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PRÉFACE

Bans le présent volume, j'ai exposé la théorie des particu 
les de spin % (électrons de Dirac) en comparant mes points de 
vue sur quelques grands problèmes à ceux que d'autres auteurs 
ont indiqués dans des mémoires récents.

J'ai commencé par rappeler les principes généraux de la Mé 
canique ondulatoire et de son interprétation physique. Puis j'ai 
introduit la notion de spin d'une particule et je l'ai examinée 
sous divers aspects. J'ai fait ensuite un exposé de la théorie 
de l'électron considéré comme un corpuscule de spin % (théorie 
de Dirac).

Je n'insiste pas ici sur les phénomènes qui en ont reçu une 
interprétation satisfaisante alors qu'ils étaient rebelles à 
toute explication complète par les anciennes théories; pour ces 
question, je renvoie à mon livre "L'électron Magnétique"5'

Par contre, j'ai analysé une dynamique relativiste des 
fluides à spin et des particules à spin due à M. Weyssenhoff 
pour montrer sa liaison avec des conceptions exposées antérieu 
rement.

La dernière partie de cet ouvrage est consacrée & la possi 
bilité de la mesure du spin de l'électron : la validité des ar 
guments de Bohr tendant à prouver qu'il est impossible de me 
surer directement le spin de l'électron me semble en général li 
mitée au cas des vitesses faibles par rapport à celle de la 
lumière. Enfin l'opinion de M. Pauli, selon laquelle la mécani 
que ponctuelle d'un électron de Dirac est identique à la mécani 
que ponctuelle d'un électron sans spin, est en contradiction 
avec mes conclusions. Et sur ce point , dans l'état actuel des 
recherches, un examen, même approfondi, ne permet pas encore de 
se prononcer.

La présentation que l'on a donnée à ce livre a été volon 
tairement choisie pour conserver à ces réflexions leur caractère 
d'actualité.

Je tiens à remercier bien vivement M.Michel Oazin de l'aide 
très importante qu'il m'a apportée pour la publication du pré 
sent ouvrage.

Louis de Broglie.

(1) “L'électron Magnétique" (HERMANN, Paria, I93+).



CHAPITRE I

LA MÉCANIQUE ONDULATOIRE 

NON RELATIVISTE 
A UNE FONCTION D'ONDE

I. IDÉES ET ÉQUATIONS GÉNÉRALES 
DE LA MÉCANIQUE ONDULATOIRE

L'idée qui a servi de point de départ à la Mécanique ondu 
latoire a été la suivante : puisque pour la lumière, il existe 
un aspect corpusculaire et un aspect ondulatoire reliés entre 
eux par la relation :

énergie = h » fréquence
où figure la constante h des quanta de Planck, il est naturel de 
supposer que pour la matière aussi, il existe un aspect corpus 
culaire et un aspect ondulatoire, ce dernier longtemps méconnu 
Ces deux aspects doivent être reliés par des relations générales 
où figure la constante de Planck et doivent contenir comme cas 
particuliers les relations applicables à la lumière.

Pour développer cette idée, il faut chercher à associer un 
élément périodique au concept de corpuscule. Imaginons un cor 
puscule qui se meut d'un mouvement rectiligne et uniforme dans 
une certaine direction en l'absence de tout champ. Nous fixons 
uniquement notre attention sur l'état du mouvement du corpuscule, 
abstraction faite de sa position dans l'espace. Ce mouvement 
s'effectue dans une certaine direction que nous prendrons comme 
axe des z et il est défini par les deux grandeurs "énergie" et 
"quantité de mouvement" dont les expressions relativistes en 
fonction de la masse propre m0 du corpuscule et de sa vitesse 
v = (3c sont données par les formules :

w m0 c* “p-JlkjL
VhF V.

d'où l'on tire la relation :

/



8 CHAPITRE I - 1

1>'état de mouvement se trouve ainsi défini dans un certain sys 
tème de référence Galiléen, pour un observateur A qui emploie 
des coordonnées x,y,z,t.

Soit maintenant un autre observateur B qui possède par rap 
port au premier la vitesse v- dans la direction oz, autrement dit 
qui est lié au mouvement du corpuscule. Nous pouvons supposer 
que B a choisi un axe 00 z0 qui glisse sur oz et des axes 00 x0 et 
Qojo parallèles à ox et à oy. Cela étant, les coordonnées x0,y0 , 
z0 ft0 employées par B sont liées aux coordonnées x,y,z,t de 
l’observateur A par les formules de la transformation de 
Lorentz :

x

Or pour l'observateur B, la vitesse du corpuscule est nulle: 
il pose donc comme valeurs de l'énergie et de la quantité de 
mouvement :

W0 = m0 c

Suivant notre idée de base, nous devons maintenant chercher 
à introduire un élément périodique et nous tenterons de définir 
l'élément périodique souhaité sous la forme d'une onde station 
naire dans le système propre du corpuscule (système de l'obser 
vateur B). Nous poserons donc :

et nous supposerons A constant ; vc est la fréquence propre de 
l'onde et doit dépendre de la nature du corpuscule envisagé. 
Quelle valeur devons nous donner à cette constante ? Nous devons 
évidemment chercher à la définir à partir d'une valeur non nulle 
qui caractérise le corpuscule dans son système propre et nous 
n’avons à notre disposition comme telle grandeur que l'énergie 
W0. Etant donné le rôle joué par la constante des quanta dans 
toutes les théories quantiques, il est naturel de poser :

_ Wc _ mec 
0 “ h " h

analogue à la relation d'Einstein pour les photons.

Comment va se manifester pour l'observateur A l'élément pé 
riodique que nous venons de définir pour l'observateur B ? En 
supposant, ce qui est l'hypothèse la plus simple, que ip soit un 
invariant relativiste, il suffira pour obtenir l'expression de 
l'onde pour A de substituer dans son expression pour B la qua 
trième équation de la transformation de Lorentz, d'où :

(x,y, z, t ) = Ae 1

v

avec :
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Ainsi pour l'observateur Ar les phases de l'élément périodique 
introduit sont réparties comme les phases d'une onde plane mono 
chromatique dont la fréquence v et la vitesse de propagation de 
la phase V ont les valeurs indiquées.

En comparant les équations précédentes, on trouve W= hv, 
relation qui sera évidemment valable dans tous les systèmes 
Galiléens puisque rien ne distingue l'observateur A des autres 
observateurs Galiléens. Pour la longueur d'onde de l'onde<Ji d'a 
près la définition usuelle, on trouve :

A v v ’’ w p

formule fondamentale qui, pour les faibles vitesses, prend la 
forme approchée :

vérifiée avec une grande précision par les expériences de dif 
fraction par les cristaux des électrons et autres particules 
(y compris les neutrons) ainsi que par les expériences de BSrsch 
sur la diffraction des électrons par le bord d'un écran.

Pour aine particule de vitesse très voisine de c, on trouve

v — V ~ c W = h v hv
c

On retrouve ainsi les formules fondamentales de la théorie des 
photons (quanta de Lumière d'Einstein).

Nous pouvons maintenant écrire la forme du dans le sys 
tème A :

4» = Ai
AAA (Wt— p, z )

et plus généralement, si les axes rectangulaires ont une orien 
tation quelconque,

^(Wt-Pl(x-fcy-fc2) ' â«L(wt-p.r*)
( x , y, z,t ) = Ae =Ae

On voit donc qu'au facteur près la phase de l'onde est
h

égale à l'action Hamiltonienne du corpuscoile. En constatant 
cette proportionnalité entre l'action Hamiltonienne du corpuscu 
le et la phase de l'onde qui lui est associée, on s'aperçoit que 
le principe d'action stationnaire valable pour la dynamique des 
corpuscoiles doit n'être qu'ome traduction du principe de Fermât 
valable pour l'onde associée. Mais la théorie ondoilatoire nous 
apprend que le principe de Fermât est valable seailement dans le 
domaine où l'optique géométrique est utilisable et perd sa va- 
leur dans le domaine de l'optique physique proprement dite. On 
arrive ainsi & l'idée fondamentale que l'ancienne Mécanique 
(aussi bien sous la forme relativiste que sous sa forme Newto 
nienne classique) n'est qu'une approximation ayant le même do 
maine de validité que l'optique géométrique. Dès lors, on est

2



8 CHAPITRE I - 2

amené à concevoir la nécessité de construire une nouvelle Méca 
nique qui serait & la Mécanique ancienne ce qu'est l'Optique 
ondulatoire à l'Optique géométrique. C'est cette idée que nous 
allons développer*

2. ÉQUATIONS D’ONDES DE LA MÉCANIQUE ONDULATOIRE

Sous sommes parvenus à l'idée qu'il faut associer à un cor 
puscule une onde représentée par une fonctioncj>(x,y,z,t) qui 
sera généralement différente de zéro dans une région étendue de 
l'espace. En d'autres termes, nous adjoignons à l'idée de cor 
puscule celle d'un champ au sens de la physique du champ, le 
champ <\).

La fonction d'onde cjj devra satisfaire à une certaine "équa 
tion de propagation" qui va remplacer les équations classiques 
de Newton et servir de hase à la nouvelle Mécanique. Nous allons 
chercher à écrire cette équation sans nous préoccuper pour 
l'instant de satisfaire aux exigences de la théorie de la. Rela 
tivité. Nous obtiendrons ainsi une Mécanique ondulatoire non re 
lativiste valabl3 seulement pour les mouvements de vitesses très 
inférieures à g_.

Considérons un corpuscule de masse m se déplaçant dans un 
champ de^ force qui dérive de la fonction potentielle U(x,y,z,t). 
Soient p- 1*'impulsion du corpuscule, E son énergie totale :

E =-l-mv2 + U(x,y,z,t) (p/+py2+p/) + U (x,y,z,t )

Par définition, nous appelons fonction Hamiltonienne 
H(x,y,z,t,p„ ,py ,p2 ,tj la fonction des Coordonnées, des composan 
tes de l'impulsion et du temps qui donne la valeur de l'énergie. 
On a donc ici :

H(x,y,z,t,px,p Pz) =^(p*2+Pv2+p/)+U (x.y.z.t

Le développement de la Mécanique ondulatoire a montré que 
l'on obtient l'équation de propagation pour les ondes t|> à par 
tir de la fonction Hamiltonienne H par le procédé suivant s on 
commence par remplacer dans l'expression de H chacun des moments

L \
pk par 1 'opérateur -ce qui fournit l'opérateur :

H op
— H Ix v z t h à h à hô\ 
-H |x,y,z,t, - — , -j—r -g-,-—-g-j

dit "opérateur Hamiltonien" ou plus brièvement Hamiltonien. Puis 
ont écrit :

h d(j> 
2m ôt

HoP4>
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ip étant la fonction d'onde. On obtient ainsi l'équation d'ondes 
du corpuscule considéré.

En explicitant la forme de Hop, on obtient :

(’.a) 2^-^ = A4»^u4>

ou encore :

4-jti.m <3d)

Cette équation de propagation étant du premier ordre par 
rapport au temps, permet en principe de calculer la forme de la 
fonction à tout instant t quand on connaît sa forme d)(x,y,z,t0) 
à 1'instant initial t0.

L'équation (I,a) est à coefficients complexes : la fonction 
(Jla un caractère essentiellement complexe. Nous désignerons par 
P* la quantité complexe conjuguée de la quantité complexe F. 
L'équation satisfaite par la fonction d>*est l'équation complexe 
conjuguée de (I,a).

Si nous posons par définition :

p = 4^4)* ; f=4ïu ïï (^*9^ 4*—4>grâa 40

on démontre en partant des équations satisfaites par <|> et 41* que 
l'on a :

+ div f =0

Cette équation à la forme classique d'une équation de con 
tinuité. Si l'onde ip occupe un domaine D (fini ou infini) et est 
nulle aux limites de D, on tire de l'équation précédente que :

/pdT ~/o l +
est constante au cours du temps. Comme la fonction 4*, solution 
d'une équation linéaire n'est définie qu'à une constante multi 
plicative près, on pourra choisir cette constante de façon à 
avoir constamment :

l l+N'-'
On dit alors que 4* est normée et nous admettrons que toutes les 
fonctions <|» doivent toujours être normées, hypothèse que justi 
fiera l'interprétation physique donnée plus loin à la grandeur 
|cjj|2 . Même nozmée, la fonction 4> contient encore un facteur ar 
bitraire e L“ de norme 1 .

On démontre que la Mécanique ondulatoire dont nous venons 
d'obtenir l'équation de base admet la Mécanique ancienne comme 
approximation au degré d'approximation de l'optique géométrique.
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Un cas particulier Important est celui où la fonction U ne 
dépend pas du temps (champ extérieur permanent)» L'équation des 
ondes i|j admet alors des solutions"monoehromatiques" ne contenant

Et
le temps que par un facteur exponentiel de la forme e h .Une 
telle onde est solution de l'équation :

Ac|i + ^[E-U(x,y,z,t)]tj; =0

comme cela résulte par substitution dans l'équation (I,a).

, Dans le cas plus particulier encore où U = 0, on trouve
comme solution de l'équation des ondes les "ondes planes mono 
chromatiques" du type :

t|,=Ae1r[Et'vSF(a!<+Py+^)^

où A est une constante et a,(à, y sont les cosinus directeurs 
d'une même direction liés par la relation a2+(32+y* =1 • Cette so 
lution représente une onde plane monochromatique de fréquence
v=-|-et de longueur d'onde :

\ _ h _ h _ h 
A ~ \fZmE ~ p ~ mv

se propageant dans la direction a,P,y. Nous retrouvons donc ain 
si (avec seulement une différence sans importâmes dans la défi 
nition de la fréquence v ) 1'onde plane monochromatique que, dès 
ses débuts, la Mécanique ondulatoire avait fait correspondre au 
mouvement rectiligne et uniforme en l'absence de champ d'un cor 
puscule de masse m, d'énergie £ et de quantité de mouvement mv 
dans la direction a,p,y.

3. NOUVELLE CONCEPTION DES GRANDEURS ATTACHÉES 
A UN CORPUSCULE

Dans la méthode que nous venons de développer, on substitue 
aux grandeurs px,py,pz, qui, dans l'ancienne Mécanique, repré 
sentaient la quantité de mouvements du corpuscule les opérateurs

>— tt-? -5- • Cette idée de substituer ou de 2 m ox 2m oy 2 m oz
faire correspondre des "opérateurs" aux "grandeurs" classiques a 
été érigée en principe général au cours du développement de la 
Mécanique ondulatoire. On a admis qu'à toute grandeur mesurable 
(observable) définie par la Mécanique classique doit correspon 
dre dans la nouvelle Mécanique un certain opérateur. Pour former 
cet opérateur à partir de l'expression classique de la grandeur 
exprimée à l'aide des variables de Lagrange x,y,z,px,py,pz,on a
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Atix grandeurs x,y,z, on fait cor- 

c'est-à-dire multiplication

été amené à adopter la règle suivante : aux grandeurs px,py,p2 
on fait correspondre, nous le savons déjà, les opérateurs

h d___h_ _cf h 3
2 ni dx' 2 ni dy’ 2ni dz 

respondre les opérateurs x. ,y 
par x,y,z. Nous n'aurons qu'à remplacer dans l'expression clas 
sique de la grandeur considérée en fonction de x,y,z,px,py,pz, 
les variables canoniques par les opérateurs correspondants pour 
obtenir l'opérateur qui correspond à la grandeur. Cet opérateur 
pourra contenir le temps comme paramètre numérique si l’expres 
sion de la grandeur le contenait. Remarquons que c'est précisé 
ment en appliquant la méthode précédente à la grandeur "énergie" 
que nous avons obtenu l'opérateur Hamiltonien.

En appliquant cette méthode à la composante suivant l'axe 
des z du moment cinétique d'un corpuscule par rapport à l'origi 
ne, on trouve l'opérateur :

(Mz)op=(xpy-ypx)op =~2jtï(x jÿ

cp étant l'azimut compté autour de oz.

Les opérateurs que l'on forme ainsi eu Mécanique ondula 
toire pour les faire correspondre à des grandeurs mesurables 
sont des opérateurs en général complexes appartenant à la caté 
gorie des opérateurs hermitiens que nous allons maintenant défi 
nir : nous dirons qu'un opérateur est Hermitien dans un domaine 
D si :

J f*Agdt = J g A" f*dr

où f et g sont deux fonctions arbitraires dans D, assujetties 
seulement à être dans ce domaine finies, uniformes et continues 
et nulles aux limites de D de façon que les intégrales de sur 
face apparaissant par l'intégration par parties de JD soient 
nulles.

Tous les opérateurs qui en Mécanique ondulatoire correspon 
dent à des grandeurs observables sont hermitiens. On peut par 
exemple le vérifier aisément pour H et Mz précédemment définis. 
Nous verrons plus loin la signification physique de ce fait.

Les opérateurs de la Mécanique ondulatoire ne sont pas seu 
lement hermitiens; ils sont aussi linéaires, c'est-à-dire tels 
que : *

A(«P,+ cpt) = A<P, + A?* ; A(ctp ) = cA<p 

ç étant une constante complexe quelconque.

Il y a encore lieu de distinguer en Mécanique ondulatoire 
deux catégories d'opérateurs : les opérateurs "complets” qui in 
téressent l'ensemble des variables du domaine D (ici : x,y,z) et 
les opérateurs "incomplets" qui n'intéressent qu'une partie de 
ces variables. L'opérateur H est le type d'un opérateur complet 
alors que Mz est incomplet.
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Bref en Mécanique ondulatoire, on fait correspondre & toute 
grandeur physique observable attachée à un corpuscule un opéra 
teur linéaire et hermitien en général complexe. Mais il est bien 
évident que si l'on parvient à effectuer une mesure précise de 
cette grandeur, cette mesure s'exprime par un nombre réel. La 
Mécanique ondulatoire doit donc pouvoir dire quels sont les nom 
bres réels qu'une mesure précise peut nous fournir comme valeurs 
d'une certaine grandeur physique.

De l'opérateur linéaire et hermitien que la nouvelle Méca 
nique fait correspondre à une grandeur mesurable, nous devons 
donc pouvoir déduire une série de nombres réels représentant 
tous les résultats possibles de la mesure de cette grandeur. Or 
ceci est précisément possible parce que les opérateurs linéaires 
et hermitiens tels que ceux employés en Mécanique ondulatoire 
ont une suite de "valeurs propres* qui sont toujours des nombres 
réels. Nous allons étudier ce point.

4. VALEURS PROPRES ET FONCTIONS PROPRES 
D’UN OPÉRATEUR LINÉAIRE ET HERMITIEN

Soit A un opérateur linéaire et hermitien* Ecrivons l'équa 
tion :

(I,b) A cp = occp

où cp est une fonction de x,y,z, et a une constante. Le temps i 
peut figurer comme paramètre dans A,cpet oc. Par définition, nous 
nommerons "valeurs propres de l'opérateur A dans le domaine D* 
les valeurs de la constante a pour lesquelles l'équation précé 
dente a au moins une solutioncp(x,y,z,a) dite "fonction propre* 
jouissant des propriétés suivantes : elle est uniforme et conti 
nue dans D et l'intégrale du carré de son module dans D est con 
vergente. Si D est infini, cette dernière condition entraîne que 
cp doit décroître assez vite à l'infini pour assurer ladite con 
vergence. De plus, si D est fini, cp doit être nulle aux limites 
de D.

Nous admettrons l'existence des valeurs propres pour les 
opérateurs rencontrés en Mécanique ondulatoire et nous allons 
montrer qu'elles sont réelles. En effet, de (I,b) et de sa con 
juguée, on tire :

J* AcP cpA* <p*]dx = (oc- a*)^*|cp|ï dx

Comme par hypothèse, A est hermitien, le premier nombre est 
nul : l'intégrale du second nombre étant essentiellement positi 
ve, on doit avoir a = oc*, donc a est réel.

L'ensemble des fonctions propres de (I,b) forme le spectre 
de cette équation. Si ces valeurs propres sont isolées, le 
spectre est discontinu, c’est un "spectre de raies". C'est au
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contraire un "spectre continu* si la suite des valeurs propres 
est continue. Le spectre peut d’ailleurs être en partie conti 
nu, en partie discontinu.

Occupons-nous d'abord des spectres discontinus. Désignons 
par <xL une valeur propre isolée : il existe au moins une fonction 
propre cp-(x,y,z,t) qui lui correspond. Montrons que l'ensemble 
des fonctions propres du spectre discontinu forme un ensemble 
orthogonal, c'est-à-dire que si cpt et cp- sont deux fonctions 
propres correspondant à des valeurs propres distinctes ocLet oCj, 
on a :

/ <er % dT-°

En effet, puisque tous les a- sont réels, nous tirons de 
et de sa conjuguée :

cpj A*cpl*]dx=(al-aJ

(I,b)

et, le premier membre étant nul (puisque A est hermitien) et 
tx^oCj, le résultat annoncé en résulte.

La démonstration précédente serait en défaut pour deux fonc 
tions propres correspondant à une même valeur propre, ^uand ce 
cas se présente, on dit qu'on a affaire à une valeur propre mul 
tiple ou dégénérée. Soit ot- une telle valeur propre à laquelle 
correspondent p fonctions propres linéairement indépendantes 
¥î.i» 5Pl2 » • • • «Tip • 0n Peu'*:f connaissant ces p fonctions propres 
indépendantes, les remplacer par p combinaisons linéaires li 
néairement indépendantes de cp- ,..., cpLp car, l'équation (I,b) 
étant linéaire, de telles combinaisons sont encore solutions 
pour la même valeur ocL de a. On voit aisément que l'on peut 
choisir ces combinaisons linéaires de façon qu'elles soient or 
thogonales. On peut donc même en ce cas choisir les fonctions 
propres de façon à avoir un système orthogonal.

Les fonctions propres n'étant évidemment définies qu'à une 
constante complexe multiplicative près en raison du caractère 
linéaire de (I,b), on peut choisir le module de cette constante 
de façon que :

La fonction cpL est alors "normée".: elle contient encore un fac 
teur arbitraire de module unité el0t. Les fonctions ept une fois 
normées forment un système "orthonormal” tel que :

iV?jdT = 5LJ
où S- est le symbole de Kronecker (SLj =0 si i ; 8U =1 ).

Passons au cas du spectre continu. Si A possède un spectre 
continu, à toute valeur propre de ce spectre correspondra une 
fonction propre cp (x,y,z,oc) où nous écrivons a comme une varia 
ble parce qu’elle varie continuement dans le spectre. On démon 
tre aisément que toute fonction propre du spectre continu est
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orthogonale aux fonctions propres du spectre discontinu s'il y 
en a un. Hais, pour exprimer que les fonctions propres du spec 
tre continu sont normées et orthogonales entre elles, il est 
utile, pour éviter certaines difficultés de convergence, de con 
sidérer, au lieu des fonctions propres (x,y,z,a) elles-mêmes 
les expressions:

Pa.*A aJ^ cp(x,y,z,a)da

dites"clifférentielleB propres" 
correspondant à des intervalles (oc,oc+ A a)choisis aussi petits 
que l'on veut dans le domaine des variations du paramètre con 
tinu a. Physiquement, cette substitution correspond à celle 
qu'on opère dans l'ancienne théorie des ondes quand l'on consi 
dère, à la place de l'onde plane monochromatique qui est une 
abstraction, le groupe d'ondes formé par une superposition d'on 
des de fréquences très voisines. Pour exprimer l'orthonormalité 
des différentielles propres, on doit remplacer les relations va 
lables pour le spectre continu par la suivante :

1
AocXdx [j!7+Aa ? (*-y'z-«)dtt][ü"t4a<pjx'y-z-a)da],4«'«*

Les fonctions propres des opérateurs complets de la Mécani 
que ondulatoire possèdent la propriété importante de former un 
système complet. Cela veut dire que sous des conditions très 
larges une fonction définie dans le domaine D des variables 
intéressées par un opérateur A se laisse développer en une somme 
de fonctions propres de cet opérateur. Si par exemple f(x,y,z) 
est une fonction des variables x,y,z, elle se laisse très géné 
ralement développer suivant les fonctions propres d'un opérateur 
hermitien complet sous la forme :

f(x,y,z) = Scl <pL(x,y,z) - Jc (a)<p (x,y,z, a) d a

la somme S étant relative au spectre discontinu et l'intégrale 
au spectre continu. Dans les développements précédents, nous 
pouvons mettre en évidence les différentielles propres du spec 
tre continu en écrivant :

f(x,y,z) = Çci.cpi(x,y,z) + X: c(oc) f* ** cp (x,y,z,cx)da
Aa Ja 1

(Pour plus de rigueur, il faudrait introduire ici la notion de 
"convergence en moyenne", ce que nous ne ferons pas).

En utilisant les formules qui expriment le caractère ortho 
normal des fonctions propres du spectre discontinu et des diffé 
rentielles propres du spectre continu, nous trouvons :

c^/0f* f(x>y-z)dT ;c(a)(*-y’z>a)d a]*

\
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les coefficients ct et c (oc.) sont souvent nommés les coefficients 
de Fourier du développement de la fonction f(x,y,z) suivant les 
fonctions propres de l'opérateur A. La série et l'intégrale de 
Fourier sont des exemples simples de ce type de développements. 
Le temps peut figurer comme paramètre numérique -dans l’expres 
sion des cL et desc(a).

S. SPECTRE CONTINU DE L’OPÉRATEUR HAMILTONIEN 
D’UN CORPUSCULE LIBRE

L'équation aux valeurs propres de l'opérateur Hamiltonien 
peut s'écrire :

Hep = Ecp.
E étant la constante oc du cas général. Pour un corpuscule libre

*=°*1h=-h4

d'où h2
ôx2 m

Acp =Ecp

soit p- le vecteur impulsion du corpuscule 
tions propres :

, -, (p** + pyy'?‘z>
ep(x,y,z,p J =ae = ae

On trouve les fonc-

avec :

(I,c)
— ( p 2+ p 2+ p 2) = -£=E
2 m ' Px py Pz ' 2m

On voit donc : 1°) que toute valeur positive de E est valeur 
propre; 2“ ) qu'à toute valeur propre de E correspond une infi 
nité de fonctions propres du type précédent obtenues en donnant 
à P*,PyiPz toutes les valeurs compatibles avec (I,c). Donc pour 
l'énergie, on trouve un spectre continu allant de 0 à + «> avec 
dégénérescence d'ordre =-= pour toute valeur de E autre que 0.

A chaque fonction propre correspond une onde plane mono 
chromatique de la forme :

cj> (x,y,z,t)=cp(x>y>z,p)e
2lU

h
Et ( Et-?
= ae "

On peut pour simplifier l'écriture poser :

E ’k = ^L
ne h

ce qui donne : 

avec la relation :

(1jl= ae 
Yk

= tfkrt-k. r;

2 h% kc~à W 2n
qui exprime (l,c) avec Iss nouvelles notations.
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Le vecteur k est appelé le vecteur de propagation de l'onde 
plane qui est entièrement _spécifiée par cette seule donnée. Il 
faut bien distinguer k et | k|.

On peut prendre indifféremment copne fonctions propres de H 
soit les , soit les cp_ qui n'en diffèrent que par le facteur
_ Lkct k 1 k

On peut exprimer l'orthonormalité des ondes planes en in 
troduisant les différentielles propres. Au cours de ce calcul 
dont nous ne reproduisons pas les détails, on est amené à intro 
duire avec Dirac la fonction "impropre* ou "singulière" 8 (x) 
ayant les deux propriétés suivantes :
1°)5 (x) est une fonction paire de x

2°) On a toujours f (x) S(x) dx =

f(o)si x, etx2 sont de signes 
contraires

o si x, et xz sont de même 
signe.

On peut représenter 8 (x) par la fonction singulière de Dirichlet 
en posant :

ô (x) = lim s in 2 Jt N x 
nx

Finalement le calcul en question montre que les 
près du spectre continu doivent s'écrire :

fonctions pro-

cf fk.x.y.z) 1 .-ifc.r 
(2 *)%

4> (iT.x.y.z.t) 1 L ( kct - k . r )
(2k)*

Le caractère complet de l'ensemble des ^ se traduit par le fait 
que, sous des conditions très générales, une fonction f(x,y,z) 
sera développable en intégrale de Fourier sous la forme :

f(x,y,z) c ("k)e _L k 'r cfk

dkdésignant dk^.dky. dkz . Les c(k) sont données par la formule

C(^)=(2è%t/f(X,Y,Z)e+ll<'Pd7'

dF désignant dx.dy.dz. C'est la formule d'inversion donnant les 
coefficients d'un développement de Fourier.

On peut aussi écrire :
/Voo

f {x,y,z)=^_J~ c(k,t)<|;1.(x,y,z,t) dk

c ("k ,t ) = c (X) e”Lkct

avec :



CHAPITRE II

INTERPRÉTATION PHYSIQUE 
DE LA MÉCANIQUE ONDULATOIRE

I. PRINCIPES GÉNÉRAUX

Nous avons vu que la Mécanique ondulatoire doit pouvoir 
calculer les valeurs possibles des grandeurs mesurables atta 
chées à un corpuscule et leurs probabilités respectives. Nous 
avons appris à représenter l'état d'un corpuscule par une fonc 
tion d'onde (JL) (x,y,z,t) solution de l'équation de propagation, 
fonction que nous supposerons toujours normée. De plus nous 
avons fait correspondre à toute grandeur attachée à un corpus 
cule un opérateur linéaire et hermitien qui permet de définir un 
ensemble de nombres réels, ses valeurs propres, et un système 
complet de fonctions orthonormales, ses fonctions propres. Nous 
sommes ainsi en mesure d'énoncer les deux principes fondamentaux 
de l'interprétation physique de la Mécanique ondulatoire.

Premier principe. - Les valeurs possibles d'une grandeur mesu 
rable, c'est-à-dire les divers résultats possibles d'une mesure 
de cette grandeur sont les valeurs propres de l'opérateur li 
néaire et hermitien correspondant à cette grandeur.

Second principe. - Quand l'état du corpuscule est représenté par 
une certaine fonction d'onde d» (x,y,z,t) solution de l'équation 
de propagation, la probabilité pour qu'une mesure précise de la 
grandeur mesurable correspondant à l'opérateur linéaire et her 
mitien A, complet et à valeurs propres non dégénérées, fournisse 
à l'instant t une certaine valeur propre est égale au carré du 
module du coefficient de la fonction propre correspondante dans 
le développement de la fonction cjj suivant les fonctions propres 

de A.

Plus précisément, si la fonction «J1 se développe suivant les 
fonctions propres et les différentielles propres de A suivant la 
formule :
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la probabilité de la valeur propre ctL est |cL|2 et la probabili 
té d'une valeur comprise dans l'intervalle (a, <x + A a) est |c(a)|2 Aa 

On peut vérifier que la fonction ip étant normée par hypothèse, 
la probabilité totale de toutes les hypothèses possibles est 
égale à 1'imité, naturellement les probabilités des valeurs pos 
sibles peuvent être fonction du temps.

Si l'opérateur A a des valeurs propres multiples, l'énoncé 
du second principe doit être modifié. Soit ocL une valeur propre 
multiple à laquelle correspondent p fonctions propres <pt), <pt2,... , 
<£p, normées et orthogonales, linéairement indépendantes. La 
probabilité de trouver par une mesure faite à lîinstant t la va 
leur at pour la grandeur A est alors la somme des carrés des mo 
dules des coefficients de<pLl ,.. ,(j)ipdans le développement du ^ ,

soit Z | cLj | . On démontre que la valeur de cette probabilité

est indépendante de la façon (dans une certaine mesure arbitrai 
re) dont sont choisies les en. . En d’autres termes, quand on
remplace les tp- • par p combinaisons linéaires linéairement indé-

T J j=p . . •>
pendantescpj, la quantité S cr reste invariante.

Quand l'opérateur A est incomplet, l'énoncé du second prin 
cipe doit subir une autre modification» Alors, en effet, les 
fonctions propres de A ne contiennent pas toutes les variables 
x,y,z et les coefficients et c(a) sont des fonctions des va 
riables non intéressées par A. La probabilité d'une valeur pro 
pre or ne peut donc être le | cLj2 correspondant qui dépend enco 
re de certaines variables. Pour obtenir cette probabilité, il 
faut intégrer sur ces variables. On peut vérifier qu'avec cette 
modification la probabilité totale de toutes les valeurs possi 
bles est bien égale à un.

Lès deux principes généraux de l'interprétation physique de 
la Mécanique ondulatoire peuvent être réunis dans un énoncé uni 
que comme l'a montre M.E. Amous. Il suffit pour cela d'admettre 
le postulat suivant : la distribution de probabilité correspon 
dant aux valeurs mesurables de la grandeur observable A a pour 
fonction caractéristique :

tp (u) =J <J/eLAud> dt

où A est l'opérateur correspondant à la grandeur A. Nous n'in 
sisterons pas ici sur cette très intéressante et élégante forme 
des lois dë probabilité de la Mécanique ondulatoire.

Un exemple simple d'application des deux principes est 
fourni par le cas de l'opérateur Hamiltonien H qui est complet. 
Si H est indépendant du temps,il admet des valeurs propres cons 
tantes E; et des fonctions propres cpt . Une mesure précise de 
l'énergie ne peut fournir que l'une1des valeurs EL et si l'on a 

la probabilité de la valeur Ek est |cj2. Si le spectre 
est discret, on a une suite discrète d'états stationnaires à 
énergies quantifiées. C'est le cas qui se présente pour les sys 
tèmes atomiques.
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Prenons un autre cas : celui de la coordonnée x du corpuscu 
le correspondant à l'opération "multiplication par x". L'équa 
tion aux valeurs propres est :

Cette équation peut être considérée comme vérifiée pour toute 
valeur réelle de x en posant :

(x,oc) = S(x-oc)

8 (x-a) étant la fonction singulière de Dirac pour x-oc . Donc, 
d'après le premier principe, une mesure de x peut nous fournir 
n'importe quelle valeur de x réelle et comprise entre -oo et + » 
De plus, les différentielles propres de ce spectre continu

S(x-cx)dat forment un système complet satisfaisant à la rela 

tion d'ôrthonormalité. Comme on a évidemment

la probabilité pour qu'un mesure de x fournisse à. l'instant t 
une valeur comprise dans J. ' intervalle (<x,<x+A«.) est :

On en déduit aisément que la probabilité pour que la présence du 
corpuscule se manifeste à l'instant t dans l'élément de volume 
dr entourant le point x,y,z, est |<J> (x,y,z,t)|2dT . La probabilité 
totale de présence en un point quelconque de l'espace est bien 
égale à l'imité puisque est normée : c'est là la raison physi 
que pour laquelle la fonction d'onde doit toujours être normée. 
L'interprétation donnée ainsi à |(|>|2 est en accord avec le ca 
ractère défini positif de cette grandeur ( | cj> |2 >0).

Des deux principes fondamentaux, on tire par des raisonne 
ments sur lesquels nous n'insisterons pas ici la conclusion sui 
vante : deux grandeurs mesurables ne peuvent être simultanément 
mesurées avec précision dans une même opération de mesure que si 
les opérateurs correspondants A et B commutent, c'est-à-dire si 
AB = BA.

L'exemple le plus important de deux grandeurs non simulta 
nément mesurables est celui d'une coordonnée x et de la compo 
sante conjuguée de la quantité de mouvement px. On a en effet :

Donc une coordonnée de Lagrange et le moment conjugué ne sont 
pas simultanément mesurables avec précision. Leurs mesures si 
multanées sont affectées "d'incertitudes" qui ne peuvent être 
nulles simultanément. Nous verrons plus loin que l'on a toujours 
pour ces incertitudes Ax-Apx » h en ordre de grandeur.

Ce sont les inégalités d'incertitude de M. Heisenberg. Plus 
généralement pour deux quantités canoniquement conjuguées p et q
on a Ap • Aq »h
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On dit, avec M. Bohr, que les quantités p et q correspondent à 
des aspects "complémentaires" de la réalité qu'on ne peut jamais 
connaître exactement en même temps.

On peut dire que, quand deux quantités p et q sont canoni 
quement conjuguées, on doit faire correspondre à p l'opérateur

- 2jÛ ~5q~ ou inversement. Comme exemple, rappelons que le moment

cinétique d'un corpuscule autour d'un axe oz est canoniquement 
conjugué de l'angle d'azimut autour de cet axe : or nous avons 
déjà montré qu'en Mécanique ondulatoire, l'on doit faire corres 
pondre à la grandeur classique Mz 1 ' opérateur - ce qUj_ 
confirme les énoncés précédents.

2. LES MATRICES ALGÉBRIQUES ET LEURS PROPRIÉTÉS

On appelle "matrice" un tableau de nombres contenant un 
nombre fini ou infini de lignes et de colonnes. Si ce tableau 
est de dimensions finies nous le supposerons carré pour simpli 
fier. Soit au l'élément de la matrice A qui se trouve à l'inter 
section de la ième ligne avec la kèmecolonne. les éléments au à 
indices égaux sont les éléments "diagonaux". One matrice dont 
seuls les éléments diagonaux sont différents de zéro est une 
"matrice diagonale". Deux matrices A et B sont dites égales si 
a. =b pour tout i et tout k.

Les matrices se présentent en Algèbre quand on étudie les 
transformations linéaires. En effet, si des variables x'L sont 
des combinaisons linéaires d'autres variables xt, on a des for 
mules de transformation du type :

ou symboliquement : 

avec la convention :

Ces formules conduisent 
matrices par les règles

1°) La somme de A et B est la matrice A+B dont l'élément d'in 
dices i,k est alk+blk.

