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PREFACE

Dans le présent volume, j'al exposé la théorie des particu-
les de spin % (électroms de Dirac) en comparant mes points de
vue sur quelques grands probldmes & ceux que d'autres auteurs
ont indiqués dans des mémoires récents.

J'ai commencé par rappeler les principes généraux de la Mé-
canique ondulatoire et de son interprétation physique. Puis j'ai
introduit la notion de spin d'une particule et je 1l'ai examinde
sous divers aspects. J'ail fait ensuite un exposé de la théorie
de 1'électron considéré comme un corpuscule de spin % (théorie
de Dirac).

Je n'insiste pas ici sur les phénomdnes qui en ont regu une
interprétation satisfaisante alors qu'ils é&taient rebelles &
toute explication compldte par les anciemmes théories; pour ces
question, je renvoie & mon livre "L'électron Magnétique"®)

Par contre, j'ai analysé une dynamique relativiste des
fluides & spin et des particules & spin due & M. Weyssenhoff
pour montrer sa liaison avec des conceptions exposées antérieu-
rement.

La dernidre partie de cet ouvrage est consacrée & la possi-
bilité de la mesure du spin de 1l'électron : la validité des ar-
guments de Bohr tendant & prouver qu'il est impossible de me-
surer directement le spin de l'électron me semble en général 1li-
mitée au cas des vitesses <faibles par rapport & celle de la
lumidre. Enfin 1l'opinion de M. Pauli, selon laquelle la mécani-
que ponctuelle d*un éiectron de Dirac est identique A la mécani-
que ponctuelle d'un électron sans spin, est en contradiction
avec mes conclusions. Et sur ce point, dans 1'état actuel des
recherches, un examen, méme approfondi, ne permet pas encore de
se prononcer.

La présentation que 1l'on a domnée & ce livre a été volon-
tairement choisie pour conserver & ces réflexions leur caractére
d'actualité.

Je tiens & remercier bien vivement M.Michel Cazin de l'aide
trds importante qutil m'a apportée pour la publication du pré-
gsent ouvrage.

Louis de Broglie.

(1) "L'électron Magnétique" (HERMANN, Paris, 1934).




CHAPITRE 1

LA MECANIQUE ONDULATOIRE
NON RELATIVISTE
A UNE FONCTION D’ONDE

i. IDEES ET EQUATIONS GENERALES
DE LA MECANIQUE ONDULATOIRE

L'idée qui a servi de point de départ & la Mécanique ondu-
latoire a été la suivante : puisque pour la lumidre, il existe
un aspect corpusculaire et un aspect ondulatoire reliéds entre
eux par la relation :

énergie = h x fréquence
oh figure la constente h des quanta de Planck, il est naturel de
supposer que pour la matidre aussi, 11 existe un aspect corpus-~
culaire et un aspect ondulatoire, ce dernier longtemps méconmu
Ces deux aspects doivent 8tre reliés par des relations générales
ol figure la constante de Planck et doivent contenir comme cas
particuliers les relations applicables & la lumidre.

‘Pour développer cette idée, il faut chercher & associer un
élément périodique au concept de corpuscule. Imaginons un cor-
puscule qui se meut d'un mouvement rectiligne et uniforme dans
une certaine direction en 1l'absence de  tout champ. Nous fixons
uniquement notre attention sur 1'état du mouvement du corpuscule,
abstraction faite de sa position dans 1l'espace. Ce mouvement
gs'effectue dans une certaine direction que nous prendrons comme
axe des z et 1l est défini par les deux grandeurs "énergie® et
*quantité de mouvement® dont les expressions relativistes en
fonction de la masse propre m, du ‘corpuscule et de sa vitesse
v=[c sont donndes par les formules :

W— Mo c? T’.= mg v
Vi-p? - VI-p?

d'ol 1'on tire la relation :

Dlop_V¥W
|Pl=p="¢F
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L*état de mouvement se trouve ainsi défini dans un certain sys-
téme de référence Galiléen, pour un observateur A qui emploie
des coordonnées x,y,z,t.

Soit maintenant un autre observateur B qui possdde par rap-
port au premier la vitesse ¥V dans la direction oz, autrement dit
qui est 1ié au mouvement du corpuscule. Nous pouvons supposer
que B a choisi un axe 0,2z, qui glisse sur oz et des axes O,x, et
G yo paralldles & ox et & oy. Cela étant, les coordonnées x,,¥, ,
2, ,t, employées par B sont lides aux coordonnées x,y,z,t de
l'observateur A par les formules de la transformation de
Lorentz :

(B

z-—vt t <?

T IR RTVER VR

Or pour l'observateur B, la vitesse du corpuscule est nulle:
il pose donc comme valeurs de i'énergie et de la quantité de
mouvement : ’

W, = m, c? o =0

Suivant notre idée de base, nous devons maintenant chercher
3 introduire un élément périodique et nous tenterons de définir
1'é1lément périodique souhaité sous la forme d'une onde station-
naire dans le systdme propre du corpuscule (aystime de 1'obser-
vateur B). Nous poserons donc :

H'Jo — Ae 27i%t,

et nous supposerons A constant; v, est la fréquence propre de
lt'onde et doit dépendre de la nature du corpuscule envisagé.
Quelle valeur devons nous donner & cette constante ? Nous devons
évidemment chercher & la définir & partir d'une valeur non nulle
qui caractérise le corpuscule dans son systdme propre et nous
n'avons & notre disposition comme telle grandeur gque 1l'énergie
Wo. Etant domné 1le r8le joué par la constante des quanta dans
toutes les théories quantiques, il est naturel de poser :
_ W _ mec?
Yo = T Th

analogue & la relation d'Einstein pour les photons.

Comment va se manifester pour 1l'observateur A 1'élément pé
riodique que nous venons de définir pour 1'observateur B 7 En
supposant, ce qui est 1'hypothése la plus simple, que!p soit un
invariant relativiste, 1l suffira pour obtenir 1'expression de
l'onde pour A de substituer dans son expression pour B la qua=-
tridme équation de la transformation de Lorentz, d'ol :

Z

P (x,y,2,t) = Ae 2RV (E-F)

avec

V== Yo N V=

Vi-F
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Ainsi pour l'observateur A, les phases de 1'élément périodique
introduit sont réparties comme les phases d'une onde plane mono-
chromatique dont la fréquence v et la vitesse de propagation de
la phase V ont les valeurs indiquées.

En comparant les équations précédentes, on trouve W= hv,
relation qui sera évidemment valable dans +tous les systémes
Galiléens puisque rien ne distingue 1'observateur A des autres
observateurs Galiléens. Pour la longueur d'onde de l'onde(b d'a-
prés la définition usuelle, on trouve :

V _c® h _h
)‘z'if'“?T’Rﬁ'“']T ,
formule fondamentale qui, pour les faibles vitesses, prend 1la
forme approchée :

h
xz:'ﬁﬁ?

vérifide avec une grande précision par les expériences de dif-
fraction par les cristaux des électrons et autres particules
(y compris les neutrons) ainsi que par les expériences de BSrsch
sur la diffraction des électrons par le bord d'un écran.

Pour une particule de vitesse trds voisine de c, on trouve

v=V=Cc¢ W=hV p:%:?

On retrouve ainsi les formules fondamentales de la théorie des
photons (quanta de Lumidre d'Einstein).

Nous pouvons maintenant écrire 1la forme dutp dans le sys~
téme A :
b = Ae

et plus généralement, si les axes rectangulaires ont une orien-
tation quelconque,

z—gi' (Wt—p,z)

2R 2R —
(Wt —pxXx~p,y—p:2) (Wt-p.7") -
dJ(x,y,z,t):AeT ” —Ae ™ P

On voit donc qu'au facteur 3%1 prés la phase de l'onde est

égale & l'action Hamjltonienne du corpuscule. En constatant
cette proportiomnalité entre l'action Hamiltoniemne du corpuscu-
le et la phase de l'onde qui lui est associée, on s'apergoit que

le principe d'action stationnaire valable pour la dynamique des
" corpuscules doit n'étre qu'une traduction du principe de Fermat
valable pour l'onde associée. Mais la théorie ondulatoire nous
apprend que le principe de Fermat est valable seulement dans le
domaine ol 1'optique géométrique est utilisable et perd sa va-
leur dans le domaine de 1'optique physique proprement dite. On
arrive ainei A& 1l'idée <fondamentale que l'ancienne Mécanique
(aussi bien sous 1u forme relativiste que sous sa forme Newto-
niemme classique) n'est qu'une approximation ayant le méme do-
maine de validité que l'optique géométrique. Des lors, on est

2




8 CHAPITRE | - 2

amené & concevoir la nécesgité de construire une nouvelle Méca-
nique qui serait & la Mécanique ancienne ce qutest 1!'Optique
ondulatoire & 1'Optique géométrique. Ctest cette idde que nous
allons développers

2. EQUATIONS D’ONDES DE LA MECANIQUE ONDULATOIRE

Nous sommes parvenus & 1l'idée qu'il faut associer & un cor-
puscule une onde représentée par une fonctiond(x,y,z,t) qui
sera généralement différente de zéro dans une région étendue de
l'espace. En d'autres termes, nous adjoignons & 1l'idée de cor=-
puscule celle d'un champ au sens de la physique du champ, le
champ ¢ .

La fonction d'ondecb devrs satisfaire & une certaine "équa-
tion de propagationu" qui va remplacer les €&quations classiques
de Newton et servir de base & la nouvelle Mécanique. Nous allons
chercher & écrire cette d&quation sans nous préoccuper pour
l'instant de satisfaire aux exigences de la théorie de la. Rela-
tivité. Nous obtiendrons ainsi une Mécanique onduwlatoire non re-
lativiste valabl: seulement pour les mouvements de vitesses tris
inférieures & c.

‘Considérons un corpuscule de masse m se déplagant dans un
champ de force qui dérive de la fonction potentielle U(x,y,z,t).
Soient P 1"impulsion du corpuscule, E son énergie totale : .

E =—;—mV2+U(X’YrZ:t)=%n’ (Px2+Py2+Pz2)+U (X,Y,Z,t )

Par définition, nous appelons <fonction Hamiltonienne
H(x,y,z, t,px,py,pz,ts la fonction des ¢oordonnées, des composan-
tes de l'impulsion et du temps qui donne la valeur de l'énergie.
On a donc ici :

H(X,Y, 2,05 PoPyoPe) = 50 (PP, 2+ ) +U (x,y, 2, 1)

Le développement de la Mécanique ondulatoire a montré que
lton obtient 1l'équation de propagation pour les ondes ) & par-
tir de la fonction Hamiltonienne H par 1le procédé suivant : on
commence par remplacer dans l'expression de H chacun des moments

p, par l'opérateur-—zgL -é%— ce qui <fournit 1l'opérateur :

h 9 h 9 h a)
= t, - —— =~ y—
Hop H(X’Y’Z” Bni 9x | 2mi dy 2w oz
dit "opérateur Hamiltonien® ou plus bridvement Hamiltonien. Puis
ont éderit :

h
2mT °P‘!)
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() étant la fonction d'onde. On obtient ainsi 1'équation d'ondes
du corpuscule considéré.

En explicitant la forme de H,,, on obtient :

h o _ b

(1,a) 3ni ot - Brm

ou encore :

A(.!)+U(’)

A¢_8n% U = Axim %%

Cette équation de propagation étant du premier ordre par
rapport au temps, permet en principe de calculer la forme de la
fonction ¢ & tout instant t quand on connait sa forme J(x,y,z,t,)
a4 1l'instant initial t,. )

Ltéquation (I,a) est & coefficients complexes : la fonction

a un caractire essentiellement complexe. Nous désignerons par

F” la gquantité complexe conjuguée de la quantité complexe F.

Lt'équation satisfaite par la fonction 4)*est 1'équation complexe
conjuguée de (I,a). .

Si nous posons par définition :
p=bd” 5 Fopho (47 gad-bgraid)

on démontre en partant des équations satisfaites par ¢ et ¢* que
l'on a :

-g%+-dw =0

Cette équation & la forme classique d'une équation de con-
tinuité. Si 1l'onde ¢ occupe un domaine D (fini ou infini) et est
nulle aux limites de D, on tire de 1l'équation précédente que :

./D.PdT =A |bj2 dr

est constante au cours du temps. Comme la fonction ¢, solution
d'une équation lindaire n'est définie qu'a une constante multi-
plicative preés, on pourra choisir cette constante de fagon &

avoir constamment :
2 -
A |LH d‘t 1

On dit elors que ¢ est normée et nous admettrons que toutes les
fonctions ¢) doivent toujours &tre normées, hypothdse que justi-
fiera l'interprétation physique donnée plus loin & la grandeur
|¢b]* . Meme normée, la fonction ¢ contient encore un facteur ar-
bitraire e'® de norme 1.

On démontre que la Mécanique ondulatoire dont nous venons

d'obtenir 1l'équation de base admet 1la Mécanique ancienne comme.

approximation au degré d'approximation de 1l'optique géométrique.
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Un cas particulier important est celui ol la fonction U ne
dépend pas du temps (champ extérieur permanent). L'équation des
ondes () admet alorse des solutions“monochromatiques® ne contenant

2ni gy
le temps que par un facteur exponentiel de la forme e h .Une
telle onde est solution de 1'équation :

Ad+BRE-U(x,y,2,t)] P =0

comme cela résulte par subsiitution dans 1'équation (I,a).

Dans le cas plus particulier encore o U=0, on trouve
comme solution de 1l'équation des ondes les "ondes planes mono-
chromatiques™ du type :

¢ _ po P [E-VERE (ax+By+y2)]

ol A est une constante et «,B3,y sont les cosinus directeurs
d'une méme direction 1liés par la relation o’+f'+y?=1 . Cette so-
lution représente une onde plane monochromatique de  fréquence

v=%— et de longueur d'onde :

—h _h_ h
VZmE P mv

se propageant dans la direction oc,ﬁ,Y. Nous retrouvons donc ain-
si (avec seulement une différence sans importance dans la défi-
nition de la fréquencev ) l'onde plane monochromatique que, das
ses débuts, la Mécanique ondulatoire avait fait correspondre au
mouvement rectiligne et uniforme en l'absence de champ d*un cor-
puscule de masse m, d'énergie E et de quantité de mouvement mv
dans la direction o,f3 Ye

3. NOUVELLE CONCEPTION DES GRANDEURS ATTACHEES
A UN CORPUSCULE

Dans la méthode que nous venons de développer, on subatitue
aux grandeurs p,,p,,P,, qui, dans l'ancienne Mécanique, repré-
sen:ai%nt laE 'quant:i.'l:éh de mouvements du corpuscule lesg opérateurs

5l ox’  Pm g;»—m 35 Cette 1dée de substituer ou de

faire correspondre des "opérateurs" aux "grandeurs® classiques a
été érigée en principe général au cours du développement de la
Mécanique ondulatoire. On a admis qu'd toute grandeur mesurable
(observable) définie par la Mécanique classique doit correspon-
dre dans la nouvelle Mécanique un certain opérateur. Pour former
cet opérateur & partir de l'expression classique de la grandeur
exprimée & l'aide des variables de Lagrange X,¥,2,Py D, »P:,00 &
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été amené & adopter la régle suivante : aux grandeurs bp,,P,,pP,
on fait correspondre, nous 1le savons d4déja, les opérateurs
S W A U M oott oo

>l Ox T ay’ w9z Aux grandeurs x,y,z, on fa cor=
respondre les opérateurs x.,y.,z., c'est-a-dire multiplication
par x,y,z. Nous n'aurons qu'ad remplacer dans l'expression clas-
sique de la grandeur considérée en fonction de x,y,2Z,Px,Py Pz
les variables canoniques par les opérateurs correspondants pour
obtenir 1l'opérateur qui correspond & la grandeur. Cei opérateur
pourra contenir le temps comme paramdtre numérique si 1'expres-
sion de la grandeur le contenait. Remarquons que c’est précisé-
ment en appliquant la méthode précédente & la grandeur “énergie"
que nous avons obtenu l'opérateur Hamiltonien.

En appliquant cette méthode & la composante suivant l'axe
des z du moment cinétique d'un corpuscule par rapport & l'origi-
ne, on trouve 1l'opérateur :

_ __h 9 ., 90y_ _h 9
(MaJop =X Py =Y Pu)eop = =2 (* 3y~ ¥ 3¢) =3t 3¢
¢p étant 1'azimut compté autour de oz.

Les opérateurs que l'on forme ainsi en Mécanique ondula-
toire pour 1les faire correspondre & des grandeurs mesurables
sont des opérateurs en général complexes appartenant & la caté-
gorie des opérateurs hermitiens que nous allons maintenant défi-
nir : nous dirons qu'un opérateur est Hermitien dans un domaine

D si :
/f*Agd'c =/gA"f*d-r
. D D

ol £ et g sont deux fonctions arbitraires dans D, assujetties
seulement & 8tre dans ce domaine finies, uniformes et continues
et nulles gux limites de D de fagon que les intégrales de sur-
face apparaissant par 1l'intégration par parties de./g soient
nulles.

Tous les opérateurs qui en Mécanique ondulatoire correspon-
dent & des grandeurs observables sont hermitiens. On peut par
exemple le vérifier aisément pour H et M, précédemment définis.
Nous verrons-plus loin la signification physique de ce fait.

Les opérateurs de la Mécanique ondulatoire ne sont pas seu-
lement hermitiens; ils sont aussi lindaires, c'est-a-dire tels
que -

Alp+ap,) = A +Ap, ; Alcgp) =cAgy
¢ étant une constante complexe guelconque. '

Il y a encore lieu de distinguer en Mécanique ondulatoire
deux catégories d'opérateurs : les opérateurs "completa” qui in-
téressent 1l'ensemble des variables du domaine D (ieci : x,y,z) et
les opérateurs "incomplets" qui n'intéressent qu'une partie de
ces variables. L'opérateur H est le type d'un opérateur complet
alors que M, est incomplet.

2
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Bref en Mécanique ondulatoire, on fait correspondre & toute
grandeur physique observable attachée & un corpuscule un opéra-
teur linéaire et hermitien en génédral complexe. Mais il est bien
évident que si l'on parvient & effectuer une mesure précise de
cette grandeur, cette mesure s'exprime par wun nombre réel. La
Mécanique ondulatoire doit donc pouvoir dire quels sont les nom-
bres réels qu'une mesure précise peut nous fournir comme valeurs
d'une certaine grandeur physique.

De l'opérateur lindaire et hermitien que la nouvelle Méca-
nique fait correspondre & une grandeur mesurable, nous devons
donec pouvoir déduire wune série de nombres réels représentant
tous les résultats possibles de la mesure de cette grandeur. Or
cecl est précisément possible parce que les opérateurs lindaires
et hermitiens tels que ceux employés en Mécanique ondulatoire
ont une suite de "valeurs propres* qui sont toujours des nombres
réels. Nous allons étudier ce point.

4. VALEURS PROPRES ET FONCTIONS PROPRES
D'UN OPERATEUR LINEAIRE ET HERMITIEN

Soit A un opérateur lindaire et hermitien. Ecrivons 1l'égqua-

tion : :
(1,b) Ag = e
ol f est une fonetion de x,y,z, et « une constante. Le temps t
peut figurer comme paramdtre danes A, et «. Par définition, nous
nommerons "valeurs propres de l'opérateur A dans le domaine D"
les valeurs de la constante « pour lesquelles l'équation précé-
dente a au moins une solution ¢ (x,y,z,o) dite *fouction propre*
jouissant des propriétés suivantes : elle est uniforme et conti-
nue dans D et 1l'intégrale du carré de son module dans D est con-

vergente. S1 D est infini, cette derniére condition entralne que
" ¢ doit décroltre assez vite & 1'infini pour assurer ladite cone-
vergence. De plus, si D est fini, ¢ doit &tre nulle aux limites
de D. '

Nous admettrons 1l'existence des valeurs propres pour les
opérateurs rencontrés en Mécanique ondulatoire et nous allons
montrer gqu'elles sont réelles. En effet, de (I,b) et de sa con=-
jugude, on tire :

A [¢"Ag — @A™ @ ]dr =(oc—.oc*)‘/D[cp|2 dx

Comme par hypothése, A est hermitien, le premier nombre est
nul : l'intégrale du second nombre étant essentiellement positi-
ve, on doit avoirox=o*, donc o est réel.

L'ensemble des fonctions propres de (I,b) forme le spectre
de cette é&quation. ©5i ces valeurs propres sont isolées, le
spectre est discontinu, c'est un "spectre de raies". C'test au



MECANIQUE ONDULATOIRE A UNE FONCTION. D'ONDE 13

contraire un "spectre continu®" si la suite des valeurs propres
est continue. Le spectre peut d'ailleurs &tre en partie conti-
nu, en partie discontinu.

Occupons-nous d'abord des spectres discontinus. Déasignons
par «; une valeur propre isolée : 11 existe au moins une fonction
propre ¢; (%,y,2,t) qui lui correspond. Montrons que l'ensemble
des fonctlons propres du spectre discontinu forme un ensemble
orthogonal, c'est-a-dire que si P, et o, sont deux fonctions
propres correspondant & des valeurs proprés distinctes o, et o

on a
/‘PL“ ¢; dT=0

En effet, puisque tous les o, sont réels, nous tirons de (I,b)
et de sa conJuguée :

/D[“PL Aoy —py A'p." JdT=(ot;- “J)/D‘Pf ¢ dv
et, le premier membre étant mnul (puisque A est hermitien) et
cx;éoc le résultat annoncé en résulte.

La démonstration précédente serait en défaut pour deux fonc
tions propres correspondant a4 une méme valeur propre. <uand ce
cas se présente, on dit qu'on a affaire & une valeur propre mul-
tiple ou dégénérée. Soit &, une telle valeur propre & laquelle
correspondent p fonctions propres lindairement indépendantes

@h,znz,..., On peut, connaissant ces p fonctions propres
ind endantes, les remplacer par p combinaisons linéaires li-
néairement indépendantes de ¢ ¢, car, l'équation (I,v)

étant lindaire, de telles coﬁbinaisons sont encore solutions
pour la méme valeur o; de %. On voit aisément que l'on peut
choisir ces combinaisons lindaires de fagon qu'elles soient or-
thogonales. On peut donc méme en ce cas choisir les fonctions
propres de fagon & avoir un systéme orthogonal.

Les fonctions propres n'étant évidemment définies qu'a une
constante complexe multiplicative prds en raison du caractére
lindaire de (I,b), on peut choisir le module de cette constante

de fagon que :
Jg |?112d1 =1

La fonction ¢, est alors "normée"” : elle contient encore un fac-
teur arbitraire de module unité e'® Les fonctions ¢, une fois
normées forment un systéme "orthonormal” tel que :

v f‘PL*‘PJ d‘r=8-”-

ol 8 est le symbole de Kronecker (B-LJ-_=O Si i=%j; 8.=1).

Passons au cas du spectre continu. Si A posséde un spectre
continu, & toute valeur propre de ce spectre correspondra une
fonction propre ¢ (z,y,2,0) ol nous écrivons o comme une varia-
ble parce qu'elle varie continuement dans le spectre. On démon-
tre aisément que toute fonction propre du spectre continu est
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orthogonale aux fonctions propres du spectre discontimu s'il y

en a un. Mais, pour exprimer que les fonctions propres du spec-
tre continu sont normées et orthogonales entre elles, il est

utile, pour éviter certaines difficultés de convergence, de con~

sidérer, au lieu des fonctions propres < (x,y,z,o) elles-mfmes

les expressions:

[ E7.Y. 4
Lﬂ @Q%L@du

dites"différentielles propres"
correspondant & des intervalles(o,o+A oo)choisie aussi petits
que l'on veut dans le domaine des variations du paramdtre con-
tinu . FPhysiquement, cette substitution correspond & celle
qu'on opdre dans l'ancienne théorie des ondes quand 1l'on consi-~
dére, & la place de 1ltonde plane monochromatique qui est une
abstraction, le groupe d'ondes formé par une superpdosition d'on-
des de fréquences trés voisines. Pour exprimer 1'orthonormalité
des différentielles propres, on doit remplacer les relations va-
lables pour le spectre continu par la suivante :

—A.I—(;Ad’r [L«#A«'? ()'<,)/,Z,OL)dOL][‘L‘”‘x"AaC’R(X,y,Z,(X)du:I‘=5«,a”

Les fonctions propres des opérateurs complets de la Mécani-
que ondulatoire possddent la propriété importante de former un
gygtdme complet. Cela veut dire que sous des conditions tras
larges une fonction définie dans le domaine D des - variables
intéressées par un opérateur A se laisse développer en une somme
de fonctions propres de cet opérateur. Si par exemple f£(x,y,2)
est une fonction des variables x,y,z, elle se laisse trds géné-
ralement développer suivant les fonctions propres d'un opérateur
hermitien complet sous la forme :

F(xy.z)=Fe gulnyz) + o (W (ny2 @) da

la somme X étant relative au aspectre discontinu et 1l'intégrale
au spectre continu. Dans les développements précédents, nous
pouvons mettre en évidence les différentielles propres du spec-
tre continmu en écrivant :

+A
F(x,y,z):z?cL@i(x,y,z) +£ c(a)ﬂu * P (x,y,z,a)da

(Pour plus de rigueur, il faudrait introduire ici la notion de
"convergence en moyenne®, ce que nous ne ferons pas).

En utilisant les formules qui expriment le caractire ortho-
normal des fonctions propres du spectre discontinmu et des diffé-
rentielles propres du spectre continu, nous trouvons :

o= fog" fhoy.z)dTsela= gy [ae [ [ e (uyza)da]” Hixy.z)
N

L 4
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Les coefficients ¢, et c (x) sont souvent nommés les coefficients
de Fourler du développement de la fonction f(x,y,z) suivant les
fonctions propres de l'opérateur A. La série ot 1l'intégrale de
Fourier sont des exemples simples de ce type de développements.

Le temps peut figurer comme paramdtre numérique.-dans 1'expres-
sion des c; et desc(x). ‘

5. SPECTRE CONTINU DE L'OPERATEUR HAMILTONIEN
D’UN CORPUSCULE LIBRE

L'équation aux valeurs propres de l'opérateur Hamiltonien
peut stécrire :

He = Ec.p, ,
E étant la constante o« du cas général. Pour un corpuscule libre
- __ _h®
d'on h? _
~ g D¢ =9

goit P le vecteur impulsion du corpuscule. On trouve les fonc-
tions propres :
-2 (pxep,yrp.z) -EL (5.7

¢(xy.z,p)=ae =ae

avec
2
(Lc) o (PP, P, ) = g =E

On voit done : 1°) que toute valeur positive de E est valeur
propre; 2°) qu'ad toute valeur propre de E correspond une infi-
nité de fonctions propres du type précédent obtenues en donnant
& p.,p,,p, toutes les valeurs compatibles avec {I,c). Donc pour
1lténergie, on trouve un spectre continu allant de O & + oo avec
dégénérescence d'ordre o< pour toute valeur de E autre que 0.

A chaque fonction propre correspond une onde plane mono-
chromatique de la forme :

. Be B (e-7.7)
b (xy.z,t)=@lx.y.zp)e =ae
On peut pour simplifier 1l'écriture poser :
=2r g k=223
he hoP
ce qui domne : . .
L!)A__aeu.(kct—k ™)
K
avec la relation : .
N L
kc—-Zm |kl 27

qul exprime (I,c) avee 1lss nouvelles notations.
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Le vecteur k est appelé le vecteur de propagation de l'onde
Plane qui est entidrement spécifide par cette seule donnée. Il
faut bien distinguer k et |K|.

On peut prendre indifféremment copme fonctions propres de H
so;il.(*i;t les cp_k, , soit les <P_k, qui n'en diffdrent que par le facteur
e "%,

On peut exprimer 1l1'orthonormalité des ondes planes en in-
troduisant les différentielles propres. Au cours de ce calcul
dont nous ne reproduisons pas les détails, on est amené & intro-
duire avec Dirac la fonction ™impropre” ou "singulidre" § (x)
ayant les deux propriétés suivantes :

1°)§ (x) est une fonction paire de x

X, £(o)si x, et x, sont de signes
contraires
2°) On a toujours/ f£(x) 8(x)dx=
o si x, etx, sont de méme
Xy signe.
On peut représenterd (x) par la fonction singulidre de Dirichlet
en posant

; in 2x N
R

Finalement le calcul en question montre que les fonctions pro-
pres du spectre continu doivent s'écrire :

e 1 -iKk.7 T 1 i(ket ~ 1.7
CP(k,X;y,Z) = (23‘()3/2 e t*-T 5 L!) (k,Xy)’,Z,t) = (2]’()% € ke r)

Le caractd®re complet de l'ensemble des ¢ se traduit par le fait
gque, sous des conditions trds générales, une fonction f(x,y,z)
sera développable en intégrale de Fourier sous la forme :

F(x,y,z)=(2;)%/ =qc(T{)e‘Lk.pd—k'

oo .

dk aésignant dk,.dk,.dk, « Les c(K) sont données par la formule

— +i._k'.? o
c(k)=(—2—71)—3/zﬁf(x,y,z)e dr

dr désignant dx.dy.dz. C'est la formule d'inversion donnant les
coefficients d'un développement de Fourier.

On peuf aussi écrire :

f(x.y.z) =(2—T});7L C(_k',t)d)r(x,y,z,t) dk

avece
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INTERPRETATION PHYSIQUE
DE LA MECANIQUE ONDULATOIRE

1. PRINCIPES GENERAUX

EN

Nous avons vu que la Mécanique ondulatoire doit pouvoir
calculer les valeurs possibles des grandeurs mesurables atta-
chdées & un corpuscule et leurs probabilités respectives. Nous
avons appris & représenter 1'état d'un corpuscule par une fonc-
tion d'onde () (x,y,z,t) solution de 1l'équation de propagation,
fonction que nous supposerons toujours normée. De plus nous
avons falt correspondre & toute grandeur attachée & un corpus-
cule un opérateur lindaire et hermitien qui permet de définir un
ensemble de nombres réels, ses valeurs propres, et un systdme
complet de fonctions orthonormales, ses fonctions propres. Nous
sommes ainsi en mesure d'énoncer les deux principes fondamentaux
de l'interprétation physique de la Mécanique ondulatoire.

Premier principe. - Les valeurs possibles d'une grandeur mesu-
rable, c'est-a-dire les divers résultats possibles d'une mesure
de cette grandeur sont les valeurs propres de 1l'opérateur 1li-
néaire et hermitien correspondant & cette grandeur.

Second principe. - Quand 1'état du corpuscule est représenté par
une certaine fonction d‘'onde U (x,y,z,t) solution de 1'équation
de propagation, 1la probabilité pour qu'une mesure précise de la
grandeur mesurable correspondant & l'opérateur linéaire et her-
mitien A, complet et & valeurs propres non dégénérées, fourniese
a4 1'instant t une certaine valeur propre est é&gale au carré du
module du coefficient de la fonction propre correspondante dans
le développement de la fonction(b sulvant les fonclions propres
de A.

Plus précisément, si la fonetion 4)59 développe suivant les
fonctions provres et les différentielles propres de A suivant la
formule :

x+An
$(xyzt) =% c o+ Z“ac(“)/a ¢(a)de
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la probabilité de la valeur propre «; est ch et la probabili-
té d'une valeur comprise dans 1'imtervalle (a, x+ Aa) est|c(a)|*An
On peut vérifier que la fonction d}étant normée par hypothase,
la probabilité +totale de toutes 1les hypoth®ses possibles est
égale & 1'unité. Naturellement les probabilités des valeurs pos-
sibles peuvent &tre fonction du temps.

Si 1'opérateur A a des valeurs propres multiples, 1'énoncé
du second principe doit &tre modifié. Soit o, une valeur propre
multiple & lagquelle correspondent p fonctions propres ¢, P, .- -y
Qe normées et orthogonales, 1linéairement indépendantes. La
probabilité de trouver par une mesure faite & l'instant t la va-
leur o, pour la grandeur A est alors la somme des carrés des mo-
dules Qgs coefficients deqk1,..,?ipdans le développement du 41,

J=p
soit gilculz - . On démontre que la valeur de cette probabilité

est indépendante de la fagon (dans une certaine mesure arbitrai-
re) dont sont choisies les e En dtuutres termes, quand on
remplace les ¢ par p combinaldons lindaires lindairement indé-

i=p
pendantes ¢;, la quantité 2% lcijlz reste invariante.
. PR

Quand 1l'opérateur A est incomplet, 1l'énoncé du second prin-
cipe doit subir une autre modification. Alors, en effet, les
fonctions propres de A ne contiennent pas toutes les variables
X,y,2 et les coefficients c, et c(x) sont des fonetions des va-
riableg non intéressées par A. La probabilité d'une valeur pro-
pre «, ne peut donc &tre le |c.L[Z correspondant qui dépend enco-
re de certaines variables. Pour obtenir cette probabilité, il
faut intégrer sur ces variables. On peut vérifier qu'avec cette
modification la probabilité totale de toutes les valeurs possi-
bles est bien égale & un.

Les deux principes généraux de l'interprétation physique de
la Mécanique ondulatoire peuvent &tre réunis dans un énoncé uni-
que comme l1l'a montre M.E. Arnous. I1 suffit pour cela d'admettire
le postulat suivant : la distribution de probabilité correspon~
dant aux valeurs mesurables de la grandeur observable A a pour
fonction caractéristique :

* LAu
(P(u):/[:(_!)e (!)d‘t.
ol A est 1l'opérateur correspondant & la grandeur A. Nous n'in-

sisterons pas ici sur cette trés intéressante et élégante forme
des lois dé probabilité de la Mécanique ondulatoire.

Un exemple simple d'application des deux principes est
fourni par le cas de l'opérateur Hamiltonien H qui est complet.
S5i H est indépendant du tempas,il admet des valeurs propres cons—
tantes E; et des fonctions propres ¢ . Une mesure précise de
l'énergie ne peut fournir que 1l'une des valeurs E, et si 1'on a
¢=%c,p, la probabilité de la valeur E_ est |c |*. 51 le spectre
est discret, on a une suite discrdte d'états stationnaires a
énergies quantifiées. C'est le cas qui se présente pour les sys-
témes atomiques.
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Prenons un autre cas :celuil de la coordonnde x du corpuscu-

le correspondant & l'opération "multiplication par x". L'équa-
tion aux wvaleurs propres est :

a xp=ag
Cette équation peut 8tre considérée comme vérifide pour toute
valeur réelle de x en posant :

¢ (x,0) = §(x-a)

8 (x-a) étant la fonction singulidre de Dirac pour x-o . Donec,
d'aprss le premier principe, une mesure de x peut nous fournir
n'importe quelle valeur de x réelle et comprise entrs —oo et + oo

De alus, les différentielles propres de ce spectre continu
[ 2.1:%

§(x~«)da forment un systime complet satisfaisant & la rela-
ticn d'orthonormalité. Comme on a évidemment :

$iupzt) = [T blay,z.t)8 (x-) da

la probabilité pour qu'un mésure de x fournisse A& l'instant ¢
une valeur comprise dans 1'intervalle (a,00+ Ax) est

//dy dz | Doy t) |* Ax
On en déduit aisément aue la probabilité pour que la présence du
corpuscule se manifeste & 1l'instant t dans 1'élément de volume

dt entourant le point x,y,z, est|{ (x,y,z,t)|°dt . La probabilité

totale de présence en un point quelconque de 1l'espace est bien
égale & 1'unité puisque ¢ est normée : c'est 1 la raison physi-
que pour laquelle la fonction d'onde doit toujours &tre normée.
Ltinterprétation donnde ainsi & ||’ est en accord avec le ea-
ractdre défini positif de cette grandeur(|d|?>0).

Des deux principes fondamentaux, on tire par des raisonne-
ments sur lesquels nous n'insisterons pas ici la conclusion sui-
vante : deux grandeurs mesurables ne peuvent &tre simultanément
mesurées avec précision dans une méme opération de mesure que si

les opérateurs correspondants A et B commutent, c'est-a-dire si
AB = BA. :

L'exemple le plus important de deux grandeurs non simulta-
nément mesurables est celui d'une coordonnée x et de la compo-
sante conjuguée de la quantité de mouvement p,. On a en effet :

__ h 9 0y _ h
(xP=Pe¥lop =737 (3% =% 35 ) = 7 # ©
Donc une coordonnée de Lagrange et le moment conjugué ne sont
pas simultanément mesurables avec précision. Leurs mesures si-

multanées sont affectées "d'incertitudes" qui ne peuvent &tre
nulles simultanément. Nous verrons plus loin que l'on a toujours
pour ces incertitudesAx-Ap, >hen ordre de grandeur.

Ce sont les indgalités d'incertitude de M. Heisenberg. Plus
généralement pour deux quantités canoniquement conjuguées p et g

on a : APAq>h
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On dit, avec M. Bohr, que les quantités p et q correspondent &
des aspects "complémentaires" de la réalité qu'on ne peut jamais
connaltre exactement en méme temps.

On peut dire que, quand deux quantités p et q sont canoni-
quement conjuguées, on doit faire correspondre & p l'opérateur

- 55?-3; ou inversement. Comme exemple, rappelons que le moment

cinétique d'un corpuscule autour d'un axe oz est canoniquement
conjugué de l'angle d'azimut Yy autour de cet axe : or nous avons
déja montré qu'en Mécanique ondulatoire, l'on doit faire corres-
rondre & la grandeur classique M, 1'opérateur — Jo ©°e qui
confirme les énoncés précédents. - Zni de

2. LES MATRICES ALGEBRIQUES ET LEURS PROPRIETES

On appelle "matrice"™ un tableau de nombres contenant un
nombre fini ou infini de 1lignes et de colonnes. Si ce tableau
eat de dimensions finies nous le supposerons carré pour simpli-
fier. Soit a, 1'élément de la matrice A qui se trouve & 1'inter-
section de la 1°™ ligne avec la k*™colonne. Les éléments a, 2
indices dgaux sont les éléments "diagonaux". Une matrice dont
seuls les éléments diagonaux sont différents de zéro est une
"matrice diagonale"™. Deux matrices A et B sont dites égales si
aaf=bw pour tout i et tout k.

Les matrices se présentent en Algdbre quand on étudie les
transformations 1lindajres. En effet, si des variables x’ sont
des combinaisons lindaires d'autres variables x,, on a des for-
mules de transformation du type :

X, = ? a; X;
ou symboliquement : )
. X'=AX
avec la convention
(AX)L=§ CHES

Ces formules conduisent & définir la somme et le produit de deux
matrices par les rdgles suivantes :

1°) La somme de A et B est la matrice A+B dont 1'élément d'in-
dices i,k est a  +b,.

2°) Le produit de A par B est la matrice AB dont 1'é4lément ik
et ? a;; by. De cette définition résulte qu'en général AB=BA. Si

par exception AB=BA, on dit que les matrices commutent. On
désigne sous 1le nom de "commutateur" de A et B la matrice

[A,B]=AB-BA qui, si elle n'est pas nulle, mesure le défaut de
commutation de A et B. Parfois on introduit aussi "I'anticommuta-
teur" de A et de B défini par [A,B]=AB+BA. Si AB=-BA, A et B
anticommutent. Les matrices peuvent &tre réelles ou complexes
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suivant que leurs éléments sont réels ou complexes. Nous envisa-
gerons le cas général des matrices complexes.

Une matrice est dite hermitienne si 1'on a :
ay =2y
pour tout 1 et tout k. Une matrice hermitienne réelle est donc

symétrique par rapport & sa diagonale. Les éléments diagonaux
d'une matrice hermitienne sont réels.

Une matrice est antihermitienne si l'on a :

B =2y
pour tout i et tout k. Les éiéments diagonaux d'une matrice
antihermitienne sont purement imaginaires.

Le produit de deux matrices hermitiennes A et B est lui-~
méme hermitien si A et B commutent et dans ce cas seulement; il
est antihermitien si A et B anticommutent.

La matrice X est la matrice "transposée" de A 81 8,-a,
On dit que A" est la matrice ®adjointe" de A sl aiy= aj.

Donc A*=A*. Si A est hermitien, on a A=A : la matrice A est
alors sa propre adjointe. On a évidemment (A*)" =A et 1'on démon-
tre aisément que (AB) ' =DB'A’.

Une matrice hermitienne qui est diagonale est nécessaire-
ment réelle. La matrice d'éléments a , =0, est diagonale, tous
ses termes diagonaux sont égaux & 1. On l'appelle la matrice
unité et on la représente souvent par 1. Etant donnéde une matri-
ce A, 8'il existe une matrice Af‘telle que @

A—? A—1
la matrice A”' est dite "inverse" de A. Si A a un nombre finil de
lignes et de colonnes, A ' existe toujours quand le déterminant
déduit des a, est différent de zéro. §i A a un nombre infini de
lignes et de colonnes, A" peut suivant 1es cas exister ou ne pas

exister. On démontre aisément que (AB)'=B"A'. Quand A est une
matrice réelle et que l'on a

?a ak——ng N ZaJLaKL SJk

on dit que la matrice est orthogonale : elle définit alors une
transformdtion orthogonale qui laisse invariante la somme Z x
comme cela est bien connu en géoméirie.On généralise cette ‘déPi-
nition pour une matrice A complexe en disant que sl l'on a

Lajal =0, La; o =0
i U Jdb AL J
la matrice définit une transformation orthogonale complexe ou
encore une transformation "unitaire®. Pour une telle transforma-

tion la somme des normes des xi,gx‘&‘ reste invariante comme on
le démontre aisément. Pour une matrice A unitaire, on a :

Feuay=dy, Ta;al=Y
ou encore : A'A=AA =1 d'oll A'=A" .
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Donc 1l'adjointe d'une matrice unitaire coIncide avec son inverse.

