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INTRODUCTION

La Théorie quantique des champs électromagnétiques a 
dû son origine, il y a plus de vingt ans, aux travaux de 
M. Jordan et de MM. Pauli et Heisenberg (*) : on en trou 
vera d’excellents exposés dans les livres de M. Heitler (a) et de 
M. Wentzel (3).

Nous plaçant à un point de vue assez différent, nous avons 
développé depuis 1934 une Mécanique ondulatoire du photon qui 
a l’avantage de bien montrer comment la théorie de la lumière 
vient trouver sa place dans le cadre général de la Mécanique 
ondulatoire, tout en permettant de retrouver par l’application 
directe de la seconde quantification la plupart des résultats 
essentiels de la théorie quantique des champs. Après avoir 
ébauché cette théorie dans deux fascicules de la collection des 
Actualités scientifiques (Paris, Hermann, n° XIII, 1 g34 et n° XX, 
1936), nous en avons fait un exposé d’ensemble dans un Ouvrage 
en deux volumes intitulé Une nouvelle théorie de la lumière : la 
Mécanique ondulatoire du photon (Paris, Hermann, 1940-1942), 
puis dans un autre Ouvrage intitulé Théorie générale des particules 
à spin (Gauthier-Villars, Paris, ig43), où nous avons rattaché la 
Mécanique ondulatoire du photon à la Théorie générale des 
particules douées de spin.

Aujourd’hui, il nous paraît intéressant de reprendre, pour les

(') Zeitschrift fiir Physik, 56, 1929, p. 1.
{-) Quantum theory of radiation, Oxford University Press, 19S6.
(3) EinfUhrung in die Quantentheorie der Wellenfelder, Fr. Denticlie, Vienne, iy43.



VI INTRODUCTION

approfondir, les compléter et parfois les rectifier, les résultats 
exposés dans le premier des deux Ouvrages que nous venons 
de citer, de façon notamment à bien mettre en évidence ce 
qui distingue notre Mécanique ondulatoire du photon, de la 
Théorie quantique des champs électromagnétiques telle qu’elle 
est usuellement exposée. Nous aurons ainsi l’occasion d’examiner 
un certain nombre de difficultés et de critiques que peut soulever 
notre point de vue.

Depuis la rédaction de nos précédents ouvrages sur ce sujet, 
nous avions eu l’occasion de faire de nouvelles remarques sur 
la signification physique des algorithmes de la théorie des 
champs (en particulier celles qui sont exposées au Chapitre IX). 
Nous avons aussi profité de nos échanges de vues avec les 
jeunes théoriciens de l’Institut Henri Poincaré, et surtout avec 
Mrae M.-A. Tonnelat et avec M. Gérard Petiau, qui ont apporté 
dans ces dernières années à ce genre de questions de très 
précieuses contributions.

Malgré les points délicats qui subsistent en Mécanique ondu 
latoire du photon et que nous n’avons pas cherché à dissimuler, 
il nous semble certain que cette théorie garde le grand mérite de 
faire voir clairement le véritable sens physique du formalisme 
assez abstrait de la théorie quantique des champs et de préciser 
bien des questions qui restent assez obscures dans les exposés 
qu’on en fait habituellement.

Louis d e  BROGL1E.
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THÉORIES NON SUPERQUANTIFIÉES.

CHAPITRE I.
EXPOSÉ SCHÉMATIQUE DES DIVERSES FORMES 

DE LA MÉCANIQUE ONDULATOIRE.

1. Conceptions générales. — Nous supposerons connus dans leurs 
grandes lignes les principes généraux de la Mécanique ondulatoire 
à une fonction d’onde ainsi que ceux de la théorie de Dirac (1). Nous 
voulons seulement développer ici un schéma général de ces théories qui 
présente sous une forme condensée quelques-uns de ces principes 
généraux sans entrer dans les détails.

Dans toutes les formes de la Mécanique ondulatoire (forme primitive 
à une seule fonction d’onde, théorie de Dirac, Mécanique ondulatoire 
du pholon ou du méson), on représente toujours l’état d’un corpuscule 
par une certaine fonction d’onde V(.r, y, z, t) définie en chaque point 
de l’espace et à chaque instant t : cette fonction représente donc un 
champ au sens habituel de la Physique du champ. D’ailleurs, on le sait, 
la grandeur V est une grandeur complexe qui ne correspond pas à une 
quantité mesurable (observable au sens de Dirac), mais qui permet 
seulement de former des grandeurs qui, elles, représentent des grandeurs

(') Pour approfondir leur étude, on pourra consulter notamment le livre de l'auteur, 
Une nouvelle théorie de la lumière, t. 1, Chap. III et IV, Hermann, Paris, 1940.

LOUIS DE BROOLIE. t
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observables. Dans la Mécanique ondulatoire primitive, la grandeur *F 
est unique; en théorie de Dirac, elle comporte quatre composantes 'F,, 
lF2) 'F;,, W,, dont l’ensemble est désigné symboliquement par la lettre 'F 
de la même façon que l’on désigne symboliquement par A l’ensemble 
des trois composantes Ax, Ar, A” d’un vecteur de l’espace à trois 
dimensions. Dans la théorie du photon et dans celle du méson, la 
fonction d’onde W a seize composantes; t :e en a davantage pour les 
particules de spin plus élevé.

Dans chaque forme particulière de la Mécanique ondulatoire, 
intervient toujours,un opérateur dit opérateur hamiltonien qui repré 
sente une certaine opération linéaire effectuée sur une fonction de 
l’espace où est défini le 'F, c’est-à-dire en fait dans l’espace ordinaire 
à trois dimensions quand on considère un seul corpuscule sans spin. 
Pour plus de généralité, en vue notamment des applications à la seconde 
quantification, nous dirons sans préciser davantage que l’opérateur 
hamiltonien (qu’on représente toujours par la lettre H) opère dans 
l’espace où est définie la fonction W. L’évolution au cours du temps de 
la fonction V est alors représentée par l’équation

(O h
i - i <)l = HT.

Dans le cas d’un corpuscule sans spin, cette équation d’évolution 
représente une seule équation aux dérivées partielles. Dans le cas d’un 
électron de Dirac (électron doué de spin), la fonction d’onde aura 
quatre composantes *F<; et l’opérateur Hamiltonien pourra opérer non 
seulement sur les coordonnées X, y, z de l’électron, mais aussi sur 
l’indice a qui est susceptible de prendre les valeurs distinctes 1,2, 3, 4- 
L’action de l’hamiltonien sur l’indice a de la fonction d’onde se 
représentera à l’aide des quatre matrices à quatre lignes et quatre colonnes 
généralement désignées en théorie de Dirac par a,, a2, a:, a.,. Dans la 
Mécanique ondulatoire du photon et du méson, il y aura seize compo 
santes du 'F : ces seize composantes pourront être écrites sous la 
forme *FffT avec a, t  — 1, 2, 3, 4 et l’opérateur H agira à la,fois sur x, 
y, z et sur les indices a et t , etc.

On obtiendra ainsi dans le cas de l’électron de Dirac quatre équations 
aux dérivées partielles simultanées auxquelles obéissent les quatre *F(T; 
dans le cas du photon et du méson, on obtiendra, comme nous le 
verrons, seize équations aux dérivées partielles simultanées auxquelles 
obéissent les seize et dont on pourra déduire seize autres équations 
du même type, etc.
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Pour les particules à spin dont les fonctions d’onde ont plusieurs 
composantes, on peut dire que les indices de ces composantes 
constituent des variables de spin susceptibles de prendre un certain 
nombre de valeurs distinctes : l’espace où est définie la fonction 
d’onde W et où elle évolue suivant l’équation (i) est formé par les 
variables d’espace x, y, z pouvant prendre toutes les valeurs de —oo 
à +00 et les variables de spin à nombre fini de valeurs distinctes. 
Toute intégration sur les variables x, y, z devra s’accompagner d’une 
sommation sur les variables de spin, si l’on veut avoir sommé sur toutes 
les variables dont dépend le W. Nous désignerons par D le domaine 
total de variation des variables z, y, z, a, x, ....

Dans les diverses formes de la Mécanique ondulatoire, on peut 
définir une grandeur de champ construite à partir du V et jouissant de 
la propriété que son intégrale, dans le domaine d’espace v où est 
défini le 'b', reste constante en vertu de l’équation d’évolution (i). 
Cette grandeur, représentée par la lettre p, est nommée densité de 
probabilité de présence et, dans l’interprétation physique de la 
Mécanique ondulatoire à une fonction d’onde et dans celle de la théorie 
de Dirac, l’on admet que p(x,y, z, t) dx donne la probabilité pour 
qu’une expérience permette de localiser à l’instant t le corpuscule 
dans l’élément de volume dx entourant le point x, y, z. Pour que p dx 
donne cette probabilité en valeur absolue, il faut évidemment que
l'intégrale^"p dx, qui reste constante au cours du mouvement en vertu

de l’équation (i), soit égale à l’unitç. Mais, l’opérateur H étant linéaire, 
l’équation (i) l’est aussi et, si V est une certaine solution de (i), 
CW où C est une constante complexe quelconque en est une autre : 
on peut donc convenir de choisir la constante C (ou plus exactement 
son module) de façon que la condition suivante soit satisfaite

(2) J" p dx = 1.

La fonction d’onde est alors dite normée et la normalisation du T ainsi 
réalisée a une importance essentielle en Mécanique ondulatoire.

Le fait que f p dx reste constante en vertu de l’équation- (i) se
■y

démontre en prouvant qu’il existe un vecteur f d’espace tel que 
l’équation de continuité

àp 
<)/ -i- div f = o(3)
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soit satisfaite en vertu de Inéquation de l’évolution du V. On peut donc 
considérer p et f comme définissant localement la densité et le mouvement 
d’un fluide fictif de probabilité tel que la quantité p dx de ce fluide fictif 
contenue dans l’élément de volume dx mesure la probabilité de présence 
de ce corpuscule dans cet élément de volume. Dans les théories rela 
tivistes comme celle de l’électron de Dirac ou celle du photon, 
les grandeurs p, /x, /y, fz apparaissent comme les quatre composantes 
d’un vecteur densité-flux dans l’espace-temps.

Dans la Mécanique ondulatoire à une fonction d’onde, on a, en 
désignant par V* la quantité complexe conjuguée de

(3) p = |V|* =«•«■*, f= —^-(VgràdW — ifgrâdv)
4 TC Iffl

avec la condition de normalisation

(4)

où D est simplement le domaine d’espace v où évolue l’unique fonction 
d’onde W. En théorie de Dirac, on a

4 K
(5)

1 1
où x est un vecteur-matrice dont les trois composantes rectangulaires 
sont a,, a2, a3. Ici p et f définissent un quadrivecteur densité-flux dans 
l’espace-temps et l’on a comme condition de normalisation

(6)
*

J dx dy dz'^J^Wê'¥a = i,

car ici le domaine D comprend à la fois le domaine v de l’espace où 
évolue le V et les quatre valeurs distinctes de la variable de spin a.

2. Opérateurs, valeurs et fonctions propres en Mécanique ondu 
latoire. — L’opérateur hamiltonien est non seulement linéaire, il est 
aussi hermitien : ceci signifie que, si g et f sont deux fonctions réelles 
ou complexes, mais intégrables et nulles aux limites, des variables qui 
définissent le domaine D (y compris toujours les variables de spin), 
on a
(?) f r kgdx= f gK*r dx,d\> d],

où l’astérisque indique toujours la quantité complexe conjuguée.
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L’introduction en Mécanique ondulatoire d’opérateurs linéaires et
hermitiens est un fait tout à fait général en ce sens qu’on y fait corres 
pondre à toute grandeur physique mesurable (observable au sens de 
Dirac) un tel opérateur. L’opérateur hamiltonien H est celui qui corres 
pond à la grandeur énergie. A toute autre grandeur observable, corres 
pond de même un opérateur linéaire et hermitien que nous désignerons 
par la lettre A.

A chaque opérateur A, donc à chaque grandeur observable, on peut 
faire correspondre des valeurs propres et des fonctions propres. 
Considérons en effet l’équation
(8) A 9 = ao,

dite équation aux valeurs propres de l’opérateur A, où 9 est une 
fonction des variables du domaine D où opère A et où a est une 
constante, c’est-à-dire une quantité indépendante des dites variables. 
Le temps t peut d’ailleurs figurer comme paramètre numérique dans A, 
a et 9. Par définition, on appelle valeurs propres de l’opérateur A 
dans le domaine D, les valeurs de la constante a pour lesquelles 
l’équation (8) admet au moins une solution 9, fonction finie, continue, 
uniforme et sommable dans D des variables du domaine D. Cette 
solution est une fonction propre de l’opérateur A correspondant à la 
valeur propre a.

De l’équation (8) et de l’équation conjuguée, on tire aisément 
la relation

(9)

et, comme A est hermitien, le premier membre de (9) est nul, ce qui 
montre que « = a*, c’est-à-dire que a est réel.

L’ensemble des valeurs propres d’un opérateur hermitien forme
le spectre de cet opérateur qui peut être continu (spectre de bandes) 
ou discontinu (spectre de raies) ou même mixte. Si à une même valeur 
propre correspondent plusieurs fonctions propres linéairement indépen 
dantes, la valeur propre est dite multiple ou dégénérée. Dans le cas des 
spectres discontinus de valeurs propres non dégénérées, on démontre 
aisément que les diverses fonctions propres sont orthogonales entre elles, 
c’est-à-dire que, si 9; et 9* sont les fonctions propres correspondant aux 
valeurs propres distinctes a; et a*, on a

(10)
D



6 CHAPITRE I.

Gomme le caractère, linéaire de '.'équation (8) entraîne que, si 9; est 
une fonction propre, Cyi l’est aussi; on peut toujours, comme pour les 
fonctions d’onde supposer que les 9; ont été normées par la condition

Nous n’insisterons pas ici sur les complications qui se présentent quand 
il y a des valeurs propres multiples, ni sur les questions délicates que 
l’on rencontre dans la normalisation des spectres continus; on se 
reportera pour les étudier à d’autres exposés.

Rappelons cependant (*) que la normalisation des spectres continus 
conduit à introduire la fonction symbolique de Dirac §(x), ainsi que 
la fonction
( r') S;r ) = 8(x) 5(y ) 8( z),

r étant le rayon vecteur qui joint l’origine au point de coordonnées xyz 
et que l’on a

(it.i / f{x)5(x)dx=f[o); jjj' /( r)S(r)dr =/(o),

la dernière intégrale étant étendue à tout l’espace à trois dimensions 
où x, y, z sont les coordonnées (espace r) et dr désignant abréviati 
vement l’élément de volume dxdy dz. On est ainsi conduit aux impor 
tantes formules dont nous aurons à nous servir

,,i) Mx)z=hr e~ikxM; 5(r)=«^j[„ e”,krÆ’
où dis = dk.,.dkydkz, formules qui se déduisent aisément de la théorie 
des intégrales de Fourier. Les formules (i4) sont des formules symbo 
liques signifiant que les deux membres sont équivalents quand ils
figurent sous les signes J" dx et J' dr.

3. Interprétation physique de la Mécanique ondulatoire. Définitions 
diverses. — Rappelons sur quels principes est fondée l’interprétation 
physique de la Mécanique ondulatoire.

Pour la Mécanique ondulatoire, l’état d’un corpuscule est défini,

Nouvelle Ikèorie de la lumière, t. I, p. 67.



aussi complètement qu’il peut l’être, par la connaissance de l’onde T qui 
lui est associée. Cette onde W qui représente les connaissances fournies 
sur le corpuscule par des observations ou des expériences antérieures 
doit être solution de l’équation d’évolution (1), et nous supposons 
toujours que cette solution est normée. La connaissance de l’onde T' 
ne permet pas d’attribuer, comme le faisait l’ancienne Physique, une 
valeur bien déterminée à chaque grandeur attachée au corpuscule : 
elle permet seulement d’attribuer à chacune de ces grandeurs des 
valeurs possibles affectées de probabilités. Elle y parvient en admettant 
les principes généraux que nous allons rappeler.

Tout d’abord, à toute grandeur observable attachée à un corpuscule, 
la Mécanique ondulatoire fait correspondre un opérateur linéaire et 
hermitien. Pour l’énergie, cet opérateur est l’opérateur hamiltonien H : 
pour les autres grandeurs telles par exemple que coordonnées, compo 
santes de quantité de mouvement ou de moment cinétique, l’opérateur 
se forme, en partant des expressions classiques correspondantes, par des 
procédés automatiques bien connus que nous ne rappellerons pas ici. 
L’opérateur correspondant à une grandeur observable attachée à un 
corpuscule étant linéaire et hermitien, il possède un ensemble de 
valeurs propres réelles et un système complet de fonctions propres 
orthonormales (c’est-à-dire orthogonales et normées). Voici alors les 
deux principes fondamentaux que la Mécanique ondulatoire admet 
comme bases de son interprétation physique :

i° Les valeurs possibles d’une grandeur observable attachée à un 
corpuscule, c’est-à-dire les résultats possibles d’une mesure de cette 
grandeur, sont les valeurs propres de l’opérateur linéaire et hermitien 
correspondant à cette grandeur.

20 Quand l’état d’un corpuscule est représenté par une certaine 
fonction d’onde W(#, y, z, t) solution de l’équation d’évolution (i), 
la probabilité pour qu’une mesure précise de la grandeur observable 
correspondant à un opérateur A fournisse à l’instant t une certaine 
valeur propre a de A, est égale au carré du module du coefficient de la 
fonction propre correspondante-dans le développement de la fonction W 
suivant les fonctions propres normées de l’opérateur A. D’une façon 
plus précise, si la fonction d’onde W se développe suivant les fonctions 
propres de A sous la forme

(i5)
i

EXPOSÉ SCHÉMATIQUE DES DIVERSES FORMES DE LA MÉCANIQUE ONDULATOIRE. 7
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la probabilité de la valeur propre a; est |c( |2. On vérifie que, V étant 
normée, on a ^jc/|2=i en accord avec le théorème des probabilités

i
totales.

On se reportera à des exposés plus détaillés pour voir comment 
on doit légèrement modifier ce second principe dans les trois cas 
suivants : i° quand le spectre de valeurs propres a est continu; 
2° quand l’opérateur A a des valeurs propres multiples; 3° quand l’opé 
rateur A n’intéresse qu’une partie seulement des variables du domaine D.

Nous supposerons connue du lecteur la façon dont les principes 
généraux énoncés ci-dessus permettent de montrer que la quantité WW* 
est bien la probabilité de présence en chaque point, de justifier le 
principe de décomposition spectrale de Boni qui détermine les valeurs 
quantifiées de l’énergie et finalement de conduire aux inégalités d’incer 
titude de M. Heisenberg. Rappelons seulement que deux grandeurs 
correspondant aux opérateurs A et B sont simultanément mesurables 
avec précision si les opérateurs A et B commutent (c’est-à-dire si 
AB = BA) et dans ce cas seulement.

Arrivons-en à la définition des matrices de la Mécanique ondulatoire. 
Ces matrices sont formées à partir des fonctions propres de l’opérateur 
hamiltonien H par la formule

(16) aji= f ’T/Aï'trf- (akj = aft),
•'!>

qui donne les éléments a;* de la matrice engendrée par l’opérateur A0/J. 
Le domaine D est toujours celui de l’ensemble des variables, y compris 
les variables de spin. On obtient les matrices d’Heisenberg ou celles 
de Schrôdinger suivant que l’on inclut et que l’on n’inclut pas dans

la définition de la fonction propre W* le facteur exponentiel eh * .
Rappelons encore la définition des valeurs moyennes étroitement 

apparentée à celle des éléments de matrices. D’après les principes 
généraux de la Mécanique ondulatoire, la valeur moyenne probable de 
la grandeur observable correspondant à l’opérateur linéaire et 
hermitien A quand le système est dans l’état représenté par la fonction
d’onde W =z'£a<pi est

i
(17) A =2aiM2’



puisque les valeurs possibles de A sont les a; et que chaque a,- a la 
probabilité | c; |2. On démontre aisément que A peut aussi s’écrire

(18) I = f W*A Wdx,

D étant toujours le domaine de l’ensemble des variables, y compris 
celles de spin. Remarquons que dans les phénomènes macroscopiques, 
où intervient un nombre énorme de processus élémentaires, A est 
seul accessible à l’expérience.

Il est évident que si la fonction d’onde V coïncide avec l’une des 
fonctions propres V* de l’hamiltonien, on a A = a«, ce qui montre 
lé rapport étroit existant entre la définition des valeurs moyennes et 
celle des éléments de matrice.

Les grandeurs WJ AV* et T’AW (au besoin sommées sur les variables 
de spin) apparaissent dans les formules (16) et (18) comme les quantités 
qu'il faut intégrer dans l’espace pour obtenir les éléments de matrice 
ou la valeur moyenne pour la grandeur A : on peut donc les nommer 
densités d'éléments de matrice et densités de valeur moyenne. Ce sont 
des grandeurs de champ, c’est-à-dire des fonctions de xyzt. alors que 
les éléments de matrices et les valeurs moyennes qui en résultent par 
intégration ne sont fonctions que de t. L’examen de l’interprétation 
physique de la Mécanique ondulatoire montre que ces densités n’ont 
pas une signification physique aussi bien définie que leurs intégrales : 
elles ne sont définies qu’à une divergence d’espace près et rien ne permet 
de choisir entre deux formes de la densité qui sont intégralement équi 
valentes, c’est-à-dire qui donnent les mêmes valeurs pour les inté 
grales (16) ou (18), car seules ces intégrales possèdent en Mécanique 
ondulatoire une signification physique précise. Ce sont cependant ces 
densités qui, dans les théories relativistes comme celle de Dirac, ont 
une variance bien définie. Elles sont importantes à ce point de vue et 
aussi parce qu’elles donnent une image (peut-être un peu trompeuse au 
point de vue quantique) de l’aspect moyen des phénomènes. Ce sont 
également des—quantités de ce type qui définissent les grandeurs 
électromagnétiques en Mécanique ondulatoire du pholon.

4. Évolution au cours du temps des éléments de matrice et des 
valeurs moyennes. — Considérons un élément de matrice donné par la 
formule (16). Il peut dépendre du temps par VJ, par V* et même pour 
l’opérateur A qui peut contenir dans sa définition le paramètre t.

EXPOSÉ SCHÉMATIQUE DES DIVERSES FORMES DE LA MÉCANIQUE ONDULATOIRE. 9
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La dérivée de a7* par rapport ,à t est donc

<■»>
=ftvi * T( AH _ l,A)] ‘r‘ *'

la dernière formule s’obtenant en tenant cqmpte du fait que V* et 
W* satisfont respectivement à l'équation (i) et à l’équation conjuguée et

àS.du fait que H est un opérateur réel et hermitien. est l’opérateur
obtenu en dérivant formellement l’opérateur A par rapport au para 
mètre t. On a donc

(20)
dajk _ T dA 
dt L h J jk

Il arrive fréquemment que l’opérateur A ne contienne pas le temps dans 
sa définition : on a alors simplement

(21) dajk
dt ~h [AH — IIA]/*= [A, H]/•<••

[A, H] = AH — HA étant le commutateur des opérateurs A et H. 
On écrit souvent (21) sous la forme symbolique

(22) dA
dt

A, H

Cette notation est brève et élégante, mais elle a, comme beaucoup de 
notations symboliques, l’inconvénient de masquer un peu le sens
véritable de la formule. La dérivée ^ n’a, en effet, par elle-même
aucun sens quand A ne dépend pas de t et la formule (22) est seulement 
une représentation symbolique de la manière dont les éléments de 
matrice dépendent du temps par Vintermédiaire de V* qui n’appa 
raissent pas explicitement dans (22).

On peut, de même, dériver par rapport au temps une valeur 
moyenne de la forme (18) et obtenir

qu’on peut écrire symboliquement

dA
dt

à A 
dt

^i(AII-IIA),(2-1)
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ou, quand Ane dépend pas du temps,

(25).
dA
Ut ~h~ [A, H ].

mais, ici encore, il ne faut pas oublier que la variation de A dans le 
temps provient de celles de T" et de W* qui n’apparaissent pas explici 
tement dans la formule symbolique.

5. Remarques sur les valeurs moyennes dans la théorie quantique des 
champs. — Les remarques qui précèdent prennent une importance 
particulière dans la théorie quantique des champs. Cette théorie fait 
intervenir, nous le verrons, la seconde quantification, c’est-à-dire qu’on 
y considère un espace où les coordonnées sont les nombres de corpus 
cules (en l’espèce, de photons) dans les divers états énergétiques 
possibles. Tout point figuratif dans cet espace doit avoir des coordonnées 
entières, fait qui traduit l’existence même des corpuscules. On considère 
l’évolution dans l’espace des n d’une certaine fonction d’onde que nous 
désignerons par R : c’est la fonction de répartition telle que 
| R(«,, ft3, '. . ., t) |2 donne la probabilité pour qu’il y ait, à l’instant t, 
ni pholons dans l’état i, dans l’état 2, etc. La fonction R évolue 
suivant une équation de la forme type

(26)
h
2 TZ i ()t 2e r ,

où est un opérateur agissant sur les variables n et jouant le rôle d’un 
Hamiltonien dans l’espace des n.

La théorie quantique des champs électromagnétiques conduit, et ceci 
est la chose fondamentale, à considérer toutes les grandeurs électro 
magnétiques comme des opérateurs agissant sur les variables n, 
opérateurs qui, par ailleurs, sont des fonctions des variables x, y, 2, t 
d’espace et de temps. Ce sont donc des opérateurs opérant sur les n 
dont l’expression varie d’un point à l’autre de l’espace et d’un instant 
à l’autre du temps.

Si l’on considère la valeur moyenne correspondant à l’un de ces 
opérateurs, par exemple à la composante Ex du champ électrique, 
valeur moyenne prise dans l’espace des n, elle se définira par

(27) lî.c=2 > O • • •: 0,
n

la somme Z étant étendue à toutes les valeurs entières possibles des n
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et Ex étant au second membre l’opérateur de l’espace des n corres 
pondant à la composante de champ considérée. La formule (27) nous 
fournit au point xyz et à l'instant t pour lesquels nous considérons 
l'opérateur Ex la valeur moyenne de la grandeur électromagnétique 
correspondante quand la répartition est définie par la fonction R (n,t). 
C’est la grandeur Ex que la théorie quantique des champs considère 
comme la valeur observable de la composante x du champ électrique au 
point xyz à l’instant t dans un champ de très nombreux photons dont 
la fonction de répartition est R(nt, . . ., t) : Ex définit donc la valeur 
macroscopique de cette composante de champ.

L’évolution de Ex. au cours du temps est donnée par la formule 
symbolique

(28)
dE,
dt dt

n i 
h [E.r, X]

ou, si l’on définit Fopérateur Ex de l’espace des n de façon qu’il soit 
indépendant du temps

(29)
dEx 2t c  t — = —[E^X\,

la variation de Ex- provenant en réalité de la variation en fonction du 
temps de la fonction de répartition R(nt ...<), qui ne figure pas explici 
tement dans la formule symbolique (29).

Ces remarques sont essentielles à retenir si l’on veut bien comprendre 
le sens véritable du formalisme de la théorie quantique des champs. 
Nous les examinerons à nouveau dans le cadre de la Mécanique ondula 
toire du photon.



CHAPITRE II.
DÉRIVATION VARIATIONNELLE DES ÉQUATIONS 

DE LA MÉCANIQUE ONDULATOIRE.

1. Introduction d’une fonction de Lagrange. — On peut rattacher 
les équations de la Mécanique ondulatoire sous leurs diverses formes à 
un schéma lagrangien permettant d’obtenir automatiquement ces 
équations par des procédés de Calcul des variations et, de plus, de 
trouver à l’aide de formules générales l’expression des densités de 
moyenne les plus importantes intervenant dans ces théories. Ce schéma 
Lagrangien est analogue à celui qu’on rencontre dans beaucoup d’autres 
branches de la Mécanique et de la Physique.

Nous avons rappelé que la Mécanique ondulatoire introduit systéma 
tiquement une grandeur complexe, la fonction d’onde fonction des 
coordonnées d’espace et du temps. Dans la Mécanique ondulatoire pri 
mitive, la fonction d’onde n’avait qu’une composante, mais dans la 
Mécanique ondulatoire de l’électron, du photon, etc., V devient une 
écriture symbolique représentant l’ensemble des composantes W2... 
de la fonction d’onde. De plus, W est toujours une grandeur complexe 
et, à côté de V, on doit donc toujours considérer la quantité complexe 
conjuguée V* dont l’équation d’évolution est conjuguée de celle de 1F.

Pour faire rentrer la Mécanique ondulatoire dans un schéma 
Lagrangien, on aura à définir une fonction de Lagrange £ dépendant
de *Fj, .. ., des dérivées spatiales et temporelles -jjj'

-jp =W1, etc., ainsi que des quantités conjuguées. Si des actions exté 
rieures s’exercent sur le corpuscule considéré, £ pourra aussi dépendre 
explicitement de x, y, z, t. Nous admettrons que £ est toujours une 
fonction bilinéaire réelle (.’) des quantités étoilées et non étoilées, 
c’est-à-dire que £ est une somme de termes dont chacun contient le 
produit d’un des ou d’une des dérivées des ’P, par un WÔ ou l’une 
des dérivées des WJ. Ces définitions et hypothèses étant posées, en ce

(') Sur cette hypothèse de réalité de £, voir le paragraphe 6 du présent chapitre
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qui concerne la fonction de Lagrange, nous envisagerons l’intégrale

J1!*,

14

(O <)y Oz , u*;.

où V est le domaine de variation des coordonnées d’espace, t" — t' celui 
des variations de la coordonnée t. Maintenons constants les domaines \ 
et l"—t' et imposons (*) aux et aux ^ des variations cïWo. et 
telles que ces variations soient nulles aux limites de V et poui les ins 
tants t—t'ett = t'1.

La variation corrélative de I est

(2) SI = f clt f 8£dx 
Jf J y

Cette forme de ôl résulte de l’hypothèse que £ est une fonction 
bilinéaire réelle des quantités étoilées et non étoilées, de sorte que la
partie de ôf qui dépend des (HT,,, ô r~? et ô'Fo est la quantité conjuguée

de celle qui dépend des <5 et <34^.

Un procédé d’intégration par parties qui est classique en Calcul des 
variations permet de transformer ôl en lui donnant la forme

(3) <)£i

d£
«AF*./

'1 ^ 
'» A'

■ conj.

où nous avons posé 

(4)
')W„
ÔX i (/ = !, 2, 3).

On admet comme postulat que le champ V est tel que l’intégrale I soit 
un extremum pour des variations quelconques ôV, et soumises aux 
conditions précisées cb<tessus. On est donc amené à poser

3
<)£ à ,)£ à d£

Zi
\
3

i t)Xi Me., f)l ^‘•gr

<)£ ^ () à£ >) à£
<n“a Zàt àxt jvi,, <)t

(l) Dans ce paragraphe el dans le suivant, l’indice cr représente l’ensemble des indices 
des »t\



En raison de la forme bilinéaire de i?, le second système d’équations 
nous donne les équations d’évolution des et le premier les équations 
d’évolution des De plus, en raison de la réalité de £, ces deux 
groupes d’équations d’évolution sont conjugués l’un de l’autre, comme 
cela doit être. Finalement, on obtient ainsi pour les des équations 
aux dérivées partielles simultanées (au plus du second ordre) en nombre 
égal à celui des composantes du *F. Ce sont les équations d’évolution du 
champ 'F.

On peut remarquer en passant que si l’on ajouve à la fonction de 
Lagrange une expression de la forme

3
2,£lw,...ï+Zw..y
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(ce qui revient à ajouter à I l’intégrale d’une divergence d’espace- 
temps), rien n’est changé aux équations d’évolution. On peut donc dire 
que la fonction de Lagrange n’est définie qu’à une divergence d’espace- 
temps près.

Rappelons qu’en Mécanique analytique ordinaire, on peut définir 
l’énergie H à partir de la fonction de Lagrange i? et des moments
d;= ^ par la formule

àqi

(6) H à£_
à'qt

— J?.

Ici nous définirons les moments conjugués de W,j et de *F£ en posant

(7) T,o- d£
àW*a

puis, comme les et jouent en chaque point xyz le rôle des qi de 
la Mécanique analytique, nous serons amenés à penser que l’énergie du

champ ’F doit être donnée par / w dx avec, par analogie à (6),
Jy

(8)
<Wa

Cette prévision sur la forme de w va se trouver bien vérifiée plus loin.
Notons enfin qu’il est souvent commode d’introduire dans les for- 

rtiules précédentes les coordonnées d’Univers xt — x, x« = y, #3= z,
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xk=ict, ainsi que la convention bien connue de sommation sur les 
indices deux fois répétés, convention qu’on appliquera aux indices 
des Xk et aussi à ceux des ?a. On notera bien cependant que le passage 
à l’imaginaire conjuguée représentée parles astérisques ne parle jamais 
sur les facteurs i introduits par l’emploi des coordonnées d’Univers. 
Nous généraliserons la définition (4) en l’appliquant à l’indice t = 4. 
Avec ces convéntions, les équations (5) s’écrivent simplement

à d£ d£ d de de
(9) àxt àWa,t ~ àWa' à*i àWà'

2. Densités de valeurs moyennes dans le schéma lagrangien. — 
Considérons maintenant le tenseur de rang deux

(io ) T,* =
d£

o,* ■
d£

àW'o,t 'l’a,*-*' £ 8^,

où ôj* est le symbole classique de Kronecker égal à i pour i = k et à o 
pour i Te,

Calculons en supposant que C ne dépende pas de xyzt (pas 

d’actions extérieures sur le corpuscule). On trouve

(n)
àltk
dxt dxt \

de
dVa%,
de

dVa.

de \ \p , de i-Vbl ^ ,pdV'',) dVa,, àxt dW„a'
dWaii r d de

î àx 1

O
, + r> O 11

dx,
[W„,
L (>xk dxt J"1" conj.

s(*
de
àVa

Le deuxième crochet est visiblement nul, par suite de la commutativité 
des dérivations et le premier crochet est aussi nul en vertu de (g). 
Il en est de même des quantités conjuguées et l’on a finalement (ne pas 
oublier qu’il y a sommation sur i)

(r.) 'üîü=o (X =i, •>., 3, .1).
d.Tj

Cette relation de divergence nulle nous fournit quatre relations qui 
peuvent être considérées comme exprimant les conservations de 
l’énergie et des composantes de l’impulsion si l’on regarde T,* comme 
le tenseur impulsion-énergie du champ (F. Ce point de vue est confirmé 
par le fait que, si J? dépendait de xyzt, le second membre de (12), au

lieu d’être nul, serait égal à0 dxk



Les équations (12) où £ = 1,2,3 doivent donc exprimer la conserva 
tion des composantes de l’impulsion. On en déduit aisément que T4i , 
T43 et T43 sont les densités d’impulsion du champ W multipliées par ic, 
tandis que les T;* avec i, k = i, 2, 3 sont les composantes du tenseur 
des tensions dans le champ.

L’équation avec k = 4 dm1 exprimer la conservation de l’énergie : 
T14, T24 et T34 sont donc les composantes du flux de l’énergie multi 
pliées par l~i tandis que T14 doit être la densité d’énergie multipliée 
par i'1 = —• 1. On vérifie bien, en effet, que T** = — w, w étant définie 
par(8).

Le tenseur Tdéfini ci-dessus n’est pas symétrique. En particulier, 
le tenseur des tensions n’est pas symétrique (Tl3^zé T2i , . . .) et les 
composantes du flux de l’énergie ne sont pas égales aux densités des 
composantes d’impulsion multipliées par c2 (car Ttl^ T*lt . . .)• La 
plupart des auteurs admettent que l’on doit rendre le tenseur T,/, symé-

X —J- Xtrique en le remplaçant par ■ '* ——. Ce n’est pas l’avis de M. Olivier

Costa de Beauregard, qui a donné dans sa Thèse des arguments tendant 
à faire conserver le tenseur Tsous la forme non symétrique (10). 
D’accord avec lui, nous conserverons cette forme non symétrique.

A partir de la fonction de Lagrange, nous pouvons aussi définir un 
quadrivecleur d’espace-temps jouant le rôle de vecteur densité-flux. 
Nous le définissons en posant

DÉRIVATION VARIATIONNELLE DES ÉQUATIONS DE LA MÉCANIQUE ONDULATOIRE. 17

En particulier la composante de temps ft donnera la probabilité de 
présence

(i4)
= Zi = 2ni\

ic h I àV'a
à£

à J

Pour que le quadrivecteur f joue le rôle de vecteur densité-flux, on 
doit poser l’équation de continuité

(là)

Or, en tenant compte des équations (9), on trouve aisément

(16) à/i _ 2iti 
àxi h 

2 rci 
- ~h~

de V«,t

àx-
de

àWa

conj.

LOUIS DE BROGLTE. 2
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Pour prouver que est nul, on peut partir de la remarque suivante :

les ’Pç, même normalisés, ne sont jamais définis qu’à un facteur de 
phase de la forme e'a près, où a est un nombre réel, le facteur e‘“ étant 
le même pour tous les Certains auteurs nomment cette propriété 
l'invariance de jauge de première. espèce. On doit donc admettre 
que la fonction et les équations de Lagrange sont insensibles à toute 
variation de a. Or pour une variation infinitésimale <$a de a, W;, varie 
de <3*T0= *P„e'(a+Sa) — Wae,x iâscWa. De même, on a âlF(T)i~i<5a,F,Tj;;

—idaWJ et —« âaWj,. Dans l’expression (i6,), le
crochet est donc, au facteur iêtx près, égal à la variation qu’éprouve £ 
quand on fait varier la phase de ôa ; comme cette variation doit être

nulle, on en conclut que ~ = o, ce qui permet de considérer le qua-

drivecteur f comme représentant la densité et le flux d’un fluide fictif 
qui se conserve, fluide qui symbolise la probabilité de présence du 
corpuscule.

En raison des difficultés qui se présentent pour l’interprétation du 
vecteur densité-flux dans le cas des corpuscules de spin supérieurs à i,

difficultés dont nous aurons à reparler à propos du photon (1 ), certains 
auteurs préfèrent considérer systématiquement, au lieu de f, le quadri- 
vecteur si, où s est la charge électrique du corpuscule. Ce quadrivecteur 
doit représenter les densités moyennes de charge électrique et de cou 
rant électrique liées au champ On remarque alors que le quadri- 
vecteur

(17) ift = j î i e T d£ 
h [ dU'o.i «V.i

de

serait nul identiquement si les ff",, étaient réels (car alors et
,F<i);= et l’on en conclut : tandis que les particules chargées 
doivent être représentées par des fonctions d’onde complexes, les par 
ticules neutres doivent être représentées par des fonctions réelles. 
Ce point de vue qui se rattache à des questions difficiles sur lesquelles 
nous aurons à revenir, ne nous paraît pas s'imposer. On peut, en effet, 
très bien admettre que les particules, qu’elles soient chargées ou 
neutres, sont représentées par des fonctions d’onde complexes et que le 
vecteur densité-flux d’électricité est nul pour les particules neutres

O) Pour plus de détails pour ces difficultés, consulter L. d e Br o o l ie , Théorie géné 
rale des particules à spin, Chap. IX, Paris, Gauthier-Villars, 1943.



simplement parce que leur charge électrique [qui figure en facteur 
dans (17)] est nulle. Nous nous bornerons pour l’instant à cette indi 
cation.
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3. Application du schéma lagrangien à la Mécanique ondulatoire à 
une fonction d’onde. — Dans la Mécanique ondulatoire relativiste à 
une fonction d’onde, on adopte pour le corpuscule libre la fonction de 
Lagrange suivante

(18) £

avec

(19)

[4,*, % - = I '* l‘-* ! •’
*2 ‘I’ f;

/.o =
n-moc

T~'

£ est bien une fonction bilinéaire réelle de *F, de 'F* et de leurs déri 
vées. On en tire'

(20)

à£JC = —r = li, ___ _ ^
dU”, ~ C' <)Xi

d£I ÊJL „ dy( dw*t ~ c’ àxt ’

<)£

___ foi y
dl'* _ “

Les équations de Lagrange donnent

(21) ( ■+- kl)W = o, (  -+- A§)'F* = o,

Ce sont les équations de propagation de la Mécanique ondulatoire rela 
tiviste à une fonction d’onde. On trouve également

(22) w = «V-»-R*Vr*-.jC, = | V'|*-h  c* | gradT |*-+- kl | [*,

et plus généralement

(23) Tli=£8lt-^rVi-^Vl

1_ ôxj ôxj J f àxj dxjc dx, dxi J

Pour les composantes du quadrivecteur densité-flux, on trouve 

, „ , a««T dx? d£ „..q sert dv*n.i“*> f,~ — "Is,* -Kr'J-
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Nous n’insisterons pas davantage sur la Mécanique ondulatoire rela 
tiviste à une fonction d’onde, qui a l’inconvénient de ne pas rentrer 
dans le schéma quantique général, son équation de propagation étant 
du second ordre par rapport au temps.

Quant à la Mécanique ondulatoire non relativiste, dont l’équation de 
propagation est du type canonique, son caractère non relativiste ne 
permet pas de lui appliquer dans son ensemble le schéma lagrangien 
de forme relativiste développé dans les précédents paragraphes.

4. lie schéma lagrangien de la théorie de Dirac (1 ) (théorie de la 
particule de spin 1/2). — La théorie de Dirac est une forme relativiste 
de la Mécanique ondulatoire qui satisfait au schéma quantique général : 
ses équations paraissent être valables pour toutes les particules de 
spin 1/2. Elle fait intervenir quatre composantes de la fonction 
d’onde et on peut la faire dériver de la fonction de Lagrange

^ £ = fh j [ ; IF ■- Tx ■- Ty “*~ Tz “3-ikov°] I+ con>- '

étant encore défini par (19). Dans cette formule (25), les sym 
boles «4, «2, a3, <x„ sont les quatre matrices hermitiennes de Dirac 
telles que l’on ait

(26) a? = i, aja*-t- a^ai— o pour i ?£ k, 

avec la condition d’hermiticité

(27) (*l)oT=

Nous adopterons pour les *i les formes usuelles

0 0 0 I 0 0 0 i

0 0 I 0 0 0 — i 0
= 0 I 0 0 > <*! =

0 i 0 0

I P 0 0 — i 0 0 0

0 0 I 0 — 1 0 0 0

0 0 0 — I 0 — 1 0 0
0(3 =

I 0 0 0
, .°n =

0 0 1 0

0 — I 0 0 0 0 0 1

(') Pour approfondir la théorie de Dirac, on pourra consulter le livre déjà cité : 
Théorie générale des particules à spin, Chap. V et VI.



Dans la formule (26), le symbole représente la combinaison 
linéaire suivante des W^

4

(29)

1

et l’on posera de même
*

(29')
1

Avec ces définitions et conventions, on voit que £ est bien une fonction 
bilinéaire réelle des Wff et des WJ et de leurs dérivées. On notera en 
passant que

(30) [<<*,¥„]* =[Wj(a,)aTWT]* = »r;(0<.<)TOWff=Wja(Wo.
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Les équations (9) de Lagrange sont ici

(31)

î T = + £<••*•> + s<*.

; TT = h <«■■>- + a

(o' = i, 2, 3, 4).

Ces équations sont bien en accord avec la forme canonique

si l’on pose

A? = h «t ,
2 7vi àt

(32)
hc [ à à à .. "1

27xi Làx ày dz J

Les équations (3i) sont les équations de Dirac pour les WCT et WJ. II en 
résulte que

(33) J? = o.

Les équations de Dirac forment un système de quatre équations linéaires 
aux jdérivées partielles simultanées du premier ordre en WCT (et en WJ). 
Nous n’étudierons pas les solutions de ces équations, renvoyant le lec 
teur aux traités spéciaux, mais nous allons calculer le quadrivecteur 
densité-flux et le tenseur impulsion-énergie.



22 CHAPITRE II.

Pour le quadrivecteur densité-flux, les formules générales nous 
donnent

(34)

„ 2 F 1T'* 1T,'fl~ ~h~ 55^'"J ~~cq<iaiï'T (i = I, 2, 3),

p = £ =

IC

L’expression de p est l’expression bien connue de la densité de proba 
bilité de présence en théorie de Dirac. En multipliant et p par la 
charge de l’électron, on passera au quadrivecteur densité-flux
d’électricité.

Dans le calcul des T,-*, on trouve pour i, k = i, 2, 3, compte tenu 
de (33),

(35) T,* = hc 
4 ~i àxk

puis, pour k = i, 2, 3,

(36)

T hc r . i à’i i dv
Tki= ---- . 'Ta**-----37--------- -j-a/t'Pl\~i p ic Ot ic at J ’
T hc r , à'w wi... i

On peut vérifier que les T** sont les composantes de la densité d’impul 
sion, multipliées par te, tandis que les T*4 sont celles du flux de l’énergie
multipliée par *-• Enfin, on trouve

(37) Tu _ 1\W*a( Tx *'+ ÿf “2 + Ts **+ '*• a‘) Va i + conj'

= — conj. =— -t-conj.,

et l’on vérifie aisément pour l’onde plane monochromatique que T44 est 
bien la densité d’énergie changée de signe.

Finalement on a trouvé comme densités de valeur moyenne pour 
l’énergie et pour les composantes de l’impulsion

(38)
iv = - T14= ^ [WiH »]'<,-+- conj. J ;

= — 'fi *7^ -t- conj. = - 'fi/u'f.j-f- conj.
4 K l ÜXk 2 J

5. Le spin de l’électron. — Nous allons maintenant définir le spin 
d’une particule obéissant aux équations de Dirac.



D’après l’expression (38) de «y,, on voit que le moment cinétique 
orbital sera défini par un tenseur antisymétrique d’espace Mu de com 
posantes

DÉRIVATION VARIATIONNELLE DES ÉQUATIONS DE LA MÉCANIQUE ONDULATOIRE. :li

(iy) Mu =J(xigic — xkgt) (/-

aXk àV,j iW'n
Oxj iJj'i xtW, Oxk

Or, on démontre facilement qu’en théorie de Dirac le moment 
d’impulsion ainsi défini n’est pas une intégrale première au sens de la 
Mécanique ondulatoire, c’est-à-dire que les M//,, qui sont les parties 
réelles des valeurs moyennes correspondant aux opérateurs

(4o) M"=-

ne sont pas constantes au cours du temps. En effet, on vérifie que les 
opérateurs M,* ne commutent pas avec l’Hamiltonien H donné par (32), 
de sorte que

(40 Mu=—[Mu, Hl

n’est pas nul. On est alors amené à ajouter aux Mu des opérateurs Su 
tels que les Mu+S;* soient des intégrales premières et les Su ainsi 
ajoutés définissent le spin ou moment cinétique propre de l’électron.

Pour retrouver par une voie un peu différente la définition du spin, 
on peut procéder comme il suit. Nous avons vu que le tenseur Tu 
adopté précédemment n’est pas symétrique. Cetle non-symétrie entraîne 
la non-constance du moment d’impulsion. Considérons, en effet, le 
tenseur suivant de rang 3, antisymétrique sur ses deux derniers indices

'(42) Mi[*,-]= TuXj — TijX/;,

et calculons la divergence -^-Mt-(4VI- Comme -p-Tu est nul, on a
O Xi (IX (

(43)
à .. T àxj .r àxk -p ™ .— M,■[<-/] _ TU. — - T,v- — - T,-* T/./ ^ o.

Si nous intégrons la formule précédente dans le domaine d’espace V en 
supposant toutes les grandeurs nulles aux limites de V, les termes du 
premier membre où i ÿé 4, donnent une divergence d’espace dont Tinté-
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grale est nulle et il reste

Le premier membre est, la dérivée par rapport au temps du moment 
d’impulsion orbital (3g) : celte dérivée serait donc nulle si T était 
symétrique, mais èlle n’a pas de raison d’être nulle, puisque T n’est pas 
symétrique.

Mais on peut déduire de T,* un tenseur symétrique en posant

(45) T’ik— - [T,-*-t- T*/],

et l’on peut vérifier que T'A=o. Il résulte alors de ce qui précède 

que le moment d’impulsion

(46) xt- rft,
IC J

formé à partir de T', reste constant au cours du temps. On trouve 
d’ailleurs

(47) M{* = s/(-£)[«*'S-««S

i dVl
c dt (a/ïXi— a tXk )V<r] d-z.