2°) Le produit de A par B est la matrice AB dont l'élément ik

et lay bjk. De cette définition résulte qu'en général AB^BA. Si

par exception AB=BA, on dit que les matrices commutent. On 
désigne sous le nom de "commutateur" de A et B la matrice 
[A,Bj =AB-BA qui, si elle n’est pas nulle, mesure le défaut de 
commutation de A et B. Parfois on introduit aussi "l'anticommuta 
teur" de A et de B défini par [A,Bl=AB+BA. Si AB=-BA, A et B 
anticommutent. Les matrices peuvent être réelles ou complexes

x'L = Zatj Xj 

X’=AX

(AX)t = Z atj Xj

à définir la somme et le produit de deux 
suivantes :
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suivant que leurs éléments sont réels ou complexes. Nous envisa 
gerons le cas général des matrices complexes.

Une matrice est dite hermitienne si l'on a :

ai.k = akl

pour tout i et tout k. Une matrice hermitienne réelle est donc 
symétrique par rapport à sa diagonale. Les éléments diagonaux 
d'une matrice hermitienne sont réels.

Une matrice est antihermitienne si l'on a :

aik = _aki

pour tout i et tout k. Les éléments diagonaux d'une matrice 
antihermitienne sont purement imaginaires.

Le produit de deux matrices hermitiennes A et B est lui- 
même hermitien si A et B commutent et dans ce cas seulement; il 
est antihermitien si A et B anticommutent.

La matrice S est la matrice "transposée" de A si aik=aki. 
On dit que A* est la matrice "adjointe" de A si a*lk = aki.
Donc A+=A*. Si A est hermitien, on a A = A* s la matrice A est 
alors sa propre adjointe. On a évidemment (A*)*=A et l'on démon 
tre aisément que (AB)*=B*A*.

Une matrice hermitienne qui est diagonale est nécessaire 
ment réelle. La matrice d'éléments au=Slkest diagonale, tous 
ses termes diagonaux sont égaux & 1. On l'appelle la matrice 
unité et on la représente souvent par 1. Etant donnée une matri 
ce A, s'il existe une matrice A-1 telle que :

AA-’= A_1A =1
la matrice A'1 est dite "inverse" de A. Si A a un nombre fini de 
lignes et de colonnes, A-1 existe toujours quand le déterminant 
déduit des aik est différent de zéro. Qi A a un nombre infini de 
lignes et de colonnes, A-1 peut suivant les cas exister ou ne pas 
exister. On démontre aisément que (ABr^E^A'1. Quand A est une 

matrice réelle et que l'on a :

? aijaik = ^jk » Çajiaki = Sjk

on dit que la matrice est orthogonale : elle définit alors une 
transformation orthogonale qui laisse invariante la somme S xt2 
comme cela est bien connu en géométrie.On généralise cette"défi 
nition pour une matrice A complexe en disant que si l'on a :

Sa.. a*,, =8,,Sa- a? = 8l
l y ik jk>^&jt.°ki jk

la matrice définit une transformation orthogonale complexe ou 
encore une transformation "unitaire". Pour une telle transforma 
tion la somme des normes des x;, Çxt xt‘ reste invariante comme on 

le démontre aisément. Pour une matrice A unitaire. on a :

?aîiay-S|u-. Çajiaîk = Bjk

ou encore : A* A =AA* = 1 d ' oti A* = A'1 .
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Donc l'adjointe d'une matrice unitaire coïncide avec son inverse.

La trace d'une matrice A est la somme de ses termes diago 
naux :

Tr (A) =Z au
On démontre aisément que :

Tr (AB)=Tr(BA) = I au b ki
Soient encore une matrice carrée quelconque A et une matri 

ce unitaire S ayant le même nombre de lignes et de colonnes. La 
matrice S"'AS=B est dite obtenue à partir de A par une transfor 
mation canonique. On vérifie aisément que, si A est hermitienne, 
B l'est aussi. Les transformations canoniques conservent le ca 
ractère hermitien d'une matrice. Il est aisé de vérifier 
qu'elles conservent aussi sa trace. De plus, si deux matrices 
carrées A et A* sont transformées respectivement en B et B* par 
la transformation canonique S, leur produit AA* est transformé 
en BB' par cette transformation car S"'ASS'!A'S= S‘’AA'S.

3. OPÉRATEURS ET MATRICES EN MÉCANIQUE ONDULATOIRE

Supposons que nous connaissions un système de fonctions or- 
thonormales vp,,..,^,.., dans un domaine D de variations de cer 

taines variables. Nous les appellerons des fonctions de base» 
Ce système pourra être celui des fonctions propres normées d'un 
opérateur linéaire et hermitien de la Mécanique ondulatoire. 
Avec ce système de base, à tout opérateur linéaire on peut faire 
correspondre une matrice. Soit en effet A un opérateur linéaire. 
L’application de cet opérateur & une des fonctions de baseipt 
nous fournira une nouvelle fonction qui pourra se développer 
suivant le même système de fonctions de baseNous aurons donc 
une relation de la forme :

A<Pi = Ç aji «fi

avec :

D étant le domaine de variation des variables figurant dans les 
. Far définition les atj sont les éléments de la matrice en 

gendrée par l'opérateur A dans le système de base des . Nous 
désignerons cetté matrice par le même symbole A que l'opérateur 
ou, si nous désirons préciser le système de base employé, par AT. 
Il est facile de vérifier que les matrices ainsi définies véri 
fient les règles d'addition et de multiplication des matrices 
algébriques étudiées plus haut.

Si le système de base est formé par les fonctions propres 
d'un opérateur de la Mécanique ondulatoire et si 1'opérateur A 
est lui-même un opérateur linéaire et hermitique de cette Méca 
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nique, nous dirons que A est une matrice de la Mécanique ondu 
latoire. On voit immédiatement que ces matrices sont toujours 
elles-mêmes hermitiennes, c'est-à-dire que : aLj = a.

On voit d'ailleurs que la condition nécessaire et suffi 
sante pour que la matrice engendrée par un opérateur A dans un 
système de base soit hermitienne est que l'opérateur soit lui- 
même hermitien. L'heimitianité est donc une propriété intrin 
sèque des opérateurs en ce sens qu'un opérateur hermitien engen 
dre des matrices hermitiennes dans tous les systèmes de fonc 
tions de base. Toutes les matrices de la Mécanique ondulatoire 
sont donc hermitiennes.

Nos définitions établissent me corrélation très étroite 
entre les opérateurs et les matrices. En particulier la condi 
tion nécessaire et suffisante pour que des matrices commutent 
(ou anticommutent) est que les opérateurs correspondants commu 
tent (ou anticommutent) et vice-versa. Ceci nous amène à définir 
le commutateur ou l'anticommutateur de deux opérateurs A et B 
par les formules :

[A,B] =AB-BA ; [A,B]+= AB + BA •

Une catégorie très importante de matrices de la Mécanique 
ondulatoire est obtenue en prenant toujours comme fonctions de 
base les fonctions propres de l'opérateur Hamiltonien correspon 
dant au problème considéré. Soient , • • *4^1 * • * » Ie8 fonctions 
propres de l'opérateur H. Les matrices A engendrées par un opé 
rateur linéaire et hermitien A dans le . système des ^ dont les 
éléments sont :

aJk=J(^jA^dT

peuvent être nommées les matrices de la Mécanique quantique par 
ce que ce sont elles que M. Heisenberg a mises, sans les inter 
préter explicitement ainsi, à la base de sa Mécanique quantique.

Zv. i e *—jf*“
Si l'on comprend dans les (p les facteurs exponentiels .e 
c'est-à-dire si l'on pose :

2 3Ù E t
4'k = ak (x,y,z) e h

on aura :
2ni

A ak d t • e h
(Ek-Ej)t

Ces éléments définissent les matrices d'Heisenberg proprement 
dites qui dépendent du temps. Parfois on supprime dans l'expres 
sion de le facteur exponentiel et l'on pose simplement :

a* A ak d t

La matrice A' d'éléments 
mée la matrice de SchrSdinger

a*j(. indépendants du temps est nom- 
correspondant à l'opérateur A.

3



24 CHAPITRE II - 4

4. VALEURS MOYENNES ET GRANDEURS DE CHAMP 
EN MÉCANIQUE ONDULATOIRE

Envisageons un certain corpuscule et supposons connue l'on 
de qui lui est associée. Soit une certaine grandeur observable 
attachée à ce corpuscule et à laquelle correspond un opérateur 
linéaire et hermitien À. Les principes de la Mécanique ondula 
toire nous permettent de prévoir les valeurs observables possi 
bles de A et leurs probabilités. Comme il y a en général plu 
sieurs valeurs possibles de probabilité non nulle, on ne peut 
pas parler de la valeur de A à chaque instant, mais on peut 
aisément définir sa valeur moyenne (espérance mathématique) par 
la formule :

Il est facile de vérifier que l'on a d'une manière équivalente

Soit maintenant une grandeur observable B autre que A attachée 
au corpuscule et à laquelle correspond un opérateur linéaire et 
hermitien B.Soient (3, ,..,pk,.., et x, ,..,xk,.., les valeurs pro 
pres et fonctions propres de B. Si la fonction ^ se développe 
sur les xt par la formule xc , on aura :

A“Edi‘dk a*

où. afk est l'élément d'indices i,k de la matrice engendrée par A 
dans le système des X .

Donc la valeur moyenne de A peut toujours s'exprimer liné 
airement à l'aide des éléments de matrice qu'engendre l'opéra 
teur A dans le système des fonctions propres d'un autre opéra 
teur B.

En particulier si le corpuscule se trouve dans l'un des 
états propres relatifs à la grandeur B, on aura = avec 
| dt | =1 et par suite Â=a* D'où le théorème : "L'élément diago 
nal d'indices L , i de la matrice engendrée par l'opérateur A dans 
le système des fonctions propres de l'opérateur B est égale à la 
valeur moyenne de la grandeur A quand on sait que B a la va 
leur pt".

Le système des matrices d'Heisenberg a ceci de particulier 
que la matrice H correspondant à l'énergie y est représentée par 
une matrice diagonale dont les termes diagonaux sont les diver 
ses valeurs propres de l'énergie (si toutefois on a eu soin dans 
le cas où H a des valeurs propres multiples de choisir les fonc 
tions propres correspondantes de façon qu'elles soient orthogo 
nales). On a en effet :

Hik 4>kdT=Ek8lk

Ce résultat est un cas particulier du résultat général suivant 
"Si l'on construit la matrice engendrée par un opérateur A dans
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le système des fonctions propres orthonormale s de cet opérateur, 
cette matrice est diagonale et ses éléments diagonaux sont les 
valeurs propres de A".

Dans les définitions des éléments de matrice alk=/ (p* A dik dr
et des valeurs moyennes A=l cJ/'Atpd'r, les quantités sous le signe

sont des fonctions de x,y,z et éventuellement du paramètre t.

Nous les nommerons "densités d'éléments de matrice" ou "densités 
de valeur moyenne". Ces densités variables d’un point à l’autre 
de l'espace ont le caractère de grandeurs de champ attachées au 
corpuscule. Ainsi à la grandeur A, on pourra associer une gran 
deur de champ, la densité de valeur moyenne de A :

p( A) = d»*A tp

Toutefois les grandeurs de champ ainsi définies n'ont pas 
un sens physique aussi précis que dans les théories classiques 
de la Physique du champ. Elles se présentent ici comme étant 
seulement "les quantités qu'il faut intégrer pour obtenir les 
valeurs moyennes (ou les éléments de matrice)". Ce sont souvent 
des grandeurs complexes et elles ne sont d'ailleurs définies 
qu'à une divergence près. Ce sont cependant ces grandeurs physi 
quement assez mal définies du point de vue quantique qui dans 
les théories quantiques comme celles de Dirac sont des grandeurs 
à variance relativiste bien définie.

5. INTÉGRALES PREMIERES EN MÉCANIQUE ONDULATOIRE

L'élément de matrice ajk =j^ <pf A (jjk d t peut dépendre du paramè 

tre t par l’intermédiaire de «ty , de 4*i, et aussi de A si cet opé 
rateur contient t dans sa définition. La dérivée de aJk calculée 
en tenant compte du fait que cpj et c|>k satisfont à 1 ' équation 

d'ondes et que A est hermitien est :

dA

dajk

dt
où est l'opérateur obtenu en dérivant formellement A par rap 

port à t. On peut dire que la matrice d'Heisenberg dont l'élé-
, da ^

ment d'indices j , k est —-rr— est engendrée par l'opérateur

dA . 2nl 
dt

(AH-HA)et l’on pose

dA dA 2 ni. /ALJ .. dA 2ni r. ,,1dT"âF*— !AH-HA>-ït—rlAn]

Si A ne dépend pas explicitement de t, cas fréquent, 
plement :

dA 2nl

on a sim-

UM C TU r . . . T"dr=~rr iA’H ]
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Par définition, dans un problème où l'Hamiltonien H est donné, 
la grandeur observable A est "intégrale première" ou "constante
du mouvement" pour le problème considéré si 4r- = 0 . Si A ne dé-

dt
pend pas explicitement du temps, A est intégrale première si A 
et H commutent.

On peut encore définir les intégrales premières de la façon 
suivante : une grandeur, dont l'opérateur est A, est intégrale 
première si, ^ étant une solution quelconque de l'équation des

ondes, Acpl'est également. En effet, si par hypothèse ^

on a A-|^=^-AH4' etAi|; + AH . Pour que Assoit solu 

tion de l'équation des ondes il faudra que :

4A4j + 1£L ( ah-HA ) d» = 0 
dt h '

La condition nécessaire et suffisante pour qu'il en soit ainsi, 
quelle que soit la solution de l'équation des ondes, est pré 
cisément que ^y-=0.c.q.f .d.

Voici quelques exemples d'intégrales premières. Si le champ 
extérieur agissant sur le corpuscule est indépendant du temps, 
l'opérateur H ne contient pas t et comme il commute évidemment 
avec lui-même, l'énergie est alors intégrale première : nous re 
trouvons 1'analogue de la conservation de l'énergie pour les 
systèmes conservatifs en Mécanique classique. De même, si la 
composante x du champ est nulle, l'opérateur H ne dépend pas de 
x et par suite commute avec (px)op. La composante x de la quanti 
té de mouvement est alors intégrale première, théorème analogue 
à un théorème de la Mécanique classique.

Enfin si la fonction U possède la symétrie cylindrique au 
tour de oz, l'hamiltonien H ne dépend pas de l'azimut cp autour 
de cet axe. En ce cas la composante Mz du moment cinétique au 
tour de oz est intégrale première. Si le champ de force est cen 
tral, les trois composantes Mx, My, Mz sont intégrales premières 
et il en est de même de la grandeur M2 = M2 + M2y + M2. Nous revien 
drons plus longuement sur ce cas important.

6. FORME PRÉCISE DES RELATIONS D’INCERTITUDE

Nous allons donner une forme précise des relations d'incer 
titude d'Heisenberg due à M. Pauli. Il faut remarquer que cette 
forme précise n'est pas tout à fait équivalente à la forme qua 
litative Sq- ôp » h qui a souvent une signification physique plus 
directement accessible & l'expérimentateur et qui peut même être 
valable quand la forme précise ne l'est plus.
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Nous commencerons par introduire la définition suivante. 
Nous dirons que l'opérateur F 2 est l'opérateur adjoint de F dans 
un domaine D si :

’gdx

f et g étant deux fonctions du domaine D assujetties seulement à 
être finies, uniformes et continues dans D et à s'annuler aux 
limites de D de façon que les intégrales de surface pouvant ap 

paraître dans les intégrations par parties de J' soient nulles.

En comparant la définition des opérateurs adjoints avec celle 
des opérateurs hermitiens, on voit qu'un opérateur est hermitien 
si, et seulement si, il est son propre adjoint. (F=F + )

Que l'opérateur F soit ou non hermitien, la valeur moyenne 
de FF + est toujours réelle et définie positive car :

(II,a) FF + ^^FF + ddT = ^(F\Jj)* F+d»dx = ^1F+d»|2 d x

Ceci posé nous allons démontrer le théorème suivant :

Théorème. - Si deux grandeurs physiques observables correspon 
dent respectivement aux opérateurs linéaires ‘ et hermitiens A et 
B, on a :

> [A,B]
[A,b] étant le commutateur de A et de B, et crA , <rB 
écarts quadratiques (dispersions) définis par :

; aB = VTCT?

étant les

=V7Â-Âr

Pour démontrer ce théorème, nous considérons l'opérateur linéai 
re non hermitien A+ iX B où. X est une constante réelle : son ad 
joint est A- iXB et, par application de la formule (II,a), nous
voyons que : ____________________________________

(A + LXB) (A-LXB) = A2 + X2B2 - IX [A,B] 
est réel et défini positif. Donc la fonction de X

f (X) =Â? + X2 B2 -i X [A B]
est réelle et définie positive. On en conclut que [A,B] est pu 

rement imaginaire. Or f (X) est minimum, pour X0 = -À- et a

alors pour valeur f (XJ=A2 + 4- • Gomme cette valeur doit
° 4 B2

être positive ou nulle, on a :

(II,b) À5 - B1 > - 4

Posons par définition AA= A - A etAB = B-B. A et B sont des nom 
bres, mais comme A et B sont des opérateurs AA et AB sont des 
opérateurs et l'on trouve aisément :

(II,c) [ A A, AB] = [A-À,B-ËÏ] = [A,B ]

i ([A.B])'
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l'inégalité (II,b) donne alors en l'appliquant aux opérateurs 
AA et AB et en tenant compte de (II,c) :

_____ (ÂÂf- (ÂbT> ([A,B])'

[A,B] étant purement imaginaire, nous en tirons :

aA . «a=\[WWy|[Â^Ï|

et le théorème est démontré.

En Mécanique ondulatoire on dit que deux grandeurs observa 
bles A et B sont "canoniquement conjuguées" quand on a :

On a alors :

quantité purement imaginaire comme cela doit être. Ceci nous 
donne :

C'est la forme précise annoncée des relations d'incertitude qui 
donne en particulier :

h



CHAPITRE III

THÉORIE QUANTIQUE 

DES MOMENTS CINETIQUES ET DES SPINS

I. MOMENT CINÉTIQUE ORBITAL

Nous nommerons "moment cinétique orbital" (moment d'impul 
sion ou moment de rotation) d'une particule par rapport à un 
point 0 pris comme origine des coordonnées, le moment de la 
quantité de mouvement de la particule par rapport à ce point. Ce 
moment cinétique orbital est un vecteur dont l'expression est :

M = [r- « p’]

C'est donc le produit vectoriel du rayon vecteur r de la parti 
cule (de composantes x,y,z) et de la quantité de mouvement jT. En 
composantes on a donc :

Mx=-ypz—zpy ; My=zpx-xpz ; Mz=xpy —ypx
La propriété essentielle du moment cinétique, celle qui rend 
cette grandeur particulièrement importante au point de vue méca 
nique, c'est que, si le potentiel des forces agissant sur la 
particule ne dépend pas de l'azimut pris autour de l'un des axes 
de coordonnées (autrement dit si la force est partout dans le 
même plan que cet axe), la composante du moment cinétique orbi 
tal le long de cet axe est constante au cours du mouvement, au 
trement dit elle est intégrale première.

La longueur M du moment cinétique orbital est définie par 
M2 = M / + My2 + Mzz = n2 p2 - fr • p-)2 

d'après l'identité de Lagrange.

H est intégrale première si la force passe constamment par 
le point 0 (force centrale).

En Mécanique ondulatoire, nous devons remplacer les quanti 
tés ainsi définies classiquement par des opérateurs. On doit 
poser :

x/op
h

2JU dz dy

M.

__h__ l

2 ni d<p„

h / à

y/op

op 2ni ' èy dx
-yi| = -± 

flx / P Tt i

—(zf2tu ' ox

h d

2 ni

xij-

dzl
Jl j L
2 ni â<fy
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Dans ces expressions <px sont les azimuts comptés autour de

ox,oy,oz. L'un quelconque de ces trois opérateurs M..= —---—
h 2 ni dcpk

avec k = 1 ,2,3 admet pour valeurs propres les valeurs m avec m 

entier (positif, négatif ou nul) et pour fonctions propres nor 

mées rj=ê== comme on le vérifie aisément.
V 2 Ji
D'après les principes généraux de la Mécanique ondulatoire, 

on doit en conclure que la mesure exacte de l'une des composan 
tes rectangulaires du moment cinétique donne toujours une valeur

h h
égale à un multiple entier de —. Pour cette raison —— peut être 

nommée l'unité quantique du moment cinétique.

On s'aperçoit alors que l'image vectorielle du moment ciné 
tique fournie par la théorie classique a quelque chose de trom 
peur à l'échelle quantique. En effet les trois composantes du 
moment cinétique ne sont pas simultanément mesurables à l'échel 
le quantique car les opérateurs Mx,My,Mz ne commutent pas entre 
eux. Si donc on effectue avec précision la mesure d'une de ces 
composantes, il y aura seulement une distribution de probabilité 
pour les valeurs des deux autres dont on ne pourra connaître la 
valeur exacte.

On ne pourra donc pas tracer réellement le vecteur M dont 
on ne connaîtra jamais exactement plus d' une composante. Par 
contre le vecteur 7 dont les composantes sont les valeurs moyen 
nes M,,MV,MZ est toujours bien défini et c'est là ce qui permet 
d'employer à l'échelle macroscopique, où seules comptent les va 
leurs moyennes, un vecteur moment orbital.

L'impossibilité de connaître simultànèmerit les trois compo 
santes du moment cinétique s'exprime par la non-commutation des 
opérateurs correspondants. Pour écrire les formules de non-com 

mutation, nous poserons en mettant en évidence l'unité

Mx=mx h
2 TL

h
2n

avec

rn
àz ôz.

L'on peut aisément vérifier que

(III,a) [mx,m ]: -1 m. ; [m ,mj = [mz,mx]= -im

Nous verrons plus loin la signification de ces formules. 

Nous poserons aussi :
Mop=K)op2 + (My)op2 + (MJop2 = 4^

et l'on trouve :
1 f b Ô \ . 1 d2

lmx +my

m =
sin 8

d0 \S'n ^ dû)4 sln8 dtp2

4n2



MOMENTS CINÉTIQUES ET SPINS 31

en prenant des coordonnées polaires autour de 0. L'opérateur nf 
n'est pas autre chose que le Laplacien sur la surface d'une 
spnère de rayon 1. L'équation aux valeurs propres mzf=<xf n'ad 
met comme solutions finies, cqntinues et uniformes sur la sphère 
de rayon 1 que les fonctions de Laplace (0 ,cp), la valeur pro 
pre correspondant à la fonction propre y^ , où 1 est un entier 
pœitif ou nul, étant 1 (1+1). Finalement les valeurs propres de 
l'opérateur Mz sont : .

(1 = 0,1,2,...')

Il est aisé de vérifier que (m2)op commute avec mx,my,mz, ce qui 
montre que M2 est une grandeur mesurable en même temps que l'une 
des grandeurs Mx,My,Mz.

2. LE MOMENT CINÉTIQUE ET LE GROUPE 
DES ROTATIONS SPATIALES

Pour mieux comprendre le sens de la non-commutation des 
composantes du moment cinétique, il est utile de démontrer com 
ment le caractère d'intégrale première de Mz est relié aux rota 
tions autour de oz. Pour que Mz soit intégrale première, il faut 
que le potentiel U ne dépende pas de l'azimut cp autour de oz. 
Mais alors le problème de Mécanique ondulatoire n'est aucunement 
modifié par une rotation du système d'un angle quelconque Au> au 
tour de oz. Donc si^(n,0,<f,t) est, en coordonnées polaires'avec 
oz comme axe polaire, l'expression d'une solution de l'équation 
des ondes, (j)(r,0,<p+A(f> ,t) sera aussi solution et il en sera de

même de *9 |(f- ce qUi> pour A infiniment pe 

tit, est égal à .Donc l'hypothèse que le problème n'est pas 

modifié par une rotation autour de oz, entraîne que si est so 

lution de l'équation des ondes, et par suite Mzcjj en est une
d(f

autre. Nous avons vu que ce résultat entraîne le caractère d'in 
tégrale première de Mz. Ainsi se trouve mise en lumière la rela 
tion entre M. et les rotations autour de oz.

Nous allons montrer maintenant que la non-commutation des 
composantes du moment cinétique est reliée à la non-commutation 
des rotations spatiales. Soit un poinb_M djs coordonnées x,y,z 
formant les composantes du rayon vecteur OMj=ï et soit une rota 
tion infinitésimale définie par un vecteur uu passant par 0. Sous 
l'influence de la rotation üj le point M vient en M' en_ décri 
vant un arc de cercle infiniment petit MM' égal à tu MP ou: . 
co r sin POM p_
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On a donc
p' = r U) X P

Considérons maintenant trois rotations infinitésimales de meme 
valeur absolue égale à 1 autour des trois axes rectangulaires, 
ox,oy,oz. Il leur correspond trois vecteurs ,73, de même lon 
gueur portés respectivement sur ox,oy,oz. On a évidemment :

Ci = [C2*C3] ; Gj2 = [C3x C] ; ^=[3,.^]

Désignons par (w, u>2)op l'opération qui consiste à appliquer à 
un point P d'abord la rotationto2 , puis la rotation oo, et par 
(w2 w,)op 1 ' opération qui consiste à appliquer à P ces deux rota.- 
tions, mais dans l'ordre inverse. L'opération (üj., <x>2)op conduit du 
point P initial à un point P1 tel que : * p

r, = r"* [üX, x r] + [ê32 « r] + [üj, x [ üj2 « “r]]
et l'opération (w2 ojy)Qp conduit de P au point P2 tel que :

~rz=~r * [u32 «"r] + [CD, «F] + [ Cû2 » [u>, x~pj|

Les deux opérations ne sont pas équivalentes et ne donnent paB 
le même résultat : les rotations eu, et u>£ ne sont pas commuta- 
bles. La différence des résultats correspondant au symbole 
(cü,w2 - w, c^)op est donnée par :
p, -^=[<3, ’«[G|*-fr]]-[GÎ,>-[rai*Tt]]=[QJ1 -[ü^xT]] - [w2x[?x GJj]

D'une façon générale, entre trois vecteurs A,B,C, on a la rela 
tion facile à vérifier :

[a x [bxcJ] + [b * [c«a| + [cx[axb]]=o

En appliquant cette relation à u>,,üj2 et r, il vient :
r; -F2 = -[r x [üj, x C2]]=[[u5, x uS] « r] = [ (3S x r]

L'opération (üj, w2-üj2 0ü,)op est donc équivalente à u>3 ce qui 
s'écrit sous forme d'équation entre opérateurs :

Cette relation est bien équivalente à celle qui correspond à la 
première relation (III,a), car mk est égal à L-g^-et, comme une 

rotation dans un certain sens des axes correspond à une varia 
tion en sens inverse des valeurs du 4», le 

pond au symbole -M^kJop-

symbole I — corres- 
â<fk

On trouve des correspondances analogues par permutation 
circulaire sur x,y,z. Ainsi les formules de non-commutation des 
mk se trouvent rattachées à la non-commutation des opérateurs de 
rotation dans l'espace.
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3. RÉSULATS GÉNÉRAUX RELATIFS AUX VALEURS PROPRES 
D’OPÉRATEURS SATISFAISANT AUX RELATIONS 

DE NON-COMMUTATION (III a)

Nous allons maintenant effectuer l'étude générale des va 
leurs propres de trois opérateurs linéaires et hermitiens au su 
jet desquels nous supposerons seulement que l'on ait :

[mz i m*] LIT!,,Lmx ’my]= -imz ; [nVmz]==-Lmx

sans supposer qu'ils soient égaux & s

Nous étudierons les relations de ces valeurs propres avec celles 
de l'opérateur m2=m2 + mv2 + m2.

(y- ■(>

Les valeurs propres de tous ces opérateurs sont réelles 
puisqu'ils sont hermitiens. Les valeurs propres de mx2,my,mz2 sont 
donc positives ou nulles puisqu'elles sont les carrés des va 
leurs propres de mxfmy>mz. Les valeurs moyennes demx2,my,mz‘ sont 
donc nécessairement positives et il en est de même de celles de 
m2 . De là, on conclut que les valeurs propres de m2 sont posi 
tives ou nulles sans quoi pour un état propre de m2 correspon 
dant à une valeur propre négative la valeur moyenne de m2 serait 
négative, ce qui est impossible.

Par raison de symétrie, les valeurs propres de mx,my,mzsont 
les mêmes et nous savons que m2 commute avec mx ,my,mz. Comme mx 
et my sont hermitiens, en aucun cas la valeur moyenne de mz2 ne 
peut être supérieure à m2. Donc les valeurs propres de mz2 sont 
inférieures ou au plus égales aux valeurs correspondantes de m2. 
Autrement dit, les valeurs propres de mz ne peuvent être ni su 
périeures à m, ni inférieures à - m .

Ceci dit, 

d'oà :

on vérifie aisément la relation :
(mx-imy)mz-mz(mx-Lmy) = -K-imy)

(mx-imy)mz = K—l)(mx-imy)
Soient et ipL les valeurs propres et fonctions propres de mz. 
Nous allons nous servir des cpL comme système de base pour la 
construction des matrices dont nous allons faire usage. A un 
opérateur A correspondent alors les éléments de matrice A^ que 
nous écrirons simplement Alk .

On aura donc entre les mlk ainsi construits la relation :

Ç(mx-Lmy)ik (mz)kj = ÇK-^kK-^ylkj

traduisant la dernière relation de commutation, qui avec le sys 
tème de base choisi devient simplement :

(mx—imy)ljT: =(yl-l)(mx-irny)ij
Pour que cette relation soit vérifiée, il faut avoir :

soit : "Y) = Tk— 1 soit : (mx-lmy)ij = 0
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Maintenant, pour yk , valeur propre quelconque de m,, on a :

[(mx-Lmy)(mx+imy)] kk = Ç (mx-imy)u (mx + lray )lk

ou dans la somme du second membre tous les termes sont nuis sauf 
peut-être, s'il existe, le terme =-yk - 1 .Donc si yk-1 n'est 
pas valeur propre de mz, tous les termes de la somme seront nuis 
et l'on aura :

[K -imy) (mx + Lmy)]kk -°

Or on a aussi :

(mx-Lmy)(mx ùmy) = mxz + my2 + i[mx,myJ = mx2 + m y + mz

= m2 - mzz + mz = m2 + -V-
Si yk-1 n'est pas valeur propre de mz, on a donc :

[m' + l_(mz-l)^k = m2 + l-(yk-^)2 = 0

d'où :
; 0=s= \ATk=i±e ' m +

Bref, si yk est valeur propre de mz,yk-1 ,yk-2 etc... le seront
aussi jusqu'à ce qu'on arrive à une valeur propre égale à -jj- ± 0 .

On obtiendra ainsi une suite décroissante de valeurs propres qui 
sera nécessairement bornée inférieurement puisque toutes les va 
leurs propres de m2 sont supérieures à -m .Le dernier terme de

cette série sera forcément -y -0. La suite sera donc :

Yk • Tk"1 -Yk-2 -e + i

En raisonnant maintenant sur (mx + imy)(mx - imy) comme 
nons de le faire sur (mx- imy)(mx+imy), on trouverait 
que si yk est valeur propre de mz, yk +1 l'est aussi
yk =--i- ± 0 et l'on en déduit comme ci-dessus qu'on a

nous ve- 
de même 
sauf si

une suite

croissante de valeurs propres :

Yk’ Yk + 1 ’ Yk + 2 ’ • • 1
2

La suite complète des valeurs propres est donc:

3_
2 '

1
2

et il faut par suite que 0-y-(-6 +j) =2 0-1soit entier, c'est-à- 

dire que l'on ait soit 0=n, soit 0= n*;1 (n entier). La valeur 

correspondante de m2 est 02-y » d'après la définition de 0. Si 

donc nous posons par définition de j :

= J 2
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alors j sera soit un entier positif ou nul (0,1 ,2,...), soit un 

demi-entier positif • • • ) car m2 est positif ou nul. Comme

alors flz —= j ( j +1 ) , on voit que les valeurs propres possibles

de m2 sont de la forme 3(3+1) avec soit 3 =0,1 ,2,..., soit
T’§’**** Pour une m®®® valeur donnée de m2, mz a les

2J + 1 valeurs propres possibles - j , -j +1 ,---, j —1 , j.
En résumé, l'opérateur m2 a les valeurs propres 3(3 + 0 avec 

3=0,1,... ou 3 = ^,^|,..., pour une valeur donnée de J, chacun des

opérateurs mx ,my ,mz a les 2 3 +1 valeurs propres possibles 
-j , -j +1 j-1 , j . Telles sont les conclusions que nous pou 
vons tirer du seul fait que les opérateurs mx,my,mr obéissent
aux relations de commutation :

[mx , my] =-im2 ; [my,m2j =-unx ; , [mz , mx] =-1 my
Si l'on applique ces résultats généraux au moment cinétique or 
bital, on voit que l'opérateur M2 a bien pour valeurs propres

1(1+1 ) avec 1 = 0,1 ,2,... et que pour 1 donné, chacun des 

trois opérateurs Mx,My,Mz a bien les 21+1 valeurs propres pos 
sibles -1 tt* .-(1-1 );£-«........, (1-1)^-, 1^-, mais ici le nom-

bre 1 ne peut pas prendre les valeurs demi-entières,y• du

cas général. Ceci vient de ce qu'ici mx,my,mz doivent satisfaire 
non seulement aux relations de commutation (III,a), mais aussi 
aux définitions plus restrictives :

m X
(yw~z

Si donc on considère les relations de non-commutation, qui 
sont liées, nous l'avons vu, au groupe des rotations, comme ce 
qui est le plus essentiel dans la théorie des moments cinétiques, 
on peut penser que, si les moments cinétiques orbitaux ne font 
intervenir que les valeurs entières du nombre 3 <1® théorie 
générale, d'autres formes de moments cinétiques pourraient faire 
intervenir les valeurs demi-entières. C'est ce qui se présente 
dans la théorie du spin.

4. LE SPIN

Fendant longtemps, on a considéré que les particules maté 
rielles étaient entièrement caractérisées par deux constantes s 
leur masse (ou plus exactement, en théorie relativiste, leur 
masse propre) et leur charge électrique. Mais l'existence de di 
vers phénomènes (effets Zeeman anormaux, structure fine de cer 
taines raies, etc.(^impossibles à interpréter par les théories 
quantiques de l'atome, même en employant la Mécanique ondula 

(1) Voir L. de Broglle : l'Electron Magnétique, Hermann, Parle, 1934.
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toire, a montré la nécessité d'attribuer aux électrons, en de 
hors de leur masse propre et de leur charge, une troisième ca 
ractéristique essentielle, leur spin.

Si l'on reste dans le cadre des théories classiqueç.le spin 
de l'électron peut se représenter par une rotation du corpuscule 
électrisé autotir d'un de ses diamètres : cette rotation aurait 
pour conséquence l'existence d'un moment cinétique propre auquel 
nous réserverons le nom de spin et celle d'un moment magnétique 
propre due à la rotation de la charge de l'électron. Pour inter 
préter les faits expérimentaux, il est nécessaire d'attribuer au
moment cinétique propre de l'électron la valeurt ^ et à son mo-

ment magnétique propre la valeur — égale à un "magnéton de
m0c

Bohr" : c'est l'hypothèse d'Uhlenbeck et Goudsmit. On voit donc 
que pour le spin, on est amené à faire usage de la possibilité, 
prévue par la théorie générale développée ci-dessus, d'attribuer 
au moment cinétique une valeur égale à un nombre demi-entier de
fois l'unité (pour l'électron 4- fois).

dj\. f

Plus généralement, il semble bien qu'il y ait lieu aujour 
d'hui d'attribuer un spin à toute particule de l'échelle micro 
physique. Au point de vue classique, ce moment cinétique propre 
devrait être représenté par un vecteur 13 de composantes rectan 
gulaires S„,Sy,Sz dont le carré de la longueur serait î

1 s2= s;+ s !*sz2
Au point de vue quantique, nous devons remplacer les grandeurs 
classiques par des opérateurs, mais a priori nous ne connaissons 
pas la forme de ces opérateurs car nous ne connaissons plus, 
comme c'était le cas pour le moment cinétique orbital, d'expres 
sion classique susceptible de guider notre choix. Ce que cepen 
dant nous pouvons admettre, c'est que le spin, ayant la nature 
d'un moment cinétique, doit être relié au groupe des rotations 
de la même manière que le moment cinétique orbital.

Mettant en évidence l'unité quantique nous écrirons 
d'abord : R

h(S*)°P 2h S* ’’ (Sy)°P 2n Sy ; (Sz)°P 2JX “z

et nous admettrons que les opérateurs sx,sy,sz satisfont aux re 
lations de non-commutation :

[sx,sy]=-isz ; [syI sj=-isx ; [sz,sx]=-isy

correspondant aux relations admises plus haut pour les mx,m ,mz 
et qui exprimeront ici les relations du spin avec le groupe des 
rotations. Bnfin, à la place de la grandeur classique S2, nous 
introduirons un "opérateur de spin total".

h2(A
Dans

;°P 4nz
ces conditions,

avec 2 ^ 2 _ 2 
:Sx +sy +sz

il résulte de la démonstration générale
donnée précédemment que les valeurs propres possibles de S2 sont

L 2. i ^
de la forme s(s + 1) avec soit s = 0,1 ,2,.., soit s = y,y,
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et que pour une valeur donnée de s, chacun des opérateurs Sx,Sy, 
Sz a les (2s+1) valeurs propres possibles :

-sA, -M)i.....s "
2n ' ' 2n

Pour l'électron et les autres particules

tels que S

.=1.

