’est un électron ¢;= — e}, nous
choisissons un point de coordonnées d’Univers z!f) (n==1, 2, 3, 4)
correspondant a I'abscisse curviligne s; comptée a partir d'une origine
arbitraire prise sur la ligne d’Univers. Ceci fait, si nous considé-
rons les coordonnées zyst du photon, le potentie]l de Wentzel dans
Pespace-temps 4(n -+ 1) dimensionnel au point de coordonnées .tyzt,_
Za¥1%1tyy « .., TnYnSatn, est par définition en notation d’Univers

X s d.'l'(j)
(1) Au(zy ooy t) = AP (2, y, 2, 1) — _‘Lf D, 2% g
[ p(=,y, 7 an . j ds; Ii)

ou encore

)]
~ g a .
(12) Al ey t) = AP, 0y 2, 0= gL [V D dall,
- —x
Az, y, 5, t) élanL la composante . du potentiel tel qu’il existerait en
I’absence des charges et D; étant la fonction singuliére invariante définie
au paragraphe 8 du Chapitre VIII et relative a la j° charge, c’est-a-dire

la fonction D(r — 1), £t — ¢;).
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Sil'on admet la nullité de w,, la fonction D(r, ¢) se réduit, nous le
savons, a la fonction singuliére de Pauli-Heisenberg

(et +r)y—é(et—r)
r

(13) A(r, 1) =

L’expression (13) 'de A conduit aisément aux intéressantes conclu-
sions suivantes ; pour un point zyst situé dans la partie aveniF du cone
de lumiére relatif au point choisi sur la ligne d’Univers de la j° charge, la
contribution de cette j° charge au potentiel de Wentzel est nulle; pour
un point zyzt situé sur la partie passé du cone de lumiére relative au

M ne regoit aucune action M regoit I'action retardée
ide la ligne d'Univers de M, de M; et l'action avancée de M].

‘M recoit seulement Paction retardée de M},
¢ j

‘ Fig. 3.

point choisi sur la ligne d’Univers de la j° charge, la contribution de
cette j° charge au potentiel de Wentzel est égale a la différence entre le
potentiel retardé et le potentiel avancé; enfin pour un point zyzt situé
en dehors du céne de lumiére relatif au point choisi sur la ligne d’Uni-
vers de la j° charge, ta contribution de cette charge se réduit au poten-
tiel retardé. C'est dans ce dernier cas que I'on doit se placer pour toutes
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les charges j (c’est-a-dire qu’on doit choisir sur les lignes d’Univers des
points tels que les régions extérieures aux cones de lumiére aient des
parties communes et placer le point M dans cette partie commune) pour
pouvoir faire t=1¢,=... t,. Les schémas ci-contre illustrent les trois
cas que nous venons de distinguer.

Il nous est maintenant facile de trouver deux équationsamportantes
auxquelles satisfont les potentiels de Wentzel. Tout d’abord, on a

(/)
(D DAP‘:D/\E”— \ f [_—_][)/-(/1',&/)-

Or, A{’ étant le potentiel de la Mécanique ondulatoire du photon dans
le vide,

(15) []AL{":——/{%AEL‘”; DD]:——«/C%D/',
d’ou
(16) OAy=—kj Ay,

et sil'on suppose &; négligeable

(17) []Auzo.

4
. . (Lx
Ensuite calculons la divergence 2 EE' Nous trouvons (avec somma-
v 0%y
1 .

tion des indices)

(0)
(18) 4)A“=()A‘L 1 f!u , lx‘“
dxy, oxy, axy
Mais
(19) ab; _ :)D/,
. ()xl‘l‘ d.E(p/_)

puisque D; ne dépend que de z, — 2. D’ou

A JA A N g
(20 Thp J &np.
) dy, ()’I:.,, 2-184. D,_+z SxD"

car les A’ satisfont a la relation des potentiels de Lorentz.

