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PRÉFACE.

Ce volume reproduit l’essentiel du cours que j’ai professé à 
l’Ecole Normale Supérieure de iq34 à ig56. Il contient l’exposé 
des principales questions qui figurent dans la partie fixe du 
programme du certificat de Théories physiques de la Faculté 
des Sciences de Paris. Seules ont été laissées de côté quelques 
questions, telles que la Relativité généralisée, la théorie quantique 
de la Chimie, la théorie quantique des solides et des liquides 
et l’étude des phénomènes nucléaires sur lesquelles le programme 
demande seulement aux candidats de posséder quelques notions, 
ainsi que les preuves expérimentales de l’existence des atomes, 
des molécules et des électrons qui sont aujourd’hui connues de 
tous les étudiants en sciences.

Nous n’avons pas fait une étude détaillée approfondie des 
théories de la nouvelle Physique quantique car, le présent 
Ouvrage étant destiné aux candidats au certificat de Théories 
physiques et à ceux qui veulent s’initier à la Mécanique 
ondulatoire, il doit partir des connaissances que tout étudiant 
qui a suivi les cours de Physique générale doit posséder et 
montrer comment et pourquoi se sont introduites des idées 
fondamentales de la Physique contemporaine. C’est seulement 
ainsi qne l’on peut être amené à bien comprendre ces idées très 
subtiles qui sont souvent encore mal interprétées. C’est seulement 
ensuite que l’étudiant avancé pourra entreprendre avec fruit 
l’étude plus approfondie des prolongements actuels de la 
Physique quantique et, en particulier, des théories encore très 
mouvantes et très mal assurées qui s’efforcent de rendre
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compte de la nature des champs, de la structure des particules 
de l’échelle atomique et des interactions à l’intérieur des noyaux.

Nous avons fait suivre chaque chapitre d’une courte biblio 
graphie où nous avons fait figurer principalement des Ouvrages 
écrits ou traduits en français. Ces bibliographies sont évi 
demment très incomplètes : elles n’ont d’ailleurs pour but que 
de permettre au lecteur d’approfondir certains points qui n’ont 
pu qu’être effleurés dans le texte.

Louis d e  Br o g l ie .



PROGRAMME

DU CERTIFICAT D’ÉTUDES SUPÉRIEURES 

DE THÉORIES PHYSIQUES

PARTIE FIXE.

Électromagnétisme, équation de Maxwell; théorie de Lorentz.

Théorie de la Relativité restreinte; notions sur les théorie de la 
Relativité généralisée.

Notions de thermodynamique. Mécanique statistique classique.
Structure discontinue de la matière, molécules, atomes, électrons.
Base de la théorie des quanta; corps noir, loi de Planck; émission
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titude, vérifications expérimentales, optique électronique.
Mécanique ondulatoire des systèmes, théorèmes fondamentaux; 

méthodes d’intégration, notion sur les méthodes d’approximation et 
de perturbation.

Spin, principe de Pauli, symétrie et antisymétrie.
Applications à la théorie des atomes et des molécules. Atome d’hélium, 

molécule d’hydrogène; notions sur la théorie quantique de la Chimie.
Statistique quantique, théorie des gaz, des solides, des métaux, 

notions sur les liquides.
Notions sur la Mécanique ondulatoire relativiste; électrons de Dirac, 

nucléons, photon.
Théorie des phénomènes nucléaires.



VIII PROGRAMME DU CERTIFICAT D’ÉTUDES SUPÉRIEURES DE THÉORIES PHYSIQUES.

PARTIE MOBILE.

Cours des Professeurs et Maîtres de conférences de Théories 
physiques et de Relativité et Quanta pendant le semestre qui a précédé 
la session d’examen.

ÉPREUVE PRATIQUE.

Calculs analytiques et numériques se rattachant au programme 
ci-dessus.
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CHAPITRE I.
RÉSUMÉ DE LA THÉORIE DE MAXWELL 

ET DE LA THÉORIE DES ÉLECTRONS.

1. Grandes lignes de la Théorie de Maxwell. — La théorie électro 
magnétique élaborée par le savant anglais James Clerk Maxwell vers 1870 
repose sur un groupe d’équations fondamentales à l’aide desquelles 
Maxwell a représenté l’ensemble des faits expérimentaux macroscopiques 
concernant l’Klectricité et le Magnétisme qui étaient connus de son 
lemps.

Pour 'décrire le champ électromagnétique dans les phénomènes à 
grande échelle, il est nécessaire d’introduire quatre vecteurs définis en 
chaque point de l’espace. Ce sont, d’une part, les vecteurs champ élec 
trique h et'champ magnétique H; d’autre part, les vecteurs induction 
électrique b et induction magnétique B. Dans le vide et dans les milieux 
qui, au point de vue électromagnétique, se comportent à peu près 
comme le vide (l’air par exemple), il est permis de confondre chaque 
induction avec le champ correspondant en posant b h et B - H. 
Mais dans la plupart des milieux matériels, il y a lieu de distinguer les 
inductions des champs. Tous les traités de Physique exposent la manière' 
de définir les champs et les inductions au moyen d’une sorte d’expérience 
idéale en distinguant la forme allongée ou aplatie de la cavité creusée 
dans un corps matériel et à l’intérieur de laquelle on mesure l’action 
subie par une charge électrique ou par un pôle magnétique. La différence

!.. DB BROOL1E. !



CHAPITRE I.

outre l'induction et le champ provient de la manière dont le milieu 
réagit en se polarisant sous l’influence du cliamj» qui lui est imposé.

Pour décrire les/charges el les courants, il faul introduire; la densité 
de charge électrique o en chaque point d’un milieu matériel et la densité 
de courant électrique i qui représente en chaque point la charge; qui 
passe par unité de temps à travers une surface unité placée perpendicu 
lairement à la direction du mouvement local de l’électricité.

Les équations de Maxwell expriment les relations qui lient les champs, 
les inductions, les charges el les courants. Elles ont la forme suivante ;

a

ii 't

('<) 
< i)

rot h i àB 
c <)t ’

rot H =---- r-i db
c dt 

div B = o, 

divb = i t c3,

i- >c

c est ici le rapport entre les unités de charge dans les systèmes d’unités 
électromagnétiques et électrostatiques. Les équations ( i ) à (4) sont écrites 
dans le système d’unités mixtes de Lurent/ qui exprime le champ et 
l’induction électriques ainsi qui' les densités de charge et de courant 
en ii. e. s., le champ et l’induction magnétiques en u. e. m.

L’éq nation (i ) traduit la loi de l’indu cl ion de Para du v. L’équation \ ) 
est fournie par la loi de Coulomb el le théorème de; (îauss. L’équation (2) 
exprime la liaison entre le champ magnétique el les courants : les faits 
expérimentaux connus du temps de Maxwell 11e permettaient d’écrire 
que la relation de circuilalion d’Ampèrc

rot H = 4* -
C

qui traduit l’ensemble des lois de Biot et Savart et de Laplace; l’idée 

géniale de Maxwell fut d’ajouter le terme ^ ~ au second membre de

celte équation, terme représentant une nouvelle sorte de courant, le 
courant de déplacement, qui existe dans les milieux diélectriques et 
môme dans le vide et grâce auquel il y a toujours, même dans un circuit 
coupé par un condensateur (circuit ouvert), conservation du courant 
total. Ce fut bien là une idée géniale, car c’est elle qui a permis le 
développement de la théorie électromagnétique de la lumière dont la 
découverte par Hertz des ondes qui portent son nom est venue, vingtans 
plus tard, apporter une éclatante confirmation.
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Enfin l’équation (3) exprime qu’il n’y a pas «le magnétisme vrai, qu’il 
est impossible' d’isoler un pôle d’aimanl.

Les équations de Maxwell ne permettent de définir l’évolution du 
champ électromagnétique que si l'on admet certaines relations entre 
fies inductions et les champs. Ces relations dépendent, naturellement des 
propriétés des milieux envisagés. Dans un grand nombre de milieux 
isotropes, on peut se contenter des relations vectorielles linéaires' 
suivantes :

(5) b = Ah, B = uH,

k et p étant des constantes, c’est-à-dire des quantités indépendantes des 
champs, que l’on nomme respectivement « la constante diélectrique » 
et la «perméabilité magnétique». Bien entendu, dans les milieux non 
homogènes, k et p sont des fonctions du point considéré : ces quantités 
peuvent même être variables avec le temps si le milieu n’est pas dans 
un état stationnaire. Pour le vide et approximativement pour certains 
milieux comme l’air, il est permis de poser les constantes k et p égales 
à i.

Les équations de Maxwell ont comme conséquence, quelles «pie 
soient les relations entre les inductions et les champs, que l’on a

àS ...
~. ■+■ (tlVl = O.<k

Cette équation, du type de l’équation hydrodynamique de continuité, 
exprime la conservation de l’électricité. C’est pour obtenir celte relation 
de conservation que Maxwell a introduit le terme « courant de dépla 
cement » dans ces équations.

Il est également utile de rappeler cpie le courant dans les conducteurs 
est relié au champ électrique par une relation qui, dans beaucoup de 
cas, peut se mettre sous la forme simple

i = ah (loi d’OIim),

a étant la conductivité du milieu envisagé.
Terminons ce rapide coup d’œil sur la théorie de Maxwell par des 

considérations énergétiques.
Soit un volume *1? d’un seul tenant limité par une surface S. Evaluons 

le travail effectué par le champ électromagnétique pendant un temps dl 
sur les charges contenues dans 'V : on voit aisément qu’il est égal à

I (i.h) drdt. Si alors on calcule la videur de ce travail à l’aide des 
-’v
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équations de Maxwell en admettant les relations linéaires (5) entre 
champs et inductions, on voit que tout se passe comme si, dans le champ 
électromagnétique, l’énergie se trouvait localisée avec la densité spatiale

(6) .«•=

et de plus que le vecteur

(7) S = y~ [h X HJ4

dit « vecteur radiant de Poynting » représente en chaque point le flux 
dé l’énergie électromagnétique par unité de surface-. Max Abraham et

Henri Poincaré ont montré que le vecteur^S représente la quantité 

de mouvement du champ électromagnétique par unité de volume.

“2. Théorie électromagnétique de la Lumière. — Par définition, la 
constante c figurant dans les équations de Maxwell est égale au rapport 
de l’unité u. e. m. à l’unité u. e. s. de charge électrique. L’une des 
conséquences remarquables de la théorie de Maxwell est que c doit 
aussi être égale à la vitesse de propagation de la lumière dans le vide.

Maxwell a eu. en effet, l’idée admirable que l’on pouvait regarder 
la lumière comme une perturbation électromagnétique, et il a ainsi 
réuni en une vaste synthèse les domaines jusqu’alors totalement séparés 
de l’Optique et de l’Électromagnétisme. Pour voir comment les ondes 
électromagnétiques se propagent dans le vide ou dans les milieux 
électromagnétiquement équivalents au vide, nous remarquerons que si 
l’on y fait i = o = o, b = h et B = H, les équations de Maxwell 
admettent des solutions de la forme

h = ho cos 2 rcv

H — Ho cos 2 av

avec
|ho| = |H„!, aî-t-ps-h  ?«=,.-

Les vecteurs h et H sont d’ailleurs perpendiculaires entre eux et 
perpendiculaires à la direction de cosinus directeurs a, (3, y. Une telle 
solution représente une onde électromagnétique plane et monochroma 
tique se propageant dans la direction de cosinus directeurs a, (3, y. 
D’après Maxwell, la lumière est constituée par des ondes de ce type 
appartenant à un certain domaine de longueurs d’oindes. On voit donc

t — ax iv T-2
c

' 3.x -t- (3y -+- y =
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que dans le vide la lumière,' el plus généralement toutes les ondes 
électromagnétiques, se propagent avec la vitesse c. D’ailleurs dans le 
vide les équations de Maxwell entraînent comme conséquence les rela-

• ’ I ,lions   h= o el dH^o. avec   = - ——équations qui

expriment que dans le.vide les champs électromagnétiques se propagent 
toujours avec la vitesse c. L’expérience a, en effet, montré que la vitesse 
de propagation des ondes électromagnétiques et lumineuses est numéri 
quement égale à c, ce a qui apporté une belle confirmation des idées de 
Maxwell.

Dans un milieu matériel isolant (i = ô =; o), où les relations (5) entre 
champs et inductions sont valables, on trouve des solutions de la forme

avec

h = h0 COS 2 3CV £ t

H = Ho cos 2 sv |\

w -+-1iy -f- y z
V

3.x -+- Jiy -+■ yz
V

]■
]•

;o. Hg = ArAgl

Un grand nombre de milieux matériels sont sensiblement non magné- 
tiques, c’est-à-dire qu’on peut j poser sensiblement p —i. On a alors

simplement V
yf*.

et, comme par définition, l’indice de réfraction

d'un corps est // — on trouve la célèbre relation de Maxwell

k = n°-

qui se vérifie bien quand un a, soin de mesurer A' et n dans des condi 
tions comparables.

Si l’on applique à une onde plane monochromatique dans un milieu 
non dispersif de constante diélectrique k les expressions (6) et (y) de 
la densité et du flux de l’énergie, on trouve en moyenne dans le temps

w = kh\. S = wVu.
O T.

U étant le vecteur unité porté dans la direction de propagation a, (3, y. 
Dans les milieux non dispersifs, où k et V ne sont pas fonction de 
la fréquence, l’énergie électromagnétique se propage donc avec la 
vitesse V et le vecteur S donne bien le flux de l’énergie. Dans les
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milieux dispersifs, la question est plus compliquée parce qu’il y a locali 
sation partielle de l’énergie dans le milieu môme (4).

On peut encore remarquer que dans le vide la quantité de mouve 

ment transportée par l’onde plane est par unité de volume, ^ * en

moyenne.

3. Théorie des électrons (H. A. Lorentz). — Des expériences de 
plus en plus nombreuses et précises ont suggéré aux physiciens vers 
1880-1890 l’idée d’une structure corpusculaire de l’électricité. A la suite 
de la découverte de l’électron, on a été amené à admettre que la matière 
contient un nombre énorme de petites particules électrisées. Quand 
la matière est électriquement neutre, cela signifie donc qu’elle contient 
autant de particules positives que de particules négatives; quand elle 
est chargée, cela signifie qu’il y a excès de particules d’un certain 
signe; quand elle est le siège d’un courant, cela veut dire qu’il y a un 
déplacement d’ensemble des particules d’un certain signe par rapport 
à celles de l’autre signe, etc.

La conception d’une structure discontinue de l’électricité a conduit 
le physicien hollandais H. A. Lorentz vers 1890 à développer la théorie 
électromagnétique sous une forme nouvelle qu’on a appelée « Théorie 
des Électrons ». Au lieu de se contenter des champs électriques et 
magnétiques observables à grande échelle, Lorentz cherche à définir 
les champs tels qu’ils doivent exister dans la matière, soit entre les 
particules électrisées, soit même à l’intérieur de ces particules. Il prétend 
ainsi donner une description du champ électromagnétique plus détaillée, 
plus fine, que celle qui est fournie par la théorie de Maxwell. Il décrit 
donc le champ électromagnétique fin par deux champs h' et H' qui 
sont les champs microscopiques : il n’y a plus lieu de définir des induc 
tions, car ies inductions sont seulement clos apparences macroscopiques.

Pour préciser la forme des champs microscopiques, Lorentz a admis 
que ces champ obéissaient à des équations de môme forme que celles 
de Maxwell, et cela, môme à l’intérieur des électrons. Il écrit donc

(O
. , 1 dH'rot h =---- —r— 1r ôt

(2'). 1 dh' , vrot H = —-j- - ; 4 ~P - ■c al c
C3') divH'= 0,
(4') div h' = 4 >tp.

(’) Lé o n  Br il l o u in , Confèrence-rapport sur la Théorie des Quanta, Presses univer 
sitaires, chapitre I.
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Ici p est la densité microscopique de l’électricité qui est nulle entre les 
électrons et a des valeurs non nulles à l’intérieur de ceux-ci, par oppo 
sition à la densité macroscopique ô qui est définie par l’excès de parti 
cules d'un certain signe contenues dans un élément de volume très petit 
à notre échelle, mais renfermant néanmoins un très grand nombre de 
particules. V est la vitesse locale de l’électricité en chaque point à 
l’intérieur des charges de sorte qui1 pv est la densité de courant micro 
scopique remplaçant ici la densité macroscopique i.

Quand on a a Ha ire à un nombre immense de charges électriques 
élémentaires en mouvement, on ne peut observer que les valeurs 
moyennes des champs : ces valeurs moyennes diffèrent d’ailleurs suivant 
la méthode de mesure (cavité plate ou cavité allongée), ce qui permet de 
définir les champs eL les indue!ions figurant dans les équations de 
Maxwell. On peut démontrer (*) que, si les équations de Lorcnlz sont 
exactes microscopiquement, celles de Maxwell s’en déduisent pour les 
grandeurs macroscopiques par le jeu des moyennes et cela était évidem 
ment nécessaire pour que les équations de la théorie des électrons 
soient acceptables.

Eu plus des équations écrites plus haut, la théorie des Electrons 
admet une équation complémentaire appelée «équation de la force de 
Eoréntz » qui exprime la force « microscopique » agissant sur un 
élément, de charge p dz animé de la vitesse V dans un champ électro 
magnétique défini par les vecteurs h' et H'. Celte force esl donnée par

td- = p^h'-^ i[v x H ]j•

Celle expression de la force de Lorcnlz est choisie, elle aussi, par une 
extrapolation du macroscopique au microscopique. Elle est telle qu’en 
repassant aux phénomènes à grande échelle, on retrouve la définition 
usuelle de la force électrique et la loi d’action des champs magnétiques 
sur l’électricité en mouvement (loi de La place).

En combinant les équations de Lorcnlz, on trouve facilement qu’en 
dehors des électrons (p =— o). les champs h' et H' se propagent suivant 
les équations

  h'=o. DH'=o

qui expriment que ces champs fins se propagent dans le vide et aussi

(1 > Voir, par exemple, le livre de R. Bec k e r  (bibliographie [5], p. ui et suiv.)
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entre les électrons de la matière avec la vitesse c. On retrouve aussi la 
conservation de l’électricité sous la forme

~ -i- div(pv) = o

et l’on obtient les expressions microscopiques de la densité et du flux 
de l’énergie sous la forme

<*>= ^(h'2-i-H'O- S= - Ih'xH'l- 
8 jc  4 n

Nous devons remarquer ici que la théorie des Électrons n'est jamais 
parvenue à donner un modèle satisfaisant de l’électron lui-môme. 
Formé d’électricité d’un seul signe, l’électron devrait faire explosion. 
Henri Poincaré a démontré que pour assurer sa stabilité il fallait intro 
duire une pression, la pression de Poincaré, dont la nature est restée 
inconnue. Il est certain aujourd’hui que le problème de l’existence 
des particules élémentaires est d’une nature très profonde et doit faire 
intervenir les quanta, mais sa solution ne paraît pas encore prochaine.

4. Les potentiels électromagnétiques. Formule des potentiels
retardés. — Aussi bien dans la théorie de Maxwell que dans celle de 
Lorentz, il est très commode de faire intervenir des grandeurs nommées 
«potentiels». Plaçons-nous dans le cadre de la théorie des Électrons. 
Le champ électromagnétique y est défini par les six grandeurs (que 
nous écrivons en supprimant les accents) hx, h:, H.r. Hr, H:. 
Au lieu de considérer ces six grandeurs, il est possible de considérer 
seulement quatre grandeurs, les « potentiels électromagnétiques » dont 
l’une est une grandeur scalaire, le potentiel scalaire V, et dont les autres 
sont les composantes d’une grandeur vectorielle, le potentiel vecteur A. 
La liaison entre les champs et les potentiels est exprimée par les rela 
tions de définition

i f) A
(8) H = rot A, E = — - ~ — gradV.

Il est évident que ces définitions assurent l’exactitude des deux équations 
de Lorentz « sans second membre »

,. , i i)HdivH — o, rotn=—- —r- •’ c àt

Les potentiels seront déterminés en fonction îles charges et des courants



RÉSUMÉ DE LA THÉORIE DE MAXWELL. 9

en introduisant les définitions (8) dans les équations avec second 
membre

roth = rotH : i tfh 
c dt

, V4*P--

En se servant des formules suivantes de calcul vectoriel :

div grad V = /\y, rot rot A = grad divA — /\A., 

on obtient ainsi les équations

— Ay —^ ~(divA) = 4*p,

1 a  » A fa- a 1 / v
c» ^r-AA+ grad J div A + - * J = 4 *P - •

Lorentz a trouvé une manière ingénieuse de donner à ces équations une 
forme plus intuitive. Il est parti de la remarque que, si l’on considère 
les champs comme étant les véritables grandeurs physiques, les potentiels 
sont de simples artifices mathématiques permettant de calculer les 
champs. Dès lors, on est libre de choisir pour les potentiels les fonctions 
que l’on préfère à condition que les champs s’en déduisent par les 
formules (8). Il en résulte que, si l’on a trouvé des potentiels V et A 
répondant à la question, on peut tout aussi bien prendre pour les 
potentiels les fonctions

i àFV'= V+ - ~ , A = À — grad F, c àt o >

K étant une fonction arbitraire de x, y, z, t, car les valeurs des champs 
données par (8) restent les mêmes. De là découle que l’on peut imposer 
aux potentiels de satisfaire à une certaire relation; il suffit pour cela de 
choisir convenablement la fonction F. Profitant de cette circonstance, 
l.orentz a imposé aux potentiels la relation suivante :

- ■— -t- div A = o, c dt ’

dite « relation de Lorentz entre les potentiels ». Il a choisi cette condi 
tion parce qu’elle donne aux équations (9) la forme très simple

(10)  V = 4n:p, nA = 4"P D’ 

Dans le vide où p = o, on a alors simplement   V = o et   A — o, 
équations qui expriment que les potentiels ainsi déterminés se propagent
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dans le vide avec la vitesse c tout comme les champs. Ceci donne aux 
potentiels de Lorentz un sens physique particulier.

Les équations (10) expriment alors la façon dont les potentiels sont 
créés par la présence et le mouvement des charges et permettent de 
calculer les potentiels et, par suite, les champs, quand on connaît petv 
en fonction de x, y, s, t. La solution du problème est donnée, confor 
mément à un raisonnement classique de KirchholT par les formules 
dites « des potentiels retardés ».

Considérons les potentiels créés en un point P par une distribution 
de charges en mouvement donnée. Soit l’élément de volume entourant 
un point M situé à la distance rPM de P.

P

<ix
Fig. i.

Les potentiels retardés sont donnés par les formules

(il) V(P1t)=JjJ'-----A.(P,t) = jjJ~--------------------------—— chu.

Les quantités [p] et [pv] sont les valeurs de la densité de charge et 
de la densité de courant au point M, non pas à l’instant t, mais à

l’instant t — c’est-à-dire a l’instant où une perturbation électro 

magnétique doit partir de M pour parvenir en P à l’instant / : le retar 
dement tient donc compte de la propagation avec une vitesse finie c de 
toutes les perturbations électromagnétiques.

Notons qu’on pourrait obtenir une autre solution, les « potentiels 
avancés», en changeant c en —c. car l’équation de propagation ne 
dépend que de Cette solution est en général considérée comme 
physiquement inacceptable parce qu elle ferait dépendre le présent de 
l’avenir.

o. Calcul du potentiel créé par une distribution statique. —L'emploi 
des potentiels retardés va nous permettre de calculer les champs qui 
entourent une distribution d’électricité dont la densité p et la vitesse V 
sont connues en chaque point.

Nous commencerons par considérer le cas très simple d’une distri-
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bulioii statique (V —o) limitée, à un domaine de dimensions finies. 
I.e potentiel vecteur A étant nul, nous calculerons le potentiel scalaire V 
en un point P très éloigné de la distribution. Si nous prenons dans 
la distribution une origine O arbitraire, pour tout point M de la distri 

bution les rapports , j-, ", seront très petits.

La première formule ( 11) nous donne alors pour V le développement 
suivant qu’il est très important de connaître :

11

a\ec les définitions

î est donc la charge totale constante de la distribution. Le vecteur £ de

composantes 6£x. ®v, est son « moment dipolaire » ; le tenseur £ 
symétrique de composantes tJ.,..,,, . . ., est son « moment quadru-
polaire ». Les termes non écrits du développement feraient intervenir 
des moments d’ordre supérieur (moments 2" polaires) : ces termes 
interviennent assez rarement dans la pratique.

Pour une distribution de charge totale non nulle, le terme ~ esL le 

terme prépondérant à grande distance. Pour une distribution dont la

charge totale est nulle et le moment dipolaire non nul, les termes en £ 
sont prépondérants : c’est le cas pour un dipôle électrique formé par 
deux charges ponctuelles très voisines. Si la charge totale et le moment

dipolaire sont nuis, ce sont les termes en ïCqui sont prépondérants, etc.
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6. Distribution non statique. Rayonnement. — Une distribution
statique comme celle que nous venons d’envisager ne rayonne pas 
d’énergie vers l’infini. Il en est autrement d’une distribution variable 
qui rayonne de d’énergie vers l’extérieur, tandis que son mouvement 
s’amortit. Naturellement, comme la charge totale d’une distribution 
doit rester constante en vertu de la conservation de l’électricité, c’est 
dans les variations des moments dipolaires, quadrupolaires, etc., qu’il 
faut chercher l’origine du rayonnement. Dans le cas général où le 
moment dipolaire n’est pas nul, ce sont les variations de ce moment 
qui provoquent la partie de beaucoup la plus importante de l’émission, 
de sorte que pratiquement dans la théorie de l’émission on a guère à 
se préoccuper des rayonnements quadrupolaires ou d’ordre supérieur. 
Nous les laisserons ici de côté.

Une distribution quelconque a un moment dipolaire (moment élec 
trique) qui peut toujours se développer en série ou en intégrale de 
Fourier par rapport au temps, de sorte que l’on a, soit

oo -f- *

’2{J}> cos2i(nv/ cpx) = ^ p{£] e-r-ln'lt, a*ec p'J11' — Plæ\
l — «

j = f ®.t (’v )c o s2je [v *-i- o(v)]rfv = C px(v) enNt dv.
j *'o '■ - «
f avec pii'*) =/'^(v).

Mais il est inutile de traiter le cas général, car on démontre les deux 
théorèmes suivants :

t° Le rayonnement émis par la distribution est la somme des 
rayonnements correspondant aux composantes Qx, ®v. considérées 
isolément;

2° Le rayonnement émis, par exemple, par <îs est la somme des 
rayonnements émis par chaque composante du développement de 
Fourier de considérée isolément.

Si donc on sait calculer le rayonnement correspondant à un moment 
électrique rectiligne et harmonique, on saura résoudre le problème 
général par simple addition.

Considérons donc le moment électrique

a:xz=z£y=o, ®j=a 0c o s 2 it(v/ —s ).

Le calcul montre qu’en un point P situé à une grande distance R de

(12)

soit

(i'U
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la distribution, le champ de rayonnement se compose d'un champ élec 
trique h tangent au méridien en P et d’un champ magnétique H tangent 
au parallèle. La grandeur do ces champs est

h = H = ^ sinO Ao c o s2k  [v  ( t — — \ + si-
c'K L \ c/ J

L’expression du vecteur de Poynling permet d’évaluer la valeur moyenne 
par unité de surface du flux de l’énergie électromagnétique en P. L’on 
trouve

— O JÇ* V*
Sp= —r- ^ sin21) AJ.

C'f n -

En intégrant sur toute la sphère de rayon R, on obtient pour le mon 
tant total de l’énergie rayonnée par seconde vers l’infini

AW = i6j:4v * . „ 
~3^A5'

dette expression est indépendante de R comme on devait s’y attendri*.
Dans le cas où le moment électrique est représenté par une série de 

Fourier du type (12), on obtient pour l'énergie rayonnée sous forme de 
fréquence rav

04) (AW)nv =
64 n4( «v y

Sc* pïn

Dans le cas où le moment électrique est représenté par une intégrale de 
Fourier du type (i3), le rayonnement dans l’intervalle de fréquence 
(v, v -j- dit) est donné par

05) (AW)rfv=^^|/^(v)i2<*.

Les formules (i4) et (i5) nous seront utiles dans la suite.

7. Phénomènes de polarisation. Théorie delà dispersion. — La théorie 
de Lorentz, reprenant d’ailleurs des conceptions qui avaient été inlro-
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duites dans l'ancienne théorie de l'Electricité, a interprété la différence 
entre le champ et l'induction macroscopiques comme étant le résultat 
de l’état de polarisation créé par le champ dans ces milieux. Suivant 
cette vue, la polarisation d’un milieu matériel consiste! en ce que chaque 
élément de volume dx du milieu devient un petit doublet électricjue de 
moment P dx, par suite du déplacement sous l’influence du champ des 
charges électriques qu’il cont ient. P est, par définition, le vecteur « pola 
risation » ou « densité de moment électrique, » au point où est situé dx. 
On démontre dans tous les traités de Physique qu’un milieu polarise 
('supposé électriquement neutre dans sa masse) se comporte comme si 
chacun des éléments de sa surface! extérieure portail, une densité de 
charge superficielle égale à la composante normale P„ du vecteur P et 
comme si l’intérieur de son volume était le siège d’une densité de charge 
électrique ô et d’une densité de courant i égales à

„ . cTP—divP, 1= -j-.

Suivant l'ancienne terminologie, ces charges et ces courants repré 
sentent de l’électricité libre et non de l’électricité vraie : ceci veut dire
qu’à grande échelle ces quantités sont inobservables cl ne correspondent 
pas à une véritable charge globale. Or, l’intervention de ces charges et 
de ces courants de polarisation conduit à écrire les équations micro 
scopiques de Lorentz dans un milieu diélectrique polarisable sous la 
forme

i dh _ 
c dt 
divh =

rot H 4* dP 
c dt ’ 

4k  divP,

i dH
= roth;c dt 

divH = o.

Mais, si l’on repasse au point de vue macroscopique de Maxwell, on 
doit considérer les charges et courants de polarisation comme inobser 
vables directement, ce qui conduit à considérer les ternies supplémen 
taires des équations précédentes comme devant s’incorporer aux premiers 
membres pour définir une grandeur nouvelle, Y induction électrique, et 
à écrire les équations de Maxwell pour un milieu non magnétisable

avec

y db 
c dt 
divb

= rot H, 

= o,

I
c dl 
divH

roth ;

b = h -t- 4 k  P,

relation qui donne l’expression de l’induction électrique en fonction du
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champ et de la polarisation. Des considérations analogues pourraient 
servir à interpréter la différence entre le champ et l’induction magné 
tiques dans le cas des milieux magnétiquement polarisables.

ha polarisation étant produite dans un milieu diélectrique par l’action 
du champ, on doit avoir une relation vectorielle du type P = f(h) et, 
par suite, b = F (h). L’hypothèse la plus simple valable dans beaucoup 
de milieux isotropes consiste à poser

On a alors

avec

P = ah ( oc constant i.

b = ( i -t- 4^a)h = Æh,

k = I -I- 4 Jrst.

La constante diéleclrique k se trouve ainsi exprimée en fonction de 
la «susceptibilité» a. Si le corps est non magnétique, la relation de 
Maxwell donne pour l’indice n,

n- = /, = !-(- 4jia.

Considérons le cas simple d’un corps homogène contenant N molé 
cules par unité de volume. On peut, en première approximation, 
admettre que, sous l’action d’un champ'électrique extérieur h, chaque

molécule acquiert un moment électrique LS- proportionnel au champ

® = a'h:

a' est la «polarisabilité» du genre de molécule considéré. On a évi 
demment

P = N<B=Wh.
d’où

a = NTa', ;é = i + iiüNa'.

La constante a! dépend du corps envisagé, mais est indépendante de 
sa densité D qui est proportionnelle à \. On a donc

/i2 — i = CD (loi de Laplace »

et pour les corps d’indice voisin de l’unité [u- — i ~ :>. ( n — i )], il vient 

n — i = C'D (loi de Gladstone-Dale).

Cependant, les formules précédentes ne sont pas rigoureuses parce 
que chaque molécule est soumise, non pas à l'action du champ exté 
rieur h, mais à celle de la somme du champ h et des champs créés par
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la polarisation des molécules voisines. Un calcul plus exact donne la 
relation

N a'

d’où

n- = i -H 4
4 s N a'

et l’on en tire une formule obtenue presque simultanément par le hol 
landais IL-A. Lorentz et par le danois Louis Lorenz

n- — i 431N a' _ , - . . T
— ------  = —: = const. D (loi de Lorentz-Lorenz ).n2 -i- 2 3 v '

Cette loi se montre dans beaucoup de cas plus exacte que celles de 
Laplace et de Gladstone-Dale : elle les admet, d’ailleurs, comme formes 
approximatives quand n est voisin de i (n2 + 2 ~ 3).

Si la connaissance de la structure de l’atome ou de la molécule permet 
d’évaluer la polarisabilité V, les formules précédentes donneront la 
valeur de l’indice en fonction de la fréquence, c’est-à-dire la formule de 
dispersion pour la substance envisagée.

La théorie des Électrons était parvenue à trouver (ou plutôt à retrou 
ver, car des théories plus anciennes l’avaient déjà obtenue) une formule 
qui en gros représente bien les phénomènes de dispersion. Pour cela, 
il suffit de supposer avec Lorentz que les atomes contiennent des élec 
trons susceptibles d’osciller autour d’une position d’équilibre sous 
l’action d’une force de rappel proportionnelle à l’élongation. Si l’on 
suppose que la liaison de chaque électron à sa position d’équilibre est 
isotrope,.chacun d’eux a une fréquence d’oscillation bien définie. Adop 
tons ce modèle simple et supposons que chaque molécule du milieu 
réfringent contienne nl électrons de fréquence vj, ...,«; électrons de 
fréquence v,-, .... On trouve alors, si v est assez différent de tous les v,-,

a'= e'' V n‘
4 JT2 771 Mmi Vf — V2 ’

e et m étant la charge et la masse de l’électron. Quand on peut se 
contenter de l’approximation de Laplace, on en déduit

n- — N e-
xm Vf

i
(.6)

m
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Telle est la formule de dispersion prévue par la théorie des Électrons 
quand n n’est pas trop différent de 1 et que la fréquence v n’est pas trop 
voisine de l’une des valeurs critiques v,-.

Les fréquences v,- sont très souvent des fréquences de l’ullruviolel, 
c’est-à-dirc beaucoup plus élevées que la fréquence v si celle-ci appar 
tient au spectre visible. On a alors approximativement’

1 _ 1 / v*
v/ —v* ~ V$ V vf

et l’on obtient dans ces conditions la formule de Cauchy

généralement valable pour le spectre visible.

L’allure générale de la courbe de dispersion correspondant à la for 
mule ( 16) est bien connue.

Naturellement, n ne devient pas réellement infini pour les fréquences 
critiques v;. Au voisinage de ces fréquences, la formule ne s’applique 
plus, car le mouvement des électrons devient trop violent et il faut tenir 
compte du rayonnement et de l’absorption de la radiation incidente qui 
en résulte. En tenant compte de cette absorption, on obtient une loi de 
dispersion valable même dans le voisinage des fréquences critiques : 
cette loi a une forme acceptable, mais né rend pas bien compte de la 
valeur numérique des coefficients d’absorption.

Une autre difficulté de la théorie électronique de la dispersion est 
relative aux nombres La comparaison de la formule (16) avec les 
courbes expérimentales conduit pour les m à des nombres généralement

L. DB BROOME.



CHAPITRE I. — RÉSUMÉ DE LA THÉORIE DE MAXWELL.18

fractionnaires, ce qui est contraire à leur signification physique. Nous 
verrons que la théorie qiiantique de la dispersion a pu lever cette diffi 
culté.

8. Succès et échecs de la théorie de Lorentz. — En introduisant sys 
tématiquement dans la théorie électromagnétique la notion d’électron, 
Lorentz et ses continuateurs (Drude, Langevin, etc.) ont pu traiter 
d’une façon satisfaisante un grand nombre de problèmes d’interaction. 
Non seulement ils ont obtenu la théorie de la dispersion dont nous 
venons de parler, mais ils ont pu trouver ou retrouver les lois d’absorp 
tion dans les corps éteignants, les lois de la réflexion \itrense dues à 
Fresnel, des théories exactes des effets électro- et magnéto-optiques, du 
diamagnétisme, du paramagnétisme, etc. Le plus grand succès de Lorentz 
fut la prévision de l’effet Zeeman normal : nous aurons l’occasion d’v 
revenir. Mais toutes ces fructueuses théories sont venues se heurtera des 
difficultés fondamentales quand on a voulu analyser dé près les processus 
de l’échelle atomique. La théorie électromagnétique, complétée par la 
conception classique des électrons, est venue échouer devant les pro 
cessus atomiques où les quanta interviennent. Nous aurons à revenir 
longuement sur ce sujet.
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CHAPITRE II.
LE PRINCIPE DE RELATIVITÉ.

I . La transformation de Lorentz. — Le fait qui a <Hé le point de 
départ de la théorie de la Relativité, e'est. que les phénomènes de propa 
gation de la lumière sonl cxaclemenl les mêmes pour des observateurs 
«pii sont en mouvement rectiligne et uniforme les uns par rapport aux 
autres et par rapport à l’ensemble des étoiles lixes (observateurs gali- 
léens). Ce fait est prouvé par des expériences précises dont les plus 
célèbres sont celles de Michelson. Si l’on admet la réalité de ce fait, 
on est auicné à poser qu’il existe entre les coordonnées d’espace et de 
temps de deux observateurs gai iléons des relations différentes de celles 
qui étaient admises par la Mécanique classique.

En Mécanique classique, on admet en général que l’équation fonda 
mentale F = my et toutes celles qui en dérivent sont valables dans un 
système de référence attaché à l’ensemble des étoiles fixes, mais on voit 
aisément qu’elles sonl également valables dans tout système de référence 
en mouvement rectiligne et uniforme par rapport à celui-là. En effet, 
considérons un observateur lié au système des étoiles fixes : il emploie 
des coordonnées cartésiennes et le temps t (qui, en Mécanique classique, 
a un caractère absolu) pour repérer les phénomènes qu’il observe. Un 
autre observateur en mouvement rectiligne et uniforme par rapport, au 
premier emploiera le temps absolu t, mais ses coordonnées cartésiennes 
x\ y', z1 sont reliées à x, y, z par des formules linéaires qui, si les axes 
cartésiens des deux observateurs sont parallèles et coïncident à l’origine 
du temps, ont la forme simple

x' = x — vxt. y = y — c,7. 3' = ; — v.t (t' = t).

vx, Vy, v* étant les composantes delà vitesse du second observateur dans 
le système de référence du premier. C’est là « la transformation de
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Galilée » qui est admise comme une hypothèse plus ou moins explicite 
au début de la Mécanique rationnelle. Comme x',y',z' sont fonctions

• d"~ xf •linéaires de x, y, z, les dérivées secondes • • • sont respeclivemenl

égales à > • • • et comme seules les dérivées secondes interviennent

dans les équations fondamentales de la Mécanique classique, il en 
résulte aisément que celles-ci ont la môme forme dans tous les systèmes 
galiléens.

On peut donc passer des coordonnées employées par un observateur 
galiléen à celles employées par un autre observateur galiléen à l’aide d’une 
transformation de Galilée. Les transformations de Galilée forment d’ail 
leurs un « groupe » en ce sens que deux transformations de Galilée suc 
cessives sont finalement équivalentes à une seule transformation du 
même type. La propriété fondamentale des équations de la Dynamique 
classique de Newton est donc, de notre point de vue actuel, que ces 
équations sont, invariantes par rapport au groupe de Galilée, c’est-à-dire 
qu’elles restent les mêmes quand on passe d’un observateur galiléen à 
un autre.

Considérons maintenant la propagation de la lumière dans le vide.
Pour un observateur lié au système des étoiles fixes, nous pouvons 

admettre que cette propagation se fait d’une façon isotrope suivant 
l’équation bien connue

I
_L _ A-
C-- dt-

/ _ _ I à"- I <P à-- <P à! \(ou   cp = o, avec D ^ j

avec la vitesse constante c. Le fait fondamental révélé parles expériences 
de Michelson, c’est que la propagation de la lumière a lieu également 
d’une façon isotrope et suivant l’équation i ) pour tout observateur en 
mouvement rectiligne et uniforme par rapport à l’ensemble des étoiles 
fixes, c’est-à-dire dans tout système de référence galiléen. Et il convient 
de remarquer dès maintenant qu’étant donnée l’extrême précision des 
mesures optiques, nous sommes beaucoup plus sûrs de l’exactitude rigou 
reuse de l’équation de la propagation de la lumière dans le vide que de 
celle des équations de la Mécanique newtonienne; donc, si nous sommes 
contraints de modifier soit la théorie de la lumière, soit la Mécanique 
de Newton, nous devons être prêts à modifier plutôt la seconde que la 
première à condition, bien entendu, de retomber sur les équatioiis de 
Newton au degré de précision où elles se vérifient.
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Pour que l’équation ( i ) reste invariante pour tous les observateurs 
galiléens, il faut que le changement de coordonnées correspondant au 
passage d’un système galilécn à un autre laisse invariante l’équation des 
ondes. Or il est facile de vérifier que ce n’est pas le cas pour la trans 
formation de Galilée. Nous devons donc chercher quelle est la transfor 
mation de coordonnées qui laisse invariante l’équation des ondes lumi 
neuses.

Pour le voir, supposons que l’observateur galiléen qui emploie les 
coordonnées x',y\ z', t[ soit entraîné d’un mouvement rectiligne et uni 
forme le long de l’axe des z du premier observateur galiléen et suppo 
sons de plus que les axes O'x'y'z1 soient parallèles aux axes Oxyz. 
On se trouve alors dans le cas particulier de figure ci-contre.

X.X’

y
5.

Si l’on parvient à trouver les formules qui en ce cas permettent de passer 
des variables x,y, z aux variables x'jy'jZ1, il sera facile d’en déduire, 
en faisant subir des rotations aux deux systèmes d’axes autour des 
origines O et O', les formules de transformation valables dans le cas 
général. Nous supposerons d’ailleurs que l’origine du temps est choisie 
de telle façon que pour t — o, O et O' coïncident. Nous allons donc cher 
cher la transformation des variables x',y', z', t' en les variables x,y, z, t 
qui laisse invariante l’équation ( i ).

Des considérations de symétrie simples, mais un peu longues, condui 
sent alors au résultat suivant : si l’on admet que les formules de trans 
formation cherchées sont linéaires, elles ont nécessairement dans le cas 
particulier envisagé la forme suivante :

,_P*
(2) X = X, y =y

vt t =

avec par définition (3 = 
trouve

<2') , x = x', y=y',

v/i—1>*’ V'1 — P*

En résolvant (2) par rapport à x, y, z, t, on

vt t -4- P*'
t =

v'* — p*
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Telle est la fameuse « Transformation de Lorenlz » dont le trait essen 
tiel est l’abandon de la notion de temps absolu, car on n’a plus t! — t.

La transformation de Lorenlz rend non seulement invariante l’équa- 
lion des ondes lumineuses, mais aussi la quantité c-t- —-x- —y- —-z-, 
car on vérifie aisément que

c-t'- — x’- — y'- — z'- = c-t- — x- — y- — 3-.

De plus, si dans l’espace à quatre dimensions formé à l’aide des 
variables x, y, 3, t, on considère un élément de volume dr, l’expression 
de dr dans le système des variables primées sera

dz' = dz D(ar,.y, :,t)
D<x',y', s', t! )'

le symbole Z’,t\ désignant le déterminant jacobien des anciennes

variables par rapport aux nouvelles. Or, la transformation (2) montre 
que ce déterminant est égal à 1, d’où dJ = dx. La transformation de 
Lorentz assure donc aussi l’invariance de l’élément de volume de l’espace- 
teinps.

Dans le cas général où les axes des deux systèmes ne sont pas paral 
lèles, la transformation de Lorenlz prend une forme plus générale qu’on 
écrira plus commodément en posant

.r* = x, x- = y, x* — z, x1 * = cl : 
r'1 = x', x'- = y'. x'- = z . x1 = et'.

On obtient la relation sous forme condensée

5'i=La‘:

où les seize quantités a‘k vérifient certaines relations que nous ne pou-

vons étudier ici. Le déterminant fonctionnel--:., ’•—!—3—-est égal aul)(x,y,z,t) 0
déterminant des a‘k et a pour valeur i, de sorte qu’il y a toujours inva 
riance de l’élément de volume de l’espacc-tcmps. Les transformations de 
Lorentz forment un groupe comme celles de Galilée.

i. Signification physique de la Transformation de Lorentz. — Il est
beaucoup plus difficile qu’on ne le croyait autrefois de définir la simul 
tanéité de deux événements qui n’ont pas lieu au même point de l’espace. 
G’esl. en réfléchissant sur ce fait qu’Albcrl Einstein est parvenu en igo5.
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par un effort génial, à dégager la véritable signification de la transfor 
mation de Lorentz.

La difficulté signalée lient à ce que. si l'on \eul synchroniser les 
horloges liées à un même système de référence, il faut a\oir nu imnen 
de comparer leurs indications cl, si les horloges sont distantes l’une de 
l’autre, il faut pour cela qu’un signal parti de remplacement de la 
première horloge parvienne à l’emplacement de l’autrê. Vlais nous ne 
connaissons pas dans la nature de signal allant plus vile qu’un signal 
électromagnétique ou lumineux, et Einstein a pris comme postulat 
justifié par ses conséquences qu’aucun transport d’énergie, donc aucun 
signal, ne peut s’efleclucr avec une vitesse supérieure à r : nous verrons 
que la Dynamique relativiste confirme a posteriori celle idée. Il est 
donc naturel et commode de s’imaginer que la synchronisation des 
horloges se fait par échange de signaux lumineux. Le résultat de l’opé 
ration serait d’ailleurs le même avec un mode de signalisation à propa 
gation rdoins rapide ( signaux sonores, par exemple ). mais le raisonne 
ment qui suit serait plus compliqué car il faudrait tenir compte du 
milieu matériel qui transmet les signaux : l'avantage de raisonner sur 
les signaux lumineux, c’est que tout se passe, si l’on abandonne avec 
Einstein l’ancienne conception de l’éther, comme si la lumière se 

propageait dans l’espace vide.

Pour synchroniser les horloges, dans son système de référence, un 
observateur galiléeiï devra donc d’abord mesurer la vitesse de la 
lumière dans le vide, vitesse par hypothèse supposée isotrope. La connais 
sance de celte vitesse lui est, en effet, nécessaire pour tenir compte des 
retards dus à la propagation. Pour mesurer la vitesse de la lumière, il 
devra, grâce à une réflexion sur un miroir, faire parcourir à un signal 
lumineux un même trajet aller et retour et noter sur la même horloge 
placée au point de départ l’heure «lu départ et celle du retour du signal 
lumineux. Si la différence de ces heures est égale à r et si la distance

franchie par le signal est 2d, on aura r = —• • Connaissant ainsi la valeur

«le la constante c. l'observateur ronsiiléré pourra régler toutes les hor 
loges liées à son système de référence de telle fa«;on que, si deux hor 
loges sont «listantes «le / et si la première émet à l'instant t\ un signal 
lumineux, ce signal parvienne à la seconde horloge à l’instant où elle
mar«pie le temps t-,= lv +^-- De c«‘tte manière sera réalisée une « syn 

chronisation ». tout à fait univofjue des horloges du système «le référence. 
\insi sera bien déterminé le temps / dans ce système et «leux événements
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qui sc produisent en des points P et Q du système de référence ai* 
moment où les horloges locales de P et de Q marquent le môme temps t 
peuvent à juste titre être considérés comme « simultanés ». C’est même 
la seule manière de définir d’une façon précise la simultanéité dans un 
système de référence galiléen. C’est là un point essentiel mis en lumière 
par Einstein.

Considérons maintenant deux systèmes de référence galiléens A et B. 
Un observateur lié à A emploiera des coordonnées cartésiennes x,y,s 
i\t un temps t défini comme nous venons de l’expliquer. Un observateur 
lié à B emploie des coordonnées x',y',z' et un temps t' défini parla 
même méthode. Nous pouvons alors avec Einstein adopter le Principe 
général de Relativité dont voici l’énoncé : « L’observateur B peut se 
considérer comme au repos tout aussi légitimement que l’observateur A 
et pour lui, quand il emploie les coordonnées x,'y1, z', t', qui lui sont 
propres, toutes les lois de la nature doivent avoir exactement la même 
forme que pour l’observateur A quand celui-ci utilise ses coordonnées 
propres x, y, z\ t ». Or, nous avons montré que, pour qu’il en soit ainsi 
en ce qui concerne les phénomènes lumineux, il fallait que x',y',z',t.' 
soient reliées à x, y, z, t par la transformation de Lorentz. Einstein a 
ainsi dégagé le véritable sens de cette transformation qui est intimement 
lié à la façon dont on peut définir la simultanéité et la synchronisation 
des horloges dans chaque système de référence galiléen. 3

3. La contraction de Lorentz. — Nous allons maintenant pouvoir 
comprendre ce qu’on appelle «la contraction de Lorentz». Supposons 
que l’observateur A ait construit une règle, par exemple en métal, pour
s’en servir comme étalon de longueur. Soit l la longu...... de cet étalon
exprimée à l’aide d’une certaine unité de longueur m ! i raire. L’obser 
vateur galiléen B qui est en mouvement rectiligne >i uniforme par 
rapport, à A peut aussi construire une règle qui sera pour lui identique 
à ce cpi’est la première règle pour l’opérateur A : ceci est une consé 
quence évidente du principe de Relativité. Supposons (ce qui au fond 
ne diminue pas la généralité) que nous ayons pris pour axe des z la 
direction du mouvement de B par rapport à A et que les axes Oxyz 
et O'x'y'z' soient parallèles. Alors, la transformation de Lorentz sous 
sa forme (2) sera valable. Supposons maintenant que chacun des deux 
observateurs pose sa règle sur son axe des z, l’extrémité de gauche 
coïncidant avec l’origine des z. Alors, pour A, sa règle couvre l 
divisions de l’axe des ^ (supposé gradué) à partir de O et, de même, 
pour B, sa règle couvre l divisions de l’axe des z' à partir de O' : c’est là
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simplement l’expression du fait que, pour chacun des observateurs, sa 
règle a la longueur l.

Mais demandons-nous quelle longueur la règle de B paraît posséder 
pour A. Voici le point essentiel de la réponse : la seule manière admis 
sible de définir la longueur que possède pour un observateur une règle 
mobile ou immobile, c’est de dire que cette longueur est égale à la dis 
tance des positions des deux extrémités de la règle qui sont simultanées 
pour cet observateur. Celle définition a bien pour A un sens net, 
puisque A possède un temps t bien défini et peut, par suite, définir la 
simultanéité dans son système de référence. Or, pour B, les coordonnées 
des deux extrémités de sa règle sont

;r1=<y,=.2i=o, = y 2 ~ o, «2 = /.

Pour A, d’après la transformation (2) de Lorentz, les deux extrémités 
en question auront au temps t les coordonnées

_ X\ = ri = 0, zt = vt -t- z\ v/l — |^2 = vt ;
X‘> = y2. = O, Si = Vt -t- z'2\/1 — [j2 = vt -1- l y/i — [52.

La longueur de la règle de B évaluée par A par rapport auquel elle est 
en mouvement sera donc égale à la différence z->— z± pour une même 
valeur de t, soit

Z, — S\ — l\jl — [s2.

Elle est donc inférieure à l, puisque o < (5 ^ 1. La règle est raccourcie 
dans le rapport y/' 1 —. Cette règle qui, immobile par rapport à l’obser 
vateur A, lui semblerait avoir la longueur l, lui apparaît plus courte parce 
qu’elle est en mouvement. C’est la contraction de Lorentz.

Si la règle de B n’était pas placée le long de l’axe Oz', mais avait une 
direction oblique quelconque, c’est seulement la projection de la règle 
sur la direction de mouvement qui paraîtrait plus courte à A qu’à B 
tandis que les projections sur les axes perpendiculaires au mouvement 
ne subiraient pas de contraction. Il en résulte qu’un corps qui pour B 
est une sphère apparaît à A comme un ellipsoïde de révolution aplati, 
l'aplatissement étant mesuré par le facteur y/1 —(3-.

La contraction de Lorentz qui résulte de la troisième équation (2) 
peut, si l’on admet a priori son existence, conduire à l’équation (2). 
f igurons à nouveau les deux systèmes qui glissent l’un sur l’autre.

Supposons qu’au temps / =; o, O' était en O. Alors si l’observateur A 
fait à l’instant t de son temps propre une observation simultanée de 
l’abscisse de O' et de celle d’un point P' de O'z', il trouvera vt pour la
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première abscisse et une certaine valeur z, pour la seconde, c’est-à-dire 
qu’à l'instant. I un observateur du système A placé devant P' voit ce 
point passer devant le point d’abscisse z de l’axe Oz. Mais comment 
l’observateur B pourra-t-il, lui, procéder à la mesure de la longueur O' P'? 
(l’est simplement, par exemple, en mettant bout à bout le long de O'*' 
auquel il est lié des petites réglettes de longueur unité, la première ayant 
sou origine en O', la dernière son extrémité en P' (en supposant pour 
simplifier que l’unité de longueur soit, telle que O'P' la contienne un 
nombre entier de lois). Supposons que B ail ainsi disposé ses réglettes : 
il lui en faut z pour jalonner O'P' et il écrira Ü'P'= z'. Mais que voit 
l’observateur A quand les z' réglettes sont posées sur O's'? Il voit z 
réglettes dont la longueur lui paraît être pour chacune égale à \J i —|3'J.

0 0' P'

Fig

puisque nous admettons la contraction de Lorentz. (les réglettes étant 
disposées jointivement de O'à P', A écrit l’équation

z — vt — z’ \Ji — éi. 2

et c est. bien la troisième relation (2) de Lorentz. *
Pour l’observateur A, B trouve z' au lieu de z parce qu’il emploie une 

règle unité qui est trop courte. Mais, d’après le principe de Relativité, 
l’observateur B qui voit A se mouvoir le long de O'z' avec la vitesse — «• 
•lira que c’est A qui utilise une règle unité trop courte et cela lui don 
nera la troisième relation (2') sous la lorme

z -+- vt' = z v'h — [;2.

Chaque obserrateur trouve la règle de l’autre plus courte que la sienne. 
C’est le paradoxe de réciprocité sur lequel nous reviendrons.

i. Le ralentissement des horloges. — La contraction de Lorentz cor 
respond à lit troisième relation (2); à la quatrième correspond le 
■' ralentissement des horloges ».

L’observateur lié au système A, qui peut définir une simultanéité dan* 
son système de référence, peut placer en chaque point une horloge con>-
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lituée par un système périodique quelconque, par exemple une aiguille 
tournant d’un mouvement uniforme devant un cadran. On pourra repérer 
ce mouvement par une variable périodique de Ja forme q — qn sin anv/ 
qui, dans le cas du cadran à aiguille, sera par exemple l’abscisse de la 
projection de l’exlrémilé de l’aiguille sur un certain diamètre du cadran.

Supposons que l'observateur A. ail ainsi muni d une horloge tous les 
points de son système et qu’il ait réalisé, de la manière que nous avons 
étudiée, la synchronisation de toutes ces horloges. Supposons aussi que 
l’observateur B lié à un autre système galilécn ait fait de même, ce qui 
est possible puisqu’on vertu du principe de Relativité, B peut cons 
truire des dispositifs qui sont pour lui identiques à ce que les horloges 
de A sont pour A. Imaginons maintenant que A observe le mouvement 
d’une des horloges de B qui pour lui est mobile. Si z„ est la coordonnées 
de cette horloge pour A à l’instant t — o de son temps, comme elle lui 
paraît entraînée avec la vitesse e. il lui trouvera comme coordonnée c à 
l’instant t, z = z0 -h 11. Or, celle horloge, ayant été réglée par B, marque 
le temps /' et son paramètre oscillant est

t'q = f/a sin 2 -V t = q0 su) 2 - ,

où T'est la période de l’horloge pour B. Pour l'observ atenr V, à l’instant / 
de son temps propre, l'horloge mobile considérée passe donc au point 
d’abscisse z = -4- vt devant l'une des horloges fixes qui marquent le
temps t et, d’après la quatrième relation (2) de Uoreulz. le paramètre 
oscillant de,l’horloge s'exprime en fonction de / par

q = q o sin 2
t' . 2 JT

JJT, = q0 stn Y
— (zo -t- Vt)c

V * — !a2

= q„ on 2: V'1 —
[3 -So

cT'v/î

Ia i période de l'horloge telle qu’elle est observée par A est donc

T = T'
/rrpï

>T.

D’où la conclusion : l’observateur A attribue à l’horloge une période 
plus longue que T'. Une horloge qui paraîtrait pour l’observateur A battre 
la seconde (si elle était immobile par rapport à lui) lui paraît aller trop 
lentement, retarder, si elle est en mouvement. Si les observateurs du 
système A comparent constamment l’indication de l’horloge mobile avec 
celles des horloges fixes devant lesquelles elle passe, ils peuvent constater
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que l’horloge mobile retarde de plus en plus sur les horloges fixes. 
Donc le ralentissement relativiste des horloges, tout comme la contrac 
tion de Lorentz, est en principe un phénomène réel, observable. Mal 
heureusement, ce phénomène n’est notable que pour des vitesses v voi 
sines de c, ce qui le rend inobservable à grande échelle. On ne peut qu’en 
constater les conséquences dans les phénomènes de l’échelle atomique.

Pour préciser ce qui précède, nous pouvons nous placer à un autre 
point de vue en supposant que les observateurs du système A observent 
simultanément à un même instant t de leur temps propre toutes\es hor 
loges du système B dont les paramètres oscillants sont q = qn sin 2nv't\ 
où v' est la fréquence de l’horloge dans le système B, c’est-à-dire le 
nombre des oscillations qu’elle effectue par unité du temps t'. Les obser 
vateurs A voient donc ces horloges mobiles marquer à l’instant t de leur 
temps propre l’indication

? q0 sin 2”

Telle est l’indication de l’horloge mobile qui occupe pour A la posi 
tion z à l’instant /.

Posons

on peut écrire

q — q0 sin 2-vf / — “

et sous cette forme la relation nous indique que pour .V tout se passe 
comme si les valeurs de q se propageaient par ondes planes dans la direc 
tion des z avec la fréquence v et la vitesse de propagation V. C’est là. 
comme nous le verrons, un résultat qui a joué un grand rôle dans le déve 
loppement initial de la Mécanique ondulatoire.

Montrons que, si l’on admet le ralentissement des horloges, on peut 
en tirer la quatrième relation (2) de Lorentz. En effet, pour synchroniser 
une horloge placée en P' sur son axe O'.s', l’observateur B placé en 0; 
enverra, quand son horloge locale marquera un certain temps t’— o 
un signal lumineux et un collaborateur placé en P' marquera sur son

horloge locale à la réception du signal le temps z~ si z' est l’abscisse de P'-

Supposons que A observe cçtte expérience de synchronisation et qu’il 
choisisse comme origine de son temps t, l’instant où B envoie son signal. 
Pour lui, ce signal lumineux chemine le long de O’z' avec la vitesse c— c
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et, comme O'P' lui paraît avoir d’après la contraction de Lorentz la lon- 
geur z'sj 1 — \t>, il mettra pour franchir la distance O'P' le temps

C — V

Donc, quand le collaborateur de B marquera l’heure l' = - sur son hor 

loge locale en P', l’horloge du système A en face de laquelle il passe 

marque le temps t = ---- — et l’on peut écrire

t = -i v1' —
C I — [5

■P

■t puisque t’ = ~ ) on voit qu’au temps t' marqué par l'horloge au point z' 

•orrespond dans le temps t l’instant-

t =
. 9 1t -t- -z c
h — f-v'1

ce qui est la quatrième relation (21) de Lorentz.

o. Mesure de la vitesse de la lumière par deux observateurs 
g-aliléens. — 11 est aisé de voir comment la ralentissement des horloges 
permet à A de s’expliquer que B puisse trouver pour la vitesse de la

------V .....„
0' P' x

Fig. 7.

lumière dans le vide la même valeur c que lui-même. En effet, pour 
mesurer la vitesse de la lumière, B doit, nous l’avons dit, faire accomplir 
par un signal lumineux un même trajet aller et retour! Supposons que 
l’observateur placé en O' fasse voyager la lümière le long de son axe O'z'.

La lumière part de O', se réfléchit en P’ à la distance O'P' ~l' et 
revient en O'. Admettant l’isotropie de son espace et constatant que la 
lumière a mis une durée t  de son temps propre pour aller et revenir, B 
pose

(-3)
o'P'l 1 p;o '1

T
2?
T

Si A regarde B effectuer cette mesure, que dit-il ? 11 dit : la
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distance jO'P' | a pour longueur, non pas l1, mais V \j i — (3a et la 
lumière ne chemine pas avec même vitesse par rapport à O'z' à l’aller 
et au retour, car à l’aller elle se déplace par rapport à O'z' avec la 
vitesse c — e et au retour avec la vitesse c + e. De plus, pour A, 
l’horloge de B marche trop lentement et la durée de l’expérience est.

non pas r, mais v/i-^ A écrit donc l’équation

T

V1 — è2
i tj I — /' v/1 — |32 _ ' t

Ç — v '••+-!< ~ c \< 1 — [i*

Il retrouve donc pour c la valeur ( .i).
Mais, pour l'exactitude de la mesure laite par B résulte d’une 

compensation entre plusieurs erreurs sur les longueurs, les temps cl les 
vitesses. A se dit : « B a bien de la chance. U raisonne comme s’il était 
au repos, alors qu’il est en mouvement; il emploie des mètres trop 
courts et des horloges qui retardent et finalement toutes ces erreurs se 
compensent et il trouve le résultat exact ».

Voilà comment raisonne A s'il n’est pas relativiste, mais naturel 
lement B raisonnerait de même si c’était A qui luisait une mesure de r. 

Mutons que si B. faisait sa mesure en prenant le point de réflexion I’’ 
en dehors de l’axe O'z'. un calcul un peu plus long conduirait au même 
résultat. 6

6. Paradoxe de la réciprocité. — Le paradoxe de la réciprocité 
consiste en ce que les observateurs A et B s’accusent mutuellement 
d’erreur et qu’en raison du principe de Relativité ils ont exactement le 
même droit de le faire. .Mous venons d’en voir un exemple, en voici 
un autre.

A et B ont chacun une règle qui leur paraît avoir la longueur /. 
Si ces règles sont placées dans le sens du mouvement relatif, chacun des 
observateurs attribue à la règle de l’autre la longueur réduite l\> i — (3-. 
Comment est-ce possible? Cela vient de la manière dont chaque 
observateur évalue la longueur de la règle de l’autre : nous avons 
vu qu’il ne peut définir cette longueur que comme égale à la distance 
des deux extrémités de la règle mobile à un même instant de son temps 
propre. Mais si chaque observateur peut définir la simultanéité dans 
son système propre, la simultanéité dans les deux systèmes n’est pas 
la même.

Regardons A mesurer la longueur de la règle de B.
Pour plus de clarté, nous séparons les axes O; et O’s'. Supposons
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qu’à l’instant où l’extrémité arrière O' de la règle de B passe devant 
l'extrémité arrière O de la règle de A, les horloges placées en O et O' 
marquent la môme lieui'c que nous nommerons l'heure o. Le collabo 
rateur de A placé en P voit à celte même heure o passer devant lui

de IL et A dira que la règle B a pour 
l inférieure à la longueur OL de sa propre 

reste, iviais. les Horloges en O et en O’ marquant la même heure, celles

l’extrémité avant de la règle
longueur OP ----- / \/ i — f 
';gie. Mais, les horloges en O et en O’ marquant 

en L’, et en P marquent des heures différentes quand elles passent l’une 
devant l’autre puisque d’après le ralentissement des horloges, l’horloge U 
paraît dans le système V prendre du retard. D’après la quatrième 
relation (‘O de Lurent/,, on a pour / = o

L -1\, =
fi,c

\1 — i

0’ LL

L Q
Fig. 8.

Le collaborateur de B placé en L’ doit donc, après son passage 
devant P, attendre encore un temps

V =
v > -f»1

avant d’observer sur son horloge locale le temps t'— o.
«'-t-fi*'

CPuisque l J 7 -» le temps A/ marqué sur l’horloge locale de A
V' i — (s*

située en face de L' quand l'= o est (puisque z' — t)

M

K-
— X*
C

v/r _ pi v/, _ ps

< loirnne, pour A, le point L'a la vitesse ,3c. ce point sera au temps o -t- A/ 
eu face d’un point O de Os tel que. avec les unités de A, on ait
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Pour B, la longueur ÔQ vaut /, puisque les positions simultanées des 
deux extrémités de sa règle de longueur propre l au temps t'= o sont 
en face des points O et Q. Comme ou a dans le système A

OL = OQv/i — (i;

on voit que pour B. la règle OL de A paraît avoir pour lon 
gueur l \J i — (3 V

Ce que nous venons de dire dans le paragraphe précédent et dans 
celui-ci montre à quels raisonnements profonds et subtils conduit l’ana 
lyse de la mesure des longueurs et des durées quand on adopte le point 
de vue d’Einstein. Malgré les nombreuses critiques que l’on a en vain 
cherché à leur adresser, ces raisonnements refaits de bien des manières 
par des théoriciens éminents (Einstein. Lorentz, Langevin, etc.) sont 
inattaquables si l’on admet l’hypothèse que le mouvement rectiligne 
et uniforme est sans influence sur les phénomènes physiques et en 
particulier sur la propagation de la lumière. On ne pourrait ébranler 
la théorie dé la Relativité restreinte dont nous venons de donner une 
esquisse qu’en mettant en évidence par l’expérience une influence du 
mouvement rectiligne et uniforme sur les phénomènes optiques ou 
électromagnétiques. Aucune preuve sérieuse d’une telle influence n’a 
jusqu’ici été apportée.