2 n
de

2

2n
1spin y, on devra

prendre des opérateurs Sx,Sy,Sz tels que S" ait la valeur propre 
= i(-1-+1 ) correspondant à s=l; alors Sx,Sy,Sz ont les

valeurs propresil ce qui correspond bien au spin de l'élec 

tron d'après l'hypothèse d'Uhlenbeck et Goudsmit. Hous verrons 
ultérieurement comment la théorie de Dirac a précisé la forme 
des opérateurs SX,S ,SZ.

En partant de l'électron de Dirac considéré comme type de 
corpuscule élémentaire, le procédé de la "fusion" des corpuscu 
les élémentaires (1) permet de construire des particules ayant 
plusieurs états de spin total différents. Pour chacun de ces 
états, le nombre s a une valeur déterminée qui, pour les parti 
cules obtenues par fusion d'un nombre pair 2n de constituants 
peut varier de s=0à s = n et qui pour les particules formées 
par la fusion d'un nombre impair 2n+1 de constituants peut

varier de

s = a s 2 n +1
= n + T2 2

Dans cet exposé, nous nous bornerons à la théorie des par- 
cules s = 1 dont l'électron est le type.

(1) Voir L. de Broglie : Théorie Générale des particules à spin, Gauthier-Villara, Paris, 1943.



CHAPITRE IV

LES MOMENTS CINÉTIQUES PROPRES 

DU POINT DE VUE RELATIVISTE

I. GÉNÉRALITÉS

Noua verrons bientôt que la théorie de l'électron de Dirac 
noua apprend qu'en Mécanique ondulatoire on doit introduire si 
multanément le spin et la relativité qui sont étroitement liés 
l'un à l'autre. Ceci nous amène donc à étudier comment se pré 
sente au point de vue relativiste la notion de moment cinétique. 
La question peut paraître simple, mais, comme nous allons le 
voir, elle est beaucoup plus compliquée qu'en apparence, notam 
ment pour les moments cinétiques propres ou spins.

Nous supposerons connus les principes généraux et le forma 
lisme de la Relativité restreinte- Cependant nous allons rappe 
ler quelques points concernant le choix des variables. Au cours 
de cet exposé, nous emploierons en effet tantôt les variables 
complexes de Minkowski, tantôt les variables réelles d'espace- 
temps et, pour éviter les confusions, il est utile de préciser 
la forme et les propriétés de ces variables.

On peut repérer un évènement qui, dans un système de réfé 
rence Galiléen, se produit en un point à un certain instant en 
se donnant les quatre coordonnées d'Univers (au sens de Minkows 
ki) de cet évènement. Ce sont :

x.= i et
4

La quatrième coordonnée est imaginaire pure.

Avec ce choix de coordonnées, la distance de deux évène 
ments infiniment voisins dans l'espace-temps est donnée en Rela 
tivité restreinte par un ds tel que :

ds2=-E dx,2 
j J

Le ds2 a donc une forme euclidienne et c'est -là l'avantage 
essentiel des coordonnées de Minkowski. Il n'y a pas lieu alors 
de distinguer les composantes covariantes d'un tenseur de ses 
composantes contre variant e s et l'on aura :

T
rst . . .

ij k .. .
4
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ment à l'aide des composantes MlK du même tenseur dans le premier 
système par les formules classiques :

, £3 „ ,,u
,„23 M -BM 
M =  ■—3

31 _ . . 24
,31 M + B M 

M = ———
V^F

M'12 = M12

,14 M M + jb M23 
M = 1

S/TTf

.24 ^ . . 31
,24 M — (5 M 

M = ------ 1
v^-

M'34 = M34

Les résultats que nous venons de rappeler sont souvent exprimés 
en disant qu'on doit considérer tout moment cinétique comme dé 
fini par un tenseur antisymétrique de rang 2 ou tout au moins 
par les composantes d'espace d'un tel tenseur. A notre avis, 
cette manière de parler est un peu trompeuse. En effet, dans 
chaque système de référence, l'origine des coordonnées est un 
point arbitraire et le moment cinétique par rapport à ce point 
arbitraire n'a pas en général de signification physique particu 
lière. Ce qui a une signification physique intéressante, c'est 
le moment cinétique par rapport à un centre doué de propriétés 
physiques, par exemple par rapport à un centre de forces c'est-à 
dire à une particule source d'un champ de force central. Consi 
dérons un observateur qui voit passer devant lui avec la vitesse 
v un atome d'hydrogène : dans le système propre de l'atome, le 
moment cinétique par rapport à l'origine où se trouve le noyau 
a une signification physique importante; mais si nous transfor 
mons le tenseur M fourni dans le système propre par la transfor 
mation indiquée plus haut, les composantes M“, M3’, M'2 du tenseur 
dans le système de l'observateur fixe lui donneront un moment 
cinétique par rapport à son origine des coordonnées, ce qui est 
sans intérêt physique. Même pour 1'observateur fixe, ce qui a un 
sens physique c'est le moment cinétique de l'électron atomique 
autour du noyau en mouvement et non celui par rapport à l'origi 
ne arbitraire des coordonnées. Si l'on cherche comment l'obser 
vateur fixe peut représenter le moment cinétique de l'électron 
par rapport au noyau entraîné (ce qui est en somme le moment ci 
nétique propre de l'atome H en mouvement), on trouve que pour 
chaque observateur Galiléen il existe un vecteur représentant ce 
moment propre, mais que, quand on change d'observateur Galiléen; 
les composantes de ce moment cinétique propre ne se transforment 
pas comme les composantes d'un tenseur antisymétrique de rang 2. 
On voit ainsi que la représentation d'un moment cinétique propre 
par un tenseur antisymétrique de rang 2 a quelque chose de fal 
lacieux.

3. ÉTUDE DU MOMENT CINÉTIQUE PROPRE 
DU POINT CE VUE RELATIVISTE

Soit un observateur Galiléen que nous nommerons 1'observa 
teur A : il emploie un système de référence cartésien oxyz et un 
temps t. Devant lui passe un système formé d'une particule M dra
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masse propre m0 tournant autour d'un centre attractif G. Nous 
supposerons que ce système est animé d'un mouvement rectiligne 
et uniforme par rapport à l'observateur Galiléen A, c'est-à-dire 
que l'on peut lier à G un référentiel Galiléen G x0y0z0. G'est 
là une hypothèse qui soulève quelques questions délicates liées 
à la difficulté de définir le centre de gravité en théorie 
relativiste. Quoi qu'il en soit, nous admettons l'existence d'un 
référentiel Galiléen G x0y0z0 qui accompagne le système dans son 
mouvement et est animé par rapport à A d'un mouvement recti 
ligne uniforme. Nous nommerons "moment cinétique propre* du sys 
tème le moment cinétique du système par rapport à G tel qu'il 
apparaît à l'observateur A.

Pour préciser la définition du moment cinétique propre,pla 
çons-nous d'abord dans le système de référence G x0y0z0 que nous 
nommerons le système propre .

X x0

0 /G Z Z0

y *
Nous supposons que les axes Oxyz et G x0y0 zc sont parallèles et 
que le second référentiel est animé de la vitesse |ic par rap 
port au premier dans le sens oz, ce qui ne diminue aucunement la 
généralité. Alors le moment cinétique du système sera défini 
dans le système propre par les composantes d'espace du tenseur 
antisymétrique de rang 2 :

M
m„

(o)‘ X(0) V(0)
X(o)k V(o) = m„ No)

'(°)k u(°)

Explicitement le moment cinétique sera donc représenté dans le 
système G x0y0z0 par un vecteur d'espace S(°> de composantes :

(IV, a) U23S x - M (o) m.
y0 vz

(°)
z° vy

(O)

Plaçons-nous maintenant avec l'observateur dans le système Oxyz. 
Dans ce système le tenseur antisymétrique M a pour composantes :

M31
M M + Ko;

V'-P' V1 -pz

14 31 24 2i
M(0) + p M(0) M24 M(o) “ p M,o,

V'-P’ V'-P'

M = M (o)

M (O)

mais si l'origine du temps est choisie de façon qu'au temps 
t=0 le point G coïncide avec 0, les composantes M23, M31 et M12 
représentent les composantes du moment cinétique orbital de la 
particule M par rapport au point 0. Or, nous l'avons remarqué, 
ce moment cinétique par rapport à l'origine 0 des coordonnées

4*
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n'a pas d'intérêt physique j ce qui a un intérêt physique pour 
l'observateur A, c'est le moment cinétique de la molécule en 
mouvement par rapport à son point central G, quantité qui est 
pour A le moment cinétique propre du système entraîné. Comment 
l'observateur A va-t-il définir mathématiquement le vecteur 
d'espace qui représentera pour lui ce moment propre ? Il imagi 
nera par exemple des axes GÇnÇ liés à G et parallèles à Oxyz. 
Ces axes coïncident avec Gx0y0z0.Si je les appelle GÇtjÇ, c'est 
pour rappeler que, du moins en ce qui concerne GÇ, les longueurs 
évaluées par A le long de cet axe différent, en raison de la 
contraction de Lorentz, des mêmes longueurs évaluées dans le 
système propre. Les coordonnées % ,7|, Çde la molécule de coordon 
nées x,y,z sont pour A :

l = x ; T] =y ; £=z-[5ct

De plus les composantes de la quantité de mouvement de la molé 
cule de masse propre m0 dans la mesure où ces composantes pro 
viennent du mouvement de rotation autour de G sont données par :

==- représente pour la molécule dont la vitesse

c*

En effet m

\AO

totale est v la partie de la composante z de l'impulsion qui est 
due à la vitesse d’ensemble [Je . Le vecteur d'espace qui repré 
sentera pour l'observateur A le moment cinétique propre sera dé 
fini par les formules :

En comparant avec les expressions de S*1 , Sl°’ , Sl°’ , on voit tout

d'abord que, si l'observateur A était lié au système entraîné, 
il trouverait (ce qui est évident a priori) pour le vecteur S le 
vecteur S !0) car on aurait alors [b = 0, x = x„,..., vz = v ^ . 
D'autre part, on a les formules de transformation :

y=yc ; x=x0 ; z -jict = z0 \J 1 -[5Z
et des formules de composition des vitesses :

vr . v<o) vz(o) + [5 c
-----n-- *—v V.
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on tire d'abord :

De là, on tire aisément en comparant les expressions (IV,a) et 
(IV,c) :

sx = s(x0)
Ces formules de transformation sont tout à fait différentes de 
celles des composantes d'espace d'un tenseur antisymétrique de 
rang 2. Ainsi par exemple, si l'on fait tendre [ï vers 1 , le vec 
teur d'espace dont les composantes sont MZÎ,M5' et M’z tend d'après 
les formules (IV,b) à se placer perpendiculairement à oz tandis 
que S tend à se coucher sur oz.

On peut bien, pour un observateur A donné, trouver un ten 
seur antisymétrique qui ait pour composantes d'espace Sx,Sy,Sz 
dans le système oxyz et S(x , S*,o) , S(z dans le système propre : il 

suffit en effet pour cela de définir ce tenseur par les formules

S" = Sy s = s„
SM= 0

ce qui donnera bien
(o)s23 = S ' b(°) b S(o,=

(°)
(IV,d)

d'après les formules de transformation des tenseurs antisymétri 
ques. Mais, et ceci est essentiel, le tenseur ainsi défini chan 
ge quand on passe d'un système Galiléen A à un autre A' qui est 
en mouvement relatif par rapport à A. Pour le voir, il suffit de 
remarquer que s'il y avait un seul tenseur a, ce tenseur devrait 
avoir ses composantes Sa nulles dans tous les systèmes Galiléens, 
ce qui est impossible. Nous allons retrouver cette conclusion 
plus loin par une autre voie.

Finalement nous avons pu définir pour chaque observateur 
Galiléen un vecteur d'espace S définissant le moment cinétique 
propre du système considéré, mais nous n'avons pu rattacher ce 
vecteur d'une façon unique à un être mathématique à caractère 
tensoriel dans l'espace-temps.

Si l'on avait cherché à définir le tenseur S’ de façon à 
avoir dans le système propre :
„23 _ (O) 3' _ (O) _ K _ (O) , c14 _ o** _ „M _
û(o) - b(o) - Dy • S(o) - ûz - >) - S(o) - b(o) - 0
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les trois premières composantes de ce tenseur dans un autre sys 
tème Galiléen seraient :

, !°)
S = S = s (O)

\ri-r ’ “
et ce ne serait pas là les trois composantes du moment propre 
dans ce système. Cette remarque nous sera utile pour étudier la 
théorie de M.v. Weyssenhoff.

En Mécanique ondulatoire on cherche toujours à associer à 
toute particule des densités ayant le caractère de grandeurs de 
champ. Quand nous cherchons à définir en Mécanique ondulatoire 
le moment cinétique propre d'une particule (spin de l'électron), 
il sera donc naturel de définir le spin par tan vecteur S de la 
forme : __

S =/ c t dx 
J D

où cr sera la densité de moment propre.
Dans le système propre, nous aurons alors

,1°) =f ct xo) dx J 0 *
,(°l = / CTW

J d y
dx FF '°’dx

et nous supposerons cr (0) fonction de x0,y0 ,zD , mais indépendant 
de t0. Si l'on veut effectuer les intégrations en se servant des 
variables x,y,z d'un observateur A, on devra remplacer dx0 par 

d X■ à cause de la contraction de Lorentz et l'on trouvera s
V1-^ s r „<•) s r nl°) /»

s(:>=

d'où l'on tire

sx r , cw sy r c t '0) e(6) _ r <y£’ -
1 -132 Jo yFj? Y \/Fp J D ÿFp 2 z Jd yFp

c t . = cr (0) cr,, = a (0)
r<°>

<F =
'fizF

Les grandeurs ctx , cry, ctz se transforment donc comme lesjtrois com 
posantes rectangulaires d'espace d'un quadriveeteur £ dont la 
quatrième composante ct4(°' serait nulle dans le système propre. 

Pour [b tendant vers 1 , le vecteur c t  se couche sur la direction 
du mouvement. Ainsi donc tandis que le moment cinétique propre 
n'a pas de caractère tensoriel bien défini, on peut par contra 
définir une "densité de moment cinétique propre" à l'aide d'un 
quadriveeteur S- dont la composante de temps est nulle dans le 
système propre (ce qui parait naturel du point de vue physique). 
Cette dernière condition nous permet d'ailleurs d'exprimer ct, en 
fonction du vecteur d'espace ct dans n'importe quel système 
Galiléen. En effet^lejproduit scalaire :

( £ • d s) = c t 4 cdt-CTxdx-CTydy-CTz dz
est nul comme on le voit en se plaçant dans le système propre : 
autrement dit le quadriveeteur 2 est orthogonal dans l'espace- 
temps à la ligne d'Univers de la particule. On a donc dans tout 
système Galiléen (puisque £•cTs est un invariant)

a4=-3-(^-7)

Nous allons reprendra le problème de la représentation relati 
viste du moment cinétique propre en nous inspirant des travaux
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de M. Olivier Costa de Beauregard et retrouver les mêmes résul 
tats par une autre voie.

4. THÉORIE RELATIVISTE GÉNÉRALE 
DES MOMENTS CINÉTIQUES PROPRES

Considérons un fluide en mouvement conçu à la façon classi 
que. L'ensemble des lignes d'Univers de ses divers éléments for 
me un tube d'Univers occupant dans 1'espace-temps un domaine à 
quatre dimensions allongé dans le sens du temps.

Coupons ce tube par des cloisons à trois dimensions (hyper- 
cloisons) C,C',... Supposons que notre fluide est doué de moment 
cinétique propre, chaque élément du fluide transportant son mo 
ment, et cherchons avec M. Costa de Beauregard à définir en cha 
que point du tube d'Univers une densité de moment cinétique 
propre qui, intégrée sur une cloison C quelconque, donne un mo 
ment cinétique ou plus exactement tin tenseur antisymétrique du 
second rang dont les composantes d'espace définissent un moment 
cinétique. La cloison C étant à trois dimensions, un élément de 
cette cloison pourra être défini comme_un parallélépipède cons 
truit sur trois petits vecteurs ds1, ds11 et dsm contenus dans 
cette multiplicité :

Cet élément de volume peut, on le sait, être considéré comme un 
quadrivecteur, ou plus exactement comme un tenseur du troisième 
rang complètement antisymétrique dont la projection d'indice 1 
(c'est-à-dire la projection du volume sur 1’hyperplan perpendi-
culaire à l'axe des xL) est donnée par le déterminant :

dxjI dx^

[dxj ' dxk , dxj ] = dx/ dxk“ dx*

dxj“ dxk" dx®

Il est alors naturel de chercher, comme le fait M.
Beauregard, à écrire le moment cinétique propre attaché à la 
cloison C sous la forme :

dSÿ = E <xk [dxt , d Xj , dxjJ
k=1

où les quatre <7kforment les composantes d'un quadrivecteur 
d'espace-temps (ou plutôt, ce qui revient pratiquement au même 
en Relativité restreinte, les quatre composantes d'un tenseur 
complètement antisymétrique de rang 3). Ce quadrivecteur est la 
"densité de moment cinétique propre” défini en tout point du 
fluide.
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En intégrant dStJ aur la cloison C choisie, on obtient la 
grandeur :

fc)
Nou8 avons écrit SLJ car nous ne savons pas encore si cette 
grandeur dépend ou non de la cloison C choisie. Pour examiner 
cette question, il est intéressant de comparer les définitions 
précédentes avec celles que l'on adopte usuellement en Relativi 
té restreinte pour la charge et le courant électrique.

En relativité, on définit le mouvement d'une_ distribution 
d'électricité par un quadrivecteur d'espace-temps J de composan 
tes spatiales d1,j2,d3 égales aux composantes de la densité de 
courant et de composante de temps égale à cp , c'est-à-dire à c 
fois la densité d'électricité. Le mouvement d'ensemble de la 
distribution d'électricité au cours du temps sera représenté par 
un "tube d'Univers" formé par l'ensemble des lignes d'Univers de 
ses divers éléments. Sur les parois du tube, le quadrivecteur J 
est par définition toujours tangent à la paroi, ce qui exprime 
le fait physique que l'électricité ne traverse pas cette paroi. 
Nous pouvons encore couper le tube d'Univers par une cloison. C à 
trois dimensions.

Avec les mêmes notations que plus haut, 
grandeur : „

WJ) (PC[dX1’dVdx3] -J3 [dx4
C-J2[dx3,dx4,dx, ] - J, [dx2

nous définirons la

> dx, >d*Z ]

’dX3 'dX4 J)

dx, I dx/ dx/ dx 14
dx, n1 dx/ dx/ dx/
dx, HT

l dx2* dx3m dx/
J 1 J2 J3 pc

La grandeur (J) est le flux du quadrivecteur J à travers la

cloison C. Elle possède deux propriétés essentielles :

1 °- F|Cj(J) est lin pseudo-invariant relativiste, c'est-à-dire que,

pour une cloison C donnée, elle a la même valeur, quel que soit 
le système de référence utilisé pour l'évaluer. Cette propriété 
résulte du caractère tensoriel de J et des éléments d'hypersur- 
face : elle est tout à fait indépendante de la conservation de 
l'électricité.

2°- Si l'on considère deux cloisons différentes C et C',coupant 
le tube d'Univers, on a

Vf! - WT|
Cette seconde propriété exprime la conservation de l'électricité 
En effet, le théorème flux-divergence appliqué dans l'espace- 
temps au domaine D compris à l'intérieur du tube d'Univers entre
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lea cloisons C et C' donne, compte tenu du sens positif choisi 
sur le tube,

F(C)(J) " F(c')1^ =/d +divT)K A’dVdx.]

=L DiV^ [dX1>dX2>dVdXJ

if +div^
où

Div J

est la divergence quadridimensionnelle de J. Si l'on admet la 
conservation de l'électricité traduite par l'équation Div J = o 
on a :

_ Ffc)(j) = F(d(j)

Si le quadrivecteur J n'obéissait pas à l'équation de continuité 
la première des propriétés de F(Cj (7), son invariance, subsis 
terait, mais la seconde, sa constance quand on déplace la cloi 
son C, ne subsisterait plus. Ceci met bien en lumière la diffé 
rence entre l'invariance de la charge électrique et sa conserva 
tion.

Bref la grandeur ayant même valeur rour toute

cloison C coupant le tube d'Univers, est caractéristique de 
l'ensemble de ce tube : par définition, on la considère comme

mesurant au facteur près "la charge électrique totale* de la

distribution. Pour voir que cette définition est conforme à la 
notion usuelle de charge, il suffit de remarquer qu'un observa 
teur prend naturellement une cloison C formée par des points de 
l'espace-temps qui, pour lui, sont simultanés et qu'il définira 
la charge électrique par :

V étant le volume qu'occupe la distribution électrique à l'ins 
tant t de son temps propre où il fait l'intégration.

Après cette étude rapide de la définition relativiste de la 
charge électrique, revenons à la définition donnée plus haut 
pour le moment cinétique propre :

sy-/c g <t" [cK.dXj.dxJ

Pour une valeur donnée des indices i et j, il n'y a que deux 
termes non nuis dans la somme du second membre (à cause de l'an- 
tisymétrie du crochet). Mais, et c'est un point essentiel, le 
tenseur antisymétrique du second rang ainsi défini dépend du 
choix de la cloison C.

Physiquement,il est naturel (et nous verrons même qu'il est 
presque nécessaire dans la théorie quantique du spin) de définir 
dans chaque système Galiléen un tenseur S à l'aide d'une cloison 
C dont tous les points sont simultanés dans un système de réfé 
rence . Si le mouvement du fluide est un mouvement d'ensemble à
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caractère permanent, le tenseur ainsi défini pour un certiin ob 
servateur G-aliléen restera constant au cours du temps, mais 
quand on passe de ce premier observateur à un second en mouve 
ment relatif par rapport au premier, on passera d'une cloison C, 
à une cloison C2 et par suite d’un tenseur S, à un tenseur S2» 
Les tenseurs S sont donc définis par rapport à un observateur. 
Si toutes les lignes d'Univera des éléments du fluide sont pa 
rallèles, on peut considérer les cloisons C qui sont orthogona 
les aux lignes d'Univers dans l'espace-temps : elles correspon 
dent au volume du fluide pour un observateur lié à son mouvement 
(système propre). On pourra définir tin tenseur S en se servant 
de ces cloisons, c'est-à-dire en se plaçant dans le système pro 
pre. Nous verrons que c'est ce que fait M. v. Weyssenhoff. Mais 
le tenseur ainsi obtenu n'a pour composantes d'espace les com 
posantes du moment cinétique propre que dans le système propre. 
Le même tenseur envisagé dans un système Galiléen autre que le 
système propre n'a plus pour composantes d'espace celles du mo 
ment cinétique propre.

Pour chaque observateur, nous aurons :

S^j =Jc °‘k [dVdVdxk] ^>j.k =1,2,3

Sl4= 0 i = 1 , 2 , 3
si nous intégrons dans l'espace propre de cet observateur. C'est 
un tenseur de ce type que nous avions rencontré précédemment.

Nous obtenons ainsi pour chaque observateur un tenseur S(1) 
lié à la cloison C qui forme "l'espace" de cet observateur.

Naturellement un deuxième observateur peut en principe cal 
culer les composantes S^111 du tenseur S du premier observateur, 

mais il ne s'y intéresse pas et emploiera les composantes du 
tenseur S (2) qui 3.ui correspond à lui-même et dont les composan 

tes SL4 sont nulles. Comme nous l'avons déjà noté, le fait que 
les composantes i4 sont nulles suffit à montrer que les divers 
tenseurs S^, S'2',.... sont différents les uns des autres car un 

tenseur antisymétrique de rang 2 ne peut pas avoir ses composan 
tes Si4 nulles dans tous les systèmes Galiléens.

Dans la théorie du spin de l’électron, les remarques précé 
dentes vont trouver leur application. La propagation de 1 ' onde tji 
de la particule à spin considérée définira un tube d'Univers 
dans l'espace-temps et nous serons amenés à considérer une "den 
sité de spin" définie par un quadrivecteur dont les quatre com 
posantes seront données par des formules du type :

- <K(crL)0pÿ

où (<Tl)op est un opérateur dont nous aurons à préciser la forme. 
La définition précédente est conforme à la définition générale 
des densités en Mécanique ondulatoire. Suivant ces mêmes princi 
pes, on pourra calculer pour ehaque observateur à l'instant t la 
valeur du tenseur S en intégrant sur la cloison C du tube d'Uni 
vers qui est formée par les points d'espace-temps simultanés 
pour l'observateur envisagé à son instant té Si le mouvement de 
la particule est permanent, le tenseur S reste le même au cours
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du temps pour chaque observateur mais môme en ce cas il change 
quand on passe d'un observateur G-aliléen à un autre. C'est là le 
point essentiel car il en résulte que les valeurs moyennes î

(où i,;j,k forment une permutation paire des indices 1,2,3) ne se 
transforment pas comme les composantes d'espace d'un tenseur 
antisymétrique de rang 2 quand on passe d'un observateur Cali- 
léen à un autre. Cette circonstance souvent méconnue doit rendre 
très prudent quana on veut assimixer le spin à un tenseur anti- 
symétriquo d'espace-temps.

En réalité, quand on s'occupe des variances relativistes,il 
est préférable de considérer uniquement la "densité de spin" qui, 
elle, a un caractère tensoriel tout à fait défini puisque les «r1- 
définis on chaque point de l'espace-temps se transforment comme 
les composantes d'un quadrivecteur. Le spin intégral doit plutôt 
être envisagé comme un vecteur d'espace bien défini dans chaque 
système de référence que comme un tenseur. Pourtant, nous le 
verrons, c'est un vecteur sans variance définie d'espace-temps 
qui a un sons physique dans la théorie quantique. O’est là un 
exemple des oppositions assez fréquentes qui se présentent antre 
idées quantiques et idées relativistes.

5. ASPECT RELATIVISTE DES MOMENTS MAGNÉTIQUES PROPRES

Nous avons vu que les particules à spin ont aussi un moment 
magnétique propre. L'examen de ce moment magnétique conduit à 
des conclusions assez analogues à celles des paragraphes précé 
dents. Oe n'est pas le moment magnétique lui-même, c'est la den 
sité de moment magnétique (intensité d'aimantation) qui a une 
variance tensorielle bien définie. Plus exactement, on ne peut 
pas séparer l'étude relativiste du moment magnétique propre de 
celle du moment électrique propre, les deux notions étant du 
point de vue relativiste aussi liées l'une à l'autre que celles 
de champ électrique et de champ magnétique. De même qu'en Elec 
tromagnétisme relativiste les six composantes du champ électri 
que et du champ magnétique s'unissent pour former un tenseur 
antisymétrique de second rang, les densités de moment électrique 
et de moment magnétique s’unissent de même pour former un autre 
tenseur antisymétrique du second rang. Soit M le vecteur d'espa 
ce "moment magnétique" et P le vecteur d'espace "moment électri 
que", les densités [x et ji correspondantes sont par définition 
telles que :

En posant ;

m23= -m3*=h<= h

L = 1,2,3

m ~mi3 = Vy^z m,12 -m
2131

II, = 31Z 3
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on définit un tenseur m antisymétrique de rang 2. D'après les 
formules de transformation dès tenseurs de cette espèce, on voit 
que, si par exemple, le moment électrique d'un corps dans un 
certain système Galiléen où il est au repos se trouve être nul 
sans que son moment magnétique le soit, dans un autre système en 
mouvement par rapport au premier, le corps possédera à la fois 
tm moment magnétique et un moment électrique : on peut dire 
qu;'en passant du premier au second système, on voit le corps qui 
dans son système propre était magnétique sans être électrique 
ment polarisé, devenir polarisé électriquement par suite de son 
mouvement. C'est là précisément ce qui se passe pour l'électron. 
Envisagé dans un système où il est au repos, l’électron a un mo 
ment magnétique propre, mais pas de moment électrique propre : 
envisagé dans un système où il est en mouvement, il a à la fois 
tm moment magnétique propre et un moment électrique propre.

Il est aiséjle trouver l'expression du vecteur jt en fonc 
tion du vecteur n pour une particule magnétique en mouvement 
uniforme. En effet, dans le système propre de la particule, on a 
par hypothèse it(D) =0 . Or le tenseur m étant antisymétrique, on a

1=3
(IV,e) £ mLl dxj - mi4 dx4=0

comme on le voit aisément en écrivant cet invariant dans le sys 
tème propre. Si dans cette équation on fait i = 1,2,3 on trouve :

mLJ dxj + m\k dxk = mi4 cdt
où i,J,k forment une permutation paire des indices 1,2,3. Tenant 
compte des valeurs des mlkon trouve :

"=^[lîxT]
ce qui donne l'expression de n dans tout système Galiléen.

De plus, si dans (IV,e) on fait i=4,'on obtient :

(ît • V) = 0
Le vecteur ît engendré par le mouvement est donc toujours normal 
à la vitesse V. Ces formules sont valables dans la théorie de 
l'électron de Dirac et plus généralement pour toute particule à 
moment magnétique propre.

6. RAPPORT ENTRE LE MOMENT MAGNÉTICO-ÉLECTRIQUE ET LE SPIN

L'idée fondamentale de l'hypothèse d'Uhlenbeck et Goudsmit 
sur le spin est que l'électron possède un moment de rotation
propre égal à ^ et un moment magnétique propre colinéaire

ayant pour valeur . -J— (magnéton de Bohr). Ces deux moments
4 nm0c

sont donc représentés par des vecteurs de même direction et de 
sens opposés (en raison de la charge négative de l'électron), le
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moment magnétique propre se déduisant du moment cinétique propre

ou spin par multiplication par le facteur ~eh- .
_r m 0 c
OTC 4n,

An m0c
Les considérations que nous venons de développer nous pej>- 

mettent de voir que cette relation entre les moments n'est exac 
te que dans le système propre de la particule. Dans tout système 
Galiléen, en effet, le moment cinétique propre ou spin est re 
présenté par un vecteur de composantes :

Sx=/CTidT • Sy=7CT2dT Sz=AdT

où, cr, ,cr2, ct3 sont les composantes d'espace du quadrivecteur

"densité de spin” considéré plus haut. Le moment magnétique pro 
pre de la particule et le moment électrique propre qui lui est 
associé par suite même de son mouvement sont représentés par 
deux vecteurs de composantes :

^X =/P-X ^ =/m23 dT - ••• 

dT =•/m 14 dT ’• ••

où sont les composantes du tenseur antisymétrique de
rang 2 "densité de moment magnétique et de moment électrique", 
précédemment défini. Quand on se place dans le système propre de 
la particule, on a :

a4= 0 , mu= mî4 =m34 = 0

et de plus :

d'où

m23 = m ;c ai m3, = ' m C ffZ m.. = - m :ô ct3

e
m0c

L'hypothèse d'Uhlenbeck et Goudsmit est vérifiée dans le système 
propre.

Mais dans lui autre système Galiléen où la particule est en 
mouvement, il n'en est plus ainsi. D'après les formules de 
transformation des composantes de cr et deTn , on voit que plus le 
mouvement de la particule est rapide,plus le vecteur S* tend à se 
coucher sur la trajectoire et le vecteur5Ï(T & se mettre normal à

elle, le vecteur J? en raison des formules Jt = -|r [jT -7] et (n-7) = 0

étant toujours normal à'la fois àJlX et à la vitesse T. A la limi 
te pour v tendant vers e, les trois vecteurs prennent la dispo 
sition suivante : w

S v
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qui rappelle la disposition des vecteurs électromagnétiques dans 
une onde électromagnétique, remarque qui m'a servi de guide dans 
l'élaboration de ma théorie du photon.

Les vecteurs moment magnétique propre et moment cinétique 
propre ne sont donc colinéaires (en sens inverse) que dans le 
système propre de l'électron.

7. THÉORIE DE M. JAN v. WEYSSENHOFF

M. Jan.v.Weyssenhoff a publié (' ) une série de mémoires où, 
développant des idées de Mathisson, Lubanski et Frenkel, il a 
établi une dynamique relativiste des fluides à spin et des par 
ticules à spin. Une tentative en ce sens a aussi été faite en 
France par M. Olivier Costa de Beauregard.

Je vais résumer ici brièvement, sans entrer dans tous les 
détails ni poursuivre les développements, quelques-uns des cal 
culs de M.v. Weyssenhoff pour montrer leur liaison avec les con 
ceptions exposées ci-dessus.

L'auteur part de l'idée qu'il faut introduire dans la théo 
rie classique du spin un tenseur antisymétrique de rang 2 repré 
sentant la "densité de moment cinétique propre". Ce que nous 
avons dit précédemment montre qu'il faut faire des réserves sur 
cette hypothèse puisqu'en réalité la densité de spin est repré 
sentée par un quadrivecteur et non par un tenseur antisymétri 
que.

Weyssenhoff désigne par slk les composantes du tenseur qu'il 

introduit et définit les deux vecteurs à trois dimensions : F de 
composantes s23, s31, s12 et q de composantes s14, s24, s34. Il pose 

comme condition :

(IV,f) ^ = ur0

(avec sommation sur (3 ) où les u15 sont les composantes de la vi 
tesse d'Univers;

v.
U =

LC

« VTf
34 ird'où il résulte que les composantes s , s , s de s s'annulent 

dans le système propre. La relation s^iu =0 est équivalente & s

q (s*v) et (q • s)= 0

Le tenseur s“^ de Weyssenhoff représente bien au facteur

constant près le tenseur mtk (densité de moment magnétique et
m o c

électrique propres), mais d'après ce que nous avons dit plus

(1) Acta Phyeica Poionica, vol. IX (1947), pp. 8-!>3.



MOMENTS CINÉTIQUES PROPRES EN RELATIVITÉ 65

haut, il ne représente vraiment le moment cinétique propre que 
dans le système propre où l'on aura :

e îl _ _ 1 . • <.31 __ _ Z . .12 ___ _ 3
S(°) a(o) ’ S(o) °(o) ’ S(o) — CT(o)

itég
= s54 = 0

£-/«si dx.(o)

d'où en intégrant sur le volume propre :
q 23 q 1 cj(°)
S(o) =S(o) =Sx > • • • avec

ce qui est précisément les formules (IV,d).

Mais dans un système de référence autre que le système pro 
pre , le tenseur s*1* n'aura plus de relations simples avec le
spin toujours défini par S^^VcIt ,... car les trois quantités

Js?3c1t=S23;J531ck=S3,etJ5l2dT.= S12ne coïncident plus avec Sx,Sy,Sz.

En particulier dans un système oùv^c le vecteur S (Sx,Sy,Sz) 
est couché sur la vitesse tandis que le vecteur S23,S31,312 lui est 
perpendiculaire.

M. Veyssenhoff écrit la conservation de l'énergie et de 
l'impulsion sous la forme :

• «P
T‘P-0

T r définissant le tenseur énergie-impulsion. Dans le cas des 
fluides sans spin, on pose Tap = |i0u“up , étant la densité de 
masse. Le tenseur T“* est alors symétrique. M.Weyssenhoff, adop 

tant un point de vue dont M.Costa de Beauregard a plusieurs fois 
souligné l'importance, ne suppose pas le tenseur T“p symétrique 
et écrit :

T “p = ga u P

où g “est le quadrivecteur "densité propre d'impulsion linéaire" 
Nous ne supposons pas que g “ soit colinéaire à u“ comme on 1* 
fait dans le cas de l'absence de spin.

Avec M. Weyssenhoff, nous désignerons à partir de mainte 
nant par des indices grecs les indices d'Univers allant de 1 à 4 
et par des indices latins les indices d'espace ordinaire allant 
de 1 à 3. Désignons par g1 les composantes de la quantité de 
mouvement au sens ordinaire ; nous avirons :

c 9

c jxT c>

g’ v’ g1 y2 g' v3 cg’

g2 y1 g2 v2 g2 v3 cg2

g3 v' g3v2 g3v3 cg3

O < CPV2 CPV3

La relationT“^= 0 exprime la conservation de l'énergie et de 

l'impulsion. La relation ôKT 0 , qui est équivalente à la pré 
cédente dans le cas de l'absence de spin, n'est plus exacte ici. 
La quantité de mouvement g et la vitesse v ne sont plus coliné 
aires. Dans le système propre de la particule, l'énergie est 
proportionnelle à la masse au repos.

i



66 CHAPITRE IV - 7

Weyssenhoff introduit ensuite deux sortes de dérivation par 
rapport au temps, d’abord la dérivation lagrangienne classique 
(en suivant la particule)

dtf = atf + vk dkf
puis la dérivation (pour les densités)

Dtf-d,f .f skvk- a,f. ak (fvl)
On a

dt (fdx)=(Dtfj dx ; d^fdx

car :
dt (dx) = (div v) dx-

Par analogie, on définit dans l'Univers de Minkowski des 
dérivations par rapport au temps propre prises le long de la li 
gne d'Univers d'une particule :

dt f = f =uv dv f
Dj = dJ + fdvuv = 3V (fuv)

Sid XIdésigne un élément de volume quadridimensionnel, on a :

car :

Mais dQ = dx0 ■ dt0 

On a donc : 

d'où :

dto(fd£i) = (Dtof )d«

dt>(dû)=dQDiv "u = d£i 9vuv
d'où:

dt0 (fdTo) = (Dt0f)dTo

9pT*Mp(gV)=Dtog*

f\<T = o

ce qui exprime la conservation de l'impulsion.

M.Weyssenhoff exprime la conservation du moment total de la 
quantité de mouvement (orbital+spin) en écrivant la condition :

°t. (x*g|i-xiigci)+Dtos“^=o

Elle exprime la conservation dans le système propre : d'ailleurs 
s^ne représente le spin que dans ce système.