Jusqu’ici, nous avons défini les potentiels de Wentzel en nous ser-
vant de 'image classique qui attribue a chaque particule électrisée une
ligne d’Univers bien définie. Mais nous savons qu'une semblable image
n’est plus valable en Mécanique ondulatoire. Pour nous en affranchir,

3,
ARCH\VES
A8rimy7 o 57 S
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nous définirons les polentiels de Wentzel comme des grandeurs obéissant,
quand p., = o, aux équations

JA g
=0 ket LD,
(21) DA(.L 0; d.Z‘P, 8ﬁ])l

Remarquons que les grandeurs ainsi définies sont les grandeurs com-
plexes dont on déduira les grandeurs réelles par la formule usuelle

(22) F,»=IF+F'-

4. Déductions des équations de Lorentz. — Nous déduirons
les champs (complexes) de Wentzel a partir des potentiels complexes
par les formules classiques

JA, _ %_E

——— va==1,2 1 gl
Jdxy Jx, () » -

(23) Fyy=

De cette définition, dérive immédiatement les équations

=0

oF,y  OF,, IF,,
+ = 4
dxy, Az, du,,

(24) :
ol g, v, p sont trois des quatre nombres 1, 2, 3, 4. Ecrites en notation
vectorielle, elles nous donnent

. 1 JK ' .
(2\)) _E —)T =rotE; dl\H-—O,
les champs E et H étant les champs complexes de Wentzel qui sont des
opérateurs de l'espace des n dont la valeur dépend des coordonnées
Y5t T1 Y1 Sy b .. XuYnSati. Soit f Pune quelconque des compo-
santes des champs de Wentzel : par définition, nous poserons comme
valeur moyennc de cette composante

(26) F(T, 8, try ey tn)

_Zf flfr, v, A, (ny 1y, 1y o Payln) fW(n, e, by o, Pay ).

L’on voit que dans (26) la moyenne ne porte pas sur les coordonnées
zy st des photons, mais seulement sur les nombres n. Donc f dépend de
xyst et des temps individuels ¢, . .. ¢, des électrons.

Multiplions (23 ) par R* a gauche et par R a droite, sommons sur les n,
intégrons sur les coordonnées d’espace des électrons et ajoulons au
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résultat obtenu la quantité complexe conjuguée, il vient :

JH,

1 — —
_— = rot divH, = o.
c ot Er, H,

(27)

Partant toujours des définitions (23), nous trouvons de méme

:)F"V Jd oA, ]

J .
(28) Ty —II‘:E—I)—I,()—.T—,A‘L—Z‘;(d“A)—PDAE"

d’ot, en vertu de (21), c’est-a-dire en supposant po= o,

JF‘“ ¢; dD;
Lol = 4).
(29) =X (B=n230

En notation vectorielle, ces équations s’écrivent
=N ¢ 9y, 1JE_ N Y ooy,
(30) divE ZSM S ;5 =roH angradD,.
i

Opérons sur ces équations comme sur les équations (25); nous
trouvons

(31) divE,=—

Pour trouver les équations applicables aux faits observables, nous devons
maintenant opérer dans les formules (27) et (31)la confusion des temps
définie par la relation (1). Mais, avant de procéder a cette opération,
nous ferons quelques remarques préliminaires.

Revenons & la définition (26) des valeurs moyennes. Il est d’abord a
"noter que l'on a

(32) 4 = 27w,

comme cela résulte aisément des raisonnements généraux classiques
rappelés au Chapitre I. D’autre part, comme la fonction ¥ de la théorie
multitemporelle ne contient ni le temps ¢ des photons, ni les coordon-
nées £yz, on a évidemment

. d d - : -
(33) ’},: e(lt‘/ grad f = grad f.

Mais st 'on opére la confusion des temps] (ryt, 6 ..., t,) devient

s (ry¢,¢...¢)etilyalieu de considérer la dérivée totale (—;)zfpar' rap-
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porta ¢ qui est égale a

(34) ;))t-f(r, bty oy t) = (’” 2 Zr/, )
P
Z(T)J; +2 2‘_‘”7 Hm]> ,
to==f

\ i =

Les quantités [f, H/'] qui interviennent ainsi proviennent de la non-
commnutation de la grandeur f avec les termes

el Ve iy — (@A, ()]

contenu dans HY : elles sont facilementcalculables a partir des formules
de commutation des grandeurs électromagnétiques quand f est une com-
posante de champ
Revenons aux équations (27) et (31) et opérons-y la confusion des

temps individuels. Dans la premiére équation (27), nous aurons a
remplacer

JH, _JH, 0 = Y L ——

oo T ZH, Y 22 1.

ot ot par 5 Hr Z i e 1]
Or, on peut vérifier en partant des formules de commutation du Gha-
pitre VIII, paragraphe 2, que [H,, H"] =o. Il reste donc

10 o e
S~ H,=rotE,, divH,; = o0,

(33) T

c’est-a-dire les équations de Lorentz sans second membre pour les
grandeurs réelles moyennes.