La trace d'une matrice A est la somme de ses termes diago-
naux :

TP(A)==§Z a;
On démontre aisément que :
Tr (AB) =Tr (BA) = Zk a, by

Soient encore une matrice carrée quelconque A et une matri-
ce unitaire S ayant le méme nombre de lignes et de colomnes. La
matrice SAS=B est dite obtenue & partir de A par une transfor-
mation canonique. On vérifie aisément que, si A est hermitienmne,
B 1l'est aussi. Les transformations canoniques conservent le ca-
ractdre hermitien d'une matrice. Il est aisé de vérifier
qu'elles conservent aussi sa trace. De plus, s8i deux matrices
carrées A ot A' sont transformées respectivement en B et B' par
la transformation canonique S, leur produit AA' est +{ransformé
en BB' par cette transformation car STASSA'S=S"AA'S.

3. OPERATEURS ET MATRICES EN MECANIQUE ONDULATOIRE

Supposons que nous connaissions un systdme de fonctions or-
thonormalesif‘,..,qi,.., dans un domaine D de variations de cer-

taines variables. Nous les appellerons des fonctions de base.
Ce systdme pourra 8tre celui des fonctions propres normées d'un
opérateur 1lindaire et hermitien de la Mécanigue ondulatoire.
Avec ce systdhe de base, & tout opérateur linéaire on peut faire
correspondre une matrice. Soit en effet A un opérateur lindaire.
L'application de cet opérateur & une des fonctions de base;
nous fournira une nouvelle fonctiom qui pourra se développer
suivant le méme systdme de fonciions de bases>. Nous aurons donc
une relation de la forme :

Ap =X a; @
ajif/é 95 A gudr

D étant le domaine de variation des variables figurant dans les

.o Par définition les a; sont les éléments de la matrice en-
gendrée par l'opérateur A dans le systdme de base des ¢;. Nous
désignerons cetté matrice par le méme symbole A que 1l'opérateur
ou, si nous désirons préciser le systime de base employé, par At
I1 est facile de vérifier que les matrices ainsi définies véri-
fient les rdgles d'addition et de multiplication des matrices
algébriques étudides plus haut.

avec @

Si le systime de base est formé par les fonctions propres
d'un opérateur de la Mécanique ondulatoire et si 1'opérateur A
egt lui-méme un opérateur linéaire et hermitique de cette Méca-

o Dand o
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nique, nous dirons que A est une matrice de la Mécanique ondu-
latoire. On voit immédiatement que ces matrices sont +toujours
elles-mémes hermitiennes, c'est-a-dire que : aij==ajw

On voit d'ailleurs que la condition nécessaire et suffi-
sante pour que la matrice engendrée par un opérateur A dans un
systéme de base s80it hermitienne est que l'opérateur soit lui-
méme hermitien. L'hermitianité est donc wne propriété intrin-
sdque des opérateurs en ce sens qu'un opérateur hermitien engen-
dre des matrices hermitiennes dans tous les systémes de fonc-
tions de base. Toutes les matrices de la Mécanique ondulatoire
sont donc hermitiennes.

Nos définitions établissent une corrélation trés étroite
entre les opérateurs et les matrices. En particulier la condi-
tion nécessaire et suffisante pour que des matrices commutent
(ou anticommutent) est que les opérateurs correspondants commu-
tent (ou anticommutent) et vice-versa. Ceci nous amédne & définir
le commtateur ou l'anticommutateur de deux opérateurs A et B
par les formules : ,

[AB]=AB-BA ; [AB]=AB+BA -

Une catégorie +trds importante de matrices de la Mécanique
ondulatoire est obtenue en premant toujours comme fonctions de
base les fonctions propres de l'opérateur Hamiltonien correspon-
dant au probldme considéré. Soient ¢.,..,J;,.., les fonctions
propres de l'opérateur H. Les matrices A engendrées par un opé-
rateur lindaire et hermitien A dans le  systéme des (l) idon'l; les

éléments sont : .
ajk=‘/D ‘!’j A‘Pkd"

peuvent 8tre nommées les matrices de la Mécanique quantique par-

ce que ce sont elles que M. Heisenberg a mises, sans les inter-
prdter explicitement ainsi, & la base de sa Mécanique quantique.
: oo

ni

TR Bt
c'egt-a-dire si l'on pose :
: ' 2L gy
h k
CP=a,(xy,z)e
on aura : y
2R (g, €0t

a.k_—_/ a’ A akd-c-e_h—
J D 4

Ces éléments définissent les matrices d'Heisenberg  proprement
dites qui dépendent du temps. Parfois on supprime dans l'expres-
sion de ¢, le facteur exponentiel et l'on pose simplement :

s ®
aJk=AaJ Aa,dT

La matrice A' d'éléments a';, indépendants du temps est nom-
mée la matrice de Schrddinger correspondant A l'opérateur A.




24 CHAPITRE If - 4

4. VALEURS MOYENNES ET GRANDEURS DE CHAMP
EN MECANIQUE ONDULATOIRE

Envisageons un certain corpuscule et supposons comnue l'on-
de ) qui lui est associée. Soit une certaine grandeur observable
attachée & ce corpuscule et & laguelle correspond un opérateur
linéaire et hermitien A. Les principes de la Mécanique ondula-
toire nous permettent de prévoir les valeurs observables possi-
blea de A et leurs probabilités. Comme il y a en général plu-
sieurs valeurs possibles de probabilité non nulle, on ne peut
ras parler de la valeur de A & chaque instant, mais on peut
aisément définir sa valeur moyenne (espérance mathématique) par
la formule :

A=% [cfa
I1 est facile de vérifier que l'on a d'une manidre équivalente
/1¢ A¢d1
Soit maintenant une grandeur observable B autre que A attachée
au corpuscule et & laguelle correspond un opérateur 1linéaire et
hermitien B.Soient f, ,.0,P,+0, €t X, ,00,% ,++, les valeurs pro-
pres et fonctiors propres de B. Si la fonetion d) gse développe
sur les x, par la formule Y=Y d; x,, on aura :

A=rd'd, aj

ol al est 1'élément d'indices i,k de la matrice engendrdée par A
dans le systéme des X.

Done la valeur moyenne de A peut toujours s'exprimer liné-
airement & l'aide des éléments de matrice qu'engendre 1'opéra-
teur A dans le systdme des <fonctions propres d'un autre opéra-
teur B.

En particulier si le corpuscule se trouve dans l'un des
états propres relatifs & la grandeur B, on aura d)—-d avec
|d,| =1 et par suite A=al, D'ol le théoréme : ”L'élément dlago-
nal d'indices i ,i de la matrice engendrée par l'opérateur A dans
le systdme des fonctions propres de l'opérateur B est égale A 1la
valeur moyenne de la grandeur A quand on sait que B a la va-
leur (.".

v

Le syst®me des matrices d'Heisenberg a ceci de particulier
que la matrice H correspondant & l'énergie y est représentée par
une matrice diagonale dont les termes diagonaux sont les diver-
ses valeurs propres de l'énergie (si toutefois on a eu soin dans
le cas ou H a des valeurs propres multiples de choisir les fonc-
tions propres correspondantes de fagon qu'elles soient orthogo-
nales). On a en effet :

—/v*bede—Ek/“P $,dt=E,3,

Ce résultat est un cas particulier du résultat général suivant
"Si 1'on construit la matrice engendrée par un opérateur A dans
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le systdme des fonctions propres orthonormales de cet opérateur,
cette matrice est diagonale et ses éléments diagonaux sont les
valeurs propres de A%.

Dans les définitions des éléments de matrice am=yf¢f/\¢kd1
et des valeurs moyennes K=y£¢fA<bdr, les quantités sous le signe
b sont des fonctions de x,y,2z et éventuellement du paramdtre t.

Nous les nommerons "densités d'éléments de matrice"™ ou "densités
de valeur moyenne". Ces densités variables d'un point & l'autre
de 1l'espace ont le caractdre de grandeurs de champ attachées au
corpuscule. Ainsi & la grandeur A, on pourra associer une gran-
deur de champ, la densité de valeur moyenne de A :

plA) =AY

Toutefois les grandeurs de champ ainsi définies n'ont pas
un sens physique aussi précis que dans les théories classiques
de la Physique du champ. Elles se présentent ici comme d&tant
seulement "les quantités qu'il faut intégrer pour obtenir les
valeurs moyennes (ou les éléments de matrice)". Ce sont souvent
des grandeurs complexes et elles ne sont d'ailleurs définies
qu'a une divergence prds. Ce sont cependant ces grandeurs physi-
quement assez mal définies du point de vue quantique qui dans
les théories quantiques comme celles de Dirac sont des grandeurs
& variance relativiste bien définie.

5. INTEGRALES PREMIERES EN MECANIQUE ONDULATOIRE

L'é1ément de matricea. k=A ¢ Ad, dt peut dépendre du params-

re 1 par l'intermédiaire de qj de ¢k et aussi de A si cet opé-
rateur contient t dans sa définition. La dérivée de aj calculée
en tenant compte du fait que ¢, et (), satisfont 2 1'équation
d'ondes et que A est hermitien est :

daﬂ Jf d) Znt ]‘Pkdf

ol BT'GSt 1'opérateur obtenu en dérlvant formellement A par rap-
port & t. On peut dire que la matrice d‘'Heisenberg dont 1'élé-

a .
ment d'indices j , k est ——8%5- eat engendrée par 1'opérateur
dA ,2mi

(AH-HA)et 1'on pose :
T dA _dA 2 c)A 2
e ’“ (AH-HA)=37 ’“ 2 [ALH]

51 A ne dépend pas explicitement de t, cas fréquent, on a sim-
plement : »
dA 2nL

T [AH]
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Par définition, dans un probldme ol 1'Hamiltonien H est domné,
la zrandeur observable A est "intégrale premidre”™ ou "constante

du mouvement" pour le probldme considéré si %%? =0 . 51 A ne dé-~
pend pas explicitement du temps, A est intégrale premidre si A
et H commutent.

On peut encore définir les intégrales premidres de la fagon
suivante : une grandeur, dont l'opérateur est A, est intégrale -
premidre si, ¢ étant une solution quelconque de l'équation des

ondes, A 1'est également. En effet, si par hypothésel%%w=%? H

on a A%ty=2—;:l AHY et a—btA¢=%—'t¢+3’}:—L AH{ . Pour que Adl)soi;b solu~
tion de 1'équation des ondes il faudra que :

JA 2ni y—

at(!u s (AH-HA )b =0
La condition nécessaire et suffisante pour qu'il en soit ainsi,
quelle que soit la solution () de 1l'équation des ondes, est pré-
cisément que%¥5c=0.c.q.f.d.

Voici quelques exemples d'intégrales premidres. Si le champ
-extérieur agissant sur le corpuscule est indépendant du temps,
l'opérateur H ne contient pas t et comme i1 commute évidemment
avec lui-méme, l'énergie est alors intégrale premidre : nous re-
trouvons 1l'analogue de la conservation de 1l'énergie pour les
systémes conservatifs en Mécanique classique. De méme, si la
composante x du champ est nulle, 1l'opérateur H ne dépend pas de
x ot par suite commute avec (p‘ip. La composante x de la quanti~-
té de mouvement est alors intégrale premiére, +théordme analogue
&4 un théoréme de la Mécanique classique.

Enfin si la fonection U posséde la symétrie cylindrique au-
tour de oz, 1l'hamiltonien H ne dépend pas de 1l'azimut ¢ autour
de cet axe. En ce cas la composante M, du moment cinétigque au-
tour de oz est intégrale premidre. Si le champ de force est cen-
tral, les trois composantes M,, M,, M, sont intégrales premidres
et il en est de mBme de la grandeur M* =M% + M% + M. Nous revien-
drons plus longuement sur ce cas important.

6. FORME PRECISE DES RELATIONS D'INCERTITUDE

: Nous allons donner une forme précise des relations d'incer-
titude d'Heisenberg due & M. Pauli. Il faut remarquer que cette
forme précise n'est pas tout & fait équivalente & la forme qua-
litative dq- 8p >h qui a souvent une signification physique plus
directement accessible & l'expérimentateur et qui peut méme &tre
valable quand la forme précise ne l'est plus.
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Nous commencerons par introduire la définition suivante.
Nous dirons que 1l'opérateur F’ est l'opérateur adjoint de F dans

un domaine D si :
P*Fgdt = [(F*f)*gd
SfFade = [{F ) gds

f et .g étant deux fonctions du domaine D assujetties seulement &
8tre finies, wuniformes et continues dans D et & s'annuler aux
limites de D de fagon que les intégrales de surface pouvant ap-

paraitre dans les intdégrations par parties de /; soient nulles.

En comparant la définition des opérateurs adjoints avec celle
des opérateurs hermitiens, on voit qu'un opérateur est hermitien
si, et seulement si, il est son propre adjoint. (F=F"*).

Que 1l'opérateur F soit ou non hermitien, la valeur moyenne
de FF " est toujours réelle et définie positive car :

(11,a) F?*-_-A q)‘FPq;dx:fD(F*q))* F+q)dx=fD|F+¢|2dz

‘Ceci posé nous allons démontrer le théordme suivant ¢

Théoréme. - Si deux grandeurs physiques observables‘ correspon-
dent respectivement aux opérateurs lindaires " et hermitiens A et
B, onaz
1
Oy %y > & [A,B]
[A,B} étant le commutateur de A et de B, et o, , 0
écarts quadratiques (dispersions) définis par :

GA;\/ (A-A)? ; o, =\(B-B)"

Pour démontrer ce théordme, nous considérons 1l'opérateur linéai-
re non hermitien A+iXA B ol A est une constante réelle : son ad-
joint est A -iAB et, par application de la formule (II,a), nous
voyons que :

, ¢tant 1les

(A+iAB) (A-iAB) = A+ N B* - iA [AB]
est réel et défini positif. Donc la fonction de A
f(A) =A%+ A" B*~iA [A B]
est réelle et définie positive. On en conclut que [A,B] est pu-

rement imaginaire. Or f (1) est minimum pour A, = L IAB] o4 o
) 5.6])° ? ¥
alors pour valeur £ (A))=A" + 17 = - Comme cette valeur doit

&8tre positive ou nulle, on a :
—_ =—=\2
(11,b) ATBT - L (Ta,B])

Posons par définition AA=A -A et AB=B-3B. A et B sont des nom-
bres, mais comme A et B sont des opérateursAA et AB sont -des
opérateurs et l'on “rouve aisément :

(11,¢) [aAn,aR]=[A-A,B-B]=[A,B]

3"
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L'inégalité (II1,b) donne alors em 1l'appliquant aux opérateurs
AA et AB et en tenant compte de (II,c) :

L (aA) - [a) > -4 ([A.81)

[a, ] étant purement imaginaire, nous en tirons :

2 2
o, - o=\ (8AY -\/[2B) z—z—l[A,B]|
et le théordme est démontré.

En Mécanique ondulatoire on dit que deux grandeurs obsexrva-
bles A et B sont "canoniquement conjuguées" quand on a :

h
[AB]= ~ 5 |

[+, B]—/ﬁb 2Ju 1=__2_?L-I',_

quantité purement imaginaire comme cela doit 8&tre. Ceci nous
donne : -
s .g » N

ATTB T 4y

Ct'est la forme précise annoncée des relations d‘'incertitude qui
donne en particulier :

On a alors :

h

(o KN o } > —
~ Tinm

x " Ppy




CHAPITRE Il

THEORIE QUANTIQUE
DES MOMENTS CINETIQUES ET DES SPINS

I. MOMENT CINETIQUE 'ORBITAL

Nous nommerons "moment cinétique orbital"™ (moment d'impul-
sion ou moment de rotation) d'une particule par rapport & un
point O pris comme origine des coordonnées, le moment de 1la
quantité de mouvement de la particule par rapport & ce point. Ce
moment cinétique orbital est un vecteur dont l'expression est :

M=[FxF]
C'est donc le produit vectoriel du rayon vecteur T de la parti-
cule (de composantes x,y,z) et de la quantité de mouvement p. En
composantes on a donc :

x =YPz—= 2Py My=sz_xpz; Mz=xpy*ypx

La propriété essentielle du moment cinétique, celle qui rend
cette grandeur particulidrement importante au point de vue méca-
nique, c'est que, 8i le potentiel des forces agissant sur la
particule ne dépend pas de l'azimut pris autour de l'un des axes
de coordonnées (autrement dit si la force est partout dans le
méme plan que cet axe), 1la composante du moment cinétique orbi-
tal le long de cet axe est constante au cours du mouvement, au-
trement dit elle est intégrale premidre.

La longueur M du moment cinétique orbital est définie par
MZ—MZ“'MZ*Mz:r’zPZ‘_(F'P—)Z
d'aprés l'identité de Lagrange.

M est intégrale premiére si la force passe constamment par
le point. O (force centrale).

tn Mécanique ondulatoire, nous devons remplacer les quanti-
tés ainsi définies classiquement par des opérateurs. On doit
oser :
‘(M)_haa_ha(M*haa,la_
o= Va7 = 3y a2 25 )
2ni V' 4z dy 27t dep, 2mi\ dx 0z
J 0 h o

L h o
(MZ)°P_ 2m( dy yax) 27 9,
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Dans ces expre851on3(?x,q» ¢, sont les azimuts comptés autour de

0x,0y,0z. L'un quelcongue de ces trois opérateurs M, = é%%-aa
. : i
avec kx=1,2,5 admet pour valeurs propres les valeursxn%% aveccPk

entier (positif, négatif ou nul) et pour fonctions propres nor-
mées - 1n €'™? comme on le vérifie aisément.

D'aprés les principes généraux de la Mécanique ondulatoire,
on doit en conclure que la mesure exacte de 1'une des composan-
tes rectangulaires du moment cinétique donne toujours une valeur

égale & un multiple entier de ;;. Pour cette raison<ll-peut &tre

2n
nommée 1l'unité quantique du moment cinétique.

On s'apergolt alors que l'image vectorielle du moment ciné-
tigque fournie par la théorie classique a quelque chose de trom-
peur & 1l'échelle quantique. En effet les trois composantes du
moment cinétique ne sont pas simultanément mesurables & 1'dchel-
le quantique car les opérateurs MX,MV,MZ ne commutent pas entre
eux. i done on erfectue avec précision la mesure d'une de ces
composantes, il y aura seulement une distribution de probabilité
pour les valeurs des deux auitres dont on ne pourra connaitre la
valeur exacte.

On ne pourra donc pas tracer réellement 1le vecteur M dont
on ne connaftra jamais exactement plus d4' une composante. Par
contre le vecteuriqhdont les composantes sont les valeurs moyen-

nes M, ,M, ,M, est toujours bien défini et c'est 1i ce qui permet
d'employer a 1'échelle macroscopique, ol seules comptent les va-
leurs moyennes, un vecteur moment orbital.

L'impossibilité de connalitre simultanément les trois compo~-
santeg du moment cinétique s'exprime par la non-commutation des
opérateurs correspondants. Pour écrire les formules de rnon-com-

mutation, nous poserons en mettant en évidence 1l‘'unité 7%;

—_ —_— m. -
X x oq y Y o2;p z Z 2=

d d d d ‘ b
m *Lvaz 25;);n1— Ps;—xgz); mz=Lh———y~ﬂ

" L'on peut aisément vérifier que :

(I11,a) [mx,my]= -im,; [my,mz]=-tmx; [n&,mx]= —im

Nous verrons plus loin la signification de ces formules.
Nous poserons aussi :

2 2
(MZ)()F):(M)()OP2 * (My)opz * (Mz)opz = h (mx2+mz+mzz) = mz_.h—_

et 1l'on trouve :

2 ¢ . 6
™= [ 37 (70 38) 5w g7 )
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en prenant des coordomnées polaires autour de 0. L'opérateur of
n‘est pas autre chose que le Laplacien sur la surface d'une
spndre de rayon t. L'équation aux valeurs propres m’f=o«f n'ad-
met comme solutions finies, cqntinues et uniformes sur la sphére
de rayon 1 gue les fonctions de Laplace Y| (O,q:) la valeur pro-
pre correspondant & la fonction propre; , ou 1l est un entier
positif ou nul dtant 1 (1+1). Finalement les valeurs propres de
1'opérateur M° sont :
(1=0,1,2,...)

Il est aisé de vérifier que (m ) commute avec m,,m ,m,, ce qui

montre que M’ est une grandeur mesurable en méme temps que l'une
des grandeurs M,,M ,M,.

2. LE MOMENT CINETIQUE ET LE GROUPE
DES ROTATIONS SPATIALES

Pour mieux comprendre le sens de la non-commutation des
composantes du moment cinétique, il est utile de démontrer com-
ment le caractdre d'intégrale premidre de M, est relié aux rota- :
tions autour de oz. Pour que M, soit intégrale premidre, il faut s
que le potentiel U ne dépende pas de 1l'azimut P autour de oz. ’

i

Mais alors le probléme de Mécanique ondulatoire n'est aucunement
modifié par une rotation du systdme d'un angle quelconque A¢ au=-
tour de oz. Donc si (r',9, { est, en coordonnées polaires 'avec
oz comme axe polairs, 1'expression d'une solution de 1l'équation
des ondes,g[)(r- 0 1\0+Atp,t) sera aussi solution et 11 en sera de

EL)(" 0’(‘P+A?it) 4’(” 99‘-P’t)

méme de A¢ ce qui, pourA« infiniment pe-
tit, eat égal & _i +Donc l'hypothése que le probléme n'est pas
modlfié par une rotation autour de oz, entraine que si L}) eat so-
lution de 1'équation des ondes, ':—‘l’et par suite M,) en est une

autre. Nous avons vu que ce résultg.t entraine le caractdére d'in-
tégrale premidre de M,. Ainsi se trouve mise en lumidre la rela-
tion entre M, et les rotations autour de oz.

Nous allons montrer maintenant que 1la non-commutation des
composantes du moment cinétique est relide & la non-commutation
des rotations spatiales. Soit un poini M de coordonnées x,y,z
formant les composantes du.rayon vecteur OM T et soit une rota-
tion infinitésimale définie par un vecteur 5 passant par 0. Sous
1'influence de la rotation 0 le point M vient en M* en décri-
vant un are de cercle infiniment petit MM' égal & w MP ou:
wr sin POM

0 M

P
w -
s
e
’
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On a done :
F=T+[WF]

Considérons maeintenant trois rotations infinitésimales de meme

valeur absolue égale & 1 autour des trois axes rectangulaires,

ox,0y,0z. Il leur correspond trois vecteursd,, w,, o, de méme lon-

gueur portés respectivement sur ox,0y,0z. On a évidemment :
W, = [(“-z”wa] ; w2=[‘33” 651] ;G)’3=[C51x ‘_‘Jz]

Désignons par (w, u)z)op 1'opération qui consiste & appliquer a
un point P d'abord la rotationd),, puis la rotation &, et par
(w, w),, 1'opération qui consiste & appliquer & P ces deux rota-
tions, mais dans l'ordre inverse. L'opération (w, w),, conduit du
point P initial & un point P, tel que : :

T, =T (@] - [, 7]« [@« [@, 7]
et l'opération (w,w,),, conduit de P au point P, tel que :
T [0, 7] [@, 7] [ @, [@, 7]

Les deux opérations ne sont pas équivalentes et ne domnent pas
le méme résultat : les rotations W, et J, ne sont pas commuta~-
bies. La différence des résultats correspondant au symbole
(W,w, -~ w,w),, est donnée par :

T - Fz:’[wq x[wz*ﬂ]—[wzx[mif?ﬂ=[fﬁ1 x [wz"_ﬁﬂ * [632 * [F" 631]]

-D'une fagon générale. entre trois vecteurs A,B,C, on a la rela-
tion facile & vérifier :

(7« [8xC]]  [B < [c~&]] « [S<[R~E]| =0

En appliquant cette relation & ®,,W, et ¥, 11 vient :
7 == 7 [, 8, [ [@ D) F| = [ @, ~ 7]

L'opération (w,w,-w,w,),; est donc équivalente & w, ce qui
s'éerit sous forme d'équation entre opérateurs :

[w,,w,] = w,

Cette relation est bien équivalente & celle qui correspond & la
premidre relation (III,a), car m, est égal & 'L——a%et, comme une
rotation dans un certain = sens des axes correspond & une varia-

tion en sens inverse des valeurs du, le symbole i Ba corres-
pond au symbole —i{wy)ep- P

On trouve des correspondances analogues bpar permutation
circulaire sur x,y,z. Ainsi les formules de non-commutation des
m, se trouvent rattachées & la non-commutation des opérateurs de
rotation dans l'espace.
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3. RESULATS GENERAUX RELATIES AUX VALEURS PROPRES
D’'OPERATEURS SATISFAISANT AUX RELATIONS
" DE NON-COMMUTATION (Il a)
Nous allons maintenant effectuer l'étude générale des va~

leurs propres de trois opérateurs linéaires et hermitiens au su-
jet desquels nous supposerons seulement que l'on ait :

[m,om]=-im, 5 [m ,m]=-im, ; [m,, m]=-im,
sans supposer qu'ils soient égaux 3 :
I 9 . 0 0 i, 0 3
l(y—a—z— -2 W) y L(Za—XE) , L(Xa—)/-—yX)

Nous étudierons les relations de ces valeurs propres avec celles
de l'opérateur m*=m/’?+m® + m*

Les valeurs propres de +tous ces opérateurs sont réelles
puisqu'ils sont hermitiens. Les valeurs propres de m,’ ,m ,m}? sont
donc positives ou nulles puisqu'elles sont les carrés des va-
leurs propres de m,,m.,m,. Les valeurs moyennes dem, ,my,m “ sont
donc nécessairement positives et i1l en est de m8me de celles  de
m? . De 14, on conclut que les valeurs propres de m? sont posi- -
tives ou nulles sans quol pour un état propre de m? correspon-
dant & une valeur propre négative la valeur moyenne de m2 serait
négative, ce qui est impossible.

Par raison de symétrie, les valeurs propres de m,,m,,m sont
les m8mes et nous savons que m* commute avec m,,m.,m,. Comme m,
et m, sont hermitiens, en aucun cas la valeur moyenne de m ne
peut étre supérieure & m?. Donc les valeurs propres de m, sont
inférieures ou au plus égales aux valeurs correspondantes de m?.
Autrement dit, les valeurs propres de m, ne peuvent 8tre ni su-
périeures & m, ni inférieures & -m.

Ceci dit, on vérifie aisément la relation :
(m,—im,)m,—m, (m,~im, )J=~(m~im, ) ' l

d'ol
(m, ~im, )m, ={m,=1)(m,~im, ) | ‘

Soient y; et Y, les valeurs propres et fonctions propres de m,

Nous allons nous servir des ¢, comme systdme de base pour la

construction des matrices dont nous allons faire usage. A un

opérateur A correspondent a.lors les éléments de matrice A:fk que
nous écrirons simplement A,

On aura donc emtre les m;, ainsi construits la relation :

Z{m —im )ik (m, )kj = %(m 1)y (my-im )kj

traduisant la dernidre relation de commutation, qui avec le gys-
téme de base choisi devient simplement :

(my=tmy )y vy =y =1} (m—im, )

Pour que cette relation soié vérifiée, il faut avoir :
soit : y; =y~ soit :(mx—tmy)u:o
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Maintenant, pour Y« » Valeur propre quelconque de m,, on a :
[(mx—tmy)(mxﬂmy)] k= ; (mx—Lmy)kl(mxﬂmy)lk

ou dans la somme du second membre tous les termes sont nuls sauf
peut-8tre, s'il existe, le terme vy, =vy, -1 .Donc si Y« —1 n'est
pas valeur propre de m,, tous les termes de la somme seront nuls
et 1'on aurs :

[(m, ~im, ) (m,+im, Y]y =0
Or on a aussi :

o ; _ 2 2, e 2 2
(mx "my)(mx“my)“mx +m +L[mx,my]—mx+m +m,

Y 4
2, 1 132
=mi-m,l+m,=m +I_(m2_§)

SiYi-1n'est pas valeur propre de m,, on a donc :

[ s =(mem ) Jae=m*e G =(e - 517 =0

Yi=75* 0 ; 0=_:\/m’+-14—

Bref, si vy, est valeur propre de mu’fk“ Yk-2 ete... le seront -

dfou :

N—\

aussi jusqu'd ce gqu'on arrive A4 une valeur propre égale a —+0.

On obtiendra ainsi une suite décroissante de valeurs propres qui
sera nécessairement bornée inférieurement puisque toutes les va-
leurs propres de m, sont supérieures & —m .Le dernier terme de

cette gérie sera forcément——ﬁ. La suite sera donec :

1
Yk,'Yk1 Yk—Z ceay —0‘!‘?

En raisonnant maintenant sur (m, +im )(m, 1m,) comme nous ve~
nons de le faire sur (m,-im )(m +im ,), on trouverait de méme
que si Yk est valeur propre "de m,, Yk +1 l'est aussi sauf sl

Yk——l- t0 et 1'on en déduit comme ci-dessus qu'on a une suite
croissante de valeurs propres :

' 1

Yk, Yk+1”‘\1,k+2" vy 9"'—2“
La suite compldte des valeurs propres est donc:
1
'9+—2—,—0+-§-,..., 9‘7,9——2—

et i1 faut par suite que 6——2——(—0 +1E) 20-1g0it entier, c'est-a-~
dire que 1l'on ait soit 6 =n, soit §=—X— “*1 (n entier). La valeur
correspondante de m® est 02—% . d'aprés la définition de 6. Si

donc nous posons par définition de J :

9=J+—12—~
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alors j sera soit un entier positif ou mul (0,1,2,...), soit un
demi-entier positif (%,%,%,...) car m’ est positif ou nul. Comme
alors ﬂz—-%c=j(j+1) , on voit que les valeurs propres possibles
de m* sont de la forme j(j+1) avec soit j=0,1,2,..., ~soit
j=%,%,.... et pour une méme valeur donnée de m*, m, a 1les
2 j+1 valeurs propres possibles -j, —j+1,....,j-1,].

En résumé, 1l'opérateur m? a les valeurs propres J(j+1) avee
J=0,1,s¢¢ On J==%,%,..., pour une valeur donnée de J, chacun des

opérateurs m,,m ,m, a les 2 J+1 valeurs propres possibles
-j, =j+1,...., J-1,j . Telles sont les conclusions que nous pou~
vons tirer du seul fait que les opérateurs m,,m ,m, obéiesent
aux relations de commutation :

[mx , my] =—im, ; [my,mz]= -img ;. [mz ,mt]= -imy
Si 1'on applique ces résultats gégéraux av moment cinétique or-
bital, on voit que l'opérateur M® a bien pour wvaleurs propres
2

»1(1+1)Z£T-avec 1=0,1,2,... et que pour 1 domné, chacun des
trois opérateurs M,,M, ,M, a bien les 21+ 1 valeurs propres pos-

h : h h h
sibles —].EE,—(1—1)§E,....,..., (1~1)z;-,1§;1, mais ici le nom-

bre 1 ne peut pas prendre les valeurs demi—entiéres%;,%%,... du

cas général. Ceci vient de ce qu'ici m, ,m ,m  doivent satisfaire
non seulement aux relations de commutation (III,a), mais aussi
aux définitions plus restrictives :

- (i 9 (., 3 9 . i) 9
m, =i (yg -z W),my=a(za—x—x§), m, =1 (xw—ya-)

51 donc on considére les relations de non-commutation, qui
sont lides, nous l'avons vu, au groupe des rotations, comme ce
qui est le plus essentiel dans la théorie des moments cindtiques,
on peut penser que, si les moments cindtiques orbitaux ne font
intervenir que les valeurs entidres du nombre j de la théorie
générale, d'autres formes de moments cinétiques pourraient faire
intervenir les valeurs demi-entidres. C'est ce qui se présente
dans la théorie du spin.

4. LE SPIN

Pendant longtemps, on a considéré que les particules matée
rielles étaient entidrement caractérisées par deux constantes :
leur masse (ou plus exactement, en théorie relativiste, leur
masse propre) et leur charge électrique. Mais l'existence de di=-
vers phénomdnes (effets Zeeman anormaux, structure fine de cer-
taines raies, etc.(!))impossibles & interprdter par les théories
quantiques de 1l'atome, méme en employant la Mécanique ondula-

.(1) Voir L. de Broglie : 1'Electron Magnétique, Hermann, Paris, 1934.
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toire, a montré la nécessité d'attribuer aux électrons, en de-
hors de leur masse propre et de leur charge, une troisidme ca-
ractéristique essentielle, leur gpin.

51 1'on reste dans le cadre des théories classiqueg,le spin
de 1l'électron peut se représenter par une rotation du corpuscule
électrisé autour d'un de ses diamdtres : cette rotation aurait
pour conséquence l'existence d'un moment cinétique propre auquel
nous réserverons le nom de spin et celle d'un moment magnétique
propre due & la rotation de la charge de l'électron. Pour intere
préter les faits expérimentaux, il est nécessaire d'attribuer au
moment cinétique propre de l'électron la valeur: f% et & son mo-
ment magnétique propre la valeur 4;:1 égale & un "magnéton de
Bohr" : c'est 1l'hypothiése d'Unlenbeck et Goudsmit. On voit done
que pour le spin, on est amené & faire usage de la pcssibilité,
prévue par la théorie générale développée ci-dessus, d'attribuer
au moment cindtique une valeur égale & un nombre demi~entier de

fois 1'unité E%C(pour l'électron<%—fois).

Flus généralement, 1l semble bien qu'il y ait lieuw aujour-
d'hui d'attribuer un spin & toute particule de 1l'échelle micro-
physique. Au point de vue classique, ce¢ moment cinétique propre
devrait 8tre représenté par un vecteur S de composantes rectan-
gulaires 8,,S ,5, dont le carré de la longueur serait :

SZ= Sx2+s 2+Szz

Au point de wvue quantigue, nous éevons remplacer les grandeurs
classiques par des opérateurs, mais a priori nous ne connaissons
pas la forme de ces opérateurs car nous ne connaissons plus,
comme c'était le cas pour le moment cinétique orbital, d'expres-~
sion classique susceptible de guider notre choix. Ce que cepen=
dant nous pouvons admettre, c'est que le spin, ayant la nature
d'un moment cinétique, doit 8tre relié au groupe des rotations
de la méme manidre que le moment cindétique orbital.

Mettant en évidence 1l'unité quantique 7§L nous écrirons
d*abord : “
h h

~_h . —__n . S =
Sop=am 5 = (Slop=7ms ¢ (Sifep=7x o

et nous admettrons que les opérateurs s,,s, ,s, satisfont aux re-
lations de non-commutation :

[s,, sy]=—i s, [sy, sz]z—lsx s [s, S, =-is,
correspondant aux relations admises plus haut pour 1les m,,m ,m,
et qui exprimeront ici les relations du spin avec le groupe des
rotations. Enfin, & la place de la grandeur classique S?, nous
introduirons un "opérateur de spin total".

2 h® 2 2 2
(S )Op=z—nTs avec S =5, +5,+5,
Dans ces conditions, il résulte de la démonstration gégérale
donnée précédemment que les valeurs propres possibles de S° sont

de la forme s(s+1) :

z

2

InT avee mﬁs:Oﬁ@N"sﬁts=%%u,
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et que pour une valeur donnée de s, chacun des opérateurs S,,S,,
S, a les (2s+1) valeurs propres possibles :

h h h h
—Sg, _(5_1)2—3'[’...'(8_1)5—11—’SK

Pour 1'électron et les autres particules de spin-%, on devra

prengre des opérg}eurs Sx,Sy,Sz tels que S® ait la valeur propre
%{#:%('—;—M) % correspondant a s=%—; alors §,,5,,5, ont les
1

valeurs propres:E-EE, ce qui correspond bien au spin de 1l'élec-

tron d'aprds l'hypothdse d'Uhlenbeck et Goudsmit. Nous verrons
ultérieurement comment la théorie de Dirac a précisé la forme
des opérateurs Sxe8y,8; .

En partant de 1'électron de Dirac considéré comme type de
corpuscule élémentaire, 1le procédé de la "fusion" des corpuscu~
les élémentaires (1) permet de construire des particules ayant
plusieurs d&tats de spin total différenis. Pour chacun de ces
états, le nombre s a une valeur déterminde qui, pour les parti-
cules obtenues par fusion d'un nombre pair 2n de constituants
peut varier de s =04 s=n et qui pour les particules formées
par la fusion d'un nombre impair 2n+1 de constituants peut

varier de

1 . 2n+1

S=— a 8= =n +
2

1
2

Dans cet exposé, nous nous boruerons & la théorie des par-
cules s=-%—dont 1'dlectron est le type.

(1) Voir L. de Broglie : Théorie Générale des particules & spin, Gauthier-Villars, Paris, 1943.

3



CHAPITRE IV

LES MOMENTS CINETIQUES PROPRES
DU POINT DE VUE RELATIVISTE

I. GENERALITES

Nous verrons bient8t que la théorie de 1l'électron de Dirac
nous apprend qu'en Mécanique ondulatoire on deit introduire si-
multanément le spin et la relativité qui sont étroitement 1iéds
1'un & l'autre. Ceci nous amdne done & &tudier comment se pré-
sente au point de vue relativiste la notion de moment cinétique.
La question peut paraftre simple, mais, comme nous allons le
voir, elle est beaucoup plus compliquée gu'en apparence, hnotem-
ment pour les moments cinétiques propres ou spins.

Nous supposerons connus les principes généraux et le forma-
lisme de la Relativité restreinie. Cependant nous allons rappe-
ler quelques points concernant le choix des variables. Au cours
de cet exposé, nous emploierons en effet tant8t les variables
complexes de Minkowski, tant8t les variables réelles d'espace-
temps et, pour éviter les confusions, 1l est utile de préciser
la forme et les propriétés de ces variables.

On peut repérer un évdnement qui, dans un systéme de réfé-
rence Galiléen, se¢ produit en un point & un certain instant en
ge donnant les quatre coordonnées d'Univers (au sens de Minkows-
ki) de cet évinement. Ce sont : -

X, =x X,=Yy ; X,=Z ; x,=1lct

La quatridme coordonnée est imaginaire pure.

Avec ce choix de coordonndes, la distance de deux - évine=-
ments infiniment voisins dans 1l'espace-temps est donnée en Rela-
tivité restreinte par un ds tel que :

dst= -3 dx .2
J J

Le ds? a donc une forme euclidiemme et c'est <& l1l'avantage
essentiel des coordonndes de Minkowski. Il n'y a pas lieu alors
de distinguer 1les composantes covariantes d'un tenseur de ses
composgsantes contrevariantes et l'on aura

Tr‘s'c... —_T

ijk... ijk...rst...
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ment & 1l'aide des composantes M' du méme tenseur dans le premier
syatdme par les formules classiques :

o MEpMT o MTapMT PR
\V1-p° 1-p?
M,M_ M14+[5M23 . M,z4_~M24——pMM M,34 MM
o T v T

Les résultats que nous venons de rappeler sont souvent exprimés
en disant qu'on doit consgidérer tout moment cinétique comme dé-
fini par un tengeur antisymétrique de rang 2 ou tout au moins
par les composantcs d'espace d'urn tel tenseur. A notre avis,
cette manidre de parler est un peu trompeuse. En effet, dans
chague systime de référence, l'origine des coordonndées est un
roint arbitraire et le moment cinétique par rapport & ce point
arbitraire n'a pas en général de signification physique particu-
lidre. Ce qui a une signification physique intéressante, c'est
le moment cindtique par rapport & un centre doué de propriétés
physiques, par exemple par rapport & un centre de forces c'est-a
dire & une pariicule source d'un champ de force central. Consi-
dérons un observateur qui voit passer devant lui avec la vitesse
v un atome d'hydrogéne : dans le systdme propre de l'atome, 1le
moment cinétique par rapport & l'origine ol se trouve le noyau
a une significaﬁépn physique importante; mais si nous transfor-
mons le tenseur M fourni dans le systdme propre par la transfor-
mation indiquée plus haut,les composantes M®, M", M” du tenseur
dans le systime de 1l'observateur fixe lul donneront un moment
cinétique par rapport & son origine des coordonnées, ce qui est
sans intér8t physique. Méme pour 1l'observateur fixe, ce qui a un
sens physique c'est le momant cindtique de 1'électron atomique
autour du noyau en mouvement et non celui par rapport & llurigi-
-ne arbitraire des coordonnées. Si l'on cherche comment l'obser-
vateur fixe peut représenter le moment cinétique de l'électron
par rapport au noyau entrainé (ce qui est en somme le moment ci-
nétique propre de 1l'atome H en mouvement), on trouve que pour
chaque observateur Galiléen il existe un vecteur représentant ce
mouent propre, mais que, quand on change d'observateur Galiléden,
les composantes de ce moment cinétique propre ne se transforment
pas comme les composantes d'un tenseur antisymétrique de rang 2.
On voit ainsi que la représentation d'un moment cinétique propre
par un tenseur antisymétrique de rang 2 a quelque chose de fal-
lacieux.