7. Formule de composition des vitesses. — Soit un système d’axes 
galiléens OiXifiZi et un autre système d’axes parallèles 02;r2y2.z2 
dont l’origine glisse d’un mouvement rectiligue et uniforme sur 
l’axe Oi^i. Nous pouvons toujours nous ramener à ce cas quand nous 
comparons deux systèmes galiléens. La transformation a alors la forme 
simple (2).

Considérons un point matériel mobile animé dans le système (2) 
d’une vitesse v2.

La vitesse vy du point M dans le système (1) a pour composantes

dxi _ dx,\Ji —(32 _ (MW1(MW1 — P2 _ (MW1 —

(MW1 — (Js ( Vi )vv/ I — [3* ---- -----------  = --------------- ,
1 ~ (e2); 1-t--je(pj)i

dzt dz*-1- $cdti _ (c.jj + i' ( e2 h -t- v
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Telles sont les formules de composition des vitesses de la ciné 
matique relativiste qui donnent, les composantes de la vitesse dans le 
système (i) à partir des composantes dans le système (r?V Elles 
remplacent les formules de la cinématique classique

•Ol).r= (e2).r, (ci)y= (Ci)_v, ( Ca)z = ( Co )- -+- C

auxquelles elles se réduissent quand v est beaucoup plus petit que c.

En changent (3 en —on obtient les formules inverses

( Cl ): — c

,8. Interprétation de l’expérience de Fizeau par la cinématique
relativiste. — Dans l’expérience classique de Fizeau sur <■ l'entrai 
nement partiel de l’éther par les corps réfringents en mouvement », 
une substance réfringente d’indice n est animée d’un mouvement de

( Ci ).r =
t C, ).r \/ I — [3*

3
(ci b

( C» )z ■■

Fin

translation rectiligne et uniforme et un faisceau de lumière parallèle se 
propage dans la substance dans la direction du mouvement.

L’expérience prouve que, du moins en première* approximation 
quand on néglige la dispersion, la vitesse Y de la lumière dans la 
substance réfringente en mouvement est donnée par la formule

(4)

!.. DE BROOLIB.

V = — -r-C fl -

n \ nl J

3
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Dans l’ancienne théorie ondulatoire de la lumière, on admettait qu’elle 
se propageait dans la portion d’ « éther », où baignerait la substance

mobile, avec la vitesse - d’après la définition même; de l’indice de

réfraction. Si cet éther est «.entraîné » par le mouvement delà substance 
réfringente de façon à prendre lui-méme une vitesse (pii soit une certaine 
fraction ic de la vitesse e, la lumière possédera par rapport à l’expéri 
mentateur, par suite de cet entraînement partiel de l’éther, une vitesse 
de propagation égale à

1 c\ = H a c.n

La iormule ( 4) peut alors s’interpréter en disant que le coefficient 

d'entrainement partiel 2 est égal à 1----1 0 n-
Lc> théories anciennes, en particulier la théorie des Electrons, 

permettaient de retrouver ainsi la formule (4), mais la théorie de la 
Relativité en fournit une démonstration purement cinématique d’une 
remarquable élégance.

En effet, la vitesse de la lumière dans la substance réfringente étant 

~> la vitesse par rapport à l’observateur fixe est donnée d’après le ciné 

matique relativiste par la formule

“H V T, C, avec vi = V et i ’«»=-•
1 n1 H---- - vv»c2

La vitesse d’entraînement que l'on peut pratiquement imposer à la 
substance réfringente étant très petite devant c, (3 est petit et (32 négli 
geable devant l’unité. On trouve donc

- i5 Cl-frt _
* c n

ce qui est bien la formule de Fizeau.
Nous remarquerons que Lorentz en tenant compte de la dispersion et 

de l'effet Doppler, a trouvé la formule plus exacte

V = c
«(>.)

où /. est la longueur d’onde de l’onde incidente pour l’expérimentateur.



LE PRINCIPE DE RELATIVITÉ. 35

('.clic formule « clé vérifiée par Zeeman qui a repris les expériences de 
Kizeau sur des liquides on mouvement et les a étendues à des corps 
solides en mouvement. Mais, comme la correction de T.orentz n’esi pas 
spécifiquement relativiste, nous n’y insisterons pas.
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CHAPITRE III.
COMPLÉMENTS SUR LA THÉORIE DE RELATIVITÉ RESTREINTE.

I. L’espace-temps. — .Nous supposons connus du lecteur les principes 
du calcul tcnsoricl.

La relation entre les coordonnées x. y, z. t cl x', y', s', t' de deux 
observateurs galiléens qui est exprimée analytiquement par la transfor 
mation de Lorentz pent être représentée géométriquement.

Pour v parvenir, nous introduisons d’abord un espace à quatre dimen 
sions déliui par les quatre coordonnées

x' = x, xi = y, x:l—z, xi=ct.

La métrique de cet espace sera déterminée parle fait que la distance 
des deux points infiniment voisins de coordonnées x1, x-, ar, x'1 et 
x1 + dx'. x'1 + dx-, x* + dx3, x' -f- dx' est donnée par la formule

(i) r/s-— (dx')- — (dx1 )- — {dx- )- — (dx3)- - c- dt- — dl”-.

Chaque point de cet espace à quatre dimensions représente un 
« événement », c’est-à-dire un point de l’espace physique considéré à 
un instant donné. L’espace à quatre dimensions ainsi introduit est 
« L’espace-temps » ou « Univers » et le ds- est le carré de l’élément de 
longueur dans l’espace-temps. L’ospace-temps est une multiplicité 
pseudo-euclidienne parce que dans l’expression ( i ) du ds- ne figurent 
que des carrés comme dans un ds- euclidien, mais que ces carrés n’ont 
pas tous le même signe. On appelle transformations orthogonales des 
coordonnées dans l’espace-temps celles qui conservent la forme du ds- : 
(dles s'expriment précisément par les formules de Lorentz.

Dans l’espaee-temps, un vecteur est un être mathématique à quatre 
composantes rectangulaires A1, A-, A*, A1 qui se transforment comme 
x1. x-. x:l, x1 lors d’un changement de système de référence galiléen.
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Le carré du sa longueur est donné par uni; formule qui a même forme 
que celle du ds2, savoir

I A |2 = ( À4 )2 — ( A< )2 — ( A2 )2 — ( A3 )5 = ( A*)* - . A/V-.

Celte quantité, comme le ds'1, est invariante pour tous les changements 
de système de référence gali'léen.

Le produit scalaire de deux vecteurs d'espace-temps A et B est. par 
définition,

(A.B) = A* B4— A1 B1 — A2 B2— A»B3 = A‘B‘—(A/.B/),

A/ et B; étant les projections sur l’espace physique de A et de B. Le 
produit scalaire (A.B) est invariant pour les transformations de 
Lorentz. Le produit scalaire d’un vecteur par lui-même est évidemment 
égal au carré de sa longueur.

On introduit souvent à côté des composantes « contrevariantes » 
A1, A2, A* et A’1 les composantes « covariantes » At, Aa, A, et \ , reliées 
aux premières par les relations

Aj — — A1, A 2 — -— A-, A3 = — A", A — A *

et l’on peut alors écrire

t * t
1 a t*=2LlA/A'* (A-B 1

1 1 j

Par définition, deux vecteurs d’espace-temps sont orthogonaux si
leur produit scalaire d’espace-temps est nul.

Si nous voulons nous représenter graphiquement l’espace-temps, nous 
nous heurtons à deux difficultés : il a quatre dimensions et sa métrique 
est pseudo-euclidienne. Pour tourner ces difficultés, nous nous place 
rons d’abord dans le système de référence d’un certain observateur 
galiléen et nous tracerons sur notre papier l’axe X; — ct. correspondant 
au temps propre de cet observateur.

L’ensemble des points de l’espace-temps qui sont simultanés pour cet 
observateur et qui forment à un instant t de son temps propre son 
espace physique est représenté par un hyperplan à trois dimensions 
perpendiculaire à l’axe x, au point de cote et. Nous devons imaginer 
trois axes de coordonnées normaux à l’axe a?* et normaux entre eux qui 
servent à repérer les points de l’espace physique pour l’observateur 
considéré.

Si nous considérons le cône C formé par l’ensemble des'droites qui
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pussent par O «■ I son! inclinées de /pu sur O.r,, tout vecteur ayant son 
origine en O ci situé sur ce cône aura une longueur nulle dans l’espacc- 
lemps, car sa projection A/ sur l’espace est égale à sa projection A* sui 
te temps, 'l’ont vecteur contenu dans le cône double aura son jA|- 
positit : on dit que c’est un « vecteur du genre temps ». Tout vecteur 
extérieur au cône double aura son ] A |- négatif, on dira que c’est un 
» vecteur du genre espace ».

Deux vecteurs symétriques par rapport au cône sont orthogonaux, 
car la projection de l’un sur l’espace est égale à la projection de l’autre 
sur le temps [A/= B, et B*=A4, avec Ai parallèle à B/, d’où 
i A.B) ;= A.,B,, — A/B*= o].

La propagation d’un signal lumineux émis au point O à l’instant

vecteur

t = o est représenté par les génératrices du cône C, puisque pour tout 
point P de ce cône, on a

OP = c-1-—x2—y-—— o.

C’est ce qui a fait donner au cône C le nom de « cône de lumière » 
relatif au point O.

Les signaux autres que les signaux lumineux ou électromagnétiques 
ont des vitesses inférieures à c et leur propagation est représentée par 
des courbes contenues dans C. La partie supérieure du cône G contient 
donc tous les événements qui peuvent être influencés par l’événe 
ment O. Pour cette raison, on appelle « cône de l’avenir » relatif au 
point O, la nappe supérieure Vlu double cône C; on appelle de même 
« cône du passé » relatif à O, la nappe inférieure du double cône, car 
elle contient tous les événements qui sont susceptibles d’influencer 
l’événement O. La région extérieure au double cône contient les événe 
ments qui ne peuvent influencer O, ni être influencés par lui.
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Il est essentiel de remarquer que, l'écoulement du temps présentant 
un sens privilégié, l’espace-temps possède une sorte de polarité dans le 
sens des x„ croissants.

Considérons maintenant un objet ponctuel, un point matériel. 
A chaque instant, il occupe une certaine position dans l’espace. Son 
mouvement définit donc pour ses coordonnées xl, x-, x'-'. x1 une suite 
de valeurs représentée par une courbe continue de l’espacc-temps. 
Cette courbe, c’est la « ligne d’Univcrs » du point matériel qui symbo 
lise l’ensemble de son évolution. Comme, d’après Einstein, aucun corps 
matériel ne peut aller plus vite que la lumière et que le temps a un sens 
d’écoulement, la ligne d’Univers d’un corps quelconque doit toujours 
faire un angle inférieur à 45° avec la direction positive de l’axe des x:,. 
En effet, si ds est un élément de la ligne d’Univers en question dont la 
projection sur x* est dx*'= c dt et dont la projection sur l’espace est dl.

cdt

ht

la vitesse du mobile dans la phase de son mouvement que représente ds 
est égale au produit par c de l’angle 0 que fait ds avec O.z"

tgfl = dl
dx'

i dl 
c dt

D’où la proposition énoncée, car c doit être inférieure à c et, par 
suite, tous les éléments de la ligne d’Lnivers doivent être des vecteurs 
de temps.

Seule la lumière a dans le vide une ligne d’Univers qui fait 45° avec 
O a?4. La ligne d’Univers de la lumière dans le vide est une courbe de 
longueur nulle, car ds? = c3 dt-— dl- = o.

2. Démonstration géométrique dans l’espace-temps des relations de
Lorentz. — Nous allons maintenant chercher à utiliser l’espace-temps 
pour retrouver par un raisonnement géométrique la transformation de 
Lorentz. Nous prendrons le cas simple où il y a coïncidence îles axes 
Os et O'z' et mouvement relatif le long de ces axes. Nous parlerons



toujours dos observateurs A et B et, nous servant de la représentation 
graphique indiquée ci-dessus, nous représenterons l’axe des t et celui 
des s de l’observateur A.

Dans cette représentation de l’espace-temps, d’origine O' du système 
do référence dc'B a la droite CD' comme ligne d’Univers, si nous sup 
posons que l’on a choisi pour instant initial l’instant où O et O' coïn 

cidaient. OC fait avec Ot. l’angle 0 et l’on a m ^ = tgû = j3. A l’instanl
O m

t = o, l’axe des z' de B doit se représenter par Oz' ; cela résulte du fait 
que la ligne d’Lnivers OD de la lumière, bissectrice de zOt, doit aussi 
être bissectrice de z'Ot', puisque pour B comme pour A, la lumière a 
la vitesse c. Les événements du plan zOt (pii sont simultanés pour B

COMPLÉMENTS SUR LA THÉORIE DE RELATIVITÉ RESTREINTE. 4l

sont donc situés sur des parallèles à O;'; ils ne sont pas simultanés 
pour A. Les événements du plan zOt qui ont même abscisse z' pour B 
sont situés sur des parallèles à OC; ils n’ont pas même abscisse ; 
pour A.

Pour retrouver sur la ligure les formules de Lorenlz, il faut tenir 
compte du caractère pseudo-euclidien du plan zOt, qui nous donne 
dans le triangle OmM la relation

OM = O m — mM .

Marquons sur l'axe OC un point C. tel que OC = i et soit c la projec 
tion de C sur O t. ^ious aurons

il ou, puisque ■__ = p.
O c

Oc =

Oc — cC =i,

c C = ■
V71 — [3- ^ i — P2
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Les coordonnées de M étant Qm = cl et mM = ; cl ÜM étant égal 
à ctj, nous obtenons pour le produit scalaire (OC.OM) l’expression

d’où

(OC.OM) = i et' = Oc.Ont — 7nM.eC et $3
v'i — f»* v/i —P*’

t'=
c

V7 ï — P2 *

C’est la formule de Lorentz pour le passage de t! à t. Ou trouverait de 
môme la formule donnant le passage de z' à z en prenant un point M 
sur l’axe Os'.

La ligure que nous avons donnée plus haut semble faire jouer un rôle 
dissymétrique aux deux observateurs A et B, puisqu’on croit lire sur la 
figure

^To^=yo° et 3'Ol'<90°

et ce fait parait contraire au principe de relativité. Mais ce n'est là 
qu’une apparence due à la difficulté de représenter un plan pseudo 
euclidien sur une feuille de papier qui est un plan euclidien. En réalité, 
avec nos définitions, Os' symétrique de Ot: par rapport à D lui est 
orthogonal (se reporter à une remarque précédente selon laquelle deux 
vecteurs symétriques par rapport au cône C sont orthogonaux). On 
pourrait refaire la figure en partant des axes de l’observateur B figurés 
perpendiculaires sur le papier et tous les résultats seraient les mômes.

3. Vecteurs et tenseurs d’espace-temps. — Rappelons quelques 
définitions.

Un invariant ou tenseur de rang o dans l’espace-temps est une 
expression qui a la môme valeur dans tous les systèmes galilécns. Le d.s- 
ou carré de l’élément de longueur en est un exemple; la valeur d’un 
élément de volume de l’espace-temps en est un autre.

Un vecteur d’espace-lemps A ou tenseur de rang i est un être mathé 
matique à quatre composantes (contrevarianlcs) A1, A-’, A'. A1 telles 
que dans une transformation de Lorentz

*
*''=2^ “A**.

1



clics se transforment comme les coordonnées, c'est-à-dire suivant le 
schéma

4

A'«=y
1

avec les mêmes 'a‘k. De cette définition, résulte que Je carré de la 
longueur d’un vecteur A, soit

|A|*=(A*)*-(A»)!-(A*)*-(A»)*.

cl le produit scalaire de deux vecteurs A epB. soit

(A.B i = A1 R1— A1 B1 — A2B2 — A:iB:: 

sont, des invariants.
lin exemple typique de vecteur d’espace-temps est le vecteur densité- 

courant d’un fluide en mouvement. Considérons un fluide formé de 
molécules. Pour un certain observateur galiléen, ce fluide a en chaque 
point une certaine densité p (nombre de molécules par unité de 
volume) et une certaine vitesse de composantes u.v, uy, u:. On peut 
démontrer en s'appuyant sur la formule de composition des vitesses en 
cinématique relativiste que les quatre grandeurs

A1 = p iixi A *=pu.y, A 3=pn-, A4=pc

se transforment comme x‘, x-, x*, x1 dans un changement de système 
galiléen. On obtient ainsi un vecteur A dont la composante de temps 
est, au facteur c près, égale à la densité p, tandis que les composantes 
d’espace représentent le flux du fluide par unité de surface. La quantité
j A |- = p-c‘J ^ i — doit donc être un invariant. Il en est bien ainsi

car, au facteur c2 près, cette quantité est le carré de py/1 — et ceci

est la densité pu du fluide pour un observateur entraîné par le mouve 
ment local de ce fluide. En effet, pour cet observateur, il y a, par suite 
de la contraction de Lorentz. p molécules du fluide dans le volume

— 1 • d'où pour lui une densité p„ — p i — ,3-. Nous trouverons plus
V i — [52
loin d’antres exemples de vecteurs d’espace-lemps.

Un tenseur de rang •>. est un être mathématique à seize composantes 
A ‘J qui forment un tableau à quatre lignes et quatre colonnes et qui sont 
telles que. pour un changement de système galiléen, les A .'J se trans 
forment comme les produits ./•'x>. Sans étudier ici en détail les propriél és
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de ces tenseurs, disons qu’il résulte de leur définition que la quantité

avec snc = — i si l’un des deux indices est égal à 4 et i dans le cas 
contraire, est un invariant. En introduisant des composantes covn- 
riantes A,-* = s^A'4', on peut écrire plus simplement

A ; il; A(/'.

A côté des tenseurs Symétriques (AiA'= Aw), une catégorie très 
importante de tenseurs du second rang sont les tenseurs antisymétriques 
tels que A,Vr = — A*1'. Les termes symétriques par rapport à la diagonale 
dans le tableau des A<A sont alors égaux eL de signe contraire, tandis 
que les termes diagonaux AAA sont nuis : il n’y a donc plus que six 
composantes distinctes A14, A24, A’4, A23, A31 et A1-'. On démontre 
que pour une rotation des axes xyz dans l'espace, les grandeurs A44, 
A24, A34 d’une part, les grandeurs A23, A31, A12 d’autre part, se trans 
forment comme les composantes d’un vecteur à trois dimensions, de 
sorte que, pour les changements d’axes galiléens sans mouvement 
relatif, tout se passe comme si le tenseur d’espace-temps se décom 
posait en deux vecteurs d’espace. Mais pour une transformation de 
Lorentz qui fait varier la variable temps, il n’en est plus ainsi et dans le 
cas d’une transformation simple de Lorentz. on trouve

A'14 = 

A'” =

A14— pA31

A23-+- pA24

A'-4 = 

A'31 =

A2 4-4- p A23 
' s/i-p2 

A31— PA14

A'34 = A34 ; 

A'12 = A'2,

formules importantes, nous le verrons, pour l’électromagnétisme 
relativiste.

Pour un tenseur antisymétrique de rang a, l’invariant « carré de la 
longueur » prend la forme

| A |2 = 2[( A23)2-t- (A3"1 )2-h  (A12)* — (A14)2 — (A14)2 — (A34)*].

4. La Dynamique relativiste du point matériel. — La Mécanique 
classique de Newton admet le groupe de transformation de Galilée, mais 
non le groupe de transformation de Lorentz. Mais, comme les formules 
de transformation de ces deux groupes ne diffèrent que par des termes
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<Io l’orilru-de ,3-, la divergence est liés faible pour tous les mouvements 
considérés par la Mécanique rationnelle. v compris le mouvement des 
corps célestes. La transformation de Lorentz se trouvant confirmée par 
des expériences sur la propagation de la lumière et sur les interférences 
qui sont infiniment plus précises que les expériences de Mécanique, il 
est naturel de penser que les équalions de la Mécanique doivent être 
réformées de manière à devenir invariantes pour la transformation de 
Lorentz et. l’on pressent que ceci n’entraînera dans les équations de la 
Mécanique que des modifications de l’ordre de ;3- qui seront tout à lait 
négligeables quand on aura à traiter des problèmes de Mécanique à 
grande échelle. C’est en suivant celle ligne d'idée que M. Einstein a pu 
constituer une dynamique nouvelle du point matériel qui a été en son 
temps qualifiée de « Mécanique nouvelle » et qui est à son tour devenue 
une Mécanique ancienne depuis le développement des Mécaniques 
ondulatoires et quantiques.

La condition essentielle que doit a priori remplir la Dynamique 
relativiste du point matériel, c’est de se confondre avec la Dynamique 
classique chaque fois que (32 est négligeable devant l’unité, car il faut 
retrouver l’ancienne Dynamique comme première approximation dans 
le cas des vitesses faibles devant celle de la lumière dans le vide 
(approximation newtonienne).

O11 doit donc chercher à mettre, à la base de la Dynamique relativiste 
du point matériel, un principe de moindre action qui se réduise pour 
,3 i au principe de Hamilton. Celui-ci nous apprend que, si un point 
matériel se déplace dans un champ de force défini par une fonction 
potentielle U(x, y, z, t) telle que la force subie par le point matériel 
soit égale au gradient de U changé de signe, depuis une position 
Xo, yo, £0 occupée à l’instant initial ta jusqu'à une position Xi, y\, zt 
occupée à l’instant final h, le mouvement du point matériel est tel que 
l’intégrale

f‘(T-\J)dt

^où T est l’énergie cinétique ^ mv'1 du mobile^ est minimum, ou plus

généralement stationnaire, par rapport aux mouvements virtuels infini 
ment voisins qui amèneraient le point matériel de la position xa. i 0, 
à-l’instant t0 à la position Xi, yt, zi à l’instant t,. On dit que

e ( dx dy dz
^ dt ’ Ht ’ dt ’ f ) = T — U
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est h» « fonction do Lagrange a du point matériel dans la Dynamique 
classique. On a donc à exprimer cjue

Posons

e dt = o.

dx . dy . dz
di=x’ "di =-’’’ di=:'

Lu calcul classique, s’appuyant sur les méthodes du calcul des varia 
tions, montre que cette condition d’extrcmum est équivalente aux trois 
équations

r-L(dJL\-àJL d_(d£\_dG_ d(àjï\_<)£_
dt \ dx ) dx' dt \ dy ) dy ' dt \ dz ) dz

Ce sont les « équations de Lagrange » qu’on peut aussi écrire si li ne 
dépend pas des vitesses

— — £Ü-_^Ü / dT-'t __ àj _ _ <fU
dt \ dx ) dx dx' dt \ dÿ ) dy dy’

(àJ\_dT __dU 
dt\dz) dz dz

Définissons les composantes de la quantité de mouvement (ou moments 
de Lagrange) par les formules

de _de _ de
dx P- dÿ ' di

On peut écrire simplement

dp,_ de dp y _ de dpz _ de
dt ’ dx dt dy dt dz

En coordonnées rectangulaires.

• r24- i2),

d’où, par exemple.
p, = mx, d . o>U-t(,"x)=-~

et l’on retrouve les équations classiques de Newton 

mx  = mÿ ■ fv, mz =

Après ce lire! rappel de notions classiques en Mécanique analytique, 
revenons au point de vue relativiste. Considérons dans l’espaco-temp.s
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lu ligne d’Lnivers d’un point, matériel et étudions-la en nous servant des 
coordonnées x. r. f d'un observateur galiléen. L’élément de longueur 
de la ligne d'Lnivers est donné par

ds- = y e- e/l- — dx- — dy- — dz- = \ c- dl* — dl-,

dl étant l’élément de la trajectoire parcouru par le point matériel 
pendant le temps dt, de sorte que la vitesse du mobile pour l’observateur
galiléen est e = ^ et l’on a 
n dt

ils = c dt \i i — [j * ^ [ii = - ^ •

Posons encore dt — dt i — fi* ; dx est l’élément de « temps propre » 
du point matériel, e’est-à-dire du temps marqué par une horloge 
entraînée par le point matériel : en effet, la relation qui définit dx 
exprime le ralentissement de l’horloge vue du système de l’observateur. 
L’élément de ligne d’Lnivers ds — c dx est donc proportionnel à la 
variation du temps propre.

Lu Dynamique relativiste, on considérera les positions du point 
matériel aux temps t<, et li comme définissant deux points de l'espace- 
temps, l>0(.r0. y'«. s», /») et Pt(d?i, j'j, ~i. L). Il est alors naturel de 
chercher un principe d’action stationnaire de la forme

/■«o j J? dt = o.

l’intégrale étant prise le long de la ligne d’Lnivers de P en ( ). La fonc 
tion £ sera différente par des termes de l’ordre de fi* de la fonction de 
Lagrange classique; elle devra être telle que l'intégrale puisse '■'écrire

sous la forme invariante / £»dx, l’invariant £o étant défini par

Considérons d’abord la partie de £ qui dépend du mouvement et non 
du champ et qui correspond au ternie T de l’expression classique. Si 
nous caractérisons le point matériel envisagé par une constante inva 
riante, sa masse propre ma, nous obtiendrons une forme satisfaisante 
pour cette partie cinétique de la fonction de Lagrange en posant

J? — — nioC- \/1 — y.

Il est d’abord évident que £0=z £

v'i - P-
osl. un invariant.
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De plus, pour (3 petit nous aurons approximativement

£ = — m„c- -(- - nto v- 
2

48

et, comme un terme constant n’a aucune importance dans l’expression 
de i?, nous retombons bien sur la fonction de Lagrange classique. En 
l’absence de champ, l’intégrale d’action sera donc

En présence d’un champ dérivant d’une fonction potentielle, nous nous 
contenterons pour l’instant d’ajouter à l’expression du terme cinétique 
de £ le terme — U. Notas examinerons plus loin la validité de celte 
hypothèse. Finalement, nous écrivons le principe de Hamilton en 
Dynamique relativiste du point matériel sous la forme

/*Q ____ .
à I ( —, ///„ c- y/i — \P — U ) dt = o 
J p

et nous obtenons encore par le calcul des variations des équations 
formellement analogues à celles obtenues en Mécanique analytique 
classique; par exemple

d_ (d£\ _ à£ ___ dV 
dt \dx J dx ~~ àx

Définissons encore les « moments de Lagrange » par

/'>■ =
à£
dx ’

d£Pv=-cr i r- ày
d£

on trouve
/Mg X

Px = Pïsjl — P2 ■ " ' — fs2

La quantité de mouvement sera donc ici

Pz- ni o-
V1 — P2

P =
/Mo V

On peut encore l’écrire p = mv, mais la « masse en mouvement » ni 

du point matériel est égale à ni — ——— et. varie avec la vitesse. La
v * —• i32

masse ni d’un point matériel pour un observateur augmente avec sa 
vitesse. Pour un observateur lié au point en mouvement. (3 — o et 
m = /Mo ; d’où l’origine des noms de « masse propre » et « masse au



topos » donnés à ///«. Pour u tendant vors c, tu • tend vers l'infini. 
Aucun inoltilo do masse finie ne peut doue atteindre la vitesse c et ainsi 
so trouve justifiée a posteriori 1’hypothèse de départ d’Einstein.

Les équations de la Dynamique relativiste peuvent s’écrire

d.p.v _ d ( oint’.,- \ _ dt1 dp y __ d / mn <Y \ _ âV
~dT ~ dt y 4/,_ p- j ~ dx ' dt - dt\ V/I _ {52 J ~ dy '

dp- d / nint - \   dt!
~dF ~ dty y/i — jjs ) ~ dz

llepronons oes équations du mouvement sous la forme générale

d /de\ _ dt? d (d_e\ _ de dy (dje\ _ de
dt \ dx j ~~ dx clt\ ày ) dy ‘ dt \ dz ) dz
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tpii est valable à la fois en Mécanique classique et en Mécanique rela 
tiviste, mais avec des formes différentes de la fonction j£\ Posons 
par définition

\\ = x de
dx

.de .de
y àj^zàj~e =xp"+y?* -

On démontre aisément à partir des équations précédentes que

rfW __ de _ dû
dt dt dt

Donc, si E 11e dépend pas du temps (champ permanent), \\ reste 
constant. \Y est appelée « l’énergie » du point matériel. Dans un champ 
permanent, l’énergie d’un point matériel reste constante : ce théorème 
est exact en Mécanique classique et en Mécanique relativiste, mais 
avec des expressions différentes de W que nous allons donner.

a. En Mécanique classique, on a

e = T — U. px=mx ..., avec m constant.

On trouve alors

W = m(xi-¥-ÿ'1 -+- i2) — (T — U) = T -h U = i nw- ■+- U,

expression bien connue.

b. En Mécanique relativiste,

e = — m0c2 \ji —■ p2 — e , = -=r=-) ■•••
t/l-P2

L. DK BROC.UK.
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On trouve1
«• —y-2-+-i2 ) ——" =--------—■'-------- h ni o c2 v > — :î2 ■+■ L,

v71 — fi2
ni o c- u.

[il! terme osl nouveau et intéressant. Dans le système lié
\/.i-Ir 

an mobile (système propre), = o, le terme se réduit à m„i;-. C'est 
« l’énergie propre.» du point matériel. Pour un observateur qui voit

le point matériel se mouvoir, l’énergie croît eonime ——1 ^ • En géné 

ralisant ces faits, Einstein a été conduit au «.principe de l’inertie 
de l’énergie » dont voici l’énoncé « A toute masse est toujours 
associée une énergie égale au produit de cette masse par c- ».

Ainsi pour l’observateur lié au mobile, la masse est m0 et 
l’énergie mac-pour l’observateur qui voit passer le mobile avec

la vUosse pcv la masse osl . et 1 eiicnne . ___» Le principe
yi-!}2 ° VI—i1’

de l’inertie de l’énergie peut être vérifié sur un grand nombre 
d’exemples plus compliqués : il joue aujourd’hui un riile capital dans 
la Physique du noyau de l’atome.

En Dynamique relativiste, on appelle souvent « énergie cinétique » 
l’expression

T = in0c-1 —— iV 
\\ i—.?* /

C’est l’augmentation de l’énergie due au mouvement. Pour S <51. 
on trouve

-r 1I = - IIIo c2,
2

c’est-à-dire qu'on retombe sur l’expression classique.
On a W = nt0 c- + E en posant E = T -f- l . La Mécanique classique 

qui ignore le terme constant m„c- introduit par la relativité, désigne 
toujours par énergie la quantité E = T -+- U en laissant indéterminée 
une constante additive. La constante de l’énergie est donc fixée par 
la théorie de la Relativité; nous verrons que la constante de l’entropie 
est fixée par la théorie des Quanta. Remarquons que W est toujours 
positif, tandis que E peut être négatif.

Nous allons définir maintenant dans l’espace-temps le vecteur
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impulsion d"l htivcrs » I du point matériel. Il a comme composantes

„ _ moVyl' = p,=
'[»*

V=p:: l/l n
F

12 = p y. =

!■ = W =
V/l - fl» 

m<sc
(ü! c y/1 —■ (J*

Sa longueur invariante est donnée par

1I|,= (t )v  -ri-pl-rt-»**-

Il a ])our composante do temps ^au facteur i pres^ l'énergie du mobile

et pour composantes d'espace les composantes de sa quantité 
de mouvement : il réunit donc en un seul être mathématique les notions 
d’énergie et de quantité de mouvement qui étaient séparées en 
Mécanique classique.

Pour représenter géométriquement l'impulsion d'Univers, nous 
remarquerons que la tangente en un point de la ligne d’IJnivers

du point matériel a pour cosinus directeurs les quantités dont voici 
l’expression

dx'
ds

dx' dt 
dt ds F-W v/i-(P

c v i — P’-
v_ dt _ 1

" - c ds - v/r=^p

Les u‘ sont les composantes d’un vecteur d’espacc-temps, la vitesse 
d’Univers u. et l’on vérifie aisément que

I = m0cu.

L'impulsion d'Univers s'obtient donc en portant en chaque point 
de la ligne d’Univers sur la tangente en ce point une longueur égale 
à m0c.

La partie de l’intégrale d’action indépendante du champ est 
— cfm0 c th : elle est donc, au signe près, la circulation de l’impulsion 

d’IJnivers le long de la ligne d’Univers que l’on peut écrire

[' dx1 — I1 dx' — I2 dx- — I3 dx3]

>=J' ( W dt—pxdx — Pydy—p-dz).

Sur cette expression, on lit que l’énergie W joue le rôle de moment 
conjugué de la variable t.
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5. L’Électromagnétisme relativiste. — Nous avons vu dans le 
Chapitre I que les équations de Maxwell sont

rot H : i àb 4 st.
----r -+- — 1,c dt c

. i dBrot h =---- —,c dt

divB = o ; 

divb = 4^8.

On peut démontrer qu’il est possible de grouper les champs et les 
inductions en deux tenseurs antisjmétriques du second ordre dont 
le premier F réunit le champ électrique et l’induction magnétique 
et le deuxième G, le champ magnétique et l’induction électrique. 
Voici leurs composantes :

F» —■ h.ri Fj 4 = hy, f 3 t — hz j
F33 = BXJ f « = R_l! F, 2 = B,
Gît Gj4 = by, G3 11

Gî3 - Gtl = «y, Gv, = H-

Naturellement, dans le vide, les deux tenseurs F et G se confondent.
Les grandeurs

•s1 = G) = iy, s3 — G, ,v’> = oc

sont les composantes d’un vecteur d’espace-temps, le vecteur densité- 
courant d’électricité. Ceci posé, les équations de Maxwell peuvent 
s’écrire sous forme tensorielle

d FO' d¥ik dpti
■ , ” /■ -h 1 ■“ = O.dxk dxl dx>

dFli _ 4.ir t 
2* dxi ~~ c S ' 
i

Dans les milieux polarisables, la différence entre le champ et 
l’induction s’explique par l’existence d’un état de polarisation et l’on a

b = h-f-4-P, B = H •+- 4~M,

où P est la polarisation électrique (ou densité de moment électrique) 
et où M est l’intensité d’aimantation (ou densité de moment magnétique). 
En faisant la différence des tenseurs F et G, on voit que les quantités 
Mx, M y, M* et ■—Px, —Pv, —P- forment les composantes contre- 
variantes d’un tenseur antisymétrique du second rang, le tenseur 
Polarisation.
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Passons maintenant aux équations de Lorentz qui, avec les champs 
fins h et H, s’écrivent

rot h = i dH 
c dt ’ div H = o;

rot H =
i dh , v
c dt r c divh = \xç

Il suffit ici d’introduire un seul tenseur F antisjmétrique de rang i 
tel que

F14 = hx, F24 = hy, Fü4 = h-;
F»=HX, F“» = Hr, F‘2 = H.,

et de poser
s> = pe.r, s2=pcr, s4 = pc.

Les équations de Lorentz s’écrivent alors

dF1/ dFM dFki dFl> 411 •
dxk dx‘ dxi /Li dx> c

;

Montrons qu’on peut obtenir les champs h et H à partir des poten 
tiels V et A par

H = rot A, h = — 1— grad V
C vf

en définissant un vecteur d’espace-temps, le potentiel d’Univers
dont les composantes sont 

®i = —®, = A.r, 3* = —®s=Ar,

Il suffit en effet de poser

F dgj d®/-
lk dxk dxl

®» = — ®3 = A-, ®4 = S4 = V.

ou F = Rot®

comme on le vérifie aisément.
—. .

Le vecteur ® n’est d’ailleurs défini qu’à un gradient d’espace-temps 

près, car si l’on a 6? = S + Gradd», on a

Rot P' = Rot P car Rot Grad = o.

Nous avons vu que Lorentz avait restreint l’indétermination des 
potentiels en leur imposant la condition

1 a ■ A- -r -+- div A =.o c dt



qui s’écrit, on tonnes lensoriels.
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Div 9 vi à9i _
°'

(>. Dynamique relativiste du corpuscule électrisé dans un champ 
électromagnétique. — Nous avions pris (au § 4) comme fonction 
île Lagrange

JS = — moi - j i — [ï- — U,

mais le tonne L n'osl pas satisfaisant parce <jue sa variance relativiste 
n’est, pas précise. Nous connaissons actuellement trois sortes do champs : 
le champ de gravitation, le champ électromagnétique qui agit sur 
les particules quand elles sont chargées, et enfin le champ nucléaire 
dont le domaine d'action est extrêmement réduit et qui n’inlervietil 
que dans les phénomènes à l’échelle du noyau de l’atome. Nous laisserons 
ici de côté le champ de gravitation dont ['interprétation relève de la 
théorie de la Relativité généralisée, ainsi que le champ nucléaire dont 
la découverte est récente (‘I la nature encore mal connue. Nous nous 
bornerons à considérer le mouvement d une charge ponctuelle dans 
un champ électromagnétique (dynamique relativiste de l’électron).

Dans le cas où dans le système de référence employé le champ 
est purement électrostatique (A = o), un corpuscule électrisé «le charge s 
a u ntt énergie potentielle (-gale à l = j\. Mais, du point de vue rela 
tiviste. ceci ne peut avoir lieu que dans certains systèmes galiléens 
au repos les uns par rapport aux autres, puisque V n’est que la compo 
sante de temps d’un vecteur d’Univers. En passant à un système 
galiléen en mouvement par rapport à ceux-ci, il apparaît un champ 
magnétique et il faut tenir compte de son action sur la charge 
en mouvement.

Au terme cinétique de l'intégrale d’action J"—ma< ds, il faut donc

ajouter un tenue invariant qui se réduise à — J's A clt dans les systèmes 

galiléens où le champ est purement électrostatique. On voit immédia 
tement qu'il s'impose de choisir le terme — / ^l^.ds), étant

le potentiel d’Lnivers. Nous aurons donc pour fonction de Lagrange 
relativiste

ff — tn0c- y i — fi‘- — e  V -+- ? ( A.v),
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V étant la vitesse du corpuscule pour l’observateur galiléen qui emploie 
le temps t. et (A. V) étant le produit scalaire à trois dimensions

A-t- A , iv -+- \-

Il nous faut vérifier qu’avec ce choix fie A*, les équations de Lagrange

d-(ôJ^\-ôJL (L (dJL\- 'lH
dt\dx ) àx ’ dt \ àÿ ) dy ’ clt \ di ) dz

nous donnent correctement la Dynamique de l’électron avec la variation 
relativiste de la masse avec la vitesse.

Nous poserons d’abord comme d’habitude

P-

ce qui nous donne

&e
àx ’ Pr

de
,)ÿ ’

P* =
à£ 
dz ’

p.c =
m0 c.,-

c Px =
IIIq  f y

— P2
A., p IIIq  c- 

é'i- ^
- A ..
C

On voit alors qu’ici le vecteur p dont les 
les moments de Lagrange est la somme géomélriq

de mouvement — d origine cmétuiue et <t une
V' i — [j 2 ' 1

composantes sont 
ne de la quantité

sorte de quantité

de mouvement « potentielle » égale à ^ A.

Kn portant cette expression des jtv. py, j>: dans les ('quations 
de Lagrange, nous obtenons, par exemple pour la première de ces 
équations :

d 1 ni u v.c t .
dt [ + c " '''

dY t [àkx à\y <M, \
àx c \ Ox ' •’'+ ,)x àx ’ V ’

ce (pii peut aussi s’écrire

d mot.,- "J T dV i dA.,, "1 sf /dA, dAr\ / àX.r dA-\~| 
dt I J — àx c <)t J c L1’ V dx dy J ' \ àz àx /]

= ((/,,+ JtvxH}r)=/ï,

où fx est la composante x de la force de Lorentz. En tenant compte 
des deux autres relations analogues, on voit que ceci s’écrit sous forme 
vectorielle :

d " mov
dt ^ j [» = f.

(l'est bien l'équation attendue, car elle exprime que la dérivée
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par rapport, au lumps de la quantité de mouvement (définie en tenant 
compte de la variation de la masse avec la vitesse) est égale à la force.

Comme expression de l’énergie, on trouve aisément, d’après la défi 
nition générale de W,

W = (p.v) — J? = • -+- .
V'1 — P'

WOn constate alors aisément que les quatre quantités px, py, ps éta 

lonnent les composantes d’un vecteur d’espace-temps qui est la somme 
géométrique, du vecteur impulsion d’ÏJ’nivers I défini antérieurement

. -V
et du vecteur -c

Rappelons maintenant qu’on nomme « expression hamiltonienne 
de l’énergie w l’expression de l’énergie en fonction des variables x, y, z. 

py, P;- t et qu’on la dénomme 11(4?, y, z, p.,:, Py, Pz, t).
En Mécanique classique, en éliminant c.T, v. entre Je s expressions

K = px — /// vx, py — m Vy, p- = //tr 

ou trouve

K = It(ag y, px,py, pz, t) = -i-04-t-U(», y, 5, t).

En Mécanique relativiste de l’électron, en éliminant vx, ev, e- entre 
les expressions

»i0V l,, '"aC~ 1- V\ = —= -I- £ \ ,
'1 — 32 %/I—1>* c

on trouve

AV = H(x, y. Z, p.v, Py, Pz, t) = c y/ ml c2 V^r— i a -+- g V.
xyz

7. Masse transversale et masse longitudinale. — Comme en Mécanique 
classique on est habitué à employer la formule de Newton f = my, 
on a cherché au début du développement de la Mécanique relativiste 
de l’électron à obtenir des formes analogues, et ceci a amené à distinguer 
une masse longitudinale et une masse transversale.

Considérons un corpuscule occupant une position M sur sa trajectoire 
et prenons trois axes rectangulaires tels que l’axe des x soit la tangente 
en M.

Alors, à l'instant considéré.

v= e- = o.
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L’équation du mouvement pour l’axe des x nous donne 

S d ( ma v <■ \ ma '[.v m„ e.,, „ d'i
J x " * \ " ^7p 3(

Mo_ m° Tr __ Wo p- , _
(I—P*)* (I-PO2

Par contre, pour les axes Iransvcrsaux y et z, on obtient plus 
simplement

/v =
d / ma vy

d<\sJ\—^} V I — P 

puisque rv — vs — o

ma , _ d / m,> e- \ _ //îo
Tr’ “ dt V v^F/ ~ \^=TS

Si donc, au lieu d’écrire *lcs équations

dp,T ,
dt ~*x’

on cherche à écrire

mfx = fv.

dpy _ f 
dt

dpz
dt

m y= /v, ni'*.

/o

■U,

on est conduit à définir deux masses différentes suivant, qu’i-1 s'agit 
du mouvement longitudinal le long de la tangente à la trajectoire 
ou du mouvement transversal normal à cette tangente. La masse longi 
tudinale i»i et la masse transversale m, ont pour expressions

ma
1»/=   ■—7)

(i-P2f
)», = ma

Cette dernière coïncide avec la masse en mouvement précédemment 
définie. On évite la complication de définir deux masses et l’on peut 
se servir uniquement de la masse ni, si l’on abandonne l’expression

f = my pour ne conserver que la forme f — qui est, elle, aussi bien 

valable dans la Mécanique relativiste que dans la Mécanique classique.
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8. Vérifications expérimentales de la théorie de la Relativité 
restreinte. — Lus vérifications expérimentales <l<: la théorie do la 
lîelalivitc roslroinlo sont extrêmement nombreuses. Il \ a d’abord 
la célèbre expérience (le Miclielson el Morlev plusieurs lois refaite 
dans des eondilions différentes, les expériences de Trotilon et Noble 
et celles de Rünlgen el Eiclienvvald montrant l’insensibilité an mouvement 
de translation de divers phénomènes électromagnétiques. Ces expé 
riences sont exposées dans les traités de Relativité, notamment dans 
le livre de Eaue indiqué dans la bibliographie du précédent chapitre.

Ees expériences de Fizeau [1], reprises par Zecman [2], sur ce qu’on 
nommait naguère l’entrainement partiel de l élher par le mouvement 
des corps réfringents, peuvent, nous l'avons vu, être considérées comme 
une confirmation (le la cinématique relativiste. Le phénomène du ralen 
tissement des horloges a été mis très directement en évidence par Ives 
et Stilwell [3] au moyen de l’effet Doppler el par les calculs de Rossi 
el Hall el de Rossi et Nereson ( t] relatifs à la vie moyenne des niésons. 
La variation de la masse avec la vitesse prévue par la Dynamique 
relativiste a été démontrée expérimentalement par les expériences 
de Cuye et Lavancby | o] et par celles plus récentes de Naeken [6]. 
Nous verrons qu'elle a aussi été confirmée indirectement |>nr le succès 
de la théorie de Sommeifeld et par la vérification des lois de l’effel 
photoélectrique el de la dilfraelion des électrons dans le cas des grandes 
énergies. Enfin, les vérifications du principe de l'inertie de l’énergie dans 
le domaine des phénomènes nucléaires sont aujourd’hui innombrables.

On trouvera une vue d'ensemble sur toutes ces vérifications de la 
théorie de la Relativité restreinte el de quelques autres dans un très hel 
article de M. Robert Lenmiver [7].
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CHAPITRE IV.
LA MÉCANIQUE STATISTIQUE CLASSIQUE.

I. But de la Mécanique statistique classique. — Le but de la Mécanique 
slatistique classique développée nolnininenl par Clausius. par Maxwell, 
par Boltzmann et par (iibbs est d’étudier les propriétés statistiques 
moyennes des systèmes très complexes définis par un nombre extrê 
mement grand de paramètres. Son principal succès est d’être parvenue 
à interpréter les lois de la Thermodynamique de telle façon qu’elles 
apparaissent comme une conséquence du fait que la Thermodynamique 
envisage toujours les propriétés moyennes globales des corps macro 
scopiques dont la description détaillée exacte exigerait l'emploi 
d’un nombre énorme de paramètres. Par exemple, la Thermodynamique 
traite des propriétés globales des gaz et, aux yeux de la Mécanique 
slatistique, un gaz est formé par un nombre immense d'atomes 
ou de molécules, chacun de ces éléments étant lui-même en général 
décrit à l’aide de plusieurs paramètres. Les lois des gaz apparaissent 
alors comme des lois statistiques résultant globalement dos mouvements 
incoordonnés d’innombrables molécules.

fên Mécanique, statistique classique, on admet (pie les élément.» 
en nombre immense (atomes ou molécules i dont sont formés les corps 
matériels obéissent aux lois de la Mécanique classique, de sorte que. 
s'il était possible de connaître exactement à un instant donné 
les positions et les vitesses dé tous ces éléments, on pourrait en principe 
calculer rigoureusement toute leur histoire ultérieure. Mais, en fait, 
on ne peut, observer les évolutions des molécules et on ne constate 
que des effets statistiques moyens dus à l’ensemble de ces évolutions 
et. obéissant à des lois de probabilité dont la Mécanique- statistique 
se propose de déterminer la forme. Ainsi, dans cette théorie classique, 
on admet l’existence d’un déterminisme mécanique sous-jacent, 
le caractère « probabiliste a des lois obtenues résultant uniquement
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tle l'impossibilité it’obscncr autre cltoso que des cfiels globaux. 11 en est 
tout autremenl dans les théories quantiques actuelles où la probabilité 
s'introduit jusque dans la Mécanique des particules individuelles 
sans qu’aucun déterminisme du type classique paraisse subsister, même 
à cette échelle.

(>o

2. Extension-en-phase. Théorème de Liouville. — Pour commencer, 
nous considérons un système matériel dont la configuration est définie 
par un certain nombre de paramètres qt, . . ., g/, . . ., yN. En Mécanique 
statistique, nous serons généralement amené à admettre que le nombre ]\ 
est énorme; par exemple, pour un gaz monoatomique formé par 
un nombre immense n d’alomes assimilés à des points matériels, 
on aura N.= 3/t, ce qui sera un nombre énorme. Néanmoins pour 
l'instant, nous ne ferons aucune hypothèse sur l’ordre de grandeur 
de Y

D’une façon générale, nous admettons que notre système obéit 
aux lois de la Mécanique classique exprimées par les équations 
canoniques de Hamilton. Pour écrire ces équations, nous devons 
introduire les moments de Lagrange pi, ..., ps respectivement

conjugués de y, , q^ et définis par p; = dT
àq\

où T est l'énergie

cinétique totale du système et q\ la dérivée de y,- par rapport au temps. 
L’énergie du système s’exprime en fonction des q, et des p, par 
la fonction ' hamiltonienne du système ll^qi, . . . ,qs, pt, . . . ,pv, t). 
qui peut naturellement dépendre explicitement du temps si les actions 
extérieures sont variables. Les équations de Hamilton sont alors

dqi _ dH 
dt dpi’

d}H _ dit 
dt àq, (/ = I, 2, . . ., N).

Si le système n’est pas soumis à des actions extérieures variables r 
et a fortiori s’il est, isolé, l’énergie TI est une constante ; en effet, on a

dll _ Xy! / dH dt/i dH dpi \ dH _ dH
dt £di\àqi dt + f)pi dt ) ' dt dt

î

et ~ — o si H ne dépend pas explicitement du temps.

L’état dynamique du système à un certain instant est entièrement 
défini à chaque instant par la donnée des qt et des p-,. On peut donc 
représenter cet état par un point dans un espace à 2 N dimensions 
formé des y, et des ]>, : c’est Y extension-en-phase de Gibbs. Au cours 
du temps, le point figuratif du système décrit une certaine courbe.
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une trajectoire, dans l’extension-en-phase : cotte trajectoire représente 
révolution du système au cours du temps.

Considérons maintenant un petit élément de volume dr dausy 
l’extcnsioii-en-phasc : il correspond à de petites variations dqv, .... dp$ 
des variables q 1; . ..,/>N. Un tel élément de volume possède deux 
propriétés qui lui donnent une grande importance en Mécanique 
statistique.

La première de ces propriétés est la suivante : si l’on opère un chan 
gement de variables faisant passer des variables canoniques qt, . . . pK 
à de nouvelles variables canoniques Q1; ..., PN (pour lesquelles 
les équations de Hamilton sont également satisfaites), les éléments 
de volume qui se correspondent dans les deux extensions-cn-phase 
sont égaux. Cette propriété, cpte je me contenterai d’énoncer, résulte 
de la façon dont sont définies les variables conjuguées q, et p; 
et montre que l'élément de volume d’extension-eri-phase a une 
signification intrinsèque indépendante du choix particulier .«les variables 
canoniques servant à définir le système.

Mais c'est surtout la deuxième propriété de l’élément dr qui est 
essentielle pour la Mécanique statistique : elle s’exprime par le « théorème 
de Liouville ». Pour énoncer, ce théorème, nous allons considérer, 
non plus un seid exemplaire de notre système à jN degrés do liberté, 
mais un grand nombre d'exemplaires de ce système. A un instant 
chacun de ces exemplaires est représenté par un point de l’extcnsion- 
<•u-pha.se et à l’intérieur de l’élément dr qui nous intéresse, il y a 
un certain nombre de ces points représentatifs. Fixons notas attention 
sur le nuage des points représentatifs «pu à l’instant, / occupent 
l’élément dr., Au cours du temps, ces points vont se déplacer et. 
à un instant postérieur t', il y aura encore un élément de volume dr’ 
de l'extension-en-phasc «pii contiendra ces points et ne contiendra 
que ceux-là. Le théorème de Liouville s'exprime par l’égalité dr’=dr. 
L’élément dr pourra avoir une forme tout à fait différente de l’élément dr, 
être par exemple un long ruban replié sur lui-môme alors que dr était 
un petit cube : les volumes des deux éléments seront néanmoins égaux. 
On peut démontrer le théorème de Liouville en remarquant que le 
mouvement du nuage de points représentatifs dans l’extension-en-phaso 
est comparable au mouvement des molécules «l’un fluide dans un espace 
à 2 N dimensions : le théorème signifie donc qu’un môme nombre 
de molécules de ce fluide occupe toujours le môme volume au cours 
du mouvement , c’est-à-dire que le fluide se comporte comme un fluide 
incompressible. Or, la condition d’incompressibilité d’un fluide est q«ie

6l
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la divergence de sa vitesse soit nulle, et cette condition reste valable 
pour un fluide à 2N dimensions où la vitesse a 2N composantes. Pour 
notre fluide fictif dans l’extension-en-phase, les 2N composantes 
de vitesses d’une molécule sont-évidemment

<lq 1 dr/y dp, dpy
dt ' ’ dt ’ dt ’ dt

et le théorème sera démontré si l’on peut établir cpie

N

Or ceci résulte immédiatement des équations de Hamillon.
Le théorème de Liouville montre qu'une répartition uniforme 

de points représentatifs dans i’exlension-en-phase reste indéfiniment 
uniforme. Il est évident que ce résultat nous incite à prendre l'élément 
d’extension-en-phase comme mesure de la probabilité a priori pour 
que notre système se trouve avoir son point représentatif dans 
l’élément, Jt .

Il y a cependant quelques remarques à faire à ce sujet. Tout d'abord, 
il arrive très souvent qu’un système mécanique admette des intégrales 
premières, c’est-à-dire évolue de façon qu’une certaine fonction des <p 
et des p, reste constante : un exemple très usuel est celui d’un svstème 
isolé dont l’énergie H(ry„ pi) reste constante. Le point représentatif 
du système est alors assujetti à se déplacer sur une multiplicité à moins 
de 2N dimensions de l’extension-en-phase (par exemple sur une 
multiplicité à 2 N—1 dimensions dans le cas d’une seule intégrale 
première). Pour un système isolé n’ayant que l'énergie connue intégrale 
première uniforme, le point représentatif se déplacera sur l’hyper- 
surface H = E ou, plus exactement, comme la valeur de l'énergie n’est 
jamais connue qu’avec une certaine incertitude JE. il est contenu 
dans une couche de l’exlension-en-phase limitée par les hypersurfaces 
II E et H = E + JE : ce sont les éléments de volume Jr de celte 
couche qui doivent servir à l’évaluation des probabilités.

Pour achever de justifier le rôle attribué à l’élément d’extension- 
en-phase, les créateurs de la Mécanique statistique avaient admis 
le postulat suivant :

Quand un système admet comme seule intégrale première 
uniforme l'énergie et qu'il part d'an état d'énergie comprise entre E 
et E -I- JE. on peut admettre qu'au bout d'un temps suffisamment
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long son point représentatif a balayé <!'une /(trou un-iforme toute 
la couche d'extensàm-en-phase comprise entre les multiplicités II = E 
et 11 = K — dV..

(.'csl In " l'hypothèse ergodùpte « qu'on peut énoncer s u iis  une forme 
un peu moins stricte constituant « !'hypothèse quasi ergodique ». 
Il est impossible de justifier rigoureusement ces hypothèses : il y a 
d'ailleurs des eus simples où elles sont manifestement en défaut comme, 
par exemple, le cas d’un mouvement périodique où le point repré 
sentatif reste cantonné sur une multiplicité à une dimension. On peut 
cependant admettre que ces cas exceptionnels ont une prohabilité 
évanouissante, mais néanmoins les hypothèses ergodiques ou quasi 
ergodique» sont très difficiles à justifier dans le cadre des théories 
classiques ; celle difficulté est liée au caractère trop rigoureux du déter 
minisme mécanique dans ces théories et s’atténue dans les théories 
quanlique». Sans nous arrêter ici sur ces difficultés, nous admettrons 
que l’hypothèse ergodique est pratiquement vérifiée; par suite, 
un système admettant uniquement l’énergie comme intégrale première, 
étant parti d’un état d’énergie comprise entre K et E + dE, la proba 
bilité de trouver son point représentatif au bout d’un temps très long 
dans un élément de volume Av de la couche (E, E -|- dV. ) de l’extension- 
en-phase sera prise proportionnelle à 1t .

3. Entropie et probabilité. Relation de Boltzmann. — La grandeur 
la [dus caractéristique et la plus mystérieuse introduite par la Thermo 
dynamique était l’entropie qui a une tendance à toujours augmenter 
dans toutes les transformations physiques spontanées. Le grand succès 
de la Mécanique statistique a été de parvenir à interpréter l’entropie 
de l’état d’un corps comme mesurant le degré de probabilité de cet état. 
Il est facile de pressentir quelle doit être la relation fonctionnelle entre 
l'entropie d’un état et sa probabilité. En effet, si l’on considère deux 
systèmes sans interaction dont les entropies sont Si et S2, l’entropie 
totale du système formé par l’ensemble des deux systèmes est Si S2. 
Or, si P4 est la probabilité de l’état du premier système et P2 celle 
de l’état du second système, l’hypothèse de l’indépendance des deux 
systèmes et le théorème des probabilités composées montrent que ly 
probabilité de l’état global du système (1 + 2) est P4P2. La liaison 
entre l’entropie et la probabilité doit donc être telle qu’elle fasse 
correspondre le produit des probabilités à la somme des entropies 
et l’on est ainsi conduit à poser

S = yHogP.
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C’est la fameuse relation de Boltzmann où k est la << constante 
de Boltzmann » dont nous pourrons plus loin préciser la valeur. Pour P. 
on prendra une quantité proportionnelle au volume d’extension-en- 
phasc correspondant à l’état du système.

En Thermodynamique, on définit la variation de l’entropie d’un corps 
dont l’énergie interne varie de dJL et qui fournit le travail extérieur </© 
par la formule

, „ dQ </E -+- d© 
dbai, = — = -----^------

Nous écrivons ici Slh, car l’entropie thermodynamique définie seulemenl 
pour des états d’équilibre est moins générale que l’entropie S 
de Boltzmann définie pour un état quelconque et n’en est qu’un ca> 
particulier.

Si le corps ne fournit aucun travail dS,h = — et comme l’entropie Stll

est fonction de E et d’autres paramètres (par exemple le Aolume N 
occupé par le corps), on conclut de la relation précédente que l’on peut 
définir la température absolue d’un corps par la relation

i _ dSih 
T ~ dE '

Quand deux corps i et 2 sont en contact et peuvent échanger de la 
chaleur, mais pas de travail mécanique macroscopique, l’expérience 
montre que les températures des deux corps tendent à s’égaliser et.

quand l’équilibre thermique est atteint, on a / dSih \_/ dSih \
\ dE /, \ dE /2

Examinons maintenant cette question de l’équilibre thermique 
du point de vue de la Mécanique statistique. Le système 1+2 est 
supposé isolé : il a donc une énergie constante E. Cette énergie 
est répartie entre les corps 1 et 2 et l’on a E1-l-E2=E. Les deux corps 
étant supposés sans interaction, la probabilité de l’état de (T-5-ai. 
où le premier corps a l’énergie Et et le second l’énergie E2 est

P = P,(Ei).P2(E — E|).

L’étal le plus probable du système global est donné par le maximum 
de P défini par la condition

~ier
ùlogP, ùlogP.

à E, d Ei

ou encore, comme r/E2 —— c/Et_,

dlogP,
ÙE,

ùlogP2
dE,
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Eu multipliant par k et un introduisant, la relation du Boltzmann, 
il v.ipnl

,)St __ dSj
àEt ~ dEt ’
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et celle équation exprime l'égalité des températures au moment 
de l’équilibre.

Ces considérations nous permettent, de préciser nos idées en disant 
que l’entropie S„, définie par la Thermodynamique classique correspond 
à la probabilité Pm de l’état le plus probable. On a donc

Su, = XrlogP,,,, dlogP,,, i 
dK " X T ’

Pm étant l’état de probabilité maximum du corps considéré pour 
l’énergie E. La Thermodynamique statistique va donc plus loin que la 
Thermodynamique ancienne, car elle permet de définir la probabilité 
d’un état quelconque d’un système et, par suite, son entropie grâce 
à la relation générale de Boltzmann alors que la Thermodynamique 
classique ne définissait que les entropies des états de probabilité 
maximum qui d’ailleurs, en raison du grand nombre de variablés 
intervenant dans la spécification des états macroscopiques, sont en 
général énormément plus probables que tous les autres.

4. La loi de répartition canonique de Gibbs. — Considérons toujours 
le système formé par la réunion de deux corps i et 2. Nous supposerons 
maintenant, cpie le corps 2 est un très grand réservoir de chaleur, 
c’est-à-dire d’énergie moléculaire, un « thermostat », de telle façon 
que le corps 1 n’ait qu'une chance tout à fait négligeable de lui prendre 
une fraction appréciable de son énergie. En d’autres termes, si E!" 
est l’énergie du corps 2 quand il est dans l’état d’équilibre le plus 
probable avec le corps 1, on peut admettre que pour fous les états 
possibles du corps 2, les énergies correspondantes sont telles 
que E._, — E"* est énormément plus petit que E™. Nous supposerons 
toujours que 1 et 2 peuvent échanger de la chaleur, mais que leurs états 
sont indépendants. La probabilité de l’état du corps 2 étant P2, on peut 
écrire

log P, = Iog Pt," 4- (E2 - E!j‘) 4-....

Les termes non écrits sont d’ordre supérieur au premier en IL — E!"
L. DG BROGI.1B. 5
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et l’hypothèse faite permet de les négliger. Si T est la température 
absolue du thermostat , on aura

logPo = IogP!!‘+ ^(E,— E'»"),

d’où
K.-Kj"

P, = P'» e <T

Mais si E"1 désigne l’énergie du corps i quand il est dans son état 
le plus probable d’équilibre avec le thermostat, on a

E-, — E'.!1 = E'," — E,

d’après la conservation de l’énergie. La probabilité de l’état global 
où le thermostat a l’énergie Ko et le corps i l’énergie E, est donc

KP-Ki
P = P1(E1).Po(E.) = P,(E,) P'“ e

La probabilité pour que le corps i en contact avec le thermostat 
ait l'énergie E/ est donc de la forme

T i:,

P = P,(E,)e « ,

où Pi(E,-) représente la probabilité de l’énergie E, envisagée a priori. 
c’est-à-dire sans imposer au corps i aucune liaison avec un thermostat. 
La constante W peut se déterminer en écrivant qüe la somme des proba 
bilités de toutes les valeurs possibles de E,- est l’unité

n~-Kf
2P'(E*)e /,T = >

i
OU

e «=2P|(E')e W=-Z-

La somme Z s'appelle la « somme d'états » (Planck).
Les énergies E,- du système i peuvent d’ailleurs former une suite 

continue ou une suite discontinue (états quantifiés). Les formules 
précédentes sont valables dans les deux cas à condition de remplacer 
le signe i par une intégration dans le cas continu.

Nous allons démontrer que, si le corps i est un corps très complexe 
défini par un nombre énorme de paramètres, la quantité W est son 
potentiel thermodynamique E — TS au sens classique. En effet, dans 
ce cas, le corps i dont l’état macroscopique est défini par la tempé-



rnliire T du thermostat et par d'autres variables (par exemple son 
volume Y) possède une entropie thermodynamique Slh(T, . . . ) 
et une énergie interne E(T, . ..) qui, nous l’avons vu, correspond 
à l’état le plus probable du système i. De plus, le système i étant 
supposé défini par un très grand nombre de paramètres, on peut 
montrer, comme nous l’avons déjà signalé, que son état le plus 
probable est infiniment plus probable que tous les autres. Dès lors, 
dans la somme d’état Z il suffit de conserver le terme se rapportant 
à l’état le plus probable et d’écrire

P, ( E"‘ ) e « = e
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et comme d’après la relation de Boltzmann,

il vient

d’où

S,„(E?) = AlogP.(Er),

Sih K["
ek e = e *‘T,

il-= E'/* — TSti,(E7) = E — TS;

'F est donc bien en ce cas le potentiel thermodynamique.
Pour le cas d’un corps 1 défini par un petit nombre de paramètres, 

la loi de distribution canonique de Gibbs est toujours valable, mais *F 
n’a plus le sens d’un potentiel thermodynamique.

Considérons par exemple une molécule dans un gaz ; elle peut être 
considérée comme en contact avec un thermostat formé par le reste 
du gaz et l’on pourra lui appliquer la loi de distribution canonique. 
Or la probabilité a priori pour que les coordonnées et les moments 
de Lagrange de cette molécule aient des valeurs comprises dans les 
intervalles (x, x + dx), . . ., (/>-, p- + dpz) est, d’après le théorème 
de Liouville, proportionnelle à l’élément d’extension-en-phase dxdydz 
dpædpydp:. La probabilité de l’état d’énergie E de la molécule dans

E_
le gaz s’obtient donc en multipliant cette expression par e *T et le 
nombre des molécules ayant une énergie correspondant à l’intervalle 
d])xdpydpz et contenues dans le volume dxdydz est

dn = Ce dx dy dz dpc dpv dpz = C ni'1 e kT dx dy dz dv xdv ydv z.

La valeur de la constante s’obtient en écrivant 

au nombre total N des molécules du gaz.

queJ'du est égal
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Nous avons ainsi obtenu la célèbre formule de distribution des énergies 
moléculaires duc à Maxwell. Supposons que les molécules ne soient 
soumises à aucun champ; on a

E = - m(v\4- rf. 4- e| ) = £—■

Comme

dpxdpy dp- = ir-p^-dp = ir.(im)'1 \/ŸLdE,

on obtient pour le nombre de molécules par unité de volume ayant 
une énergie comprise entre E et E -+- dE

_ E
dn — G e *T y/Ë rfE.

Si le gaz est placé dans un champ de force, il faut tenir compte 
de l’énergie potentielle dans l’expression de E. Par exemple, le gaz 
étant placé dans le champ de la pesanteur

et en intégrant sur dpxdpydp:. l’expression de dn, on voit que la densité
mgz

du gaz diminue avec l’altitude z comme e *T , ce qui conduit à la loi 
barométrique de Laplacc.