Remplaçons dans (47) les dérivées par rapport an temps des et *F* 
par les valeurs tirées des équations (3i) et intégrons par parties (avec 
toujours l’hypothèse que les sont milles aux limites de V), il vient

(4«)
h

4-l dx/i
] rlx p- iaj (h.

J J y 4 *

S il-

On voit donc que, ^i l’on considère la quantité M)A, comme étant le 
moment total de l’impulsion (ce qui est justifié par le fait que M!ik est 

ne constante du mouvement), ce moment total se décompose en un 
moment orbital M,* et un moment propre Su qui est le spin. La densité
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de spin est donc un vecteur d’espace a de composantes

Mit) j- 'Fi ta2a3’F,;
l\ 7Z

T, = - -4 * T:i= y - 'Fa la,aj 'F,,./,3T

On montre en théorie de Dirac, que l’on peut adjoindre à ccs 
trois grandeurs la grandeur

(rJ0) <r, = — ir y- <F^ f'a, ou a:1 <F^,
l *

de façon que a et c t * soient les quatre composantes d’un quadrivecteur 
d’espace-temps. On montre aussi que pour une onde plane monochro 
matique, on a

I *• j V
(5i) ®4=l«|-*

Le spin de l’électron est donc une grandeur dont les composantes 
rectangulaires correspondent aux opérateurs

... c h . u h . a h .
(32) s.t= a3a, S.1= -4 JI J 4 K 4 TC

Le spin de l’électron a donc pour valeur l’électron est un corpus 

cule de spin 1 ji en unité ^ et les équations de Dirac paraissent 

s’appliquer à tous les corpuscules despin 1/2 (protons, neutrons).

6. Remarque importante sur le formalisme précédent. — Dans notre 
schéma lagrangien, nous avons, avec la plupart des auteurs, adopté 
pour la fonction de Lagrange £ une expression réelle de la forme

Le formalisme qui en est résulté nous a conduit, pour la densité de 
valeur moyenne d’une grandeur A, à des expressions p(A) de la forme

C>4) p ( A ) = - [ >Fi A 'Fc + 'Fa A* >Fj ]•

Or, les principes généraux de la Mécanique ondulatoire nous 
conduiraient plutôt (voir page 9) à adopter pour p(A) l’expression

(ài>) p(A)- ViA'F.x,

qui correspond au choix £ : = ;! < u lieu du choix (53).
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Si l’opéraleur A opère seulement sur les indices des (comme les 
opérateurs « de Dirac), les définitions (54) et (55) se confondent, 
car est réel en vertu de l’hermiticité de A. Si l’opérateur A
contient des dérivées par rapport à x, y, z, l’expression (55) peut être 
complexe et différer de (54), mais les expressions (54) et (55) restent 
intégralement équivalentes, c’est-à-dire donnent la même valeur si on 
les intègre dans V comme le montre encore l’hermiticité de A. Puisqu’en 
Mécanique ondulatoire seules les intégrales représentant les valeurs 
moyennes ont un sens physique bien défini, on peut considérer dans 
tous les cas les expressions (54) et (55) comme équivalentes, et il est 
indifférent de choisir l’une ou l’autre.

Mais cette conclusion n’est exacte qu’en Mécanique ondulatoire 
non superquantifiée et cesse de l’être en Mécanique ondulatoire super 
quantifiée, parce qu’alors le symbole ne désigne plus la quantité 
complexe conjuguée (au sens usuel du mot) de 11 est alors nécessaire 
de choisir entre les expressions (54) et (55), et nous verrons plus loin 
(Chap. IX, § 4) l’importance que ce choix peut présenter en théorie 
quantique des champs.



CHAPITRE III.
LA MÉCANIQUE ONDULATOIRE DE LA PARTICULE DE SPIN MAXIMUM i.

1. Schéma lagrangien de la Mécanique ondulatoire de la particule 
de spin i en l’absence d’interactions. — Nous avons développé dans 
d’autres Ouvrages (') une théorie de la particule de spin maximum i> 
particule pouvant avoir les spins o ou i, én considérant la fusion de 
deux particules de spin 1/2 dont Jes spins peuvent s’ajouter ou se 
retrancher. Le développement de cette théorie exige l’introduction 
d’un ï' à seize composantes que nous désignerons par les indices a 
et 7 pouvant prendre l’un et l’autre les valeurs 1, 2, 3, 4-

Pour former les combinaisons linéaires des M'Vt  dont nous aurons 
besoin, il nous sera commode d’utiliser deux séries de 4 matrices à 
16 lignes et 16 colonnes que nous définirons à partir des matières de 
Dirac par les formules

(0 (^tr)À|i,vp =(®r)Xv = ( l)'’(ar)[ip S/.v,

avec r = 1, 2, 3, 4 et X, jn, v, p = 1, 2, 3, 4’
En vertu des propriétés des matrices « de Dirac, les matrices (X et Üh 

seront hermitiennes et l’on aura de plus

(2) &.r @Ls6Lr — I .2 8rj, dirdis-h (B,= 1.2 orx, (Xr6is — &.<(&,■ = o,

où 1 représente la matrice unité à 16 lignes et 16 colonnes. Le sym 
bole dlr'Es t  représentera la combinaison linéaire suivante des 1FIjLV

A
(3) ètrlI rj-7 ( éT/- ),7T,u.v lIp_v

1

et de même pour ÜhrWaz-

(1 ) Voir Nouvelle théorie de la Lumière et Théorie générale des particules à 
spin, déjà citées.
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Ceci posé, par analogie avec le cas de l’électron, nous adopterons ici 
comme fonction de Lagrange

(4)
hc ' 
4Jtt.
/ i à CX, £0* à (SX* £0i
\c àt 2 àx 2

à £0iC^a + CXt£0s
— ày ^ 2

à £04 CXs -i- (3Li £0j
àz 2 iko@Li £0 (71 "+~ conj.,

avec
/ex l(5) — (40c,

étant la masse propre de la particule considérée.
D’après les formules (9) du précédent chapitre, on trouve comme 

équations de Lagrange

(6)
1 à @Lj -+- £04 ... 
c àt 2

~~ \àx 2
Ô (91,4 iSg

ày 2
à £0* (9Lg -+- (St* (Q3 
àz 2 iko (9»4 (B4 ] w<7T

et les équations conjuguées. Ces équations, qui ont pour conséquence 
£ = o, n’ont pas tout à fait la forme canonique habituelle, à cause de la

présence de l’opérateur au premier membre. Néanmoins, nous

définirons l’opérateur hamiltonien en posant

(7)
h à 

2 ni àt
(9*4. -+-

avec

(8)
hc r à ait£01 -f- £04(3.1 

2Ti i [àx 2
à CX4 £02 ~t~ £04 a2 

ày 2 
à eti £03 -f- £0t ex3 

2
f Zt q  (9l 4 £$4]■

Nous verrons plus loin que c’est bien cet opérateur qui intervient dans 
la définition de la densité de valeur moyenne pour l’énergie du pholon.

Les équations (6) sont au nombre de seize, correspondant aux 
valeurs i,> 2, 3, 4 de c t  et de r. De ce groupe de 16 équations, on peut
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déduire un autre groupe de 16 équations en appliquant aux deux 

membres de (6) l’opération - ——— • On obtient ainsi

(9) ik< i à Ctt— (Bj 
c àt 2

à_ Cttet,— t8tt8, 
àx 2

à di — iBj
ày 2
à <9ua3— <Btü83 T i à OU-4- (Bj 
àz -2 J c àt 2 OT’

Si nous introduisons maintenant à droite la valeur de

tirée de (6), nous constaterons que tous les termes s’annulent, sauf ceux 
en ka, et il viendra finalement le groupe de 16 équations suivant :

i à au— <0t ,If r à autBi— <0tet, ^ at4@2—
' ' c àt 2 07 |_<te 2 o*/ 2

rf.z
qt(S3-tBta3 j ,r^

Nous avons ainsi obtenu l’ensemble des 32 équations fondamentales (6) 
et (6') de la particule de spin maximum i auxquelles Correspondent 
naturellement 32 équations conjuguées.

Il importe de remarquer que le passage de (6) à (6') suppose essen 
tiellement que k0, et par suite fx„, sont différents de zéro.

En combinant par addition et soustraction les équations (6) et (6'), 
puis en multipliant par &L% et d34 les équations obtenues, on peut écrire 
les équations de la particule de spin maximum i sous la forme

<IO) I Tp = (s®1"1" +

<■»'> Æ B*-*-"-®-)*'"

avec a, t  = i, 2, 3, 4-
Par addition et soustraction de (io) et (io'), on peut encore écrire

(E) 1^1 
K ' c àt

_ (à_ Oij 
\àx .

■ <0,

(C) ° = ( à Ct, — <0,
àx 2

à_ flj- 
ày 
à_ 
ày

■ £B, ■ <03

- <02

— a%~ 
àz 2
à <a3 — <03 
àz 2

■ iko et 4 -i-

... et4-■ IKo----

Les équations (E) sont des équations d’évolution qui permettent en 
principe de déterminer les valeurs des VaT à un instant quelconque si 
l’on connaît leurs valeurs à un instant initial. Les équations (C) sont
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des équations de condition que les V„ doivent satisfaire à chaque 
instant.

On démontre aisément, par exemple en itérant les équations (10) et 
(io') et en tenant compte des relations (2), que l’on a pour chaque 1P'OT,

(II)   Vol® 5

équation qui définit la propagation des et montre que. si k\ est nul 
ou négligeable, cette propagation s’effectue avec la vitesse c.

2. Le quadrivecteur densité-flux. — La formule (i3) du chapitre 
précédent et l’expression (4) de ff nous donnent

(12) fi=-cWl ^3,ClC/-+" lIV, P =
/* »la- <a4-ecîît

D’après le mode même de formation de ce quadrivecteur, nous savons 
que l’équation de continuité

( i3)
dfi dp f
T— — -k ■+■ div/ = o àaii àt J

est vérifiée.
La formé de la densité p appelle quelques remarques bien connues de 

ceux qui ont pratiqué la théorie du pholon et la théorie générale des 
particules à spin. Le fait fondamental est que la densité p n’est pas ici, 
comme en théorie de Dirac, une quantité définie positive (c’est-à-dire 
toujours positive oii nulle, mais jamais négative). Elle peut être néga 
tive et même, comme nous le verrons, pour une onde monochromatique

à énergie négative, elle l’est en tout point. Lorsque / p dz est négatif,
Jy

on ne peut évidemment pas normaliser la fonction W en posant / pdr=i. 

Nous verrons d’ailleurs que pour une onde à énergie négative, la 
difficulté disparaît si l’on norme en énergie en posant J'pWrfr = /iv

car, pour une onde à énergie négative, pW est positif parce que p et W 
sont tous deux négatifs.

Dans le cas général d’une onde 'F quelconque, des difficultés ana 
logues à la précédente pourront se présenter chaque fois que dans la 
composition spectrale de l’onde *F figureront des ondes à énergie néga 
tive. Mais il y a plus : même pour des ondes ,F formées uniquement par 
une superposition d’ondes planes à énergies positives, il peut se faire
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qu’en certains points p soit négatif. Néanmoins la formule de normali 
sation J'pdT= i sera alors encore applicable car, l’intégration annulant

l’effet des interférences locales et ne laissant subsister que la somme 
des contributions dues aux ondes planes considérées isolément, l’inté 

grale / p dr sera toujours positive. Néanmoins, même alors, la gran-

deur p ne peut être considérée comme donnant la probabilité de 
présence de la particule en chaque point, puisqu’elle n’est pas nécessai 
rement positive. Nous aurons l’occasion de revenir plusieurs fois sur les 
propriétés de la densité p.

3. Le tenseur impulsion-énergie. — Le schéma lagrangien général 
nous a conduit à définir un tenseur impulsion-énergie non symétrique 
par la formule (10) du précédent chapitre.

En l’appliquant, compte tenu de la relation £ = o, nous trouvons

T> ' hc |1T.» H- ClvCG; f) 'r,
1 ik = 7---- . ’Ic t t -----------------------------T—4 Si L 2 O X

<JX àWfyy t)3 et / —b" Cl 4 .
à Xk <)xk

(i4)

t  Trr-* é3iét,--t- êtvtt3/ i ■ *1T<t= 4ü  r —s— 3 +conj-J ’
T)(=-^k

4* L
et4 d'ïV- ■eonji.].

2 dxt
= - —.^ü3t - = -ftiiv,..

21! 2 C <)t

Nous pourrions mettre d’ailleurs l’expression de T,* sous une forme 
plus élégante donnant les 16 en une seule formule, mais, pour 
développer les calculs, nous serions toujours amenés à revenir aux 
formules (i4). Nous savons que le tenseur satisfait aux relations de 

.. àTltconservation —— = o.ils i
Nous connaissons le sens physique des T,-*. On peut le vérifier aisé 

ment dans le cas simple des ondes planes monochromatiques. Par 
exemple, pour T.u comme le ffVn d’une onde plane monochromatique 
est tel que

_ 2~'w ~t h w 1

W étant l’énergie de la particule, on trouve

(15) t  « i = ~ w »r; ^1.4 “4~ — p W = — w.
2
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Nous pouvons, si nous le désirons, remplacer le tenseur non symé- 

trique T,* par le tenseur symétrique TJjt = -**——— • De plus, comme

les densités ne sont définies en Mécanique ondulatoire qu’à une diver 
gence d^espace près, nous pourrions encore remplacer le tenseur par 
un autre tenseur qui lui soit équivalent intégralement.

On peut démontrer qu’il en est ainsi pour le tenseur suivant

mlk = mtl= - V„ (i, * = i,a,3),

ma = mit =— i>0cî'ïriT^i^' (t = i, 2, 3),

>7144 — -- '—() *l'CT T ’l* ffT.

Ce tenseur symétrique d’impulsion-énergie, le tenseur maxwellien, a 
une grande importance en théorie du photon, où il vient se confondre avec 
le tenseur classique de Maxwell à des termes en pl près. Dans la théorie 
classique de l’électromagnétisme, on a considéré à peu près exclusivement 
ce tenseur énergie-impulsion dans le vide et cette circonstance a fait 
méconnaître l’existence du tenseur symétrique T'(lt qui lui est intégra 
lement équivalent et du tenseur non symétrique T,/, dont T^. est la forme 
symétrisée. C’est l’un des avantages de la Mécanique ondulatoire du 
photon de mettre bien en évidence'l’existence de ces divers tenseurs. 
On remarquera que la densité d’énergie w — — est proportionnelle 
à WÔt Wo t , quantité qui, dans la théorie de la particule de spin i, est 
donc une densité non pas de probabilité de présence, mais d’énergie.

4. Définition du spin. — Nous introduirons le spin comme nous 
l’avons fait précédemment en théorie de Dirac. Le moment d’impulsion

(17) ,Mu.= f [ZiTu — ZiTit]d- (t, * = i,a,3)

n’est pas constant au cours du temps à cause de la non-symétrie de T,-*. 
Au contraire, le tenseur

(18) M'ik= l f [x,Tik-r xkT'u]dx (i, * = 1,2, 3)
IC ,/y

reste constant au cours du temps. Substituant dans les expressions de T't k 

et T'w les valeurs de - et - jt ' tirées des équations (10) et (10') 

et de leurs conjuguées, on obtient après une intégration par parties

(«9) MJ* = Su-,
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avec

(■-o) r,r;_,r (h,
■i-,JY ■ a

pour <, /r = i, 2, 3. Nous sommes donc conduits à définir la densité de 
•spin comme un vecteur d’espace o- dont les trois composantes rectan 

gulaires sont

h , /Cfl4CX,C\,-e /Cltd3,d3n 

it i (51;; Clt -H i(SL^iJb-iOb\-- fj- ------------------------------ 4> — ‘2
h ^ * / üb v Cl i Cl... -+- / Cl .i üb, Cï?lJr

correspondant aux opérateurs de spin

, h f cî3 v CTLc\ -l- 4 Ct, C<3-. ■;<22) *>.„=----------- :------------- :—;
O Z 2 5

S,.=
h iOi%tl~Ct.|-+- /CtitiînU?i

// / éti ét-, —h  i ct-4 o3| 03.

Enfin si l’on considère la grandeur

ich /031cl,c\..cl:l-i- .'cl4t(3i<33,03-...
< 2 ) I 7, =-------- U ,77 -------------- :------------- 1--------=---- '1 G-.•> — -J-* '

on peut démontrer que a,,., ar. a- et u, formenL les quatre composantes 
d'un quadrivecteur d’espace-lemps.

•">. Grandeurs tensorielles attachées à la particule de spin maximum i 
et état d’annihilation. — Nous avons jusqu’ici caractérisé la particule 
de spin maximum i par les seize composantes W^- de sa fonction 
d’onde. Nous allons maintenant être amenés à substituer aux seize 
grandeurs ayant un caractère lensoriel et permettant d’écrire les 
équations de la particule sous forme tensorielle. Ces grandeurs ont 
notamment une grande importance en théorie du photon, car nous 
verrons qu’une partie d’entre elles représentent les potentiels et les 
champs de la théorie électromagnétique.

Pour parvenir à introduire les grandeurs tensorielles en question, nous 
remarquerons que les photons sont susceptibles de disparaître en aban 
donnant toute leur énergie et leur quantité de mouvement à des éléments 
matériels (électrons par exemple), et nous admettrons que toute particule 
de spin i possède cette propriété. Ceci nous a conduit à admettre qu’il

Loi is d i : bu o o l i i ;.
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existe un état d’annihilation pour ces particules et à chercher à 
représenter cet état d’annihilation par une fonction d’onde *F|0). Il est 
naturel d’admettre que les composantes de cette fonction' d’onde 
doivent être des constantes indépendantes de xvzt et que la forme 
de VC*) doit rester invariante pour une transformation de Lorenlz 
quand on applique aux composantes la transformation que subissent 
d’une façon générale les composantes 1T(t t  lor d’une t lie transformation 
de Lorentz. On trouve ainsi (nous en don er ms plus loin une justifi 
cation) que l’on doit poser

( 21 ) w w = — i, ww = — i, >rw = + i, ww = + i.

tous les autres ’Fj7°-) étant nuis. Si donc on considère les comme 
les éléments d’une matrice à 4 lignes et 4 colonnes, cette matrice 
coïncide avec la matrice a, définie pour les équations (28) du précédent 
chapitre, et nous pouvons écrire symboliquement

(20) 'Fio )=2i.

Mais ici se présente une grave difficulté : la fonction Wt"' ainsi définie 
n’est pas solution des équations de la particule. Si, en effet, nous nous 
reportons aux équations (6) et (6'); nous voyons que les équations (6') 
sont bien satisfaites par les valeurs (25) des mais qu’il n’en est
pas de même des équations (6) en raison de la présence du terme en A'„. 
On pourrait, il est vrai, quand il s’agit des photons, supposer p0 et par 
suite k0 nuis : c’est là une question que nous discuterons. Mais il est 
nécessaire de parvenir à une définition des grandeurs tensorielles qui 
soit valable pour toute particule de spin 1, en particulier dans le cas 
des mésons où ces grandeurs jouent un rôle important : il faut donc 
absolument, à notre point de vue, obtenir une fonction 'F 01 qui soit 
une solution des équations de la particule de spin 1, même quand
P-o^o.

Pour lever cette difficulté, nous pouvons employer l’artifice suivant 
(qui peut avoir un sens physique profond). Nous admettrons que les 
équations de propagation devraient en réalité être écrites non pas dans 
l’espace-temps à quatre dimensions xyzt, mais dans un espace à cinq 
dimensions x0, x, r, s, t, la cinquième dimension correspondant à la 
coordonnée x0 échappant à notre perception. De plus, nous admettrons 
que les composantes Î'V- d’une fonction d’onde représentant un état 
non annihilé ne dépendent de x„ que par un facteur de phase de la 
forme ei4»T».

^4
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On peut alors remplacer les équations (6) par les suivantes :

i ->1) ) i i) C51L -, —i— 034 ,
<■ à! 2 a'

f >) tSiCl, -h  cTL*ti3i
ô j - à

<) 03,cl2-+- Cl103ï 
<)y  2

ij 03 ! CttU?n 
l)z 2

ettù34 ,)
Oæ » ] TUT!

eu conservant les équations (ti'). Les fonctions d’onde des états non 
annihilés, étant de la forme

TCTt = fa-J -r, s. t) e!/'o" o

et satisfaisant à (26). satisferont aussi à (6), mais, de plus, il est évident 
que les Wy’-!= («, )a. étant indépendants de xyzt et de x0 satisferont 
également à (26), de sorte que le système des équations (26) et (6'), 
équivalent au système (())-(6') pour les fonctions d’onde représentant 
des états non annihilés, admet en plus la solution ffù"!. Ainsi se trouve 
levée la difficulté signalée plus haut.

Nous verrons d’ailleurs plus tard que l’introduction de la variable xv 
lève également d’autres difficultés relatives à la fonction vLl(l)

• S. Définition des grandeurs tensorielles comme liées à des transitions 
d’annihilation. — L’interaction entre un photon et un électron a lieu au 
moment où le photon s’annihile. Il est donc naturel d’admettre que les 
grandeurs électromagnétiques traduisant l’action de la lumière sur la 
matière sont liées à la transition quantique qui fait passer le photon de 
son état initial à l’état d’annihilation et doivent être définies en fonction 
de cette transition. Généralisant cette idée, nous admettrons que les 
grandeurs tensorielles associées à toute particule de spin 1 doivent être 
définies de cette façon.

Ges idées nous conduisent à penser que les grandeurs tensorielles 
doivent être définies comme des densités d’éléments de matrices corres 
pondant de l’état initial non annihilé *L à l’état final d’annihilation W<°). 
I) faut, en effet, que ces grandeurs soient des grandeurs de champ, 
c’est-à-dire des fonctions de x, y, z, t et, dans la théorie quantique, les 
seules grandeurs de ce type associées à une transition déterminée, sont 
les densités d’éléments do matrice.

Or, il ressort des exemples de densités obtenus au paragraphe précé 
dent lors du calcul du quadrivecteur densité-flux, du tenseur impulsion- 
énergie et des densités de spin, que les densités ont ici la forme
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canonique

(27) W'o F1 -f (^4 F « u»
- 2 <7T î

où Fi et F2 sont des opérateurs de même forme, mais agissant seulement 
l’un sur le premier indice de l’autre sur le second. Par exemple, 
pour la composante z du spin, on,a

Fi = t'OLi<X-, et Fo = iûiiûia, ....

Nous chercherons donc à définir seize grandeurs de la forme (27) grâce 
à seize choix différents des opérateurs F.

Combinons, à cet effet, par multiplication, les seize matrices Clr et la 
matrice 1 à 16 lignes et 16 colonnes. Nous pourrons ainsi obtenir seize 
combinaisons indépendantes susceptibles de jouer le rôle de F,, savoir:

1, a,, au, a,, at, îa,a,, îa.av, ia3a„ fanata«.
l'a^.a^ fd,a2, ia,a,, i&.,,a,, /aici.ar,, a,aaa,c\,,

et en partant des 6br on trouvera de même seize formes possibles 
indépendantes pour Fs.

De cette façon, on est conduit à former, sous forme de densités 
d’éléments de matrice, les seize grandeurs tensorielles non nulles du 
type (27) dont voici la liste :

i° Les quatre composantes d’un quadrivecteur d’espace-temps

(28)

(
' A, = A.„= —

A,= Av = -K'Fi°T 

As= As= —

ôîtcii —a, dii

d5vaii—avt8a ,,,
- ‘«J-:,

tBta:,— CViOÎ:, H,

A. = ;V = /KV&> ~ V~ CXt 'IV.

Dans ces formules, K désigne une constante que nous choisirons 
égale à

(29) K =
4 " V F»

de façon à pouvoir rejoindre dans le cas du photon les formules 
classiques de l’électromagnétisme, comme nous le montrerons plus loin. 
Dans le cas du photon, A,., A,-, Az seront les composantes du potentiel 
vecteur et V sera le potentiel scalaire.



2° Les six composantes indépendantes d’un tenseur antisymélrique 
de rang 2
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Cio)

Fit = If.,

F |., = II-: 

!-’li

/1\ / a U V-

0
i tô, ct:; Ct 1 et- ! C\j

2
â>34cli cloclv—- /cl4t8|ti52u?v 'IV.

... l'cdiéti Clv —i L. „ — — t A,, U V------------------------------- >] ,,,

i'’n= -- ' F ■iKMV

r r -, , U.M,J ÛÔ| C\:;C\V— /C\•, LÜs&i1* / h - = — / K / i( U 'G-' ---------------------------------  U G-.
2

Dans le cas du photon, H.,., . . ., E.- seront, ou le devine, les compo 
santes rectangulaires du champ magnétique et du champ électrique.

3° Un invariant 1,

rin i, = »rÿ:;■.•o h  „v= ipoy rt; t0, >t-,.

U Un invariant L> (ou plutôt un tenseur complèlement anlisymc- 
trique de rang 4)

„0) t'î-, c\, cl2 clnclv-h  cTLvt5i ii?218v ,t y) ) 1 •> — U g  "J---------------------------------------- 4' <7-.

5° Un quadrivecteur (ou plus exactement un tenseur complètement 
antisymétrique de rang 3)

U.,.= U,=-'Fÿ:: 

Üv= IV

; /cÔ'.CFct:, •+ tCl-W'::

tp; r ' cl?.,Ct:;ct| -I- /cttli?.QÔ|

t ■«)
I r t 1 •) 0 i V ^ l ^ :1 "HH I c"t ; £*31 ÜD-± ,

/t'?; c\i c\2clr. -4- / CX ; (B t l»32lfc3 U* = l l. / = t li fj-‘----------------------------------------‘t G-.

Les grandeurs 1,, I3, Ut, U-, n’ont pas d’analogues dans la
théorie électromagnétique. On remarquera que les grandeurs Maxwel- 
liennes (28) et (3o) sont formées par des combinaisons antisymé 
triques où ligure le signe —, tandis que les grandeurs non Maxwel- 
liennes ( 31 ), (32) et (33) sont formées par des combinaisons
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symétriques où figure le signe +. Les combinaisons symétriques des 
opérateurs figurant dans (28) et (3o), ainsi que les combinaisons anti 
symétriques des opérateurs figurant dans (3i), (3a) et (33) donneraient, 
d’après la définition des (flr, des dir et des Wj,"’, des grandeurs identi 
quement nulles.

7. Équations tensorielles de la particule de spin maximum 1. — Lés 
32 équations (6) et (6') de la particule de spin maximum 1 peuvent 
être transformées en équations de .forme tensorielle si on les combine 
linéairement de façon à faire apparaître les 16 grandeurs tensorielles 
définies au paragraphe précédent. Le calcul est particulièrement facile 
en partant des équations (10) et (io') équivalentes aux équations (6) 
et (6'). En effectuant ces combinaisons linéaires, on s’aperçoit des 
deux faits suivants : i° l’une des 32 équations, obtenues se réduit à 
l’identité 0 = 0. de sorte que l’on n’obtient réellement que 3i équations 
distinctes; 2° les 3i équations distinctes obtenues se décomposent en 
un groupe de i 5> équations ne contenant que les 10 grandeurs maxwel- 
Iiennes A.*, . . ., E- (équations maxwelliennes) et en un autre groupe 
de 16 équations ne contenant que les 6 grandeurs non maxwel 
liennes L, . . ., Ui (équations non maxwelliennes).

Voici quels sont ces deux groupes d’équations.

a. Équations maxwelliennes. — En notations d’Univers, elles 
s’écrivent :

C34>

ÙÀx-
<).Tj

àS.i
àxk

(i, k = 1, a, 3, 4) ;
ÙF g- 
àxi ■—klkt (k — 1, 2, 3, 4),

àkj _ o àVg + dFkl à¥u _ Q
()xt ~~ ’ dxi àxt dxk

( i, k, l permutation paire des indices 1, 2, 3, 4)'

On remarquera d’ailleurs que les équations de la seconde ligne sont des 
conséquences de celles de la première ligne.

Avec les notations vectorielles employées en théorie électromagné 
tique, les équations (34) s’écrivent :

1 35 1

OA
<)t

OH
<)t

I à3.
c àt

trrad X. H = rot A,

rotE. divH = 0,

rot H -1- /cg A, divÉ = —*gV

I 'A I' 4- ---- h div A = o.
C lit



(.les équations sont presque identiques à celles de la théorie électro 
magnétique usuelle (y compris la relation de Lorentz entre les potentiels). 
Mlles n’en diffèrent, en effet, que parles ternies en /rjj, c’est-à-dire par 
des termes de l'ordre du carré de la masse propre p0 de la particule. 
On obtiendra donc la théorie de la lumière en supposant que la masse 
propre [j.tt du photon soit nulle ou du moins si petite que les termes 
en ij -1 soient négligeables.

Des équations maxwolliennes précédentes, on tire aisément l’équation 
du second ordre

i ')<t i   F -+- / F = o.

valable pour l’une quelconque des i o grandeurs maxvvelliennes Ar, ...,EZ. 
11 en résulte que chacune de ces grandeurs peut se propager par ondes 
planes monochromatiques de la forme ae‘t*Y'—kr] i1Vec la relation

i 3; ) /.-••k ••• •
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qui assure la vérilicalion de l’équation (36). La relation (3~) n’est autre 
que la relation admise par la théorie de relativité entre l’énergie et 
l’impulsion d’une particule libre, comme nous le verrons au chapitre 
suivant. Si pj; est nulle ou négligeable, on a   F = o et k = |k | : la 
propagation des ondes s’effectue alors avec la vitesse c et l’on voit que 
ce cas limite correspond à la théorie électromagnétique classique.

b. Equations non maxwelliennes. — Le groupe des seize équations 
non maxvvelliennes se décompose lui-même en deux sous-groupes.

b\. Un premier sous-groupe comprend cinq équations ne contenant 
que la grandeur It. Ce sont :

On voit donc que l’invariant I( est nécessairement une constante dans 
l’espace-temps et qu’il doit même être nul si o.

Néanmoins nous devons faire ici une remarque importante. Si l’on 
prend *1-' = ’,ïri0), de telle sorte que L = @L; Üb, W!)’-’, l’équation
p„L ■— o, qui doit être encore exacte si l’on admet les équations (6), 
cesse de l’être si l’on remplace les équations (6) par les équations (26) 
comme nous avons proposé de le faire.

En effet, multipliant (26) par on obtient non pas

(.39) /„'i-y!:iavü3v'r'^ = o,
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comme ce serait le cas avec ((>'», mais bien une identité o ^ o ^parce 

que S=4

Cette remarque va d’ailleurs nous permettre de vérifier l’inva 
riance de 'F'0) comme nous l’avions promis. En effet, formons avec 
T = — <X:, les seize grandeurs maxwelliennes et non maxwelliennes :
nous constaterons que toutes ces grandeurs sont nulles sauf L qui, nous 
venons de le montrer, ne l’est pas nécessairement si l’on emploie les 
équations (26) et qui, en fait, est alors égal à 4 comme on le calcule 
aisément. L’onde 'F'"! exprimée à l’aide des grandeurs tensorielles se 
réduit donc à l’invariant L, et ainsi sou caractère d’invariance est bien 
mis en lumière.

Le fait que l’invariant 1, correspondant à <l"li est égal à 4 et non à o, 
nous montre que l’équation /j .0I, = o n'est pas vérifiée, ce qui veut dire 
que 'F111 n’est pas solution de (6); mais il l’est, par contre, des équa 
tions (26). On peut donc dire que la substitution de ( a(n à 1 (U rend la 
théorie beaucoup plus cohérente et satisfaisante.

b». Un autre groupe d’équations non maxwelliennes est formé par 
11 équations contenant l’invariant L et le quadrivocteur U- Ce sont :

(
û.r,

= /U l Z

-

i /, I . ■>. i. j ).

1 i. /: -— 1 . i. J 1,

'lïl //■,. i : •

On remarque que, la deuxième équation résulte de la première.
Nous étudierons ultérieurement la signification de ce groupe d’équa 

tions et nous verrons qu’il représente une particule de spin o, alors que 
les équations maxwelliennes représentent une particule de spin 1.

Naturellement les six grandeurs non maxwelliennes I,. L, U satisfont 
à l’équation du second ordre

(IL   F + /qî l- = ...

Les grandeurs tensorielles maxwelliennes et non maxwelliennes 
s’expriment par des fonctions bilinéaires des 'F^'- et des ,1\7T. Comme 
les 'Fÿd sont des constantes, on peut exprimer les 'F,- en fonction



linéaire des grandeurs tensorielles. On obtient ainsi des formules 
inverses de celles qui expriment les grandeurs tensorielles en fonction 
des 'F(Tt- Ces formules inverses ont été données, il y a quelques années, 
par M. J. Géhéniau. Nous ne les transcrirons pas ici (1 ).
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(') On les trouvera dans Une nouvelle théorie de la Lumière, t. I, p. 160 et 161.



CHAPITRE IV.
LA MECANIQUE ONDULATOIRE DE LA PARTICULE 

DE SPIN MAXIMUM i.

(Suite.)

d. Schéma lagrangien de la Mécanique ondulatoire de la particule 
de spin maximum i avec emploi des grandeurs tensorielles. —- Puisque 
nous savons exprimer les grandeurs tensorielles en fonction des , 
nous pouvons exprimer la fonction de Lagrange £ à l'aide de ces gran 
deurs ^en admettant toujours pour K la valeur ^_^• On trouve

(i) J?=- ' \ àxk 
n„c- i

Ar. A

ni.
n

ko ÔX !:

)k (F;t

]-

dA;;
0xt

U*

dA/\
()Xk J 

i_ 0h_ 
A„ ()Xj

conj.

Soit alors Q l’une quelconque des (6 grandeurs tensorielles. Les équa 
tions de Lagrange sont ici

(2)
O

!).Tj

Elles nous donnent

(3)

dF kj 
àx/-

OC oc 0 oc oc
"(ë;) ~ dQ’ Oxj ,/dQ’\

"Ut , " 'W

Ai A/, F/t
dA/.
Oxj

IIi
L

^T| T

dU j '/T-J- = — tA„I
Oxj

ou = «A() U /,
s’ Oxu

ainsi que les équations conjuguées.
Or nous avons déjà remarqué plus haut que des équations (3) on 

peut déduire toutes lès autres équations tensorielles : les 3i équations 
tensorielles découlent donc bien de ce schéma lagrangien. On noiera 
d’ailleurs que les équations onl pour conséquence £ — o.



Compte tenu de cette dernière relation, on trouve pour le tenseur 
impulsion-énergie les composantes suivantes :
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Par exemple, on aura pour Tu,

àl],
i)t

*2} ■ COIlj.

Pour le quadrivecteur densité-flux, on trouvera de même

(fi) viL\y^Q_y^n*' 
h LT'  ̂ '

Il [Aj Fi/ ■+• F.tyA/] -H i[IÎUt+ UÎC]

~ [( a *e ) — (E* A)] - - [ u; is]

et pour i = i. 2, o

(7)

= 2J1 f A F„ -e F,*, A; 1 + l- [ i: U, + 1!,* h I 

= ^ | [A*Hl/-t- V*E/-t- [H* A ],— VE* ! ï1^ p,*M-

-Si l’on fait abstraction des grandeurs non maxwelliennes, les formules 
précédentes coïncident avec des formules bien connues en Mécanique 
ondulatoire du pboton.

Les équations tensorielles ont pour conséquences les relations de 
conservation = o et ^-'=o, comme cela résulte du schéma

àxi àxi
Lagrangien général.

Le tenseur symétrique maxwellien m, intégralement équivalent au 
tenseur T, ne peut pas se déduire directement de la fonction i? de 
Lagrange adoptée ici, mais on peut évidemment exprimer les m,/, à 
l’aide des grandeurs tensorielles. On trouve ainsi, par exemple, pour la



partie dépendant des grandeurs maxwelliennes
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(*)
j mu = [E*H],- [H*E( V'* A4 -4- VA?)

- m„ ^ j B |* + | H |* + *8 ( J A !* + | V |* )

et, si l’on néglige les termes en kl, la parenté de ces expressions avec 
celles de la théorie électromagnétique est évidente.

De même, on peut exprimer les composantes du spin sous la forme

||[E*A] —[A‘E] + V*H + H’V j h - ~ (U* I.— U U),

~ i (A* H) -4- (H* A) j -+-

en fonction des grandeurs tensorielles.
Reprenant ici une remarque développée au Chapitre II, paragraphe 6, 

il convient de noter que le choix d’une fonction de Lagrange réelle de 
J? -+- JS*la forme £ = —-— nous a conduit pour les densités de valeur moyenne 

à des expressions réelles telles que

(10) ■T„ = 1)1
a I c

K-fH-t)]- conj.

(dans le cas purement maxwellien), tandis que la formule générale de 
Mécanique ondulatoire

(il) p(Â) = V^ATotl

conduirait à poser

Dans la théorie non superquantifiée que nous exposons en ce moment, 
les expressions telles que (io ) et (12) sont intégralement équivalentes, 
comme on le voit aisément, en développant A et E en ondes planes 
monochromatiques et en tenant compte de ce que l’intégration fait dis 
paraître les interférences. Mais en Mécanique ondulatoire superquan 
tifiée, il n’y a plus équivalence entre les expressions des types (10) 
et (12) parce que Q* n’est plus alors la quantité complexe conjuguée 
(au sens usuel du mot.) de Q. Nous aurons à revenir sur ce point quand 
nous étudierons la théorie quantique des champs.



2. Étude des ondes planes monochromatiques. — Dans toutes les 
formes de la Mécanique ondulatoire, l’étude des ondes planes mono 
chromatiques esi particuliérement importante parce que ces ondes cor 
respondent aux mouvements rectilignes et uniformes.

Nous allons chercher directement les solutions des équations tenso- 
rielles qui ontla forme d’ondes planes monochromatiques. Les grandeurs 
tensorielles d’une telle onde plane dépendront des coordonnées d’espace 
et de temps par l’exponentielle

]> _ gilkct—kr]
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la correspondance entre les grandeurs mécaniques énergie W et impul 
sion p de la particule et les grandeurs k et k étant donnée par les 
relations

ü'i) *=^W’
9

P-

La substitution dans les équations tensorielles montre que k et k 
doivent être/liées par la relation

04 ) k- — j k [- -h — Â(j, (ko = ^ \j .u c \.

Cette relation se confond avec la relation relativiste bien connue

(là) W-
c- = IP I-rec 

entre l’énergie, l’impulsion et la masse propre d’une particule. Celte 
relation étant supposée satisfaite, on pourra trouver des solutions ondes 
planes monochromatiques pour les équations maxwelliennes et les 
équations non maxwelliennes.

En prenant la direction de l’onde plane pour axe des a, on obtient 
pour les équations maxwelliennes la solution

Av=i Çiziliï/p a  - = c:, r, v = c:;-

(16) <E.r= -ik(±^±\ !■:,.= k C, -C, ~~ ' l(

11.,.= — ! k I G, — C, r* ii, / ! k , G [ -h  C -i 11-:

et pour les équations non maxwelliennes la relation

(I7) Li = - ijl—Cil*, r,= 4 i*, i,= c ;i\
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Les constantes Ci, C2, C3 et C* sont arbitraires et indépendantes. 
On peut séparer Gi et C2 dans l’expression de l’onde plane maxwel- 
lienne en écrivant les formules précédentes sous la forme suivante

( ■ H)

<33 \x— /A,-= C, P, E.r — /E, = — i'A'Ci P, II., — /Il, = — I k I O,-P
A.r-i-/A,= o, /'Er= o, IL--h iH,-= o;

§. A.,.. -+- /A , = Ci P, E;t, -b i Er= — il Ci P, II.r -+- iII, = | k | G, P
A.,.— i Av= o, K.,.— i'E,.= o, II.,.— t'IIv= o;

l k I I-
£ A - = C;, P, V = C3 P, E- = -i-j Cn P, 

autres grandeurs uulles.
9lD\l lo = C,P, U, = — —-r— ’ IG = - -LAiCvP,

A'o Au
autres grandeurs nulles.

Les quatre ondes monochromatiques indépendantes tV, i? et 
représentent respectivement : iü une onde maxwellienne trans 

versale circulaire droite; 2" une onde maxwellienne transversale circu 
laire gauche; 3° une onde maxwellienne longitudinale; 4° une onde 
non maxwellienne

A chaque valeur du vecteur k, correspondent donc quatre ondes 
planes monochromatiques indépendantes correspondant à l’énergie 
positive donnée par k = + y/ | k |2+ k\. On peut les considérer comme 
des fonctions propres de l’opérateur Hamiltonien pour la valeur

positive de l’énergie W =

Il est évident que, pour k donné, on pourrait aussi satisfaire à ( 14) 
en prenant k — — y/ \ k |2 + k'î, ce qui correspondrait à une énergie 

W = négative. A cette énergie négative, correspondraient quatre

fonctions propres indépendantes. Nous aurons à considérer ces solutions 
à énergie négative qui sont analogues à celles qui sont bien connues 
en théorie de Dirac. Finalement à k donné, correspondent donc 
huit fonctions propres, quatre à énergie positive et quatre à énergie 
négative.

Il est facile de voir comment les fonctions propres (18) sont reliées 
aux diverses valeurs possibles de la composante du spin dans la diredtion

de propagation 0-. La particule ayant un spin total maximum les 

composantes du spin ont comme valeurs possibles ± ~ et o. Envisa 

geons alors la valeur de la densité de spin a- donnée par (9). On, peut



l’écrire
<i<|) ï-= i ! E^.V-E^Ax-t-VH; : •+• — L’| f*■+• conj.

= ^-[(Ej,-4- i E, )*( A.,. -+- ; A,.) — (E.c— i lï_v)*( A.,..— *Ar>]

-+■ b- Iî-h  conj.,

et celte forme nous montre immédiatement : i° que cz est nul pour les 
ondes A? et 9XJ11; 2" que az est positif pour l’onde ^ et négatif pour 
l’onde CO. Nous en concluons que les ondes A” et 51J11 correspondent 
à une composante z du spin égale à o, les ondes Cj, à une composante z

du spin égale à — et les ondes CO à une composante z du spin égale
.____A_

2 -
Une étude plus approfondie (f) montre que les valeurs milles de 

ont pour les ondes A? et 91Jll des significations différentes. En effet, la 
particule de spin maximum 1 décrite par les équations (Gi et (61) du 
précédent chapitre peut être considérée comme résultant de la fusion 
de deux corpuscules de spin 1/2. Celte fusion peut donner une particule 
de spin 1 ou une particule de spin o suivant qu’il y a addition ou com 
pensation des spins des deux constituants. Les grandeurs maxwelliennes 
décrivent la particule de spin 1, les grandeurs non maxwelliennes la 
particule de spin o, ce qui explique pourquoi il y a indépendance com 
plète entre les grandeurs et les équations maxwelliennes d’une part, les 
grandeurs et les équations non maxwelliennes d’autre part. Les gran 
deurs non maxwelliennes décrivant une particule de spin nul corres 
pondent nécessairement à une valeur nulle de la composante z du spin. 
Au contraire, les grandeurs maxwelliennes, décrivant une particule de

spin 1, correspondent aux trois valeurs possibles dz et o .de la com 

posante z du spin; à chacune de ces valeurs est lié un type de fonctions 
propres : type CO pour la valeur -— ^ > type ty pour la valeur -f- et

type J? pour la valeur o. Les ondes maxwelliennes longitudinales cor 
respondent donc â une composante nulle du spin suivant O z, tandis que 
les ondes maxwelliennes circulaires gauches et circulaires droites cor 
respondent respectivement aux valeurs et — ^ de cette composante. 

Ces considérations expliquent entièrement les résultats obtenus ci- 
dessus.
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(1 ) Voir Théorie générale des particules à spin. p. r34 et suiv.
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3. Le vecteur densité-flux pour les ondes planes. Normalisation de 
ces ondes. — Nous pouvons écrire l’expression (6) de la densité p sous 
la forme

( 20 ) P = ^ ! ( A.,, -h i A,-)* ( E* -t- i E, )

-+- ( A.,;— / A,-)* ( E.,. — i E ,■ ) j 

Nous obtenons donc

‘;e =H':u. t -+- conj.

Pour Ponde (D : 

Pour Ponde : 

Pour Ponde JS : 

Pour Ponde 51011 :

hc

k
2 k0 G.,

Pour éviter les difficultés relatives aux spectres continus, nous nor 
maliserons les ondes planes en les supposant contenues dans une enceinte 
de volume v fini, ce qui est très approximativement permis si les dimen 
sions de v sont très grandes par rapport à la longueur d’onde. Nous 
obtiendrons ainsi en supposant k > o

| I Cl ! = y/ IC •> ! = t /- hc
____________ .

Les fonctions propres normées (pour k >o) sont donc les suivantes:

Unde 03 : __
A*-iAy = ^/^P, Ex-4Er = -iA^/^P, H*-*'Hr = - \^\/ ĥ

Ax-+- î'A,.= O, 
Onde :

Ex -t- i Er = o, Hx-!- l'Hy — o.

\ A.x — i A,-= o,
Onde JS :

E.r—îE, = o, Hr + iHr = o.

_ / khe
: V 4*4-* i

Onde 51011 :

Y Ikl. / khe
' 4 j c  k\ v

,, k t
y”~ kK\'■Ti7°P>

P, E: = -iftÆp, H; = o. 
’ k y 4itkl v

us = -IjMi/ÿîi
AC,, y A-u

Ces expressions sont importantes à connaître.

Ux= Uv=<

H
 «
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Si l’on profère décomposer les ondes maxwelliejines transversales en 
ondes rectilignemenl polarisées à angle droit, les ondes normées sont 
caractérisées par les grandeurs suivantes :

M)

Onde à vibration électrique parallèle à Or :

Aj.= Az= V = o. 
Onde à vibration électrique parallèle à Oy :

E'=-‘VïSrp'
A,.= A. =V = o,

M,

H .r= i I k l/—1 
V 4 Kkv

les valeurs trouvées plus haut pour l’onde longitudinale restant 
évidemment les mêmes.

Nous remarquerons que les valeurs obtenues pour p sont toujours 
proportionnelles à k : elles sont donc négatives pour les ondes à énergie 
négative et le procédé de normalisation employé échoue pour ce genre 
d’ondes (car il donnerait pour les ] G,-1 des valeurs imaginaires!).

kch . ...
Néanmoins le produit Wp = ~^~P est toujours positif puisqu’il est pro 

portionnel à k-, et l’on peut toujours normer en énergie en posant

Xkch , ,,, kch— p<Y- = | Av | = •

Nous avons déjà signalé ces circonstances importantes qui rentrent 
comme cas particuliers dans des résultats généraux de la théorie des 
particules à spin.

Nous avons obtenu l’expression des ondes planes monochromatiques 
(fonctions propres de l’hamiltonien) en supposant la direction de pro 
pagation prisp pour axe des .r. S’il n’en était pas ainsi, les expressions 
convenables s’obtiendraient facilement en tenant compte de la transfor 
mation des grandeurs lensorielles quand on opère une rotation des axes 
d’espace.

On peut donc considérer l’expression des ondes planes normées 
comme connue d’une façon générale à l’aide des grandeurs tenso- 
rielles. Les expressions de ces ondes à l’aide des s’obtiendraient 
ensuite en substituant l’expression des grandeurs lensorielles en fonction 
desSi nous désignons par T/, l’une quelconque de ces fonctions 
propres normées correspondant à une valeur donnée de k et à une valeur

i.o l is (>b muKii.u:. 4
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connue de az, l’onde 'F pourra se développer sous la forme

v~<5) ir = 'y>lck
k

ou, plus explicitement,

(26) Tç t t —V-c d ^v ^t

5o

et, dans ce développement, pourront figurer en principe toutes les ondes 
planes à énergie positivé ou négative. Si l’on admet que la fonction 
d’annihilation W*1'1 est solution de l’équation d’ondes (ce qu’on réalise 
de la façon que nous avons expliquée), on devra avoir

( 27 ) T = Co 'F111 -f- 2',. Ck 'IV;.

la somme 2' portant sur les états non annihilés ( 1 ). Les c sont des cons 
tantes complexes qui, si l’on pouvait normer la fonction d’onde pour 
une seule particule, obéirait à la relation

12N) 1 Co 1--+-^, I et j- = I-

Mais l’état d’annihilation doit être considéré comme un réservoir iné 
puisable de particules (de photons dans le cas de la lumière), de telle 
sorte que l’on a jamais affaire à une seule particule. Il est donc néces 
saire de recourir à la théorie de la seconde quantification, et ceci 
entraîne, nous le verrons, une modification profonde du rôle des c. 
Nous aurons à revenir longuement sur cette question.