3. ETUDE DU MOMENT CINETIQUE PROPRE
DU POINT DE VUE RELATIVISTE

Soit un observateur Galiléen gue nous nommerons 1'observa-
teur A : il emploie un systeéme de référence cartésien oxyz et un
temps t. Devant lui passe un systéme formé d'une particule M i
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masse propre m, tournant autour d'un centre atiractif G. Nous
supposerons que ce systdme est animé d'un mouvement rectiligne
et uniforme par rapport & l'observateur Galiléen A, c'esgt-B-dire
que 1'on peut lier & G un référentiel Galiléen G x.y,Zz,. Ciest
12 une hypothdse qui souldve quelques questions délicates lides
& la difficulté de définir le centre de gravité en théorie
relativiste. Quoi qu'il en soit, nous admettons l'existence d'un
référentiel Galilden G x,y, 2z, qui accompagne le systéme dans son
mouvement et est animé par rapport & A d'un mouvement recti-
ligne uniforme. Nous nommerons "moment cinétique propre" du sys-
time le moment cinétique du systime par rapport & G tel qu'il
apparalt & l'observateur A.

Pour préciser la définition du moment cinétique propre,pla-
gons-nous d'abord dans le systdme de référence G x y 2, que nous
nommeyons le systéme propre .

ik
iR

Nous supposons que les axes Oxyz et G x,y, 2z, sont paralldles et
que le second référentiel est animé de la vitesse Pc par rap-
port au premier dans le seus o0z, ce qui ne diminue aucunement la
généralité. Alors le moment cinétique du systéme sera défini
dans le systdme propre par les composantes d'espace du tenseur
antisymétrique de rang 2 :

ik koo ik PR
X0 Vi ~ %) V(o)L) =mo(x(ol Uo) = Xo) Yg)

ik m,

(O)z V2
Vi-&=

Explicitement le moment cinétique sera dong représenté dans le
systdme G x y 2z, par un vecteur d'espace S de composantes :

{0) (o)
YoVe — 4o Vy

o > yereyees
Vs
By
Plagons-nous maintenant avec 1'observateur dans le systéme Oxyz.
Dans ce systdme le tenseur antisymétrique M a pour composantes :

M

(1v, a) S(:)—_—ij)——:m

2 2 3 1
Mm:M&‘ﬁ . MM—_—M(LPM(OL . MlzzMsz
Vi-p* Vi-p )
(1vb)
14 3 2 2 .
M — Mg+ P My, : Vi =Mﬂ ; MM:M;‘:

1 -p’ 1-p°

mais si 1l'origine du temps est choisie de fagon qu'au temps
$=0 le point G coIncide avec O, les composantes M=, M3 et M®
représentent les coaposantes du moment cinétique orbital de 1la
particule M par rapport au point O. Or, nous l'avons remarqué,
ce moment cinétique par rapport & l'origine O des coordonnédes

4*
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n'a pas d'intérét physique : ce qui a un intérét physique pour
lt'observateur A, c'est le moment cinétique de la molécule en
mouvement par rapport & son point central G, quantité qui est
pour A le moment cinétique propre du systéme entrainé. Comment
lt'observateur A va-t-i1 définir mathématiquement le vecteur
d'espace qui représentera pour lui ce moment propre ? Il imagi-
nera par exemple des axes G%{nf1liés & G et paralldles & Oxyz.
Ces axes coIncident avec Gx,y z, .81 je les appelle Giy{, c'est
pour rappeler que, du moins en ce qui concerne G, les longueurs
évaluées par A le long de cet axe différent, en raison de la
contraction de Lorentgz, des mémes longueurs évaludes dans le
systdme propre. Les coordonnées § ,7, {de la molécule de coordon-
nées x,y,z sont pour A :

E—x n=y ; C:z—Pct
De plus les composantes de la quantité de mouvement de la molé-

cule de masse propre m, dans la mesure ol ces composantes pro-
viennent du mouvement de rotation autour de G sont données par :

Mg Vy m,V, m (v, - pe)
Pe=17—: @ P77 ¢ Pt Tt
Vi-5 Vi-e= Vi-
En effet m, ——B%— représente pour la molécule dont la vitesse
-

totale est ¥ la partie de la composante z de 1l'impulsion qui est
due & la vitesse d'ensemble pc . Le vecteur d‘espace qui repré-
sentera pour l'observateur A le moment cinétique propre sera dé-
fini par les formules :

vz—pc ( {.’:t) vy
oY v oy MY T =
o

\2
X
Sx=m ; Sy=mo (z—[%ct)

[w.c]

VX

f— y >
\/ v

T ¢
En comparant avec les expressions de S(:’ . S‘;” ,S(z‘” , on voit tout
d'abord que, si l'observateur A était 1i€ au systéme entrainé,
i1 trouverait (ce qui est évident a priori) pour le vecteur S le
vecteur S® car on aurait alors D=0, x=X,,ees, v, =7}
D'autre part, on a les formules de transformation :

y=VYe 3 X=x, ; z-Pect=z \1-}

et des formules de composition des vitesses :

_ v yi-pe v _ v V1 - B2 v AR
X ’ y z—

( (©)

1+ %—v;’) 1+—E—vz(°) . 1+%vz0
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on tire d'abord :

_ 1 ) 1+% VZ(O)
V? V7 2
- \/1— o \/1—[5

. v, v, Cv-pPe VOV
; = 4 =

v? v Ve V¢ V2 Vo?

o Vit Vi-te V- Vi-e V-

De lés on tire aisément en comparant les expressions (IV,a) et
(IV,c) :

©) o) G
s,=s, \Vi-p* & s,=s;Vi-pr 5 s, =8,

Ces formules de transformation sont tout & fait différentes de
celles des composantes d'espace d'un tenseur antisymétrique de
rang 2. Ainsi par exemple, si 1l'on fait tendre p vers 1, le vec-
teur d'espace dont les composantes sont M*,M" et M" tend d'aprds
les formules (IV,b) & se placer perpendiculairement & oz tandis
que S tend & se coucher sur oz.

On peut bien, pour un observateur A domné, trouver un ten-
seur antisymétrique qui %}t pour composantes d'espace Sx,Sy,SZ

dans le systime oxyz et S , S/, 8 dans le systime propre’: il
suffit en effet pour cela de définir ce tenseur par les formules

[
23 3 12

S = 8§, ; S = Sy ; 5 = 8§,

s* = 0 ; s“= 0 ; s*=0
ce qui donnera bien :

B L0 . 3 (o) . 1z (o)
(Iv,a) Sw>_ S ’ sb)_ Sy ’ Sw)_ S,

d'aprés les formules de transformation des tenseurs antisyméiri-
ques. Mais, et ceci est essentiel, le tenseur ainsi défini chan-
ge quand on passe d'un systéme Galiléen A 4 un autre A' qui est
en mouvement relatif par rapport & A. Pour le voir, il suffit de
remarquer que s8'il y avait un seul tenseur S, ce tenseur devrait 4
avoir ses composantes S'* nulles dans tous les systdmes Galiléens,
ce qui est impossible. Nous allons retrouver cette conclusion
plus loin par une autre voie.

Finalement nous avons pu définir pour chaque observateur ]
Galilden un vecteur d'espace S définissant le moment cinétique
propre du systéme considéré, mais nous n'avons pu rattacher ce
vecteur d'une fagon unique & un &tre mathématique & caractdre
tensoriel dans l'espace-temps.

Si 1'on avait cherché & définir le tenseur S de fagon & , R
avoir dans le gystéme propre :

23 {o) 3

S = 5% & Sy

X

{0} R 12 ol . w34
Sy i 8@ =%, 3 5= 5 =

z )
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les trois premidres composantes de ce tenseur dans un autre sys=-
téme Galiléen sg)raient : o ‘
@ S . 3 S % . 12 (o}
S = _1_:%' » = 1—)/ 2 4 S = SZ
et ce ne serait pas 14 les trois composantes du moment propre
dans ce systéme. Cette remarque nous sera utile pour &tudier la
théorie de M.v. Weyssenhoff.

En Mécanique ondulatoire on cherche toujours & associer 2
toute particule des densités ayant le caractd®re de grandeurs de
champ. Quand nous cherchons & définir en Mécanique ondulatoire
le moment cinétique propre d'une particule (spin de 1l'électron),
il sera donc naturel de définir le spin par un vecteur S de la

forme : .
5=/a dt
s}

ol 0 sera la densité de moment propre.

Dans le systdme propre, nous surons alors :

©_[ L@ : L ) . ©_[ s
S, —/D‘cx dt ; Sy _/DGY dv ; S, —/c;o*z dt
et nous supposerons ¢ ) fonction de x,,¥,,2,, mais indépendant
de t,. Si 1'on veut effectuer les intégrations en se servant des
variables x,y,z d'un observateur A, on devra remplacer dT, par

daTt

W‘ﬂz - o, o)

S(:)= Sy =/ o dr - S(;)= S, =/—O-Ld':; S(:)=Sz=
VR RV TV VR o VF

d'ol 1'on tire :

il
- (0 . - g0 . = z
o,=0, ; O,=0, 3 GZ—W
Les grandeurs o, ,0,,0, se transforment donc comme les_trois com-
posantes rectangulaires d'espace d'un quadrivecteur L dont 1la
quatridme composante o 4‘°] serait nulle dans 1le systdme propre.
Pour P tendant vers 1, le vecteur G se couche sur la direction
du mouvement. Ainsi donc tandis que le moment cinétique propre
n'a pas de caractdre tensoriel bien défini, om peut par contre
définir une "densité de moment cinétique propre* & l'aide d‘'un
quadrivecteur Y dont la composante de temps est nulle dans 1le
systéme propre (ce qui paraft naturel du point de vue physique).
Ceétte derniére condition nous permet d'ailleurs d'exprimer o, en
fonction du vecteur d'espace ¢ dans n'importe quel sys%éme
Galiléen. En effet le produit scelaire :
‘ (Z-ds)=c‘;cd‘c—o’xdx-crydy—o'Z dz

est nul comme on le voit en se plagant dans le systdme . propre :
autrement dit le quadrivecteur I est orthogonal dans 1l'espace-
temps & la ligne d'Univers de la particule. On a donc dans tout
systdme Galiléen (puisque X -ds est un invariant)

0,=+(0-V)

Nous allons ieprendre le probléme de la représentation relati-
viste du moment cinétique propre en nous inspirant des travaux
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de M, Olivier Costa de Beauregard et retrouver les mémes résul-
tats par une autre voie. -

4. THEORIE RELATIVISTE GENERALE
DES MOMENTS CINETIQUES PROPRES

Considérons un fluide en mouvement congu & la fagon classi-
que. L'ensemble des lignes d'Univers de ses divers éléments for-
me un tube d'Univers occupant dans l'espace-temps un domaine &
quatre dimensions allongé dans le sens du temps.

Coupons ce tube par des cloisons & trois dimensions (hyper-
cloisons) C,C',... Supposons que notre fluide est doué de moment
cinétique propre, chaque élément du fluide transportant son mo-
ment, et cherchons avec M. Costa de Beauregard & définir en cha-
que point du tube d'Univers une densité de moment cinétique
propre qui, intégrée sur une cloison C guelconque, donne un mo-
ment cinétique ou plus exactement un tenseur antisymétrique du
second rang dont les composantes d'espace définissent un moment
cinétique. La cloigon C étant & trois dimensions, un élément de
cette cloison pourra 8tre défini comme_un parallélépipéde cons-
truit sur trois petits vecteurs ds’ ds et ds™ contenus dans
cette multiplicitvé :

Cet élément de volume peut, on le sait, 8&tre considéré comme un
quadrivecteur, ou plus exactement comme un tenseur du troisiéme
rang compldtement antisymétrique dont la projection d'indice 1
(ctest-a~dire la projection du velume sur l'hyperplan perpendi-
culuire & l'axe des x;, ) est donnde par le déterminant :
dx'  dwl dx)
[de ,dxk ,dxl] = dXJn dxku dxln
dem dx, ™ dx®
I1 est alors mnaturel de chercher, comme le fait M. Costa de

Beauregard, & écrire le moment cinétique propre attaché & 1la
cloison C sous la forme H

=4

Z aX [dn,dxj,dxd

k=1
ol les quatre o'forment les composantes d'un quadrivecteur
d'espace~-temps (ou plut8t, ce qui revient pratiquement au méme
en Relativité restreinte, les quatre compesantes d'un ' tenseur
compldtement antisymétrique de rang 3). Ce quadrivecteur est la
"densité de moment cinétique propre" défini en tout point du
fluide.
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En intégrant dS;; sur la cloison C choisie, on obtient 1la
grandeur :
() ket
Sy, =/ & o [dx,dx;,dx,]

4 c k=
Nous avons dcrit S%’ car nous ne savons pas encore si cette
grandeur dépend ou non de la cloison C choisie. Pour examiner
cette question, il est intéressant de comparer les définitions

précédentes avec celles que l'on adopte usuellement en Relativi-
té restreinte pour la charge et le courant électrique.

En relativité, on définit le mouvement dtune  distribution
d'électricité par un quadrivecteur d'espace-tempa J de composan-
tes spatiales j,,j,,j, égales aux composantes de la densité de
courant et de composante de temps égale acp, c'est-a-dire 2 ¢
fois la densité d'électricité. Le mouvement d'ensemble de la
distribution d'électricité au cours du temps sera représenté par
un "tube d'Univers" formé par l'ensemble des lignes d'Univers de
ses divers éléments. Sur les parois du tube, le quadrivecteur J
est par définition toujours tangent & la paroi, ce qui exprime
le fait physique que 1l'électricité ne traverse pas cette paroi.
Nous pouvons encore couper le tube d'Univers par une cloison C &
trois dimensions.

Avec les m8mes notations que plus haut, nous définirons la
grandeur

Figy (9] =‘/C(p.c|:dx1,dx2,dx3} —Jy [dx dx, dx, ]
—J, [dxg,dxdx, | =, [dx, ’dxa'dX4J)

dx, ' dx, T odx,t dx, !
dx,® dx,T dx, b dx,T
dx, ™ dx,™® dx,® dx, ™
J1 Jz Js pe

La grandeur ﬁc)(ﬁ) est le flux du quadrivecteur'3'é travers la
cloison C. Elle possdde deux propriétés essentielles :
1%~ ﬁc)(J) est un pseudo~invariant relativiste, c'est-a-dire que,

pour une cloison C donnée, elle a la méme valeur, quel que soit
le gystime de référence utilisé pour 1l'évaluer. Cette propriété
résulte du caractire tensoriel de J et des éléments d'hypersur-
face : elle est tout & fait indépendante de la conservation de
1'électricité.

2°~ Si 1'on considdre deux cloisons différentes C et C',coupant
le tube d‘'Univers, on a

o) = o)
Cette seconde propriété exprime la conservation de l'électricité

En effet, 1le théordme flux-divergence appliqué dans 1'espace-
temps au domaine D compris & l'intérieur du tube d'Univers entre
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les cloisons C et C' donne, compte tenu du sens positif choisi
sur le tube,

- - dp .
FWﬂJ)_FwMJ)=J€(§%+dNJ)Hx"d&mhyd&]
=/ Div J [dx1,dx2,dx3,dx4]
D

[Nv3'==é¥? +div ]

egst la divergence quadridimensionnelle de J. 8il'on admet la
conservation de 1'électricité traduite par 1'équation Divd =o
J) = F
b=

on a : - .
@) = Figld)

F
Si le quadrivecteur J n'obéissait pas & 1l'équation de continuité
la premidre des propriétés de F ¢ (7), son invariance, subsis-
terait, mais la seconde, sa constance quand on déplace la cloi-
son C, ne subsisterait plus. Ceci met bien en lumidre la diffé-
rence entre l'invariance de la charge électrique et sa conserva-
tion.

ou :

Bref la grandeur F(C)(E)’ ayant m8me valeur pour toute

cloison C coupant le tube d'Univers, est caractéristique de
1l'ensemble de ce tube : par définition, on la considdre comme

mesurant au facteur %—prés "la charge électrique totale” de la

distribution. Pour voir que cette définition est conforme & 1la
notion usuelle de charge, il suffit de remarguer qu'un observa-
teur prend naturellement une cloison C formée par des points de
1l'espace-temps qui, pour lui, sont simultanés et qu'il définira
la charge électrique par :

e =2/; p dv

V étant le volume qu'occupe la distribution électrique & 1l'ins-
tant t de son temps propre ol il fait l'intégration.

Aprds cette étude rapide de la définition relativiste de la
charge électrique, revenons & la définition domnée plus haut
pour le moment cinétique propre :

[C) k=t K
S =A k}% c [dxi,dxj,dxk}

Pour wune valeur donnée des indices 1 et j, il n'y a que deux
termes non nuls dans la somme du second membre (& cause de l'an-
tisymétrie du crochet). Mais, et c'est un point essentiel, 1le
tenseur antisymétrique du second rang ainsi défini dépend du
choix de la cloison C.

Physiquement,il est naturel (at nous verrons méme qu'il est
presque nécessaire dans la théorie quantique du spin) de définir
dans chagque agystéme Galiléen un tenseur S & l'aide d'une cloison
C dont tous les points sont simultands dans un systdme de réfé-
rence. Si le mouvement du fluide est un mouvement d'ensemble &
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caractére permanent, le tenseur ainsi défini pour un certiin ob-
servateur Galiléen restera conatant au cours du +temps, mais
quand on passe de ce premier observateur & un second en mouve-
ment relatif par rapport au premier, on passera d'une eloison C,
& une cloison C, et par suite d'un tenseur S, & un tenseur S,.
Les tenseurs S sont donc définis par rapport & un observateur.
51 toutes les lignes d'Univers des éléments du fluide sont pa-
ralléles, on peut considérer les cloisons C qui sont orthogona-
les aux lignes d'Univers dans l'espace-temps : elles correspon-
dent au volume du fluide pour un observateur 1ié & son mouvement
(systiéme propre). On pourra définir un tenseur S en se servant
de ces cloisons, c¢'est-d-dire en se plagant dans le systime pro-
pre. Nous verrons que c'est ce que fait M. v. Weyssenhoff. Mais
le tenseur ainsi obtenu n'a pour composantes d'espace les com-
posantes du moment cinétique propre que dans le gystdme propre.
Le méme tenseur envisagé dans un systéme Galiléen autre que le
syetdme propre n'a plus pour composantes d'espace celles du mo-
ment cinétique propre.

Pour chaque observateur, nous aurons :

S‘J=./c ok [, dx;,dx, ] L,j.k=1,2,3
Sie= 0 Lo=1,2,3

81 nous intégrons dans 1l'espace propre de cet observateur. C'est
un tenseur de ce type que nous avions rencontré précédemment.

Nous obtenons ainsi pour chaque observateur un tenseur s
1ié & la cloison C qui forme "l'espace® de cet observateur.

Naturellement un deuxidme observateur peut en principe cal-
culer les composantes SU“ du tenseur S" du premier observateur,
mais 11 ne s'y intéresse pas et emploicra 1les composantes du
tenseur s @ qui lui correspond & lui-mé&me et dont les composan-~
tes S, sont nulles. Comme nous l'avons déja noté, le fait que
les composantes i4 sont nulles suffit & montrer que les divers
tenseurs S(”, S(z),..., sont différents les uns des autres car un
tenscur antisymétrique de rang 2 ne peut pas avoir ses composan-
tes S;, nulles dans tous les systimes Galiléens.

Dans la théorie du spin de l'électron, les rcmarques précé-
dentes vont trouver leur application. La propagation de 1l'onde
de la particule & spin considérée définira un tube d4'Univers
dans l'espace-temps et noums serons amenés & considérer une "den-
gite de spin" définie par un quadrivecteur dont les quatre com-
posantes seront données par des formules du type :

. GL=¢*(GL)OP¢
o (0'),, est un opérateur dont nous aurons & préciser la forme.
La définition précédente est conforme & la définition générale
des densités en Mécanique ondulatoire. Suivant ces mémes princi-
pes, on pourra calculer pour chaque observateur & l'instant t la
valeur du tenseur S en intégrant sur la cloison C du tube d'Uni-
vers qui est formée par 1les points d'espace-temps simultanés
pour l'observateur envisagé & son instant t. Si le mouvement de
la particule est permanent, le tenseur S5 reste le méme au cours

i s
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du temps pour chaque observateur mais méme en ce cas il change
quand on passe d'un observateur Galilden & un autre. C'est 1la le
point essentiel car il en résulte gque les valeurs moyennes : .

S, = Jk—/o'dt__fd) op P AT
{od 1,j,k forment une permutation paire des indices 1,2,3) ne se
transforment pas comme les composantes d'esgpace d'un tenseur
antisymétrique de rang 2 quand on passe d'un ohservateur Cali-
léen & un autre. Cette circonstance souvent méconnue doil rendre
trés prudent quana on veut assimiler le spin a un tenseur anti-
symétrique 4'espace-temps.

En réalité, quand on s'occupe des variances relativistes,il
est préférable de conuidérer uniquement la "densité de spin" qui,
elle, a un cavactdre tensoriel tout & fait défini puisque les o'
définis en chague point de l'espacc-temps se transfoiment comme
les composantes d'un quadrivecteur. Le spin intégral deit plutét
8tre envisagé comme un vecteur d'espace bien défini dans chaque
systdme de référence que comme un_tenseur, Pourtant, mnous le
verrons, c¢'est un vecteur sans variance définie d'espace-temps
qui a un sons physique dans la théorie quantique. Cl'est 13 un
exemple des oppositiona assez fréquentes qui se présentent antre
idédes quantiques et idées relativistes.

5. ASPECT RELATIVISTE DES MOMENTS MAGNETIQUES PROPRES

Nous avons vu que les particules & spin ont aussi un moment
magnétigque propre. L'examen de ce moment magnétique conduit a
des conclusions assez analogues & celles des paragraphes précé-
dents. e n'est pas le momeni magnétique lui-méme, c'est la den-
sité A¢ moment wmagnétique (intensité d'aimantation) qui a une
variance tensorielle bien définie. Plus exactement, on ne peut
pas séparer 1l'étude relativiste du moment magnétique propre da
celle du moment électrique propre, les deux notions é&tant du
point de vue relativiste aussi lides 1'une & l'autre que celles
de champ électrique et de champ magnétique.  De méme qu'en Elec~
tromegnétisme relativiste les six composantes du champ électri-
que et du champ magnétique s'unissent pour former un tenseur
antigymétrique de second rang, les densités de moment électrique
et de moment magnétique s'unissent de méme pour former wun autre
tenseur antisymétrique du second rang. Soit M le vecteur d'espa-
cz "moment magnétique” et I P le vecteur d'espace "moment lectri-
que", les densités |L et T correspondantes sont par définition
telles que 3

Ml:/}‘ld"f ; PL=/“LdT ;o 1=1,2,3
En posant : D b

Mpy= —My,=Rk, =}, + My=-My= =k, ;5 M,= a2 = Hz= s

M=M= =T 5 My="M, =R, =T, 5 My =-My =T, =7,

P
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o~

on définit un tenseur m antisymétrique de rang 2. D'aprds les
formules de transformation des tenseurs de cette espdce, on voit
que, 81 par exemple, le moment électrique d'un corps dans un
certain systdme Galiléen oli 11 est au repos se trouve 8&tre nul
sans gque son moment magnétique le solt, dans un autre systdme en
mouvement par rapport au premier, 1le corps possddera & la fois
un moment magnétique et un moment &lectrique : on peut dire
qufen passant du premier au second systéme, on voit le corps qui
dans son systdme propre était magnétique sans 8tre électrique-~
ment polarisé, devenir polarisé électriquement par suite de son
mouvement. C'est la précisément ce qui se passe pour 1l'électron.
Envisagé dans un systdme ol il est au repos, l'électron a un mo-
ment magnétique propre, mais pas de moment électrique propre 3
envigagé dans un systdme ol il est en mouvement, il a & la fois
un moment magnétique propre et un moment §lectrique propre.

I1 est aisé de trouver 1l'expression du vecteur ¥ en fonc-
tion du vecteur § pour une particule magnétique en mouvement
uniforme. En effet, dans le systime propre de la particule, on a
par hypothdse X =0 . Or le tenseur m §tant antisymétrique, on a

1=3
(Iv,e) | Z Mo 9 - My dx, =0

commeé on le voit aisément en écrivant cet invariant dans le sys-

téme propre. Si dans cette équation on fait 1=1,2,3 on trouve 3
my dx; o+ m dx = m, cdt

ol 1,],k forment une permutation paire des indices 1,2,3. Tenant

compte des valeurs des m,, on irouve :

7= L[F]
ce qui donne l'expression de R dans tout systime Galiléen.
De plus, si dans (IV,e) on fait i=4, on obtient :
(7-V)=0
Le vecteur T engendré par le mouvement est done toujours normal

-4 la vitesse V. Ces formules sont valables dans la théorie de

1'électron de Dirac et plus généralement pour toute particule a
moment magnétique propre.
6. RAPPORT ENTRE LE MOMENT MAGNETICO-ELECTRIQUE ET LE SPIN

L'idée fondamentale de l'hypothése d'Uhlenbeck et Goudsmit
sur le spin est que 1'électron possdde un moment de rotation

propre égal & %%= 4% et un moment magnétique propre colinéaire
ayant pour valeur 4nenr1\ < (magnéton de Bohr). Ces deux moments
o

gont donc représentés par des vecteurs de méme direction et de
sens opposés (en raison de lea charge négative de 1'électron), le
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moment magnétique propre se déduisant du moment cinétique propre

ou spin par multiplication par le factgur ;‘ehc .
o
N/(H 4n
" _~eh Ve
4nm.c M

Les considérations que nous venons de développer nous per-
mettent de voir que cette relation entre les moments n'est exac-
te que dans le systdme propre de la particule. Dans tout systdme
Galiléen, en effet, 1le moment cinétique propre ou spin est re-
présenté par un vecteur de composantes :

S, =fo-1 drt . S,y=/o'2 dt S, =/0'3d'c
ou, 0, ,0,, ¢, sont les composantes d'espace du quadrivecteur
"denaité de spin® considéré plus haut. Le moment magnétique pro-
pre de la particule et le moment électrique propre qui lui est
asgocié par suite méme de son mouvement sont représentds par
deux vecteurs de composantes :

Jm)(:fp,x drt =fm23 drt ,...)

ff’x =fﬂx dt ==me dr ,...
ol m,,... sont les composantes du tenseur antisymétrique de
rang 2 "densité de moment magnétique et de moment é&lectrique”,

précédemment défini. Quand on se place dans le systdme propre de
la particule, on a :

et de plus :

-8 e e '
M,y = m,C g, m31=—m°c g, » M,= _moc T,
d'ol :
Foo,db__e
! S m,C

L*hypothtse d'Uhlenbeck et Goudsmit eat vérifide dans le systdme
propre.

Mais dans un autre systdme Galiléen ol la particule est en
mouvement, il n'en est plus ainsi. D'aprds les formules de
transformation des composantes de & et det , on voit _gpe plus le
mouvement de la particule est rapide,plus le vecteur S tend & se
coucher sur la trajectoire et le vecteur)lC & se mettre normal &

elle, le vecteur 7 en raison dea fonmlea?t'=-16|:p’ -'\7] et (-V)=0

étant toujours normal & la fois aJilet & la vitesse V. A la limi-
te pour v tendant vers ¢, les trois vecteurs prennent la dispo-
sition suivante : Ljfﬁ

2
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qui rappelle la disposition des vecteurs électromagnétiques dans
une onde électromagnétique, remarque qui m'a servi de guide dans
1télaboration de ma théorie du photon.

Les vecteurs moment magnétique propre et moment ecinétique
propre ne sont donc colindaires ?en gens inverse) que dans le
systéme propre de 1l'électron.

7. THEORIE DE M. JAN v. WEYSSENHOFF

M. Jan.v.Weyssenhoff a publié (!) une série de mémoires oh,
développant des idées de Mathisson, Lubanski et Frenkel, il a
établi une dynamique relativiste des fluides & spin et des par-
ticules & spin. Une tontative en ce sens a aussi été faite en
France par M. Olivier Costa de Beauregard.

Jde vais résumer jci bridvement, sans entrer dans tous les
détails ni poursuivre les développements, quelques-uus des cal-
culs de M.v. Weycsenhoff pour montrer leur liaison avec les con-
ceptions exposées ci-dessus. : '

L'auteur part de 1'idée qu'il faut introduire dans la théo-
rie classique du spin un tenseur antisymétrique de rang 2 repré-
sentant la "densité de moment cinétique propre®*. Ce que nous
avons dit précédemment montre qu'il faut faire des réserves sur
cette hypothése puisqu'en réalité la densité de spin est repré-
sentée par un quadrivecteur et non par un tenseur antisymétri-
que.

Weyssenhoff désigne par s' les composantes du tenseur qu'il
introduit et définit les deux vecteurs a trois digensions : § de
composantes s®, s¥, 8" et  de composantes s", s”, s". I1 pose
comme condition :

(Iv,£) s, uPf=s5*P upg=0

o

(avec sommation sur B) ol les uP sont les composantes de la vi-
tesse d'Univers:

_ Y% e Ve s Ve LUt Lc_

d'od i1 résulte que les composantes 8", 8™, s de § s'annulent
dans le systidme propre. La relation s“pup‘=0 est équivalente A :

- 1 = — — ey
=< (3xV) et (4-%)=0
Le tenseur s°P de Weyssenhoff représente bien au facteur

constant éj% prés le tenseur mik(densité de moment magnétique et
Q
électrique propres), mais d'aprdés ce que nous avons dit plus

{1) Acta Physica Polonice, vol. IX (1947), pp. 8~53.
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haut, il ne représente vratment 1le moment cinétique propre que
dans le syst2me propre ol l'on aura :

B3 1 R R L2 3 oM A M
ST G S =%, Sy =T 8= =s7=0
d'ou en intégrant sur le volume propre :
B _S(o) 823 23 d
S(o) —S(o) =35,,... avec 0)=/5(0) %0 » -

ce qui est précisément les formules (IV,d).

Mais dans un systowe de référence autre que le systdme pro-
pre, le tenseur 8*P n'aura plus de relations simples avec le

spin toujours défini par S, =fo"d'r ye+e car les trois quantités
/‘szad’t=st;fsa1dt=Sa'et/s'zd‘c:S’Zne coIncident plus avec 8, 18,45, -
En particulier dans un systdme ol veoc le vecteur S (8,,5,,8,)
est couché sur la vitesse tandis que le vecteur $2,8%,8" lui est
perpendiculaire. :

M. Weyssenhoff décrit la conservation de 1'énergie et de

1'impulsion sous la forme :
o
" 9, T=0

T 7 définissant le tenseur énergie-impulsion. Dans le cas des
fluides sans spin, Bn pose T“P=p°u°‘u‘° y Po étant la densité de
masse. Le tenseur T ™" est alors symétrique. M.Weyssenhoff, adop-
tant un point de vue dont M.Costa de Beauregard a plusieurs fois
souéigné 1'importance, ne suppose pas le tenseur T°" symétrique
et derit : .

T —geur

ot J% est 1e quadrivecteui' "densité propre d'impulsion linéaire"
Nous ne supposons pas que g“ soit colinéaire & u® comnme on l®
fait dans le cas de l'absence de spin.

Avec M. Weyssenhoff, nous désignerons & partir de mainte-
nant par des indices grecs les indices d'Univers allant de 1 & 4
et par des indices latins les indices d'espace ordinaire allant
de 1 & 3. Désignons par g' les composantes de la quantité de
mouvement au sens ordinaire; nous aurons :

1 1 1 2 1

3 91

S S B RN S
— 2 v Y, v ¢

“ oY l o ” ?:pv1 gpvz g}wa czgp

La relationd, T*P= 0 exprime la conservation de l'énergie et de
1'impulsion. La relation d, T *P=0 , qui est équivalente & la pré-
cédente dans le cas de l'absence de spin, n'est plus exacte ici.
La quantité de mouvement § et la vitesse ¥ ne sont plus coliné-
aires. Dans le systdme propre de la particule, 1l1l'énergie est
proportionnelle & la masse au repos.

]
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Weyssenhoff introduit ensuite deux sortes de dérivation par
rapport au temps, d'abord la dérivation lagrangienne classique
(en suivant la particule)

d,f=0,f + vE 0, f
puis la dérivation (pour les densités)
Dyf =d f+fa, vi=8,f+d, (fv¥)

dy (fdt)=(D,f) d= ; dtffdt =f(th)d~r

d (d‘t) = (divV) d=<-
Par analogie, on définit dans 1'Univers de Minkowski des

dérivations par rapport au temps propre prises le long de la 1i-
gne d'Univers d'une particule :

d f=Ff=u’d,f
Dy f=d,f+ Fa\,u" = 0, (F u")
51 d Q désigne un élément de volume quadridimensionnel, on a :
g, (fag)=(p, F)an

d, (d0)=dQDiv G =dQ 3,u”
Mais dQ=drt, - dt,, d'ou : ’
d,_(fdt,)=(D, f)dr,

aPTaPZaP (gaup)=Dt° g
D, §% =0

ce qul exprime la conservation de 1l'impulsion.

M.Weyssenhoff exprime la congervation du moment total de la
quantité de mouvement (orbita1+spin) en écrivant la condition :
(x*@P-xP3*)+D, s*P=0
Elle exprime la conservation dans le systéme propre : dfailleurs
s*P ne représente le spin que dans ce systdme.

On a :

D, (fg)=fD, g +gd, f = gD, f+fd, g =d; f+d, g+fgad, uV
pour f et g quelconques d'apreés les définitions admises. L!'équa-
tion de conservation s'écrit donc :

=g uf-gPus=TeP-The
On voit que l'existence du spin est reliée & la non-symétrie du
tenseur T comme M. Costa de Beauregard l'avait fait observer.

Multiplions 1'équation précédente par up et remarquons que
ufuy=-c®, i1 vient, en posant :

On a

car 3

car ¢

On a donc :

dtol ¢
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la dernidre expression s'obtenant en appliquant 1l'opérateur D
4 1'équation s l3up,—O, et en posant :

= dt u
Ayant ainsi défini des densités & caractére tensoriel, l'auteur
les intégre pour obtenir des grandeurs intégrales. Mais cette
opération ne laisse 1les variances intactes que si l'on intégre
dans le volume propre. On pose donc :

La troisidme définition va de soi, mais il y a d'intéressantes
remarques 4 faire sur la seconde. Dans le systéme propre, le
tenseur S°F a ses composantes d'eapace Sh,, S@), S5 ,qui qoinp
cident avec les composantes du vecteur spin et s(,—-s@)—-s@)-ao
mais il n'en ?st pas de méme dans les autres systémes Galiléens.
Le tenseur S°F est donc le tenseur S qui correspond au spin pour
1'observateur propre tel que nous l'avions précédemment défini :
il ne correspond pas au spin dans les autres systémes Galiléens.
Ce point paraft avoir échappé & M.v. Weyssenhoff.

Des définitions précédentes, en remarquant que @
d, G* _f D,.
et en tenant compte des relationsim‘g 0 et 8" up==0, on tire :
G*=0 ; S*Puy=0 ; §*b = G*uP-GPu®
G* =m, u*+— S“p g ; moz—%qup
On en déduit :

. 1 b -
mou“+—czspup=0

Sep =%; 570, uf - 1o 8Pog v

Dans la premidre équation, on a supprimé un terme en Supﬂp s en
effet i1 est nul car on a :

S“PuP=G“uPuﬁ - GPu*ag,0r uf-*up=0
d'apres :
[5 2 P‘ _ . p 1— 0(.{5' .
uPup=-c et G bp =m, gu +CZ(S Ug Up
qui est nul en raison de 1l'antisymétrie de s*P.

De m, ___ upgﬁ on tire m = ——-UPG ——quPet qui3 est nul

ainsi que GP, de sorte que m,=0. Donc m, est une constante, 1la
masse au repos de la particule.
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On trouve Pencore 5 P Sap =0 _parce que g™ u[s =0, d'ol :

ST 8 p = §-8-9¢ = =C*

9

Le moment angulaire propre de la particule est constant.-

Je n'exposeral pas la partie du mémoire de M. Weyssenhoff
congacrée & l'intégration des équations. Cette intégration con-
duit & considérer 1la particule A gpin comme &tant animée dans
son systéme propre d'un mouvement circulaire perpendiculaire au
vecteur S©), Cette image est certainement intéressante et peut
8tre utilement comparde au "tremblement de Schr¥dinger®. Mais,
comme l'auteur lui-méme 1l'a constaté, elle présente des daiffi- -
cultés quand on la compare & la théorie de Dirac et elle ne pré-
sente pas le caractédre quantifié qui est aujourd'hul indispen-
sable pour représenter les propriétés des corpuscules & spin.
Par son caractire intuitif, elle pourrait méme & ce sujet suggé-
rer des idées fausses. :

Je m'étendrai davantage sur l'analyse que M.v.Weyssenhoff a
donnée du mouvement de la particule & spin dans un champ élec-
tromagnédtique. Ce sera d'ailleurs en partie pour critiquer son
raisémnement qui me paralt avoir des points faibles.

Nous introduirons d'abord 1le tenseur électromagnétique ¥
tel que :

<,F31,F1z) et —-E> (F14,FZ4’F34‘)

et le tenseur "densité dé moment magnétique et électrique pro-
pres®” m*P qui, nous le savons, est proportionnel & s“P dans tous
les systimes de référence :

m*P = x s*P

avec x= électron.

M. Weyssenhoff pose que l'énergie de la particule dans un
champ électromagnétique est 1

—

__ _ — -1 pxp
U=-JG-H-9-E 5 Magp

La dernidre expression nous paratt inexacte car m*P est 1la den-
sité du moment électromagnétique et non ce moment lui-méme. Il
convient de poser :

U=-§l/‘F°‘Pm Pd't

Iei intervient une circonstance intéressante.U=-JGH-9E a lea
dimensions physiques et le sens d'une énergie. Elle n'a cepen-
dant pas la variance relativiste d'une énergie : elle n'est pas
la composante de temps d'un quadrivecteur. S1i l'on admettait
l'expression de M. Weyssenhoff :

=1 pxp
(1v,g) Us=-5 FF mgg

U serait un invariant. Mais en prenant 1l'expression correcte :

—-12— fF“P Map dt = - %/F“pmapd'to \i-p? ’
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on voit que U est de la forme :
U=y, Vi1-p*
ou U, est l'invariant——/F“Pmapd‘c U se transforme comme wun

volume. Si la particule est assez petite pour &tre assimilée A
un point, on pourra poser :

A 3 1 T

Ga= < F(Xp u[i +aa E/FP mpc, d‘Co
ol % Fap uP est la force de Lorentz (& quatre dimensions) et ol a,
indique la dérivation par rapport aux coordonnées de la particu-
le considérée comme une unité (coordonnées du centre de gravité

de la particule) Les troies premi2res équations donnent (car
dt,=dt\1-p?) (£ = force de Lorentz & trois dimensions) :

dG .
E_’C_— (U, VI-p7)=f, - 3, U i=1,2,3

et la quatridnme exprime la conservation de 1'énergie :

dw _ 0
g o) - gp v

Pour exprimer le couple exercé sur la particule, om écrira :

S‘"p=Gmu[5 GP o f(mMFE—mﬁc a)d‘t

Nous avons ajouté l'intégrale qui ne figure pas dans le travail
de Weyasenhoff.

Comme ¢
1
m, =/‘}xodro= = up/‘gp dt,
on a @
o= - oz UF [ G dt,= -5 6Pup=- Gpub=g, [ mfoF . d1,)
La quantité :
My, = Mg + Z—LEfFPGmPG dt, = Gfbu[5 F m?" dt,
s U

qui ée réduit & m, si les champs sont nuls, est une constante du
mouvement. La masse propre variable m, est la somme de la partie -

U .
constante m,, et de la partie variable ;. En nommant m} ce que

Weyssenhoff appelle m, et m, ce qu'il appelle m, nous aurons
donc :
, U
n’]0 = mo + —C—E
ce qui définit une masse propre variable m' de la particule a
spin dans le champ électromagnétique que nous retrouverons ulté-
rieurement.
5




R i

60 CHAPITRE IV - 7
Remarque. - La relation :
(Iv,£) Sup uPb =0
jointe & la relation de définition :
(W,) P = 5P
nous donne :
}meup =0

kn désignant (1) par i (® le quadrivecteur X=m_cU , nous
obtenons :

(IV,h) fop P =0

relation que nous utiliserons ultérieurement.

(1) ne pas confondre avec la densité de moment électrique propre.
.




CHAPITRE V

LA THEORIE DE L'ELECTRON
A SPIN DE DIRAC

I. LES EQUATIONS D'ONDES DE L’ELECTRON A SPIN

M. Dirac a trouvé les équations fondamentales de sa théorie
en cherchant & construire une Mécanique ondulatoire de 1'élec-
tron qui soit relativiste et qui permette de conserver pour 1la
densité de probabilité de présence une forme analogue & la forme
définie positive | |°, valable dans la Mécanique ondulatoire
non-relativiste primitive.