La formule de Boltzmann permet aussi d’étudier les lluctuations 
statistiques de l’état d’un corps autour de son état le plus probable. 
Nous ne pouvons développer ici cette élude malgré son très grand 
intérêt.

o. Application au cas d’un gaz parfait. — Pour donner un exemple 
concret des considérations générales précédentes, nous envisagerons 
le cas simple et classique du « gaz parfait » formé de molécules 
(ju’on assimile à des points matériels et qui ne réagissent entre elles 
qu’au moment de leur choc. En cherchant la répartition la plus 
probable des énergies entre les molécules, nous allons retrouver 
par une méthode nouvelle la loi de répartition de Maxwell.

Pour développer ce calcul, considérons un élément dr d’extension- 
en-phasc dxdydz dpxdpYdp- de la molécule. A cet élément correspond 
un certain nombre d’états possibles pour la molécule qui, d’après
le théorème de Liouville et nos 
forme dxdydzdpxdpydp

hypothèses 

ov'i a est une constante.

énérales, est de la

Autrement dit,
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nous admettons que tout se passe comme si l’extension-en-phase devait 
être divisée en cellules de grandeur «, chacune de ces cellules contenant 
un point représentatif et un seul correspondant à un état possible 
de la molécule : c’est là un point de vue dont nous verrons plus tard 
l'importance dans la Mécanique statistique quantique. En Mécanique 
statistique classique, ce point de vue paraît un peu artificiel car tout 
point de l’extension-en-phase représente un état possible a priori 
et alors a doit être pris infiniment petit; mais nous pouvons toujours 
raisonner comme si a était fini et le faire tendre vers zéro dans 
le résultat final.

Considérons alors un certain état du gaz. Soit n; le nombre 
des molécules qui, dans cet état du gaz, ont des énergies comprises 
entre E, et E,-t-AE,-. L’énergie totale du gaz E est^«,E,, la somme

i
.représentant d’ailleurs ici une intégrale; E est une constante si nous 
supposons le gaz isolé, c’est-à-dire contenu dans un récipient à parois 
fixes et adiathermanes. Soit.gv le nombre des états possibles a priori 
de la molécule considérée correspondant à l’intervalle (E,-, E,+ AE,); 
il est égal au quotient par a de la couche d’extension-en-phasc corres 
pondant à cet intervalle d’énergie, soit à

_ V-4*pf A/>,

La probabilité de l’état considéré du gaz est proportionnelle au nombre 
de manières de répartir les N molécules du gaz entre les divers inter-

valles d'énergie, soit à ——‘-j-j---- ; elle est aussi proportionnelle

au nombre de manières égal à (gi)"'‘, de répartir les molécules 
de chaque intervalle entre les g; états correspondants. On a donc

P = const N ! TT(V.4K/)f 
ay 11 n,\

Les AE,- sont des infiniment petits physiques suffisamment petits 
pour qu’on puisse remplacer les sommes par des intégrales, mais 
suffisamment grands pour qu’on puisse supposer que les /i, sont grands. 
Dès lors, une formule classique, la formule de Stirling, nous apprend 
que nous pouvons avec une bonne approximation remplacer logn, ! 
par n,-(logn,-—i ). Il vient alors

logP =2«/[log£7— lognj-+- i]-+- const.
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Cherchons à déterminer l’état le plus probable du gaz <laus 
les conditions qui lui sont imposées, étal, qu'envisage toujours 
la Thermodynamique classique. Pour le déterminer nous devons écrire1 
que P ou logP est maximum, l’énergie totale du gaz et le nombre total 
de ses molécules avant des valeurs données E et N. Nous écrirons donc

o = 8I#gP =2p/i,-(loglçi— logn,-t-1) — Sn/j =^o«,(log^( — log/i,)
i

avec les conditions

SN et
t

Pour tenir compte de ces conditions, nous emploierons la méthode 
des multiplicateurs de Lagrange et, en introduisant deux multi 
plicateurs a et (3, nous écrirons que l’on doit avoir pour une variation 
quelconque des ô/t,

3 logP — a S N — pS E = «j[ logé'f— log«;— x — [SE*] = o,

ce qui conduit à annuler les crochets et donne

nt = gt e X,'P1-.

On retrouve donc la loi de Maxwell si J3 = ; nous verrons ci-dessous

qu’il en est bien ainsi.
Portant l’expression trouvée pour les n; dans celle de logP, on trouve 

à une constante près

logP„1=^rci^log?' -f-1 J =^n,[« -t- pE/-+-1] = (a •+- i)N -+- PE,
i i

d’où, d’après la relation de Boltzmann.

Su, = k logP/,i = AN(a -t- i ) -+- kp E,

où a est par sa définition môme indépendant de E. Pour calculer [3, 
supposons pour un instant que notre gaz soit contenu dans un récipient 
à parois fixes, mais diathermanes c’est-à-dire qu’il puisse échanger 
de la chaleur (mais non du travail) avec le milieu extérieur : un tel 
échange de chaleur fera varier E de ôE, les autres paramètres fixant 
l’état du gaz (paramètres dont a dépend aussi) restant fixes et l’on aura

SS = Ap SE H- AE op -i- A N Sx,
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mais la condition ÔN = o nous donne

^►^£7 e *—PE< (— Ô2 — K(Sj3)' ou N ox + K S [3 = o,

d’où
oS = A 3 oK

et puisque ^ = ~ j on trouve bien, comme nous l’avions annoncé,
1 1 1 oh

e = FT

La constante a se calcule en écrivant^»,- = N, ce qui donne aisément

- 4,ïjT.-=a»iî^ii
i

= l°g[X(2;:„iATr].

En portant cette valeur de a ainsi que (5 = dans l’expression 

tic S,h, on trouve
E r Ve ATSu. = T -f-A:Nlogj^^(2-2nX:T)^J,

d’où pour le potentiel thermodynamique

>r = E —TSu. = —A-NT log[^^(2^wATÿ2j •

Une formule classique en thermodynamique donne alors pour 
la pression du gaz

/àV\ ANT ir Ilvirr
P=~~\dv) T=~ °u />V = ANT-

(/est la loi de Mariolte-Gay-Lussae. Appliquons celte formule 
à une molécule-gramme du gaz pour laquelle N est égal au nombre 
d’Avogadro DZ, nous obtenons

A = K
M'

La constante k de Boltzmann est donc égale à la constante des 
gaz rapportée à la molécule. Numériquement, dans le sy stème C. G. S. 
avec l’échelle des températures absolues
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Calculons maintenant l’énergie totale E du gaz en fonction de T. 
Nous trouvons

V'' V r“ P*- —E ni = e~a — J j-—e s,“*14 izp-dp
l °‘

V i 3 3
= e-*-- (î-mlT)! - AT = N - AT,a v ' 2 2

résultat important qui nous apprend que l’énergie moyenne par 
E 3molécule est égale à - AT. Il vient alors N ° 2

Sth = AN( i -t-.pe) -+- ApE = AN -i- ^ = AN logV -+- ^ AN IogT -t- const., 

d’où pour une molécule-gramme

Su, = R logV -y- ^ R IogT ■+■ consl.

Or, pour un gaz parfait, on démontre dans tous les Traités de 
Thermodynamique que

Sth = R logV + c IogT -t- const.,

où c est la chaleur spécifique à volume constant telle que E = cT. Pour
3notre gaz parfait à molécules ponctuelles, nous avons c= - R, ce qui 

montre l’identité des deux dernières expressions de S,h.
Notons que nos formules nous donneraient une valeur précise de la 

constante de l’entropie si nous connaissions la valeur de a. Les théories 
quantiques qui posent a = h:i permettront donc de calculer cette 
constante comme la théorie de la Relativité permet de calculer la cons 
tante de l’énergie. Mais en théorie classique, on doit faire tendre a 
vers zéro dans les résultats, et ceci donne une constante infinie négative 
dans l’expression de l’entropie. Au point de vue classique, on peut 
essayer de se débarrasser de celle difficulté en disant qu’après tout, 
l’entropie thermodynamique n’étant définie qu’à une constante près, il 
importe peu. que cette constante soit infinie, mais c’est là évidemment 
une bien mauvaise échappatoire.

6. Théorème de l’équipartition de l’énergie. — Dans l’expression de 
l’énergie d’une molécule ponctuelle, les moments de Lagrange figurent

par leurs carrés, car E = +/Jy +pi)- Dans l’expression de

l’énergie potentielle d’un point matériel rappelé vers une position 
d’équilibre (prise comme origine des coordonnées) par une force
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proportionnelle à l'élongation, les coordonnées figurent par leurs carrés, 
car

E = — p--+- K (*! + j!+ s2).
•xml -i

Daine façon générale, nous dirons qu’une variable canonique y, oupt 
est un « momentoïde » si elle figure par son carré dans l’expression 
hamiltonienne de l’énergie du système. L’exemple le plus simple d’un 
momentoïde est un moment de Lagrange en coordonnées cartésiennes 
dans le cas d’un corpuscule libre : de là le nom même de momentoïde.

Le théorème de l’équipartition s’énonce alors ainsi :

« Si l'une des variables canoniques d'un système est un momentoïde, 
quand le système se trouve en équilibre thermique à la température 
absolue T, le terme correspondant à ce momentoïde dans Vexpression

de l'énergie a pour valeur moyenne ^ A T. »

Ainsi l’énergie se répartit uniformément en moyenne entre tous les 
momentoïdes, d’où le nom du théorème.

Démontrons le théorème en supposant que la variable q/, soit un 
momentoïde. Alors l’énergie du système est de la forme

E = ■■■, qt-1, qk+u ■ • -, tfx, pu • • •> pu),

où a est une constante. La valeur moyenne du terme <xq-k dans l’équi 
libre thermique est

Cj-"j*gle *T 

*'4

e kldqt...dpy

*T dq 1 .. . dpy

d’où, en simplifiant et en posant x =

f

a?* =
J zqk e kr dqk x’-e * dx

L
+ .

*T dqk

= *T-

e L ’

AT
1 C. Q. F. D.

Naturellement, on démontrerait de môme que la valeur moyenne de 

l’énergie pour un momentoïde du type pk est également i/rT.
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7. Applications du théorème de l’équipartition de l’énergie. — Con 
sidérons d’abord une molécule ponctuelle dans un gaz. Son énergie

est ^ + />r+ p\) et, comme les trois p, sont des momentoïdes,

l’énergie moyenne de la molécule en équilibre thermique avec le gaz à 
la température T est j^AT, résultat déjà trouvé. Il en résulte pour 

l’énergie d’une molécule-gramme la valeur

-StkT = - HT.2 2

La chaleur spécifique moléculaire à volume constant d’un gaz mono- 
atomique parfait est donc ^R et comme d’après un résultat bien

connu de la Thermodynamique classique CV1—cM=R, il vient

5 p Cm • 5Cm = - R, 7 =-—- = •-= 1,66, 2 c m ci

résultat bien vérifié en général pour un gaz monoatomique.
Soit maintenant une molécule biatomique ayant la forme d’une haltère. 

La position de la molécule est déterminée par les coordonnées x, y, z 
de son centre de gravité et par les deux angles 0 et 9 qui fixent l’orien 
tation de l’axe de l’haltère par rapport à un trièdre fixe. Si l’on 
suppose fixe le moment d’inertie de l’haltère par rapport, à son axe, 
l’énergie de l’haltère est de la forme

(pl -+-/Ç -<-pl)-+- "ly -+- bp\,

pu et py étant les moments de Lagrange par rapport aux axes 0 et cp. Nous 
avons donc ici cinq momentoïdes et l’énergie moyenne de la molécule à 

5la température T est -AT. On a donc ici

C M = R Cm = 7 R, 
2

Cm _ 7 _
c m 5

valeurs usuellement vérifiées pour les gaz biatoiniques.
Pour des molécules plus compliquées, on aura en général n momen 

toïdes avec n > 5 et l’on prévoit les valeurs suivantes :

CM = R, Cm = R,
n -h 2 

n
2
n

Pour des molécules de plus en plus compliquées, y doit tendre vers 
un, résultat qui se vérifie en gros.
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Pour prendre un autre exemple, considérons un corps solide et 
admettons que dans ce corps solide les atomes puissent osciller autour 
de leur position d’équilibre et soient rappelés vers elle par une force 
proportionnelle à l’élongation, Comme nous l’avons déjà vu, il y a alors 
six momenloïdcs par atome et l'énergie moyenne de l’atome à la tempé 
rature T doit être

6 -1- A:T = 3/cT.
O

La chaleur spécifique atomique à volume constant est alors

= 3It en unités mécaniques = en unités calorifiques ~6 cal.,

car
, 8,3i. 107
6 4,18.io7 à,97-

(Lest la loi de Dulong et Petit d’après laquelle la chaleur spécifique 
atomique à volume constant d’un corps solide est voisine de 6 calories, 
loi très utile aux physiciens et aux chimistes et, en général, bien 
vérifiée dans la pratique.

Le théorème de l’équipartition de l’énergie nous conduit ainsi à 
beaucoup de prévisions exactes, mais il y a des ombres au tableau.
D’abord les valeurs ^R cl^R pour les chaleurs spécifiques des gaz

monoatomiques et biatomiques sont pour ainsi dire, trop bien vérifiées. 
En effet nous les avons prévues en assimilant la molécule monoatomique 
à un point matériel qui ne peut prendre aucune rotation et la molécule 
biatoinique à une haltère qui ne peut tourner autour de son axe de 
figure; ces hypothèses sont physiquement peu vraisemblables et l’on a 
l’impression que certains degrés de liberté restent « ankylosés » et ne 
prennent pas la part d’énergie qui leur reviendrait d’après le théorème 
de l’équipartilion. De plus, aux 1res basses températures, la chaleur
spécifique des gaz biatomiques, approximativement égale à ^R aux 

lempératures usuelles, décroît et tend vers la valeur-R des gaz monoato 

miques. Ici encore, tout se passe comme si aux très basses températures 
les degrés de liberté de rotation des molécules biatomiques s’anky 
losaient progressivement.

Des faits analogues se manifestent pour les corps solides et la loi de 
Dulong et Petit. Cette loi, bien vérifiée pour un grand nombre de corps 
solides aux lempératures usuelles, est complètement en défaut pour des
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corps très durs comme le diamant dont la chaleur spécifique est très infé 
rieure à la valeur prévue par la loi de Dulong et Petit. Il en est d’ailleurs 
de môme pour tous les corps solides à température suffisamment basse.

Il j a là toute une série de faits qui semblent montrer l’insuffisance 
de la Mécanique statistique classique. Elle a été entièrement confirmée 
par l’échec total des méthodes de la Mécanique statistique dans la théorie 
du rayonnement noir. C’est pour interpréter cet échec que Max Planck 
a été amené à introduire en Physique une idée tout à fait inconnue dans 
les anciennes théories : celle de Quantum d’action. C’est ce que nous 
allons voir au prochain Chapitre.

BIBLIOGRAPHIE.

[1] L. Bo l t z ma n n , Leçons sur la théorie des gaz, Gauthier-Villars, Paris, 
1902.

[2] W. Gib b s , Principes élémentaires de Mécanique statistique, Hermann, 
Paris, 1926.

[3] H. A. Lo r e n t z , Les théories statistiques en Thermodynamique, Teubner, 
Leipzig, 1916.

[4] J. H. Je a n s , The dynamical theory of gases, Cambridge University 
press, 1916.

[5] Lé o n Br il l o u in , Les statistiques quantiques, t. I, Presses universitaire 
Paris, ig3o.



CHAPITRE Y.
LA THÉORIE DU RAYONNEMENT NOIR.

1. Généralités sur le problème du Rayonnement noir. — La théorie 
du rayonnement d’équilibre thermique dit « Rayonnement du corps 
noir » ou, par abréviation, « Rayonnement noir », a joué un rôle consi 
dérable dans l’évolution de la Physique théorique, il y a une quarantaine 
d’années. C’est des difficultés que cette théorie a soulevées cju’est sortie 
la Théorie des Quanta dont le rôle dans le -développement de la 
Physique atomique a été décisif. Bien que la répartition spectrale de 
l’énergie dans le Rayonnement'noir ne paraisse plus aujourd’hui que 
comme un cas particulier de l’intervention des quanta dans les phéno 
mènes physiques, l’importance que cette question a présentée dans 
l’histoire de la Science justifie une étude particulière approfondie.

Considérons une enceinte dont les parois sont maintenues à une 
température absolue constante T. Si les parois étaient parfaitement 
réfléchissantes et l’enceinte vide de matière, le rayonnement qui pourrait 
se trouver contenu dans l’enceinte garderait une composition spectrale 
constante, car le caractère linéaire des équations de l’électromagnétisme 
fait qu’il ne peut pas y avoir d’interactions entre les composantes 
spectrales; le rayonnement garderait donc sa distribution initiale 
quelconque et ne tendrait vers aucun état d’équilibre. Il y a là une 
différence importante entre le rayonnement et un gaz matériel, car un 
gaz enfermé dans une enceinte à température T tend de lui-même, par 
suite des chocs entre molécules, à prendre une répartition d’équilibre. 
Mais supposons, au contraire, qu’il y ait dans l’enceinte ou sur ses 
parois une certaine quantité de matière susceptible d’émettre et 
d’absorber des rayonnements de toutes les fréquences, alors la compo 
sition du rayonnement se modifiera et évoluera vers un état d’équilibre 
moyen : cet état d’équilibre sera atteint lorsque les processus d’émission 
et d’absorption pour chaque fréquence se compenseront en moyenne.
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Nous admettrons donc que dans ces conditions le rayonnement atteint 
un état d’équilibre qui correspond à une parfaite isotropie.

Le rayonnement d’équilibre dans une enceinte à la température T 
est alors caractérisé par son isotropie et par la présence d’une certaine 
densité d’énergie par unité de volume, qui ne peut dépendre que de la 
température, soit p(T). Si l’on analyse la répartition de l’énergie 
contenue dans l’unité de volume entre les fréquences, on est amené à 
écrire la décomposition spectrale

P(T)= r%(v, T)dv.

Le problème essentiel de la théorie du Rayonnement noir est en somme 
la détermination de la fonction p(v, T).

On peut introduire une autre grandeur directement reliée à p(v, T).

Fig. i5.

Soit une petite surface plane du plongée dans le rayonnement noir et 
et considérons les rayonnements de fréquences comprises entre v 
et v + dv qui tombent en une unité de temps sur l’une des faces de du 
suivant des directions contenues dans un cône infiniment délié d’ouver 
ture du dont l’axe fait l’angle G avec la normale à du.

Comme le rayonnement est isotrope et que, dans les parties vides de 
l’enceinte, il se propage avec la vitesse c, le flux des radiations consi 
dérées à travers du pendant l’unité de temps sera

p(v, T) ch -t — c du cosO.4 "

Définissons alors une grandeur I(v, T) telle que ce flux puisse aussi 
s’exprimer sous la forme

I ( v, T ) dui d't du cos 0.

En comparant celte expression à la précédente, on obtient 

I(v, T)=^-P(v, T);

I(v, T) est nommée Xintensité spécifique de rayonnement d'équilibre



LA THÉORIE DU RAYONNEMENT NOIR. 79

pour la fréquence v et cette grandeur peut servir aussi bien que p(v, T) 
à caractériser le rayonnement.

Supposons maintenant que la petite surface da soit formée par une 
lame d’une substance matérielle émettante et absorbante. Par seconde 
dans un angle du, cette lame émet une quantité d’énergie que l’on peut 
écrire sous la forme

s(v, T, 0 ) d'i du da cosO.

Elle reçoit une énergie radiante égale à I(v, T ) du dv da cos G et en 
absorbe une fraction «(v, T, 0) qui, en général, dépend de l’orien 
tation 0. L’équilibre thermique exige alors que l’on ait

s(v, T, 0) d'i du da cosO = a(v, T, 0) I(v, T) d'i du da cos0

ou, plus simplement, 

K T) = T, 0)
a(v, T, 0) 4T-= 7=P(v, T);

z est appelé « le pouvoir émissif » de la substance considérée et oc son 
« pouvoir absorbant » pour les valeurs v, T, 0. Leur quotient doit donc 
être indépendant de 0 et entièrement déterminé par la répartition spec^ 
traie du rayonnement d’équilibre à la température T.

En particulier, appliquons ces résultats à un corps « noir », c’est-à- 
dire à un corps qui absorbe intégralement toutes les radiations qui 
tombent sur lui quelle que soit la fréquence. Certains corps réels comme 
le noir de fumée remplissent celle condition dans un domaine spectral 
étendu. On a alors a = t et

£(v, T) = f(v, T)=—?(v, T);
4 -

; est ici indépendant de 0 et égal à l’intensité spécifique I(v, T) pour 
chaque fréquence. Déterminer le rayonnement émis par un corps noir 
à la température T fait donc connaître la composition spectrale du 
rayonnement d’équilibre à cette température. D’où le nom, peu correct, 
de « Rayonnement noir à la température T » donné au rayonnement 
d’équilibre à celte température.

On peut étudier la répartition spectrale du rayonnement d’équilibre en 
mesurant l’émission d’un corps noir. Mais on peut l’étudier aussi en 
analysant la radiation qui s’échappe par une petite ouverture percée dans 
la paroi d’un vaste four maintenu à la température T, car il est évident 
que le flux d’énergie vers l’extérieur à travers cette ouverture ne trouble 
pas sensiblement l’équilibre du rayonnement à l’intérieur du four et
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que, par suite, ce flux renseigne directement sur la densité spectrale du 
rayonnement d’équilibre thermique à la température du four.

La tâche essentielle de la théorie du Rayonnement noir étant d’arriver 
à préciser la forme de la fonction p(y, T), on a commencé par appliquer 
à cette étude les méthodes générales et rigoureuses de la Thermodyna 
mique. Comme nous allons le voir, on est arrivé ainsi à obtenir des 
propriétés très importantes de la fonction p qui sont bien vérifiées par 
l’expérience. Mais, par cette voie, on n’a pas pu déterminer entièrement 
la fonction p(v, T) et, pour y parvenir, d’autres modes de raisonnement 
(jue nous étudierons ensuite ont été nécessaires.

2. Loi de Stefan-Boltzmann. — Un raisonnement purement thermo 
dynamique permet d’abord d’obtenir un résultat important en ce qui 
concerne la quantité

p(T) = f P(v, T)rf*.

Ce résultat est le suivant :

p(T) = «T1 (u = const.).

C’est loi de Stefan-Boltzmann dont nous allons donner la démonstration.
Considérons une enceinte à parois parfaitement réfléchissantes 

maintenue à une température uniforme T ; dans cette enceinte se trouve 
un peu de matière dont la présence assure constamment la réalisation 
de l’équilibre thermodynamique. Le rayonnement est comparable à un 
gaz : il est homogène, il a une température T, il occupe un volume V 
et il exerce une pression uniforme p sur les parois de l’enceinte qu’il 
remplit. Cette pression, c’est la « pression de radiation ».

Calculons la pression exercée par le Rayonnement noir sur les parois 
réfléchissantes de l’enceinte. Nous savons (*) qu’une onde électroma 
gnétique plane de densité d’énergie w transporte dans le sens de sa pro 

pagation une quantité de mouvement égale à — par unité de volume. Soit

alors une onde plane tombant sous l’angle d’incidence 0 sur un élément 
du de surface parfaitement réfléchissante. La quantité de mouvement

apportée par seconde par le rayonnement sur du est ~ c du cosO et sa

composante normale à du est wcos^Q du. D’après le théorème de 
l’impulsion, la force normale subie par du doit être égale à la variation

(') Voir chapitre I.
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de celte composante normale de l’impulsion au moment de la réflexion, 
soit 2ivcos'-0c/cr : la pression qui en résulte sur di est donc égale 
à 2(vcos-0. Maintenant, si da est un élément de la paroi de l’enceinte 
contenant le Rayonnement noir, la densité d’énergie correspondant à 
des angles d’incidence compris entre 0 et 0 + c/0 est

Pour avoir la pression totale, il faut intégrer sur 0 de o à - l’expression 

, 2p(T) i sinO dti cos-0,

ce cpii donne

= |P(T).P = P(T) - cos:l 0

La pression de éadialion est donc égale au tiers de la densité du rayon 
nement noir. L’énergie totale du rayonnement est évidemment p(T) V 
et l’on a pour la différentielle de son entropie

dS = dE -+■ p dV ï(p 3P
l'jdV

_ v dp b P
T dT dT 3 T dV’

Pour que ceci soit une différentielle exacte, il faut que l’on ail

à_
dV

/X - J- (4 î.\
\T c/T / dT \ 3 T /

dp _ , P 
dT 3 4 T ‘

On trouve, par intégration, en supposant p(o) = o

P(T) = «T‘,

ce qui est la loi de Stefan.
L’étude du Rayonnement du corps noir confirme l’exactitude de 

la loi et montre que l’on a numériquement en unités C. G. S. avec 
l’échelle absolue des températures

a — 7,64. io—15.

3. Loi du déplacement de Wien. •— La loi de Stefan ne nous donne* 
qu’un renseignement global sur l’intégrale de p(v, T). La Thermodyna 
mique permet cependant, par un raisonnement plus compliqué, d’aller

L. DK BROOLIE.
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plus loin cl d'obtenir un résultat précis sur la forme de oiv, T). 11 est 
exprimé par la loi du déplacement de Wien

où F est une fonction que le raisonnement thermodynamique nepermel 
pas de déterminer.

Le raisonnement thermodynamique qui conduit à la loi de Wien est 
assez long et nous ne le reproduirons pas en détail. On le trouvera très 
minutieusement exposé dans le livre Wiirmestrahlung, de Planck [1], 
Donnons-en seulement le principe. Considérons une enceinte à parois 
parfaitement réfléchissantes dans laquelle se trouve le rayonnement 
noir de la température T. mais aucune trace de matière pondérable. 
Supposons qu’on fasse mouvoir très lentement une partie de la paroi de 
l'enceinte formant piston. Par suite; de la pression de; radiation, le 
rayonnement accomplit un travail (positif ou négatif) sur cette; paroi 
mobile, mais il n’y a aucun échange1 de chaleur avec l’extérieur : nous 
avems donc affaire à une transformation adiabatique réversible à entropie 
constante. La température du rayonnement varie pendant ce processus, 
mais on peut démontrer eju’à chaque instant le rayonnement a la coinpo- 
sition qui correspond à l’équilibre pour la température instantanée. Ce1 
fait n’est pas évident a priori, car en l’absence: de toute1 matière 
émettante et absorbante nous ne pouvons pas affirmer que l'équilibre 
se1 rétablisse de lui-même, mais c’est là une propriété de la transfor 
mation réversible isentropique considérée car, s’il n'en était plus ainsi, 
ou pourrait constituer un cycle d’étals successifs ramenant exactement 
le système à sein étal primitif au cours duquel l'entropie aurait 
augmenté, résultat inadmissible. Mais alors, puisqu'il n’v a pas élans 
l'enceinte de matière susceptible1 de provoquer par absorption et 
émission une redistribution de l’énergie entre les diverse*s fréejucnces, 
comment peut se réaliser celte redistribution qui est évidemment 
nécessaire au maintien de la répartition d’équilibre au cours du 
processus adiabatique ? Elle s’opère grâce à l'effet Doppler epn se 
produit lors de la réflexion de la radiation sur la partie mobile de la 
paroi. Ce processus d’effet Doppler sur un miroir mobile est facile à 
analyser et l'on déduit de cette étude que la setde loi de répartition 
spectrale p(v, T) qui ne soit pas modifiée par le processus adiabatique 
est précisément la loi de Wien. Mais le résultat obtenu est incomplet 
puisque la fonction F reste inconnue.

On peut d’ailleurs retrouver la loi de Wien par un raisonnement
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très élégant <i«'• par Léon Brillouin en partant de la théorie générale
de l’invariance adiabatique [4].

Les expérimentateurs préfèrent énoncer le résultat de leurs recherches 
en fonction de la longueur d'onde 7 plutôt (pie de la fréquence v, les 
deux grandeurs étant reliées dans le cas du rayonnement par la rela 
tion 7v = r. Comme on a évidemment

• f(v, T) d'i = p(À, T) d'/~,

avec 1 (/À I = -- I (/v !. on a aussiI v!

P(à , T) = ?(v, T)£

et la loi de Wien exprimée dans l’échelle des longueurs d’onde prendra 
la forme

P(à , T)= jJiff(XT),

3* étant une fonction inconnue du produit 7.T. L’élude expérimentale 
du Rayonnement noir permet de déterminer p(À, T) pour une tempéra 
ture T donnée et montre que cette fonction de À présente un maximum 
pour une valeur 7 = 7nî(T) variable avec T. En écrivant que la dérivée 
de pCk, T) par rapport à 7. est nulle pour 7 —- 7m, on obtient

- ^ S(/.T) 4- = o,
t'm m

où est la dérivée de fF par rapport à la variable 7 T. Le produit 7mT 
est donc donné par la relation

C’est donc un nombre indépendant de T et l’on obtient la loi du dépla 
cement du maximum

a ,„T = b (b = const. ).

L’expérience vérifie bien cette loi et donne en unités C. (1. S., avec 
l’échelle des températures absolues,

b = 0,294.

Avec les lois de Stefan et de Wien, on a épuisé tout ce que la Ther 
modynamique classique peut nous apprendre sur la fonction p(v, T). 
Pour achever de préciser la forme de cette fonction, on a tenté de faire 
appel à la Mécanique statistique jointe à la théorie électromagnétique
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de l’émission et de l’absorption du rayonnement. Ces tentatives ont 
abouti à un échec complet et c’est cet échec qui a été le point de départ 
des théories quantiques.

4. La loi de distribution spectràle de Rayleigh-Jeans. — En admet 
tant les conceptions de la Mécanique statistique et de l'électromagné- 
tisme classique, on a pu aisément trouver la forme que devrait avoir la 
fonction p(v, T). Cette forme est la suivante :

P(v ,T)=5£ *T.

C’est la loi de Rayleigh-Jeans que l’on peut obtenir de plusieurs façons.
Un premier mode de raisonnement, qui fut notamment employé 

par Max Planck au début de ses recherches sur ce sujet, part de la 
remarque suivante : l’équilibre thermodynamique doit être indépendant 
des mécanismes qui, dans la matière, assurent l’émission et l’absorption 
du rayonnement à la seule condition que ces mécanismes soient 
conformes aux théories admises pour ces phénomènes, et il est dès lors 
suffisant d’imaginer les mécanismes les plus simples. Nous pouvons 
donc nous contenter, dans le cadre des idées classiques de Lorentz. 
d’imaginer que l’émission et l’absorption des rayonnements par la 
matière ait lieu par l’intermédiaire d’oscillateurs électroniques linéaires, 
c’est-à-dire d’électrons présents dans la matière et susceptibles d’osciller 
le long d’une droite autour d’une position d’équilibre sous l’action 
d’une force proportionnelle à l’élongation. Pour un tel oscillateur, la 
coordonnée x le long de la droite et le moment px conjugué sont des 
momentoïdes : d’après le théorème de l’équipartition de l’énergie, dans 
l’état d’équilibre thermique à la température T, l’énergie moyenne de 
ces oscillateurs doit être égale à AT. Or, la théorie électromagnétique 
montre qu’un oscillateur électronique linéaire dont la fréquence estv.

e-émet par seconde une quantité d’énergie .^ 3 — W ergs si W est son

énergie d’oscillation. Un oscillateur linéaire en équilibre à la tempéra 

ture T émet donc en moyenne par seconde ~ A T ergs,

puisque W = AT. Or, l’oscillateur étant plongé dans le rayonnement 
de la température T, on peut calculer l’énergie qu’il absorbe en

moyenne par seconde à ce rayonnement et l’on trouve p(v, T). Pour 

exprimer l’équilibre thermodynamique, on doit égaler les énergies
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émises et absorbées eu moyenne par seconde et l’on obtient ainsi 
aussitôt la loi de Rayleigh.

Un autre raisonnement dû à Rayleigh et à Jeans conduit au môme 
résultat. Considérons une enceinte vide à parois parfaitement réfléchis 
santes ayant la forme d’un parallélépipède rectangle. Dafis cette enceinte 
peuvent s’établir un certain nombre d’ondes électromagnétiques station 
naires, déterminées par la condition aux limites que sur les parois 
réfléchissantes le champ électrique doit être normal à la paroi. Si les 
dimensions sont grandes par rapport aux longueurs d’onde qui inter 
viennent, on démontre (voir [5], I, p. 32) que le nombre des ondes 
électromagnétiques stationnaires caractérisées par une fréquence, une 
direction de propagation et un état de polarisation rectiligne (on sait 
qu’il y a deux tels états pour chaque fréquence et chaque direction de 
propagation) est pour l’intervalle de fréquence (v, v + dv) égal à

V étant le volume de l’enceinte. Ce résultat démontré pour un parallélé 
pipède rectangle est valable pour des formes beaucoup plus générales 
de l’enceinte (Weyl). Maintenant, Lorentz a démontré que chacune de 
ces ondes stationnaires se comporte au point de vue énergétique comme 
un oscillateur linéaire et, en particulier, doit posséder dans l’équilibre 
thermique à température T une énergie moyenne égale à /. T. Cela 
donne encore

Cette nouvelle démonstration ne fait pas intervenir explicitement le 
mécanisme de l’émission du rayonnement par la matière.

5. Échec de la loi de Rayleigh. — On peut d’abord chercher si la loi 
de Rayleigh est en accord avec les deux lois thermodynamiques de 
Stefan et de Wien. Pour la loi de \Y’ien. la vérification est immédiate, 
car il suffit de poser

Mais pour la loi de Stefan, on trouve une grave difficulté provenant du

fait inacceptable qu'avec la formule de Rayleigh, l'intégrale f o(v. T) (h

est infinie.
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D autres difficultés viennent, de la comparaison avec lies résultats 
expérimentaux.

Dans la période 1890-1900 où l’étude du rayonnement noir était à 
l'ordre du jour, un grand nombre de recherches expérimentales furent 
effectuées sur la forme de la fonction p(v, T). On a tracé les courbes 
« isothermes » donnant p(v, T) en fonction de v pour T constant, et 
aussi les courbes « isochromatiques » donnant p(v, T) en fonction de T 
pour v constant, ce qui permet de construire la surface représen 
tant p(v. T). En comparant les résultats avec la loi de Rayleigh, on a 
reconnu que cette loi se vérifie bien pour les petites valeurs du quo 

tient Ainsi, pour une valeur donnée de T, la valeur exacte de p(v, T) 

est bien donnée par la loi de Rayleigh pour les petites valeurs de v; elle

croit alors comme v-, mais pour v croissant suffisamment elle commence 
par croître moins vite que v-, puis passe par un maximum dont nous 
avons déjà parlé et enfin décroît. La courbe isotherme a donc une forme

« en cloche », ce qui permet à l’intégrale I p(v, T) dv d’être finie

contrairement à ce cpii sc passe si l’on admet la loi de Rayleigh.

Pour les grandes valeurs du quotient ^, la loi de Rayleigh devient

donc tout à fait inexacte et Wien a trouvé, pour représenter cette partie 
de la courbe, la loi empirique .

V

p(v, T) = Av3e T,

analogue par sa forme à la loi de Maxwell. Il ne faut pas confondre cette 
loi empirique de répartition de Wien avec sa loi du déplacement
[iciF(j)=A.->].

Ainsi, les lois classiques de la Mécanique statistique et de l’Électro 
magnétisme. si souvent vérifiées dans d’autres domaines, se sont trouvées
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tout il la il. on échec dans la théorie du rayonnement noir. Henri 
Poincaré a montré que ces lois conduisaient nécessairement à la formule 
inexacte de Rayleigh. Pour trouver la forme exacte de p(v, T), il fallait 
introduire un élément tout à fait étranger aux théories classiques. C'est 
ce qu’a fait Planck en 1900.

G. La loi de répartition spectrale de Planck. — Max Planck a aperçu 
la raison profonde des difficultés rencontrées dans la théorie du 
rayonnement noir : elles proviennent de ce que le théorème classique 
de l’équipartition de l’énergie avantage d'une façon excessive les grandes 
fréquences. En effet, le nombre des ondes stationnaires dans une enceinte 
croissant comme v-, si toutes ces ondes stationnaires prennent en 
moyenne la même énergie /.T, les ondes de haute fréquence prendront 
une énergie infinie et la matière devra céder toute son énergie au 
rayonnement. C’est celle conséquence absurde qui vicie la théorie 
classique du Rayonnement noir.

Pour éviter cette conséquence, il faut imaginer une nouvelle loi de la 
nature qui défavorise les hautes fréquences. Planck l’a fait très heureuse 
ment en introduisant l’hypothèse des Quanta. Selon cette hy pothèse, un 
oscillateur de fréquence v ne peut émettre ou absorber l’énergie radiante 
(pie par quantité finie égale <\ Av, A étant une nouvelle constante 
universelle introduite par l’hypothèse elle-même. Alors, plus un 
oscillateur a une fréquence élevée, plus il exige qu'on lui offre une 
grosse quantité (l’énergie pour pouvoir l’accepter, ce qui. dans la 
répartition d’équilibre de l'énergie, défavorise évidemment les très 
hautes fréquences. Si l'énergie moyenne A ï à la température considérée 
est très grande par rapport au quantum Av d'une certaine catégorie 
d’oscillateurs, tout se passera comme si le quantum était infiniment 
petit et l’on doit retrouver les lois classiques : c’est pourquoi la loi de

Rayleigh se vérifie pour les petites valeurs du quotient r^* Mais, quand

lé quantum Av est très grand par rapporta l'énergie moyenne AT, les 
oscHlaleurs ne trouvent que rarement l’occasion d’absorber un quantum, 
leur énergie moyenne reste inférieure à celle que prévoit le théorème 
classique de l’équipartilion et l’on doit s’écarter de la théorie classique : 
c’est pourquoi la loi de Rayleigh ne se vérifie plus pour les grandes

valeurs du quotient ^ •

L’hypothèse des Quanta explique également les échecs de la Mécanique 
statisticpie classique dans le domaine des chaleurs spécifiques : si à une
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tempéra turc T certains degrés de liberté correspondent à un quantum 
très grand par rapport à l’énergie moyenne A T, ces degrés de liberté 
n’entreront pratiquement pas en jeu dans l’équipartition et ils sembleront 
être « ankylosés » : les chaleurs spécifiques prévues par le théorème 
classique de l’équipartition seront alors plus grandes que les chaleurs 
spécifiques réelles. Nous avons vu qu’il en est bien ainsi pour les 
chaleurs spécifiques des gaz à basse température et pour celles des corps 
solides très durs (diamant), même à la température ordinaire.

L’hypothèse des Quanta présente donc a priori'l’avantage d’expliquer 
qualitativement plusieurs faits impossibles à interpréter avec les idées 
classiques. Nous allons montrer avec Planck qu’elle fournit aussi une 
forme satisfaisante de p(v, T) : la formule de Planck. C’est de plusieurs 
façons différentes que Planck est parvenu à démontrer sa formule 
{voir [1] et [2]). Nous ne donnerons que l’une de ces démonstrations, 
celle qui correspond à la seconde démonstration de la loi de Rayleigh.

Nous avons dit que les ondes électromagnétiques stationnaires existant 
dans une enceinte'sont assimilables pour ht calcul des répartitions de 
l’énergie à des oscillateurs linéaires. Donc, d’après l’hypothèse des 
quanta, une telle onde stationnaire fie fréquence v peut avoir une 
énergie égale à nhn, n étant un nombre entier, résultat (pie l’hypothèse 
des pilotons rendra plus intuitif. La loi de distribution canonique de 
( iibbs-Boltzmann reste ici applicable, car on peut la démontrer sans 
supposer que les variations d’énergie soient continues. La probabilité 
pour que, dans l’état d’équilibre thermique à température T, une onde 
stationnaire de fréquence v, assimilable à un oscillateur linéaire de 
même fréquence, ait une énergie égale à n/rj est donc proportionnelle

7 ift V

à e *T et l’énergie moyenne d’une telle onde stationnaire sera

nh'l

expression qui se réduit bien à /,T pour les petites valeurs de ■ En 

multipliant par le nombre dn., des ondes stationnaires de l’inleiT
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vallc (v, v + dv) donné par la formule de Jeans, 
formule de Planck

P(v, T) =
8^/tv:1

C'3
I

h V

e*T_ i

on obtient aisément la

C’est la célèbre loi de répartition spectrale de Plane h qui est bien 
vérifiée par l’expérience.

Il est évident qu’elle est en accord avec la loi de répartition de Wien. 
Elle satisfait aussi à la loi de Stefan, car on a

8 T.h

avec
_ 8 ~ a * r’ 
~ c 'ih i

v:l d'j C
O

1

fl'/ J.
ek T — i

x3dx 8r.*P
ev — i 15 c3 h‘

x'dx

Lorsque que /tv est petit, la loi de Planck se confond avec la loi de
AV hv

Rayleigh parce qu’alors e*T- &T Au contraire, pour les grandes

fx I ' 'valeurs de on peut remplacer -----par e *T et l’on a la loi empi-
e* T — i

rique de Wien

P(T) =
8 - h vn

Écrite en longueurs d’onde, la loi de Planck prend la forme

8 r.hc i
p('-> T) = yj, pC> T) = llr

e>-*T— 1

Pour déterminer la longueur ).,n cpii correspond au maximum, il faut, 
nous l’avons vu, résoudre l’équation

T£F' (T ) = 53* (

et l’on a ici & (/.T) 

lion transcendante

const. r, hc , ,,,-• En posant x = -r-,—=, > on trouve 1 equa-
A A ni i-lie

e~x - —i = o 5
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Des deux équations obtenues qui donnent, a et h, nous pouvons, en 
introduisant les valeurs expérimentales a = -j, 64 . nr1 et A = 0,29^, 
tirer les valeurs des constantes k et h en unités 0. (î. S. avec l’échelle 
des températures absolues. On trouve ainsi

k= 1.37. io—1,!, /( = 10—27 erg. s.

Pour la constante de Boltzmann k, on retrouve la valeur déjà connue 
par ailleurs (voir chap. précédent), mais on obtient du même coup la 
valeur de la nouvelle constante A, la laineuse « constante de Planck ». 
11 est remarquable que cette valeur de A, obtenue par Planck. dès ses 
premières études de 1900, ait été sensiblement confirmée par toutes les 
méthodes très nombreuses et très diverses qui ont depuis lors permis 
de mesurer cette constante fondamentale de la Nature.

L'hypothèse des quanta de Planck a été au début, accueillie avec un 
certain scepticisme. Elle entraînait, en effet, des conséquences très 
graves. Par exemple, si l'émission de la lumière par quanta pouvait à 
la rigueur se concilier avec la structure continue qu’on attribuait à la 
lumière depuis Fresnel, l’absorption par quanta semblait nécessiter un 
retour vers une conception corpusculaire de la lumière analogue à celle 
de Newton, ce qui soulevait d’énormes difficultés pour l’interprétation 
des interférences. Effrayé par les conséquences de ses propres idées, 
Planck a essayé de conserver l’émission par quanta sans postuler 
l’absorption par quanta. Sa théorie (connue naguère sous le nom de 
deuxième version de la théorie des Quanta) était ingénieuse et a eu une 
certaine vogue vers 1910. Mais elle créait une dissymétrie inacceptable 
entre l’émission et l’absorption des radiations et elle a été condamnée 
par le développement ultérieur des théories. Il a fallu en revenir, 
notamment avec la théorie de l’atome de Bolir, à la première version de 
la théoi’ic des Quanta, version plus radicale qui admet à la fois l’émis 
sion et l’absorption par quanta et qui nous a obligé à réviser les idées 
classiques sur la structure continue du rayonnement. 7 * * *

7. La théorie quantique des chaleurs spécifiques (Einstein, Debye). —
Confirmée par la découverte de la loi exacte du rayonnement noir,
l'hypothèse des Quanta a assez rapidement conduit à améliorer la théorie
des chaleurs spécifiques. Nous avons déjà dit pourquoi il devait en
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j , qt)f>. On a donc

T = h =
hc

\ . <)(>5 A
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(Hiv ainsi. .Nous allons exposer rapidement la théorie (un peu simpliste) 
des chaleurs spécifiques des solides développée par Einstein vers 1910. 
théorie qui montre bien l’origine quantique des écarts par rapport à la 
loi de Dulong et Petit.

D’après la loi de Dulong et Petit justifiée par la Mécanique statistique 
classique, la chaleur spécifique atomique d’un corps solide homogène 
doit être voisine de 6 calories. Or. tous les corps à température très basse 
et certains corps solides (notamment des corps très durs comme le dia 
mant), dès la température ordinaire se refusent à suivre cette loi et ont 
mu' chaleur spécifique atomique très inférieure à la valeur prévue. 
'Nous avons expliqué pourquoi l’hypothèse des Quanta devait pouvoir 
interpréter cet échec de la Mécanique statistique classique. Faisons avec 
Einstein l’hypothèse un peu schématique que les atomes d'un corps 
solide homogène soient liés à leur position d’équilibre par des forces 
proportionnelles aux élongations, de sorte qu'ils soient tous susceptibles 
de vibrer autour de cette position d’équilibre avec une même fréquence v. 
Celte hypothèse, assurément insuffisante, nous montrera cependant le 
sens des phénomènes. Chaque atome a dans l'étal d’équilibre thermique 
à la température T une énergie moyenne

parce que l'atome a trois degrés de liberté. L’énergie d’un atome 
gramme du corps solide est

33t/iv 
lvv= — (31 — nombre d’Avogadro).

La chaleur spécifique atomique à volume constant se calcule-aussitôt

/iv

Si le quantum Av est très inférieur à A T, on relouve rA — .»R. c est-à- 
dire la loi de Dulong et Petit, comme on devait s’y attendre.

Si le quantum //v est grand devant AT, 011 trouve
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(*x ,>!>l donc alors très inférieur à 3R et lend \ers zéro quanti T lend vers 
zéro. On s’explique ainsi qu’à très basse température les corps solides 
nient une chaleur spécifique plus faible que ne le voudrait la loi du Dulong 
et Petit. De plus, pour les corps solides très durs, les atomes doivent 
être liés à leur position d’équilibre par des forces très énergiques et, par 
suite, v doit être élevé. On conçoit alors que, pour ces corps, le
quotient ^ puisse être grand même aux températures usuelles et que

la chaleur spécifique à ces températures soit déjà inférieure à 3R.
La théorie précédente est très schématique. Un peu améliorée par 

b. A. Lindcmann, elle a surtout été développée par les travaux de 
Debye et ceux de Born et Karman cpii ont considéré, non plus une 
seule fréquence v, mais l’ensemble des fréquences des ondes élastiques 
susceptibles de se propager dans un corps solide cristallisé. On obtient 
ainsi une théorie plus satisfaisante et plus susceptible d’être comparée 
à la réalité. Nous ne l’étudierons pas ici, la théorie primitive d’Einstein 
suffisant pour donner une première idée des applications de la théorie 
des Quanta à l’interprétation des chaleurs spécifiques.
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CHAPITRE VI.
I.A STRUCTURE CORPUSCULAIRE DE LA LUMIÈRE. 

LES PHOTONS.

i. Aperçu historique sur les théories de la Lumière. — L’histoire 
dos théories do la Lumière est l’une dos branches les plus curieuses de 
l’histoire dos Sciences. Deux grandes conceptions de la Lumière, la 
conception corpusculaire et la conception ondulatoire, se sont disputées 
la préférence des savants, et cette rivalité a abouti à l’heure actuelle à 
une synthèse d'un type très nouveau, faisant appel à des conceptions 
très originales dont il est essentiel de bien comprendre lit nature si l’on 
veut s’initier aux théories quantiques contemporaines.

Les philosophes de l’Antiquité semblent avoir penché vers une 
conception corpusculaire de la lumière : Lucrèce, dans son poème 
De Natura rerum, imaginait (pie les corps projettent dans l’espace à 
des vitesses « inimaginables » des sortes de pellicules ultralégères ou 
« simulacres » qui se détacheraient de leur surface et reproduiraient les 
détails de celle-ci, de sorte que ces pellicules recueillies par notre œil 
pourraient y reconstituer l’aspect des corps qui les a émises. C’était là 
une théorie ingénieuse, mais sans hase physique réelle. 11 en fut de 
même pour toutes les conceptions de la lumière développées jusqu’au 
xviic siècle, époque où commence, avec les recherches de Descarles, 
de Snell et de Fermât, l’élude scientifique de la lumière. Descartes 
parait avoir été plutôt favorable à l’hypothèse corpusculaire, mais les 
textes qu’il a laissés sur ce sujet sont obscurs et ont été diversement 
interprétés. Puis, tandis que le Danois Roemer mesure pour la première 
fois en 1676 la vitesse finie de la lumière, un esprit très vigoureux, le 
Hollandais Christian Huyghens, entreprend des travaux théoriques sur 
la lumière qui sont restés justement célèbres et développe des méthodes 
qui subsistent encore dans notre enseignement actuel. Huyghens émet 
pour la première fois, sous une forme scientifique, la conception
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ondulatoire de la lumière. 11 montre qu'avec elle, on peut, interpréter 
les lois de la réflexion et de la réfraction connues'depuis les travaux de 
Snell et de Descartes, ainsi que le phénomène, alors récemment 
découvert par Bartholin, de la double réfraction du spath d’Islande, 
mais il ne peut donner aucune explication précise du phénomène 
fondamental de la propagation rectiligne de la lumière si facile à 
comprendre avec l’hypothèse corpusculaire. L’œuvre de Huyghens était 
très en avance sur son temps et fut vite oubliée grâce surtout à 
l’influence de son contemporain Newton qui jouissait dans le monde 
savant d’une immense réputation, par suite de ses découvertes en 
Mathématiques, en Mécanique et en Astronomie. Newton a fait de 
belles recherches expérimentales en Optique : tout en se défendant 
de faire des hypothèses, il a toujours plutôt soutenu l’hypothèse 
corpusculaire. Néanmoins, comme il avait découvert le phénomène 
d’interférences qui porte son nom (anneaux de Newton), il avait senti 
la nécessité de compléter son point de vue corpusculaire en faisant 
intervenir des éléments périodiques : selon lui, les corpuscules de 
lumière passeraient alternativement par des accès de facile réflexion et 
des accès de facile transmission, ces accès étant sans doute dus à 
l’influence de perturbations périodiques qui accompagneraient - le 
corpuscule lors de son passage à travers les milieux matériels. Newton 
obtenait ainsi une interprétation des anneaux qu’il avait découverts et 
il définissait «même une « longueur d’accès » qui est étroitement 
apparentée à la longueur d’onde . des théories ondulatoires. Cette 
tentative un peu bâtarde n’a pas été très fructueuse : elle est cependant 
très curieuse au point de vue de l’histoire des Sciences, car elle est une 
sorte de pressentiment de la Mécanique ondulatoire.

Après Newton, pendant le xvmc siècle, on adopta généralement 
l’hypothèse corpusculaire : quelques savants, tels que Euler, se 
prononcèrent cependant d’une façon un peu platonique en faveur de 
l’hypothèse inverse. Au début du siècle dernier, il y eut un changement 
complet. Le savant anglais Thomas Young découvre les phénomènes 
d’interférences. Augustin Eresnel les étudie ensuite ainsi que les 
phénomènes de diffraction et montre que seule la conception ondu 
latoire les interprète réellement : il lève la grosse objection qu’on 
pouvait faire à cette hy pothèse en montrant qu’elle peut aussi expliquer 
la propagation rectiligne do la lumière. D’abord combattu par de 
grandes autorités scientifiques de son temps, Eresnel finit par 
imposer ses vues (1816-1820). Peu après, il interprète les phénomènes 
de double réfraction et ceux de polarisation (étudiés à cette époque par
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Malus. Ara go cl: Kresnel lui-même ), en introduisant l livpolhèse de la 
transversalité des vibra lions lumineuses et complèle ainsi son œuvre 
admirable. Après sa morl ('1837'), l'hypothèse ondulatoire triomphe de 
tous ses antagonistes. Vers i85o, Fizeau et Foucault mesurent avec 
précision la \ilesse de propagation de la lumière dans le vide et dans 
divers milieux matériels : ils montrent notamment (pie la vitesse de la 
lumière dans beau, où l’indice de réfraction n est supérieur à 1, est plus

petite que dans le vide conformément à la formule \ = de la théorie

ondulatoire et en contradiction avec la formule \ — «o fournie par la 
théorie corpusculaire de \ewton.

Knsuile vint Maxwell qui'a donné de la théorie ondulatoire de 
l'Yesnel l'interprétation électromagnétique que nous avons étudiée au 
chapitre 1.

Arrêtons ic i ceI aperçu historique. Fendant tonte la lin du siècle 
dernier, les physiciens ont accumulé un nombre énorme de vérifications 
extrêmement précises des théories de l’Optique ondulatoire. Après cette 
longue et minutieuse mise à l’épreuve de l’Optique ondulatoire, il 
paraissait inconcevable qu’on puisse être amené à remettre en question 
sa validité. C’est cependant l'inconcevable1 qui s’est réalisé après la 
découverte de l'effet photoélectrique.

2. L'effet photoélectrique. —- Une plaque de métal irradiée par de la 
lumière de courte longueur d’onde émet de l’électricité négative : tel est 
l’elfet photoélectrique observé par Hertz eu 1887. L’élude de ce 
phénomène a d’abord montré que celte émission d’électricité négative 
avait lieu sous la forme de projections d’électrons pour lesquels on a pu

retrouver la valeur du rapport ^ de la charge à la masse connue par 

ailleurs.
Or. le phénomène photoélectrique obéit à des lois qui paraissaient 

déconcertantes parce que rien ne pouvait les faire prévoir. La fréquence 
de la radiation incidente v joue un rôle essentiel et tout à fait inattendu. 
Pour que le phénomène apparaisse, il faut d'abord que celle fréquence 
dépasse une certaine valeur dépendant du corps irradié et dite 
« fréquence seuil ». Lorsque la fréquence est supérieure à la fréquence 
seuil, les électrons expulsés par l’action de la lumière (photoélectrons) 
sortent de la matière avec une énergie cinétique d’autant plus grande 
que la fréquence dépasse davantage la fréquence seuil. T.a loi est
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linéaire, (le sorte que si v désigne la fréquence, v« la fréquence seuil el 'I' 
l’énergie cinétique des plioloélcclrons, on a

T = A-(v — v0).

Ce qui est extraordinaire dans celte loi si simple, c’est que la 
fréquence, et la fréquence seule, y intervienne1, l’intensité n’y jouant 
aucun rôle : toutes les conceptions classiques auraient fait prévoir le 
contraire. C’est seulement le nombre des plioloélcclrons éjectés par 
seconde qui croît proportionnellement à l’intensité : tout se passe, 
remarque fort importante, comme si les processus photoélectriques 
élémentaires dépendaient uniquement de la fréquence el aucunement 
de l’intensité, celle-ci n’intervenant que dans la détermination de la 
probabilité des processus élémentaires. Il est impossible d'imaginer 
un processus conforme aux idées classiques sur la constitution de la 
lumière qui conduise à un résultat semblable, d’autant plus que l’émis 
sion photoélectrique commence dès que la substance est éclairée, cir 
constance qui écarte l’idée (l’un(‘ accumulation progressive d’énergie 
puisée peu à peu par la matière dans mu* onde lumineuse où l’énergie 
serait uniformément répartie.

Réfléchissant à ce problème difficile, M. Einstein a proposé en iyoà 
de le résoudre en reprenant sous une forme nouvelle la vieille 
conception corpusculaire de la lumière. Il imagine que dans une onde 
lumineuse de fréquence v l'énergie, au lieu d élie répartie uniformément 
comme le veulent les théories ondulatoires classiques, est pelotonnée 
sous forme de grains d'énergie de valeur //v, l’intensité de l’onde 
lumineuse étant proportionnelle au nombre de ces grains par unité de 
volume ou, si l’on préfère, à la probabilité de trouver un de ces grains 
dans une unité de volume. Celle conception est suggérée par les idées 
de Planck sur les quanta qui, on le sait, introduisent une proportion 
nalité entre l’énergie el lit fréquence, la constante de proportionnalité 
étant la constante h. Si l’on admet l’existence de ces quanta d’énergie 
ou « photons » dans tout rayonnement monochromatique, les lois 
essentielles de l'effet photoélectrique en découlent immédiatement. 
En effet, si ce est l’énergie qu’un électron doit dépenser pour sortir du 
métal irradié, l’absorption par cet électron d’un quantum d'énergie h'J 

du rayonnement incident pourra provoquer sa sortie hors du métal avec 
l'énergie cinétique hv — iv. Pour que l’expulsion photoélectrique puisse 
se produire, il faut donc que la fréquence v soit supérieure à la

fréquence v(, = ” qui est la fréquence seuil décelée par l'expérience.

96
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De plus, si v est supérieure à v0, l’énergie cinétique (lu pliotoélectron 
sera

T = Av — (v = h('i — vo).

C’est la relation d’Einstein pour l'effet photoélectrique, relation qui 
montre que la constante k de la loi empiricjue doit être égale à la 
constante h de Planck : ce fait a été bien vérifié d’abord pour la 
lumière, puis pour les radiations X et y.

En ce qui concerne la lumière, l’étude quantitative la plus précise de 
l’effet photoélectrique est due à Millikan (1916). 11 éclairait une surface 
propre de lithium ou de sodium avec les radiations monochromatiques 
d’un arc au mercure. L’énergie cinétique des photoéleclrons était 
mesurée en déterminant la différence de potentiel minimum nécessaire 
pour les empêcher d’atteindre une électrode auxiliaire. 11 fallait 
d’ailleurs tenir compte de la différence de potentiel de contact entre le 
métal éclairé et l’électrode auxiliaire, laquelle* dépend de l’état des 
surfaces, etc. Quand on tient compte de ces corrections, on obtient 
pour représenter T en fonction de v des droites dont le coefficient 
angulaire donne bien pour la constante de Planck une valeur voisine de 
celle que l’on connaît par ailleurs.

La vérification de la relation photoélectrique d’Einstein est donc 
lionne dans le domaine de la lumière, mais elle y est rendue délicate 
par le fait que les In/ sont petits, que les ir sont de l’ordre des /tv et 
dépendent de circonstances difficiles à contrôler exactement comme 
l’état de propreté des surfaces métalliques, etc. La vérification de la loi 
d’Einstein est beaucoup plus facile et plus nette dans le domaine des 
hautes fréquences (rayons X et y). Tout d’abord, ici, les quanta hv sont 
très grands : ensuite, les photoélectrons expulsés sont, pour la plupart, 
des électrons arrachés à la structure profonde des atomes irradiés et 
non des électrons libres dans le métal et, par suite, le travail de 
sortie ce est pour eux sensiblement égal au travail d’arrachement de 
l’électron hors de l’atome, travail devant lequel le travail de sortie hors 
du métal est négligeable (i V devant 5o ooo Y, par exemple). D’ailleurs, 
le travail nécessaire pour arracher les diverses catégories d’électrons 
hors des atomes est fourni avec une grande précision par la spectro- 
graphie des rayons X. Il est donc facile de vérifier la loi d’Einstein. 
C’est ce qui a été fait pour les rayons X par Maurice de Broglie en 192 1 
et ensuite pour les rayons y par Ellis et Jean Thibaud.

On s’est servi pour cela d’un « spectrographe magnétique » 
présentant la disposition suivante {fig- 17) :

L. DE BROGLIE. 7
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La radiation incidente- tombe à fç>“ sur un film d’un corps choisi 
comme radiateur photoélectrique, Les électrons qui s’en échappent 
pénètrent dans une chambre bien évacuée où règne un champ magné 
tique uniforme; Il normal au plan de la figure qui impose aux électrons 
une trajectoire circulaire, puis ils viennent frapper une plaque photo 
graphique; en y proeluisant une impression. On constate alors sur la 
plaque photographique l’enregistrement de raies dont chacune corres 
pond à l'impact el’un Ilot d’électrons. La position de ces raies sur la 
plaque permet de mesurer le rayon du cercle; décrit par les électrons élu 
Ilot corresponelant et d’en déduire par le calcul l’énergie cinétique de; 
ces électrons. Pour chaque radiation incidente monochromatique de 
fréquence v, on elécèle ainsi l’existence de flots d’électrons corres 
ponelant aux énergies cinétiques

h v — ee,. ..., Av — ev/, ...,

plaque
photographique

Fig. 17.

où les ce,- sont les travaux de sortie- hors eh- l'atome des diverses 
catégories d’électrons inlra-alomiques pour le corps choisi comme- 
radiateur photoélectrique. La vérification ainsi obtenue pour la relation 
d'Einstein est excellente et très précise-.

Il est très intéressant ele noter que, pour les rayons \ durs e-t les 
rayons y, les quanta Av et. par suite-, les énergies cinétiques des plioto- 
éleelrous sont grands, de; sorte que la vitesse ele ces photoélectrons 
devient de l'orelre de la vitesse de la lumière. Pour obtenir une bonne 
concordance avec les résultats ele l'expérience, il est alors nécessaire-, 
on le constate, d’e-mplov e-r pour calculer l'énergie cinétique des 
électrons à partir du rayon du cercle epi'ils décrivent dans le champ 
maguj-liepie-, non pas les formules ele la Mécanique classiepie, mais 
celles ele la Mécanique relativiste avec variation ele la masse avec la 
vitesse. O11 obtient ainsi, en passant, une v érification remarquable de la 
l)\namiepie relativiste.

radiation
incidente
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3. L’hypothèse des photons et ses succès. — L'hypothèse d'Einstein 
revient à supposer qu’au moins dans certaines circonslances la lumière 
se comporte comme si elle était formée de particules qu'on nomme 
aujourd'hui « photons ». Le photon lié à une onde plane monochro 
matique de fréquence v est déiini par la relation

W = Av.

Cela suffit déjà à prouver que la théorie des Photons ne constitue pas une 
théorie corpusculaire • de la Lumière ayant un caractère autonome, 
puisque dans cette formule fondamentale figure la fréquence v à laquelle 
seule une théorie introduisant une idée de périodicité peut donner un 
sens. Il faudra donc chercher à faire une synthèse do la théorie 
ondulatoire qui permet de définir v et de cette nouvelle théorie 
corpusculaire.

Einstein a montré, notamment par des considérai ions sur l'équilibre 
entre les atomes matériels et le rayonnement dans une enceinte à 
température uniforme, que les pholons devaient posséder une quantité 
de mouvement égale à

/(V A
P = Tn= Xn’

où H est un vecteur unité porté dans le sens de la propagation.
Cette formule peut s’obtenir aussi à partir des formules de la 

Dynamique relativiste dont l’application au photon est évidemment 
nécessaire. Pour un corpuscule de masse propre p0, ces formules 
donnent en elfet

W =
\j i — Jj 2 P =

PoV
-, ■■ ;--i 
\J i — /S2

Supposons que nous envisageons des, corpuscules de masses 
propres p0 de plus en plus petites en faisant en même temps croître la 
vitesse de façon que \\ garde une valeur constante. A la limite 
pour p0-s>- o et e -> c, nous obtiendrons

W Wp ~ — c = — n.r c- c

Donc, si l'on admet que AV =;Av. on trouve bien pour l'impulsion du 
photon la formule d’Einslein. Le photon nous apparaît ainsi comme 
une particule de masse propre évanouissante se déplaçant sensiblement 
avec la vitesse c ou, si l’on croit devoir passer à la limite, comme une
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particule «le masse propre mille se déplaçant exactement avec la 
vitesse c.

Nous avons vu comment la vérification de la loi photoélectrique 
d’Einstein apportait une confirmation de la relation W — hn. Nous 
allons parler maintenant d'autres confirmations. L’une d’elles est la loi 
qui donne la limite du spectre continu des rayons X. Dans un tube à 
rayons X, l'anticathode est frappée par un flux d’électrons qui ont été 
accélérés par une même chute de potentiel V et ont tous une môme 
énergie cinétique T = e\. L'anticathode émet alors un spectre de raies 
de rayons X dont la théorie relève, de la théorie de l’atome et un spectre 
continu où sont représentées toutes les fréquences justpià une 
fréquence maximum v„t à laquelle correspond une longueur d’onde

minimum lm= --> comme l’indique la figure 18.
^ m

L’expérience prouve que l’on a (loi de Duanc et Hunl)

T e\ 
s>m~~ h ~ h'

Cette loi s’interprète immédiatement en admettant que, lors du 
ralentissement d’un électron dans la matière de l’anticathode, les 
rayons X sont émis par pilotons. Si, en effet, quand l’électron perd une 
fraction AT de son énergie cinétique, il y a émission d’un photon de

fré«|uence AT 
h ’ la fréquence maxima présente dans le spectre

continu sera émise dans le cas où un électron péril d’un seul coup la 
totalité de son énergie cinétique et cette fréquence aura pour

valeur vm= ^ > ce qui est bien la loi de Duane-IIunt.

La relation W = hv a été aussi confirmée par le succès de la « loi «les 
fréquences » de Bohr. Dans sa théorie de l’atome que nous étudierons 
dans le prochain chapitre, AL Bohr a admis que les atomes et autres 
édifices matériels de l’échelle atomique ne peuvent avoir que certains 
états énergétiques stables, lies étals stationnaires ou états quantifiés,
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dont la détermination doit se faire suivant certaines règles de quanti 
fication où intervient la constante A. Soient W*, . W,, ... les
énergies des états quantifiés d’un système atomique. M. Bohr a admis 
que le système quantifié peut passer brusquement de l’état d’énergie W, 
à un état quantifié d’énergie moindre W*-<W, avec émission d’une 
radiation de fréquence

W,—W*
Vl'*=—k—

Ceci se comprend immédiatement si l’on admet que l’énergie perdue 
par le svstèmc matériel est émise vers l’extérieur sous la forme d’un 
photon. De môme, si le système se trouve initialement dans l’état 
quantifié d’énergie W* et s’il est irradié par un rayonnement ayant la 
fréquence v,-*, il peut absorber un photon d’énergie Av,-* et passer ainsi 
dans l’état d’énergie supérieure W,-. On voit donc bien la liaison étroite 
qui existe entre la loi des fréquences de Bohr et l’idée de photon.