Notons enfin que, si l’on calcule pour les ondes planes normées se 
propageant suivant Oc le vecteur flux de composâmes fr. fy, fz, on 
trouve pour tous les types d’ondes

O.i) /, = /.■= o, /:
c | k |

/.
1 P !

AV = 0 l\

car la vitesse v du corpuscule obéit eu Dynamique relativiste à la 
relation

(l) Pour éviter Il s <iitfi< allés relatives aux ondes à énergie négative, nous serons 
plus loin amenés à admettre que dans le développement (27) ne ifoivrn/ figurer à 
côté de la fonction d’annihilation que tes ondes U\ à énergie ffositive.
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Le vecteur d’espace f est donc bien le flux du fluide fictif de probabi 
lité dont la densité est p, flux s’opérant dans la direction de propagation. 
C’est bien le résultat que l’on pouvait attendre.

4. Champs réels et champs complexes. Valeur de la constante K. — 
Dans ce paragraphe, nous allons porter particulièrement notre attention 
sur la théorie du photon. Les grandeurs A, V, E et H doivent alors 
être (en supposant pj; nul ou négligeable) les potentiels et champs élec 
tromagnétiques de l’onde lumineuse. Cependant ces grandeurs sont 
essentiellement complexes alors que les champs ou potentiels de la 
théorie électromagnétique usuelle sont des grandeurs réelles. D’où 
provient cette différence? A notre avis, et c’est un point sur lequel nous 
aurons longuement à revenir, les champs complexes représentent les 
phénomènes microscopiques tandis que les champs réels représentent à 
l’échelle macroscopique les phénomènes statistiques où interviennent 
un grand nombre de photons.

La correspondance à laquelle nous serons ainsi conduits entre les 
champs complexes et les champs réels nous amènera à définir le champ 
réel Fr en fonction du champ complexe F par la formule

( 31 ) F, = F+F*.

Par exemple, la composante as du champ électrique étant représentée 
en Mécanique ondulatoire du photon par la grandeur complexe E.,., la 
grandeur réelle Fr,', qui lui correspond pour les phénomènes à grand 
nombre de photons sera

(•‘••0 =li..-HE£.

De la correspondance générale (31), résulte qu’à une grandeur élec 
tromagnétique réelle de la forme monochromatique plane

F,. = F() cos ( ket — kr -e r, )

Fcorrespond la grandeur complexe F = e£lic(--kr + ^q de [eijc sorte que

l’amplitude réelle F„ de F, est égale à 2 j F |.
Considérons maintenant une onde plane monochromatique contenant 

un grand nombre de pilotons. Elle est décrite macroscopiquement par 
des champs réels de la forme

(33 i E,- = En cost ket — kr -e ç).

D’après la théorie électromagnétique classique, l’on a pour la valeur
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moyenne dans le temps de la densité d’énergie électromagnétique (en 
unité d’Heaviside)

(34) i L-i- H»] = Ë* =‘i ! E01*.

car Er et H,, ont même amplitude. Le champ cômplexe correspondant
à Er est

(35) E = A avec | A | = | E

d’où

(36) iv = 2 | E |2.

Or, si nous nous reportons à l’expression précédemment trouvée

(37) — TOu'= [ E /.-Kd A I2 — Y2)

qui doit nous donner la densité w de l’énergie en Mécanique ondula- 
toire^iu photon et si, pour effectuer le raccord avec la théorie électro 
magnétique usuelle, nous supposons k'î nul ou négligeable, nous voyons 
que

(38) w = iE | H|2 = 2 |E p,

car alors k — | k | et l’on voit, en se reportant aux formules ( 18), 
que | E | = | H |.

La coïncideiice de cette expression (38) de la densité microscopique 
d’énergie avec la densité macroscopique moyenne (36) nous montre 
que l’expression de m,4 est bien celle qui est nécessaire pour pouvoir 
raccorder la théorie macroscopique des champs réels avec la théorie 
microscopique des champs complexes grâce à la relation (3i).

Or celte expression (5j) de t o 14 a été obtenue en posant la cons-
h

tante K figurant dans la définition des champs complexes égale à ^ ^ ^/— ‘ 
Le choix de cette valeur de K se trouve ainsi justifié.

D’une façon générale, les expressions adoptées par la Mécanique 
ondulatoire du photon sont égales aux valeurs moyennes dans le temps 
des expressions classiques, valeurs moyennes qui seules sont acces 
sibles à l’observation dans le cas des rayonnements. Bien que nous 
ayons raisonné sur le photon, la définition (3i) des grandeurs tenso- 

rielles réelles à partir des grandeurs tensorielles complexes paraît, 
d’ailleurs, devoir être étendue à toutes les particules de spin i.



5. Remarques sur l’expression des champs complexes. — La repré 
sentation des champs par des grandeurs complexes appelle quelques 
remarques. Pour représenter un nombre complexe a ib, il faut se 
donner deux nombres réels a et b. De même, pour représenter un 
vecteur complexe E, il faut se donner deux vecteurs réels E(1) et E(a 
tels que

(3g) E =

Si E est le champ électrique complexe de la théorie du photon, le champ 
réel correspondant est E, = 2B111 d’après la définition (3i) du champ 
réel.'

Soit une onde plane monochromatique* dont la direction de propa 
gation est prise pour axe oz. Si l’onde est transversale, E-=o et 
les vecteurs E(1) et E(-> sont contenus dans le plan xoy. Posons

ç;= 2::v (t— ^ -+- oj (J = x,r),

E/= | Ey | e‘9i ( j = x,v'),

\ E!J ’ = ! E.r | cos sx, Ey> = | E.r | sin zx.
( E<’ ) = | E,. [ cos ry, E',-1 = [ F.,. | sin =

Pour une onde rectilignement polarisée, nous pouvons toujours 
prendre la direction du champ électrique pour axe ox. Alors Ej!’, E',2’ 
et | Er | sont nuis et Eftî) = | Eæ | coscp.r, E^s)= | j sincp.*. Les deux
vecteurs réels E(l) et E1-* vibrent donc suivant ox et sont déphasés

de--
2

Pour une onde circulaire gauche, nous avons E.l.= i’Er ou, ce qui 
revient au même, E^,l)+ tE(,u— E(r2), d’où

(43) Eÿ>=-E<-> E!*>=Ej!>.

Alors (42) nous donne

I Ex | cos ç.r = — I Ej. I sin or

et
I Er I cos <fy- = I Ex I sin ç.r,

d’où l’on tire
(44) | E.r | = | Er |, Or=cp.r— *■
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(40)

nous aurons

(40

d’où

(4a)
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Si nous posons cp, | Ea. j = | Er | = E, on trouve

( Ey1 = E cos i. E',?1 = E sinlT
(45)v ' ( E1,.'1 = E sin ç, E<?) = —Ecos = .

Les deux vecteurs E(1)-— ^Er et E*-1 situés dans le plan d’onde sont

de même longueur et tournent en sens inverse des aiguilles d’une 
montre avec un décalage d’un quart de période.

Pour une onde circulaire droite, E,. = —t"E> ; on trouve alors que

les deux vecteurs E11* — ^ Er et E12' sont situés dans le plan d’onde,

ont la même longueur et tournent dans le sens des aiguilles d’une 
montre avec un décalage d’un quart de période

Ces quelques remarques précisent la représentation d’un champ 
à l’aide d’un vecteur complexe.



CHAPITRE V.
LA MÉCANIQUE ONDULATOIRE DU PHOTON. 

EXAMEN DE DIFFICULTÉS.

I. Quelques caractéristiques de la Mécanique ondulatoire du photon. — 
Jusqu’à présent, nous avons envisagé le cas général de la particule 
de spin maximum i qu’on peut considérer comme formée par la fusion

de deux corpuscules élémentaires de spin ~ et qui comprend les cas

(qui se révèlent indépendants) de la particule de spin i et de la parti' 
cule de spin o. Le premier cas est représenté par les grandeurs maxwel- 
liennes et les équations correspondantes : on dit souvent que la particule 
de spin i est une particule vectorielle parce que toutes les grandeurs 
maxvvelliennes qui la représentent dérivent du quadrivccteur potentiel 
de composantes A.,., Av, A:, V. Le second cas, celui de la particule 
de spin o, est représenté par les grandeurs non maxwelliennes et 
les équations correspondantes : on dit souvent que la particule de spin o 
est une particule pseudo-scalaire parce que les grandeurs qui la repré 
sentent dérivent de la grandeur I2 qui est un pseudo-invarianl. c’est- 
à-dire un pseudo-scalaire, d’espace-temps. Ainsi, dans le cas du méson 
qui est une particule de spin entier à masse relativement grande 
(de l’ordre de 200 fois celle de l’électron), on distingue aujourd'hui 
un méson vectoriel de spin i représenté par des équations du type 
maxwellien et un méson pseudo-scalaire de spin o représenté par 
des équations du type non maxwellien.

Pour faire rentrer la théorie de la lumière dans le cadre de la théorie 
générale des particules de spin 1, il suffit de supposer que pj et par 
suite A" sont nuis ou négligeables. Les équations maxwelliennes viennent 
alors coïncider avec les équations classiques do Maxwell (complétées 
par la relation de Lorentz entre potentiels ) : elles représentent une 
particule de spin 1. de masse propre nulle ou négligeable, qu’on peut 
identifier avec le photon tel qu’il existe dans les ondes lumineuses ou 
plus généralement électromagnétiques. Quant aux équations non
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maxwelliennes, elles représentent alors un photon pseudo-scalaire 
de spin o, qui n’est pas encore expérimentalement connu, mais le sera 
peut-être un jour.

Le fait que les équations maxwelliennes, quand on y néglige les termes 
en Arj;, prennent exactement la forme des équations de Maxwell, entraîne 
naturellement que les ondes associées au photon ont alors toutes les 
propriétés des ondes électromagnétiques lassiqurs. Néanmoins, si 
l’on admet que k\ est extraordinairement p tit sans être tout à fait nul, 
toutes les expressions de la théorie électif magnétique classique seront 
complétées par des termes de cet ordre de grandeur. Reportons-nous 
par exemple aux formules (16) du précédent Chapitre qui donnent 
les potentiels et les champs de l’onde plane monochromatique maxwel- 
lienne. Elles nous montrent que si est nul et k égal à |k|, les 
champs E et H sont normaux à la direction de propagation, perpendi 
culaires entre eux et égaux en grandeur : c’est le cas classique de l’onde 
électromagnétique transversale. Comme E-=H-=o, l’onde longi 
tudinale se réduit à une onde de potentiel qui, au point de vue de 
la théorie classique pour laquelle le potentiel n’est qu’une grandeur 
intermédiaire, n’a pas de sens physique. Mais, si k0 tout en étant petit 
n’est pas rigoureusement nul, k diffère de | k | par un terme de l’ordre 

* de k'I, les champs électrique et magnétique de l’onde transversale, 
tout en restant rectangulaires, ne sont plus tout à fait égaux entre eux et, 
de plus, comme Ez n’est plus rigoureusement nul, l’onde longitudinale 
comporte un faible champ électrique. Bien que la différence entre 
les deux cas soit, très petite, la question de savoir si la masse p0 est 
nulle ou simplement extrêmement petite, est théoriquement très 
importante.

2. Le point de vue de la théorie électromagnétique usuelle et cdfui 
de la Mécanique ondulatoire du photon. — La théorie classique pose 
implicitement que la masse propre p0 du photon est nulle. Elle ignore 
donc les termes en kl de la théorie des particules de spin i. De plus, 
elle admet que seuls les champs ont un sens physique parce que, seuls, 
ils interviènnent dans l’interaction entre le champ électromagnétique 
et la matière, les potentiels n’étant à ses yeux que des intermédiaires 
de calcul servant à évaluer les champs. Même si l’on .impose aux 
potentiels de satisfaire à la relation de Lorentz, ces potentiels restent 
encore très largement indéterminés car, si certaines valeurs de A et 
de V satisfaisant à la relation de Lorentz conviennent pour fournir 
les valeurs supposées connues des champs E et H, les grandeurs



i cJFA4-gradF et V—• - donneront les mêmes valeurs des champs

et satisferont aussi à la relation de Lorentz si F est une solution 
quelconque de   F = o. Le postulat qui enlève aux potentiels toute 
signification physique est souvent désigné sous le nom d’invariance 
de jauge ou parfois d’invariance de jauge de seconde espèce (1). 
Ce postulat nous apparaît comme assez arbitraire.

La Mécanique ondulatoire du photon, parlant pour établir la théorie’ 
de la lumière des équations générales de la particule de spin i, doit 
avoir naturellement tendance à supposer que la masse propre du 
photon ne doit pas, a priori, être considérée comme nulle, mais seule 
ment comme assez petite pour que les termes en k\ puissent être 
regardés comme pratiquement négligeables. En effet, si À,, était nul, 
certaines difficultés apparaîtraient dans l’application de la théorie géné 
rale des particules de spin i. Nous avons vu notamment que les équa 
tions (6') du Chapitre T1I ne peuvent se déduire des équations (6) que 
si A’opé'o (voirp. 29). Effectivement^ si k„^o, les équations (6) en 
question nous fournissent les relations vectorielles

' „ . „ 1 dA

!
H = rotA, E=---------:----- gradV,

c m

- = rotH -+- k-0 A, divE = — a -j  \ ,

d’où l’on déduit les équations du groupe (&)

, , .. __ 1 dH _ 1 iA ...(2) uivH = o, ----- —- = rotE, ------ ;—hdivA = o;c <)t c ât

mais, si /«„ était nul, ou ne pourrait pas tirer des équations (6) 
les équations de définition des champs, c’est-à-dire les deux premières' 
équations (1) et par suite on ne pourrait plus en déduire les deux 
premières équations (2). Nous verrons aussi que d’autres difficultés 
graves apparaissent quand on yeut passer à la théorie superquantifiée 
ou quand on veut interpréter les interactions coulombiennes par des 
échanges virtuels de photons.

En outre, la Mécanique ondulatoire du photon nous a conduit tout 
naturellement à mettre sur un pied d’égalité les potentiels et les champs, 
par suite à considérer les potentiels comme des grandeurs physiques 
au même titre que les champs. Elle définit, en effet, les potentiels et
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(') Poui- la distinguer de l’invariance de jauge de première espèce dont il a été 
question p. 1$.
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les champs par certaines combinaisons linéaires de Vc t  ou, si l’on veut, 
par certaines densités d’éléments de matrice associés au passage du 
photon d’un état initial non annihilé à un état final annihilé. Il n’y a 
dès lors aucune raison d’attribuer plus de sens physique aux champs 
qu’aux potentiels. Le fait que, dans l’état actuel de nos connaissances, 
les potentiels n’interviennent pas dans les interactions entre le champ 
électromagnétique et la matière, ne peut rien changer à cela.

Si l’on admet que o, les formules

( 3 ) A = ~ [ -■ ™ - rot h ] , V = - J- divE
/rs [_<: <)t J /.'o

permettent de calculer A et V en fonction de E et de H. Il n’y a donc 
plus alors d’invariance de jauge. Toutefois, si k\ est extrêmement petit, 
A et V ne seront plus en pratique calculables par les formules (3), 
car une très petite incertitude sur la valeur des champs E et H conduira 
à une incertitude énorme sur celle des potentiels; pratiquement il y 
aura invariance de jauge. Mais il n’en reste pas moins vrai que pour 
la Mécanique ondulatoire du photon, il y a toujours en principe 
de véritables valeurs des potentiels, même quand l’extrême petitesse 
de ka ne permet pas pratiquement de déterminer ces valeurs à partir 
de celles des champs par les équations (3).

3. Objection, contre l’hypothèse p.„ ÿé. o tirée de l’invariance de 
la vitesse de la lumière. — La tendance naturelle de la Mécanique 
ondulatoire est donc d’admettre que pa n’est pas rigoureusement nulle 
et corrélativement de rejeter le postulat de l’invariance de jauge.

Cependant il est absolument certain que la masse propre pn du photon 
doit être extraordinairement petite, énormément plus petite que la masse 
propre m0 — o,q. îo 27 gramme de l’électron. Il est, en effet, certain 
que les équations du photon doivent s’écarter extrêmement peu de celles 
de Maxwell. Si p„ n’était pas extraordinairement petit, la vitesse de 
déolacement du photon devrait varier avec sa fréquence suivant les 
formules

e étant ici la vitesse de l’énergie (ou vitesse de groupe) des ondes 
lumineuses. II y aurait donc une dispersion du vide, la vitesse du front 
d’ondes étant plus élevée pour les grandes fréquences que pour les
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petites. Le fait que cette dispersion du vide n’a pu être observée, même 
lors de la désoccultation des étoiles très lointaines, impose à une 
limite supérieure. On peut se rendre compte par le calcul que cette 
limite est certainement inférieure à io"'3 gramme (■). Certaines consi 
dérations cosmogoniques (2) conduisent même à penser que p.0 pourrait 
être de l’ordre de ioHl; gramme. Cés valeurs sont évidemment extrê 
mement petites, mais elles n’ont rien d’inacceptable a priori.

Avec des valeurs aussi faibles de p.«, il sera impossible de mettre en 
évidence par l’observation des vitesses de propagation des rayonnements 
dans le vide inférieures à c, car pour avoir un'écarl par rapport à c qui 
soit observable, il faudrait employer des rayonnements de fréquences 
si basses que l’étude de leur propagation serait impossible. Il est vrai 
que l’on pourrait se demander si l’existence de vitesses e inférieures à c 
pour des fréquences très basses ne modifierait pas sensiblement les lois 
classiques des phénomènes électromagnétiques statiques ou quasi 
statiques d’une manière qui serait en contradiction avec les données 
expérimentales, mais l’étude du cas le plus défavorable, celui des 
interactions statiques (v = o) pour lequel la formule (4) donne pour v 
une valeur imaginaire de sorte qu’il n’y a plus alors de propagation 
vraie, montre que, si l’on attribue à p0 une valeur non nulle, on est
simplement amené à remplacer le potentiel de Coulomb en i par un

potentiel en i e : c’est là une question que nous reprendrons plus

loin. Or, pour pouvoir effectivement observer l’influence du facteur 
exponentiel e~k‘r, c’est-à-dire pour mettre en évidence un écart pàr 
rapport à la loi de Coulomb, il faudrait se mettre à une distance du corps
électrisé, source du champ, qui soit de l’ordre de T 10-37 .rv------centi-

' ko 2 t îh o c (x0

mètre et, si l’on suppose p.0< 10—13 gramme, toute vérification expéri 
mentale se trouve exclue.

On pourrait encore objecter à l’hypothèse p.(,go que si dans un 
certain système de référence galiléen la vitesse du photon était assez 
voisine de c pour ne pouvoir en être distinguée, il suffirait de faire 
une transformation de Lorentz correspondant à une vitesse relative 
voisine de c pour obtenir un photon qui, dans le nouveau système 
de référence, aurait une vitesse très inférieure à c. Pour lever cette 
objection, il suffit de développer sous une forme plus précise les consi 
dérations exposées plus haut.

{’) Voir Nouvelle Théorie de la Lumière, 1, p. 3g-jo.
(■) Voir Théorie générale de? particules à spin, p. 191.
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D’abord nous pouvons admettre que la propagation et éventuellement 
les effets quantiques d’un rayonnement ne peuvent être mis en évidence 
que si sa fréquence est supérieure à une certaine fréquence v0. De plus, 
la vitesse de groupe = (3c d’un rayonnement ne peut être discernée 
de c que si '

yjo étant un nombre très inférieur à un. Les nombres v„ et ïj0 peuvent 
dépendre de l’état de perfectionnement actuel de la technique expéri 
mentale, mais on peut admettre qu’ils ont à une époque donnée mêmes 
valeurs dans tous les systèmes de référence, puisqu’un observateur 
dispose dans tous ces systèmes des mêmes moyens d’investigation 
expérimentale.

Ceci posé, pour que la propagation d’un rayonnement soit susceptible 
d’être étudiée expérimentalement, il faut que ses photons aient une 
énergie supérieure à /tv„, ce qui nous donne

(G) -7===^Av o .
  i-P*

D’autre part, pour que la vitesse de ces photons soit indiscernable 
de c, il faut que la relation (5) soit vérifiée et pour que (5) soit une 
conséquence de (6) il faut que

/-\ Av0 /------ -,----------- rr Av0 /-----
(j) v/l— (I — T)o)1V2T!®-

Donc si p„ (qui est une constante de Ja nature par hypothèse) est 
assez petite pour que l’inégalité (7) soit vérifiée, tout photon qui, dans 
un système galiléen, possède une énergie suffisante pour que son 
existence soit décelable, y possède une vitesse indiscernable de c. 
Ce résultat nous permet donc de supposer p0 ^ o à condition que cette 
masse propre soit suffisamment petite.

Comme les constantes v„ et n„ dépendent de l’état de perfection de 
la technique expérimentale, il ne serait pas, en principe, interdit 
d’espérer que les progrès de celte technique permettent un jour, grâce 
à une diminution des valeurs de vu et 73,,, de mettre en défaut l’iné 
galité (7) : ce jour-là, la mise en évidence de vitesses du photon 
inférieures à c et, par suite, la mesure de p„ deviendrait possible. 
Néanmoins si p„ avait une valeur aussi faible que, par exemple, 
10 oi gramme, cet espoir resterait sans doute chimérique.



4. L’hypothèse et là définition de la vitesse c en théorie de la
Relativité. — On pourrait encore être tenté de faire à l’hypothèse p0y^o 
une objection apparentée aux précédentes. Les raisonnements qui ont 
permis à M. Einstein 'de jeter les premières bases de la Relativité 
invoquent le fait que les signaux lumineux sont les plus rapides de tous 
les signaux possibles. Ils admettent aussi, conformément aux résultats 
de la fameuse expérience de Michelson et des autres expériences 
analogues, que dans tout système de référence galiléen la lumière 
possède la même vitesse c de propagation dans le vide et obéit par suite 
toujours à l’équation de propagation

(8)  ? = o.

De ces hypothèses, se déduisent les formules de la transformation 
de Lorentz où figure la vitesse c, puis les lois de la cinématique et de 
la dynamique relativiste. La variation de la nïksse avec la vitesse en 
dynamique relativiste montre alors que la vitesse c ne peut être atteinte 
par aucune particule de masse propre non nulle. Gomment peut-on 
concilier cette chaîne de déductions avec l’hypothèse p0^o, laquelle 
implique que les photons ont une vitesse inférieure à c et variable avec 
la fréquence ?

En réalité, il ne nous semble pas qu’il y ait là une difficulté véritable. 
On peut, en effet, reprendre avec l’hypothèse p0^o tous les raison 
nements d’Einstein en désignant par c la vitesse limite supérieure de 
tous les signaux possibles, vitesse supposée existante et de même valeur 
dans tous les systèmes galiléens, et en admettant que les photons 
d’énergie suffisante pour être décelée ont toujours dans le vide une 
vitesse pratiquement égale à c, c’est-à-dire qu’ils obéissent pratique 
ment à l’équation de propagation (8) comme le prouve l’expérience de 
Michelson. Ainsi la vitesse c qui s’introduit dans les formules de Lorentz 
et dans celles-de la cinématique et de la dynamique relativistes est 
une vitesse limite qu’aucune particule ne peut rigoureusement atteindre, 
mais dont elle peut approcher quand son énergie devient très grande. 
En raison de leur masse propre extraordinairement petite, les photons 
décelables auraient toujours pratiquement, comme nous l’avons vu, 
une vitesse indiscernable de c et qui, d’ailleurs, tendrait vers c quand 
la fréquence du photon croîtrait indéfiniment.

Aucune difficulté sérieuse ne nous paraît donc exister de ce côté. 
Pour éviter toute équivoque, il suffit de désigner la constante c sous 
le nom de vitesse limite de Vénergie et non sous celui de vitesse de 
la lumière qui peut prêter à confusion.
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5. Objection contre l’hypothèse p0 o' tirée de la théorie du rayon 
nement noir. — Quand on développe la théorie de la répartition 
spectrale de l’énergie dans le rayonnement noir par la méthode de 
M. Jeans, on est conduit, si l’on tient compte de l’existence des quanta, 
à attribuer à chaque onde stationnaire dans le rayonnement noir 
la même énergie moyenne

„/.ï

où T est la température absolue de l’enceinte, A la constante de 
Boltzmann, v la fréquence des ondes stationnaires. Or, dans une 
enceinte vide de volume e, il y a

ondes stationnaires possible's de polarisation déterminée correspondant 
à l’intervalle de fréquence v->v + aL. Si l’on admet que les ondes 
lumineuses sont toujours rigoureusement transversales, le nombre 
des ondes stationnaires possibles de l’intervalle s’obtiendra
en doublant l’expression (io), parce qu’il y a toujours deux états 
indépendants de polarisation possible pour chaque onde transversale 
(circulaire, droite et circulaire gauche par exemple). On est donc ainsi 
conduit à l’expression suivante de la densité d’énergie dans le rayon 
nement noir pour l’intervalle de fréquence v -> v + dv

( I I ! p ( v ) r/v
<S ?;/a v :î i

h'* <h.

C’est la loi de l’ianck bien vérifiée par l’expérience.
Mais, si nous admettons l’hypothèse p0^o, il doit exister aussi 

des ondes longitudinales stationnaires dont le nombre sera donné 
par (10) et alors la densité de l’énergie devrait être

ce qui est contraire l’expérience.
Il semble que l’on puisse répondre à cette objection de la façou 

suivante. La mesure d’une énergie rayonnante (telle que celle qui 
s’échappe d’un four maintenu à température uniforme) s’effectue 
toujours par l’intermédiaire d’une action du rayonnement sur des
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éléments matériels : or cette action ne dépend que des champs et non 
des potentiels et ne peut, par suite, déceler l’énergie électromagnétique 
présente que si elle est représentée par des champs d’intensité suffisante. 
Reprenons alors l’expression de la densité de l’énergie en Mécanique 
ondulatoire du photon

(i3) ,V=_,«U= la |2+ | H js-f- k% ( | A !*—V*).

Pour une onde monochromatique transversale (circulaire droite ou 
gauche), on a

04) A,.+ iA,= CI*; EcqziEr = — ikCP; j'Hy = ic | k \ CP

E. = H - = A.. = V = o,

et par suite

(l5) (V = I C |2[À-2-t-1 k [2] -H kl | C |ï= 2 k* | C |3.

Il est donc visible que le premier terme provenant des champs est 
beaucoup plus grand que le second provenant des potentiels : ceci 
résulte de la très petite valeur de k» et du fait que, les rayonnements 
mesurés ayant toujours des fréquences élevées, /,• ~ | k \ est grand. 
L’énergie est donc presque exclusivement présente sous forme de champs 
et elle est décelable expérimentalement.

Il en est tout autrement pour les ondes longitudinales car on a pour 
elles

06) A; = CI* ; Y = ciii|>: lï- = — i'^CP; I!-=o,
A K

H.r= 1I,.= E.r = Ii,.= A,c= A v = o,

et par suite

(17) «■= -^) I C;*= aÆS I r.

Ici c’est le second terme provenant des potentiels qui est visiblement 
beaucoup plus grand que le premier provenant des champs : l’énergie 
est donc concentrée dans les potenliels et par suite pratiquement 
indécelable.

Il faut d’ailleurs ajouter que l'énergie des ondes longitudinales ne 
peut être émise qu’extraordinairement lentement par la matière puisque, 
pour ces ondes, le terme de couplage entre matière et rayonnement 
(qui dépend de E;) est extrêmement faible. L’équilibre thermo 
dynamique ne peut donc, en ce qui les concerne, être atteint que fort 
lentement, ce qui peut aussi Contribuer à les rendre indécelables.
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Il semble donc bien que la vérification expérimentale de la loi ( 11 ) 
du rayonnement de Planck n’est pas en contradiction avec l’hypo 
thèse [x„^é o si fj.o est suffisamment petit.

Bref, de l’ensemble des considérations développées dans ce chapitre, 
résulte à notre avis qu’aucune objection insurmontable ne s’oppose 
à l’hypothèse suivant laquelle la masse propre du photon ne serait pas 
rigoureusement nulle (*).

(*) Note ajoutée à la seconde édition. — Dans une note parue dans les Procecdings 
of lhe Royal Society (sériés A, N 1182, n octobre 1955, vol. 232, p. 1 ), MM. Bass cl 
Schrôdinger ont montré que l’hypothèse d’une masse propre non nulle du photon n’est 
pas inconciliable avec la loi de Planck. Leur raisonnement est entièrement analogue à 
celui que nous avions développé dans le paragraphe ci-dessus dès la première édition du 
présent ouvrage ( 19^9).



CHAPITRE AI.
QUESTIONS RELATIVES AU SPIN DU IHIOTON.

I. Le moment d’impulsion d’un rayonnement. ~~ Nous allons déve 
lopper quelques remarques au sujet d’un problème étudié dans un 
article de M. J. Humblet (’), où l’auteur, se plaçant au point de vue de 
ta théorie électromagnétique classique, critique certains résultats 
obtenus en Mécanique ondulatoire du photon par M. Géhéniau.

Nous avons vu que les tenseurs Tik et. m,-* sont intégralement équi 
valents. En particulier, les vecteurs d’espace de composantes T‘ik et mik 
avec k = i, 2, 3 sont intégralement équivalents. II n’en résulte pas 
que les moments de ces vecteurs par rapport à un même point le soient 
aussi et, en fait, ils ne le sont pas : le moment d’impulsion d’un 
rayonnement, que nous avons défini à l’aide da vecteur Tj* ne 
coïncide pas avec celui qu’on peut définir à l’aide de mik. Or c’est ce 
dernier qui correspond au moment d’impulsion d’un rayonnement 
défini par la théorie classique.

Pour préciser ce point, plaçons-nous d’abord en théorie électroma 
gnétique classique. Cette théorie emploie les champs réels Er et Kr et

attribue à la densité d’impulsion d’un rayonnement la valeur i | ErH, |.

En désignant par H le vecteur qui joint l’origine à un élément de 
volume dr, elle adopte donc tout naturellement comme moment 
d’impulsion d’un rayonnement par rapport à l'origine des coordonnées
le vecteur

(V> Mo - - f\ RJE,.H,.|i d~.
C ! L i

p étant le volume total occupé par le rayonnement. Décomposons E,- et 
ïir eu une somme de quantités complexes conjuguées suivant le schéma

‘ ) Physica, X, 7, iq43, p. jC;
roue n« BPt'nt.ii-:.
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adopté précédemment
(2) Er=E-t-E*,

et prenons la moyenne dans le temps de MC/, moyenne qui seule est 
accessible à l’observation. Les termes en [EH] et en [E*H*] donnant 
zéro en moyenne, il reste

(3) Mc.i= i J [R(.E*H]|c'' -+ conj.

Remplaçons H par rot A et intégrons par parties, nous obtenons
3

(4) Mc/ = \ f y, E/ [r  x grad J A; tfr -h  i f [E* A] dx

^ jf [ R AJ aiv E* (k —i jf [R A] (E* n) ds -1- conj.,

S étant la surface qui limite le volume « et n le vecteur unitaire porté 
en chaque point sur la normale à cette surface. La troisième intégrale 
est nulle parce qu’en théorie classique divE = o.

Nous pouvons naturellement reprendre le même calcul en Mécanique 
ondulatoire du photon. Nous savons que les valeurs moyennes dans le 
temps des grandeurs classiques coïncident en général avec les expressions 
obtenues en Mécanique ondulatoire du photon. Si donc l’on adoptait
comme densité d’impulsion du rayonnement le vecteur 5^ tel- qu’il est

défini en théorie du photon, le moment d’impulsion aurait pour 
composante k

(5) /[»=£]■* 

avec
(6) rmt( = i [ [E*H]*+ *§ V*A* J -+ conj. .(* = 1,2,3)..

En remplaçant H par rot A et en intégrant par parties, on trouverait 

(7) jT[r  îj^]dT= I jf*2 (e ;[Rx S^]a /*

-+- iy [R A]*» V*,r/t

^"[R A] div E* dx 

— “ jT[R A] (E*n) ds -1- conj
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Les troisième et quatrième intégrales se compensent en.vertu de la 
relation div E* = — ArJ V*, et le résultat ainsi obtenu coïncide bien avec 
l’expression (4) de Mw, comme on pouvait s’y attendre.

Mais, et voici le point essentiel, la Mécanique ondulatoire doit définir 
le moment d’impulsion d’un rayonnement à partir de la densité

d’impulsion et non à partir de Elle pose donc

<8) M=/[BfCT'**]£*’

QUESTIONS RELATIVES AU SPIN DU PHOTON.

et cette expression n’est pas égale à (5). Son calcul donne en effet
3

<9) M= ^.E/ [r  x glâd] conj.

M diffère donc de MC/ par l’absence de-l’intégrale de surface et par la 
présence du terme supplémentaire^ J'V'Hefc. Dans l’expression (9)

de M, le premier terme correspond au moment orbital du photon, 
les deux suivants au moment propre du spin.

Il y a entre les expressions (1) et (8) une grande différence, la 
première satisfait à l’invariance de jauge, la seconde ne le fait pas. 
Que Mc, soit invariante de jauge, cela résulte immédiatement du fait que 
sa définition ne fait intervenir que les champs et non les potentiels ; 
on peut d’ailleurs vérifier l’invariance de jauge de l’expression (4) en y

remplaçant A par A-f- gradF et en constatant que les termes en F se 
compensent. Au contraire, l’expression (8) de M admise par la Méca 
nique ondulatoire du photon n’admet pas l’invariance de jauge comme 
on le vérifie aisément : son adoption implique donc que l’on considère 
les potentiels comme de véritables grandéurs physiques ayant des 
valeurs bien déterminées.

Si l’on tient absolument à conserver l’invariance de jauge, il faut donc 
adopter pour le moment d’impulsion du rayonnement l’expression Mc/> 
niais alors (’), pour les particules de spin 1 à masse propre certainement 
non nulle comme le méson, il faudra adopter l’expression (8) du 
moment d’impulsion et pour le photon l’expression (5). Cette manière 
de faire qui traite différemment deux particules de spin 1 ne nous paraît 
pas très satisfaisantes. L’examen du cas simple de l’onde plane mono-

(1 ) Voir Hu mb l e t , loc. cit., p. 587.



68 CHAPITRE VI.

chromatique (étudiée aussi par M. Humblet dans son Mémoire) va 
également nous montrer que l’emploi de l’expression classique (i) 
conduit à des conclusions physiquement moins satisfaisantes que celui 
de l’expression (8).

2. Étude du cas de l’onde plane monochromatique. — Nous allons 
étudier le moment d’impulsion d’une onde plane monochromatique en 
nous servant tout d’abord des formules de la Mécanique ondulatoire du 
photon.

Nous prendrons toujours la direction de propagation de l’onde plane 
pour axe des z et nous considérerons le volume délimité par une sphère

de centre O et de rayon R, volume égal à e—Cherchons le

moment d’impulsion par rapport à l’origine O de la portion de 
rayonnement contenue dans cette sphère en adoptant le point de vue de 
la Mécanique ondulatoire du photon. Le moment orbital est nul, c’est 
évident par raison de symétrie et il est aisé de le vérifier par le calcul. 
Si nous supposons l’onde photonique transversale, nous pourrons poser 
V ■= o etM se réduira à

(io) H = i/[ITAl conj.

Faisons le calcul pour une onde polarisée circulairernent, par exemple 
circulaire gauche. Nous avons

(n) A.r= A, Ar = — {'A, E.c=—ik A, E,= — kX, Ez = o,

et la normalisation de l’onde plane dans un volume V dont les 
dimensions sont supposées très supérieures à la longueur d’onde et
à R nous donne

(12) 4 I A J
hc

i n k'V

Nous trouvons donc

i M - — Sj:-, - f fE*.i 
( i3) c-4

■ Ep Aa ] di +■ conj 4 - I A | V ~ 271

■ M , - My — o.

Ce résultat est satisfaisant, il exprime que la composante z de la densité 

de spin a la valeur uniforme ■— ce qui est naturel puisque le photon 

d’une onde circulaire gauche a un spin S= = — et que l’onde plane est
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homogène. Pour une onde circulaire droite, on trouverait

04) M* = A JL
Tk  V'

correspondant ail spin — — du photon.

Si maintenant nous faisons le même calcul avec les formules de la 
théorie classique, nous allons arriver à un résultat assez paradoxal. 
Nous devons, en effet, écrire alors

(i5) , = 1 f y E; [r  x grad jj A; dx
c J v ~i

-i-- f [E*A]zdx---- f [SAWE’n)*-
C d., C J,

et appliquer celte formule à la sphère. Le premier terme est nul par 
raison de symétrie. Pour une onde circulaire gauche, le second terme
augmenté de son conjugué a la valeur A il trouvée plus haut. Mais il

reste les intégrales de surface qui nous donnent

(16) -ijf[ RAME* n) di -+- conj.

= --c f (*Ar-.7A«) [e*| -eE‘^1 R5 dQ -+- conj.
•J s L -i

k r= --|A|> / (« — !»(«-H î» R dû-I-conj.

R,de + coni- =-4||A|*p=-A

Cette valeur étant égale et de signe contraire à celle que fournit la 
seconde intégrale de (i5), on a finalement

(17) M* = o.

D’où cette conclusion paradoxale que dans une onde plane monochro 
matique polarisée circulairement, la densité du moment d’impulsion et 
par suite la densité de spin sont nulles.

On peut chercher à atténuer cette difficulté en remarquant qu’une 
onde plane est une fiction et que l’on a toujours affaire en pratique 
à un groupe d’ondes de dimensions limitées. En considérant alors une 
surface S située tout entière à l’extérieur du groupe d’ondes, on
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annulera l’intégrale de surface dans (id ) et il restera

(18) M=- f [E* A] rfr -+- conj.,
® “ V

ce qui donnera bien ± ^ pour l’ensemble d’une onde circulairement

polarisée. Mais avec ce point de vue la densité de moment d’impulsion 
se trouve entièrement localisée aux limites du groupe d’ondes, à 
l’endroit où l’onde n’est plus homogène, au lieu d’être uniformément 
répartie dans toute l’onde plane comme l’enseigne la Mécanique ondu 
latoire du photon. Un tel résultat nous paraît peu satisfaisant au point 
de vue physique, et cela d’autant plus qu’on peut supposer les limites du 
groupe d’ondes aussi éloignées qu’on veut du point O. La Mécanique 
ondulatoire nous semble se tenir plus près de la réalité physique, son 
point de vue permet d’ailleurs de démontrer immédiatement une 
formule célèbre due à M. Sommerfeld, qui a joué naguère un rôle 
important dans l’établissement des règles de sélection de l’ancienne 
théorie des quanta. La théorie classique ne permet de retrouver cette 
formule que par des raisonnements beaucoup plus détournés et un peu 
embarrassés (*•).

3. Formule de Sommerfeld donnant pour une onde plane monochro 
matique le rapport entre la densité de moment d’impulsion et la densité 
d’énergie. — Considérons une onde plane monochromatique se 
propageant le long de os et supposons p.0 assez petit pour qu’on puisse 
négliger les termes en p*. Les potentiels de l’onde plane sont avec ces 
hypothèses

(19) Aæ=a1e(?»P, Ay=aîei?iP, A-:=ase'9>P, V=AS (P = eU*ci—*«),

les constantes ai, a2, a3, q>4, <plt <jp3 étant réelles. Pour les champs, 
on trouve

l E.r =—ikat e‘?i P, E,, =—ika^e^Ÿ, Kz = o,
<-20) ( Hx= ikaie^P, H, = — ikat P, IL=o.

En Mécanique ondulatoire du photon, la densité de spin est donnée par 
la formule

(21) a= i \ [E*A]h -V*H } -f-conj.

(') Voir la fin du Mémoire de fy(. Humblet.
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Calculons d’abord rjx

(22) — E*Ar]+-V*IC-i-conj.

= - iAa2a3 e((9>—?•)
c

h - i ikaia- e(?s—?s) -+- conj. 

lika-a-n— ---- ----- cos(if3— sp2) -4- conj. = o..

On trouve de même a>= o.
Reste à calculer a-

(23) ttz= i[EiAr— E* A*]conj. = — —sin ( ç2 — tp, ).

Or la densité d’énergie est, en négligeant les termes en p.*,

(24) cv = - T44 = — mu = | E |2 + | H |5 = 21 E |- = àk*(a\ -+- a2 ),

d’où enfin

(25)
_ 2a, a2 sin( 9, •—?2)

w kc{a\-¥-a\)

Posons d\ = a et a2 = b ; souvenons-nous que kc = 2 7rv = ai pulsation 
de l’onde. Il vient

(26) <i- _ 2<xè sin(92—ç2) 
«' ‘ io(a2..~i- b- )

C’est la formule de Sommerfeld, compte tenu du sens des axes employés 
ici.

Pour une onde polarisée circulairement, on a b.= a, <p2 — <p2 = dz ^ et 
par suite

h

(27) fî _± I =± üj, 
’iv in Av

comme cela doit être puisque l’énergie totale vaut Av et le moment 
d’impulsion total ± ^ (suivant le sens de la polarisation circulaire)

et que, d’autre part, les densités w et cr- sont constantes dans l’onde 
homogène.

En Mécanique ondulatoire du photon, tout cela est très clair. Par 
contre, comme nous l’avons dit, la démonstration de la formule (26) par 
la théorie classique est beaucoup moins directe.
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Ajoutons encore une remarque. Comme l’a noté M. Humblet ('), 
si l’on néglige les termes en kl, les formules de la Mécanique ondulatoire 
du photon ne ramènent pas toujours à celles de la théorie de Maxwell. 
Même, si l’on suppose pratiquement négligeables dans les calculs les 
termes en /c*, une définition comme celle du moment d’impulsion M 
par la formule (8) qui se présente naturellement en Mécanique ondula 
toire du photon ne rentre pas dans le cadre de la théorie classique 
parce qu’elle ne possède pas l’invariance de jauge.

4. Étude de l’onde dipolaire électrique circulairement polarisée. — 
Considérons un dipôle circulaire placé dans un plan pris pour plan 
des xy. Soient

(28) P x—aeik>', Vy — qziacii:c', P5 — o,

les composantes de son moment dipolaire. Le signe — correspond à un 
dipôle circulaire gauche, le signe -f- à un dipôle circulaire droit. On 
trouve aisément les formules

| P |*= | P* (*-+-1 Pr 1* -+- {!», (n P) — ,

l(nP)|*= \ a i2!

1
\ 0

[P*PJ = j O, [nP]=;
( =F*'l«is. ] .... •

f --a —

r étant la distance du point considéré à l'origine et n le vecteur unité 
porté suivant le rayon vecteur.

L’onde émise par ce dipôle circulaire comporte un champ électrique 
et un champ magnétique qui, en négligeant les termes d’ordres supérieurs
en i, s’expriment à grande distance par

(3«) E = 7—— e—lkr(P — (nP m) ; H ~ e-'<'jnPJ.
4 r. r \ / 4 s >■ 1. j

Ces champs dérivent des potentiels suivants (calculés par la méthode

(l) Loc. cit., p. 5g3.
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des potentiels retardés, toujours en se limitant aux termes en r~4)

(a) A = 7^— e—<*'■ P eikct ; V = (nA) = ~e_ii''(iiP)e,rfi.
t\-xr 4 Tzr ’

Si l’on admet l’invariance de jauge, on peut remplacer ces potentiels a 
par d’autres équivalents et en particulier par les suivants :

(b) A = ^;^(P-(nP)n)e^; V = o.

Il importe de faire la remarque suivante : Avec le choix a des 
potentiels, on a une onde transversale à laquelle est superposée une 
onde longitudinale (qui, avec ces expressions classiques supposant 
implicitement 4r0=o, se réduit à une onde de potentiels avec champs 
nuis). Par contre, les potentiels b sont caractérisés par le fait que l’onde 
correspondante est purement transversale, sans mélange d’onde longitu 
dinale. Naturellement, avec la conception classique qui refuse toute 
réalité aux potentiels, les choix a et b sont équivalents.

Calculons la densité p correspondant à l’onde dipolaire en Mécanique 
ondulatoire du pholon. Quel que soit le choix a ou b des potentiels, 
on trouve

(3.) p = ( A*E) •

a 7t k3 1

conj.

hc 16 ir!r! ( 1 j (nP)j* } -+- conj. 4r3| a |2 
4 t c  hcr* (1 -t- cos20),

9 étant l’angle zoM si M est le point oü l’on calcule p. Pour normer 
l’onde dipolaire, nous supposerons qu'elle possède un front d’onde 
et que, par suite, elle est à chaque instant entièrement contenue dans 
une sphère 2 de rayon R (avec Nous considérons l’instant où

khecette sphère contient exactement un quantum hv—~— d’énergie 

radiante moyenne et nous écrivons, R étant le rayon de 2 à cet instant

(3a)

d’où

(33)

f p = f dr f «oMo-
4 7C hcr3

■ coss 6 ) 2 t c  r- sin 0 = 1,

I a i2_
4 A3 R

Telle est la relation liant le rayon R défini ci-dessus à l’amplitude a du 
dipôîe.
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Nous allons maintenant envisager les trois intégrales suivantes dont 
nous avons signalé l’importance

(34)

| Ii = ^ ,E/ [r grad]2A.y dx -+- conj. ;

î 1

I2 = - f [E* A]z dx +conj. Is = i- f V*FL dx +- conj.
c J v, c J y.

Les intégrales analogues se rapportant aux axes ox et oy sont nulles 
comme on le démontre aisément. Avec le choix a des potentiels,

le calcul de i [E* A] donne

(35) i [E* A] -h  conj. = ~ {[P*P] — (nP')[nP]J + conj..

d’où, pour la composante z d’après (20) et (33),

(36) -, [E* A]2-+- conj. =± „ * , — |a|2fn-cos20) 
c’ 16 ju*r* * c *

1 3 h
l6it2r2 2R

Avec le choix b des potentiels, on trouve

i- ik3

-^(i-t-cos2©).

(37) - [E* A]* + co"j• =- c [P*P]-t 2(b P)* [nP] j -f-conj.,

d’où, pour la composante z,

(38) I[E*A]2+conj.=±7^4iÎM2cos29 = 3 h
i6:t2r2 ït

Intégrons dans la sphère 2; il vient

| avec le choix a des potentiels I2 = ± ^ >

COS20.

(39)
I I2 = ± 4 r.

Passons maintenant au calcul de I3. Avec les potentiels a, on a

( R») ^ V*H-t-conj. =— i(. ~ (nP*)[nP*l h - conj.

d’où, pour la composante z,
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Avec le choix b des potentiels, on a évidemment

(42) iy*H = o
c

En intégrant dans 2, on obtient donc
/

I l avec le choix a des potentiels I3 =
(43)

( « b* » I3 = o.

Pour calculer enfin I,, nous aurons à considérer l’expression

A
4*

.3

7 y\ E/ [r x grad] A/ -+- conj.
C My

On se rend compte facilement que les seuls termes non nuis de cette 
expression proviennent des dérivations des. composantes de n : elle est 
donc nulle avec le choix « des potentiels puisque alors A ne dépend pas 
de U. Avec le choix b des potentiels, on trouve

3
(44) • 3 2 e; [r X ^d], A,+ coiy. = ~ (n P) [P* n] = - \ V*H.

1 J

On a donc en intégrant dans 2

1 avec le choix a des potentiels Ii=o,
(45)

4*

Finalement, rassemblant les résultats (39), (43) et (43), nous obtenons

havec le choix a des potentiels I, = o, Iî = ± -
(46)

I — h

4* l2 = ±y-> I3— O.
4*

Or la valeur moyenne dans le temps du moment d’impulsion du 
rayonnement d’après la théorie classique est

(47)
(Ms)c/=? Ii H- Is une intégrale de surface qui est nulle (*),

(Mj)cl— Il H- II,

(1 ) Voir Hu mb l b t , p. 5g3.
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tandis que la composante z du moment d’impulsion en Mécanique 
ondulatoire du photon est

(48) Mz= Ii -+- I5-i- I3,

Il représentant le moment orbital, Is + Is le spin. D’après les propriétés 
de l’onde dipolaire, les grandeurs (M2)c; et M3 doivent être égales 
à ± ^> moment d’impulsion perdu par le dipôle lors de l’émission du 

quantum hv. Or, on a

choix a des potentiels (M2)c i = ±—> —27C 4jt
b « (M7)c /-=±—» m z = ±A.