S'inspirant d'une tentative antérieure de M.Pauli, il a ad-
mis que la fonction d'onde  de 1'électron devait avoir plu-
sieurs composantes (), et que la densité de probabilité de pré-
sence, devant 8tre définie positive, s'exprimait en fonction des

¢y rar : 2
P=>k:|¢k[

Pour que la probabilité de toutes les positions possibles de
1'électron soit égale & 1, 11 faut alors normer la fonction en

posant : .
Lozlo e =1

ow D est le domaine d'espace ol peut se trouver 1l'électron. Mais
cette condition n'est acceptable que si, une fois réalisée & un
instant donné, elle reste ensuite réalisée en vertu des éEqua-
tions d'ondes. Or M. Dirac a remarqué que, pour qu'il en soit
ainsi, 1les équations satistaites par les ¢, devaient §tre du
premier ordre en t puisqu'il faut que la seule donnée des ¢, &
un instant initial suffise pour déterminer toute leur é&volution
ultérieure. La symétrie relativiaste entre temps et coordonnées
d'espace indique alors que 1l'on doit chercher pour 1les ¢, un
systéme d'équations aux dérivées partielles qui soit du premier
Jrdre par rapport aux variables d'espace et de temps.
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Parvenu & cette conclusion, Dirac a montré qu'il faut pren=-
dre au moins quatre fonctions ), et il a admis qu'il fallait se
borner & quatre. Or au début du développement de la Mécanique
ondulatoire, plusieurs auteurs (de Donder, Fock, Gordon et L. de
Broglie) ont domné simultanément & 1'équation d'ondes une forme
relativiste. Pour cela, ils étaient partis de la remarque qu'en
Dynamique relativiste ancienne, 1'énergie W d'un corpuscule est
reliée, en l1l'absence de champ, aux composantes de son impulsion
P et & sa masse propre m, par la formule :

w? ( 2 2 2 2 2 ) =0

ez T px+Py+pz+moC -
Dans cette équation, remplagons W par l'opérateur ZhTL % et cha-
que p, par l'opérateur% —Ea- . Nous obtenons un opérateur et,

en appliquant cet opérateur é.qtla fonction d) et égalant le résul-
tat & zéro, on obtient :

4n? 2 2 i 9’

Ov- h? mSc'Y =0 avec D=?—W—A
équation que l'on avait proposé de prendre comme équation d'on-
des de la Mécanique ondulatoire & une seule fonction d'onde en
l'absence de champ.

. Cette tentative n'avait pas donné de résultats satisfai-
sants (notamment pour le calcul des niveaux de 1l'hydrogine) et
les raisonnements de Dirac montrent qu'une telle équation du se-
cond ordre ne peut servir de base & une Mécanique ondulatoire de
1'électron satisfaisante et qu'il faut écrire quatre é&quations
du premier ordre pour quatre ¢, . Néanmoins, 11 était naturel de
penser que du moins en l'absence de champ extérieur, chacun des
quatre ¢, doit obéir & la précédente é&quation du second ordre.
Bref, M. Dirac a été amené & chercher pour les quatre k!)k quatre
équations du premier ordre en x,y,z,t valables en 1l'absence de
champs et entrafnant alors pour chacun des (), 1'équation :

O q)k+ih&j mictd, = 0

Pour écrire ces dquations du premier ordre, on est amené &
employer quatre matrices hermitieanes, «, ,a,,a;,a, & quatre 1li-
gnes et quatre colomnes et l'on définit le symbole o, Uy par :

j=4

o, by = 2 ()

NUR
i kJL.)

J

‘de sorte qu'appliquer & L!)k 1l'opération «, revient & faire une

certaine combinaison linéaire des quatre ¢ .

On impose aux quatre matrices «; les conditions suivantes ¢
1%~ le carré de chacune d'elles doit 8tre égal & la matrice uni-
té; 2°~ deux matrices «; différented anticommutent. Ces deux
conditions peuvent se résumer par la formule unique :

( V,a) aiuJ+°‘JmL=28LJ'1
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ol 1 représente la matrice unité & quatre lignes et quatre colon-
nes

o o o -
o o - O
o - O O
- O O O

Ces conditions ne suffisent d'ailleurs pas & déterminer
compldtement les matrices o, mais nous allons voir que 1'indé-
termination qui subsiste sur les matrices o, n'entraine aucune
indétermination dans les conséquences physiques de la théorie.

. Les équations de Dirac s'écrivent symboliquement avec
1l'aide des matriaceaaoeL :a 'a
. 1 _
(Vv,b) [E a—t-(aa;f 3y 0+ 35 %y xmoca4)] Y, =0

k=1,2,3,4 ot 7c=2:‘;:.L . Ceci représente quatz;’er équations simulta-
nées entre les guatre ¢, .
Si 1'on applique auapremier membre de (V,b) l'opérateur :
1 9 9 [
— o A QA M C O,
‘ [c ot +(ax Yy TRz e e 4”

on vfpriﬁe en tenant compte de (V,a) que l'on trouve pour chacun
des Y, :

0 At 2 2 0 k=1,2,3,4
q)k+h2moc¢k= T bt

I1 nous reste & expliquer pourquoi le fait que les matrices
o ; restent pour une large mesure arbitraires, n'entraine pas une
indétermination des conséquences physiques de (V,b). Pour le
montrer, nous partirons du résultat suivant : on peut prouver
que sia, ,.., %, et a},.., o, sont deux ensembles de matrices her-
mitiennes satisfaisant chacun aux équations (V,a), il est possi-
ble de itrouver une matrice unitaire S & quatre lignes et quatre
colonnes telle que l'on ait

o =8'a, 8=8"x,S

Autrement dit, on peut +toujours passer des o, aux o par une
transformation canonique qui conserve le caractire hermitien et
les relations de commutation (V,a).

De 1'équation de Dirac écrite avec les o,

18 (B, 04,984 N b=
[c ot (ax“‘*ay“Z*azo‘ﬂ”‘m°°“4)] Vi=0

ou encore

1 0 0 g 0 ot J q- -1 '
0= [E a—t—aS a1S—®S (xZS—&S ®, S -xmS 0(48} U
on tire immédiatement en multipliant en avant par S que les
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quantités S, sont solutions des équations de Dirac decrites avec
les o, . Les quantités : .

Gy =8 (k=1,2,3,4)

sont des combinaisons linéaires des d)k. Donc changer les o, re-
vient & faire une t{ransformation unitaire sur 1les (). Or les
grandeurs physiques que l'on rencontre en théorie de Dirac sont

k=4 -4
toutes, nous le verrons, de la forme Z_:k!}:A by ou/Z UrAb,dT ol
D

A est un opérateur lindaire et hermitien qui peut contenir lesu,
ou leurs produits et par suite opérer sur les indices k desu
Quand on passe d'un systdme de matrices o, & un systéme o (on
dit alors qu on passe de la représentation o, & la représenta-
tion &]) 1'opérateur A devient A'=S-" AS et la quantité
k=4

E,‘P:Ad\)k devient en tenant compte de 87'=8".

k=4 k=4

ZukAg)k—Z S*UY ASYY ~2q) STASY; = T i AYS

Donc les grandeurs ayant un sens physique gardent la méme valeur
quand on change de représentation. Grfice & cette circonstance,
1tindétermination partielle des o, n'entraine aucune indétermi-
nation dans les prévisions physiquement vérifiables de la théo-
rie de Dirac, ce qui est évidemment nécessaire pour que cette
indétermination des o, soit acceptable.

Les équations de Dirac peuvent g'écrire sous la forme cone-
densée :

x ot  2mi ot
H étant l'opérateur hamiltonien de Dirac qui est donné par :

_c .0, . 0
H ——(aa a—yon+§zon+xm coc)

Dans 1le cas général ol 1l'électron se meut dans un champ
électromagnétique dérivant du potentiel scalaire V et du poten-
tiel vecteur A Dirac remplace les dquations de propagation va-
lables en l'absenee de champ par les équations suivantes :

10 e d e 0 e 0 e
— — + X — =% =A s+ X =A +f ==+ X = +
T cv)¢k [(ax e ")OL’ (ay s y>oc2 <az * CAZ)% xmocaa] i
pour k =1,2,3,4. {(la charge de l'électron est désignée par -e)

Profitant de 1l'indétermination des «,, nous ferons généra-
lement usage des matrices suivantes dont 1l'emploi est commode :

0001 000 i 0010 -1 000
OL=OO1O 0 0-i 0 OL=000—1 O(=O—‘lOO
1 0100 z 0L 00 3 1000 4 0010

1000 L0000 0-1 00 0001
dont le caractdre hermitien est évident et qui vérifient les re-

lations (V,a).
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Avec ce choix des «;, les équations de Dirac s'dcrivent :

l%=(a Li)d, N - Blm,cd,

c ot ax 0 Ya '3z T

10, (3 94y _0 g _2%i

s (artay e em M b,
el 1 3d, (3 .. D d

— == { [ —_ Z—E l

CT‘(ax”aywz az“!)1+ h "o C%s

109, (0 ) 27

c at _(ax ay) ¢2 “h Mo &y

On peut &ire surpris par la forme trds dissymétrique de ces
équations qui font Jjouer un r8le particulier & l'axe des z. Pour
comprendre le sens de cette dissymétrie, il faut se rappeler que
le r8le des fonctions d'onde est essentiellement de permettre
1l'évaluation de certaines probabilités. Or, .,pour 1l'électron &
spin, les questions de probabilité doivent &tre posées par rap-
port & un certain axe de référence D : on peut par exemple se
demander quelles sont les valeurs possibles de la composante du
spin dans la direction de référence D et les probabilités de ces
valeurs p0581bles. Le choix que nous avons fait des o, corres-
pond au cas ol la direction de référence D coincide avec 1'axe
des z. Les (), solutions des équations (V,c) donnent, nous le
verrons plus loin, les probabilités des deux valeurs possibles
de la composante™z du spin. Si on voulait répondre & une ques-
tion de probabilité de valeur du spin posée pour une direction
de référence qui ne coincide pas avec la direction choisie ini-
tialement comme axe des z, 1l faudrait d'abord faire un change-
ment d'axe amenant o0z dans la direction D et ce sont 1les nou-
veaux 4) (qui, nous le verrons plus loin, sont des combinaisons
linéalres des anciens(gk) qul nous fourniraient les probabilités
cherchées.

2. INVARIANCE RELATIVISTE DES EQUATIONS DE DIRAC

M.Dirac a montré que, si 1l'on fait un changement de systdme
de référence Galiléen en soumettant les coordonnées & une trans-
formation de Lorentz, les équations de propagation gardent 1la
méme forme dans le nouveau systime que dans l'ancien avec les
mémes valeurs des ®; , les composantes (), de la fonction d'onde
subissant une transformation lindaire de la forme :

1-¢
Uy ==E%1\k1‘bl ) k=1,2,3,4

Les coefficients A, sont les éléments d'une matrice A & quatre
lignes et quatre colonnes qui, dans le cas général, n'est ni
hermitienne, ni unitaire. La matrice A dépend naturellement de
la transformation de Lorentz qui est effectude, mais il faut no-
ter que 1la transformation des quatre!#k n'est pas celle que su~
bissent les gquatre composantes d'un quadrivecteur d'espace-
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temps. L'€tre mathématiquet) de 1la théorie de Dirac, bien
qu'ayant quatre composantes, n'est donc pas un quadrivecteur i
il appartient & une catégorie d'8tres mathématiques que l'on
n'avait pas introduits er Physique avant la théorie de Dirac et
que l'on étudie maintenant dans la théorie des spineurs. Pour
trouver dans la Mécanique ondulatoire relativiste de Dirac des
grandeurs se transformant lors d'une transformation de Lorentz
comme les composantes d'un tenseur, il faut former certaines
combinaisons bilinéaires des (), et des ()} dont nous aurons plus
loin & parler plus longuement.

Pour démontrer 1l'invariance des équations de Dirac, nous
nous servirons des variables d'Univers x,=x,x,=y,x,=7, x, = ict
et nous poserons par définition :

-h 3 e - -h 9 . e.
=-— -=A =1,2,3 ; P=—x==+=1V
J 2ni oxp ¢ Y (J ) 4 2ni 0x, ¢
Nous écrirons alors les équations de Dirac sous la forme symbo-
lique :

P, i -
(T+J=21PJ ocJ+mOcoc4) g, =0

d'ou, apres multiplication par ia, en avant :
. =3
(on4 P4+J§LO(40LJPJ+ Lmoc) G, =0

Nous remplagons maintenant, avec von Neumann, 1les matrices «;
par des matrices Y. définies par les équations :

Y1=LG.4O(‘ , YZ=L(X4(XZ ; Y3=i‘a4a3 ) Y4=a4

I1 est facile de vérifier que 1l'on a encore comme pour les o, :

VLYt =201

Les équations de Dirac s'écrivent alors symboliquement :

et ,
( Ei Py, +Lrnoc) $y=0

Cette forme élégante est en accord avec 1'idée relativiste que
les coordonnées d'espace et de temps doivent Jouer toujours un
r8le symétrique : elle a, par contre, 1l'inconvénient de mettre
moins en évidence que l'équation en o ; le r8le particulier que
joue le temps dans les théories quantiques.

Supposons maintenant que nous changions d'axes galiléens,
les coordonnées d'espace-temps subissant alors une +transforma-
tion de Lorentz. Il est bien connu en Relativité qu'une telle
transformation équivaut & une rotation des axes dans 1l'Univers
de Minkowski. ILes nouvelles variables x| aprds la transforma-
tion seront donc relides aux anciennes par les formules :

X, = §:°U X
0 étant une matrice & quatre lignes et quatre colonnes. En rai-
son du caractire purement imaginaire de la variable x, d'Univers,
O n'est pas une matrice réelle : ceux de ses éléments qui con-
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tiennent une fois l'indice 4 sont purement imaginaires. De pfl.us,
on a la relation d'orthogonalité :

4 4
L ojoy=%oy Oj1=BLj

11 est visible que les P, se transforment comme les x; , ¢'est-a-
dire que @ :

Aprds le changement d'aexes, l'équation de Dirac s'écrira donc :
4 i=4
(Z:. Y‘LE 0y PJ. +imge)d =0

ol les composantes (), du ) peuvent 8tre exprimées & l'aide des

nouvelles variables x; . Si nous posons :
i=4

(v, d) Yi=EoyYi

i=t
neus pourrons écrire :
=4
( E Yj PJ- +imc)P=0

L*équation (V,d) exprime les matrices Y; en fonction des ' matri-
ces Y, - Si 1'on veul préciser son sens, on écrira :

i=4
(Y5 Imn = 04 Yima
ol (Y}, Par exemple est 1'élément mn de v; .

Comme 1l'on a "
i=

(¥ an= £ (Yan =E 03 [Yodam™ (Yo

’

on voit que les y; ne sont pas hermitiennes parbe que les olhj ne
sont pas tous réels. (0; + 0,)

Par contre, il eat facile de vérifier que :
XYY YT o oy Bt YY) = B0y 28 !
= 2 Zkl Oki,okj1 =26'k11

34 les Y*: étaient hermitiennes, elles seraient relides auxy, ,

d*aprés un résultat général énoncé précédemment, par la fo e
(=87'y, 8

ot S serait unitaire. Il ne peut pas en &tre ainsi, puisque les

transformations canoniques conservent le caractdre hermitien et

que les Y J’ ne sont pas hermitiennes. Par contre, nous pouvons

avoir une relation de la forme »

(v,e) Y5=A~1YLA

A étant une matrice qui, en général, n'est pas unitaire(A ' =A’).

Cette tramnsformation des Y conservera évidemment les relations
de commutation, mais ne conserve pas le caractdre hermitien.
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Nous allons pour l'instant admettre 1l'existence de la rela-
tion (V,e), nous réservant de revenir plus loin sur sa démons-
tration. L'équation de Dirac en coordonnées x’ s'éerira alors :

it
(EA_1 i AP +imoc) Y =0

Multiplions en avant par A et remérquons que la matrice A cor-
respondant & une opération effectude sur les indices des ), com-
mute avec P;. Nous aurons :

J=4

(S, Pi+imc) A =0

11l en résulte que la fonction {/’=A{ de composantes P, = X Ay
est solution des équations de Dirac dans le systeme des varia-
bles primées avec les mémes matrices Y: (ou mt)_gue dans le sys-
téme primitif. C'est bien 12 le résultat que nous voulions é&ta-
blir.

Mais il nous reste & démontrer la relation (V,e). FPour ce-
la, nous remarquerons tout d'abord que cette transformation for-
me un groupe, car, si l'on a :

. ATy A ; PNy A
on a aussiT§ 1 YL_11_‘ _‘Y 2 T
Yi==j\z/\1 71/\1!\2=4/\1j\9 Y. b\1/\J

On en conclut aisément que, si la formule est vraie pour une ro-
tation infinitésimale des axes d'Univers, elle est encore vraie
pour une rotation finie : il suffit de le démontrer pour une ro-
tation infinitésimale. Or pour une telle rotation, on pourra po-

sexr
0;=0,+&;

les EU étant des quantités +trds petites dont on pourra négliger
les carrés et les produitse Pour que la condition 4'orthogonali-
té moit satisfaite, il faut alors que :
Eq=‘€“ ; €u=0
La matrice A est peu différente de la matrice 1 et nous
pourrons poser :

1 .
A=Tr5 2 EyTy ’ T =-Tu

les € étant trds petits, d'oh au second ordre pris en €:
-1 1
A= Ry Ty

Les T sont des matrices dont les éléments sont inconnus. Nous
avons & démontrer qu'on peut choisir les T, de fagon & avoir :
-1
Zouy=A YA
c'est-a-dire :

1 1
YR &y -5 F STl 1 (1 F 6T

1
=Y 5 28T Ta il
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aux termes en £? pres, soit :
1 L
ey =5% SulriTa-Tay) 5 (1=1,2,3.4)
Cette équation matricielle admet comme solution :

i
Ta=-Tu="7 N "

Nous. avons ainsi démontré l'existence de la matrice A pour une
rotation infinitésimale des axes d'Univers et nous en avons
trouvé l'expression. Il'en résulte, nous l'avons dit, l'existen-
ce générale d'une matrice A pour une transformation quelconque
de Lorentz et la démonstration de l'invariance relativiste des
équations de Dirac se trouve ainsi achevée.

La matrice A n'est unitaire que si la transformation des
axes envisagée se réduit & une simple rotation des axes d'espace
sans mouvement relatif. Pour un changement d'axes avec mouvement
relatif, A n'est pas unitaire (on peut, en effet, montrer que
A’=Y4/{" Y, et non A'=A"). Il en résulte que :

2y by = DAY VA = DOIATAD,
ntest pas égal & Zk: G Yyear :A"A=~{4A'1 ‘YAA;H La probabilité de

présence n'est donc pas invariante pour une transformation de
Lorentz avec mouvement relatif : nous verrons en effet qutelle
est la composante de temps d'un quadrivecteur.

3. LE SPIN DE L’ELECTRON EN THEORIE DE DIRAC V

Ce qu'il y a de remarquable en théorie de Dirac, c'est que,
partie d'un effort pour constituer une Mécanique ondulatoire re-
lativiste de 1'électron, sans qu'il soit explicitement question
de spin, elle s'est +trouvée avoir automatiquement introduit
1l'existence du moment cinétique propre et du moment magnétique
propre qul était réclamée par 1l'interprétation des faits expéri-
mentaux.

En Mécanique ondulatoire non relativiste, nous avions trou-
vé le résultat suivant tout & fait analogue & un résultat de Mé-
canique classigue :

*Dans un champ de force central, les grandeurs "composantes
du moment cinétique orbital M" correspondant aux opérateurs
(XPy, = YPy)op s - - - » SONt des intégrales premidres". Au contraire, en
Mécanique ondulatoire de 1l'électron de Dirac, les composantes du
moment cinétique orbital ne commutent pas avec 1l'hamiltonien -et
ne sont pas des intégrales premidres. Pour obtenir en théorie de
Dirsc des intégrales premidres, c'est-a-dire des opérateurs qui
commutent avec 1l'Hamiltonien H, on est conduit & ajouter respec-
tivement & chacune des composantes du moment orbital des gran-
deurs nouvelles, les composantes du moment cinétique propre ou




}
. (Sx)op='z
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*spin® de 1l'électron, composantes définies & la manidre gquanti-
que par des opérateurs :
‘ h

h

=N . __h. : h .
(Sdop=am %% 5 [Slop=7rt®® 5 [Sop=7m %%
dont les valeurs propres sont, on le vérifie aisément, : 4hn

C'est done ici le vecteur M +S qui est 1ntég1;ale premidre dans
un champ central et qui joue ainsi le r8le de moment cinétique

. total de 1'électron : il est la somme du moment cinétique orbi-

tal et du spin. Chacune des composantes du spin S a bien les va-

leurs possibles i4l prévues par 1l'hypothdse d'Uhlenbeck et
Goudsmit. n
5S4 nous écrivonsl'opérateur §9p sous la forme déja employée
— h .
nous voyons qu'il faut poser pour le spin de 1l'électron :

1 . i
y)op='2'La3a1 ' (sz)op= "2"’ &y &,
et, avec ces déf:fnitions, on trouve les relations de non-commu-
tation : _

[sx,sy]=-tsZ 2 [sy,sz}=—usx ; [sz,sx]=—usy
Ce sont bien les relations exigées par la théorie quantique gé-
nérale des moments cinétiques, ce qui mcntre la cohérence des
définitions adoptées.

Ltopérateur s°=s’+s’ + s/ correspondant est égal & :
st = ——1{ |:(01‘0(2)2 +(a2a3)2+(0{3a1)1
ce qui correspond a4 la valeur s-1 , c'est-t-~dire & la valeur pro-

3 2 2
pre s(s+1)=X de s?.

Lo, o, ; (s

Fous. avons vu qu'au moment cinétique propre de 1l'électron
était associé un moment magnétique propre. Ce moment magnétique -
propre, la théorie de Dirac parvient aussi & le retrouver et
voici sous quelle forme. En cherchant 1l'équation du second ordre
qui remplace 1l'équation :

2
DLPVAhLzmQZCZqu =0

dans le cas ou existe un champ électromagnétique extérieur, elle
arrive & la conclusion que l'électron se comporte alors comme
doud d'un moment magnétique propre Jilet d'un moment électrique
propre . Cette conclusion est en rapport avec les hypothdses
d'Unienbeck et Goudamit puisque 1'électron possddant, dans ces
hypothdses, wun moment magnétique dans son systéme propre doit,
par un effet de relativité, possdder aussi un moment élecirique
propre dans un systdme galiléen ol il est en mouvement, Comme
toujours en Mécanique ondulatoire, les composantes de T et de
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doivent 8tre définies par des opérateurs. Le raisonnement que
nous allons développer conduit & poser :

(01, Jop=Bi o, 0, ; (my)OP=BLu3m1%; (mz)op=BL&‘&ZOL4

(QX)OP=BLu1a4 ; (9y)0P=BLaza4 ; (ET’Z)OP=BL a,q,

-eh

“ou B dési le ét de B B = .
o ésigne magnéton de Bohr Trm o

Les six opérateurs ont tous pour valeurs propres* B et cet~
“te conclusion est aussi en accord avec 1l'hypothdse d'Uhlenbeck
et Goudsmit sur la valeur du moment magnétique propre de 1l'élec-
tron.

Pour justifier la forme des opérateurs indiqués ci-dessus,
nous poserons :

ho1 B R D

ReTmew 0 P Tmmiae o W=h2d)

et nous éerirons d'abord 1l'équation deJ la Mécanigue ondulatoire
non relativiste de 1'électron sous la forme :

1

[Pz T o) +U)]w-0

Zmo j=1
ou encore :

J=3
(v,£) (Zmocp4—§ pi-2m,U) =0

Dtautre part nous avons vu que, pour un électron libre, une Mé-
canique ondulatoire qui emploie une seule fonction ) doit édcrire

(7, (ol -Epi-mict) =0

Pour l'électron placé dans un champ électromagnétique, on devra
remplacer les opérateurs p par les suivants :

€ . — e . -
Rmpo SV Repe A s [=123)
et 1'on obtiendra l'équation de propagation :
v .
(Pi—Z PJ.Z—m; cz)’¢=0

J=t
qui & 1l'approximation non relativiste redomne 1'équation (V,f).

Dang la théorie de Dirac, on part du systéme d'équations :
=3
(P4+J_}._'.;ocJ~PJ-—oc4moc)(Pk=O ; (k=1,2,3,4)
Si nous appliquons & cette équation l'opérateur :

J=3
[P4—(J§ Q PJ»— o, moc‘t)}

. [
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il vient aisément :

j=3 j=3 3
2 H4 2 2
[P4 T Piomict Ba(RR-RR)-E (e P -y P PL)J b, =0
En nous souvenant que les champs se déduisent des potentiels par
les formules :

— —

H = rot K ; E =-grad V-

A

(=3

ot

A
ca
on trouve :

el 273 X

h (. h
[ Z:P2 m c+%ﬁ(aaH+auH+aaH) %z_m(%Ex*“zEy*O‘sEqu)k

81 les trois premiers termes de cette équation existaient seuls,
on retomberait sur l'équation (V,g) appliquée & chaque : done
sur 1'équation (V,f) & l'approximation non relativiste. L'é1é-
ment nouveau introduit ici par la théorie de Dirac, c'est la
présence des deux derniers termes qu'il s'agit dtinterpréter.
Pour cela nous comparerons la derniére équation avec 1l'équation
non relativiste (V,f). Cette comparaison montre que les deux
termes & interpréter doivent &tre, du moins & l'approximation
non relativiste, considérés comme le produit par le facteur -2m,
d'une énergie potentielle d'interaction entre le champ électro-
magnétique et 1l'électron. Mais si 1'on ne veut pas s'en tenir &
1l'approximation non relativiste, on devra dans cet énoncé rem-
Placer la masse propre m, par la quantité o, m, qui figure dans
les équations de Dirac. En écrivant que-2m,a,U est é&gal aux
deux derniers termes de la dermidre équation, on voit alors que
U est la somme des termes suivants :
eh

Ue:4nm°c L(OL1OL4EX+ O‘z%Ey*%%Ez)
eh
n " Lo, 0 0, H, v oy a0, H+ ooy, H

Or vn corps doué d'un moment magnétique JC et d'un moment &lec-
trique § placé dans un champ électromagnétique défini par les
vecteurs E et H y possdde une énergie potentielle 4gale a :

U = U, + Uy =(318- H)-{F - )= {010 R, IC H 3101, )-(8,E 0 E 49, E, )

En identifiant les expressions précédentes de U, et de U,, on
retrouve les expressions proposées pour les opérateurs corres-
pondant 2JC et & F. Ainei le moment magnétique et le moment
électrique apparaissent comme contenus dans les équations mémes
de Dirac.




CHAPITRE VI

FORMALISME ET INTERPRETATION PHYSIQUE
DE LA THEORIE DE DIRAC

I. FORMALISME GENERAL DE LA MECANIQUE ONDULATOIRE
RELATIVISTE DE L’ELECTRON DE DIRAC

En Mécanique ondulatoire de Dirac, on retrouve un formalis-
me analogue & celui que nous avons rencontré en Mécanique ondu-
latoire non relativigte. Tous les énoncés valables dans celle-ci
vont pouvoir &tre transposés dans celle-la &4 condition toutefois
d'admettre, & c8té des opérateurs agissant sur les coordonnées,
l'intervention d4'autres opérateurs agissant sur les indices k
des fonctions (), (tels que les matrices a, ou leurs combinaisons
lindaires et hermitiennes par addition et multiplication) et
aussi & condition de toujours ajouter dans toutes les formules
une sommation de 1 & 4 sur l'indice k.

C'est ainsi que les expressions déja données pour la densi-
té de probabilité et pour la formule de normalisation du ¢
g'obtiennent & partir des formules correspondantes de la Méca-
nique ondulatoire non relativiste en ajoutant une sommation sur
k. Cependant 1la définition du vecteur "flux de probabilité de

Py

drivecteur "densité-flux" a, en théorie de Dirac, une forme par-
ticulidre, car on doit poser :

k=4
présence™ qu'il faut adjoindre & p==§l ! pour former un qua-
-1

—

k=4
—-c B YT,

o« désignant la matrice-vecteur dont les trois composantes sont
Oy, %,,0,. On démontre aisément en théorie de Dirac par des com~
binaisons des déquations de propagation et de leurs conjuguées,

que p et T obéissent & la relation de comservation iﬁ?+-div fLo.
I1 en résulte, en raison des conditions toujours imposées a
aux limites du domaine D que A;Fdr est constant : done, si cette
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intégrale est égale & 1 & un instant quelconque, elle reste tou-
jours égale & 1, ce qui permet de normer () en posant :

fpot=f T]d |t dx =1

En Mécanique ondulatoire de Dirac, comme en Mécanique ondula-
toire non relativiste, & toute grandeur mesurable (observable)
attachée & un corpuscule, on fait correspondre un opérateur li-
néaire et hermitien A, A pouvant en général agir non seulement
sur les coordonnées, mais aussi sur les indices des composantes
- Pour les coordomnées et les composantes de 1'impulsion, les
opérateurs restent les mémes que précédemment et n'agissent que
sur les coordonnées. Pour l'énergie, l'opérateur est 1l'opérateur
H ci-dessus défini qui agit & la fois sur les indices k et les
variables x,y,z. Pour les nouvelles grandeurs introduites par la
théorie de Dirac (moments cinétiques propres, moments magnéti-
ques et électriques propres), les opérateurs n'agissent que sur
1l'indice k.

Les valeurs pogsibles de la grandeur mesurable correspon-
dant & un opérateur lindaire et hermitien A sont ici les valeurs
propres de l'équation :

A?k;=“?k ; k =1,2,3,4

A la valeur propre a,, correspond une fonction propre Yl & qua~
tre composantes !V, o' ¢!, @/l). Ces fonctions propres sont or-
thogonales entre elles (du moins si on les choisit convenable-
ment en cas de dégénérescence), c'egi-a-dire que l'on a :

k=4
v (1] o () _ g
%;Eqk) ¢, d1=0 {(1=1")
On les normera en posant :
ked {1)» (1)
hE Pk Py dr=1

De plus, elles forment un systéme complet, c'est-a-dire que l'on
peut toujours, par exemple, développer lestbk de la fonction
d'onde Y sous la forme : :

1
$y=T clgpk() ; k=1,2,3,4

les c, étant indépendants de k. On écrit souvent les quatre
équations précédentes sous la forme condensée :

=S ol

La probabilité de la valeur propre o, est domnée par |[c,|’ . Om
en déduit aisément que la valeur moyenne de A doit se définir

par 3 ke :
A‘=.§|°1|2“1=A§ " Ay de



FORMALISME DE DIRAC : INTERPRETATION PHYSIQUE 75

De méme, sid,,..., ¥, , sont les composantes de la fonction pro-
pre de 1l'opérateur Hamlltonien, les éléments de la matrice
d'Heisenberg engendrée par l'opérateur A dans le systédme des
fonctions propres de H sont par définition :

k=4
3y =‘£ LW Ady,de

ked

Les densités de valeur moyenne définies par Zlkb;Akbket les
kes

densités d'éléments de matrice L bk A, sont des grandeurs

définies en chaque point de l'espace & chague instant, donc des
grandeurs de champ : elles jouent un r8le important en théorie
de Dirac, car ce sont elles qui présentent un caractdre tenso-
riel analogue & celui des grandeurs de champ dans les théories
de la physique relativiste classique. Nous y reviendrons plus
loin.

Comme exemple important d‘'application de ces principes
généraux, on peut considérer le cas de la composante z du spin.
L'opérateur correspondant est, nous l'avons vu, 7£{law «,: ses
valeurs propres, c'est-a-dire les résultats possibles d'une me-~
sure de S, sont: Z%{en accord avec les hypothdses d'Uhlenbeck et

Goudsmit.
En appliquant 1les principes généraux, on trouve, avec le

choix fait pour les «;, que la probabilité de la valeur propre
h

+—?€pour 5, dans un état représenté par une certaine fonction
d'onde ¢ est‘/q IIJ | )dt , tandis que la probabilité de la
valeur propre-—zz; estt/q(|¢ [*+|d,|*)dt . La somme de ces deux

probabilités est bien égale & 1 puisque ) est normée. On peut
retrouver aisément la valeur de ces probabilités par 1le calcul
de la valeur moyenne de 5,. On a, en effet, par définition :

k=4 .
‘S ——‘/[; Etb;wcpczq)kd-c N

Or, avec les valeurs adoptées par les a,, la régle de multipli-
cation des matrices donne :

La1(l2 =

O*OO

000
-1 0
0 0
00

OOO-*

d'olr ¢

R AR AR TIRES
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ce qui concorde avec les expressions données plus haut pour 1les
h

probabilités des deux valeurs possibles t-Z?F.

2. LES GRANDEURS DE CHAMP DEFINIES PAR LA THEORIE DE DIRAC

-

Nous avons déja signalé la manidre dont la Mécanique ondu~
latoire non relativiste introduit sous la forme de densités (de
valeur moyenne ou d'éléments de matrice) des grandeurs de champ
qui permettent de rapprocher le point de vue de la physique cor-
pusculaire de celui de la physique du champ et ce sont elles qui
ont des variances relativistes simples et donnent un aspect re-
lativiste & tout le formalisme. Mais ici, comme en Mécanique
ondulatoire non relativiste, ces grandeurs de champ se présen-
tent sous 1la forme de densités qui, du point de vue quantigue,
ont une signification physique incertaine. Ce sont les intégra-
les d'egpace de ces quantités (valeurs moyennes ou d&léments de
matrice) qui, du point de wvue quantique, ont une signification
physique certaine : mais, par contre, ces intégrales n'ont pas
un caractd®re teisoriel relativiste (& cause de 1'intégration
dans l'espace seulement). Cette circonstance curieuse est 1'un
des aspects du désaccord qui subsiste actuellement entre les
conceptions quantigques et les conceptions relativistes.

On peut classer rationnellement les grandeurs de champ de
la théorie de Dirac en partant de la remarque suivante : les ma-
trices ui,aa,ms,a4(qui jouent le -r8le d'opérateurs aglssant sur
les indices k des fonctions ¢, ), si on leur adjoint la matrice
1 & gquatre lignes et quatre colonnes, permettent de former par
multiplication 16 matrices hermitiennes lindaires indépendantes
que nous ordonnerons dans le tableau suivant :

I, = o,
I‘:ot1 Q:az F=oa, L, =1
Tza:‘L * %%, T,= L o0,y I‘12= L %00,
F=taa, Le=tog, O=taa,
T, =to,x, T =l I‘m='t o, I‘m=t o, o0,
T oo a0

1234 10230

Dans ce tableau, les facteurs i ont été introduits pour rendre
hermitiennes 1les matrices-produits qui, sans ce facteur, se-
raient antihermitiennes. Avec ces seize opérateurs, nous pouvons
former seize densgités de valeurs moyennes ayant une variancs re-
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lativiste simple. Nous allons les expliciter en employant une
abréviation trés usuelle qui consiste a dcrired*Adau lieu de

k=4
LPAady.

L =Y,
fo=-cd o fi=-cd o, d f,=-cd*a, . p=4yd
i) = Bdria,a0,d py=8 Wi, P, =Bdriooa,d
n,=Bdlaad = Bdria, o, n,= B diaad
GX:A—T'L i, a Gy=ﬁkl)*l a0,y GZ=Z%LP*L o, cd=%cp‘ia1aza3¢

*
L= ) o, 000,

La grandeur I1 est invariante pour une transformation de Lorentz

comme cela résulte des formules de transformation des ), . De
méme, I, est un autre invariant (ou plus exactement un tenseur
compleétement antisymétrique de rang 4, ce qui revient pratique-~
ment au méme).

Les grandeurs f et p de la deuxidme ligne forment les com-
posantes d'un quadrivecteur d'espace-~temps. C'est le quadrivec-
teur "densité-flux" pour la probabilité de présence qui satis-

) .
fait & 1'équation de continuité —b+div F=0.

Les six quantités By 9o vey7, forment les six composantes
distinctes d'un tenseur antisymétrique de rang 2. Le vecteurp’
représente la densité de moment magnétique propre pour 1l'élec-
tron dans 1'état ) car, en intégrent les composantes de Fi dans
ce domaine, on obtient les valeurs moyennes des composantes du
moment magnétique propre de l'électron définies précédemment. De
méme le vecteur @ donne la densité moyenne du moment é&lectrique
propre, complément relativiste du moment magnétique propre.

Les grandeurso, ,0, ,0, et o, se transforment comme 1les
composantes d'un quadrivecteur d'espace-temps lors d'une trans-
formation de Lorentz (ou plus exactement comme les composantes
d'un tenseur compldtement antisymétrique de rang 3, ce qui pra-
tiquement revient au méme). Les composantes de ce quadrivecteur
sont liées & l'invariant I, par la relation :

199 +divd =-mcl
c ot ot

Les grandeurs o, ,0, et o, sont les densités de valeur
moyenne pour les composantes du moment cinétique propre de
1'électron dans 1'état ¢ : o, est la composante de temps qui
complete le quadrivecteur du pbint de vue relativiste. Le spin
de 1'électron est donc bien défini par un quadrivecteur densité
(et non par un tenseur antisymétrique de rang 2) et c'est bien
ce que nous avions annoncé. Nous verrons plus loin que dans le

T

gy —y
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cas ou l'onde Y est plane et monochromatique et oli, par suite,
1'on peut attribuer & 1'électron une vitesse ¥V bien définie, on
a la relation

— —

4
o,=c (67-V")
déja rencontrée dans nos considérations relativistes sur le spin.

Enfin, aux seize grandeurs du tableau précédent, mnous pou-
vons adjoindre seize autres grandeurs de champ qui forment 1les
seize composantes d'un tenseur du second rang non symétrique au-
quel, suivant les idées de MM. Costa de Beauregard et v.
Weyssenhoff on peut attribuer le sens d'un tenseur densité
d'énergie-impulsion pour l'électron & spin.

En employant les coordonnées réelles d'espace-temps, nous
définirons ces grdndeurs en posant :

[ he * 8d o - Ui
Ty = 4ami [&P OLLG_XJ_BTJ'OLL‘J)J (bi=1.2,3)
he [gyrg L8 1 03d”
L= 4m-[¢ LTIt T Bt “L“p]
(V1,b) {T e fyeiu

g,V [cT
V—Vv W
tré dans la théorie de M. Weyssenhoff. 44est la densité de va-
leur moyenne de l'énergie. Les T,, sont les densités de valeur
moyenne des composantes de 1l'impulsion multiplides par c. Les T,;
sont les flux de l'énergie en densité de valeur moyenne le long
des axes, divisés par c. Les T, pour i,j=1,2,3 sont les densi-
tés de valeurs moyennes pour les flux des composantes de 1'im-
pulsion le long des axes. Dans le cas ol ¢ est une onde plane
monochromatique, on vérifie facilement ces interprétations. Les
équations de Dirac permettent d'établir la formule :

=+ JT. ‘

) ; (L =1,2,3,4)

J=1 axj
Ces quatre relations expriment 1la conservation des composantes
de 1l'impulsion et de l'énergiec.

On introduit souvent a4 la place du tenseur non aymétriqueTh

Ce temseur non symétrique répond au schéma déja rencon-

le tenseur symétriqueTﬁ = %'(Tu +'Ll)et 1'on peut vérifier qu'il

obéit aussi & la relation de conservation :
=4 9T’ -4 6T
pM —i - 3 St
=10, =t ax
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La non-symétrie du tenseur T, provient ici comme dans la théorie
de M.v. Weyssenhoff de ce que l'on n'a pas §wV=¥chomme en Mé-
cenique relativiste ordinaire (sans spin) de 1'électron. S'il en

était ainsi le tenseur prendrait la forme symétrique

Mais, sauf dans le cas de l'onde place monochromatique, il n'en
esat pas ainsi en jpéorie de Dirac comme nous le verrons mieux
plus loin. Alors g« V

3. LES ONDES PLANES MONOCHROMATIQUES EN THEORIE DE DIRAC

D'aprds les idées fondamentales de la Mécanique ondulatoire,
au mouvement rectiligne et uniforme de 1'électron avec 1'éner-
gie W et la guantité de mouvement P doit correspondre une onde
plane monochromatique qui, en théorie de Dirac, aura des compo-
santes )

Z—?(Wbﬁ-?)
G =a,e ; (k=1,2,3,4)

En substituant cette forme dans les quatre équations de Dirac,
on obtient quatre relations algébriques linéaires et homogdnes
entre les quatre amplitudes a,. Pour que ces équations admettent
pour solutiong des valeurs non toutes nulles des a,, il faut que
leur déterminant soit nul. Faisant le calcul, on trouve la con-
dition : W
2 2 2 2 2

§=px *Py P Mg C©
c'egt--dire la relation qui, en théorie relativiste, 1lie 1'é-
nergie et la quantité de mouvement d'un corpuscule libre de
masse propre m,. S5i cette condition est satisfaite, non seule-
ment le déterminant des équations en a,, mais Iles mineurs du
premier ordre sont nuls, de sorte que deux des a, sont arbitrai--
res, les deux autres s'exprimant & 1'aide de ceux-la. Si nous
posons arbitrairement a,= c, et a,= c,, nous obtiendrons :

a = - pzc1+(px+l’py)cz . a = -(px—pr)c1_pzcz

1 2 W
+ m,c < tm.C

olé

Pour interpréter ce résultat, supposons que 1l'axe des z soit

P i S
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pris dans la direction du mouvement (direction du vecteur?p).
Ceci ne restreint pas la généralité puisqu'on sait en principe
comment se iransforment les ¢, pour une rotation des axes d'es-
pace. On a alors px==py==0 et

'pz . p . .
b= P i b=FcP 5 Y =cP 5 Y, =c,P
avec \
B (Wt - p,z)

A=¥+mc P=e

On peut énoncer ce résultat de la fagon suivante : toute onde
pPlane et monochromatique correspondant & un mouvement rectiligne
et uniforme (& énergie positive) d'un corpuscule de Dirac peut
&tre considéréecomme la superposition de deux ondes (!9 et (¢
suivant la formule :

(d)
b= b o,

¢ et (Y ayant les composantes suivantes :

z p
LHq) - _EA_ Py Q=P q)a(g)z ¢;‘3’=O . Lp1(d)=q)3(d)=o ; ¢§d’=fF’ : ¢id)= P

Si l'on se souvient gue la probabilité des deux valeurs possi-
bles * —%;de la composante z du spin sont proportionnelles a
\dqf + hbaf et a ||+ |42, 1ton voit que %) correspond au
h et L{)(d)au spin—dn. En associant par la régle habituelle

spin —

arn
une rotation dans le plan xoy & un vecteur porté le long de oz,
on fait correspondre ()!3'a une rotation 1lévogyre ou circulaire
gauche et (¥4 une rotation dextrogyre ou circulaire droite
suivant le schéma ci-contre :

( 2 L /'} ;
O h 4n o
/ an . /

Y y

Toute onde plane monochromatique (& énergie positive) est donc
la somme de deux ondes planes monochromatiques correspondant
chacune & une valeur propre de la composante du spin dans la di-
rection de propagation,la proportion des deux ondes et leur dif-
férence de phase dans la superposition étant données par les va-
leurs des deux composantes complexes C, et CZ.