L’effet Raman apporte une autre vérification indirecte de la théorie 
des Photons. En 1928, le physicien hindou Yenkata Raman, en éclairant 
des substances telles que le benzène par une radiation monochromatique 
de fréquence v du spectre visible, a montré que la lumière diffusée 
contient, en plus de la fréquence v elle-môme, des fréquences de la 
forme v—v,7,, où les v,-* sont des fréquences infrarouges figurant dans le 
spectre des molécules du corps diffuseur. On est ensuite arrivé à 
montrer que la radiation diffusée contenait, mais avec des iniensités 
beaucoup plus faibles, des fréquences de la forme v + v,-*.

Tout ceci est facile à expliquer avec les idées quanliques et l’hypo 
thèse du photon.

Soient encore W, et WK Wi l’énergie de deux états quantifiés de 
la molécule du corps diffuseur : cette molécule peut donc émettre ou

absorber des photons de fréquence v,-* =—----- > et la fréquence v,-*

figure dans son spectre d’émission (infrarouge). Supposons maintenant 
que cette substance soit irradiée par de la lumière visible de fréquence v, 
c’est-à-dire reçoive des photons d’énergie Av. Une molécule se trouvant 
dans l’état d’énergie W, pourra alors, au moment de la diffusion, céder 
l’énergie W,—W/.•= Av,* au photon en passantdans l’état d’énergie W* 
et le photon diffusé dont l’énergie sera A(v-+-v,-*) correspondra à la 
fréquence v + v,*. De même, si la molécule diffusante se trouve 
initialement dans l’état d’énergie W*, elle pourra emprunter au photon 
l’énergie Av,* pour passer dans l’état d’énergie supérieure W,- et le 
photon diffusé n’aura plus que la fréquence v — v,*. Maintenant, dans la
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substance diffusante, il y a normalement beaucoup plus de molécules 
dans l'état d’énergie inférieure W* que dans l’état d'énergie supé 
rieure W,, comme cela se déduit de la loi de Gibbs-Boltzmann

en e kr. D'où une intensité beaucoup plus forte pour la raie diffusée dé 
fréquence v — v,* que pour la raie diffusée de fréquence v+v,/,. Cette 
conclusion est d’ailleurs en accord avec la loi générale dite « règle de 
Stokes », d'après laquelle dans les phénomènes d'interaction entre 
matière et lumière il y a une tendance à l'abaissement des 
fréquences.

Toutes les particularités de l'effet Raman se trouvent ainsi expliquées 
par l’interprétation quantique. On peut aussi donner une interprétation 
classique de ce phénomène, mais cette interprétation est incomplète et, 
en particulier, elle conduit à attribuer à la raie de fréquence v + v,y, une 
intensité plus grande qu'à la raie de fréquence v — v,*, contrairement à 
l'expérience.

4. L’effet Compton. — Nous venons de résumer quelques preuves à 
l’appui de la relation W = /tv. Nous allons maintenant voir que l’effet 
Compton a permis non seulement de la vérifier une fois de plus, mais

aussi de vérifier la relation « = — •1 c
L’effet découvert en 1928 par le physicien américain H. A. Compton 

est un phénomène de diffusion de radiation. Il est néanmoins très 
différent de l’effet Raman. L'effet Raman se produit pour la lumière; 
le changement de fréquence correspondant dépend de la nature du 
diffuseur et est indépendant de l’azimut de la diffusion. L’effet 
Compton, au contraire, se produit seulement pour les rayons X et y; 
le changement de fréquence correspondant est indépendant de la nature 
du radiateur, mais il varie avec l'aziinut d’observation.

On obtient une théorie très simple et très satisfaisante de l'effet 
Compton en se plaçant au point de vue de la théorie des photons 
(Compton, Debye). On admet alors que les photons X ou y. en 
traversant la matière, y rencontrent des électrons libres qui sont au 
repos ou sensiblement au repos. Celte rencontre s’accompagne en 
général d’une interaction, d’un « choc », avec échange d'énergie et de 
quantité de mouvement. Après le choc, le photon a perdu une partie de 
son énergie et est diffusé dans une direction généralement différente 
de sa direction initiale, avec une fréquence inférieure à sa fréquence 
initiale; en même temps l’électron, par effet de recul, est projeté avec 
une certaine vitesse.



I.A STRUCTURE CORPUSCULAIRE DE LA LUMIÈRE. OÎ

Sur la ligure ip, on a suppose l’électron initialement, au repos en O

H le pliolon incident possédant la ([liantité de mouvement Après I

clior. l'électron part dans la direction cp avec l’impulsion

h vf,

nia fie 
1 — !52

et le

• La conservation dopliolon dans la direction 0 avec l’impulsion

l'énergie et celle des deux composantes de la quantité de mouvement 
donnent les équations

m0c- h vo
h Va -H m a e2 = hvf, -

V71 - [3S 
hvf, 

c

cos 0 •
nia j  c h v„

' ; COS y = ------!
\/1 — fl2

ma fi c .
sin 0 = —===== sin c.

<J i— ,32'

Fig-

En éliminant entre ces trois relations, d’abord (3 et c;., puis (3 et vo, 
on en tire

(0 v(t =
Vo

■ a(i — cosü)
i + îj  sin2

(2) - COS 0 =
■ tg2 cp(l -+- a )'2

COtgç = (i-t- a) tg-,

avec l'abréviation
Avp 

ma c-

La relation (i) donne la fréquence du photon en fonction de l’angle 0 
de diffusion.

La variation de fréquence croit avec l’angle 0 et avec la fréquence de 
la radiation incidente. La variation correspondante de la longueur 
d’onde est

„. , , . 0 h . 0
o/, = Ao— A0 = 2a Ao sin2 - = a------sin2 - •2 ma c i

Elle présente ceci de remarquable qu’elle est indépendante de la
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longueur d’onde initiale /0. Ces formules sont remarquablement 
vérifiées par l’expérience.

louant à la formule (2), elle donne la relation existant entre l’angle 
de diffusion 0 et l’angle cp de mise en mouvement de l’électron de recul. 
Dans une chambre de Wilson, on observe sur le passage d’un faisceau 
de rayons X une chevelure de courtes trajectoires électroniques : ce 
sont les trajectoires des électrons de recul (fish tracts) et la tangente à 
l’origine de l’une de ces trajectoires donne son angle cp {fig. 20).

L’angle 0 est plus difficile à déterminer parce que le photon X diffusé 
11e laisse pas do trace dans la chambre de Wilson. Heureusement, il 
arrive que sur certains clichés on aperçoive à la fois un fish tract en O 
et une longue trajectoire électronique débutant brusquement en P en

104

dehors du faisceau de rayons X. On en conclut qu’un effet Compton 
s’est produit en O et que le photon a été diffusé dans la direction OP et 
a produit en P un effet photoélectrique. L’angle 0 se trouve ainsi 
déterminé et l’on peut.vérifier la l’elation (2). Cette vérification faite 
par Compton et Simon montre que, dans le phénomène d’interaction 
entre photon et électron, il y a bien conservation de l’énergie et de la 
quantité de mouvement. Cette conclusion, corroborée par des 
expériences de Bothc et Gciger faites à l’aide d’un compteur à pointe, 
a conduit à abandonner l’hypothèse, un instant soutenue par Bohr, 
Slater et Kramers, suivant laquelle la conservation de l’énergie et de la 
quantité de mouvement aurait lieu seulement en moyenne. Il semble 
bien établi que ccttç conservation a lieu pour chaque phénomène 
individuel.

5. Difficultés soulevées par la théorie des Photons. — La théorie des 
« quanta de lumière » d’Einstein, aujourd’hui nommée théorie des 
Photons, a, dès son apparition en 1900, soulevé de graves objections.
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"Non seulement, nous l'avons vu, clin no se suffit pas à elle-même 
puisqu'elle définit l’énergie du plioton à l’aide do la fréquence v qui est 
une notion extraite de la théorie ondulatoire, mais elle ne pouL 
évidemment pas expliquer les vérifications innombrables et extrê 
mement précises de la théorie ondulaloire, notamment dans le domaine 
des interférences el de la diffraction. On peut bien imaginer 
évidemment qu’il y ait dans la lumière une association de corpuscules 
et d’ondes, mais comment préciser cette association ?

Une première idée serait de supposer que le photon est formé par 
l’ensemble d’un train d’ondes. Mais il existe des trains d’ondes 
lumineuses qui sont cohérents cl ont une longueur de plusieurs mètres. 
On ne peut supposer qu’un tel train d’ondes forme un photon, car cela 
reviendrait à dire qu’un photon, particule insécable et bien localisée, 
a une longueur de plusieurs mètres. Lorcntz avait présenté cette 
objection sous une autre forme en remarquant que dans une lunette 
astronomique recevant la lumière très faible venant d’une étoile 
éloignée, il se produit des effets de diffraction que l’on peut prévoir 
très exactement à l’aide de la théorie ondulatoire de la lumière : dans 
cette prévision, on suppose (ce qui est naturel en théorie ondulaloire) 
que l’onde incidente couvre toute la surface de l’objectif de la lunette, 
surface qui peut être de l’ordre du mètre carré dans les grandes 
lunettes. Or, la lumière venant de l’étoile étant très faible, les photons 
doivent arriver un par un sur la lurtette et, pour pouvoir interpréter 
l’existence des phénomènes de diffraction, il semble qu’il faille 
supposer le photon assez large pour couvrir toute la surface de 
l’objectif : le photon aurait alors des dimensions transversales qui 
seraient de l’ordre du mètre, ce qui paraît encore incompatible avec ses 
propriétés d’insécabilité et de localisation.

Ne pouvant assimiler le photon à l’ensemble d’un train d’ondes, on 
pourrait chercher à interpréter les interférences et la diffraction en 
supposant qu’elles proviennent, non d’une propagation ondulatoire, 
mais d’une interaction entre les photons. Les faisceaux lumineux 
usuellement employés dans les laboratoires sont assez intenses pour 
contenir un grand nombre de pilotons : on pourrait tenter (ce ne serait 
pas facile!) d’interpréter les phénomènes d’interférences et de 
diffraction par des interactions entre ces photons. Mais il y -a à cela 
une objection fondamentale. Les phénomènes d’interférence et de 
diffraction devraient, alors dépendre de l'intensité de la lumière et 
disparaître pour une intensité très faible : or il n’en est rien. Nous 
avons déjà remarqué pour la lunette astronomique que, même dans le
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cas des pilotons arrivant un par un d’une étoile éloignée, les phéno 
mènes de diffraction se produisent. Des expériences précises ont été 
faites sur ce point capital par Taylor d’abord, puis par Dempster et 
Batho. ils ont employé des appareils d’interférences éclairés par une 
lumière si faible que les photons devaient en moyenne arriver un par un 
sur l’appareil avec de grands intervalles de temps. En utilisant un 
enregistrement photographique, ils pouvaient, prolonger l’expérience 
pendant des heures, de sorte que finalement l’énergie lumineuse 
recueillie au total par l’appareil devenait notable. Or ils ont trouvé de 
cette façon que les franges d’interférence étaient en lin de compte 
exactement les mômes que si l’on avait opéré avec une lumière intense.

Il faut renoncer à expliquer les interférences par des interactions 
entre photon : il faut revenir à l’interprétation ondulatoire en admettant 
que chaque photon est associé à un train d’ondes, sans qu’on puisse 
cependant lui enlever son caractère ponctuel et l’assimiler à l’ensemble 
étendu du train d’ondes. Pour sortir de cette impasse, il a fallu adopter 
une interprétation d’un type nouveau qui tient compte entièrement du 
double aspect onde-corpuscule de la lumière, interprétation qui a été 
ensuite généralisée par la Mécanique ondulatoire au cas de toutes les 
particules matérielles. Nous allons insister sur cette interprétation qui 
est essentielle pour une bonne compréhension des théories actuelles de 
la Physique quantique.

6. Caractère probabiliste de la synthèse onde-corpuscule. — j\ous 
commencerons par analyser le concept de corpuscule employé par les 
physiciens en discernant deux formes. On peut commencer par 
concevoir le corpuscule comme une unité susceptible de se manifester 
localement par des actions où il intervient tout entier; 011 peut ensuite 
aller plus loin et imaginer le corpuscule décrivant au cours du temps 
une trajectoire dans l’espace avec une vitesse bien déterminée à chaque 
instant.

Le développement de la Physique quanlique conduit à considérer le 
premier point de vue comme beaucoup plus essentiel que le second : 
ce qui caractérise essentiellement le corpuscule, c’est sa faculté de 
manifester sa présence localement comme une unité physique indé 
composable. Quand on envisage l'évolution du corpuscule au cours du 
temps, il est souvent possible de lui attribuer grosso modo une 
trajectoire et une vitesse, mais cette propriété est beaucoup moins 
essentielle que la première et dans beaucoup de cas disparaît complè 
tement : la raison en est que pour déterminer trajectoire et vitesse,

lo6
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il faut à chaque instant repérer le corpuscule et ce repérage nécessite 
île faire entrer lie corpuscule en interaction avec quelque dispositif de 
mesure, ce qui,, dans certains cas, trouble complètement le mouvement 
du dit corpuscule.

Quand nous étudierons les incertitudes d’Heiscnberg, nous verrons, 
en nous appuyant sur l’existence des quanta, qu’il est impossible de 
mesurer simultanément avec une précision absolue la position et la 
vitesse d’un corpuscule, ci* qui exclut toute détermination complète de 
la trajectoire.

D’une façon générale, il faut abandonner l’idée que la conception du 
corpuscule entraîne celle d’une trajectoire et d’une vitesse bien 
déterminées, pour ne retenir que celle d’unité physique insécable 
pouvant se manifester localement en un point. Ainsi, pour le photon, 
dans les phénomènes d’optique géométrique, on peut considérer le 
rayon lumineux comme la trajectoire du photon, mais c’est à condition 
de ne pas vouloir trop bien définir le rayon, car, en étranglant un rayon 
lumineux pour mieux le délimiter, on fait apparaître des phénomènes 
de diffraction et la notion même de rayon disparaît. Dans les champs 
d'interférence, on ne peut plus définir un rayon-trajectoire du photon 
et cependant le photon peut toujours y manifester sa présence par un 
ellét photoélectrique localisé, ce qui montre la supériorité de la 
première définition du corpuscule sur la seconde.

Ne gardant donc plus du corpuscule que l’idée d’unité physique 
insécable eL susceptible de produire un effet localisé, nous pouvons 
alors associer à celte idée celle d’onde grâce à des conceptions qui font 
intervenir les probabilités. Dans une région où se trouve un photon, 
il pourra y avoir une action locale de ce photon et l’onde lumineuse 
représentera les probabilités pour que ce photon se localise ici ou là : 
d’une façon plus précise, la probabilité de localisation du photon en un 
point sera mesurée par l’intensité (carré de l’amplitude) de l’onde 
lumineuse en ce point. L’onde lumineuse nous apparaît alors comme 
une sorte de champ de probabilité dont l’extension provient justement 
du fait que, le photon ne peut pas être localisé à chaque instant en un 
point, mais est susceptible de manifester sa présence par une action 
énergétique ponctuelle dans toute une région étendue de l’espace. Cette 
conception toute nouvelle des rapports entre l’onde (ici l’onde 
lumineuse) et le corpuscule (ici le photon) va prendre toute sa 
généralité dans le cadre de la Mécanique ondulatoire.

Avec cette conception nouvelle, on interprète facilement le résultat 
de l’expérience de Taylor. Chaque photon arrivant sur l'appareil

IOJ
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d'interférences est accompagné d’un train d’ondes lumineuses, champ 
de probabilité représentant ses localisations possibles. Pénétrant dans 
l'appareil, l’onde lumineuse interfère et, la probabilité pour que le 
plioton produise un effet photoélectrique en un point de la plaque 
photographique d’enregistrement est proportionnelle à l’intensité de 
l’onde lumineuse en ce point. La même chose se reproduit à l’arrivée île 
chaque photon. Finalement, au bout d’un temps très long, quand seront 
arrivés dans l’appareil un grand nombre de pilotons, les effets photo 
électriques produits aux différents points de la plaque photographique 
par les photons successifs seront répartis proportionnellement au carré 
de l’amplitude de l’onde lumineuse dans le champ d’interférences. Les 
probabilités relatives des divers phénomènes élémentaires se traduisent 
en fin de compte par une répartition statistique. Ainsi se dessinent sur 
la plaque d’enregistrement les franges claires et les franges obscures 
prévues par la théorie classique de Fresnel, mais les franges claires sont 
tracées point par point par les arrivées successives égrenées dans le 
temps des divers photons et non pas par l’arrivée continue d’une énergie 
radiante continûment répartie. Les apparences finalement observables 
sont donc les mômes que celles que prévoyait la théorie classique, mais 
la façon dont elles sont obtenues est essentiellement différente. Dans le 
phénomène statistique finalement enregistré, l’onde lumineuse apparaît 
en quelque sorte comme étant la réalité physique, alors que cependant 
elle n’est qu’un champ de probabilité pour les manifestations discon 
tinues et localisées des divers photons.

Cette interprétation assez subtile paraît bien être la seule qui 
permette de réunir dans un schéma théorique cohérent l’existence des 
photons et les vérifications des prévisions de la théorie ondulatoire et 
d’expliquer pourquoi on peut obtenir les mêmes phénomènes d’inter 
férences avec une lumière intense et une pose courte ou avec une 
lumière très faible et une très longue pose. Il importe de bien réfléchir 
à ces idées si l’on veut bien comprendre le sens des théories quantiques 
actuelles.
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CHAPITRE Vil  

l a  THÉORIE QUANTIQÜE DE L’ATOME DE BOHR-SOMMERFELD.

1. La formule de Balmer, les termes spectraux et le principe de 
combinaison. — La série de raies spectrales la plus anciennement 
connue dans le spectre de l’hydrogène est la série de Balmer. Elle est 
formée de quatre raies principales, qui sont en réalité de petits 
doublets, dont voici les noms et les longueurs d’onde :

Ha ; 6 563 A, Dp : 4 861 A, : 4 34o A, H3 : 4 102 A.

Il y a 70 ans, Balmer est parvenu à trouver une formule empirique 
(jui donne les fréquences de ces raies. Cette formule est la suivante :

( m = 3, 4, 5, 6),

v„ est la fréquence de IIa, v4 celle de IIp, etc. R est une constante dite 
« constante de Rydberg », très sensiblement égale à 3,29201.io14
en G. G. S.

D’autres séries de raies découvertes postérieurement dans le spectre 
non visible de l’hydrogène suivent des lois analogues. Telles sont 
notamment la série ultraviolette de Lyman et la série infrarouge de 
Paschen dont les fréquences sont respectivement données par

(m = 2, '3, 4, . . . ),

On voit que toutes ces formules rentrent dans le type général

(>) O ^ «).
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l'our la série de Lyman, // = i ; pour la série de lîalmer, n ----- « ; pour la 
séi'ie de l’asehen, n = .1, ele.

De celle constatation, on peut s’élever à une loi générale qui s’est 
înonlrée êlre exacte pour toutes les raies spectrales de tous les corps, 
.('/est le « principe de combinaison de llitz » dont \oiei l’énoncé :

La fréquence de toute raie spectrale est égide à la différence de 
deux termes spectraux caractéristiques du corps considéré.

Ou encore sous une autre forme :

Pour tout corps émetteur, on peut dresser un tableau de nombres, 
dits « termes spectraux », tels que la fréquence de toute raie spectrale 
du corps soit donnée par la différence de deux termes spectraux.

La formule ( i) nous montre alors que pour l'hydrogène, les termes 

spectraux ont. au moins en valeur absolue, la forme —, avec 
n i, !..........

I ne étude expérimentale plus approfondie des raies de la série de 
Balmer a d’ailleurs montré qu’elles sont formées de raies très voisines. 
L’interprétation de celle « structure fine » du spectre de l’hydrogène a 
été, nous le verrons, le but de la théorie de Soinmerfeld. Ajoutons que, 
pour les corps autres que l’hydrogène, il existe toujours des termes

spectraux, mais que leur forme est plus compliquée que la forme

Rydberg et Ritz ont donné, il y a longtemps, des formules empiriques 
pour représenter ces termes spectraux.

d. La théorie de l’atome quantifié de Bohr. — En iyi3, AI. Bohr est 
parvenu à interpréter les termes spectraux de l'hydrogène et il a ainsi 
fondé toute la théorie moderne de l’atome.

A cette époque, à la suite des expériences de Rutherford sur la 
déviation subie par les particules a quand elles traversent la matière, les 
physiciens venaient de se rallier à un modèle planétaire de l’atome. 
Selon cette vue, l’atome d’un corps simple dont le numéro d'ordre dans 
la série de Mendéléeff est Z serait muni d’un noyau central portant la 
charge électrique Ze, où e est la charge élémentaire 4,8. io~i0 u. e. s. 
Autour de ce noyau, graviteraient Z électrons de charge —e, de sorte 
que l'ensemble de l’atome serait électriquement neutre. AI. lîohr a eu 
l’idée de soumettre ce modèle au calcul en lui appliquant les lois de 
<pianta inlioduites avec succès par Plnnck dans l’élude du rayonnement 
noir.



LA THÉORIE QUANTIQUE DE L’ATOME DE BOHR-SOMMERFELD. III

liohr a admis un premier postulat, le postulat, des états stationnaires 
quantifiés, d’après lequel un électron ne peut décrire dans l’alotne 
autour du noyau central que certaines trajectoires déterminées par 
une règle de quantification inspirée des travaux de Planck. A ces 
mouvements quantifiés, seuls stables, de l’éloclron, correspondent pour 
l’atome des « étals stationnaires » durant lesquels, contrairement 
aux prévisions de la théorie électromagnétique classique, aucun 
rayonnement n’est, émis. L’émission des raies .spectrales ne peut donc 
avoir lieu que lors du passage brusque de l’atome d’un état stationnaire 
à un autre état statiofinaire de moindre énergie. Mais quelle sera la 
fréquence de la raie émise pendant un tel passage ?

Pour répondre à cette question, Bolir introduit un deuxième postulat, 
la loi des fréquences, en admettant que l’énergie perdue par l’atome 
au moment de la transition est rayonnée sous la forme d’un seul 
quantum de lumière de valeur hv, c’est-à-dire d’un seul plioton. 
Si donc Ei et Ea désignent les énergies de l’atome dans l’état 
stationnaire initial et dans l’état stationnaire final, la fréquence v12 
('■mise lors de la transition i sera

Celte simple formule explique immédiatement le sens du principe de 
combinaison de Kilz et montre que les termes spectraux d’un atome 
sont égaux aux énergies de ses états stationnaires divisées par la 
constante de Planck.

La réversibilité des processus élémentaires exige d’ailleurs que, si un 
atome se trouvant dans l’état d’énergie E2 est frappé par un rayonnement 
de fréquence v12, il puisse absorber un photon de ce rayonnement pour 
passera l’état d’énergie supérieure E4, ce processus d’absorption étant 
ainsi exactement l’inverse du processus d’émission.

Le problème essentiel qui se posait à Bohr était donc de déterminer 
les énergies des états stationnaires. Pour cela, il a admis dans son 
travail initial que l’électron se comporte comme une charge ponctuelle! 
obéissant aux lois de la Dynamique de Newton, mais il restreint le 
nombre des mouvements possibles. on introduisant les règles «le 
quantiliealion de Planck. A l'époque où Bohr écrivait, la question se 
présentait de la façon suivante. Planck, ayant reconnu que la 
constante h. qui a les dimensions ML2!’-1 d'une Action au sens de la 
Mécanique, constituait une sorte d’unité d'action, avait remplacé son 
énoncé primitif de quantificalion de l’énergie, valable seulement pour
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un oscillateur harmonique (*), par un énoncé de qiiatil ilication de 
l’action qu’il n’avait su d’ailleurs donner que dans le cas d’un 
mouvement périodique à un seul degré de liberté. Pour ce cas, la 
méthode de quantification de Planck était la suivante : p étant le 
moment de Lagrange conjugué de l’unique variable q, on devait écrire

(fipdq = nh (n entier),

l’intégrale étant étendue à un cycle entier du mouvement. C’est cette 
formule que Bohr a tout naturellement cherché à employer pour déter 
miner les états stables quantifiés de l’atome.

Il a envisagé les trajectoires quantifiées de l’unique électron-planète 
do l’atome d’hydrogène (Z = i) autour du noyau (protou) de 
charge + e. Pour n’introduire qu’une seule variable q, il s’est astreint 
à n’envisager que les orbites circulaires de rayon r sur lesquelles la 
position de l’électron est déterminée par une seule variable, l’azimut 0. 
La condition de Planck donne alors

Elle exprime que le moment de la quantité de mouvement de 

l’électron sur l’orbite stable doit être un multiple entier de — ■ D’autre 

part, les lois de la Dynamique classique nous donnent la relation

m r G2 = — ■ •

On trouve aisément pour l’énergie du nlènu! mouvement circula ire quantifié

E„ = - mr2 0- — —2 r - mr2 
2

2 7c2//i e4 

il2 h'1

Donc, si l’on s’en tient aux mouvements circulaires, les termes spectraux 
de l’hydrogène doivent être de la forme

, o N E„ 2 ~2 m e4
' ■> h ~~ n-h:l

D’après la formule (2), les raies de l’hydrogène doivent avoir des 
fréquences données par la relation générale

_ •> r.2 m e4 / j_____i\
h ' \ n’2 /('- / («'- ")■

(') Foi> le début du chapitre suivant.
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Ou retombe sur lu formule empirique ( i ) en posant

K e4
A»

n'I

Or, le calcul de H d’après celle relation donne une valeur sensiblement 
égale à la valeur expérimentale de la constante de Rydberg, ce qui fut 
un grand succès pour les idées de Bolir.

On peut recommencer le même calcul en supposant que l’on a affaire 
à un atome île nombre atomique Z ionisé Z—i fois et comportant, par 
suite, un seul électron tournant autour d’un noyau de charge Zç 
(atome hydrogénoïde). On trouve alors à la place de (3)

E» _ ?.--me'* K
~h ~~ nt/i> ’

c'est-à-dire que les termes spectraux sont multipliés par le carré du 
nombre atomique. Le cas le plus simple est celui de l’hélium pour 
lequel Z = a : les termes spectraux et les fréquences sont alors 
quadruplés. Les nombres expérimentaux indiquent toutefois que la 
constante R n'a pas tout à fait la même valeur pour II et pour Ile1. 
Mais M. Bolir a pu rendre compte brillamment de cette divergence en 
tenant compte de la réaction de l’électron sur le noyau, plus importante 
dans le cas du noyau léger de II cpie dans le cas du noyau quatre fois 
plus lourd de lie.

il. Succès et insuffisances de la théorie de Bohr. — La théorie de 
l'atome de Bohr nous a fait comprendre la véritable structure des 
édifices atomiques et nous a appris que les quanta y jouent un rôle 
essentiel. Les notions d’états stationnaires, de transition brusque d’un 
état stationnaire à un autre, notions si étrangères à la Physique 
classique, se sont dès lors montrées indispensables pour l’interprétation 
des phénomènes atomicjues.

Il est devenu certain que les systèmes atomiques possèdent des 
niveaux discrets d’énergie et que les fréquences des raies spectrales 
s'obtiennent par la relation du quantum à partir des différences entre 
ces niveaux d’énergie. Cette idée a donné la clef de l’interprétation, 
non seulement de tous les spectres optiques, mais-aussi des spectres de 
rayons X. La seule différence entre les deux cas est que dans le cas 
optique l’électron qui subit une transition est un électron périphérique, 
tandis que dans le cas des rayons X, c'est un électron de la structure 
profonde de l’atome. Un électron périphérique (électron optique) peut,

L. DE BROCHE. 8
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par suite d’une, aclion extérieure (choc), être porté vers un niveau 
d’énergie normalement inoccupé : son retour par transition quantique 
vers des niveaux d’énergie plus faible donne alors lieu à l’émission de 
raies spectrales du spectre optique. En ce cpii concerne l’interprétation 
des raies X, on a admis dès le début de la théorie de Bohr, que les 
niveaux internes de l’atome présentaient un phénomène de « saturat ion », 
c’est-à-dire qu’il ne pouvait pas y avoir plus d’un certain nombre 
maximum d’électrons par niveau. Ce principe est extrêmement 
important et nous aurons à y revenir lorsque nous parlerons du 
principe de Pauli : il est lié à la périodicité des propriétés physico- 
chimiques des éléments quand on s’élève dans la série de Mendéléell' 
(Z croissant J. Au fur et à mesure que des électrons s’ajoutent à la 
structure de l’atome, il se constitue successivement, par suite de la 
saturation des niveaux, des couches successives d’électrons et. les 
propriétés des éléments dépendant principalement du nombre des 
électrons sur la couche périphérique, on conçoit que la constitution 
successive des couches provoque une périodicité des propriétés. Ces 
idées développées notamment par Kossel sont aujourd’hui bien connues 
et nous renvoyons à leur sujet aux traités de Physique.

Une conséquence intéressante de la saturation des niveaux dans 
l’atome est l’absence pour les rayons X du phénomène de renversement 
des raies si classique dans l’Optique ordinaire. C’est un principe bien 
connu de l’Optique lumineuse que si un corps est susceptible d’émettre 
une raie, il est aussi capable de l’absorber. Ceci s’explique immé 
diatement avec les idées de Bohr car, les raies optiques étant émises 
lors des transitions électroniques entre niveaux périphériques inoccupés, 
la transition est en principe possible dans les deux sens, de sorte que si 
l’émission d’une raie est possible, l’absorption l’est aussi. Il en est 
différemment pour les raies X : leur émission est provoquée par le fait 
que, dans l’anticathode du tube émetteur, l’arrivée des électrons du 
faisceau cathodique provoque l’arrachement de certains électrons de la 
structure interne de l’atome. Alors il se crée « une place vide » sur un 
niveau normalement occupé : un électron appartenant à un niveau plus 
extérieur peut, par une transition quantique, venir occuper cette place 
vide et cette transition s’accompague de l’émission d’une raie V Ces 
conceptions ont permis d’interpréter tous les détails de la spectro- 
graphie X apportant ainsi à la théorie de Bohr une très remarquable 
confirmation. Mais il est maintenant évident que, si l’on place sur le 
trajet d’un faisceau de rayons X une lame d’un corps capable d’émettre 
une des raies spectrales contenues dans le faisceau, il n’y a pas

Il4
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absorption de la raie. En effet, dans les atomes île la lame interposée, 
tons les niveaux internes sont occupés au maximum et la transition 
d'absorption ne peut pas pour celte raison se produire. On voit sur cet 
exemple que les scliémas tirés de la tliéoric de Bolir ont une grande 
puissance d’explication.

Ils rendent également très bien compte des phénomènes d’excitation 
et d'ionisation des atomes. Si îles1 particules de même énergie 
bombardent un corps, elles pourront, si leur énergie est suffisante, 
faire passer l’atome d'un niveau d’énergie à un niveau d’énergie plus 
élevé, écartant un électron de son niveau normal et provoquant 
un étal d’excitation de l’atome qui sera ainsi mis à même d’émettre 
certaines raies spectrales par retour de l’électron vers un niveau 
d'énergie inférieure. Si l’on bombarde le corps avec un faisceau de 
particules incidentes dont on fait croître progressivement l’énergie, on 
verra apparaître des effets d’excitation du corps chaque fois que l’on 
atteindra l’énergie correspondant à l’une des transitions quantiques 
d'excitation possibles. Si les particules incidentes sont des particules 
électrisées qui ont été accélérées par une différence de potentiel, on 
déterminera ainsi des « potentiels de résonance » correspondant en 
électron-volts à des différences d’énergie entre niveaux de Bohr. 11 
pourra même arriver que les particules incidentes aient assez d’énergie 
pour arracher complètement un des électrons de l’atome bombardé, 
mettant cet atome en état d’ionisation : les potentiels accélérateurs 
correspondants sont des « potentiels d’ionisation » qui mesurent en 
électron-volts les énergies de liaison des divers électrons de l’atome. 
I,'étude des potentiels de résonance et des potentiels d’ionisation par 
choc poursuivie par de nombreux physiciens à apporté une nouvelle 
confirmation des idées de Bohr et en a montré la fécondité.

La théorie de l’atome de Bohr a donc été une révélation pour ceux 
qui étudiaient la structure de l’atome et les phénomènes qui en dérivent. 
Elle restait cependant visiblement insuffisante.

Du point de vue théorique, elle juxtaposait d’une manière très peu 
homogène des images et des calculs empruntés aux théories classiques, 
aux formules de la théorie des Quanta et aux conceptions si nouvelles 
d’états stationnaires et de transition quantique. Comme la théorie de 
Bohr déterminait la trajectoire des électrons à l’aide des équations de la 
Mécanique classique, quitte à restreindre, par l’application de règles 
quantiques, le nombre des trajectoires possibles, on pouvait croire 
qu’elle n’innovait pas d’une façon essentielle, du moins en ce qui 
concernait les principes. Mais à la réflexion, elle apparaissait comme
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tout à fuit révolutionnaire. Bolir lui-méme insistait sur le l'ait que les 
états stationnaires sont en quelque sorte suspendus en dehors du temps 
et que les transitions quantiques ne devaient pas être conçues comme 
des mouvements de transition entre deux états de mouvement stables, 
mais devaient être regardées comme impossibles à décrire dans le cadre 
de l’espace et du temps. Bref, on sentait que la théorie de Bolir avait un 
caractère bâtard et provisoire. C’est le développement des nouvelles 
Mécaniques qui a permis de mieux comprendre sa nature profonde.

En dehors de cette insuffisance, la théorie de Bohr présentait aussi 
une insuffisance pratique puisqu’elle ne permettait le calcul des états 
stationnaires que dans le cas, évidemment trop particulier, des trajec 
toires circulaires. Il en résultait que les calculs de Bohr ne fournissaient 
qu’une première approximation et ne pouvaient rendre compte de la 
complexité des structures fines spectrales. Même dans le cas de 
l’hydrogène, ils ne permettaient pas de rendre compte du fait que les 
raies do la série de Balmer sont en réalité des doublets. Il fallait donc 
chercher à s’affranchir de l’obligation de ne considérer que des 
mouvements à un seul degré de liberté. Nous allons voir maintenani 
comment, dès 1916, on y est parvenu.

4. La théorie de Sommerfeld. — Soit un système à u degrés de liberté 
dont la configuration est définie par n variables de Lagrange qif . . ., qn. 
Si toutes les variables admettent la même période T, c’est-à-dire si à 
des intervalles de temps T elles reprennent toutes la même valeur, le 
système reprend périodiquement la même configuration : le mouvement 
est périodique. Si chaque variable qt est périodique, mais chacune avec 
sa période propre T,- de variation, les périodes T,- étant incom 
mensurables entre elles, le système est « quasi-périodique ». Les 
conditions de quanta n’ont de sens que pour les systèmes périodiques 
ou quasi-périodiques. Pour tous les systèmes de ce genre que l’on a eu 
à quantifier dans l’ancienne théorie des Quanta, il a toujours été 
possible de choisir les variables de façon qu’elles forment un système 
de « variables séparées », c’est-à-dire que chacun des moments de 
Lagrange />, puisse s’exprimer en fonction de la seule coor 
donnée qi correspondante. Les variables étant ainsi choisies, Wilson 
et Sommerfeld ont montré qu’on obtenait des conditions de quanta 
satisfaisantes en posant

(j) Pi dqi = n j h (n,- entier; 1 = 1,2, .... n),

l’intégrale étant prise pour une période entière T/ de la variable <7,.
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En appliquant ces nouvelles conditions de quanta à l’atome d'hydro 
gène de Bohr, on devait pouvoir quantifier les trajectoires elliptiques

képlériennes qui, dans le champ coulombien du noyau en doivent

pouvoir exister pour l’électron-planète et ne plus se borner à la 
considération exclusive des trajectoires circulaires. Il suffisait d'appli 
quer les conditions de quanta de Wilson-Sommerfeld aux deux 
coordonnées r et 9, rayon-vecteur et azimut, qui varient périodiquement 
le long de l’ellipse képlérienne et l’on pouvait espérer obtenir ainsi les 
structures fines observées dans le spectre de l’hydrogène.

Cet espoir fut déçu. Sommerfeld a fait le calcul en introduisant les 
deux nombres quantiques /t4 et n2 correspondant aux deux variables 
<yt 0 et nombres quantiques qui sont des nombres entiers
pouvant varier de o à 00, et il a trouvé pour les énergies des états 
stationnaires l’expression

an2 me1
(«[-(- n-2 )-h‘ A2

en posant n = Il est alors évident que l’on obtient ainsi les
mêmes niveaux d’énergie que dans la théorie primitive de Bohr et que, 
les nombres quantiques et n2 n’intervenant que par leur somme, leur 
introduction 11’a permis aucun progrès pour la prévision des structures 
fines.

C’est alors que Sommerfeld a eu l’idée très ingénieuse de refaire les 
calculs en utilisant, à la place des formules de la Dynamique classique 
celles de la Dynamique relativiste. Il s’est, en effet, aperçu que, poul 
ies trajectoires internes de l’électron dans un atome de Bohr, les vitesses 
devenaient comparables à e, ce qui logiquement conduit à envisager 
l’emploi de la Dynamique relativiste.

La fonction de Lagrange sera ici

£ = — m„ c2 ^ 1 — ’i- — U = — nio c- ^ i — y2 -+- 1 avec =\ ^ r~ r~ 9S

et les moments de Lagrange seront

<)£ m0i- /)£
fr— —p------- /■: • ) pa= —r =  --------- ;ôr y? — ;s« <)% s/i — 'y-

ce qui conduit à écrire pour les conditions de Wilson-Sommerfeld,

Jo S S/i-p
(4)
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L'étude détaillée de la trajectoire, que nous ne ferons pas ici, montre 
que l’électron décrit une ellipse avec rotation lente du périhélie 
(trajectoire en rosette); autrement dit, la trajectoire réelle est à chaque 
instant tangente à une ellipse osculatricc qui tourne lentement dans son 
plan. Le rayon vecteur oscille donc entre deux valeurs extrêmes rt ct/q, 
mais le temps qu’il met à décrire le cycle jq-Wo-* /q (période de la 
variable r) est un peu plus long que le temps mis par l’azimut 0 pour 
augmenter de 2 7: (période de la variable 0), de sorte que le mouvement 
n’est plus strictement périodique, mais seulement quasi-périodique.

Ceci posé, d’après la dynamique, relativiste, l’expression hamil 
tonienne de l’énergie est (M

Le moment de Lagrange po est le moment de la quantité de 
mouvement de l’électron par rapport au noyau : il est constant en vertu 
du théorème des aires qui est encore valable en Dynamique relativiste. 
La première condition (4) donne donc

Portant cette valeur deyt<j dans l’expression de W, on trouve

(') Il suffit, pour obtenir ce résultat, d'effectuer un calcul analogue à celui du 
chapitre III, paragraphe 6, calcul qui consiste à éliminer 0 entre les expressions

I>,

Pilin calculant —• -+- p j., on trouve

ml ( /'--i- /■= 0= )
i —

d’où
/'

ce qui conduit à l'expression indiquée pour VV.
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avec les définitions

1 EîA = — - -t- 2 /?to lit c-

B = E e- m„ e-,

-**=«*-
/i2 h-

E ^ W — muc- étant, la somme de l’énergie potentielle et de l’énergie 
cinétique.

Sommerfeld introduit alors dans son calcul ce qu’il a nommé la 
« constante de structure fine » qui est un nombre sans dimensions

hr.

On peut donc écrire

(J =- h- 1 a2 \
' 4-2 \ ‘ ~~ « ? / ‘

Or, l’application du théorème des résidus permet d'établir que l’on a

-t/r = — 2-7 r-
B

v'A

En égalant le second membre à a-Ji conformément à la seconde 
condition (4) et en remplaçant A, B, C parleurs valeurs. Sommerfekl 
obtient, après un calcul simple, la formule rigoureuse

1

qui donne l’énergie de l’état quantifié de nombres quantiques «1 et /i2.
La quantité a- étant très petite, une première approximation consiste 

à la négliger devant l’unité. On retombe alors sur la formule de la 
théorie non relativiste et l'on ne trouve pas de structure fine. Lue 
approximation meilleure consistera à garder les termes en a- et, en 
posant //1 —J— n2— n, on trouvera alors

E 2n-TOoc'‘ t"
n- h'1 L

( 771 et 772 = O. 1,2,

Le dernier terme du crochet explique l'existence d'une structure fine 
parce qu’il dépend séparément de 7?i et de n2 et non plus seulement de 
leur somme.
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On désigne souvent le nombre rii + /i-, = n sous le nom de « nombre 
quantique total » et l’on nomme « nombre quantique azimutal » le 
nombre k = nt. La donnée des nombres quanliques n et k suffît à 
déterminer un niveau d’énergie puisque le « nombre quantique radial » 
no est égal à n — k. En introduisant la constante deRydberg, on obtient 
pour l'expression de l’énergie du niveau //, k

Dans l’ancienne théorie des Quanta, on admettait que le nombre 
azimutal k ne pouvait jamais prendre la valeur zéro parce qu’elle aurait 
correspondu à une trajectoire rectiligne passant par le noyau. D’après 
la formule obtenue, chaque orbite stationnaire possède une énergie E,,,* 
qui ne dépend plus seulement de «, mais aussi de k; seulement, comme 
y.- est très petit devant l’unité, les divers termes spectraux correspon 
dant à une mémo valeur de n sont très voisins et l’on obtient bien ainsi 
une structure line des raies prévues par la théorie primitive de Bohr.

(iliaque terme spectral de Bohr correspondant à une valeur donnée 
de n se décompose en n termes voisins, car pour « fixé il y a « valeurs 
possibles de k, savoir i, a, ...,«. Il convient île remarquer que l’écar 
tement des termes spectraux voisins est d’autant plus petit que n est plus 
élevé à cause de la présence de ri- au dénominateur du terme en a-’.

Considérons la série de Balmer. En première approximation ses raies 
sont données par

En seconde approximation, on doit d'après Sommerfeld remplacer le 
terme spectral 5 par

H
22 [

1 ] 1\■t le terme spectral — pu

Il y a dans la série de Balmer une structure fine à écartement constant 
provenant du dédoublement À = i, 2 du premier terme spectral fixe et 
une antre structure fine à écartement décroissant quand on s’élève dans 
la série, due. celle-ci, à la complexité du second terme spectral variable.
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Celle deuxième structure fine est pratiquement inobservable parce 
qu’elle est trop fine. La première correspond à une décomposition de 
chaque raie prévue par la formule de Balmcr en un doublet à écarte 
ment constant pour toute la série est égal à

Numériquement, en remplaçant les fréquences par les nombres d'onde, 
qui sont les fréquences réelles divisées par c, on obtient

Av h  = 0,305cm--

Cette valeur est en assez bon accord avec les données de l'expérience. 
On obtient donc une interprétation quantitative de l’existence des dou 
blets dans la série de Balmcr par l’introduction dans la théorie de Bolir 
de la Dvnamique relativiste.

Si l'on reprend les calculs de Sommerfeld en supposant que l'on ail 
a flaire à un atome de nombre atomique Z ionisé (Z—i) fois et ne 
gardant, par suite, qu'un électron périphérique, on trouve pour l'état 
stationnaire caractérisé par les nombres quantiques n et k

K K/°-h r
— L1

Z- / n _ 3 \ 1
«* U 4 / J *

L’écartement des doublets va donc se trouver multiplié par Z'. Pour 
l'hélium ionisé (Z =2), l'écartement des doublets dans la série cpii 
correspond à la série de Balmcr va donc être 16 fois plus grand que 
celui de la série de Balmcr elle-même. On conçoit donc que l’étude des 
doublets dans le spectre de He+ ait pu fournir une vérification précise 
do la théorie de Sommerfeld : cette vérification faite par Paschen a été 
très satisfaisante.

5. Succès et insuffisance de la théorie de Sommerfeld. — La théorie 
de Sommerfeld avait donc donné pour les spectres de H et de He-" des 
résultats qui semblaient excellents. Par des calculs moins rigoureux, 
Sommerfeld a pu aussi en tirer une justification des formules empi 
riques proposées par Rydberg et par Bitz pour représenter les .raies 
spectrales des éléments non hydrogénoïdes.

Lorsque l’on cherche à étendre la théorie de Bolir à des atomes conte 
nant plus d’un électron-planète, on se heurte à de grosses difficultés. Le 
problème dynamique devient compliqué et l’application des règles de 
Quanta devient incertaine. Cependant, l’analogie générale des spectres 
de tous les éléments, l’intervention dans les formules empiriques du
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lypc Rydbcrg do la constante de Rydbcrg conduisait à penser que le 
schéma planétaire si utile dans le cas de l’atome d'hydrogène devait 
pouvoir aussi être utilisé de quelque manière dans le cas des autres 
éléments. Pour le faire, on a commencé par admettre une hypothèse 
assez grossière : dans l’atome de nombre atomique Z, on a considéré 
Z—i des électrons-planètes comme tournant au voisinage'du noyau et 
constituant autour de lui une sorte de « carcasse électronique», tandis 
que le Zlcme électron-planète, dit « électron optique », aurait son orbite à 
l’extérieur de la carcasse électronique. Les transitions de l’électron 
optique d’un état stationnaire à un autre détermineraient l’émission des 
raies du spectre optique de l’élément. Grâce à l’hypothèse de la carcasse 
électronique, on peut admettre que l’acLion du noyau de charge Le sur 
l’électron optique est à une unité près compensée par celle de la carcasse 
électronique, de sorte que l’électron optique se meut à peu près comme 
s’il était soumis au champ d’une charge + e. On est ainsi ramené au 
problème de l’atome d’hydrogène avec un seul nombre quantique n. En 
deuxième approximation, on cherchera avec Sommcrfeld à tenir compte 
de ce que la charge du noyau et celle de la carcasse ne se compensent 
pas exactement à une unité près : la trajectoire de l’électron optique qui 
peut môme pénétrer dans la carcasse électronique ne se ferme plus et il 
faut introduire un deuxième nombre quantique k. On trouvera tous ces 
développements théoriques exposés en détail dans les livres consacrés à 
l’ancienne théorie des Quanta, notamment dans ceux de Sommerfeld et 
de Léon Brillouin [1], [2].

D’autres calculs, également assez approximatifs, ont permis à Som 
merfeld d’étendre sa formule de structure fine au cas des spectres de 
rayons X. Dès le premier travail de Bohr, on avait cherché à rendre 
compte des spectres X en considérant l’atome de nombre atomique Z 
comme contenant Z électrons tournant sur des cercles coplanaircs 
(cercle K, cercle L, etc.). Pour tenir compte grossièrement de la répul- 
sion mutuelle des électrons, on avait supposé qu’elle se traduisait parun 
simple « effet d’écran » ayant pour conséquence une diminution appa 
rente de la charge du noyau. Ainsi l’électron R serait soumis à une force

(Z — k)~_i l’électron L a une force (Z—etc., k, l, ... étant appelés

« nombres d’écran ». Les calculs de Bohr pour l’atome d’hydrogène 
peuvent alors s’appliquer ici sans difficulté et l’on trouve les termes 
spectraux

R/i( Z — ky- H /< ( Z — iy-
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en qui permet (le retrouver approximativement la loi de Museler suivant 
laquelle les termes spectraux des rayons X varient en gros comme VJ. 
Mais cette première approximation est manifestement insuffisante parce 
qu’elle conduit à prévoir seulement un. niveau L, un niveau M, etc., 
alors qu’on sait, que tous les niveaux (sauf le niveau R) sont multiples.

En introduisant sa théorie de la structure fine et en supposant hardi 
ment qu’on peut isoler par la pensée les diverses irajocloires des élec 
trons de la carcasse électronique, Sommerfeld est parv enu pour ht terme 
spectral X caractérisé par les nombres quantiques n et k à l'expression

(5)
I X* __ _ H ( Z — ZnkY 
h n1

où zn/; est ht nombre d’écran relatif à la trajectoire caractérisée par n 
et k. Comme pour n donné, il y a n valeurs possibles pour k, la théorie 
de Sommerfeld prévoit un niveau R, deux niveaux L. trois niveaux M, 
etc. En réalité, la structure line des raies X est plus riche que cela cl il 
y a trois niveaux L, cinq niveaux M, etc. La théorie de Sommerfeld 
plus complète que la théorie primitive est donc encore irop étroite.

Néanmoins, malgré cette insuffisance évidente, elle a paru remporter 
un très grand succès pour l’explication quantitative des doublets dits 
« réguliers ». Dans les séries L, par exemple, ces doublets proviennent 
de la combinaison des termes spectraux Ln et LIU avec un même terme 
M, N, etc. Les deux raies du doublet ont donc des fréquences de la 
forme vLlI — y,- et vLm—v; et l’écartement du doublet est. vLu — vlm. Dans 
sa théorie, Sommerfeld laissait (le côté comme provisoirement inex 
pliqué le niveau L, et il attribuait aux niveaux L„ et Lni les nombres 
quantiques n — 2, k — i et n. = 2, k = 2 respectivement. La formule (5) 
lui donnait alors

,(Z-~l )‘ / 2 a\ jt‘m0es/7
\7 — 2/ 2c*A» (

L’écartement des doublets L doit donc varier comme (Z— cL)’ on. 
comme pour les atomes par irop légers xtL est beaucoup plus potit que Z. 
comme Z’ : c’est, bien la loi constatée expérimentalement. Si l'on pose 
Z = 1, zL = <>, on retombe sur l'écartement ôv„ des doublets de la série 
de Balmer. On a donc

S'(L= 5v h (7. — :i.)*,

formule qui est 'bien vérifiée .numériquement à condition d'adopter 
pour cL la valeur raisonnable Les doublets des séries M et N sont
aussi numériquement bien prévus par l'application des formules de
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Sommerfeld. [Celte prévision exacte des doublets réguliers a paru tout 
d'abord un très grand succès de la théorie de Sommerfeld.

D’autres succès de cette théorie furent la prévision exacte de l’effet 
Zeeman normal et de l’effet Stark. Nous renvoyons sur ces points aux 
Ouvrages cités.

Carions maintenant des insuffisances de la théorie de Sommerfeld. 
Au point de vue théorique général, elle souffre des mêmes insuffisances 
que la théorie de Bohr dont elle n’est que le prolongement. La réalité 
physique des trajectoires en rosette calculées à l’aide d’un mélange assez 
bâtard de règles classiques et de conceptions quantiques est douteuse. 
D’autres insuffisances apparaissent quand on examine les résultats mêmes 
de la théorie. Le grand mérite de la théorie de Sommerfeld, c’est d’avoir 
rendu compte d’une partie des structures fines que la tentative initiale 
de Bohr ignorait complètement. Mais les structures fines réelles sont 
encore plus complexes que ne le. prévoient les raisonnements de 
Sommerfeld : la chose est particulièrement visible pour les spectres X 
où les niveaux sont beaucoup trop nombreux pour pouvoir être numé 
rotés à l'aide des deux seuls nombres quantiques n et k. Pour établir 
une classification complète des niveaux dans le domaine optique et dans 
le domaine X, Sommerfeld lui-même a été obligé d’introduire empiri 
quement un troisième nombre quantique j dont la signification théo 
rique restait très obscure. On n’a pu comprendre réellement l’origine de 
la multiplicité réelle des niveaux et le sens véritable du nombre quan 
tique y que le jour où l’on a attribué à l’électron une propriété nouvelle 
jusqu’alors méconnue : le spin.

t ne autre difficulté avait surgi entre temps. En introduisant la dyna 
mique relativiste, Sommerfeld était parvenu à prévoir l’existence et la 
variation en fonction de Z des doublets réguliers, ce qui paraissait un 
très beau succès. Mais les formules de Sommerfeld prévoyaient l’exis 
tence des différences de fréquence, origines de ces doublets, entre les 
niveaux de thème n dont le k diffère d’une unité, comme le montre la 
formule (5). Or quand on établit la classification rationnelle des niveaux 
en introduisant le nombre j, on s’aperçoit que les niveaux origines des 
doublets réguliers, (tels, par exemple, que les niveaux Lu et Ljn) ont 
mêmes nombres n et k et que c’est leur nombre, j qui diffère d’une 
unité. Le succès des formules de Sommerfeld était donc remis en cause, 
les doublets réguliers ne se trouvant plus être placés là où la théorie les 
prévoyait. La théorie de l’électron à spin de Dirac a montré qu’en intro 
duisant à la fois le spin et la Relativité dans le cadre de la Mécanique 
ondulatoire, on obtient une formule analogue à celle de Sommerfeld,
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mais où lu nombre j remplace le nombre k, (le sorle (pie tout rentre 
dans l’ordre (ro/r chap. XIV, §6).

Nous étudierons ces dernières questions d’une façon plus approfondie 
dans le chapitre XIV consacré au spin et à la théorie de Dirac.
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CHAPITRE VIII.
LE PRINCIPE DE CORRESPONDANCE.

I. Objet du principe de correspondance. — L’introduction dos 
Quanta dans la théorie de l’atomc avait considérablement amélioré nos 
interprétations des phénomènes atomiques en ce qui concerne les 
échanges d’énergie et le calcul des fréquences spectrales. Elle avait 
même permis de retrouver certaines formules classiques concernant les 
fréquences où la constante h se trouve éliminée, telles que les formules 
de l'ell'et Zeeman normal. Mais les physiciens .se sonL trouvés dans un 
grand embarras quand il leur a fallu transposer dans le cadre des théo 
ries (piantiques les questions d’intensité et de polarisation et les théories 
comme celles de la diffusion et de la dispersion, en un mot l’interpréta- 
lation des phénomènes où les propriétés ondulatoires de la lumière 
jouent un rôle essentiel. Tous ces phénomènes qui, dans leur ensemble, 
s’interprétaient d’une façon très satisfaisante avec les idées classiques, 
devenaient très difficiles à rattacher aux idées quanliques. C’est pour 
tenter de faire cette pénible jonction que M. Bohr a développé, quelques 
années après sa théorie de l’atome, son principe de correspondance (1916). 
Ce principe était en réalité une sorte de fil directeur ayant pour rôle de 
guider les physiciens dans le difficile travail qui consiste à raccorder les 
anciennes théories ondulatoires avec les conceptions quantiques.

L'idée qui a dirigé Bohr dans sa découverte du principe de correspon 
dance est que les théories classiques, donnant des résultats satisfaisants 
pour les phénomènes à notre échelle, doivent avoir le caractère d’approxi 
mations statistiques valables pour les phénomènes qui mettent en jeu un 
grand nombre de quanta. Il en est bien ainsi, on peut le constater, pour 
les fréquences des raies spectrales, car, si l’on considère des états quan- 
liques correspondant à un très grand nombre de quanta, les fréquences 
d’émission par application de la loi des fréquences de Bohr coïncident 
avec celles que la théorie classique prévoit en décomposant le mouvement
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<lc l’électron en composantes harmoniques. Ce résultat constitue ce que 
l’on peut appeler « le théorème de correspondance pour les fréquences ». 
Il était donc assez naturel de généraliser cotte coïncidence en supposant 
que, pour les transitions entre états à grand nombre de quanta, les pré 
visions de la théorie classique relatives aux intensités et aux polarisations 
étaient aussi sensiblement exactes. Hardiment, Bohr a été plus loin : il 
a admis que les prévisions classiques pouvaient encore être utilisées pour 
évaluer, au moins grossièrement, les intensités et les polarisations même 
pour les r.lies émises par transition entre étals à petits nombres de 
«pianta.

II importe de bien comprendre dans quel sens ou peut dire (pie les 
intensités calculées par la théorie classique sont exactes dans le cas des 
grands nombres quantiques. Au point de vue quantique, chaque acte 
d’émission donne naissance à un seul quantum Irj et cela n’a pas de sens 
de parler de l’intensité du rayonnement ainsi émis. Mais, s’il y a un 
très grand nombre N d’atomes semblables présents dans le même état 
initial, il y aura une certaine fraction P de ces atomes qui, pendant 
l’unité de temps, subira la transition avec émission du quantum /ni, de 
sorte que l’énergie émise par unité de temps par l’ensemble des atomes 
sera PN/tv et c’est cette énergie que le principe de correspondance per 
met d’évaluer par l’emploi des formules classiques. En fin de compte, 
les formules classiques serviront donc à déterminer « les probabilités de 
transition P ». C’est'donc seulement au point de vue statistique que 
rélectromagnélisme classique conserve une certaine valeur et ce serait 
une erreur de dire que, d’après le principe de correspondance, l'atome 
émet suivant les lois de l’électromagnélisme. Pour parler correctement, 
il faut dire : « Les ensembles d’atomes émettent statistiquement, dans 
le domaine des grands nombres quantiques, suivant les lois de l’éleclro- 
magnétisme ».

Avant d’aborder l’étude détaillée du principe de correspondance, il 
est nécessaire que nous disions quelques mots des variables angulaires 
et de leur intervention dans l’ancienne lliéorie des Quanta.

2. Les variables angulaires. — Rappelons comment Planck avait 
introduit la notion de quantum. Il envisageait des oscillateurs linéaires 
harmoniques dont la fréquence d’oscillation v est indépendante de 
l’amplitude et, adoptant un énoncé de « (pianta d’énergie », il avait 
admis cjue les seuls mouvements stables de l’oscillateur sont ceux dont 
l’énergie est de la forme

(O E = nhv (n entier).
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( '.et énoncé a l’inconvénient de ne pouvoir s’appliquer qu’à un oscilla- 
letir quasi-élastique dont la fréquence est indépendante de l’amplitude. 
Planck a alors cherché un énoncé plus général qui soit applicable à un 
système périodique quelconque à un degré de liberté et il a adopté le 
suivant :
( 2 ) (j) pdq = nh,

où l’intégrale est étendue à une période de la variable q. Cette nouvelle 
règle de quantification a l’avantage de bien faire ressortir que la cons 
tante h a le caractère d’une unité d’action, car elle exprime que l’inté 
grale d’Action Maupertuisienne étendue à un cycle complet du mouve 
ment périodique est égale à un multiple entier de la constante h. 
Appliqué au cas particulier de 4’oscillateur linéaire harmonique, la 
formule (2) permet d’ailleurs de retrouver aisément l’énoncé ( 1 ).

La formule de quantification (2), après avoir été utilisée par Bohr 
dans sa théorie primitive des orbites circulaires, a été généralisée par 
Wilson et Sommerfeld pour les mouvements définis par plus d’une 
variable. Les mouvements de ce genre que l’on a à quantifier sont tou 
jours des mouvements quasi-périodiques où chacune des variables a son 
cycle propre de variation. Il y a alors toujours au moins une manière de 
choisir les variables qi de façon que chacun des moments p-, puisse 
s’exprimer à l’aide de la seule variable </,- qui lui est conjuguée (.système
de variables séparées). Chacune des intégrales (j)pidqi étendue à un

cycle entier de variations de qi a alors un sens bien défini et, d’après 
Wilson et Sommerfeld, on doit quantifier en posant

(3) (j)pidqt= nih (//,- entier).

On obtient ainsi autant de conditions de quantification qu’il y a de 
variables qi.

Cette méthode de quantification donne des résultats satisfaisants eL 
univoques quand il n’y a pas de « dégénérescence », c’est-à-dire quand le 
nombre des dimensions de la trajectoire n’est pas inférieur au nombre 
des variables q-,. La forme des orbites quantifiées est alors entièrement 
déterminée par le choix unique des variables séparées.

Il n’en est pas de même dans le cas où il y a dégénérescence, parce 
qu’alors il se trouve qu’il y a plusieurs choix possibles de variables 
séparées. Selon le système de variables séparées que l’on choisit, la 
forme des orbites quantifiées diffère, ce qui n’est pas satisfaisant. On
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vérifie cependant, que les énergies des orbites quantifiées restent tou 
jours les mêmes, comme si seules les énergies, et non les formes, des 
orbites quantifiées avaient un sens physique. Dans ces cas de dégéné 
rescence, la méthode des variables séparées de Wilson et Sommerfeld 
semble donc donner un nombre trop grand de conditions quantiques et 
il paraissait désirable de trouver une autre méthode ne donnant pas des 
conditions trop strictes jdans les cas de dégénérescence. Ce but a été 
atteint par l’emploi des « variables angulaires » qui ont joué, par ailleurs, 
un rôle essentiel dans le développement mathématique du principe de 
correspondance.

Considérons un système à f degrés de liberté décrit par f coordon 
nées qk et f moments conjugués de Lagrange pk. Entre ces variables 
canoniques, nous avons les équations de Hamilton

dqk
dt

àl I dp k
r)pk ' dl

àll
àqk

(k ■- ■■ •. /)>

où 11 est la fonction hamiltonienne qui exprime l’énergie du système en 
fonction des qk et des pk.

On démontre en Mécanique analytique (*) le théorème suivant très 
souvent utilisé en Mécanique céleste :

Si l'un parvient à déjitiir de nouvelles variables

{h —fiiqto Pt ) et P,= ffdqt, pt)

à l'aide de l'ensemble des anciennes variables canoniques <//■ et />/■ et 
si l'expression

~V, Pi dQi — y pk dqk

est ht différentielle exacte d'une fonction des qk et des pk, les Q, et 
les 1\ sont encore des variables canoniques, c'est-à-dire qui elles satis 
font à des équations de la forme

di) i t)ll£ tJi* i f)3C
~77T = Wt ~Jt = “ àiji ’

l>e plus, si la fonction hamiltonienne primitive H(qi<Pk) ne dépend 
pas explicitement du temps {ce qui est le cas pour les systèmes conser-

i ‘) Un trouvera la démonstration de cette proposition ainsi que de toutes celles qui 
suivent à la fin du tome II du livre de Sommerfeld [1].
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vatifset, en particulier, pour les systèmes quantifiables), la fonction 3i 
des Q,- et des P,- s'obtient simplement en remplaçant dans H(çr*, pfi 
les qk et les p/x par leurs expressions en fonction des Q; et des P;.

Le passage des variables q*, p* aux variables Q,-, P/ qui conserve la 
forme des équations de Hamilton est nommé « changement de variables 
canoniques ».

Considérons alors un système quasi-périodique et soient qit ...,qf 
un jeu de variables séparées pour ce système. On peut démontrer qu’il 
est possible de trouver un changement de variables canoniques tel que 
les nouveaux moments P,- soient précisément égaux aux intégrales 
cycliques de Wilson-Sommerfeld (ou à des combinaisons linéaires de

dvces intégrales). Ces P; sont alors des constantes, les sont nuis et, 

d’après les équations de Hamilton, les^j- sont nuis aussi. Donc la fonc 

tion hamiltonienne, exprimée à l’aide des P; que nous nommerons J; 
et des coordonnées Q,- que nous nommerons dorénavant w,-, se trouve 
ne pas dépendre des «7. Comme, d’autre part, on a

UQi dwi à3C 

dt fit dj i

et que les ^ sont des constantes, les 07 sont des fonctions linéaires du
O.) i

temps de la forme
(t'i = f d +■ S,-,

où les constantes v, sont définies par

v,= 3T,’

relation fondamentale pour le principe de correspondance.
On démontre encore que lies variables q^ sont des fonctions pério 

diques des variables 1*7.
Bref, il est possible de trouver un changement de variables cano 

niques faisant passer des variables séparées primitives q4. et p* à de 
nouvelles variables canoniques «7 et J, telles que :

i" la fonction hamiltonienne exprimée avec ces variables ne dépend 
(jue des J, ;

•>° les J, sont des constantes;
.'5“ les coordonnées «7 sont des fonctions linéaires du temps «7 =v,- <+3,-; 
/j11 les q^ sont des fonctions périodiques des «7.



CHAPITRE VIII.

Les tv, sont appelées des « variables angulaires », parce qu’elles crois 
sent proportionnellement au temps comme un angle dans un mouvement 
de rotation uniforme. Les quantités J,- sont appelées les « variables 
d’action », nom dont l’origine est évidente.

11 faut remarquer que les et les J,- ne sont pas entièrement détermi 
nées par les conditions i°, 2°, 3° et 4° ci-dessus, car si l’on a trouvé un 
jeu de Wi et de J,- qui satisfasse à ces conditions, on en trouvera un autre 
en posant

IV; = a; MK;

les a, étant des constantes arbitraires. Pour achever de déterminer les w,-, 
on pose par convention que la période de tous les par rapport aux w,- 
doit être égale à l’unité.

Ceci posé, on prend comme conditions de quantification dans la 
méthode des variables angulaires les formules

(4) .!; = «;/; (n( entier;.

Quand il n’y a pas de dégénérescence, le nombre des variables angu 
laires est égal au nombre des variables séparées et chaque J; est égal à 
l’une des intégrales cycliques de Wilson-Sommerfeld. Il y a donc alors 
coïncidence entre les conditions (3) et (4), c’est-à-dire entre les deux 
méthodes des variables séparées et des variables angulaires.