2 TC 2 K

Les valeurs de (M3)c; sont insensibles au choix des potentiels, comme 
cela devait être d’après l’invariance de jauge : elles sont égales
à ± ^ comme prévu. Au contraire, les valeurs de M2 dépendent du

choix des potentiels parce que la Mécanique ondulatoire du photon 
n’admet pas l’invariance de jauge : seul le choix b des potentiels nous

fournit la valeur correcte ± Ce fait a été signalé, il J a quelques

années, par M. Géhéniau dans sa thèse.
Donc, pour obtenir en Mécanique ondulatoire du photon, la valeur 

correcte du moment d’impulsion d’une onde dipolaire circulairement 
polarisée, il faut adopter les potentiels qui représentent une onde 
purement transversale débarrassée de toute onde longitudinale.

Au premier abord, l’adoption des potentiels b de préférence aux 
potentiels a peut paraître soulever des difficultés. En effet, on est 
habitué dans la théorie des potentiels retardes à calculer le phénomène 
de rayonnement dipolaire en partant des formules

où les quantités entre crochets sont les quantités retardées de — ' •

Or ce mode de calcul conduit aux potentiels a qui pourraient ainsi, 
abstraction faite de l’invariance de jauge, paraître avoir une réalité 
physique plus grande que les potentiels b contrairement à notre 
conclusion. Mais il faut remarquer qu’aujourd’hui la théorie classique 
de l’émission des rayonnements fondée sur les formules (5o) doit être 
remplacée par la théorie quantique de l’émission, où l’émission des

I
avec le

<(
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ondes transversales et celles des ondes longitudinales apparaissent 
comme des processus quantiques indépendants. C’est là un aspect du 
fait (bien connu de ceux qui ont étudié le principe de correspondance) 
que la théorie classique lie ensemble des processus que la théorie 
quantique considère comme indépendants.

Les potentiels a peuvent d’ailleurs s’écrire sous la forme

A-= A<r~f-Ai= -L*- e-*'Wp—i'n P)n) eikct-y
4Jt r v / 4jcr ■

v = Vtr + v,= O h - JL e-ikr{n P) eltct,

et l’émission des ondes transversales et longitudinales caractérisées 
respectivement par les potentiels Atr, Vtr et A/, V/ doivent être des 
processus quantiques indépendants. L’onde dipolaire lumineuse émise 
lors d’une transition quantique du dipôle, onde qui emporte le moment

d’impulsion ± ~ perdu par le dipôle, est donc caractérisée par les

potentiels A£, et V!r—o et ceci paraît justifier le point de vue de la 
Mécanique ondulatoire du photon.

Pour compléter le calcul des grandeurs relatives à l’onde dipolaire 
en Mécanique ondulatoire du photon, notons que l’on obtient, quel que 
soit le choix a ou h des potentiels

(52) f=^i{[A‘H] 

:*>

V*E ïJ ■+■ conj.

comme on pouvait s’y attendre, puis

T kkz I I >■}(53) eu = - ( A* K) ■+- conj. =---------s- i a I2 cosô = o 1.
o c 16 jt2r2 1 1 1 1

La dernière égalité est en accord (pour e = c) avec la formule

<j 4 — } cr | — valable pour l’onde plane, ce qui s’explique si l’on remarque

qu’à grande distance de l’origine l’onde dipolaire est assimilable à une 
onde plane.

5. Remarque sur le spin du photon. —• M. À. Kastîer (*.) a montré 
que la lumière émise perpendiculairement au champ par. une source

l1) Journ. de Phys., sér. VII, t. II, ig3i, p. 159-16/}.
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placée dans un champ magnétique uniforme peut être absorbée par une 
autre source placée dans un champ magnétique parallèle, mais de sens 
opposé : il en tirait la conclusion que le photon n’a pas de spin. Celle 
conclusion serait valable si l’on avait le droit de se représenter le spin 
du photon comme une rotation interne d’un petit objet presque ponctuel. 
Mais cette représentation n’est pas adtnissible. Pour le photon comme 
pour l’électron de Dirac, le spin doit être défini plus abstraitement en 
introduisant les opérateurs de spin, les valeurs possibles des compo 
santes et leurs probabilités respectives. De plus, on doit tenir compte du 
fait que la conservation du moment d’impulsion est toujours défini par 
rapport à un point et porte toujours sur la somme du moment orbital et 
du.spin. Si l’on tient compte de ces remarques, on voit que les intéres 
santes expériences de M. Kastler prouvent non point la non-existence du 
spin du photon, mais seulement l’impossibilité d’en conserver la 
représentation grossière par la rotation interne d’un corpuscule.



DEUXIÈME PARTIE.
THÉORIES SUPERQUANTIFIÉES.

CHAPITRE VII.
THÉORIE DE LA SECONDE QUANTIFICATION.

1. Bases de la théorie. — La théorie de la seconde quantification 
constitue une méthode pour traiter dans le cadre de l’espace ordinaire 
à trois dimensions les problèmes où interviennent des ensembles de 
particules de même nature physique.

On sait que pour développer la dynamique des ensembles de parti 
cules en interaction, la Mécanique ondulatoire a dû envisager une pro 
pagation d’ondes dans un espace, de configuration à 3N dimensions, 
N étant le nombre des particules de l’ensemble. De plus, quand on a 
affaire à des particules de même nature physique, on est amené, pour 
être en accord avec l’expérience, à ne conserver qu’une partie des 
solutions possibles de l’équation d’ondes de l’espace de configuration, 
savoir pour certaines catégories de particules (photons, mésons, 
particules a, certains noyaux, etc.) les solutions à caractère symétrique, 
c’est-à-dire telles qu'elles ne sont pas modifiées quand on permute 
le rôle de deux particulès, et pour certaines autres catégories de parti 
cules (électrons, protons, neutrons, certains noyaux, etc.) les solutions 
à caractère antisymétrique, c’est-à-dire telles qu’elles changent de signe 
pour toute permutation du rôle des deux particules. On peut démontrer 
que les particules de la seconde espèce sont soumises au principe 
d’exclusion de Pauli et suivent la statistique de Fermi-Dirac tandis 
que celles de la première espèce échappent au principe de Pauli et 
suivent la statistique de Bose-Einstein. De plus, l’expérience prouve

hque les particules de la première espèce ont un spin de la forme n —
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(n entier) et celies de la seconde espèce un spin de la forme

fait d’un intérêt capital que l’on parvient à interpréter en tenant compte
de la nature simple ou complexe des particules et qui j.ue un rôle 
fondamental en théorie du Noyau (*).

Ainsi, la Mécanique ondulatoire des systèmes de particules de même
nature ne peut représenter l’évolution d’un tel système qu’en se plaçant
dans un espace de configuration à caractère abstrait et en introduisant, 
a priori, des règles qui limitent le choix des fonctions d’onde suivant 
la nature des particules.

La méthode de la seconde quantifier.tion cherche, au contraire, à 
représenter l’évolution d’un système de particules de môme nature dans 
le cadre de l’espace physique à trois dimensions, mais, pour y parvenir, 
elle est obligée d'attribuer à la fonction 'F le caractère d’un opérateur, 
reperdant ainsi au point de vue intuitif du côté de la fonction d’onde ce 
qu’elle gagne du côté de l’espace. Elle se développe d’ailleurs diffé 
remment suivant qu’il s’agit de particules obéissant ou n’obéissant pas 
a,u principe de Pauli. Comme nous nous occupons ici des particules de 
spin r et spécialement des pilotons, nous fixerons surtout notre attention 
surla forme de la seconde quantification qui est applicable aux particules 
à état symétrique échappant au principe d'exclusion.

2. Caractère complémentaire des amplitudes et des phases quand 
on représente un ensemble de particules do môme nature dans l’espace 
physique à trois dimensions. - Nous allons commencer l’exposé de 
la seconde quantification par do très importantes considérations sur 
la représentation d’un ensemble de N particules dans le cadre de 
l’espace à trois dimensions.

Si nous cherchons à représenter un tel ensemble par une onde <F 
dans l’espace ordinaire, il sera naturel de normer cette onde *F en
posant

ot de supposer que, si l’on a

(!) Sur toutes ces questions, on pourra consulter le livre de l’auteur : De La Mécanique 
ondulatoire à la théorie du Noyau, 1, Chap. II, III et IV, Hermann, Paris, ip43.
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les ej),- étant les fonctions propres d’un opérateur A, le nombre probable 
des particules pour lesquelles une détermination de la grandeur A

donnera A = a,- sera donné par ] a |2. L’on aura donc c; |a = N.

Considérons maintenant deux grandeurs observables A et B dont 
les valeurs propres et les fonctions propres sont respectivement a,, cp,- 
et P*, £*• Le système des cp; et celui des forment chacun un système
complet de fonctions orlhonormales et le passage de l’un à l’autre est
l’analogue dans l’espace fonctionnel d’un changement de coordonnées 
orthogonales dans l’espace ordinaire.

On a donc des formules de transformation du type

(3)

où les Skj sorit les éléments d’une matrice s orthogonale du domaine 
complexe, c’est-à-dire unitaire. Si une fonction se développe suivant 
les <pi sous la forme

(4)

on aura ainsi

(5)
k k

avec

(6)

et cette formule donne l’expression des coefficients du développement 
du W suivant les en fonction des coefficients du développement selon 
les <p,-. On vérifie aisément que la condition (i) de normalisation imposée 
au W entraine

(7)
k

Ceci posé, soit un ensemble de N particules de même nature sans 
interactions mutuelles. Nous voulons représenter cet ensemble par 
une fonction d’onde W(a?, y, z, t) normée par (i).

A l’instant initial, l’onde V, qui représente donc un nuage de 
particules, occupe une certaine région limitée R de l’espace à trois 
dimensions et se déplace dans une certaine direction. Nous supposons

LOUIS DB BROOLIB.
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que ce nuage arrive sur un dispositif D qui permet d’attribuer, par 
la constatation d’un phénomène observable, une valeur bien déterminée 
à la grandeur B attachée à une particule. Le dispositif D permettra donc 
de dire que, pour chaque valeur propre (3* de B, il y a des N parti 
cules pour lesquelles B aura la valeur (3/,.

Supposons encore que sur le trajet entre R et D puisse être placé 
un dispositif D' permettant d’assigner une valéur déterminée à une 
autre grandeur A attachée à chaque particule, valeur qui sera néces 
sairement l’une des valeurs propres a* de l’opérateur A. Nous nous 
proposons d’évaluer le nombre des particules qui, après passage 
à travers le dispositif D, posséderont certainement leur grandeur B 
égale à (3*, sachant que l’onde V à l’état initial où elle occupe la région R 
a la forme

(8) y, z, t) =’̂ ciSi='^suciXk ='Si(h-/y,
k

les a et dk vérifiant la relation (7).

D' D
n

LJ LJ
Mesure A Mesure B
Fi". t.

Nous allons maintenant distinguer deux cas.

i° Le dispositif D' n’est pas interposé sur le trajet R->D.
En étendant à l’onde W normée par (1) les principes généraux de

la Mécanique ondulatoire, on doit admettre que le nombre prcbable
des particules qui, après action sur D, posséderont leur grandeur B 
■égale à fi* est donné par

(9)

ce qui donne 'S'* Jœti n*-.-. N comme il se doit.
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2° Le dispositif D' est interposé entre R et D : il laisse passer toutes 
les particules se dirigeant vers D, mais permet d'assigner à nl d’entre 
elles la valeur a, pour la grandeur A, à n2 d’entre elles la valeur a2, etc. 
On doit alors avoir «, == | c,- |‘J et les m particules pour lesquelles opsait, 
après leur passage à travers D', que A est égale à a; auront entre D'et D 
une onde W se réduisant à C;cp,-. Le nombre de ces particules qui, lors de 
leur action sur D, se révèlent comme ayant leur grandeur B égale à (3* 
s’obtient en remarquant que, leur onde étant

( ■ O ) V = Ci <f, = 2 SU Ci Xk,

h

ce nombre doit être égal à nn= |s/,;c,- j2. Le nombre total probable nu 
des N particules incidentes qui, après passage dans D, auront leur 
grandeur B égale à (3/, est donc

(il) /lk =2 «U- =^| SkiCi [2=]/^l Ski !21 Ci [2,

i i i

et l’on aura encore

o-o ^'ci 1*2*Hi Ct Ct i2"
k i k i k

parce que s est une matrice unitaire (% = sf).
Voici maintenant le point essentiel : il existe une différence fonda 

mentale entre les résultats obtenus dans les cas i° et 2°. En efïet, 
chaque ct est une grandeur complexe qu’on peut donc écrire | ct-1 „i0.

0; étant l’argument de c; Or la grandeur 

dépend des arguments des c, car elle vaut

S/,i Ci de la formule (9)

(i3)
‘~Al

\ sa r- fCi r + I Ci | Ski \ ci !
ij

Autrement dit, cette probabilité dépend des différences de phase entre 
les composantes du développement du W suivant les fonctions propres 
de A. Il y a alors interférences des probabilités, circonstance capitale 
tout à fait caractéristique de la Mécanique ondulatoire. Au contraire, 
dans la formule (11) correspondant au cas 2U, nk ne dépend plus des 
arguments des c,:, mais seulement de leur module : les différences de 
phase entre les composantes du développement du ’F suivant les fonctions
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propres de A n’interviennent plus et il n’y a plus d’interférences des' 
probabilités.

Or, ce qui distingue physiquement les cas i° et2°, c’est l’intervention 
dans le second cas du> dispositif D' permettant d’assigner à A une valeur 
bien déterminée et, par suite, de répartir les N particules incidentes 
en groupes correspondant aux diverses valeurs possibles de A. Nous 
parvenons ainsi à la conclusion capitale suivante : quand il se produit 
un phénomène observable permettant de répartir les N particules 
incidentes entre les divers états propres correspondant à une même 
grandeur A, les relations de phase entre les composantes du dévelop 
pement du V suivant les fonctions propres de A se trouvent par là 
même complètement' effacées. La connaissance des |c;|2 est donc 
incompatible avec celle des 0,- : quand on cherche à représenter, un 
ensemble de N particules de même nature par une onde W dans l’espacé 
physique à trois dimensions, l’amplitude et la phase d’une même 
composante spectrale du W sont donc des grandeurs complémentaires 
au sens de Bohr et, suivant les idées générales de la Mécanique ondu 
latoire, on doit représenter ces grandeurs par des opérateurs qui ne 
commutent pas. C’est ce que nous ferons plus loin.

Remarquons que les considérations qui précèdent s’appliquent 
seulement aux particules non soumises au principe de Pauli puisque 
nous avons supposé qu’il pouvait y avoir un nombre quelconque de 
particules par état.

Notons aussi que les raisonnements développés plus haut se rattachent 
étroitement à l’idée précisée tout d’abord par M. von Neuipann suivant 
laquelle la mesure d’une grandeur A a pour effet de transformer le cas 
pur représenté par la fonction d’onde V initiale en un mélange de 
cas purs (4).

3. La seconde quantification pour un ensemble de particules à états 
symétriques (Dirac). — Dans notre représentation d’un ensemble 
de N particules par une seule fonction d’onde W(a?, y, -, t) normée 
par (i), nous avons admis implicitement qu’il pouvait y avoir un nombre 
entier quelconque ni de particules dans chaque état <p£. Nous savons 
qu’une telle hypothèse n’est valable que pour les particules à états 
symétriques suivant la statistique de Bose-Einstein. Nous allons donc 
pour l’instant nous borner à considérer ce genre de particules. Nous (*)

(*) Voir Ba u k r  et Lo n d o n , La théorie de l’observation en Mécanique quantique 
(Act. scientifiques, 775, Hermann, ig3g).
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supposerons de plus que nous nous intéressons seulement à la mesure 
de la grandeur énergie et par suite que nous développons toujours 
la fonction d’onde 'F suivant les fonctions propres de l’opérateur hamil 
tonien H, opérateur défini pour une particule considéréè isolément.

Soit donc un ensemble de N particules indépendantes obéissant à 
la statistique de Bose. Si W(a?, y, z,. t) représente cet ensemble dans 
l’espace à trois dimensions, on écrira le développement de cette fonction 
d’onde suivant les fonctions propres orthonormales de l’opérateur 
hamiltonien sous la forme

04) =2c<II’i>

t

formule où nous supposons que chaque W; contient le facteur expo-

nentiel e h ' . Les c; sont des constantes complexes qu’on peut écrire 
en mettant en évidence module et argument

(15) cj= | ot | e^i= e^i | ct |.

Nous admettrons que le nombre ni des particules' qu’une mesure de 
l’énergie montrera se trouver dans l’état d’énergie £,- est

(16) | c, |! — e(* cj= Cfcf.

Dans les formules (i4) et (16), comme nous l’avons indiqué, l’ordre 
des facteurs est indifférent puisque, jusqu’ici, nous considérons les a 
comme des grandeurs numériques complexes ordinaires. Nous allons 
être amenés maintenant à considérer les Cj et c* comme des opérateurs 
et alors l’ordre des facteurs cessera d’être indifférent. C’est pourquoi 
nous allons convenir de toujours écrire les formules précédentes sous 
la forme

(17) a=efyi\ ct\, iij = c(* C(.

Nous avons montré que les grandeurs m et 0, se comportent comme 
des grandeurs complémentaires au sens de Bohr, puisque la détermi 
nation simultanée des nombres de répartition n; et des phases 0, est 
impossible. Mais il ressort des principes de la Mécanique ondulatoire 
que, quand deux grandeurs sont complémentaires (comme le sont deux 
grandeurs canoniquement conjuguées pi et Çi)t si l’une est considérée 
comme une grandeur numérique, l’autre doit être regardée comme
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un opérateur égal, à un facteur près, à l’opérateur dérivation par 
rapport à la première grandeur. Ainsi qi el pi étant l’une des coor 
données et le moment de Lagrange conjugué, si l’on considère qi comme

une variable numérique, pi doit être assimilé à l’opérateur — — ■

L’on peüt d’ailleurs développer aussi les formules de la Mécanique 
ondulatoire en considérant pi comme une variable numérique et en

assimilant qi à l’opérateur — -~

Nous sommes ainsi amenés, si nous considérons les «; comme des 

variables numériques,, à assimiler 9,- à l’opérateur ~ multiplié par 

un facteur constant que nous choisirons égal à^-> ce choix devant être

justifié par l’exactitude de ses conséquences ('). Nous supposons donc 
ici qu’cz priori ni est une variable continue par rapport à laquelle on
peut définir l’opérateur de dérivation ^ : il nous restera à montrer

qu’en fait les variables ni ne peuvent prendre, conformément à leur 
sens physique, que des valeurs quantifiées entières. Avec l’ordre des 
facteurs adopté en (17), nous poserons

à
(18) ct = c<)"iv'«1-.

Comme c,* = | c; |, la connaissance simultanée de c,: et de c,* équi 
vaudrait à celle de ni et de 0,, ce qui est impossible. On en conclut 
que Ci et c* représentent des grandeurs complémentaires dont la connais 
sance simultanée exacte est impossible : donc c* doit, lui aussi, être 
transformé en un opérateur qui ne doit pas commuter avec l’opéra 
teur (18). Comme nous devons avoir nj—cjci et qu’il est naturel 
d’admettre la relation

__ _d_
(19) e ôn'eôni — 1,

(1 ) Remarquons que le fait de poser { 8j)op = j entraîne la relation de commutation

[6,-, n>] = ’7,

et par suite la relation d’incertitude
AO» i,

qui exprirtie l’impossibilité de connaître simultanément la phase d’une onde monochroma 
tique et le nombre des particules qui lui sont associées ( Voir la suite de la note page io3).
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nous sommes amenés à poser

(20) c* = ÿ nte
d

diu

Il est extrêmement important de noter qu’une fois transformés en 
opérateur par les définitions (18) et (20), les symboles c; etc* ne repré 
sentent plus des quantités conjuguées au sens usuel du mot (*).

Une des caractéristiques essentielles de deux grandeurs complémen 
taires, c’est que le commutateur des opérateurs correspondants n’est 
pas nul, ce fait traduisant dans le formalisme de la nouvelle Mécanique 
l’impossibilité de mesurer simultanément avec précision les deux 
grandeurs. Ici nous devons donc avoir popr les opérateurs c,- et c*

(21) [c*, C>] = C* Ci— CiC; ^ O.

Pour voir, s’il en est ainsi avec (18) et (20), nous devons préciser
^ à

la définition des opérateurs e d'n en posant

(22)
0

e <>".•= i=h d_
Ôlli

1 à1 1 ./)'• I <)P

c’est-à-dire en nous servant du développement usuel de ex. A.vee 
la définition (22) on vérifie aisément que la relation (19) est satisfaite.

Considérons alors une fonction continue et indéfiniment déri 
vable y(ni, n2> . • .) des variables numériques n,. Nous aurons

(23) e ôn‘e(nl, n«,
1) 1 à2

ànt 2 ! ànf

■ {±i)r
p ! <)nPt

....]

Or la formule de Taylor appliquée à la fonction <p nous donne

(24) . . ., «,-h  ort/, ...,)= cp(nt,
« >)<f àn? i)‘l --1- on,- h -----r -t-t>)n i • > ! àn- .H------, Snf

à/' 9 
i)nP

où les dérivées au second membre sont prises pour les valeurs 
nt, . . ., ni, .... des variables. En faisant successivement dans (24)

(‘) Cependant c* et c% sont des opérateurs adjoints dans l’espace des n, d’où résulte 
que c* -t- c* est liermiticn dans cet espace.
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1 et irii — — 1, on obtient

: ±.
(25)

| eàa‘y(nu
i d

..., nt, ...,) = s(«i, ..

( e ■ • nh ...,)= ?(«1, .. ., n,— i, .
à

L’opérateur eàn‘ appliqué à une fonction 9 d :s variables n,- a donc pour 
effet d’augmenter d’une unité la valeur de 'argument dans l’expres-

_à_
sion de 9, tandis que l’opérateur e àn‘ a, au contraire, pour effet de 
diminuer cette valeur d’une unité.

Formons maintenant le commutateur de c* et de c; ; nous obtenons

à __ d_
(26) [c;, C(] = nt— eàn‘nte dni.

Appliquons l’opérateur (26) à une fonction 9 des /i;; il vient

d __ d_
(27) (c*ct—cic*)f(nu ...,) = «<?— edn‘n,e ?(«i, ...; n,, ...,)

car

(28)
d __ d_

e4n‘n,e d».ç(ni>
à

= .... ...,)

On peut donc écrire l’égalité opératorielle

(29) [c;,cij=~i.

Comme nous n’avons aucune raison de supposer que rii et ô* pour t k 
ne soient pas simultanément mesurables, nous devons penser que c,- 
et cl commutent et poser

(30) [c;,4] = o (iVl:).

Les règles de commutation des opérateurs c,- ei c* peuvent donc se 
résumer par la formule

(31) [<, c*] = — 8,*.

Nous y ajouterons les régies suivantes dont la vérification est aisée :

(32) I c'n C*J = o, [ch c*] = o,



et nous aurons ainsi obtenu l’ensemble des règles de commutation pour 
la seconde quantification des particules à états symétriques (').
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4. Autre manière de trouver les règles de commutation des c,. — 
Nous allons maintenant développer une autre manière, très importante 
par ses conséquences, de retrouver les règles précédentes.

Partons de l’idée que si, dans une théorie non quantifiée, />,- est la 
grandeur canoniquement conjuguée de qi, la quantification consiste 
à remplacer/>, et qi pour des opérateurs tels que

(33) [pt, qk]^ptqt — qkpi = —
1711

Il suffira alors de montrer qu’en Mécanique ondulatoire non super 

quantifiée, les variables -—j ci et a doivent être considérées comme

canoniquement conjuguées pour voir que la seconde quantification 
doit consister à remplacer les nombres c* et a par des opérateurs tels 
que

{34) -c, Ck Cf
I ‘ «

h R

formule équivalente à l’équation (3i).

(‘) On dit d’une façon générale qu’un opérateur A+ est l'adjoint d’un opérateur A 
dans un domaine D si l’on a

rfr,

/et g étant deux fonctions continues et uniformes dans D et nulles aux limites de D. 
Cette définition entraîne que la condition nécessaire et suffisante pour qu’un opérateur 
soit hermitien est qu’il soit son propre adjoint, c’est-à-dire que A+= A.

Avec les définitions ( 18) et (20) de (Ci)„p et de (cf )op, on trouve aisément

l'/*( «i, ... ) ( Ci )oPg( «i, n,, ...) dn,, dn», ...

=J'g(n,, n-,, ... ) (c/ ).,/'(«!, n2, ... ) dn,, dn., ...,

l’intégrale étant étendue à tout l’espace des h et / et g étant des fonctions uniformes et 
continues des n s’annulant à l’infini. On a donc

(Ci* )„p= {C,)+p,

d’où l’emploi par beaucoup d’auteurs de la notation c(+ au lieu de c(* en seconde 
quantification.

Gomme (c*)op (Ci)„p, l’opérateur c, n’est pas hermitien et ne correspond donc pas à une

observable au sens de M. Dirac. Ce qui.est mesurable, c’est n. = c* c, et 0, = -A log(cic*_1).
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r» *Pour prouver que c( et Ci sont canoniquement conjuguées, nous
devons rappeler brièvement ce qu’on nomme, en Mécanique ondulatoire 
non superquanlifiée, la méthode de variation des constantes.

Soit H,0> l’opérateur hamiltonien d’un système qui n’est soumis à 
aucune action extérieure tel que l’ensemble de nos particules indépen 
dantes. Cet hamiltonien admet des valeurs propres . . ., E,;, . . ., et 
des fonctions propres fi1"1,01, . . ., 'E[0), . . ., et l’équation d’onde s’écrit

(35)
h

2 ~ i <)t
II"’)'!'.

La fonction d’onde VL est une solution de cette équation qu’on peut 
développer sous la forme
(36) .V=2ct«)\lW,

les c'/° étant des constantes complexes indépendantes du temps.
Supposons maintenant qu’à partir d’une époque t„, on soumette le 

système à l’action d’un champ extérieur dérivant du potentiel 
V(ÿi, rhi ■ • 0- L’équation des ondes deviendra

(37) ^ J =H"!<I- + V(0'1-,

où 'F pourra toujours à chaque instant se développer suivant le système 
des fonctions propres VF;01 de l’hamiltonien non perturbé H(0). Seules 
ment maintenant, sous l’action du potentiel perturbateur V(t), les coef 
ficients du développement du 'F sont variables avec le temps et l’on 
aura
(38) a -^>\y .

En substituant dans (3}) et en se souvenant que les fi’;01 sont solu 
tions de l’équation (33), on trouve

(3g)
h V i)ci 

•> - i <)t

Multiplions 'FJ et intégrons dans D, domaine de variation des 
variables du problème : il vient, en tenant compte des conditions 
d’orthonormalité des 'F;01, les équations de variation des constantes de 
Dirac
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avec
(40 VW( t) = f 'fy>* V( O vrço> d-,

est donc l’élément d’indices ji de la matrice engendrée par
l’opérateur Y (t) dans le système des fonctions propres de H(0). Si l’on
suppose connues les valeurs initiales Cj(t0) = clV des cy, les équa 
tions (41) permettent de suivre les variations des cj(t) au cours du 
temps sous l’action du potentiel perturbateur V(t).

Il importe pour nous de remarquer que la théorie précédente 
s’applique au cas du photon, bien que nous ayons défini l’hamiltonien 
du photon par la formule

avec l’opérateur ^ au premier membre. Nous savons, en effet,

que pour le photon les fonctions propres de l’énergie, qui sont les ondes 
planes monochromatiques, doivent être normées par la relation

(43)
d

et que l’on vérifie aisément pour i pé j la relation

Les calculs précédents sont encore valables, Y (t) étant le terme que 
les interactions avec la matière introduisent en supplément dans 
l’hamiltonien du photon.

En prenant l’équation conjuguée de (4o) et en tenant compte de 
l’hermiticité de la matrice Vt°>, nous obtenons

Introduisons maintenant la fonction bilinéaire suivante des c,- et 
des c-

(46) 3C(Cl, .... ch ...)=Vc;(0yÿ(0cy(0.

Les équations (4o) et (45) peuvent s’écrire
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à condition de poser
(48) c’j{t)= ±-.c*j(t).

Les équations (47) ont la même forme que les équations canoniques 
classiques de Hamilton

(49)
dqj _ dH dp/   dH
~dt àpj* ~dt dqj

Nous pouvons donc bien considérer c] comme le moment conjugué

de Ci, la fonction déjouant le rôle de fonction hamiltonienne. Dès lors, 
comme nous l’avons remarqué, nous sommes ramenés aux règles de 
commutation des ct- et des c\ trouvées au paragraphe précédent.

a. Équation de propagation dans l’espace des n. Extension du forma 
lisme de fia Mécanique ondulatoire. — Pour passer de la Mécanique 
classique à la Mécanique ondulatoire non superquantifiée, on remplace 
les équations canoniques (49) par l’équation de propagation

h dW(qu ..., gu, t)
2 jr i dt

/ h d= H^1,..., qk,. h d 
J. -K i dqu ’

la fonction hamiltonienne H(^t, . . ., qk, . . ., . . ., pk, . . ., t) de la
Mécanique classique ayant été, comme il est bien connu, transformé en 
opérateur hamiltonien par la substitution à chaque pu de l’opéra 
teur — h d 

aiti dqu
De même, pour opérer le passage de la Mécanique oudulatoire non 

.superquantifiée à la Mécanique ondulatoire superquanlifiée, il est tout 
indiqué de remplacer les équations canoniques

(47)
de j _ dX de)___ dX
~dt ~ de) ’ ~t de j

obtenues plus haut dans la théorie non superquantifiée par l’équation 
de propagation suivante définie dans l’espace des n

(48)
h rfR(n,. ..., nu....... t)

2 j: t dt = 3Cop R(/j,.--- nk- . , >)

avec

Xop = Vÿ'( t ) {c- )<ti, ( cj'top,
V

(49)
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les (ct*)op et (Cy)op étant définies par les équations (18) et (20). L’opé 
rateur #6()|1 est donc obtenu en substituant dans l’expression non super 
quantifiée de la fonction hamiltonienne (46) aux grandeurs numé 
riques Ck et c*; les opérateurs correspondants définis dans l’espace des n 
par(18) et (20).

La fonction R(ra4, . . ., t) est la fonction d’onde dans l’espace des n : 
en raison du rôle qu’elle va jouer, nous lui donnerons le nom de fonc 
tion de répartition. Nous la supposerons normée par la formule

(5o) K*(n,, ..., «)RO,> • • - , t) = 1,
n

où^est une sommation étendue à toutes les valeurs des n* et repré-
n

sentant une intégration dans l’espace des n. L’hôrmiticité de l’opéra 
teur (49) assure d’ailleurs, comme on le vérifie aisément, la permanence 
de la condition de normalisatiou (5o), car on tire de (48)

<5.) â2RMi-°-
n

Ayant obtenu ainsi une équation de propagation et une fonction d’onde 
dans l’espace des n, rien ne nous empêche de transposer à cet espace 
tout le formalisme de la Mécanique ondulatoire. En particulier, l’expres 
sion R*(nlt . . ., t). R(«i, . . ., t) = | R(«i, . . ., t) ]-’ nous donnera la 
probabilité pour qu’il y ait «i particules dans l’état Et, n-, dans 
l’état E2, .... Nous verrons tout à l’heure que, conformément à l’idée 
même de particule, les nombres «/, pour lesquels | R |2 est différenl 
de zéro sont toujours des nombres entiers, ce que nous admettrons dès 
maintenant

Comme en Mécanique ondulatoire ordinaire, on peut définir le carac 
tère hermitien d’un opérateur dans l’espace des n et admettre qu’à loule 
grandeur mesurable de l’espace des n correspond un opérateur linéaire 
et hermitien dans cet espace. On définira les valeurs propres et les 
fonctions propres d’un tel opérateur A par une équation aux valeurs 
propres de la forme
(à2) A?i(nt, • • n-k, ...')= . .., /t*. . . .),

les yi formant dans l’espace des n un système complet de fonctions 
orthonormales telles que

'.)3
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à condition de poser

(48) c>(0=

Les équations (47) ont la même forme que les équations canoniques 
classiques de Hamilton

(49)
dqj   dH dp/   àH
~dt àp/' ~dt àq/

Nous pouvons donc bien considérer comme le moment conjugué

de Ci, la fonction ££jouant le rôle de fonction hamiltonienne. Dès lors, 
comme nous l’avons remarqué, nous sommes ramenés aux règles de 
commutation des c,- et des c\ trouvées au paragraphe précédent.

5. Équation de propagation dans l’espace des n. Extension du forma 
lisme de (la Mécanique ondulatoire. — Pour passer de la Mécanique 
classique à la Mécanique ondulatoire non superquanlifiée, on remplace 
les équations canoniques (49) par l’équation de propagation

(5o) h àyV(q 1, gu, Q
2 ic i àt

u( h <> h à 
2icf àqu T

la fonction hamiltonienne H(ÿt, . . ., qt;, .. ., /»*, . . ., />*, . . ., t) de la 
Mécanique classique ayant été, comme il est bien connu, transformé en 
opérateur hamiltonien par la substitution à chaque pu de l’opéra 
teur — h à 

2.x i àqt
De môme, pour opérer le passage de la Mécanique ondulatoire non 

.superquantifiée à la Mécanique ondulatoire superquanlifiée, il est tout 
indiqué de remplacer les équations canoniques

(47)
de/ _ àdC de’/ _ àX
~dt ~ àc'j ’ ~t àc/

obtenues plus haut dans la théorie non superquantifiée par l’équation 
de propagation suivante définie dans l’espace des n

(48)
h dR( , n/............ t)

2 xi àt — 3C()p H ( n 1. .... n/. . . ., t )

avec

1 = VfJ’ ( t ) ( J„|, ( Cj \||P, 
Ü

(49)
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les (c-)op et (c;)op étant définies par les équations (18) et (20). L’opé 
rateur est donc obtenu en substituant dans l’expression non super 
quantifiée de la fonction hamiltonienne (46) aux grandeurs numé 
riques c* et c*,. les opérateurs correspondants définis dans l’espace des n 
par (18) et (20).

La fonction R(«,, ..., t) est la fonction d’onde dans l’espace des n : 
en raison du rôle qu’elle va jouer, nous lui donnerons le nom de fonc 
tion de répartition. Nous la supposerons normée par la formule

(5o) ^?R*(n,, QRQi, t) = 1,
H

où^est une sommation étendue à toutes les valeurs des n* et repré-
n

sentant une intégration dans l’espace des n. L’hôrmiticité de l’opéra 
teur (49) assure d’ailleurs, comme on le vérifie aisément, la permanence 
de la condition de normalisation (5o), car on tire de (48)

n

A.yant obtenu ainsi une équation de propagation et une fonction d’onde 
dans l’espace des n, rien ne nous empêche de transposer à cet espace 
tout le formalisme de la Mécanique ondulatoire. En particulier, l’expres 
sion R*(«t, . . ., t). R(«t, .. ., t) = | R(«,, .. ., t) |2 nous donnera la 
probabilité pour qu’il y ait «, particules dans l’état E,, n■< dans 
l’état E2, .... Nous verrons tout à l’heure que, conformément à l’idée 
même de particule, les nombres «/, pour lesquels | R |2 est différent 
de zéro sont toujours des nombres entiers, ce que nous admettrons dès 
maintenant

Comme en Mécanique ondulatoire ordinaire, on peut définir le carac 
tère hermitien d’un opérateur dans l’espace des «et admettre qu’à toute 
grandeur mesurable de l’espace des n correspond un opérateur linéaire 
et hermitien dans cet espace. On définira les valeurs propres et les 
fonctions propres d’un tel opérateur A par une équation aux valeurs 
propres de la forme
(àî) ..., »*, ...) = sRi»,, ..., «x-, ...),

les yi formant dans l’espace des n un système complet de fonctions 
orthonormales telles cjue

•j*
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Les a,- seroni les valeurs propres de la grandeur A dans l’espace des n 
et, si la fonction R se développe sous la forme

(54) R(«i, • ■ «*, ■ ■ ■■ t) =^Ci(Oïi("o ),

<)4

suivant le système complet des cp;, la quantité | c, (<) | ’ donnera la proba 
bilité pour qu’une mesure fournisse pour la grandeur A la valeur a; à 
l’instant t. Il en résulte que la valeur moyenne de A a les deux expres 
sions équivalentes

(55) A = 2 “z I Cf t*=2R*(ni’ • ■ OÀR(«i, .... t).

i n

Nous reviendrons plus loin sur la signification et l’importance de ces 
valeurs moyennes.

Nous devons faire remarquer (4) que les opérateurs c/( et c*. ne sont 
pas des opérateurs hermitiens dans l’espace n et, par suite, ne corres 
pondent pas à des grandeurs mesurables, tandis que les opérateurs

(56) c\ck = 'U, à
ànk

sont, au contraire, hermitiens et correspondent à des grandeurs mesu 
rables. On vérifiera aisément ces affirmations en tenant bien compte 
du fait que C/; et c*k ne sont pas des grandeurs conjuguées, mais que 
chacun d’eux est un opérateur réel. On pourra également vérifier que 
l’opérateur c/t- —|— c*k èst hermitien.

Nous noterons encore que l’opérateur 3i défini par (49) peut être 
remplacé par le suivant

(49 ) 3C —[ HW -t- Viy(z)] (c* )up(c/)op,
‘j

H(W étant l’élément de matrice J W(oi*H,°)tE/- dr formé à l’aide de

l’hamiltonien non perturbé HW. En effet, les étant fonctions
propres de H °i, nous avons HW = E; è/j et par suite (49*) ne diffère
de (49) que parla seule adjonction des termesN’E, àjjC* Cy ==^i/t7E/.

<j : _ .
La modification de l’hamiltonien a donc pour seul effet de nous obliger

~ ~ * ^ n F'
à remplacer la fonction R par la fonction Re ‘ / , mais nous savons

(1 ) Voir Noie page 89.
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qu’une fonction d’onde même normée n’étant jamais définie qu’à un fac 
teur complexe de module unité près, cette modification n’a aucune 
importance. Nous nous servirons tantôt de l’hamiltonien (49), tantôt 
de l’hamiltonien (49’), ainsi que des fonctions d’onde correspondantes.

6. La seconde quantification exprime l’existence des particules. —L 'opé 
rateur 3C de la seconde quantification n’est pas comme l’hamiltonien H 
de la Mécanique ondulatoire non superquantifiée un opérateur diflé-

rentiel : il est, en effet, une combinaison bilinéaire des opérateurs e

et e""‘ qui, appliqués à une fonction des n, augmentent ou diminuent 
d’une unité la valeur des variables.

Le second membre de l’équation (48) est donc une combinaison 
linéaire des valeurs de R correspondant à des valeurs des variables n 
différentes d’une unité. Il en résulte que si R(/i1; . . ., , t) n’est
à l’instant t„ différent de zéro que pour les valeurs entières des ra*, il en 
sera ensuite toujours de même. Ce fait nous autorise à supposer que les 
variables /i* évoluent exclusivement dans le domaine des valeurs entières, 
ce qui est en accord avec le sens physique que nous avons attribué à ces 
variables.

Nous pouvons préciser cette idée en la présentant sous une autre 
forme. Nous partirons de la remarque suivante : l’une des propriétés 
essentielles des fonctions d’onde de la Mécanique ondulatoire ordinaire 
est que la grandeur |lL(<7<l0>, qf-, . .., t) j- donne la probabilité 
pour que les grandeurs (/t, . . ., q/;, . . . soient trouvées à l’instant t 
avoir les valeurs q\01, . . ., qf, .... Il paraît donc naturel de supposer, 
comme nous l’avons fait plus haut, que la fonction d’onde dans l’espace 
des n, c’est-à-dire R(/it, . . ., t), jouit de la propriété que la
grandeur ]R(n(1°', . . ., n(f, .... t) j2 donne la probabilité des valeurs 
n'f1, . . ., rif, . . . pour les variables nt, . . ., n,\, ... à l’instant t. La 
fonction R donne à chaque instant la répartition probable des diverses 
particules entre les divers états d’énergie, ce qui justifie le nom de 
fonction de répartition que nous lui avons donné.

Puisque l’on peut supposer que R est constamment nulle dans l’espace 
des «, excepté pour les points de cet espace dont les coordonnées sont 
des nombres entiers, on peut supposer que les seules valeurs des 
variables ayant une probabilité différente de zéro à un instant quel 
conque sont les valeurs entières. Le formalisme de la seconde quantifi 
cation permet, donc bien de traduire le fait que, si l’on détermine le 
nombre des particules du système nui se trouvent dans l’état 'L0 , oul - 1 t ’

'P
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trouve alors uu nombre entier : il traduit donc analytiquement l’exis 
tence des particules, et c’est là son grand intérêt.

On peut démontrer ce fait d’une façon plus rigoureuse par la méthode 
suivante. Comme ni et 0j sont des grandeurs complémentaires, nous 
avons supposé que les n; étaient des grandeurs numériques el nous 
avons remplacé les ©j par les opérateurs

(57) (®i)op
i à 
i i)ni

Mais nous pouvons tout aussi bien laisser à Ô; le caractère d’une gran 
deur numérique et remplacer la variable ni par l’opérateur

Alors une valeur propre nt de cet opérateur sera définie par l’équation

(59) («i)oP=i(0i) = 4 = "i?/-

L’équation (09) admet la solution générale

(60) st(8t) = ce<«;9i.

Comme 0t- est ici un angle de phase, il faut pour que <p*(0j) soit une 
fonction uniforme de 0; de période 2 7r que n] soit un nombre entier. 
L’opérateur (58) admet donc comme valeurs propres l’ensemble des 
nombres entiers. Or ces valeurs propres sont les résultats possibles 
d’une observation fournissant le nombre des N particules de l’ensemble 
qui se trouvent dans l’état ,F;0) : ce nombre est donc toujours entier, 
conformément à la conception même de particule.

La définition (58) conduit d’ailleurs à poser

(6.) (Ci)„p= 4 (c- )„„ = sJ\ ~

l’opérateur 4 ■— étant défini par la condition que son application 

deux fois répétée soit équivalente à 4 Nous trouvons alors

(62) C: Ci = . .n I à
CiC‘. = e'iÆ ai> Cl] =-l,

et nous retrouvons ainsi avec la nouvelle représentation (61) desc,- et c] 
la règle de commutation de ces opérateurs.
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7. Forme explicite de l’équation (48)- Équivalence de la Mécanique 
ondulatoire dans l’espace de configuration et de la théorie de la seconde 
quantification. —■ L’équation d’cvolution (48) peut s’écrire

(63) —. —ltcn,, n2------ - r)=Vv'.l;>(ct)0p(ci)opR(«i, n,, t),
2X1 Ot mmà

ik

avec les définitions (18) et (20) des opérateurs c; et c*.
On vérifie facilement que l’on a

( 64 ) ( C/ )op(cA' )op R( ni • • • ) n/j ■ • • j nk, .... t )
_ ( l/rii(nk-h 1 ) R(n,, — 1, 1, • • •, t 1.

I n/R(nt, ..ni, ..., «/,. . . t),

suivant que i est différent de k ou lui est égal.
Posons donc par convention

(65) R(n,,..n, — i,...,«iH-i)...)T) = R(/ii)...,/i/, ...,/) si i=k.

Avec cette convention, on peut poser

(66) 2dV*“,(Cî)°,,CCit)oi,R('*1» 0

ik

= 2^’ \Znt(nk-hi — Sik) R (ni, • . nt — 1, .. ., n* + 1, . . t),

ik

d’où
(67) 4r o i ,, /)

2X1 l)t

— X'iV v'n/fnt-t-i —8«.) R.( n,, ..., «/—1, .... //,< -+-1. .. ., 11.
ik

Or la Mécanique ondulatoire des ensembles de particules développée 
par la méthode habituelle de l’espace de configuration conduit, quand 
on l’applique à un ensemble de particules de même nature à fondions 
d'onde symétrique, à retrouver exactement l’équation (67) ('). Il y a 
donc équivalence entre la méthode de l’espace de configuration et celle 
de la seconde quantification en ce qui concerne la prévision des réparti 
tions entre les états d’énergie, puisque cette répartition est donnée par 
la fonction R que les deux méthodes définissent finalement par la même 
équation (67).

Il n’en faut cependant nullement conclure qu’il y ait une coïncidence

THÉORIE DE LA SECONDE QUANTIFICATION.

(*) On trouvera le raisonnement complet dans Une nouvelle théorie de la lumière, 
t. I, p. 227 et suiv.

LOUIS DE BROGL1E.
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complète entre les deux méthodes. La théorie de la seconde quantifi 
cation introduit, en effet, un élément nouveau qu’ignorait entièrement la 
Mécanique ondulatoire de l’espace de configuration. Cet élément, c’est 
la phase 0j, élément canoniquement conjugué de n;. Ep seconde quan 
tification, les phases 0; sont des observables au même titre que les n, 
et c’est là l'apport essentiellement nouveau de la seconde quantifi 
cation oour les particules à f onctions d’or le symé.i iques.

8. La fonction d’onde V superquantifiéc et les relations de commu 
tation qui lui sont relatives. — Pour opérer la seconde quantification, 
nous sommes partis du développement de la fonction d’onde T suivant 
les fonctions propres ff-; de l’opérateur H. En transformant les c; en 
opérateurs de l’espace des n, nous n’avons pas modifié le caractère 
des Wj qui restent des fonctions numériques, mais d’après le développe 

ment ff'- on voit qu’en transformant les a en opérateurs, nous
1

transformons aussi le en opérateur ('). Ce V superquantifié satisfait 
à des relations de commutation qui dérivent de celles des c,: et que nous 
allons établir.

Repérons chaque point M(ar, y, z) de l’espace physique à trois dimen 
sions par le rayon vecteur r qui le joint à l’origine des coordonnées et 
désignons par W (r) la valeur de V en M. Ceci posé, nous allons mon 
trer d’abord que, les fonctions propres ff-; de l’énergie formant un sys 
tème orthonormal complet, on a

(68) 2** I *7(r')1r'(r) = S^r_“ r') = S(x — x')h{y — y')h{z — z'),

les 8 étant les fonctions singulières de Dirac. En effet, le caractère 
complet du système des W,- peut s’exprimer de la manière suivante : 
si une fonction/(r) se développe sous la forme

(69) /(r) =2<'T;(r),
t

on a
(70) f f*{T)f{T)dx = f \f{T)\*dz='Sdid\.

J\\ J\) “

C’est la relation de Parseval.

98

(■) L’opérateur ^ Wi {x, y, z, t) (c;),,,, est un opérateur de l’espace n dont l’expression

i
\arie suivant le point x, y, z que. l’on considère dans l’espace physique et le temps t.
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Or les di sont donnés par les formules

(71) rfi= f ^7(r)/(r )ek.
Jw

On doit donc avoir

(72) 2 f ’fi(r)f(r)di f >ft(r')/*(r')r/T'= l /*(r)/{r) rfr,
i ■'» «-'n *^i>

ou encore

(73) f f*dx /'ry,’t7(r')'i'i(r)]/(r')afT'= f f*(i)f(x) d-.

Comme ceci doit être vrai pour toute fonction f(r), il faut avoir

(74)
*/d

(r)

ce qui montre que le crochet est bien égal à ô(r — r')-et justifie la rela 
tion (68).

Utilisant cette relation, il est maintenant facile de trouver les for 
mules de commutation entre les V qui se rapportent à deux lieux diffé 
rents. On a, en effet,

(75) [U'*(r'), W(r)] = [^c^r'),
L t k

=2[cî> c *]v î (p')t *(p),
tk

d’où, d’après les relations de commutation entre les a

(76) ['F*(r'), T(p)] =-2^,i7(r')^(r) = -2’f7(r')‘Fi(r;
ik

et (68) nous donnent la formule chercher

(77) [T*(r'), T(r)]=-S(r-r').

Telle est la formule fondamentale concernant la commutation des 
valeurs du V superquanlifié en deux lieux différents, ces valeurs étant 
considérées comme des opérateurs de l’espace des n. Le symbole M‘ 
représente, en effet, maintenant un opérateur de l’espace des n dont la 
valeur varie suivant le lieu et le temps considérés.