Sur les formules précédentes, l'on voit que ¢, et ¢, sont
négligeables devant ), et ), lorsque p,c est petit devant m.c?
ctest-a~dire & 1'approximation de la Mécanique newtoniemne (v¢c).
Dans le cas limite opposé d'une vitesse voisine de ¢; m,c? est

négligeable devant W et[ 51 est sensiblement égal & %?; on a
alors :

PP P00



FORMALISME DE DIRAC : INTERPRETATION PHYSIQUE 81

I1 est tres intéressant de calculer les seize densités de
moyenne définies par le tableau (VI,a), pour le cas d'une onde
plane monochromatique. Nous remarguerons d'abord que les cons-
tantes C, et C, sont reliées par la relation de normalisation
des ondeatb. ﬁour éviter 1'introduction des formules wun peu
compliquées relatives aux spectres continus, nous emploierons
4n artifice souvent utilisé, en supposant que le corpuscule est
enfermé dans une enceinte de volume U dont les dimensions sont
tr2s grandes par rapport & la longueur d'onde. OUn peut alors
derire la condition de normalisation :

2)[1+—]U = 1

e ,

(V,c) /DE G Pdt = (| o]

qui s'éerit aussi : W
CZ‘Z)J%EZ—QJ =1

(le,ff

Calculons alors les seize densités de moyenne du tableau (VI,a)
en tenant compte des relations précédentes. On trouve d'abord :

0 L [ [ T

51 nous 1ntroduisons dans cette expression la vitesse pc du mou~

DZ

L-ViF L 5 [rav- yrET
et 1'on voit que l'invariant I, est 1ié étroitement & la con-
traction de Lorentz. Le facteur de contraction ﬂ%%iijoue ici un
r8le important.
Pour l'invariant [,, on trouve de méme :

vement rectiligne correspondant telle que W—-—Eh——y on a :
: Vi

L=i [ by 7 by b y- G by =0

Cet invariant est donc mul pour une onde plane monochromatique.
Un calcul analogue fournit pour les composantes du quadrivecteur
*flux-densité" 2W
_ - . ch . B 2 2y C
f=f =0 5 f=(lgfx s pe(ef e

X

C
A
En comparant les expressions de f, et de P et en se rappelant
mmp-%%,ona:
_ . — g, Pct_
fxsz—O : fZ—PW-—Pv

I1 y a donc un flux de probabilité dans la direction de propaga-
tion de l'onde Y avec la vitesse v : c'eat ce que 1l'on devait
attendre. '
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Pagsons maintenant au calcul du quadrivecteur "densité de
epin®

h » . 2m,cC ' h 2m,C
Gx=H(C\Cz+CzCs}'—AL ; Sy = AH (CC'C C)_AO_'
W
o e . _ h 2z 2 Zp
z 4n,ch “I z') ! C.= Z§(|C1l'|cz|)f3_
La relation de normalisation des <) permet 4'écrire :
(O Y i L / h el -lc.f
T . =—» — ; S= = . Il 1t>2l
T an T fFelc,? %9 = leyl | ¢,
En comparant les expressions de o, et deg, , on tire :

o'4=cZPW=E(6"-V)
relation prévue précédemment.

Donnons enfin les composantes des densités moyennes de mo-
ment magnétique et de moment électrique propres pour 1'onde pla-
ne monochromatique

W

Zw e 2 2y 2mec
e B((:C+cc)T Py=BE(C1C,-Co0 )= p=B(]C,[ - [Cy[*) <&
(v1,d)

. * * 2 * »* 2
R, =BL(C3C,= €1 C,) 5 my=B(C; 0y 0;C,) 5 m, = 0

sur ces formules on vérifie aisément que :

T=[Ex L] (7-7) =0

formules également prévues antérieurement. Nous voyons que le
vecteur T est toujours transversal par rapport & la direction
de propagation, tandis que p peut faire un angle quelconque

avec elle , mais ™ et]f sont toujours perpendiculaire entre eux.

Lorsque la vitesse v tend vers c¢,le vecteur T se couche sur
la direction de propagation : au contraire p tend & se metire
verpendiculairement & cette direction, les vecteurs p et T étant
&4 la limite tous deux dans le plan d'onde, normaux entre eux et
égaux en grandeur comme les champs électromagnétiques d'une onde
lumineuse. Ainsi les vecteurs [ et o dont les directions coInci-
dent dans le systéme propre de la particule sont & angle droit
pour un observateur qui voit passer la particule avec une vites-
se trids voisine de c.

Nous venons d'étudier les ondes planes monochromatiques &
énergie W positive. Il existe aussi en théorie de Dirac des on-
des planes & énergies négatives qui jouent dans 1la théorie un
r8le trds particulier. Nous en ferons plus loin une étude spé-
ciale.
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4, LE QUADRIVECTEUR DENSITE.COURANT ET SA DECOMPOSITION

Nous avons définl plus haut les grandeurs p et T pour 1'4-
lectron. En les multipliant par la charge électrique -e de 1'é-

lectron, on obtient un quadrivecteur dont la composante de temps .

domne la densité de moyenne -el|Y|2=8 de 1*électricité pour
1'électron dans 1'état ) et dont les composantes d'espace :

. : k:4 * .
JL=—8FL=8C E(’)kaqu)k 5 (L=15233>
donnent les composantes de la densité de courant correspondantes.

Nous allons montrer d'abord comment on peut décomposer en
deux parties le courant 1 et le résultat obtenu, appelé "décom-
position de Gordon", nous montrera gqu'en raison de l'existence
du moment magnétique propre et du moment électrique propre im=-
" pliguée par la forme méme des équations de Dirac, 1le courant J
ne se réduit pas au courant de convection dfl au déplagement du
corpuscule chargé.

Pour faire cette décomposition, nous partons des équations
de Dirac en.l'absence de champ
1 291=51a ¢k+é.a(h+jia b +xme «, ¢y
¢ 9t ox ! dy *? gz 3"

et des équations conjuguées  par le caractére hermitien des o
permet d'%frire N 3 3

1 d)k. ¥ * * *

— = o+ — o, + = o, +%m_C o

< ot anPk 1 ayq)k 2 azq)k 3 o¢ by o,

avec la convention :

1=4
Yoy = 121 RN

Multiplions la premidre équation en avant par Q| o, o, et la se-
conde en arridre par o, o, ¢,, ajoutons et sommons sur k. 11 vient
facilement en notation symbolique :

Vo=t o 2 0w, ) b, $- W

4nimc|C 4 9x  Ox
D /40 D [ s
(Ve d)-S (& oty 0, )|

d'ol 1'on déduit aisément en multipliant par ec et en tenant
compte des définitions admises :

H _aﬂ,‘+ 7 + eh * ad)_- a'\b*
, J!- at C(POt }L)X 4ﬂ.m°L (Lp (X4 ax ax a’4q))
On démontrerait de méme les deux relations qui se déduisent par
permutation circulaire sur x,y,z et l'on en conclut :

- —

J=J1’J2

4
f
P
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avec

—

h=

N 4mm

(*a, grad - grad " o, &)

-~ an .
J2=.a%+c rot £

Le terme J1 eat facile & interpréter en se plagant dans le cas
ol l'onde ¢ est plane et monochromatique, c'est-a-dire ol l'on
peut attribuer & 1'électron wun mouvement rectiligne et uniforme

Bl
de vitesse V= R;;
eh ( ZnL —.)

4rim,

. On a alors :
-2

UM q)——f)ep —ni Pep—=( Pe)

Ji=

3‘1 eat donc s:l.mplement la densité de moyen.ne pour le courant de

convection 4l au mouvement d'ensemble de la charge électrique.
L'irterprétation du terme j est plus intéressante, mais

. exige quelques remarqués préliminalres.

Considérons d'abord un milieu polarisé é&lectriquement et
dans ce milieu un élément cylindrique de longueur 1 de section s
dont l'axe colIncide avec la direction du vecteur polarisation

- 1 .
€ | 3 -
S E‘
Ltune des bases porte la charge+ &, l'autre la charge- £. Le mo-

ment électrique est £1 correspondant & la densitén—%l-~§.31 la

premidre charge devient € + d€ et la seconde-(E&+dE), la grandeur
T a augmenté de d?E et, si cette augmentation a lieu dans un

temps dt, comme on peut la considérer comme due au transport de
la charge d€ de la seconde base & la premidre, elle est lide &

un courant égal & ?jg, c'est-3-dire & une densité de courant; (cjjt
Finalement on voit gque l'augmentation de W est équivalente &

l'existence d'une densité de courant égale & —— dr

dat
D'autre part, considérons un aimant de moment magnetique]l‘c .

Le champ magnétique créé par cet aimant dérive, on le sait, du
potentiel magnétique - (. grad—) mais dérive aussi du potentiel

vecteur A= [I\”C x gr@ ] comme on le voit aisément en démontrant
que :

grad (. grad 1) =7t [ « grad L]

Le champ créé & 1l'extérieur par une distribution de magnétisme
d'intensité d'aimantation P occupant un volume V' dérive done du
potentiel vecteur :

A=—/U [p grad—]dt L/l;—r%g_dt
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la dernidre expression provenant d'une intégration par parties.
En comparant avec la formule classique des potentisls retardés

/ﬁ J dt

on voit donc que 1l'intensité dfaimantation L est équivalente &
une densité de courant égale & c rot I.

En résumé, nous avons retrouvé le résultat classique sui-
vant :"Quand une région de l'espace est le gidge d'une distribu-
tion de moment électrique définie en chaque point par une cer-
taine polarisation W et d'une distribution de moment magnétique
définie en chaque point par une certaine intensité d'aimantation
F; cette région de l'espace est le sidge de courants microsco-

gl

piques dont la densité est donnée par le vecteur % + crot [ .

Si nous revenons alors & la décompositior de Gordon, nous
voyons que le vacteur J a pour origine 1l'existence des moments
électrique et magnétique propres de l'électron.

La région occupée par l'onde ) de 1l'électron gent se compa-
rer (sans prendre la comparaison trop & la lettre avec un mi-
lien polarisé et aimanté de la théorie classiqua. L'électricité

y Dosside un mouvement de convection global caractérisé par la
2

vitesse v-jg— dans le cas ol le mouvement d'ensemble est recti-

ligne et uniforme. Il s'y superpose un mouvement "fin" de 1'é-
lectricité correspondant & la polarisation et & l'aimantation.

En regardant les choses de prés, l'on voit qu'il faut dis-
tinguer la vitesse globale "fine" U dont les composantes corresg-
pondent aux onérateurs coy ,-Cot, , ~Ca, 6% la vitesse de trans-
lation d'ensemble ¥V dont les composantes correspondent aux opé:-
h O __h o 8
nim, 40x ' 2nim, 4 9y’ 2mim, 0z
définir le courant "fin* total J, la deuxiéme le courant de con-
vection ;]1 . La différence j -31 —;j représente le courant dfl aux
effets de polarisation et d'aimantation. On trouvera dans le li-
vre de R.Becker sur l'électron une stude détaillée des courants
dans un milieun polarisé. L'analogie est éiendue, mais on ne doit
pas oublier gque nous avons ici seulement une représentation
moyenne des courants, polarisations et aimantations attuchés &
un corpuscule unigue.

rateurs - La premidre sert a

La distinction entre U et V' fait aussi comprendre pourquoi
le tenseur énergie-impulsion T;; jn'est pas syméirique. En réalité

il a pour schéma

glut|cq

VV

< W
(U étant la vitesse fine totale que nous venons de définir)
et non ngL °g

Wolw

(1) Théorie des Electrons (Alcan, Paris, 1938) p. 125 et sq.
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et comme c'est ¥V et non W qui est proportiomnelle & lc quantité
de mouvement, on volt pourquoi T n'est pas symétrique. La forme
méme des formules (VI,b) pour les T, montre bien qu'ils sont

formés avec les densités de quantité de mouvement et les compo-
santes de U.

Nous avons obtenu la formule :

—__¢eh a2, — 1% ,on -

J=Tmams (o, grad ¢ - grad *a,¢) or " CFot |
A 1'aide des notations relativistes, elle s'écrit :
. _eh s, 0 0Y* om" o
=Ty (V7% 50 " %)t o 5 G (i=1.2.9)

ol mY est le tenseur antisymétrique (7,{). La quatridme compo-
sante de la densité de courant étant j,=5e, en appliquant 1la
formule précédente au cas 1=4, on trouve de méme :
—eh y 180 103¢" -
8 =5+3,= Amim,c (q) T3t "ot e q)) div
Le premier terme correspond & la densité qui existerait si le
spin n'existait pas. Le second, divT, correspond & l'existence
du spin, car l'on sait que dans un milieu électriquement polari-
g8é existe une densité microscopique égale & -div® . Nous retrou-
verons pour la quatriime composante de la densité de courant la
m8me image que pour les trois premidres. | conservation de la

charge microscopique g_t (-divrl) + div(%—?’ srot 1) = 0].

Pour montrer le sens de - divi, on peut considérer un élé-
ment de tube de force correspondant au vecteur polarisation dans
le milieu polarisé. Sur la section inférieure de cet élément, la
densité, 1la section transversale et 1la polarisation auront les
valeurs o, ds et W. Sur la section supérieure, ces valeurs se-
ront augmentées de 8o, O ds et 8T,

ds+Bdsy AT+OT

|
dn | n
|
} dn Ly
" On a :
_ . optdn _ &€ _ _
€-ods T =3nds T a5 7 °

Le théordme flux~-divergence donne :

[frace (77 87|65 368)- 7 B 8 (7 - ) -8 o o[ 7 v
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d'ol
_ 6{ods)
Snds

8
La charge de 1'élément de volume dv est / " _Cﬂdg'nd_s) dn=38(cds)
o

d(o ds)=-divd

div T =

et la densité de charge dans 1l'élément est
c.q.f.d.

1
Snds



CHAPITRE VlI

LES SOLUTIONS A ENERGIE NEGATIVE
EN THEORIE DE DIRAC

I. ONDE PLANE A ENERGIE NEGATIVE

Nous venons d'é&tudier les solutions de 1'équation de Dirac
qui représentent des ondes monochromatiques planes & énergie W
positive et nous avons trouvé que pour avoir une solution de 1la
forme :

2rl(we -F.F)

$=aye
il faut avoir en}re W et p la relation :
(VII,a)ﬁ Lz' — PZ . mé c? — sz+ py2+ Pzz . moz c?

c
En posant :

2 2 2

W=scVmctsp,leptep,

Nous avons trouvé :
A+ + B - -

_ _Pz (Pt ipy) . a =sz (Px-ipy)A Ca=A
Wam,c 3

1 4 2

ou A et B sont des constantes arbitraires.

Mais nous aurions pu aussi satisfaire & la condition
(VIl,a) en posant : ' .

L 7 2 7 2 Z
W=-cC Vmoc +px +py+pz

Nous aurions alors trouvé la solution suivante :

C+(p_+1i _i C-p.D
81———0 © a,=D a____pz Py LPy)D , a,- { Py pr) P,
2 " e ¥

C et D étant des constantes arbitraires. !

Nous allons maintenant modifier 1légdrement les notations
employées & l'instant. Pour des valeurs données de P, ,P,,P,,
nous appellerons W la quantité positivec \/mZc?.p’et, pour Yenir
compte de la deuxidme solution, nous dirons que nous avons &



20 CHAPITRE VII - 1

considérer & la fois l'onde d'énergie W et l'onde d'énergie — W.
Il faudra alors dans les dernidres formules changer W en — W.
Bref, pour des valeurs données de p,.,p,,p: avec :
W=+c \/mjcz + Pl py2+ Pt
nous avons & considérer l'onde plane monochromatique :

b, = a, e—z’,}—L(Wt-Pxx—Pyy-PzZ)

avec :
A+(p, +ip,)B B-(p -1i A

(ViI,b) a1=-%&—i)- ; a,= Pz Pe” tPy) ; a,=A ;a,=8
< * MoC %+moc

et 1l'onde plane monochromatique & énergie négative -W définie
par :
i
k’bk‘: bk e%‘ (bWt T PxX - pyY' pz Z)

avec
C+ + D D- i C
(VII,¢) b,=C; b= D ; b= B_Z_W(Ex_iv)_ S W(Px ip,)C .
E-i-moc . ?4. moc

Comparons ces deux ondes.

Pour l'onde & énergie positive, nous savons déja que les
composantes Lb3 et Q)Aqui correspondent en quelque sorte & la
masse M, l'emportent sur les ondes Ll)1 et Lbz qui correspondent a
la masse -m,. Les ondes (), et {, sont nulles pour 1la vitesse
nulle et ne premnent de l'importance qu'aux vitesses voisines
de c.

Considérons 1l'invariant :

L=Yra,d=[d

11 est toujours positif et tend vers zéro pour v tendant vers c.

ooy - o, =YD

Pour 1'onde & énergie négative, les conclusions sont oppo-
sées. Les ondes (), et LIJZ prédominent et si 1'électron est au
repos, c'esti-a-dire si p,= P,=p,=0, 0na:

2ni 2y 271l

)y, = Ceh MeC : J,=De 1 mec’t . Gy=4,=0

Pour des vitesses croissantes, les ondes {, et dJA prennent de
l'importance, mais c'est seulement pour le cas limite v=c que
1ton aurait [, + |, [*= |)? + [, |* de sorte qu'ieil, <0
1'égalité se rapportant au cas limite v=c¢. Ce sont les ondes &
masse propre négative qui 1l'emportent. On peut associer & la
masse propre l'opérateur m,u,dontl, -m, est la densité de va-
leur moyenne : la valeur moyepne correspondante est m, \/1-p’ pour
les ondes & énergie positive et -m, \/1- §2pour les ondes & éner-
gle négative.
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L'existence des états & énergie négative en théorie de
Dirac constitue une circonstance étrange. Les propriétés d'un
électron dans un tel état seraient extraordinaires. Placé dans
un champ électriqug‘h, il prendrait une accélération de sens op-
posé & la force -eh t: on augmenterait donc sa vitesse en lui
retirant de l'énergie; sa vitesse serait en sens inverse de sa
quantité de mouvement (!) etc.. On n'a jamais observé de corpus-
cules ayant ces propriétés paradoxales. Il y a donc 1la wune dif-
ficulté en théorie de Dirac.

On pourrait croire que cette difficulté existe d4déja en Dy-
namique relativiste Einsteinienne car la relation :
W2
- = meyc? + p)‘Z + py2 + pz2
est valable dans cette théorie et en prenant la racine carrée,
on trouve W==*c \/mjc*+p?avec le double signe * . Mais ici il est
facile d'écarter la difficulté.

En effet les valeurs possibles pour W sont comprises dans
les intervalles disjoints (-oo ,~m,c?) et (m,ci+eo), 1l'intervalle
(-myc?, m,c?) ne correspondant & aucune valeur possible de W. Or
en Dynamique ancienne, relativiste ou non, 1les variations ont
lieu d'une fagon continue. ©Si donc & l'origine, tous les élec-
trons ont une énergie W positive, comprise entre m,c? et +oo, il
en sera toujours de méme par la suite : aucune valeur négative
de W comprise entre-m,c® et-oone pourra apparaltre puisque
1'intervalle (+m,c?,- m,c?) ne peut pas 8&tre traversé par une
variation continue de W. L'objection relative aux énergies néga-
tives se trouve donc écartée en Dynamique Einsteinienne.

Il n'en est pas de m€me en Mécanique quantigue car celle-ci
admet en principe 1l'existence de transitions brusques entre
états dont 1'énergie diffire d'une quantité finie, ce qui empé-
che d'écarter a priori le passage du domaine des énergies posi-
tives & celul des énergies négatives. Et, qui plus est, on peut
imaginer des exemples simples ol des transitions de ce genre se
trouvent réalisées.

Dans un article de 1929 [Zeitsch.f. Physik 53 (1929) p.157]

M. 0.Klein a le premier signalé un exemple de transition qui,
sans &tre & proprement parler un passage d'un état d'énergie-
positive & un état d'énergie négative, lui est cépendant équiva-
lent. Il consid®re une surface plane S séparant une région (I)
ol les potentiels sont nuls d'une région (II) ol rdgne un poten-
tiel scalaire constant et négatif de sorte que dans la 1région
(II) un électron possdde 1l'énergie potentielle U=-eV > 0 .Sur la
surface de séparation tombe normalement venant de la région (I)
une onde électrique de Dirac : cette onde est supposée monochro-
matique, plane et d'énergie positive W. Il s'agit de calculer
les ondes réfléchies et transmises par la surface de séparation.
U,=0 U,=-eV>0

(1) - $ (11)

(1) en vertu de la relation v = oY qui exprime que la vitesse du corpuscule = la vitesse de
I
groupe. P
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On montre que, pour effectuer le calcul, il faut exprimer 1la
continuité de chacun des quatre ¢, 2 travers la surface S, c'est
4 dire écrire :

) incident + ¢, réfléchi = (), transmis
Naturellement les ondes réfléchies et transmises correspondent &
la méme énergie W que l'onde incidente : le phénoméne est con-
gervatif.

Mais M. Klein a démontré le résultat suivant. Pour :
0<U<CW—m_,c?

il y a & 1la fois réflexion et transmission, l1l'onde +transmise
ayant comme 1l'onde réfléchie les caractires normaux d'une onde a
énergie positive. Pour W-m,c*<U«W+m,c?, il y a réflexion to-
tale avec onde évanescente dans le deuxidme milieu. Enfin pour
U>W+myc?, on trouve & nouveau une onde transmise & travers 8,
mais, c'est 1la ce qui constitue "le paradoxe de Klein",cette on-
de est une sorte d'onde & énergie negatlve' évidemment son éner-
gie totale W est positive, mais ce qu'on peut appeler "1l'énergie
de nature non potentlelle" c est-é—dire W-U est, dans la région
(I1), négative et inférieure & -m.,c?, alors qu'en Dynamique
Einsteinienne elle doit toujours étre supérieure & mc’. L'onde
transmise dans le milieu (II) ol 1xdgne le potentiel scalaire V
est donc analogue A une onde & énergie négative en l'abswence de
potentiel et possélie les mémes propriétés paradoxales. On doit
dire qu'il y a une certaine probabilité pour qu'un électron in-
cident pénétre dans la rvégion (II) en passant dans cet état
étrange. C'est le paradoxe de Klein.

Le cas envisagé par Klein est trds schématique. D'autres
auteurs, notamment en France M. Géraxd Petiau, ont approfondi ce
genre de problémes. Le résultat essentiel paratt 8tre le sui-
vant ::chaque fois que 1l'énergie potentielle de l'électron subit
une variation au moins égale & m _c® sur un parcours de l'ordre

de ——
m,C?
gative. On voit 1le r8le ici Jjoué par "la longueur d'onde de

il y a possibilité de passage & des états & énergie né-

Compton®

e 2 2&-1040cn1que nous retrouverons plus loin.
[¢] .

2. CARACTERE INCOMPLET DU SYSTEME DES ONDES
A ENERGIE POSITIVE

Revenons sur certaines particularités de la Mécanique ondu-
latoire non relativiste. Dans cette théorie, 1l'équation de pro-
pagation—lL-a¢ =H{) est du premier ordre par rapport au temps.

ot
La solution en est donc compldtement déterminde si 1l'on se donne

sa forme initiale ¢(x,y,z,0). Considérons le cas de l'absence de
champ ol 1'équation de propagation a la forme simple :

qu— an %f_




SOLUTIONS A ENERGIE NEGATIVE 93

elle a pour solution 1l'onde plane monochromatique :

L!)(x v,z t) __ae%(Et_pxx'pyy—pzz)

avec (sans ambiguité de signe) :

1 2 2 2
=5 (P P+ P, )
Supposons que nous nous donnions la forme initiale de la fonc-

tion d'onde ((x,y,2,0) =F(x,y,2) et considérons le développement
de F(x,y,z) en intégrale de Fourier :

_2ni

I ol pex Py p,2)
F(x,y,z>=/f 9(popyp,)e ’ dpy dpy dp;

Les coefficients g sont calculables & partir de F donnée par la
formule :

W ZE(py by po7)
§(ppp) = [[[Fixyzre™ T T dx dy dz

Je dis alors que la fonection :

oo 270
——(Et-pyx-pyy-p,z)
$(x,y,2,t) =///g(px,py,pz) e ! dp, dp, dp,

est la solution admettant F pour forme initiale. En effet ¢

1°~(x,y,z,t) satisfait & 1'équation de propagation comme étant
une somme de solutions planes monochromatiques de cette équation
linéaire.

2°- A l'instant t=0, elle se réduit visiblement & F(x,y,z).

Nous en concluons qu'en Mécanique ondulatoire non relati-
viste le systdme des ondes planes monochromatiques constitue un
systéme "complet" en ce sens que toute solution de 1l'équation
des ondes peut se représenter comme une superposition d'ondes
planes monochromatiques.

Passons maintenant & la théorie de Dirac et cherchons & y
transposer le raisonnement précédent. Ici nous avons affaire &
quatre équations simultanées du premier ordre en x,y,z,t entre
les quatre ), . Ces quatre fonctions d'onde sont donc entidrement
déterminées 81 1'on se donne les formes initiales ), (x,y,z,0).
Prenons toujours le cas du champ nul et demandons-nous encore
s'1l est possible de représenter n'importe quelle solution par
une superposition d'ondes planes monochromatiques. Une solution
est entidrement définie par la domnnée desg quatre :

¢k(X’Y5ZaO) = Fk(X,y,Z)
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que nous supposerons développées en intégrales de Fourier de la
forme :

o 2L (pex pyy+ py2)
(nyaz)=ﬂgk(vapy'pz)e dpx dpy dpz

les g, étant données par les formules d'inversion 3
2ni
(PX+ Py +P.2)
h X Yy z
I Py Py Pz )= f/Fkxyz | dx dy dz

Cherchons & représenter la solution qui correspond aux kbkini-
tiaux donnés par une suparposition d'ondes planes monochromati-
ques qui ne contiendraient que des ondes & énergies positives.
Pour cela posons :

(Wt PxX = PyY = P.2
q)k(X’th ///ak Py Py pz ' dpx dPy dPZ

avec W——+c\/m c’+pt. Nous avons bien 14 une solution de 1'équa-
tion d'ondes, mai. pdur qu'elle ait la forme initiale P(x,y,2),
il faudrait avoir :

2 Py Py sP2) = G (Pys Py Py ) (k=1,2,3,4)
les gk étant comnus. Mais nous savons que sur les quatre a,,
deux seulement sont arbitraires et ceci nous montre qu'en géné-
ral, nous ne pourrons pas satisfaire aux conditions précédentes.
Les ondes planes monochromatigues & énergie positive ne forment
donc pas ici un systéme complet.

Considérons maintenant, & c8té des ondes planes monochroma-
tiques & énergie positive, les ondes planes monochromatiques &
énergie ndgative. Nous obtenons alors un systdme complet. En
effet si nous posons :

(Wt p- )
Wi [xay,z.t) /ffak (PyoPy P2 ) € dpy dpy dp, +

ZﬂL (Wt— )
f/b (PeoPyop e " ddePysz

avec toujoursW=+cymZc?+p?, nous aurons une solution des équa=
tions de propagation puisqu'elles sont lindaires et les
(x,¥,2,0) coincideront avec les F,(x,y,z)si 1l'on a :

ak(Px’Py pz)+bk(Px’Py’Pz) gk(px’py’Pz) ( k = '1’2’3’4)
A la différence des conditions obtenues plus haut, celles-ci
sont toujours compatibles car sur les huit a, et by, i1l y en a
quatre d‘arbitraires. .
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Les conditions précédentes s'écrivent explicitement :

ZA+ x+' B . ZB—( x_i' )A

_P W(p py) +C==g1(px,Py4§),E*fW—E__JBL"+D==92(Px’py’pz)
Limge o= tMeC

LC+(p, +ip,)D Pz P-{py-ipy)C

: W b +[\*=93(P>upy’Pz)’P WP > +B=94(PX’PY’PZ)
__C_+ moc ) E+moc

S1i 1'on étudie le systdme précédent en tenant compte des rela-
tions d'incertitude d'Heisenberg, on voit que dans le cas d'un
paquet d'ondes immobile ou animé d'une vitesse v«c, on obtient
le résultat suivant : il est possibtle de représenter le paquet
d'ondes k.[J par une superposition d'ondes planes monochromatiques
si, et seulement si, ce paquet d'ondes a des dimensions au moins

égales énfc . 81 le pagquet d'ondes a des dimensions inférieures
o
aﬁ#E, la superposition doit comprendre des ondes & énergie né-
[=]

gative. Si le paquet d'ondes a dans le systime de référence uti-
lisé une vitesse Pc voisine de ¢, on voit aisément, en tenant
compte de la contraction de Lorentz, que le paguet d'ondes sera
représentahle par une superposition d'ondes planes monochromati-
gques & énergie positive si, et seulement si, ses dimensions sont

au moins de 1'ordre de7%%gv1-p2.
o

D'une fagon générale, il est donc impossible en théorie de
Dirac de représenter un train d'ondes quelconque sans faire in-
tervenir 1les ondes & énergie négative, ce qui montre ‘qu'on ne
peut éviter de considérer ces ondes.

La condition pour pouvoir représenter un train d'ondes uni-
quement par des ondes & énergie positive est donc dx »EEE-\/1—P2

Ox étant l'extension du train d'ondes le long A'un axe ox quel-
conque. Nous allons retrouver cette condition en partant des re-
lations d'incertitude. La quatridme relation d'incertitude : .

dw .8t »h

doit s'interprdter en disant qﬁue 8i une mesure de 1l'énergie
fournit la valeur de l'énergie & OW prds, cette mesure dure au

J\IN . Pour que le train d'ondes considéré

ne contienne dans son développement de Fourier que des ondes a
énergie positive, il faut queOW «W puisque dW doit, d'aprds les
principes de la Mécanique ondulatoire, mesurer 1l'étendue, dans
1'échelle des W, des ondes qui figurent dans le développement de
Fourier du¢. La durde 0t de la mesure qui permet de délimiter

le train des ondes e. doncdty %. Or, dans la Mécanique ondmla-

toire de Dirac, les f.onts d'onde peuvent se propager avee tou-
tes les vitesses de O & ¢ de sorte que pendant la durée St de la
mesure, les frontidres du paquet d'ondes peuvent se déplacer de

moins un temps 0t égal &
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cdt L'extension du paquet d'ondes qui résulte de la mesure est
donc au moins 0x = cdt dans le sens ox. On aura donc :

he_h Ao
dx » W moc\M[S
car :
W= _Mec®
T-p
C'est bien le résultat obtenu plus haut.

51 1'on applique 1la formuleﬁt»is 4 la lumidre (pour la-

quelleW=hv et A=), on trouvedx>A . Il est impossible de lo-

caliser le photon dans un volume de dimensions inférieures & la
longueur d'onde. Au contraire pour une particule matérielle
(électron par exemple), on a sz-m%V\H— z%::k.ﬁ et, commef<?

on peut localiser la particule dans un volume de dimensions in-
férieures 4 la longueur d'onde associde et cela d'autant mieux
que sa vitesse est plus petite.

3. LA THEORIE DES “ TROUS ” DE DIRAC

Nous venons de voir, par 1l'étude du paradoxe de Klein et
par celle du caractédre incomplet des ondes planes & énergie po-
sitive, qu'il est impossible d‘'éliminer les ondes planes & éner-
gie négative de la théorie de Dirac. Notons encore 1le curieux
résultat suivant : 1'électron de Dirac ne pourrait pas diffuser
la lumidre si les états & énergie négative n'existaient pas :
l'existence du phénoméne de la diffusion de la lumidre nous in-
terdit donc aussi d'éliminer ces ondes paradoxales.,

M. Dirac lui-méme a trouvé un moyen ingénieux de lever la
difficulté que constitue, dans sa théorie, 1l'existente, impos-
S8ible & écarter, des ondes & énergie négative. Remarquant que
d'aprés le principe d'exclusion de Pauli, 11 ne peut y avoir
plus d'un électron par état, il imagine que tous les états
d'énergie négative sont occupés dans 1'état normal de 1l'Univers,
Il en résulte une densité uniforme dans l'univers d'électrons &
énergie négative et M. Dirac admet que cette densité wuniforme
normale est inobservable. Mais il y aurait plus d'électrons dans
l'univers qu'il n'est nécessaire pour garnir tous les états &
énergie négative et le surplus, obligé de se répartir entre les
états & énergie positive, constituerait les électrons qui se ma-
nifestent & nous dans l'expérience. Exceptionnellement, un élec-
tron & énergie négative peut passer, sous l'influence d'une ac-
tion extérieure, dans un état & énergie positive : il y a alors
apparition simultanée d'un électron expérimental et d'un "trou",
d'une lacune, dans la distribution des électrons & énergie néga-
tive. Or M. Dirac a montré, nous reviendrons tout & l'heure sur
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ce point, qu'une telle lacune se comporte comme un corpuscule a
énergie positive qui aurait méme masse que 1'électron et une
charge électrique égale et de signe contraire. Ce serait un cor-
puscule en gquelque sorte complémentaire de 1'électron habituel,
1'électron positif ou "positon".

En 1932, M. Anderson et il.... Blackett et Occhialini ont dé-
couvert dans les rayons cosmiques des électrons positifs répon-
dant aux conceptions de Dirac. Retrouvés dans les produits de la
dé31ntégration des radio-éléments artificiels, les posgitons,
malgré le caractére plut8t exceptionnel de leur apparition, sont
aujourd'hui devenus pour les physiciens des &tres familiers. La
théorie des trous de Dirac conduit & penser que 1les dlectrons
positifs doivent &tre instables en présence de la matidre car,
81 une lacune rencontre dans la matidre un des électrons néga-
tifs dont elle est pleine, cet électron négatif pourra combler
la lacune et cette transition quantique se traduira par 1la dis-
parition simultande de deux électrons de signes contraires dont
toute 1'énergie sera émise sous forme de rayonnement : c'est le
phénoméne de la "dématérialisation d'une paire d'électrons" dont
1'existence est aujourd'hui certaine grace surtout aux travaux
de M.M, Joliot et Thibaud.

Nous pouvons donc avec Dirac considérer le positon comme un
"trou" ou une *lacune™ dans la distribution des états & énergie
négative de l'électron, mais nous pouvons aussi, plus physique-
ment peut-8tre, le considérer comme un véritable corpuscule
"complémentaire” de 1l'électron dont la fonction d'onde obéit &
une équation d'ondes complémentaire de celle de Dirac. Précisons
ce point. -

Congidérons le cas de l'absence de champ et soit d)*une 80~
lution & énergie positive des équations de Dirac :

Y od /. O 0 g .21l
T LIF TR ay %33z R
Je dis que la fonetion ¢ =-ia,0,(d’)" de composantes :

e (U AU FUN LR U (VR M B (UM

car

m cocA\)Lllk

-1
0
0

10 00

o — O

0
0
1

o NeNe]

-, o, =

est solution & dnergie négative des équations de Dirac. Qu'elle
soit & énergie négative est évident. Qu'elle so0it solution des
équations de Dirac se voit en écrivant 1l'équation conjuguée :

1 ddt d 0 d _2mi -

S ot (M3 Ty Sy T Met%a) Wi
obtenue en remarquant qu'avec notre choix des & ,x,, o, et o,
sont réelles et o, purement imaginaire, puis en multiﬁiiant en
avant l'équation précédente par —Lm2<x et tenant compte des re-
lations de commutation entre o
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Ainsi partant d'une solution & énergie positive d) nous

lui avons associé une solution & énergie. négative Y. Posons
maintenant :

p=dT=-iloa,a, $*

de composantes :

Q= _q)z ) Y, = q);; ) d)z* 3 ('P4__(~b1+
I1 est aisé de vérifier, en multipllant 1'équation en * par
LO(.ZOL en avant, cue ¢ est solution de :

1 0Qy 9 3 g 2ni

c ot (“‘a “Zay %3, " con4> P
que nous appellerons l'équation complémentaire de celle de Dirac.
La fonction ¢ sera la fonction d'onde du corpuscule "complémen-
taire" de 1l'électron, c'est-a-dire le positon : elle est solu-
tion des équations "complémentaires® de Dirac.

Passons maintenant au cas ol il existe wun champ électroma-

gnétique dérivant des potentiels V et A. Soit encore (]) une so-
lution & énergle posrtive des équations de Dirac telle que :

<%§E+ )ka [ ( +xeA)+on2(—a%+xeAy>+0L3(%+xeAz>+xmococ4}¢);

avec ¢

21l

h
Pour obtenir 1la solution '~ & énergie négative associde & ¢*,
nous commengons par considérer l'équation obtenue & partir de 1la
précédente en remplagant e par -e. Nous en obtiendrons ,une so-
lution ’*en changeant e en —-e dans 1'expression de k[) et nous
aurons : 3 3
(1@_ ev> k—[oc1(a -xeA >+otz(——xeA >+oc3(——xeA >+xm cocA} "
cdt ¢ a dy Y 9z
La solution ¢~ cherchée sera :

GT=—lo, o )

On le verra aisément en prenant 1la conjuguée de la derniére
équation : 3 3 3
1 a V i x bR AR ]
~Z e \r=a +xeA) ( +xeA >+oc ( +xeA) xm coc}( k)
(cat c )( k) [1((3)( “\dy *\0z o

et en appliquant 1l'opérateur -ix,a, en avant ce qui donne :

(ééa—tnc —>d)k_ [0‘\ (gxw.eA )+on2 (§y+xeAy>+a3 (%weAz)mmoc%] by

X =

C
(Naturellement si :

V=0, A=0, alors: =" et Y =-ia,a, ¢**
de sorte que nous retrouvons le résultat établi plus haut).

¢ = 7= -la,a, P’
En prenant 1la conjuguée de 1l'équaticn satisfaite par q)‘, nous
trouvons :

B

Posons :
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L'ondetﬁ représente un corpuscule obéissant & 1'équation complé-
mentaire de Dirac et possédant la charge + e : elle représente
un positon, corpuscule complémentaire de 1'électron-

Naturellement pour V=0 ,A=0 nous retombons sur les résul-
tats obtenus plus haut.




CHAPITRE VHI

LE TREMBLEMENT DE SCHRODINGER

I. LE CENTRE DE GRAVITE DE LA PROBABILITE
DANS LES MECANIQUES ONDULATOIRES

En Mécanique ondulatoire il vaut mieux géndéralement éviter
de parler de vitesse, car la vitesse n'est définie gue dans des
cas particuliers (ondes planes monochromatigues).™ Au lieu de
parler de vitesse, on doit parler de quantité de mouvement. Par
contre on peut toujours définir un point G qu'on nomme "centre
de gravité de la probabilité de présence® et qui est défini par
les formules :

§='/\;k|)*xd)d'c : v=f0¢*y¢.dt : z%’www

en Mécanique ondulatoire non relativiste, et par les formules :

k=4 k=4 k=4
x=( 2 dpxddr ;5 y=/ Ty T 0=/ K
[ £ vix o, 7-[ E diydyd z-[ £ bz dyde
en Mécanique ondulatoire de Dirac. X,y,z sont par définition les
coordonnées de ce point.

Au cours du temps X,y,Z sont des fonctions bien définies du
temps de sorte qu'on peut sans ambiguité parler de la vitesse du
point G.

Soit ¢, , U, , $;, ¢, une solution des équations de Dirac qui
représente l'onde associée & un certain mouvement de 1'électron.
Nous pouvons écrire :

q)kz zn: Cq ¢k,n

¢y , étant la k™ composante de la n®’® fonction propre de 1'éner-
gie (fonction propre de H) et les c, des constantes complexes.

On trouve par substitution :
k-4
X=,§ m CnAE ’\Pk,mx q)k,ndT%}m%Cmcnxmn

X mn 6tant 1'é1lément de la matrice d'Heisenberg correspondant 2
1'opérateur x.



102 ‘ CHAPITRE VIII - 1

Comme

dxm ket M 2ni i
Ten = R0, 22 (kX ) &y, [

H=—[€V+C(OL1P1+OL2P2+(13P3 . ocAmOC)}

H étant 1'hamiltonien de Dirac en présence de champ ol, comme
nous le savons,

avec

h 0 e
Pj=-—— —

J 2ni aXJ+ C A
On trouve aisément :

ZEL(XH Hx)=con1(x-§—-—%x)==—coc1

et par suite :

dX g
T B ¥ o) b os

dx . dx et [6n o ed
'd_tznﬁcmcn d:n—,/Dk_ {m ‘bkm(C"H)EC q)kn:ldt /ziq)k °a1)¢kd1

d'ou :

et l'on trouverait de méme :

dy i dz
E Dk1¢k( Z)kad.c U dt Dk1q)k (‘Ca3)q)kd't

Or nous avons trouvé précédemment pour les composantes du couw
rant de probabilité

dtou :

dx dy  _ dz  _
X _ dt= °y_ & _
at L/l;Pu* x ’ at Uy ’ 4tz

La vitesse du centre de gravité G est donc égale & la valeur
moyenne de la vitesse de la probabilité, résultat qu'on aurait
pu prévoir a priori.