Mais il n’en est plus de môme dans les cas de dégénérescence. On 
trouve alors un nombre de variables angulaires inférieur à celui des 
variables séparées et certaines au moins des variables J, sont des combi 
naisons linéaires des intégrales cycliques de Wilson-Sommerfeld; Le 
nombre des conditions (4) est donc inférieur à celui des conditions (3 i. 
c’est-à-dire que la méthode des variables angulaires détermine moins 
strictement que la méthode des variables séparées la forme des trajec 
toires et les difficultés soulevées par l’application des conditions (3) de 
Wilson-Sommerfeld n’existent plus avec les conditions (4), ce qui donne 
une nette supériorité à la méthode des variables angulaires.

Puisque tous les qk (et, par suite, la configuration du système) soni 
des fonctions périodiques de période i des variables angulaires tv,, une 
grandeur quelconque qui dépend de la configuration du système (par 
exemple l’une des composantes de son moment électrique) pourra se 
développer en série multiple de Fourier sous la forme
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les t , étant des nombres entiers positifs ou négatifs et n étant le nombre 
des variables angulaires («^/)- Si la grandeur doit être réelle d’après 
sa signification physique, on aura

C—7 T„= c|,...........T„,

Les Wi étant des fonctions linéaires du temps, nous écrirons le déve 
loppement précédent sous la forme

T,,..., T„

ou, en abrégé

avec la définition
(w) = -I Vi -„V„.

3. Exemples de quantification par la méthode des variables angu 
laires. — Nous allons donner deux exemples de quantification par la 
méthode des variables angulaires.

D’abord l’atome d’hydrogène. Dans cet atome, l’unique électron décrit 
une orbite képlérienne sous l’action de la force de Coulomb : dans la 
ihéorie des ellipses képlériennes, classique en Mécanique rationnelle, on 
montre qu’il existe un angle, l’anomalie moyenne, qui croît proportion 
nellement au temps. Cet angle 0 est relié à l’anomalie excentrique u par 
la relation bien connue

0 = u — e sin w,

où (' est l’excentricité de l’ellipse.

En posant i v— on obtient une variable angulaire augmentant pro 

portionnellement au temps et telle que le système reprenne la même 
configuration quand w augmente d’une unité. Il y a ici dégénérescence 
et nous avons une seule variable angulaire au lieu des deux variables
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séparées r et 0. La variable d’action J conjuguée de .w est égale à lu 
somme des intégrales de Wilson-Sommerfeld

(j) J>ti d0 -+-(j) pr dr.

Quand on cherche à évaluer l’énergie du mouvement de l’électron eu 
fonction de w et de J, on trouve

H(J) = —
•2 k 1 me'

JJ

qui est bien constante et indépendante de w. 11 suffit alors de poser 
.T —. nh pour retrouver la formule des états stationnaires de Bohr sous la 
forme

_ 2 ^ ni e*
n- h'1

Un deuxième exemple nous sera fourni par la théorie de l'effet Zocnian 
pour un atome d’hydrogène. L’atome est placé dans un champ magné 
tique uniforme et constant H. Un théorème célèbre dû à Sir Joseph 
Larmor nous apprend que pour les valeurs des champs usuellement 
réalisables, le mouvement de l’électron peut s’obtenir de la façon simple 
suivante : « Imaginons un système de référence qui tourne d’un mouve 
ment uniforme autour de la direction du champ H avec la vitesse angu 
laire (dite de Larmor >

eliU) - ------  >
■>. m0c

où e et Wo sont la charge et la masse de l’électron, alors le mouvement 
de l’électron par rapport à ce système de référence sera le même que si 
le champ H n’existait pas et si le système ne tournait pas ». Autrement 
dit, pour les valeurs pas trop fortes du champ, il y a compensation entre 
l’effet de la rotation et l’action du champ.

La trajectoire de l’électron sera donc une certaine ellipse képlérienne 
tournant d’un mouvement uniforme de vitesse angulaire u autour de H.

Dans le système tournant, nous pouvons donc toujours définir une 
anomalie moyenne que nous nommerons maintenant 0, et qui aura tou 
jours pour moment conjugué la variable d’action

où 0t est l’azimut dans le système tournant.
Mais maintenant pour connaître la position de l’électron, il faut
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encore nous donner un angle 03 qui fixe la position du système tournant 
par rapport au système de référence de l’observateur et, comme cet 
angle augmente avec la vitesse angulaire w, on obtient une seconde 
variable angulaire en posant

(Vj = e*
2 X

ü)--- t “f- == Vç t "+■2 X h,
eliavec v«* = ---------5

4 x m-o c

v3 est la fréquence de Larmor. Le moment conjugué J3 est le produit 
par 2 7ï du moment de la quantité de mouvement de l’électron autour de 
la direction H qui est constant.

Pour obtenir la fonction hamiltonienne H (R, J2), nous remarque 

rons qu’elle contient d’abord le terme l7tmoei
J î

correspondant au mou 

vement relatif dans le système tournant, plus un terme dû à la rotation 
du système de Larmor qui dépendra de J2. Nous calculerons ce terme 
en remarquant que sa dérivée par'rapport à J3 doit nous donner v3. de 
sorte que finalement

H(Ji, L)
'2i!iîioel

R
eH

—,-------------- J » )4Jr/7?0C

En posant Jt ™ nh et J3=m/t, nous obtiendrons pour les énergies 
quantifiées

E n —
■izm0e' 

n-h-
eh H

4 jtmoc

l’où, pour les fréquences émises,

Enm / I I \ / .. e H
• nm, n rn m0c

e\\
4xm^c

où ïJJ,, est la fréquence émise en l’absence de champ et àm la variation 
pendant la transition du nombre quantique m. En admettant la « règle 
de sélection » suivant laquelle le nombre m peut varier de o, +1 ou — i, 
on retrouve l’effet Zeeman normal. Remarquons que dans ce calcul, la 
constante h s’élimine, ce qui permet de retrouver un résultat de la 
Physique classique.

4. Le principe de correspondance. — Nous avons exposé au para 
graphe 1 de ce chapitre l’idée de base du principe de correspondance. 
Nous pouvons la retrouver en partant de la remarque suivante : l’écart 
entre les théories classiques et les théories quantiques réside dans le fait
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que la constante h a une valeur finie et cet écart s’évanouirait si h 
tendait vers zéro. Donc dans les phénomènes mettant enjeu un nombre 
énorme de quanta, on doit retrouver asymptotiquement la théorie clas 
sique puisqu’alors tout se passe comme si h était infiniment petit.

Nous allons d’abord prouver qu’il en est bien ainsi en ce qui concerne 
les fréquences en démontrant le théorème de correspondance pour les 
fréquences dont nous avons déjà parlé.

Considérons un système défini par des variables angulaires wl, .... 
(V,, ... et un certain mouvement défini par des valeurs constantes des 
variables d’action Jt, ..., J,-, .... Comme toutes les grandeurs attachées

au système, le moment électrique 6Î peut s’exprimer sous la forme

^=2PT(J)e”ilTV)'!
où t  représente l’ensemble des nombres entiers , . . ., r,-,. .. J l’ensemble 

des variables d’action et où (rv) Enfin on a
i
dli
dh'

Supposons maintenant que le mouvement du système soit un mouve 
ment quantifié à [un grand nombre de quanta, c’est-à-dire que Jl’on ait 
J* = njch. pour tous les J* avec tous les grands devant l’unité. D’après 
la conception classique de l’émission du rayonnement, il y aurait émis 
sion 'simultanée par le système de toutes les fréquences de la forme

(V>) =2 "ivi figurant dans le développement de îC, l’intensité de l’émis-
i

sion de la fréquence (t v ) étant déterminée par la valeur du pT corres 
pondant.

Dans la conception quantique, au contraire, il n’y a pas de rayonne 
ment tant que dure l’état initial, mais il y a possibilité de transition de 
l’état initial défini par les J*= «*/t à d’autres états quantifiés d’énergie 
moindre et le passage à un état final défini par J/, = n'kh donne lieu à 
l’émission thune radiation de fréquence

Kfl h*n'
Vn"'~ Ti ’

d’après la loi de Bohr.
Or, d’après l’idée de base do la méthode de correspondance, si tous 

les ii/t sont grands et si tous les | <5n* | = | —n'k | sont petits devant



LE PRINCIPE DE CORRESPONDANCE. 137

les Hic, on doit retomber sur les résultats de la théorie classique. Comme 
les H/, varient alors peu en valeur relative dans la transition u --> //' on 
peut écrire ponr la variation correspondante de l’énergie

-«'-SS—SS;*-àll

et, par suite,

"'‘,=2;S6,l*=2Sn‘ V*.

Nous pouvons donc faire correspondre à chaque terme de fréquence 

(•m) du développement classique de fî la transition quantique 

(nt, îiï, . . ., nh . . . ) -y (m — T,, n2 — is, . . ., — t ,, . . . )

puisque, selon la régie de Bohr, cette transition donne précisément lieu 
à l’émission de la fréquence (rv).

Si au début nous avons affaire à un ensemble d’atomes dans l’état 
d’énergie E„, ces atomes subiront dans le [domaine des grands nombres 
quantiques les diverses transitions possibles, de sorte qu’un observateur 
verra dans le rayonnement global émis par l’ensemble d’atomes toutes 
les fréquences prévues par la théorie classique. Statistiquement, le 
résultat classique sera donc vérifié malgré la différence profonde des 
processus d’émission imaginés par la théorie classique et par la théorie 
quantique. Nous avons ainsi démontré que les fréquences émises suivant 
la loi ;de Bohr coïncident asymptotiquement pour les grands nombres 
quantiques avec les fréquences prévues par la théorie classique à condi 
tion d’établir une certaine correspondance entre les transitions quan 
tiques et les termes [du développement classique du moment électrique 
en série de Fourier.

Vérifions le théorème de correspondance pour les fréquences dans le 
cas de l’atome d’hydrogène. Comme nous l’avons vu, nous avons alors

ait* me* dH
H(J)=---------- --—, v = —r = ----- --—,

v étant la fréquence de rotation de l’électron sur son orbite. La fréquence 
émise lors de la transition J -f- -// -y J est donnée par

E(J -t-x/i.) — E(J) 2Jc2/ne4r i i 1___c,-K-mei
Ti 7i [J- ~ (J +t /i)! ] ~ = 'v

:t le théorème est vérifié.
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Le résultat précédent concernant les fréquences donnant une base 
solide à la méthode de correspondance, M. Bohr l’a étendu aux ques 
tions d’intensité et de polarisation. Il considère un nombre énorme; 
d’atomes tous orientés de môme et se trouvant dans le même état quan 
tique initial défini par les valeurs J* = n^h avec des re* très grands. Soit

(',) pl*> (] ) e-T'‘,TV) '

le développement de Fourier de l’une des composantes rectangulaires 
du moment électrique de chacun de ces atomes. Au point de vue clas 
sique, chacun de ces atomes devrait émettre toutes les fréquences de la 
forme

(avec des t * entiers).
k k

l’intensité de la composante parallèle à l’axe des x de la radiation de 
fréquence (t v ) étant déterminée par la valeur de /A’’- Plus précisément, 
la quantité d’énergie rayonnée par unité de temps sous forme de radiation 
de fréquence (t v ) avec vibration électrique parallèle à Ox est en moyenne 
par atome égale à

64 *4(*v)*, _(x)lî 
" VA' 'P* '

d’après la formule (i4) du chapitre 1. Un observateur qui analy 
serait, par exemple, à l’aide d’un réseau, le rayonnement de l’ensemble 
des atomes, y verrait donc des composantes spectrales ayant toutes les

fréquences de la forme ^ t *v *, les intensités et les polarisations de
k

chacune d’elles se trouvant définies par la loi qui vient d’être rappelée, 
appliquée aux trois axes x, y, z.

Dans la conception quantique, les choses se passent différemment 
puisque chacun des N atomes de l’ensemble ne peut émettre qu’une 
seule des fréquences (t v ) en effectuant la transition n->n — t  corres 
pondante. Il faudra donc ici introduire des probabilités de transition. 
On dira, par exemple, que tous les atomes de l’ensemble ont la proba 
bilité P!,^_.- d’effectuer la transition n-yn—-t  avec émission de la 
fréquence (t v ) et vibration électrique parallèle à l’axe des x. Dès lors, 
N étant par hypothèse très grand, il y aura par seconde NPS,*^.- atomes 
qui subiront la transition n a — z dans ces conditions. L’observateur 
qui observe le rayonnement émis par l’ensemble d’atomes sans pouvoir
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préciser le rôle de chaque atome, trouvera donc dans le rayonnement 
des composantes ayant toutes les fréquences (t v ), l’énergie émise en 
moyenne par seconde avec la fréquence (t v ) et une vibration électrique 
parallèle à Ox étant égale à NPj£!„_TA(Tv). Mais ici intervient l’idée de 
correspondance qui conduit à postuler que, dans le domaine des grands 
nombres quantiques, les faits observés doivent être en accord avec les 
résultats classiques et que, par suite, on doit avoir

NP^»_t A(t v ) = N 647t‘(tv)4 
3 c3 I*.

d'où l’on tire l’expression de

pec)
1 n,n-

64**(t v ')3 . lt

3h&> 1

avec naturellement des formules analogues en ce qui concerne; les axes 
des y et des z.

Par ce principe, la théorie; de correspondance détermine, à l’aide des
__y

e;oefficients du développement classique de <£■ en série de Fourier, les 
probabilités de transition dans le domaine des grands nombres quan- 
liques défini par les conditions

(6) 1, n'k>■ i, j Sn* j = j m— j

Mais M. Bohr a ôté hardiment beaucoup plus loin. 11 a étendu par 
induction le même principe en dehors du domaine eles grands nombres 
quantiques.

Considérons un ensemble de très nombreux atomes dans un étal 
quantique initial quelconque défini par un jeu de nombres quantiques 
sur lesquels nous ne faisons plus maintenant les hypothèses (6). Dans 
cet état initial, nous avons toujours un développement de Fourier pour 

de la forme (5) et à chacun des termes de ce développement, nous 
pouvons encore faire correspondre la transition quantique n—>n—t . 
La fréquence émise lors de cette transition est donnée par la règle de 
Bohr et elle n’est plus égale à (t v ) puisque le théorème de correspon 
dance a été démontré sous les conditions (6) que nous ne supposons 
plus vérifiées. Soit alors vn,n-x la fréquence émise. Bohr suppose alors 
que la probabilité de transition P'*),..- est encore; donnée approximative 
ment par la relation

t>4*‘v;'vl_T
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Cette expression devrait permettre, d’après Bohr, une évaluation au 
moins approximative des intensités cl des polarisations.

Remarquons qu’ainsi éiloncé, le principe de Bohr n’était pas très 
satisfaisant. En effet, si l’on considère le mouvement quantifié initial, 
l’image classique fournit Bien pour les pf] des valeurs bien déterminées. 
Mais pourquoi choisir les p'-*) de l’état initial plutôt que ceux de l’étal 
final pour évaluer les probabilités de transition entre ces deux états ? 
Dans le domaine des très grands nombres quantiques, la difficulté ne se 
présentait pas car, les p(f] étant des fonctions continues des J/, et les J/, 
variant très peu en valeur relative pour les transitions qui satisfont aux 
conditions (6), les p1*' de l’état final diffèrent très peu de ceux de l’état 
initial, de sorte que l’indétermination s’évanouit. Mais quand les condi 
tions (6) ne sont pas réalisées, y a-t-il lieu de prendre lesp'*] de l’état 
initial, ceux de l’état final ou encore une sorte de moyenne depf' prise 
sur l’ensemble des états non quantifiés intermédiaires entre l’état initial 
et l’état final ? Bohr a fait une intéressante tentative dans son rapport au 
Troisième Conseil de Physique Solvay [2] pour préciser la manière 
dont une telle moyenne pourrait être définie, mais malgré ses efforts, le 
principe de correspondance pour les intensités a gardé dans l’ancienne 
théorie des Quanta un caractère un peu flou, et seule, la nouvelle Méca 
nique a pu, comme nous le verrons au chapitre XII, en donner un 
énoncé tout à fait précis.

Bien qu’imparfait, le principe de correspondance a cependant rendu 
dans le cadre de l’ancienne théorie des Quanta des services éminents en 
permettant de faire de nombreuses prévisions à peu près exactes pour 
les intensités et les polarisations des raies spectrales et en fournissant 
une démonstration des « règles de’sélection » sur laquelle nous revien 
drons plus loin. Guidés par l’idée fructueuse de correspondance, les 
théoriciens de l’École de Copenhague, collaborateurs ou élèves de Bohr, 
sont parvenus vers 1920 à développer des théories parfois un peu 
bâtardes, mais qui ont été en leur temps très utiles parce qu’elles ont 
préparé la voie aux théories actuelles. C’est ainsi que MM. Kramers et 
ITeisenberg ont développé la première théorie quantique de la dispersion 
cl ont pu donner la formule qui porte leur nom et dont nous aurons à 
reparler. Ce sont ces études orientées par le principe de correspon 
dance qui ont mis à cette époque le jeune Werner Heisenberg sur la 
voie de la Mécanique quantique développée sous la forme de théorie des 
Matrices qui a été très importante pour l’essor de la nouvelle Mécanique 
et sur laquelle nous aurons l’occasion de revenir.

140



LE PRINCIPE DE CORRESPONDANCE.

5. Démonstration des règles de sélection par le principe de corres 
pondance. — 11 faut d’abord définir ce que l’on appelle « règles de 
sélection ». La théorie de Bohr prévoit pour chaque sorte d’atome une 
suite indéfinie d’états stationnaires quantifiés dont les énergies divisées 
par h fournissent les termes spectraux à partir desquels on obtient par 
différence les fréquences des raies qu’en principe l’atome peut émettre. 
Mais toutes les raies ainsi prévues figurent-elles réellement dans le 
spectre de l’atome ? La réponse est : non, en général. Le fait qu’une 
fréquence spectrale est donnée par la loi de Bohr est une condition 
nécessaire, mais non suffisante pour l’existence de la raie correspon 
dant!'. Il y a donc lieu de compléter la loi des fréquences de Bohr par 
des « règles de sélection » indiquant, quelles sont, parmi les fréquences

I4l

prévues par la loi de Bohr, celles qui figurent réellement dans le spectre 
de l’atome considéré.

Le principe de correspondance nous fournit un moyen de trouver ces 
règles de sélection, car il nous permet d’évaluer les intensités des raies 
spectrales prévues par la règle de Bohr et, s’il se trouve que l’intensité 
de certaines de ces raies soit nulle, elles seront absentes du spectre 
étudié. Par cette voie, on a pu arriver à des règles de sélection qui se 
trouvent être identiques à celles que Rubinovicz avait antérieurement 
énoncées en parlant de considérations sur le moment de la quantité de 
mouvement des ondes lumineuses sphériques.

Pour bien faire comprendre sur un exemple comment on peut 
démontrer les règles de sélection à l’aide du principe de correspondance, 
reprenons le cas de l’atome d’hydrogène placé dans un champ magné 
tique uniforme. En ce cas, dans le système de référence de Larmor qui 
tourne autour du champ magnétique H avec la vitesse de rotation uni-

e Hlorrne 0» = —---- , l’électron a le même mouvement nue si le champ
■1 7TC0 C A 1

n’existait pas et si le système ne tournait pas.
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Dans le système tournant, le moment électrique sera donc le même

que si le système ae tournait pas : il aura la valeur ^(°) qu’il aurait alors 
en l’absence de champ. Mais si nous prenons des axes Oxy z tels que 
0.5 coïncide avec la direction de H, l’axe O a/ du système tournant fera 
avec Ox un angle cp = ut et nous aurons à chaque instanl

2X = costp — 2ÿ» sinç, = Sy01 sin s 4-Sf<r0) cosç, 2; = 221.

Ecrivons ?Cr, sous forme complexe en posant

2(01= | 2(o) | e-r-N‘',

vt étant la fréquence introduite au paragraphe 3. Nous pourrons écrire 

2.„4- t'2r = (2i?>-(- t2yol)e(?, 2.r— i2r = (2.y»— t'2y” ) e-'ï, 2S = 2L°>. 

En introduisant la variable angulaire

cp CO«'■>=—- = --- t25 2 5
eHcorrespond la fréquence de Larmor v.= -------- > nousr ^ 2 5 m, c

2.„-+- Ï2r= (2ÿ>-i- i2y>) e!Tîiv>',
(2X— i2y) = (2<r0) — 121,?* ) e—!5/v1«) = 2‘“>.

Or^ à la variable angulaire w2 correspond la variable d’action J2 égale 
au produit par 2 7t du moment cinétique de l’électron autour de O5 et 
le nombre quantique que nous avons appelé m (nombre quantique 
magnétique). Les formules précédentes montrent, alors, d’après la
correspondance établie entre les transitions quantiques et les coefficients 

' — 
du développement de Fourier du moment électrique que, étant évi 
demment indépendant de w2, les seules transitions associées à un 
moment électrique non nul sont celles pour lesquelles dm = o, ± i.

Aux transitions pour [lesquelles dm = -+- i, correspond un moment 
électrique tel que

2.,. + i2,^o avec 2.r—c2r=2-=o 

et la première de ces équations montre que

2r = 2,„ e -,

à laquelle 
obtenons

c’est-à-dire que nous avons affaire à l’émission d’une onde circulaire
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gauche autour de Os. Aux transitions dm = —i correspond un 
moment électrique tel que

ifÇj.= o, —j'îfyÿiéo, d’où cXy=^£xe -,

c’est-à-dire que nous avons affaire à une onde circulaire droite autour 
de Os. Enfin, aux transitions om= o, correspond un moment électrique 
dirigé suivant Os, car alors

t£x=î£y=o et i£zÿéo,

c’est-à-dire que nous avons affaire à une onde rectilignement polarisée 
avec vibration électrique parallèle à Os.

Si nous portons ces résultats dans la formule précédemment obtenue 
pour les fréquences modifiées par l’effet Zeeman, savoir

rt ni .n'm’
e\\

4 îï m o c

nous retrouvons immédiatement la théorie de l’effet Zeeman normal.
Un autre exemple de règle de sélection nous sera fourni par l’atome 

de la théorie de Sommcrfeld. La variation relativiste de la masse de 
l’électron avec sa vitesse a pour effet d’imprimer à l’orbite électronique 
képlériennc un mouvement de rotation uniforme dans son plan autour 
du noyau. Si l’on prend le plan du mouvement en rosette comme plan 
xOy et l’axe des s normal à ce plan et passant par le noyau, il existe 
un système de référence tournant autour de O z avec la vitesse du 
périhélie par rapport auquel la trajectoire est rigoureusement l’orbite 
képlérienne qui serait décrite dans le système de l’observateur en 
l’absence de la variation de la masse avec la vitesse. Dans ce système 
tournant, le moment électrique ÊÊ(0) est contenu dans le plan de la 
trajectoire : donc liÜ:V - o constamment. On obtient alors, comme 
précédemment,

d:l. -+- iîv = ( ( e<?. ff.r — i<Xy = ( 3° — ?'*?.)

Si l’on prend comme variation angulaire «-’2 = où o est l’angle de 

rotation lié au périhélie, on trouve

ù’.y-t- iXy = «<,?>) isrr = ({?<•> — ;«$) «-***,/,

La variable J2 conjuguée de Wt est égale au produit par ir. du moment 
de quantité de mouvement de l’électron autour du noyau et il lui corres 
pond le nombre quantique azimutal k. On trouve donc la règle de
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sélection oÀ = ± i, les deux possibilités correspondant à des émissions 
circulaires de sens inverse. La possibilité èk = o se trouve ici éliminée 
parce que ‘î- = o. La règle dk = zh i a rendu des services pour classer 
les raies spectrales dans le schéma de Sommcrfeld.

Des règles de sélection analogues pouvaient être obtenues chaque lois 
que l’on parvenait à définir dans un système atomique un système de 
référence tournant d’un mouvement uniforme autour d’une direction D 
et par rapport auquel le mouvement du système était indépendant de la 
rotation. Nous n’insisterons pas sur ces généralisations.
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CHAPITRE IX.
IDÉES DE BASE ET ÉQUATIONS FONDAMENTALES 

DE LA MÉCANIQUE ONDULATOIRE.

t. Point de départ. — JVidée de buse de la Mécanique ondulatoire 
a été la suivante : puisque l’expérience u révélé que, pour la lumière, il 
existes un aspect corpusculaire et tin aspect ondulatoire des phénomènes 
reliés «inIre eux par la relation W = hv où ligure la constante h do 
Planck, on peut penser qu’il pourrait exister aussi pour les particules 
de matière un aspect corpusculaire et un aspect ondulatoire (ce dernier 
longtemps méconnu) qui seraient reliés entre eux par une relation où 
figurerait la constante de Planck.

Pour chercher à développer cette idée, il faut chercher à associer un 
élément périodique à l’idée de corpuscule. Imaginons un corpuscule 
qui sé meut d’un mouvement rectiligne et uniforme en l’absence de tout 
champ : nous ne précisons pas où se trouve le corpuscule, nous n’envi 
sageons que son état de mouvement. Ce mouvement a lieu dans une 
certaine direction que nous prendrons comme axe des z et il y est dyna 
miquement défini par les deux grandeurs énergie et quantité de mouve 
ment dont les expressions relativistes sont

(')

dont on lin

m„c- m„ v
" = -=> P = -p== ’-O

i w

V = I P i = -.7 ^

Le mouvement est ainsi défini pour un certain observateur galiléen A 
lié à un système de référence Oxy z et dont le temps propre est t.

Soit maintenant un antre observateur galiléen B lié à un système de
L. UK BROOI.IK. 10
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référence qui se déplace avec la vitesse e = (3c dans la direction Qz. 
Nous pouvons dire que B est entraîné par le mouvement du corpuscule. 
Nous supposerons que B a choisi un axe des z0 qui glisse sur Oz et des 
axes des xa et des y0 qui sont parallèles aux axes O# et O y. Alors les 
coordonnées x, y, z, t et x0, yo, z0, t0 sont reliées par les formules de 
la transformation simple de Lorentz. Pour B, le corpuscule est au repos 
et il pose
(:>.) W 0=iu0c!, p0=o.

Pour introduire un élément périodique, nous allons d’abord chercher à 
le définir dans le système propre du corpuscule, c’est-à-dire dans le 
système de l’observateur B. Comme dans ce système tout est au repos, 
il est naturel d’introduire dans ce système un élément périodique 
stationnaire, analogue à une onde stationnaire. Désignant cet élément 
par Wo. nous écrirons donc

= A e?7t,v»'«

en employant la forme complexe de la représentation d’une onde 
stationnaire. Au cours du temps t0, W0 oscille avec la fréquence v0. 
Nous admettons que A est une constante, de sorte que ’Po a la même 
valeur en tout point du système B à l’instant t0- Nous pouvons nous 
représenter la répartition des valeurs de Wo dans le système propre en 
imaginant une infinité de petites horloges disposées en tous les points 
du système propre, synchronisées entre elles pàr l’observateur B et
possédant la période T0 = * ■ Si l’aiguille de l’horloge a pour longueur A,

Wo sera en somme l’affixe de l'extrémité de l’aiguille dans le plan du 
cadran considéré comme le plan d’une variable complexe.

Quelle valeur allons-nous attribuer à la fréquence v0 ? Nous d'evons la 
définir à partir d’une grandeur caractérisant le corpuscule dans son 

■ système propre et cette grandeur ne peut être que W0. La relation qui 
se présente alors tout naturellement à l’esprit quand on connaît les 
théories quantiques est la relation

146

analogue à la relation d’Einstein pour les photons.
Comment alors va se manifester l’élément périodique ainsi introduit 

pour l’observateur qui voit passer le corpuscule avec la vitesse (3 e ? Une 
remarque que nous avons faite à propos du ralentissement des
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horloges [l) nous fournit tout de suite la solution : les phases de 
l’élément périodique introduit sont, pour l’obser'vateur A, réparties 
dans l’espace .comme celles d’unp onde de fréquence x se propageant le 
long de l’axe des z avec la vitesse “V, v et LV ayant les valeurs :

v = - = |.
» P

i-ts

En effet en remplaçant t0 par = dans l’expression de ’Fo,
trouve

:*=(*-£) îit iv  (t "A

ï'=Ae  r = A e

La longueur d’onde de cette onde est

A
V
V

En tenant compte des expressions (i) et (2) de W et de W0, on obtient 
aisément

vyi — P2 1 —

<ie sorte que la relation du quantum « énergie = /i. fréquence », qui a 
été postulée dans le système B, se trouve aussi être exacte dans le 
système A et plus généralement dans tout système galiléen. De plus, 
on a

. _ “V _ cs 'h _ c* h _ h 
v v h't v W p

La formule fondamentale X = - prend, pour les faibles vitesses, quand

on peut se contenter de la Mécanique newtonienne et poser p = me, la 
forme bien connue

mv

Les expressions de la longueur d’onde ont été vérifiées par les expé 
riences de diffraction des électrons par les cristaux, ainsi que par les 
expériences analogues faites avec certains noyaux d’atomes et avec les 
neutrons.

(') Voir chapitre II, fin itu paragraphe i.
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Il résulte des formules précédentes que nous pouvons écrire
SW/

T = AeT

ou, plus généralement, pour un mouvement rectiligne uniforme qui n’a 
pas lieu dans la direction de l’axe des z

T= Ae
J- (W* -PxX-PyT-Px*)

A e

où I est le vecteur d’espace-temps « impulsion d’Univers » pour le 
corpuscule considéré (4). On voit alors que la phase de l’élément ondu 
latoire *F coïncide au facteur près avec l’action J"(Ids) du

corpuscule. On comprend alors que le principe de moindre action pour 
le corpuscule n’est qu’une traduction du principe de Fermât (principe 
du temps minimum) pour l’onde W qui lui est associée. On parvient 
ainsi à l’idée que la Mécanique ancienne (aussi bien sous la forme rela 
tiviste d’Einstein que sous la forme classique de Newton) ne doit être 
qu’une approximation ayant le même degré de validité que l’Optique 
géométrique (qui, on le sait, dérive tout entière du principe de Fermât). 
On est donc amené à concevoir la nécessité de construire une nouvelle 
Mécaniquej une Mécanique ondulatoire, qui soit par rapport à la 
Mécanique ancienne ce qu’est l’Optique ondulatoire par rapport à 
l’Optique géométrique.

Telles sont les considérations qui ont été le point de départ de la 
Mécanique ondulatoire : elles sont imprégnées de Relativité. Néanmoins, 
la nouvelle Mécanique s’est développée ensuite sous une forme non rela 
tiviste en suivant une voie que nous allons maintenant examiner, quitte 
à revenir plus tard au point de vue relativiste.

2. La théorie de Jacobi en Mécanique analytique. — Nous voulons 
d’abord rappeler quelques résultats bien connus de la Mécanique ration 
nelle dans le cas où l’on envisage un corpuscule de masse donnée m 
soumis à un champ de force également donné qui dérive d’une fonction 
potentielle V (x, y, z, t).

Dans l’ancienne Mécanique, on admet qu’un corpuscule, un point 
matériel, est un objet extrêmenient petit qui occupe à chaque instant 
dans l’espace une position bien déterminée que l’on peut caractériser

(’) Voir chapitre III, paragraphe 4.



par Tcinploi de trois coordonnées rectangulaires x, y, z. Au cours du 
temps t, la position du corpuscule varie en général et il décrit sous 
l’influence du champ de force une certaine courbe que l’on nomme la 
trajectoire. Au point de vue mathématique, la trajectoire du corpuscule 
et la manière dont elle est décrite sont connues si l’on obtient l’expres 
sion des coordonnées x, y, z en fonction du temps. Les équations dont 
parlait la théorie classique pour déterminer le mouvement du cor 
puscule sont les équations classiques

d- x d\ d-} d\ dl z dX
dt- dx dt- dy dt- dz

lies trois équations différentielles simultanées du second ordre ont des 
solutions qui sont parfaitement déterminées quand on connaît les

valeurs initiales de x, y, z, c’est-à-dire la position et la
vitesse initiales du mobile.

Nous ne rappellerons pas les très nombreuses conséquences que les 
traités de Mécanique rationnelle tirent des équations précédentes et 
nous nous bornerons à énoncer un théorème de Mécanique analytique 
dû à Jacobi qui prépare le passage à la nouvelle Mécanique.

Dans le champ de force donné, il y a une infinité de mouvements 
possibles pour le.corpuscule suivant sa position et sa vitesse initiales. 
Le théorème de Jacobi a pour but d’étudier l’ensemble de ces mouve 
ments et de les classer. Voici l’énoncé de ce théorème.
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Si Von parvient à trouver une intégrale complète S(x, y. z, l, oc, JS, y). 
c'est-à-dire une solution dépendant de trois constantes arbitraires 
non additives, de Véquation aux dérivées partielles du premier ordre

i
■> m + \{x, y, z, *) = dt

dite « équation de Jacobi ><. alors les équations

dS
dot ",

ou a, b. <■ sont, des constantes, représentent l'un des mouvements 
possibles du corpuscule dans le champ de force. De plus, les compo 
santes de la quantité de mouvement du corpuscule, lorsqu’en exécutant
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ce mouvement il occupe la position x. y. z à l'instant t, sont données 
par les relations

dS dS dSs> Py = mvy = dÿ' Ps=m^ = -r_, 
p = — grad S.

1 5o

Le grand intérêt du théorème de Jacobi est de permettre de classer 
les trajectoires. En effet, nous pouvons, connaissant l’intégrale complète 
S (a;, y, z, t, a, j3, y), répartir lés mouvements possibles en diverses 
classes, chaque classe correspondant à un môme choix des « constantes 
primaires » a, ,5, y. Chacune de ces classes comprend une infinité de 
mouvements possibles, chacun étant caractérisé par un certain choix 
des « constantes secondaires » a, b, c.

\ôus allons maintenant fixer notre attention sur le cas particulièrement 
important des champs permanents où V ne dépend pas explicitement 
du temps. Nous savons qu’alors il y a conservation de l’énergie, c’est-
à-dire que, durant tout le cours du mouvement, la somme ^me-4- V

reste égale à une constante E. Il est naturel de faire jouer à E le rôle 
d’une des constantes primaires, par exemple y. On peut alors trouver 
une intégrale complète de l’équation de Jacobi en posant

y, z, t, x, [J, E) = E« — S, (a-, y, z, a, % E),

où Si, la fonction de, Jacobi raccourcie, ne dépend pas du temps et est 
une intégrale complète, dépendant de la constante E et de deux autres 
constantes arbitraires non additives a et (3, de l’équation de Jacobi 
raccourcie

i 'i i ■ V(*,.r, :■) = E.

Quand on a obtenu une intégrale complète Si(a:, v, z. a, j5, E), il 
résulte du théorème de Jacobi que l’un des mouvements possibles du 
corpuscule est donné par

dS| rfSi _ . dS _ dÿ> dSi _
~dï = IJ ~ ' 7h ~ àK = t~dË~V

et la quantité de mouvement du corpuscule en chaque point de la 
trajectoire correspondante est donnée par

p = gradSi-

Les mouvements possibles du corpuscule dans le champ permanent
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se répartissent donc en classes correspondant à une même intégrale 
complète Si avec des valeurs déterminées de l’énergie E et des deux 
autres constantes primaires a et (3. Chaque classe contient une triple 
infinité de mouvements, chacun d’eux étant caractérisé par une valeur 
donnée des trois constantes secondaires a, b. c.

Les équations

— a et dSi

ne contiennent pas le temps : elles définissent une courbe de; l’espace 

qui est la trajectoire du corpuscule. L’équation t — = c que l’on

peut écrire — l —10 donne le mouvement du mobile le long de la

trajectoire : on l’appelle parfois l’équation de l’horaire. On peut donc 
dire que, dans le cas des champs permanents, l’étude de la trajectoire 
peut être séparée de celle du mouvement sur la trajectoire. Cette 
circonstance ne se présente pas dans le cas des champs variables avec 
le temps.

Un autre résultat important valable dans le cas des champs permanents 
est le suivant : les trajectoires d’une même classe correspondant à une 
même intégrale complète St(a?, y, z. a. [3, E) avec valeurs données de 
x, (3, E sont orthogonales aux surfaces St -- eonst. Ceci se déduit immé 
diatement de la relation

p = gradSi.

Cette propriété des trajectoires d’être normales aux surfaces 
Si=const. conduit facilement au principe de moindre action de 
Maupertuis dont voici l’énoncé :

Dans un champ de force permanent, toute trajectoire passant par 
deux points A et B de Vespace est caractérisée par le fait que Vinté-

grale I y/2m[E—Y (x, y, z)] dlprise le long de la trajectoire de

A en B est plus petite que la valeur de la même intégrale prise sur 
toute courbe infiniment voisine de la trajectoire et allant de A en B, 
la valeur de E étant maintenue constante dans cette variation.

Pour terminer, nous illustrerons par un exemple très simple ces 
considérations sur les mouvements possibles d’un corpuscule dans un
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champ permanent. Nous supposerons le champ nul : alors Y ™ o et 
l’équation rie Jacohi raccourcie

ifOSHfHSO'] = K

admet l’intégrale complète

Si = \]t . m E (xæ  -h J3_v ■+- l — a'2 — fi-3). 

'Vous obtenons les trajectoires possibles en écrivant

V^rnECr— az — ) = a. 
\ v/ I— — fi V

dSi
àx

àS-1 = \/o. ni E / 1
p ' '

p3
I — a2 — fi2 J

= b.

Les trajectoires d'une môme classe sont donc ici des droites de 
cosinus directeurs a. 3, y 1 — a*—(3*. Le mouvement sur ces 
droites est donné par

dS
<)V. > E

fi.v ■

ou

X x -+- [iy ~ <-.)■

( .'est un mouvement uniforme de vitesse v ce qui devait être

puisqu’ici nous avons ÿ mv-= E. Les surfaces S( = const. sont des plans

parallèles dont la normale a pour cosinus directeurs a, 3, y et les trajec 
toires de la classe correspondante sont bien les normales à ces plans, 
bnfin, la relation p = gradSt se vérifie aussi très aisément.

3. Rappel de notions fondamentales de la théorie des ondes. —
Ayant sommairement rappelé quelques points de l’ancienne Mécanique, 
nous devons aussi, pour préparer le passage à la nouvelle Mécanique, 
rappeler quelques notions sur la propagation des ondes monochroma 
tiques dans un milieu isotrope réfringent et dispersif. Cette propagation 
est régie par l’équation

où ‘V est une fonction du point considéré (x, y, z) et de la fréquence v
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du l'onde monochromatique. l/onde monochromatique est représentée 
par une fonction de ln forme

, i , 3, /) = f(jr, y, s) e*™''1

et, si l'on pose pour définir l'indice de réfraction n :

1 "Pi y, a. v)

où 'Vu est la valeur de ‘V dans un milieu de référence homogène et non 
dispersif (par exemple le vide dans la théorie de la lumière), on a

A>r + 4 n-

VI V = o.

Rigoureusement, l’étude de la propagation doit se faire en cherchant 
les solutions de cette équation correspondant à des conditions traduisant 
le problème posé, mais il arrive assez fréquemment que l’on puisse 
résoudre le problème par une méthode approximative qui constitue 
« l’Optique géométrique ». Pour comprendre ce qu’est cette méthode, 
considérons d’abord le cas où l’indice n ne dépend pas de x, y, ; 
(milieu réfringent homogène). Alors on obtiendra.une solution rigou 
reuse de l’équation de propagation en considérant l’onde plane

271('V j~7— 1
ï'=«e L J.

avec y- i — a3 — y-. La constante a est appelée l’amplitude de Fonde 
plane; la fonction

? = v [1 — (“ + + T s)]

.est sa xphase». Les surfaces d’égale phase <j> — const. sont ici des 
plans parallèles. Au cours du temps, les valeurs de la phase et, par 
suite, celles de la fonction d’onde 'F progressent dans la direction

( a, S. y) avec la vitesse “V = —7"- • A un instant donné, on retrouve les 1‘ n(v) ’
mêmes valeurs de V sur les plans d’égale phase parallèles et ‘séparés les 

uns des autres par la distance constante A ~ — appelée « longueur 

d’onde ». En un point donné de l’espace, on retrouve les mêmes valeurs 

de f à des intervalles de temps égaux à la période T — Les droites

normales aux plans d’égale phase, dont les cosinus directeurs sont 
a. ,3, y, sont par définition les « rayons » de la propagation d’ondes.



154 CHAPITRE IX.

Tout ceci est bien connu. Mais considérons maintenant un milieu 
réfringent non homogène, c’est-à-dire où l’indice n varie d’un point à 
l’autre. Une onde monochromatique pourra s’écrire

T = a(x, y, z ) e**<lv*—Çitar..*)).

Si, à l'intérieur du corps réfringent, la variation de l’indice est négli 
geable à l’échelle de la longueur d’onde, on peut voir aisément que 91 
doit obéir approximativement à l’équation

//■ . 7^Ï1 \2 v’-nHx, y, z, v> 1
U> U?J + \JP) + W -----vi-----»(*,y,*T

Vétant la longueur d’onde — qui varie d’un point à l’autre, L’amplitude a

varie alors lentement à grande échelle, mais reste presque constante à 
l’échelle de la longueur d’onde. Le point remarquable est que l’équation 
obtenue pour ©t, dite équation de l’Optique géométrique, permet de 
déterminer les variations rapides de la phase sans se préoccuper des 
variations lentes de l’amplitude.

Soit alors cpt (x, y, z, a, (3, v) une intégrale complète de l’équation de 
l’Optique géométrique : la fonction d’onde

où a est une fonction lentement variable à grande échelle de x, z 
sera, avec l’hypothèse faite sur les variations de l’indice n, une solution 
approximative de l’équation des ondes dans de milieu réfringent et 
représentera donc une des propagations d’ondes possibles dans le milieu. 
Par définition, les courbes orthogonales aux surfaces d’égale phase 
©i = const. sont les « rayons » de la propagation d’ondes.

En appliquant le môme raisonnement qui conduit en Mécanique 
analytique au principe de Maupertuis, on peut alors démontrer le 
« principe de Fermât. » dont voici l’énoncé :

Si une courbe G joignant deux points A et B d'un milieu 
réfringent à indice lentement variable est un rayon d'une propaga 
tion (Fondes, sa forme est déterminée par le fait cpie l'intégrale

prise le long de C de A en B est plus petite que la même intégrale 
prise le long de toute courbe in finiment voisine de G joignant aussi 
les points A et B.
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L'Optique géométrique fondée sur l'équation (4) cl lu principe (le 
Fermai qui en découle ne constituent qu’une approximation. Quand 
l’indice de réfraction du milieu varie sensiblement à l'échelle de la 
longueur d’onde (et également an voisinage immédial des sources et. 
foyers et des bords de l’ombre géométrique où l’amplitude varie toujours 
rapidement), l’Optique géométrique cesse d’êlre valable : il en est de 
même quand des obstacles rencontrés en cours de route par l’onde 
produisent des phénomènes d’interférences et de dilfraction. Dans ces 
cas, on ne peut plus calculer les variations de la phase indépendamment 
de celles de l’amplitude et il faul, pour étudier les phénomènes, partir 
de l’équalion rigoureuse de propagation. Remarquons d’ailleurs que, si 
la longueur d’onde était infiniment petite, l’Optique géométrique sérail 
toujours valable.

IÙ5

4. Nouvelle manière d’accéder à la Mécanique ondulatoire. — La
grande analogie de forme.de l’équation de Jacobi raccourcie (3) el de 
l’Optique géométrique (4), analogie qui se traduit par l’identité de 
forme des principes de Mauperluis et de Fermai, avait frappé, il y a 
plus d’un siècle, l’esprit pénétrant du géomètre écossais Hamillon, mais 
c’est seulement le développement de la théorie des Quanta qui a permis 
de donner un sens physique à cette analogie formelle. C’est ce que 
nous allons maintenant indiquer et, par cette voie, nous allons retrouver 
des résultats tout à fait analogues à ceux que la méthode relativiste du 
paragraphe 4 nous avait donnés.

Commençons par comparer le mouvement d’un corpuscule en 
l’absence de champ (V = o) avec la propagation d’une onde dans le 
milieu de référence (n i ). Pour le corpuscule, la fonction S, peut 
être prise égale à l’intégrale complète de l’équation de Jacobi raccourcie

avec
S i = 2 m E ( a x -+- [1 y ■

E = - tnv- el

Pour fonde, nous avons alors l’équation en 9,

(à^V /dçA» (àriY_ 
\dx) \dy ) ^\àz) ~ VI

qui admet l’intégrale complète
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avec
<na2_j_ T2= J et X = — .
V

[«es fonctions S et cp correspondant à Sf et <pt sont 

. S = E< — mv(ax h - -t- 72),

? = yt — y(ax -+- P.v + Yî),

où l’on supposera que a, (3, y ont les mûmes valeurs.
Un des principes essentiels de la théorie des Quanta, qui s’est mani 

festé notamment dans la théorie des Quanta de lumière d’Einstein, c’est, 
de toujours admettre une proportionnalité entre l’énergie d’un corpuscule 
et la fréquence d’une onde, proportionnalité de la forme E = hv, h étant 
la constante de Planck. Pour établir celte proportionnalité entre l’énergie 
d’un corpuscule dont S est la fonction de Jacobi et la fréquence d’une 
« onde associée » dont cp serait la phase, il faut poser

S = A®,

car, en égalant les coefficients de t, on trouve bien alors E = /tv. Mais 
011 trouve du même coup en égalant les coefficients de rJ.x + + yz

.___!j_
rn v '

équation qui établit une liaison enlre la quantité de mouvement du 
corpuscule et la longueur d’onde de l’onde associée.

Donc en posant S = h<o, nous avons associé au mouvement rectiligne 
et uniforme du corpuscule d’énergie E et de quantité de mouvement 
mv = p la propagation dans la direction du mouvement d’une onde 
plane monochromatique

\T = a e ' = a e h

de fréquence v = ~ et de longueur d’onde X — Nous retrouvons donc

exactement sous une forme non relativiste les conclusions obtenues au 
paragraphe 1.

Mais cette correspondance entre mouvement d’un corpuscule et 
propagation d’une onde associée n’est toujours obtenue que pour le cas 
très particulier du mouvement rectiligne et uniforme en l’absence de 
champ. Nous allons chercher <à la généraliser au cas du mouvement d’un 
corpuscule sous l’action d’un champ permanent défini par l’énergie polcn-



IDÉES DE BASE DE LA MÉCANIQUE ONDULATOIRE. 157

licllc \(x,y,z). Pour le faire, nous comparerons le mouvement du 
corpuscule à la propagation d’une onde dans un milieu où l’indice 
n(x, y, z, v) varie d’un point à un autre. La fonction S de Jacobi pour 
le corpuscule s’écrivant alors E£— Si et la fonction de phase © de l’onde 
associée s’écrivant vt — cp(, nous poserons encore

d’où nous tirerons
S = A?,

E = Av, S, = Aœ,.

Les fonctions Si et cp4 satisfont aux équations (3) et (4)

(§)M£HÏ)‘
(£)■*($)*(£)*

2m[E — V{x, y, z)],

VI

Pour avoir S4 = h <pt, il faut donc poser

2/n[E — \{x, y, a)] = A'2lÿr‘

Or est la longueur d’onde correspondant à la fréquence v en l’absence 

de champ; on a donc
Vo = A 

v \jï mE

Par suite, en éliminant ‘Vo entre les deux dernières relations, nous 
obtenons

. V(*,y,z) . V(ar, y, z)
/t- = 1-----------------—,----------  = 1----------------7------------ 1

E hv

relation qui a l’allure d’une formule de dispersion. Nous obtenons ainsi 
l’indice de réfraction variable que nous devons attribuer à la région de 
l’espace où règne le potentiel V quand nous envisageons la propagation 
de l’onde que la relation S = A 9 associe au mouvement du corpuscule. 
En chaque point, nous pouvons définir une longueur d’onde locale

w N V0 h/• O, y, z) = — = ------- , ----- , , r
n'J V2/w [E — V(.r, y , z)\

h--- 1mv

c étant la vitesse du corpuscule en (x, y, z ). 
Portons

/l- V'

vF A* LE-VOr, y,z)]
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dans l’équation dos ondes

AV.+ 4*«Çw = o,
^ «

on obtient pour l’équation des ondes associées au corpuscule la fameuse 
« équation de Schrôdinger »

(5) Alf+8-|^[E-V(i1r,:)]'r = «.

5. Remarques importantes et généralisation au cas des champs non 
permanents. — Nous avons supposé jusqu’ici que le corpuscule obéis 
sait aux lois de la Mécanique classique, ce qui permet de considérer la 
fonction S de Jacobi et nous sommes ainsi parvenus à la conclusion 
suivante : aux mouvements classiques d’énergie bien définie ^ ^lu 
corpuscule, correspond la propagation à Vapproximation de VOptique 
géométrique d’une onde monochromatique obéissant, à l’équation (5).

Chaque fois que l’Optique géométrique est valable pour la propa 
gation de l’onde *F régie par l’équation (5), nous pouvons poser

W = ae‘
mii_ ,—— [E< -S,{.r, y, 2)

et les trajectoires d’une même classe prévue par la Mécanique classique, 
normales aux surfaces Si= const., ne sont pas autre chose que les 
rayons de la propagation d’onde associée qui sont normaux aux surfaces 
d’égale phase.

Il semble donc y avoir, dans les limites de l’Optique géométrique, 
une coïncidence parfaite entre les deux points de vue. Néanmoins, nous 
voyons déjà qu’une même onde 'F correspond à tout l’ensemble des 
mouvements d’une même classe conçus à la façon classique. Du point 
de vue classique, le corpuscule qui est supposé bien localisé dans 
l’espace à tout instant décrit l’une des trajectoires possibles, tandis que 
le point de vue de la Mécanique ondulatoire nous oblige déjà, même 
dans les limites de l’Optique géométrique, à adopter une sorte de vue 
statistique qui envisage simultanément toutes les trajectoires d’une 
même classe.

Mais une divergence beaucoup plus grave des deux points de vue 
apparaît quand la propagation de l’onde *F associée au corpuscule, 
propagation régie par l’équation (5) ne peut plus être décrite par 
l’approximation de l’Optique géométrique. Comme l’idée essentielle de 
la nouvelle Mécanique est de donner le rôle essentiel à la propagation
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de l’onde, il parait naturel eu ce cas d'abandonner la description du 
mouvement corpusculaire donnée par la Mécanique classique comme 
constituant une approximation qui n’est plus valable. En d’autres termes, 
la Mécanique classique ne serait utilisable que quand l’Optique géomé 
trique serait valable pour la propagation de l’onde associée : à .la fin du 
prochain chapitre, nous préciserons plus exactement comment cela a 
lieu. Pour que l’emploi de la Mécanique classique soit possible, il faut 
donc que l’indice n défini précédemment varie lentement à l’échelle de 
la longueur d’onde et il faut de plus, que, l’onde ne rencontre pas sur 
son parcours d’obstacles provoquant des phénomènes d’interférences et
île diffraction. D’après la formule ). - ^ et le fait que l’Optique géomé 

trique serait toujours valable si la longueur d’onde était infiniment 
petite, on voit que la Mécanique classique serait toujours valable si h 
était infiniment petit. Les modifications que la nouvelle Mécanique a dû 
apporter aux conceptions classiques nous apparaissent donc comme 
intimement liées à la valeur finie de la constante de Planck.

Nous sommes arrivés à substituer aux équations de la Dynamique 
ponctuelle du point matériel dans un champ permanent l’équation de 
propagation d’une onde monochromatique. Mais, comme nous le 
verrons, on est amené en Mécanique ondulatoire, comme dans 
l’ancienne théorie des ondes, à considérer des trains d’ondes non 
monochromatiques que l’analyse de Fourier permet de représenter par 
une superposition d’ondes monochromatiques de différentes fréquences 
et de différentes directions de propagation. Il esl donc nécessaire de 
chercher une forme de l’équation des ondes qui puisse rester valable 
dans le cas où l’onde V n’est, pas monochromatique. Naturellement, 
cette "équation devra nous redonner l’équation (5) dans le cas d’un'F 
monochromatique.

L’équation
.... Xx*ni-., ... &nim «hl‘^--kr'f(*’-r'3>v = hr--àï

I5f>

satisfait à ces conditions,
c - Efréquence ^ona

car pour une onde 'F monochromatique de

àt

et, en substituant dans l’équation précédente, on .retrouve l’équation (5).
L’avantage qu’il y a à écrire l’équation des ondes sous celte forme 

plus générale est très grand. D’abord, toute onde *F formée par une
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superposition quelconque d’ondes monochromatiques va être solution 
de l’équation nouvelle, ce qui permettra de représenter un train d’ondes 
par une solution W. De plus, comme nous ne sommes plus obligés de 
considérer une onde monochromatique, le temps ne va plus jouer de 
rôle particulier et nous allons pouvoir nous affranchir de la condition 
que le champ soit permanent. Nous allons donc pouvoir supposer que 
la fonction V dépend à la fois des coordonnées et du temps et. que la 
forme la plus générale de l’équation de propagation est

8jt!m ...
A1*----- jy v(-r> -, <)V =

4 7z im
~dt'

Nous examinerons dans le prochain chapitre comment nous devons 
utiliser cette équation pour la prévision des phénomènes observables 
où le corpuscule manifeste sa présence.

G. Le théorème de la vitesse de groupe. — Rappelons d’abord que, 
dans la théorie générale des ondes, on appelle « groupe d’ondes » un 
train d’ondes formé par la superposition d’ondes planes monochroma 
tiques de fréquences et de directions de propagation très voisines. On 
démontre qu’un tel groupe d’ondes occupant une région limitée de 
l’espace se transporte sensiblement en bloc d’un mouvement d’ensemble 
avec une vitesse constante U dite « vitesse de groupe ». D’après un 
théorème de lord Rayleigh, la vitesse de groupe est donnée par les 
formules

, i ._v
i X V i ,)(nv)
Û ~ ~ UV ~ dv ’

Vo étant toujours la vitesse de propagation dans le milieu de référence.
Donnons une démonstration du théorème de Rayleigh. Le groupe 

d’ondes peut se représenter par la formule

'^0+Av

c ( v ) ch,
v0—Av

v0 étant la fréquence « centrale » du groupe et cpi la fonction de phase 
qui dépend de x, y, z et de v. En posant v  = v0+ï), nous pouvons 
écrire
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en négligeant les termes de l’ordre de n‘J. Ceci peut aussi s’écrire 

•F = F ] eî7l'[v ?*(v”:’,

ce qui montre que l’onde W est assimilable à une sorte d’onde mono 
chromatique de fréquence v0 dont l’amplitude serait fonction de
t— (^) ' nous nous déplaçons le long du, rayon normal à la sur 

face <p< = const. d’une longueur dl en un temps dt, l’amplitude F restera 
la même si dl et dt sont liés par la relation

dl = o.0l\ (h /Vo

Comme ~ est égale à l’inverse de la longueur d’onde, on voit que les

valeurs de l’amplitude se déplacent le long du ravon avec une vitesse 
dl 
dt = Il telle que

à /iN "X
\ àl / d'i

dl
U ih

et nous avons bien obtenu la formule de Rayleigh.
Nous voulons maintenant appliquer la théorie des groupes d’ondes à 

la Mécanique ondulatoire. Nous avons obtenu au paragraphe 4 les 
relations

h Ey. _ . v _ ^ ■
\/?.m[ E — V(.r, y, z)J

Nous en tirons

~dv
d \Ji m( E — V ) m m i

\/lm{ E —V) mv «•

d’où, par la formule de Rayleigh.

U = e.

Nous voyons donc que la vitesse de groupe des ondes V associées à 
un corpuscule est égale à la vitesse du mouvement classique du 
corpuscule.

Ce théorème est très important parce qu’il permet, ainsi que nous 
l’expliquerons en détail à la fin du prochain Chapitre, de faire le raccord

!.. DE BROGLIK.



outre la nouvelle Mécanique et l'ancienne en considérant un petit, 
groupe d’ondes qui glisse le long d’un rayon (1 ).
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CHAPITRE X.
L.Y SIGNIFICATION PHYSIQUE DE LA MÉCANIQUE ONDULATOIRE.

1. Remarques générales. — Nous axons obtenu les équations fonda 
mentales de la Mécanique ondulatoire du point matériel. Nous devons 
maintenant cliorclier ce qu’elles signifient et ce qu’on peut en tirer.

En somme, le passage de la Mécanique ancienne à la Mécanique 
ondulatoire consiste à prendre comme base de l’étude du mouvement, 
d’un corpuscule, à la place des équations de Newton, l’équation de 
propagation

(O ' -
H rJ ni 

fû ''• •r, r. s, /)T = 4 ~ im tAI ' 
h >H

du moins quand on peut négliger les corrections de relativité.
Tout état de nos connaissances sur un corpuscule sera donc repré 

senté par une solution de l’équation (qj. Exceptionnellement, pour 
V = o cette onde *F pourra être une onde plane monochromatique qui, 
nous l’avons vu, correspond à un état de mouvement rectiligne et 
uniforme, mais en général la solution représentera un train d’ondes que 
l’analyse de Kourier permettra de représenter par une superposition 
d’ondes monochromatiques. Un cas particulier sera celui du groupe 
d’ondes formé par la superposition d’ondes planes monochromatiques 
de fréquences et de directions de propagation très voisines.

Au sujet de l’équation (i), une remarque s’impose : ccLle équation 

contenant le symbole i = \—-1 est une équation complexe et ses solu 
tions sont essentiellement complexes. La fonction V, étant complexe de 
nature, ne peut représenter une vibration ayant un sens physique réel. 
En Optique classique, on considérait la vibration lumineuse comme la 
vibration d’un milieu et l’on devait donc la représenter par une ou plu 
sieurs fonctions réelles. Souxenl, il est vrai, on se serx’ait dans les cal 
culs d’expressions complexes dont les véritables fonctions d’onde étaient
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les parties réelles, mais ce n’était là qu’un artifice mathématique ayant 
pour but de faciliter les calculs et, ceux-ci achevés, on ne retenait que 
la partie réelle des expressions complexes qui, seule, paraissait avoir un 
sens physique. Il ne va plus en être de même en Mécanique ondulatoire 
puisque la fonction est essentiellement complexe. Mais une grandeur 
complexe ne peut pas avoir de signification physique directe, c’est- 
à-dire représenter quelque chose de « mesurable », puisque le résultat 
d’une 'mesure est toujours un nombre réel. Nous sommes ainsi amenés 
à penser que la fonction d’onde lF est seulement une grandeur qui peut 
nous servir à former des quantités réelles qui, elles, auront un sens 
physique. Ce qui suit va confirmer cette idée. Évidemment, en passant 
des conceptions anciennes aux conceptions nouvelles, la théorie phy 
sique va faire un pas important dans le sens de l’abstraction. Certains 
désireraient peut-être revenir à des images plus concrètes, mais le déve 
loppement de la Physique depuis vingt-cinq ans n’a pas paru confirmer 
cette espérance.

Nous allons retrouver en Mécanique ondulatoire pour les particules 
matérielles les idées que nous avons exposées à la fin du Chapitre VI au 
sujet de la lumière et des photons. Le lien entre le corpuscule et l’onde 
va encore nous apparaître comme de nature probabiliste, l’onde étant 
essentiellement une onde de probabilité qui représente les localisations 
possibles du corpuscule. Chaque fois que l’Optique géométrique ne 
sera pas valable pour la propagation de l’onde, la notion de trajectoire 
liée à celle de rayon va disparaître et nous serons obligés, comme poul 
ie photon, de considérer le corpuscule comme une entité susceptible de 
produire des effets localisés, mais à laquelle nous ne pouvons pas 
toujours attribuer une localisation bien définie dans l’espace à chaque 
instant.

Dans la nouvelle Mécanique, il s’agit essentiellement de savoir ce que 
l’on peut déduire de la connaissance de l’onde V et de sa propagation 
relativement aux phénomènes corpusculaires observables. Dans 
l’ancienne conception des corpuscules, nous pouvions déterminer avec 
une précision en principe illimitée, en pratique limitée seulement par 
l'imperfection de nos observations, la position et la vitesse d’un cor 
puscule à un instant donné. Les équations classiques de la Dynamique 
nous permettaient alors de prévoir, avec une précision d’autant plus 
grande que l’observation initiale avait été plus précise, à quel endroit et 
avec quelle vitesse le corpuscule pourrait être observé à un instant ulté 
rieur t. L’hypothèse que l’observation initiale était en principe suscep 
tible d’une précision illimitée et qu’une prévision rigoureuse de l’obser-
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vation à l’instant t était possible exprimait le déterminisme mécanique 
et était conforme au postulat d’une entière prévisibilité des phénomènes 
naturels. Nous verrons que le développement de la nouvelle Mécanique 
a conduit à des conceptions très différentes.

2. Principe de localisation ou principe d'interférences. — Quand on 
a cherché à interpréter la signification physique des ondes ,b, on a tout 
de suite été amené à énoncer le principe suivant :

Le carré du module de la fonction complexe 'b mesure en chaque 
point et à chaque instant la probabilité pour qu'une observation 
permette de localiser le corpuscule en ce point à cet instant.

La fonction W peut toujours s’écrire *E = a e‘ï, où a et cp sont le 
module et l’argument de la quantité complexe V et sont, par suite, des 
fonctions réelles des coordonnées et du temps. En employant le langage 
de la théorie classique des ondes, nous dirons que a est l’amplitude 
et a1 l’intensité de l’onde V. Si nous désignons par ffr* la quantité 
complexe conjuguée de ff", c’est-à-dire nous aurons

„2 _ ip-If* _ [ Yjr |! ;

c'est cette quantité qui, d’après le principe énoncé, donne la probabilité 
de localisation du corpuscule.

Nous devons maintenant expliquer comment on a été amené à adopter 
le principe énoncé plus haut que l’on peut nommer « principe des 
interférences ». Dans la théorie classique de la lumière, l’intensité de 
l’onde lumineuse mesure en chaque point la quantité d’énergie lumi 
neuse qu’on peut y recueillir. C’est cette règle qui permet la prévision 
correcte des phénomènes d’interférences et de diffraction. Mais on sait 
que l’étude des phénomènes élémentaires d’action entre la matière et le 
rayonnement a montré que tout se passe comme si toute radiation de 
fréquence v était formée de corpuscules (photons) d’énergie Av. Pour 
concilier cette structure discontinue de la radiation avec le calcul clas 
sique des interférences, nous devons dire que l’intensité de l’onde 
lumineuse associée à un photon mesure en chaque point et à chaque 
instant la probabilité pour que le photon produise un effet observable 
on ce point et à cet instant. C’est bien là le contenu du principe des 
interférences et nous allons voir qu’il v a bien lieu de l’étendre des 
pholons aux corpuscules matériels.

En effet, un résultat expérimental [très important obtenu en 192" a 
été la découverte de la diffraction des électrons par les cristaux. Si
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l’association des ondes avec les corpuscules exposée dans le dernier 
chapitre est exacte, à tout électron de vitesse e doit être associée une 
onde dont la longueur d’onde, en laissant de côté les corrections relati 

vistes, doit ôlre égale à —• Celle expression conduit à associer aux

électrons usuellement employés dans l’expérience des longueurs d’onde 
de l’ordre de io"8 à io~" cm. Cette longueur d’onde est de l’ordre de 
celle des rayons X : par suite, on pouvait espérer observer avec des 
électrons des phénomènes analogues à ceux découverts par Lauc pour 
les rayons X. Un faisceau d’électrons de vitesse t> étant associé à une

onde de longueur d’onde —> si ce faisceau tombe sur un cristal, l’onde

subira une diffraction prévue par la théorie développée par Laue et 
Bragg et l’amplitude de l’onde sera maximum dans certaines directions 
privilégiées déterminées par des formules bien connues. C’est bien ce 
qu’ont établi les belles expériences de Davisson et Germer, puis celles 
de G. P. Thomson, de Rupp, de Ponte, de Kikuchi, etc. Ces expé 
riences, complétées en ig4o par les expériences de Borsch mettant en 
évidence la diffraction des électrons par le bord d’un écran, prouvent 
que l’intensité de l’onde associée donne bien en chaque point et à 
chaque instant la probabilité pour que l’électron manifeste sa présence 
en ce point à cet instant. Le principe des interférences, valable pour les 
photons, est donc aussi exact pour les électrons et nous sommes fondés 
à l’adopter d’une façon générale.

Nous allons préciser l’énoncé du principe des interférences. Tool 
d’abord, l’onde *F, solution d’une solution aux dérivées partielles 
linéaire, n’est définie qu’à une constante multiplicative complexe près 
et nous pouvons choisir le module de celte constante (le façon à avoir

(2) j'w*Wd-. = i,

l’intégrale étant, étendue à tout l’espace. Nous verrons tout à l’heure 
que, si cette condition est réalisée à un instant quelconque, elle reste 
ensuite toujours exacte en vertu môme de l’équation de propagation. 
On dit alors que la fonction ff1- est « normée ».

La fonction d’onde étant normée, nous énoncerons le principe des 
interférences en disant :

Soit ch un élément de volume de l'espace contenant le point de 
coordonnées x, y, s; la probabilité pour qu'une observation faite à



l’instant t permette de localiser le corpuscule à Vintérieur de cet 
élément de volume est

'f'O,y, <)T*(*>y, s, t)dt .
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La formule du normalisation du W signifie que la probabilité totale 
de toutes les. positions possibles du corpuscule est égale à i.

Nous sommes maintenant conduits à une image qui peut, servir à* se 
représenter la manière, dont évoluent au cours du temps les probabilités 
île localisation du corpuscule. En elïet, au cours du temps, la répar 
tition dans l’espace du WV* se modifie en général et, pour suivre ces 
modifications, il est commode d’imaginer un fluide fictif dont la densité 
à chaque instant et en chaque point serait donnée par l'expression

P(a?, y, 3, t) = ¥(a;, y, z, ()ï*(ï , y, z, t).