La transformation des équations (31) est plus délicate. Comme nous
avons
(36) <] %),/:,I“‘iﬂa(r”“rﬁ: (graé U/)r, (=0,

[#4

nous trouverons d’abord

(37) divE, =35 3(r 1))

; .
—y . .

:ZE/Zl/.‘.‘[l/rh ...,dr,,
i n

SR (20, 1)y oony, WE(Xwy 1) 2 5(E — 1))

%\ e o f W
=¥ 0 O, t)=z.o,-,
!

i

)
3
:
)
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o, étant la densité de charge au point r a I'instant ¢ associée au j° élec-
tron, puis

lv)

(38) ¢ dt

E,=rotH, +2 —[E, TOH -

Orc on vérifie a 'aide de la formule (69) du Chapitre VIII que 'on a

h
(39) (B, HUmr=ej aa(r—1)),

et par suite

(40) ?”’[EHIM— —s,zf fdn,. ., dr,¥*a;e W 5(r —r))

i
1
(,

= I¥Gud e, 0w, 0 =— Yy,
i i

ou Z; est la densité de courant associé au j° électron.

Finalement, en désignant par p et i les densités de charge et de cou-
rant électrlques associées a I'ensemble des n particules chargées de
facon a avoir

(41) =ZI,P/7 i=2ii/,
. 1

il vient

(42) divE, = 5; - = = yotH,—1i,

c’est-a-dire les équations de Lorentz avec second membre.

Telle est la maniére de déduire les équations de Lorentz en théorie
multitemporelle.

Ces considérations ont été souvent présentées d’une fagon peu intel-
ligible parce que I'on négligeait de préciser que 'on considére toujours
des moyennes impliquant une certaine vue macroscopique des phéno-
ménes. Comme dans les raisonnements développés dans les précédents
chapitres dans le cadre de la Mécanique ondulatoire du photon, c’est
seulement en faisant intervenir de telles moyennes macroscopiques que
Uon peut retrouver les équations de Lorentz.

La formule (20) que 1'on peut écrire

(43) é%‘?’-ﬂ-de_—Esif
7
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conduit a la relation

: 4 divA, =— N EL T
(44) - —— +divA,= 41[),,

puis, aprés confusion des temps individuels, a

‘. oA e e N 2Ripu
(45) . ’-')-é V+ dn’A,.=2‘ h_[v,., 1) P
i

Or la formule de commutation (68) du Chapitre VIII donne, en
remarquant que pour ¢ = ¢;, D; et ses dérivées secondes sont nulles

(46) [V, H == o

Il nous reste donc la formule
4 | L9 e divA, =
7) E l)_t =+ div A, = 0.

La relation de Lorentz entre les potentiels est donc aussi satisfaite
dans la théorie multitemporelle.

La théorie multitemporelle a donné lieu a d’intéressantes tentatives
concernant la question de l'énergie propre des particules. Nous avons
vu comment les théories quantiques conduisent pour ces énergies propres
a des valeurs infinies inacceptables. En se servant de la théorie multi-
temporelle et des potentiels de Wentzel (1), on a cherché a éviter cette
difficulté. Malgré quelques résultats intéressants, il ne semble pas que
ces tentatives aient abouti jusqu'a présent a un succés complel : aussi
n'y insisterons-nous pas ici.

(') Voir notamment G. Wewrzer, Zts. f. Phys., 86, 1933, p 479.ct 635; . A M. Dinac,
Annales de UlInstitut Henri Poincaré, 9, 1939, p. 13.

e ) R ———
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