ARCHIVES .
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9. Grandeurs physiques observables et valeurs moyennes dans 
l’espace des n. — Le fait d’avoir transformé les c; et par suite le 'P en 
opérateurs de l’espace des n a pour conséquence que les éléments de 
matrice et les valeurs moyennes deviennent aussi des opérateurs de cet 
espace. Quant aux densités correspondantes, elles deviennent des opé 
rateurs de l’espace des n, variables suivant le lieu de l’espace considéré. 
Toutes ces grandeurs ne peuvent donc plus avoir le caractère de gran 
deurs physiques observables puisque toute grandeur observable doit 
être susceptible d’avoir une valeur numérique, alors qu’un opérateur n’a 
pas de valeur numérique. Pour retrouver des grandeurs physiques 
observables, la théorie de la seconde quantification est amenée à envi 
sager les valeurs moyennes dans Vespace des n des grandeurs que la 
théorie non superquantifiée considérait comme des grandeurs physiques 
observables.

Pour préciser cette idée, considérons un ensemble de particules iden 
tiques dont la fonction de répartition au sens de la seconde quantifica 
tion soit R(«i, ..., £). Si A est une grandeur physique observable 
définie par la théorie non superquantifiée, cette grandeur se trouve 
transformée par la seconde quantification en un opérateur de l’espace 
des n, et ce que l’on doit dès lors considérer comme une grandeur phy 
sique macroscopiquement observable, c’est

(78) OAR(n,, •••, t),
n

la moyenne étant ainsi prise dans l’espace des n. Le signe^ représente,
n

nous l’avons vu, une sommation sur toutes les valeurs entières possibles 
des variables n, de sorte que cette sommation équivaut à une intégration 
dans l’espace des n.

Comme exemple, considérons la grandeur / |W|2g ?t  qui, dans la
*A>

théorie non superquantifiée, représente le nombre JN total des particules 
de l’ensemble considéré. Après la seconde quantification, elle devient

2_,c*i °k ! ^i^kdr, les c\ et Ck étant les opérateurs définis plus haut 
a Jd

dans l’espace des n. En vertu de l’orthogonalité des W,-, ceci se réduit 
d’ailleurs à^c,*C(. Pour retrouver une grandeur observable, il nous

i

faut donc prendre la valeur moyenne de l’opéraleur^c*c; dans l’espace
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des n, soit

(79) 2R*('11’ 02|ci c‘R(n” O =2»/= N,

n i i

en vertu de la normalisation de la fonction de répartition. On retrouve 
bien ainsi la grandeur physique N.

Nous aurons à revenir sur cette question quand nous définirons, en 
Mécanique ondulatoire du photon superquantifiée, les grandeurs 
électromagnétiques comme des valeurs moyennes prises dans l’espace 
des n.

10. La seconde quantification pour les particules à fonction d’onde 
antisymétriques. — On a pu généraliser la méthode de seconde quanti 
fication de diverses façons, notamment en montrant, comme l’a fait 
M. Fock, qu’elle peut se développer en partant de l’expansion du V 
suivant les fonctions propres d’un opérateur hermitien autre que l’opé 
rateur Hamiltonien, c’est-à-dire correspondant à une grandeur mesu 
rable autre que l’énergie. Mais l’extension la plus importante est celle 
qui permet de superquantifier la Mécanique ondulatoire des particules 
à états antisymétriques obéissant à la statistique de Fermi-Dirac.

Pour ce genre de particules, il faut exprimer qu’il ne saurait y avoir 
plus d’une particule par état d’énergie (principe de Pauli). Pour tra 
duire ce fait, MM. Jordan et Wigner ont montré qu’il fallait remplacer 
les relations de commutation des c* et c*k employées jusqu’ici pour les 
particules à états symétriques par les suivantes

(80) [>*, c*]+= S^, \c\, c*k]+= [C(, c*]+= o,

pour tout i et tout /•, avec la définition que voici de Vanticommutateur 
de a et b

( 81 ) f a, b ]+ = ab -+- t>a.

En effet, comme nous posons toujours c*c,= «/, nous aurons ici 

( «•,. ) nf = c* c, x ci Cl=ci(i — ci Ci ) a = ci et — c* c,* c, c/(

mais comme c* c] + c* c] doit être nul d’après (8o), c* c* est nul et il reste 

( 83 ) nf = cf a — m,

d’où l’on conclut «/= o ou «,•= i conformément au principe de Pauli.
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Les relations (80) de Wigner-Jordan conduisent pour le V super 
quantifié aux relations de commutation suivantes :
(84) ['F*(r'), T(r)]+=S(r-r'), [ï'*(r'), V*(r)L- = ['F(r'), T(r)]+=g.

Dans le cas des particules à fonction d’onde symétrique, M. Dirac 
avait obtenu une représentation simple des opérateurs c* et c* à l’aide 
des formules (18) et (20). Il est plus difficile de trouver une représen 
tation des opérateurs obéissant aux relations (80). M. Wigner y est 
cependant parvenu de la façon suivante.

Considérons d’abord les matrices à deux lignes et deux colonnes

(85) d =

On trouve aisément les formules

(86)

On a aussi

0 I , d+ = O O
0 0 I O

d+d
0 0

y dd+ =0 1

dd — d^~ d+ =
0 0 — 0, dd+ d+ d =0 0

— 2 d+ fl = 1 0 O O 1 O
y0 1 0 2 O -- I

1 o 
o o
1 0 ! 
o I

v+ = 1 — 2 d+ d = v.

Si nous opérons la fusion des matrices relatives aux divers étals 
quantifiés, nous obtiendrons des matrices dn telles que
(88) [d+, dn]+— d+dn ■+■ dnd*=i, [o?+ ,«?„]-= [dm, dn ] = [<4„ <*},] = o.

Posons

(89) c„=
1

Pour m ^. n, dm
n—1

et commutent avec J J d’où
1

n — l n—l
(9°)

1 t
d’où

n — I n — i
(91) c;c„-f-c„cj =

«IL-* ^IT*n\ 1
n — l n —1 /n—1

11 \ 1
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De même pour m ;> n, on trouve
m — l n — i

( 92 ) cîn C« -+- Cn t'Tn = 'ttn | | et X d„ | | ; Vl
1 1 

m—i m— i

Or on a

(93)

U— 1 Ml —1

*n a n,vt _ ^,/n i i n

11* Vk (in = XT/ Vk’
l’accent excluant la valeur k — n. D’où

[v,i, dn]+= I.I — 2 d* cl„, dn}^= ldn—i[d'n, dn ]+ d„ = O,.

(94) V/t dn — dn ('/

i —1 Ml —1
et finalement

(o5) c+,c„-+- crictn= (dn dt„ — (tm dn) (•ytjpjv/=o pour n m.
i i

On trouve aussi

(9«)

[c)n> m I - — [dIn, ] 1 ■— Oj [C//ir v] — fdlf). dm ] î — Oj
71 — 1 71—1

[c;, c+j+= [^-»7 °’ '-c'” Cn,}+=
t 1

Toutes les conditions imposées aux c et c* par les relations de Jordan- 
Wigner sont donc bien satisfaites par cette représentation si l’on prend 
pour (c*)„p l’opérateur c+.

Nous n’insisterons pas davantage sur la seconde quantification des 
particules à états antisymétriques dont nous ne nous servirons pas dans 
la suite de cet Ouvrage.

Suite de la Note de la page 86 :
On peut retrouver la relation d’incertitude An. Aç 2^211 par un raisonnement qui la 

rattache à la 4” relation d’incertitude AE.Atr^A. L’incertitude sur la phase est Aç  = 2t t v AI.
Or A t^~, d’où Ao-^ 2 T' [l -. Mais E = n Av, d’où AE = Av An et l’on en tire Aç. Animait. 

1 AI*.AE
AOn pourrait ainsi écrire Aç = Ac avec As^. -— = ------ > d’où encore Acp.An

AP-- A ,- An



CHAPITRE VIII.
APPLICATION DE LA SECONDE QUANTIFICATION 

A LA MÉCANIQUE ONDULATOIRE DU PHOTON.

I. Retour sur la définition des grandeurs maxwelliennes et sur l’état 
d’annihilation. — Nous avons défini précédemment les grandeurs 
maxwelliennes liées à un photon qui se trouve initialement dans un état 
représenté par une certaine fonction d’onde ff- comme étant des densités 
d’éléments de matrice correspondant à la transition de l’étal W à l’état 
d’annihilation *F(0>. Ce point de vue nous a conduits à adopter pour ces 
grandeurs maxwelliennes des expressions de la forme Kff'WFW, où 
F est l’opérateur correspondant à la grandeur envisagée et où K est une 
constante que. afin d’effectuer le raccord nécessaire avec la théorie
classique, nous avons été amenés à choisir égale à ——7=*

4 r. V Ko
Si nous supposons que l’état W initial est formé par une superposi 

tion d’ondes planes monochromatiques normées et indépendanies 'F* 
(chacune définie par son vecteur de propagation k et par son état de 
polarisation, par exemple onde transversale rectilignement polarisée ou 
onde longitudinale), nous poserons

(O U”=2c'!’r'!
k

et chaque grandeur maxwellienne sera de la forme^ KM~1(1 j Fca  fi1'/,,
k

chaque terme de la somme se rapportant à une onde plane monochro 
matique de polarisation définie.

Mais, en réalité, l’état d’annihilation doit être considéré comme un 
réservoir contenant un nombre immense et sensiblement constant na 
de photons. Donc, même lorsqu’on considère, comme nous l’avons fait 
jusqu’à présent, un seul photon dans l’état non annihilé initial, il faut 
cependant toujours tenir compte du nombre immense «„ des photons 
dans l’étal d’annihilation.
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Cette remarque conduit à considérer une fonction d’onde initiale de 
la forme
(2) 'F = c„'F(»)+2c*1Ir*>

k

c’est-à-dire à ajouter à l’expression (i) un terme qui tient compte de 
l’état d’annihilation, puis une fonction d’onde finale de la forme
(3) V=c,0'F«’',

de sorte que les grandeurs maxwelliennes doivent avec nos hypothèses 
avoir la forme
(4) ^cyWK'FT,

k

K' étant une constante à déterminer.
Puisque, même dans le cas d’un seul photon non annihilé initial, 

nous avons toujours affaire à un nombre énorme de photons, il est 
nécessaire d’introduire systématiquement en Mécanique ondulatoire du 
photon la seconde quantification. Comme les photons sont des parti 
cules à états symétriques, nous devons poser

j) _^ d
(5) c0= edn- v/rt0, c*B=\fnae àn°, Ck=eànt^nt, c*k= \fnt e dnK

Seulement c„ et c*0 jouissent d’une propriété particulière en raison de 
la valeur énorme et presque constante du nombre nB des photons dans 
l’état d’annihilation. La variation d’une unité de n0 ne peut, en effet, 
apporter aucune modification sensible de la situation, de sorte que c0 

et c* se réduisent sensiblement à l’opération multiplication par sJn0 et, 
comme *ff(0) est réel, on peut écrire pour les grandeurs maxwelliennes, 
à la place de (4), l’expression approximative

(6) 2V(,,K'^Fc a V*.
k

On voit alors qu’en posant

(7)
h

4 k  *Jn0 fAo

on retombe sur l’expression adoptée antérieurement, ce qui nous 
montre que la constante K précédemment utilisée doit être considérée 
comme le produit d’une constante extrêmement petite K' par le'nombre 
extrêmement grand \JnB.



io6 CHAPITRE VIII.

Dans l’expression^ K'Fl(,|Fc/11T/( des grandeurs maxwelliennes, 
k

figurent maintenant les c/c qui sont devenues des opérateurs de l’espace 
des n. Ces grandeurs Maxwelliennes sont donc devenues, elles aussi, 
des opérateurs de l’espace des n dont la valeur varie d’ailleurs suivant 
le lieu xyz et le temps t, puisque les f* dépendent de ces variables. 
Nous arrivons ainsi à la conception fondamentale de la théorie quan 
tique des champs électromagnétiques suivant laquelle ces champs 
doivent être considérés comme des opérateurs de l’espace des n, fonc 
tions de xyzt. Nous aurons l’occasion d’approfondir plus complètement 
cette concaption nouvelle des grandeurs électromagnétiques : pour 
l’instant, nous allons nous occuper de rechercher quelles sont les rela 
tions de commutation existant entre ces grandeurs conçues comme 
opérateurs dans l’espace des n.

2. Relations de commutation entre les potentiels électromagnétiques 
des ondes planes. — Considérons une onde plane monochromatique de 
polarisation bien définie ayant un vecteur de propagation k et choisis 
sons un système d’axes rectangulaires O' x'y' z’ tel que Oz' ait la 
direction k. Posons comme d’habitude
(8) p = ytkcl krj

En effectuant la normalisation des ondes *P dans un volume e, on 
trouve (') pour l'expression des potentiels (en prenant v pour unité de 
volume) :

a. pour une onde à vibration électrique parallèle à Ox

b. pour une onde à vibration électrique parallèle à O r

(9') Av- = cx-ÿ/-^P: A,= A: = V = o;

c. pour une onde longitudinale

/ »\ * . . / kkc k|/ khc(9) As=cY^P, V = C,-^^^P. \, — A t — '»•

C) Voir Chapitre IV, paragraphe .!.



Les expressions (9) et (g') montrent que pour jf~ 1, 2, ona

y V r 1 * k 1 hc r * T- hc .(10) [A;,, A J,] = J^[cki CA-]S/7'=—

Gomme [cj,, c*] = o pour k'ÿé k, on peut aussi écrire

(11) [A*(k'), Ay.(k)]=-^8//8(k-k').

Le môme mode de raisonnemenl appliqué aux autres expressions (9), 
(9') et (9") nous conduit aisément à l’ensemble des relations de commu 
tation suivantes :

I . fie
l [A,-, (k'), Ay.(k)]=— °i'J’ ®(k — k') (/',/ = I, 2),

I [AJ, (k' ). A;.(k)J = 0 (i'= 1, 2; f— 3, 4 ou inversement),

/ [Aî,(k'), A3’(k )] = T~ry> Æ »(k k'),{12. ) \ I '* ()
I \tcl[Aî,(k'), V(k)] =-rrTï|k|«(k'-k),
I 4 r- «O
(|Vlf‘V(‘)l —
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On voit sur ce tableau que A!, et V ne commutent pas : ceci vient de ce 
que ces grandeurs sont toutes deux liées au môme type d’onde, les ondes 
longitudinales, et dépendent par suite d’une même constante arbitraire.

Les relations de commutation (12) sont valables dans le système 
d’axes rectangulaires O' x1 y1 z' tels que Os' coïncide avec la direction du 
vecteur k de propagation. Cette hypothèse est évidemment trop parti 
culière et pour pouvoir traiter le cas général d’une superposition d’ondes 
planes, nous devons savoir écrire les relations de commutation dans un 
système d’axes rectangulaires quelconques O xyz.

Remplaçons x’ y' z' par x\ x\ x\ et xyz par xif x2, x3.
Prenons trois vecteurs égaux à l’unité sur chacun des trois axes O'a? , 

O'#',, O'x1, et soient 1', 2'et 3' ces vecteurs. Dans le système OtfiiCaaJs, 
les vecteurs i' ont pour composantes atei, a/'^et a,v3 et l’on a la relation 
bien connue
(i3) ^ 8/*,

exprimant que les vecteurs 1', 2' et 3' sont orthogonaux et égaux à 
l’unité.
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Quand on passe du système de référence primé au système de réfé 
rence non primé, les composantes du potentiel vecteur se transforment 
suivant la formule

3
(14) Ai =2 _a, ’i A/- (t = i, 2, 3),

1

tandis que le potentiel scalaire V, composante de temps du quadrivec- 
teur potentiel, reste immuable.

On a
3 3

(15) [A*(k'),A,(k)] = 2*2. . aria,'7[A*(k'), Ay.(k)]
1 1

Or

/ khc \

« 3

S(k'-k).

(16) 2|„.S'V,:=2.//'/«/'y — *3'i«j'/= 8,y— «j->/<«)./.
i 7 1

Donc
(,;) [.V(k'),A.,(k)]-[ 4*%)]*(k-

Mais de A2 = | k |- + A^, on tire

(!»' hc khc hc | k |2
4nA b*k'i 451 AAg ’



et comme
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(19) «3'i*37 | k|2= ctj./1 k I a37 ! k I = kikj,

il vient
(20) [A*(k'), A/(k)]=- ^(s,/+ ^)s(k-k'). 

On trouve de même
3

(21) [A*(k'), V(k)]=^ _«/>/[A? (k'), V(k)]

= -jS7^|k|S(k-k'):
4 A 0

hc
4 r.k% kt S(k — k').

Enfin il est évident que [V'(k'), V(k)] ne change pas par suite du 
changement d’axes.

Finalement, on a donc dans un système d'axes rectangulaires 
quelconques

. f [A*(k'),.V/(k)]=-A(si/+Mi)îtk-k') 2,3),

1 hc(22) \ [A* (k'), V(k)]=-7^rî*,8(k-k')>

(lV(f), V(k)]—

Telles sont les relations fondamentales de commutation entre les compo 
santes du quadrivecteur potentiel pour les ondes planes monochro 
matiques en Mécanique ondulatoire du photon (et plus généralement 
pour la particule de spin i ).

3. Autres relations de commutation entre grandeurs électroma 
gnétiques. — En partant des relations de commutation (22), il est 
facile de former les relations analogues entre une composante de 
potentiel et une composante de champ ou entre deux composantes dé 
champ. En vertu des relations qui lient les champs aux potentiels, les 
amplitudes spectrales E(k) et H(k), s’expriment linéairement en 
fonction des amplitudes spectrales A(k) et V(k), les coefficients de 
proportionnalité étant les quantités ik et t/r,.

Prenons comme exemple les relations de commutation entre les 
composantes de A(k) et celles de E(k), relations qui ont une forme 
très simple. Pour une onde plane, nous avons
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En combinant les relations de commutation (22), on trouve aisément 

(24) [A?(k'), Ëy(k)]=-^S(/-8(k~k'),

relation qui nous servira.

4. Invariance relativiste des relations de commutation (23). — Il est 
essentiel de démontrer que les relations de commutation (22) sont 
invariantes pour une transformation de Lorentz. Pour cela, nous nous 
appuierons sur deux théorèmes préliminaires.

a. La quantité r~ est un invariant relativiste. En effet.
kj.,ky,kz et k étant les composantes d’un vecteur d’espace-temps, le 
numérateur et le dénominateur de l’expression considérée sont inva 
riants pour une simple rotation des axes d’espace : il suffit donc de 
démontrer que cette expression est invariante pour une transformation 
simple de Lorentz comportant seulement un mouvement relatif le long 
de l’axe 0,3. Or, pour une telle transformation, on a

(2J) k’x—k.r. k\ = /y,
k.— _ k — jj/.r
Tr^P’ 1

où (5 = - est le paramètre classique de la transformation de Lorentz. 
On calcule aisément la valeur du déterminant Jacobien

*V, k’,) I jU; _ A'
{ ’ D(*r, ky, ks) - k _ k ’

d’où, par un théorème bien connu de Jacobi, l’on tire
k'

(27) <rk’=jdk

ou
(28) dk dk

= T’
ce qui démontre le théorème.

b. La quantité 4o(k— ’k')=ko(kæ—k'x)o(ky—k'y)è(kz — À'.) est
un invariant relativiste.

En effet, d’après les propriétés de la fonction singulière de Dirac, 
l’intégrale JJJ'ô(k — k') <ik est égale à l’unité dans tous les systèmes 
de référence. Or. celte intégrale peut s’écrire jjj ko(k — k') J- Le



second facteur sous le signe somme est invariant d’après le premier 
théorème : il faut donc que le second le soit aussi, ce qui démontre le 
second théorème.

Du théorème a, nous pouvons déduire le corollaire suivant : Si At, 
A.j, A3) A4 sont les quatre composantes d'un vecteur d’espace-temps 
telles que l’on ait

(29) A/(r, t)= “= jjj Ai(k)e,,fa,_kr)rfk. (f = 1, 2, 3, 4),

les expressions /f A;(k) se transforment comme les composantes d’un 
vecteur d'espace-temps. Pour le voir, il suffit de multiplier et de 
diviser par k l’expression figurant sous le signe somme dans (29).

Ecrivons maintenant sous une forme plus condensée les relations de 
commutation (22) entre les potentiels en nous servant des notations 
d’Univers, c’est-à-dire des coordonnées xly x2, jr3, xA — ict. Le quadri- 
vecteur potentiel d’Univeés et le quadrivecteur de propagation ont 
respectivement pour composantes :

( A, = A.r, A, = Ar. Aj=Az, Ai = iV,
( 3° ) <

( k 1 — Aj = A',-, krs = kz, ki=ik.

a ppl ic a t io n  d e l a  s e c o n d e q u a n t if ic a t io n  a  l a  mé c a n iq u e ONDULATOIRE. III

Les relations de commutation (22) peuvent alors s’écrirenl sous la 
forme condensée

(31 ) [A<4»A*(k('i), AV>Ay(A(’-))j = hc
4 jc  i

k f /. /’ 
kl

^ AV2) S(k('> — k<->).

où i et j peuvent avoir les valeurs 1, 2, 3, 4-
Effectuons maintenant une transformation quelconque de Lorentz. 

Dans l’Univers de Minkowski, cette transformation se traduit sim 
plement par une rotation d’ensemble des axes, c’est-à-dire par 
une transformation orthogonale telle que les composantes de tout 
quadrivecteur F dans le second système de référence soient liées à ses 
composantes dans le premier système par les relations

4
(32) F!-=2j .0"'F(' =1, 2, 3, 4),

1

les o,j satisfaisant à la relation classique
4

1 j3) O/i O/ni ~ ûhn■
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En vertu du théorème a et de son corollaire, les deux termes du 
commutateur (3i) se transforment comme des composantes de vecteur 
et nous avons
(34) [4-r>Ar(kM)), /f'<s>A;„(k'd>)]

4
=y 0,|Om/[AV>A?(k<'>), *l*>Ay(k'*!)].

if1
Si donc nous admettons la validité de (3i) dans le premier système 

de référence, nous trouverons 
(35) [^‘)Ai*(k'(i)); *ï*>Ai,(k'l*))]

hc 
4 jc  s
hc 

4 jc  j

H 2) T

k(t2) 3(k> * >—k(21) 

> 8(k'(>)— k'<21,

la dernière égalité étant obtenue à l’aide du théorème b.
Nous voyons alors que les relations de commutation ont la même 

forme dans le second système que dans le premier, ce qui démontre 
l’invariance de ces relations pour une transformation de Lorentz.

5. Halations de commutation « locales » entre les grandeurs électro 
magnétiques. — Les relations de commutation envisagées jusqu’ici 
sont des relations de commutation spectrales en ce sens qu’elles 
portent sur des coefficients de développement de Fourier. On peut 
aisément en déduire des relations de commutation locales entre les 
grandeurs électromagnétiques relatives aux divers points de l’espace. 
Ces grandeurs se trouvent, en effet, transformées parla seconde quanti 
fication en opérateurs de l’espace des n, fonctions du lieu et du temps 
considérés, et l’on peut rechercher si ces opérateurs commutent ou non.

Pour donner un exemple de ces relations de commutation locales, 
partons de la formule

hc /■ •
(36) [A*(k'), V(k)]=-— I|S(k-k')

(

et utilisons les développements de Fourier de la forme (29). Il vient

(3?) [A*(r, t). V(r, 01 = gj-/*'/«nt[A?(k->, V(k)]eII<*-*>a,-<k'r'n

= ~ 7~TT A f ^e-ik|r-r’' dk4 JJ 4-J 87JJ J
_ >lC __t_ Ce—»R|r—r ) ,7\r

!\r.ik% 8Jt;i àxt J
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Nous savons (') que la dernière intégrale vaut 87O â(r— r'), ce qui 
nous donne

(38) [Af(r'), V(p)] =
hc à 

^nikl Oxi 8(r —r') (1=1,2, 3),

la variable t que nous sous-entendons ayant même valeur dans A* et 
dans V.

On trouve des formules analogues pour les autres composantes de 
potentiel. Sans nous attacher à les écrire, passons aux relations de 
commutation entre les composantes de A et celles de E.

Nous avons

(39) [A*(r')> E/(r)J = f dk'J' <fk[A*(k'), E/(k)],

hc
!\7ll, *„

,i[ik— k')ct—(kr—k'r')]

f dk e-411*1' T) = — Si/ S(r — r').ÏX* J 4 Kl

Ici se présente dans la théorie habituelle (où l’on se place implicitement
dans le cas limite p0=o) une très grave difficulté. En effet, si nous

3
appliquons à la relation (3g) l’opération ^ nous obtenons

(4o) [Ar(r'),divE(r)] = -^. As(r-r').

Or, avec les équations classiques de Maxwell, cette relation est inad 
missible, car, divE étant partout nulle dans le vide, le premier membre 
de (4°) est nul, tandis que le second ne l’est pas.

Nous verrons comment la théorie quanlique des champs s’efforce de 
lever cette difficulté en changeant le sens de la relation divE = o, mais 
le moyen qu’elle emploie et qui nous paraît artificiel est tout à fait 
inutile en Mécanique ondulatoire du photon si l’on admet p0 ^ o. En 
effet, les relations (38) et (4o) nous donnent

(40 [Af(r'), divE(r)] = — *§[A;(r'), V(r)],

et cette relation est bien vérifiée en Mécanique ondulatoire du photon, 
puisque l’on a non pas divE = o, mais divE = —C’est donc 
parce qu’elle pose brutalement p0=o que la théorie quantique des 
champs usuelle se heurte ici à une difficulté. Celle-ci est évitée par la 
Mécanique ondulatoire du photon en posant o et cela si petite que

(‘) Voir Chapitre I, formule (i4).
LOUIS DE BROOLIE.
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soit la massé propre du photon. Il est curieux de constater qu’il y a 
ici une discontinuité, la difficulté en question apparaissant brusquement 
quand on pose o.

Nous donnerons enfin les relations de commutation locale entre les 
composantes de H et de B. Sif, k, l est une certaine permutation paire 
des indices i, 2, 3, on a

(4a) Hf(r)
àk,
àxk

àkk 
àx 1

De (39), on tire alors 

(43) [H*(r'), Ey(r)] = hc ! à . à „ \JTi (^s*/“5ÏISV0(r“r)’

relation classique en théorie quantique des champs. 
Notons enfin la relation facile à vérifier

(44) [Af(r'), H,(r)] = o.

6. Relations d’incertitude pour les champs électromagnétiques. — 
M. Heisenberg a montré, il y a longtemps déjà, comment l’existence 
des pholons conduit à admettre que les champs électromagnétiques 
observables à grande échelle ne sont pas des grandeurs mesurables avec 
précision en un point de l’espace. De là, on peut conclure que les 
grandeurs électromagnétiques doivent, en théorie quanlique, être 
soumises à des relations de commutation.

Considérons avec M. Heisenberg un petit volume âv de l’espace 
physique que, pour préciser, nous imaginerons être un cube d’arêtes il, 
de sorte que ôe = (ô/)3. Supposons que ce volume soit parcouru par 
une onde électromagnétique de longueur d’onde X et que l’on cherche à 
mesurer le champ électrique et le champ magnétique de cette onde à 
l’intérieur de ôv grâce à un dispositif occupant ôe et indiquant la valeur 
moyehne de ces grandeurs dans ôi>. Pour que ces valeurs moyennes 
puissent être différentes de zéro, il faut avoir X ^ dl. D’après la théorie 
électromagnétique, l’énergie et la quantité de mouvement du rayonne 
ment contenu dans ôe seront données par les formules

(45) p(W) 8e - Eî~^ H*Se; p(O) Se = ‘ [E H] 8v •

Si l’on diminue do, on peut rendre ces quantités aussi petites que 
l’on veut et l’on arrive ainsi à une contradiction avec l’idée que la
radiation de fréquence v = ? est formée de photons d’énergie hv = ~



et de quantité de mouvement C’est en somme là la contradiction qui
oppose les conceptions classiques de la Physique du champ à celles de 
la Physique corpusculaire.

Pour une valeur donnée de §1, la plus haute fréquence dont les 
champs sont observables est de l’ordre de v = puisque X doit être 
supérieur à ôf; d’où pour le plus grand quantum correspondant la 
valeur hv= Si l’on veut pouvoir considérer les valeurs moyennes
fournies par les formules de Maxwell sans se trouver en contradiction 
avec la structure corpusculaire de la lumière, il faut donc que les
expressions (45) soient affectées d’incertitudes au moins égales à et 

à y i respectivement. Ceci signifie que les champs E et H (qui sont ici
les champs observables à l’échelle microscopique), ne peuvent, tout 
comme les quantités canoniquement conjuguées p et q en Mécanique 
ondulatoire ordinaire, être mesurées simultanément qu’avec des incer 
titudes AE et AH telles que

Ap( W)8p = ô 4(EAE) + (HAH)-h  I(AE)«-t- I(AH)s]^
[_ 2 2 J Ol

Ap(G) Sv= ^j[EàH] + [4EH] + [AEAH]}^ A. 
v
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Ces inégalités doivent, rester exactes quand E et H tendent vers zéro, 
puisque la structure quantique du rayonnement subsiste, même pour 
une intensité très faible. Les termes indépendants de E et de H doivent 
donc suffire pour assurer les inégalités (36), ce qui donne en partant 
de la deuxième inégalité

(47) AE.r AH, hc hc
— SlSv (8/)*

ou a fortiori,

«8>

et deux autres inégalités obtenues par permutation circulaire. Ces 
relations constituent les relations d’incertitude d’Heisenberg pour les 
champs électromagnétiques.

Si les inégalités (48) sont satisfaites, non seulement la seconde iné 
galité (46), mais aussi la première se trouvent vérifiées. C’est ce dont 
on se rendra compte aisément.
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Conformément aux idées générales de la Mécanique quantique, les 
relations d’incertitude (48) pour les champs nous conduisent à dire 
que la composante du champ électrique dans une certaine direction 
et une composante du champ magnétique au même point dans une 
direction perpendiculaire ne sont pas simultanément mesurables avec 
précision et doivent correspondre à des opérateurs qui ne commutent 
pas. Nous pouvons préciser davantage, car on sait (') que les relations 
d’incertitude

(4g) A

dérivent des relations de commutation
(50) (qp— Pq)ov=-^l-

Aux relations d’incertitude (48) pour les composantes de champs, nous 
pouvons donc nous attendre à voir correspondre la relation de commu 
tation

hv
(51) [(Ej;)op, (Hr)op] = g->

à laquelle on adjoindra naturellement celles qui s’en déduisent par 
permutation circulaire sur x, y, z.

Nous allons voir maintenant que les relations de commutation 
obtenues aux paragraphes précédents conduisent bien à retrouver (5i).

7. Passage des relations de commutation pour les champs microsco 
piques à celles valables pour les champs macroscopiques. — Les consi 
dérations du paragraphe précédent dues à M. Heisenberg portent sur 
les champs observables à l’échelle macroscopique, champs qui sont 
nécessairement des grandeurs réelles. Or, nous avons antérieurement 
défini des champs macroscopiques complexes E et H et nous avons 
admis que les champs macroscopiques réels devaient s’en déduire par 
les relations
(52) EM = E + E*, HW = H -i- H*.

Reprenons le raisonnement d’Heisenberg en considérant une onde 
plane monochromatique de propagation k qui traverse unpetit volume àv 
de l’espace dont les dimensions sont très petites par rapport à la longueur

(‘) Voir, par exemple, Théorie générale des particules à spin, p. 3o.



d’onde X de l’onde. Partons de la formule démontrée précédemment ..
fie

(53) [Af (r1), E/(r')] = —
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dans laquelle les rayons vecteurs r' et r" repéreront les positions M' 
et M" de deux points intérieurs à du. Par hypothèse, le volume du est 
occupé par un dispositif de mesure dont les indications fournissent les 
valeurs -moyennes des champs dans du. En intégrant les formules 
précédentes dans du sur r' et r" et en divisant ensuite par (ou)2, on a

(r<4)

Mais on a

(V>) l tir' f <hr"o(r' — r") = f rfr' = 6c

et, puisque l’on suppose la longueur d’onde beaucoup plus grande que 
les dimensions de du, on aura

(r*6; [A*(r), E,(r)*| = — 1“ 5 OV

r repérant la position d’un certain point pris dans du et les grandeurs 
entre crochets désignant désormais des valeurs moyennes dans du.

Choisissons maintenant l’axe des z dans la direction du vecteur k cl 
plaçons-nous dans le cas limite Maxwellien où l’on a p0 ~ o, k ~ j k |. 
écrivons la formule (56) en y faisant par exemple / = / = ■. 11 vient

<r>7) | A.;.(r), K.,.fr)| = — hc
■\xi

r
S r

Or, on a alors

r>H; ii, =•— ;k\, ; ii; = // a  ;.

Il vient donc

( "O | Il ‘ t r ), K.,.( r;| =
fhr 1
\~ Si

hv
■>. o e

La relation obtenue s’applique aux champs microscopiques complexes. 
A partir de la relation (5c;), si l’on lient compte de la différence entre 
les champs réels et les champs complexes qui introduit uu facteur on
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peut apercevoir l’origine des relations d’incertitude d’Heisenberg 

(60) AE;rAHj^ •

118

8. Introduction des fonctions D et A de MM. Pauli et Heisenberg ('). 
— Nous allons donner aux relations de commutation des grandeurs 
électromagnétiques réelles une forme qui met bien en évidence le carac 
tère invariant de ces relations, grâce à l’introduction de fonction D et A 
jouant dans l’espace-temps un rôle analogue à celui que joue dans 
l’espace la fonction singulière â(r) de M. Dirac.

Pour faire nos raisonnements, nous admettrons : i° que la correspon 
dance entre les grandeurs électromagnétiques complexes et réelles est 
donnée par les formules du tjpe (52); 2° que les grandeurs électroma 
gnétiques peuvent être représentées par des développements de Fourier 
où figurent seulement les ondes planes à énergie positive. Ces hypo 
thèses feront bientôt l’objet d’une étude approfondie.

Considérons deux points Pj et P2 de l’espace-temps. Soient h et 12 
leurs coordonnées de temps dans un certain système de référence 
Galiléen; xit yl} zi, symbolisées par r4, y2, zi, symbolisées par r_.
sont leurs coordonnées d’espace dans ce système. Nous posons
(61) t = u_—tu r = r2 — r,, r = jrs — r, |

et nous cherchons la valeur du commutateur

(G?.) [ Aj'^r,, t,), A(/>(r2, <*)]
= [A/(ri> ti ) -+- A* (ri, ti ), Aj (T2, t%) -+- _\)(r2, )].

Conformément à l’hypothèse 20, nous allons représenter les potentiels 
complexes par des développements de Fourier suivant les ondes planes 
à énergie positive sous la forme

(63) A,-(r 1, t[) =——y faAdW"'-™.

(?■*■)-

La règle de commutation (3i) pour les amplitudes spectrales des 
potentiels peut s’écrire

(61)
ho / lé2 * lé ?1 \ 1[A/(k, ), A/(k‘>)] = - — ^8,,+ -L_i_ } JL S(k,- k2),

(’) Dans Une nouvelle théorie de la Lumière, tome II, à la fin, nous avons introduit 
les fonctions D et A. Malheureusement notre rédaction est incorrecte, parce que nous 
avons raisonné sur les grandeurs complexes et non sur les grandeurs réelles.
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d’où l’on tire

(65) [A,(k,)> A}(kî)l = — [ A}(kî), A,(k,)] = — [A,*(k,), Ay(k,)],
la dernière égalité venant de la symétrie en i et J de la formule (64). 
Pour passer de (64) à (65), il faut bien se souvenir que A,- et A* sont 
des opérateurs distincts et ne sont pas des quantités complexes conju 
guées : si l’on oubliait ce point essentiel, on serait amené, puisque le 
second membre de (64) est réel, à prendre le signe + au lieu du 
signe — au second membre de (65), ce qui serait erroné.

Gomme les A commutent entre eux et que les A* commutent entre 
eux, on trouve
(«6) A;r,(ri, M, A'/’Oî, /.,)]

(■i*)3
1

(2 7C:<)

[/

[/
dk, A* (kl) e—k,r,);

dki A((ki) e*(<i<'i,— k,r,),

f
f

dkî Ay(kî) e*(*■<*.—k,r,) 

dk-, A'(k..) e—*(*.<(.—k,r,)

— (s i. _Ü_\_L4 ~ \ l' k% <)x[ dxj ) 8
X |'Jj'dk, dk-, *i‘i) e—k,r,) — conj.

hc /„ i ô 
4 j i \ ; kl dxj

eiikct—kr)dk---- y------- conj i
Dans la dernière formule, nous avons écrit k au lieu de k->, l’indice 
devenant inutile. Posons

i V r „ kr)
(b7) ,,(Ç’/) = T---- 3F

i f siii(4c<—k.r)à J
— conj. 

r/k.

avec A- = I k I2 -i- kl

Il vient

((18) A^fr,, /, ) ’ A/>(rs’ kl dxjâxj) D(r’ l)-

CelLe formule met bien en évidence l’invariance relativiste des relations 
de commutation, entre potentiels, parce que D(r, t) est un invariant 
d’espace-teinps. L’invariance de D résulte, en effet, de sa définition (67)

dket de l’invariance du quotient -j- précédemment démontrée.
Si, au lieu de partir de la relation de commutation entre potentiels, 

nous étions partis de la relation (24)1 1° même raisonnement nous eût 
conduit à la formule

itlyi A/' i r,. /, ), K,' ( r,>, /-,) hc.
4 t . i

I / I.
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Or, d’après (67), on a

(7°) = ^ e"*"~krl"<:°nj-].

et par suite
(71) ' =---- fdke-<*r,’ \c àt Ji-0 ait*./

et d’après la formule (i4) du Chapitre I,

(72) (;f)1-o~-4lî(^ = "'4"8(i1-1*) (')■

Donc, en faisant dans (69) L — t2 = z, l’on obtient

<7'1) [Ar(r,, t ), FSpitî, t )'| =— ,~-s0's(r*— r,)•

Cette formule correspond à la formule (3g) donnant la commutation 
locale des grandeurs complexes A* et Ey prises en des points différents 
de l’espace au même instant. Les formules (j3) et (3g) diffèrent 
cependant par un facteur 2 au second membre, cela provient de la 
subtitution des grandeurs macroscopiques réelles aux grandeurs micro 
scopiques complexes.

Les formules précédentes sont générales et applicables à toute 
particule de spin 1 telle que le méson. Si l’on admet que la masse p0 est 
nulle ou négligeable (ce qui est possible pour le photon), on a A = | k | 
et la fonction D(r, t) prend une forme particulière introduite par 
MM. Jordan, Pauli et Heisenberg en théorie des champs. Nous dési 
gnerons cette forme dégénérée de D par A(r, t). D’après (67), on a

(74) A(r’^ = ù[fdk-{het— kr)
-conj.

avec k = | k |.
Calculons l’intégrale qui figure dans (74)- En désignant par 0 l’angle 

des vecteurs k et r, elle s’écrit

(75)
k>-)/»“ rzn fiHkct-I d | k | / 2 s [ k |'2 sin 9 rf0-----

*A> k

') Les dérivées pour i = 1, 2, 3 sont nulles, ainsi que toutes les dérivées

secondes de D pour t = o.
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En intégrant d’abord sur 9, il vient

(76) g—f | k | r.v dx

= ^ /'“rf|k|I^leU«[e/|k|r_6-,lk|r]j

lr J0 k

et puisque nous admettons que k = | k |,

0 jr /** 9* r plk{ct+-r) | alk{ct— r) 1 *1(77) ^- / — — lim —----------- - — -------------- U.
irj0 L J r A>. L c< -v r • et - r J

Portons cette valeur de l’intégrale dans (74)1 nous trouvons

(78)

Or on a

(79)

A(r, t) = \xm ï 
1

sin k(ct -t- r) 
x(ct -t- r)

sin k(ct — /•)“!
t . {et — r) J

sin kx lim---------k-^-eo K & »(*),

comme cela résulte de la première formule (i4) du Chapitre I. Donc 
enfin

(80) Ai r, t ) =
8( et -+- r) — 8( et — r) 

r

Telle est la fonction singulière généralisant celle de Dirac dans l’espace- 
temps qui a été introduite par MM. Jordan, Pauli et Heisenberg en 
théorie quantique des champs.

9. Propriétés diverses des fonctions D et A. Interprétation des 
relations de commutation obtenues. — La fonction D(r, t) définie 
par (67), est une fonction paire de r, mais une fonction impaire de t, 
comme on le voit aisément en changeant t en —t et k en —k dans (67). 
On a donc

(8ij D(r, — t) = — Ù(r, t), D(r, o) = o.

On a naturellement aussi A(r, o) = o, comme on peut d’ailleurs le 
vérifier sur l’expression (80).^

La fonction A n’est différente de zéro que sur le cône de lumière 
relatif au point r = t — o de l’espace-temps. Elle correspond à des 
actions qui se propagent avec la vitesse de la lumière. Elle satisfait
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d’ailleurs à l’équation [IlA = o, ce qui se voit tout de suite sur la 
définition (74).

Au contraire, la fonction D(r, t) correspondant au cas général où k„ 
n’est pas nul, satisfait à l’équation

(82)   D -1- Æq  D = o.

11 y a donc un phénomène de traînage dans la propagation de D, seul 
le front des ondes se propage avec la vitesse c, le reste de l’onde 
s’éparpillant à l’arrière de ce front. Il en résulte que D(r, t) n’est nulle 
qu’à Vextérieur du cône de lumière relatif au point d’espace-temps 
( = r = o et a, en général, une valeur différente de zéro, à l’intérieur 
de ce cône.

On peut voir que D(r, t) est bien nulle à l’extérieur du cône de 
lumière relatif à l’origine par le raisonnement suivant. Nous savons 
que D(r, o) — o; or tout point de l’espace-temps qùi se trouve en 
dehors du double cône de'lumière relatif à l’événement origine peut être 
rendu simultané de cet événement origine par une transformation 
convenable de Lorentz, transformation qui ne modifiera pas la 
fonction D, puisque celle-ci est un invariant relativiste, il en résulte 
que D doit être nulle pour tout point extérieur au dit cône de lumière.

Ces diverses remarques permettent d’interpréter physiquement le 
sens des relations de commutation des potentiels et des champs. Ces 
relations contenant au second membre la fonction D (ou ses dérivées), 
les commutateurs des premiers membres ne peuvent être différents de 
zéro que si les grandeurs électromagnétiques se rapportent à des points 
d’espace-temps r, tt et ra£2 tels que D(rt — r2, £a — t2) (ou ses dérivées) 
soit différente de zéro. Il en résulte que ces commutateurs sont néces 
sairement nuis si l’un des points en question est en dehors.du cône de 
lumière de l’autre. En ce cas. les deux grandeurs électromagnétiques 
sont en principe toutes deux mesurables exactement. Physiquement, ce 
résultat signifie que deux grandeurs électromagnétiques sont nécessai 
rement toutes deux mesurables exactement si les points d’cspace-temps 
auxquels elles se rapportent sont sans influence possible l’un sur l’autre, 
énoncé dont l’exactitude est évidente a priori.

Dans le cas où l’on peut négliger/, ;; et où A remplace I) dans les formules, 
on voit que deux grandeurs électromagnétiques seront toujours simul 
tanément connaissables si elles se rapportent à des points d’espace-temps 
qui ne sont pas en onde l’un avec l’autre, c’est-à-dire qui 11e sont pas 
sur un même cône de lumière : ce résultat, lui aussi, csl nécessaire
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a priori, car la mesure effectuée en r( au temps t, ne peut alors troubler 
la mesure effectuée en r2 au temps t2 que si |pt — r21 = c(£,— £a).

La façon doutles relations de commutation des champs traduisent 
l’impossibilité dans certains cas de mesurer ces grandeurs en des lieux 
et des temps différents a été analysée de près par MM. Bohr et 
Rosenfeld. On trouvera un aperçu de ces intéressantes considérations 
dans le livre de M. Heitler[Quantum theory of radiation (p. ^5 etsuiv.)].



CHAPITRE IX.
LA MÉCANIQUE ONDULATOIRE DU PHOTON 

ET LA THÉORIE QUANTIQUE DES CHAMPS ÉLECTROMAGNÉTIQUES.

1. Définition des grandeurs électromagnétiques comme valeurs 
moyennes dans l’espace des n. — Considérons une grandeur électro 
magnétique définie par la Mécanique ondulatoire du photon, par 
exemple l’une des composantes du potentiel-vecteur A, . Nous pouvons 
la développer suivant le procédé de Fourier en une somme d’ondes 
planes monochromatiques de la forme

(1) At(x, y, z, t) =^ctai gi[*K'-k;r],
l

ai étant un coefficient de normalisation des ondes planes. La seconde 
quantification transforme les Ci ët par suite les A ; en opérateurs de 
l’espace des n. Comme nous l’avons précédemment expliqué, on est- 
alors amené à définir la grandeur physique A,- comme moyenne prise 
dans l’espace des n suivant le schéma

(2) A,(r, t)=2R‘Ai(r, t) R =^R*^c/«/e'l*ic(-kir] R.

n ni

Nous avons vu que la fonction de répartition R obéit à l’équation 
d’évolution

(3) Æ?S=3eR’ avec 3C=2(c ;)pçVJ.9)(0(c /)o „.

ti

Mais, pour le photon dans le vide, il n’y a ni interaction mutuelle, 
ni action extérieure, de sorte que V(0> est nul et que R est indépendant 
du temps. La fonction de répartition ainsi définie est donc la forme 
R(n,, n2, ...) et est indépendante du temps. Il est alors visible 
que Aj(r, t) varie en fonction des variables d’espace et de temps



exactement comme Ai(r, t) : lès grandeurs électromagnétiques, définies 
comme valeurs moyennes dans l’espace des n, satisfont donc à toutes 
les équations maxwelliennes.

On peut se placer a un autre point de vue pour définir les valeurs 
moyennes dans l’espace des n. D’après une remarque faite à la fin du 
paragraphe 5 du Chapitre VII, nous pouvons aussi définir la fonction R 
comme solution de l’équation

(4) 5!Ti7F=XÎ{’ avec x =2(c*)opH'/>(c/)op' '
v
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Pour le photon dans le vide, on aura Hj°' = et par suite

‘1 I J

d’où

t 2»/*v
(6) R(.i,, n2, = Ri(«i, «s, •••) e i

R((ra,, «2, . ..) étant la fonction de répartition telle qu’elle avait été 
définie plus haut. La définition (2) s’écrira maintenant

(7) A,(r, t) =^RÎ(n,, u2, ...) A((r, *)RiOi> n,, ...).

Montrons que cette expression est équivalente à

(8) A,(r, <)=2R*("l> "*> r, o)RX«i, n3, t)

ÎTtf VI t

x^c/o;e-(kirRl(ni, nt,...)e
i v j - A)»

En effet, l’opérateur ci commutant avec tous les sauf ni, la dernière 
expression est égale à

(9) nt, .. .j^e-™tni',it ciaiel*tni',it'R<l(ni, «j, ...)e~ik‘T,
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soit, encore d’après les propriétés de l’opérateur a à

(io) ^Rî(/i,, n2, ... ) 2a/c/cS,wv''c—ik'rRi(«i> •••)

H i

n
de sorte que l’équivalence annoncée est démontrée.

Ainsi, l’on peut définir une grandeur électromagnétique F comme 
valeur moyenne dans l’espace des n de deux manières équivalentes : 
iu en prenant la valeur moyenne de l’opérateur dépendant du temps

F(r, t) ==^\tciai&1 [A'iw—k/rl avec emploi de la fonction de répartition
i

indépendante du temps R(n£, n2, •••) (représentation de Schrôdinger); 
2Ü en prenant la valeur moyenne de l’opérateur indépendant du temps

F(r)=^c;<z/ e~'ac<r avec emploi de la fonction de répartion dépendante
t

du temps

, R(n1, «», ..., t) = R)(«i, n., ...)<*

(représentation d’Heisenberg).
On a donc, d’après ce qui précède,

----------------------  - — m-------------- m
(u) F(r, t)=e * F(r)e ‘

Les définitions (7) et (8) sont équivalentes. La première est celle qui 
se présente le plus naturellement en Mécanique ondulatoire du photon, 
tandis que la seconde est celle qui est usuellement utilisée en théorie 
quantique des champs.