Par définition, nous attribuerons à ce lluide fictif un mouvement tel 
que sa vitesse au point x, y, ? à l’instant t soit donnée par la formule

v = ïëïïrT 7 h- (>r grad'I* — U’* gradT) = —— grady 
'l'1!1 4j c  ind 0 0

o étant rargumenl de *F. Nous allons démontrer que le lluide fictif ainsi 
défini se conserve en se déplaçant, c’est-à-dire que J"p dt demeure

constant au cours du temps. Nous aurons ainsi obtenu la preuve précé 
demment annoncée que, si la condition de normalisation (a) est satis 
faite à un instant initial, elle le reste toujours ensuite.

Pour obtenir la démonstration en question, nous partirons de l’équa 
tion de propagation (il et nous remarquerons que 'E* obéit à l’équation 
conjuguée

11*)
[\r.ini eàl" 

h àt

Multiplions ç 1 à par *E*. (1*) par W et relranclions, il vient 

\ir* ip _ y A»p* = Afiiü = ^,
f)t h àt

a ou

àl
àt 1 ~im 4 Kini/tmèàx\ àx àx j K r

grâce aux définitions adoptées pour 0 et pjur V.
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Le mouvement ilu fluide fictif de densité p et de vitesse V obéit doue 
;i l’équation

ào
jJ -t-div(pv) = o

appelée en hydrodynamique « équation de continuité ». Or celle, équa 
tion signifie qu’il n’y a, au cours du mouvement, ni apparition, ni 
disparition de fluide, en d’autres termes qu’il y a conservation de la 
quantité totale du fluide. Nous avons ainsi une image hydrodynamique 
du mouvement de la « probabilité de présence; » du corpuscule.

En réalité, le principe des interférences ne peut pas nous conduire à 
attribuer au corpuscule qui est associé à une onde connue, une posi 
tion bien déterminée. Il nous permet seulement d’évaluer la probabilité 
pour que, lors d’une localisation par l’observation, on trouve ses coor 
données comprises dans un certain intervalle. Là où la Dynamique 
classique nous parlait de valeurs bien définies des coordonnées à chaque 
instant, la nouvelle Mécanique nous fournit seulement des valeurs pos 
sibles avec une certaine répartition de probabilité entre ces valeurs à 
chaque instant. Nous apercevons déjà ici le caractère probabiliste de la 
nouvelle Mécanique, caractère que nous verrons s’accentuer au fur et à 
mesure que nous approfondirons davantage les conceptions de la nouvelle 
théorie.

3. Théorème d’Ehrenfest. —En nous servant encore du fluide fictif 
de probabilité que nous venons d’introduire, nous allons énoncer un 
théorème dû à P. Ehrenfest dont nous verrons bientôt l’importance.

Donnons d’abord une définition générait;. Considérons un train 
d’ondes occupant un domaine limité de l’espace et soit A une grandeur 
définie en chaque point de cette région (A est une fonction de point i. 
Nous appellerons « valeur moyenne de la grandeur A à l’instant t dans 
l’onde W » la quantité

T = f A PT- d-..

Le théorème d’Ehrenfesl s'énonce comme suit :

Le centre de gravité du fluide fictif de probabilité attaché à un 
corpuscule de masse m se déplace dans l'espace comme le ferait, 
d'après la Dynamique classique, un point matériel de tuasse ni 
soumis à la râleur moyenne de la force.
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Naturellement, nous définissons ici le centre de gravité du fluide fictif 
«le probabilité par ses trois coordonnées

«rTT* (h, y = J
En combinant les équations (1) et (1*), 011 parvient aux équations

/ </T.

m

ni

rn

d'1 x rl âS \
dt* =J \te)

d-y f (_ àw\
dt- J \ ày J

d*z _ Ç ! dV\
dt* ~J \ fc)

t t * dx = —

TT* dx = — 

TT* dx = -

dV 
àx ’ 

dV 
ày ’

dV 
àz '

ce «pii exprime le théorème d’Ehrenl’est.

4. Principe de décomposition spectrale ou principe de Born. — Nous 
avons trouvé un principe nous permettant d’évaluer la probabilité de 
localisation d’un corpuscule quand on connaît son onde T associée. 
Mais dans l’ancienne Mécanique, on admettait qu’il était possible 
d’attribuer à chaque instant à un corpuscule non seulement des coor 
données x, y. z, mais aussi un état de mouvement défini par une 
énergie E et une quantité de mouvement p = mV. Or jusqu’ici, dans 
la nouvelle Mécanique, nous n’avons défini qu’une probabilité de posi 
tion, nous n’avons pas parlé des étals de mouvement. Nous allons 
maintenant chercher à définir une probabilité des états de mouvement 
pour un corpuscule associé à une onde T connue.

Envisageons d’abord le cas simple de l’absence de champ. Nous avons 
trouvé en ce cas qu’au mouvement rectiligne et uniforme d’énergie E 
constante et de quantité de mouvement p également constante s’opérant 
«laits la direction de cosinus directeurs a, (3, v correspond l’onde

~ [ E« — v/î/nE ( a.r -+- fiy -4- Y-2) ]
T = A e ''

«le fréquence et «le longueur d’onde Celte onde représente donc
Ç

un état de mouvement bien déterminé, mais elle correspond, d’après le 
principe des interférences,, à une position entièrement indéterminée 
car, A étant une constante, l’intensité | T |-’= | A |- est la même en tous 
les points de l’espace. Nous commençons alors à apercevoir une diffé 
rence essentielle entre l’ancienne et la nouvelle Mécanique : tandis que 
l’ancienne Mécanique permettait toujours d’attribuer au corpuscule à la
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fois une position et un étal de mouvement bien délonninés, nous voyons 
déjà qu’en Mécanique ondulatoire, si l’état de mouvement est entière 
ment connu, la position est complètement indéterminée.

Mais c’est là un cas limite. En général, l’onde 'F sera formée par une 
superposition d’ondes planes monochromatiques constituant ce que l’on 
nomme en Optique classique un « train d’ondes » qui occupe une région 
limitée de l’espace à chaque instant, les composantes de Fourier se 
détruisant par interférences en dehors de cette région. Alors l’inten 
sité WF* n’est différente de zéro que dans la région occupée par le train 
d’ondes et la position du corpuscule se trouve mieux définie que dans 
le cas précédent. Mais il y a une contre-partie. Nous avons, en effet, 
fait correspondre à toute onde plane monochromatique de fréquence v 
et de longueur d’onde À un état de mouvement défini par l’énergie Er-/<v 
et par les composantes de quantité, de mouvement

h, h h
/^=ïy

Gomme un train d’ondes de dimensions finies comporte nécessairement 
une superposition d’ondes monochromatiques, nous ne pouvons plus 
attribuer au corpuscule associé à un tel train d’ondes un état de mouve 
ment bien défini. Ainsi, en passant du cas limite de l’onde plane mono 
chromatique au cas du train d’ondes de dimensions finies, nous voyons 
apparaître une incertitude sur l’état de mouvement.

Nous pouvons encore considérer le cas limite opposé à celui de l'onde 
plane, celui d’un « train d’ondes ponctuel », c’est-à-dire d’un train 
d’ondes de dimensions infiniment petites. En ce cas, la représentation 
de Fourier du train d’ondes comporte, ou le démontre, la superposition 
d’une infinité d’ondes planes monochromatiques ayant toutes les fré 
quences et toutes les directions de propagation. Alors, tandis que la 
position du corpuscule est parfaitement déterminée puisqu’on est certain 
de le voir se localiser au point occupé parle train d’ondes, par contre 
l’état de mouvement est entièrement indéterminé, toutes les grandeurs 
et toutes les orientations de la quantité de mouvement étant également 
probables. Donc mieux la position est définie, plus grande est l’incerti 
tude sur l’état de mouvement et inversement.

Précisons que, dans le cas d’un groupe d’ondes dont la longueur 
d’onde est à peu près bien définie, l’extension du groupe d’ondes dans 
l’espace est toujours grande par rapport à la longueur d’onde. Donc un 
corpuscule dont l’état de mouvement est à peu près bien défini est 
toujours non localisé dans l’espace à l’intérieur d’un domaine dont les
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dimensions sonl. grandes par rapport, à la longueur d’onde qui corres 
pond à sa quantité de mouvement.

Les considérations qui précédent sont nous conduire aux relations 
d’incertitude d’Heisenberg, mais, avant d’aborder cette question, il 
nous faut d’abord remarquer que, dans les raisonnements précédents, 
nous avons implicitement admis, à côté du principe des interférences, 
un deuxième principe que nous appellerons « le principe de décompo 
sition spectrale » ou « principe de Born » et qu’il est maintenant néces 
saire d’expliciter clairement. Nous bornant toujours pour l’instant au 
cas de l’absence de champ, nous énoncerons ce principe comme il 
suit :

Si l'onde T associée an corpuscule est formée par une superposi 
tion d'ondes planes monochromatiques, à chacune de ces ondes 
monochromatiques correspond un état de mouvement, possible du 
corpuscule, c’est-à-dire qu'une observation faite sur le corpuscule 
peut conduire à lui attribuer l'un de ces états de mouvement.

Mais on peut donner à ce principe un énoncé plus précis qui est dû à 
M. Born. Le voici :

Si l'onde 'I associée à un corpuscule est une somme d'un nombre 
fini cl'ondes planes monochromatiques formant un spectre dis 
continu, c'est-à-dire si l'on a

T= E, a, p)e"
- [E/ - v^2/«e  (a.r-4- (3)’ -1- \! 1 — a* — )]

K, «, F

la probabilité pour qu'une mesure conduise à attribue]4 au corpus 
cule le mouvement d:énergie K dans la direction a, (3, y est

u(E, a, ;i)«*(E, z, | fl(E, a, P) \*.

Si l'onde ’I" est la, somme d'un nombre infini d'ondes monochroma 
tiques formant un spectre continu, c'est-à-dire si l'on a

’E = Jjj «(E, a, p)e A
[e / - v'-imF.( er-.c + ■ + v'i — a» — p« = )]

rfEÆ d'i,

ta probabilité pour qu'une observation conduise à attribuer au cor 
puscule un mouvement d'énergie, comprise entre F. et E f Ali dans
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une direction correspondant aux intervalles angulaires ot -> 2 -j- A a. 
,3 -v j3 + A(3 est égale à

Plus brièvement, on peut dire que l’intensité de chaque composante 
spectrale mesure la probabilité de l’état de mouvement correspondant. 
On peut remarquer que ce principe est la transposition de celui qu’on 
admet en Optique suivant lequel l’intensité de l’onde monochromatique 
qu’un prisme tm un réseau permet d’extraire d’une onde incidente 
spectralement complexe est égale au carré de l’amplitude de la compo 
sante correspondante dans le développement de Fourier de l’onde 
incidente.

Nous venons d’énoncer le principe de décomposition spectrale dans 
le cas de l’absence de champ. Pour obtenir un énoncé plus complet, il 
est nécessaire de se placer à un point de vue plus général : on obtient 
alors une théorie générale précisant dans son ensemble l’interprétation 
probabiliste de la Mécanique ondulatoire et permettant de trouver la 
probabilité des valeurs possibles d’une grandeur mécanique quelconque 
attachée au corpuscule quand on connaît la forme de son onde ’F. C’est 
ce que nous verrons au chapitre XÏÏI.

o. Les relations d’incertitude d’Heisenberg. — La comparaison des 
deux principes que nous venons d’énoncer conduit aux relations 
d’incertitude d’Heisenberg.

Pour y parvenir, il suffit d’examiner d’un peu plus près la représen 
tation d’un train d’ondes limité, d’un « paquet d’ondes » comme dit 
Heisenberg, par une superposition d’ondes planes monochromatiques. 
Posons

E px a J'),m Ev = T j ;x .r =-- = —t-r------>h h h

py Pz y C2mE
= H = h ’ ^ ^ T = h ’

l’onde monochromatique caractérisée par les constantes E, a, 3 peut 
s’écrire

'F = A e2n,(v'-!i*r-tVr-S'1**).
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En « paquet d’ondes » sera donc représenté par une expression de la 
l’orme

>r = [JL,., p- ) eS7t'(Vi :v du.,: </uv </ïx Z:

formule dans laquelle v est considérée comme fonction de pT, pr, p-.. 
car on n

1 h*
/tv = K = —(pî-i-pl + /'!) = — (yl'+Pv+yl)-

Les coefficients a(pæ, pv, p.) sont en général complexes, car les 
diverses ondes monochromatiques du développement de Fourier pré 
sentent, en général, entre elles des différences de phase.

Le train d’ondes limité est engendré par la superposition d’ondes 
monochromatiques de telle façon qu’elles se détruisent par inter 
férences en dehors de la région occupée par le train cl’ondes. En 
étudiant la manière dont ceci peut se produire, on arrive, par des rai 
sonnements que je ne reproduirai pas, à la conclusion suivante : si Ax, 
Ay, Az désignent les dimensions du train d’ondes le long des trois axes 
rectangulaires, les ondes qui constituent le train d’ondes occupent 
nécessairement un domaine spectral défini par des intervalles Ap.,., 
Apv, Ap- tels que

AxApa^ir), Ay rh Az Apz^ t ),

■<) étant une quantité de l’ordre de l’unité. D’après les définitions de p.,.. 
y.,., pr, on peut donc aussi écrire en ordre de grandeur

Ax Ap.r^ h, AyApy ^h, Az Apz^. h.

d’elles sont les relations d’incertitude d’Heisenberg. Elles montrent 
qu’on ne peut jamais attribuer au corpuscule à un même instant une 
position et un état de mouvement parfaitement déterminés. Plus l’une 
des coordonnées est connue avec précision, plus la valeur de la compo 
sante conjuguée de quantité de mouvememt est incertaine et inver 
sement. Nous retrouvons ici sous une forme précise les considérations 
déjà esquissées au début du paragraphe 4.

6. Évolution de l’onde W. Rôle de la mesure. — Tandis que la Méca 
nique classique considérait le corpuscule comme un point bien localisé 
décrivant une trajectoire linéaire et qu’elle attribuait à tout instant à 
•toutes les grandeurs caractérisant ce mouvement une valeur parfaite 
ment déterminée, nous n’avons plus à notre disposition pour décrire le
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corpuscule cl scs manifestai ions observables qu'une (onction d’onde 
en principe complexe cl, en général, dill'éreiile de. zéro dans une 
région linie de l’espace. ('/est seuleinenl. dans b; cas limite des phéno 
mènes macroscopiques, quand certaines conditions sont réalisées, que 
l’on peut approximativement retomber sur le schéma de la Mécanique 
classique (voir le § 9 du présent Chapitre).

Il résulte des considérations précédentes que l’onde *F symbolise les 
diverses valeurs possibles des grandeurs attachées au corpuscule avec 
leurs probabilités respectives. Ainsi les valeurs possibles des coordon 
nées du corpuscule sont celles qui correspondent aux points de la région 
de l’espace occupée par l’onde 'F et les valeurs de 'F'F* en chaque point 
mesurent les probabilités des diverses localisations possibles. De même, 
les valeurs de l’énergie figurant dans la décomposition spectrale de 
l’onde lF sont les valeurs qu’une observation de mesure peut amener à 
attribuer à l’énergie et les quantités |«(E, et, (3) |- nous donnent les 
probabilités respectives de ces valeurs possibles. Chaque fois qu’une 
observation comportant mesure nous apporte à un instant tu un rensei 
gnement précis sur la position ou le mouvement d’un corpuscule, les 
probabilités se trouvent brusquement modifiées et, par suite, après la 
mesure, nous devons représenter l’état de nos connaissances par une 
nouvelle forme de l’onde W : c’est ce que M. llcisenberg a appelé « la 
réduction du paquet de probabilité ». Ainsi (pie MM. liolir et llcisenberg 
l’ont montré dans de fines analyses dont nous parlerons plus loin, chaque 
opération de mesure, chaque dispositif d’observation précise introduit, 
en raison même de l’existence du quantum d’aclion, une perturbation 
incontrôlable, de sorte qu’après la mesure il subsiste toujours des incer 
titudes qui satisfont aux relations d’Hcisenberg.

Après une mesure qui a fourni tous les renseignements compatibles 
avec les incertitudes d’Heiscnbcrg, l’état des probabilités est représenté 
par une nouvelle forme de l’onde 'F que nous dînons prendre comme 
donnée initiale. L'équation de propagation, qui est du premier ordre en l, 
permet alors de calculer l’évolution ultérieure de l’onde *F à partir de 
cette forme initiale et de dire quelle sera à une époque t postérieure 
à to la probabilité pour qu’une observation fournisse telle ou telle valeur 
pour une certaine grandeur attachée au corpuscule. Ainsi il y aura un 
déterminisme de l’évolution de la probabilité, mais celle évolution sera 
brusquement modifiée par toute nouvelle mesure provoquant une nou 
velle réduction du paquet de probabilité. Mais s’il y a encore détermi 
nisme de l’évolution des probabilités entre les mesures, il n’v a plus 
déterminisme strict des phénomènes observables eux-mêmes, ce qui
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semble conduire à abandonner l'idée traditionnelle de la stricte 
prévisibilité de tous les phénomènes naturels.

Revenons aux relations d’incertitude. En Mécanique' ondulatoire, 
nous admettons la possibilité de représenter l’état de nos connaissances 
sur un corpuscule après une mesure par une certaine onde 'F. Si ce 
postulat est exact, une mesure faite avec la plus grande précision pos 
sible ne doit pouvoir nous donner sur les valeurs des coordonnées et des 
composantes de la quantité de mouvement que des indications compa 
tibles avec les relations d’incertitude d’IIeisenberg. En d’autres termes, 
une mesure de la position doit introduire nécessairement sur la valeur 
de la quantité'de mouvement après la mesure une incertitude d’autant 
plus grande que la mesure de position est plus précise et, inversement, 
une mesure de quantité de mouvement doit introduire sur la position 
une incertitude d’autant plus grande que la mesure est plus précise. En 
effet, en analysant avec soin les expériences de mesure possibles, Bolir 
et Heist •nberg ont montré qu’il en est bien ainsi cl leurs raisonnements 
ont l’intérêt de prouver que ceci résulte de l’existence du quantum 
d’action. Des nombreux exemples qui ont été discutés, nous en résu 
merons seulement doux.

7. Le microscope d’Heisenberg. •— Ileisenberg a imaginé qu’on exa 
mine à l’aide d’un microscope un électron qui se déplace sur le porte- 
objet et qui est éclairé par en bas au moyen d’une radiation monochro 
matique de fréquence v {fig- 28).

Nous supposons le microscope corrigé de toutes les aberrations, mais 
il subsiste nécessairement les effets de diffraction. Ces effets de diffraction 
limitent le pouvoir séparateur du microscope : ils ont pour conséquence 
que, si un pbotoil diffusé par l’électron placé en O vient percer le plan 
image t : en un point P, l’impression produite en P par l’arrivée de ce 
photon 11e nous permet de déduire la position de l’électron sur l’axe 
des x qu’avec une incertitude au moins égale à

Sx = —t —• sins

C’est la lormule bien connue donnant le pouvoir séparateur d’un 
microscope. Nous pouvons essayer de diminuer cette incertitude en 
employant des faisceaux éclairants de plus petite longueur d’onde 
Mais, et c'est ici que le quantum d’action intervient d’une façon essen 

tielle, à la longueur d’onde ). correspond la quantité de mouvement y



CHAPITRE X.

pour le pliolon incident qui échange de la quantité de mouvement avec 
l’électron au moment de la diffusion. Plus nous prendrons une lumière 
de courte longueur d’onde pour éclairer l’électron, plus la quantité de 
mouvement cédée par le photon à l’électron au moment de la diffusion 
pourra devenir grande et plus, par suite, sera grande l’incertitude sur 
la valeur finale de la quantité de mouvement de l’électron.

Précisons ceci par le calcul. La diffusion s’effectue par un échange 
d’énergie et d’impulsion entre le photon et l’électron, par effet Complon. 
Si vx est la vitesse de l’électron le long de l’axe des x avant la diffusion 
et v'x sa vitesse après la diffusion et si, de plus, v' est la fréquence du 
photon diffusé, nous avons en écrivant la conservation de la quantité de 
mouvement totale projetée sur Ox

/iv' ,
mv.x =--- * *

I7<)

de Fréquence v 
Fig. 20.

a étant le cosinus directeur de la direction du photon après diffusion 
par rapport à Ox. Comme il est facile de montrer que v' diffère très peu 
de v, nous avons approximativement

Av hm vx — mvx —<x — — a — ■ r, /.

Or le photon diffusé, s’il est recueilli dans le. microscope, doit être 
dévié de moins de s de sa direction initiale. Les valeurs maxima et 
minima de a sont donc zL: sins et l’incertitude sur la quantité de mou 
vement de l’électron dans le sens Ox après la diffusion est donc au 
minimum (en supposant parfaitement connue la valeur initiale e., )

A0px = SI 11 Z — •
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D'où
X .h ,0161), = ---r— 2Sin£T — h.2 Slll £ X

(l est là un optimum et. si la mesure n’est, pas réalisée avec le maximum 
de précision, on aura

o.r 8h.

Nous retrouvons la celai ion d'incertitude dlleisenberg cl nous voyons 
bien ici son origine physique : elle provient de l’impossibilité de dimi 
nuer ~k sans augmenter la valeur % de la quantité de mouvement du

photon, c’est-à-dire le quantum de quantité de mouvement mis en jeu 
dans l’interaction de diffusion.

8. Passage d'un corpuscule à travers une fente percée dans un écran.
— Comme deuxième exemple, nous prendrons la détermination de la 
position d’un corpuscule par son passage à travers une ouverture percée 
dans un écran plan. Pour définir avec précision les coordonnées du

corpuscule dans le plan de l’écran quand il Lraverse l’ouverture, nous 
sommes évidemment amenés à prendre une ouverture très petite, mais 
plus nous prendrons l’ouverture petite, plus nous augmenterons les 
phénomènes de diffraction qui, d’après les idées de la Mécanique ondu 
latoire, doivent résulter du passage de l’onde associée à travers l’écran.

Pour développer les calculs, prenons le cas simple où le corpuscule 
incident tombe sur l’écran sous l’incidence normale et où l’ouverture 
percée dans l’écran est un rectangle. Nous prendrons le centre de cette 
ouverture comme origine des coordonnées, l’axe Oz étant normal au 
plan de l’écran et les côtés du rectangle parallèles à O a" et à O y ayant 
respectivement pour longueur a a et a b.

!.. DE BROGLIE. 12
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L’onde *L associée au corpuscule incident est de la tonne

270 [V/ .1 j
>r=A0 V '■).

Le passage à travers l’ouverture rectangulaire la transforme, comme 
nous l’apprend la théorie de la diffraction, en un groupe d’ondes de la 
lorme

./ a.rH- 3r-i- '{z \
a v >■ /

178

=^A(a, p) e avec a2-+- y-= 1.

Tais amplitudes partielles A (a, S) présentent en fonction de a et [3 des 
maxima et des minima bien connus dans la théorie de la diffraction en 
Optique. L’intensité des maxima successifs va rapidement en .décrois 
sant et les formules classiques de la théorie de la diffraction montrent 
que l’étendue de la diffraction à partir de Oî est mesurée dans le sens 
de variation de y. et dans le sens de variation de ,3 par

S[3 :
2 b

Si nous posons, comme précédemment,

_ “ _ P
>T.r— j-1 i-q — yi

nous aurons
Sa 1 SB 1

oyT = — ^ ---1 ojr, = -r- ^ —7 •
A 2 a - a 2 b

Or la position du corpuscule, lors de son passage dans l’ouverture rec 
tangulaire, est définie avec des incertitudes àx et oy qui ont évidemment 
pour valeurs

Sx = 2 «, oy = 2 h.

On a donc finalement

8px 8;r = h 8ur Sx ' , h, opy oy = h 3irr oy - - h.

Cet. exemple montre très clairement comment le caractère ondulatoire 
des corpuscules a pour conséquence d’empêcher une mesure simultanée 
précise des coordonnées et des quantités de mouvement.

De nombreux autres exemples ont été discutés en détail et il ne paraît 
pas douteux que la mesure simultanée d’une coordonnée et de la com 
posante conjuguée de la quantité de mouvement fasse toujours appa 
raître les incertitudes d’Hoisenberg.
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!b Le raccord avec la Mécanique classique. ---- Il est essentiel de
comprendre pourquoi les corpuscules et, les corps plus pesants, quand 
on observe leur mouvement, à noire échelle macroscopique, paraissent 
suivre les lois de la Mécanique classique. Les corpuscules matériels (et 
n fortiori les corps de plus grande masse) ont toujours dans les condi 
tions usuelles des longueurs d’onde très petites, intérieures à 10 " cm. 
Il en résulte deux conséquences importantes. D’aliord dans les phéno 
mènes mécaniques observables à notre échelle, les champs sont toujours 
sensiblement, constants dans des domaines de l’ordre de la longueur 
d’onde; ensuite nous pouvons concevoir une région de l'espace qui 
contiennes un grand nombre de longueurs d’onde et qui ail cependant 
des dimensions inférieures à ce que nous pouvons mesurer directement. 
Une observation du corpuscule. peut donc alors nous permettre de 
représenter l’état du corpuscule par un groupe d’ondes presque mono 
chromatique de dimensions négligeables à notre échelle et comprenant 
néanmoins un grand nombre de longueurs d’onde. Nous pouvons donc 
dire qu’il est, possible d’attribuer au corpuscule un mouvement bien 
défini et, en même temps, de bien le localiser à notre échelle. Le lluidc 
de probabilité forme, en ce cas une sorte de petit globule de dimensions 
négligeables à l’intérieur duquel la force-grlfd V peut être considérée 
comme constante. Puisque le globule se confond sensiblement avec son 
centre de gravité, il résulte alors du théorème d’Ehrenfest que ce globule 
se meut comme un point matériel ayant la masse du corpuscule et obéis 
sant aux lois de la Mécanique classique. Or le corpuscule ne peut mani 
fester sa présence qu’en un des points intérieurs au globule et, comme 
ces points sont pratiquement indiscernables, tobt, se passe donc comme 
si le corpuscule se déplaçait suivant les lois de la Mécanique classique. 
A l’échelle macroscopique, à cause de l’imperfection de nos sens, nous 
aurons l’illusion qu’il est possible do définir à la fois la position elle 
mouvement du corpuscule et ceci explique pourquoi dans les expé 
riences macroscopiques où nous observons le mouvement d’un cor 
puscule (par exemple l’électron dans les expériences du type Villard ou 
dans la chambre de Wilson), les lois de la Mécanique classique sont 
praticjuement valables.

Nous pouvons encore présenter ces idées en nous figurant la propa 
gation des ondes W dans le champ de force. Nous sommes ici dans le 
cas où l’approximation de l’Optique géométrique est valable et. nous 
pouvons employer la notion de rayon. Nous pouvons donc envisager un 
pinceau de rayons extrêmement délié-et un groupe d’ondes de dimen 
sions très supérieures à la longueur d’onde et cependant, sensiblement



ponctuel pour nos observations macroscopiques qui décrivent le pinceau 
de rayons.

D’après le théorème sur la vitesse de groupe, le petit groupe d’ondes 
se déplace le long du pinceau de rayons avec précisément la vitesse que 
la Mécanique classique attribuerait au point matériel qui décrirait un 
des rayons du pinceau assimilé à une trajectoire. On voit donc que tout 
se passe à notre échelle comme si le corpuscule décrivait avec la vitesse 
classique l’un des rayons-trajectoires et cette image est particulièrement 
intuitive.

Les considérations qui précèdent permettent d’eflectuer le raccord

l8o CHAPITRE X. LA SIGNIFICATION PHYSIQUE DE LA MÉCANIQUE ONDULATOIRE.

entre les conceptions de l’ancienne Mécanique et celles 'de la nouvelle 
et d’expliquer le succès, de la Mécanique classique pour l’explication 
des phénomènes macroscopiques.
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CHAPITRE XI.
APPLICATION DE LA MÉCANIQUE ONDULATOIRE 

A LA QUANTIFICATION.

I. Première interprétation de la quantification par la Mécanique 
ondulatoire. — Nous avons vu précédemment Planck introduire tant 
bien que mal dans le cadre des théories classiques l’idée de quantifi 
cation : nous avons étudié la forme des règles de quantification dans 
l’ancienne théorie des Quanta et constaté leurs fréquents succès. Dès 
son apparition [1, p. 180J, la Mécanique ondulatoire a permis 
d’apercevoir le véritable sens des règles de quantification.

Considérons un corpuscule qui décrit une trajectoire fermée dans un 
champ permanent : l’ancienne règle de quantification peut s’énoncer en 
disant que l’intégrale d’action maupertuisienne

Çmv ds = J' ^V/n- dqk

prise le long de la trajectoire fermée est égale à un multiple entier 
de h, ce qui peut s’écrire

(1) jr®<a?Si=/i (n entier),

étant la fonction de Jacobi raccourcie définie précédemment. Or. 
d’après la Mécanique ondulatoire, lorsque l’Optique géométrique est 
valable pour la propagation de l’onde associée au corpuscule, celle-ci a 
la forme

'F = a(x, y,
^-‘[Eï-S,s)]

z) e n

La condition (1) exprime alors que la fonction d’onde W est uniforme 
le long do la trajectoire, c’est-à-dire qu’elle reprend la même valeur
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quand on a décrit la trajectoire entière. La condition de quantification 
apparaît alors comme une condition de résonance, faisant intervenir 
un nombre entier comme cela est usuel pour une condition de ce genre. 
Ainsi se trouve expliquée l’apparition des nombres entiers dans les 
formules de quantification, apparition que les idées de la Mécanique 
classique ne permettaient aucunement de comprendre. Les conditions 
de quanta de Wilson-Sommerfeld pour les mouvements quasipério- 
diques peuvent s’interpréter d’une façon analogue.

L’interprétation des anciennes conditions de quantification que nous 
venons de donner explique bien la nature profonde de ces conditions et 
fait comprendre pourquoi, dans le cadre de la Mécanique classique 
encore utilisé par l’ancienne théorie des Quanta, on devrait être amené 
à les adopter. Mais elles sont liées à l’emploi de la Mécanique classique, 
c’est-à-dire, nous le savons maintenant, à la validité, pour la propagation 
de l’onde W, de l’approximation de l’Optique géométrique. Or, quand 
on considère la quantification des systèmes à l’échelle atomique, les 
états quant ifiés à petits nombres de quanta correspondent à des condi 
tions où l’Optique géométrique n’est plus valable et.ee sont justement 
ces états qui sont les plus intéressants à étudier parce qu’ils sont les 
plus fréquemment réalisés dans les systèmes quantifiés de l’échelle 
atomique.

Pour nous rendre compte de la non-validité de l’Optique géométrique 
dans le cas des états à petits nombres quantiques, rappelons d’abord 
les relations

S i = /( 91,

qui nous donnent

en appelant v la variable comptée le long de la trajectoire normalement 
aux surfaces S4 = eonst. La condition de quantification ( il s'écrit alors

a I
h f§''•=/

r/s L , L 
— )

1. désignant la longueur Lola le de la trajectoire et /. une sorte de longueur 
d’onde-moyenne le long de la trajectoire définie par les relations précé 
dentes. On a donc

f. = n >.



APPLICATION DE LA MÉCANIQUE ONDULATOIRE A LA QUANTIFICATION. 83

et, quand n est petit, on voit que la longueur totale de la trajectoire 
fermée est de l’ordre de !.. Connue le champ varie nécessairement 
beaucoup dans le domaine occupé par la trajectoire fermée, on voit que 
dans ce domaine l’indice n relatif aux ondes W va varier beaucoup et 
que, par suite, l’approximation de l’Optique géométrique n’j sera pas 
valable pour la propagation de ces ondes. Dans ce cas, le plus intéressant, 
où n est petit, la justification donnée plus haut des anciennes formules 
de quantification n’est plus vatable.

M. Schrôdinger qui a, le premier, attiré l’attention sur ce fait, en a 
conclu que, bien que les ancie'nnes conditions de quanta reçoivent de 
la Mécanique ondulatoire une interprétation intuitive simple, il est 
cependant nécessaire de reprendre en Mécanique ondulatoire toute 
la théorie de la quantification sur une base nouvelle.

2. La théorie de la quantification en Mécanique ondulatoire. — En
Mécanique ondulatoire, on doit toujours partir de l’équation de propa 
gation des ondes qui remplace entièrement les équations du mouve 
ment de la Mécanique classique. Dans le cas des systèmes quantifiables 
qui sont toujours conservatifs, nous pouvons écrire l’équation d’ondes 
sous la forme de Schrôdinger

Aip+ V(.r.y, 3)]V=o

et nous ferons correspondre aux états stationnaires au sens de llohr des 
ondes stationnaires de la forme

Ke
= a(x, r, :) e "

la fonction a ( .r. y. ) généralement complexe ('tant solution de 
l’équation

, 8 Jt - m r,, „.,(2) /.M'-- [h — V-(x, y. e)) a = o.

Conformément à la méthode employée dans la théorie générale des 
ondes pour la détermination des ondes stationnaires, la nouvelle méthode 
de quantification consistera à chercher pour quelles valeurs de la cons 
tante E, l’équation précédente admet une solution a(x, y, z) finit, 
uniforme, continue et satisfaisant à certaines conditions aux
limites, ce qui fournira les tréquciiecs ?'■ des ondes T stationnaires qui
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sont possibles dans le système atomique et qui correspondront aux étals 
quantifiés.

Cette détermination des « vibrations propres » est un problème bien 
connu en Physique classique. Donnons-en quelques exemples.

Soit une corde élastique homogène tendue le long de l’axe des x et 
fixée aux points extrêmes x — o et x = l. Les vibrations transversales 
dont la corde est susceptible doivent satisfaire à l’équation de d’Alembert

(3)
i () - 9 à1 o

V - dt- (tr 

ia fonction t) représentant l’élongation d’un point de la corde
dans le sens perpendiculaire à sa longueur et V une constante dépendant 
de l’élasticité et de la masse spécifique de la corde vibrante. Pour trouver 
les vibrations propres de la corde, on considérera une solution mono 
chromatique stationnaire de la forme

9(x, t) = a(x)e-*N‘, '^=—4*2^9

et l'équation (3) prendra la forme

dla lix-'t-
-rrr + -rrr- « = <>■

Le problème de la détermination des vibrations propres nous amène 
à chercher pour quelle valeur de la constante v, il existe une solution 
finie, uniforme et continue de l’équation précédente qui s’annule en x =|o

yet en x = l. En posant 1 — -> on trouve que les fréquences propres v„
doivent être telles que

V il ou

la solution correspondante étant

, , • zxx ■ nnxan(x) = sin —— = sm —7—, Kn 1 9n(x, t) = C sin nKf X e2~/v»(.

J^es fonctions an ( ou o„) possèdent des propriétés importantes que l'on 
retrouve dans tous les problèmes plus compliqués du même genre. 
D’abord l’on a

"n <>m dx = o pour n / m

comme on le vérifie aisément. Cette relation exprime que les « fonctions 
propres » an sont « orthogonales » entre elles. De plus, un état quel 
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conque cp(a?, t) de la corde vibrante peut se représenter par une 
superposition de vibrations propres sous la forme

?0, O =2(c„on(.r, t).
n

les c„ étant des coefficients constants convenablement choisis. Les a„ 
et cp„ étant dans cet exemple? simple des fonctions trigonométriques de x. 
les propriétés précédentes résultent immédiatement de la théorie des 
séries de Fourier.

Un problème un peu plus compliqué est celui des vibrations d’une 
membrane élastique homogène tendue sur un cadre plan de forme 
donnée (carré, rectangle, cercle, etc.) et fixée à ce cadre sur soir pour 
tour. L’équation de d’Alemhert prend alors la forme

d- o d- 9 i d2 9 
dx- "+" dy1 V2 dt1 ’

<p(X, y, t) étant le déplacement d’un point de la membrane vibrante 
normalement à son plan d’équilibre et \ une constante qui dépend de 
l’élasticité et de la masse spécifique de la membrane. Pour une solution 
monochromatique stationnaire

ÿ (x , y, t) = a(x, » ) eS7Iivé

on aura
d'1a d'1 a v 2
dx- "+" ày* V*

el la détermination des vibrations propres de la membrane consistera 
à rechercher les valeurs de v pour lesquelles l’équation précédente admet 
une solution a(x, y) finie, continue el uniforme dans le domaine des 
variations de x et de y et s’annulant aux limites de ce domaine sur le 
pourtour du cadre. On constate que les fonctions propres (qui dépendent 
naturellement de la forme du cadre) sont orthogonales entre elles et que 
toute vibration de la membrane peut se représenter par une super 
position, avec coefficients convenablement choisis, de vibrations propres.

On peut envisager en Physique classique des problèmes plus com 
pliqués en imposant à la fonction d’onde d’autres conditions que de 
s’annuler aux limites, par exemple en imposant !à sa dérivée normale 
d’èlre nulle aux limites. On peut aussi supposer que la vitesse V varie à 
l’intérieur du domaine. Tous ces problèmes sont classiques en Élasticité, 
en Optique, en Hydrodynamique et en É1 ectromagnétisme, notamment 
dans la théorie des antennes de T. S. F.
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Revenons mainlenanl à la Mécanique ondulatoire et à Inéquation (2). 
Nous avons pour la détermination dos ondes stationnaires un problème 
analogue à ceux que nous venons de traiter, mais rendu compliqué par 
le fait que le coefficient de a(x, y, :■) dans (2) est une fonction de x, 
y, On a ici l’analogue à trois dimensions du cas des cordes ou mem 
branes non homogènes où la vitesse Y varie d’un point à un autre du 
domaine. Il est cependant facile de voir comment on doit définir le 
problème de la détermination des fréquences propres et des vibrations 
propres dans le cas de l’équation (2). Tout d’abord, il est naturel 
d’admettre, comme dans les problèmes analogues de la théorie des 
ondes, que la fonction a doit être continue et uniforme. Il faut aussi 
qu’elle soit finie dans tout le domaine occupé par l’onde pour que la 
densité de probabilité de présence WlF*= | a |- soit finie en tout point. 
Enfin si l’onde ne peut occuper qu’une région finie de l’espace hors de 
laquelle le corpuscule ne peut, se trouver, nous admettrons que a doit 
s’annuler aux limites de ce domaine de façon que 1E'F* soit nul en 
dehors; si, au contraire, l’onde peut occuper l'espace entier, il faudra 
que a décroisse suffisamment rapidement à l’infini pour que l’intégrale

de normalisation f\v |2 dz = ^f\a j" di soit convergente.

Tel est l’ensemble des conditions que nous imposons à l’onde 'F 
stationnaire et qui doivent nous permettre de calculer les énergies des 
états quantifiés.

3. Définition générale et propriétés des valeurs et fonctions propres.— 
Pour mieux dominer la question, nous allons donner la définition 
générale et les propriétés des valeurs et fonctions propres d’une 
équation du type (2).

On peut démontrer qu'une équation aux dérivées partielles du type (2) 
ne peut admettre, dans le domaine D de variation des variables, de 
solution finie, uniforme, continue et nulle aux limites de D que pour 
certaines valeurs E1; E2, . . ., E, , ... de la constante E. Ces valeurs 
particulières sont appelées les « valeurs propres » de l’équation aux 
dérivées partielles. En général, à chaque valeur propre E,-, correspond 
une seule solution finie, uniforme, continue et nulle aux limites de D : 
c’est la fonction propre «,• correspondante. Il peut néanmoins arriver 
quç plusieurs fonctions propres correspondent à une même valeur 
propre qui est alors dite « dégénérée ».

Les valeurs propres de l’équation (2) forment en général une suite 
discontinue. Toutefois, il faut faire à ce sujet une remarque importante. 
Dans les problèmes de quantification, le domaine D est très fréquent-



menl infini : par exemple, pour un corpuscule non soumis à des liaisons, 
il comprend en principe tout l’espace. Or dans ce cas, on 11e peut affir 
mer que les valeurs propres forment une suite discontinue : une partie 
au moins des valeurs propres peut former une suite continue. O11 
appelle « spectre » d’une équation telle que (a) l’ensemble de ces valeurs 
propres. Si le domaine D est fini, le spectre est toujours discontinu et 
l’on dit que l’on a affaire à un « spectre de raies ». Si le domaine est 
infini, on peut avoir un « spectre continu ». Au point de vue mathéma 
tique, l’étude des spectres continus est beaucoup plus délicate que celle 
des spectres de raies.

Les fonctions propres de l’équation (2) peuvent être complexes. E11 
particulier, elles ne sont déterminées qu’à une constante multiplicative 
complexe près puisque (a ) est linéaire. On peut toujours choisir (du 
moins pour les spectres de raies) le module de cette constante arbitraire 
de façon à avoir

Ça* <<i th = j | ai j- ch = 1.
■-11 ■'11

O11 dit alors que les fonctions propres sont normées. La normalisation 
11e fixant que le module de la constante arbitraire, les fonctions propres 
normées contiennent encore un facteur arbitraire de la forme etx.

Les fonctions propres de l’équation forment une famille de fonctions 
orthogonales. Plus précisément, si E* et Ey sont deux valeurs propres 
différentes, les fonctions propres a, et a, correspondantes satisfont à la 
relation
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Nous démontrerons ce théorème dans le chapitre XII. La démons 
tration 11e s’applique que si E,- et Ey sont inégales. Dans le cas d’une 
valeur propre dégénérée, deux fonctions propres correspondant à cette 
même valeur propre ne sont pas nécessairement orthogonales. Mais 
dans ce cas il y a une indétermination des fonctions propres car toute 
combinaison linéaire de fonctions propres correspondant à E,- est encore 
une fonction propre correspondant à E,-. En prenant comme nouvelles 
fonctions propres des combinaisons linéaires convenablement choisies 
des anciennes, on peut s’arranger pour que les nouvelles fonctions 
propres soient orthogonales et, si l’on opère ainsi pour toutes les valeurs 
propres dégénérées, l’ensemble de toutes les fonctions propres sera bien 
orthogonal.

En introduisant le svmbole de kronecker o,-y égal à 1 si i = j et à o
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si i j, on peut écrire pour l’ensemble « orthonormal » des fonctions m 
orthogonales et normées

«-'d

— «i
et, par suite, pour les ondes stationnaires V,-= me h

Il faut remarquer que les formules d’orthogonalité et de normalisation 
précédentes ne sont valables que pour les spectres de raies. Leur exten 
sion aux spectres continus exige des considérations délicates que nous 
n’aborderons pas ici.

Les fonctions propres a-, forment un « système complet», c’est-à-dire 
que sous des conditions très générales, une fonction quelconque ®(x,y,z) 
définie dans le domaine D peut se développer sous la forme

les a étant des constantes convenablement choisies. Nous aurons à 
revenir sur ce résultat qui généralise celui que nous avions rencontré 
pour les cordes et membranes vibrantes.

Nous allons maintenant étudier la quantification, par la méthode 
nouvelle de la mécanique ondulatoire, d’un certain nombre de systèmes 
importants pour la Physique atomique.

4. Le rotateur plan. — Par définition, le rotateur plan sera constitué 
par un corpuscule de masse m assujetti à rester sur un cercle de rayon R. 
La position du corpuscule est définie par l’angle au centre G et, comme 
V = o, l’équation (a) se réduit ici à

soit, en introduisant le moment d’inertie I = /nR- du rotateur

dïa 8 ït 2 I
—rrr -I-----7— ta = O,

équation dont l’intégrale générale est

a(0) = A e
Mx^iO+t.)

avec deux constantes arbitraires A et B.



Pour qu’une intégrale de cette forme soit fonction propre, il faut 
qu’elle soit uniforme sur le cercle de rayon R qui forme ici le domaine D. 
Il faut donc que, quand 0 augmente de 9-.it, l’exponentielle dans a(0) 
reprenne la même valeur, ce qui donne les valeurs propres

n-h?
(4) En==,8^7 (* = 0,1,2,...).

Telles sont les énergies des états stationnaires.
L’ancienne théorie des Quanta écrivait que le moment de quantité de

mouvement 1 -y- était égal a « — et en tirait rit n 23r

i./rf6y i Inhy n*h.t 
"n 2 \ fit ) 2t\2 3E/ 83Cs1

et obtenait donc dans ce cas le même résultat que la Mécanique ondu 
latoire.

Les fonctions propres normées sont ici
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et comme

«„(()) = -4=e±'"°e'11
y/a 3t

I ei(n-m)0 rfQ — o si n pé m,

on vérifie tout de suite l’orthogonalité des a„. L’onde stationnaire T,,(9, t)
VLiE„,

s’obtient en multipliant an( 0) par e ll ' .
On remarquera encore que toutes les valeurs propres, sauf E0, sont 

dégénérées car il y a deux fonctions propres par valeur propre. On peut 
d’ailleurs remplacer les fonctions propres complexes données par des 
fonctions propres réelles en sin/iQ et c o smO qui en sont des combinaisons 
linéaires.

Au point de vue physique, le problème du rotateur plan peut paraître 
soulever une difficulté, car on imagine mal comment une onde peut être 
assujettie à se propager le long d’une ligne. La difficulté provient du fait 
(pie le problème est un peu trop schématisé. En réalité, le corpuscule 
du rotateur est soumis à une liaison qui doit s’exprimer physiquement 
de la façon suivante : il est rappelé vers le cercle de rayon R par des 
forces qui croissent extrêmement rapidement s’il s’écarte sensiblement 
de ce cercle. La fonction potentiel est donc nulle sur le cercle et croît 
Irès rapidement quand on s’éloigne tant soit peu du cercle. Si l’on traite 
le problème de cette façon, l’on voit que l’onde se propage dans un 
tube centré sur le cercle, son amplitude décroissant très rapidement
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dès que l’on s’éloigne de l’axe du tube, ce qui du point de vue de la 
Mécanique ondulatoire signifie que le corpuscule a une très faible chance 
de s’éloigner tant soit peu du cercle. Si l’on fait croître indéfiniment 
l’intensité de la force de rappel, on obtient à la limite le problème traité 
où l’onde W n’est différente de zéro que sur le cercle.

â. Le rotateur sphérique. — Par définition, le rotateur sphérique est 
constitué par un corpuscule de masse m assujetti à se déplacer sur la 
surface d’une sphère de rayon R.

Il y a ici une première remarque à faire qui est intéressante parce 
qu’elle montre bien la différence entre la Mécanique ancienne et la 
Mécanique ondulatoire. Dans l’ancienne Mécanique, le problème du 
rotateur sphérique ne différait pas de celui du rotateur plan parce qu’un 
point matériel assujetti à rester sur une sphère de rayon R sans subir 
aucune force extérieure devait se déplacer suivant une géodésique de 
la sphère, c’est-à-dire suivant un cercle de rayon R. En Mécanique 
ondulatoire, au contraire, les deux problèmes sont tout à fait distincts 
car, le corpuscule du rotateur sphérique pouvant se mouvoir sur toute la 
sphère, son onde V explore toute la surface de cette sphère qui forme 
le domaine D ici à deux dimensions.

Écrivons l’équation (2) en coordonnées sphériques 0 et o avec Y =0. 
Il vient

à1 a 
8 ùs- K2 sinO rfO (Si,,6ï) 8 t u  2 m ,

~~hT

Posons

K = 8 TC2
h’! m R - !■ 8 n-1 

h-

1 étant le moment d’inertie du rotateur sphérique. Nous pouvons donc 
écrire

1 à'1 a 1 à /.. àa\ ,.
■ ■ ,n TT -+- --T -.5 ( si 11 0 — ) -+- Ka = o sm-0 sin 0 éfl \ m /

et il faut chercher pour quelles valeurs de lv il existe au moins une 
solution finie, continue et uniforme sur la sphère, c’est-à-dire dans le 
domaine D défini par les inégalités o ^ cp ^ ir, o ^ Q ^ r..

Nous donnerons ici le résultat de la recherche des valeurs et des 
fonctions propres sans indiquer comment elle s’effectue. Les valeurs 
propres sont données par la formule

K = />( k -+-1) (k = <>, 1, 2,
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ce qui donne pour les énergies des états stationnaires 

(.->) lin = *(*-+-1) (k = o, i, ■?., . . .).

Les fonctions propres correspondantes sont les fonctions sphériques 
de Laplacc Y*(0, <p). Dans la théorie de ces fonctions, on démontre que, 
pour chaque valeur de k, il y a a/r + i fonctions sphériques distinctes 
linéairement indépendantes qui ont pour expression

Y”‘(0, 9) = e±i'"c?I>'/“(cos0) (m — o, 1, k),

où les P“(cosO) sont des polynômes en cos 9 nommés « polyuomes de 
Legendre associés » qui s’expriment eux-mêmes en fonction des poly 
nômes de Legendre usuels par

m
P™(cosfl) = ( sin 6)! <Y"lP*(cos0)

( d. cos 0 )m ,

où P/,(cosO) est le kiimv polynôme de Legendre.
Finalement à la valeur propre E*, correspondent les a/f + 1 fonctions 

propres indépendantes

h ?) = e±*"lPPjf,(cos0) {k = o, 1,2, .. .; m = o, 1,2, .... k).

Toutes les valeurs propres, excepté E0, sont donc dégénérées et la 
dégénérescence augmente avec l’ordre k de la valeur propre. O11 peut 
démontrer que l’on obtient ainsi toutes les fonctions propres et que 
celles-ci forment un système complet et orthogonal. Si l’on veut qu’elles 
soient normées, il faut multiplier a*m par le facteur de normalisa 

is (k m)\lion 2A: -a- 1 (k — m) !
Pour obtenir l’onde stationnaire *P/,m(0, cp, t) qui correspond

àrt/,m(0, cp), on multipliera «*,„(0, cp) par 0 u
Comparons maintenant les valeurs propres ainsi obtenues avec celles 

que fournissait l’ancienne théorie des Quanta. Celle-ci nous donnait 
évidemment, d’après la remarque faite au début du paragraphe, pour 
le rotateur sphérique comme pour le rotateur plan les énergies quan 
tifiées (4) qui diffèrent tic (5) sauf pour les valeurs très élevées de k. 
Mais, pour calculer les raies spectrales par la règle de Bohr, nous avons 
à former les différences

K* - E*.= _hl_ k( k ■+■ 11 — /,- ( k' -+-1)] — g— j ^f+-j — (^k’ -+-



192 CHAPITRE XI.

Tout se passe (Jonc comme si l’ancienne formule (4) était valable, mais 

avec des nombres quantiques demi-entiers •••• Or

précisément, lors de l’application des anciennes règles de quanta au 
rotateur sphérique (par exemple dans la théorie des spectres de bandes), 
on avait été conduit, pour obtenir une bonne concordance avec l’expé 
rience, à admettre des valeurs demi-entières de celte forme pour les 
nombres quantiques et l’on parlait alors de « demi-quanta ». Cette hypo 
thèse, entièrement arbitraire dans l’ancienne théorie des Quanta, trouve 
ici son explication.

Bien entendu, au point de vue physique, on doit supposer que le 
corpuscule du rotateur sphérique peut en principe s’écarter de la sphère 
de rayon R, mais qu’il est rappelé vers la surface de cette sphère, dès 
qu’il s’en écarte, par une force de liaison très intense. L’onde T' se 
propage dans une mince couche sphérique centrée sur la sphère de 
rayon R, son amplitude décroissante rapidement quand on s’éloigne de 
cette sphère. L’épaisseur de la couche tend vers zéro et nous retrouvons 
le problème traité ci-dessus quand la force de liaison croît indéfiniment.

0. L’oscillateur harmonique. — Nous allons maintenant appliquer 
la nouvelle méthode de quantification à l’oscillateur linéaire harmo 
nique qui a servi, nous l’avons vu, de point de départ aux recherches 
de Planck sur les Quanta.

Par définition, l’oscillateur linéaire harmonique est constitué par un 
corpuscule de masse m assujetti à se mouvoir sur un axe rectiligne Ox 
en étant rappelé vers un point de cette droite par une force proportion 
nelle à la distance. Le centre de force étant pris pour origine de la 
coordonnée x. la fonction potentiel est

V(*) = K — ,
2

R mesure l’intensité de la force de rappel à l’unité de distance de 
l’origine. En Mécanique classique, l’oscillateur a une fréquence d’oscil 
lation mécanique indépendante de son énergie et égale à

L’équation i :i î s'écrit ici



et il faut chercher pour quelles valeurs de E cette équation admet au 
moins une solution a(x) finie, uniforme, continue et nulle à l’infini du 
domaine formé par l’axe des x tout entier.

Par des raisonnements que nous n’exposons pas, on trouve comme 
valeurs propres

(0) E+ (* = °’i>3> •'•)’

alors que l’ancienne théorie des Quanta donnait

(6') E* =/,/iw.

Cette divergence entre l’ancienne et la nouvelle théorie est très remar 
quable. Ici encore la comparaison de l’ancienne formule de quantifi 
cation avec l’expérience avait conduit à prendre dans (6') le nombre

quantique k égal à un demi-entier ^ce qui était en contra 

diction avec la base même de l’ancienne méthode de quantification. 
La nouvelle méthode, en fournissant la formule (6), a levé la difficulté.

La fonction propre normée correspondant à E/- s’exprime par la 
formule
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où H* est un polynôme de degré k, le klom° polynôme d’IIermite. Les 
polynômes d’Hermite sont définis d’une façon générale par la relation

et satisfont à l’équation différentielle

d1 IL 
dq- 2 q

dllk
dq -+- a ÆH* = o

ainsi qu’aux relations de récurrence

H'*(ÿ) = 2A-H*_,(<7), H*+i(ÿ)— iqUk{q) ■+■ 2Â:H*_i(î) = o .

Leur étude est classique en Analyse.
Pour obtenir la Al6mc onde stationnaire t), il suffit de multiplier

la fonction propre a/;(x) par le facteur e h
Ici, il n’y a pas de dégénérescence. Il y en aurait, au contraire, si l’on 

considérait l’oscillateur harmonique isotrope À deux ou trois dimensions.
L. DE BROGLIK. 13
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c'est-à-dire le cas d’un corpuscule se mouvant dans un plan ou dans 
l’espace en étant rappelé vers un centre fixe par une force proportion 
nelle à l'élongation. On peut aussi considérer le problème plus compliqué 
d’un oscillateur harmonique à trois dimensions non isotrope pour 
lequel la force de rappel, proportionnelle à l’élongation, dépend de la 
direction de l’élongation et le problème, plus compliqué encore, de 
l'oscillateur non harmonique pour lequel la force de rappel n’est plus 
une fonction rigoureusement linéaire de l’élongation. Tous ces cas ont 
été étudiés, mais nous ne pouvons nous y arrêter ici.

7. L’atome d’hydrogène. — L’atome d’hydrogène est formé d’un 
noyau de charge + e et d’un électron-planète de. charge —e. Le noyau 
étant beaucoup plus lourd que l’électron, on peut le regarder, en 
première approximation, comme restant immobile et étudier le mouve 
ment de l’électron de masse m0 et de charge — e dans le champ coulom-

bien du noyau dérivant du potentiel électrostatique - ■ On a alors V=------
et l’équation (2) s’écrit

A« -+-
871 -m.o /
~Ür~\E + e2

r
a = o.

Nous devons chercher pour quelles valeurs dcE, cette équation admet 
au moins une solution finie, uniforme et continue dans tout l’espace et 
s’annulant à l’infini. Le domaine D comprend tout l’espace et si l’on 
prend, comme il est naturel ici, des coordonnées sphériques autour du 
noyau, il est défini par les inégalités

o Z r -A x, o ^ r ~ 2 71 ■> o ^ () z

On peut trouver les valeurs et fonctions propres, soit par des méthodes 
empruntées à la théorie des fonctions analytiques, comme l’a fait 
M. Schrôdinger, soit par d’autres méthodes et notamment des dévelop 
pements en série (Sommerfeld). On trouve pour les valeurs propres

(7)
2 7t2moe4 

ri-h- (n = 1, 2, 3, . . .).

Ce sont les énergies des états stationnaires de l’atome d’hydrogène : 
elles coïncident avec celles trouvées par Bohr à l’aide de l’ancienne 
théorie des Quanta. Mais ici ces valeurs propres ne sont pas les seules, 
car on trouve aussi que toutes les valeurs positives de E sont valeurs 
propres. Il y a donc un spectre discontinu formé de valeurs négatives 
de E qui se serrent de plus en plus vers la valeur E = o, puis un spectre
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continu comprenant toutes les valeurs positives de E. Les valeurs propres 
positives correspondent aux mouvements hyperboliques de l’électron 
venant passer près du noyau et s’en éloignant ensuite. Les véritables 
états stationnaires correspondent aux valeurs propres négatives qui ont 
les valeurs calculées par Bohr. Ici la nouvelle méthode ne change rien 
aux résultats de l’ancienne.

A la valeur propre E„, correspondent les fonctions propres suivantes :

— yV-ÏWoKf
a„im(r, 0, ?) = e±lm9P?l(cost))e A t’/j(r),

où l’on a

l = o, 1,2, ..n — i, m = o, i, ..., / et p = n — (/H- i).

La fonction ep(r) peut s’exprimer à l’aide des polynômes de Laguerre 
étudiés en Analyse; nous n’insisterons pas sur leurs propriétés.

On voit que anim dépend de 0 et de cp par une fonction sphérique 
Y; (0, <p) et nous savons que, suivant la valeur d cm, il y a 2/+ i fonc 
tions sphériques différentes correspondant à une môme valeur de l. 
De plus, pour n donné, l peut prendre les valeurs o, 1, . . ., n — 1. A la

n — 1

valeur propre E„ correspondent donc un nombre égal à ^ (2/ + 1) = n2
0

fonctions propres différentes. Toutes les valeurs propres, saufEt, sont 
dégénérées et l’ordre de dégénérescence est égal au carré du rang n de 
la valeur propre.

L’onde stationnaire 0, cp, t) s’obtient en multipliant la fonction
— E„C

propre ani,n(r, 0, cp) par l’exponentielle e h
Les fonctions propres anim(r, 0, cp) sont orthogonales : on peut les 

normer quand on connaît les propriétés des fonctions vp(r).
Remarquons que les fonctions anim(r, 0, cp) correspondent à un 

certain choix arbitraire de l’axe polaire des coordonnées sphériques et 
du plan passant par cet axe qui définit l’origine des longitudes cp. Si 
nous prenions d’autres coordonnées sphériques autour du noyau, nous 
aurions d’autres angles polaires 0' et cp'et nous serions amenés à prendre 
comme fonctions propres les fonctions

« 7; »....
---- t -V'—îm#Er

a„im{r, 6', ç') = e^'î'P^Xcose') e h vp(r).

Les n2 fonctions propres correspondant à la valeur propre E„ ainsi 
définies sont, bien entendu, des combinaisons linéaires des fonctions 
propres 0, cp) qui correspondent à la même valeur propre E„.
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Nous voyons ici entrer en jeu l’indétermination des fonctions propres 
qui correspondent à une môme valeur propre.

Dans la nouvelle méthode de quantification de l’atome d’hydrogène, 
le nombre entier p = n— (Z-4-i) joue le rôle du nombre quantique 
radial de l’ancienne théorie des Quanta, le nombre l + 1 — «—p 
jouant le rôle de l’ancien nombre quantique azimutal k de la théorie de 
Sommerfeld. Comme l ne peut prendre que les valeurs o, 1, . . ., ti—1, 
on s’explique pourquoi le nombre' k de la théorie de Sommerfeld ne 
pouvait prendre que les valeurs 1, :■>, avec exclusion de la valeur
zéro, circonstance qui était mal expliquée dans l’ancienne théorie.

A cette remarque se rattache la suivante qui est très importante. 
Dans l’ancienne théorie, les états s caractérisés par A' = 1 possédaient un 
moment de quantité de mouvement non nul correspondant à l’existence 
supposée d’une orbite fermée plane et ses états n’étaient pas isotropes. 
Dans la nouvelle théorie, les états s correspondent kl— o, c’est-à-dire 
à un moment de quantité de mouvement nul. Les fonctions d’onde 
correspondantes an00 ne dépendent que de r, car PJ=i : l’état s est 
isotrope. Cette isotropie des états s est entièrement confirmée par l’expé 
rience, ce qui apporte un fort appui en faveur des images fournies par 
la Mécanique ondulatoire et semble montrer l’impossibilité d’admettre 
l’existence d’une trajectoire de l’électron à l’intérieur de l’atome, car 
celte trajectoire définirait un plan privilégié s’opposant à l’isotropie.

L’électron ne pourrait plus, en effet, être considéré comme localisé à 
l’intérieur de l’atome. Sa probabilité de présence donnée par |an/m(r,0,œ)|2 
est en général partout différente de zéro et s’étend môme jusqu’à l’infini. 
La probabilité de trouver l’électron à une distance du noyau comprise 
entre r et r dr avec dr donné varie évidemment comme le produit

\uni,n\-. Si l’on construit la courbe représentant cette grandeur en 
fonction de r pour les étals s, on trouve qu’elle présente des maxima au 
voisinage des valeurs de r qui correspondent aux trajectoires circulaires 
de la théorie de Bohr. Ainsi l’électron ne serait plus localisé et n’aurait 
plus de trajectoire, mais il aurait cependant une probabilité particulière 
ment grande de se trouver au voisinage des trajectoires prévues par 
l’ancienne théorie des Quanta. Remarquons enfin que, si la probabilité 
de présence de l’électron ne s’annule qu’à l’infini, elle décroît néanmoins 
très rapidement quand r croit, en raison de la présence du facteur expo 
nentiel dans anim(r, 9, <p) et ce fait exprime que l’électron est lié à l’atome.

On peut aussi calculer les fonctions propres correspondant au 
spectre continu, c’est-à-dire aux valeurs propres positives. Nous lais 
serons celte élude de côté.

19O



Nous savons qu’on réalité la suite des états stationnaires de l’atome II 
(lst plus compliquée que ne l’indique la formule (7) de Bolir. En fait, 
les raies spectrales prévues par cette formule se décomposent en plusieurs 
raies : il y a des structures fines. Nous avons vu comment Sommerfeld 
avait procédé dans le cadre de l’ancienne théorie des Quanta pour 
obtenir une interprétation des structures fines en introduisant la Dyna 
mique relativiste, mais déjà avant le développement de la nouvelle 
Mécanique, on savait qu’en réalité les structures fines ne peuvent être 
entièrement expliquées qu’en introduisant le « spin » de l’électron. 
La Mécanique ondulatoire, sous sa forme primitive telle que nous 
l’exposons en ce moment, n’est pas relativiste et ne tient pas compte du 
spin : c’est pourquoi elle ne peut rendre compte des structures fines. 
Nous verrons plus lard (chap. XIV) qu’il existe une Mécanique ondu 
latoire de l’électron due à Dirac qui, à la fois, est relativiste et introduit 
le spin de l’électron : avec elle, nous pourrons rendre mieux compte 
des structures fines.
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8. L’effet Zeeman en Mécanique ondulatoire. —■ Nous venons d’étudier 
plusieurs exemples où l’on peut opérer rigoureusement la quantification 
du système envisagé. Il arrive souvent qu’on ne puisse pas calculer 
exactement les valeurs et fonctions propres. Mais parfois un artifice 
conduit à la solution : c’est ce qui se produit pour l’effet. Zeeman sur 
un atome d’hydrogène.

Considérons un atome d’hydrogène plongé dans un champ magné 
tique uniforme H. En Mécanique classique de l’électron, nous avons 
le théorème de Larmor qui nous apprend que, pour les champs magné 
tiques pas trop grands (de l’ordre des champs usuellement réalisables), 
le mouvement de l’électron rapporté à un système de référence tournant

eHautour de la direction de H avec la vitesse angulaire co =------ est le° 2 m0c
môme que si le champ n’existait pas et si le système ne tournait pas. Ce 
théorème démontré par Larmor en Mécanique classique est encore exact 
en Mécanique ondulatoire : dans le système tournant, pour les champs H 
pas trop intenses, l’équation de propagation de l’onde W est approxima 
tivement la même que si le champ H n’existait pas et si le système ne 
tournait pas. Nous admettrons ce théorème dont on peut trouver la 
démonstration dans un livre de l’auteur ([4], p. 106). Partant de là, 
il est facile de calculer l’effet Zeeman. Prenons l’axe des 3 dans la direc 
tion du champ magnétique et employons des coordonnées cylindriques 
autour de cet axe. Dans le système tournant de Larmor, nous aurons
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des coordonnées p', z1, <p' qui seront reliées aux coordonnées p, z, <p du 
système fixe de l’observateur par les relations

, , , / eH \P = p, Z = z, œ=œ — oit (10 = -------  I •• \ irrite/

198

Comme dans le système tournant, les solutions sont les mêmes que 
dans un système fixe sans champ magnétique, on a dans ce système les 
valeurs propres

E<° î^moe4
n2h2 (n = 1, 2, ...)

et les fonctions propres

z', 9') = F(p-', z')e±lm<?' (m = o, 1, 2, ..., /),

F étant une fonction dont la forme ne nous intéresse pas ici. L’onde 
stationnaire correspondante est

ï'»/m(p\ z', 9', t) = F(p', z’)e+lm'P'e h " .