On a :
Dt(fg)=fDt g +9dt0f = g°tf+ fdt„g = dtcf +dt0g + fg^ U

pour f et g quelconques d'après les définitions admises. L'équa 
tion de conservation s'écrit donc

“P = rrot, _ nP ,gV- gputt = Tap-T

On voit que l'existence du spin est reliée à la non-symétrie du 
tenseur T comme M. Costa de Beauregard l'avait fait observer. 
Multiplions l'équation précédente par up et remarquons que 
u|îUp = -c;2, il vient, en posant :
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la dernière expression s’obtenant en appliquant l'opérateur Dt 
à l'équation sKPup = 0, et en posant : °

# . Ù|}=dt0U(3
Ayant ainsi défini des densités à caractère tensoriel, l'auteur 
les intègre pour obtenir des grandeurs intégrales. Mais cette 
opération ne laisse les variances intactes que si l'on intègre 
dans le volume propre. On pose donc :

Ga =yV dTo

SaP = J dt 0

=/Vo dTo

La troisième définition va de soi, mais il y a d'intéressantes 
remarques à faire sur la seconde. Dans le système propre, le 
tenseur S01^ a ses composantes d'espace S", , S S , S?) ,qui coïn 
cident avec les composantes du vecteur spin et S", = =S(o) =0, 
mais il n'en est pas de même dans les autres systèmes Galiléens. 
Le tenseur Sa* est donc le tenseur S qui correspond au spin pour 

l'observateur propre tel que nous l'avions précédemment défini : 
il ne correspond pas au spin dans les autres systèmes Galiléens. 
Ce point paraît avoir échappé à M.v. Weyssenhoff.

Des définitions précédentes, en remarquant que s

dt
et en tenant compte des relations D^Q^—O et 8“^Up = 0, on tire

G“ =0 ; S0^ u«= 0 àap = GV-Gpua

P a _ ,, oc , 1 o oc& •G = m0 u +-S 1 up,

On en déduit :

mo=-^TU|JG|i

moùa + -i^S-Püp - 0

3<xp = i^ goca- up_ 1 Spc

cz cr
Dans la première équation, on a supprimé un terme en ùp : en 
effet il est nul car on a :

d'après :

Saliùp = Gauliüli - GlVùp.or uPùp-0

u^Uo = -c2 et Gf’ûP, = mr p, = in0ÛpL|Ii + ^F Saf> Ua Ûp

qui est nul en raison de l'antisymétrie de S*!5.

De mc=-^j Up G^, on tire m0= -^-UpG^- ^ ûp G^et ùp, G^1 est nul

ainsi que G^ , de sorte que mo = 0. Donc m0 est une constante, la 

masse au repos de la particule.
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On trouve encore S 
caP

«P

= S

_ a [J
Sap =0 parce que S up 
• S - Q Q = Si = C *-•

= 0, d'où

le moment angulaire propre de la particule est constant.

Je n'exposerai pas la partie du mémoire de M. Weyssenhoff 
consacrée à l'intégration des équations. Cette intégration con 
duit à considérer la particule à spin comme étant animée dans 
son système propre d'un mouvement circulaire perpendiculaire au 
vecteur S(o). Cette image est certainement intéressante et peut 
être utilement comparée au "tremblement de SchrSdinger". Mais, 
comme l'auteur lui-même l'a constaté, elle présente des diffi 
cultés quand on la compare à la théorie de Dirac et elle ne pré 
sente pas le caractère quantifié qui est aujourd'hui indispen 
sable pour représenter les propriétés des corpuscules & spin. 
Par son caractère intuitif, elle pourrait même à ce sujet suggé 
rer des idées fausses.

Je m'étendrai davantage sur l'analyse que M.v.Weyssenhoff a 
donnée du mouvement de la particule à spin dans un champ élec 
tromagnétique. Ce sera d'ailleurs en partie pour critiquer son 
raisônnement qui me parait avoir des points faibles.

Nous introduirons d'abord le tenseur électromagnétique P 
tel que :

H F et

et le tenseur "densité dé moment magnétique et électrique pro 
pres" ma^ qui, nous le savons, est proportionnel à s01? dans tous 
les systèmes de référence :

ma?=xsaP
avec x=-=-^ pour l'électron.

m0c

M. Weyssenhoff pose que l'énergie de la particule dans un 
champ électromagnétique est :

U = - JTG ■ H -?.E = -^F^

La dernière expression nous paraît inexacte car maP est la den 
sité du moment électromagnétique et non ce moment lui-même. 11 
convient de poser :

U=-{/F<XPma|J dT ________

Iei intervient une circonstance intéressante .U = -JTOH a les
dimensions physiques et le sens d'une énergie. Bile n'a cepen 
dant pas la variance relativiste d'une énergie : elle n'est pas 
la composante de temps d'un quadrivecteur. Si l'on admettait 
l'expression de M. Weyssenhoff :

(IV.g) u = -l f-p map

U serait un invariant* Mais en prenant l'expression correcte :

u = /F“p dx = ~ VH^V
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on voit que U est de la forme :

u-u„ Vmj 1
où U0 est l'invariant--/Fai mapdT0. ü ae transforme comme un

volume» Si la particule est assez petite pour être assimilée à 
un point, on pourra poser :

Ga= c F<xp u P ■ 3 1 
« 2 J F Pc mp<TdXo

où £ Fap u P est la force de Lorentz (à quatre dimensions) et où

Indique la dérivation par rapport aux coordonnées de la particu 
le considérée comme une unité (coordonnées du centre de gravité 
de la particule)» Les trois premières équations donnent (car 
dt0 = dt V1_P2) (f = force de Lorentz à trois dimensions) :

et la quatrième exprime la conservation de l'énergie :

dw = ( f. . v. \ _ JL
dt ' 1 6t

Pour exprimer le couple exercé sur la particule, oa écrira :

Sap = Ga ua +J(macr F p -mpaF£ ) dx0
Nous avons ajouté l'intégrale qui ne figure pas dans le travail 
de Weyssenhoff.

Comme :

U

m, -/l‘«dT"--?uP/9pd:

on a :

m
uP/<3pdxo=-^GPup= -1 G„ u^=d. :o( 2c2Jm? |rp'=-dTo

La quantité :

moo = mo +

= m.

5?/’
Uç.

c2

F.(rmP<rdx0= -^GPu|i+2p/FpffmP<Tdxc 

U '

:Vh ^

qui se réduit à m0 si les champs sont nuis, est une constante du 
mouvement. La masse propre variable m0 est la somme de la partie

constante m00 et de la partie variable En nommant mj, ce que

rfeyssenhoff 
donc :

appelle m0 et mo ce qu'il appelle m00, nous aurons

mo +
JJ
C2

ce qui définit une masse propre variable m'0 de la particule à 
spin dans le champ électromagnétique que nous retrouverons ulté 
rieurement .

s*



60 CHAPITRE IV - 7

Remarque » - La relation :

(IV.f) sttfuf = 0
jointe à la relation de définition :

(IV,g) (i“f = xs“P

noua donne :
Ka|iuP=0

Ln désignant (!) par n (o) le quadrivecteur rtl°,=m0ctT , nous 
obtenons :
(IV,h) fxapJi<°>P=0

relation que nous utiliserons ultérieurement.

(1) ne pas confondre avec la densité de moment électrique propre.



CHAPITRE V

LA THÉORIE DE L'ÉLECTRON 

A SPIN DE DIRAC

I. LES ÉQUATIONS D’ONDES DE L’ÉLECTRON A SPIN

M. Dirac a trouvé les équations fondamentales de sa théorie 
en cherchant à construire une Mécanique ondulatoire de l'élec 
tron qui soit relativiste et qui permette de conserver pour la 
densité de probabilité de présence une forme analogue à la forme 
définie positive | 4 |z, valable dans la Mécanique ondulatoire 
non-relativiste primitive.

S'inspirant d'une tentative antérieure de M.Pauli, il a ad 
mis que la fonction d'onde 4* de l'électron devait avoir plu 
sieurs composantes cbk et que la densité de probabilité de pré 
sence, devant être définie positive, s'exprimait en fonction des

Pour que la probabilité de toutes les positions possibles de 
l'électron soit égale à 1 , il faut alors normer la fonction en 
posant :

où D est le domaine d'espace où peut se trouver l'électron. Mais 
cette condition n'est acceptable que si, une fois réalisée à un 
instant donné, elle reste ensuite réalisée en vertu des équa 
tions d'ondes. Or M. Dirac a remarqué que, pour qu'il en soit 
ainsi, les équations satisfaites par les 4k devaient être du 
premier ordre en t puisqu'il faut que la seule donnée des 4k à 
un instant initial suffise pour déterminer toute leur évolution 
ultérieure. La symétrie relativiste entre temps et coordonnées 
d'espace indique alors que l'on doit chercher pour les 4k 1111 
système d'équations aux dérivées partielles qui soit du premier 
ordre par rapport aux variables d'espace et de temps.
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Parvenu à cette conclusion, Dirac a montré qu'il faut pren 
dre au moins quatre fonctions <jJk et il a admis qu'il fallait se 
borner à quatre. Or au début du développement de la Mécanique 
ondulatoire, plusieurs auteurs (de Donder, Fock, Gordon et L. de 
Broglie) ont donné simultanément à l'équation d'ondes une forme 
relativiste. Pour cela, ils étaient partis de la remarque qu'en 
Dynamique relativiste ancienne, l'énergie W d'un corpuscule est 
reliée, en l'absence de champ, aux composantes de son impulsion 
p et à sa masse propre m0 par la formule :

en appliquant cet opérateur à la fonction 4>et égalant le résul 
tat à zéro, on obtient :

□ iï> + ^ mo2 c2 d> = 0 avec

équation que l'on avait proposé de prendre comme équation d'on 
des de la Mécanique ondulatoire à une seule fonction d'onde en 
l'absence de champ.

Cette tentative n'avait pas donné de résultats satisfai 
sants (notamment pour le calcul des niveaux de l'hydrogène) et 
les raisonnements dq Dirac montrent qu'une telle équation du se 
cond ordre ne peut servir de base à une Mécanique ondulatoire de 
l'électron satisfaisante et qu'il faut écrire quatre équations 
du premier ordre pour quatre (f>k . Néanmoins, il était naturel de 
penser que du moins en l'absence de champ extérieur, chacun des 
quatre doit obéir à la précédente équation du second ordre. 
Bref, M. Dirac a été amené à chercher pour les quatre ’l>k quatre 
équations du premier ordre en x,y,z,t valables en l'absence de 
champs et entraînant alors pour chacun des l'équation :

□ ÜV^-2 rn02c2d,k = 0

Pour écrire ces équations du premier ordre, on est amené à 
employer quatre matrices hermitiennes, a, ,az,a3,a4 à quatre li 
gnes et quatre colonnes et l'on définit le symbole par :

de sorte qu'appliquer & l'opération ocL revient à faire une 
certaine combinaison linéaire des quatre tpj ■

On impose aux quatre matrices <xL les conditions suivantes t 
1 •- le carré de chacune d'elles doit être égal à la matrice uni-, 
té; 2°- deux matrices cxL différentes anticommutent. Ces deux 
conditions peuvent se résumer par la formule unique :

( T,a) cxt <Xj + oCj at = 2 8Cj • 1
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où 1 représente la matrice unité à quatre lignes et quatre colon 
nes :

10 0 0 
0 10 0 
0 0 10 
0 0 0 1

Ces conditions ne suffisent d'ailleurs pas à déterminer 
complètement les matrices aL f mais nous allons voir que l'indé 
termination qui subsiste sur les matrices n'entraîne aucune 
indétermination dans les conséquences physiques de la théorie.

Les équations de Dirac s'écrivent symboliquement avec 
l'aide des matrices oc, :

ri 3,3 a a(T,b) >COt4)l 4k = 0

k = 1,2,3,4 et x = 2ni Ceci représente quatre équations simulta 

nées entre les quatre 4 k •

Si l'on applique au premier membre de (V,b) l'opérateur :

on vérifie en tenant compte de (V,a) que l'on trouve pour chacun 
des 4k :

□4k
4jl:* 2 2
^2 m o C 4i 0 k = 1,2,3,4

Il nous reste à expliquer pourquoi le fait que les matrices 
a (.restent pour une large mesure arbitraires, n'entraîne pas une 
indétermination des conséquences physiques de (V,b). Pour le 
montrer, nous partirons du résultat suivant : on peut prouver 
que si a, ,. «, et a, |• y oc 4 sont deux ensembles de matrices her 
mitiennes satisfaisant chacun aux équations (V,a), il est possi 
ble de trouver une matrice unitaire S à quatre lignes et quatre 
colonnes telle que l'on ait :

oc- = S'1al S =S +at S

Autrement dit, on peut toujours passer des otL aux a- par une 
transformation canonique qui conserve le caractère hermitien et 
les relations de commutation (V,a).

De l'équation de Dirac écrite avec les al 
' 9

ou encore

0 =
1 9

c 9t 

3

4û=o

- S^S-^-S'a S-j- S"'a S -xm cS'a S 

c 3t 3x 1 oy 2 3z 3 0 4
4 k

on tire immédiatement en multipliant en avant par S que les
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quantités ScJ/k sont solutions des équations de Dirac écrites avec 
les cXj,. Les quantités :

4>k = SvV; (k=1.2,3,4)

sont des combinaisons linéaires des . Donc changer les ocb re 
vient à faire une transformation unitaire sur les cj>k • Or les 
grandeurs physiques que l'on rencontre en théorie de Dirac sont

k-4 /k=4
toutes, nous le verrons, de la forme I! cl;k* A cj; k ou / £ d<k A ibk dt °ù

A est un opérateur linéaire et hermitien qui peut contenir les otL 
ou leurs produits et par suite opérer sur les indices k des cp k . 
Quand on passe d'un système de matrices ocL à un système oc'j. (on 
dit alors qu'on passe de la représentation ocL à la représenta 
tion oc[) l'opérateur A devient A' = S_1 AS et la quantité
k-4
L Ac^k devient en tenant compte de S-1 = S + .

k-4
L
k-1

S*^'k A S <J/k =
k-4
E cb
k-i ”

A S <bk =
k-4
E
k-i

A'^k

Donc les grandeurs ayant un sens physique gardent la même valeur 
quand on change de représentation. Grâce à cette circonstance, 
l'indétermination partielle des ocL n'entraîne aucune indétermi 
nation dans les prévisions physiquement vérifiables de la théo 
rie de Dirac, ce qui est, évidemment nécessaire pour que cette 
indétermination des <xi soit acceptable.

Les équations de Dirac peuvent s'écrire sous la forme con 
densée : r

J_ Jbfk _ h 9cj> = H X 
x 9t 2rcL 3t

H étant l'opérateur hamiltonien de Dirac qui est donné par :

ax^dy0^
•\
3- oc, + x m.ca. 
9z 3 04

Dans le cas général où l'électron se meut dans un champ 
électromagnétique dérivant du potentiel scalaire V et du poten 
tiel vecteur X, Dirac remplace les équations de propagation va 
lables en l'absence de champ par les équations suivantes :

1 a x -A. a3+ x m0ca4

pour k =1 ,2,3,4.
9y c '/ ‘ \0z c

(la charge de l'électron est désignée par -e)

]4^k

Profitant de l'indétermination des oct, nous ferons généra 
lement usage des matrices suivantes dont l'emploi est commode :

0 0 0 1 0 0 0 L 0 0 1 0 -1 0 0 0
0 0 1 0

oc„=
0 0 -1 0

a =
0 0 0 -1

a =
0 -1 0 0

0 1 0 0 2 0 L 0 0 3 1 0 0 0 4 0 0 1 0
1 0 0 0 -c 0 0 0 0 -1 0 D 0 0 0 1

dont le caractère hermitien est évident et qui vérifient les re 
lations (V,a).
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Avec ce choix des aL, les équations de Dirac s'écrivent î

1 Mû _ i 9 . ; 3 \ ,i, . 3 .i, 2jU 
c dt

(V,c)

9x +l a7)^+^^~^rm°c^<

î
c dt 

1
c 9t

1 Mi =

c 9t

9x

JL

9x
_ô_ 
9 x

ÏTmocth

d_
ôz

+1 r?- ) ib, +—<];, + m „ c ü>._3_

9y I ”2
2 ni 

h

2ni m„ c 4»,
On peut être surpris par la forme très dissymétrique de ces 
équations qui font Jouer un rôle particulier à l'axe des z» Pour 
comprendre le sens de cette dissymétrie, il faut se rappeler que 
le rôle des fonctions d'onde est essentiellement de permettre 
l'évaluation de certaines probabilités. Or, .pour l'électron & 
spin, les questions de probabilité doivent être posées par rap 
port à un certain axe de référence D j on peut par exemple se 
demander quelles sont les valeurs possibles de la composante du 
spin dans la direction de référence D et les probabilités de ces 
valeurs possibles. Le choix que nous avons fait des ocL corres 
pond au cas où la direction de référence D coïncide avec l'axe 
des z. Les <Ji< solutions des équations (V,c) donnent, nous le 
verrons plus loin, les probabilités des deux valeurs possibles 
de la composanté”z du spin. Si on voulait répondre à une ques 
tion de probabilité de valeur du spin posée pour une direction 
de référence qui ne coïncide pas avec la direction choisie ini 
tialement comme axe des z, il faudrait d'abord faire un change 
ment d'axe amenant oz dans la direction D et ce sont les nou 
veaux i)/|, (qui, nous le verrons plus loin, sont des combinaisons 
linéaires des anciens ^) qui nous fourniraient les probabilités 
cherchées.

2. INVARIANCE RELATIVISTE DES ÉQUATIONS DE DIRAC

M.Dirac a montré que, si l'on fait un changement de système 
de référence Galiléen en soumettant les coordonnées à une trans 
formation de Lorentz, les équations de propagation gardent la 
même forme dans le nouveau système que dans l'ancien avec les 
mêmes valeurs des a,. les composantes de la fonction d'onde 
subissant une transformation linéaire de la forme :

= g Aki ipj ; k = 1 ,2,3,4

Les coefficientsAkl sont les éléments d'une matrice A à quatre 
lignes et quatre colonnes qui, dans le cas général, n'est ni 
hermitienne, ni unitaire. La matrice A dépend naturellement de 
la transformation de Lorentz qui est effectuée, mais il faut no 
ter que la transformation des quatre k|/k n'est pas celle que su 
bissent les quatre composantes d’un quadrivecteur d'espace-
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temps, l'être mathématique 4» de la théorie de Dirac, bien 
qu'ayant quatre composantes, n'est donc pas un quadriveeteur j 
il appartient à une catégorie d'êtres mathématiques que l'on 
n'avait pas introduits en Physique avant la théorie de Dirac et 
que l'on étudie maintenant dans la théorie des spineura. Pour 
trouver dans la Mécanique ondulatoire relativiste de Dirac des 
grandeurs se transformant lors d'une transformation de Lorentz 
comme les composantes d'un tenseur, il faut former certaines 
combinaisons bilinéaires des <pk et des k dont nous aurons plus 
loin à parler plus longuement.

Pour démontrer l'invariance des équations de Dirac, nous 
nous servirons des variables d'Univers x, = x , xz=y, x3=z , x4= ict 
et nous poserons par définition :

-hP: = - 
J 2m

— TT A : ; (j-1,2,3) ; P,= -^- J- + -iV
dxf c J 'J 1 4 2nL ôx4 c

Nous écrirons alors les équations de Dirac sous la forme symbo 
lique :

P, J-3
-r- + 2 P; a ; + m „ c

j-t j j a4) «h = 0

d'où, après multiplication par l oc4 en avant :
j * 3

'(a4P4 + JÇl0C4ajPj+LmoC) = 0

Nous remplaçons maintenant, avec von Neumann, les matrices aL 
par des matrices définies par les équations :

Yl=l0t4ai ; T2 = Lot4a2 ; Tî=L0t4aî ; Ï4=a4

Il est facile de vérifier que l'on a encore comme pour les :
TiTj + Tj Ti=* 2 sy • 1

Les équations de Dirac s'écrivent alors symboliquement :

( j? PJ Tj + LmoC) ^k=0

Cette forme élégante est en accord avec l'idée relativiste que 
les coordonnées d'espace et de temps doivent Jouer toujours un 
rêle symétrique : elle a, par contre, l'inconvénient de mettre 
moins en évidence que l'équation en aLle rôle particulier que 
Joue le temps dans les théories quantiques.

Supposons maintenant que nous changions d'axes galiléens, 
les coordonnées d'espace-temps subissant alors une transforma 
tion de Lorentz. Il est bien connu en Relativité qu'une telle 
transformation équivaut à une rotation des axes dans l'Univers 
de Minkowski. Les nouvelles variables x' après la transforma 
tion seront donc reliées aux anciennes par les formules :

XJ
0 étant une matrice à quatre lignes et quatre colonnes. En rai 
son du caractère purement imaginaire de la variable x4 d'Univers, 
0 n'est pas une matrice réelle : ceux de ses éléments qui con 
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tiennent une fols l'indice 4 sont purement imaginaires. De plus, 

on a la relation d'orthogonalité :

Ç °li °lj =? °il°jl=&ij

11 est visible que les Pt se transforment comme les xi , c'est-à- 
dire que :

Après le changement d'axes, l'équation de Dirac s'écrira donc :
4

:?ïi$ °ijpj +imoc)^k = °

où les composantes 4>k du 4* peuvent être exprimées 
nouvelles variables x- . Si nous posons :

L-4

(V.d) TJ i-1 L J Yi

à l'aide des

nous pourrons écrire t

(| Yjpj+Lmoc)^ = 0

L’équation (V,d) exprime les matrices y'j en fonction des matri 
ces yL . Si l'on veut préciser son sens, on écrira :

("Yj )mn ~ ^0Lj(YL)mn

où ( “Y’i) mn par exemple est 

Comme l'on a

l'élément mn de Y1

(Yj)mn £j°Lj(Yi)mn £j °ij ( Yi-) nm 96 (Yj^nr

on voit que les yj ne sont pas hermitiennes parce que les oLj ne 
sont pas tous réels. [ 0 j

Par contre, il est facile de vérifier que :

■ Yî Yj + Y/Y^=S °Kt °u(Yk Yi+Yi Yk)=S0ki°u2 5ki1
- 2 E

k Jki °Ki1 = 2V
Si les vJ étaient hermitiennes, elles seraient reliées aux yt , 
d’après un résultat général énoncé précédemment, par la formule

Yt = s_1Tl s

où S serait unitaire. 11 ne peut pas en être ainsi, puisque les 
transformations canoniques conservent le caractère hermitien et 
que les yj ne sont pas hermitiennes. Par contre, nous pouvons 
avoir une relation de la forme :
(V,e) y' =A-1yi A
A étant une matrice qui, en général, n'est pas unitaire (A" A+).
Cette transformation des y conservera évidemment les relations 
de commutation, mais ne conserve pas le caractère hermitien.
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Nous allons pour l'instant admettre l'existence de la rela 
tion (V,e)f nous réservant de revenir plus loin sur sa démons 
tration. L'équation de Dirac en coordonnées x] s'écrira alors :

( jtj A_1 To AfV + Lmoc) ip = 0

Multiplions en avant par A et remarquons que la matrice A cor 
respondant à une opération effectuée sur les indices des <pk com 
mute avec Pj. Nous aurons :

(fïjp;+imoc)A4 =°

Il en résulte que la fonction i|>'= A<i» de composantes i^k = S Akj«4Jj 
est solution des équations de Dirac dans le système desJvaria 
bles primées avec les mêmes matrices yL (ou a, ) que dans le sys 
tème primitif. C'est bien là le résultat que nous voulions éta 
blir.

Mais il nous reste à démontrer la relation (V,e). Pour ce 
la, nous remarquerons tout d'abord que cette transformation for 
me un groupe, car, si l'on a :

yLA

= a;1 a:’

Ti =AÏ Tlai ; y" = AV y' A
An fl fliiflflH *

ï:=A-;A-;TlA,Aî-(A,A1r'-fi ia,a,,
On en conclut aisément que, si la formule est vraie pour une ro 
tation infinitésimale des axes d'Univers, elle est encore vraie 
pour une rotation finie : il suffit de le démontrer pour une ro 
tation infinitésimale. Or pour une telle rotation, on pourra po 
ser :

û- = 5 + £..
■j y y

les Eÿ étant des quantités très petites dont on pourra négliger 
les carrés et les produits* Pour que la condition d'orthogonali 
té soit satisfaite, il faut alors que :

A = 1

peu différente

'klTkl

L= 0
de la matrice 1 et nous

Tki = -T-

y j l
La matrice A est 

pourrons poser :
iss,.

les £ étant très petits, d'où au second ordre près en Z :

dont les éléments sont inconnus.

1k

A-1 = 1 -

Les Tkl sont des matrices Nous
avons à démontrer qu'on peut choisir les Tkl de façon à avoir

c'est-à-dire :

E
j
°jiïj

a-'Tia

Tc*Ç8jiTj -I4S e«Tki)T('45ekiTi<i)
2 u

2 kl
ki(Ti.Tki-Tkl Tl )'
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aux termes en £2 près, soit :
? ejiïj-iS eu(TiTtt-T»7i) ; l1-’-2'3'4)

Cette équation matricielle admet comme solution :

Tki = -Ti.k=-^ Tk Ti

Nous avons ainsi démontré l'existence de la matrice A pour une 
rotation infinitésimale des axes d’Univers et nous en avons 
trouvé l'expression. Il’en résulte, nous l'avons dit, l'existen 
ce générale d'une matrice A pour une transformation quelconque 
de Lorentz et la démonstration de l'invariance relativiste des 
équations de Dirac se trouve ainsi achevée.

la matrice A n'est unitaire que si la transformation des 
axes envisagée se réduit à une simple rotation des axes d'espace 
sans mouvement relatif. Pour un changement d'axes avec mouvement 
relatif, A n'est pas unitaire (on peut, en effet, montrer que 
A* = A’1 -y4 et non A+= A1). Il en résulte que :

n'est pas égal àÇ <|>kcar : A+A = ^4 A'1 y4A =/= 1 La probabilité de

présence n'est donc pas invariante pour une transformation de 
lorentz avec mouvement relatif s nous verrons en effet qu'elle 
est la composante de temps d'un quadrivecteur.

3. LE SPIN DE L’ÉLECTRON EN THÉORIE DE DIRAC

Ce qu'il y a de remarquable en théorie de Dirac, c'est que, 
partie d'un effort pour constituer une Mécanique ondulatoire re 
lativiste de l'électron, sans qu'il soit explicitement question 
de spin, elle s'est trouvée avoir automatiquement introduit 
l'existence du moment cinétique propre et du moment magnétique 
propre qui était réclamée par l'interprétation des faits expéri 
mentaux.

En Mécanique ondulatoire non relativiste, nous avions trou 
vé le résultat suivant tout à fait analogue à un résultat de Mé 
canique classique :

"Dans un champ de force central, les grandeurs "composantes 
du moment cinétique orbital M" correspondant aux opérateurs 
(xpy - yPx)oP > • • • > sont des intégrales premières". Au contraire, en 
Mécanique ondulatoire de l'électron de Dirac, les composantes du 
moment cinétique orbital ne commutent pas avec l'hamiltonien et 
ne sont pas des intégrales premières* Pour obtenir en théorie de 
Dirac des intégrales premières, c'est-à-dire des opérateurs qui 
commutent avec l'Hamiltonien H, on est conduit à ajouter respec 
tivement à chacune des composantes du moment orbital des gran 
deurs nouvelles, les composantes du moment cinétique propre ou
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•spin* de l'électron, 
que par des opérateurs

— l  oc, a,4n z 3

composantes définies à la manière quanti-

yjop -T— l OC, OC.
4n 5 1

Sz)
op -j— t a a 

4n 1 1

dont les valeurs propres sont, on le vérifie aisément, ± —

C'est donc ici le vecteur M + S qui est intégrale première dans 
un champ central et qui joue ainsi le rôle de moment cinétique 
total de l'électron : il est la somme du moment cinétique orbi 

tal et du spin. Chacune des composantes du spin S a bien les va 

leurs possibles prévues par l'hypothèse d'Uhlenbeck et 
Goudsmit. 4n

Si nous écrivons1'opérateur SpP sous la forme déjà employée

^°P= Yn ^°P

nous voyons qu'il faut poser pour le spin de l'électron :

(sx)op=7 ia2a3 •- (sy)op= ; (sz)op = -^ 1 ai a2

et, avec ces définitions, on trouve les relations de non-commu 
tation :
[sx,Sy] = -i5z ; [sy ,sz]=-l s x  ; [s2.sx] = -lsy

Ce sont bien les relations exigées par la théorie quantique gé 
nérale des moments cinétiques, ce qui montre la cohérence des 
définitions adoptées.

L'opérateur s2=s2 + sy2 + sz2 correspondant est égal à : 

s2 -~j [(a,a/ + (a2<xs)I + (a3a1)?]

ce qui correspond à la valeur s = i , c'est-à-dire à la valeur pro-
r? C-

pre s ( s + 1 ) = — de s2.

Nous avons vu qu'au moment cinétique propre de l'électron 
était associé un moment magnétique propre. Ce moment magnétique 
propre, la théorie de Dirac parvient aussi à le retrouver et 
voici sous quelle forme. En cherchant l'équation du second ordre 
qui remplace l'équation :

□4^k+ ^T-mo2 C' 'Vk = 0
dans le cas où existe un champ électromagnétique extérieur, elle 
arrive à la conclusion que l'électron se comporte alors comme 
doué d'un moment magnétique propre Üî et d'un moment électrique 
propre W, Cette conclusion est en rapport avec les hypothèses 
d'Uhlenbeck et Goudsmit puisque l'électron possédant, dans ces 
hypothèses, un moment magnétique dans son système propre doit, 
par un effet de relativité, posséder aussi un moment électrique 
propre dans un système galiléen où il est en mouvement. Comme 
toujours en Mécanique ondulatoire, les composantes deSflet deW
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doivent être définies par des opérateurs. Le raisonnement que 
nous allons développer conduit à poser :

où B désigne le magné ton de Bohr B = ------ - .
4nm0c

Lee six opérateurs ont tous pour valeurs propres - B et cet 
te conclusion est aussi en accord avec l'hypothèse d'Uhlenbeck 
et Goudsmit sur la valeur du moment magnétique propre de l'élec 
tron.

Pour Justifier la forme des opérateurs indiqués ci-dessus, 
nous poserons :

L > v V Lj W V Lmm f tv U A J

et nous écrirons d'abord l'équation de la Mécanique ondulatoire 
non relativiste de l'électron sous la forme :

ou encore :

D'autre part nous avons vu que, pour un électron libre, une Mé 
canique ondulatoire qui emploie une seule fonction doit écrire

Pour l'électron placé dans un champ électromagnétique, on devra 
remplacer les opérateurs p par les suivants :

et l'on obtiendra l'équation de propagation :
.1-5

qui à l'approximation non relativiste redonne l'équation (V,f). 

Dans la théorie de Dirac, on part du système d'équations :

Si nous appliquons à cette équation l'opérateur
I. i

6
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il vient aisément :

En nous souvenant que les champs se déduisent des potentiels par 
les formules :

H = rot A ; E = -grad V-

on trouve :

0= P2-£P2-
-4 .i-i J

-mie2+t2^K°sHx.u3a,Hy+a1a2Hz)-f^:l a,E; + azEy+a3Ez)

Si les trois premiers termes de cette équation existaient seuls, 
on retomberait sur l'équation (V,g) appliquée à chaque i}4 , donc 
sur l'équation (V,f) à l'approximation non relativiste. L'élé 
ment nouveau introduit ici par la théorie de Dirac, c'est la 
présence des deux derniers termes qu'il s'agit d'interpréter. 
Pour cela nous comparerons la dernière équation avec l'équation 
non relativiste (V,f). Cette comparaison montre que les deux 
ternes à interpréter doivent être, du moins à l'approximation 
non relativiste, considérés comme le produit par le facteur -2m0 
d'une énergie potentielle d'interaction entre le champ électro 
magnétique et l'électron. Mais si l'on ne veut pas s'en tenir à 
1'approximation non relativiste, on devra dans cet énoncé rem 
placer la masse propre m0 par la quantité a4 m0 qui figure dans 
les équations de Dirac. En écrivant que-2m0ot4U est égal aux 
deux derniers teimes de la dernière équation, on voit alors que 
U est la somme des termes suivants :

U =-eh 

e 4n,m0c

U =-^-_ 
m 4nm0c

Or un corps doué d'un moment magnétique JTL et d'un moment élec 
trique £P j>lacé _dans un champ électromagnétique défini par les 
vecteurs E et H y possède une énergie potentielle égale à :

U = ue + -{m• H)-(f • E)=-(3TCXHX+dtc h ♦:ïïczh2)-(0> ex+9yEy+ÿ;

En identifiant les expressions précédentes de Ue et de Um, on 
retrouve les expressions proposées pour les opérateurs corres 
pondant à OTC et à 9. Ainsi le moment magnétique et le moment 
électrique apparaissent comme contenus dans les équations mêmes 
de Dirac.



CHAPITRE VI

FORMALISME ET INTERPRÉTATION PHYSIQUE 

DE LA THÉORIE DE DIRAC

I. FORMALISME GÉNÉRAL DE LA MÉCANIQUE ONDULATOIRE 
RELATIVISTE DE L’ÉLECTRON DE DIRAC

En Mécanique ondulatoire de Dirac, on retrouve tan formalis 
me analogue à celui que nous avons rencontré en Mécanique ondu 
latoire non relativiste. Tous les énoncés valables dans celle-ci 
vont pouvoir être transposés dans celle-là à condition toutefois 
d'admettre, à côté des opérateurs agissant sur les coordonnées, 
l'intervention d'autres opérateurs agissant sur les indices k 
des fonctions (tels que les matrices a.t ou leurs combinaisons 
linéaires et hermitiennes par addition et multiplication) et 
aussi à condition de toujours ajouter dans toutes les formules 
une sommation de 1 à 4 sur l'indice k.

C'est ainsi que les expressions déjà données pour la densi 
té de probabilité et pour la formule de normalisation du 4* 
s'obtiennent à partir des formules correspondantes de la Méca 
nique ondulatoire non relativiste en ajoutant une sommation sur 
k. Cependant la définition du vecteur "flux de probabilité de

k-4 | |
présence" qu'il faut adjoindre à p = E dh T pour former un qua-

I k-1 1 1
drivecteur "densité-flux" a, en théorie de Dirac, une forme par 
ticulière, car on doit poser :

f=-cE^a4k

a désignant la matrice-vecteur dont les trois composantes sont 
a,,a2,a3. On démontre aisément en théorie de Dirac par des com 
binaisons des équations de propagation et de leurs^ conjuguées,
que p et f obéissent à la relation de conservation -^- + div f=0.

Il en résulte, en raison des conditions toujours imposées à 4
aux limites du domaine D que ^pdt est constant : donc, si cette
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intégrale est égale à 1 
jours égale à 1 , ce qui

à un instant quelconque, elle reste tou- 
permet de normer 4^ en posant :

1

En Mécanique ondulatoire de Dirac, comme en Mécanique ondula 
toire non relativiste, à toute grandeur mesurable (observable) 
attachée à un corpuscule, on fait correspondre un opérateur li 
néaire et hermitien A, A pouvant en général agir non seulement 
sur les coordonnées, mais aussi sur les indices des composantes 
4*i<" Pour les coordonnées et les composantes de l'impulsion, les 
opérateurs restent les mêmes que précédemment et n'agissent que 
sur les coordonnées. Pour l'énergie, l'opérateur est l'opérateur 
H ci-dessus défini qui agit à la fois sur les indices k et les 
variables x,y,z. Pour les nouvelles grandeurs introduites par la 
théorie de Dirac (moments cinétiques propres, moments magnéti 
ques et électriques propres), les opérateurs n'agissent que sur 
l'indice k.

Les valeurs possibles de la grandeur mesurable correspon 
dant à un opérateur linéaire et hermitien A sont ici les valeurs 
propres de l'équation :

A^k = x<jJk ; k = 1 , 2,3,4

A la valeur propre aL, correspond une fonction propre 4 4) à qua 
tre composantes vp,111, • Ces fonctions propres sont or 
thogonales entre elles (du moins si on les choisit convenable 
ment en cas de dégénérescence), c'est-à-dire que l'on a :

u -n

On les normera en posant :

dx = 1

De plus, elles forment vin système complet, c'est-à-dire que l'on 
peut toujours, par exemple, développer les 4e la fonction 
d'onde "ty sous la forne :

+k-Ç <=1 ïk111 : k, 1,2,3,4

les c: étant indépendants de k. On écrit souvent les quatre 
équations précédentes sous la forme condensée :

ÿ = E Ci cf(1)

La probabilité de la valeur propre ak est donnée par | c^2 . On 
en déduit aisément que la valeur moyenne de A doit se définir 
par :

à- ghl'oi-ig
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De même, si . • ■ • ! 4* t 4 sont les composantes de la fonction pro 
pre de l’opérateur Èamiltonien, les éléments de la matrice 
d'Heisenberg engendrée par l'opérateur A dans le système des 
fonctions propres de H sont par définition :

aij-fc g 'fi A t-kdT

k=4
Les densités de valeur moyenne définies par E kjrk et les

k*4
densités d'éléments de matrice jE dk*k A k sont des grandeurs

définies en chaque point de l'espace à chaque instant, donc des 
grandeurs de champ : elles jouent un rôle important en théorie 
de Dirac, car ce sont elles qui présentent un caractère tenso- 
riel analogue à celui des grandeurs de champ dans les théories 
de la physique relativiste classique. Nous y reviendrons plus 
loin.

Comme exemple important d'application de ces principes 
généraux, on peut considérer le cas de la composante z du spin.

L'opérateur correspondant est, nous l'avons vu, a,: ses
4-TI 1 L

valeurs propres, c'est-à-dire les résultats possibles d'une me 
sure de S7 sont±-P— en accord avec les hypothèses d'Uhlenbeck et 

z 471
Groudsmit.