La dérivée ^ F(/’, t) est donnée par la formule générale

(12) = _ àF 
dt dt

iizi
HT [F, *].

Comme ici l’intégration est faite dans l’espace des n (et non sur xyz), 
la dérivée ^ reste fonction de xyz. Si l’on emploie la première définition 

de F, on doit poser 3C = o et par suite

dF 
dt,1*

àF
,)t ,)-R,(«,.

£ v ici ai P‘\ ki'-t—ki rj R | . . . . ).

( 13 )
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Avec la deuxième définition, dF
dt = o et l’on a

de sorte qu’on trouve bien la même valeur (i3).
11 est facile de voir que nos définitions font correspondre la grandeur 

électromagnétique F à l'absorption d’un photon et la grandeur F* 
à F émission d’un photon, point de vue que nous retrouverons dans 
l’étude des interactions entre matière et rayonnement. En effet, si
l’on pose

(i5)
l

ou aura

(16) f =2r î(«i. •• ni, .. .>2

■’ /l/l ’ * 1 a/ eït*iW~k/r] Ri(nU • • -7
l72

Cette formule montre bien que la composante d’ordre l de F correspond 
au passage d’une répartition où il y a 1 photons dans l’étal k/ à 
une répartition où il n’y a plus que ni photons dans cet état.

De même

(17) f *=2r î(»., , m, . . .)2 °i aî e—lk‘rl—k<rl.
/

* - ; ■ • ■)

=2r î(«„ ...
n

, nt, . . .)^\/ni a} e-it*K'-kirjR^n,, . 
/

■ -, nj—i[5 • - • )j

ce qui montre que la composante / de F* correspond au passage d’une
répartition où il y a ni— 1 photons, dans l’état k; à une répartition où 
il y a m photons dans cet état. Comme l’exponentielle à exposant 
négatif de (17) représente un état à énergie négative du photon, nous
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voyons que les étais a. énergie négative sont liés au processus de 
l’émission tandis que les états à énergie positive correspondent au 
processus de l’absorption, remarque que nous aurons à approfondir.

2. Développements de Fourier. Point de vue de la théorie quantique 
des champs. — Comment devons-nous écrire les développements de 
Fourier et quel sens devons-nous leur attribuer? Pour répondre à cette 
question délicate, nous pouvons adopter deux points de vue différents. 
Le premiér qui coïncide (à quelques détails de formalisme près) avec la 
forme usuelle de la théorie quantique des champs, fait figurer dans les 
développements de Fourier les ondes à énergie négative, mais n’introduit 
pas l’état d’annihilation. Le second point de vue, qui est propre à la 
Mécanique ondulatoire du photon, ne retient dans les développements 
de Fourier que les ondes à énergie positive, mais elle fait intervenir 
l’état d’annihilation. Nous allons étudier successivement ces deux points 
de vue pour en faire la comparaison.

Commençons pour exposer le premier point de vue.
Dans cette méthode, on représente toutes les grandeurs liées à une 

particule de spin i par des développements de Fourier contenant non 
seulement toutes les ondes planes à énergie positive, mais’aussi toutes 
les ondes planes à énergie négative. On utilise donc des développements 
de la forme

F =2ckake‘U"“krl

k k

F* =2 ckttk -t-^Vkak e'tto~kr]>

k k

avec

(19) k = +t/| k |2-h  *0,

k0 étant supposé nul dans le cas du photon.
Dans (18), les termes de la première somme représentent des ondes

planes à énergie positive ayant une quantité de mouvement^) tandis 

que les termes de seconde somme représentent des ondes planes 
à énergie négative —^2 ayant une quantité de mouvement —

Les ajt sont des coefficients de normalisation. Quant aux Ck et rfk. 
ce sont des opérateurs de l’espace des n dont la signification va varier 
suivant qu’on a affaire à une particule de spin 1 susceptible de deux états



de charge égalç et de signe contraire ou à une particule non chargée. 
Nous avons donc à distinguer deux cas :
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a. Cas d’une particule de spin i possédant deux états de charge 
opposée.

Ceci est le cas des mésons qui portent tantôtla charge e de l’électron 
positif, tantôt la charge — e de l’électron négatif.

Si l’on adopte les développements de Fourier (18), la question qui se 
pose est celle de savoir comment on doit interpréter les termes à énergie 
négative de la seconde somme, étant donné qu’il ne paraît pas exister 
réellement d’états à énergie négative dans la nature. La théorie 
quantique des champs adopte pour ces termes l’interprétation suivante : 
tandis que chaque terme à énergie positive représente une particule

chargée positivement d’énergie positive et 4e quantité de

mouvement —, l’onde d’énergie négative---- — et de quantité dekhc

mouvement kA
2It devrait être interprétée comme représentant une

particule chargée négativement, possédant l’énergie> positive et
k /i • .

la quantité de mouvement — • Ainsi, il n’y aurait plus, conformément

à l’expérience,. que des particules à énergie positive, les ondes à 
énergie négative n’étant qu’une représentation symbolique de particules 
à énergie positive dont la charge électrique serait égale et opposée de 
celle des particules que représentent les ondes à énergie positive.

Selon cette ingénieuse interprétation, la quantité /tj = CkCk donnera
hhcle nombre des particules chargées positivement ayant l’énergie---- et la

k A .quantité de mouvement—) tandis que le nombre «2= d&dk donnera

le nombre des particules chargées négativement ayant la même énergie 
et la même impulsion.

On posera donc

(20)
1 '"''k /—rJ ek = e y “2* 6k

f j  d"k r~~
■ ! °k:=e V nk> dL =

d’où résulte

(21) ckc'k-ckck=-'; ^kak

drt{l

_0>_
dnTl

LOUIS DE BROGLIE'
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b. Cas d’une particule de spin 1 électriquement neutre.
C’est le cas des mésons neutres et des photons.
Ici, l’interprétation précédente des termes à énergie négative n’est plus 

possible, puisqu’il n’y a plus lieu de distinguer deux états de charge 
électrique pour la particule. S’appuyant sur des idées que nous avons 
exposées à la fin du paragraphe 2 du Chapitre II, la théorie quantique 
des champs admet que la grandeur F pour une particule neutre doit 
être réelle, c’est-à-dire que l’on doit avoir i i

(22) ck.= <3?k> ck = k’
de sorte que
(23) F = F* = ^ | ckake'(/"',-kr) -s- e-'U< '-kr) ].

k

On justifie l’hypothèse (22) en montrant que le calcul de la charge 
électrique totale du champ considéré se trouve alors toujours nulle, 
nous le vérifierons plus loin. Cette valeur nulle de la charge se trouve 
obtenue par une compensation de charges opposées, les particules 
neutres apparaissent ainsi comme des sortes de racémiques, neutres 
par compensation. Nous verrons cependant qu’on peut, avec la Méca 
nique ondulatoiiré du photon, se placer à un point, de vue différent.

3. Conséquences des définitions adoptées au paragraphe précédent. 
Adoptant les définitions et hypothèses qui viennent d’être précisées, nous 
calculerons la valeur que la théorie quantique des champs est amenée à 
attribuer à certaines grandeurs importantes liées à la particule de spin 1.

a. Cas des particules chargées. — Calculons d’abord l’énergie du 
champ, c’est-à-dire de l’ensemble des particules, par la formule

( a î ) VV =

Cette intégrale se réduit à la somme de celles qui se rapportent aux 
divers vecteurs k considérés isolément, car les termes provenant de la 
combinaison de deux vecteurs k différents disparaissent par intégration. 
Pour les grandeurs normées relatives à un vecteur k donné, on trouve, 
d’après (18),

E

Ak—aky Tryy ['k^k"1- '^'’kl 

1 '^Ak
k “ ' t: ,)t
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«k étant un vecteur unité définissant la direction du potentiel-vecteur 
et Pk étant le facteur de phase e,(*c‘-kr).

En portant (26) dans (24), on trouve pour les termes se rapportant 
au vecteur k, compte tenu du fait que les termes en PJ et Pk2 donnent 
zéro par intégration, la valeur

U) W = ^[CkCk+rfk^- k k ‘
khc

dk dk] - -^T ("l •+- n;+n

Pour obtenir la dernière expression, on a fait intervenir les rela 
tions (21).

Le résultat (26) n’est pas très satisfaisant, car on devrait évidemment 
avoir dans la dernière parenthèse, «£+ «k- Le terme 1 supplémentaire 
est certainement parasite et sa présence peut faire douter de l’exactitude 
rigoureuse du point de vue adopté par la théorie des champs.

Calculons maintenant la quantité de mouvement totale du champ. 
Elle est donnée par les formules du type

(27) G. ch.

Avec les expressions (20), on trouve aisément

{28) G-r=2^r(nk+ "k + O-

k

Ici encore, apparaît un terme parasite, mais il n’est pas gênant, car il est 
évident qu’il disparaît dans la sommation sur toutes les valeurs de kx. 
Il reste donc
(29) 0=2^^^^)’

k

formule très satisfaisante, étant données les hypothèses admises.
Enfin calculons l’intégrale

<3o) jrPrfc=y*^L(A*B)-(K*A)]rfu.

Nous trouvons

(31) J" P d~ - rckck~*~ ckck dk r|ik—^k °k] (wk nk)’
” k . k

Nous obtenons donc la différence entre le nombre des particules chargées 
positivement et celui des particules chargées négativement.
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Ce résultat découle du fait, déjà précédemment signalé, que pour 
une onde à énergie négative l’intégrale (3i) est négative et égale à — i 
si l’onde est normée. En présence de ce fait, la théorie quantique des
champs se refuse à attacher à l’intégrale J'çdrlc sens physique d’un

nombre de particules, mais elle continue à définir la charge électrique

totale des particules liées au champ par l’intégrale f ps tfr, où s est

la charge d’une des particules en valeur absolue. On trouve, en eflet., 
pour cette dernière intégrale d’après (3i)

(32)
" k

résultat satisfaisant.

b. Cas des particules neutres. — Ici l’on admet les relations (22). 
Le formalisme employé par la théorie quantique des champs (') conduit 
alors à des résultats qui se déduisent des précédents en posant 

n^=nyc et en divisant par 2. On obtient ainsi

(33)

résultat qui contient encore un facteur parasite Puis on trouve

(34) kh 
21!

k

Dans G-, comme précédemment, le facteur parasite disparaît par 
sommation. Enfin, on a

(35) Q =2e("k -"k) =°-

k

La charge totale du champ se trouve nulle par suite d’une sorte 
de compensation des charges. C’est là le résultat annoncé qui sert 
à justifier le formalisme adopté pour les particules neutres parla théorie 
quantique des champs. Néanmoins, on petit observer que l’on obtiendrait 
aussi Q = o en exprimant naïvement la neutralité électrique des parti 
cules par la relation t = o. Celte remarque nous conduit à aborder
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maintenant l’examen du point de vue de la Mécaniqur ondulatoire 
du photon.

4. Point de vue de la Mécanique ondulatoire du photon. — Nous 
allons nous placer d’abord dans le cadre de la Mécanique ondulatoire 
du photon proprement dite, théorie qui ne s’occupe que des photons, 
c’est-à-dire de particules électriquement neutres.

En Mécanique ondulatoire du photon, on est naturellement conduit 
à adopter le point de vue suivant lequel les grandeurs électromagné 
tiques complexes F liées au photon doivent se représenter par des 
développements de Fourier limités aux ondes planes à énergie 
positive, c’est-à-dire de la forme

(36) F = ^ ckake'(kr)t F* = ^ckake—kr!.

k k

Pour notre théorie, les grandeurs sont toujours essentiellement 
complexes et c’est seulement les grandeurs macroscopiquement obser 
vables dans les champs à grands nombres de photons qui peuvent 
se représenter par les grandeurs F(,'>= F + F*.

Nous commencerons par calculer avec notre hypothèse le nombre 
total N des photons présents dans le champ, nombre qui doit toujours 
être donné par l’intégrale (3o). Avec les développements du type (36), 
le calcul donne

(3y) N
k k

ce qui est tout à fait satisfaisant.
Si nous voulons calculer W et G, il se pose à nous une question 

préliminaire très importante : quelles expressions devons-nous adopter 
pour ces grandeurs? Plus haut nous avions adopté, comme le fait 
implicitement la théorie quanlique des champs sous sa forme usuelle, 
les expressions (24) et (27), qui résultent des valeurs des compo 
santes T« du tènseur énergie-impulsion données par les formules (4) 
du Chapitre IV. Ces formules résultaient de l’introduction d’un schéma 
Lagrangien général, avec emploi d’une fonction de Lagrange réelle. 
Mais, comme nous l’avons remarqué à la fin du paragraphe 4 du 
Chapitre IV, il est plus conforme aux idées générales de la Mécanique 
ondulatoire d’adopter une fonction de Lagrange complexe et de prendre 
pour les expressions des T,-* des valeurs non nécessairement réelles,
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telles que la valeur de la densité d’énergie donnée par la formule (12) 
du paragraphe en question. Ceci revient en somme à partir des formules 
générales

(38)

h 0WaT
■1 j t  i ilt

<!t,

h_ 0_ 
- i ûx 'l'ire f/t,

d’où l’on tire, en exprimant les f’,- à l’aide des grandeurs électro 
magnétiques,

( 3<J ) i^-SM

rfE
Ot

'IAE —Ot

-S)- E’
OA.
Ox

Dans les expressions (3y), comme toujours en Mécanique ondulatoire 
du photon, on a les produits d’une grandeur étoilée placée à gauche 
par une grandeur non étoilée placée à droite. Dans la théorie non 
superquanlifiée, les expressions (3cj) sont équivalentes aux expres 
sions (24) et (27) utilisées par la théorie quantique des champs, mais 
il n’en est pas de même en théorie superquanliflée, parce que l’opéra 
teur Ck n’est pas conjugué de l’opérateur c£. Il y a donc un certain 
arbitraire dans le choix des expressions (24) et (27) fait par la théorie 
des champs et il semble licite d’adopter en Mécanique ondulatoire du 
photon les valeurs ( 3q).

Si nous adoptons les expressions (3<j), le calcul fournit aisément

k k

valeurs entièrement satisfaisantes.
Le formalisme adopté par la Mécanique ondulatoire du photon nous 

paraît plus près de la réalité physique que celui de la théorie quanlique 
des champs. Nous allons le préciser en faisant intervenir l’état d’annihi 
lation et les moyennes dans l’espace des n. Ceci nous conduira à l'idée 
que le véritable réde des ondes planes à énergie négative est de repré 
senter les processus d’émission, tandis que celui des ondes planes à 
énergie positive est de représenter les processus d’absorption.
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a. Valeurs moyennes dans l’espace des n. Processus d’absorption et 
d’émission. — Nous allons maintenant reprendre systématiquement 
le point do vue de la Mécanique ondulatoire du photon esquissé au 
paragraphe précédent, mais en y introduisant les notions d’état 
d’annihilation et de valeurs moyennes dans l’espace des n.

Reprenons toute la suite des idées. En Mécanique ondulatoire du 
photon non superquantifiée, l’on associe à chaque grandeur électro 
magnétique un opérateur ÊF. Un photon, qui se trouve dans l’état 
représenté par une fonction d’onde *F, peut s’annihiler au conlacL de 
la matière en cédant toute son énergie à la matière et en passant dans 
un état d’annihilation que l’on représente par une fonction d’annihi 
lation constante et invariante lE<'' . La grandeur électromagnétique F 
correspondant à l’opérateur fF est égale par définition à

. in f  = ’iV-:îr,r«= ,i-,"3r'r,

la deuxième expression étant une forme symbolique simplifiée de 
là première. La grandeur F correspond à la transition quantique qui 
amène dans l’état d’annihilation le photon primitivement dans l’état 'F. 
c’est-à-dire qu’elle correspond à Y absorption de ce photon par la matière. 
Réciproquement, la grandeur complexe conjuguée (*)

( 12 ) F* = >1'* _ ;T iJ'.JL = U'*;?1!' 11 i

représente la grandeur électromagnétique associée à Yémission d’un 
photon dans l’état 'F.

Nous admettrons que l’onde 'F la plus générale doit être représentée 
parla superposition de l’onde *F"11 et des ondes planes monochromatiques 
à énergie positive du type

( 13 ) 'i'k=

avec /.' —j— \ | k - + k'I. Nous laissons donc de côté systématiquement 
les ondes planes à énergie négative conformément au point de vue 
développé dans le dernier paragraphe (-) et nous poserons

>44) 'r = vpr"'+2ek«rk.
k

(l) Leur passer de (^i) à ( 4-)* souvenir que iF est. hermitien.
(-) L'hypothèse qui consiste à Écarter les ondes à Énergie négative pour ne conserver 

que celles à énergie positive présente une certaine analogie avec l'hypothèse que l’on 
fait dans la théorie classique du rayonnement quand on néglige les potentiel? avancés 
pour ne garder que les potentiels retardés.



CHAPITRE IX.

les 'Fk étant normées. Nous obtenons donc pour la densité de valeur 
moyenne correspondant à l’opérateur i-F de l’espace ordinaire

cS»r(o. S ^co*j-io>+ÇCkipky

l36

Introduisons maintenant la seconde quantification : les ck et ck 
deviennent des opérateurs de l’espace des n définis par les formules

(46) n\e ï k’

et o(S7) se trouve ainsi transformé en un opérateur de l’espace des n 
Nous devons alors remarquer que le nombre n0 des photons dans 

l’état d’annihilation doit être considéré comme énorme et pratiquement
j L

constant. Les opérateurs c à"% qui font varier n» d’une unité en'plus 
ou en moins, ne modifient donc pratiquement pas les fonctions de n 
auxquelles ils sont appliqués et sont, par suite, équivalents à l’opéra 
teur 1. On a donc

(47,1 co cj ~

Revenons à l'expression (45) et observons que, d’après la forme des 
opérateurs introduits par la Mécanique ondulatoire du photon dans 
l’expression des grandeurs électromagnétiques et d’après la valeur 
de on a toujours

(48) M’io! 5 î[’mi: = o,

comme on le vérifie aisément. De plus, comme nw est extrêmement 
grand, on peut dans l’expression (45) négliger les termes qui ne con 
tiennent ni c'a,'ni c*0 et écrire

(49) P(5) =
k k

Comme p(êF) est maintenant un opérateur de l’espace des n, on devra, 
pour lui faire correspondre une grandeur numérique, prendre sa valeur 
moyenne F = p(fF) dans l’espace des n, ce qui donnera

11 k'(5o) Fspif) =2R‘ ‘ "> 7,k’ • ■ •) Pi37) hi('6> )
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Tenant compte des propriétés des opérateurs (46), on trouve

O)

"k k
X [v//!k~+-1 ll'° ^ï’jjH^/ïo, «k-t-l. •••')

■+■ \i n\i ’^k ^ *6o Rl (;î0î —>■ • ■)]■

Mais l’on peut absorber la constante \/nu dans la définition de 
ce qui revient à remplacer la constante K/ = -—-—- par la cons-

,___ ''srtoH-n

tante K = \/'/t(lK', les notations étant celles du Chapitre VIII, para 
graphe 1. On peut donc écrire

ryz) F^p(30 = 2 Vf Rî^o, «k-i, ••• )C"kFkR>Ci“- •••’ "k- ■■•) .

"k k
"+■ l!* (n°........"k-1" l' • • ) V^k-1-1 FkRl («o------ - «k> • ■ ■)]

avec
(à3) Fk= *P - 5^] k, Fk= 'r‘ft'1 .

La formule (02) nous montre que la grandeur Fk, définie pour 
un seul photon, multipliée par la racine carrée du nombre initial 
des photons dans l’état k, correspond au processus de l’absorption 
d’un photon k, tandis que la grandeur conjuguée Fk multipliée par 
la racine carrée du nombre des photons dans l’état final correspond 
au processus inverse de Y émission d’un photon k.

Ainsi, nous sommes amenés en Mécanique ondulatoire du photon 
superquantifiée, à considérer, par définition, la quantité (52) comme 
nous donnant les valeurs de la grandeur électromagnétique F pour 
l’ensemble des processus quanliques possibles, les grandeurs Fkà expo 
nentielles ei(-kcl~kr) correspondent aux processus d’absorption, tandis que 
les grandeurs Fkà exponentielles g—‘O*—kr) correspondent aux processus 
d’émission. Ces conclusions nous semblent dégager le sens physique 
profond de la différence entre termes à énergie positive et termes à 
énergie négative dans le cas des photons (*). ( Voir la Note page 147).

Comparons maintenant ces résultats avec le formalisme de la théorie 
quantique des champs. Celle-ci, nous le savons, représente toute 
grandeur électromagnétique par un développement de Fourier où 
n’intervient aucune fonction d’annihilation, mais où figurent les ondes 
planes à énergie négative; nous écrirons ce développement sous la forme

k
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On considère que tous les photons liés à l’onde de vecteur k ont 
l’énergie positive k et les n^ des formules de la seconde quantification 
représentent les nombres de pilotons par onde plane. La valeur moyenne 
de la grandeur électromagnétique F est alors définie par la formule

(55) F =2R*(”-’,!k- ••• "k-

k
ce qui donne

(56) 2 " "k' • : •) i\ "k-^ 1 Fkl!|(- ■ •> + F • • -

"k k __ ^
V "k^k^’l' • ■> "k“‘ '> •••)]•

En comparant (56) avec (5i). on voit que l'on peut identifier le F de 
la théorie quantique des champs avec le p(fi') de la théorie du pholon 
si l’on définiL les grandeurs F^ et Fi par les formules (53), ce qui 
concorde bien avec nos conception antérieures.

Donc, bien qu’on ne le fasse pas toujours remarquer dans les 
exposés usuels de la théorie quantique des champs, dans cette 
théorie comme en Mécanique ondulaloire du photon superquantifiée, 
les termes à énérgie positive correspondent aux processus d’absorption 
et les termes à énergie négative aux processus d’émission : sur ce point, 
il y a donc concordance entre les deux théories.

Là où elles divergent, c’est sur ta façon d’écrire les développements 
de Fourier. La Mécanique ondulatoire du photon y introduit la fonction 
d’annihilation et en rejette les ondes à énergie négative; la théorie des 
champs ignore l’état d’annihilation et fait figurer côte à côte les ondes 
à énergie positive et celles à énergie négative, en cherchant à donner 
aux développements de Fourier, par la formule (54), l’aspect de gran 
deurs réelles. La méthode de la Mécanique ondulatoire du photon, 
nous paraît serrer de plus près la réalité physique : elle évite l’appari 
tion de termes parasites dans les expressions de l’énergie et de la quan 
tité de mouvement globale du champ et, sans cherchera donner a priori 
aux grandeurs électromagnétiques une apparence de grandeurs réelles, 
elle met mieux en évidence la liaison des termes à énergie positive avec 
les phénomènes d’absorption et celle des termes à énergie négative 
avec les phénomènes d’émission.

6. Pourquoi les grandeurs électromagnétiques macroscopiques sont- 
elles des grandeurs réelles ? — Considérons les développements équi 
valents (5a) et (56). En quel sens peut-on dire qu’ils représentent
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une grandeur réelle? Ceci n’est pas immédiatement évident car, ainsi 
que nous l’avons plus d’une fois noté, les opérateurs Ck et Ck ne sont 
pas complexes conjugués au sens usuel du mot. Mais ces opérateurs 
sont des opérateurs adjoints dans l’espace des n et par suite Ck+Ck 
est hermitien dans cet espace. Pour cette raison, F valeur moyenne de 
(54) dans l’espace des n doit être réelle. Vérifions-le.

La quantité complexe conjuguée de

est

• • ■ ) \ I FkRi (• • •

'*!(•••> "k’ ■ ' ■ ) v "k^'k^1 (----^k 1 ’ ■ ■ ■ )’

On obtient la seconde somme à partir de la première en remplaçant 
dans la sommation nk par «k— 1 et en remarquant que le terme relatif 
à «k= o dans la seconde somme est nul. Il est alors évident que les 
deux termes relatifs à une même valeur de k dans (56) sont complexes 
conjugués et que l’on peut écrire

]r,7) P =^\ R;(. . »k, • • ■ ) «k+>. conj.

k

Considérons maintenant un champ électromagnétique macroscopique
où tous les rak sont très grands, mais où les phases 0k sont bien définies. 
Nous définissons un tel champ par une sorte de « groupe d’ondes » 
dans l’espace des n que nous représenterons par

H, (. . ., /ik, . . . ) = e k R-2( • ■ ■, nk, . ..)

où IC n’est différent de zéro que pour des valeurs très grandes et relati 
vement voisines de chaque «k et varie très peu quand nk varie d’une 
unité. En substituant dans (57), on obtient alors après incorporation 
des phases 0k dans l'expression des Fk,

(58) F "*• •HH "k[Fk+Fk]
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où F£’= Fk+ Fi est la grandeur électromagnétique réelle définie dans

i4o

le cas d’un seul photon par la Mécanique ondulatoire du pholon
non super quanti fiée (* ). Nous voyons qu’en multipliant ce champ réel 
par y/nï, en faisant la somme pour tous les vecteurs k et enfin en prenant
la moyenne dans l’espace des n, nous obtenons le champ macroscopique 
moyen F qui est une grandeur réelle au sens propre du mot.

7. Généralisation au cas des particules de spin i chargées électri 
quement. — Ce qui précède s’applique aux photons et plus généralement 
aux particules de spin i électriquement neutres. Nous allons maintenant 
montrer comment l’on peut tenter de généraliser les mêmes considé- 
'rations au cas des particules chargées de spin i.

Nous avons vu au paragraphe 2 qu’en ce cas la théorie quanlique 
des champs écrit le développement d’une grandeur F sous la forme

(59)
k

les termes F£ à énergie négative représentant les particules à charge néga 
tive, de telle sorte que c^Ck donne le nombre «k des particules chargées

positivement d’énergie positive k et de quantité de mouvement —,

tandis que d^d^ donne le nombre nk des particules à charge négative
k hd’énergie positive k et de quantité de mouvement — • Dès lors, la gran 

deur F obtenue en faisant la moyenne dans l’espace des n est

,Goi F = 'y. R; ( • •.. «k, "k, ••• ) ^['■kfk+^klîk] R,(...,«k./ik- ■ ■•)
k

kn

x i Fk | R,(. • nk. «k,

(!) Ii faut toutefois bien noter que dans (58) Jes phases des et F£ sont ici bien 
définies.



La formule (60) montre que le terme Fk correspond à Vabsorption 
•d’une particule positive et le terme F£ à Y émission d’une particule 
négative, fait qui n’est pas toujours bien mis en lumière dans les exposés 
usuels de la théorie quantique des champs.

Cherchons maintenant à nous placer à un point de vue analogue à 
celui que nous avons adopté plus haut en Mécanique ondulatoire du 
photon. Nous considérons les particules positives et-des particules 
négatives comme des entités physiques distinctes représentées par des 
fonctions d’onde distinctes 1F't' et V-. Pour •F4-, nous admettrons un 
développement de la forme

<6i) V+=Co»Ft“)-4-2ck'ik (ckck=V)>

k

et nous calculerons, comme en Mécanique ondulatoire du photon, 
la quantité p($*) correspondant à l’opérateur de l’espace ordinaire

{62) PW. = 2Rî'(---> "k "*> nj, ni, ...)
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D’où, en remarquant qu’en raison de l’énormité du nombre n0 des 
particules annihilées, on peut négliger tous les termes ne contenant 
pas c0 ou c„ et que l’on peut absorber le facteur dans la définition 
de l’opérateur &

<63)
n k
x [y/ü+T7»l-i»)Sr>FkRi(..., «i-4-i, «k- •••)

"k- ■•■)]’

formule qui nous montre que 'F(o,0r'Fic multiplié par la racine carrée 
du nombre des particules positives dans l’état initial correspond à 
l’absorption de ces particules, tandis que multiplié par la
racine carrée du nombre des particules positives dans l’état final 
correspond à l’émission d’une de ces particules.

Plus instructive est l’étude de la quantité p(^) relative aux particules 
négatives. Ici nous pouvons écrire pour le V- soit le développement
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suggéré par la théorie quantique des champs

(64) iF-=c„'F<o)-+-^rf£'î-£)
k

soit plutôt le développement plus naturel au point de vue physique

(65)
k

les xk représentant les ondes planes à énergie positive de la particule 
chargée négativement. Nous supposerons, dans un cas comme dans 
l’autre, que donne le nombre n£ des particules à charge négative
dans l’état k.

Avec le développement (64), on obtient

(66)

X & eo^-t-y, Ri(.

k

• > "k- "k>

=2SRÎ(-’"î’ ,*ï>—) [v/«iv,,,^viRî(—» «£> «k-,.

+ v/^ÏTT«FkffTlo)R1(...) ni, ni+1,

Le premier terme du crochet correspond visiblement à l’émission d’une 
particule négative et le second à l’absorption d’une telle particule.

Avec le développement (65), nous obtenons

(67) pW=2 2r*(-"’ •••)

« k
X [v^k+ï'WXkM---. "k> "k-t-L •••) 

^v/,"£Xk3rii'l0,Ri(---- "£> "k-1* ■■■)}■

Ici le premier terme entre crochets se rapporte à une absorption et 
le second à une émission. La comparaison de (66) et de (67).conduit 
à assimiler d’une part et et d’autre part <ïri0,5‘Xic
et V0'. On peut traduire ce résultat en disant : l’émission (ou
l’absorption) sur l’onde k d’une particule positive à énergie négative 
correspond à l’absorption (ou l’émission) sur cette onde k d’une parti 
cule négative à énergie positive.

II semble que cette conclusion soit à rapprocher du fait qu’en théorie



de Dirac l’électron positif n’est pas assimilable à un électron négatif 
dans un état d’énergie négative, mais bien à un manque d’électron 
négatif dans un tel état.

L’ensemble des considérations des derniers paragraphes nous paraît 
faire pénétrer assez profondément la signification véritable qu’il faut 
attribuer au formalisme assez abstrait de la théorie quantique des 
champs. Ce formalisme est sans aucun doute très élégant et mathémati 
quement correct, mais il masque peut-être un peu le sens des phéno 
mènes physiques qu’il représente; de plus, il conduit toujours pour les 
énergies globales à des expressions contenant un terme parasite. 11 nous 
paraît plus conforme à la réalité physique de n’introduire dans les 
développements de Fourier que des termes à énergie positive, ce qui 
fait disparaître tout terme parasite dans l’expression de l’énergie. Peut- 
être, d’ailleurs, le problème du rapport des particules complémentaires 
de charges égales et opposées (électron et positon, méson positif et 
méson négatif, etc.) n’est-il pas encore entièrement bien posé et la 
construction d’un nouveau formalisme sera-t-il nécessaire pour traduire 
ce rapport plus exactement (4).

8. Complications qu’entraîhe dans la théorie quantique des champs 
l’hypothèse implicite p.0= o. — Nous avons déjà vu que, contrairement 
à la Mécanique ondulatoire du photon, la théorie quantique des champs 
admet implicitement que la masse propre du photon est rigoureusement 
nulle, de façon à retrouver les équations de Maxwell sans les termes 
additionnels en pj. Mais, ce faisant, elle tombe dans de graves compli 
cations en ce qui concerne les relations de commutation de la seconde 
quantification. Nous avons vu, en effet, notamment que la relation 
divE = o n’est pas compatible avec les relations de commutation de la 
théorie superquantifiée des particules de spin i. Pour sortir de ces 
difficultés, la théorie quantique des champs est amenée à regarder le 
cas du photon comme tout à fait différent du cas général des particules 
de spin i, alors que la Mécanique ondulatoire du photon, en admettant 
que la masse p0 est extraordinairement petite, mais non rigoureusement 
nulle, a l’avantage de pouvoir faire rentrer entièrement le cas du photon 
dans la théorie générale des particules de spin i.

Voici quelles sont les hypothèses particulières qu’introduit la théorie 
quantique des champs dans le cas du photon. Dans la théorie générale
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(‘) Voir à ce sujet l’exposé de M. Dirac (Proc. Boy. Soc., série A, vol. 180, 
mars 1942, P- i-4o).
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des particules de spin i (et aussi, bien entendu, en Mécanique ondula 
toire du photon), on considère toutes les équations Maxwelliennes 
comme vérifiées en chaque point de l’espace-temps aussi bien après 
qu’avant la seconde quantification, c’est-à-dire aussi bien quand on 
considère les grandeurs Maxwelliennes comme des opérateurs de 
l’espace des n que quand on les considère comme des grandeurs numé 
riques. La théorie quantique des champs admet ce fait pour toutes les 
particules de spin i autres que le photon (par exemple pour les mésons) ; 
mais pour le photon, elle suppose que seules les équations

(68) divH = o, ---7±=rotE

sont vérifiées en tout point de l’espace-temps, mais, selon elle, il n’en 
serait pas de môme des équations

... _ i dE i dV ,.
(6n) divE = o, - —:------ rotH = o. ------ : i-divA = o.' ' c àt c àt

qui ne seraient pas vérifiées en tant que relations en x, y, z, t. Le 
premier membre des équations (69) définirait seulement des opérateurs 
de l’espace des n qui, appliqués à la fonction de répartition R des 
photons, donnerait zéro. En d’autres termes, on aurait non pas les 
égalités (69), mais les suivantes :

i = °; (7:'w ~ |'otHjRi(/', ■•■) = '»;

(}■ ^ +div a ) M»,

Ce serait là des conditions imposées à la fonction R. Les auteurs 
disent souvent que, pour le photon, les relations (69) sont « des 
conditions sur le ’F ». Il faut bien comprendre que le 'F dont il est 
question est la fonction d’onde de l'espace n, c’est-à-dire la fonction de 
répartition R, et non pas le lF du photon dans l’espace ordinaire.

Celle manière de changer profondément le sens d’une partie seulement 
des équations Maxvvelliennes, quand il s’agit du photon, nous paraît 
personnellement très artificielle. Elle"introduit une différence, logique 
ment peu satisfaisante, entre le photon et les autres particules de spin 1 : 
les équations de toutes ces particules auraient en apparence la même 
forme, mais une partie d’entre elles s’interpréterait tout différemment 
suivant qu’il s’agirait d’un photon ou d’une particule de spin 1 de 
masse différente de zéro : voilà qui ne nous semble guère satisfaisant.

144

(divE)Ri(a, . . /

(70)



Quoi qu’il en soit, en définissant toujours la valeur moyenne des 
opérateurs F dans l’espace des n par la formule

(71) F =^RÎ(«, . . .) Y(x, y, z, t) Rt(n, ...),

n

on obtiendra toujours les équations de Maxwell et la relation de
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div H = o,

a- 5 1 ,• -i-rlivE = o; - ------- 1-divA = o,
c <)t

mais, répétons-le, en théorie quantique des champs, les deux 
premières équations (72) sont obtenues parce que l’on a en tout 
point xyzt de l’espace-temps les relations (68), tandis que les trois 
dernières équations (72) résulteraient non pas des relations (69), mais 
des conditions sur R exprimées par (70).

Bien que la théorie quantique des champs retrouve les équations (72), 
il n’en est pas moins certain qu’en admettant implicitement pour les 
photons la relation p.0=o, elle est obligée, pour éviter des contra 
dictions, de rompre l’unité de la théorie générale des particules de spin 1 
et de recourir à l’hypothèse assez arbitraire qu’exprime la substitution 
de (70) à (69).

La position adoptée par la Mécanique ondulatoire du photon en 
posant ix0y£ o nous paraît préférable (*).

9. Remarque sur la relation [E, N] = E. — Rappelons (2) que si A 
et B sont deux opérateurs hermitiens d’un certain espace correspondant 
à des grandeurs observables a et b et si l’on a entre eux la relation de 
commutation [A, B] = C, les grandeurs a et b obéissent aux relations

Lorentz sous la forme

(7*)

( _ 1 dHL _
\ c àt ~

) •! Æ
! - = ri
[ c àt

= rot E ;

otïï;

C) On peut encore remarquer que l’interprétation de la théorie quantique des champs

est incompatible avec une théorie non superquantifiée où les grandeurs - —rotH
c ât

et divE seraient nulles en tout point xyzt, car, si ces grandeurs étaient nulles, la 
seconde quantification les transformerait en opérateurs de l’espace des n nuis en tout 
point de l’espace-temps, contrairement à l’interprétation de la théorie quantique des 
champs : il y a là une difficulté à laquelle il semble qu’on ne puisse échapper qu’en 
supposant o

(J) Théorie générale des particules à spin, p. 3o à 32 (Gauthier-Villars, ig43).
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d’incertitude

(7'i) Aa\b7^.~ jCj, avec Aa = \/( A -- A )' ; Aù = V(lî— }>)',

la moyenne de G étant prise dans l’espace où sont définis A et B.
Soit alors F une grandeur électromagnétique de la théorie du photon. 

On a

(7'D F=2ckFk>
k

les Fk étant des nombres complexes définis comme éléments de matrice 
liés à la transition de l’état k à l’état d’annhilalion. F est un opérateur 
de l’espace des n, mais, comme les ck, il n’est pas hermitien et ne 
correspond pas à une grandeur directement observable.

Soit encore IN = ^ckck le nombre total des pholons non annihilés
k

présents dans un champ électromagnétique. On trouve

(7'j} r, N | -= FN - N!*’ =2f'kFkECi '^”üCi'^2 ck|(k

k k'

= ^|'A'V'V-
k,k'

k
rk'rk'rkl ''k-

Comme [ck, ck-] — o si k 7' k' et que | ck, ck|

: 7<> > [F- -NI

i, il vient

'2iK- ch
k

d’où, par exemple, pour le champ électrique E,

(77) ; E \ : E.

A>anl obtenu cette relation de commutation, la théorie quantique des 
champs ( voir 11e  it l iîr , Quantum theory pf radiation, p. (i~) veut en 
déduire la relation d’incertitude

< 7S; AE AN ~ E (M.

Mais, du point de vue de la Mécanique ondulatoire du photon, cette 
relation n'apparaît pas comme exacte, parce que E est un opérateur non

(>) Fa i relation précise sérail AK Ai\ I E | .
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hermitien (') ne correspondant pas à une grandeur observable de 
l’espace des n. On peut, il est vrai, définir pour les phénomènes à très
grand nombre de photons un champ macroscopique observable

£v/«k(Ek+Ei), comme nous l’avons plus haut, mais ce champ
k

macroscopique défini par une moyenne prise dans l’espace des n est un 
nombre ordinaire et l’on ne peut parler pour lui de relation de 
commutation.

Quant à l’opérateur E,. = E + E* (sans moyenne dans l’espace des n), 
on vérifie facilement qu’il est hermitien et que l’on a

[IV, N1 = K —(79)

mais il ne paraît pas qu’il soit intéressant de considérer cette relation
d’incertitude.

Bref, il nous semble que la relation (78) admise par la théorie 
quantique des champs usuelle ne doil pas être conservée : on échappe 
ainsi aux conclusions assez étranges qu’on déduisait de celte relation 
(voir He it l e r , loc. cit.).

(') D’ailleurs, si E était hermitien, la relation (77) serait contradictoire, car le 
commutateur de deux opérateurs hermitiens est antihermitien.

Note de ta page 1.I7 :

(1 ) On peut retrouver les mêmes résultats comme il suit. Considérons la transi 
tion «k-v «£. L’élément de matrice correspondant à l'opérateur esL

k "k) \Z"k+,*(''k-L,-«k).
"k

"k
I opérateur rjç n est diflérrnt tlo zéro <j 11 <* si -\. (•Vsl-à-din1 pour ies processus
d'émission.



TROISIÈME PARTIE
INTERACTIONS ENTRE MATIÈRE ET RAYONNEMENT.

CHAPITRE X.
THÉORIE NON SUPERQUANTIFIÉE DES INTERACTIONS 

ENTRE MATIÈRE ET RAYONNEMENT.

1. Préliminaires. —.En Mécanique ondulatoire, l’étude des interac 
tions entre le rayonnement et la matière doit se ramener essentiellement 
à l’équation d’ondes du système photon -+- électron, puisque l’action du 
rayonnement s’exerce sur les particules électrisées de la matière dont 
l’électron est le type.

Rappelons donc d’abord quelques généralités sur les équations d’ondes 
de l’électron. Pour un électron libre (non soumis à un champ électro 
magnétique), l’équation d’ondes s’écrit :

CI
h ! h / d

2!i c dt 2ni \ àx ' Tz*')XV°^ 0 = 1, 2, 3, 4).

Si nous introduisons les opérateurs

(2) Wop = h d _ 
2xi dt’ ( Pi )'>!> —

h d 
■>. ît i dxj .(/= C 2, 3),

nous pourrons écrire (i) sous la forme

I ^
(3) - AVopUO-t- p0p<*,ï'<j = 7»0ca4Ç'a,

a étant une matrice-vecteur aux trois composantes at, a2, a:l.
Mais on sait qu’en Mécanique relativiste, l’énergie d’un électron de 

charge —e placé dans un champ électromagnétique dérivant des

potentiels A et V est —eX, somme de son énergie cinétique et
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de son énergie potentielle; de même, sa quantité de mouvement est

V
— - A, somme de la quantité de mouvement cinétique et

V 1 - .3-
d’une sorte de quantité de mouvement potentielle

Dès lors, il paraît tout naturel, quand on passe du mouvement de 
l’électron libre à celui de l’électron soumis à un champ électromagné 
tique dérivant des potentiels A et V, de transformer l’équation (3) en y

remplaçant W(1|l par W, ,,+ eV et pop par pn|1+ ^ A, ce qui conduit, en

tenant compte de la différence entre composantes covarianles et compo 
santes conlrevariantes, à l’équation de propagation

i 1)
II <)

2 T, I, (.)i - p Y
Ÿ'-tkhê,

Telle est,'en effet, l’équation d’ondes que, guidé par l’analogie avec 
les expressions classiques, M. Dirac a adoptée pour le mouvement de 
l’électron dans le champ électromagnétique.

Pour distinguer les coordonnées de l’électron de celles du pliotnn, 
nous désignerons les premières par XV Z et les secondes par xyz. Nous 
écrirons donc les équations de Dirac

(r>) A. lA = I|llir„-e[V-(ïA;]'r„ (0 = 1, a. -i. i).

où H,, esL l’Hamiltonien de Dirac en l’absence du champ

flC ( f) <) t) \
( <j  ) 111» = ----- . -rrr a, -h — a2 -h — a:J -t- m „ c - » -,.2T./\i)X ()\ f)/. )

Le terme —e|V — (aA)| de (5) et le terme d’interaction entre 
électron et rayonnement qui nous intéresse! particulièrement ici.

D’après la définition du vecteur densité-flux en théorie de Dirac, 
nous obtenons les relations

h \
(-) — = ^ >r;( — eu 'IV, — rov='S 'I '4 ce a M

1 I

où i désigne la matrice unité à f\ lignes et /j colonnes et où a est le 
vecteur-matrice de composantes <xt, a-,, a,. On peut considérer les 
expressions (7) comme donnant les densités de valeur moyenne pour la 
charge et le courant électriques associés à l’électron dans l’état ff'. On 
est donc ainsi conduit à laire correspondre à la charge de l’électron 
l'opérateur /: 1 et au courant dû au mmmuneul de l’électron l’opé-



râleur ec«. Posons donc

(«) e„p = -«i, 1,!,= pc x .

Les lermes d’inleraction dans (5) pourront alors s’écrire

1.9) [' : X - (i A)]'

Dans l’expression (y), les grandeurs se rapportant à 1 électron se 
présentent sous la forme d’opérateurs, tandis que les grandeurs relatives 
au champ électromagnétique ont gardé le caractère de fonctions de point 
que l’on suppose connues par ailleurs. On fait ainsi jouer, comme 
d’ailleurs dans la théorie classique, un rôle très dis-v métrique à l'électron 
et au photon. L(i Mécanique ondulatoire du photon va nous permettre 
de faire disparaître cette dissymétrie peu satisfaisante.
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2. Formation de l’Hamiltonien pour le système photon-électron. — 
INous rappellerons d’abord que nous avons mis les équation.- du photon 
dans le vide sous la forme

(loi // () cl !
2 - i <)l

-1'3,

où H,, est l’Hamiltonieu du photon défiai par la formule

hc 
■ > i(il) ir

<) Cl | t$ v -4- Cl 
().r v

() c\ ■> ; —H ci?2 c\ .
() I *_!

,/c-------- •.---------’l t- ■

Clxerchons alors quel doit être, du point de vue de la Mécanique 
ondulatoire du photon, l’I lainiltouien du système photon - - électron.

Tout d’abord, considérons un photon et un électron en négligeant 
leur interaction. L’onde T de l’électron satisfait à l’écjunlion ( 3), celle 
du pholon à l’équation (ni). En posant

tr.» i 'l’ocîf-r- ,r, X, i. Z, /I = ’l'îfX. Y. Z. y. ;. / '.

nous délinissons une fonction d’ondes à 6\ composantes pour le système 
électron photon. Cette fonction d’onde satisfera évidemment à 
l’équation

(il)
II à l Cl , -t- 0? ,

177 . -f- Il

qui représente un système de b J équations.
La tâche essentielle que nous avons maintenant à remplir est d’intro 

duire l’interaction entre l’électron et le photon en ajoutant un tefme
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supplémentaire dans l’équation (i3). Pour cela, nous devons inspirer 
du terme (9) que nous avons rencontré en théorie de Dirac, mais, afin 
de traiter symétriquement photon et électron, nous allons remplacer les 
fonctions V et A par des opérateurs Vop et Aüp qui agiront sur les
. . "V
indices se rapportant au photon, comme les opérateurs 1 et a agissent 
sur les indices se rapportant à l’électron. Toutefois, cela ne suffira pas 
encore, car il nous faudra de plus exprimer ue le ch tmp électromagné 
tique en un point agit sur la charge élect’ qi e qui se trouve au même 
point de l'espace. Si nous admettons que nue circonstance est réalisée 
d’une façon tout à fait rigoureuse, il nous faudra faire intervenir dans le 
terme d’interaction un facteur de la forme

8(X — .r) 8( Y — r) 3(Z — -) = o.(R — r),

de sorte que le champ électromagnétique au point X. Y, Z agisse uni 
quement sur la charge électrique se trouvant au point .c = X,y- = Y,
; . Z.

Fmalemenl. nous écrirons donc le terme d’interaction sous la forme 

mil H111 = — e[ V„p 1 — (a A,,,,)] 8(R — r ).

Or nous avons été amenés précédemment à prendre pour opérateurs 
servant à définir les potentiels les opérateurs suivants (4) :

i j) V,„=K 03; — Ct4
A„n = — h'

cU&i — dSCti

K' étant la constante —= qui, après la seconde quantification, se trouvera 
v "0

multipliée par \7n„ et donnera K. Nous obtiendrons donc pour (i4)

( là/ II'
loi,v—a* —

:-K eL ; I_H \a------- 7 8(R —r),

et, par suite, pour l’équation d’ondes photon-+- électron. 

,, _ ^1 0 (3Li -h  Oi\( 1 y ) • “TT 1 1 * 0(T”■IT.l <)t 2 *

ave. , a, t  = 1, 2, 3, 4. Cette équation représente 64 relations entre
h-'i'F^.

(M Voir Chapitre III. formule (28).



3. Étude des éléments de la matrice H*1). — Dans l’équation 
d’ondes (17), nous voyons figurer' le terme perturbateur défini par 
l’opérateur (16) à côté de l’Hamiltonien non perturbé
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Hn----------2 ■+ H,..

Les fonctions propres de l’Hamiltonien non perturbé seront fournies 
par les produits Vp"1’ d’une onde plane du photon par une fonction 
propre de l’électron. Les ondes planes du photon sont données par les 
formules

(18) >F& = ai\ei[kict-*iT]- kt= ~ v,; */ = |

les a^L étant des constantes liées par des relations que nous avons précé 
demment étudiées.

Pour l’électron, les fonctions propres ne sont des ondes planes que si 
l’électron est libre : elles ont alors la forme

{19 IJI-M _ a(M) el[K,„r(—J£llt r- K»=ïw* KJ. = I Km ]-■+■

les ajj'"1 étant des constantes liées par des relations que nous connaissons. 
Mais, si l’électron est placé dans un champ permanent, par exemple 
dans le champ du noyau d’un atome, les ,F("t) représenteront des états 
stationnaires de l’électron dans ce champ et l’on aura

(20) Y,

les a^X, Y, Z) étant les amplitudes complexes des fonctions propres, 
amplitudes qui sont en général variables d’un point à un autre. La 
forme (ao) est générale et contient la forme (19) comme cas particulier.