Si nous passons au système de l’observateur par le changement de 
variables que nous avons indiqué plus haut, l’expression de l’onde W 
deviendra

<F(P, 9, t)= Ffp, z)»±‘n‘fe A V " 5,1 1 -

avec toujours m — o, 1, . . ., l. Cette onde correspond donc à une 
énergie que nous pouvons écrire

E« .ma • E m+m—ü, = E<°>-+-
eh H1 -------- >4-/W0C

avec, cette fois, m —— l, —i + 1, ..., l — 1, l.
Les valeurs propres correspondant aux diverses valeurs possibles de m 

sont maintenant distinctes, quoique voisines : l’action du champ magné 
tique a levé la dégénérescence et fait apparaître une structure fine.
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A la transition en présence du champ magnétique'II,
correspond d’après la règle de Bolir l’éinission d’une raie spectrale de 
fréquence

•piir-'nrn - E|lm. E<°>
h ■ ( ni — m ) e H

4!E»io C

eti
4 ~m0c'

v(n0n’, étant la fréquence de la raie qui serait émise en l’absence de champ 
et dm la variation du nombre quantique « magnétique » lors de la 
transition.

Si l’on admet la règle de sélection om~ o, ± 1 que nous démon 
trerons plus loin (chap. XII, §6) dans le cadre de la Mécanique ondula 
toire, on retrouve exactement le triplet de l’effet Zccman normal. Mais, 
pas plus que les théories antérieures, la Mécanique ondulatoire ne peut 
rendre compte des effets Zeeman anormaux tant qu’elle n’a pas introduit 
la notion de spin.

9. Les méthodes de perturbation. —-11 arrive fréquemment qu’on ne 
peut trouver les valeurs propres d’un système quantifié ni par un calcul 
rigoureux, ni par un artifice comme celui que nous venons d’employer 
pour l’effet Zeeman en utilisant le système tournant de Larmor. Il faut 
alors tenter de faire des calculs de perturbations analogues à ceux qu’011 
emploie en Mécanique céleste.

Supposons, par exemple, que l’on sache calculer rigoureusement les 
valeurs et fonctions propres de l’équation (2) pour une certaine forme 
de l’énergie potentielle Y. Soient E„ les valeurs propres et a„ les fonc 
tions propres ainsi obtenues. Supposons maintenant que le système a 
une légère perturbation permanente, c’est-à-dire que le potentiel ne 
soit plus V (x, y, z), mais V (x, y, z) e (x, y, z), avec e<^:V. Les 
valeurs et fonctions propres seront alors légèrement modifiées et 
deviendront E„ + cSE„ et a„ 4- dan, ôE„ et ôa„ étant de faibles variations 
et dan étant naturellement fonction de x, y, z. La méthode de pertur 
bation à employer ici consistera à calculer approximativement les ôE„ et 
dan en partant de la connaissance des E„ et des «,>• On parviendra ainsi 
à résoudre, au besoin par des approximations successives, les valeurs et 
fonctions propres du système perturbé.

Naturellement, cette méthode de perturbation permet de retrouver les 
résultats obtenus plus haut pour l’effet Zeeman, le champ magnétique 
extérieur imposé à l’atome ne perturbant que très peu l’effet du très fort 
champ électrostatique qui règne au voisinage du noyau. Elle s’applique 
aussi au cas d’un atome plongé dans un' champ électrique uniforme
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(effet Slark), car ici aussi les champs électriques que nous pouvons 
appliquer de l’extérieur à un atonie sont toujours très faibles par rapport 
au champ coulombien intense au voisinage du noyau, de sorte qu’il n’y 
a encore qu’une petite perturbation de l’état quantique : on peut ainsi 
calculer les structures fines qui apparaissent dans l’effet Stark et le 
résultat est en très bonne concordance avec l’expérience.

Il existe aussi une antre méthode de perturbation due à M. Dirac ci 
connue sous le nom de « méthode de variation des constantes ». Elle 
permet d’étudier les petites perturbations subies par un système sous 
l’action d’un champ extérieur variable au cours du temps et s’esi 
montrée précieuse pour l’étude des interactions entre matière et rayon 
nement.

Nous n’étudierons pas en détail ces méthodes de perturbation. On 
pourra se reporter, pour les approfondir, aux Ouvrages cités dans la 
Bibliographie.
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CHAPITRE XII.
MÉCANIQUE QUANTIQUE D’HEISENBERG 

ET PRINCIPE DE CORRESPONDANCE.

1. Point de départ de la Mécanique quantique d’Heisenberg. — En
1925, au moment où commençait à se développer la Mécanique ondu 
latoire, M. Heisenberg, et à sa suite MM. Born et Jordan, posaient les 
bases d’une Mécanique nouvelle qui pouvait paraître tout à fait différente 
de la Mécanique ondulatoire et qu’on a alors appelée la Mécanique 
quantique ou Mécanique des matrices.

Nous allons exposer les idées essentielles qui ont guidé M. Heisenberg. 
Tout d’abord, il a adopté une attitude phénoménologique, c’est-à-dire 
qu’il a cherché à n’introduire dans sa théorie que des éléments observables 
en écartant systématiquement tout élément non observable. Ainsi, dans 
la théorie primitive de l’atome de Bohr, on se représentait l’électron ato 
mique comme ayant une position, une vitesse, une trajecLoirc; mais, en 
fin de compte, tous ces éléments ne servaient que d’intermédiaires de 
calcul, les seuls résultats utilisés pour prévoir les fréquences observables 
des raies spectrales étant les énergies des états stationnaires. En parti 
culier, la fréquence de révolution de l’électron sur son orbite, fréquence 
qui dans la théorie classique devait déterminer la fréquence des raies 
spectrales émises et absorbées, n’est pas un élément directement obser 
vable. Les fréquences d’émission et d’absorption réellement observables 
dans les spectres, ainsi d’ailleurs que les fréquences critiques de 
dispersion, sont celles que l’on calcule par la règle de Bohr et, en 
dehors du domaine des grands nombres quantiques, elles n’ont aucune 
relation simple avec les fréquences de révolution. Une des idées fonda 
mentales d’Heisenberg a été qu’une bonne théorie de l’atome doit faire 
abstraction de toute grandeur qui n’est pas observable et ne faire 
intervenir que des éléments observables tels que les fréquences, les 
polarisations et les intensités des raies spectrales qu’il peut émettre.

D’autre part, Heisenberg, élève de Bohr, s’est aussi laissé guider par
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le principe de correspondance. Nous avons vu que dans la théorie clas 
sique le rayonnement est déterminé par le développement de Fourier 
des composantes du moment électrique du système émetteur. Soit, par 
exemple, un atome formé de particules électrisées de charges elt e2, 
. . ., en. Soit q l’une quelconque des trois coordonnées x, y, z : la A14"1' 
particule a une coordonnée q/s par rapport à l’axe des q. La composante 

du moment électrique de l’atome est, par définition,

N

Or, chaque q/c dans la conception classique a un développement de 
Fourier de la forme

■+■ «
qk=^ ql^a^W,

avec
ql*l=q{-k) et (t v ) = t ,vt -h ...-t-v„v„

s’il faut A variables angulaires «’i, (r2, . . ., wn pour définir le système 
constitué par l’atome. On a donc

= ^ ^ ekqLk'e-^‘^‘ SI?1 e-Tj^1
• k

1 - 00

en posant

D’après la théorie classique, l’atome ainsi constitué émet toutes les 
fréquences (t v ), l’énergie émise en moyenne par seconde sous forme 
d’une radiation de fréquence (rv) dont la vibration électrique est paral 
lèle à l’axe des q étant égale à

64^0)*
S c» ekqik)

Telle est l’image classique du rayonnement de l’atome. Passons mainte 
nant à l’image quantique.

Dans la théorie quantique, l’atome est susceptible d’une série d’états 
quantifiés caractérisés chacun par un ensemble de nombres quantiques 
zii, /i2, .... Quand l’atome passe de l’état caractérisé par l’ensemble 
des nombres quantiques n à l’état caractérisé par l’ensemble des
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nombres quantiques n', il y a émission de la fréquence v„„.= ■

Un ensemble d’un grand nombre d’atomes identiques de mémo orienta 
tion émet toutes les fréquences v„„- et Heisenberg admet comme pos 
tulat que l’énergie rayonnée en moyenne par cet ensemble d’atomes par 
unité de temps et par atome sous forme d’une radiation dont la vibrat ion 
électrique est parallèle à l'ave des q peut toujours s'écrire sous la 
forme

N

Ce postulat définit en somme les çj^-qui déterminent ainsi l’intensité 
de la radiation de fréquence v„„/ polarisée suivant l’axe des q et qui 
correspondent, par suite, à un élément observable.

Heisenberg prend donc comme point de départ que l’on peut caracté 
riser chaque sorte d’atome par un ensemble de nombres complexes 

où ne figurent que des quantités observables, fréquences des 
raies spectrales et intensités correspondant aui divers états de polarisa 
tion. Ces nombres complexes « correspondent » aux coefficients clas 
siques du développement du moment électrique en série de Fourier 
bien qu’on ne puisse plus les identifier avec ces coefficients. Guidé par 
l’idée de correspondance, Heisenberg admet, par analogie avec la 
relation q%— q^']*, que l’on a

„'k) „{k)*
tinn' —■ n'n •

En effet, d’après le théorème de correspondance pour les fréquences, 
t  « correspond » à n— n! et, par suite, —t  à n'—n : donc q^ corres 
pond à qlk) et qfn à q{lU

Finalement, à chaque coordonnée qu intervenant dans la description 
classique de l’atome, Heisenberg fait correspondre un ensemble de 
nombres complexes dont on peut dresser le tableau, les nombres n et n' 
servant à définir les lignes et les colonnes de ce tableau. Un tel tableau 
constitue une « matrice ». Une telle matrice est dite « hermitique » ou 
« hermitienne » parce que l’on a

: (g#’

En effet, on a ÿj,n= (postulat de Heisenberg) et vnin =—
(loi des fréquences de Bohr). Dans ces matrices, les termes symé 
triques par rapport à la diagonale sont imaginaires conjugués tandis que 
les termes diagonaux sont réels.
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Généralisant, Heisenberg a alors admis qu’à toute grandeur A carac 
téristique de l’atome, on pouvait faire correspondre dans sa Mécanique 
quantique une infinité de nombres complexes a„„/ où les v„„'
sont les fréquences de Boiir pour cet atome et où les ann' forment une 
matrice hermitienne telle que

Grâce à une autre analogie avec la théorie classique, Heisenberg est 
arrivé à une régie importante relative aux matrices de la nouvelle Méca 
nique : la règle de multiplication. Considérons les développements 
classiques de Fourier de deux grandeurs physiques A et B

^ bz

Peut-on trouver un déloppemcnt de Fourier analogue pour la gran 
deur AB? La réponse est affirmative, car on a

AB = > 2 bf e™ *’•')'=2 ^ eïIEi<ev-^r'l

et, en posant i = r -+- r', on peut écrire

AB =V ^(IV) =2<r'v'^’

avec la définition
-f- *

(i)

Cette formule nous fournit la règle permettant d’obtenir le coefficient 
d’indice c du développement de Fourier du produit AB en fonction des 
coefficients des développements de Fourier de A et de B.

Gomment peut-on transposer ces considérations classiques dans la 
théorie cjuantique d’Heisenberg ? Ici, aux deux grandeurs A et B, nous 
faisons correspondre deux tableaux de nombres complexes suivant le 
schéma

Si nous faisons « correspondre » dans la formule ( i ) a à«—-n. 
c’est-à-dire à la paire d’indices nn', :à n— l avec / quelconque, c’est-à- 
dire à la paire d’indices ni, enfin a — 7 à n — n'—(n — l) = l—■«’. 
c’est-à-dire à la paire d’indices ln', la formule ( 1 ) se transformera par 
correspondance en la suivante :
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L’élément d’indices nn' de la matrice AB est donc égal à :
i

c’est la formule de multiplication des matrices bien connue en algèbre. 
Il en résulte qu’en général la matrice AB ne coïncide pas avec la 
matrice BA. Dans l’algèbre des matrices, il n’y a pas commutativité de 
la multiplication.

Comme on a évidemment

A -+- B ~ ( ann.-k~ bnn>) e2™»»",
c’est-à-dire

(l’) ( (1 -h b)nn' — &nn' bnn> j

l’ensemble des formules (i') et (i") montre que les matrices 
d’Heisenberg ont toutes les propriétés des matrices algébriques. 

Remarquons encore que l’on peut écrire à la place de ( i')

(ab)„n■ e2*'v»"’(=^ à„i bln’ e2™'"-''.

I

En effet, on a, quel que soit l, v„n/= '■>„/-+- v/n> en vertu de la loi des 
fréquences de Robr, car

^ (E„ — E„>) = J(E„-E;)+I(E,-E„.).

Cette remarque montre la cohérence des définitions d’Heisenberg avec 
la loi de Bohr,

2. Équations canoniques et relations de commutation. — Pour déve 
lopper sa Mécanique quantique, Heisenberg a admis que la forme des 
équations de cette Mécanique devait être la même que celle des 
équations de la Mécanique classique, mais avec substitution aux gran 
deurs qui interviennent dans celle-ci des matrices qui désormais les 
remplacent. Il écrit donc les équations de Hamiiton

dPk _ _ àH_ dQk _ àII 
{2) dt ~ ôQk dt dPk’

où les Q/c et les P/, sont les matrices qui remplacent les variables de 
Lagrange et où H est la matrice obtenue en substituant dans l’expression 
hamiltonienne classique de l’énergie pour le problème considéré les 
matrices Q/; et P* aux variables etpk. Pour donner un sens précis à 
ces nouvelles équations canoniques, il faut définir les dérivées qui y
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figurent. Pas de difficulté pour les dérivées car les éléments de

la matrice A étant on admettra tout naturellement que ^

est la matrice dont les éléments sont 27tfPlus délicates
à donner sont lés définitions des dérivées et ^r- d’une matrice par

oQk aPk 1
rapport à une autre matrice. On peut cependant en donner une défi 
nition parfaitement logique et cohérente, comme l’a montré notam 
ment M. Born, et les nouvelles équations de Hamilton prennent ainsi 
un sens parfaitement défini.

A ces équations canoniques, Heisenberg a vu que, pour introduire la 
constante de Planck et obtenir une Mécanique quantique, il fallait 
adjoindre des relations contenant h. Toujours guidé par des considéra 
tions de correspondance que nous ne reproduirons pas, il a admis que, 
pour deux variables canoniquement conjuguées, on doit poser

(i) PkQk-QkPk = - —A^ T 2 Kl

le 1 du second membre représentant la « matrice unité »

i o o o o .
o i o o o
o o i o o .
o o o i o. .

dont les termes diagonaux, seuls différents de zéro, sont tous égaux à 1, 
de sorte cpie inm — o„,„. La matrice P/;Qk— QkPk est donc une matrice 
diagonale dont les termes diagonaux, seuls différents de zéro, sont égaux
à — 7^7' Par contre, les matrices correspondant à des variables non 

canoniquement conjuguées commutent et l’on a

( QiQk— QkQi^ 0, PiPk—PkPi= 0 pour tout i et tout k;
^3 ^ ( PiQk— QkPi—d pour i jé k,

(3) cl (3') sont les relations de commutation (Vertauchungsrelationen) 
de Heisenberg.

S’appuyant sur l’ensemble des équations (2), (3) et (3'), Heisenberg 
est parvenu à déterminer les énergies des états stationnaires des systèmes 
quantifiés tels que : oscillateur linéaire, atome d’hydrogène, etc. Le 
principe qui lui a servi pour effectuer cette détermination est le suivant : 
quand on a trouvé la matrice H(Q, P) qui correspond à l’énergie dans
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le problème considéré, 011 ramène cette matrice à la forme diagonale, ce 
qui est toujours possible, et l’on a alors

Hnrn = $nm E,j.

Les termes diagonaux E„ sont alors, par définition, les énergies des 
étals stationnaires. Lorsqu’on 1925, Heisenberg est parvenu à obtenir les 
énergies quantifiées des systèmes atomiques, la Mécanique ondulatoire 
n’était pas encore arrivée à faire ce calcul. C’est en 1926 que Schrôdinger 
exécuta le calcul des états quantifiés par les méthodes de la Mécanique 
ondulatoire étudiées au chapitre XI, et les résultats qu’il a ainsi obtenus 
se sont trouvés en concordance parfaite avec ceux de la Mécanique 
quantique. Au premier abord, cette concordance a paru étrange, car les 
deux sortes de Mécanique nouvelle semblaient tout à fait différentes et 
sans lien entre elles. Schrôdinger a dissipé ce mystère en montrant que 
la Mécanique quantique des matrices n’est qu’une transposition, sous 
une forme mathématique différente, de la Mécanique ondulatoire. Les 
matrices d’Heiscnberg peuvent se définir à l’aide des fonctions d’onde 
de la Mécanique ondulatoire : alors les équations canoniques (2) et les 
relations de commutation (3) et (3') reçoivent une interprétation simple. 
Le calcul d’Heiscnberg constitue donc finalement une méthode qui 
permet d’obtenir les mêmes résultats essentiels que la Mécanique ondu 
latoire en ce qui concerne la valeur des énergies quantifiées, sans faire 
le calcul explicite des fonctions d’onde. Suivant les cas, cette méthode 
peut être plus ou moins commode que celle de la Mécanique ondulatoire, 
mais elle lui est équivalente. L’accord des résultats obtenus apparaît 
alors comme tout naturel.

3. Retour sur certains points de la Mécanique ondulatoire. — Pour 
pouvoir démontrer l’identité de la Mécanique de Heisenberg avec la 
Mécanique ondulatoire, il nous faut revenir sur certains points de 
celle-ci.

Nous allons indiquer une manière très simple et en quelque sorte 
automatique de retrouver la forme de l’équation des ondes T. Soit 
II (qi;, pk, t) la fonction hamiltonienne d’un corpuscule en coordonnées 
cartésiennes, c’est-à-dire la fonction qui, en Mécanique classique, repré 
sente pour le problème considéré l’énergie du corpuscule en fonction 
de l’ensemble des coordonnées qk et des moments de Lagrange /»/,■ et 
éventuellement du temps t. Dans l’expression de cette fonction, rempla 

çons chaque momentpk par l’opérateur (symbole d’opération) —~-i
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où h est la constante (le Planck. Nous obtenons ainsi un opérateur 
hamiltonien

et pour trouver l’équation des ondes *F en Mécanique ondulatoire, il 
suffit d’écrire

h ■ eW _ / h à \
2 ni 6H ~ 2 jri dqk /

En ellét, pour le corpuscule de masse m dans un champ dérivant de la 
fonction potentiel U (x, y, z, t), on a en Mécanique classique

H(qt,pk, t) = — (/4+ )-t- U(ar, y, z, t)

et l’équation des ondes doit être, d’après la règle précédente,

h <W h2 / à1 à- à- \-----: u — — «—— ( ,—-t- .—-t- , , ) I —4— ÏJ 'I ,2 j î i ut o ~-m \ uxl uy- uz-]

ce ipii est équivalent à

/yr— 4 zi. ni rftr 
//- ôt

e esl-à-diro à l’équation des ondes trouvée par d’autres considérations 
au chapitre IX.

Dan s certains cas, il pourrait y avoir ambiguïté dans la formation de 
l’opérateur hamiltonien à partir de la fonction hamiltonienne classique. 
Si, par exemple, on avait dans celle-ci un terme en qp, il ne reviendrait
pas au même d’écrire q{—- ou-------q. Mais en coordon-
1 1 \ ?. -i uq ) 2 Jt i uq 1
nées cartésiennes rectangulaires, ces difficultés ne se présentent jamais
et nous les laisserons ici de côté.

Dans le cas des systèmes quantifiables, le potentiel est indépendant 
du temps et l'on peut chercher des solutions monochromatiques

-7 Et
W = a(x, y, z)e " ,

où a (x. y, z) obéit, à l’équation de Schrôdinger 

. 8 z'-mA a h ----- ----- ( L — U ) a = o.n-

Nous savons [qu'il existe une série de valeurs de la constante E, soit 
Ei, En, ..., dites «valeurs propres» pour lesquelles cette équation
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admet au moins une solution finie, conlinne, uniforme et nulle aux 
limites (fonction propre). Les fondions propres an(x, Y, s) ou, si l’on 
veut, les fondions d’onde correspondantes *Fn(a;, y, z, /,) (pii n’en

diffèrent ([lie par le fadeur de module unité e " , forment un système
complot de fondions orthogonales (jue l’on peut supposer normées par 
la condition

'I"n'ffh = 1

et qui sont (dors bien déterminées à un fadeur de la forme e‘a près.
L’orthogonalité des fondions propres résulte du fait que l’opérateur 

hamiltonien Jj) est un opérateur « hermilique » ou « self-adjoint ». 
D’une façon générale, un opérateur 51 est dit hermilique ou self-adjoint 
quand, y’(a-, y, z) et g {or, y, z) étant deux fondions finies, continues, 
uniformes et milles à l’infini, on a

j J*(xyz)&g(xyz)dT:= I g2£f*dz.
O) d»

O11 vérifie facilement que c’est bien le cas de l’opérateur hamiltonien iy 
et, comme de plus, ^ est réel, on a alors

ff£)gch = f g£)/'ch.
d> d>

Voici alors comment l’orthogonalité des 'F,, entre eux résulte de 
l’hermiticité de ij). On a (l’abord

£) T,* = E * >r*,

d’où l’on tire aisément

f [T* 13 'I- >rmij >17,1 ch = ( - e * ) f r;,rmch.
*'D Jj)

Le premier membre est nul en vertu de l’hermiticité de ,f) et il reste

(e ,„ — e *) f = o,
■'a

équation qui doil être exacte pour toutes les valeurs de m et de n.
Faisons d’abord n = m : nous trouvons E„ = E*, ce qui nous montre 

que les valeurs propres E„ sont réelles, comme l’exige la signification 
physique que nous leur donnons.

L. DE BROOI.IB. \\
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Faisons ensuite m n : nous trouvons, si Em ^ E„,

fvwmé' = o.
•A>

Donc les fonctions propres correspondant à des valeurs propres diffé 
rentes sont orthogonales.

Mais il peut arriver qu’à une valeur propre « dégénérée » E,- corres 
pondent plusieurs fonctions propres linéairement indépendantes ff/,, 
v F,-!2, . . ., Wij, telles que

E/tt’/./ (l = i,-2, ...,/>).

On voit alors aisément que toute combinaison linéaire des p fonctions 
propres ff// est encore une fonction propre correspondant à la valeur 
propre E,-. Le système des fonctions propres n’est alors défini qu’à une 
substitution linéaire près. Si l’on a trouvé par un procédé quelconque 
les p fonctions propres Wjik, ...,WiiP, elles ne sont pas en général 
orthogonales, mais on peut les remplacer par p de leurs combinaisons 
linéaires qui soient linéairement indépendantes et orthogonales entre 
elles : les p nouvelles fonctions propres, dont le choix reste d’ailleurs 
partiellement arbitraire, constituent donc avec les fonctions propres 
correspondant aux autres valeurs propres un système orthogonal.

Le système des fonctions propres orthonormales de l’opérateur est 
un système complet, c’est-à-dire que si f(qi, . .., qk, •••) est une 
fonction des coordonnées q satisfaisant à des conditions très générales, 
on peut toujours développer cette fonction sous la forme

/(?*) =2 c,'ai(s'*)=2j (?*> o>
i i

avec

d,(t) = ae h

La valeur des coefficients c, et d, est facile à calculer en tenant compte 
de l’orthonormalité des fonctions propres et l’on trouve

Cf = / a*(qk)f(qk)dz, dt(t) = i Wf(qk, t)f(qk)d~.

Les formules donnant les coefficients d’une série de Fourier ordinaire 
sont des cas particulier des formules précédentes. Aussi les coefficients 
Ci et di sont-ils souvent nommés les « coefficients de Fourier » du déve 
loppement «le/(q/i) suivant les fonctions propres a,■ ou •F,-.
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Si la fonction f(qii) est elle-même normée, c’est-à-dire si

on voit aisément que

i i

4. Interprétation des matrices d’Heisenberg en Mécanique ondula 
toire. — Quand nous avons formé plus haut l’opérateur hamiltonien, 
nous avons pris l’expression classique de l’énergie en fonction des coor 
données et des moments dans le problème considéré et nous l’avons 
transformée en opérateur. On a été amené en Mécanique ondulatoire, 
comme nous le verrons plus en détail dans le chapitre XIII, à généraliser 
l’idée qui nous a servi à faire cette transformation et l’on a admis qu’à 
toute grandeur physique mesurable (observable, au sens de Dirac) 
définie par la théorie classique, on doit en Mécanique nouvelle faire 
correspondre un opérateur 51 linéaire et hermitique, c’est-à-dire tel 
que

%{f+s) = 2Uf) + 3i{g), fr&g<k= f gXT^-.
«A» »A)

Comment doit-on procéder pour obtenir l’opérateur correspondant à 
une grandeur observable de la mécanique classique ? Tout d’abord à la 
coordonnée qu d’un corpuscule, on fera correspondre l’opérateur 
« multiplication par <7* », soit q/,., puis à un moment de Lagrange/>/,, 011

fera correspondre l’opérateur —Toutes les grandeurs méca 

niques classiques peuvent s’exprimer à l’aide des q* et des />* et, pour 
obtenir l’opérateur quantique correspondant à l’une de ces grandeurs 
classiques, on n’a qu’à remplacer dans l’expression classique de cette

grandeur chaque 7/, par q*. et chaque />* par — ■ En particulier,

c’est bien cette méthode qui nous a fourni l’opérateur hamiltonien 
correspondant à l’énergie. En employant des coordonnées cartésiennes 
rectangulaires, il ne se présente jamais de difficultés quant à l’ordre des 
facteurs.

La Mécanique ondulatoire a donc à envisager des opérateurs linéaires 
et hermitiques correspondant aux grandeurs classiques mesurables. 
Soit 51 l’un de ces opérateurs. Nous pouvons l’appliquer à l’une des 
fonctions propres W/ de l’opérateur du système envisagé. Nous obté-
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nons ainsi une fonction / que nous pouvons développer ensuite sui 
vant le système complet des fonctions propres Wf; sous la forme

AT/=2 A*/**'*.
t

les coelïicients A/,/ que l’on désigne souvent par le symbole (/>| 
ayant pour valeur
(4) A*,= (*|A|/)=/VîAV/rfu.

L’ensemble des A*/ pour toutes les valeurs de k et de l définit une 
matrice A, qui est engendrée par l’opérateur dans le système 
complet des fonctions propres orthonormales de l’opérateur hamil 
tonien £).

Il est iacile de vérifier que, les opérateurs A, considérés en Mécanique 
ondulatoire étant toujours hermitiques, les matrices A formées à partir 
de ces opérateurs sont elles aussi hermitiques, car l’hermiticité de A 
entraîne que } ̂ t= a ;*.

Les matrices A que nous venons de définir ont toutes les propriétés 
des matrices de la Mécanique quantique d’Heisenberg et peuvent être 
identifiées avec elles. Vérifions que leur algèbre est la même, c’est-à- 
dire qu’elles admettent leurs propriétés d’addition et de multiplication.

Il est d’abord évident d’après la définition (4) que, si la matrice C. 
somme de deux matrices A et B, correspond par définition à l’opérateur 
€, somme des opérateurs % et 10, elle a pour élément C/,/= A*/-f- B*/. 
C’est la règle d’addition des matrices algébriques. Pour retrouver la 
règle de multiplication; partons de l’idée que la matrice C, produit de 
la matrice A par la matrice B, correspond à l’opérateur C = 5U3 et 
écrivons les développements

il'C =2 A./T», tfVx =2 R/CC,
n l

d’où nous tirons
Af0 T* = *2 B»T,= 2 B«*v'= Bw  2

t 1 / n

On peut encore écrire
CT*=2C“*v»

n

C„x =2 An/B/i,
1

en posant
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ce qui est bien la formule de multiplication (les matrices (*). On n’a 
donc pas, en général, la relation matricielle AB = B A, parce que les 
opérateurs 510 et 051 ne sont pas. en général, équivalents. Lorsque l’on 
a par exception AB = B A. on dit que les matrices .1 et B commutent 
et alors il en est de même des opérateurs 31 et 0, et inversement.

Ayant montré que les matrices de la Mécanique ondulatoire satisiont 
aux mômes règles d’addition et de multiplication que celles d’Heisenberg 
montrons qu’elles satisfont aussi aux règles de commutation (3) et (3'). 
En effet, si q/, et p* sont deux variables canoniquement conjuguées, on 
a entre les opérateurs quantiques i|/. et })/. correspondant la relation

/ h <) \ ( h i) \ h
tnti— <im= — ■—: — qk.— qk. — -—: -— =— -—=•\ •-*- -I dqkJ * 1 \ -2-1 dqk ] 2-1

car

~qkf(qk)-qk~f(qk)=f(qk)- 

On a donc pour les éléments de la matrice PkQi,— O/, Bi

(PkQk Qk I*k)/i rn ~ I ^Ei(tU-<ïr k V k ) r/i ~ _ • <Jnm :

,/D - “ '

en raison de l’ortbonormalité des 'E„. D’où la relation matricielle (3). 
Les relations de commutation (3') sont évidentes.

On peut démontrer que la signification des équations canoniques (ai 
de Heisenberg est la suivante : les matrices employées par lleisenberg 
sont celles qui sont engendrées dans le système des fonctions propres de 
l’opérateur hamiltonien ij) (et non pas dans un autre système complet 
de fonctions orthonormales ).

11 nous reste à justifier la manière employée par Heisenberg pour 
déterminer les énergies des étals stationnaires. Comme on a

D'O,
h é'!'„

2 T.i rit E„U- Il ?

il est évident que, si II est ramenée à sa forme diagonale, on a

H»»= = E„.
•A

Les termes diagonaux de la matrice II donnent donc bien les énergies 
des états quantifiés î.orrespondant aux fonctions propres.

( 1 ) M. Nicolas Cabrera a attiré l'attention sur le fait que, pour des raisons de non-unifor- 
mité de convergence, le raisonnement précédent n'est pas rigoureux et que, dans 
certains cas, la règle de multiplication des matrices peut être en défaut.
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Nous avons ainsi montré la complète équivalence de la Mécanique 
quantique d’Heisenberg avec la Mécanique ondulatoire.

o. Le principe de correspondance dans la nouvelle Mécanique. -—
Rappelons d'abord que, d’après le postulat initial d’Heisenberg, si l’on 
a un grand nombre d’atomes dans le même état quantique symbolisé par 
n, l’énergie rayonnée en moyenne par unité de temps et par atome sous 
la forme d’une radiation de fréquence v„„/ dont le champ électrique 
vibre parallèlement à l’axe des q est donnée par

3 c:l , en q&

la sommation portant sur les corpuscules chargés qui forment le 
système ; est l’élément de matrice correspondant à la coordonnée g 
du Alerae corpuscule électrisé de charge e/,.

Cet énoncé doit être conservé en Mécanique ondulatoire en y donnant 
aux matrices d’Heisenberg l’interprétation que nous venons de préciser. 
En nous bornant au cas où le système est formé d’un seul électron, 
l’énergie rayonnée dans les conditions spécifiées plus haut sera

64 ** v» 
3 c3 i qnn' {q = x,y, z),

avec

?//«' = / 'V*n(jXl'n'd-

puisque la matrice dont les éléments sont qnn< correspond à l’opérateur q.
On peut chercher à donner une sorte d’interprétation physique à la 

règle d’Heisenberg à l’aide d’une image du type classique développée 
par Schrôdinger. Il est utile de connaître celte interprétation bien qu’en 
définitive elle ne puisse être considérée comme satisfaisante. Pour 
l’établir, remarquons d’abord que pour un corpuscule dans un état tp 
la probabilité de localisation dans l’élément dz est 'P'P'tAr, de sorte que 
la valeur moyenne de la coordonnée q du corpuscule est

? = ’j'qVWd-.

Dès lors, pour un atome à un électron dont la fonction d’onde est
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la valeur moyenne de la composante du moment électrique doit 
naturellement s’écrire

*, = -« (Vîï,rfî=yc('«{-e) |'î';îVt*=yc*oi(î(,)ii 
u Jd  u

en posant

Xr ^(Ei—E^t
lI7 q d~. = — e I a' q akd-e ,l

Le moment électrique moyen tî ainsi défini contient donc des termes
p _ p

présentant toutes les fréquences de combinaison de la forme —^—■ pré 

vues par la loi de Bohr. On serait donc tenté de dire que l’atome dans 
l’état défini par la fonction rayonne comme il le ferait d’après la 
théorie classique s’il possédait un moment électrique égal au moment 
électrique moyen défini par la Mécanique ondulatoire : on aurait ainsi 
une sorte d’interprétation physique de la loi des fréquences de Bohr. 
Malheureusement, cette interprétation séduisante est trompeuse, car 
elle serre de trop près les conceptions classiques et méconnaît la véri 
table nature des discontinuités quantiques. Si, en effet, on prenait cette 
image à la lettre, on serait amené à regarder l’atome comme émettant 
simultanément et continûment toutes les fréquences de Bohr, alors qu’il 
est certain que l’émission de ces fréquences est liée aux processus dis 
continus de transitions quantiques. Disons aussi, sans pouvoir insister 
ici sur ce point, qu’on serait également conduit à des difficultés en ce 
qui concerne le rapport des intensités des émissions avec le nombre des 
atomes émetteurs qui se trouvent initialement dans les divers états 
quantiques.

Bref, il vaut mieux renoncer à l’image de Schrôdinger et se borner à 
énoncer, à la façon d’Heisenberg, la règle relative à la prévision des 
intensités d’émission de la manière suivante :

Si l'on a initialement N atomes dans l'état quantique d'énergie
£__£

E/, l'intensité de la radiation de fréquence v ,a ——‘—p—-émise en 

moyenne par unité de temps par les N atomes arec champ électrique 

vibrant parallèlement ci l'axe des q est N —i - r,n' [ (fZ-q)ik'r.

On peut vérifier que celle règle appliquée au domaine des grands 
nombres quantiques donne les mêmes résultats que l’application des lois 
classiques, comme l’exige le principe de correspondance. On peut donc
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considérer la règle d'Ileisenberg comme constituant la forme précise 
que prend le principe de correspondance dans la nouvelle Mécanique, et 
ce principe ne présente plus ainsi les ambiguïtés qu’il présentait dans le 
cadre de l’ancienne théorie des Quanta (voir ehap. VIII, § -4).

(5. Démonstration des règles de sélection. — Ayant ainsi obtenu une 
forme nouvelle, plus précise et plus satisfaisante du principe de corres 
pondance pour les intensités, nous allons pouvoir reprendre sur cette 
base la démonstration des « régies de sélection » indiquée au chapitre 
VIII, paragraphe o.

Reprenons la démonstration de la règle de sélection pour le nombre 
quanliquo magnétique m dans l’effet Zeemanpour l’atome d’hydrogène. 
Prenons le système de référence suivant où l’axe Or coïncide avec la 
direction du champ magnétique H.

Les fonctions propres qui représentent les états stationnaires de 
l'atome d’hydrogène sont toujours de la forme

0, 9) = F„im(r, 0)0""? (m entier);

m est ici le nombre quantique magnétique. Soit alors un certain étal 
stationnaire initial correspondant à «1 = F1e!m’? et un état stationnaire 
final correspondant à «2= F2e"',s?. Envisageons la iransition ( 1 2) et
les éléments de matrice du moment électrique correspondant. Gomme 
on a

x — r sin 0 cos 9, y = r sin 0 sin 9, z = r cos 0, 

il vient (au fadeur —e près)

(CSX-+■ i v)|2 = / ï’î(a: -+- iy) U’»d- = I 'FJ r sin 0e'?1!’»/-2 sin 6 dr dit dz
J0

= II) tir d» f eè"'»-"0+l 'Çrfo,
J J0

—i2,. )i2= fxl'\(x — iy)xTîd-= f'I'ï >' éri f| e~‘?'I%F! sin 0 dr d1) dz
*-'i> 'h. p.*T.

— I 4>(r, D) dr du I dy,
J * "<>

(5P.)]2= Ç'FJ 2 >i'•> d~ = / »F; /• cos 0 sin 0 dr d» ds 
J fs 11

= I (Fi r. Q)drdO j e‘ini1 c/9.
" ^ 0

Si dm — m-,— itif n’est égal ni à o, ni riz E les trois composantes de
sont nulles et la transition est interdite.
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Si dm = o, on a
= («,.),._= o,

Il y a omission d’une raie avec vibraLion parallèle à O 3.
Si dm = + i, on a

( i' ‘>?r),2 = o, (a.*- i a,.),, ^ o.

11 y a émission d’une raie avec polarisation circulaire droite dans le 
plan ./Oy.

Si dm = — i, on a

(SP-),2 = (a.r— iîv)i;= o, (%x-h iSy)lt76o.

Fig. 27.

11 y a émission d’une raie avec polarisation circulaire gauche dans le 
plan xOy.

O11 a donc ainsi retrouvé la règle de sélection o/n = o, + 1 pour le 
nombre quantique magnétique, ce qui ramène au triplet Zeeman 
normal.

7. La formule de dispersion de Krainers-Heisenberg. — La Mécanique 
nouvelle a pu retrouver une théorie de la dispersion analogue à la théorie 
classique. Pour cela, elle calcule la perturbation créée dans l’état d’un 
atome, dont on connaît l’état stationnaire initial, par l’action d’une onde 
lumineuse, puis elle en déduit le moment électrique moyen acquis par 
l’atome sous l'influence de cette perturbation. En supposant l’atome

isotrope, on trouve une relation de la forme $ = at'h, h étant le champ 
électrique de l'onde lumineuse incidente. En employant alors la formule 
classique n-—1 — \r.\y.' (voir eliap. on trouve une formule de dis 
persion,- dite formule de Kramers-I leisenberg. très analogue à la lorrnule 
classique. Elle rend compte comme celle-ci de l'allure générale des 
phénomènes de dispersion, mais elle contient en plus certaines caracté 
ristiques nouudlrs qui sont en accord mec l’expérience.
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En outre, la formule de lvramers-IIeisenberg permet de lever une diffi 
culté de la théorie classique. Celle-ci donne une formule où figurent les 
nombres des électrons constituant dans l’atome des oscillateurs de 
diverses fréquences. Or, en comparant la formule classique avec les 
résultats expérimentaux, on peut calculer ces nombres et l’on trouve 
qu’ils sont fractionnaires, ce qui esten contradiction avec leur définition. 
Dans la théorie quantique, au contraire, chaque électron dans un état 
stationnaire initial donné peut subir diverses transitions, chaque transi 
tion correspondant à l’un des oscillateurs de la conception classique : 
tout se passe donc comme si chaque électron intraatomique contribuait 
à plusieurs oscillateurs, se partageait en quelque sorte statistiquement 
entre ces oscillateurs. L’intervention des nombres fractionnaires 
s’explique alors immédiatement et la formule de Kramers-Heisenberg, 
en introduisant des nombres dits « intensités d’oscillateur », en rend 
compte quantitativement.
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CHAPITRE XIII.
L’INTERPRÉTATION PROBABILISTE 
DE LA MÉCANIQUE ONDULATOIRE.

1. Idées générales. — Nous avons déjà mi qu’il existe une différence 
profonde entre les conceptions de l’ancienne Mécanique et celles de la 
nouvelle, plus généralement entre les conceptions de la Physique clas 
sique et celles de la Physique quantique. L’image des phénomènes 
fournie par la Physique classique suppose essentiellement que nous 
pouvons définir le monde physique par’la valeur de certaines grandeurs 
sans nous préoccuper d’une façon essentielle de la manière dont nous 
parvenons à connaître ces valeurs, c’est-à-dire à « mesurer » ces gran 
deurs. On suppose donc implicitement que l’on peut, par une technique 
expérimentale assez fine, diminuer indéfiniment la perturbation qu’une 
opération de mesure exerce sur l’état de choses existant avant la mesure, 
de sorte que chaque mesure traduit exactement la situation telle qu’elle 
existait immédiatement avant la mesure. La Physique quantique a intro 
duit la notion de quantum d’action et elle s’est aperçu que l’existence 
de ce quantum d’action ne permettait pas de diminuer indéfiniment la 
perturbation qu’une mesure exerce sur une situation antérieure : la per 
turbation résiduelle, minima, est insignifiante à grande échelle, mais 
elle devient prépondérante à l’échelle des phénomènes élémentaires : 
c’est ce que montrent des exemples comme celui du microscope 
d’IIeisenberg.

La mesure d’une grandeur ne révèle donc pas un état de choses exis 
tant avant la mesure, mais un étal de choses créé par la mesure elle- 
même, et il est indispensable, quand on discute une situation physique, 
de faire intervenir le processus de mesure qui nous a permis de la 
connaître. La mesure « extrait » de l’état de choses antérieur une 
valeur bien déterminée de la grandeur mesurée. Nous ne pouvons plus
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dire, en général, que, dans l’état de choses antérieur à la mesure repré 
senté en Mécanique ondulatoire par une certaine fonction 'F, une gran 
deur physique ait une valeur bien déterminée, mais seulement qu’elle a 
des valeurs possibles, c’est-à-dire différentes valeurs qu’une opération 
de mesure peut extraire de l’état de choses. La Physique quantique 
représentera donc une situation physique par l’ensemble des valeurs 
possibles des diverses grandeurs physiques, mais elle peut aller plus 
loin et attribuer à ces diverses grandeurs des probabilités. La Physique 
classique décrit le monde matériel par la connaissance précise des 
grandeurs physiques et leur évolution au cours du temps. Au contraire, 
la Physique quantique décrit les situations physiques, au moyen de la 
fonction 'F, par la connaissance des valeurs possibles des grandeurs 
physiques et de leurs probabilités respectives et elle cherche à suivre 
l’évolution au cours du temps de ces probabilités. Naturellement, en 
Physique quantique, chaque opération de mesure, en fournissant des 
valeurs précises pour certaines grandeurs, bouleverse l’état des proba 
bilités d’une façon qui n’est pas prévisible a priori ; mais aucune opé 
ration de mesure ne peut conduire à un état de choses tout à fait 
déterminé au sens de l’ancienne Physique puisque, d’après les analyses 
de Bohr et de Hcisenberg résumées par les relations d’incertitude, 
aucune opération de mesure ne peut fournir en même temps d’une façon 
précise les valeurs de deux grandeurs canoniquement conjuguées. Une 
opération de mesure, faite avec toute la précision que permet l’existence 
du quantum d’action, laisse toujours incertaines les valeurs d’au moins 
la moitié des grandeurs physiques, de telle sorte que, dans l’état de 
choses créé par la mesure, on ne peut attribuer à ces grandeurs que 
diverses valeurs possibles affectées de probabilités.

Nous avons déjà vu comment la dualité d’aspect onde-corpuscule 
conduit aux relations d’incertitude d’Heisenberg. Nous voulons mainte 
nant montrer cjue, si l’on cherche à associer des photons aux ondes 
lumineuses, on rencontre tout de suite des questions analogues à celles 
que l’on rencontre pour l’électron et les autres corpuscules en Méca 
nique ondulatoire, et cet examen jette un jour très vif sur la nature de la 
représentation par ondes.

Considérons une onde lumineuse quelconque. On peut décomposer 
celle onde de plusieurs manières en se plaçant à des points de vue diffé- 
renls. D’abord, au point de vue des fréquences, on peut faire la décom 
position « spectrale » en une suite finie ou infinie de composantes 
monochromatiques, ce qui s’elfectue mathématiquement en développant 
la fonction d’onde en série ou en intégrale de Fourier. Si I on envoie



l ’in t e r pr é t a t io n pr o ba bi l i s t e  d e  l a  mé c a n iq u e  o n d u l a t o ir e . 22

l'onde sur un appareil qui sépare les fréquences, un réseau par exemple, 
on obtient chaque composante de Fourier séparément avec son intensité 
propre. Si maintenant on associe, par la pensée, des pilotons aux ondes 
lumineuses, on voit que l’action du réseau doit avoir pour effet de 
répartir les photons entre les composantes spectrales proportionnel 
lement à l’intensité de celles-ci. Avant le passage à travers le réseau, 
chaque photon ne peut pas être considéré en général comme ayant une 
fréquence déterminée, puisqu’il est associé à une onde incidente où 
généralement plusieurs fréquences sont présentes, mais après le passage 
dans le réseau, le photon a une fréquence déterminée et la probabilité 
pour que ce soit telle fréquence; de l’onde incidente est proportionnelle 
à l’intensité de la composante de Fourier correspondante dans l’onde 
incidente. Le réseau est donc un appareil qui permet d’attribuer au 
photon une fréquence et, par suite, de mesurer son énergie h v. On peut 
dire que la composition spectrale de l’onde incidente représente les 
valeurs possibles de la fréquence (ou de l’énergie) du photon associé et 
leurs probabilités respectives. Ces valeurs possibles sont les valeurs des 
fréquences qui figurent dans la décomposition spectrale et les proba 
bilités correspondantes sont les intensités des composantes spectrales. 
Appliquée à l’électron, la même correspondance entre les valeurs de 
l’énergie et la composition spectrale de l’onde associée conduit au prin 
cipe de Born que nous avons déjà énoncé au chapitre X.

Mais l’on peut aussi décomposer une onde lumineuse en se plaçant, 
par exemple, au point de vue des polarisations. On peut notamment 
décomposer une onde lumineuse en deux composantes rectilignement 
polarisées dans deux directions A et B à angle droit. Ln nicol conve 
nablement orienté laissera passer la vibration parallèle à A et arrêtera la 
vibration parallèle à B. La vibration transmise à travers le nicol sera 
désormais « simple » par rapport aux directions A, B : elle sera tota 
lement transmise par un nicol parallèle au premier, totalement arrêtée 
par un nicol tourné de 90°. C’est (*) un « cas pur » pour la décomposition 
en vibrations rectilignement polarisées suivant A et B. Mais ce ne sera 
pas un cas pur pour la décomposition suivant une autre paire de direc 
tions rectangulaires Af, B', puiscpic l’onde sortant du premier nicol ne 
sera que partiellement transmise par un second nicol qui laisse passer 
les vibrations parallèles à la direction A'. Introduisons maintenant 
l’idée de photon. La présence du nicol a pour effet de répartir les pho-

C) Le mot « cas pur » n’est pas pris ici exactement dans le inème sens que dans la 
théorie des mélanges de J. von Neumann.
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tons en deux catégories : ceux qui sont Iransmis et dont l’onde associée 
est rectilignement polarisée, et ceux qui sont arrêtés et à qui l’on doit 
évidemment attribuer la polarisation perpendiculaire. On ne peut pas 
attribuer à un photon avant l’action du nicol un état de polarisation 
rectiligne, mais seulement des probabilités de polarisation rectiligne 
suivant les axes A et B, mesurées par l’intensité des composantes cor 
respondantes. Après le passage à travers le nicol, le photon constitue 
« un cas pur » pour la polarisation rectiligne suivant A, B, c’est-à-dire 
qu’il sera sûrementlransmis par un nicol parallèle au premier et sûre 
ment arrêté par un nicol croisé avec le premier. Mais le photon ainsi 
« préparé » par le passage à travers le premier nicol ne sera pas un cas 
pur quant à la polarisation pour un nicol dont les axes A', B' ne seraient 
pas parallèles à ceux du premier, car l’onde de ce photon polarisé recti 
lignement suivant A aura des composantes non nulles suivant A' et B'. 
De môme, il ne sera pas un cas pur pour un analyseur circulaire et, 
inversement, un photon préparé par un analyseur circulaire ne sera pas 
un cas pur pour un analyseur rectiligne.

En résumé, tout appareil analyseur placé sur le trajet d’une onde 
Lumineuse oblige les photons associés à celte onde à se révéler comme 
ayant tel ou tel état de polarisation et la probabilité pour qu’un photon 
se révèle ainsi avec tel ou tel état de polarisation s’obtient en décom 
posant l’onde d’une façon qui correspond à l’analyseur employé (décom 
position en composantes rectilignement polarisées à angle droit dans le 
cas du nicol, décomposition en composantes circulaires de sens inverse 
dans le cas des analyseurs circulaires, etc.). Et toujours, c’est l’inten 
sité de chaque composante qui donne la probabilité correspondante.

Ces idées se transposent exactement dans l’interprétation probabi 
liste générale de la Mécanique ondulatoire. Tout dispositif oermettant 
dp mesurer exactement l’une des grandeurs qui caractérisent un cor 
puscule de l’échelle atomique oblige ce corpuscule à se révéler comme 
étant dans un état où cette grandeur a une valeur bien déterminée, 
mais antérieurement à l’action de l’appareil de mesure, il est, généra 
lement impossible d’attribuer à la grandeur en question une valeur bien 
déterminée, on peut seulement lui attribuer des valeurs possibles affec 
tées de probabilités. Pour trouver ces valeurs possibles et ces proba 
bilités, on doit effectuer une certaine décomposition de l’onde ’F asso 
ciée initialement au corpuscule, décomposition déterminée par la nature 
de la grandeur à mesurer ou, si l’on préfère, par le processus de mesure 
à employer. Dans cette décomposition, chaque composante correspond 
à l’une des valeurs possibles de la grandeur et son intensité mesure la
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probabilité (le celte valeur possible. Après la mesure, l'état du corpus 
cule est un cas pur, an sens adopté ici de cette expression, pour la 
grandeur en question, mais il ne l’est pas, en général, pour une autre 
grandeur dont la mesure exige un autre dispositif expérimental.

Les conceptions que nous venons d’esquisser sont très différentes des 
conceptions classiques sur la mesure des grandeurs corpusculaires. Il 
faut bien réfléchir sur ces conceptions si l’on veut bien comprendre le 
sens des prévisions de la nouvelle Physique. Nous verrons dans ce cha 
pitre qu’on ne peut pas sans cela saisir le véritable sens de la « quanti 
fication dans l’espace » du moment de la quantité de mouvement, et 
qu’il en est de même pour le spin.

Passons maintenant à l’énoncé précis des postulats qui servent à 
donner à la Mécanique ondulatoire son interprétation probabiliste 
générale.

2. Grandeurs et opérateurs en Mécanique ondulatoire. — Nous 
déjà vu qu’en Mécanique ondulatoire, on fait correspondre à 
grandeur mesurable un opérateur linéaire cl hcrmitiquo. Nous 
appris à former ces opérateurs pour les grandeurs mécaniques à 
de la correspondance

h àqk => qk-, P k • > *±7.1 ôqk

avons
toute

avons
l’aide

Rappelons les définitions suivantes :

i" Un opérateur 51 est linéaire si l’on a
3K?I -T- 0-2 ) = 51 O , 51 9-2, üf? = fJl?,

c étant une constante complexe quelconque.
2° Un opérateur est hcrmitiquo si l’on a

f f'%g<h= fgZV'th,
-’n «A»

les intégrations étant faites dans le domaine D de variation des variables 
du problème envisagé et les fonctions f cl g de ces variables étant finies, 
continues et uniformes dans I) el tendant vers zéro aux limites de D 
assez vite pour que les intégrales de surface introduites par des inté 
grations par partie soient nulles. 51* est l’opérateur obtenu en chan 
geant i en — i dans la définition de 5L

Il faut d’ailleurs faire une distinction importante entre deux caté 
gories d’opérateurs qui s’introduisent en Mécanique ondulatoire. Les 
uns intéressent l’ensemble des variables du domaine D et sont appelés
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pour ccttc raison « opérateurs complets ». Los autres n'intéressent, au 
contraire, qu’une partie des dites variables et sont nommés « opéra 
teurs incomplets ». L’opérateur hamiltonien 4.) est un exemple d’opé 

rateur complet, tandis que l’opérateur ))., =—~ est, dans le cas

d’un corpuscule pouvant se déplacer dans l’espace à trois dimensions, 
l’exemple d’un opérateur incomplet.

Comme il résulte des considérations générales du paragraphe 1, le 
but de la Mécanique ondulatoire doit être de nous dire quels sont les 
nombres, nécessairement réels, qu’une mesure précise peut nous fournir 
comme valeurs d’une grandeur physique. De l’opérateur linéaire et 
bermitique que la nouvelle Mécanique fait correspondre à toute gran 
deur physique mesurable, nous devons donc pouvoir déduire une liste 
de nombres réels représentant les résultats possibles d’une mesure 
précise de celle grandeur. Or ceci est possible parce que tous les opé 
rateurs linéaires et herinitiques de la Mécanique ondulatoire possèdent 
une suite de valeurs propres qui sont des nombres réels.

Soit une grandeur physique mesurable et 21 l’opérateur linéaire et 
bermitique qui lui correspond en Mécanique ondulatoire. L’équation 
(valable dans le domaine D)

-31? = *?)

où a. esL une constante et cp une fonction des variables sur lesquelles 
opère 51 est « l’équation aux valeurs propres » de la grandeur consi 
dérée. Nous admettrons qu’une telle équation possède toujours une 
suite continue ou discontinue de valeurs propres a,- auxquelles corres 
pondent une ou plusieurs fonctions propres ca, assujetties à satisfaire des 
conditions que nous avons antérieurement précisées. S’il y a plusieurs 
fonctions propres cp(>1, ..., linéairement indépendantes corres 
pondant à une môme valeur propre a;, cette valeur propre est dite 
« dégénérée » ou « multiple ».

En nous basant sur le caractère bermitique de 51, nous pourrions ici 
encore démontrer, exactement comme nous l’avons fait pour l’opé 
rateur j£j au paragraphe 3 du chapitre XII, les deux résultats suivants :

i° Les valeurs propres a, (qui peuvent éventuellement ici dépendre 
du temps si 51 en dépend) sont réelles;

a0 Deux fonctions propres cp,- et cpy correspondant à deux valeurs 
propres distinctes a, et aj sont orthogonales, c'est-à-dire que l’on a
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Nous pourrions reproduire ici ce que nous avons dit sur l’indétermi- 
nalion des fonctions propres correspondant à une valeur propre dégé 
nérée et la manière d’utiliser cette indétermination pour obtenir, même 
dans ce cas, des fonctions propres orthogonales, sur la possibilité de 
« normer » les fondions propres cp,-, sur les difficultés particulières qui 
se présentent dans le cas des spectres continus.

Ici encore le système des fonctions propres cp,- constituera un système 
« complet » permettant d’écrire .des développements de la forme

le signe 1 devant être remplacé par une intégration dans le 
spectres continus. Compte tenu de la relation d’orthonormalité

on trouve

f ?* ?/ d-z = Stj.

des

et les dj peuvent être appelés les coefficients de Fourier du dévelop 
pement de la fonction f suivant les fonctions propres normées de 
l’opérateur ^f.

3. Principes généraux de l’interprétation probabiliste de la Méca 
nique ondulatoire. — En Mécanique ondulatoire nous devons repré 
senter tout état d’un corpuscule par une fonction d’onde ^(x, y. z, t) 
solution de l’équation de propagotion

(O
h

2 - i ôt = 13'C

où i) est l’opérateur hamiltonien du problème considéré, et nous devons 
toujours supposer que cette fonction d’ondes est normée par la 
condition

(2) f |T|*rfu=I.
J D

Nous sommes maintenant en mesure d’énoncer les principes généraux 
de l'interprétation probabiliste de la Mécanique ondulatoire.

Premier principe (principe de quantification). — Les valeurs pos 
sibles à un instant t d’une grandeur physique mesurable attachée à un

L. DE BROGLIE. 13
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corpuscule, cVsl-à-ilire les résultats possibles d’une mesure de cette 
grandeur faite à l’instant (., sont les valeurs propres (calculées à l’ins 
tant t) de l’opérateur linéaire et hermilique correspondant à la gran 
deur.

Jfenxième principe (principe de décomposition spectrale généra 
lisée). — Si nous savons que l’état d’un corpuscule est représenté par 
une fonction d’onde ^(a:, y, z, t), solution de l’équation ( i ), la proba 
bilité pour qu’une mesure précise d’une grandeur physique mesurable 
correspondant à un opérateur ,31 complet et à valeurs propres non 
dégénérées fournisse à l’instant t une certaine valeur propre de cet 
opérateur est égale au carré du module du coefficient de la fonction 
propre correspondante dans le développement de la fonction d’onde V" 
suivant les fonctions propres orthonormales de l’opérateur 51.

En d’autres termes, si le développement du *E suivant les fonctions 
propres cp, de l’opérateur complet à valeurs propres non dégénérées 
est de la forme

<r=^Ci(0?o
i

cYst | Ci(t) |- qui donne la probabilité de la valeur a, à l’instanl t.
On vérifie aisément que, le V étant normé, la probabilité totale de

toutes les hypothèses possibles, c’est-à-dire^ |c,; |2 est toujours égale à r.
i

l\ous avons introduit dans le précédent énoncé les conditions restric 
tives que l’opérateur 5L est complet et à valeurs propres non dégénérées. 
11 est facih> de lever ces restrictions de la façon suivante :

Si l’opérateur admet des valeurs propres multiples, l’énoncé du 
second principe doit être modifié comme il suit. Soit a,- une valeur 
propre multiple à laquelle correspondent p fonctions propres cp(1, 
<p/,2, . . ., <p/>p normées et orthogonales, linéairement indépendantes. La 
probabilité de trouver la valeur a, par la mesure de la grandeur en 
question doit alors être prise égale à

p
I C/,1 I3 ■+■ | ci,2 \ - -t- ■ • • -t- i Ci p i - = i2)

1

c'est-à-dire que l’on doit bloquer ensemble les carrés des modules des 
coefficients de cp(il, ..., ç»,,, dans le développement du W suivant les 
fonctions propres de ,31. La probabilité ainsi obtenue se trouve être 
indépendante de la façon, en partie arbitraire, dont on peut choisir les
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fonctions propres orthonormales cp,-^ correspondant à a,-, ce qui évi 
demment devait être.

Quand l’opérateur est incomplet, l’énoncé du second principe doit 
subir une autre modification. Dans ce cas, en effet, les fonctions 
propres de 51 ne contiennent pas toutes les variables du domaine D et,
par suite, dans le développement V =^c,cp,-, les c, sont en général des

i
fonctions des variables qui ne figurent pas dans les <p,-. La probabilité 
d’une valeur propre a, ne peut donc pas être égale à | c, |2, quantité qui 
dépendrait encore de certaines variables. Pour -obtenir la probabilité 
de a,-, il faudra intégrer |c,-|2 pour toutes les valeurs des variables du 
domaine D qui ne figurent pas dans cp,-. Ainsi, si n’opère pas sur i, 
mais seulement sur y ctÆ, les cp, seront fonctions seulement dey et z 
et les e, dépendront de x: la probabilité de la valeur propre oc, sera
alors, non pas |c,-|2, maisj'\ci{x)\1 dx. On vérifie qu’avec cette défi 

nition des probabilités, la somme des probabilités de toutes les hypo 
thèses possibles est bien égale à l’unité.

Les deux principes que nous venons d’énoncer permettent, pour tout 
état du système représenté par une fonction W connue, d’attribuer aux 
valeurs de toute grandeur physique mesurable une certaine répartition 
de probabilité traduisant le fait que la probabilité est nulle pour toute 
valeur différente des oc, et a une valeur, en général, différente de zéro et 
calculable à partir du V pour chaque oc,-. On peut donc appliquer à ces 
répartitions de probabilité les résultats généraux qui sont classiques en 
Calcul des Probabilités. C’est ainsi qu’on peut les définir à l’aide d’une 
« fonction caractéristique ». Dans sa Thèse de Doctorat, M. Arnous a 
donné la forme de la fonction caractéristique qui traduit à la fois les 
deux principes énoncés plus haut, et il a ainsi obtenu une très élégante 
présentation des résultats essentiels de la Mécanique ondulatoire.

Connaissant la loi de répartition de la probabilité pour une gran 
deur A dans un état représenté par une fonction ff-, on peut naturel 
lement définir une « dispersion » crA au sens du Calcul des Probabilités 
qui est, par définition, la racine carrée de la valeur moyenne du carré 
de l’écart par rapport à la valeur probable

aA = V//(A — À)3

4. Applications des principes généraux. — Les principes généraux 
que nous venons d’énoncer sont, en somme, la traduction mathé-
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niatiquc dos idées que nous avons développées au paragraphe 1. Nous 
allons montrer que cos principes généraux nous permettent de retrouver 
les doux principes particuliers que nous avions rencontrés au cha 
pitre N on cherchant à interpréter physiquement la Mécanicjue ondu 
latoire.

Considérons d’abord l’application des principes généraux à l’opéra 
teur hamiltonien ijj d’un système qui est, nous le savons, un opérateur 
complet. Pour définir les valeurs propres de ijj, nous devons écrire 
l’équation

ij ? = Eç,

en désignant ici par E la constante appelée a dans le cas général. On a 
des valeurs propres E,- et des fonctions propres 'F,-. Nos principes géné 
raux indiquent alors qu’une mesure précise de l’énergie ne peut 
conduire qu’à lui attribuer l’une des valeurs E,- (ce qui justifie la façon 
dont nous avons opéré la quantification en Mécanique ondulatoire) et, 
de plus, que la probabilité d’obtenir la valeur E/, est égale au carré du 
modifie du coefficient de la fonction dans le développement

T=2c ,Vm
(

suivant les fonctions propres de Or c’est là précisément le principe 
de décomposition spectrale ou principe de Born énoncé au chapitre X, 
paragraphe 4.

Plus délicate, au point de vue de la rigueur mathématique, est la 
déduction du principe fondamental des interférences donné au para 
graphe 2 du chapitre X. Cherchons à appliquer nos principes généraux 
à la coordonnée x du corpuscule, à laquelle correspond l’opérateur x. 
« multiplication par x ». L’équation aux valeurs propres est ici

ar.ç = ai.

Avec, un peu d’indulgence au point de vue de la rigueur mathéma 
tique, on peut considérer cette équation comme satisfaite par la « fonc 
tion singulière de Dirac » ô(x — a) qui jouit des propriétés suivantes :

i“ C’est une fonction paire de l’argument x — a;

a" L’intégrale 1 f(x)d(x — a) dx est nulle si l’intervalle d’inté-
d a

gration ne contient pas a et est égale à /(a ) si cet intervalle contient a. 
et ceci quelles que soient les valeurs de a et de b.
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INous avons donc ici comme valeurs propres toutes les valeurs réelles 
de —00 à +00. D’après le premier principe, une mesure de la coor 
donnée x peut a priori nous donner toutes les valeurs de —00 à + 00. 
Pour trouver les prohabilités respectives de ces valeurs, on remarque 
qu'en vertu des propriétés de la fonction ô de Dirac, on a

'I'(x,y,z,t)=J 'Ir(a, jr, z, t)Z(x — u)dx.

Le second principe, appliqué à l’opérateur incomplet x, nous indique 
donc que la probabilité pour que la coordonnée x soit trouvée avoir la 
valeur a à l’instant t est

J dyj' dz [ IP (oc, y, z, t) |2.

En raisonnant de môme pour les coordonnées y et z, on voit aisément 
que | W(a, |3, y , t) |3 est la probabilité pour que la mesure de x, y, z 
donne respectivement les valeurs a, (3, y. Donc la probabilité pour 
qu’une expérience permette de localiser le corpuscule à l’instant t dans 
un élément de volume dz est | y, z, t) |- dz. C’est bien le principe 
de localisation que nous avions appelé « principe des interférences ».

o. Mesure simultanée de deux grandeurs. — Des principes généraux 
adoptés, nous pouvons déduire une conséquence très importante : deux 
grandeurs A et B ne peuvent être mesurées simultanément avec préci 
sion que si les opérateurs correspondants commutent, c’est-à-dire
si 516 = 051

En effet, si 9; et ji sont les fonctions propres des opérateurs 51 et 0, 
a, et j3,• leurs valeurs propres, pour qu’une mesure simultanée des gran 
deurs A et B puisse se faire avec précision, il faut qu’après la mesure 
on puisse attribuer simultanément avec certitude à la grandeur A une 
certaine valeur a, et à la grandeur B une certaine valeur (3j. D’après le 
second principe, il faut donc qu’après la mesure, on puisse mettre 
simultanément la fonction d’onde sous les deux formes

T = C(?(, V = rfyx/,
avec

|c,( = [rfy|=i.

De ces relations, on déduit

JlO'F = 210 dj■// = 51 dj P/yj — p/3U(?(=
0JIT = 051 Ci 9/ =0Ciaj<pi =*lQdj'/u = *i$jxlî.
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On a donc
510^ = 051 *F,

et cela doit être vrai pour toutes les valeurs de i et de J, ce qui-entraîne 
la relation opératorielle

510 = 051.

Donc, si 51 et 0 ne commutent pas, les grandeurs ne sont pas simulta 
nément mesurables avec précision : l’une au moins est affectée d’incer 
titudes. L’exemple le plus simple et le plus important de deux grandeurs 
non simultanément mesurables est celui d’une coordonnée q et de la 
composante conjuguée de la quantité de mouvement p. Ici l’on a

&=?., 0= —
h d 

2zi dq’ 510-051= —.
2 T.l

Donc, les opérateurs ne commutant pas, les grandeurs correspondantes 
ne peuvent être simultanément mesurées avec précision. Une coor 
donnée et le moment conjugué de Lagrange ne peuvent donc jamais être 
connus qu’avec des incertitudes Ax et Apx qui ne peuvent être nulles 
toutes les deux à la fois. En appliquant les principes généraux, on peut 
se rendre compte qu’on a toujours en ordre de grandeur

Ax Apx ■ h.

On retrouve les incertitudes d’Heisenbcrg.
Nous avons dit que l’on peut définir, à partir des répartitions de pro 

babilité, des dispersions au sens du Calcul des Probabilités. On peut 
démontrer que le produit des dispersions a., et sur x et sur pæ satis 
fait à l’ipégalité

h
y- ■

Cette formule est, en un sens, plus précise que les relations d'incer 
titude d’Heisenberg, mais elle ne leur est pas tout à fait équivalente.