On interpréte souvent les formules précédentes en disant
que les opérateurs -cu,, -Ca, et -ca,sont les opérateurs corres-
pondant aux trois camposantes de la vitesse du corpuscule élec-
tron. Comme ces opérateurs n'ont pour valeurs propres que +C et
-c, on est amend & dire, d'aprés les principes généraux de la
Mécanique ondulatoire, que les seules valeurs possibles des com-
posantes de la vitesse sont + ¢ et -c , résultat assez difficile
a interprdter. Mais il semble préférable de ne pas considérer la
vitesse comme une "observable® & laghelle on puisse faire cor-
respondre un opérateur.
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2. LE THEOREME D’EHRENFEST

En Mécanique ondulatoire non relativiste, on démontre le
théordme d‘!'Ehrenfest exprimé par les formules :

d?x 7 ) d?y F ) d2z _
T ’ T ! T
qui s'explicite en disant que le centre de gravité de la proba-
bilité se déplace comme le ferait un point matériel de masse m

sous l'influenceé de la valeur moyenne de la force

—F=¢/D‘ $*(-grad U) P dr
Dans le cas ol il n'y a pas de champ, le point G est donc animé

d'un mouvement uniforme et rectiligne, s'il n'est pas au repos.
Rous allons démontrer directement ce dernier théordme. En Méca-

nique ondulatoire non relativiste H -~ (?_?LL>Z L
d'ou :

“ge o av = o [ vds - Lol v
iy T = X Qmm ax LP
car :

(x4 o

~h 9 (
—H-H
d’c2 D Zﬂ.b[ 2nim Ox

car a—commute avec A ..

X
En théorie de Dirac, les résultats précédents ne sont plus
exacts en général.

De :
dx L
"%i/;‘@ k (mcay) gy dr

et par suite H

& aee

2nim

nous tirons : .
d?x .
dt2=£k1 q)km 2mi [_C%HJ(HCOHJ q)k’"dT

Maisg ici o, ne commute pas avec H qui contient o,, o, et o,. On
a done ¢

4% . d¥Y d’z
dt? dt? dt?
Le mouvement du centre de gravité de la probabilité en l'absence
de champ n'est pag en général rectiligne et uniforme.

= 0

3. LE TREMBLEMENT DE SCHRODINGER

: Pour comprendre pourqtfoi en théorie de Dirac le mouvement
du centre de gravité de probabilité n'est pas rectiligne et uni-

8
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forme, méme en l'absence de champ, il est instructif de soumet-
tre & une analyse détaillée l'expression :

dx / 0

— = -Cc o dzt

dt D k=1 L')k ( 1) q)k
ol nous pouvons écrire :

i 27 27
. (Wt-px-pyy-p,z) (We-px-py-pyz
qjk:///[ak(Px’Py’Pz)eT P b poppe™ T ﬂ'dpx dpy dp,

avec W=+c\/mic®p’. Les huit a, et b, peuvent se calculer & par-
tir de quatre d'entre eux qui restent arbitraires par des formu-
les que nous connaissons.

Appelons maintenant "espace des moments"™ l'espace construit
en prenant comme coordonndes rectangulaires les grandeurs DxsDys
p, et divisons cet espace eh cellules ¢ aussi petites que nous
voulons. Les quantités

A(G)=(/f/'e-%£(Px**Pyy*PzZ) dp, dp, dp,

sont (& une constante de normalisation prés) les "différentiel-
les propres® du spectre continu des ondes monochromatiques pla-
nes et nous pouvo.s dcrire

27 2ni

B (x ’y’z’t)zg[ak(Px’Py’Pz>eT t"bk(Px’Py’Pz)e_h—WtJ Afa)

Pxs» Py P, étant les coordonnées du centre de 1'élément o dans
l'espace des moments et %_3 dégignant une sommation sur toutes
les cellules o de cet espace.
Nous pouvons alors écrzizfe :
il

d_ ked o Wt . »ZMWt *
K _cyn¥ [ak(px,py,Pz)eT by (PPl e J .

dt o O ke

20k 20k gy .
~‘°w[ak(Px’Pyvpz)eT b (pypyple J/éA (67) 4 (o)dt

le domaine D étant naturellement ici l'espace entier. Les diffé-

rentielles propres étant orthogonales et supposées normées, nous
avons, en désignant par ¢ le volume de la cellule &
dX et B wr AT
—dT;__CEGE l:ak(px’Py’pz)e +bk(Px’Py’Pz)e :l

2niwy - 23y

'a1|:ak(px’Py’Pz)e " +bk(P)(’Py’pz)e n :l

ou encore

dY k=4 * * k-4 * . h we * h wt
Et—=—c§cr’§ (aka1ak+bka1bk)—c§c(|§ agd,bee +Ebka1ake )
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En tenant compte des formules (VII,b) que nous rappelons ici :

P.A+(pytipy)B P, B-(pyx-ipy)A ’
=TTy T 5 @ T 5 8= A a,= B
—c-+moc- —C—“' my,C
nous avons
k=4
* AA*+BB”
-c Zajaa = -claja,razayraja,ra) a1)=2p,c W
k-1 W,
& * MeC

et comme on a aussi

ke 2 A x
Y aia, = (AA"+BBY) {n(wp )z}zzw AR+ BB

k=1 T MeC W+m,c?
i1 vient
ket * pXC2 k4 *
~cZI ag o a) = w gakak

On trouverait de méme en utilisant 1'expression des b, donnée
par les formules (VII,c) :

c? kd
-cz by oy by, =-2— " £ by b

Dtagutre part, les deux derniers termes dans 1l'expression de g)t(

sont complexes conjugués & cause de l'hermiticité de «, et peu-
vent s'éerire

c g oA, cos (%Wt + cﬁ)

A, et 1 variant naturellement d'une cellule o & l'autre, c'est
b. dire étant des fonctions de p,,py,pz. On a posé en effet :

Ae'® = -2 E by o, ay
Finalement nous pouvons écrire :
dx _ Cip, [t ket 4n
dt—gc w Eak ay - E bg >+‘§.GCA1COS(TW’C+<F1)

CZ
Or, d‘aprés les formules de la Dynamique relatiwviste —p\’l‘v— est
la composante x de la vitesse correspondant & la quantité de

mouvement p, et & 1l'énergie +W. On peut de méme considérer - P,\(N

comme la composante x de la vitesse correspondant & la gquantité
de mouvement p, et & 1l'énergie - W..Le premier terme de 1'expres-
sion précédente de%:— est donc une sorte de valeur moyenne de la

composante de vitesse v, correspondant & la composition spec-
trale du ¢

Posons done

V=L o X (aiai-bi by )
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?x est naturellement indépendante du temps et nous avons

Ejbt( v, +Eo‘cA cos (——Wt+c{>1)

d'ou par intégratlon
£+E oo hc A ,sin (4“ Wt+<P1)

et on trouverait de méme

y = n+Z‘. S A sm(ﬂ—wt * P, )

5 _ 2. ﬁ (Any
Z =C );GAWA351n< Wt c?a)

avec les définitions

E=?°+Vt ; n=Y, * Vyt ; =7, +V,t
PyC ke _ p,Clkt

y=Lo—- kz:(akak-bkb);vzzg W 5 (ata - biby)

Le point de coordonndes &, 11, { se déplace d'un mouvement recti-

ligne et uniforme, maie le eentre de gravité G de coordonnées
X, 7, 2 exécute autour de ce point une série d'oscillations de

fréquence ng « Ctest 14 "le tremblement de Schr8dinger® qui emp8~-

che le théordme d'Ehrenfest d¥8tre wvalablee« Les amplitudes de
ces oscillations sont d'ailleurs en général faibles car elles

gont proportionnelles au facteur —— he qui est toujours plus petit

4n w
que 4n;‘n c=417 mhc or la quantité —— m T souvent appelée "longueur
o [

d'onde de Compton, est trds petite (2,4,,10 Ocm. pour 1'électron}.

L'analyse précédente montre nettement 1l'origine du trémble=-
ment de SchrBdinger. I1 est dfi au battement des ondes & énergie
positive + W et des ondes & énergie négative - W correspondantes.
La fréquence du battement est, comme & 1'ordinaire, la différenw
ce des fréquences, soit Zh—W g :

Pour un train d'ondes dans la décomposition epectrale du-
quel ne figurerait aucune onde & énergie négative, il n'y aurait
pas tremblement de Schr8dinger car A, =0 si b, =0 et, par suite,
le théordme d*'Ehrenfest serait valable. Mais nous savons que
pour représenter un train d'ondes il faut en général faire in-
tervenir des ondes A énergie négative (si les dimensions du

train sont inférieures & \/1 p* ) et c'est pourquoi le théord-
me d'Ehrenfest n'est pas valable en théorie de Dirac.




CHAPITRE IX

POSSIBILITE DE MESURER
LE SPIN DE LELECTRON

I. IDEES ACTUELLES SUR LA QUESTION

M. Bohr a donné des arguments pour prouver qu'il était im=-
possible de mettre en évidence par des mesures directes le spin
de 1'dlectron. Naturellement cela n'exclut pas 1la mise en évi-
dence indirecte de ce spin par la constatation de ses répercus-
sions sur divers phénomdnes tels que la structure fine des spec-
tres. Cela n'exclut pas non plus la possibilité de mettre en
évidence, ce qui jusqu'a présent ne parailt pas avoir été fait
dtune fagon nette, 1'état de polarisation d'une onde électroni-
que par des expériences du type de Norremberg en optique (ré-
flexion par un corps polarisateur d'une onde déja polarisée par
une premidre réflexion).

Nous allons étudier les raisonnements de Bohr (développés
notamment par M. Pauli dans les Actes du Congrés Solvay 1930,
p. 217 et 8q.) et voir que leur validité semble en général limi-
tée au cas des vitesses faibles par rapport & c.

2. ACTION D'UN CHAMP MAGNETIQUE
SUR LE MOMENT MAGNETIQUE PROPRE

Considérons un faisceau monocinétique paralldle de particu-
les, la vitesse étant dirigée suivant ox et les dimensions tra-
versales du faisceau étantAy etAgz. On peut supposer par exem-
ple que le faisceau a été 1limité latéralement par son passage &
travers une fente rectangulaire de cb6tésAy et Az. Nous suppo-
gons que les particules, qui pourraient ne pas 8tre des é&lec~
trons & condition d'étre des particules de spin 1/2 obéissant
aux équations de Dirac, ont une charge € et une masse propre m,,
et qu'elles sont soumises & l'action d'un champ magnétique non
homogéne partout paralldle au plan y o z de sorte que nous au-

rons : SH. 3
dvH= —Y4+ —2=0
Oy 0z
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Si nous attachons notre attention aux actions qui s'exercent sur
les particules suivant oz (un raisonnement analogue s'applique a
oy), nous voyons que l'action laplacienne du champ magnétique
sur la_ particule se traduit par l'existence suivant oz d'une
force -—vH tandis que ltaction du champ sur le moment magnéti-
que propre Mt de 1la particule donne lieu guivant oz & la forme

e, T; y force qui, -compte tenu de la relation div H==o,a pour
valeur absolue maxima

.—7' dans le cas ol le mouvement ma-
AnmC

Y
gnétique propre est normal & l'axe et dirigé suivant oz.

Mais le faisceau ayant une largeur Ay dans le sens oy, la
force 1laplaciemne est affectée d' une incertitude égale &

?;Vn———-Ay et, pour qu'on puisse mettre en évidence 1l'existence

du moment magnétique propre, 1l faut que cette incertitude soit
beaucoup plus petite que la force due au gradient du champ, ce
qul conduit & 1'inégalité

A «_I__h__
Y 411 MgV
Pour des particules de vitesse faible par rapport & la vitesse c,
le facteur ﬁgv-est égal & la longueur d'onde A de l'onde asso=-
ciée et 1'on a
Ay « A

Cette condition entraine l'existence d'une diffraction in-
tense qui ne permet plus dtattribuer & la particule une trajec-
toire bien définie, d'ol résulte 1'impossibilité de mettre en
évidence l'existence du moment magnétique propre dans une expé-
rience ou la notion de trajectoire peut &tre conservée.

I1 convient toutefois de remarquer que dans le raisonnement
précédent, nous avons supposé que la particule de masse m, por-

tait le moment magnétique qui lui correspond dans la théo-

N meC
rie de Dirac. Il en est autrement dans le cas de ltexpérience de
Stern et Gerlach ol un atome d'argent de grande masse propre M,

transporte un moment magnétique égal & un magnéton de Bohr in 2 <
ol m, est ici la masse de 1l'électron. En reprenant le raisonne-
ment précédent et remarquant quek==J‘ y on trouve:
oV
Ay « rﬂ° A
& la place de :
Ay « A
et, comme %% est trés petit, rien ne s'oppose plus & ce que nous

puissions mettre en évidence le moment magnétique propre de
1'électron dans des expériences ol l'on peut atitribuer une tra-
jectoired un atome d'argent.
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Arrivons maintenant & un point essentiel. Nous avons plus
haut négligé les corrections de relativité en posant A=ﬁh—‘7 alors
0

que l'expression rigoureuse de la longueur d'onde est

- VI (p-t)

51 nous tenons compte de cette expression rigoureuse, nous obte-
nons au lieu de Ay « A N

1__2

Ay <<4Ln-

et si b est assez voisin de ! (v assez voisin de ¢) V1-B? sera
trés petit et la condition précédente n'entrafne plus quedy
soit trés petit par rapport & A, condition qui a été démontrée
plus haut dans le cas v« c.

On ne peut donc pas affirmer pour des particules de Dirac
animées de vitesses voisines de ¢ qu'il soit impossible de met-
tre en évidence leur moment magnétique propre par 1'expérience
envisagée.

Cependant, comme M, Thibaud 1'a fait remarquer, il subsiste
une impossibilité pratique pour les électrons méme sivesc. On a

en effet Ay« 'm_hE’ ce qui pour les électrons donne Ay« 107°cm et
1'on ne peut utiliser une fente aussi étroite. Il en serait au-
trement pour des particules beaucoup glus légdres que les élec-
trons. Par exemple pour mes10™Vgr=10"m, , on aurait Ay«lcm, ce

qui est aisément réalisable.

En rédsumé, pour des particules lentes (v« c), la mise en
évidence du moment magnétique propre parait impossible. Pour des
électrons rapides (vesc), il n'y aurait plus d'impossibilité
théorique (provenant des relations d'incertitude), mais il y au-
rait toujours impossibilité pratique (provenant des dispositifs
utilisables). Pour des particules beaucoup plus légdres que les
électrons et de vitesse voigine de ¢, on n'apergoit plus a prio-
rli d'impossibilité de mettre en évidence le moment magnétique
propre.

Nota - La composante du moment magnétique normale & la vitesse
est indépendante de la vitesse car elle est égale &

/Pzadt = -V% dt, \/1-{52 =f}y;3 dtlo

3. MESURE DU CHAMP MAGNETIQUE PRODUIT PAR L’ELECTRON

Les champs magnétiques produits par 1'électron magnétique
en un point & la distance r sont en ordre de grandeur

e Vv n
=3 1, =5

’




L'incertitude sur H, est donc trés supérieure & H,, ce qui emp8-
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avee @

Eh . £ e

U = moment magnétique propre = :
4nm,c

Pour une incertitudeAv sur v, on a
AH, = 2. Av
cr
Or la position de 1l'électron étant incertaine AAr prés, on aura
Ap-Aryh

car Ar peut &tre considéré comme la largeur d'une fente que 1'é=-
lectron traverse normalement. De plus toute mesure précise sup-
pose Ar«r.5i l'on admet la formule non relativiste p-m v, on a

Av )y et AH1>, ez. h » ehs ou AH1>> l&—
cr meAr mycr r

mJAr

che la mesure de H,, mais ici encore il n'en est plus de méme si

vee, car alors on Mo¥ et
«e, car alors a PSV?@Z ’
mo 1 1 \'2 1

Ap=—"2:_Av+m VA|——=]=m Av[ +—— A }»m Av
Ap= i A mev (gl =i 1D Al

v 1 1 v v? 1
— > 1 ; »1 ; A(————)-——=~—-—————>>1
Av \Vi-B? VIi-P¥ Av  c¢* (1-p)%
PosonsAp=m,Av. N avecN » 1, il vient P _ g

AH, S h__, eh . A
cr m,NAr mycr N
mais comme N est trés grand, nous ne pouvons plus en déduire :

AH1>>H2

4. COMPENSATION DE LA FORCE DE LORENTZ
PAR UN CHAMP ELECTRIQUE

M. Pauli a aussi envisagé le cas suivant. Des électrons
gont lancés avec la vitesse v le long de l'axe des z et soumis &
1taction d'un champ électrique et d'un champ magnétique, tous
deux paralldles au plan xoy et indépendants de z. Ces champs dé-
rivent d'un potentiel scalaire V et d'un potentiel vecteurA,
fonctions seulement de x et y et tels que

oV _ oV . 0A,
S o Bmgy v el Ty

La force agissant sur l'\électron a pour composantes

H ___“aAz
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Il y aura compensation des forces dans tout 1l'espace siV=% A,

I1 semble donc, dit M. Pauli, que l'on puisse mettre en évidence
les forces exercées sur le moment magnétique propre qui sont
seules 4 subsister, une définition exacte de la position des
électrons dans les directions perpendiqulaires au faisceau n'é-

tant pas nécessaire. Mais sl v, = v, = 0, v, ne peut &tre indé-

pendant de x et de y car ce n'est pasmy,, mais bien pz=mvz-% A,

qui est intégrale premidre en Dynamique relativiste (m est la
masse en mouvement —-2 ).

Vigt
Supposons p, constant et imaginons un faisceau d'électrons
limité latéralement par une ouverture circulaire de diamdtre d.
Soient encore : ’

AZ—_—.—(ax+byx) ;o Hy=-bx 3 Hy=a+b.y ;

dH,
dy

Sur l'axe z, le champ magnétique :

H=Hy=a

produit l'orientation des moments magnétiques propres et 1la
force exercée sur chacun de ces moments est Fy=31tb. Sur le bord
du falsceau, il y a une force de Lorentz non compensée

e e
AFy=TAVZHX=?szbd-
et compe

Ap,=0 ou Av,=+= AA = bd*

on a :

e e 2
AF),= ~de

mc

w

ol m est la masse en mouvement Mo _ . Pour pouvoir mesurer F
V1_p2 y?
11 faut que AF « Fy ou :
e e 2 3
Mb » me T b d

soit encore :

e e 3
m»—m—c— bd

L'angle de diffraction du faisceau aprds passage par le trou de
diamdtre d est de l'ordre de—% ()“Fnbx'/_) et pour que la notion de
r4

trajectoire garde un sens, il faut que le trajet 1 dans le champ
goit tel que

AL

dz

—2‘-1 «d ou 1 »
En multipliant cette inégalité par la précédente, on trouve

[ €
m»m'zbdkl N
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ou :
Al e e h? 2
Tm »Tn? ? b mz\jzz 1
et comme Jl'(=—Gh—
4nm,c
AL My \2 1
Tl T s

Or comme on ai(mv
1 dt
-

y) =Jib, on obtient en intégrant sur le temps

2
z

1 Vy 1
my, = Jlb — et — = JIb
Y v, v, mv
La déviation D est donc
\/), lz

2
myv,

Finalement :

m

Si 1l'on suppose, comme M. Pauli le fait implicitement, v« c et
me» M, ONn a

—)(‘jl- » (&)ZD

A»D

d
ce qui signifie que l'effet de diffraction masque entidrement la
déviation, mais il n'en est plus de méme siv «» C car alors ("r:{’)2

égal & (1-p?) est trds petit et 1'inégalité obtenue ne prouve
plus rien.

Ainsi trois des exemples donnés par M. Pauli & la suite de
M. Bohr établissent seulement 1'impossibilité de mettre en évi-
dence le moment magnétique propre dans le cas v«c, mais sont
insuffisants pour le casve c.

M. Pauli a traité un quatridme exemple oh 1'impossibilité
semble subsister méme pour veo c comme nous allons le voir.

¢ 5. ARRET D'UN ELECTRON ORIENTE PAR UN GRADIENT
DE CHAMP MAGNETIQUE

Des électrons se meuvent avec une vitesse v, le long de oz
en présence d'un champ magnétique dirigé vers les z négatifs et
oH,

o le long de oz. Les électrons dont 1le mo~-

ayant un gradient




et e
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ment magnétique est dirigé dans le sens négatif de oz sont arré-
tés au bout d'un temps t tel que :

mv =m-aH‘ (

-t
z 0z

Mo )
V1-p?
Mais si H, est nul sur l'axe, il ne peut 1'8tre emn dehors de

1'axe en raison de la relation div H=0, et & la distanceA x de
0z on a :

oH oH
H — 2% Ax =-212Z
X Ox X 0z Ax

I1 en résulte une rotation "de larmor" des électrons autour de
la direction ox avec la fréquence
eH, _ JLH,

VN =
4nimgc h

M. Pauli dit que de cette rotation de Larmor résulte une inver-
sion du sens de la vitesse v, au bout du temps %. Pour que le

renversement de v, soit d@l & l'action du champ magnétique sur le
moment propre et hon & la rotation de Larmor, il faut que

h ouJT(aTH—tAx « h

z
X
et puisque mvz=m%;—1l-t , on en déduit : mv, Ax « h
z

t «

Or)\=%; doncAx « A et les phénoménes de diffraction empéchent
r4

l'expérience de réugsir. Tel est le raisonnement de Pauli qui
suppose explicitement que les électrons vont lentement. Voyons
ce qul se passe givec.

La formule donnant v subsiste car dans le systéme propre de
1'électron on a :

eH‘i’ eH, (0) M,

V= = car H =
°  4nmg,e Anmec\T-p? 7 X V%[bf "
e
Or d'apres le ralentissement des horloges : V=V, \/1-[52 4nmxc

c.q.f.d. Mais le moment propre M, dans le systéme de 1'observa-
teur vautJ \1-p?car ;

P12=P’1°2; /I‘Lmdv Z/Hrz dV0V1—[3‘2 =mv1—[32
On doit doncéerire :d
m 2
57 (mv,) = VT-R a
et comme \/1—{52 est toujours inférieur & 1'unité, on a :

mv, <3ﬂ,aarjc -t
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et puisque 1l'on doit avoir t<<lon a:

v
4nmyc 5 MV
eH, N oH,
goit 0z
4nmy,e  eh 1
AX <« °. . =A
e 4nme MV

. Z
et i1 y a bién encore impossibilité. L'impossibilité subsiste
donc ici pour vesc.

6. MESURE DU MOMENT CINETIQUE PROPRE (SPIN)

Si la mise en évidence du moment magnétique propre ne pa-
rait pas impossible quandvwc s 11 n'en est pas de méme pour 1le
moment cinétique propre (spin) qui paraft, suivant l'opinion de
Bohr, toujours masqué par l'incertitude du moment orbital.

Imaginons un écran percé d'une ouverture rectangulaire de
c8tés Ax et Ay. Sur cet écran tombe un faisceau d'électrons se
propageant suivant la normale & l'écran (axe oz). Le train d'on~
des transmis a pour dimensions latéralesAx etAy qui sont 1les
incertitudes sur les coordonnées x et y du corpuscule aprds le
passage de 1l'écran. Les incertitudes sur les composantes p, et
p, de la quantité de mouvement sont donec :

h h
A >
‘ Px Ax Ay
Le moment orbital de 1'électron autour de oz a pour expression :

MZ = Xpy - ypx
I1 y a donc une incertitude dont la valeur est comprise entre O
et

- e ]

AM, = Ax- ’Apy| +Ay - |Apx

d'ou

[Ax]?+ [Ay]?
AM, > h (R AL _p (LI

Comme (Ax-Ay)?=(Ax)? +{Ay)*- 2Ax-Ay » 0, on en déduit AM, > 2h
et a fortiori
h
M,y —
AM, > yy

On voit que l'incertitude sur M, est supérieure A%, c'est &

dire & la valeur du spin, ce qui rend impossible de reconnaftre
quelle est, dans le moment cinétique total, la part du spin.

7. CONCLUSION. - Il ne semble donc pas qu'il y ait une véritable
impossibilité de principe de mettre en évidence la valeur du mo-
ment magnétique propre pour des particules de Dirac animées
d'une vitesse voisine de ¢; Néanmuins pour les électrons il sub-
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siste une impossibilité pratique. Pour des particules beaucoup
plus 1égdres (électrinos de J. Thibaud), il pourrait ne plus en
8tre de méme pour v c.

Mais M. Pauli a donné une autre démonstration de 1l'impossi-
bilité de mettre en évidence le moment magnétique, démonstration
d'un genre tout différent car elle wutilise non plus 1les rela-
tions d'incertitudes, mais le passage & l'approximation de 1l'op~-
tique géométrique en théorie de Dirac. Nous allons étudier cette
nouvelle démonstration et pour cela rappeler d'abord comment
s'opdre en Mécanique ondulatoire relativiste le passage & l'ap-

proximation de 1l'optique géométrique.



CHAPITRE X

PASSAGE A L'APPROXIMATION DE L'OPTIQUE
GEOMETRIQUE EN MECANIQUE ONDULATOIRE
RELATIVISTE

I. LAPPROXIMATION DE L’OPTIQUE GEOMETRIQUE

En Mécanique ondulatoire & une fonction d'onde, 1'équation
d'onde est :

ho1 9 € )2_ __h 3 _ & j m 2
[(ZRL c ot ¢ v X,Ey,z( 20l 0x c _AX> Y =mictd

qui en l'absence de champ se réduit a
2, 2
1 0 _ 4n m2ct

T c? atz n?
Le(b étant une fonction complexe, nous pouvons poser :
2ni @ (x,y,z,t) Z?i 8 (x,y,z.t)
d=alx,y,z,t)e vt ~a(x,y,z,t) e

a étant 1'argument etZTHP la phase; et d'autre part : S==r1?

Si nous substituons cette forme dans 1'équation des ondes,
nous obtenons une équation complexe ol, aprds ‘suppression du
Znig
facteur commun e , nous pouvons séparer les termes réels et
imaginaires. Ceci nous donne :
2z

(X,a) (LE—EV )Z—X§Z(_a§_+£ AX) __hz_. _Q_a =m02c2 (J)

c ot ¢ Ox c 4n* a
1 9 2 /1 9S £ . di 2 eV
xp) L3 (?3{‘?\')} div [a (grad 5+ & Aﬂ_o (c)

L'équation (X,b) exprime rigoureusement la conservation du nom-
bre des particules, car en Mécanique ondulatoire relativiste &
une fonction d'onde les composantes du quadrivecteur densgité-
- flux sont données par : a0 <P
h Yo 9 Y ]

(d) at q)at) c? ¢

P 4nim,c? Mo

Tc‘z h (L’JWL‘}‘—L‘)*g—r‘a—a q)>—m€°(;_A.q)q)*

dnim,
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ce qui se peut éerire :

i 19S5 & - — —-
P=me oS -2V s F=-S(greEse R
ouenc'posant: °
188 _¢€  _ : _83 _ &, _

c 3t o V=mn, ; » < Ab=mn,,. ...
. 2 . F _ a?® —=
P“moc a‘mn, ; f = mo T

et 1'équation (X,b) qu'on peut écrire :

% ~§T (az n4)+ div(azﬁ') =0

est équivalente & —%E—+div f=0 et exprime bien la conservation

de la probabilité de présence (ou du nombre des corpuscules dans
le cas statistique). :

Revenons & 1'équation (X,a) que l'on peut écrire :

2 h’

(X,c) nfont o i Ha gz
Elle lie les variations de l'amplitude a & celle de la phase S.
On dit que l'approximation de l'optique géométrigque est valable
lorsque, dans cette équation, on peut négliger les termes en hZ.
On démontre que cette condition est réalisée quand les condi-
tiongs de propagation sont felles que 1l'amplitude varie peu &
_1téchelle de la longueur d'onde. On a alors :

' n; -n'=mic’
et cette relation est celle qui existe en Mécanique relativiste
ponctuelle, car dans cette Mécanique (Dynamique Einsteinienne)
on a

W _ 39S __mec’ = = nv_ €
— == =——+ LV ; =-grad S5 = =
c ot Vi-p? ' P 9 VI-B* s
d'ol : —
1 85 € m,C Ex mev
X,d 195 &y ML . m_ grads- &R = el
X.d) n=C g Ve P T e c Vi-F

ce qui entrafne bien :

‘ np-n®=mic?
Dans ce cas, les phases de 1'onde sont représentées par une in-
tégrale compldte de 1l'équation de Jacobi

2 . | 2

(L @é——a—\/) - (@ LB ) =m2c?
c ot c tyz \dx ¢ %

et le mouvement est défini en chaque point de l'espace-temps par

les formules (X,d) qui donnent n, et W en fonction de S(x,y,z,t)

et deV (x,y,z,ts et A(x,y,z,t) supposées conmnues.

Du point de vue ondulatoire de la Mécanique ondulatoire, on
peut se représenter ce qui se passe de la fagon suivante. Les
gonditions de propagation varient trds peu & 1l'échelle de la
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longueur d'onde, on peut considérer des régions qui soient treés
grandes par rapport & la longueur d'onde et & 1l'intérieur des-
quelles les potentiels V et A varient trés peu. Dans une telle
région peut exister un groupe d'ondes de dimensions trés grandes _
par rapport & la longueur d'onde et cependant presque monochro- _ ;
matique de fréquencev 85 ih et de longueur d'onde7\_1__h.dsl |
Les quantités n, et 7 sont définies pour ce groupe d'onéés par
les formules

bt =1—a—s—§v ™ ——gradS—g A

avec les valeurs locales presque constantes de V et 4. L'équa-
‘tion -—B+div £ =0 _montre alors que le groupe d'ondes se déplace
avec la vitesse 'g égale &

MoV
%c=—1:ﬁ——c=v
3 myC
Vi-pe

On a donc affaire & un groupe d'ondes ou globule de probabilité
qui glisse le long d'une des trajectoires } prévues par la Mécani-
que ponctuelle classique avec la vitesse ¥, et ainsi est effec-
tué & l'approximation de l'optique géométrique le passage de la
Mécanique ondulatoire & la Mécanigue ponctuelle.

En somme, 1'optique géométrlque et par suite 1la Mécanique
ponctuelle sont valables dés qu'on peut obtenir une équation de
Jacobi en négligeant des termes de l'ordre de h?, 1'équation de
continuité prouvant alors gque l'on peut considerer des groupes
d'ondes ge déplagant le long d'une des trajectoires de la Méca-
nique ponctuelle avec la vitesse correspondante.

2. LA METHODE W. K. B. D’APPROXIMATIONS SUCCESSIVES

La méthode Wentzel - Kramers - Brillouin procéde par appro-
ximations successives par rapport & la quantité trés petite —iLf

ni
Pour cela on part de 1l'un des développements suivants
Zm n ) .
Goe b (e g 8o v () 80 ]
ou
ans

h h \" ] hooe
=} a_ + a, +..,+ a_.+...] €
¢ [° 2ni ! (2m) n
entre lesquels existent les relations :

: S
s i
a,= ¢ 5 a1=Sze1 3 a —-(——22"'83)881;...
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Lt'approximation d'ordre zéro (en 7%) consistera 4 ne garder que

les termes a, (ou S, ). L'approximation d'ordre 1 & garder a, et
-a, (ou s, et S,)peens
201 9
Dans la méthode précédente, nous éerivionst) =ae n avec
a et S (module et argument de ).Ici (cette remarque est impor-

tante pour la suite), les a,, @, ,... sont moins bien définis.

Si par exemple on a a,=o.e'’ (o, et p, module et argument
de a;) on pourra faire rentrer P, dans le facteur exponentiel en

posant S=5 + —h— p, et poser : .
b= [ e ( h_ )nan ei(ﬁn_poha.] e lﬁLs

2ni
et 11 y aura ainsi une certaine indétermination dans la forme du

développement surtout si [‘.\0 est assez grand pour que Z_rr)nf B, soit

h, . Autrement
2ni

dit 81 8,=5] + i 8] a sa partie imaginaire S| assez grande pour

d'un ordre de grandeur intermédiaire entre 1 et

que -5, ait un ordre de grandeur intermédiaire entre 1 et 5 — h =

2nt 27l
on ne salt pas bien s'il faut écrire :
i, = € 5
ou :
S; + LS','
a, =€
ou méme S’ ing?
+ b
1
a,=e | k
avec
0« M < 1

Quoi qu'il en soit et en admettant que ces indéterminations
ne soient pas g@nantes, nous allons substituer le développement
en a; dans 1l'équation de propagation et séparer les termes cor-

reaspondants aux diverses puissances de

2ni
Ltéquation d'ordre zéro en e est
{ 08, € ) (88 2 )2 2 2
- 2 TV)-
c ot C t);‘l ox; Mo ©

2ns
Ctest 1'équation de Jacobi : elle montre que Znh 2 est la phase &
1'approximation de l'optique géométrique.

Lt*équation d'ordre un en L donne :

19 i
10 [ 42 oz 2]
e [rc4 aoJ+d|v[n ao} 0
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avec :

no =1 9—S—"—EV Ti=-grad S, -—E—A
et cette équation exprime toujours la conservat;%n de la proba-
bilité de densité a’ et de vitesse ?ﬂT

1'optique géométrique.

? & l'approximation de
4

Les équations suivantes permettraient de calculer a,,a,,...
en fonction de S, et a,. Ces grandeurs doivent &tre négligeables
&4 l'approximation de l'optique géométrique : si elles ne le sont
pas, les phénoménes de diffraction apparaissent.

Les deux méthodes que nous venons d'employer pour passer &
ltapproximation de l'optique géométrique en Mécanique ondulatoi-~
re apparaissent comme simples dans la Mécanique ondulatoire non
relativiste et, comme nous venons de le voir, dans la Mécanique
ondulatoire relativiste & un{). Il en est tout autrement en
théorie de Dirac ou la question est beaucoup plus compliquée.
Nous allons 1l'étudier en envisageant successivement les deux mé-~
thodes que nous venons d'exposer.

3. PASSAGE A L'OPTIQUE GEOMETRIQUE EN THEORIE DE DIRAC

Pour effectuer le passage & 1'optique géométrigque, mnous
emploierons d'abord la m&me méthode qu'en Mécanique ondulatoire
- relativiste. :

Nous partons des équations du second ordre de la théorie de.
Dirac qui sont :

[P EP mc+-€—2—(01h+onh+onh>—8 h (aaH+cxonH+aonH>]d)k=O

T oni 122!z

(k=1,2,34)

et pour passer & l'approximation de l'optique géométrique nous
poserons : 2ri

Y = 2, e M (k=1,2,34)

ol S est une fonction de phase commune aux quatre ) et rapide-
ment variable & 1'échelle de la longueur d'onde tandis que les
a, sont des amplitudes qui & l'approximation de 1l'optique géomé-
trique devront @&tre lentement variables & cette échelle. Nous
allons substituer cette forme des (b dans l'équation symbolique
du second ordre et chercher & en dédulre,par géparation des ter-
mes réels et des termes imaginaires, d'une part une équation (J)
de Jacobi, d'autre part une équation (C) de continuité. Mais,
pour pouvoir séparer avec sécurité des termes réels et des ter-
mes imaginaires purs, il faut prendre guelques précautions. Pour
obtenir cette séparation aprés introduction de la forme admise
pour les(&kdans 1téquation symbolique du second orére, nous
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appliquerons & cette équation 1l'opérateur a,, puis nous multi-
plierons par a; et nous sommerons sur k. Nous pourrons alors
géparer les termes réels des termes imaginaires et en posant :

n=13_%ty. . 5_ gad S'—EA

c 0t ¢
nous obtiendrons pour Les termes réels : -
=, h k*“[ ., 19a y daj
ni-nt- mc)Zaaa+——_E (aon———-——oca).n+
( i e e P B Sk P DI TR A VA

. 0Oa,  0Oaj 0a, Oay , 0Oa  0aj :
»+(aka46—x o aAak>nx+(a o= 3y —Ewa,la,()nf(akadﬁ——é—z—adak)nz—

h’ Ngj‘ e h ¥ . N h
e aLo Ela—l:la‘cxa)=————, -a‘( oo, +h Lo o, + ‘La'a)a—
4ﬂ22k-1(k4 k k¥4 <k c 2nika k .x 154y ey T 2 e [ Sk
-£ Ea (HLocaoc4+H o0+ H LOLG(XA)ak
c 2m k=1 zrs

Ceci devra nous donner 1'équation de Jacobi (J). .

Quant aux termes imaginaires, ils nous fournissent 1'équa-
tion (C)

1 a k=4 * H —’k:4 * kd * *
=3t (n4 :2_1 aka4ak>+d1v(n E akoc4ak) mg (akaADak—DakaAak) =0

Nous allons d'abord étudier la premidre équation. A 1l'approxima-
tion de 1l'optique géométrique, 1'onde (J se réduit & un paquet
d'ondes presque monochromatiques dans une région de champ sensi-
blement constant : elle est assimilable & une onde plane mono-
chromatique "locale"™ correspondant & une certaine vitesse pc et
l'on aura :

k-4

Zaka a, = P\H[:B

P étant la densité de probabilité et par suite :

k-4
Eak%akdr = \/1-p? carfpd-c =1

En intégrant dans D la premiére équation obtenue nous aurons
1'équation

RE-mF (a6 (ay) = mict- —— 2 N(H3). (7 F)
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et § étant respectivement le moment magnétique propre et le

moment électrique propre de la particule. Par définition on a :
ka ’

K E (a;ocAD ak—Da;uAak)
& (o) = - g Vip:
47, 10a, 134 . 0a, Oaj
£ [l LT g g (e gy Gloua)

h
F =
@) =5~ | a, h—1_ﬁg ‘ .
(et T - Frnadn e, - G aals, |
AR

af oy k-2 ot4ak)nj

Nous allons supposer qu'a l'approximation de 1l'optique géométri-
que F (a,) et G (a,) sont négligeables. Cela paratt trds vrai-
gemblable pour G (a,) qui est de l'ordre de h* : c'est moins évi-
dent pour-F (a,) qui est de l'ordre de h. Nous reviendrons plus
tard sur ces hypothises pour les justifier; pour 1'instant nous
‘les admettrons. On obtient alors 1l'équation de Jacobi :
ni-nf=mlc’+2qUm, :
avec les définitions :
Ulves

U est 1l'énergie potentielle due & l'action du champ sur les mo-
ments propres.

. U=-(.H)-(Fn)

En écrivant le second membre de 1l'équation de Jacobi sous
la forme : s 2 2 2
my ¢ = m;Sc"+2m U
nous définissons une masse propre variable qui est précisément
analogue & celle que M. Weyssenhoff avait introduite dans sa dy-
namique de la particule & spin. Nous devions nous attendre &
cette coIncidence. La masse m, est lentement variable & 1'échel-

le de la longueur d‘'onde.

Sur la formule précédente, on peut remarquer quen U est un
invarient relativiste. Ceci pourrait surprendre car on serait
tenté de donner & U la variante relativiste d'une énergie et
alors U ne serait pas un invariant. Mais, en réalité, U bien
qulayant les dimensions physiques d'une énergie, n'en a pas la
variance relativiste, En effet, si F, et m, désignent respec-
tivement les composantes du tenseur "champ électromagnétique®
et celles du tenseur "densités de moment magnétique et de mo-
ment électrique propres" on a :

1 i 1 ik 7 Yo
U=—E./§ Fiem™dz --= ﬁ Fie mYdt \T-P2 =U\1-p =5

o*
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U, étaﬁt la valeur de U dans le systime propre. Donc le produit
nWi=U, est bien un invariant. ,

I1 paratt +tres probable que pour obtenir une Mécanique
ponctuelle de la particule & spin, 1l faut supposer que 2m,U,
est trds petit devant m2c? c'est & dire que 1l'énergie propre U,
due & l'action du champ sur les moments propres est trés petite
devant 1l'énergie de masse m,c’. Nous ferons donc 1'hypothdse que

U~ mU
meC?  myc2z K

est trés petit devant 1'unité, sans supposer cependant que K

soit absolument négligeable. Nous pourrons alors poser approxi-

mativement :

Ug 2 nuU 2
»2 2 [¢]
m,c’ « moc+—c—>=(moc+ C)
d'ol :
U nyu
- —°
mo_'mo+ Cz—mo+ c?

I1 sera alors naturel de chercher & développer la Mécanique
ponctuelle de 1l'électron & spin en posant comme fonction de

Lagrange :
L=-mc?\1-B* -EV + —E—(VC&')

c'east & dire en remplagant m, par m} dans l'expression usuelle
de la fonction de Lagrange en Dynamique relativiste de 1'élec-
tren. On pourra édcrire :

L= —m,c? 1= -U-EV+ S (V F)

expression qui est bien telle quefL dt soit un invariant rela-
tiviste puisque :

rs

Uydt &3 U

Juo = fus=f(HEE W oor)

est visiblement invariant, les intégrales étant prises 1le long
de la ligne d'Univers de la particule.