Considérons la transition quantique du système électron -|- photon de 
l’état symbolisé par (l, m) à l’état symbolisé par (lm'). L’élément de 
la matrice H1*) correspondant à cette transition a pour valeur

x S(R — r)*F(')(r)*F("‘!(R)<mdr 

= - e jf [V/./pm'm ■+■ (A,- / ) J dT

(21)



avec les définitions suivantes :
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V/y = Iv'N »i^*(r) - :T<jL(r),

[y

Vtu et A fi sont donc les densités d’éléments de matrice correspondant 
aux potentiels du photon, tandis que p,n>m et fsont les densités
d’éléments de matrice correspondant aux composantes du quadrivecteur 
densité-flux pour la transition m~>m' de l’électron.

A toute transition l->l' subie par le pholon d’un état 1 à un état 
correspondent des quantités Vm et Am, mais, ainsi qu’il résulte des 
considérations du chapitre précédent, seuls les éléments Vm et A.m 
tels que l’un des états l ou f! soit l’état d’annihilation interviendront 
effectivement, car seules ces grandeurs contiendront le facteur 

énorme \jn„ après passage à la seconde quantification, ce qui assurera 
leur entière prépondérance. Les seules quantités du type \'m ou A/y 
qui interviendront vraiment seront V vi et À,,/ d’une part, et Ai» 
d’autre part, correspondant respectivement à l’absorption d’un photon 
primitivement dans l’état l et à l'émission d’un photon dans cet état.

Il est visible que V0e et A,y sont les potentiels Vy et A; que nous 
avions précédemment définis comme attachés à l’état l du photon, 
tandis que Vi„ et A;0 sont les grandeurs conjuguées de celles-là. Si nous 
considérons les quantités réelles

( 23) Y/ ’ = Y / —e- Y / — \ 0/-e \ /o A/ ’ — Ai-f- A/ — Ao/-t- A/«,

il est évident que le premjer terme correspond au processus d’absorption 
et le second à un processus d’émission. Nous avons insisté sur ce point 
au tome II de notre Nouvelle théorie de la Lumière (p. 76 à 79), en 
nous appuyant sur le calcul explicite des éléments de matrice 
et II^A.o .m que nous ne reprendrons pas ici.

Toutes ces considérations sont en parfait accord avec les conclusions 
du chapitre précédent.

4. Difficultés soulevées par l’emploi de l’équation non superquan 
tifiée (17). — Si l’on veut se servir de l'équation que nous venons 
d’obtenir pour le système électron-photon, on est amené à utiliser, pour
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étudier l’évolution de ce système, la méthode de variation des constantes 
de Dirac. Mais dans l’application de cette méthode, on se heurte à un 
certain nombre de difficultés comme nous l’avons déjà signalé au 
Tome II de notre Nouvelle théorie de la Lumière. En particulier, 
l’hypothèsé que les ondes sont normées est essentielle pour la validité 
de la méthode de variation des constantes : or, ici, la normalisation de 
l’onde 'F1") soulève des difficultés, car elle conduirait à écrire

orf: = i.

Voici une autre difficulté qui nous a été signalée par M. Jacques 
Courtois. Les 64 équations symbolisées par l’équation (17) se 
divisent en deux ensembles en multipliant successivement par

et par On obtient une

une équation de condition de la forme (*)

équation d’évolution et

(9i 4 -4- (Si -, Cl v -f- (Si \

< (24)

2 \ 2

>aÆ4—tf3eii
+ K;c a 8(R — r) cU — Six \ ’ pat?

— (BOL*
• a ------------------

— c&v 8(R —r)

Les équations (C) sont des équations de condition où n’interviennent 
pas les dérivées des par rapport au temps : l’existence de ces
conditions fait que les ne peuvent pas, en général, être considérées 
comme des combinaisons linéaires des solutions de l’équation non 
perturbée (ril), ce qui rend illégitime l’application de la méthode de 
variation des constantes.

Néanmoins, il convient d’observer que, comme le montrent des 

calculs simples, les termes K' e( ^ o(B, — r)

(‘) Le fait que ^ -+• ^ =1 prouve que les équations ( lï ) et (C)

sont équivalentes à l’équation (17).



figurant dans les équations (E) dépendent uniquement des ondes trans 
versales, tandis que les termes
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— K'e <au — 18* a —--------- ----- S(B-r)

figurant dans les équations (C) dépendent uniquement des ondes longi 
tudinales. Il en résulte que la difficulté signalée n’existe que si l’on fait 
intervenir les ondes longitudinales et disparaît si l’on se borne à 
considérer les ondes transversales.

Cependant, même si l’on se borne à considérer les ondes transversales, 
l’emploi des équations non superquantifiées est toujours, en principe, 
illégitime. Il y a, en effet, toujours un nombre immense de photons dans 
l’état annihilé susceptibles de donner lieu à des phénomènes d’émission 
puisqu’on n’a jamais constaté une saturation de ces phénomènes : il 
n’est donc jamais légitime de considérer que l’on a affaire à un seul 
photon.

Autrement dit, dans tout problème relatif à l’interaction entre la 
matière et le rayonnement, il est toujours nécessaire d’introduire pour 
les photons la seconde quantification, et cette conclusion va nous 
conduire à écrire sous une autre forme l’équation du système électron 
+ rayonnement.



CHAPITRE XI.
THÉORIE SUPERQUANTIFIÉE DES INTERACTIONS 

ENTRE MATIÈRE ET RAYONNEMENT.

1. Évolution de la fonction R de répartition en théorie superquan 
tifiée. — Nous avons vu que l’évolution de la fonction de répartition R 
est donnée par une équation de la forme

(O J~R(«i, O

“ ^ H \'n„ ( nnl -h  i $tnn )
nm

X R(«1; . . ., «« — I; . . ., nm-t-i, . . ., t)e " ,

où H(1> est le potentiel perturbateur et H‘t’^ l’élément d’indices nm de 
la matrice (de Schrôdinger) engendrée par l’opérateur H(<) dans le sys 
tème des fonctions propres de l’hamiltonien non perturbé.

Pour étudier l’évolution de R dans le cas le plus usuel, supposons 
que l’on connaisse la répartition des particules entre leurs états pos 
sibles d’énergie à un instant initial t == o : cette répartition est repré 
sentée par un certain jeu de nombres entiers nt, . . ., nn, . . ., nm.... 
Donc à l’instant t = o, la fonction R est nulle partout dans l’espace 
des n sauf au point qui est spécifié par le jeu de nombres entiers en 
question et en ce point on a R = i. La probabilité pour qu’une transi 
tion n m se soit produite à l’instant t est donnée, d’après la signifi 
cation même de la fonction R, par la quantité

| R(/i|, ..., n„—i, ..., 1, ..., t) |2.

Pour suivre l’évolution de cette probabilité pendant un certain temps, 
nous pouvons utiliser l’équation approximative

<)t R(«,, ..., «m-+-i,

1*i ..... /---- ;---------------- 'TT- (K. —K„W

(2)
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car, si H|l; est une perturbation faible, ce que nous supposerons, 
R(n,, . .., nm, ..., t) reste assez longtemps sensiblement
égal à i, les autres valeurs de R restant sensiblement nulles.

La solution de l’équation (a) telle que la valeur initiale

R(n1, .... n„ — i, .... nm -i-1. .... o 'i

soit nulle est
5 T» i _. ,,
—7- ifc„ —E„.)/■ g h _i

(3) R(ni, , n„ — i, . . ., «,„+i...........0 = V "/<(«/»-+- 0-------- p--------p—------iir,, IL,/t

Pendant l’intervalle de temps où cette solution est valable, l’expression 
de la probabilité pour qu’une particule ait subi sous l’action de la per 
turbation pendant l’intervalle de temps t la transition n-±m, est

(4) R(«i, .... n„— i. ..., + . . ., / ) |*

= cos T ' E"- E"‘)'] n"(+

Cette probabilité est proportionnelle au carré de l’élément de matrice H1,*,), 
et c’est ce qui donne à cette quantité une importance particulière.

11 peut arriver que certains H1,”, soient nuis. Cela signifie que la tran 
sition n—>m ne peut s’effectuer directement : il n’en faut toutefois pas 
conclure que le passage de l’étal n à l’état m soit impossible, il peut 
s’effectuer avec étapes intermédiaires, par exemple avec une étape inter 
médiaire dans un état p si et H'”, sont différents de zéro. Plus géné 
ralement, nous supposerons qu’il y ait plusieurs états p possibles suivant 
le schéma

n SP\
\pvV

m.

Dans ce cas, l’équation (2) doit être remplacée par les équations

I à 
àt R (h ,,------/l„ — I,--------«,,-4- I, • • ■ , «m, . . - , O

•>r.i (E„ — E„i --------------------
T~ H/’n’e A

(5)

h

n I, . • • * K pi • • • ? fl n

= 2 H"U -4-1)

*R(Wl’---’n ..., n

x R(«j, •••., —1, ..., 4-i, — «mi .



L’intégration de la première équation (5), avec la condition initiale 
R(/it, . . ., na— i. . . i, . ■ ., nm. . .., o) = o, donne
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(6) R(«i- . . n„—i, . . ., nm, t)
T1E"-E"W 

- e — i
h <a ; v / +1 ) —s—p-------- .

i-‘n— ljp

et la seconde équation devient

(7) R(«i- • • - , «« — !• • ■ - , np- ■ • - , 1, • • - , t)

= ^ ^ II/»/. H‘„'J V7 ( nm + i)(n,,+ i)
' (En —EmV ^r-(Ep-EmU 

e — e
R.. R/.

D’où, en intégrant avec la condition initiale

(8)

il vient

(9)

Posons
(10)

R(«i, • • - , 1. • • •, , n,. .., o) = o,

R(/i,. .... /(„ — I, . . H P
in H(1 > H:i > r-llnu> 11 mi ^

0

I.’ ~—\T~ V n " ( n m I ) ( np 0
1J n " •J //

L K/,-K(„
<9 7- i-7

e — 1
P _PA-'/n

lien H-1> ïl< _ y1 a a ,h/, n/ta
H///// --- / . i-« |.-> *

/-J R« — R/.

nous trouvons pour la probabilité de passage de l’état n à l’étal m dans 
l’intervalle de temps o -> t par l’intermédiaire de l’un quelconque des 
états p une expression de la forme

(n) i R(«i, . . - 1. . . ., np, . . ., -t- 1, . . t)]1

1 — cos ~ ( R„ — E,,, ) i J nn( nm -+- 1) ( np -t- 1 )‘- -t-. . .,

les termes non écrits n’intervenant pas effectivement dans les calculs 
usuels.

On pourrait développer des calculs analogues pour les cas où le pas 
sage n >m s’effectuerait avec plusieurs étapes intermédiaires succes 

p. ! n»/» |- 
(K,„— R,,)2

sives.
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2. Probabilités de transition par unité de temps. — La notion de 
probabilité de transition par unité de temps intervient quand on a 
affaire à des spectres continus.

Supposons que l’état final m appartienne à un intervalle extrêmement 
petit AE d’un spectre continu et plaçons-nous d’abord dans le cas où la 
transition «-> m est directement possible. Alors la probabilité totale du 
passage de l’état n à l’un quelconque des états m de l’intervalle d’énergie 
E -> E -+- AE sera

i6o

Par définition, la probabilité de transition par unité de temps sera 

(l3) PAE,n = fini   ;  L » ï
si cette limite existe.

Or, on voit facilement que si E„ n’appartient pas à l’intervalle AE, la 
quantité Pa k ,«(f) prend pour t oo une valeur constante proportionnelle 
à AE, tandis que si E„ appartient à AE, les éléments de l’intégrale (12) 
correspondant aux valeurs de E voisines de E„ sont prépondérants et 
la limite de Pa e .,i(0 croît comme t pour t très grand. Dans le premier 
cas, la probabilité de transition par unité de temps est donc nulle, dans 
le second elle a une valeur finie.

Plus précisément, si E„ appartient à AE, les éléments d’intégration 
extérieurs à l’intervalle ôE = E — E„ apportent à l’intégrale une contri 
bution négligeable dès que le temps £-est très supérieur à la valeur

hSt = —si?- 21 oE

Ainsi, il n’y a probabilité de passage par unité de temps sensiblement 
différente de zéro que vers les états m du spectre continu dont l’énergie 
est presque égale à l’énergie E„ de l’état initial, ce qui permet d'écrire 
PEi>>re à la place de Pa e ,*-

Ce résultat exprime la conservation de l’énergie en Mécanique ondu 
latoire et l’on voit qu’après avoir attendu un temps àt à partir du début 
de la perturbation, on ne peut prévoir l’énergie de l’état final qu’avec une
incertitude qui est au moins égale à L’est là un aspect de ce que
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l’on nomme souvent la quatrième relation d’incertitude d’Heisenberg. 
Pratiquement, la conservation de l’énergie est réalisée presque instanta 
nément et l’on peut dire que la probabilité de transition par unité de 
temps n’a une valeur différente de zéro que si l’état final m a même 
énergie E„ que l’état initial. L’expression de cette probabilité est la sui 
vante

, , r ’ ' / Ti( K ~ E"} 1
l\'\) Pi;„.„ = lim 7 77 I H;,1^ |-«„( »,,, -+-1) p( h„ ) f I - —

h- \ 4- ( E — E(1 )

car l’élément d’intégration contenant la valeur E = E„ est entièrement 
prépondérant dans l’intégrale (12), et l’on peut, sans erreur sensible, 
remplacer p(E) par p(E„), puis étendre l’intégration à toutes les 
valeurs de E.

En posant u=j^ (E — En)t, il vient 

(>j) Pe «,« = b"' 7 HLU |!/(.„(/i„1-t-i)p(E;() — f ^-du
ty* t h- ~ 11

= ! h ;,;„ |j»n(nm-t-i)s(E„).

Telle est la formule fondamentale donnant, dans la théorie superquan- 
tiliée, la probabilité de transition par unité de temps quand l’état final 
appartient à un spectre continu et que la transition de l’état initial à 
l’état final est possible directement.

Si c'est l’état initial n qui appartient à un spectre continu, la transi 
tion n étant toujours directement possible, on trouve

('<5) Pm,K,„= 'Ÿ I :!"«(«™-+-0?(E„,).

Si le passage n —*■ m n'est pas directement possible, mais peut 
s’effectuer avec étape dans un état intermédiaire p. il faut reprendre le 
calcul en parlant de la formule (11). Mis à part certains cas exception 
nels où il y aurait résonance entre les états m et p, les termes non 
écrits de la formule (11) ne donnent aucune contribution appréciable et 
l’on peut les négliger. On obtiendra donc les formules applicables ici 
en remplaçant dans (io) et (16) les quantités et \hin(nm-\- 1 ) res 
pectivement par Hj,(n et \/nn(nm-+-1 1), ce qui donne

i r?
(l~) [>K„,«= — i H'„m !2«n(/fm-+- l)(»/, ■+■ l)2p(E„).

1 ILOUIS DE BRoOLIE.
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Il est très important de remarquer qu’il y a encore conservation de 
l’énergie dans le processus global de passage de l’état n à m, mais qu’il 
n’y a pas nécessairement conservation de l’énergie dans les processus 
partiels n -■>-p et p -> m.

On pourrait naturellement généraliser la théorie pour les cas où le 
passage n -> m s’effectuerait avec plusieurs étapes intermédiaires suc 
cessives. On aboutirait ainsi à une classification des phénomènes de 
transit-on qui a une grande importance d as l’étm.e des phénomènes 
d’interaction entre matière et rayonnemer T îs processus de transition 
directe n -> m sont dits du premier ordre : leurs probabilités sont des 
fonctions du second degré des éléments de la matrice H(1>. Les processus 
de transition du type n -> p -> m avec une étape intermédiaire sont dits 
du deuxième ordre : leurs probabilités s’expriment par des fonctions 
du'quatrième degré des éléments de la matrice H(1). Plus généralement, 
les processus de transition faisant intervenir A' — i étapes intermédiaires 
sont dits du Alèm0 ordre et leurs probabilités s’expriment par des fonctions 
de degré 2 A- des éléments de la matrice IL1).
3. Équation d’évolution de la fonction R pour le système électron- 

rayonnement. — Nous savons que pour le système électron + photon le 
terme perturbateur de l’Hamiltonien peut s’écrire (*)

08.) H"1 =
<®v—<at

2
I —

■v ài(3L,, — GiOii à------------- 3(R — r )

avec

< >9 » K = — K = h

\friQ ■ f\TZ

Mous savons aussi, d’après le dernier paragraphe du précédent Chapitre, 
que ce terme perturbateur peut se décomposer en deux parties, l’une 
relative aux ondes transversales, l’autre aux ondes longitudinales, 
suivant le schéma (2),

; i ) _ — KV (

— K'e

HO) = Hjr ' -«- H}’,MJ,

<s4 —au — i;—/ ( ; ) r(R ■ T)

f1 ) Formule ( iG) du cliuj)iir<- X.
La difficulté signalée pn^e iô ô pour la méthode de variation des constantes sans 

seconde quantification n'existe plus ici si l’on pose a priori comme postulat la validité 
île l’équat ion ( \ ).
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Pour introduire dars ce problème la seconde quantification, il serait 
logique de l’appliquer à la fois aux électrons et aux photons. Néanmoins 
pour n’avoir pas à utiliser le formalisme assez compliqué de la 
seconde quantification pour les électrons, on peut se contenter, comme 
on le fait usuellement en théorie quantique des champs, d’introduire la 
seconde quantification pour les photons.

Si R(«0, . . ., . . ., t) est la fonction de répartition des photons,
on se contentera d’écrire comme équation d’évolution pour R

(21) jt R(«.i, • • ., nh .... nv, t)

2 ~ i V' 11(1, / ;---------- ;—= —j— 2j  \jni{t,t/’-t- 1 — 0/1’ )
i ni', lui

ïy-‘l N-r-Em.-,E,H-K„.)K
x K(n0, . . ., Ui—i, . . »(--+-1........... 0 e

les éléments de matrice étant définis, à la manière de Schrodinger, par 
les fonctions propres débarrassées des facteurs exponentiels dépendant 
du temps.

Mais nous savons qu’en raison de la valeur pratiquement infinie 
de n0, nous pouvons ne garder au second membre de l’équation d’évo 
lution que les termes où l’un des indices est égal à zéro. Nous poserons 
donc

(22 j ...,11/,

= ¥[ 2hw'."

L nï m
V/îo(ii|+i)R(it,-i. .... nt-h 1, . . ., t)

2“ t
ÎEj-t-Em— Emr}l

\/»/(«o-t- I) R(«o-t- I- ..., ni— 1, 0

-[E*-f-E,„ — E,

t nous avons vu que l’on a (car «0+ 1 ~ n,,)

H!i= [V/ pmm'— fA/ dr,

'•'•i.
!•//«<. om v'"0 = — ej j^v; pmm— ^A; dr ~ v «o -m :

V/ et A/ étant les potentiels attachés à l’onde l (définis à l’aide de la 
constante K = K' y/n,,) et VJ et AJ étant les quantités complexes coniu-
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guées. On pourra d’ailleurs décomposer ces expressions en termes se 
rapportant aux ondes transversales et ne contenant que les composantes 
transversales du potentiel-vecteur et en termes se rapportant aux ondes 
longitudinales et contenant seulement le potentiel scalaire et la compo 
sante longitudinale du potentiel-vecteur (l).

Par la méthode esquissée au paragraphe précédent, l’équation d’évo 
lution de R permet d’étudier les transitions provoquées par les inter 
actions entre matière et rayonnement. D’après ce qui vient d’être dit, 
cette étude peut se décomposer en l’étude des effets des ondes transver 
sales et en celle des effets des ondes longitudinales. Dans ces études, 
on aura d’ailleurs à distinguer les processus du premier ordre s’opérant 
directement sans étape intermédiaire, les processus du second ordre 
s opérant avec étape dans un état virtuel intermédiaire..., les processus 
du ordre s'opérant avec étapes dans n — i états virtuels intermé 
diaires. etc.

Dans tous les cas, au bout d’un temps extrêmement court la conser 
vation de l’énergie sera réalisée dans le processus global de passage de 
l’état initial à l’état final, sans d’ailleurs que cette conservation ait lieu 
nécessairement dans les états intermédiaires. Finalement, l’énergie 
perdue (ou gagnée) par le photon est toujours gagnée (ou perdue) par 
l’électron.

Interactions matière-rayonnement dues aux ondes transversales. 
— Nous avons fait une étude assez détaillée de l’action des ondes trans 
versales au tome II de notre Nouvelle théorie de la Lumière.. Elle 
montre que les phénomènes d’émission et d’absorption de la lumière 
par la matière ainsi que l’effet photoélectrique sont des processus du 
premier ordre s’opérant directement sans passage par un état virtuel 
intermédiaire, tandis que les phénomènes de diffusion (diffusion cohé 
rente de Rayleigh, effets Raman et Compton) sont des processus du 
second ordre impliquant l’intervention d’un état virtuel intermédiaire. 
Des processus d’ordres supérieurs au second se présentent aussi dans 
cette théorie : ainsi l’émission par onde d’accélération (fond continu

Il* î

(‘) On remarquera ici. ce qui est très important. que les potentiels Vt et Aj qui 
interviennent dans l'équation dévolution (22) sont précisément les potentiels définis 
par la Mécanique ondulatoire du photon sans seconde quantification. Ce sont donc les 
grandeurs électromagnétiques complexes des types F et F* (et non leur valeur moyenne 
dans l’espace des n) qui règlent les probabilités des transitions quantiques : ceci montre 
que ce sont les grandeurs complexes qui sont les véritables grandeurs électromagné 
tiques de l’échelle microscopique.



des rayons X par exemple) est un processus du troisième ordre impli 
quant l’intervention dè deux états virtuels intermédiaires.

Les expressions que fournissent les calculs pour l’intensite de ces 
divers phénomènes se raccordent avec celles que faisait prévoir l’appli 
cation du principe de correspondance en partant des formules fournies 
par la théorie électromagnétique classique du rayonnement : elles sont 
en bon accord avec l’expérience.

Sans insister sur le détail des calculs, nous nous bornerons à rappeler 
un point important. Les formules du paragraphe précédent montrent 
que la probabilité d’absorption d’un photon, primitivement dans l’état 
d’énergie E/, est proportionnelle à la valeur initiale de n/, tandis que la 
probabilité d’émission d’un photon d’énergie E/ est proportionnelle à la 
valeur initiale de »/+ i. Ce fait se rattache directement au célèbre rai 
sonnement qui a permis en 19164 Einstein de relier la loi du rayonne 
ment noir de Planck à la loi des fréquences de Bohr.

Einstein envisagé un très grand nombre d’atomes de même espèce se 
trouvant en équilibre thermodynamique avec le rayonnement noir 
ambiant dans une enceinte maintenue à la température uniforme T. 
Soient E„ etEm^E,, deux niveaux d’énergie quantifiée de ces atomes. 
Désignons par N„ et Nm les nombres d’atomes dans chacun de ces étals 
quantifiés. Si nous admettons la loi des fréquences de Bohr, les atomes 
qui se trouvent dans l’état d’énergie E„, peuvent passer dans l’état 
d’énergie E„ en cédant au rayonnement un quantum hvi= Em — E„ 
d’énergie radiante de fréquence v/ et inversement les atomes qui se 
trouvent dans l’état E„ peuvent passer dans l’état d’énergie supérieure E„, 
en empruntant au rayonnement un quantum d’énergie radiante de 
fréquence v/. Le second processus se produira en moyenne par unité 
de temps un nombre de fois qui sera proportionnel : i° à N„; 20 au 
nombre moyen ni de photons dans l’état d’énergie Av/. De même, le 
premier processus se produira en moyenne par unité de temps en 
nombre de fois qui sera proportionnel : 10 à N,„ ; a" en nombre moyen ni 
des photons d’énergie hvi augmenté d'une unité. Pour que l’état 
d’équilibre ne soit pas troublé par ces échanges dJénergie entré matière 
et rayonnement, ce qui est thermodynamiquement nécessaire, il faudra 
donc avoir

(24) N„,(/i/-t-i) = N,,/»/.

D’après la loi de répartition bien connue de Maxwell-Boltzmann, dans 
un état d’équilibre thermodynamique caractérisé par la valeur T de la
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température absolue, on doit avoir

Km — E„ /tVf
e~pî— = eri_

la dernière expression provenant de la loi des fréquences de Bohr. Il en 
résulte que

h\i
i :>r>) = ek i',

H)G

-Jrn—
„/. T _

I 2 i)
N« ' kl

Em 
' AT

Tel est le nombre moyen des photons d’énergie hvi dans le rayonne 
ment noir à la température absolue T.

Si Ton considère un très petit intervalle spectral ôv, le nombre des 
états distincts dont des photons enfermés dans une enceinte vide de 
volume t> sont susceptibles et dont les fréquences sont comprises dans 
l’intervalle spectral très petit ôv, est d’après une formule établie par 
Sir J. II. Jeans

Chacun des états possibles étant occupé en moyenne parle nombre (27) 
de photons dans l’état d’équilibre thermodynamique à la température T, 
il y aura

1 8.TV3 I ,< 29 ' —----  = — —,---- (h v
eiT •—1 ek ï — 1

photons ayant des fréquences comprises dans l’intervalle spectral 
v — v + ôv. Comme ôv est très petit, chaque pholon de cet intervalle a 
sensiblement l’énergie Av et Ton obtiendra la densité spectrale de l’énergie 
dans le rayonnement noir en multipliant par Av le nombre des photons 
de l’intervalle ôv, puis en divisant par v, ce qui donne

1 io 1 p(7) 8v
8 T./r,

Av

e*T — 1

c’est-à-dire la formule bien connue de Planck.



Le raisonnement précédent a ici pour nous le grand intérêt de nouS 
montrer comment la formule de Planck dérive de l’introduction des 
facteurs ni et i par la théorie de la seconde quantification appli 
quée aux photons considérés comme des particules à fonctions d’onde 
symétriques.

o. Interactions dues aux ondes longitudinales. —■ Les termes corres 
pondant aux ondes longitudinales dans l’équation d’évolution de H sont 
susceptibles d’une interprétation particulière qui est bien connue en 
théorie quantique des champs : ils correspondent aux actions électro 
magnétiques entre particules chargées et notamment aux actions Cou 
lombiennes. Mais dans la théorie quantique des champs sous sa forme 
usuelle, cette interprétation a quelque chose d’un peu paradoxal. En 
effet, la théorie des champs admet que l’on a rigoureusement p0 = o et 
elle postule l’invariance de jauge qui enlève toute réalité physique aux 
potentiels. Or si p0= o, les champs des ondes longitudinales sont nuis 
et Fonde longitudinale se réduit toujours à une onde de potentiels. Si 
donc les potentiels n’ont aucune réalité physique, ces ondes peuvent 
être considérées comme inexistantes et il est paradoxal de les faire 
intervenir pour expliquer quoi que ce soit. En Mécanique ondulatoire 
du photon, où nous admettons que p(, n’est pas rigoureusement nul et 
que les potentiels ont un sens physique, les ondes longitudinales com 
portent à la fois des potentiels et un champ électrique : elles ont donc 
un sens physique et leur intervention pour expliquer certains phéno 
mènes cesse d’être paradoxale. Ici la supériorité du point de vue de la 
Mécanique ondulatoire du photon sur celui de la théorie quantique des 
champs nous paraît certain (1 ).

Nous allons donc calculer, en Mécanique ondulatoire du photon, 
l’interaction de deux particules électrisées de charges e, et par 
l’intermédiaire des ondes longitudinales. Nous désignerons par i 1’él.at 
initial du système formé par les deux particules et le rayonnement et. 
par /l’état final de ce système. Nous savons que la probabilité d’une 
transition faisant passer le système de l’état i à l’état f par l’intermé 
diaire d’un état virtuel p est fournie par le carré d’un élément de
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(') Beaucoup d’auteurs disent que les ondes longitudinales ne sont pas quantifiées 
puisqu’elles se trouvent éliminées quand on introduit à leur place l’énergie coulom 
bienne. Nous ne partageons pas cette opinion. Le fait même d’interpréter l’interaction 
coulombienne par des échanges virtuels de photons montre que l’on admet l’existence 
des photons longitudinaux, donc la quantification des ondes longitudinales.
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matrice H'^ dont l’expression est

(3i) P/;> H;,V 
K,— ’

H1'1 étant la matrice d’interaction correspondant au potentiel pertur 
bateur qui provoque les transitions.

Considérons donc l’onde électromagnétique longitudinale définie par 
le vecteur k. Prenons l’axe des z dans la direction de k. Nous avons 
comme expressions des potentiels longitudinaux

(3'a ) V = l \r.kklv
(P = kr’).

La transition élémentaire par laquelle la particule de charge ey(y = i, 2) 
cède de l’énergie et de la quantité de mouvement à l’onde longitudinale
considérée en passant d’un état m de quantité de mouvement X,„ 

à un étal m' de quantité de mouvement K~ a une probabilité pro 
portionnelle au carré du module de l’élément de matrice (' )

133) 11 /,n, n )n—€j y/ kc
4 - H c

\/^jf f

' I

\' k j

-K,,,' r^'-ikr ,/-

e- 'kr , j-

où a'm> et a "1'1 sont les amplitudes pour l’état initial et l’état final de la 
particule électrisée.

Sur l’expression (33), on voit que la transition n’a une probabilité 
différente de zéro que si
t34) K.;,,'—K/jj = k,

c’est-à-dire s’il y a conservation de la quantité de mouvement. Mais il 
est facile de vérifier qu’il n’y a pas alors conservation de l’énergie : celle 
transition ne peut donc pas se produire seule. Par contre, deux transi 
tions de ce type, dont chacune conserve la quantité de mouvement safts 
conserver l’énergie, peuvent se produire successivement en formant au 
total un processus qui conserve à la fois l’énergie et la quantité de mou 
vement et dont la probabilité sera donnée par le carré du module 4e 
l’élément de matrice (33).

(’) Nous avons au second membre supprimé les indices l pour A et k-



Nous allons considérer un tel processus formé par deux transitions 
successives subies par l’une, puis par l’autre des particules et ayant 
comme résultat global qu’une énergie E et une quantité de mouve 
ment sont cédées par la particule (i) à la particule (2). Ce
processus peut s’effectuer de deux manières différentes que nous allons 
successivement analyser.

Voici d’abord un premier mode d’accomplissement de cette cession 
d’cnergie et de quantité de mouvement. La particule (1) subit d’abord 
la transition (01) >(1) en cédant à l’onde longitudinale considérée une

k h
quantité de mouvement — • Comme il doit y avoir conservation de la 
quantité de mouvement, nous aurons

(35) Bl o i — Ki = k.

Le photon ainsi émis sur l’onde longitudinale k sans conservation de 
l’énergie est ensuite absorbé, toujours sans conservation de l’énergie, 
par la particule (2) qui passe ainsi d’un état (02) à un état (2) avec 
conservation de la quantité de mouvement exprimée par la relation
(36) K»— Ko» = k.

Le processus global doit conserver l’énergie, ce qui nous donne
lie

( 3y ) E s=s E01 — E1 = E2 — E02 — K — »
v " 2 JC
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équation qui définit les grandeurs E et K.
L’élément de matrice correspondant au processus global est donc

/ic
(38) n;,. = e,e2_

X
(\^ (1)1,01 ■+■ \fk(az )i,oi^^/—(1)2,02-1- ^(*5)2,02^

E, - E„
avec par exemple

4
(3çt) («3)1,01= / Vamajaÿl)rfT, «te

*’ 16

ou encore (4)
(40) H},' = e, e, [\J- —j~~ (Oi.oi ■+■ ^(«3)1,01^ ""jj.1 ' (1)2,02-*- A(<«3)2,02^ •

K —A-

(') Car Ej— Ep= E01— (E,-t- /»v)= (K — k) — d'après (37).
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Mais l'équation de continuité
■7°

ili) dp ni’ni 
i)t -h div trn'm = O

appliquée successivement aux transitions (o i)->(i) et (02) -^-(a) 
donne

( i'2 ) 

d’où

< (3 '

K. ( I ), ^ ) = lC («3)1,111, K(l)2j02; — i k ]( «3 )•,(,!,

0' = ‘/'0( «a )/.o/ _ k 
(•)/,»/ ~~ k

et par suite

1 14 I l^\/—F""^1’01 ^a:i 11,01 J /-— (O--Jî,»s J

I k v7.h'|2= L7F -‘■'TT'J

d’où enfin

u > ' 1 1|])H/v= e, e> —7TT
f k y//.-K 

■2*0 ê K — “t_ ; k ( I )1,01 (1)i,02-

Voici maintenant une seconde manière d’opérer entre les deux parti 
cules chargées le même échange global d’énergie et de quantité de 
mouvement. Tout d’abord, la particule (2) augmente son énergie de E
et sa quantité de mouvement de k^ en passant de l’état initial (02) à 

l'état (2). Comme il doit y avoir conservation de la quantité de mouve 
ment, cette particule doit céder l’impulsion —k^ à l’onde longitudi 

nale — k sous forme d’un photon de recul et l’on a bien, en accord 
avec (36),
( ) K02 — K, = — k.

Le photon ainsi émis sur l’onde longitudinale —k sans conservation 
de l’énergie est ensuite absorbé par la particule (1) qui passe alors de 
l’état (01) à l’état (1); il y a alors bien conservation de l’impulsion 
puisque l’on a d’après (35)

t 47) Ki — K01 — —k.

11 est évident que le processus global conserve aussi l’énergie puisque

< 4« ) Roi ■+■ Ei E,-t- E,.
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Ici, nous avons

( .'lu 1 E, — E/t = E„» — (Ej + Av) =: — E — h'/ == — ( k -+- K ).

Comme les formules de normalisation sont visiblement les mêmes pour 
l’onde k et pour l’onde — k, l’élément de matrice correspondant à ce 
second processus global est donc

(Soi (-)Hyv: ■ e, ej

X

2 klv

(0.
k I2 ^(<*3)2,02

K

La conservation de l’électricité fournil encore la relation (43), ce qui 
nous conduit finalement à la formule

< .'>0 î)H ’/i = — e, e.
2klv K + A

f ! te IL ^ ( I )l,01 ( l)s,Oi-

Au total pour l’ensemble des deux processus, la probabilité du 
transfert de l’énergie E et de la quantité de mouvement k^; de la

première à la seconde particule par l’intermédiaire des ondes longitudi 
nales sera déterminée par l’élément de matrice

e,
kl v

I
[El

i k !2-

(Ol.O! (

K» — k* (1)1,01 (I)î,0?-

±1]

Ici, nous allons faire intervenir une approximation qui concordé avec 
les hypothèses habituelles de l’électrostatique. On peut voir aisément 

fie .que K — est l’énergie que perd l’une des particules quand elle cède au

rayonnement l’impulsion k • Il en résulte que pour les particules
suffisamment lourdes, cette énergie - est pratiquement négligeable, 
autrement dit que les particules ne sont pas sensiblement mises en 
mouvement par les processus considérés plus haut : on a alors le cas de 
l’électrostatique. Pour étudier ce cas, nous devons poser K == q  dans 
l’expression (00), ce qui nous donne

(Vi; e\ «2 | k | 
kl v k*

(1)1,01(1)2,1)’
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et, en tenant compte de la relation fondamentale A2 — jk|2-l k\

472

(54)

L’élément de matrice obtenu se compose de deux termes : le premier
■dépendant de p0 est caractéristique de la théorie du photon, mais le
second, étant presque indépendant de p.0, doit avoir une interprétation
•classique. Laissant de côté pour l’instant l’étude du premier terme sur
laquelle nous reviendrons'ensuite, nous allons montrer que le second 
terme de (54) correspond à l’existence entre les deux particules de 
l’interaction Coulombienne légèrement modifiée.

6. I<e potentiel de Coulomb. — Nous voulons interpréter le second 
terme de H),- que nous écrirons

(55)

ou, d’après la conservation de la quantité de mouvement dans la transi 
tion (O I ) -> ( ! )

Soit r = j T)21 == | r< — r21 la distance des deux particules. Considérons 
le potentiel

e1 e, e~k*r 
4 rc r

en unités d’Heaviside : c’est le potentiel de Coulomb, complété par un 
facteur exponentiel qui est très peu différent de zéro pour une distance 
pas trop grande. Nous allons calculer l’élément de matière correspondant 
à la transition globale (oi)(o2)->(i)(2) du système des deux particules
et nous constaterons que cet élément est égal à (56).

Les ondes planes correspondânt aux états (01,02) et (1,2) sont, en 
•omettant le facteur de temps et en normant toujours dans le volume t>

(58) a°' a°! e-i['K,,r1+K«,r,! ; e-i(K,n+K.r,],

L’élément de matricé à calculer est donc
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En prenant. comme variable d’intégration

(60) r)2 = r,—r,, Si2 = rl-i-r2,

celte expression s’écrit

(6.)
rts\* 
—8~

e— k0 r
r

Ki-t- Ks— Koi — Koa K.-Kr-Koi + K,. .i-------------------------- a12 i-----------------------— ru
e - e -

L’intégrale en Si2 n’est différente de zéro que s’il y a conservation de la 
quantité de mouvement et, dans ce cas, elle est égale à 8c. L’élément de 
matrice cherché est donc

(02) Îi-Ü f-—— eOK.-Ko.'r,, 6fri2(i)M)(lko>.
4 * e J 0 r

Pour faire l’intégration en Tia, prenons le vecteur K2 — K0, comme 
axe polaire : nous trouvons

(03) 1 C~ (1)1 1)1(1)» 02 2 ~ f -----—r"-flr f e' K,-K«i ! /■ ™0 sin 0
■i*1' ’ " d„ r J0

° gi \ Ki—Km |/- — e~i I K,-K,„ I

e\ e»

i J Kt — Ko
dr

_ 0,(02.02 ‘K,

Nous retombons bien ainsi sur l’expression (5b).
Nous sommes donc parvenus au résultat suivant : en raison des inter 

actions entre le rayonnement et les particules électrisées, tout se passe 
comme s’il existait entre deux particules chargées de charges et et e3 
situées à la distance r l’une de l’autre une action électrostatique dérivant 
du potentiel quasi coulombien

toujours en unités d’Heaviside.
Étant donnée la valeur extraordinairement petite que peut au 

maximum posséder la masse p„(pu k) io-4’gr), il faudrait se placer à 
des milliers de kilomètres d’une charge électrique pour que le facteur 
exponentiel commence à être un peu différent de l’unité. C’est dire que 
le potentiel V( se confond pratiquement toujours avec le potentiel de 
Coulomb.

7. Le potentiel de coïncidence. — 11 nous reste à interpréter le 
premier terme de l’expression (5/j), ce que nous ferons en suivant la
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même voie que pour le potentiel Coulombien. Nous allons, en effet, 
montrer que le terme en question représente l’élément de matrice 
qui, pour un potentiel proportionnel à <5(r), correspond à la transi 
tion (oi ,02 ) -> ( ( ,2) du système des deux particules.

Pour cela, nous n’avons qu’à reprendre des calculs analogues à ceux 
du paragraphe précédent. S’il existe un potentiel de la forme

(6">) A o(ri-i )= A 0(,-rt — xt) 8(/i — y*) 8(xt — s*)

entre les deux particules, l’élément de matrice à calculer est

(66) ~ U 3(rio) eiL|Ki--K„i'riTiKî-Koi)r,> efll clr«(l)i.m(i)s:o2-

En introduisant comme précédemment les variables r42 et Si3, il vient

A. r rds-, , K, KK, K„K,, /K,-K,-K.,H-K„.Sr
(67) ^(1)1,01(1)2,02 J dru J ~-o(Ta)e - <■ -

L’intégrale en Si2 n’est différente de zéro que s’il n’y a conservation 
de la quantité de mouvement et vaut alors 8 e. On a donc

/V /”"* A.(68) -(1)1,01(1)2,02 / 8(r14) e‘IKi—= — (1)1.01(1)2.02,
v Jy v

d’après les propriétés de la fonction ô(r42).
Il suffit alors de poser A ==—e-^pr- pour retrouver le premier terme

h'Ô
de l’expression (54) de H),. Nous pouvons donc interpréter ce terme en 
disant : tout se passe comme s’il existait entre les particules (1) et (a), 
en plus du potentiel électrostatique quasi coulombien (64), un autre 
potentiel d’interaction statique de la forme (’ )

( fi<) ) Vj(r) =— ■J? 8(r) = — <-jrr 8(-pi — «s) S(.)'i —/s) 8(s,—- s*).

Ce potentiel dépend à la fois de la éonstante h des quanta et de la 
masse propre du photon p0, toutes deux contenues dans la définition 
de /r«. Il est nul pour toute distance finie des particules, mais serait 
infini si les deux particules se trouvaient au même point de l’espace. 
On peut donc le considérer comme un potentiel de coïncidence.

(l) Dans une Nouvelle théorie de la Lumière, t. U, p. i *5. on a imprima par 
erreur 8(rl5) eu lieu de ô(rl2), ce qui peut prêter ù confusion.
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Le potentiel Vj peut d’ailleurs s’exprimer aussi par la formule

(70J Vs(/-) et e>

*0 2

où o'(r) est la dérivée par rapport à r de la fonction singulière <5 de 
Dirac de l’argument r ('). L’emploi, un peu hardi au point de vue de 
la rigueur mathématique, de cette fonction à'(r) conduit, comme l’a 
montré M. Dirac lui-même, à des conséquences exactes. L’application 
à ô’(r) de la formule d’intégration par parties permet de lui attribuer la 
propriété qu’exprime la formule

<7i) s: f(r) o'(/•) dr : -L /'( r)Z(r)dr =— /'(o).

Pour voir que les expressions (69) et (70) sont équivalentes, il suffit 
de montrer que les fonctions o(r) et —sont elles-mêmes 
équivalentes, c’est-à-dire en somme qu’en appliquant à une fonction /(r) 
les opérations ÇS(r)dr et J ^—^7 ô'(r)^ dr, on obtient le même 

résultat.
Or, la définition de ô(r) donne tout d’abord

(72) /; f(r) 8(r) dr ■■ ■L /(r) 3(a:) 0(y ) 8(z ) dx dy dz =/(o).

puis en tenant compte du fait que f ( r) —/( | r | ) est une fonction paire 
de r

(73) f /(»•>(- 7^7S'(''))'/r

= j = — o'(,- )J\r)r dr

= ~J_ m S’‘ r ] ',r = [Tr ( rJ { r) ) J r=1)

= I »■+•/( '' >l/-=o =/(o).

L’égalité des résultats (72) et (73) démontre l’équivalence annoncée.
En adoptant l’expression (70) de V» on obtient pour lè potentiel

C) Notre attention a été attirée s u p' ce point par un t rata il de M. Gérard l'etinu.
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électrostatique total 

( 74 ) V(r) = V, ( r) ■+- V,( r) = £2 [c-'v H- •

A toute distance qui n’est ni nulle, ni extraordinairement grande, le 

potentiel se réduit au potentiel de Coulomb -^rf, •
Nous avons signalé ailleurs (') comment l’apparition du potentiel de 

coïncidence est en relation avec le fait qu’en Mécanique ondulatoire du 
photon, divE n’est pas nulle, mais égale à \ et nous avons souligné 
l’intérêt de cette constatation.

8. Formule de Môller. — Nous avons calculé l’expression de 
l’élément de matrice Hrelatif à l’interaction des deux particules par 
l’intermédiaire d’une onde longitudinale de vecteur k. Nous voulons 
maintenant calculer les termes supplémentaires qui s’introduisent si 
l’on tient compte aussi des ondes transversales.

Les potentiels normés représentant l’onde transversale de vecteur k 
quand la direction de propagation est prise pour axe des s sont

w A-t/Sp’ 4'-t4vbp

Nous devons faire des calculs très analogues à ceux des paragraphes 
précédents et, en particulier, nous devons encore distinguer les deux 
modes d’échange d’énergie et de quantité de mouvement entre les deux 
particules rencontrées plus haut. Dans le premier mode d’échange, 
on a
(76) E‘— E" = ^ (K-A)

et l’élément de matrice pour le processus global d’échange d’énergie et 
d’impulsion par l’intermédiaire de l’onde transversale s’écrit

(77) H // =mn/
Ci e« hc (ai )i,01 (at )ï.02~i-(a2 )i.oi (as)i.02 

v 4 " k -K( — Kp
c* (ai )i 01 (ai)a,02 -+- (aî)i.oi (a-2 h.02

2 kv K' — k

On calculera de même l’élément de matrice (a relatif à l’action des

(') Voir Nouvelle théorie de la Lumière, t. II, p. 125-127.
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ondes transversales dans le second mode d’échange d’énergie et 
d’impulsion pour lequel on a

(77) E,-— E„ = —(K -t- /r)2T»
et l’on trouvera

(7«) (5,H;7 = -
e\ e-,
■ >. / e

( al )l .01 ( al )-2,02 -+- ( a2 )l .01 ( a2 *2,02

K~I

Finalement, pour l’interaction totale par l’intermédiaire des ondes 
transversales ± k, l’on obtient
, , TT/ TT, II/ 1 “l II ,0l( *1 (2,0* -+- ( a2 * 1.01 ( a2 >2.02
(7(1 > H/v = 11 f, -+- 12,11/7 = —--------- ------------------ K, __ ^----------------------)

puis, en ajoutant l’interaction quasi coulombienne V, due aux ondes 
longitudinales
, a , C\ e; f I , , ( )l ,0l(ot| )î.0î H~ ( )l,01 ( “2 lî.OÎ 1
(80) HV,. = —— ,,(1)2,0.  ------------- *------------R,, !---------- :

soient alors a(, , et «|S-, les vecteurs dont les composantes rectangulaires 
sont

( al )l,0l ( ®î )l ,01 (*3 *1,01 et ( a, )2,0î( «U .*2,02 (, *11 >2,02.

Le produit scalaire
(81) ( a[ I) .01(2) ) = (ai)l,ftl(ai)2,02”*“ ( a2 *1,01 (a2 ).,02 “t" * a3 *1,0 1 ( a3 *2.02

est invariant pour une rotation des axes de coordonnées, ce qui permet 
de l’évaluer en plaçant l’axe des z dans la direction du vecteur k. Or, 
nous avons vu que dans l’un et l’autre mode d’échange des énergies et 
des impulsions, les relations (43) étaient valables, ce qui nous donne
( 82 ) ( ®1 ),.01 (“l )2,02 -H (®î)l,01 (*2 )2,02 = ( “(O - “(2))   ( «3 )t ,01 ( )"2,02

= (“O)'- a(2l)-----j-j£-[7 ( 1 )l.<H ( 1 )’-,02,

d’où, en portant ce résultat dans (80),

a
k |>(

■|r--RV))(,h,»i(I)2,o:
* Tal 11 • al2) |J

Si nous négligeons les termes en.fi’, nous obtenons la formule valable 
dans tout système de référence Galiléen

(84) H' n =
G-2 ( I )l .<11 ( I )j.02 ( a1 )l .01 (al )2,02 ( a2 )l ,01 (a2 )2.02 (a3 *1.01 * a3 *2.02

_ f z r i *
LOUIS DE BROOLIB. 13



CHAPITRE XI.

C’est la formule de Môller. On peut l’interpréter aisément. Le
rapport est une correction de relativité de l’ordre de (ï)’-SilW

néglige cette correction, ce qui revient à admettre la propagation 
instantanée des actions électromagnétiques, on peut barrer K2 au déno 
minateur de (84). De même que le second terme de l’expression (54) a 
pu s’interpréter par l'existence d’un potentiel pratiquement identique 
au potentiel de Coulomb, les trois derniers termes de (84) pourront ici 
s’interpréter comme traduisant le fait que les deux charges électriques 
en mouvement sont équivalentes à des courants de convection exerçant 
l’un sur l’autre les actions bien connues de Lapla.ce et que, de plus, ces 
charges ont des moments magnétiques propres (dus au spin) possédant 
une énergie mutuelle. C’est ce qu’on prouverait aisément en rappelant

la signification physique de la matrice vecteur a qui en théorie de 
Dirac, correspond au courant total dû au mouvement d’un électron, 
c’est-à-dire à l’ensemble du courant de convection et du courant lié à 
l’existence du magnétisme propre (’). On voit ainsi que la formule de 
Moller représente, dans la limite des approximations admises, les 
interactions électromagnétiques des deux particules électrisées en 
mouvement.