En appliquant les principes généraux, on trouve, avec le 
choix fait pour les <xL, que la probabilité de la valeur propre

+ — pour Sz dans un état représenté par une certaine fonction
d'onde <ji est / (|dijz+|d>3|2 ) » "*;andis Q.ue probabilité de la

. n
valeur propre - est / (|<J>4|2+ |i|r2|z ) dT . La somme de ces deux

probabilités est bien égale à 1 puisque <|j est normée. On peut 
retrouver aisément la valeur de ces probabilités par le calcul 
de la valeur moyenne de Sz. On a, en effet, par définition s

Or, avec les valeurs adoptées par les at, la règle de multipli 
cation des matrices donne :

i c^a
2

10 0 0 
0-100 
0 0 10 
000-1

d'où :
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ce qui concorde avec les expressions données plus haut pour les 

probabilités des deux valeurs possibles ±

2. LES GRANDEURS DE CHAMP DÉFINIES PAR LA THÉORIE DE DIRAC

Nous avons déjà signalé la manière dont la Mécanique ondu 
latoire non relativiste introduit sous la forme de densités (de 
valeur moyenne ou d'éléments de matrice) des grandeurs de champ 
qui permettent de rapprocher le point de vue de la physique cor 
pusculaire de celui de la physique du champ et ce sont elles qui 
ont des variances relativistes simples et donnent un aspect re 
lativiste à tout le formalisme. Mais ici, comme en Mécanique 
ondulatoire non relativiste, ces grandeurs de champ se présen 
tent sous la forme de densités qui, du point de vue quantique, 
ont une signification physique incertaine. Ce sont les intégra 
les d'espace de ces quantités (valeurs moyennes ou éléments de 
matrice) qui, du point de vue quantique, ont une signification 
physique certaine : mais, par contre, ces intégrales n'ont pas 
un caractère teisoriel relativiste (à cause de l'intégration 
dans l'espace seulement). Cette circonstance curieuse est l'un 
des aspects du désaccord qui subsiste actuellement entre les 
conceptions quantiques et les conceptions relativistes.

On peut classer rationnellement les grandeurs de champ de 
la théorie de Dirac en partant de la remarque suivante : les ma 
trices oc1 , a?, a3, oc4 (qui jouent le rôle d'opérateurs agissant sur 
les indices k des fonctions^)» si on leur adjoint la matrice 
1 à quatre lignes et quatre colonnes, permettent de former par 
multiplication 16 matrices hermitiennes linéaires indépendantes 
que nous ordonnerons dans le tableau suivant :

r = a.
r=a, r, = oc -, r = a r = i1 1 2 2 3 3 4

r23=lCW4 I
I

P
-
T la3a,a4 ri2=la,(X2a4

ru=laia4 r24= l a2a4 r34=ia3a4

rm=Laza3 r3U= ia^ r124=LOC^ r,23=l Wl

r == a,a„a,a.1234- 12 3 4

Dans ce tableau, les facteurs i ont été introduits pour rendre 
hermitiennes les matrices-produits qui, sans ce facteur, se 
raient antihermitiennes. Avec ces seize opérateurs, nous pouvons 
former seize densités de valeurs moyennes ayant une variance re-
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lativiste simple. Nous allons les expliciter en employant 
abréviation très usuelle qui consiste à écrire d; *A d> au lieu

k«4

une
de

l fx = -cijx'a^

] |ix-

(VI,a) /
nx= Btp’i. a.^4»

CTx=7T^lCC2a3^
4X1

I, - i|/a4ÿ

fy =-ci|/a2<}i fz= -ccx3 Lp. p =

py = B ijj* L pz = B ^*laiaza4^

ny= Bi|/ia2a4tj> nz = B^*la3a44>

L L 1
ay=—az = —a aa^

4X1 4X1 4X1

I2= ^‘a,a2a3a44»

La grandeur I, est invariante pour une transformation de Lorentz 
comme cela résulte des formules de transformation des 4,k. De 
même, I2 est un autre invariant (ou plus exactement un tenseur 
complètement antisymétrique de rang 4, ce qui revient pratique 
ment au même).

Les grandeurs f et p de la deuxième ligne forment les com 
posantes d’un quadrivecteur d'espace-temps. C'est le quadrivec 
teur "densité-flux" pour la probabilité de présence qui satis-

9p _
fait à l'équation de continuité -g^ + div f = 0.

Les six quantités p.x ,...,n, forment les six composantes^ 
distinctes d'un tenseur antisymétrique de rang 2. Le vecteur]! 
représente la densité de moment magnétique propre pour l|élec- 
tron dans l'état 4* car, en intégrant les composantes de p. dans 
ce domaine, on obtient les valeurs moyennes des composantes du 
moment magnétique propre de l'électron définies précédemment. De 
même le vecteur xx donne la densité moyenne du moment électrique 
propre, complément relativiste du moment magnétique propre.

Les grandeurs cxx ,cry , cxz et tx4 se transforment comme les 
composantes d'un quadrivecteur d'espace-temps lors d'une trans 
formation de Lorentz (ou plus exactement comme les composantes 
d'un tenseur complètement antisymétrique de rang 3, ce qui pra 
tiquement revient au même). Les composantes de ce quadrivecteur 
sont liées à l'invariant I2 par la relation :

ïï'4'5-^1-

Les grandeurs cxx , a et cxz sont les densités de valeur 
moyenne pour les composantes du moment cinétique propre de 
l'électron dans l'état xjx : cr4 est la composante de temps qui 
complète le quadrivecteur du p'bint de vue relativiste. Le spin 
de l'électron est donc bien défini par un quadrivecteur densité 
(et non par un tenseur antisymétrique de rang 2) et c'est bien 
ce que nous avions annoncé. Nous verrons plus loin que dans le
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cas où l'onde est plane et monochromatique et où, par suite, 
l'on peut attribuer à l'électron une vitesse v bien définie, on 
a la relation :

a4-l(a-v)

déjà rencontrée dans nos considérations relativistes sur le spin.

Enfin, aux seize grandeurs du tableau précédent, nous pou 
vons adjoindre seize autres grandeurs de champ qui forment les 
seize composantes d'un tenseur du second rang non symétrique au 
quel, suivant les idées de MM. Costa de Beauregard et v. 
Weyssenhoff on peut attribuer le sens d'un tenseur densité 
d'énergie-impulsion pour l'électron à spin.

En employant les coordonnées réelles d'espace-temps, nous 
définirons ces grandeurs en posant :

(VI,b)

rn _ H C
LJ ~4nT

m   h C

4nL-

rn   H C
U 4nl

dxj 9xj
( L,j = 1 ,2,3 )

1_9tj> 1 9^*
c dï c at

OX-L ox- T

ai

rp _ hc
44~4ju

ü,* 1M_IM a; 
^ c at c ^9t

Ce tenseur non symétrique répond au schéma
9 L Vk
■W:

C9
W

déjà rencon 

tré dans la théorie de M. Weyssenhoff. T44 est~la densité de va 
leur moyenne de l'énergie. les Tu sont les densités de valeur 

moyenne des composantes de l'impulsion multipliées par c. Les T* 
sont les flux de l'énergie en densité de valeur moyenne le long 
des axes, divisés par c. Les T g pour i,j=1,2,3 sont les densi 
tés de valeurs moyennes pour les flux des composantes de l'im 
pulsion le long des axes. Bans le cas où d> est une onde plane 
monochromatique, on vérifie facilement ces interprétations. Les 
équations de Dirac permettent d'établir la formule :

j-«
E
j-i 9x.

= 0

Ces quatre relations expriment 
de l'impulsion et de l'énergie.

( ! = 1 ,2 ,3,4)

la conservation des composantes

On introduit souvent à la place du tenseur non symétriqueTtJ 

le tenseur symétrique T. ' = ~ (TLj + ’JjJ et l'on peut vérifier qu'il 

obéit aussi à la relation de conservation :

j-4 9T'
£ “T*
J-> OXj j -' 9xj

= 0
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La non-symétrie du tenseur TtJ provient ici comme dans la théorie 
de M.v. Weyssenhoff de ce que l'on n'a pas g’^> v= ^ v comme en Mé 

canique relativiste ordinaire (sans spin) de l'électron. S'il en

était ainsi le tenseur prendrait la forme symétrique

W W -.1
1— V V, — V

l k C
<
1 w

Mais, sauf dans le cas de l'onde place monochromatique, il n'en 
est pas ainsi en théorie de Dirac comme nous le verrons mieux 
plus loin. Alors g 0 v

3. LES ONDES PLANES MONOCHROMATIQUES EN THÉORIE DE DIRAC

D'après les idées fondamentales de la Mécanique ondulatoire, 
au mouvement rectiligne et uniforme de l'électron avec l'éner 
gie W et la quantité de mouvement p doit correspondre une onde 
plane monochromatique qui, en théorie de Diract aura des compo 
santes :

-r- (Wt - ]f • r")
^k = ake h ; ( k =1 ,2,3,4)

En substituant cette forme dans les quatre équations de Dirac, 
on obtient quatre relations algébriques linéaires et homogènes 
entre les quatre amplitudes ak. Pour que ces équations admettent 
pour solutions des valeurs non toutes nulles des ak, il faut que 
leur déterminant soit nul. Faisant le calcul, on trouve la con 
dition :

71 = Px + Py + Pz + mo c

c'est-à-dire la relation qui, en théorie relativiste, lie l'é 
nergie et la quantité de mouvement d'un corpuscule libre de 
masse propre mn. Si cette condition est satisfaite, non seule 
ment le déterminant des équations en ak, mais les mineurs du 
premier ordre sont nuis, de sorte que deux des ak sont arbitrai 
res, les deux autres s'exprimant à l'aide de ceux-là. Si nous 
posons arbitrairement a3= c, et a4= cz, nous obtiendrons :

a, =~
Pzci + (Px+lPy)c2 (Px- lPy)Cl-PzCZ

W
c +

W_
c + nv c

a3= ci a4=C2

Pour interpréter ce résultat, supposons que l'axe des z soit
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pris dans la direction du mouvement (direction du vecteur p-). 
Ceci ne restreint pas la généralité puisqu'on sait en principe 
comment se transforment les 4 k pour une rotation des axes d'es 
pace. On a alors px = p =0 et

4V X c*p

avec

A = ^ + mDc

“ c1p ^ = S p

P = e
^i(wt - p2z)

On peut énoncer ce résultat de la façon suivante : toute onde 
plane et monochromatique correspondant à un mouvement rectiligne 
et uniforme (à énergie positive) d'un corpuscule de Dirac peut 
être considérée comme la superposition de deux ondes i];(9)et 4(d) 
suivant la formule :

<|; = c1 ^(9) + c24(d)
4(9>et 4 <d*ayant les composantes suivantes :

43l9) = P ; 42l9)=^9)=o ; ^r-C=o ; <=xp ; - p

Si l'on se souvient que la probabilité des deux valeurs possi 

bles ± de la composante z du spin sont proportionnelles à 
et à |42|2 , |4jS l'on voit que conreepond au 

spin ■— et 4<d>au spin-^. En associant par la règle habituelle

une rotation dans le plan xoy à un vecteur porté le long de oz, 
on fait correspondre 4<9) à- une rotation lévogyre ou circulaire 
gauche et 4,fd) à une rotation dextrogyre ou circulaire droite 
suivant le schéma ci-contre :

x X

_h_
4jt

z h
4-n. O 2

Toute onde plane monochromatique (à énergie positive) est donc 
la somme de deux ondes planes monochromatiques correspondant 
chacune à une valeur propre de la composante du spin dans la di 
rection de propagation,la proportion des deux ondes et leur dif 
férence de phase dans la superposition étant données par les va 
leurs des deux composantes complexes C1 et C2.

Sur les formules précédentes, l'on voit que 4i et cp2 sont 
négligeables devant 44 et 4>4lors<lue Pzc est Petit devant m0c2 
c'est-à-dire à l'approximation de la Mécanique newtonienne (v«c). 
Dans le cas limite opposé d'une vitesse voisine de Çj m0cZ est

wnégligeable devant W et | pM est sensiblement égal à — ; on a 

alors :
-4,(9) =449) = p ; 4,(9)=4,(9) = 0 ; 4i[d)-vp‘i,=P ; ^|d, = 4]d, = 0
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Il est très intéressant de calculer les seize densités de 
moyenne définies par le tableau (VI,a), pour le cas d'une onde 
plane monochromatique. Nous remarquerons d'abord que les cons 
tantes C, et C, sont reliées par la relation de normalisation 
des ondes four éviter l'introduction des formules un peu 
compliquées relatives aux spectres continus, nous emploierons 
ùn artifice souvent utilisé, en supposant que le corpuscule est 
enfermé dans une enceinte de volume 17 dont les dimensions sont 
très grandes par rapport à la longueur d'onde. On peut alors 
écrire la condition de normalisation :

p 1*4
(vi,c) yDg<K4\dT

qui s1écrit aussi :

c z
Z I U = 1

Calculons alors les seize densités de moyenne du tableau (VI,a) 
en tenant compte des relations précédentes. On trouve d’abord :

i.-w-kbKi’-kl1- m0c'

w 17
Si nous introduisons dans cette expression la vitesse B c du mou-

m r'Z
vement rectiligne correspondant telle que ¥=

VTpr* on a

et l'on voit que l'invariant I, est lié étroitement à la con 

traction de Lorentz. Le facteur de contraction joue ici un

rôle important.

Pour 1'invariant 12, on trouve de même :

I2=i. +

Cet invariant est donc nul pour une onde plane monochromatique. 
Un calcul analogue fournit pour les composantes du quadriveeteur 
"flux-densité" 2W

f = fx y 0 P='

En comparant les expressions de fz et de p et en se rappelant
Wvque p - , on a :

f. f = 0 
y

f = per _
= pvP W

Il y a donc un flux de probabilité dans la direction de propaga 
tion de l'ohde 4* avec la vitesse v : c’est ce que l'on devait 
attendre.
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Passons maintenant au calcul du quadrivecteur
spin"

c z c
\ Zm°c
I A

JL
4ji

' - c.

"densité de

* -, 2m„c
z ci) A

|M ZP
I I A

La relation de normalisation des 4) permet d'écrire :

V ' 4n
c,|2 - --L a, dx =

D z 4n
- c.

En comparant les expressions de crz et de ct4 , on tire :

“ CTz
££=1 (a 
W C ' u

relation prévue précédemment.

Donnons enfin les composantes des densités moyennes de mo 
ment magnétique et de moment électrique propres pour l'onde pla 
ne monochromatique

(VI,d)

2 W 2W
F=-B(c;C2+C;Cl)^-; py=BI (c’Cj-CjC,)-^- ; B ( | C212 - jC, 

nx=Bl (C2 C1 C2)-J^ ; B (C2 C1 + C1 C2) ; nz = 0

2 m0c
A

sur ces formules on vérifie aisément que :

n = ; (n-v

formules^ également prévues antérieurement. Hous voyons que le 
vecteur n est toujours transversal par rapport à la direction 
de propagation, tandis que \x peut faire un angle quelconque 
avec elle , mais rf et "jT sont toujours perpendiculaire entre eux.

Lorsque la vitesse v tend vers c,le vecteur ct*se couche sur 
la direction de propagation : au contraire \l tend _à se _mettre 
perpendiculairement à cette direction, les vecteurset n étant 
à la limite tous deux dans le plan d'onde, normaux entre eux et 
égaux en grandeur comme les champs électromagnétiques d'une onde 
lumineuse. Ainsi les vecteurs [i et?dont les directions coïnci 
dent dans le système propre de la particule sont à angle droit 
pour un observateur qui voit passer la particule avec une vites 
se très voisine de ç.

Hous venons d'étudier les ondes planes monochromatiques à 
énergie W positive. Il existe aussi en théorie de Dirac des on 
des planes à énergies négatives qui jouent dans la théorie un 
rôle très particulier. Nous en ferons plus loin une étude spé 
ciale.
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4. LE QUADRIVECTEUR DENSITÉ-COURANT ET SA DÉCOMPOSITION

Nous avons défini plus haut les grandeurs p et f pour l'é 
lectron. En les multipliant par la charge électrique -e de l'é 
lectron, on obtient un quadrlvecteur dont la composante de temps 
donne la densité de moyenne - e li^l2 = S de l'électricité pour 
l'électron dans l'état et dont les composantes d'espace :

= =ec » (1 = 1 , 2,3 )

donnent les composantes de la densité de courant correspondantes.

Nous allons montrer_d'abord comment on peut décomposer en 
deux parties le courant j et le résultat obtenu, appelé "décom 
position de Gordon", nous montrera qu'en raison de l'existence 
du moment magnétique propre et du moment électrique propre im-^ 
pliquée par la forme même des équations de Dirac, le courant X 
ne se réduit pas au courant de convection dû au déplacement du 
corpuscule chargé.

Pour faire cette décomposition, 
de Dirac en.l'absence de champ

1 ôiK 3.3,3
------- + '

nous partons des équations

3t 3x a' 3y a2 4V 9iot3cW + *m°c

et des équations conjuguées . par le caractère hermitien des oc ; 
permet d'écrire

i 3t]V 9 . , 3 . * 9 ,» , „

"c 9t =^x +
avec la convention :

1=4
4*k aL = 4^1 ( ai.)lk

Multiplions la premi ère équation en avant par et la se 
conde en arrière para1a4^k, ajoutons et sommons sur k. Il vient 
facilement en notation symbolique :

4nlm„c c 9tlT'
aiCX4^)'1 3<|) 3tj>

a*”*'1'
3

3y
(4»*», a 2a4«Jj )- — ( Lp'*a3 a, a4 ci»)

d'où l'on déduit aisément en multipliant par ec et en tenant 
compte des définitions admises :

4rcm0i v 4 dx 3x
On démontrerait de même les deux relations qui se déduisent 
permutation circulaire, sur x,y,z et l'on en conclut :

J j i ■* J2

par
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avec :

Jr
eh

4nim,
■ ( <|>*oc4 grad - grad 4* ) 

dît
J2 dt

+ c rot P-
Le terme j, est facile à interpréter en se plaçant dans le cas 
où l'onde xp est plane et monochromatique, c'est-à-dire où l'on 
peut attribuer à l'électron un mouvement rectiligne et uniforme

de vitesse v= —

Ji =
eh

w On a alors

2 ni
P) cJj‘a4qj=-pe P iîi0c*

e v
4nlm0 ■" ' h 1 ' T 4 T 1 mG W

est donc simplement la densité de moyenne 
convection dû au mouvement d'ensemble de la charge électrique.

Pc 1-r w (-p

pour le courant de

L ' interprétation du terme J*z est plus 
exige quelques remarqués préliminaires.

intéressante, mais

Considérons d'abord un milieu polarisé électriquement et 
dans ce milieu un élément cylindrique de longueur 1^ de section s 
dont l'axe coïncide avec la direction du vecteur polarisation

-e ________ 1_______ ♦ e

L'une des bases porte la charge + 6, l'autre la charge- £. Le mo-
£1 E

ment électrique est £1 correspondant à la densitén =—- = -h..Si la
ls s

première charge devient £ +d£et la seconde-(£ + d £), la grandeur
d S 'n a augmenté de ^ et, si cette augmentation a lieu dans un

temps dt, comme on peut la considérer comme due au transport de 
la charge d £ de la seconde base à la première, elle est liée à
un courant égal à 4^. c'est-à-dire à une densité de courant -

dt _ 5 dt
Finalement on voit que l'augmentation de n est équivalente à

l'existence d'une densité de courant égale à •

D'autre part, considérons un aimant de moment magnétiqueJTC. 
Le champ magnétique créé par cet aimant dérive, on le sait, du

potentiel magnétique - (ÏÏC.grad-p), mais dérive aussi du potentiel 
vecteur A = -[JÏC x grq£^] comme on le voit aisément en démontrant 

que :

-grad(TTC.grad -p) = rot jjfC x grad -jrj

Le champ créé à l'extérieur par une. distribution de magnétisme 
d'intensité d'aimantation u occupant un volume "D dérive donc du 
potentiel vecteur :

A = -
JVr
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la
En

dernière expression provenant d'une intégration par parties, 
comparant avec la formule classique des potentiels retardés

dt

on voit donc que l'intensité d'aimantation p. est équivalente à 
une densité de courant égale à c rot p,.

En résumé, nous avons retrouvé le résultat classique sui 
vant :"Quand une région de l'espace est le siège d'une distribu 
tion de moment électrique définie en chaque point par une cer 
taine polarisation n et d'une distribution de moment magnétique 
définie en chaque point par une certaine intensité d’aimantation 
p, cette région de l'espace est le siège de courants microsco 

piques dont la densité est donnée par le vecteur + c rot p

Si nous revenons alors à la décomposition de G-ordon, nous 
voyons que le vecteur J*, a pour origine l'existence des moments 
électrique et magnétique propres de l'électron.

La région occupée par l'onde de l'électron peut se compa 
rer (sans prendre la comparaison trop à la lettre) avec un mi 
lieu polarisé et aimanté de la théorie classiqua. L'électricité 
y possède un mouvement de convection global caractérisé par la

, rfc ^
vitesse v=-~- dans le cas où le mouvement d'ensemble est recti- 

w
ligne et uniforme. Il s'y superpose un mouvement "fin" de l'é 
lectricité correspondant à la polarisation et à l'aimantation.

En regardant les choses de près, l'on voit qu'il faut dis 
tinguer la vitesse globale "fine" y dont les composantes corres 
pondent aux opérateurs - c a, ,-ca2 , -ca3et la vitesse de trans 
lation d'ensemble v dont les composantes correspondent aux opé-

-—-—a —--- -—a La première sert à
2nlm0 4 ô.x __2jum0 .4 3^, 2mm„ 3z

rateurs 4
définir le courant "fin" total. J»_la deuxième le courant de con 
vection j*i • La différence j - 3*, =j*2 représente le courant dû aux 
effets de polarisation et d'aimantation. On trouvera dans le li 
vre de R.Becker sur 1*.électron01 une étude détaillée des courants 
dans un milieu polarisé. L'analogie est étendue, mais on ne doit 
pas oublier que nous avons ici seulement une représentation 
moyenne des courants, polarisations et aimantations attachés à 
un corpuscule unique.

La distinction entre lT et v fait 
le tenseur énergie-impulsion n'est
il a pour schéma gJuL cg

w

(tTétant la vitesse fine
C

totale que

et non
gJ vL cg

t
>

<
£
|
o w

aussi comprendre pourquoi 
pas symétrique. En réalité

nous venons de définir)

(1) Théorie des Electrons (Alcan, Paris, 1938) p. 125 et sq.
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et comme c'est v et non u qui est proportionnelle à la quantité 
de mouvement, on voit pourquoi TLJ n'est pas symétrique. La forme 
même des formules (VI,b) pour les TLJ montre bien qu'ils sont 
formés avec les densités de quantité de mouvement et les compo 
santes de u.

Nous avons obtenu la formule :

eh (^*a+9rad ^ - 9rad + + c cot p.

A l'aide des notations relativistes, elle s'écrit :
4-ni.m

T.V O W/Nt w/vl J '-"'J
où mlJ est le tenseur antisymétrique (n,]T). La quatrième compo 
sante de la densité de courant étant j4 = 5e, en appliquant la 
formule précédente au cas i = 4, on trouve de même :

Le premier terme correspond à la densité qui existerait si le 
spin n'existait pas. Le second, divn, correspond à l'existence 
du spin, car l'on sait que dans un milieu électriquement polari 
sé existe une densité microscopique égale à -divn. Nous retrou 
verons pour la quatrième composante de la densité de courant la 
même image que pour les trois premières. F conservation de la

_ ftrf —* -icharge microscopique^- (-divn ) + div(^71+rot u) =0 .
dt dt 1

Pour montrer le sens de - div n , on peut considérer un élé 
ment de tube de force correspondant au vecteur polarisation dans 
le milieu polarisé. Sur la section inférieure de cet élément, la 
densité, la section transversale et la polarisation auront les 
valeurs ct, ds etrf. Sur la section supérieure, ces valeurs se 
ront augmentées de 8ct, 8 ds et 8n.

On a :

Le théorème flux-divergence donne :

- CT
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d'où

div n = — 5(gds)
8 n d s

La charge de l'élément de volume dv est / dn=8(cr ds
J o dn

et la densité de charge dans l'élément est
ôn d

-d (c t  ds )= -div n

7



CHAPITRE VII

LES SOLUTIONS A ÉNERGIE NÉGATIVE 
EN THÉORIE DE DIRAC

I. L’ONDE PLANE A ÉNERGIE NEGATIVE

Nous venons d'étudier les solutions de l'équation de Dirac 
qui représentent des ondes monocbromatiques planes à énergie W 
positive et nous avons trouvé que pour avoir une solution de la 
forme :

^k =
2nt

ai, e
(wt - p*. r )

il faut avoir entre V et p la relation :

(m,a)- = p2 + rn02 c2 = p

En posant :

Z 2. 2 2 2
« + Pv + Pz + m0 C

w = + C y m02 c2 + p/ + py*+ p

Nous avons trouvé :

PZA+(Px^iPy)B
' d5 \k /

m„c
ai= ^*m0c

PZB -(Px-iPv)A .a, = ——^7— î a,= A a4= B

où A et B sont des constantes arbitraires.

Mais nous aurions pu aussi satisfaire & la condition 
(VII,a) en posant s

W=-C Vmo c'+ Px2+ Py2+PzZ
Nous aurions alors trouvé la solution suivante :

a, = C a2= D a3=
PzC+(P»+i-Py)D

rm0c-W a4=
P»-lPy)C-PzD

m0c-W

C et D étant des constantes arbitraires.

Nous allons maintenant modifier légèrement les notations 
employées à l'instant. Pour des valeurs données de p^,Py,P», 
nous appellerons W la quantité positive c \/m0Jc2+ p2et, pour xenir 
compte de la deuxième solution, nous dirons que nous avons à
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considérer à la fois l'onde d'énergie ¥ et l'onde d'énergie - ¥. 
Il faudra alors dans les dernières formules changer W en - ¥.

Bref, pour des valeurs données de Px,py,pz avec :
W = + c y m02 cz -c px2 + py2 + pzl 

nous avons à considérer l'onde plane monochromatique :

<K_ ak

avec

(VII,b) a.--
PzA + (Px+ LPv)B

W
r+ m°c

pz B - ( px - i py ) A

W
A ; a.= B

et l'onde plane monochromatique à énergie négative -¥ définie 
par :

^k=bl
2ni (-Wt-pxx-pyy- pzz)

avec :

(VII,c) brC ; b2= D ; b3=

Comparons ces deux ondes.

PzC+(P*+L
WIf + mo

Py)D PzD-(Px-LPy)C

W
C m0c

Pour l'onde à énergie positive, nous savons déjà que les 
composantes et (-p4. qui correspondent en quelque sorte à la 
masse m0 l'emportent sur les ondes et (|)2 qui correspondent à 
la masse -m0. les ondes et 4^ sont nulles pour la vitesse 
nulle et ne prennent de l'importance qu'aux' vitesses voisines 
de c.

Considérons l'invariant :

il est toujours positif et tend vers zéro pour v tendant vers c.

Pour l'onde à énergie négative, les conclusions sont oppo 
sées. Les ondes et prédominent et si l'électron est au 
repos, c'est-à-dire si px=py = pz=o, on a :

-2 ni
Ce h m.cH 4>2=De

-2ni
4>3=44œ o

Pour des vitesses croissantes, les ondes 4*3 et 4*4 prennent de 
l'importance, mais c'est seulement pour le cas limite v=c que 
l'on aurait |4»3r + | = | 4», |2 + | 4*2\l de sorte qu'icil,4 0
l’égalité se rapportant au cas limite v=c. Ce sont les ondes à 
masse propre négative qui l'emportent. On peut associer à la 
masse propre l'opérateur m0a4dontI1 • m0 est la densité de va 
leur moyenne : la valeur moyenne correspondante est m0 \/1 - [b1 pour 
les ondes à énergie positive et-m0 VI -|i2 pour les ondes à éner 
gie négative.
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L’existence des états à énergie négative en théorie de 
Dirac constitue une circonstance étrange. Les propriétés d'un 
électron dans un tel_état seraient extraordinaires. Placé dans 
un champ électrique^TÏ, il prendrait une accélération de sens op 
posé à la force -eh i on augmenterait donc sa vitesse en lui 
retirant de l'énergie; sa vitesse serait en sens inverse de sa 
quantité de mouvement (*) etc.. On n'a jamais observé de corpus 
cules ayant ces propriétés paradoxales. Il y a donc là une dif 
ficulté en théorie de Dirac.

On pourrait croire que cette difficulté existe 
namique relativiste Einsteinienne car la relation :

déjà en Dy-

W‘ = mncC4 - ■ x ry rz

est valable dans cette théorie et en prenant la racine carrée, 
on trouve W=ic \Zm0zcz+ pzavec le double signe ± . Mais ici il est 
facile d'écarter la difficulté.

En effet les valeurs possibles pour W sont comprises dans 
les intervalles disjoints (-00 ,-m0c2) et (m0c2,+ oo)f l'intervalle 
(-m0cz,m0c2) ne correspondant à aucune valeur possible de W. Or 
en Dynamique ancienne, relativiste ou non, les variations ont 
lieu d'une façon continue. Si donc à l'origine, tous les élec 
trons ont une énergie W positive, comprise entre m0c2 et+00, il 
en sera toujours de même par la suite : aucune valeur négative 
de W comprise entre-m0c2 et - 00 ne pourra apparaître puisque 
l'intervalle (+m0c2,- m0c2) ne peut pas être traversé par une 
variation continue de W. L'objection relative aux énergies néga 
tives se trouve donc écartée en Dynamique Einsteinienne.

Il n'en est pas de même en Mécanique quantique car celle-ci 
admet en principe l'existence de transitions brusques entre 
états dont l'énergie diffère d'une quantité finie, ce qui empê 
che d'écarter a priori le passage du domaine des énergies posi 
tives à celui des énergies négatives. Et, qui plus est, on peut 
imaginer des exemples simples où des transitions de ce genre se 
trouvent réalisées.

Dans un article de 1929 [Zeitsch.f. Physik 53 (1929) p.157] 
M. 0.Klein a le premier signalé un exemple de transition qui, 
sans être à proprement parler un passage d'un état d'énergie 
positive à un état d'énergie négative, lui est cependant équiva 
lent. Il considère une surface plane S séparant une région (I) 
où les potentiels sont nuis d'une région (II) où règne un poten 
tiel scalaire constant et négatif de sorte que dans la région 
(II) un électron possède l'énergie potentielle U=-eV > 0 .Sur la 
surface de séparation tombe normalement venant de la région (I) 
une onde électrique de Dirac : cette onde est supposée monochro 
matique, plane et d'énergie positive W. Il s'agit de calculer 
les ondes réfléchies et transmises par la surface de séparation.

U1 = 0 U2= - e V > 0
(I) ' g (II)

(1) en vertu de la relation v 
groupe.

dw
“s? qui exprime que la vitesse du corpuscule = la vitesse de
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On montre que, pour effectuer le calcul, il faut exprimer la 
continuité de chacun des quatre tpk à travers la surface S, c'est 
à dire écrire :

^4 incident + t|4 réfléchi = cpk "transmis 
Naturellement les ondes réfléchies et transmises correspondent à 
la même énergie ¥ que l'onde incidente : le phénomène est con 
servatif .

Mais M. Klein a démontré le résultat suivant. Pour :
0<U<W-moc2

il y a à la fois réflexion et transmission, l'onde transmise 
ayant comme l'onde réfléchie les caractères normaux d'une onde à 
énergie positive. Pour W-m0c2<U<W+m0cz , il y a réflexion to 
tale avec onde évanescente dans le deuxième milieu. Enfin pour 
U>W+ m0c2, on trouve à nouveau une onde transmise à travers S, 
mais, c'est là ce qui constitue "le paradoxe de Klein",cette on 
de est une sorte d'onde à énergie négative : évidemment son éner 
gie totale W est positive, mais ce qu'on peut appeler "l'énergie 
de nature non potentielle" c'est-à-dire V-U est, dans la région 
(II), négative et inférieure à-m0c2, alors qu'en Dynamique 
Einsteinienne elle doit toujours être supérieure àm0c2. L'onde 
transmise dans le milieu (II) où règne le potentiel scalaire V 
est donc analogue h une onde à énergie négative en l'absence de 
potentiel et possèie les mêmes propriétés paradoxales. On doit 
dire qu'il y a une certaine probabilité pour qu'un électron in 
cident pénètre dans la région (II) en passant dans cet état 
étrange. C'est le paradoxe de Klain.

Le cas envisagé par Klein est très schématique. D'autres 
auteurs, notamment en France M. Gérard Petiau, ont approfondi ce 
genre de problèmes. Le résultat essentiel paraît être le sui 
vant ::chaque fois que l'énergie potentielle de l'électron subit 
une variation au moins égale à m0c2 sur un parcours de 1'ordre

de il y a possibilité de passage à des états à énergie né 

gative. On voit le rôle ici joué per "la longueur d'onde de 
Oompton" —^ c ^ 2,3 •10',0cm que nous retrouverons plus loin.

2. CARACTERE INCOMPLET DU SYSTÈME DES ONDES 
A ÉNERGIE POSITIVE

Revenons sur certaines particularités de la Mécanique ondu 
latoire non relativiste. Dans cette théorie, l'équation de pro 

pagation H 4* est du premier ordre par rapport au temps.
2iu ot

La solution en est donc complètement déterminée si l'on se donne 
sa forme initiale y,z,0). Considérons le cas de l'absence de 
champ où l'équation de propagation a la forme simple :

a ,h- 4nlm
h Ôt
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elle a pour solution l'onde plane monochromatique :

4 ( x,y,z,t)
2jù (Et-pxx-pyy-pzz)

ae

avec (sans ambiguité de signe) :

Supposons que nous nous donnions la forme initiale de la fonc 
tion d'onde y,z,o) =P(xfy,z) et considérons le développement 
de P(x,y,z) en intégrale de l'ourler :

F(x,y,z)=/// g(px,p ,pz)
2JU

h ( p*x + pvy+ Pzz )
dP* dPv dPz

les coefficients g sont calculables à partir de P donnée par la 
formule :

gtPx’Py’Pz) — F (x.y.z ) e
2ju

h ( Px*+ pyy+ Pzz )
dx dy dz

Je dis alors que la fonction :

, rTr -^(^-PxX-PyY-Pz2),
4* ( x ,y, z,t ) =JJj9l Px.Py.pz) e dpx dPy dPz

est la solution admettant P pour forme initiale. En effet t

l°-<|)(x,y,z,t) satisfait à l'équation de propagation comme étant 
une somme de solutions planes monochromatiques de cette équation 
linéaire.

2°- A l'instant t=0, elle se réduit visiblement à P(x,y,z).

Nous en concluons qu’en Mécanique ondulatoire non relati 
viste le système des ondes planes monochromatiques constitue un 
système "complet" en ce sens que toute solution de l'équation 
des ondes peut se représenter comme une superposition d'ondes 
planes monochromatiques.

Passons maintenant à la théorie de Dirac et cherchons à y 
transposer le raisonnement précédent. Ici nous avons affaire à 
quatre équations simultanées du premier ordre en x,y,z,t entre 
les quatre 4k* Des quatre fonctions d'onde sont donc entièrement 
déterminées si l'on se donne les formes initiales 4k(x>y>z>°)* 
Prenons toujours le cas du champ nul et demandons-nous encore 
s'il est possible de représenter n'importe quelle solution par 
une superposition d'ondes planes monochromatiques. Une solution 
est entièrement définie par la donnée des quatre :

4k (x ,y, z,o) = Fk ( x,y, z )
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que nous supposerons développées en intégrales de Fourier de la 
forme :

Fk (x-y-zJ=///~gk(Px’PyPz)

2ni
h Pz2 >

dPx dPv dP2

les gk étant données par les formules d'inversion s

9k (Px ’ Py ’Pz ) = ~jjï" y-Z)
-^ri(Pxx + Pyy + Pzz)

dx dy dz

Cherchons à représenter la solution qui correspond aux ini 
tiaux donnés par une superposition d'ondes planes monochromati 
ques qui ne contiendraient que des ondes à énergies positives» 
Four cela posons :

2 ni.
<Mx,y,z,t) = /// ak(px,Py,Pz)e (wt-Pxx-pyy-pz

dPx dPy dPz

avec W=+c \/inJ c2+ p2. Nous avons bien là une solution de l'équa 
tion d'ondes, mai,, pour qu'elle ait la forme initiale F(x,y,z), 
il faudrait avoir :

ak(Px’Py’Pz) =9k (Px’Py’Pz) ( k = 1 ,2,3,4 )
les gk étant connus. Mais nous savons que sur les quatre ak, 
deux seulement sont arbitraires et ceci nous montre qu'en géné 
ral, nous ne pourrons pas satisfaire aux conditions précédentes. 
Les ondes planes monochromatiques à énergie positive ne forment 
donc pas ici un système complet.