Les formules classiques de Dynamique analytique p; = a,L

v

nous donnent :

— crad S my v € N
= —gra = + —
e ViE e
d'ou : . . . .
HZ— _p,_E—A~= m;v=mov . UOV =E—(3)+—-U—°V—-
c VAR VAR S R VA ct\1-p?
Quant & l'énergie, elle est donnée par la formule :
a3 . oL 1o
We —— =X gom-l=es L gy

ot 04 — Vi-p?
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dont on déduit :
195 € m,cC _Mmee U, Jo

TR T VIR VIR VR eV

cnld= \/n;—csz et n— \/T—V désignant respectivement 1'énergie et
la quantité de mouvement dfune particule de masse propre m, et
de vitesse V en dehors de tout champ.

On vérifie immédiatement l'équation de Jacobi (J) car

2 2 2 2 2 2 2
non=mc e micttZmU, = moct+ 2 m,mU

avec l'hypothése K « 1,

Si maintenant nous écrivons les équations de Lagrange :

d oL _ aL

dt aqL aqu
avec la forme admise pour L, nous trouvons :

0 » — ,

—a—f: =f-grad U *
ol f est la force de Lorentz et - grad U la force exercée par le
gradient du champ électromagnétique sur les moments propres.

En comparant la valeur de la force - grad U avec 1l'incerti-
tude sur la force laplacienne contenue dans T dans le cas envi-
sagé au début du chapitre IX, on retrouverait aisément la formu-
le Ax< —mh—v—et les conségquences gue nous en avong tirées (impos-

8ibilité de mettre en évidence le moment magnétique propre sauf
8l veoc).

Revenons maintenant & l'équation (C)

9 ked ket hokd .
O—E&(”AE akoc4ak>+d|v J'tk2=1akon4'c\k +2_mE aka4D ak-l:lakog‘ak

Pour voir qu'elle représente l'équation de continuité, nous fe-
rons d'abord un raisonnement peu rigoureux ::nous négligerons le
dernier terme et nous confondrons n, et i avec ny et 1™, ce

qui nous donnera :
10 ([ mc
5 PV <0

¢ ot \/1—[52. \V1-p?
ou aprés division par la cgnstante m, :
P -
——+div 0
5 Fdv (pY)

ce qui est bien 1' equatlon de contlnulté.

P\/—p> dlv(

m,c m,v
Mais en réalité n,= = et i1l faut tenir compte du
) '4 V»‘_pz 4 ‘/1_[32
dernier terme, d'ol
y . — k'4 » x
—t<Pmo>+dw(pvmo)+ mg (akaADak—DakocAak)=O
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On peut écrire :

-, 0
%(Pm;)+div(f}vmo)=m [af+d|v(P )J P t

+V grad m) est la dérivée totale de m! le long de la

adm _am:

trajectoire. L'équation de conﬁ}nuité sera donc vérifide a1

1 dU, dn\ h %4

—=-—X lala,0da,-0Oa%a,a

@ dt dt zmu(“ D, a)
Le dernier terme de 1l'équation (C) qui au premier abord peut pa~-
raltre un terme parasite sert en réalité & compenser 1les varia-
tions de m! le long de la trajectoire. Nous retrouverons plus
loin une démonstration de 1'équation de continuité.

4. LA METHODE W. K. B. EN THEORIE DE DIRAC

Nous avons opéré le passage au cas de l'optique géométrique
en partant de 1'équation du second ordre. On peut aussi partir
des équations du premier ordre en appliquant la méthode K.W.B.
Cl'eat ce qu'a fait M. Paull dans un trés intéressant mémoire
(Helvetica physica acta S. 1932 p. 179) dont nous n'adopterons
pas cependant toutes les conclusions. Nous allons reproduire son
raisonnement.

Nous partons des équations du premier ordre de Dirac

i ii__e_ =3 [ h _a__g . .
(Zm cot ¢ )q)k+ x5 (—qi 2ni Ox, ¢ AL>¢k_m°Ca4¢k (k _1’2’3’4)
Avec un léger changement de notations, écrivons avec M. Pauli le
développement suivant des ) : :

s h h 5
h o 1 n °
‘J)k = bke = [b” o b()+ “’(2 l) b(k)*..}e h

ol au second membre b, est développé suivant les pulssances de
la quantité trés petite 5%7 (conformément aux principes de la

i
méthode K.W.B.) et ou S, désigne la fonction de Jacobi pour une
particule sans spin soumise au champ électromagnétique considéré
ctest-a-dire la fonction

o E X o3 o e
So=/[(ny+_c_v) cdt - & (nefn)) dxi
1'intégrale étant prise le long du rayon-trajectoire. On doit
bien noter que dans la formule précédente, c'est n,/” et A ,et
non n, et © qui figurent au second membre. On doit noter aussi
que les grandeurs

J'I(°)=-1— %ﬂ_% V(x,y,z,t) : J’l(‘-:) =_2_i° - %Ai(x'Y’Z't)
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sont des fonctions bien définies de x,y,z,t, lentement variables
& grande échelle dans le champ électromagnétique quand 1l'appro-
ximation de 1l'optique géométrique est valable. Ainsi, dans un
champ permanent, selon le point de vue de M. Pauli, on aurait :
9. Myc?
mga’_ﬁpfw_ev (x,y,2,t)
W étant la valeur constante de l'énergie.

En substituant dans les équations de Dirac la forme admime
pour les th, on obtient en faisant un calcul d'approximations

successives par rapport aux puissances deTm les équations

i=3 q
o) (@) [1':5,°’+LZ=; a, - a, mccj b¥=0
,e

K=

i=3 (© i3 (o)
(b) [nmi; o, M- o, moc] bm__(iﬂ&_” a.ﬂ)

La premidre équation étant homogdéne n'admet de solutions non
identiquement nulles que si le déterminant est nul et cette con-
dition est dquivalente & la relation :

2 gL m2c?

4 - o

qui est bien vérifide. I1 résulte alors de la théorie bien con=-
nue de 1l'onde plane monochromatique en théorie de Dirac que les
b{® sont les amplitudes des § dans le mouvement rectiligne uni-
forme correspondant & 1'énerg§.e c nﬁ’) et & la quantité de mouve-
ment ', Mais comme il est bien connu, & chaque état de mouve-
ment rectiligne et uniforme, correspondent deux états possiblea
- pour le spin. Si nous _désignons par A, et B, les amplitudes
(fonctions de M@ et de W et par suite lentement variables &
grande échelle) relatives aux deux &tats de spin et dont nous
connaissons les expressions, mous aurons :

b~ C, (x,y,z,t) A (T, T@) + C,(x,y,2,t) B, (Tt(f’,?f("))

avec
(e (©)_: cr(0)
TUo—1Tt
A=_ L M A=—x—""00y - A=1 N A=O
T nPrm,c = aP+mec > 1T
©, : o) (0)
Bi.;_nx_o)*'_bﬁx_ ; B,= - ; B,=0; B=1
e+ m,C '+ m,C

C, et C, sont lentement variables & grande échelle.

On voit alors que les équations en b;” , qQui sont linéaires
et ont un dé)teminant nul, ne peuvent admettre de solutions non
nulles en bl que si les conditions suivantes sont réalisées :

k=4 o 1 ab(o) L=3 ab(a) k= {1 Ob(o) k= ab(o)

- Yo% Pk =0 — Y _ . P .
= A“(c At T & axt)‘O kﬁﬂ Ble ot g““ =0
Ce sont les "conditiona de Pauli". Il est facile, é&tant données
les expressions ci-dessus des A, et B, de les écrire explicite-
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‘ment par exemple dans le cas ol ﬂ‘” reste constant. On <t{rouve
ainsi :

RO 2[R0l 20 s Sy 20 9 90T, iy (35 00)

c ot a dy 9z ox oy
@ @) 9C, ) (Or$ Ime\ . IRY o . (9nl Inl
(nx LR ) 3= C,div i+ C, |2 3 Dy —LC,_,:(Tyl 57 +L(TZ-5—-E(L)]

et :

ol 0C, @98, 1wdCe, 10 9G], @ (9C,, | AC,
£)(b @1 (o @ % RO
(X.£)(b) 2[" cat T ax Ty gy t T az]+ (bx y)

o o) 0C, . anm dn“j e [(or? ony) Inf On“v '
(2 N2Y% __ 0odivTe—iC
(n Lm ) Codiv -t (ax~ ay LC[\ay oz > L(az ox ]

11 est important de remarquer que le premier crochet dans ces

deux équations peut s'écrirem o€ dC (avec 1 =1,2), 1a dérivée
—— étant prise en suivant le mouvement de la particule défini

dt
par le vecteur R©.

Les équations de condition de Pauli sont deux équations aux
dérivées partielles du premier ordre qui déterminent 1les fonc-
tions C, (x,y,z,t) et C, (x,y,z,t) quand on connait les vitesses
initiales. ILa variation 4 grande échelle des A, et des B, par
1'intermédiaire de =l et de W™ et celle des fonctions C, et c,
expriment 1la fagon dont la portion d'onde monochromatique qui
représente & petite échelle le mouvement du paquet d'ondes se
transforme sous l'influence du champ électromagnétique quand le
paquet d*ondes progresse.

. Multiplions les équations  de condition de Pauli par Cl et
C, respectivement et les équations conjuguées par C, et C, res-
pectivement et ajoutons ; nous obtenons en tenant compte de
1lthermiticité des o :

1 9 %‘ @* | (o} =2 %Z'f 0)* @
- 3t o b, bk-m—&lwbk o bl=0

et comme l'on a :

%= s — 0) % — o
p=2 by fopi- b (—cet) bl

{du moins & l'approximation d'ordre zéro), on obtient 1l'équation

de continuité
3§+div (pu)=0

On pourrait, bien entendu( faire d'une manidre analogue 1lt*étude
de la détermination des b”, bY , ...

Comme les A, et les B, ne dépendent aucunement de 1l'action
des champs électromagnéthues sur les moments propres de 1l'élec-
tron, 11 en est de méme pour les b’ (c'est 12 un point que nous
aurons & examiner de plus prs). Done ltapproximation d'ordre
zéro ne fait aucunement intervenir l'action du champ sur les mo-
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ments propres et l'équation de continuité obtenue avec les
expressions données pour p et ﬁﬁ montre qu'a cette approxima-
tion le mouvement est le méme que si les moments propres n'exis-
taient pas. M. Pauli en conclut que, quand la Mécanique ponc-
tuelle est valable pour un électron de Dirac, elle est la méme
que si 1'électron n'avait pas de spin. Pour traouver les effets
du spin appréciables, il faut &tre obligé de tenir compte des bl
Mais il est bien commu que, si 1'on est obligé de tenir compte
des b, , les effets de diffraction apparaissent et alors la Mé-
canique ponctuelle cesse d'&tre valable. M. Pauli pense donc
qu'il est impossible de mettre en évidence l'existence du moment
magnétique propre d'un électron par des expériences ol les con-
ceptions de la Mécanique ponctuelle sont valables, c'est & dire

ol 1'on peut attribuer aux électrons des trajectoires bien défi-
nies.

La conclusion & lagquelle nous parvenons ainsi avec M. Pauli
et suivant laquelle 1la Mécanique ponctuelle d'un électron de
Dirac est identique & la Mécanique ponctuelle d'un électron sans
spin, est évidemment en contradiction compldte avec les iddes
que nous avions développées plus haut et avec la théorie de
M. Weyssenhoff. Nous devons donc soumettre la question & un exa-
men plus approfondi.

5. APPLICATION DU MODE DE RAISONNEMENT DE PAULI
QUAND ON PART DE LA MECANIQUE PONCTUELLE
DE WEYSSENHOFF

Au cours de ses raisonnements, M. Pauli, dans son calcul
d'approximations, est parti de la Mécanique ponctuelie d'un
électron sans spin. A notre point de vue, 1l est naturel de re-
prendre le méme mode de raisonnement en partant de la Mécanique
ponctuelle de Weyssenhoff que nous avons retrouvée plus haut.
Nous allons donc envisager au départ un ensemble de trajectoires
de la m8me classe (c'est & dire correspondant & la méme fonction
de Jacobi) dans le cadre de 1la Mécanique ponctuelle de
Weyssenhoff : bien entendu, ces trajectoires sont distinctes de
celles qu'envisage le raisonnement de M. Pauli puisqu'elles su-
bissent 1l'influence de l'action des champs &lectromagnétiques
sur les moments propres. L'onde ¥ associde & la classe de tra-
jectolres considérée s'écrira sous la forme :

2mi 2L
&b g h h 2 vy
h V_|5@ o, (h V¥ @ W
Pu=aye - [a K tom Bk +(2m) qk +"v']e

S étant la fonction de Jacobi définie par :

s+ [(v"l—pf‘”w—“g)dtf(;;—ﬁﬁi/\“— Wv_ig,)ax.b]

1'intégrale étant prise en suivant le mouvement.
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Posons : .
5’/[’“1 ev)de-3 (Mol , €
= 0 + — ——A; .
° (W a2 (VT?;ST+C o]
S} ne coIncide pas avec le S, de Pauli parce que l'intégrale est

prise en suivant un mouvement différent de celui qu'envisage
M. Pauli. En posant encore :

(X.9) i _gW o RS vt (j=0.12.)

nous pourrons décrire le développemant des q)k sous une forme ana-
logue & celle employée par M, Pauli :

o), h ) [ h \2 @ 2
510z o g 0o
Substituons cette forme dans les équations de Dirac :

h 0 & h 9 & 2
(m 28 9 & [ o gm 3o A Be= o mc g,

© 1 38, _m,c . © 35, € p _ myy .
Ty 5t ev__a_w R T AL_—LI-—W (i=1.23)
Les 7t(” et T ainsi définis ne seront pas les mémes que dans le
raisonnement de M. Pauli puisqu'ils correspondent & la Mécanique
ponctuelle de Weyssenhoff et non & celle de 1'électron sans spin
mais on aura toujours :

2 2
=m0 = m2 c?

Le résultat de la substitution des ¢, dans les équations de
Dirac. nous permettra toujours d'écrire {a suite des équations
d'approximations successives

(@) [7‘(:) + ?13 o, 28—, mw] b’f’)= 0
(X.h)

@, § () W_ (135 2 \.0
(b) [7‘(4 +2, o T —o:.4m°c] b’ =-(—c— ‘a_t—'»zd “Lﬁ;)bk
Nous retrouvons donc pour les b” les mémes équations que nous
avions trouvées pour les bY’ dans le raisonnement de M. Pauli.

Les équations (X,h)-(a) n'admettent de solutions non iden-
tiquement nulles que si leur déterminant est nul, ce gui est vé-
rifié car ce déterminant est égal A ni mr_m?c?, Nous obitenons
alors les deux solutions indépendantes 3 . ’

. (o) (0), i (o)
Ame T2’ . A__THIRY LA 1. A _D
a0 m,e T % mee TP v Te
et :
(©) i gz lo} (o)
B.=_BRx *tTy . B _ LY - B.-0 : B.=1
T A% emee 7 2 mPam,e T3 r T

Mais 11 est essentiel de remarquer que les fonctions A, (n(?,R*)
et B, (r{, ), bien qu'ayant les mémes formes, ne varient pas
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ici- de la méme fagon en x,y,z,t que dans le raisonnement de
M. Pauli. En effet nous avons ieci :

©_1 0% ey of WL Tad S EF
My = at° EV et W'&—grad S, A

et non :

. 1 3§, _ FO__Frad S~ %
M= 5t &V et A=—grad S, — A
et les fonctiong S, et S! sont définies différemment. En parti-
culier, dans le cas d'un champ permanent ol l'énergie garde une
valeur constante W, la quantité cn() sera donnde non par

W-EV (x,y,2) comme dans le cas de Pauli, mais par la formule :

c nO_W-gV(x,y,z)-n?U (x,y,2)
de sorte qu'ici l'existence des moments propres se fait déija

N

gsentir & 1l'approximation d'ordre zéro.

Si maintenant nous posons encore comme dans le raisonnement
de M. Pauli

bL(°)= Cy(x,y,2,t) A (V)4 C, (x,y,2,t) By (2, T)
nous retrouverons, pour déterminer les fonctions C, et C, les
"conditions de Pauli"

k=4 1(0) i=3 (o) kad 1{0) i=3 1(0
«(1 3 e g . o1 90 =2 3pe)
k};A*<? st =m0 5 & BTG E )0

dont nous avons donné plus haut les formes explicites.

i v

Le calcul de Pauli nous montre qu'ici encore nous avons
1téquation de continuité

0P . /=
=+ div (pu )= G
‘81 nous posons & l'approximation d'ordre zéro :
: k=4 " e U T N
p=2 b b 5 opTZ b E e b

et 1l'on trouve augsi :

k=t

£ b o, b0 pViF

La relation (X,g) qui définit les b!® en fonction des a{® nous
fournit donc :

K=t -
Ex (@, — (V% == _ (0}
p:é a, 8, f=pU=-2, 3, cd ay

et

k=4
ol o, al = pVI-pT
La dernidre formule justifie a posteriori la relation que nous
avions admise en établissant l'équation de Jacobi tandis que 1la
validité de 1l'équation de continuité avec 1les définitions .i-
dessus de p et de f semble indiquer que le mouvement s'opdre, du
moins & l'approximation d'ordre zéro, suivant les lois de la Mé-
canique ponctuelle de Weyssenhoff. Comme cette Mécanique ponc-—

S
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tuelle contient l'action des champs électromagnétiques sur les
moments propres, nous sommes en contradiction complete avec les
conclusions de M. Pauli. La question qui se pose est donc de sa-
voir si c'est 1le raisonnement que nous venons de donner ou le
raisonnement de M. Pauli qui conduit sur ce point & une conclu~
sion exacte. Pour trancher cette difficile question, on pourrait
essayer d'abord de faire des calculs complets dans des cas dé-~
terminés. Malheureusement ces calculs sont en général extréme~
ment difficiles. Nous allons, pour nous orienter, faire le cal~
cul dans un cas trés simple, ce qui nous réviélera déja un cer-
tain nombre de circonstances intéressantes.

é. CALCUL DES FONCTIONS C, ET C, DANS LE CAS DU MOUVEMENT
D'UN ELECTRON DANS LA DIRECTION D'UN CHAMP MAGNETIQUE
PERMANENT ET HOMOGENE

Nous prendrons 1la direction du champ constant H comme axe
des z et nous supposerons que le mouvement de 1'électron s'opare
suivant cet axe.

Nous ferons 1le calcul simultanément dans 1'hypothése de
M., Pauli (mécanique ponctuelle sans spin) et avec la mécanique
ponctuelle de Weyssenhoff.

Les conditions de Pauli déterminant C, et C, sont les sui~-
vantes :

@1 9C @0 3C, @ 9C _C,_] (o)<ac1_-§&)_(n(o)_<ﬂ(o)> aC,

2["“cat"“XaX+ v 3y TT= 9l e Gk Yoy ST Y ok

=-C, div T+ iC, (rot ®b ’)Z_LCZ [(m(°))x+ L (r?f?t“’)y]

et :
w)1 3C, , (0 3C,, o aC w)acq ) (9C, , ; 8C, (o) e\ 9C,
2[ . at+n ax+“’5j+“zaz + T, %X+Lay)(n +Ln)

=~C, div 7! -LC(mtﬂMLda[“dﬂm%+L0&ﬂb%]
Or ici 1l'on peut poser :
H. . H, .
sz_i.y 9, A=—2‘X 9 Az:O
ce qui donne :
H,=0 ; Hy=0 H,=H
Les moments de Lagrange ont pour valeurs :

£ EH g€ EH
Px=—ﬂx_‘f?Ax:Tt 2 Y Py TT.+ Ay‘—' T(’+—'2—X ] PZ=T[
Dans la théorie de Pauli :
) ﬂxzﬁio), .....
Avec la Mécanique ponctuelle de Weyssenhoff, on a :
= = U ¥
TR,
L
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et ™ ne diffdre de ®* que par un terme de 1l'ordre de U, que nous
négligerons parce que dans le résultat final il ne nous donne-
rait en supplément qu'un terme en ua et, dans la mécanique ponc-
tuelle que nous adoptons, nous négligeons les termes en U2 . Nous
allons donc confondre™ avec T® , R ayant d'ailleurs des va-
leurs différentes dans la théorie de Pauli et dans la nbire.

Or d'aprés la théorie de Jacobi, D est le gradient (changé
de signe) de la fonction de Jacobi (S, pour Pauli, S pour nous),
d'ol :

rot p=0
On en tire :
, oarl)_onld . and axd . 3nQ ond €
9z  Ox ° dz ~ 9y ' 9y ~ 9dx c
L'électron décrivant par hypothése l'axe des z, les trajectoires
de la méme "classe" sont-des hélices circulaires axées sur oz.

La projection de R sur le plan xoy a pour longueurzic- Hr et est
normale au rayon vecteur T dans ce plan. On a donp :

e €Y € oy pos €y LX)
g ZcHrn 5e NEIAY 2CHr'( r') 2CHx
d'ol :
anP aml £ an‘,°’+an‘;”=0 . ongQ ond_,
Ix dy ¢ 1 ox oy P oBx ay
© »
Comme —da’;—z=vz %pZZ:O » On a aussi a’;* =0 et finalement
divﬁ(o)zo

Bref les équations de Pauli se réduisent dans le cas C,=0
ou C,= 0 respectivement & :

a1 3C ¢ aC o & .
2[111’? —at2+n‘;”a~;+n§°’ﬂ£ + ¥ —621]= + L%H ¢ ; (=0

@1 3C , @0C _@dC 0 dC] _iEup . (o
2[“"0 gt Tk gy T 6y+nz az]_ LCHC1 v 6=0
) Dans le second cas, essayons la solution :

C1=D1e%fUdt___D1eAhﬂj‘f—g}n(cidt..v,dx—vjdy—vzdz) ; C2=O .

On trouve :

Or pour le mouvement rectiligne uniforme de la particule le long
de oz, nous avons d'aprés les formules (VI,d)
= de=/ EN_(jcf|c, ) Emee
mzﬁ}ll 4-Tl'm°C(| 1‘ ICzl) A dz
avec A=mt{+m,c , ce qui donne ici :
- _¢&h 2 2m,¢
JTCZ_thOCIC,I A v
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Or C, est normé par la relation (VI, c)

2nl 2 2@l
/vpdx/(lcmm) dr=c[" EEEy-

done : m gh m,C
2= Zrmge ﬂ?

"La relation :

donne :
Eh \-g®
2 4mmc -p
et 11 y a bien accord.
Nous avons donc obtenu la solution C,=D,e " h 28/ var ¢, = 0

qui correspond & l'orientation paralldle du champ " et du moment
magnétique JI (les composantes M, et N, étant nulles comme on le
vérifie aisément).

On trouverait de méme la solution C,=0; C,=D, e"“'_fudt
qui correspond & une orientation antlparalléle de H et deJR avec

3Kt~—4nn1cv BZ.D,et D, sont des constantes si H est constant

dans l'espace : elles varient lentement si H est lentement va-
riable & grande échelle dans l'espace.

Les solutions obtenues sont rigoureuses dans la théorie de
Pauli. Elles sont exactes aux termes en U* prés dans notre théo-
rie, mais ces termes sont supposés négligeables.

Nous remarquerons que notre résultat prouve que, méme en
théorie de Pauli, 1l1l'action du champ &lectromagnétique sur les
moments propres interv1ent dang 1! express1on des fonctions C, et
C,, donc dans celles des b", c'est &4 dire & l'approxlmatlon
d'ordre zéro. Cela vient de ce qu'en théorie de Dirac, d&s qu'on
introduit dans les équations de Dirac les potentiels électroma-
gnétiques, on introduit par 14 méme 1l'action du champ sur les
moments propres. M&me en prenant pour fonction de Jacobi 1la
fonction S, de l'électron sans spin, on voit apparaitre cette
action. Mals les termes en U apparaissant dans Jl'expression
d'une exponentielle 1magina1re s'éliminent quand on forme les
grandeurs quadratiques & signification physique tels que P et f
et & ce point de vue le raisonnement de Pauli n'en paralt pas
ébranlé.

Dans la théorie de Pauli, le résultat obtenu donne :
2ni (s 4 /U dt)
(‘Pk=ck "

dans la n8tre :
2mig

2ni (g
¢, = C.e T(SO*/Udt)z C,e n
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mais la vitesse v=Bc qui figure dans la fonction de phase n'est
pas la m8me. La fonction de phase peut s'éerire dans les deux
cas ¢

2

C
mais dans le cas de Pauli W=-—"— tandis que dans notre cas
. ) Vi-pE q
o : )
na _ mgc? U _ mec*, €Eh 1

CVISET VISRE VIR ammc VIRR

C'est ici, semble-t-il, qu'apparaft un premier avantage de notre
point de vue sur celui de Pauli. En effet, 1la Mécanique ponec-~
tuelle de Weyssenhoff fait correspondre +tout naturellement 1la
vitesse v qu'elle admet & la fonction de Jacobi S:SL+L/1Jdt com-~
me on le voit en se reportant aux formules que nous avons déve-
loppées. On peut encovre dire que la vitesse v est la "vitesse de
groupe® correspondant & la phase définie par S. Au contraire
dans la conception de Pauli, la vitesse v que l'on adopte cor-
respond & la fonction de Jacobi S, de la particule sans spin et

non .2 la fonction Soﬁ/“Udt qui figure dans l'exposant de l'ex-
ponentielle des ¢, : cette vitesse v n'est donc pas égale & 1la
®"yitesse de groupe" correspondant & la phase complexe Sot/”Udt
des ¢,.

I1 semble qu'au point de vue physique la Mécanique de Fauli
et la n8tre différent profondément. Supposons gque le long de
ltaxe oz, dans la région (1) qui s'étend dez=-cocdz-=a le
champ H soit nul; puis dans la région (2) qui va de z=a a8 z=b,
il augmente de O & H trés lentement & grande échelle; enfin dans
la région (3) c'est & dire pour z>b le champ magnétique & la va-
leur constante H. Dans la premi&re région, arrive le long de
1l'axe oz un électron représenté par un petit train d*ondes mono-
chromatiques dont le moment magnétique est soit paralldle, soit
entiparalldle & oz. L'énergie W de 1l'électron restera constante
lorsqu'il traverse la région (2) et parvient & la région (3).
D'apres la théorie de Pauli, sa vitesse (vitesse du train d‘on-
des) resterait aussi la m&me puisqu'd l'approximation de la Mé&-
canique ponctuelle l'action du champ sur le moment propre ne de-
~ vrait pas se faire sentir. A notre point de vue qui adopte la
Mécanique' ponctuelle de Weyssenhoff, la vitesse d'ensemble du
frain d'ondes varie lentement pendant la traversée de la région
(2) et prend dans la région (3) une valeur constante différente
de sa valeur initiale, cette valeur finale étant plus petite ou
plus grande que la valeur initiale selon que le moment magnéti-
que de 1l'électron est antiparalldle ou paralldle au champ. Les
prévisions des deux théories paraissent donc physiquement diffé-
rentes.

10
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7. RETOUR SUR LE PASSAGE A L'OPTIQUE GEOMETRIQUE
EN THEORIE DE DIRAC

Lorsque nous avonsg étudié, au paragraphe 3 de ce chapitre
le passage 3 l'approximation de 1'optique géométrique en théorie
de Dirac, nous avons trouvé 1l'équation rigoureuse:

Rri-n+ Fla)+G(a)=mict+2 mm U

'les a, étant les amplitudes des d:

ZﬂLS
$=ace

Les fonctions F(a,) et G(a,) ont pour expressions :
=4 k=4
: ‘/E:Z(aa-‘l—taxoca)ﬂjd‘t

J=1 k=1 a3
Flay) z};u \/—*;—
/t (a o, Ha,-Oayo,a ) dr
G(ak) 61‘(1 v1_Bz

(ou : x4_.ct,...)

Le terme G (a,) qui est de 1l'ordre de h® est certainement
négligeable quand “les conditions de 1'optique géométrique sont
vérifides. En est-il de méme de F (a ) qui, & l'approximation
d'ordre zéro dans la Mécanique ponctuelle que nous adoptons, a
pour expression :

gt ket 0 o)x
() h -/;Z:g (ai“) a4g%j gi )a a(O))Tt3V)dT
F(ak )—Z‘RL VI_@; 1

Supposons que nous ayons écrit le développement des ¢, sous la

forme : )
. T (RO 2rs,

nous aurions obtenu en négligeant les termes en h? :

rPZ 7O% F(b®) Zm2c?+2m,nU
F (b"\”) ayant la méme expression que F (ay ) avec substitution
des b""’ aux al®. 51 F (b%”) était négligeable, nous obtien- °
drions ‘

T(Sf)z— " ma c*+2men U

relation qui est inexacte, m8me en supposant K négligeable. Pour
avoir une relation exacte, il faut avoir :
(X,i) F(b')=2meqU=2m, U, .
ce qui alors donnera bien la relation exacte n<°’ = m2ct.
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Si 1l'on admet 1'hypothese exprimée par la relation (X,i), F (af)
sera nul car on démontre aisément, puisque :
A‘/‘U
be-ale " + termes de 1'ordre de-%%f

que :

F(b?)=F@)+2mnu
d'ol F (a¥ )=o. L'hypothdse faite dans la déduction de 1'équa-
tion de Jacobi en négligeant le terme F (a{’) est donc alors vé-

rifide. Il nous reste & examiner si la relatlon (X,1) est bien
exacte.

Avant de faire cet examen, nous ferons la remarque suivante.
Si, au lieu de raisonner, comme nous venons de le faire, avec la
Mécanioue ponctuelle de Weyssenhoff, nous avions pris le point

@, h o, —1r—3

de vue de Pauli et son développement = (b +yr b .) e.
ou S, est la fonction de Jacobi de 1'électron sans spin, le pas-
sage & l'approximation de 1'optigque géométrique nous aurait
fourni 1l'équation (& 1l'approximation d'ordre zéro)

RO m s F (b= mict+2m U

4 k/= o cn
avec 8 ;
r_ MeC moC : (o)_m [ . _
P Vi-pr o TV

la vitesse Bc n'ayant pas ici, toutes choses égales d'ailleurs,
la méme valeur que dans la Mecanique ponctuelle de Weyssenhoff.

Or nous avons évidemment encore T{ m@im2c® ; il faut done
que l'on ait aussi dans la théorie de Pauli : B
(X, ) F(b¥)=2m,nU

Bref, en admettant le point de vue de Pauli, il faut avoir
1'équation (X,j), +tandis-qu'en admettant notre point de vue et
la Mécanigque ponctuelle de Weyssenhoff, il faut avoir 1la rela-
tion (X,i) pour pouvoir négliger F (a“’ dans 1'équation de
Jacobi. La vérification des relations (X,i) et (X,3j) dans des
cas particuliers est difficile en raison de la complication des
calculs effectifs. Nous allons l'indiquer dans trois cas parti-
culiers simples.

I° - Moﬁvement longitudinal dans un champ magnétique uniforme.

Ce cas simple est celui que nous avons précédemment étudié.
Nous avons trouvé avec notre point de vue :

c ?_m. 21‘(L/Udt
('Pk:: ke

4 l'approximation d'ordre zéro et en négligeant les termes en u%
dtol :
21TL

—3
v, o /e g s
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aveec C,= A, ou B, suivant que le moment magnétique propre de
1'électron est paralldle ou antiparalldle au champ, A, et B,
étant convenablement normés.

En substituant

cette expression des b!®
trouve aisément :

dars F (b”), on

F(b) =2 m,q U

Si on se place au contraire au point de vue de Pauli, on doit
poser :
27 27
Udt S,
P,=C, e “ho e R
ol S, est la fonction de Jacobi de la particule sans spin.
done :

On a

L0 VSR, B R
v/ [ &

(0)
by'=C, e

avec toujours C,=A, ou B,; mais aussi f correspond & la vitesse
dans la Mécanique ponctuelle de la particule sans spin. La subs-
titution des bl? dans F (b,’) donne encore :

F(b%)<2m,nU

Les relations (X,i) et (X,j) sont donc bien vérifides dans le

cas actuel.

2° - Mouvement transversal dans un champ maghétique uniforme.

Dans un champ magnétique uniforme, considérons une trajec=-
toire électronique circulaire dans un plan normal au champ. Nous
allons faire le calcul de F en un point O de la trajectoire.Nous
prendrons la tangente & la trajectoire comme axe des z, 1la di-
rection du champ magnétique uniforme comme axe des y, la normale
a la trajectoire comme axe des x

X

y -

Nous commencerons ici par faire le calcul en adoptant’ le point
de vue de Pauli, c'est & dire la Mécanique ponctuelle d'une par-
ticule sans spin. Les équations de condition de Pauli prennent
ici la forme simple (la classe des mouvements considérés corres-
pond & des trajectoires circulaires planes axées sur lechamp'§)

9C_ 1 E,c ®9 190 4

32 7w <o 3 o 5p -G divE
06 1 Ehe P 130 ¢ 4w
2270 oG nz"’ 3t C, div¥

Nous faisons le calcul au point O ou

() (o)
nx=0,nx=0
(o)
aﬂ::O

dn®
3z (Car dat

et ol :
=0=v,——=
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Or nous voulons calculer l'expression :

@\__hn CL&8 [ o DY pbO* (o) )
F(bk)— zm/‘“;ﬁ? by a‘b—x:v__a;TO“b“ T,
I1 est aisé de vérifier que dans cette expression 1les termes

contenant 1les dérivées%% ainsi que les termes en div 7™ se

compensent; ils sont d'ailleurs nuls comme nous le verrons ci-

dessous. Il suffit donc, pour calculer F (b,”) en O, de poser :
OC_ 1 & oyc: G 1€
oz 2m¥ 2* 9z 2rn@ ¢

Pour le mouvement considéré, my=0 et l'on a (avec A=ntP+m, c )

bk L [-r €= m0C, | b= L [rPCmn0C]; b= €, b= €,

1

d'ol :
db‘°’_L[_ an®® _q® OCZ]_l L By
(X.k) oz ALz ror B2
¥ ab(o\ 1 aﬂ (o) OC] _1 _Q\_.E_
oz [C‘ oz = az]_Z 2 e

car on a en O :
o (0 (o)
(o) 0 ; 01'( =0 t (o) v Oﬂxz_a v. H

d'ol :
o)
Mg _Ey.

dz
On trouve alors :

FIRCI ) /(o) o) 1__ o) * N\ Ey_po* 0C, L@«3C,
PO =g /7 d‘mb b AZ)CH >

+ terme identique

Soit :
(X,1) b“”) _lfdz n("’[’“ CIC,+ nzc c Cnf, 9‘,7} i
=- 201 far(cic,-c; c)(hAz)aH
Or : . :
140" afimict , _2a%
A% (nPmec)? A
d'ou :

F(b(Q):-meHLfL‘;;oc (CTCZ—C;C,> ZZ(:) 4

Les formules (VI,d) donnent :

by —L(C1C -C; c)Am:

ng (avec my=fp.ydr)

Flbi)=-2mn I, H

I1 vient donc :

10*
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et comme U=-J,H, on a bien :
F(b§) = 2manU = 2m,U,
La relation (X,]) est bien vérifide.
Si maintenant nous reprenons ce calcul en nous plagant &
notre point de vue, c'est & dire en adoptant la Mécanique ponc-

tuelle de Weyssenhoff, le raisonnement restera le méme sauf
qu'ici nous aurons & poser :

S, Uag g B _F
p=n = v et T =f .
On en tirera :
Va f?z (nr°)+_ e ) =
d'ol encore :
on '
z =O
0z

car v, reste constante au premier ordre sur la trajectoire; puis

0 (@ Y E
g (0w

0z c 9z
au lieu de : it

an'y EH
9z ¢
Ceci nous introduira au dernier membre des équations (X,j), en

s 2

on® € Ho 0 (UonV)
c

plus des termes en-%—H, des termes en U, Nous obtiendrons donc
pour F(b'"?) une expression de méme forme que celle de F(b'})
donnée ci-dessus, mais ou le facteur ELH sera remplacé par

é-H + terme en U. Dans l'expression de F (b'{?), ces termes nous
donnent donc en supplément des termes en h* qui sont négli-
geables. Nous aurons donc aussi :
F(b(”) = 2moqU
et la relation (X,i) sera vérifide. [Plus précisément nous trou-
vons F(b'f))=2nhnu{r+7%iaf) et nous négligeons les termes en U’ ]
o

On peut facilement intégrer les équations différentielles
en C, et C, données au début de l'étude de ce second cas parti-

ony
culier. On a —* L L =0, Y0 et an* =0 pour la classe de mouve-

0z “dy ox
ment qui comprend toutes 1les trajectoires c¢irculaires planes

axées sur
Les équations en C, et C, peuvent donc s'écrire (puisque

WYRT=OR 4 e o, 1€
acC, ) 2 L T
U T A L R T A
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et 1l'on trouve comme solution :

B fudt VTP
;=De ; C,==LC,

I1 faut prendre dans la seconde équation le signe + ou le signe
- suivant que le moment magnétique propre est paralldle ou anti-
paralléle & H.

I1 pourrait sembler gu'en introduisant les expressions pré-
cédentes dans celle de F ?bﬁ’) [ou de F (b'() ], on devrait obte-
nir, contrairement au résultat obtenu ci-dessus,

. b(l:))

F .
F(b"i)) == 2moT)U \/1“[32 =7 mOU

mais il n'en est rien parce qu'il faut tenir compte des termes
{0)
(e)

en 3 £ qui expriment la variation de n'Y . Pour mieux nous rendre
z

compte de ce qui se passe, vreprenons la formule (X,l) et dcri-
vons la sous la forme :

F(b‘ﬁ’)z—;—;] Lfd'r (c: C,~C, c,)(n"_f; R z‘%‘ -i— H

egst celui qu'on obtiendrait si

n
Az était nul

comme on le voit en reprenant des calculs déja effectués sur ce
cas particulier : c'est d%gg le terme 40 & la variation des Cy»

(
ony

Le terme 1-

2

tandis que le terme en provient de la variation des A, et

AZ
B..
Le premier terme donne, comme on devait s'y attendre :
2 mM,C -
15y A _ Vo
2mymU ne = 2m,nu T 2mU \1-p* =2m,U
A A
mais le second terme donne :
2ﬂ(o)l A ,r]n(o)z
2mnU ——. — =2m U — %
071 A? Zﬂ(i\ o AJ‘L(Z)

de sorte gu'au total on a :
(o)2

F (bp) —2m.U = zﬂz:, )

Or :
{012 (o} _ 2 -2 2 2002 2_
Mg B M mecel)
An' 9% moeny mZcin(n+) N+

car 1% =m,cm d'ol finalement :
F(b9) = 2mnU
[aux termes en U? pr&s, on obtient le méme résultat pour F(b'{")]
3%~ Mouvement transversal dans un champ électrique uniforme

Nous allons supposer que le mouvement s'opére dans un champ
électrique h dont nous prendrons la direction pour axe ox. Nous
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supposons qu'au point o0 considéré de la trajectoire, 1le mouve=
ment s'opere suivant l'axe oz

La trajectoire est une parabole dans le plan xoz tangente & oz
en son sommet o0. Nous prenons comme classe de mouvements parabo-
ligues ceux obtenus par déplacement paralldle de celui-ci 1le
long de oz et le long de oy. Dans le plan yoz, l'axe oz est une
caugtique, ce qui donnera lieu & gquelques singularités.

Ici nous avons :

R® =0 i Ve-hex 5 ———=h =h

b= - L (90 nEC, ) 5 b= (nYC,-n0C,) 5 b =C, 5 bY=C,

I1 faudra tenir compte de la variation de A = ny + m,c par suite
de 1l'action du champ électrique sur la particule. La fonction §,

est ici :
So —W*f\/—+— n“’” méc? dxfn“z” dz

avee ni‘®=CY, les intégrales etant prises le long de la trajec-
toire.”On trouve :

8n?  no €

(o} . ( (o0} £ )2 (o) [ X _

n'= a2 hx] -n92-mic® dot = = —h
o \/ #hcx X G

O est infini & l'orlglne a4 cause du r8le de caustique de

1'axe oz (car & 1'origine o, n'¥ = 0).

Remarque.- On peut retrouver les relations précédentes de la fa-
gon suivante, Sur la trajectoire parabolique, on a :

1 Eh dx ¢&h
=v,t avee v, =C%¥ ; x=—221t%* dou v,= —=—21
¢ z z 2 m X dt m
Cn a done :
v my 2
22 =2 Ehz X = 2px avec p = Ehz
X X
d'ol l'on tire :
dz _»p
dx z
On trouve aussi : :
(o) IS an(;)
n'y =m,myv, dol 37 =0 eno
puis :
an) an(ﬂ)
L =ELh, = v, :
dt 0z
ce qui donne : -
GhAW €h,
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De 12 on tire :

on'y 9aY dz Eh, p my, m
x 08z dx v, z z t
Or en O :
ny e _ mme Eh, _ €h, m
i oc Y omemy, ¢ Vy t
d'olu :
ony nf €
dx a9 ¢ X
Ce qu'il fallait démontrer.
Dtautre part : W . .
A=rnlf+mec= [—C— < hXx]
d'ol
0A _ € 0A
—=-=nh vt 5= =
ax ¢ x © 0z

Nous avons maintenant &4 écrire les dquations de Pauli : elles ne
sont pas ici données par les formules (X,f) parce que, n'd va-
riant, 11 faut tenir compte des dérivées deA. On trouve :

ac, ¢, oV 1 o s\ OA @ 1 8C,
Bz T ax 2n‘;’A(nZCZ—n"C‘) @9 ¢ Bt
9C,_ G ony ( R9C, + “”C) 8A =i 1 0C
9z  2aY ox  2n'PA Y ox  n% c ot

Ici encore les termes en 1— 9 se compenseront quand on formera

c ot
F (b)) et nous aurons & employer les expressions précédentes de
% et % en laissant de c8té les derniers termes. Il viendra
V4
ainsi :
h k=4 ob® . k=4 by
= [ v o) (8 v o)

On pourrait croire que le premier terme du crochet est nul parce

(0)
qu'en o, n'?=0 . I1 n'en est rien car an est proportionnel
dx

aan‘ reste fini et dgal an® & =h,

a de sorte que le produitn? .