11 est intéressant de souligner que les interactions entre particules 
résultent, d’après ce qui précède, d’une transition double faisant au 
total passer le photon de l'état d’annihilation à l'état d’annihilation. 
Nous aurons l’occasion de revenir sur ce point.

9. Difficultés soulevées par les théories précédentes. — Les expres 
sions obtenues pour les énergies d’interaction de deux particules sou 
lèvent une grave difficulté qui n’a pu jusqu’ici être levée par aucune 
forme de la théorie quantifiée des champs électromagnétiques : elles 
conduisent à attribuer à toute particule électrisée une énergie propre 
infinie. En effet, cette énergie propre doit s’obtenir en appliquant les 
formules précédentes au cas où les particules (1) et (2) coïncident. La

présence des facteurs ~ et ô(pis) dans les formules telles que (~4)
donnent bien alors une valeur infinie pour l’énergie propre. De plus, 
si les calculs d’approximations successives donnent souvent en première 
approximation de bons résultats, par contre les approximations supé-

(') Sur ce point, voir, par exemple, Théorie générale des particules à spin, p. 89 
et suiv.



rieures donnent en général des intégrales divergentes. Par exemple, si 
l’on évalue l’énergie propre d’un électron résultant de son interaction 
avec les ondes transversales, on trouve zéro en première approximation, 
ce qui est satisfaisant, mais en seconde approximation, on trouve une 
intégrale divergente donnant une valeur infinie.

La Mécanique ondulatoire conduit donc ici exactement aux mêmes 
difficultés que la théorie quantique des champs usuelle, mais il semble 
qu’elle permette d’en préciser l’origine. Les valeurs infinies trouvées 
par les énergies propres résultent en effet de l’hypothèse implicitement 
admise suivant laquelle il peut y avoir des interactions entre l’électron 
et toutes les composantes du rayonnement si élevée que soit leur 
fréquence. Or, d’après la formule de Jeans, le nombre de ces compo 
santes croît indéfiniment avec la fréquence et de là résulte la divergence 
des intégrales auxquelles conduisent les calculs d’approximations 
successives. Mais la Mécanique ondulatoire du photon, en écrivant 
l’expression H(|) de l’opérateur d’interaction entre électron et rayonne 
ment y introduit, nous l’avons vu, le facteur ô(R— r) qui traduit le 
caractère rigoureusement ponctuel de l’électron. Or il est aisé de se 
rendre compte que toute la difficulté vient de ce facteur.

Cette constatation a suggéré à l’auteur du présent Ouvrage une idée 
qu’il avait exprimée dès ig35 (1 )- Cette idée consiste à remplacer 
dans le terme d’interaction électron-rayonnement la fonction singu 
lière ô(R— r), qui est nulle pour toute valeur de R autre que r 
(aiguille infiniment fine), par une fonction qui serait nulle partout sauf 
au voisinage immédiat de R = r (aiguille très fine). Les dimensions de 
la région où cette fonction ne serait pas nulle correspondraient à 
l’ancienne notion de « rayon de l’électron ». A titre d’essai ('-), il était

(K—r)»
suggéré de remplacer ô(R — r) par e où er serait une longueur
très petite jouant le rôle du rayon ra de l’électron au sens classique. On 
éviterait ainsi la plupart des divergences fâcheuses signalées plus haut 
et il est facile d’en comprendre la raison. Ces divergences résultent, 
nous l’avons vu, du fait que les ondes électromagnétiques réagissent sur 
l’électron quelque petite que soit leur longueur d’onde, et ceci en 
raison du caractère strictement « ponctuel » de la fonction d : mais, si

- <R~r|il’on substitue à â une fonction telle que e c'‘ , dès que le longueur

THÉORIE SUPERQUANTIFIÉE DES INTERACTIONS ENTRE MATIÈRE ET RAYONNEMENT. l;f|

(') C. B. Acad. Sc., t. 200, 1935, p. 36i.
(J) On pourrait aussi considérer une fonction constante à l’intérieur d’une sphère de 

très petit rayon et nulle au dehors.
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d'onde descendra sensiblement au-dessous de la valeur a, les grandeurs 
électromagnétiques de l’onde subiront plusieurs oscillations à l’intérieur 
de la sphère de rayon a et, par suite d’une compensation d’effets, 
l’action de l'onde sur l’électron sera nulle.

Avec cette hypothèse, les ondes en nombre indéfiniment croissant 
qui forment l’extrémité du spectre du rayonnement du côté des grandes 
fréquences n’agiraient plus sur l’électron et les divergences gênantes 
seraient évitées. On ne reviendrait pas ainsi, à proprement parler, à 
l’idée classique d’un électron ayant une structure et occupant une 
région finie de l’espace avec des dimensions de l’ordre de r0. Grâce à 
l'introduction de longueur a, on définirait une nouvelle sorte de 
« rayon de l’électron « correspondant à une « incertitude » sur le point 
d’application exact du champ électromagnétique sur la charge et cette 
définition, qui éviterait toute image structurale, paraît conforme aux 
conceptions générales des théories quantiqües actuelles.

Malheureusement les idées précédentes se heurtent à des difficultés 
du point de vue de l’invariance relativiste. Ces difficultés sont liées au 
caractère •« spatial » du nouveau rayon de l’électron a. On ne rencontre 
pas ces difficultés de variance si l’on garde dans le terme d’interaction 
la fonction o, mais alors, comme on introduit implicitement le caractère 
ponctuel de l’électron, les difficultés d’énergie infinie surgissent.

Ne sachant comment échapper à ce dilemne, l’auteur n’avait pas 
poursuivi dans celte voie. Mais récemment deux autres auteurs qui ne 
connaissaient pas la note citée plus haut ont repris des idées analogues.

Dans une série de très intéressants mémoires et exposés ('), 
M. Arthur March, après avoir approfondi la notion de « plus petite 
longueur » introduite par M. Heisenberg, a proposé une nouvelle 
manière de tenir compte, dans les termes d’interactions entre matière et 
rayonnement, du rayon de l’électron. Cette manière de voir est appa 
rentée à celle que nous avons exposée, mais pour éviter les difficultés 
d’invariance relativiste, M. March réintroduit sous une forme nouvelle 
la « contraction de Lorentz » de l’électron et montre qu’on parvient 
ainsi à écarter un grand nombre d’obstacles rencontrés par la théorie 
quantique des champs. Bien que la théorie de M. March ne soit pas à 
l’abri de toute objection et qu’il ait dû déjà en modifier certains points, 
il y a là une tentative irès intéressante qu’il ne faut pas perdre 
de vue.

ï8o

(') Naturwissencha/ten, 31, 1943, p- 49', Acta phytiea austriaca, 1, 1947, p. 19; 
Quantentheorie der Wellehfelder und kleintte Lange. Jora, Innsbrück, 1947.



Dans un récent travail, M. Nathan Rosen (*), sans avoir connaissance 
de notre Note de iq35 a introduit dans le terme d’interaction entre 
matière et rayonnement une exponentielle de forme gaussienne. 11 a 
rattaché l’introduction de cette fonction à une intéressante distinction 
entre « l’espace abstrait » et « l’espace observable » et il a cherché à se 
débarrasser des difficultés d’invariance relativiste en admettant que cette 
invariance n’est valable que dans l’espace abstrait.

Les travaux de MM. March et Rosen n’apportent sans doute pas la 
solution définitive du problème des énergies infinies, mais ils indiquent 
d’intéressantes voies à suivre et ces voies présentent de l’analogie avec 
celle que suggérait la Mécanique ondulatoire du photon.

THÉORIE SUPERQUANTIFIÉE DES INTERACTIONS ENTRE MATIÈRE ET RAYONNEMENT. iHl

(1 ) Phyücal Review. >947» P- 2!)S-



CHAPITRE XII.
l'ASSAGE DES CHAMPS MICROSCOPIQUES COMPLEXES 

AUX CHAMPS MICROSCOPIQUES RÉELS.

1. Généralités. — Par définition, nous appelons échelle microsco 
pique celle où il est nécessaire de tenir compte de l’existence' des 
quanta. A cette échelle, les interactions donnent lieu à des processus 
quantiques discontinus dont la représentation fait intervenir les fonctions 
d’onde de la Mécanique ondulatoire du photon qui sont des grandeurs 
essentiellement complexes. La Mécanique ondulatoire du photon est 
ainsi amenée, en étudiant les interactions à l’échelle microscopique 
des photons eL des particules électrisées, à introduire des champs et des 
potentiels complexes et à écrire une équation d’ondes du système 
photon électron permettant de calculer les probabilités des transitions 
quantiques provoquées par les interactions photon-particule électrisée.

Les considérations des chapitres précédents nous ont d’ailleurs appris 
que les grandeurs électromagnétiques complexes F représentent les 
phénomènes d’absorption, tandis que les grandeurs conjuguées F* 
représentent les phénomènes d’émission. Ces rôles respectifs des F 
et F* correspondent exactement aux rôles que le principe de correspon 
dance fait jo-uer depuis longtemps aux composantes complexes conju 
guées du moment électrique de l’atome (*).

Or, lorsqu’on décrit les interactions à grande échelle de la matière 
électrisée et du champ électromagnétique, on fait toujours usage des 
champs réels, aussi bien dans la théorie de Maxwell qui décrit les 
phénomènes observables à notre échelle que dans la théorie la plus fine 
de Lorentz qui cherche à représenter les phénomènes à l’échelle des 
particules élémentaires. Nous considérons ici ces théories, même celle de 
Lorentz, comme des théories macroscopiques, parce qu’elles ne tiennent 
pas compte des quanta et qu’elles ne peuvent, par suite, s’appliquer 
qu’à des phénomènes mettant en jeu un nombre immense de quanta et

(*) Voir Une nouvelle théorie de la Lumière, t. II, Chap. 111, p. 79.



où une apparente continuité statistique vient masquer la réalité 
discontinue.

Nous allons raisonner sur la théorie de Lorentz qui serre de plus près 
les faits élémentaires que la théorie de Maxwell. Il est bien connu 
qu’elle décrit l’interaction entre champ électromagnétique et particules 
électrisées de la façon assez dissymétrique suivante. D’une part, elle 
considère le mouvement des particules électrisées dans le champ 
électromagnétique comme s’effectuant suivant les lois classiques du 
point matériel (modifiée par les corrections de relativité si les vitesses 
sont voisines de c), la force subie par une particule de charge s étanl 
ia force de Lorentz définie par la formule

(i) f — «[E -(-• [v H]].

Les champs E et H dérivent des potentiels A et V par les formules

• —> i >)A
(?) E= — gradV--------- — t H = rot A,
' c 0/
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toutes ces grandeurs étant essentiellement réelles. D’autre part, la 
théorie de Lorentz représente l’influence exercée sur le champ électro 
magnétique par la présence et le mouvement des charges électriques par 
les équations

(3)

i ÙH
<■ <)t 

i ÙE
r. àt.

= rot E,

= rot H ■
v
c

divH= o, 

divE = p,

p étant la densité de l’électricité en chaque point, v sa vitesse, les unités 
employées étant celles d’Heaviside.

Il s’agit de savoir comment l’équation d’ondes du système 
électron photon de la Mécanique ondulatoire du photon, qui contient 
des grandeurs électromagnétiques complexes, peut permettre, quand on 
passe du microscopique quantique au macroscopique de Lorentz, de 
retrouver la représentation des interactions entre matière et rayon 
nement de la théorie électromagnétique classique, représentation 
où interviennent les champs réels. Dans cette tentative, nous allons 
être guidé par le résultat obtenu précédemment suivant lequel on a 
affaire à un phénomène mettant en jeu un nombre immense de photons. 
la valeur moyenne dans l’espace des n d’une grandeur électromagné 
tique F, valeur moyenne seule observable à l’échelle macroscopique.



est donnée par la formule (*)

(-D =2^(Fk+Fi)'
k k

où Fk est la grandeur électromagnétique complexe définie pour un 
photon dans l’état k par la Mécanique ondulatoire du photon super- 
quantifîée.

Nou? allons commencer par étudier le mr *v ;ment d’un électron dans 
un champ électromagnétique à un très ' ai d nombre de photons et 
montrer qu’on peut ainsi retrouver l’expression (i) de la force de 
Lorentz. Puis nous chercherons à retrouver de même les équations (3) 
de Lorentz pour les champs électromagnétiques réels en partant de 
l’électron d’ondes du système photon + électron dans le cas où 
l’électron est animé d’un mouvement macroscopiquement observable, 
c’est-à-dire correspondant à un très grand nombre de quanta.

184 CHAPITRE XII.

2. Mouvement d’un électron dans un champ électromagnétique 
à grand nombre de photons. — Rappelons d’abord la forme générale 
(donnée p. i5a) de l’équation d’ondes non superquantifiée du système 
photon électron

* h à CL CB, ...
(Jl TT.àt----5 1 r'CT

L au + cs,= j Hi>-

x

-I- ÏIp— K'e

cBi — a, / > <B<a*—cuB-,
r) |

Nous allons introduire la seconde quantification pour les photons, 
mais sans l’introduire pour l’électron. Cette méthode un peu bâtarde 
est justifiée par la nécessité de considérer toujours un nombre énorme 
de photons comme présents dans l’état d’annihilation. Ténant compte
de la normalisation des du photon en^-ilü, nous sommes ainsi 

amenés à écrire à la place de (5)

(0) —.4h ’(X, y ,z, ..., o = [HD-t-aePH-3e('i]»r(x, y ,z,.......... t).
2 T. I 01

(») Chapitre IX, formule (58).



où î)£p et DÙl> sont les opérateurs de l’espace des n définis par les 
formules
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( 7) ( c, )0p( Hp )(/( Cj)op,

avec

(8) H(D = —K'e

les éléments de matrice HR1 étant toujours calculés dans le système des 
fonctions propres du photon non perturbé.

Dans (6), la fonction *F est la fonction d’onde du système formé par 
l’électron et les photons et, si •F1"'1 désigne les fonctions propres de 
l’électron, on pourra toujours écrire

aC(1)=2,(c‘*)o,,1I^>(Cy')oi”

éJOU — étoJt

<;>) 'Fi X, Y. Z, rtn. nt, ..., 0'=^c'«i,dO Y, Z, l) K(/)(«0, «i,
m
t

Ma is le nombre des photons non annihilés présents est par hypothèse 
immense. Il en résulte que l’évolution de l’électron modifie infiniment
peu la valeur des n de sorte que tous les termes de la somme ^

Htl
contiennent des formes de R extrêmement voisines : on est donc 
autorisé à poser approximativement

(i<> ) *I’(X, Y, Z, «o, /ii, ..., /) = K(«o, «i- • .v> zi l)
m

== lt(«o, /<i, •••, t) T( X, Y, Z, /),

où (n) désigne l’ensemble des valeurs des n figurant dans R et 
où lF(X, Y, Z, t) définie par le développement^ est la fonction d’onde

de l’électron. L’expression de la fonction d’onde du système est ainsi 
décomposée en un produit de deux termes, dont l’un se rapporte aux 
photons et l’autre à l’électron. La perturbation subie par le champ 
électromagnétique par suite de la présence de l’électron étant prati 
quement négligeable, nous pouvons écrire

(u) -■ /t,, ..../) = 3C|. It(/i,K = HI(i/o- «1-■..)« ' ,

et tenant compte de calculs faits précédemment (p. i.'5(i), l’équation Ri)
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peut s’écrire

(12 )
h n .

----- .Ri(/*(d  n i,
2 xi

r /■> y1
= n 1 , ...)«n»fp-4v(,-i 1-+- (a A{r))_| Ri(n0. «1, • • O1!’*

où

(*3 ) V—2

k
,<'ckVk-HCkVk')> Au.,=2(ck

k
A-h  ckAkV

Multiplions (12) par R* et sommons sur les n en tenant compte de la 
condition de normalisation

04) 2iRi*=2|R,li=i’

il vient 

(>'*) Jl
■1 r. i àt

H n 'I — e [ V n- (î À )]

avec
v v£>=2 vk+ vi).-

k k
A = ^"k-A-k"=2'/,,?k(Ak“t" Ak)'

k

où Vk et Ak sont les potentiels (scalaires et vecteurs) complexes 
définis pour un photon dans l’état k par la Mécanique ondulatoire du 
photon non superquantifiée.

On remarquera que dans la définition de Vk et de Ak, les facteurs K' 
et y/n0 se sont unis pour donner la constante K = comme nous
l’avons précédemment expliqué.

Si maintenant nous explicitons l’opérateur HD qui est Hamiltonien de 
Dirac pour un électron libre, nous trouvons

(‘7 >

/ h à 
\ 14 - i àt 1

(' ? = 1,

------ -A/1) -H X-, flh.cW-
à.Cj c /

:i. O-

Nous retombons ainsi sur les équations de Dirac .pour un électron placé 
dans un champ électromagnétique dérivant des potentiels réels V et A. 
Or nous savons que, quand les approximations de l’optique géométrique 
sont valables, ces équations de Dirac nous ramènent aux mouvements



classiques de l’électron soumis aux champs électromagnétiques réels 
dérivant des potentiels V et A, mouvements tels qu’ils sont décrits par 
l’ancienne Dynamique des électrons quand on admet l’existence de la 
force de Lorentz (i).

Finalement, on retrouve donc bien la manière classique de décrire 
les mouvements de l’clectron qui consiste à lui appliquer les équations 
de la Dynamique ponctuelle et à admettre l’existence de la force de 
Lorentz définie par les champs macroscopiques réels.
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3. Justification des équations (3) de Lorentz pour les champs réels. — 
11 nous reste à chercher comment nous pouvons faire dériver de l’équation 
d’onde du système pholon-électron les équations (3 i de Lorentz qui 
lient les valeurs des champs macroscopiques réels et leurs variations 
à la position et au mouvement des charges électriques.

Nous partirons encore de l’équation (5) du système photon-éleclron, 
mais nous supposerons maintenant que nous avons affaire à un électron 
dont le mouvement correspond à un très grand nombre de quanta de 
sorte que ce mouvement soit extrêmement peu troublé par l’interaction 
avec le rayonnement. Nous pouvons alors poser (*)
(iN) 'I'o u t  ~’l’f
et admettre que l’équation

qui serait valable rigoureusement en l’absence d’interactions de 
l’électron avec le rayonnement, reste très approximativement satisfaite. 
Nous pouvons donc écrire

(■ao ) h ,,r <) ci, -h  Ai* fj ————— J' fj.
VKl 1 l)l 2

= 'F,, II,. MV — h'c — CX,
2

I —

' V ■>> uJct, — cXué,oc -----------------
. 2

SiR - r) >iyiVT.

Considérons un état de l’électron extrêmement voisin de l’étal que 
représente Soient *F'0 les composantes de la fonction d’onde 'F liée 
à cet état. Nous avons très sensiblement

c m ) fy^ M"* >r, ch 21 i11 ■? -■ *=■ •

< ' j II ^ufflt pour !«• \oii «le li.insposfi I- raisonnement fait au drlnil «lu précédent 
pa raj'raplu*.
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Multiplions l’équation (20) par Vp", sommons sur p et intégrons sur R 
dans <V. En introduisant les densités d’éléments de matrice

(22) f=-^ïpïV i = «c2Wpîvp,

relatives à la transition W0->,F'0 et rapportées au point r, nous obtenons

. hc dit-f-...
<’3> x t im—t -

OilXi — aoii
«’or,

avec la définition

hc T t) éti t®4 + £@1 CX4 1) CX2 -+■ IB; éVt
(24) HP=

2 TZl \_OX ày 1
t) (ït-3 (fV1

■ y- ----------------------Y
OZ 9

-+- ili'o ($L.\4 œ>i j.

Pour tirer de l’équation obtenue les équations de Lorentz, nous allons 
avoir à utiliser un certain nombre de remarques.

Soit d’abord *F(0) la fonction d’annihilation du photon telle que

(25) *&’=(«*)«•

Nous vérifions aisément les relations

(2.0) 2 v® <*» T*!=- 4, ^1 |2 =1 •

Si maintenant CX désigne l’une des matrices à seize lignes et seize 
colonnes (autre que la matrice unité) obtenues en faisant le produit de 
matrices (2Lr et si Oh désigne de même l’une des matrices à seize lignes 
et seize colonnes (autre que la matrice unité) obtenues en faisant le 
produit de matrices Ohr, ôn vérifie que l’on a

( 27 ) 2 aa' =°’ 2 ^ai&'=°-
ffT <7T

Enfin, en tenant compte des définitions des matrices C\,. et Ohn 
on trouve que

(28) —-2 Æ/^=2^ 6hj — £1/
(J ■■ 2, -i):

Vu- étant les composantes de la fonction d’onde d’un étal non annihilé 
quelconque.



Armés de l’ensemble de ces remarques, revenons à l’équalion (23) 
et cherchons par exemple à en tirer l’équation de Lorentz divE = p.

Pour- faire disparaître de l’équation (23) les termes en nous 
commencerons parla multiplier CX4—ÛbA, car

( 2g ) (Cl , — ) ( Cl4 -t- O?, ) = &, — t©r = o.

Puis nous multiplierons par à gauche et nous sommerons sur u et 
et sur t . Nous obtiendrons ainsi (en utilisant la convention de sommation 
des indices)
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(3«) yXu, 2 jc  i ° • dxj |_
- et/etI £0.1 (JJ/— Cl/ ]l,v

= K'^L) (i —Cltli?/,jp
i cl -h  üi

Écrivons maintenant le développement de W,jT (en ne conservant 
suivant notre règle que les ondes à énergie positive)

(3.)

c„ et les Cic étant les opérateurs de la seconde quantification respecti 
vement proportionnels à \/nn et aux y/nk. Rappelons-nous que rt0 est 
extrêmement grand et évaluons l’ordre de grandeur des divers termes 
de notre équation. Au premier membre, nous avons des termes de la

forme *Ir(^ l 177 qui sont finis.
dxj 1

Au second membre, comme le coefficient K'= — est extrêmement
_ ^

petit de l’ordre de n„ nous trouvons :

i" des termes de la forme . . . »J|l(k), et *F(kr . . . qui sont 
de l’ordre de n~4 ;

2° des termes de la forme WÿJ . . . WÿJ, qui sont finis.

Finalement, nous ne pouvons conserver dans les deux membres 
de l’équation que les termes finis ce qui, en introduisant la constante
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K = K' y'n„, nous conduit à écrire

(•)•»)

3
lie l)
21 / Âà j dx j c\4<®4 fkeJ -i- termes en />„

= K !; xpw — 
c ” a4t<vn»)

-> -> 
Cl -+- (S

2

D’après les remarques faites précédemment, les deux termes du crochet 
dans le premier membre sont égaux et, dans le second membre, les 
deuxième et troisième termes du crochet sont nuis. Quant au premier 
terme du crochet, dans le second membre, il vaut 8p. Bref, on a en 
négligeant les termes en k„

(33) hc y 0 ,r,(,, tO/cOtClt— cl/cli(S4
2 -i jLdj ÔXj a~ 2

1
2ck<rS’=4K?.

Or la définition des champs en Mécanique ondulatoire du photon (1 ) 
donne

(34) ]<,■= iKAoVÿL’
,ct/ct4cg4—@/@.,ct4 (k)

Q' = I. 3),

ce qui, en multipliant (33) par KA"0, permet d’écrire

(35) divE = -7-ne

Or, on a
(30) l\ = —^-=1 k = ;-ioc, K-Ao=^)

4-v.oo h
et par suite
(37) div E = s.

Ici E et p sont les grandeurs complexes définies par (22) et (34)- 
En passant aux grandeurs réelles correspondantes suivant le schéma 
général F,•= F + F*, nous obtenons
(38) divEr= div (E -1- E*) = p ■+■ p*= s,.,

E, est donc ici le champ électrique réel superquantifié : c’est un 
opérateur de l’espace des n. Pour obtenir une équation numérique,

(') Voir Chapitre III, formules (3o).
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multiplions les deux membres de (38) en avant par R*(n0, «i, . • .) et 
en arrière par R^ra^ n{, ...) et sommons sur n. Nous souvenant
que^ | Rt |2 = i, nous trouvons finalement

(3<l) divË = o,. ^E=V7«kEkj>

où E est la valeur moyenne dans l’espace des n du champ électrique E. 
Nous savons que, pour les champs à très grand nombre de photons,
E représente le champ macroscopique observable : il coïncide donc 
avec le champ E de la théorie de Lorentz et l’équation div E = p se 
trouve aussi justifiée (*).

Un raisonnement analogue fournirait de même (en négligeant tou jours
i /JE vles termes en Â'„) l’équation de Lorentz - — =rotH — p-- Enfin, en

conservant cette fois les termes en ku, on pourrait tirer de l’équation (20) 
les relations

( i<>) H = rot A, E = — - — grait V,
<• <)!

dont on tirerait ensuite les équations
(4i J div H = o, — I^M = rotË.

e ot

L’ensemble des équations de Lorentz peut ainsi être retrouvé à partir 
de l’équation d’ondes du système photon-électron.

Notons que, conformément à une remarque faite à la fin du para 
graphe 8 du chapitre précédent, les interactions entre particules 
électrisées apparaissent, à la lumière de la théorie précédente, comme 
liées à des transitions qui font passer le photon d’un état d’annihilation 
à un autre : c’est ce que montre le rôle des termes de la forme - 
'14-. . . ., dans les raisonnements précédents.

4. Remarque sur la relation^ cl., =— 4- — La première
<77

relation (2(1) que nous écrirons avec sommation des indices
(12 1 *1 V°T cl v O? V ’I Vt  =  4

(') Notons en passant que les champs de la théorie de Lorentz apparaissent ici. du 
point de vue quantique comme macroscopiques alors que, comparés aux champs de la 
théorie de Maxwell, ils apparaissaient au contraire du point de vue classique comme 
microscopiques.
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est aisée à vérifier d’après les définitions de (il* et tS*. Elle soulève une 
difficulté étroitement apparentée à la difficulté relative à la fonction W(0> 
que nous avons discutée au Chapitre III, paragraphe 5.

Ecrivons, en effet, les équations d’ondes du photon sous la forme

( îL CXl + Ty CXt + '4z ^l)

( T- 4- + 4- «3 -+- ik« (8 A
\ox ây az ]

La difficulté que nous connaissons déjà est que les = (a*)^ élant 
des constantes, ne sont pas solutions des équations (43) si l’on pose 
Â0 o.

Voici maintenant en quoi consiste la difficulté relative à l’équation (42). 
Multiplions les deux: équations (43) respectivement par W$l<354 et 

cX4, sommons sur les indices et ajoutons. Les termes contenant des 
dérivées sont tous nuis en vertu des définitions des Wÿ!, des CX,. et 
des übr; il nous rosie

(43)
I gT
c dt
1
c dt

(44) 2 iko *4 ifc CtllC04'l = <>, 

ou si ko

(45) nVasÆ4^T=o.

Introduisons le développement (3i ) de vL(Tt  : il vient

(46) CoM,iJVc\4t8iiraV+2eknVa4i8l^,= o,
k

c0 étant proportionnel à \/n7, le second terme de (46) est négligeable 
devant le premier et nous trouvons

(47) ’F&,Ct4Æ4'T&)~o,

relation visiblement inconciliable avec (4^).
Pour lever la difficulté relative à V'01, nous avons introduit, au Cha 

pitre III, l’hypothèse suivante : nous avono supposé que l’espace-temps 
constitue une coupe à x6 constant dans un espace à cinq dimensions 
x0 xyzt et nous avons attribué aux fonctions d’onde représentant des 
états non annihilés la forme

(48) IV: = f<n{x, Y> O



Dans ces conditions, si nous remplaçons les équations (43) par les 
suivantes
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(4si)

1 'Esy = ( a
c <)t '

I *Ï21 = (±^
c àt \ >)x

i) . ,) „
-f- Ct--> -4- CR -4-ày <)z

•)V
■ÔS,

<):

=£*■)'-

qui présentent une agréable symétrie, il devient évident que les fonc 
tions = (a*),- sont solutions de (49), tandis que les fonctions d’onde 
des états non annihilés ayant la forme (48) restent solutions de (43).

Mais il se trouve, ce qui est très intéressant, que la substitution de, 
(48) à (43), en permettant de lever la difficulté relative à W!, permet 
aussi de lever la difficulté relative à l’équation (4a). Reprenant le pro 
cédé qui avec les équations (43) nous menait à la difficulté en question, 
nous multiplierons les équations (49) respectivement par et

Cl.,, nous sommerons sur les indices et nous ajouterons, ce qui nous 
donnera

(5o) c»n'y -h^ ck\ = «u c\4 é b , n

(■»») fa

représente l’état non annihilé du photon. Si est différent de zéro, on 
en déduit

(52) fÿVa4Ciî.vfa-=o.

Or le premier membre de (02) est égal d’après la définition (3i) du 
Chapitre III à l’invariant R de la Mécanique ondulatoire du photon. 
Nous retrouvons donc seulement ainsi le résultat déjà connu suivant 
lequel, si kl masse proprep0 n’est pas nulle, l’invariant R est nul, résul 
tat qui n’est aucunement en contradiction avec la relation (42). La dif 
ficulté relative à cette relation se trouve donc levée par la substitution 
des équations (4g) aux équations (43).

LOUIS DU BROQLIE. 1 i



CHAPITRE XIII.
THÉORIE MULTITEMPORELLE DE MM. DIRAC, FOCK ET PODOLSKY.

1. Idées générales. — Nous allons maintenant examiner rapide 
ment une théorie intéressante développée primitivement par MM. Dirac, 
Fock et Podolsky (4) et approfondie par divers auteurs, notamment par 
M. Félix Bloch (2) et M. Wentzel (3). Le but de cette théorie est essen 
tiellement de mettre bien en évidence le caractère d’invariance rela 
tiviste des équations d’interaction entre photons et électrons.

Pour saisir le principe de la méthode, considérons n électrons en 
interaction avec des rayonnements. Suivant le point de vue adopté anté 
rieurement, nous appliquerons aux photons la seconde quantification 
sans l’appliquer aux électrons. Les photons sont alors repérés par un 
seul jeu de coordonnées xyz et les électrons par les coordonnées 
XiYiZ,, X2Y2Z2 ..., XnY^Z„ : de plus, on fait intervenir un seul 
temps t, temps de l’observateur ou du système. Mais cet emploi d’un 
temps unique à côté des 3(n + i ) coordonnées d’espace brise la symé 
trie entre espace et temps qui caractérise la théorie de la relativité. Pour 
rétablir cette symétrie, les auteurs de la théorie multitemporelle ont eu 
l’idée suivante : il convient d’attribuer à chaque particule un temps 
spécial de façon à obtenir 4(«+<) coordonnées d’espace-temps, mais 
en remarquant que toutes nos observations sont faites pour une valeur 
commune de tous ces temps, valeur égale au temps t de l’observateur, 
de telle sorte que les équations utilisables s’expriment finalement à 
l’aide de ce temps unique. On développera donc la théorie et ses formules 
en distinguant le temps t des photons et les temps individuels t4, ...,
tn des électrons, ce qui mettra en évidence l’invariance relativiste ; puis 
à la fin des calculs, pour en arriver à la prévision des faits observables,

(') Phys. Zeitschr. d. Sowjetunion, 2, 1932, p. 468.
(J) Phys. Zeitschr. d. Sowjetunion, 51, ig34, p. 3oi.
(3) Zeitschr. f. Phys., 86, ig33, p. 479 et 87, ig34, p. 726.
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on devra poser dans toutes les formules obtenues

(i) t\ = t-> =... = tn = t,

ce temps commun étant le temps de l’observateur.
Les auteurs de la théorie multitemporelle l’ont développée dans le 

cadre de la théorie quantique des champs usuelle où l’hypothèse impli 
cite p0= o oblige, nous l’avons vu, à admettre que les opérateurs
divE et - -jt —rotH de l’espace des n, au lieu d’être identiquement
égaux à zéro comme lesêapérateurs divH et i ^5 + rotE, donnent seu 

lement zéro quand on les applique à la fonction de répartition R (ce 
sont des conditions sur R et non des identités en chaque point xyzt de 
l’espace-temps des photons). Comme ici nous adoptons le point de vue 
de la Mécanique ondulatoire du pholon suivant lequel tous les opé 
rateurs

- —r---- h rotE, divE-t-ÆjV, divH, - ------rotH — ijA
c àt c ot

sont identiquement nuis en tout point de l’espace-temps xyzt, nous 
allons pouvoir éviter quelques complications qui se rencontrent dans les 
démonstrations usuelles de la théorie multitemporelle.

2. Équations de la théorie multitemporelle. — Considérons un 
électron en présence d’un champ électromagnétique contenant beaucoup 
de photons. En reprenant les calculs exposés au paragraphe 2 du cha 
pitre précédent, on peut écrire pour l’électron l’équation d’ondes

(■i) R,(*„, nt, O

= R, («o, n i, . ..) H n Vf (R, t) — e[v,i-l-(a A,-^] R, , . . . ) *1 p (R, t) > 

OÙ

(3) V,. = 2-(ckVk-hc*Vî): Ar=2(ckAk+CÂAÎ)- t
k k

Vket Ak sont les potentiels normés de l’onde k, Ck et Ck les opérateurs 
de la seconde quantification. R1(n0) n,. ..) est la fonction de répartition

ÎIEI^'W
des photons débarrassée du facteur de phase e ' et par suite indé 
pendante du temps.

Mais supposons qu’il y ait n électrons et attribuons à chacun un 
temps tn- Représentons par n l’ensemble des nombres n0, ra,, ... et par
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fi, r.j .. ■ Tn les rayons-vecteurs qui définissent la position des divers 
électrons. La fonction d’onde du système sera définie par

(4) Vap...v(n,T,, h, t„) = R|(n)1fJ[1,(r,, h) t„).

I96

et ne dépendra pas du temps t des photons. La théorie multitemporelle 
écrit que la fonction d’onde (4) doit satisfaire aux n équations suivantes

(5) 3T V«p...v= HS/iVBp...v-e[vr(r/> tj) iU)+ (t</>Ar(>y, */))]vap...,
2 l ut ■ ‘

/ = 1, 2, .. ., n, où HK1 est l’hamiltonien de J)irac du je électron

(6)
h < /) _ bL. r jL a< h. j L a< /> 
Ud - i-ilàxj ' + ôyj1 àz i

Les n équations (5) possèdent évidemment l’invariance bien connue des 
équations dé Dirac, invariance qui se trouve ainsi mise en évidence par 
l’introduction des temps individuels tt, ..., tn,

Au sujet des équations (5), M. Félix Bloch a fait l’intéressante 
remarque suivante. Êcrivons-les

(7)
h £>’ï’a3...v 

2 3t i dtj (y = 1, 2, ..., n),

avec

(8)

On

(9)

trouve

H</)= Hj/’ — e[vr(ry, *y)i</>-(t(/>Ar(r/f t,))}.

pour deux valeurs j et k de l’indice 

à_ <7^,3 ...* _ 2J” H(jt) ^gp.-v _ ai”
dtj àtk h àtj h

± ***■■■? = ü ü 'h i/) ffffe = —
àtk dtj h dtk h

H(/)'HU]iFap...v.

Pour que les équations (9) soient compatibles, il faut donc avoir 

(10) [Ht/', H(*'J — o

pour tout j et tout/c. Or la seule chose qui puisse empêcher Hw de com 
muter avec H(*’, c’est la non-commutation des potentiels électromagné 
tiques relatifs aux lieux Tj et r*. Nous avons Vu qu’il ne peut y avoir 
non-commutation que si les deux événements xjyjZjtj et x^ykf-k peu 
vent agir l’un sur l’autre : il y a toujours commutation si chaque événe 
ment est en dehors du cône de lumière de l’autre. En d’autres termes, 
les équations (5) d’indices j et k ne sont compatibles que si les événe-



menls xjyjZjtj et. xi,ykZi;tk peuvent être rendus simultanés par un choix 
convenable du système de référence.

Il est évident que si l’on identifie tous les temps dans les équations (5), 
on est ramené, dans le cas d’un seul électron, à l’équation (2), ce qui 
établit l’accord des équations de la théorie multitemporelle avec celles 
de la théorie à un seul temps.
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3. Introduction des potentiels de Wentzel. — Nous devons main 
tenant définir les grandeurs électromagnétiques non plus dans l’espace- 
temps à 4 dimensions des photons, mais dans l’espace-temps mul 
tiple à 4(« + 1) dimensions du système envisagé. Ici ces grandeurs 
vont être fonctions non seulement des coordonnées xyzt relatives aux 
photons, maisaussidel’ensembledescoordonnées X\y\ zK tx . .. xnynzntn 
des n charges électriques. Le développement de la théorie multilem- 
porelle a amené MM. Dirac, Fock et Podolsky à introduire des 
potentiels d’un type nouveau dont M. Wentzel a ensuite souligné 
l’importance. Avec M. Dirac, nous les nommerons les potentiels de 
Wentzel.

Pour introduire ces nouvelles grandeurs, nous nous servirons d’abord 
des conceptions classiques qui attribuent à chaque charge électrique 
ponctuelle uue ligne d’Univers bien déterminée. Sur la ligne d’Univers 
de la y° particule de charges; (si c’est un électron s7 = — e), nous 
choisissons un point de coordonnées d’Univers x^ (p = 1, 2, 3,4) 
correspondant à l’abscisse curviligne Sj comptée à partir d’une origine 
arbitraire prise sur la ligne d’Univers. Ceci fait, si nous considé 
rons les coordonnées xyzt du photon, le potentiel de Wentzel dans 
l’espace-temps 4(w + 0 dimensionnel au point de coordonnées xyzt, 
xtyt Zit,, . .., xnynz„tn, est par définition en notation d’Univers

(n) A^O, ...,/„) = y, -’-Sü jO luf dSh

ou encore

(12) Ap.0, ...,/„) = A{i0)(ar, y, n _v 11 rVVdsn
^ - X

A{$!(x,y, ", t) élanL la composante p du potentiel tel qu’il existerait en 
l’absence des charges et D; étant la fonction singulière invariahle définie 
au paragraphe 8 du Chapitre VIII et relative à la yc charge, c’est-à-dire 
la fonction D(r — Ty, t — tj).
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Si l’on admet la nullité de p.0> la fonction D(r, t) se réduit, nous le 
savons, à la fonction singulière de Pauli-Heisenberg

198

(i3) A(r, 0 =
o(ct -+- /•) — 3(et — r) 

r

L’expression (i3)’de A conduit aisément aux intéressantes conclu 
sions suivantes ; pour un point xyzt situé dans la partie avenir du cône 
de lumière relatif au point choisi sur la ligne d’Univers de là ye charge, la 
contribution de celte je charge au potentiel de Wentzel est nulle; pour 
un point xyzt situé sur la partie passé du cône de lumière relative au

M ne reçoit aucune action 
[<te la ligne d’Univers de M,.

M reçoit l’action retardée 
de Mÿ et l’action avancée de My.

'M reçoit seulement l’action retardée de Mÿ.

Fig. 3.

point choisi sur la ligne d’Univers de la j° charge, la contribution de 
cette j° charge au potentiel de Wentzel est égale à la différence entre le 
potentiel retardé et le potentiel avancé; enfin pour un point xyzt situé 
en dehors du cône de lumière relatif au point choisi sur la ligne d’Uni 
vers de la j° chargera contribution de cette charge se réduit au poten 
tiel retardé. C’est dans ce dernier cas que l’on doit se placer pour toutes
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les charges j (c’est-à-dire qu’on doit choisir sur les lignes d’Univers des 
points tels que les régions extérieures aux cônes de lumière aient des 
parties communes et placer le point M dans cette partie commune) pour 
pouvoir faire t= — . . . tn. Les schémas ci-contre illustrent les trois 
cas que nous venons de distinguer.

Il nous est maintenant facile de trouver deux équations-importantes 
auxquelles satisfont les potentiels de Wentzel. Tout d’abord, on a

(1 i )   Ajj. =   A^ ^ a D/ dx\>\

Or, A[(” étant le potentiel de la Mécanique ondulatoire du photon dans 
le vide,
05)  A|j.n> = - dD,^—AjjD/,

d’où
(it>) CDA.j. = — kl Ajj.,

et si l’on suppose k\ négligeable

(17)   Ajj. = O.

Ensuite calculons la divergence ^ ~- 

tion des indices)

Nous trouvons (avec somma-

(18)

Mais

'Mjj _ 6>Ajj.0) JJ_
JmJ 8 n J

JDj
<>Xn

(19)
à\i j _ ,)\)j

puisque Dy ne dépend que de x^ — x{£. D’où

( 20 j
^u. — ftejj.

V

car les A^1 satisfont à la relation des potentiels de Lorentz.
Jusqu’ici, nous avons défini les potentiels de Wentzel en nous ser 

vant de l’image classique qui attribue à chaque particule électrisée une 
ligne d’Univers bien définie. Mais nous savons qu’une semblable image 
n’est plus valable en Mécanique ondulatoire. Pour nous en affranchir,

5ÉDËSSC®5> 
'a r c h iv e s .

DE
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nous définirons les polentieis de Wentzel comme des grandeurs obéissant, 
quand[xu= o, aux équations

(21) DA^-o;

Remarquons que les grandeurs ainsi définies sont les grandeurs com 
plexes dont on déduira les grandeurs réelles par la formule usuelle

(22) F,.= F + F‘.

4. Déductions des équations de Lorentz. — Nous déduirons 
les champs (complexes) de Wentzel à partir des potentiels complexes 
par les formules classiques

(2.3) <>, V = I, 2, 3, 4).

De cette définition, dérivé immédiatement les équations

(24)
e)F :j _v  dF vp dF pjx
àlr, àx-,

où p, v, p sont trois des quatre nombres 1, 2, 3, 4• Écrites en notation 
vectorielle, elles nous donnent

(22) 1
- —— = rotE: divH=s=o,c r)t

les champs E et H étant les champs complexes de Wentzel qui sont des 
opérateurs de l’espace des n dont la valeur dépend des coordonnées 
xyzt, Xiyt Zi ti ... xnynznt.n. .Soit / l’une quelconque des compo 
santes des champs de Wentzel : par définition, nous poserons comme 
valeur moyenne de cette composante

(2(i) f {T, t, tu tn)

dx, ..., dXn ü**( fl j /’,, /i, ..., /*,[, ta ) J ( /l, /*,, , ..., //,).

L’on voit que dans (26) la moyenne ne porte pas sur les coordonnées 
xyzt des photons, mais seulement sur les nombres n. Donc/dépend de 
xyzt et des temps individuels ... tn des électrons.

Multiplions (2.0) par R* à gauche et par R à droite, sommons sur les n, 
intégrons sur les coordonnées d’espace des électrons et ajoutons au
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résultat obtenu la quantité complexe conjuguée, il vient :

(a;). I dHr
c àt

— rotEr divHr= o.

Partant toujours des définitions (23), nous trouvons de même

(28)
dF M.V à <MV ,)' à

tkrv <)x,± àx., àx., àx., àx. (div A') -4-   A,jl ,

d’où, en vertu de (21 ), c’est-à-dire en supposant p0 = o,

(2<j)
àF jiv _
()X\ Jmd

£/ àDj
0-1 = 1, 2, 3, 4).I 8 7! àXy.

En notation vectorielle, ces équations s’écrivent

(3o) divE=-y-ü- *Bi; 1 « =rotH-y
j c c àt ’ c àt <Ll 8jc  " ’

I àE

)

Opérons sur ces équations comme sur les équations (aS); nous 
trouvons
(3.) divEr = -2^^; ^^H.-^gradD;.

Pour trouver les équàtions applicables aux faits pbservables, nous devons 
maintenant opérer dans les formules (27) et (3i ) la confusion des temps 
définie par la relation ( 1 ). Mais, avant de procéder à cette opération, 
nous ferons quelques remarques préliminaires.

Revenons à la définition (26) des valeurs moyennes. Il est d’abord à 
noter que l’on a

(32)
àf _ 2ic i

àtj = Ht/q,

comme cela résulte aisément des raisonnements généraux classiques 
rappelés au Chapitre I. D’autre part, comme la fonction W de la théorie 
mullitemporelle ne contient ni le temps t des photons, ni les coordon 
nées xyz, on a évidemment

(3D o|ad/ = Srad /•

Mais si l’on opère la confusion des temps / (p, t, . tn) devient
/(r, t, t . . . t) et il y a lieu de considérer la dérivée totale -^/par rap-

àt'
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port à t qui est égale à

(34) / (ri t, f> t)

1 - t

Les quantités [f, H(/)] qui interviennent ainsi proviennent de la non- 
commutation de la grandeur f avec les termes

a(/>Ar(r/, lj ))]

contenu dans H(;) : elles sont facilement calculables à partir des formules 
de commutation des grandeurs électromagnétiques quand f est une com 
posante de champ

Revenons aux équations (27) et (ni) et opérons-y la confusion des 
temps individuels. Dans la première équation (27), nous aurons à 
remplacer

<ÏB. r _ dH r
àt ât par à |r7tHr |H,, IK/'J.

Or, on peut vérifier en partant des formules de commutation du Cha 
pitre VIII, paragraphe 2, que [H, , H(/)] =0. Il reste donc

(H5) —- H,- = rotÈ,. divHr=o,
' c àt

c’est-à-dire les équations de Lorentz sans second membre pour les 
grandeurs réelles moyennes.

La transformation des équations (3i ) est plus délicate. Comme nous 
avons
CM>) ('. = — 4*S(r — r,): (grad b/),;. ,= ».

nous trouverons d’abord

37) divE, = > E/S(r- —T/)

dv„-Z-2/-/*......
/ n

x I {r,, /,), ..., 'Yf'{ i„, t„) |îo(r —r/)

= 2«/,«V'!*(r> 0=2?/*



Pj étant la densité de charge au point r à l’instant t associée au j° élec 
tron, puis

(38) ^E,= rotHr + 2^[E,, =
/

Or on vérifie à l’aide de la formule (69) du Chapitre VIII que l’on a

(39) [E, Hi/i], <=e/ A.ts(r-r/),
1 !\ 7Z l

et par suite

(4°) y^[-Er, II'/'J =2ïE/'2/-:-/rfr”
} } U

= JC*/6’*1'pn(T, O = —/’ 
i i
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où ij est la densité de courant associé au je électron.
Finalement, en désignant par p et i les densités de charge et de cou 

rant électriques associées à l’ensemble des n particules chargées de 
façon à avoir

(40

il vient

(4a) divE,= I Ær 
C ()t

= rolH,.— i,

c’est-à-dire les équations de Lorentz avec second membre.
Telle est la manière de déduire les équations de Lorentz en théorie 

multitemporelle.
Ces considérations ont été souvent présentées d’une façon peu intel 

ligible parce que l’on négligeait de préciser que l’on considère toujours 
des moyennes impliquant une certaine vue macroscopique des phéno 
mènes. Comme dans les raisonnements développés dans les précédents 
chapitres dans le cadre de la Mécanique ondulatoire du photon, c’est 
seulement en faisant intervenir de telles moyennes macroscopiques que 
l’on peut retrouver les équations de Lorentz.

La formule (20) que l’on peut écrire

1 dV 
c dt

+ diYA = -2^D,-(43)



conduit à la relation

20/j CHAP. XII!. — THÉORIE MULTITEMPORELLE DE MM. DIRAC, FOCK ET PODOLDSKY.

(44) + divA'-=-2ftn'’

puis, après confusion des temps individuels, à 

ù;, 1 i V,^div Â7=2^[v; II'-'],,,,.

Or la formule de commutation (68) du Chapitre VIII donne, en 
remarquant que pour t = tj, Dy et ses dérivées secondes sont nulles

(40) [v;, H(/»](;=(=0.

Il nous reste donc la formule

(47) - divA, = o.c àt

La relation de Lorentz entre les potentiels est donc aussi satisfaite 
dans la théorie multitemporelle.

La théorie multitemporelle a donné lieu à d’intéressantes tentatives 
concernant la question de l’énergie propre des particules. Nous avons 
vu comment les théories quantiques conduisent pour ces énergies propres 
à des valeurs infinies inacceptables. En se servant de la théorie multi- 
temporelle et des potentiels de Wentzel (*), on a cherché à éviter cette 
difficulté. Malgré quelques résultats intéressants, il ne semble pas que 
ces tentatives aient abouti jusqu’à présent à un succès complet : aussi 
n’y insisterons-nous pas ici.

(■) Voir notamment G. Wk s t z b l , Zts. f. Phys., 8fi, ig33, p. 479"ct 635; t*. A. M. Dir a c , 
Annales de l’Institut Henri Poincaré, *J, 1939, p. 13.
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