Considérons maintenant, à côté des ondes planes monochroma 
tiques à énergie positive, les ondes planes monochromatiques à 
énergie négative. Nous obtenons alors un système complet. En 
effet si nous posons :

+ ©o zni [m~~f
dPx dPydPz +

b k ( Px ’Py’Pz ) ® d Px d Py d Pz

avec toujoursW= + cVm02c2+ p2, nous aurons une solution des équa 
tions de propagation puisqu'elles sont linéaires et les 
^k(x,y,z,o) coïncideront avec les Fk(x,y,z)si l'on a :
ak(Px«Py-Pz)+MPx’Py’Pz) = gk(Px’Py>P2) (k = .U2,3,4)

A la différence des conditions obtenues plus haut, celles-ci 
sont toujours compatibles car sur les huit a K et bk, il y en a 
quatre d'arbitraires.
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Les conditions précédentes s'écrivent explicitement :
_Pi.MP.*+lPy)B+C „ ( p pl.PzB-(Px-ipy)A (n n D 1

W 1 rx’Py’Pz^ ’ W yE'Px’Py’Pz)
+ m„c W

c+m“c

P-C;(P-,lp')D>A-g3(P,.py.pzl;^Dwlp»-‘p-)C.B = 94(P>,py,p2)

W
-^+ m°c

w
-+m°c

Si l'on étudie le système précédent en tenant compte des rela 
tions d'incertitude d'Heisenberg, on voit que dans le cas d'un 
paquet d'ondes immobile ou animé d'une vitesse v«c, on obtient 
le résultat suivant : il est possible de représenter le paquet 
d'ondes 'Jj par une superposition d'ondes -planes monochromatiques 
si, et seulement si, ce paquet d'ondes a des dimensions au moins

U

égales à-=—pp . Si le paquet d'ondes a des dimensions inférieures
h m°C

à-p=-^ , la superposition doit comprendre des ondes à énergie né-

gative. Si le paquet d'ondes a dans le système de référence uti 
lisé une vitesse (3c voisine de c, on voit aisément, en tenant 
compte de la contraction de Lorentz, que le paquet d'ondes sera 
représentable par une superposition d'ondes planes monochromati 
ques à énergie positive si, et seulement si, ses dimensions sont
au moins de l'ordre de c V1 ~ 2 •

D'une façon générale, il est donc impossible en théorie de 
Dirac de représenter un train d'ondes quelconque sans faire in 
tervenir les ondes à énergie négative, ce qui montre qu'on ne 
peut éviter de considérer ces ondes.

La condition pour pouvoir représenter un train d'ondes uni 

quement par des ondes à énergie positive est donc Sx » \/l- |î>2

<$x étant l'extension du train d'ondes le long d'un axe ox quel 
conque. Nous allons retrouver cette condition en partant des re 
lations d'incertitude. La quatrième relation d'incertitude : .

ÔW ■ 8t » h

doit s'interpréter en dissuit que si une mesure de l'énergie 
fournit la valeur de l'énergie à ÔW près, cette mesure dure au

moins un temps St égal à^-. four que le train d'ondes considéré

ne contienne dans son développement de Fourier que des ondes à 
énergie positive, il faut queôw<w puisque § W doit, d'après les 
principes de la Mécanique ondulatoire, mesurer l'étendue, dans 
l'échelle des W, des ondes qui figurent dans le développement de 
Fourier duc|>» La durée ôt de la mesure qui permet de délimiter

le train des ondes e, donc bï>~. Or, dans la Mécanique ondula 

toire de Dirac, les fronts d'onde peuvent se propager avec tou 
tes les vitesses de 0 à c de sorte que pendant la durée ôt de la 
mesure, les frontières du paquet d'ondes peuvent se déplacer de
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cSt . l'extension du paquet d'ondes qui résulte de la mesure est 
donc au moins ôx = côt dans le sens ox. On aura donc :

car

>x » ~-~\nipW m_r v *

mc c‘

C'est bien le résultat obtenu plus haut.

Si l'on applique la formule ôtv-F- à la lumière (pour la- 

quelle W = h V et)i = -^j), on trouveSx>À. Il est impossible de lo 

caliser le photon dans un volume de dimensions inférieures à la 
longueur d'onde. Au contraire pour une particule matérielle

(électron par exemple), on a 8x> = 1 -|3 et, comme(5<1

on peut localiser la particule dans un volume de dimensions in 
férieures à la longueur d'onde associée et cela d'autant mieux 
que sa vitesse est plus petite.

3. LA THÉORIE DES "TROUS” DE DIRAC

Nous venons de voir, par l'étude du paradoxe de Klein et 
par celle du caractère incomplet des ondes planes à énergie po 
sitive, qu'il est impossible d'éliminer les ondes planes à éner 
gie négative de la théorie de Dirac. Notons encore le curieux 
résultat suivant : l'électron de Dirac ne pourrait pas diffuser 
la lumière si les états à énergie négative n'existaient pas : 
l'existence du phénomène de la diffusion de la lumière nous in 
terdit donc aussi d'éliminer ces ondes paradoxales.,

M. Dirac lui-même a trouvé un moyen ingénieux de lever la 
difficulté que constitue, dans sa théorie, 1'existence, impos 
sible à écarter, des ondes à énergie négative. Remarquant que 
d'après le principe d'exclusion de Pauli, il ne peut y avoir 
plus d'un électron par état, il imagine que tous les états 
d'énergie négative sont occupés dans l'état normal de l'Univers, 
Il en résulte une densité uniforme dans l'univers d'électrons à 
énergie négative et M. Dirac admet que cette densité uniforme 
normale est inobservable. Mais il y aurait plus d'électrons dans 
l'univers qu'il n'est nécessaire pour garnir tous les états à 
énergie négative et le surplus, obligé de se répartir entre les 
états à énergie positive, constituerait les électrons qui se ma 
nifestent à nous dans l'expérience. Exceptionnellement, un élec 
tron à énergie négative peut passer, sous l'influence d'une ac 
tion extérieure, dans un état à énergie positive : il y a alors 
apparition simultanée d'un électron expérimental et d'un "trou", 
d'une lacune, dans la distribution des électrons à énergie néga 
tive. Or M. Dirac a montré, nous reviendrons tout à l'heure sur
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ce point, qu'une telle lacune se comporte comme un corpuscule à 
énergie positive qui aurait même masse que l'électron et une 
charge électrique égale et de signe contraire. Ce serait un cor 
puscule en quelque sorte complémentaire de l'électron habituel, 
l'électron positif ou "positon".

En 1932, M. Anderson et tl.i-.. Blackett et Occhialini ont dé 
couvert dans les rayons cosmiques des électrons positifs répon 
dant aux conceptions de Dirac. Retrouvés dans les produits de la 
désintégration des radio-éléments artificiels, les positons, 
malgré le caractère plutôt exceptionnel de leur apparition, sont 
aujourd'hui devenus pour les physiciens des êtres familiers. La 
théorie des trous de Dirac conduit à penser que les électrons 
positifs doivent être instables en présence de la matière car, 
si une lacune rencontre dans la matière un des électrons néga 
tifs dont elle est pleine, cet électron négatif pourra combler 
la lacune et cette transition quantique se traduira par la dis 
parition simultanée de deux électrons de signes contraires dont 
toute l'énergie sera émise sous forme de rayonnement : c'est le 
phénomène de la "dématérialisation d'une paire d'électrons" dont 
l'existence est aujourd'hui certaine grâce surtout aux travaux 
de M.M. Joliot et Thibaud.

Nous pouvons donc avec Dirac considérer le positon comme un 
"trou" ou une ''lacune" dans la distribution des états à énergie 
négative de l'électron, mais nous pouvons aussi, plus physique 
ment peut-être, le considérer comme un véritable corpuscule 
"complémentaire" de l'électron dont la fonction d'onde cp obéit à 
une équation d'ondes complémentaire de celle de Dirac. Précisons 
ce point.

Considérons le cas de l'absence de champ et soit, + so 
lution à énergie positive des équations de Dirac :

iMh
c ôt = a 1 3x

a. o i 2ni
dy ~3dz h■ a m„ca

Je dis que la fonction Lp = -ia.za.A{<\>*) ' de composantes :

«K-'iW

car

- L a2 ot4 =

0 0 0 -1
0 0 10
0 10 0
-10 0 0

est solution à énergie négative des équations de Dirac. Qu'elle 
soit à énergie négative est évident. Qu'elle soit solution des 
équations de Dirac se voit en écrivant l'équation conjuguée :

1 dtK* _|'a jL ~ ô ô 2nl 

ô xat
-a T- + a 

2 ây 3 dz
m„ca, 4V

obtenue en remarquant qu'avec notre choix des at,a et ou
sont réelles et az purement imaginaire, puis en 
avant l'équation précédente, par -l<x2 a4 et tenant 
lations de commutation entre ou .

1 ’ “3 ^4
multipliant en 
compte des re-
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Ainsi partant d'une solution à énergie positive 4> +, nous 
lui avons associé une solution à énergie- négative 4* ~. Posons 
maintenant :

tp = 4>~‘ = - i ttz a+ 4 +
de composantes :

= ; tf>2 = 4>3+ ; <f3=^2+ ; tf4=-4v

Il est aisé de vérifier, en'multipliant l'équation en par 
-la2a4en avant, que cp est solution de :

c “(<x'‘lr<Xz^+as£"ir m°ca0 tf*k 

que nous appellerons l'équation complémentaire de celle de Dirac. 
La fonction cp sera la fonction d'onde du corpuscule "complémen 
taire" de l'électron, c'est-à-dire le positon : elle est solu 
tion des équations "complémentaires" de Dirac.

Passons maintenant au cas où. il existe un champ électroma 
gnétique dérivant des potentiels V et A. Soit encore 4'* une so 
lution à énergie positive des équations de Dirac telle que :

a1 ô V— — + xe— 
c dt c
avec :

kxeA-)ta‘(ly'*eAy cx3^- + xeAzj + xm0ca4

X =
2 ni

Pour obtenir la solution 4 ~ à énergie négative associée à 4*+ * 
nous commençons par considérer l’équation obtenue à partir de la 
précédente en remplaçant e par - e. Nous en obtiendrons une so 
lution 4>,+ en changeant e en-e dans l'expression de 4 + e't nous 
aurons :

C0t c) k
a,(--xaAx Miy~XeS ■a3(—-xeAz)+xm0ca4 ^

La solution 4~ cherchée sera :
4>‘= -la2 oc4 ( 4’+)*

On le verra aisément en prenant la conjuguée de la dernière 
équation :

Sl*xeA-b4*ïeA')*a4*xeA‘ xm0ca4

i|. + xe^Uj;- 
c3t c/^k a^|x + XeN+^(FV+XeM + a3lS+XeÆ

et en appliquant l'opérateur-i,ot2 et, en avant ce qui donne

—+ xe Ayj+Otj jT*'M0'-'*4

(Naturellement si

V = 0 , A = 0 , alors: 4’+= 4* + 4'~= -l<x2a4 4 + *
de sorte que nous retrouvons le résultat établi plus haut).

Posons :
tp = 4= - i a2 a4 4» ’ +

En prenant la conjuguée de l'équaticn satisfaite par 4», nous 
trouvons

dA A
a, ( — -xeAx j-a24e--xeA J+ a

dy y
3lg^-XeAz)-XmoCa4
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L'onde <p représente un corpuscule obéissant à l’équation complé 
mentaire de Dirac et possédant la charge + e ; elle représente 
un positon, corpuscule complémentaire de l'électron»

Naturellement pour V=0 , A = 0 nous retombons sur les résul 
tats obtenus plus haut.



CHAPITRE VIII

LE TREMBLEMENT DE SCHRODINGER

I. LE CENTRE DE GRAVITÉ DE LA PROBABILITÉ 
DANS LES MÉCANIQUES ONDULATOIRES

En Mécanique ondulatoire il vaut mieux généralement éviter 
de parler de vitesse, car la vitesse n'est définie que dans des 
cas particuliers (ondes planes monochromatiques).'* Au lieu de 
parler de vitesse, on doit parler de quantité de mouvement. Par 
contre on peut toujours définir un point G qu'on nomme "centre 
de gravité de la probabilité de présence" et qui est défini par 
les formules :

en Mécanique ondulatoire non relativiste, et par les formules :

en Mécanique ondulatoire de Dirac. x,y,z sont par définition les 
coordonnées de ce point.

Au cours du temps x,ÿ,z sont des fonctions bien définies du 
temps de sorte qu'on peut sans ambiguité parler de la vitesse du 
point G.

Soit , (Jj3 , cJj4 une solution des équations de Dirac qui 
représente l'onde associée à un certain mouvement de l'électron. 
Nous pouvons écrire :

V" Ç'Cn ^k.n

4*kn étant la ke-e composante de la ne-e fonction propre de l'éner 
gie (fonction propre de H) et les cn des constantes complexes. 
On trouve par substitution :

x -E
m,n

xmnétant l'élément de la matrice d'Heisenberg correspondant à 
l'opérateur x.
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Comme
dx.
dt

H = -

dx

avec :

^eV + c^P^cXj.P^a^ + a4m0c)
H étant l'hamiltonien de Dirac en présence de champ où, comme 
nous le savons,

h a

On trouve aisément :
2rcl

2ni 3xj c

h
et par suite :

(xH-Hx) = ca1 = -ca,
3x ox

dx r
d t

d'où :

— = S r* c ^Xm 

dt m,n m n dt

"=Xm ^C^M(-cotl)Çcn\n dT^g^k(-Cal)^kdl

et l'on trouverait de même
dz
dt

Or nous avons trouvé précédemment pour les composantes 
rant de probabilité

,ux=
k*4

-c E ai ^
K«1

dx r _
—7 =/ pu d T = U
dt Jd " x *

y
dt y

du cou-

dz

dt
= u.

La vitesse du centre de gravité G est donc égale à la valeur 
moyenne de la vitesse de la probabilité, résultat qu'on aurait 
pu prévoir a priori.

On interprète souvent les formules précédentes en disant 
que les opérateurs -ça,, -ca2 et -ca3sont les opérateurs corres 
pondant aux trois composantes de la vitesse du corpuscule élec 
tron. Comme ces opérateurs n'ont pour valeurs propres que +c et 
- c , on est amené à dire, d'après les principes généraux de la 
Mécanique ondulatoire, que les seules valeurs possibles des com 
posantes de la vitesse sont + c et -c , résultat assez difficile 
à interpréter. Mais il semble préférable de ne pas considérer la 
vitesse comme une "observable" à laquelle on puisse faire cor 
respondre un opérateur.
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2. LE THÉORÈME D’EHRENFEST

En Mécanique ondulatoire non relativiste, on démontre le 
théorème d'Ehrenfeat exprimé par les formules :

m - f m =f
dt2 Y

m = f
dt2 * ’ dt2 v ’ dt2 'z

qui s'explicite en disant que le centre de gravité de la proba 
bilité se déplace comme le ferait un point matériel de masse m 
sous l'influence de la valeur moyenne de la force î

f =* (-grad U ) ip dx

Dans le cas où il n'y a pas de champ, le point G est donc animé 
d'un mouvement uniforme et rectiligne, s'il n'est pas au repos. 
Hous allons démontrer directement ce dernier théorème. En Méca 

nique ondulatoire non relativiste H 

d'où s
dx 2 ni

dt
car

et par suite
d2x

h

dt2

'-A*'

M-

h 9

x H-Hx

_a_
9x

-h a

2nlm 9x
cpdx

H-h
MU A
\2nlm/ 9x.

tp d x = 0
2nlL 2nlm 9x

car ^-commute avec À.
ox
En théorie de Dirac, les résultats précédents ne sont plus 

exacts en général.

De :
dx 

dt

nous tirons
cHx 

dt2

=Lh ^ dx

na ;
f* k*4= / E <p
JD k-i ^ k, m 2ni .

-ca',H + Hca, 4 k, n d T

Mais ici a, ne commute pas avec H qui contient <xz, <x3 et a4. 
a donc :

d2x ^

On

^ 0 et aussi d ÿ 0 et
d2z

0
dt2 dt2 dt2

Le mouvement du centre de gravité de la probabilité en l'absence 
de champ n'est paq en général rectiligne et uniforme.

3. LE TREMBLEMENT DE SCHRODINGER

Pour comprendre pourqubi en théorie de Dirac le mouvement 
du centre de gravité de probabilité n'est pas rectiligne et uni—
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forme, même en l'absence de champ, il est instructif de soumet 
tre à une analyse détaillée l'expression :

où nous pouvons écrire :

- ©o- ©o
avec W= + c Vm„ c2+p2. Les huit ak et bk peuvent se calculer à par 
tir de quatre d'entre eux qui restent arbitraires par des formu 
les que nous connaissons.

Appelons maintenant "espace des moments" l'espace construit 
en prenant comme coordonnées rectangulaires les grandeurs px,py, 
pz et divisons cet espace en cellules <7 aussi petites que nous 
voulons. Les quantités

sont (à une constante de normalisation près) les "différentiel 
les propres" du spectre continu des ondes monochromatiques pla 
nes et nous pouvons écrire

px, p , pz étant les coordonnées du centre de l'élément ct danB 

l'espace des moments et S] désignant une sommation sur toutes
<7

les cellules c de cet espace.

Nous pouvons alors écrire :

" ]/D*V)A(a)dx

le domaine D étant naturellement ici l'espace entier. Les diffé 
rentielles propres étant orthogonales et supposées normées, nous 
avons, en désignant par u le volume de la cellule a-

'a1 a k ( Px ’ Py ’ Pz ) e " +bk(Px’Py’Pz)e h

ou encoreou encore
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En tenant compte des formules (VII,b) que nous rappelons ici :

PzA+(Px+iPy)B PzB"(Px-LPy)A

m„c W + m„c
a3— Aa,=- i w

c
nous avons

-c 2a*ka,ak- -c (a,* a4+ a* aJ+ a*3 a2 + aj a^-2 pxc AA* + BBt 

k-' f + mQc
et comme on a aussi

gaJak_(AA*.BB") 

il vient

a4= B

(^+moC)2_ = 2 W AA* + B B1

W + m„c2

•cg ai“'ak PxC*
W

E al
M k

On trouverait de même en utilisant l’expression des bk donnée 
par les formules (VII,c) :

-c Ê bk a, bk
k-i

pv c2 k-4
E b; b.

W k*1
d x

D’autre part, les deux derniers termes dans l’expression de -jt-
dt

sont complexes conjugués à cause de l’hermiticité de a, et peu 
vent s'écrire

E o*A, cos (^Wt+?1)

A, et cp, variant naturellement d'une cellule a à l'autre, c'est 
à direTétant des fonctions de p*,py,pz. On a posé en effet î •

k=4
A, e lt|>1 = -2 E br a, a

k-i
Finalement nous pouvons écrire
*<=Eo-^(kE a 

dt a W \ k-i k ak -g + E crc A, cos An Wt +

Pxc2
W

estOr, d'après les formules de la Dynamique relativiste 

la composante x de la vitesse correspondant à la quantité de 

mouvement p x et à l'énergie + W. On peut de même considérer W
comme la composante x de la vitesse correspondant à la quantité 
de mouvement px et à l'énergie -W..Le premier terme de 1'exprès-

A
sion précédente de —— est donc une sorte de valeur moyenne de la

dt
composante de vitesse vx correspondant à la composition spec 
trale du cp •

Posons donc
nyCz k-4

V = E O-AA- E
x <y W k..i

ak \)
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vx est naturellement Indépendante du temps et nous avons 
^=vx+E(TcA1cos +

d'où, par Intégration

J-H

et on trouverait de môme

CT hc

4nW
A^sin

Y = Tl E
<7

<T -^a2
4nW 2

sin

z = £ + E cr hc /4n,, A, sin (^^Wt + cp, 
4nW 3 ' h T3

avec les définitions

xo+ vxl

V - E cr^”
y c t w k-i

^ = y0 + vyt
k-4 /
E a*
k-i \ k K bk ; vz = E cr

Pze2

W k-i

ç - 2o + V
k-4 ,
E
k-1 \

ak ak - b* bk uk

Le point de coordonnées £, r\, Ç se déplace d'un mouvement recti 
ligne et uniforme, maie le centre de gravité G de coordonnées 
x, ÿ, z exécute autour de ce point une série d'oscillations de

O U/
fréquence—. C'est là "le tremblement de Schrôdinger" qui empê 

che le théorème d'Ehrenfest dfÔtre valable» Les amplitudes de 
ces oscillations sont d'ailleurs en général faibles car elles

hr
sont proportionnelles au facteur—f- qui est toujours plus petit

4nW
que 4nm c=4n~7n^c~ : #r la quantité , souvent appelée "longueur 

d'onde de Comptons est très petite (2,4*10 cm. pour l'électron^

L'analyse précédente montre nettement l'origine du tremble 
ment de Schrôdinger. 11 est dû au battement des ondes à énergie 
positive + ¥ et des ondes à énergie négative - W correspondantes. 
La fréquence du battement est, comme à l’ordinaire, la différen-

2 Wce des fréquences, soit .

Four un train d'ondes dans la décomposition spectrale du 
quel ne figurerait aucune onde à énergie négative, il n'y aurait 
pas tremblement de Schrôdinger car A,=o si bk = o et, par suite, 
le théorème d'Ehrenfest serait valable. Mais nous savons que 
pour représenter un train d'ondes il faut en général faire in 
tervenir des ondes à énergie négative (si les dimensions du

train sont inférieures àyi-fi2 ) et c'est pourquoi le théorè-

me d'Ehrenfest n'est pas valable en théorie de Dirac.
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POSSIBILITÉ DE MESURER 
LE SPIN DE L'ÉLECTRON

I. IDEES ACTUELLES SUR LA QUESTION

M. Bohr a donné des arguments pour prouver qu'il était im 
possible de mettre en évidence par des mesures directes le spin 
de l'électron. Naturellement cela n'exclut pas la mise en évi 
dence indirecte de ce spin par la constatation de ses répercus 
sions sur divers phénomènes tels que la structure fine des spec 
tres. Cela n'exclut pas non plus la possibilité de mettre en 
évidence, ce qui jusqu'à présent ne paraît pas avoir été fait 
d'une façon nette, l’état de polarisation d'une onde électroni 
que par des expériences du type de Norremberg en optique (ré 
flexion par un corps polarisateur d'une onde déjà polarisée par 
une première réflexion).

Nous allons étudier les raisonnements de Bohr (développés 
notamment par M. Pauli dans les Actes du Congrès Solvay 1930, 
p. 217 et sq.) et voir que leur validité semble en général limi 
tée au cas des vitesses faibles par rapport à ç.

2. ACTION D’UN CHAMP MAGNETIQUE 
SUR LE MOMENT MAGNÉTIQUE PROPRE

Considérons un faisceau monocinétique parallèle de particu 
les, la vitesse étant dirigée suivant ox et les dimensions tra- 
versales du faisceau étant A y etAz. On peut supposer par exem 
ple que le faisceau a été limité latéralement par son passage à 
travers une fente rectangulaire de côtés Ay etAz. Nous suppo 
sons que les particules, qui pourraient ne pas être des élec 
trons à condition d'être des particules de spin 1/2 obéissant 
aux équations de Dirac, ont une charge £ et une masse propre m0, 
et qu'elles sont soumises à l'action d'un champ magnétique non 
homogène partout parallèle au plan y o z de sorte que nous au 
rons :

divH=^

dy

9HZ

dz
8‘
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Si nous attachons notre attention aux actions qui s'exercent sur 
les particules suivant oz (un raisonnement analogue s'applique à 
oy)f nous voyons que l'action laplacienne du champ magnétique 
sur la particule se traduit par l'existence suivant oz d'une 
force -|-vHy tandis que l'action du champ sur le moment magnéti 
que propre TTC de la particule donne lieu suivant oz à la forme

3TC , force qui,
02

valeur absolue maxima

compte tenu
£h

de la relation div H = o,a pour 

dans le cas où le mouvement ma-
~4jT,m0c ôy

gnétique propre est normal à l'axe et dirigé suivant oz*

Mais le faisceau ayant une largeur Ay dans le sens oy, la 
force, laplacienne e3t affectée d' une incertitude égale à 
£ ÔH
—V\——-Ay et, pour qu'on puisse mettre en évidence l'existence
L oy
du moment magnétique propre, il faut que cette incertitude soit 
beaucoup plus petite que la force due au gradient du champ, ce 
qui conduit à l'inégalité

A h
m0v

Pour des particules de vitesse faible par rapport à la vitesse c, 

le facteur est égal à la longueur d'onde \ de l'onde asso 

ciée et l'on a
Ay « X

Cette condition entraîne l'existence d'une diffraction in 
tense qui ne permet plus d'attribuer à la particule une trajec 
toire bien définie, d'où résulte l'impossibilité de mettre en 
évidence l'existence du moment magnétique propre dans une expé 
rience où la notion de trajectoire peut être conservée.

Il convient toutefois de remarquer que dans le raisonnement 
précédent, nous avons supposé que la particule de masse m0 por 

tait le moment magnétique £h qui lui correspond dans la théo-
4nm0c

rie de Dirac. Il en est autrement dans le cas de l'expérience de 
Stem et Gerlach où un atome d'argent de grande masse propre M0

transporte un moment magnétique égal à un magnéton de Bobr
4nm0c

où mQ est ici la masse de l'électron. En reprenant le raisonne 

ment précédent et remarquant que À =
M,

on trouve:

A l»l OAy « -- à.
7

& la place de

Ay « X

et, comme -2® est très petit, rien ne s'oppose plus à ce que nous
M g

puissions mettre en évidence le moment magnétique propre de 
l'électron dans des expériences où l'on peut attribuer une tra 
jectoire à un atome d'argent.
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Arrivons maintenant à un point essentiel. Nous avons plus 

haut négligé les corrections de relativité en posant A =—7 alors
Ul 0 V

que l'expression rigoureuse de la longueur d'onde est

1 = h 
mnv

VrM57 IP-Ï)
Si nous tenons compte de cette expression rigoureuse, nous obte 
nons au lieu de Ay « À

' 1 Ay «-J-.
' 4rt

et si P est assez voisin de 1

\ATF . ,___

(v assez voisin de c) V1~P‘ sera
très petit et la condition précédente n'entraîne plus queAy 
soit très petit par rapport à \ , condition qui a été démontrée 
pluâ haut dans le cas v « c.

On ne peut donc pas affirmer pour des particules de Dirac 
animées de vitesses voisines de ç qu'il soit impossible de met 
tre en évidence leur moment magnétique propre par l'expérience 
envisagée.

Cependant, comme M. Ihibaud l'a fait remarquer, il subsiste 
une impossibilité pratique pour les électrons même siv « c. On a

en effet Ay« ce qui pour les électrons donne Ay « 10"10 cm et

l'on ne peut utiliser une fente aussi étroite. Il en serait au 
trement pour des particules beaucoup plus légères que les élec 
trons. Par exemple pour m<x> 10~37gr. =10"Æmo , on aurait Ay«1 cm , ce 
qui est aisément réalisable.

En résumé, pour des particules lentes (v« c), la mise en 
évidence du moment magnétique propre paraît impossible. Pour des 
électrons rapides (v«c), il n'y aurait plus d'impossibilité 
théorique (provenant des .relations d'incertitude), mais il y au 
rait toujours impossibilité pratique (provenant des dispoâitifs 
utilisables). Pour des particules beaucoup plus légères que les 
électrons et de vitesse voisine de ç, on n'aperçoit plus a prio 
ri d'impossibilité de mettre en évidence le moment magnétique 
propre.

Nota - La composante du moment magnétique normale à la vitesse 
est indépendante de la vitesse car elle est égale à

/w?pdT" '/ÎTF -/V»dT-

3. MESURE DU CHAMP MAGNÉTIQUE PRODUIT PAR L’ÉLECTRON

Les champs magnétiques produits par l'électron magnétique 
en un point à la distance r sont en ordre de grandeur

H 1
_v
c

JL
r3
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avec :

JTC = moment magnétique propre = ——— ; S = - e
4nm0c

Pour une incertitude Av sur v, on a

-^r AvAH1 =
cr

Or la position de l'électron étant incertaine àAr près, on aura
A p • A p > h

car Ar peut être considéré comme la largeur d'une fente que l'é 
lectron traverse normalement. De plus toute mesure précise sup 
pose Ar« r .Si l'on admet la formule non relativiste p = m0v, on a

h „4. au. e h ..ehAv
m„A r

et AH, >■
cr m„A r

ou
m„cr

AH, » -3L 
i r3

L'incertitude sur H, est donc très supérieure à H2, ce qui empê 
che la mesure de Hz, mais ici encore il n'en est plus de même si

m v
v^c, car alors on a p = :__- , et :

Ap =

car

v

0 Av + m vA (-, -- —) = m Av

> 1 : » A( 1

■(■uèsi)— A,
Av J

v
Av

v

» m0Av

» 1
c2 (l-(52)3/2Av ' ' ’ V^T2 ■ ’ \ mî

PosonsAp=m0Av. N avec N » 1 , il vient

_e_. h eh 1
cr2 m0NAr m0cr3 N

mais comme N est très grand, nous ne pouvons plus en déduire :

AH, >,-

AH, » H2

4. COMPENSATION DE LA FORCE DE LORENTZ 
PAR UN CHAMP ÉLECTRIQUE

M. Pauli a aussi envisagé le cas suivant. Des électrons 
sont lancés avec la vitesse v le long de l'axe des z et soumis à 
l'action d'un champ électrique et d'un champ magnétique, tous 
deux parallèles au plan xoy et indépendants de z. Ces champs dé 
rivent d'un potentiel scalaire V et d'un potentiel vecteur Az 
fonctions seulement de x et y et tels que
F _ 9V F 9V - h ÔAZ H 9A2

x ’ V 9y ’ x~ 9x ’ y"'9y
La force agissant sur l'électron a pour composantes

-eE+— vH = e( V Ax c y fa \ c z

-eEu-~vH =e -AU'V-— Ay c z 9y l O N
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Il y aura compensation des forces dans tout l'espace siV=A-Az

Il semble donc, dit M. Pauli, que l'on puisse mettre en évidence 
les forces exercées sur le moment magnétique propre qui sont 
seules à subsister, une définition exacte de la position des 
électrons dans les directions perpendiculaires au faisceau n'é 
tant pas nécessaire. Mais si vx = vy = o, vz ne peut être indé 

pendant de x et de y car ce n'est pasmvz , mais bien pz=mvz-|-Az 

qui est intégrale première en Dynamique relativiste (m est la 
masse en mouvement -T- ^.

------------ vît

Supposons pz constant et imaginons un faisceau 
limité latéralement par une ouverture circulaire de 
Soient encore :

Az=-(ax + byx) ; hx=-bx ; H = a + b.y ;

Sur l'axe z, le champ magnétique :
H = hy = a

produit l'orientation des moments magnétiques propres et la 
force exercée sur chacun de ces moments est Fy=3TCb. Sur le bord 
du faisceau, il y a une force de Lorentz non compensée

AF =-Av H = — Av bdy c z x c z •
et conpe

Apz = 0 ou Avz=-|^ AA = ^ bd2

on a :

d'électrons 
diamètre d.

9Hy

9y
= b

AFy me
où m est la masse en mouvement 

il faut que A Fy « Fy ou :

e
c

1b » me

VÎT

e
c

bV

. Pour pouvoir mesurer Fy,

b2 d3

soit encore
™ »W-|- bd3

l'angle de diffraction du faisceau après passage par le trou de 
diamètre d est de l'ordre de-^- (X=7dj7-) et pour que la notion de

d mvz
trajectoire garde un sens, il faut que le trajet 1 dans le champ 
soit tel que

1 « d ou 1 » —7- 
d d2

En multipliant cette inégalité par la précédente, on trouve

» ~Wc ' "i- ’ b d X1
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OU :

XI 3rc»iïïb-

et comme JH =
eh

4-nm0c

XI m0
m

JH b
mv.

Or comme on a — (mv ) = JH.b , on obtient en intégrant sur le temps 
1 dt y

m vy = Jïlb y1 et —- = JH b

La déviation D est donc
v„

Finalement :

D=^l = ^71
Z m v.

D—d ' m
Si l’on suppose, comme M. Pauli le fait implicitement, v«c et 
mon m„, on a

XI » D

ce qui signifie que l'effet de diffraction masque entièrement la
f m„ « z

déviation, mais il n'en est plus de même siv <^> c car alors (~^f)
égal à (1 -(3 z ) est très petit et l'inégalité obtenue ne prouve 
plus rien.

Ainsi trois des exemples donnés par M. Pauli à la suite de 
M. Bohr établissent seulement l'impossibilité de mettre en évi 
dence le moment magnétique propre dans le cas v « c, mais sont 
insuffisants pour le cas v^c.

M. Pauli a traité un quatrième exemple où l'impossibilité 
semble subsister même pourvu c comme nous allons le voir.

• 5. ARRET D’UN ÉLECTRON ORIENTE PAR UN GRADIENT 
DE CHAMP MAGNÉTIQUE

Des électrons se meuvent avec une vitesse vz le long de q z  
en présence d'un champ magnétique dirigé vers les z négatifs et

ayant un gradient le long de oz. Les électrons dont le mo~ 
02
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ment magnétique est dirigé dans le sens négatif de oz sont arrê 
tés au bout d'un temps t tel que :

mv.
oz

vz = vitesse initiale ; m =

Mais si Hx est nul sur l'axe, il ne peut l'être en dehors de 
l'axe en raison de la relation div îî=0, et à la distaneeAx de 
oz on a :

H Ax Ax
* ox oz

Il en résulte une rotation "de larmor" des électrons autour de 
la direction ox avec la fréquence

v = eH, JTLHV 
4nm0c h

M. Pauli dit que de cette rotation de Larmor résulte une inver 

sion du sens de la vitesse v2 au bout du temps Pour que le

renversement de. vz soit dû à l'action du champ magnétique sur le 
moment propre et non à la rotation de Larmor, il faut que :

t « —-— ou JH 4^*- t A x « h 
JTLHX 9z

et puisque mv t , on en déduit : mv Ax « h
9z

OrX = ^L- ; doncAx « X et les phénomènes de diffraction empêchent

l'expérience de réussir. Tel est le raisonnement de Pauli qui 
suppose explicitement que les électrons vont lentement* Voyons 
ce qui se passe si v <^> c.

La formule donnant V subsiste car dans le système propre de 
l'électron on a :

_ eH(°' _ eHy M = Hx
V° 4nm0c 4nm0c\I1 - B2 ’ Car * \J 1 - B*

env

m„c
Or d'après le ralentissement des horloges : 'J=V0 y 1 - [b2 =
c.q.f.d. Mais le moment propre Mz dans le système de l'observa 
teur vaut Jl \/l-(52 car :

h’* ; /hîdv =/h°z dv° V1^2 = ^V1-^2

On doit donc écrire :
£ [„j Ht

9z
et comme yi-jî2 est toujours inférieur à l'unité, on a :

mv < JH • • t
ot
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et puisque l'on doit avoir t«-^-on a :

soit

4nm0c
eHx

» m vz

9z

Ax «
et il y a bien encore 
donc ici pour v <-0 c .

4nm0c eh
e 4nm„c

impossibilité.

1mv2 ^
l'impossibilité subsiste

«. MESURE DU MOMENT CINÉTIQUE PROPRE (SPIN)

Si la mise en évidence du moment magnétique propre ne pa 
raît pas impossible quand v^c , il n'en est pas de même pour le 
moment cinétique propre (spin) qui paraît, suivant l'opinion de 
Bohr, toujours masqué par l'incertitude du moment orbital.

Imaginons un écran percé d'une ouverture rectangulaire de 
côtés Ax etAy. Sur cet écran tombe un faisceau d'électrons se 
propageant suivant la normale à l'écran (axe oz). Le train d'on 
des transmis a pour dimensions latérales A x etAy qui sont les 
incertitudes sur les coordonnées x et y du corpuscule après le 
passage de l'écran. Les incertitudes sur les composantes px et 
py de la quantité de mouvement sont donc :

h
Ax »

h
Ay

Le moment orbital de l'électron autour de oz a pour expression ;
Mz = x py - y px

Il y a donc une incertitude dont la valeur est comprise 
et

AMZ= Ax • | A| + Ay • | Apx |
d'où

AMZ » h Ax + Ay
Ay Ax

= h
[Ax]2 + [Ay]2 \ 

Ax Ay j

entre 0

Comme (Ax - Ay)2 = (Ax)2 + ( Ay)2 - 2 Ax - Ay > 0 , on en déduit AMZ > 2 h 
et a fortiori

AM » -h-
z 4n

On voit que l'incertitude sur Mz est

dire à la valeur du spin, ce qui rend impossible de reconnaître 
quelle est, dans le moment cinétique total, la part du spin.

supérieure à^— f c'est à

7. CONCLUSION - Il ne semble donc pas qu'il y ait une véritable 
impossibilité de principe de mettre en évidence la valeur du mo 
ment magnétique propre pour des particules de Dirac animées 
d'une vitesse voisine de ç; Néanmoins pour les électrons il sub 
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siste une impossibilité pratique. Pour des particules beaucoup 
plus légères ( électrinos de J. Thibaud ), il pourrait ne plue en 
être de môme pour v c .

Mais M. Pauli a donné une autre démonstration de l'impossi 
bilité de mettre en évidence le moment magnétique, démonstration 
d'un genre tout différent car elle utilise non plus les rela 
tions d'incertitudes, mais le passage à l'approximation de l'op 
tique géométrique en théorie de Dirac. Nous allons étudier cette 
nouvelle démonstration et pour cela rappeler d'abord comment 
s'opère en Mécanique ondulatoire relativiste le passage à l'ap 

proximation de l'optique géométrique.

i



CHAPITRE X

PASSAGE A L'APPROXIMATION DE L'OPTIQUE 
GÉOMÉTRIQUE EN MÉCANIQUE ONDULATOIRE

RELATIVISTE

I. L’APPROXIMATION DE L’OPTIQUE GÉOMÉTRIQUE

En Mécanique ondulatoire à une fonction d’onde, l’équation 
d'onde est :

h__ L . ___v ^ v f h B £
2m c 9t c

i 2rù 3x
Ax)_4 = m 02 c2 4*

qui en l’absence de champ se réduit à

Le étant une fonction complexe, nous pouvons poser

tp = a(x,y,z,t)e 2M <p (x, y.z.t) _ a (x,y,z,t) s ( x , y , z , t )

a étant l’argument et 2ntp la phase; et d’autre part : S = h cp

Si nous substituons cette forme dans l’équation des ondes, 
nous obtenons une équation complexe où, après suppression du

2ni

facteur commun e 
imaginaires. Ceci nous donne :

, nous pouvons séparer les termes réels et

(X ,a) V

(X,b)

c 3t

1 A
c 3t

x,y,z \ ox

a2(^ _i. v

c ot c

^ A,

div

An1
Si (j)

a g ra d S + A = 0 ( C )

L’équation (X,b) exprime rigoureusement la conservation du nom 
bre des particules, car en Mécanique ondulatoire relativiste à 
une fonction d’onde les composantes du quadrivecteur densité- 
flux sont données par :

P = (4> 6

4nim0c dt dt 1 mDc£
v 4» ■

f =
4-n Lm0

(i]> grad ~ 4*grac! vp )■ m0c A4» 41
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ce qui se peut écrire :

p 1 I 1 9S £

ou en posant :

i as £

m0c c ot c '
—(grad S +-L A) 

mn '3 c '

C 0t

P

V = n,

1
mnc a n4.