(o\
*

quand n'y tend vers zéro. Les termes en —a; donnent donc :

. . nyn €
~z{crc,-c5c) it < hy
tandis que les termes en % donnent, pour n'9 tendant vers zéro
1 ac, 1 aC,
()2 ~x 1 (o)z * * * {0}
~— pezer S crlz,or —)n
ce qui, compte tenu des valeurs de == t S22 devient :

0z ?

_(c:cz—c;g)(%-f) 12,0



144 CHAPITRE X - 8

o) = - g for fore,-coo (B )2 28 2L
=~ 2 filere,-csc,) [(-5) 5 5 ] s

. . Eh 2mee n19 2nnY
- 2monﬁ(c1c2-czc1) Tans ( ol e )d-c

th 2a¥
= — h z .
2man b, fi(C7C,-C; c)Anmc - dr

Or, on a [ voir formules (vi,a)] : £ o
N 2n';
2, fndw-f(CC CC)AnmC = dr

F(bY) = -2mm& b, = 2mmU = 2m,U,
ce qui est encore la relation (X,j).On montrerait sisdment qu'en
adoptant la Mécanique ponctuelle de Weyssenhoff et en négligeant
les termes en U?, on obtient également la relation (X,1i) c'est &
dire F (b'§)=2m,mU.

dtol :

8. DEMONSTRATION GENERALE DES FORMULES (X, i) ET (X, j)
A PARTIR DE LA DECOMPOSITION DE GORDON :

Nous avons pu vérifier les formules (X,i) et (X,j) en étu-
diant quelques cas particuliers. Nous allons maintenant en indi-
quer une démonstration générale en faisant appel & la décomposi-
tion du vecteur d'espace-~temps "densité-courant" donnée par
M. Gordon et développée au paragraphe 4 du chapitre VI. Nous al-
lons écrire cette décomposition en considérant le quadrivecteur
densité-courant en nombre de particules et non le vecteur den-
sité de charge électrique - densité de courant électrique, ce
qui revient & diviser par la charge - e de 1l'électron lés ex-
pressions donndes précédemment & l'endroit indiqué. Nous distin-
guerons les composantes covariantes des composantes contreva-
riantes. Nous poserons :

k=4 k-4 k=4 k=4
= Z di(rea)dy; F2= B i (-oa,)dys P=Z i feaJdis Feck did
ce qui définit le vecteur d'espace-temps £, puis :

5 (000,20 20 ) g gl 100 M)'

1.______ _ Yk __
(X’m)g Anim, k= ’9 4an° k=1 ka‘c ot c ot

ce quil définit 1le vecteur d'espace-temps g. On peut alors écrire
la décomposition de Gordon sous la forme suivante :
; ; c op
Pl oqi LS B (5 = 1.23.4)
f g 52“ axt J 1! )3)
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avec :
i i, - . 4 . 34 .23 3M_ .
P’J -}LJ [_L ﬂ 5 P’ —ﬂy y p- —‘nz ’ P- _P‘x ) P’ [ny ) l-‘- l»j'z
ou T et p sont respectivement 1les vecteurs "densité de moment
électrique propre" et "densité de moment magnétique propre".
Posons avec M. Pauli :
h i g
=(b s by Je P 7
‘Pk ( k TR )

Appelons g(é la partie de 1l'expression de gj qui contient les
dérivées de S, et g’y la partie de l'expression de g/ qui con-
tient les é;rlvees des b. Nous aurons :

9= 95 * I
Les g ) ayant la m8me expression que pour une onde plane, on
vérifie ‘aisément que : ‘
b J
. =90
d'ou : B
) =4 ap’”
J - =
I~ "% & B¢

A 1l'approximation d'ordre zéro, c'est &2 dire en ne conservant
que les by, on obtient en multipliant scalairement g par T
80it en multipliant la dernidre équation par oy’ et en  sommant
sur j : .
icte S ' o)
Foyri=-g & 30 ™
Or, en comparant l'expression (X m) des gJ()a 1'approximation
d'ordre zéro avec l'expression de (b ) on trouve :
It g 1 {1 (o)
fl;] g(b)nidt_—Zmn F{b®)

o

2m,mc ot 2m.c g
o) _ ! P (o) — ° P‘ n
)= R e nen - [E G n Y dv,

d'ou :

car :
dv = dv, VI-pt = dTo

En développant 1la théorie de Weyssenhoff nous avons trouvé la
relation (IV,h) :

by P’Lj J..’1(33) =0

L

d'ou : ; i 3n o
a ( [ ()) [J’LJ (o) i n.‘i:
—_— nY 0 ou ¥ F—nl=-Xu4 :
nlooxt biooxt Y S T
Remarquant que n®™ = grad S, + %JK et que p'=-p’*, nous trouvons :
con ony  ony £ :
TR hkld R ( ——%-)=_z: N
S 2 JH ox' 2c gt
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ol les F,; sont les composantes du tenseur "champ électromagné-
tique”, car :

on; 3
W ax‘ Ox’
D'ol : 3y
O o _Ey 1
E% ox' ny=re E% 2 n

Or nous savons d'aprds une relation du paragraphe 3 de ce chapi-

tre, que :
1 ij
Uo=7)U=—-2-f§ wi F,dT,
dtol : .

PU o) _ £t
% i ny dt= ¢ U

o

Nous obtenons donc :
F(bQ) = 2m, ——/EP.UF d'c =2myU, _ZmOnU
et la formule (X,j) est vérifide.
S1 nous reprenions le méme calecul en partant du développe-
ment : )
2ni S'
e, N h °°
q)k:(b k,+2—mbf(+...)e

nous trouverions en hégligeant les termes en U? la formule (X,i)

F(of) = 2myqUu

9. INTERPRETATION DE LA CONDITION F (af )=0.

En résumé, d'aprés ce qui précéde, la condition qui carac-
tdrise 1l'emploi de la Mécanique ponctuelle de Weyssenhoff pour
1t'électron de Dirac et qui paraft le justifier du point de vue
de la Mécanique ondulatoire, c'est la condition :

(X,n) F(af) =0
les af étant définis par le développement :
h Zhi'LS
(o) 1
= al+...le
B (ak+2nL 0
ol S est 1la fonction de Jacobi de la Mécanique ponctuelle de
Veyssenhoff. Quelle est la signification physique de cette con-
dition ?

Pour le voir, reprenons la formule :
i, o & op
= + —_— -

9% T ax
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écrite plus haut et décomposons le quadrivecteur g de la fagon

suivante : ; ; i
9° = G * i

ol g est la partie de g’ provenant de la variation de S et
g(g celle qui provient des variations des a, et qui se réduit &
&) & l'approximation d'ordre zéro. On vérifie alors aisément
que la condition (X,n) est équivalente & la suivante :

o)
C/P%F ggynfdT =0
ou pour un trds petit paquet d'ondes
Xg @y =0

Comme les nﬁ’ sont proportionnels aux composantes u; de la vi-
tesse d'univers de la particule puisque n'{'=m,cu; , ‘on a aussi

23 g(%)u- =0

Or le premier membre de cette formule représente le produit sca-
laire dans l'espace—temps du quadrivecteur g @) par la vitesse
d'Univers W : 1l est donc égal & la composante de temps ( g(‘;o)‘)O
de g dans le systdme propre de la particule.

]

.

Finalement nous parvenons & la conclusion suivante : Dans le
gystéme propre de la particule la composante de temps du qua-
drivecteur g est la méme que si les a_dtaient des constantes.
En réalité les a®® ne sont pas constants en général puisqu'ils
sont de la forme :

_ani fUdt 2’“/Udt
all =b¢ e (C A, +C,B,)

Zntf Udt

et que les facteurs C,, C,, A, By, e ne sont pas en.gé-
néral constants,mais dans l'expression de (gpd)o, les variations
de ces divers facteurs se compensent. Nous le vérifierons dans
le pfochain paragraphe en reprenant en détail l'étude du mouve-
ment longitudinal et du mouvement transversal dans un champ ma-
gnétique uniforme. On peut remarquer -qu'en général, 1la partie
spatiale de g, dans le systime propre n'est pas nulle.

Revenons maintenant & l'équation :
j BP'LJ
£ <
9 g o
que nous écrivons :

F=g+h
i
en introduisant un quadrivecteur h.défini par h' = —e- I 9p” T

Le quadrivecteur f décrit le mouvement total 2 l'échelle fine de
la probabilité de présence de la particule tandis que le quadri-~
vecteur g correspond au mouvement d'ensemble de _Jla particule tel
qu'il est imaginé par la Mécanique ponctuelle. f est la somme de

g et de h ce dernier quadrivecteur correspondant & une sorte de
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.mouvement interne dQ au spin. C'est ce que 1l'on peut voir par
exemple en Studiant le mouvement du globule de probabilité de -
Darwin) (voir 1le livre de 1'Auteur : "L'Electron Magnétique®
P. 169 . : .

La composante g* représente une sorte de densité de proba-
bilité "moyenne" obtenue en négligeant le mouvement interme 1i¢é
au spin, mouvement suquel la Mécanique ponctuelle ne s!'intéresse
pas. Par suite d'une compensation des effets du champ électro-
magnétique, cette densité de probabilité moyenne g*, quand elle
eat évalude dans le systéme propre.de la particule défini par la
Mécanique ponctuelle de Weyssenhoff, se trouve &tre la méme que
pour un globule de probabilité en l'absence de champ. C'eat
cette propriété qui nous parailt &tre la caractéristique essen-
tielle de la Mécanique ponctuelle de Weyssenhoff et en justifier
l1temploi pour l'électron de Dirac.

10. VERIFICATION DE LA RELATION (g{,), = O
DANS DEUX.CAS PARTICULIERS SIMPLES

I1 est facile de vérifier la relation (g, ), = O dans 1les
deux cas particuliers simples du mouvement longitudinal et du
mouvement transversal dans un champ magnétique uniforme qui ont
été précédemment &tudiés.

Dans le cas du mouvement longitudinal (paragraphe 6 de ce
chapitre et premier exemple du paragraphe 7 du méme chapitre),
on a trouvé : )
2ni g 2ni g
soit ) =DA e soit (. = DB,e h

avec D constant suivant que le moment magnétique est orienté pa-
ralldlement ou antiparalldlement au champ magnétique. Les cal-
culs sont immédiats et donnent : .

4 m'e ) 3 me . 142
95 = P b 9= PPe b 89~ 9=

1 2 3 a
ko) = Je = izl = e = ©

Ici le gquadrivecteur g, est nul. On a donc bien dans le systéme

propre la relation(g, ), =0

Dans le cas du champ magnétique transversal (deuxidme exem-
ple du paragraphe 7 de ce chapitre) les calculs sont un peu plus
compliqués. On a alors :

Y = C, A, +C,B,

L oygt VI-pe
avee C,=:iC, et C,=De" / , Db=2¢C%,
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d'ol :

a? =D (A, tiB,)e

Le calcul donne encore :
4 m,o m’o 1 2

S = P m, ' I = PPC ; I = 95 = ©

puis on trouve :

Yoy = P U"cz[\“‘_Pz"]

Mo

Jpg = oo = O

9y = PRC ez [VITFT -1 -5 U VTR p

m,C?
= phe s [(V*-_Pz"‘)‘w—t—}ﬁ%ﬂ

Us . 1

=_Ppcm°c2 Vi-p2 +1

Les deux termes dans la premiZre éxpression de g@d correspondent
respectivement aux variations de l'exponentielle figurant dans
les af) et aux variations des A, et des By.

On passera du systéme de l'observateur (qui est un systéme
galilden bien déterminé puisque le champ électromagnétique sa'y
réduit par hypothdse & un champ magnétostatique) au systdmeé pro-
pre du corpuscule par une transformation de Lorentz qui, appli-
quée aux composantes du quadrivecteur E@@ donne :

« P 3 .
A g(ao)_t 9% ° _ ‘2— N §Z
sk = V"—PZH s V%E?[(“ ) \/1——?4]

(g(:o))o - g(a:n) ZP ° 4 ' (g(éo))o = g(i) = 0
ay ~ PC a, .
- Sl ol ot ]

Us 1-p2 V8 1
=—PPCW _ﬂ_z—POPC

4 Vi-pi+1 MeC® V1-p +1

La relation (g:, ), =0 est donc bien vérifide.

On pourrait s'étomnner de voir P figurer dans 1l1l'expression
de (g(,?a))° qui est relative au systéme propre, mais il faut reman
quer que la vitesse Pc a ici un sens absolu car c'est la vitesse

‘relative du systime propre du corpuscule par rapport au systdme
ol le champ électromagnétique est purement magnétique. Dans un
systéme Galilden possédant (dans le sens des z) une vitesse re-
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lative guelconque p ¢ par rapport au syastéme _bropre, on aurait
d'aprés la transformation des composantes de g(.)

U —p '
S = ~PP oy \/pr' c ?—P"
9(3) =0 ; %pg = O

Vi-p 1
" P e g Vi
Pour p'= 0, on retrouve naturellement :
Pour p'= p, on retrouve 1§2P;Lleu;l du systéme de 1l'observateur

4 Y,
9(3,,)='Pf5 s W—_'[s_z+1 Pmcz(w pr- )et 9 @)~ Pfs V— ]

11. CONCLUSION. YALEURS NUMERIQUES

En résumé, 1l'ensemble des calculs que nous venons de déve-
lopper nous semble prouver que .le passage & l'optique géométiri-
que en théorie de Dirac nous conduit & la Mécanique ponctuelle
de M.Weyssenhoff ol l'existence du spin apparatt, plutét qu'a 1la
Mécanique ponctuelle sans spin de M. Pauli. Il semble donc que
nous ne puissions pas exclure a priori Ia possibilité de mettre
en évidence le moment magnétique (ou électrique) propre d'une
particule de Dirac.

[

Cependant, il est difficile de trouver des raisons décisi-
ves pour choisir entre le point de vue de M. Pauli et celui que
nous avons développé plus haut. En réalité la difficulté du pro-
bléme provient des incertitudes d'application de la méthode
W.K.B. signaldes au paragraphe 2 de ce chapitre. Si en effet, on
derit

2ni 2ni m,c? 2ni
—38 —_— Udt
Yy=a,e ho_ a e h '/
et 81 1'on admet que les moments propres &tant proportionnels a
, la quantité %f Udt est d'ordre zéro enz—':‘—: , on est amené

& écrire avec Pauli :
2ni m,c? dt

Yy =

avec

2nL

v fudt

oD / _peo,_h b, +( h )“ ™,
km2ni kT \2ni) Tk
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81 au contraire on admet que, bien que les moments propres
so;ent de l'ordre de?%T’ le terme U est assez grand pour que
%/U dt ne soit pas négligeable devant ZT’“/M dt , on sera

amené & appliquer la méthode W.K.B. comme nous l'avong fait au
paragraphe 5 de ce chapitre. Or cette manidre de voir revient &

dire que 1l'on considire 1le quotient K= ﬂUz comme n'étant pas

négligeable devant 1l'unité bien que son carré puisse &tre consi- ~
déré comme négligeable. Naturellement, supposer K négligeable
devant 1'unité revient & négliger l'existence des moments pro-
pres et cela nous raméne au point de vue de Pauli. Mais si nous
supposons que K, tout en étant petit devant 1l'unité n'est pas
négligeable devant elle, nous retrouvons comme nous l'avons vu
la Mécanique ponctuelle de Weyssenhoff et le raisonnement de
M. Pauli n'apparalt plugs comme probant.

Par contre, le raisonnement de M. Bohr fondé sur les rela-
tiong d'incertitude montre bien cette impossibilité, mais seule-
ment dans le cas des vitesses - petites devant la vitesse de 1la
lumidre: Pour des particules animdes de vitesses voisines de
¢ (3»1), une telle impossibilité de principe ne paratt plus exis-
ter.

Demandons-nous maintenant quelles valeurs numériques il
faut attribuer aux quantités €, m, et m pour qu'on puisse obser-
ver un phénoméne de déviation par action du gradient du champ
magnétique sur le moment magnétique conforme aux images de la
Mécanique ponctuelle.

Trois conditions sont & réaliser. Il faut d'abord, pour

avoir une. Mécanique ponctuelle, que la quantité K=ﬁ¥%7 soit pe-

tite, ce qui nous donne la premidre condition :
(1) Ehm

—_—— H « 1
4nm?c?

I1 faut ensuite, pour pouvoir avoir un groupe d'ondes ponctuel a
notre échelle, que la longueur d'onde soit +trds petite & notre
échelle, égale par exemple & 10 ou 10°cm., ce qui nous donne la
geconde condition :

h

(11) T

I1 faut d'ailleurs aussi que

«w107%a 10%cm.

nbc ne soit pas trop petit comme
nous l'avons montré au paragraphe 2 du chapitre IX. Dans la re-
lation (II), nous avons mis ¢ au dénominateur au lieu de V parce
que nous supposons vVesc pour ne pas tomber sous 1le coup du rai-
sonnement de Bohr.

Enfin, 11 faut encore que la déviation produite par l'ac-
tion du gradient du champ magnétique sur 1le moment propre soit
obserrable. Supposons que la particule fasse un trajet de lon-

11
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gueur 1 le long de 1l'axe 0z en étant soumise & un gradient

transversal de champ —aa%
3t
dx

On aura :

et 4 la fin du parcours :
_ _Eh 1 3,
" 4amec c  Ox
d'ou pour la déviation supposée petite :
€h oH, 1 Eh  OH, 1
“ dnm,c? 8x n%  Anm,c? Ox MeC )
car tga = % ou encore :
z

Ty

a4,
EhH ax . _ K H.
* 4nmiciny H 1_732 H L

Comme 71)>1, le prerier facteur est trés petit d'aprds (I) et il
faudra, pour obtenir une déviation observable, avoir :

oH
a—x* -1 » H,

~condition qui paralt difficile & réaliser.

$'il n'y a pas d'impossibilité de principe & obtenir une
déviation observable, cela parait bien difficile en pratique.
Voyons les résultats numériques.

" Nous ne pouvons pas prendre 1 inférieur & 10? sous peine de
tomber sous 1l'argument de Bohr. Avec m=10°, il faut prendre au
moing m,=10"* gr. gous peine d'avoir une longueur d'onde trop
grande (A>107*cm.Y) Avec m=10% , m,=10"*" gr , on peut prendre
£=10" u.e.s. pour avoir K<-10? avec He 10’ gauss. La déviation
o= %%1:10‘6{{—"1 ne doit gudre descendre, pour avoir un phénom&ne
observable, au-dessous de 107 (un centimdire & un mdtre)., D'oh
H'l »10°H . En prenant le trajet 1=1 mdtre, ce qui est déja bien
grand, on voit que le champ H devait varier de sa valeur sur
1

75 mw. Tout cela est sans doute bien difficilement réalisable.

force due au gradient  h H ma H H’

=17 10 —

forece de Laplace 4nm,c H 4n H H

Le rapport

'

si nous admettons la valeur bien grande 10’ pour le rapport —:—,
1

agurait la valeu:cﬁ ce qui paralt acceptable.

(1) L'énergie m,c’y est alors de l'ordre de 107" c.g.8.0u 1 e.v.
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Bref les données 11=10°, m =10 gr{", €=10™ues.c» 10~%¢
donmnent les valeurs & la rigueur acceptables :A=10"‘cm.,K=10"2
avec une déviation encore bien faible & =107"?, Nous sommes & la
limite des possibilités et cependant ces valeurs sont, semble
t-il, les meilleures que l'on puisse avoir.

Pour pouvoir mettre en dvidence par une déviation de ce
genre le moment magnétique propre d'une particule de Dirac, il
faudrait d'abord que cette particule voulfit bien avoir précisé-
ment les caractéristiques indiquées plus haut et méme en ce cas
sa détection ne serait pas facile.

M. Jean Thibaud® a donné pour 1les électrinos qu'il pense
avoir observés dans ses expériences v}=10" ,m,=10"%¥gr., €=10""°
a4 107" u.e.s., ce qui donne pour 1la longueur d'onde la valeur
acceptable A=10"° cm et un rapport des forces de l'ordre de 1 si

H varie de sa valeur sur 1 em (c'est & dire silioo1).Malheureu-
sement on trouve alors K de l'ordre de 10" 210" . Le rapport j%

serait de l'ordre de 1 et la déviation serait grande, ce qui est
favorable. Mais une valeur aussi élevée de K paraft tout & fait
inconciliable avec 1la validité de la Mécanique ponctuelle dont
M. Thibaud fait usage pour l'interprdtation de ses résultats ex-
périmentaux. '

Pour des valeurs suffisamment grandes de 7) telles que veec,
la difficulté qui se présente ici pour la mise en évidence du
moment magnétique propre est une difficulté d'ordre pratique
liée & la possibilité effective et & la précision des mesures,
mais ce n'est peut-&tre pas une impossibilité théorique a priori
comme semblaient l'indiquer 1les raisonnements de M.M. Bohr et
Pauli.

(1) Dane les expériences de M. Thibaud, H+«> 3000 gauss, va%en c.g.s.




c.

INDEX ALPHABETIQUE

Pages

ANt1COMMULATOUT ©euerenennruaneenanss eresseenrenne 20, 23
Approximation de l'optigue géométrique ceveses 9, 117, 120
Approximation W.K.B. (méthode d') ceeevvesncacascansane 119

.

Becker $ 0 6.6 50 0% 0 50 08 B L IO BB NS CE RO EEIERTOTE NSNS 85
Blackett seveececnrcetrneiirecniarsgsrcocnrcsncscasens 97
Bohr P E 8 LG EOEEOLBOEOIEEOENIEOOIETEEIESOLEIEOEERE 20, 36' 52, 71’107

Centre de gravité de la probabilité de présence ...... 101
Commutateur secececsccsssceesssscscocrssscssavascsnss 20, 23
Compton {longueur d'onde de) cevieesessssccesaseass 92, 106
Conditions de Paull «ececesescrcacccnscssses 127, 128, 131

Constante de MOUVEMENTt ececsesvsssvescsoscacsssccsssona 26
Coordonnées A'espace=1tempPsS eceveecescccvsssossssccssos 39, 40
Coordonnées A'UNivers eceeecscessecssccsacscscnsscsacvee 39

Cogta de Beauregard seceseccccecescsnsns 47, 54, 55, 56, T8

Décomposition de GOrdOn seveescessscsccvcssses 83, 85, 144
Densité d'éléments de matrices seceeaccscencercanss 25 76
Densité de moment cinétique propre sseeescciese 46, 47, 54
Densité de moments magnétique et électrique

PLOPIEE cveseerassosssasoventsocosssannons 5, 58, 82, 145
Densité propre d'impulsion 1indaire «.eceecceesscsnsas 55
Densité de BPIN cevevacesvoncsscrsrncsssacessnass 50, 51, 53
Densité de VAleUr MOYENNe seeeesssveccccscansasse 25, 76, 90
Dérivation lagrangienne ...cceeeeaeeerersacescsrcncncas

Dérivation par rapport au temps pPropre .c..cicescccsses 56
Dérivation (pour les densités) .eeeeseeeriverecsesnces 56
Diffdrentielle ProPre ecosessvecosssoscacs ceeeess 14,19, 104
DITAC etoevavsnosesaasssnssssssssssssncsssassessnaes 16, 61
Divergence gquadridimensionnelle ..c.cveeecersccoacnsoas 49



156 : INDEX ALPHABETIQUE

Pages

E.

Ehrenfest (théord3me G') ceeeececeescesceonsossoncsacns 103
Einstein (relations A') .veeeeececeeesvsosccoonsccoasas 6
Ensemble orthogonal .ce.eoeecessecesvrssssccsssccccnas 13
Equation I,a L R R R N R R R R R I I I A I AP A AP AP Y 9

I,b ® O 09 08 0GR OSSN0 L PO OIS EIELISEOIINOIEBIECEITPONTIEETDSN 12
L L I R R L E R TR, b
II,& 000000 c000 00000000 0sss0s0Gsss OO OGRS 27
II’b S 8 8 02 0085050000008 008E80TRCEIELIBEEELILTESES 27
II,C L R R N N R R N R N R ) 27
III’a 280000000 08000000000 0000s0ceRRRRORE 30
IV,a 20006000000 s0000s00s00s00000ssELsOOES 43

Iv,b 0000000000000 0sv0000000sss0RELES 43
Iv,c ® 0 2 0680900000 NBEPENPCOOIOIOEPETIOOESTOEPSOSOIOENS 44
Iv,d 0000 esecsteerenscanssrssersscnstsese , 45
I 52
IV,f D N R N N I I I I N I N A AP I NP Sy Y 54
Iv,g @000 seeres s es st sVt OOEENEIEBEIEORETSE 58
IV)H  ceeeennnneeenennnnsnnnseseessenanennns 60
v,a LU B A B B BN B B B B B A A A A K BN R Y B B NE N N N WY W A ) 22
TiD  eeerernnnnnnnannaenmnaaaas 3
v,c ..........“.............'.‘..‘.....t.’ 65
V’d P 5 B SO PP SO OEE NP LLONEI ORI ONEEE SIS ISI IS 27
V,e L N e R R R R I I s 7
Vof  eeeneeernnnnessonneecennoneeseananeces "
v,g @000 rs s s s es s e BB asss e ssesOOROCOSEES 71
VIO vevsvnnnnnnnnnnnnnnsasssssssnnnnsnnne T8
L 81
VI)A  eeeeevvnnesnnnnesesnsnnnssssssneesses 82
1 Y Yt
VII’b ........l.'.....:............Q'.'..‘ 90
VII,C L R R R R N ) 90
X’a Il-.n..c.“onhltl..‘t.‘...!"t':'.'.ll 117
X,b 00000 s00re0 0000000000000 CCRRORNGSTES 117
X’c S 8 0 80000020 PBOSELOEPNCNLOCIBOIEOIRNSESIOSIEPIINS 118
o E P T I
X,e L R R NN N :gg
X,f S 8 40000 0008000000000 0000PP000B0sSsRSBPES 130
§,g R N N R R R 130
X:i S0 2805500000000 BEstLIBCAaNssLNSEsINS '36
X,d O % 8 08500 S0 EO O ELOEOOEPNNEELBS OO EEOELIOS PN IIDN :g;
X,k €8 488200000000 000 0808000080000 b000s00s0 1 9
X,l LR N A N R Y YRR 124
x,m ® 0 0 4 000000 CE PP IBLONGELLEBILISIINBIELNISIPOSS

x’n LA EL A B BB AY BN I B BB B AR S B AU A A A AR 2K KR B B RN Y B R B K IR N 146

Equation de continuité...ceceineereervasnccccscnnsen 9, 125
Equation de Jacobl ..ecciiierincennsennaene. 118, 120, 122
Equation de DiTac ceeeeesscecscorcaconns 63, 64, 65, 66, 68



GQ

'Io

M.

INDEX ALPHABETIQUE 157

\ -

Pages

Fonction & de DITAC ereeevecrecreionenennnncacans 16, 19
Fonction de Jacobl teeveeeienecenncssonssonncnne 133, 135
Fonction de Lagrange ....ccceeecsccserccssossssssssone 124
Fonction hamiltonienne seeececsvececcsesscsssscsnsanee 8
Fonction NOIMEE ceeeeeernssscrscascsosossascssccccvosnss 13
FONction Propre c.oeeccececccecessscccsacosesosscessss 12, 715
Fonctions de base .ccvevunn. eesesessscnsenesanen cesen 22

Force de Lorentz (& quatre dimensions) ............ 59, 110
Fusion (procddd Ge) .tviaerrveenereerescnccannanns oo 37

Globule de probabilité cvvveverreecrereeeaneesnosoannse 119
Gordon (décomposition de) ..........c...e..... 83, 85, 144
GOUASIAT +eveeenrvosesesaseserocccacncasancseoas 36, 52, TH
Grandeurs de champ sesesocasn ceveanan seacacseses 25, 46, 76
Grandeurs canoniquement CONJUEUEES cvvoveresorscsnsncns 28
Groupe des rotations spatiales ...cececrracrencsnsncas 31

Heisenberg (inégalités dtincertitude de) c.oveveves 19, 26
(matrices de) «.evvrenvenrnccnnnnees 23, 75, 104

Inégalités d'incertitude de HOiEenberg «........... 19, 26
Intégrales premidres ccc.iceciiieiicniinriisices 25, 26 69
Invariance relativiste ...ciececcceessserccessvensscens 69

JOLAOt evveevovenencannnns e, e Ceeeaaes cees 97

.
.
.
.
.
.
.
.
O
-
-
O
n

Klein (paradoxe de) .eeecocss.

Larmor (rotation de) c....eeevun.n. cesesesnsescrananses 113
Longueur d'onde de Compton .eceveeves. cerrsesesesss 92, 106
Lorentz (transformation de) .ce.eeeeeeeenseeesss 6, 69, 149

" (£OXrce A€) cvevecnecossrnoccesnncnns ceeicseseae 59

Magnéton de BOMY .icveveeresesesssssercesssnseses 36, 52, 71
Matrice adjointe ccceececscerccecsassrecccsessccacvonas
" antihermitienne ..c.ceecvceccvsscnrrccocssccens m
. 48 DiXAC svscccrsssescsscesccscnssassssssasscce 64
" de HelBenberg .veeececeseccorecensenncsas 23, 75, 101
" de von Neumamn .ceoeeeessecosccosscsssessceosocs 66




158

Ui
.

INDEX ALPHABETIQUE

 Pages

Matrice de Schr8dinger eiceeisecececcevsetsnassscessssese 23

" d1ag0N8le Jeseeerecrscsnncsersertsrrennststsnnns 20
" hermitienne «..ececeiecneniocarerncnseass 21, 62, 76
" INVETrSe ceveeeseesnrecsanscscssetrscesssscnnsss 21
" TranspoSEe ceeeeeeeerrecrccccscsssserssscnsenses 21
" UNItAITe seevecrreecnrerrencaronscnanencseass 21, 63

Minkowskl (variable8 d€) ceceeeerescecrcansevaroscosons 39
Moment cindtique DProPre .v.veseeeeceesnans.eeoss 39, 43, 47

orbital .i.eeieireiiennenses 29, 40,41, 69
Moment de rotation .eeecercicerieccsccnscorcascncrsanss 29
Moment A'imPUlSion sesveeeessrenascrsssscncsnccccosnoss 29
Moment magnétique DrOPre ..veevevssecssesssansosssss 51, 107

Occhialind suicuievveececcerereosersbenanenconassassooses 97
Onde plane & énergie négative ...vivecesosccans 83, 89, 95
Onde plane monochromatique .......... 10, 14, 78, 79, 80, 122
Opdrateur- adjoint ...eceveeerenecerenescocncescsconnees 27

" COMPlet +evvuieenererercocceroscsscssosnnoonse 11
" de epin t0tal tetsereecescecccsstrsnssanans 36
" incumplet .ciivececircitstcicitccnrerssrsnnnn i

" hamiltonien ceveeeeccecseossonenccas 11, 15, 18
" - hermitien s.eeesreesrecseccevorsrnnsavosssnes 11
" 1indaire cecessnrecssscsnncesocssassssssasons 11
Optique géométrique (approximation de 1') .... 9, 117, 120

Paradoxe G8 Klein svsvevesrevocesvocsscrccncssncens 91, 92
PAULL covvevvconcnsssoscsnscesssasss 26, 107, 110, 126, 129
o v 1 T 92
POSItON cietieeerneeterecscoccacssvecancssssasssssasssns 97
Probabilité de valeur DPIrOPre cecesescvcescasscssscsssses 18

Quadrivecteur densité-courant ...eveeceeceescascreone 83
" densité de Spin tevesrcniiirrnnsncsronas 82
" densité-flux S o0 s 0 e 0o P e BOEIEIES 73, 77, 81, 117

Représentatién et eerensssiteseseet s tesesetssneenrass 64
Rotations spatiales (groupe des) ..eeeeereececssoncoes 31

Schrodinger (matrices @) seeeeeesceseccarssnssosccnne 23
" (tremblement de) sivieceecraveoseseses 101, 103
Spectre CONTINU toeeereosreteaacrososnnsonncsnsssnsons 13

Spectre de Iail8 .v.cieceecrcsscenconcnsscessocssscoos 12



INDEX ALPHABETIQUE 159

Pages

SPIN teveirssiiinneneesess 35, 46, 61, 69, 70, 80, 107, 114
SPINEUIS svsassssssssnsssasassascscessssssssassossscnss 66
Systime complet (ou incomplet) eesveveeseses. 14, 19, 74, 94
Systéme orthonormal .ccevosvssescscsasssssorsssaaocsnnns 13
SYSt3Me PIOPIe seeevvescsssssosscscacssossssosssonna 45, 53

Tenseur densité d'énergie-impulsion cecveveceececrescne 85
THIDAUG +eveervsoransancnsncessacsanseas 97, 109, 115, 143
Trace d'une MatriCe ..vveveasensessvscerssosscsssansnna 22
Transformation canonique ...c.evececeovncerecaseseses. 22, 67
Tremblement de Schr8dinger «..eeeeensesssessvsssss 101, 103
Trous (théorie de8) cevveeeroevsescaosesstsssasncsanes 96
Tube A'UNIVETS teeverreresseosesvenssoassesasssnnas 47,48

UhLenbeck +everennnnurnreneinnneecaencencnnnnens 36, 52, T

ValoUr MOYENIE seevsosossssssnssstssosssnsscsnononscnos 33
ValOUYr DPIOPTE sessesccosnrssscssesoossecssssossssosnss 12, 33
Valeur propre multiple (ou dég8nérée) ...eeeveconsss 13, 18
Vitesse G'UNIvers ceeeceecoresesoscrscnsocsssssscsases 54
VOlUE PIOPIE coesersoveoassssasesvsosasnnsssssssnsscas 57

WeYSSerNOLE «eveveeenensnenenaens 46, 50, 54, T8, 129, 140




TABLE DES MATIERES

Pages
CHAPITRE I

LA MECANIQUE ONDULATOIRE NON RELATIVISTE A UNE FONCTION D'ONDE 5

1. Idées et équations générales de la Mécanique Ondula-
todre cecieecenenenns cereeercesacensans teecnsessansa 5

2. Equations d'onde de la Mécanique Ohdulatoire cc..se.
3., Nouvelle conception des grandeurs attachées & un

corpuscule ....... seseesrcassans seeesescsesseccsvenas 10
4, Valeurs propres et fonctions propres d'un opérateur
lindaire et hermitien ceececesereescsrseesscessnsnces 12
5. Spectre continu de l'opérateur hamiltonien d'un cor-
PUsSCUle 1ibTe ceeeveesrsscccsorcsscscacscssscansonns 15
CHAPITRE II
INTERPRETATION PHYSIQUE DE LA MECANIQUE ONDULATOIRE cavc.es. 17
1. Principes géNnéraux seeeeeccceccscecosserssasssobonns 17
2. Les matrices algébriques et leurs propriétés sevsene 20
3. Opérateurs et matrices en Mécanique Ondulatoire .... 22
4. Valeurs moyennes et grandeurs de champ en Mécanique
Ondulatoire ceeceeeestsvceccssocsaconsoscosvosssnnses 24
5. Intégrales premidres en Mécanigue Ondulatoire ...... 25
6., Forme précise des relations d'incertitude .......... 26
CHAPITRE III

THEORIE QUANTIQUE DES MOMENTS CINETIQUES ET DES SPINS .... 29
1. Moment cinétique orbital ............ cesesssesrccoae 29

2. Le moment cindtique et le groupe des rotations
Sipatiales @ e 0000 ee e seses e PO RIIERIRLBIRIGEINBOIBOIRPEDR S 31



162

3

4.

TABLE DES MATIERES

Résultats généraux relatifs aux valeurs propres d'opé
rateurs satisfaisant aux relations de non-commu-
tation (III,a) R N R R I N I R R O N N A R R K]

Le SPIN seeeravcertoeersnsseooscscocsccaconsnsoncses

CHAPITRE IV

LES MOMENTS CINETIQUES PROPRES DU POINT DE VUE RELATIVISTE

1.
2.

3.

4,

5.
6.

T

GENEralités cceeeeececrcsvstcsrssscnsscrrsasssoassanss
Représentation relativiste du momeunt cinétique orbi-

72 T

Etude du moment cinétique propre du point de vue re-
lJativiste ceeeceeeeicncincccsctceccocnsesornscnrscnne

Théorie relativiste générale des moments cinétiques

PYOPIES covcocsosacasrsssassssssosssssssasacssnsassons
Aspect relativiste des moments magnétiques propres .
Rapport entrs les moment magnético-électrique et le

BPIN eeceecncstrereonssesassscccrsrssasssosnsrscranas

Théorie de M. Jan. v. Weyssenhoff ..cceeveeancoccess

CHAPITRE V

LA THEORIE DE L'ELECTRON A SPIN DE DIRAC cecevccocsosncnce

1.
2.
3

Les dquations d'ondes de 1l'électron & 8pin .esecesoss
Invariance relativiste des équations de Dirac ..cees
Le spin de l'électron en théorie de Dirac ..csceeceece

CHAPITRE VI

Pages

33
35

39
39

40
42

47
51

52
54

61
61
65
69

FORMALISHE ET INTERPRUTATION PHYSIQUE DE LA THEORIE DE DIRAC 73

1.

2.

3.

Formalisme général de la Mécanique Ondulatoire rela-
tiviste de 1'électron de Dirac ..ecececsceceacsesaens

Les grandeurs de champ définies par la théorie de

DIrac seieeeeesescrsoscisstssssssssarsssoseassnsnansse
Les ondes planes monochromaticues en théorie de IIRAC
Le quadrivecteur densité-courant et sa décomposition

73

76
79
83



TABLE DES MATIERES 163

Pages
CHAPITRE VII '

LES SOLUTIONS A ENERGIE NEGATIVE EN THEORIE DE DIRAC ..... 89
1. L'onde plane & énergie négative ....csescesccconcess 89

2, Caractd®re incomplet du systime des ondes A& énergie
POSItiVe cevececececssccocccncocsssssssscccsssssocne 92

3. La théorie des "trous™ de Dirac ccccecccecrsncesanes 96

CHAPITRE VIII

LE TREMBLEMENT DE SCHRODINGER seevecesccccccasosccccnnsona 101

1. Le centre de gravité de 1la probabilité dans les Mé-
caniques Ondulatoires seevssccccsesssseccsssscccccans 101

2. Le théordme A'EhRrenfest c.ecieeecsssscsssccscsssnses 103
3. Le tremblement de Schr8dinger ..cceecesecescesscsasne 103

CHAPITRE IX
POSSIBILITE DE MESURER LE SPIN DE L'ELECTRON seacccecsesees 107

1. Idées actuelles sur la question .sceeecescsccccsssses 107

2, Action d'un champ magnétique sur le moment magnéti-
que propre .l'."..r.......'l...‘...D.‘......‘.....D 107

3. Mesure du champ magnétique produit par 1'électron .. 109

4., Compensation de la force de Lorentz par un champ
électrique G0 006 08O 0PSB OSSOSO SN PESLLENLISIOSEREIOEINPOEINIDS 110

5. Arr8t d'un électron orienté par un gradient de champ
ma@étique S & 0 5 50000808 D OSSOSO LLOELIBIEOIBIBIOSESLSEOSEOESEDSTPOSEEOSEDISIOORNGS 112

6. Mesure du moment cinétique propfe (8pin) secoccsseas 114
7. COncluaion '......‘..‘_.‘...I.‘."..'.......C'...'... 114

CHAPITRE X
PASSAGE A L'APPROXIMATION DE L*OPTIQUE GEOMETRIQUE EN ME~
CANIQUE ONDULATOIRE RELATIVISTE seeeeccsassvsscccscscensos 117
1. L'approximation de l'optique géométrique .eeceeeeess 117
2. La méthode W.K.B. d'approximations successives ..... 119
3. Passage & 1l'optique géométrique en théorie de Dirac 121
4., La méthode W.K.B. en théorie de Dirac .....:........, 126




164

9.
10.

11.

TABLE DES MATIERES

Application ~ du mode de raisomnement de Pauli quand’

on part de la mécanique ponctuelle de Weyssenhoff ..

Calcul: des fonctions C, et C, dans le cas du mouve=-
ment d'un électron dans la direction d‘'un champ ma-
gnétique permanent et homogdNe s.ceesvesccscrscsonss

Retour sgur le passage & 1l'optique géoméirigue en
théorie de Dirac «veeseescesssnoacsssonssossscassnns

Démonstration générale des formules [X,i] et [X,j] &
partir de la décomposition de GOrdon .ecececeececaces

Interprétation de la condition F(ay) = O0¢ seveevsse

Vérification de la relation (gl.,), =0 dans deux cas
particuliers SimpPles .tacveececcsscecsscaccccasassencna

Conclusion. Valeurs Numériques seecesesscesccssvcces

INDEX ALPHABETIQUE ¢eceveveccncssssssnssanonsssscsssconcne

Pages

129

132
136

144
146

148
150

155



ACHEVE D’IMPRIMER
LE 15 SEPTEMBRE 195!
SUR LES PRESSES DE
J. & R. SENNAC
IMPRIMETURS
54, FBG. MONTMARTRE
PARIS (9°)

Dépét 1égal Imprimeur N° 2669
Dépot légal Editeur N° 373