-33 A - „

3x c «
9

f =
m,

et l’équation (X,b) qu’on peut écrire :

7 -fjT (a* n4)+div(a2n) = 0

est équivalente à -|f-+div f=0 et exprime bien la conservation
Ot

de la probabilité de présence (ou du nombre des corpuscules dans 
le cas statistique).

Revenons à l’équation (X,a) que l’on peut écrire :

(I,c) h‘

>„•
A2- -mîc'

Bile lie les variations de l’amplitude a à celle de la phase S. 
On dit que l'approximation de l'optique géométrique est valable 
lorsque, dans cette équation, on peut négliger les ternes en h^. 
On démontre que cette condition est réalisée quand les condi 
tions de propagation sont telles que l'amplitude varie peu à 
l’échelle de la longueur d'onde. On a alors :

n„ - n = m„ c4 0
et cette relation est celle qui existe en Mécanique relativiste 
ponctuelle, car dans cette Mécanique (Dynamiqùe Elnsteinienne) 
on a :
W _ as __5>£l_, £v

c ôt 1/1 - S 2
d’où :

— ----f ~ m v p
p = -grad S = —■ + — A

(X,d) J_ ÔS £ v_ moc
c dt c y 1 -p2

ji = -grad S A =

ce qui entraîne bien

m0v

VHP

TI, n2 = 2 2mi c2

Dans ce cas, les phases de l'onde sont représentées par une in 
tégrale complète de l'équation de Jacobi

M BS 
' c 3t

BS

3x
= c 2

et le mouvement est défini en chaque point de l'espace-temps par 
les formules (X,d) qui donnent nA et n en fonction de S(x,y,z,t) 
et deV (x,y,z,t) et A(x,y,z,t) supposées connues.

Du point de vue ondulatoire de la Mécanique ondulatoire, on 
peut se représenter ce qui se passe de la façon suivante. Lee 
conditions de propagation varient très peu à l'échelle de la
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longueur d'onde, on peut considérer des régions qui soient très 
grandes par rapport à la longueur d'onde et à l'intérieur des 
quelles les potentiels V et A varient très peu. Dans une telle 
région peut exister un groupe d'ondes de dimensions très grandes 
par rapport à la longueur d'onde et cependant presque monochro 

matique de fréquence v= 4- et de longueur d ' onde K =-, .
9t h |grad S|

Les quantités n4 et n sont définies pour ce groupe d'ondes par 
les formules

n4= — — V -,~n =-grad SA
4 c ot c c

avec les valeurs locales presque constantes de V et A. L'équa 
tion -|£+div f = 0 montre alors que le groupe d'ondes se déplace

Ol lf~l
avec la vitesse Lg-' égale à

r m0v

VF"p
On a donc affaire à un groupe d'ondes ou globule de probabilité 

qui glisse le long d'une des trajectoires prévues par la Mécani 
que ponctuelle classique avec la vitesse v, et ainsi est effec 
tué à l’approximation de l'optique géométrique le passage de la 
Mécanique ondulatoire à la Mécanique ponctuelle.

En somme, l’optique géométrique et >par suite la Mécanique 
ponctuelle sont valables dès qu'on peut obtenir une équation de 
Jacobi en négligeant des termes de l'ordre de h2, l'équation de 
continuité prouvant alors que l'on peut considérer des groupes 
d'ondes se déplaçant le long d'une des trajectoires de la Méca 
nique ponctuelle avec la vitesse correspondante.

2. LA MÉTHODE W. K. B. D’APPROXIMATIONS SUCCESSIVES

La méthode Wentzel - Kramers - Brillouin procède par appro 

ximations successives par rapport à la quantité très petite 

Pour cela on part de l'un des développements suivants :
+ ...*(&)’*»•-]

h

2nl

ou

<p- a„ +
2nl

a. +..
I h'+( 2n'J h4

2ni S.

entre lesquels existent les relations

a,= S2e 1 az =
^ S3

S, .

9
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L'approximation d'ordre zéro (en ^4) consistera à ne garder que

les termes aQ (ou S, ). L'approximation d'ordre 1 à garder a0 et 
■ a^ (ou S, et S2),....

zrn g
Dans la méthode précédente, nous écrivions^ = ae h avec 

a et S (module et argument de . Ici (cette remarque est impor 
tante pour la suite), les a0, M » • * ' sont moins bien définis.

Si par exemple on a ai = aie^L (aL et module et argument 
de at) on pourra faire rentrer ji0 dans le facteur exponentiel en

posant S=S0 + |i0 et poser :

h „ ,i(p,-po) +4 = 0 . a, e 
2 ni 1 2ni

ane 'P-rPo
2m

et il y aura ainsi une certaine indétermination dans la forme du 

développement surtout si est assez grand pour que ——- [)0 soit

d'un ordre de grandeur intermédiaire entre 1 et tt-- . Autrement 
■ , „ 2ju

dit si S1 = S, 4 L S, a sa partie imaginaire S, assez grande pour
que -r^— -S, ait un ordre de grandeur intermédiaire entre 1 et yp—, 

2m 1 2m
on ne sait pas bien s'il faut écrire :

s:a„ =
ou

ou même

■= e

a„ = e

s,’ + i S”

s; + i^s”

avec
0 < T] < 1

Quoi qu'il en soit et en admettant que ces indéterminations 
ne soient pas gênantes, nous allons substituer le développement 

en aL dans l'équation de propagation et séparer les termes cor 

respondants aux diverses puissances de

L'éauation d'ordre zéro en est
---- 2m

h
2m

as,

9t

8 \2 i*3 / dS 8 \2
— V - E M+-A, = m

i-i 9x:
5c2

C'est l'équation de Jacobi : elle montre que 

l'approximation de l'optique géométrique.

2nSn
est la phase à

L'équation d'ordre un en r donne

i a - 2JU
c 9t L

<> a2 + div ïï<°> a2 = 0
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avec

n
(°>. 1 as.^-"~Vln-gradS0--A

et cette équation exprime toujours la conservation de la proba-

bilité de densité a, 

l'optique géométrique.

et de vitesse
,<*>

à l'approximation de

Les équations suivantes permettraient de calculer a,,a2I... 
en fonction de S0 et a0. Ces grandeurs doivent être négligeables 
à l'approximation de l'optique géométrique : si elles ne le sont 
pas, les phénomènes de diffraction apparaissent.

Les deux méthodes que nous venons d'employer poùr passer à 
l'approximation de l'optique géométrique en Mécanique ondulatoi 
re apparaissent comme simples dans la Mécanique ondulatoire non 
relativiste et, comme nous venons de le voir, dans la Mécanique 
ondulatoire relativiste à un tj;. Il en est tout autrement en 
théorie de Dirac où la question est beaucoup plus compliquée. 
Nous allons l'étudier en envisageant successivement les deux mé 
thodes que nous venons d'exposer.

3. PASSAGE A L'OPTIQUE GÉOMÉTRIQUE EN THÉORIE DE DIRAC

Pour effectuer le passage à l’optique géométrique, nous 
emploierons d'abord la même méthode qu'en Mécanique ondulatoire 
relativiste.

Nous partons des équations du second ordre de la théorie de 
Dirac qui sont :

, i-3 ,
P4-E P*-m*

1-1

c24Akh
c 2 r *

a2hy+a3hZ)-| ^-(aza3Hx+a3a1Hy+a,a2Hz)_ <k=o

et pour passer 
poserons :

^k =

( k = 1,2,3,4-)
à l'approximation de l'optique géométrique

2ni g

ak e h ( k = 1,2,3,4 )

nous

où S est une fonction de phase commune aux quatre <pk et rapide 
ment variable à l'échelle de la longueur d'onde tandis que les 
ak sont des amplitudes qui à l'approximation de l'optique géomé 
trique devront être lentement variables à cette échelle. Nous 
allons substituer cette forme des 4*k dans l'équation symbolique 
du second ordre et chercher à en déduire,par séparation des ter 
mes réels et des termes imaginaires, d'une part une équation (J) 
de Jacobi, d'autre part une équation (C) de continuité. Mais, 
pour pouvoir séparer avec sécurité des termes réels et des ter 
mes imaginaires purs, il faut prendre quelques précautions. Pour 
obtenir cette séparation après introduction de la forme admise 
pour les dans l'équation symbolique du second ordre, nous
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appliquerons à cette équation 1'opérateur a4, puis nous multi 
plierons par ak et nous sommerons sur k. Nous pourrons alors 
séparer les termes réels des termes imaginaires et en posant :

n, = —4^- —V ; n =-grad S - 
4 c ôt c s *

nous obtiendrons pour les termes réels :

k=4 U k-4
m;c-| E a*ka4ak+ — E

k-1 CTU k=1

1 9ak 3aî

c 9t c ôt
a4ak].n

9ak 9ak \ / t 9ak 9ak
97-97'

9ak 9ak
^4ak) Vlaia4-â7-â7a4akj nz

'4^'2'S (a‘ka4Dak-Daka4ak)=-| a*k(hxia,a4+hyLa2a4+hzia3a4)ak-

£_ _h_ 
c 2ni

/ \
- E ak^Hxiaza3a4+Hyia3a,a4+Hz ia,a2a4jak

Oeci devra nous donner l'équation de Jacobi (J),

Quant aux termes imaginaires, ils nous fournissent l'équa 
tion (C) :

~!r dï ("4 M aka4ak)+diV(n g ala4ak) + 2TÜW (ala4Dak~nalaAak ) = 0

Nous allons d'abord étudier la première équation. A l'approxima 
tion de l'optique géométrique, l'onde i|> se réduit à un paquet 
d'ondes presque monochromatiques dans une région de champ sensi 
blement constant : elle est assimilable à une onde plane mono 
chromatique "locale" correspondant à une certaine vitesse |3c et 
l'on aura :

E ak «4 ak = p \J 1-p2

p étant la densité de probabilité et par suite :

/k-4
E
k*1

dx VH^ 1

En intégrant dans D la première équation obtenue nous aurons 
l'équation

n4-n2 + F(ak) + G(ak) =m2c2-----2 ;H0Tl) + (h-9)
m„ c
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Met ff étant respectivement le moment magnétique propre et le 
moment électrique propre de la particule. Par définition on a :

k-4
E (aka4D aL-Daî.aka4aU

k-4 r.

fW-2HT-

*ia; -1? “*a’)"j

h k
Znl

k=4 J*4 ,
E E a: a
.1 j.i \ k ^4

Nous allons supposer qu'à l'approximation de l'optique géométri 
que P (ak) et G (ak) sont négligeables. Cela paraît très vrai 
semblable pour G (ak) qui est de l'ordre de h* : c'est moins évi 
dent pour F (ak) qui est de l'ordre de h. Nous reviendrons plus 
tard sur ces hypothèses pour les justifier; pour l'instant nous 
les admettrons. On obtient alors l'équation de Jacobi : 

n’-n! = m0!c! *2i]Um0
avec les définitions 

^1 =
1 U—(oit-H ) - (flT- h)

ü est l'énergie potentielle due à l'action du champ sur les mo 
ments propres.

En écrivant le second membre de l'équation de Jacobi sous 
la forme :

m’02 c2 = m02 cz + 2 m0iq U
nous définissons une masse propre variable qui est précisément 
analogue à celle que M. Weyssenhoff avait introduite dans sa dy 
namique de la particule à spin. Nous devions nous attendre à 
cette coïncidence, la masse m0 est lentement variable à l'échel 
le de la longueur d'onde.

Sur la formule précédente, on peut remarquer quet} ü est un 
invariant relativiste. Ceci pourrait surprendre car on serait 
tenté de donner à U la varianàe relativiste d'une énergie et 
alors T]U ne serait pas un invariant. Mais, en réalité, O bien 
qu'ayant les dimensions physiques d'une énergie, n'en a pas la 
variance relativiste, En effet, si et mik désignent respec 
tivement les composantes du tenseur "champ électromagnétique" 
et celles du tenseur "densités de moment magnétique et de mo 
ment électrique propres"

"e Fik mudx0\/T^T=U0Vi7p
U
—i / =

2 J L,k
d x

= /s
2 J i,k

Uo

B*
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ü0 étant la valeur de U dans le système propre. Donc le produit 
T|U = U0 est bien un invariant.

Il paraît très probable que pour obtenir une Mécanique 
ponctuelle de la particule à spin, il faut supposer que 2maTJ0 
sst très petit devant mac2 c'est à dire que l'énergie propre U0 
due à l'action du champ sur les moments propres est très petite 
devant l'énergie de masse m0cJ. Nous ferons donc l'hypothèse que

Uq _ t)U 
m0cz m0c2 K

est très petit devant l'unité, sans supposer cependant que K 
soit absolument négligeable. Nous pourrons alors poser approxi 
mativement :

m c £2 rri c + - m0c +
T)U \2
C /

d'où :

Il sera alors 
ponctuelle de 
Lagrange :

, U0 Tl U
m; = m0 + — = mc+ —

naturel de chercher à développer 
l'électron à spin en posant comme

la Mécanique 
fonction de

c'est à dire en remplaçant m0 par m'0 dans l'expression usuelle 
de la fonction de Lagrange en Dynamique relativiste de 1'élec 
tron. On pourra écrire :

L= -m/\Xf-U-8V + |(v-A)

expression qui est bien telle que J L dt soit un invariant rela 

tiviste puisque :

«Vï-F

est visiblement invariant, les intégrales étant prises le long 
de la ligne d'Univers de la particule.

ô L
Les formules classiques de Dynamique analytique p.=—-

oq ^
nous donnent :

- —p = - g rad S =

d'où :
ux_ £ -J. mO V moV

n, = p A = —====—== + — ~ -
d K c yXX c \XX2

= n<0)
U„ v

c*\rw

Quant à l'énergie, elle est donnée par la formule :

es . 9L mi c
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dont on déduit :

1 as Z ^ m;ç mQc | U0 _n(o)| '-J„

c at c VFF+CVT3F

m0<r et ntol = - m„ v.. - --- . désignant respectivement

la quantité de mouvement d'une particule de masse 
de vitesse v en dehors de tout champ.

l'énergie et 

propre m, et

On vérifie immédiatement l'équation de Jacobi (J) car :

n2- n2= m’/c2 m2 c2+ 2 m0U0 = m2 c2+ 2 m0T] U 

avec l'hypothèse K« 1.

Si maintenant nous écrivons les équations de Lagrange :

d ai. ÔL 

dt 3qc ôqt
avec la forme admise pour L, nous trouvons :

= F- grad U *
_ dt

où f est la force de Lorentz et - grad U la force exercée par le 
gradient du champ électromagnétique sur les moments propres.

En comparant la valeur de la force - grad. U avec l'incerti 
tude sur la force laplacienne contenue dans f dans le cas envi 
sagé au début du chapitre IX, on retrouverait aisément la formu 
le Ax< -pF_et les conséquences que nous en avons tirées (impos 

sibilité de mettre en évidence le moment magnétique propre sauf 
si v ^ c ).

0 =

Revenons maintenant

I 9

ôt
h.

k»4
aka4ak r d i v

à l'équation (C) :

_k*4 \ h t-4nEa;a4ak U-Ü- £
k 4 k/ 2nl k-i a*ka4 □ ak~ □ a;a4ak

Pour voir qu'elle représente l'équation de continuité, nous fe 
rons d'abord un raisonnement peu rigoureux _î:nous négligerons le 
dernier terme et nous confondrons ji4 et H avec et h '°r, ce 

qui nous donnera :

1 R
c ôt

m„c

VFF
•p\^)+div(^p\Rj5

= 0

ou après division par la constante m0 :
-^-.div(pv) 0 

ce qui est bien l'équation de continuité.

Mais en réalité n4= -^==f »n = ^°V-S et il faut tenir compte du 
dernier terme, d'où ^ ^

m;)+cjiv(p7m’0)+^-£ (a‘ka4nak-Da’ka4ak) =0
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_<K 

P dt

On peut écrire :

. a Jr(pm;) + div(pvrr,’) = m;[|| +div(pv)

dm; om; J
ou-^y~ = + v grad m; est la dérivée totale de m'0 le long de la

trajectoire. L'équation de continuité sera donc vérifiée si s

1 dU dm; h H , , x
—j —rr- = —— = - -—: ( aka, □ ak- □ akct. ak )c2 dt dt 2nU-i ' k 4 k/

Le dernier terme de l'équation (C) qui au premier abord peut pa 
raître un terme parasite sert en réalité à compenser les varia 
tions de mj le long de la trajectoire. Nous retrouverons plus 
loin une démonstration de l'équation de continuité.

4. LA MÉTHODE W. K. B. EN THÉORIE DE DIRAC

Nous avons opéré le passage au cas de l'optique géométrique 
en partant de l'équation du second ordre. On peut aussi partir 
des équations du premier ordre en appliquant la méthode K.W.B. 
C'est ce qu'a fait M. Pauli dans un très intéressant mémoire 
(Helvetica physica acta S. 1952 p. 179) dont nous n'adopterons 
pas cependant toutes les conclusions. Nous allons reproduire son 
raisonnement.

Nous partons des équations du premier ordre de Dirac

1 1 _9_ _ _£_ w \ .1. y-3 f _h___9 _£
2m c ôt c ] t-i \ 1 2nl 9xt c

Avec un léger changement de notations, écrivons avec M. Pauli le 
développement suivant des

^)<K=m0caA (k = 1,2,3,4)

2nl S„ r
bke b-”.— b(;’^

2m k
—) blk+... 
2nV k .

- ^s0

où au second membre bk est développé suivant les puissances de

la quantité très petite — (conformément aux principes de la
2ni

méthode K.W.B.) et où S0 désigne la fonction de Jacobi pour une 
particule sans spin soumise au champ électromagnétique considéré 
c'est-à-dire la fonction

s° =/[K,+-Hcdt■ S (n‘,+iA') d)b
l'intégrale étant prise le long du rayon-trajectoire. On doit 
bien noter^ que dans la formule précédente, c’est et n 1,1,et 
non n+ et ~n qui figurent au second membre. On doit noter aussi 
que les grandeurs
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sont des fonctions bien définies de x,y,z,t, lentement variables 
à grande échelle dans le champ électromagnétique quand l'appro 
ximation de l'optique géométrique est valable. Ainsi, dans un 
champ permanent, selon le point de vue de M. Pauli, on aurait :

cn*1=^ppr=w-£V (x>y'z’t)

W étant la valeur constante de l'énergie.

En substituant dans les équations de Dirac la forme admise 
pour les ipk, on obtient en faisant un calcul d'approximations

successives par rapport aux puissances de les équations

M
|(a)

(b)

«♦>+S
tt(o) + IC nl°} - a+ m0c

t>(;=o

utl)b„ = -
1 db® 
c 3t

1=3 a u (o)
12

,l dt

La première équation étant homogène n'admet de solutions non 
identiquement nulles que si le déterminant est nul et cette con 
dition est équivalente à la relation :

ïï[o)- «(‘’t m'c*

qui est bien vérifiée. Il résulte alors de la théorie bien con 
nue de l'onde plane monochromatique en théorie de Dirac que les 
bja’ sont les amplitudes des tp dans le mouvement rectiligne uni- 
forme_correspondant à l'énergie c n (40) et à la quantité de mouve 
ment K(0>. Mais comme il est bien connu, à chaque état de mouve 

ment rectiligne et uniforme, correspondent deux états possibles 
pour le spin. Si nous _désignons par Ak et Bk les amplitudes 
(fonctions de 7i<0) et de n (o) et par suite lentement variables à 
grande échelle) relatives aux deux états de spin et dont nous 
connaissons les expressions, nous aurons :

b(k°’= C, (x,y,z,t) Ak n<°>)+ C2(x,_y,z,t) Bk (ni°),^'(o,)

avec

A,=—-
r(°>

B,=-n‘,°)+L'n(y)
n‘°’+ m„c

A,=—
nSf-inÿ1

7t‘°'+m„c

B,= n.(°)

nf+m0

A, = 1

B,=0

a4=o

B+=1

C, et C2 sont lentement variables à grande échelle.

On voit alors que les équations en bk’ , qui sont linéaires 
ont un déterminant nul, ne peuvent admettre de solutions nonet

nulles en b'
k=4
Hk=1

U) que

ab^
at

si les conditions

0 ^
1 3x; ) ' ra

suivantes sont réalisées

Ce sont les "conditions de Pauli". 11 est facile, étant données 
les expressions ci-dessus des Ak et B^, de les écrire explicite-
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ment par exemple dans le cas où reste constant. On trouve 
ainsi :

(X,f)(a) 2 -fr1 + Tt(x0' 4^1+ < 4^+ n[°] 
c 3t dx y dy 1 ôz

+ ( dC.
dx

ac,\
dy J

-f^=-C.div n(0)+ IC, 
dz 1 '

'dT&] dix1"1' 
vdx dy , dz " dx )\

et :

(X,f)(b) xcw— -dC* +
4 c at

„(-,-|Ça+R«|Çi+ jxW |^1+ nlz°> (4^-+l4^-') 
x dx y dy dz J z vdx dy I

Il est important de remarquer que le premier crochet dans ces
J p

deux équations peut s'écrire m0ci](avec i =1 ,2), la dérivée

——étant prise 
dt

en suivant le mouvement 

par le vecteur ~îx(°).

de la particule défini

Les équations de condition de Pauli sont deux équations aux 
dérivées partielles du premier ordre qui déterminent les fonc 
tions C, (x,y,z,t) et C2 (x,y,z,t) quand on connaît les vitesses 
initiales. La variation à grande échelle des Ak et des Bk par 
l'intermédiaire de 7T^0> et de n(o) et celle des fonctions C, et C2 
expriment la façon dont la portion d'onde monochromatique qui 
représente à petite échelle le mouvement du paquet d'ondes se 
transforme sous l'influence du champ électromagnétique quand le 
paquet d'ondes progresse.

# Multiplions les équations de condition de Pauli 
C2 respectivement et les équations conjuguées par C, 
pectivement et ajoutons ; nous obtenons en tenant 
l'hermiticité des oc-, :

I 4- £
dt

>)* bf
i-=3 . k=4

■ E4-£
i»1 dxtK='

bf oc, b(;'=o

par C,* et 
et C2 res- 
compte de

et comme l'on a

p=£ bïM F=pu=g bH-csjb?»

(du moins à l'approximation d'ordre zéro), on obtient l'équation 
de continuité

div (pu)=0

On pourrait, bien entendu, faire d'une manière analogue l’étude 
de la détermination des b£z) , b® , ...

Comme les Ak et les Bk ne dépendent aucunement de l'action 
des champs électromagnétiques sur les moments propres de l’élec 
tron j il en est de môme pour les bk0) (c'est là un point que nous 
aurons à examiner de plus près). Donc l'approximation d'ordre 
zéro ne fait aucunement intervenir l'action du champ sur les mo-
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ments propres et l'équation de continuité obtenue avec les 
expressions données pour p et pu montre qu'à cette approxima 
tion le mouvement est le même que si les moments propres n'exis 
taient pas. M. Pauli en conclut que, quand la Mécanique ponc 
tuelle est valable pour un électron de Dirac, elle est la même 
que si l'électron n'avait pas de spin. Pour trouver les effets 
du spin appréciables, il faut être obligé de tenir compte des b1^. 
Mais il est bien connu que, si l'on est obligé de tenir compte 
des b^'1 , les effets de diffraction apparaissent et alors la Mé 
canique ponctuelle cesse d'être valable. M. Pauli pense donc 
qu'il est impossible de mettre en évidence l'existence du moment 
magnétique propre d'un électron par des expériences où les con 
ceptions de la Mécanique ponctuelle sont valables, c'est à dire 
où l'on peut attribuer aux électrons des trajectoires bien défi 
nies.

La conclusion à laquelle nous parvenons ainsi avec M. Pauli 
et suivant laquelle la Mécanique ponctuelle d'un électron de 
Dirac est identique à la Mécanique ponctuelle d'un électron sans 
spin, est évidemment en contradiction complète avec les idées 
que nous avions développées plus haut et avec la théorie de 
M. Weyssenhoff. Nous devons donc soumettre la question à un exa 
men plus approfondi.

5. APPLICATION DU MODE DE RAISONNEMENT DE PAULI 
QUAND ON PART DE LA MÉCANIQUE PONCTUELLE 

DE WEYSSENHOFF

Au cours de ses raisonnements, M. Pauli, dans son calcul 
d'approximations, est parti de la Mécanique ponctuelle d'un 
électron sans spin. A notre point de vue, il est naturel de re 
prendre le même mode de raisonnement en partant de la Mécanique 
ponctuelle de Weyssenhoff que nous avons retrouvée plus haut. 
Nous allons donc envisager au départ un ensemble de trajectoires 
de la même classe (c'est à dire correspondant à la même fonction 
de Jacobi) dans le cadre de la Mécanique ponctuelle de 
Weyssenhoff s bien entendu, ces trajectoires sont distinctes de 
celles qu'envisage le raisonnement de M. Pauli puisqu'elles su 
bissent l'influence de l'action des champs électromagnétiques 
sur les moments propres. L'onde associée à la classe de tra 
jectoires considérée s'écrira sous la forme :

2sis
1>k=aKe a(°'. ak +

_h_ 
2a l

e
2ai.» 

h s

S étant la fonction de Jacobi définie par :

S=/7^+syHjJUdt-I te.+4AL+^.-7^=5)dxll

J 1=1 wFp c c VhFv J
l'intégrale étant prise en suivant le mouvement.
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Posons

°/k#+eïK(#^,k ]

S^ ne coïncide pas avec le Sa de Pauli parce que l'intégrale est 
prise en suivant un mouvement différent de celui qu'envisage 
M. Pauli. En posant encore :

M °k = ak
Ù)e^Vu^

(j =0,1,2,...)

nous pourrons écrire le développement des cpk sous une forme ana 
logue à celle employée par M. Pauli :

Substituons cette forme dans les équations de Dirac : 

2Ül“dt_£V)^k + l f"“l 2Ïü fo1~'c'Ai.)cK = m°C^k

(l = 1,2,3j-£V=- 9S--Aal,
C 1

Posons

TC(o) 1 9S° £V- m°c • wf°—
+MC dX V^P* ' 9xl C

Les ît|0) et 7t(o1 ainsi définis ne seront pas les mêmes que dans le 
raisonnement de M. Pauli puisqu'ils correspondent à la Mécanique 
ponctuelle de Veyssenboff et non à celle de l'électron sans spin 
mais on aura toujours :

U
(0)1 = m?c2

Le résultat de la substitution des (K dans les équations de 
Dirac, nous permettra toujours d'écrire la suite des équations 
d'approximations successives

/, r

(X,h)

.(0)

a) [n10)+ ^ aL m"C] bh°)= 0

(b) [*«.g

retrouvons donc pour les bj^ les mêmes équations que nous 
avions trouvées pour les bk’ dans le raisonnement de M. Pauli.

Les équations (X,h)-(a) n'admettent de solutions non iden 
tiquement nulles que si leur déterminant est nul, ce qui est vé 
rifié car ce déterminant est égal à Tt(° — m* c*. Nous obtenons 
alors les deux solutions indépendantes :

et

A n?» . A n^+ i. nS,o) . Al-

O
11

<

Tt‘40) + m0c ’
n2— îr(°>+m0c ’, ri J— 1 y

B,=- 7t(°' +1 ni0’ . hH
C
D nL0) B3=0 ; II+

C
O

7i(.°’+m0c ’ ïïiP+mTc” ’
Mais il est essentiel de remarquer que les fonctions Ak (nj0’,^01) 
et Bk(n^0), 7fl0) ), bien qu'ayant les mêmes formes, ne varient pas
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ici de la même façon en x,y,z,t que dans le raisonnement de 
M. Pauli. En effet nous avons ici :

et non :

et les fonctions S0 et SJ sont définies différemment. En parti 
culier, dans le cas d'un champ permanent où l'énergie garde une 
valeur constante W, la quantité c rt sera donnée non par 
W-£V (x,y,z) comme dans le cas de Pauli, mais par la formule :

c nl^'=W-£V(x,y,z)-T]zU (x,y,z)

de sorte qu'ici l'existence des moments propres se fait déjà 
sentir à l'approximation d'ordre zéro.

Si maintenant nous posons encore comme dans le raisonnement 
de M. Pauli

nous retrouverons, pour déterminer les fonctions C, et C2 les 
"conditions de Pauli"

dont nous avons donné plus haut les formes explicites.

Le calcul de Pauli nous montre qu'ici encore nous avons 
l'équation de continuité

si nous posons à l'approximation d'ordre zéro :

et l'on trouve aussi :

La relation (X,g) qui définit les b J(0) en fonction des aj0’ nous 
fournit donc :

et

La dernière formule justifie a posteriori la relation que nous 
avions admise en établissant l'équation de Jacobi tandis que la 
validité de l'équation de continuité avec les définitions ,i- 
dessus de p et de î semble indiquer que le mouvement s'opère, du 
moins à l'approximation d'ordre zéro, suivant les lois de la Mé 
canique ponctuelle de Weyssenhoff. Comme cette Mécanique pono-
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tuelle contient l'action des champs électromagnétiques sur les 
moments propres, nous sommes en contradiction complète avec les 
conclusions de M. Pauli. La question qui se pose est donc de sa 
voir si c'est le raisonnement que nous venons de donner ou le 
raisonnement de M. Pauli qui conduit sur ce point à une conclu 
sion exacte. Pour trancher cette difficile question, on pourrait 
essayer d'abord de faire des calculs complets dans des cas dé 
terminés. Malheureusement ces calculs sont en général extrême 
ment difficiles. Nous allons, pour nous orienter, faire le cal 
cul dans un cas très simple, ce qui nous révélera déjà un cer 
tain nombre de circonstances intéressantes.

4. CALCUL DES FONCTIONS C2 ET C2 DANS LE CAS DU MOUVEMENT 
D’UN ÉLECTRON DANS LA DIRECTION D’UN CHAMP MAGNÉTIQUE 

PERMANENT ET HOMOGENE

Nous prendrons la direction du champ constant H comme axe 
des z et nous supposerons que le mouvement de l'électron s'opère 
suivant cet axe.

Nous ferons le calcul simultanément dans l'hypothèse de 
M. Pauli (mécanique ponctuelle sans spin) et avec la mécanique 
ponctuelle de Weyssenhoff.

Les conditions de Pauli déterminant C, et C2 sont les sui-
▼âU'feos *

2 [„«! £. < £}. «? (&-
=-C, divTf(o)+ LC, (rot n(0,)z-lC2 ((rotTc(o))x+ l(rot

et
2 nW(|ÇL+L|Çi)-(,tW+Lnf)

L 4 c 0t x dx y dy z 9z J z dx dy / V y /
=~C2 div Tt (o)-l Cz (poTnwjz-i C, j^(rot n<o))x+1 (rôFn w)yj

(°A 9 Ci 
9 x

Or ici l'on peut poser :

H 
'2

Ax=-lly ; Ay= y X ; Az= 0

ce qui donne :
Hx = 0 ; Hy = 0 ; HZ=H

Les moments de Lagrange ont pour valeurs :
C £ j_j £ £ ^

px = nx+-^-Ax=t ix—— y ; py=* Ay= — x ;

Dans la théorie de Pauli :

Avec la Mécanique ponctuelle de Weyssenhoff, on a :

* Uo v
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et n ne diffère de Jtw que par un terme de l'ordre de U0 que nous 
négligerons parce que dans le résultat final il ne nous donne 
rait en supplément qu'un terme en U* et, dans la mécanique ponc 
tuelle que nous adoptons, nousjaégligeons les termes en U* • Nous 

allons donc confondre Tt avec 7i(0) , nto) ayant d'ailleurs des va 
leurs différentes dans la théorie de Pauli et dans la nôtre.

Or d'après la théorie de Jacobi, p est le gradient (changé 
de signe) de la fonction de Jacobi (S0 pour Pauli, S pour nous), 
d'où :

On en tire

rot p = 0

dn^)=an^ . dn^ = d^j0> 

dz dx ’ dz dy
dn<? dn'0’ ^ £ u 
dy dx c

L'électron décrivant par hypothèse l'axe des z, les trajectoires 
de la même "classe" sont-des hélices circulaires axées sur oz.

La projection de sur le plan xoy a pour longueur ~

normale au rayon vecteur "r dans ce plan. On a donc :

nW=A_Hr-=-^Hy ; = Hx
2c r 2c ^ ’ 2c \ rl 2c

d'où :

Hr et est

dî4°’ 3nj£_£_H an!?1, an!?1
dx dy dx dy

=0 anff, an<°)_0
dx dy

Comme &£-=vz<&-=0 
dt z 9z on a aussi

d n (°'

dz
div 7X(o)=0

=0 et finalement

Bref les équations de Pauli se réduisent dans le cas C, = 0 
ouCj,= 0 respectivement à :

(d _|Çtl + l_LH c O
I
I

c
J
~

L * c dt * dx J aj z dz J c 2
2 „wi4c1 + „w|Ç1+nw|ÇL+

L * c dt * dx * dy
n(o) |_Çtj= _ l_£ h c

z d z J c 1

I
I O

Dans le second cas, essayons la solution :

C,= D, e^/udt = D, ( c2 dt-v„ dx-v,dy- vzdz) ; C2=0

On trouve

^ m0U0=-|H

Or pour le mouvement rectiligne uniforme de la particule le long 
de oz, noue avons d'après les formules (VI,d)

2m0c dx

avec A = 7rÿ>1+m0c , ce qui donne ici

OKI = £h
m„c

|C, i2 2m0c V
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Or C, est normé par la relation (VI,c)

r~«,
/v sv

donc :

p dr^dcMCJ^dT.ICJ-i^D.I

M. Sh m?c 
4nm0c 7x"°’

La relation

donne :

4n
h
Y]Um0=-— H |avec U=-7tlz-H^

£ h
4Jtm0c

\fW2

et il y a bien accord.
2 “K l / U d t r\

Nous avons donc obtenu la solution C,=D, e h J , Cz = U 
qui correspond à l'orientation parallèle du champ H et du moment 
magnétique JH (les composantes et 7ïly étant nulles comme on le

vérifie aisément).

ZTl l f IJdt
On trouverait de même la solution C,= 0; C, = Da__e 

qui correspond à une orientation antiparallèle de H et de 3lt avec

7Ilz=__Li]— \l 1 -B 2 . D, et Dz sont des constantes si H est constant

dans l'espace : elles varient lentement si H est lentement va 
riable à grande échelle dans l'espace. "

Les solutions obtenues sont rigoureuses dans la théorie de 
Pauli. Elles sont exactes aux termes en U1 près dans notre théo 
rie, mais ces termes sont supposés négligeables.

Nous remarquerons que notre résultat prouve que, même en 
théorie de Pauli, l'action du champ électromagnétique sur les 
moments propres intervient dans l'expression des fonctions C, et 
C2, donc dans celles des b(°', c'est à dire à l'approximation 
d’ordre zéro. Cela vient de ce qu'en théorie de Dirac, dès qu'on 
introduit dans les équations de Dirac les potentiels électroma 
gnétiques, on introduit par là même l'action du champ sur les 
moments propres. Même en prenant pour fonction de Jacobi la 
fonction S0 de l'électron sans spin, on voit apparaître cette 
action. Mais les termes en U apparaissant dans l'expression 
d’une exponentielle imaginaire s'éliminent quand on forme les 
grandeurs quadratiques à signification physique tels que p et f, 
et à ce point de vue le raisonnement de Pauli n'en paraît pas 
ébranlé.

Dans la théorie de Pauli, le résultat obtenu donne :

2"i(so+/Udt)<K=CKe h loy '

dans la nôtre :
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mais la vitesse v = pc qui figure dans la fonction de phase n'est 
pas la même. La fonction de phase peut s'écrire dans les deux 

cas
A m0c‘ U» 1=3

dt-£ + £
lït L\^fr+ C

u„ Vi
dxL

mais dans le cas de PauliW=
m„c‘

on a :
VFp

tandis que dans notre cas

W= m„c‘ m0c2+ £ h ^ _ 1

\TFF VFfF VFfî* 4nmoC \/FF

C'est ici, semble-t-il, qu'apparaît un premier avantage de notre 
point de vue sur celui de Pauli. En effet, la Mécanique ponc 
tuelle de Weyssenhoff fait correspondre tout naturellement la 
vitesse v qu'elle admet à la fonction de Jacobi S=S’+y'Udt com 
me on le voit en se reportant aux formules que nous avons déve 
loppées. On peut encore dire que la vitesse v est la "vitesse de 
groupe" correspondant à la phase définie par S. Au contraire 
dans la conception de Pauli, la vitesse v que l'on adopte cor 
respond à la fonction de Jacobi SD de la particule sans spin et 
non à la fonction S0+y’Udt qui figure dans l'exposant de l'ex 

ponentielle des cpk : cette vitesse v n'est donc pas égale à la 

"vitesse de groupe" correspondant à la phase complexe SD+y^Udt 

des <|>k.

Il semble qu'au point de vue physique la Mécanique de Pauli 
et la nôtre diffèrent profondément. Supposons que le long de 
l'axe oz, dans la région (1) qui s'étend de z = -oo à z = a le 
champ H soit nul; puis dans la région (2) qui va de z = a à z=b , 
il augmente de 0 à H très lentement à grande échelle; enfin dans 
la région (57 c'est à dire pour z>b le champ magnétique à la va 
leur constante H. Dans la première région, arrive le long de 
l'axe oz un électron représenté par un petit train d'ondes mono 
chromatiques dont le moment magnétique est soit parallèle, soit 
antiparallèle à oz. L'énergie W de l'électron restera constante 
lorsqu'il traverse la région (2) et parvient à la région (3). 
D'après la théorie de Pauli, sa vitesse (vitesse du train d'on 
des) resterait aussi la même puisqu'à l'approximation de la Mé 
canique ponctuelle l'action du champ sur le moment propre ne de 
vrait pas se faire sentir. A notre point de vue qui adopte la 
Mécanique ponctuelle de Weyssenhoff, la vitesse d'ensemble du 
train d'ondes varie lentement pendant la traversée de la région 
(2) et prend dans la région (3) une valeur constante différente 
de sa valeur initiale, cette valeur finale étant plus petite ou 
plus grande que la valeur initiale selon que le moment magnéti 
que de l'électron est antiparallèle ou parallèle au champ. Les 
prévisions des deux théories paraissent donc physiquement diffé 
rentes.

10
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7. RETOUR SUR LE PASSAGE A L’OPTIQUE GÉOMÉTRIQUE 
EN THÉORIE DE DIRAC

Lorsque nous avons étudié, au paragraphe 3 de ce chapitre 
le passage à 1'approximation de l'optique géométrique en théorie 
de Dirac, nous avons trouvé l'équation rigoureuse;

n2-rc2 + F (ak) + G (aj = m' c2+ 2 m0-r] U 

les ak étant les amplitudes des clv.
ZBL g

Les fonctions P(ah) et G(ak) ont pour expressions :

(où : x4 = et,...)

Le terme G (aK) qui est de l'ordre de h2 est certainement 
négligeable quand les conditions de l'optique géométrique sont 
vérifiées. En est-il de même de P (ak) qui, à l'approximation 
d'ordre zéro dans la Mécanique ponctuelle que nous adoptons, a 
pour expression :

, , hF(3w)_ h J * dxj 9xj
2t ù \TF^ T

fdi

Supposons que nous ayons écrit le développement des 
forme :

2tt'i g’
-----r------Jq

sous la

nous aurions obtenu en négligeant les termes en h2 :
n(p)L n(<>)+ p(b’w) _ m2 c2 + 2 moi] U

P (b'k0’) ayant la même expression que P (af ) avec substitution 
des b'k(°’ aux alk0> . Si P (b'k(0)) était négligeable, nous obtien 

drions :
— 7T^°)Z= m2 c2+ 2 m0rj U

relation qui est inexacte, même en supposant K négligeable. Pour 
avoir une relation exacte, il faut avoir :

(X,l) F (b'(k0))= 2 m0T] U=2m„ U„ ^

ce qui alors donnera bien la relation exacte nl°'— nw= m2 c2.
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Si l'on admet l'hypothèse exprimée par la relation (X,i), F (a1"’) 
sera nul car on démontre aisément, puisque :

2ni.J\j tJt-
b’fla^e h + termes de l'ordre de-*—

K k Zni.

que :
F(b’klo>)= F (a k0,)+ 2 m0rj U

d'où F (a(k )= o. l'hypothèse faite dans la déduction de l'équa 
tion de Jacobi en négligeant le terme F (a(k’ ) est donc alors vé 
rifiée. Il nous reste à examiner si la relation (X,i) est bien 

exacte.

Avant de faire cet examen, nous ferons la remarque suivante. 
Si, au lieu de raisonner, comme nous venons de le faire, avec la 
Mécanique ponctuelle de Weyssenhoff, nous avions pris le point

de vue de Pauli et son développement (bk0V;)L-L-b k’+...) e. h S°

où SD est la fonction de Jacobi de l'électron sans spin, le pas 
sage à l'approximation de l'optique géométrique nous aurait 
fourni l'équation (à l'approximation d'ordre zéro)

F ( b(ko)) = m2 c2 + 2 m.Tj U
avec :

m„c . „(oL m„Pc . J_
+ ’ “tfFp5"

la vitesse gc n'ayant pas ici, toutes choses égales d'ailleurs,
la même valeur que dans la Mécanique ponctuelle de Weyssenhoff. 
Or nous avons évidemment encore nl0)Lm2 c2 ; il faut donc

que l'on ait aussi dans la théorie de Pauli :

(X,j) F(bW)=Zm071U

Bref, en admettant le point de vue de Pauli, il faut avoir 
l'équation (X,j), tandis-qu'en admettant notre point de vue et 
la Mécanique ponctuelle de Weyssenhoff, il faut avoir la rela 
tion (X,i) pour pouvoir négliger F (aï ) dans l'équation de 
Jacobi. La vérification des relations (X,i) et (X,j) dans des 
cas particuliers est difficile en raison de la complication des 
calculs effectifs. Nous allons l'indiquer dans trois cas parti 
culiers simples.

1° - Mouvement longitudinal dans un champ magnétique uniforme.

Ce cas simple est celui que nous avons précédemment étudié. 
Nous avons trouvé avec notre point de vue :

<pK=Cke

2t çI q> 
h ^

e
Mi/udt

à l'approximation d'ordre zéro et en négligeant les termes en U2; 

d'où :
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avec Ck = Ak ou Bk suivant que le moment magnétique propre de 
l'électron est parallèle ou antiparallèle au champ, Ak et Bk 
étant convenablement normés.

En substituant cette expression des bj(°’ dans F (bJlo)), on 
trouve aisément :

Si on se place 
poser :

F(b’k(0)) = 2m0i1U

au contraire au point de vue de Pauli,

2TÙ
9k=Cke

t/udt 2ni - -irSo

on doit

où SD est la fonction de Jacobi de la particule sans spin, 
donc :

2fli Uo
c*Vi-p*

Vi. dxtJ

On a

avec toujours Ck=Ak ou Bk ; mais aussi (5 correspond à la vitesse 
dans la Mécanique ponctuelle de la particule sans spin. La subs 
titution des b(k0) dans F (bk’) donne encore :

F(b‘k))=2m0r]U

Les relations (X,i) et (X,j) sont donc bien vérifiées dans le 
cas actuel.

2® - Mouvement transversal dans un champ magnétique uniforme.

Dans un champ magnétique uniforme, considérons une trajec 
toire électronique circulaire dans un plan normal au champ. Nous 
allons faire le calcul de F en un point 0 de la trajectoire.Nous 
prendrons la tangente à la trajectoire comme axe des z, la di 
rection du champ magnétique uniforme comme axe des y, la normale 
à la trajectoire comme axe des x

y

Nous commencerons ici par faire le calcul en adoptant'' le point 
de vue de Pauli, c'est à dire la Mécanique ponctuelle d'une par 
ticule sans spin. Les équations de condition de Pauli prennent 
ici la forme simple (la classe des mouvements considérés corres 
pond à des trajectoires circulaires planes axées sur le champ If).

ac,__j__ £ up_ <°’ t ac, r
dz 2nl°' c 2 n ^ c dt '
dCz 1 £ ur nj*’ 1 dCi r
d z 2 c n ^ 7T(0) c d t

div K 

div 7f

Nous faisons le calcul au point 0 où

(rt°) n -TrW
et où

<L0, <=0

dn2=o(c arÉg=0-.
d z dt

dnj°
dz
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Or nous voulons calculer l'expression :

<•>

Il est aisé de vérifier que dans cette expression les termes

contenant les dérivées— — ainsi que les termes en divTT5'' se
c et

compensent; ils sont d'ailleurs nuis comme nous le verrons ci- 
dessous. Il suffit donc, pour calculer F (b‘°’ ) en 0, de poser :

dC, 1 t up . dC>2. 1 £ y f>
2n« “c 21 TT~~Zn^T '

Pour le mouvement considéré, K(y°’=0 et l'on a (avec A=rtl°)+mC)c )

— tç(°) P 1 • 
z nx ^ij j b‘°’= b(;>= c.

d'où :

(X,k)

car on a en O

db,(o) 1 T r _w dC*
dz Al2 dz 2 dz
db(:] 1 [• f anM _(.) dC,l 
dz Al1 dz 2 dzj

1=1 -Ç». 11 
J A Z c

I U C U

<=0 ; MLo et-£*M=.x .

2 ' d z dt x 2 dz
v, 4eÏL-!»,h

d ' où

4s£=--h
0 z c

On trouve alors :
p /b(.))=_h2L /<> dx

^ k I 2ni J |L\ 1 A 2 2 A 2 / c 3 dz 4 dz J
+ terme identique J

Soit :

(X,1)
F(b")-2!S/d”'"[-f C;C'’ O O c;c2 c;c,i £ H

JT1? JX1? Je

= _ M i, fdxic;c,-c;Q] — H
2 n J l 2 2 1 / \ A2 / c

Or :
1+n1?2 n'î’-mjc* 1 1 2jl*
A2 (n,;’ + rn0c)2 A

d'où :
F(bï)-2m (CTC2-C2C

Les formules (VI,d) donnent :
(xy= L (C1*CI-C;C1) ^ (avec dx)

Il vient donc :
F (bif) = - 2 m07) 3IL y H

10'
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et comme U = -TTC^H, on a bien :
F(bl£') = 2m0ir)U = 2m0U0

La relation (X,j) est bien vérifiée.

Si maintenant nous reprenons ce calcul en nous plaçant à 
notre point de vue, c'est à dire en adoptant la Mécanique ponc 
tuelle de Weyssenhoff, le raisonnement restera le même sauf 
qu'ici nous aurons à poser :

p =n Uol

On en tirera

d'où encore
dz

d 3t‘f

1-^5 TlV.
p2 I t

9n<?
0

car vz reste constante au premier ordre sur la trajectoire; puis

U0T1 = --VzH

d'où

au lieu de

9z c 9z

9n1^ tw

9z c
Ceci nous introduira au dernier membre des équations (X,j), en

C
plus des termes en-^-H, des termes en ü. Nous obtiendrons donc 

pour F(b,lk>) une expression de même forme que celle de S^b1^ ) 

donnée ci-dessus, mais ou le facteur -^-H sera remplacé par

-|-H + terme en U. Dans l'expression de F (b'^0)), ces termes nous 

donnent donc en supplément des termes en hz qui sont négli 
geables. Nous aurons donc aussi :

F(b’r) - 2 m0iqU
et la relation (X,i) sera vérifiée. [Plus précisément nous trou- 

F(b'Ç) = 2m07)U(l+-j^r) et nous négligeons les termes en U2 ].
vons

On peut facilement intégrer les équations différentielles 
en C, et C? données au début de l'étude de ce second cas parti-

5n<0) 0n(O)
culier. On a -5—^- = 0, _ y =0 et -3—l =0 pour la classe de mouve-

9z 9y 9x
ment qui comprend toutes les trajectoires circulaires planes 
axées sur K”.

Les équations en C1 et Ct peuvent donc s'écrire (puisque 
div n|0) = 0);

9C, 1 £ 9C?
= — —HC2 ; m0T)°^1 9t 2 9t

= -i — HC,
2 c
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et l'on trouve comme solution :

^ flldt 
C1=De h J Cz = i l C1

Il faut prendre dans la seconde équation le signe + ou le signe 
- suivant que^le moment magnétique propre est parallèle ou anti 
parallèle à îf.

Il pourrait sembler qu'en introduisant les expressions pré 
cédentes dans celle de F (b ) fou de P (b'Ç)], on devrait obte 
nir, contrairement au résultat obtenu ci-dessus,

F(b<k°>'
F jb’<o,)=2moTluVïrF = 2moü

mais il n'en est rien parce qu'il faut tenir compte des termes

en —— qui expriment la variation de n1? . Pour mieux nous rendre 
oz

compte de ce qui se passe, reprenons la formule (X,l) et écri 
vons la sous la forme :

Le terme 1- n<°>2 _______ __ Ôn‘?
est celui qu'on obtiendrait si était nul

A2 ...... ... "1~------ --------- “* 9z
comme on le voit en reprenant des calculs déjà effectués sur ce 
cas particulier : c'est donc le terme dû à la variation des ClS ,

2n'°)2
tandis que le terme en—provient de la variation des Ak et 

®k •

Le premier terme donne, comme on devait s'y attendre :
2m,c •

2m0ï)U 1 ■ = 2m0r|U =2m0ï|U V/ïIpT = 2m0U

2n'?

mais le second terme donne ;

2n(°)2 
2m07)U—f-

2n(?
2m „U

rjn (o)2

de sorte qu'au total on a :

/ \ / n‘°,z\F(b'?)-2m„u(,.^)

Or

1 +
Tf)n (o)2

= 1 +'
n4)2 ~ mpC2

n(ÿ2+ m0cnl?
= 1 I m|c2-rj(r^+1 ) 1 4

7f-1

1+1 = *1An1?
car rj(? = m0cr) d'où finalement :

F(bl?) = Zm0r,U
faux termes en U2 près, on obtient le même résultat pour F(b'k°)J

3°- Mouvement transversal dans un champ électrique uniforme

Nous allons supposer que le mouvement s'opère dans un champ 
électrique K dont nous prendrons la direction pour axe ox. Nous
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supposons qu'au point o considéré de la trajectoire, le mouve 
ment s'opère suivant l'axe oz

y '

La trajectoire est une parabole dans le plan xoz tangente à oz 
en son sommet o. Nous prenons comme classe de mouvements parabo 
liques ceux obtenus par déplacement parallèle de celui-ci le 
long de oz et le long de oy. Dans le plan yoz, l'axe oz est une 
caustique, ce qui donnera lieu à quelques singularités.

Ici nous avons

■ (o) 0 v= hx- x
9V

3x
= h.

b<?=-^(n‘°z>C1+r<C2 ; b^l^cv^’c,) ; b‘? = C, bï’- C,

Il faudra tenir compte de la variation de A = n1*’ + m0c par suite 
de l'action du champ électrique sur la particule. La fonction S0 
est ici :

S0= Wt-/\/(|4h1x)-n'?'-m;cl dx-f n‘? dz

avec n(°’= C‘-e , les intégrales étant prises le long de la trajec 

toire.'On trouve :

,, , an'!1 nl? £
d ou

n'° = \/(t x

0nl’

+ | hxx)2 -Ji(f-m2c2
(O)
4-

, (o)6x n7 c
est infini à l'origine à cause du râle de caustique de 

ox
l'axe oz (car à l'origine o, n™ = 0).

Remarque.- On peut retrouver les relations précédentes de la fa 
çon suivante. Sur la trajectoire parabolique, on a :

, ote 1 . z j- > dx 4.
z = v71 avec vz = C - ; x = —---- t d ou v = —— = —- tz 2 m x dt m
Cn a donc :

= 2
mv;

£hv
x = 2 px avec p =

mv'
£h.

d'où l'on tire

On trouve aussi

dz
dx

P_
z

puis

ce qui' donne

jV”' = m0ï)vz d’où

dn(°’

9n(

dt
£ hv =

ôz

9z

= 0 en o

M
ôz

£h x

v.
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De là on tire :

Bn1!1 9n(;’ dz
9x 9 z dx

£h,
v.

P_
Z

Or en O

d'où :

n <°)
. 1°)

E. _ m0T)c £hx 
c x m0T]vx c

mvz
z

£h.

m
t

m
t

9<
0X

i-h.
Ce qu'il fallait démontrer. 

D'autre part :

A = ji(4 + m0c =

d'où :
P

et
94 = i h
0X C X

W_
c

9A
9z

4 m]

= 0

Nous avons maintenant à écrire les équations de Pauli : elles ne 
sont pas ici données par les formules (X,f) parce que, n (o) va-

, il faut tenir c

ac, c. an1"1

0Z 2n,°l ÔX

ac, C2 9<’

'3z 2nl°’ ÔX

1
n(o)r - n(0)r

2n'°’A' z 2 * 1

1
2n7A

1 fl
Ici encore les termes en ~ se compenseront quand on formera 

P (b1?1) et nous aurons à employer les expressions précédentes de

+ n to)r

de A . On trouve

9A «Y 1 ac.
dx n1? c at
3A n1;1 1 0C,
0X «Y C at

et en laissant de côté les derniers termes* Il viendra 
dz oz 
ainsi :

F
k-4
E b ?*
k-1 9z

-conji) dx

On pourrait croire que le premier terme du crochet est nul parce

qu'en o, jv°’ = 0 . Il n'en est rien car an1;1
ôx

est proportionnel

de sorte que le produitn‘° -75—reste fini et égal àn'I’h-h, 
ox c *

quand nl°’ tend vers zéro. Les termes en -11- donnent donc :
0X

-2(c;ct-c-Cl)^ 4hx

fl
tandis que les termes en -2- donnent, pour nl°’ tendant vers zéro

J_ _ (o)2 p * ^C, _(o)2 p » p « 9^1 p * d^2 \
A2 z 1 9z A2 z 2 0z 9C 1 0z 2 0z ) 

ce qui, compte tenu des valeurs de et

(o)
z

- (c: c2-c- c.
t(°)2

-1 J_ 0A_ 
A 0x

j i

devient

(o)
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d 1 OÙ

Hb‘°k>
lu/d't (crc,-c;c,)[(^I‘- 

ia/(crc,-c;c,')[(i-^)il

10,2 a n‘°> 0A 2n(°; n(V E .
1 -=------ rr ~~ - h.

2n A A2
2mQc n1”1 

4nm„c "* \ A A 
Eh 2n|0‘

9x A2 
2n‘t’n';1-] £

hv dx:]
? rr i°) n10) v

■-2"’-’lh«/(c;C2-CI-C,)4jim>c A 

Or, on a [voir formules (VI,d)] :

• dx

0>x = fnxdx = yi (cr C,- c; C,’ 6h 2n'!>
• dx

I4nm0c A
d’où :

F(b'k01) = -2m0T)^hx = 2m0T]U = 2m0U0
ce qui est encore la relation (X,j).On montrerait aisément qu'en 
adoptant la Mécanique ponctuelle de Weyssenhoff et en négligeant 
les termes en Uz, on obtient également la relation (X,i) c'est à 
dire F (b' 1̂ ) =2m07j U.

8. DÉMONSTRATION GÉNÉRALE DES FORMULES (X, i) ET (X, j) 
A PARTIR DE LA DÉCOMPOSITION DE GORDON

Nous avons pu vérifier les formules (X,i) et (X,j) en étu 
diant quelques cas particuliers. Nous allons maintenant en indi 
quer une démonstration générale en faisant appel à la décomposi 
tion du vecteur d'espace-temps "densité-courant" donnée par 
M. Gordon et développée au paragraphe 4 du chapitre VI. Nous al 
lons écrire cette décomposition en considérant le quadrivecteur 
densité-courant en nombre de particules et non le vecteur den 
sité de charge électrique - densité de courant électrique, ce 
qui revient à diviser par la charge - e de l'électron lès ex 
pressions données précédemment à l'endroit indiqué. Nous distin 
guerons les composantes covariantes des composantes contreva- 
riantes. Nous poserons :

k-*
f' = E

k-1
-ca i)<k ;f2

k-4

k-iT1
-ca )(l>k;f3=E^*(-ca^k;f4=cgcji 1̂

ce qui définit le vecteur d'espace-temps f, puis :

(X.rtg'-_2l_ S (.Ka.ÿü-ÿiaA).....,9*- "
’ a 4mm0w\Yk 3x 9x a t

ce qui définit le vecteur d'espace-temps g*. On peut alors écrire 
la décomposition de Gordon sous la forme suivante :

4mm. k-A c 9t c ot

= 9'

9^
9xl

( j = 1.2,3,4)
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avec 
il j  —|jllj = — p-JL ; p.14=nx ; pd4=ny ; [i34=nz ; ^2J= ; p,31= piy ; p'2=(xz

où ït et ]T sont respectivement les vecteurs "densité de moment 
électrique propre" et "densité de moment magnétique propre".

Posons avec M. Pauli :

2rti

2ni
Appelons gjg) la partie de l'expression de gj qui contient les 
dérivées de,°S„ et gJ(b> la partie de l'expression de gj qui con 
tient les dérivées des b. Nous aurons :

MS. i(b)

Les gJ(S j ayant la même expression que pour une onde plane, on 
vérifie “aisément que :

■P ** — ri jT - 9(S
d'où

(s0)

c i= 4

s;--! 5 “97"

A l'approximation d'ordre zéro, c'est à dire en ne conservant 
que les b(£’ , on obtient en multipliant scalairement g par "n w , 
soit en multipliant la dernière équation par n (J’ et en sommant 
sur 3 :

£ 9i = n<°> 
âx1- J

Or, en comparant l'expression (X,m) des gjà l'approximation 
d'ordre zéro avec l'expression de P (b ^ ) on trouve :

/V 9(Wdx- 1 Vi?

d'où :

F(b(k°>) = 2maïic /g Ô[Al-
“a? ix'J'dx

2m0r)

2m„c />„^ /e
^ V i»j

n (o> Ht0Xl aX°

car

dx = dxD Vl^p

Kn développant la théorie de Weyssenhoff, 
relation (IV,h) :

s r n <r = 0
d'où:

E n'i1) = 0 ou- E ^

nous avons trouvé la

y 9x“ Jn, = - EU u 
U 1

Remarquant que rd5* = grad SD + — X et que = - [x1

dx1
nous trouvons
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où les Ftj sont les composantes du tenseur "champ électromagné 
tique", car :

= ÔAi 9Ai 
^ 0X‘ 0Xj

D'où :

I]
i-.j

9(xlj

0Xl
n (o) ■fsc s j

Or nous savons d'après une relation du paragraphe 3 de ce chapi 
tre, que :

U0 = T1U = - ^ij dx0

d'où :

fl
Bous obtenons donc :

F(b'°k') = 2ma[-^J£ Fdx0j = 2m0U0 = 2m0r,U

et la formule (X,j) est vérifiée.

Si nous reprenions le même calcul en partant du développe 
ment 2nL

= (b> + -H- b’lk +...)« 
k' 2m k I

nous trouverions en négligeant les termes en U2 la formule (X,i)

F (b,(k’) = 2 m0T] U

9. INTERPRÉTATION DE LA CONDITION F (a'”1 )=0.

En résumé, d'après ce qui précède, la condition qui carac 
térise l'emploi de la Mécanique ponctuelle de Weyssenhoff pour 
l'électron de Dirac et qui paraît le justifier du point de vue 
de la Mécanique ondulatoire, c'est la condition :
(X,n) F (alk ) = 0

les ajj étant définis par le développement :

Zni g

^k = (a‘k)+2ÎrLalk)+-")e h

où S est la fonction de Jacobi de la Mécanique ponctuelle de 
Weyssenhoff. Quelle est la signification physique de cette con 
dition ?

Pour le voir, reprenons la formule :
c Bp.1--1 
£ 9xl

fj=9J+?



APPROXIMATION DE L’OPTIQUE GÉOMÉTRIQUE 147

écrite plue haut et décomposons le quadrivecteur de la façon 
suivante : ...

9J = 9(s) + 9w

où g(j) est la partie de gj provenant de la variation de S et 
g jij celle qui provient des variations des ak et qui se réduit à 
gj(ao) à l'approximation d'ordre zéro. On vérifie alors aisément 
que la condition (X,n) est équivalente à la suivante :

/Ç 9iWdx - 0

ou pour un très petit paquet d'ondes :

Comme les nlJ’ sont proportionnels aux composantes Uj de la vi 
tesse d'univers de la particule puisque n(°'= m0cuj , on a aussi

Ç 9(io) Uj = ®

Or le premier membre de cette formule représente le produit sca 
laire dans l'espace-temps du quadrivecteur g^j par la vitesse 

d'Univers îf î il est donc égal à la composante de temps ( g(l,' )Q 
de g^J dans le système propre de la particule.

Finalement nous parvenons à la conclusion suivante : Dans le 
système propre de la particule, la composante de temps du qua- 
drivecteur g est la même que si les ak’ étaient de3 constantes. 
En réalité les a'j1 ne sont pas constants en général puisqu'ils 
sont de la forme :

. U dt f Udt
aï-b1? e h J =(C,Ak + C2Bk)e h J

-!5i /*Udt
et que les facteurs C, , C2, Ak, Bk, e ^ ne sont pas en gé 
néral constants,mais dans l'expression de (g(»o))0 , les variations 
de ces divers facteurs se compensent. Nous le vérifierons dans 
le prochain paragraphe en reprenant en détail l'étude du mouve 
ment longitudiiïal et du mouvement transversal dans un champ ma 
gnétique uniforme. On peut remarquer qU'en général, la partie 
spatiale de g(ao) dans le système propre n’est pas nulle.

Revenons maintenant à l'équation

fJ = 9J +

que nous écrivons

3(ilj 
9xl

f =

en introduisant un quadrivecteur Tî.défini par hJ = — E 3(i
_ £ T dx1

Le quadrivecteur f décrit le mouvement total à l'échelle fine de 
la probabilité de présence de la particule tandis que le quadri 
vecteur ^ correspond au mouvement d'ensemble de_la particule tel 
qu'il est imaginé par la Mécanique ponctuelle. ? est la somme de 
g et de K, ce dernier quadrivecteur correspondant à une sorte de
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mouvement interne dû au spin. C'est ce que l'on peut voir par 
exemple en étudiant le mouvement du globule de probabilité de 
Darwin (voir le livre de l'Auteur : "L'Electron Magnétique" 
p. 169).

La composante g4 représente une sorte de densité de proba 
bilité "moyenne" obtenue en négligeant le mouvement interne lié 
au spin, mouvement auquel la Mécanique ponctuelle ne s'intéresse 
pas. Par suite d'une compensation des effets du champ électro 
magnétique, cette densité de probabilité moyenne g4, quand elle 
est évaluée dans le système propre.de la particule défini par la 
Mécanique ponctuelle de Weyssenhoff, se trouve être la môme que 
pour un globule de probabilité en l'absence de champ. C'est 
cette propriété qui nous parait être la caractéristique essen 
tielle de la Mécanique ponctuelle de Veyssenhoff et en justifier 
l'emploi pour l'électron de Dirac.

10. VÉRIFICATION DE LA RELATION (g(4o))0 = 0 

DANS DEUX-CAS PARTICULIERS SIMPLES

Il est facile de vérifier la relation (g,^ )0 = 0 dans les 
deux cas particuliers simples du mouvement longitudinal et du 
mouvement transversal dans un champ magnétique uniforme qui ont 
été précédemment étudiés.

Dans le cas du mouvement longitudinal (paragraphe 6 de ce 
chapitre et premier exemple du paragraphe 7 du même chapitre), 

on a trouvé :
2ni 2ni

soit = DA k e soit = DBke
S

avec D constant suivant que le moment magnétique est orienté pa 
rallèlement ou antiparallèlement au champ magnétique. Les cal 
culs sont immédiats et donnent :

J(s)
m
m ^S)

ppc= Ûfâc m
m

9(s)= g(K)= 0
(S)

9(»o) = 9(a„) = 9(a0) = 9(i) - 0

Ici le quadrivecteur g^ est nul. On a donc bien dans le système 
propre la relation(g4Jc = 0

Dans le cas du champ magnétique transversal (deuxième exem 
ple du paragraphe 7 de ce chapitre) les calculs sont un peu plus 
compliqués. On a alors :

b'f = C, Ak ♦ C2Bk

f U dt Vl-p2
avec C2= t L.C, et C, = D e , D = C1' ,
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d'où :

Zni

k

Le calcul donne encore :

,4 _ m’
9(s) - P m,

D ( Ak ± l Bk)e

9(s)= pPcm

h f Udt(VT^-l)

m’o
9(s) - 9(s) = 0

puis on trouve

9w

9w

9w

" 9w = 0

ppc
m»c2 yi- p2 +1

Les deux termes dans la première expression de g(ao) correspondent 
respectivement aux variations de l'exponentielle figurant dans 
les ak! et aux variations des Ak et des Bk.

On passera du système de l'observateur (qui est un système 
galiléen bien déterminé puisque le champ électromagnétique s'y 
réduit par hypothèse à un champ magnétostatique) au système pro 
pre du corpuscule par une transformation de Lorentz qui, appli 
quée aux composantes du quadrivecteur g(ao) donne :

, 4 P

9(a„))o

9w)o = 

(9w)o =

9w c 9 m
VFp

(gpjo = 9m = 0

= P Un
m„c2

1
VWl

= o

;*»)

9m - P c 9 M U0 1

■pP „ u.
" nn0c2

Pc
V^L VïrF+1

u„ 1

+i
(gw)o = gd, = o 

pclV^TF-i)

m0c2 VlTp5*!

La relation (g^ )0 = 0 est donc bien vérifiée.

On pourrait s'étonner de voir p figurer dans l'expression 
de (gi))0 qui est relative au système propre, mais il faut remar 
quer que la vitesse pc a ici un sens absolu car -c'est la vitesse 
relative du système propre du corpuscule par rapport au système 
où le champ électromagnétique est purement magnétique. Dans un 
système Galiléen possédant (dans le sens des z) une vitesse re-
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lative quelconque (ï’c par rapport au système propre, on aurait 
d'après la transformation des composantes de

Pour p>’ = 0, 

Pour |J* = p> ,

-ppc
VW- P’

m oC2 sfï^f2

9(a ~ 0

9(1,) = -pPc u„

oVW

<) -0

1
moC2 yi-p2 +1 Vï-p2

on retrouve naturellement :
(9(»o))« = 0

on retrouve les valeurs du système de l'observateur

9(a„) ’pP
m„c‘ VT^I

9W=-PPC
mDc2 SfTp ♦ 1

11. CONCLUSION. VALEURS NUMÉRIQUES

En résumé, l'ensemble des calculs que nous venons de déve 
lopper nous semble prouver que «le passage à 1'optique géométri 
que en théorie de Dirac nous conduit à la Mécanique ponctuelle 
de M.Weyssenhoff où l'existence du spin apparaît, plutôt qu'à la 
Mécanique ponctuelle sans spin de M. Pauli. Il semble donc que 
nous ne puissions pas exclure a priori l*a possibilité de mettre 
en évidence le moment magnétique (ou électrique) propre d'une 
particule de Dirac.

If
Cependant, il est difficile de trouver des raisons décisi 

ves pour choisir entre le point de vue de M. Pauli et celui que 
nous avons développé plus haut. En réalité la difficulté du pro 
blème provient des incertitudes d>'application de la méthode 
W.K.B. signalées au paragraphe 2 de ce chapitre. Si en effet, on 
écrit :

2ni

a.L e = a. e

2nt
~h
T- ■ dt 2m

h dt

et si l'on admet que les moments propres étant proportionnels à

-^L la quantité /’Udt est d'ordre zéro en , on est amené 
2m ' u n J 2m
à écrire avec Pauli :

“L/JMid,,...
4V - bke h J 1

avec
2nt

b|<= ake h b?*-
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Si au contraire on admet que, bien que les moments propres 

soient de l'ordre de , le terme U est assez grand pour que 
f Udt ne soit pas négligeable devant — , on sera

h*/ ht/ ^
amené à appliquer la méthode W.K.B. comme nous l'avons fait au 
paragraphe 5 de ce chapitre. Or cette manière de voir revient à

dire que l'on considère le quotient K =
T)U

m<,c2
comme n'étant pas

négligeable devant l'unité bien que son carré puisse être consi 
déré comme négligeable. Naturellement, supposer K négligeable 
devant l'unité revient à négliger l'existence des moments pro 
pres et cela nous ramène au point de vue de Pauli. Mais si nous 
supposons que K, tout en étant petit devant l'unité n'est pas 
négligeable devant elle, nous retrouvons comme nous l'avons vu 
la Mécanique ponctuelle de Weyssenhoff et le raisonnement de 
M. Pauli n'apparaît plus comme probant.

Par contre, le raisonnement de M. Bohr fondé sur les rela 
tions d'incertitude montre bien cette impossibilité, mais seule 
ment dans le cas des vitesses petites devant la vitesse de la 
lumière; Pour des particules animées de vitesses voisines de 
c (ti»1), une telle impossibilité de principe ne paraît plus exis 
ter.

Demandons-nous maintenant quelles valeurs numériques il 
faut attribuer aux quantités £, mD et T) pour qu'on puisse obser 
ver un phénomène de déviation par action du gradient du champ 
magnétique sur le moment magnétique conforme aux images de la 
Mécanique ponctuelle.

Trois conditions sont à réaliser. Il faut d'abord, pour
U

avoir une Mécanique ponctuelle, que la quantité K= m ^ g soit pe 

tite, ce qui nous donne la première condition :

6 h t)
I 4nm*

H « 1

Il faut ensuite, pour pouvoir avoir un groupe d'ondes ponctuel à 
notre échelle, que la longueur d'onde soit très petite à notre 
échelle, égale par exemple à 10~4 ou 1 CI5cm., ce qui nous donne la 

seconde condition :

- 10"4 à 10" cm-
Il faut d'ailleurs aussi que m^c ne soit pas trop petit comme

nous l'avons montré au paragraphe 2 du chapitre IX. Dans la re 
lation (II), nous avons mis ç au dénominateur au lieu de v parce 
que nous supposons v«c pour ne pas tomber sous le coup du rai 
sonnement de Bohr.

Enfin, il faut encore que la déviation produite par l'ac 
tion du gradient du champ magnétique sur le moment propre soit 
observable. Supposons que la particule fasse un trajet de lon 
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gueur 1 le long de l'axe oz en étant soumise à un gradient

transversal de champ

3H,
3x

3H>
0X

On aura :

et à la fin du parcours

dn,
dt

n, =

£h 3H, 
4nm0c 6x

£h 1 3H,
4nm0c c 3x

d'où pour la déviation supposée petite :

£h 9h„ 1 Ehtg a a = 3hv
4nm.c2 3x n(! 4nm„c2 3x m0c'

car tg a = ou encore :

EhHa
4nm£c3T}

3H«
3x
H

H’1=A.
7f H

• 1

Comme 7] >1, le premier facteur est très petit d'après (I) et il 
faudra, pour obtenir une déviation observable, avoir :

3H
3x

*- ■ 1 » H,

condition qui paraît difficile à réaliser.

S'il n'y a pas d'impossibilité de principe à obtenir une 
déviation observable, cela paraît bien difficile en pratique. 
Voyons les résultats numériques.

Nous ne pouvons pas prendre t} inférieur à 10! sous peine de 
tomber sous l'argument de Bohr. Avec T) = 102, il faut prendre au 
moins mo = 10‘3;> gr. sous peine d'avoir une longueur d'onde trop 
grande (A>10~4cm. fl Avec t)=102 , m0= 10-35 gn , on peut prendre 
£ = 1Cr16 u.e.s. pour avoir K^ICT2 avec H&a 102 gauss. La déviation

a= 1 ne doit guère descendre, pour avoir un phénomène

observable, au-dessous de 1CT2 (un centimètre à un mètre). D'où 
H' 1 »104H . En prenant le trajet 1=1 mètre, ce qui est déjà bien 
grand, on voit que le champ H devait varier de sa valeur sur

10 mm . Tout cela est sans doute bien difficilement réalisable.

Le rapport
force due au gradient 

force de Laplaee

H’ 7iX H’ . H’ 
— = J--- sa 1CT3 —

H4nm„c li 4n H
H’

si nous admettons la valeur bien grande 1O2 pour le rapport 4L-,
1 '' aurait la valeur^ , ce qui paraît acceptable.

(!) L'énergie m0czr^ est alors de l'ordre de 10 c.g.a. ou 1 e.v.
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Bref les données ï] =102, mc=10"35 gr.(1) ,£ = 10~'6 u.e.s.^> 10“6 e 
donnent les valeurs à la rigueur acceptables : X= 10'4cm., K -10'2 
avec une déviation encore bien faible oc = 10~2. Nous sommes à la 
limite des possibilités et cependant ces valeurs sont, semble 
t-il, les meilleures que l'on puisse avoir.

Pour pouvoir mettre en évidence par une déviation de ce 
genre le moment magnétique propre d'une particule de Dirac, il 
faudrait d'abord que cette particule voulût bien avoir précisé 
ment les caractéristiques indiquées plus haut et même en ce cas 
sa détection ne serait pas facile.

M. Jean Thibaud(1) a donné pour les électrinos qu'il pense 
avoir observés dans ses expériences y] =107 , mo=10'38gr., £ = 10"'° 
à 10~14 u.e.s., ce qui donne pour la longueur d'onde la valeur 
acceptable X=10'6 cm et un rapport des forces de l'ordre de 1 si

H varie de sa valeur sur 1 cm (c'est à dire si-^go 1 ). Malheureu 

sement on trouve alors K de l'ordre de 1011 à 101S
H 1/

Le rapport

serait de l'ordre de 1 et la déviation serait grande, ce qui est 
favorable. Mais une valeur aussi élevée de K paraît tout à fait 
inconciliable avec la validité de la Mécanique ponctuelle dont 
M. Thibaud fait usage pour l'interprétation de 3es résultats ex 
périmentaux.

Pour des valeurs suffisamment grandes de T) telles que v^?c, 
la difficulté qui se présente ici pour la mise en évidence du 
moment magnétique propre est une difficulté d'ordre pratique 
liée à la possibilité effective et à la précision des mesures, 
mais ce n'est peut-être pas une impossibilité théorique a priori 
comme semblaient l'indiquer les raisonnements de M.M. Bohr et 
Pauli.

(1) Dans lee expériences de M. Thibaud, H *o 3000 gause, H' 
h ’
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