6. Valeur moyenne d’une grandeur en Mécanique ondulatoire. —
Nous allons maintenant pouvoir définir la valeur moyenne d’une gran 
deur mesurable attachée à un corpuscule dont on connaît l’onde V. 
Comme il y a en général pour la grandeur plusieurs valeurs possibles 
dont les probabilités ne sont pas nulles, on ne peut plus ici parler sans 
équivoque de la valeur de la grandeur à chaque instant, mais on peut 
toujours définir sa « valeur moyenne » en entendant par là, comme
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d’haluliide, ta somme des produits de chaque videur possible par la pro- 
hidiililé correspondante ((espérance mathématique).

Supposons (pie nous ayons un liés grand nom lire i\ de corpuscules 
dans des étals identiques, e’esl-à-dire ayant même fonction ff' et (|u’à 
l’iustani l nous mesurions simultanément la valeur de la grandeur envi 
sagée pour les IN Corpuscules. Ces mesures ne fourniront pas, en 
général, la même valeur puisqu'il y a plusieurs valeurs possibles pour 
la grandeur. Si est l'opéra leur correspondant à la grandeur, a,- el. <p(- 
ses valeurs et fonctions propres à l'instant /. chacune des mesures 
pourra, d’après le premier principe général, fournir l’un des */ : ni des 
IN mesures fourniront ai, n•• fourniront a..,, etc. D'après le second prin 
cipe général, si le développement du ff' commun aux N corpuscules 
suivant les <p; est de la forme =^c,-cp/, les nom lires n, sont rcspccli-

t
vemenl proportionnels aux | e,-1-, La moyenne des valeurs lournies par 
les N expériences de mesure simultanées est donc

A =^|ai | Ci I- ;
i

c’esL là la valeur moyenne de la grandeur A pour un corpuscule dans 
l’élat ff'. On peut l’écrire aussi sous la forme

f »F*

comme on le vérifie facilement en remplaçant 1; el \F* par leurs déve 
loppements suivant les «p,- et les tpi et en tenant compte de l’orthonor- 
malilé des fonctions propres.

La définition de A fournit une intéressante interprétation statistique 
des éléments diagonaux des matrices d’IIeiscnbcrg. Supposons, en effet, 
(pie le développement du f se réduise à un seul terme, c’est-à-dire que 
l’étal envisagé soit un cas pur pour la grandeur A. On a alors

T = c/s; avec | ct | = 1.
1

Nous sommes alors sûrs que la mesure de A fournira la valeur a,. Soit 
maintenant une autre grandeur B attachée au corpuscule et corres 
pondant à un opérateur fj. En général, l étal ff' n’est pas un cas pur 
pour H el celte grandeur n’a pas de valeur certaine, mais on peut 
toujours calculer sa valeur moyenne qui est

v= f f ç* il
V|| •-'il
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Or, la seconde intégrale n'est pas autre chose que l’élément diagonal B,-,- 
de la malrice engendrée par l’opérateur dans le système des fonctions 
propres <p,-.

D’où le théorème :

L'élément diagonal d'indices ii de la matrice engendrée par 
Vopérateur 13 dans le système des fonctions propres de Vopérateur 
est égal à la valeur moyenne de la grandeur B quand on sait (pie la 
grandeur A à la valeur a,-.

7. Les intégrales premières en Mécanique ondulatoire. — En Méca 
nique classique, on nomme intégrale première une grandeur méca 
nique s'exprimant à l’aide des coordonnées, des moments et parfois du 
temps, qui reste constante en vertu même des équations du mouvement. 
En Mécanique ondulatoire, on ne peut pas conserver la même définition 
parce que les grandeurs n’y ont plus, en général, une valeur hien déter 
minée. On est alors amené à dire qu’en Mécanique ondulatoire, une 
grandeur mesurable est « intégrale première » ou « constante du mou 
vement » quand ses valeurs possibles et leurs probabilités respectives 
sont constantes au cours du temps. On démontre que la condition pour 
que la grandeur correspondant à un opérateur % soit intégrale pre 
mière, dans un problème où l’opérateur hamiltonien est ,£), est

'-f+ T<a*-»>=0'

Ici est l’opérateur obtenu en dérivant formellement l’expression de

l’opérateur par rapport au paramètre t. Dans le cas très fréquent où 
ne dépend pas de t, la condition précédente exprime simplement que 
commute avec ;£).

Si le champ est permanent, Jj) est indépendant du temps et, comme 
il commute avec lui-même, l’énergie est intégrale première. On retrouve 
l’analogue du théorème classique sur les systèmes conservatifs.

Si la composante x du champ est nulle, *,f) ne dépend pas de x
/ à\ \ . à , ,(car^ = ot et, par suite, commute avec donc la compo 

sante x de la quantité de mouvement est alors une intégrale première, 
résultat encore analogue à un théorème classique.

L’exemple le plus intéressant est celui du moment de la quantité de 
mouvement (ou moment de rotation). Quand le champ est partout 
dans un même plan avec un axe Oz, jj) ne dépend pas de l’azimut
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autour de cet axe ^car~ = o^ • En prenant des axes directs et en

convenant qu’à une rotation de sens positif dans le plan xOy corres 
pond un moment de rotation positif, l’opérateur qui correspond au 
moment de rotation autour de Os est

JH h / à
■=x-vy-y^=—iV^-x

En prenant des coordonnées sphériques avec 0.3 comme axe polaire, 
on trouve

(3) JHz= h d_ 
às ’

formule qui traduit le fait que M* est le moment de Lagrange conjugué
de cp.

Par suite, dans le cas envisagé, l’opérateur JMz indépendant du 
temps commute avec J) : la grandeur M, est donc intégrale première. 
Si le champ est radial par rapport à l’origine O, Mx, Mr et Ms sont 
toutes trois intégrales premières.

On peut définir un opérateur correspondant au carré du moment de 
rotation total en posant

JH5=iWl i JHj + iH!-

On trouve aisément en coordonnées sphériques

(4) ilt2=-è[^â(siI,0â) + râ ;$]
et l’on démontre que, si le champ est radial, M3 est intégrale pre 
mière en appelant M3 la grandeur M3 = M2 + M2 + M2 à laquelle cor- 
.respond l’opération JM2.

8. La quantification dans l’espace. — Dans l’ancienne théorie des 
quanta, on avait été amené à l’énoncé suivant :

Dans un système quantifié, comme par exemple Vatome d'hydro 
gène, la projection du moment de quantité de mouvement sur la 
direction d'un champ extérieur (champ magnétique dans l'effet

Zeeman,par exemple), est toujours égale à m ~ j m étant un nombre
entier positif, négatif ou nul.

Comme, d’autre part, la longueur du vecteur M devait être égale 

à k étant le nombre quantique azimutal, on en concluait que
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-V • • nil’angle 0 entre Mol la direction du champ do\ail être loi queeosO - ,

m variant par valeurs entières do —k à +/.. L'est ce (pio mollirait 
■clairement le schéma vectoriel suivant (Jig. ).

Le vecteur M et, par suite, le plan do la trajectoire électronique qui 
lui est normal dans le cas do l’atome d’hydrogène, 11e pouvait donc 
prendre que certaines orientations quantifiées par rapport à O; : on 
désignait cette circonstance sous le nom de « quantification dans 
l’espace ».

Or, à y regarder de près, l’idée de quantification dans l’espace sou 
levait do grandes difficultés. La direction est bien définie s’il existe 
un champ (magnétique ou électrique) dans lequel l’atome est plongé.

Mais la quantification dans l’espace doit exister si faible que soit le 
champ extérieur. Qu’arrive-t-il quand le champ tend vers zéro ? À la 
limite, l’axe Os devient arbitraire et l’on ne peut évidemment pas 
admettre qu’il y ait quantification dans l’espace par rapport à n’importe 
quel axo issu de O. De plus, s’il y a plusieurs champs agissant sur 
le système quantifié comme c’est le cas pour un atome plongé dans un 
champ magnétique et dans un champ électrique qui peuvent faire entre 
eux un angle quelconque, il y a plusieurs directions Oz prixilégiées el 
l’on ne sait par rapport à laquelle on doit quantifier. Les conceptions 
probabilistes de la nouvelle Mécanique ont levé toutes ces difficultés 
en montrant que la représentation du moment de quantité de mou 
vement par un vecteur a quelque chose de trompeur.

En effet, si l’on forme l’expression dès opérateurs correspondant 
à d/,, d/v ■ I/. ,

JH*
h
■ir.i

à
ày

à
-fTs

4H.=

m — h ( àillr=---1 X-r-3 2 je t \ à z

à â\ 
dx Xày)'
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on constate que ces opérateurs ne ooimnutenl, pas, car l’on a

ili, Mz - HL iMr = ^ My * 0

et deux relations analogues obtenues par permutation circulaire sur x, 
y, s. Donc, sauf dans le cas où Mx, Mr, sont tous trois nuis, on

ne peut simultanément mesurer les trois composantes de M et, par 
suite, connaître ce vecteur. La représentation du moment de rotation 
par un vecteur utilisé dans la figure faite plus haut a donc quelque chose 
de fallacieux et il ne faut plus s’étonner qu’elle conduise à des contra 
dictions.

Mais rien n’empôche de mesurer l'une des composantes du moment 
de rotation, Mz par exemple. D’après l’expression (3) de JH: obtenue 
plus haut, les valeurs propres de la grandeur Mz sont déterminées par 
l’équation

h à f
lui dy J

où /est la fonction propre et cp l’azimut autour do Os. Nous obtenons 
pour les valeurs et fonctions propres

a / =
Q—im ©
—--- î
y/a K

où ni est un entier j ositif ou négatif. Donc, d’après le premier principe 
général, si nous parvenons par une mesure à attribuer une valeur à la 
composante z du moment de rotation, nous trouverons un multiple

entier, positif ou négatif, de ce qui est en accord avec l’ancienne 

théorie des Quanta.
Comme nous l’avons vu dans le cas de l’atome d’hydrogène, les fonc 

tions propres de l’opérateur sont les suivantes :

= Vnlm ( >', 0 )e-""ï ( — l ^ m ^ l).

Supposons que la fonction de l’atome se réduise à Nous aurons
alors un cas pur pour le moment de rotation autour de Os, c’est-à-dire 
qu’une mesure de cette grandeur nous donnera nécessairement la

valeur in Mais qu’arriverait-il si, au lieu de mesurer le moment de

rotation autour de Os, nous mesurions le moment de rotation autour 
d’un autre axe Os'? En répétant le raisonnement fait ci-dessus, on voit
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facilement que l’on doit aussi lui trouver une valeur égale à un nombre

entier de fois — > ce qui est encore le résultat de l’ancienne théorie des

Quanta. Mais dans cette ancienne théorie qui admettait les idées de la 
Physique classique, on arrivait ainsi à la conclusion inadmissible que Mz

et Mz> devaient tous deux être égaux à un multiple entier de quel

que fut l’angle des axes Oz et Oz>. Avec notre nouveau point de vue, le 
paradoxe est écarté, parce que les mesures de Mz et de Mz< sont incom 
patibles et que, si l’on mesure par exemple Ms, il y aura nécessairement 
une incertitude après la mesure sur la valeur de Mz>.

Précisons ce dernier point. Dans le système de coordonnées 
polaires r, 0', tp' dont O z' est l’axe polaire, les fonctions propres de 
l’opérateur ijj sont de la forme

et dans le cas envisagé plus haut où l’on a 'F = FQ)e~"'!ï, Wpourra 
se développer suivant le système complet des puisque ces der 
nières fonctions forment un système complet. On trouve un dévelop 
pement de la forme

+i
T = Fnim(r, 6)e-”‘? = 'V 4'F„k(r, 6')e-"«r.

— *

L’état défini par la fonction d’onde *F, qui était un cas pur pour le 
moment de rotation autour de O^r, n’est pas un cas pur pour le moment 
de rotation'autour de O z'. La mesure de pourra donner diverses

valeurs de la forme avec des probabilités respectives proportion 

nelles aux | dmi |2. La mesure initiale de Ms qui avait permis de donner 
au *F la forme de cas pur pour Mz que nous avons adoptée, comportait 
donc, conformément aux conclusions ci-dessus exposées, une incerti 
tude sur la valeur de M-'.

Terminons en disant quelques mots de l’opérateur J$t2 défini au 
paragraphe 7 par la formule (4). Il lui correspond l’équation aux valeurs 
propres

1 à 
sinf) diï ( ,ÿ)

àQ J
1 à\f ,

sin* U h*

Nous avons déjà rencontré une équation de cette forme dans la



l ’in t e r pr é t a t io n pr o ba bi l i s t e  d e  l a  MÉCANIQUE ONDULATOIRE. 237

théorie du rotateur sphérique (Gliap. XI, §0) et nous avons vu alors 
que ses valeurs propres sont

K = = 1(1 +l)

ce qui nous donne

2/ = 1(1

Dans l’ancienne théorie des Quanta où | M| = /r^, on trouvait pour

les valeurs possibles de M- : avec k~ 1, 2, .... On voit que la

divergence entre les deux théories est importante, notamment en ceci 
que, dans la nouvelle théorie, la plus petite valeur de M- est zéro, alors

que dans l’ancienne théorie elle étaitCeci correspond au fait qu’en

Mécanique ondulatoire, les états s sont isotropes.
Notons enfin que, l’opérateur JH'2 commutant avec ill, . lit, et Ht;, 

on peut mesurer simultanément M2 et l’une des composantes M„,
U>. M;-

(l'= o,-I, )>

+ 1 ï.
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CHAPITRE XIV.
LE SPIN DE L’ÉLECTRON. LA THÉORIE DE DIRAC.

1. Nécessité d’introduire un élément supplémentaire dans la définition 
de l’électron. — Nous allons pour un instant revenir un peu en arrière 
et nous replacer dans l’état d’esprit de l’ancienne théorie des Quanta, 
antérieur à l’éclosion de la nouvelle Mécanique, et nous allons voir (pie, 
mémo en restant dans ce cadre ancien, on peut apercevoir la nécessité 
d’introduire un élément nouveau dans la définition de l’électron. C’est 
d’ailleurs ce dont certains physiciens s’étaient bien aperçus dès avant 
l’apparition de la nouvelle Mécanique.

Deux catégories de faits inexpliqués suggéraient principalement cette 
nécessité : des faits spectroscopiques et des faits magnétiques. Nous 
allons les résumer :

a. Anomalies spectvoscopujues. — L'ancienne théorie des Quanta 
avait conduit, après le travail de Sommerfcld, à classer les états station 
naires d’énergies distinctes des atomes à l’aide de deux nombres quan 
tiques n et k, prenant les valeurs n = i, 2, 3, ... et k — 1, 2, ...,«. 
On prévoyait ainsi un niveau d’énergie minimum n = 1, k = 1 : c’est le 
niveau K des spectres de rayons N. Ensuite doivent venir deux niveaux 
11 = 2, k — i, 2. niveaux L des spectres X, puis trois niveaux n = 3, 
k = 1, 2, 3 ou niveaux M, etc. D’une façon générale, k pouvant varier 
de 1 à n pour un nombre n donné, on trouvait n niveaux correspondant 
au nombre quant ique total et formant la « couche » définie par ce nombre 
quantique. Tel était le résultat essentiel de la théorie des Sommerfeld.

Or, l’expérience [trouve bien que le nombre des niveaux par couche 
augmente avec le nombre //, mais en réalité il y a plus de niveaux, la 
structure fine esL plus riche que ne le prévoit la théorie précédente. Ainsi, 
dans le spectre de rayons X, 011 reconnaît bien un seul niveau K, mais 
on identifie, très nettement séparés, trois niveaux L, cinq niveaux M,
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clc. D’une façon générale, l’expérience indique ainsi qu’il existe, pour 
un nombre n donné, 2n— 1 niveaux distincts et non pas n. On peut 
interpréter empiriquement ce résultat en disant que les niveaux prévus 
par la théorie des Quanta sont tous dédoublés, sauf ceux pour lesquels 
k — 1. Ainsi le niveau K, ainsi que le niveau L le plus profond (Lj), 
pour lesquels k = 1, restent simples; mais le niveau L le moins pro 
fond prévu par la théorie de Sommerfeld et pour lequel k = 2 est en 
réalité dédoublé en deux niveaux distincts Ln ôt LM1. Pour une couche 
définie par le nombre quantique total n, l’un des niveaux (A = 1 ) reste 
simple et tous les autres (k = 2, ...,«) sont ainsi dédoublés, de sorte 
qu’au total la couche comprend bien 1 +2(n —1) = 2« — 1 niveaux 
comme l’indique l’expérience.
. En présence de ces faits, Sommerfeld a cherché à spécifier chaque 
niveau pour un ensemble de nombres quaritiques en introduisant assez 
arbitrairement, à côté des nombres n et k de sa théorie, un troisième 
nombre quantique j qui pour k = 1 ne pourrait prendre qu’une seule 
valeur, mais qui, pour k•> 1, pourrait en prendre deux. Il suffit, par 
exemple, pour cela d’admettre que le nombre quantique j peut prendre

les valeurs k— i et k— mais qu’il est nécessairement positif, ce qui

exclut la deuxième valeur dans le cas k■ — 1. Guidé par des idées 
qui n’ont pas été confirmées par la suite, Sommerfeld avait donné 
à ce nombre j, dont l’intervention restait assez mystérieuse, le nom de 
« nombre quantique interne ».

Des circonstances analogues se' rencontrent dans l’élude du spectre 
optique des atomes alcalins. Les états k = 1 de ces spectres appelés 
« états s » sont simples, tandis que les autres états (tels que les états 
k — 2 ou états p, les états k = 3 ou états d, etc. ) sont tous doubles. De 
là vient que le spectre des alcalins est un spectre de doublets. Pour les 
éléments autres que les alcalins, on rencontre des apparences plus com 
pliquées encore avec spectre de triplets, de quadruplets, etc. Nous n’y 
insisterons pas ici.

Nous avons déjà vu au chapitre Vil qu’une autre anomalie s’est pré 
sentée en ce qui concerne la formule de structure fine de Sommerfeld. 
C’est, en effet, dans les spectres de rayons X, entre les niveaux Lu et 
L,„ que l’on observe le doublet prévu par Sommerfeld dont la largeur 
augmente comme Z4. Ceci paraissait au début bien cadrer avec la théorie 
de Sommerfeld, car on attribuait alors aux niveaux L„ et L,„ les nombres 
quantiques 11= 2, A' = 1 et n = 2, k — 2 respectivement et la théorie 
de Sommerfeld prévoit l’existence des doublets en Z4 entre les niveaux

34°
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dont les nombres k diffèrent d’une unité. Or, les considérations théo 
riques sur le nombre j et l’analogie des spectres de rayons X avec les 
spectres de doublets des alcalins n’ont pas tardé à indiquer clairement 
que I’o q  devait faire l’attribution suivante des nombres quantiques aux 
niveaux L

L, : = 2, k — 1, J = 2 ’

Lu : n = 2, k = 2, J = 2;

Lui : n = 2, k = 2, J =
3
2

et ceci ne va plus du tout avec la formule de Sommerfeld qui prévoit le 
doublet de relativité entre le niveau L, et l’un des niveaux L„ et L,„, ce 
qui est contraire à l’expérience. Ajoutons qu’en examinant avec soin le 
spectre à structure fine beaucoup serrée de l’atome d’hydrogène, on a pu 
reconnaître que le même genre de difficultés se présentait même dans 
l’interprétation des doublets de la série de Balmcr. On a alors pu croire 
que le succès de la théorie de Sommerfeld ôtait fortuit : il n’en est rien, 
mais cette théorie qui a le mérite d’introduire les considérations relati 
vistes reste incomplète parce qu’elle n’introduit pas le spin.

b. Anomalies magnétiques. — A côté des anomalies spectrosco 
piques, on a vu se manifester des anomalies magnétiques que nous 
allons étudier. Commençons par les anomalies gyromagnétiques.

Pour bien comprendre la nature de ces anomalies, il faut d’abord se 
souvenir de la relation qui existe entre le moment magnétique et le 
moment de rotation correspondant à une orbite électronique. Considé 
rons un électron décrivant une orbite fermée : il est équivalent à un
courant qui, lui-même, est équivalent à un feuillet dont il est facile 

* --
d’évaluer le moment magnétique, Soient DTL ce moment magnétique et M 
le moment de rotation de l’électron sur sa trajectoire, moment suppose: 
constant. Si •—e est la charge de l’électron en u. e. s.,m0 sa masse, 
c la vitesse de la lumière dans le vide, il est aisé de montrer que

(1)
ean =---------m.2 moc

Einstein a démontré que cette formule est encore valable pour un 
ensemble d’électrons entièrement contenu dans un petit volume. Elle 
doit donc être applicable à tout atome du type Rutherford-Bohr.

L. DB BROOL1E. 16
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Or. d’après la théorie des Quanla, le moment de rotation JH. doit être 

égal à un multiple entier de On en conclut ipie l’on a

311 = A' -——— (k entier).4 " m0 c

Donc le moment magnétique d’un atome doit toujours être un multiple 

entier du « magnélon de Bolir » égal à :l peu près cinq fois plus

petit que le magnélon de Weiss dont la signification théorique est 
douteuse.

L’existence réelle du magnélon de Bolira été prouvée par l’expérience
^ . . . —y

de Stern et Gerlach, mais néanmoins la relation prévue entre JR et M
ne s’est pas vérifiée d’une façon générale. La théorie indique, en elfet,
qu’un barreau magnétique doit entrer en rotation si on le soumet à un
champ magnétique et que le rapport entre son moment magnétique et
son moment de rotation doit être donné par ( i ) ; mais si le phénomène
a bien lieu (expériences d’Einstein et de De Haas), le rapport des deux

moments est plus voisin de —— que —-— Barnett a retrouvé le même 1 ms, c 1 •> ms, c
rapport anormal en étudiant le phénomène inverse : création d'un 
moment magnétique par rotation d’un barreau dans un champ magné 
tique. L’idée, classique depuis Ampère, suivant laquelle le magnétisme 
a pour origine des mouvements de particules (électrons) dans la matière, 
se trouve donc ne pas représenter l’ensemble des faits.

Les mômes difficultés se présentent sous une autre forme dans la 
théorie de l’effet Zeeman. Nous savons que la théorie classique de l'effet. 
Zeeman conduit à la conclusion suivante : si un atome émet, en dehors 
de tout champ, une radiation de fréquence v, placé dans un champ 
magnétique uniforme, il peut émettre les trois raies

eH eH
v— ------------ , V, V ------------- ,

^T.ms,c l^T.ms,c

e et i»0 étant les constantes classiques de l’électron. Cette prévision de 
la théorie classique, ainsi que les prévisions relatives à l’état de polari 
sation des raies, avaient été vérifiées par l’expérience et constituaient l’un 
des grands succès des conceptions de Lorentz. La théorie des Quanta 
n’avait rien introduit d’essentiellement nouveau quant à la prévision de 
l’effet Zeeman. Soit un électron ayant un état stationnaire dans un atome 
en l’absence de champ magnétique extérieur. Désignons par W0 l’énergie
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de cet électron cl par JTL le moinonl magnétique do son orbile. En pré 
sence du champ extérieur, l’énergie de l'électron sera, d’après (1).

\V|| = W0 — (5n..H) = Wo-t- ^^(M.H).

Comme, d’après la théorie des Quanta, la composante de M dans la

direction de H est égale à m -- avec m entier, on a 0 2 -
p h

\V„= W„-i- m ---—II,4~»ioc

111 est appelé le nombre quantique magnétique : il correspond à la 
quantification dans l’espace du moment de rotation M par rapport à la 
direction de H.

Si Vq  —- w0-w; désigne la fréquence de la raie émise en l’absence de

champ lors de la transition (W0~> W'„), cette raie aura pour fréquence 
en présbncc du champ H

vu =
\VH— WJ, , eH
----- -,--------- = Vo -t- (rn. — m ) —4 ~ nioc

Si l'on admet la règle de sélection àm = o, ± 1, on retrouve l’effet 
Zeeman normal, la constante h s’étant éliminée dans le calcul.

Malheureusement, l’effet Zeeman normal est très exceptionnel : c’est 
par un hasard heureux que Zeeman a d’abord étudié un cas où il est 
réalisé. En général, la décomposition magnétique des raies est très 
compliquée (effet Zeeman anomal) et Lorentz avait fait inutilement de 
grands efforts pour parvenir à l’interprétation des effets anomaux. La 
ihéorie des Quanta n’a pas non plus apporté la solution du problème 
puisqu’elle conduit, elle aussi, nous venons de le voir, à l’effet normal. 
Les physiciens ont fini par se persuader que, pour expliquer l’existence 
et la complication des effets Zeeman anomaux, il fallait introduire une 
idée entièrement nouvelle. Cette idée a été celle du « spin » de l’élec 
tron; mais, avant d’en parler, nons devons dire encore quelques mots 
de l’effet Zeeman anomal.

L’effet Zeeman anomal est un phénomène d’apparence très compli 
quée. Nous nous bornerons à le décrire dans le cas le plus simple, celui 
des qtoines alcalins pour lesquels on peut considérer le spectre visible 
comme émis par l’électron le plus extérieur, l’électron de valence. Les 
résultats expérimentaux relatifs à l’effet Zeeman anomal des alcalins 
peuvent se résumer de la façon suivante : En l’absence de champ,
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les énergies des étals stationnaires de l’électron de valence ont, pour 
valeurs E0 (n, l, j), chaque état étant défini par les trois nombres

quantiques n, l, j 1 nombre quantique total, l = k — i, j nombre

quantique interne de Sommerfeld égal à l ± En présence du champ

magnétique H, chacun des niveaux d’énergie se décompose en 2y + i 
niveaux d’énergie

WH(n, l, m) — W0(n, l) -+- mg
4 ^

avec

(2) g =
ij -t- I
—-,-------->2 l -I- I

et où m est le nombre quantique magnétique qui peut prendre les 2y + i 
valeurs demi-entières —j, —j + i.. .j — i, j. Telles sont les formules 
empiriques qui représentent le dédoublement réellement observé des 
niveaux par effet Zeeman ; g est le « facteur de Landé » et c’est la pré 
sence de ce facteur dans l’expression de W„ qui correspond au carac 
tère anormal de l’effet Zeeman. On remarquera que pour les niveaux s

pour lesquels l = o, on a j = g — 2 et m = + de sorte qu’en ce 
cas l’effet Zeeman est normal.

La formule donnant WIt est valable seulement dans le cas des champs 
faibles, c’est-à-dire des champs tels que le déplacement des termes 
spectraux par effet Zeeman soit faible par rapport aux écarts des compo 
santes des doublets qui constituent le spectre de l’alcalin en l’absence 
de champ. Pour des champs plus intenses n’obéissant plus à cette 
condition, on observe un phénomène plus compliqué représenté par 
une formule due à Voigt. Enfin, pour des champs très forts, on observe 
un phénomène simple dans lequel il y a décomposition Zeeman normale 
par rapport au centre de gravité de chaque doublet. Ni la théorie clas 
sique, ni l’ancienne théorie des Quanta ne pouvaient interpréter ces 
faits.

Tout ce que nous venons de dire concerne le cas relativement simple 
des alcalins. Dans les autres cas, on peut toujours utiliser la formule de 
Landé pour Wn, mais il faut remplacer l’expression (2) du facteur de 
Landé par une expression plus générale dont nous parlerons plus loin 
et dont (2) est un cas particulier.

2. L’hypothèse d’Uhlenbeck et Goudsmit (1925). Le spin de l’élec 
tron. — L’ensemble des anomalies que nous venons d’étudier conduisait
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naturellement à penser que le magnétisme des systèmes atomiques ue 
provient pas uniquement des mouvements orbitaux des électrons. En 
réfléchissant à celle idée, deux physiciens hollandais, Uhlenbeck et 
Goudsmit, sont parvenus en 1920 à la conception que l’électron devait 
posséder un magnétisme propre, c’est-à-dire qu’il n’était pas seulement 
assimilable à une petite charge électrique, mais-aussi à un petit aimant. 
Cherchant alors à se faire une nouvelle représentation de l’électron dans 
le cadre des images classiques, ils se le sont représenté comme une 
petite sphère d’électricité négative tournant autour de l’un de ses 
diamètres et possédant, par suite, à la fois un moment magnétique et 
un moment de rotation. On appelle cette caractéristique nouvelle de 
l’électron le Spin (d’un mol anglais signifiant rotation).

D’après cette hypothèse nouvelle, l’électron doit donc posséder un 
moment de rotation propre M0 et un moment magnétique «7TL0 étroite-

Oïtment liés l’un à l’autre. Quel rapport doit-on attribuer au rapport 

des deux moments propres? Le premier mouvement pourrait être de lui 

attribuer la valeur classique —-— correspondant à la formule ( 1 ). Mais

on retomberait alors sur les conséquences inexactes des théories anté 
rieures et, en particulier, on ne retrouverait toujours que l’efl'el 
Zeeman normal. Uhlenbeck et Goudsmit ont alors remarqué que les 
expériences sur les effets gyromagnétiques avaient donné pour le rap-

JR eport une valeur anormale 1 double de la valeur classique donnée 

par ( 1 ) et ils ont admis que l’électron possédait un « double magnétisme 

propre », c’est-à-dire que le rapport -^-5 des moments propres de l’élec 

tron avait la valeur • Or, d’après l’ancienne théorie des Quanta, le 

rapport normal était réalisé pour les moments orbitaux parce que, 

d’une part, le moment de rotation devait être égal à k y- et que, d’autre 

part, le moment magnétique devait être égal à k fois le magnéton de
ehBohr, soit k c • Pour expliquer la valeur anormale du rapport des 

moments propres, on pouvait alors envisager deux hypothèses simples : 
ou bien le moment de rotation propre serait égal à^ile moment

magnétique propre s’élevant à deux magnétons de Bohr; ou bien, le 
moment magnétique propre étant égal à un magnéton de Bohr. le

moment de rotation propre aurait seulement îpour valeur y- • Diverses
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considérations ont montré que la seconde hypothèse était la meilleure 
et Uhlenbeck et Goudsmil ont posé

M„ = 1 h
— — >
2 2"

J1l0 =
eh

4Jt/w0c )

En se tenant dans le cadre de l'ancienne théorie des Quanta encore 
presque seule en usage en 192a, ils ont montré, ce qui a été ensuite 
confirmé par les travaux plus approfondis de Thomas et de Frenkel, 
qu’avec ces hypothèses il est possible d’interpréter de façon satisfaisante 
les anomalies spectroscopiques et magnétiques signalées plus haut.

Au point de vue spectroscopique, en effet, on sera amené, pour 
caractériser les états stationnaires, à introduire le spin de l’électron. Le
moment de rotation orbital de l’électron étant égal à k ^ > son moment 

propre ^ pourra s’ajouter ou se retrancher au moment orbital donnant

un moment total ce qui introduit un nouveau nombre

quantique j égal à A Maintenant nous savons qu’en Mécanique 

ondulatoire le moment de rotation orbital n’est pas égal à k ~ > mais 

à l ^ avec l — k — 1, ce qui nous conduit pour j aux valeurs j = l

ou A— i et A— ^ que nous avions précédemment adoptées. L'introdnc-

lion du nombre quantique « interne » j de Sommerfeld se trouve ainsi 
recevoir une justification : il correspond à la quantification du moment 
de rotation total formé par l’addition algébrique du moment orbital et 
du moment propre. Des calculs plus complets avaient d’ailleurs montré 
que l’on peut ainsi retrouver la structure fine de Sommerfeld et prévoir 
les doublets de Relativité là où ils sont réellement, c’est-à-dire entre les 
niveaux dont les nombres quantiques j diffèrent d’une unité. Mais ces 
calculs développés dans le cadre de l’ancienne théorie des Quanta 
n’étaient cependant pas entièrement satisfaisants.

Passons maintenant à l’interprétation des effets Zceman anomaux. 
Nous allons employer, pour retrouver la formule de Landé, un raison 
nement mi-classique et mi-quantique qui n’est pas très satisfaisant, mais 
qui montre comment on pouvait dès 1926 parvenir à interpréter l’effet 
Zeeman anomal. Soit un atome pouvant contenir plusieurs électrons qui 
contribuent à l’émission des raies spectrales considérées. La somme de

leurs moments de rotation orbitaux est quantifiée et a pour valeur l



celle de leurs spins a pour valeur s v se réduisant à i dans le cas d'un

seul électron et pouvant avoir des valeurs semi-entières plus élevées 
dans le cas de plusieurs électrons. Nous admettons que le moment de

rotation total est quantifié et égal à j et qu'il est formé-par l’addition

géométrique du moment orbital et du moment de spin suivant le schéma 
ci-dessous (Jig. 29).

Sous l’inlluence du champ magnétique II, le niveau d’énergie corres 
pondant aux nombres quantiques l, s, j passe de la valeur W0 qu’il 
possède en l’absence de champ à la valeur \VH — W0 + AW et l’on a

AW = — OTtu II.

Or JH,,, projection du moment magnétique sur la direction de H a,
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Fig. 29.

on vertu de l’hypothèse du double magnétisme propre de l’électron, la 
valeur

eh V 1Jftn=—-------- l cos/H -1- ?.s cos s H J.
4-7/ioc1-

Le vecteur 1 a pour composantes parallèle et perpendiculaire au vec-

tour j, d'une part l coslj et, d'autre part. / sinlj. On peut, par des consi 
dérations mécaniques, montrer que les vecteurs 1 et S ont un mouve 
ment de précession autour du vecteur j et que celui-ci à son tour a 
un mouvement de précession autour de H, de sorte qu’en moyenne 

!l sin lj = o. On a alors
~ Ol cos 1H = l COSlj cos JH

et, do même,
7x" /\ /X

.ç cos sH = s cos sj cos jH.

Or. on voit sur la figure 29 que l'on a les expressions

coslJ = —57T COS SJ = ----------- :----------
2 JS

cos jH = -j >
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car la projection sur la direction de H du moment de rotation total est 

égale k m étant le nombre quantique magnétique. On obtient

donc
eh H

4 Jt/M0C
eh H

/\ /\
l cos 1H H- 2 S COS sH

hxmoc
ehR

/\ /\ 
l COS 1 j -I- 2 S COS

r /’-H-sî-J*
4^m0c | V2

]
3] T 

]'

Mais nous savons maintenant qu’en Mécanique ondulatoire un carré tel 
de j2 est remplacé en règle générale par le produit j(j+ i). Nous 
sommes ainsi amené à penser que la véritable expression de AW doit 
être

AW •= m ehH L + + + +
4“"*ocL 2/(_/ -!-1 ) J

Nous retrouverons ainsi la formule de Landé avec

/(./-t-i)-t-s(s-t-i) — Z(Z + i) 
é V'C/' + O

ce qui est bien 1a forme générale du facteur de Landé conforme à 
l’expérience. Dans le cas des alcalins où l’émission des raies spectrales

est due au seul électron de valence, on doit poser s = ^ et, que l’on ait

j = l---- ou jr = < -h  - >
J 2 * 2

on trouve toujours la valeur (2)

2 / -1- 1

que nous avons donnée précédemment.
On voit donc que l’on parvenait, à l’aide, il est vrai, de raisonne 

ments imparfaits, à imaginer comment l’hypothèse du spin devait 
permettre de comprendre l’origine des anomalies spectroscopiques et 
magnétiques.

3. Le spin de l’électron en Mécanique ondulatoire. — Coipme nous 
l’avons vu, Uhlenbeck et Goudsmit avaient introduit leur hypothèse 
dans le cadre de l’ancienne théorie des Quanta. Mais, à peu près à la 
même époque, on a compris la nécessité de transformer l’ancienne
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théorie des Quanta dans le sens de la Mécanique ondulatoire. On pou 
vait donc pressentir que l’explication des anomalies spectroscopiques et 
magnétiques par le spin de l’électron ne pouvait devenir satisfaisante 
que par l’incorporation du spin à la Mécanique ondulatoire.

L’image de l’électron tournant autour d’un de ses diamètres proposée 
par Uhlenbeck et Goudsmit était admissible dans le cadre des anciennes 
théories pour donner une idée intuitive du spin, mais elle cessait de 
l’étre dans la nouvelle Mécanique où l’on ne peut connaître à la fois la 
position et le mouvement d’un corpuscule et où, à plus forte raison, On 
ne peut pas se représenter les détails de structure d’une particule élé- 
iftenlaire. De plus, nous le savons, dans la nouvelle Mécanique, on ne 
peut plus représenter un moment de rotation par un vecteur : on doit 
le définir par un opérateur et par des énoncés où intervient la notion 
de probabilité. Nous avons vu qu’on peut ainsi comprendre ce qu’est 
réellement la « quantification dans l’espace », conception qui est incom 
préhensible avec la représentation vectorielle classique du moment de 
rotation. Il doit évidemment en être de même pour le spin ou moment de 
rotation propre de l’électron.

Nous devons donc définir le spin en termes de probabilité en disant : 
Etant .donné un certain axe Oz, quelles sont les valeurs possibles de la 
composante du spin suivant Oz et les probabilités respectives de ces 
valeurs possibles? A cette question, on doit évidemment répondre

d’abord que les valeurs possibles en question sont ± ^ ~ et M. Pauli

a vu le premier que, pour attribuer des probabilités à ces deux valeurs 
possibles, il était nécessaire de supposer que la fonction V a deux 
composantes et telles que j vFt |2 dz donne la probabilité de trou 

ver l’électron localisé dans l’élément de volume dz avec le spin + 

dans la direction O z et que | W3 |2 dz donne la probabilité de trouver 

l’électron localisé dans l’élément de volume dz avec le spin — — dans 
la direction O z.

La question du spin de l’électron se pose ainsi d’une façon assez 
analogue à celle de la polarisation de la lumière. Pour la lumière, nous 
devons décomposer l’onde en deux composantes correspondant à deux 
directions rectangulaires Cbr et Oy pour obtenir la probabilité de pas 
sage d’un photon à travers un nicol dont la diagonale coïncide avec l’un 
ou l’autre de ces axes : par exemple | |‘- mesure alors la probabilité 
pour que le photon traverse un nicol qui laisse passer les vibrations 
parallèles àOz. Néanmoins, il y a une différence importante entre lo
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spin et la polarisation : c'esl que la polarisation rectiligne est définie par 
une direction (sans sens), tandis (pie le spin est défini par une direction 
et un sens. Aussi pour la lumière, nous devons décomposer l'onde en 
deux composantes correspondant à deux directions rectangulaires, tandis 
cpie pour l'électron nous dotons la décomposer en deux composantes 
correspondant aux deux sens d'une même direction O;.

Pour la théorie de Pauli, on définit donc les composantes et tP., 
de la fonction d’onde 'F en relation avec la composante du spin dans 
une direction choisie arbitrairement. Si l’on considère ensuite une 
autre direction O;’, on devra faire une autre décomposition du 'F en 
deux composantes Vj et W', et ce sont les car.rés des modules de ces 
composantes qui donneront les probabilités relatives aux deux valeurs

possibles ± que peut donner la détermination de la composante du

spin suivant Os'. Pauli a montré que l’on passe des composantes etW, 
aux composantes *F', et lI 2 par des transformations linéaires qui dépen 
dent de l’orientation de 0,3 par rapport à O3'. Ceci est encore tout à fait 
analogue à la façon dont se transforment les composantes rectangulaires 
d’une onde lumineuse quand on fait tourner le système des axes rectan 
gulaires. Néanmoins, ici encore, il y a analogie et non identité, car les 
composantes rectangulaires d’une fonction d’onde lumineuse se trans 
forment comme des composantes - de vecteur, alors qu’il résulte des 
calculs de Pauli que les composantes *Pt et 'F, de la fonction *F de 
l’électron se transforment, mais suivant une loi qui n’est pas celle de la 
transformation des composantes d’un vecteur.

La tentative de Pauli a eu le grand mérite de montrer clairement 
comment on devait introduire le spin en Mécanique ondulatoire et a 
indiqué la nécessité de considérer une fonction d’onde à [dus (l’une 
composante. Mais celle tentative était encore incomplète et c’est la 
théorie de l’électron de Dirac qui a apporté la solution du problème.

4. La théorie de Dirac. — M. Dirac a trouvé l’équation d’ondes 
fondamentale de sa théorie en cherchant à obtenir une Mécanique 
ondulatoire relativiste qui conserverait pour la densité de probabilité 
de présence une forme définie positive (c’est-à-dire positive ou nulle, 
mais jamais négative) analogue à la forme 'P'P* de la théorie antérieure.

En cherchant à donner un caractère relativiste à la Mécanique ondu 
latoire, 011 était parvenu déjà, en 1926, à proposer une théorie dans 
laquelle la probabilité de présence n’avait plus la forme *F*P*, mais une 
lor.me plus compliquée. Nous avons vu (chap. III, § G) que la forme rida-
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tiviste de la fonction hamiltonienne pour un point matériel libre de 
masse propre m0 est

H (p.v, Py, pz ) = C 5 C- H- pi -4- /'i -h PI •

Pour éviter d’avoir un opérateur Aj défini par une expression irration 
nelle dont la signification n’est pas claire, on avait proposé (De Donder, 
Louis de Broglic, Klein. Gordon, Fock, etc.) de poser en l’absence de 
champ

h VtP»T
(3) df- , ir = [C2(pj. + f;.+ v!) -+- '«» c* ] w,

où py, p.- sont les opérateurs

h à h d
•mi dx^ 2r.i dy

h d 
a ni dz

Cette équation du second ordre conduisait à prendre comme probabilité 
de présence l’expression (réelle)

4 ~ inio c; \ dt dt J

Dirac a considéré cette forme de la probabilité de présence comme 
inadmissible parce qu’elle n'a pas nécessairement toujours une valeur 
positive et il a admis que la probabilité de présence devait garder la 
forme définie positive WW, ou du moins la forme légèrement plus

générale ^ WWj si l’on admet que la fonction d'onde peut avoir plu-
K

sieurs composantes, comme Pauli l’avait suggéré. Dès que l'on admet 
cette hypothèse, on peut voir que l’équation en V. ou plus exactement 
le système des équations en W*, doit être du premier ordre par rapport 
au temps sans quoi la condition, évidemment nécessaire, que la proba 

bilité totale I 2. 'Fa 'FJ dr de toutes les positions possibles dans l’espace

soit égale à l'unité ne pourrait se trouver automatiquement réalisée à 
tout instant, si elle l’est à l’instant initial. La symétrie relativiste entre 
les coordonnées d’espace et de temps indique alors que l’on doit cher 
cher un système d’équations aux dérivées partielles simultanées entre 
les W* qui soit du premier ordre par rapport aux quatre variables 
d’espace-temps.

Dirac a montré qu'on devait, pour y parvenir, prendre au moins 
quatre fonctions W* pan lieu de deux seulement comme dans la théorie 
de Pauli) et il a admis qu’on pouvait se borner à quatre. Il a donc cherché
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un système de quatre équations aux dérivées partielles simultanées du 
premier ordre qui, en l’absence de champ, ait pour copséquencc que 
chacune des fonctions Wh obéisse à l’équation (3). Pour cela, il a intro 
duit quatre matrices à quatre lignes et quatre colonnes que nous nom 
merons a2 *3 jouissant des propriétés suivantes :

«* = 1, «(«/•+- «/«/ = 0 pour i^j\

les matrices doivent aussi être hermitiques, c’est-à-dire que

(“/)*/= («i)/V

Puis il a défini l’opération linéaire symbolisée par «/'F* en posant

4
•lxPk='^ (ai)tiVt.

1

Avec les définitions précédentes, Dirac a écrit l’ensemble des quatre 
équations aux dérivées partielles simultanées en W* sous la forme 
condensée

(4) » -+- (fcr«iH- J)> *î+pj<x3+ 7w0c**)>F* = O, avec £ = 1,2,3,4;Ji 7Z 1/ Ç (JT,

Tfx, pr, sont toujours les opérateurs

h à h à h à
2Jti dx' 2si ày' 2xi àz

Si l’on applique à l’équation (4) l’opération-

(h là \( - -T-. —P.c«i —^*2—^*3—m0c«v ),\2xi c ai J /

on trouve aisément, compte tenu des propriétés des les quatre 
relations

i- £Ü 3-1,! 
c2 de n Vt= o (£ = I, 2, 3, 4)

qui expriment bien que chaque W* obéit séparément à l’équation (3). 
Mais ici les W/; doivent, de plus, obéir aux relations plus restrictives (4) 
qui' établissent des ..liens entre les valeurs de ces quatre composantes 
du W.

Les condiliQns imposées aux «,• ne les déterminent pas d’une façon 
univoque. Leur choix, qui détermine la forme des équations (4) reste 
donc en partie arbitraire, ce qui peut paraître étrange, car le change 
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ment de l’équation d’ondes entraîne une modification des ’F*. Mais on 
peut démontrer que, pour tout choix de «,• compatible avec les-condi 
tions qui leur sont imposées, les valeurs obtenues pour les W* conduisent 
aux mêmes prévisions pour les phénomènes observables, car ce ne sont 
pas les W* eux-mêmes mais certaines de leurs combinaisons bilinéaires 
qui représentent des prévisions vérifiables et le changement des «,• qui 
modifie les W/, laisse précisément invariantes ces combinaisons bilinéaires.

Il est souvent commode (mais non obligatoire d’après ce que nous 
venons de dire) de faire pour les «,■ le choix suivant qui satisfait aux 
conditions requises : ,

0 O 0 I O O o i
0 0 0 , a. = O O — i o
0 O 0 0 i o 0
1 0 O 0 — i 0 0 o

o o i 0 o 0 0
o 0 0 — I

> “v =
0 0 o

o o O o o — I o
o — i JQ 0 0 0 o — I

et dans ce qui suivra nous supposerons que l’on utilise ces matrices.
S’inspirant de l’ancienne Mécanique relativiste de l’électron, Dirac a 

ensuite généralisé les équations (4) pour le cas où l’électron se déplace 
dans un champ électromagnétique défini par un potentiel scalaire Y et 
un potentiel vecteur A. Il écrit alors à la place de (4)

(5)
/ h i 
\ 2j: t c

pour A = i, 2, 3, 4-

*1' k + ^ «1 -4-

+ (^+c-A = )

+ -A. c •
•^«2

ot3-+- mÿCXih

5. Caractéristiques diverses de la théorie de Dirac. — Dirac a 
démontré le fait suivant : si l’on passe d’un système de référence gali- 
léen à un autre système de référence galiléen en soumettant les coor 
données d’espace et de temps à une transformation de Lorentz, on peut 
conserver les équations (4) ou (5) avec les mêmes matrices ?i, mais à 
condition de remplacer les quatre W/, primitifs par quatre nouvelles 
composantes Wk qui sont des combinaisons linéaires des anciennes dont 
la forme dépend naturellement de la transformation de Lorentz envisa 
gée. Si l’on examine cette transformation linéaire des composantes du 'F, 
on s’aperçoit que les *F* ne se comportent pas comme les quatre com 
posantes d’un vecteur d’cspace-temps. Les Wk sont des grandeurs d’un
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type inconnu on Relativité ancienne, ce sont, des composantes de 
« spineur » ou de « demi-vecteur ». Pour approfondir ce point, on se 
reportera aux Ouvrages sur la théorie des spineurs.

Quand on écrit explicitement les équations (4) ou (5) avec emploi 
des matrices *,■ choisies plus haut, on constate cpie ces équations sont 
très dissymétriques et qu’elles font jouer un rôle particulier à l’axe des 
Ainsi les équations (4) s’écrivent

Pour expliquer cette dissymétrie, il faut se souvenir que le rôle des 
fonctions d’onde en Mécanique ondulatoire est toujours de permet Ire 
l'évaluation de certaines probabilités. Or, comme Pauli l’a remarqué, 
pour l’électron à spin, les questions de probabilités relatives au spin 
doivent être posées par rapport à un axe de référence. On peut, par 
exemple, se demander quelle est la composante du moment de rotation 
propre (spin) de l’électron dans une direction de référence D. Les 
équations de Dirac telles cjue nous venons de les écrire correspondent 
au cas où l'on a pris la direction de référence D comme axe des z. ce 
qui explique le rôle particulier de cet axe dans les équations. Comme le 
montre une étude plus approfondie de la théorie de Dirac, la probabilité

pour que la composante z du spin soit + jz est donnée par | Wi |- + ' *1 :11-

el la probabilité pour que la composante z du spin soit —■ ^ par

j |- + | |'- Si donc on veut répondre à des questions de probabilité 
relatives au spin pour lesquelles la direction D de référence ne coïncide 
pas avec l’axe O; initialement choisi, on devra d’abord faire un change 
ment. de coordonnées qui fasse coïncider le nouvel axe «les z avec la 
direction D et ce sont les nouvelles composantes W't, combinaisons 
linéaires des anciennes, qui fourniront, par les expressions que nous 
venons de donner, les probabilités cherchées.

Ce qu’il y a de plus remarquable dans la théorie de Dirac, c'est 
qu’étant partie d’un cllort pour obtenir une Mécanique ondulatoire rela 
tiviste, sans faire aucune hypothèse pour introduire un moment magné 
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tique propre et un moment de rotation propre de l’électron, elle s’est 
trouvée avoir introduit automatiquement ces deux éléments.

Dirac a, en effet, montré d’abord que, si l’on considère le mouvement 
d’un électron dans un champ électromagnétique conformément à 
l’équation (5), tout se passe comme si l’électron possédait un moment 
magnétique propre et un moment électrique propre, chacune de leurs 
composantes étant définie par un opérateur, comme cela doit être dans 
une théorie quantique. Le moment magnétique a comme valeur possilde

(valeur propre)-7—-—» c’est-à-dire un magnéton de Bohr en confor- 117
mité avec l’hypothèse d’Uhlenbcck et Goudsmit. Le moment électrique 
apparaît, conformément aux lois de la Relativité, par suite du mouve 
ment de l’électron, doué de magnétisme.

Ln ce qui concerne le moment de rotation, on constate en théorie de 
Dirac que le moment orbital de l’électron ne satisfait pas au même théo 
rème de conservation que dans les Mécaniques antérieures; il ne reste 
pas constant dans un champ de force central. Pour obtenir une grandeur 
qui jouisse de cette propriété classique de conservation, il faut ajouter 
au moment de rotation orbital de l’électron un « moment de rotation 
propre » dont les composantes sont naturellement encore définies par 
des opérateurs. Ces opérateurs sont

ill'0i
h . 
4"

h .
y-y «s«t,4* itL">

h .
—- ta,*..\ ÏT

qui ont, tous trois, pour valeurs propres ± — 1 mais ne sont pas simul 

tanément mesurables. On retrouve bien l’hypothèse d’Uhlenbcck et 
Goudsmit, mais complétée par l’introduction dos idées nouvelles sur la 
nature des moments de rotation.

Donc, dans la théorie de Dirac, on retrouve bien toutes les caracté- 
ristiques essentielles de l’électron magnétique et tournant d’ühlenbeck 
et Goudsmit, mais indépendantes de l’image trop classique d’une sphère 
d’électricité en rotation et incorporées dans la nouvelle Mécanique, 
jNous allons maintenant résumer les autres succès de cette théorie et 
dire aussi un mot de ses insuffisances.

0. Succès et insuffisances de la théorie de Dirac. — La théorie de 
Dirac est parvenue à interpréter les anomalies spectroscopiques et 
magnétiques, du moins dans le cas où il est possible de ne considérer 
qu'un électron dans l’atome (atome d’hydrogène ou atome hydrogé 
noïde tel que ceux des alcalins).
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Ainsi pour les spectres hydrogénoïdes, et également pour les spec 
tres X, si l’on admet les approximations déjà introduites dans les théo 
ries antérieures pour la description de ces spectres, la théorie de Dirac 
permet de déterminer.les niveaux d’énergie, c’est-à-dire les valeurs de E 
pour lesquelles il existe un ensemble de quatre fonctions

— E<
ajc(qi) 6 h

finies, uniformes, continues, nulles aux limites du domaine D et satis 
faisant aux équations de Dirac. On trouve que chaque niveau d’énergie 
est caractérisé par trois nombres quantiques n, l, j tels que o^l<^n et

j — l ± Ainsi se trouvent dédoublés tous les niveaux d’énergie prévus

par la théorie de Sommerfeld, sauf les niveaux pour lesquels / = o et 
nous savons que ceci est en accord avec l’expérience. De plus, la théorie 
de Dirac trouve comme énergie E du niveau n, l, j dans un atome de 
nombre atomique Z

E(«> l,j) =
R/t(Z-z(n, Z))2 

n'1

i a*(Z-z(n,l)y
n1

2 7T €~
où R est la constante de Rydberg, a la constante de structure fine

et z(n, l) le nombre d’écran. Cette formule est semblable à celle donnée 
par la théorie de Sommerfeld [form. (5) du chap. VII], mais avec cette 
différence essentielle que le nombre quantique azimutal k de Sommer 

feld est remplacé par j' ^ dans la dernière parenthèse. En raison, de

cette différence, la formule de Dirac prévoit l’existence des « doublets 
de relativité » entre les niveaux ayant mêmes nombres quantiques n et l, 
mais des nombres j différents d’une unité : c’est bien là aussi ce que 
l’expérience exige. La théorie de Dirac remet ainsi entièrement dans la 
•bonne forme les résultats de la théorie de la structure fine de Sommer 
feld montrant ainsi que le succès de la théorie de Sommerfeld n’était 
pas fortuit et qu’en définitive les doublets réguliers sont bien dus à 
l’influence de la Relativité ; mais pour avoir une théorie tout à fait 
correcte, il fallait introduire non seulement la Relativité, mais le 
spin.

En ce qui concerne les anomalies magnétiques, la théorie de Dirac 
parvient à retrouver pour les alcalins (pour lesquels on peut approxi-
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Landé
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2

Une des insuffisances de la théorie de Dirac est qu’elle ne peut être 
appliquée qu’à un seul électron dans un champ donné et non à un 
ensemble d’électrons en interaction. Le problème de constituer une Méca 
nique ondulatoire relativiste des ensembles d’électrons est un problème 
difficile qui ne peut être abordé qu’en introduisant la théorie quantique 
du rayonnement. Néanmoins, on a pu introduire approximativement 
l’existence du spin pour interpréter les spectres lumineux des atomes 
plus compliqués que .ceux des alcalins et pour rendre compte des effets 
Zeeman anomaux des corps autres que les alcalins. Nous n’entrerons 
pas dans le détail de ces théories, nous bornant à dire que l’introduction 
du spin a partout permis d’interpréter correctement les faits.

11 est donc aujourd’hui certain que l’électron n’est pas caractérisé 
uniquement par sa charge et par sa masse, mais aussi par un moment 
magnétique et un moment de rotation propres. Le spin est une propriété 
intrinsèque de l’électron et sans doute aussi de tous les corpuscules 
élémentaires de matière. En partant de la théorie de Dirac considérée

comme la théorie des corpuscules élémentaires de spin ~ on a pu,

par généralisation, construire une théorie générale des particules douées 
de spin. Dans le cadre de cette théorie générale, le photon apparaît
comme une particule de spin ^ dont l’onde associée est l’onde électro 

magnétique de Maxwell. Nous renvoyons pour ces questions aux Ouvrages 
spéciaux [4].

Les équations de Dirac admettent des solutions à énergie négative 
qui devraient correspondre à des électrons dans des états à propriétés 
paradoxales qui n’ont jamais été observés. Il semblait y avoir là une 
difficulté pour la théorie de Dirac. Mais Dirac a pu interpréter les états 
à énergie négative comme indiquant l’existence possible d’antiélectrons 
ou « électrons positifs » ayant mémo masse cjue l’électron avec une 
charge égale, mais de signe contraire. De tels électrons positifs ont été 
ensuite effectivement décelés dans le rayonnement cosmique et parmi 
les produits de la désintégration des corps radioactifs artificiels, de sorte 
que ce qui semblait un inconvénient de la théorie de Dirac a finalement

L. D8 BROOLlB. 17



tourné à son avantage. Nous ne pouvons insister ici sur la question, 
d’ailleurs très importante, des électrons positifs.

Enfin signalons une dernière insuffisance de la théorie de Dirac. 
Récemment, en examinant avec beaucoup de soin par des procédés 
radioélectriques la structure fine de la série de Balmer, Lamb et Rether- 
ford ont montré que les formules de Dirac, malgré le progrès qu’elles 
réalisent sur celles de Sommcrfeld ne suffisent pas encore à prévoir 
quantitativement d’une manière tout à fait exacte cette structure fine. 
Cette divergence a été ensuite interprétée théoriquement par des consi 
dérations dont le principe est dû à H. Betlie. Ces considérations assez 
compliquées ne peuvent être exposées ici.
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CHAPITRE XY.
LE PRINCIPE DE PAULI ET LA MÉCANIQUE ONDULATOIRE 

DES SYSTÈMES DE CORPUSCULES.

1. JL a répartition des électrons dans l’atome. — La meilleure manière 
de comprendre l’origine expérimentale du principe d’exclusion de Pauli 
est d’étudier la répartition des électrons dans l’atome.

Dans un atome, les électrons se répartissent en un certain nombre 
de groupes que l’on a nommés par ordre d’énergie de liaison décroissante : 
électrons K, électrons L, électrons M, etc. D’après la théorie de Bolir, 
l’arrachement d’un de ces électrons crée une « place libre » sur le niveau 
d’énergie où il était placé et met l’atome en état d’émettre une des raies 
de la série Rôntgen correspondante. Mais, nous l’avons vu, ces 
séries, à l’exception de la série K, sont complexes et se subdivisent en 
sous-séries. On est donc amené à dire que les groupes d’électrons 
L, M , ... se subdivisent en sous-groupes qui correspondent à des 
niveaux d’énergie voisins, mais un peu différents. On dit souvent que 
les électrons d’un môme groupe forment une « couche » : couche K, 
couche L, etc. La couche K est simple, mais la couche L se subdivise 
en trois niveaux : L,, Ln,‘ Ljn ; la couche M en cinq niveaux
Mj, .... Mv, etc.

Pour comprendre la structure électronique de l’atome, il a été 
nécessaire d’admettre une « saturation » des niveaux d’énergie, c’est- 
à-dire qu’il y a un nombre maximum d’électrons pouvant se Irouver 
sur chaque niveau. Si cela n’était pas, tous les électrons devraient, 
en vertu de la loi de répartition de Boltzmann-Gibbs, se trouver 
normalement sur le niveau R de moindre énergie. Toute l’élude 
systématique de la spectroscopie X et des propriétés physico-chimiques 
des éléments montre qu’il n’en est pas ainsi. Quand on passe d’un 
élément au suivant dans le système périodique des éléments, un nouvel
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électron vient s’ajouter sur le niveau de plus faible énergie sur lequel 
il y a encore une place libre. Quand on suit ainsi pas à pas l’édification 
du système électronique à travers les quatre-vingt-douze éléments 
de la série de MendéléefT, on doit parvenir à interpréter la variation, 
dans l’ensemble de ces éléments des propriétés chimiques, optiques, 
Rôntgen et même magnétiques. C’est ce que Bohr a très bien vu. 
Mais, comme l’étude théorique a priori de la structure des éléments 
était pratiquement impossible, Bohr et ses continuateurs ont suivi 
la voie inverse : partant des données expérimentales sur les propriétés 
chimiques, optiques, Rôntgen et magnétiques des éléments, ils ont 
cherché comment les couches et les niveaux devaient se remplir succes 
sivement, au fur et à mesure que le système atomique se complique 
par l’adjonction de nouveaux électrons, de façon à rendre compte 
de la variation de ces propriétés [1].

Les efforts faits en ce sens, notamment par Bohr, Stoner et Main 
Smith, on abouti à préciser la répartition des électrons entre couches 
et niveaux et à fixer le maximum des électrons que chaque niveau 
peut comporter. Comme nous l’avons vu, on peut considérer chaque 
niveau interne comme caractérisé par trois nombres quantiques n, l, j. 
Les niveaux ayant même nombre n forment une « couche ». D’autre 
part, pour n donné, l peut prendre les valeurs o, 1,2, . . ., n — 1 et J
peut prendre pour une valeur donnée de l les valeurs l ± i ^ saul 

pour l — o où la valeur négative l—i est exclue^. Dans une couche

définie par le nombre n, il y aura donc 1+ 2(11 — i) = a« — 1 niveaux 
différents. Dans la couche K, (« = 1), il y a un seul niveaù n — 1,

l = o, j — Dans la couche L (« = 2), il y a trois niveaux 

Li : n = 2, 1 = 0, j = i ; Lu : n = 2, / = 1, j = i :

L111 . n — 2, 1 = 1, j = -----

Les recherches de Bohr, Stoner et Main Smith ont permis d’obtenir 
avec certitude la règle suivante :

Rè g l e  d e  St o n e r . —Le nombre maximum des électrons qui peuvent 
trouver place sur le niveau (n, l, j) est égal à 2y + 1.

La règle précédente permet de calculer le nombre maximum 
d’électrons par couche, nombre qui était bien connu empiriquement 
avant l’établissement de la règle de Stoner. L’application de cette règle



donne, en effet, pour le nombre maximum d’électrons pouvant trouver 
place sur la couche caractérisée par le nombre n

n — t n— l
2-*-2/[2(/‘+' 2)-|-I + 2(/- 2)-+I] = 2-+-2/(4/+'2)

1 I
, . ,n(n — 1)= 2+ 2(n — 1 ) ■+■ 4 ——-  = 2n-,

ce cpii concorde bien avec l’expérience.
Appliquée aux différents niveaux, la règle de Stoner fournit 

le tableau suivant pour la répartition des électrons sur les quatre 
premières couches d’un.atome lourd :
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n = 1. n = 2. n = 3.
/ = 0, 1 = 0, t = 1, l = 1, l = 0, 1= l, 1 - 1, l = 2, t = 2,

1
~ 2 *

-H |«QIIII
•-2 3

J=ï'
. 1

J — y
1 3

J — j*
3

J ~ 2*
5

Niveaux. . ... K Li Lu Lin IVb Mu Mm Miv Mr
Nombre d’électrons par

niveau = 27 + 1.. 2 2 4 2 2 4 4 6
Nombre d’électrons par

couche — 2 n-........ 8
« = 4.

18

1 = 0, i=t, l = 1, / — 2. l — 2, l — 3, l = 3.

” 2*
1 3

J —y
3

J = v j = 5
2*

. 5
J —y

. 7
J — y

Niveaux. .... NI Nu N„i N iv N Nv, N vu
Nombre d’électrons par

niveau == 2 / -f- I . . 2 • 4 4 G 6 8
Nombre d’électrons par

couche — 2 fl‘........ 32

Nous n’analyserons pas ici comment en étudiant le développement 
progressif dos systèmes de niveaux au cours de la série de Mendéléeff, 
on arrive à faire correspondre les étapes de ce développement avec 
les prppriétés chimiques, optiques et magnétiques des éléments. 
C’est là un sujet d’un haut intérêt, mais ici notre but essentiel est 
d’interpréter la règle de Stoner.

2. Le principe d’exclusion de Pauli. — Considérons un atome et un 
de ses niveaux d’énergie électronique W(«, l, j). Nous avons vu que, 
si nous soumettons l’atome à l’action d’un champ magnétique H, 
le niveau en question se décompose en ij -f-1 niveaux d’énergie

i
eU

-,------------ >4 îï /Moc
Wh (», 1, j) = W(n, l, j) ■+ mg
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où m peut prendre 2y + i valeurs — y,—(y—-i), . . ., (y — i), y,

le nombre quantique y étant toujours un demi-entier de la série ->

Si le champ H tend progressivement vers zéro, les ay' + i valeurs 
de WH tendent vers W, de sorte que pour un champ nul, il y a 
dégénérescence, les %j + i niveaux distincts en présence du champ 
étant venus se confondre. On peut donc dire que, pour caractériser 
un niveau, il faut en réalité quatre nombres quantiques n, l, y, m, 
mais qu’en l’absence de champs extérieurs, les niveaux qui ne diffèrent 
que par les valeurs de m sont confondus. Pour retrouver l'a règle 
de Stoner, il suffit donc d’admettre le principe suivant dû à M. Pauli :

Pr in c ipe  d e  Pa u l i. — Sur chaque niveau simple caractérisé par les 
quatre nombres quantiques n, l, y, m, il ne peut y avoir plus d'un 
électron.

En effet, si l’on suppose l’atome plongé dans un champ magnétique, 
les 2y -(-1 niveaux correspondant aux mêmes valeurs do n. I, y 
et aux (2y-+-i) valeurs possibles de m sont distincts et, d’après 
le principe de Pauli, portent chacun un électron s’ils sont tous saturés. 
Si ensuite le champ tend vers zéro, les 2y + i niveaux en question ont, 
à la limite, la même énergie et l’on peut admettre qu’en l’absence 
de champ il n’y a plus qu’un seul niveau d’énergie W (n, l, j) portanl 
2y i électrons s’il est saturé. On retombe donc sur la règle de Stoner.

On peut encore énoncer le principe de Pauli en disant que la présence 
d’un électron sur un niveau non dégénéré exclut la présence de tout 
autre électron sur ce niveau. D’où le nom de principe d’exclusion 
qui lui est souvent donné.

Il est intéressant de voir comment le principe de Pauli s’applique 
dans un cas tout à fait différent de celui des électrons dans l’atome ; 
le cas d’un gaz d’électrons contenu dans une enceinte à parois 
parfaitement réfléchissantes pour ces corpuscules. Si l’on néglige 
les interactions, le mouvement des électrons est rectiligne et uniforme 
et, en Mécanique ondulatoire, on associera à ces électrons des ondes 
planes monochromatiques. Mais ces ondes seront quantifiées, car elles 
doivent être nulles sur les parois et, par suite, doivent avoir la forme 
d’ondes stationnaires définies par les dimensions de l’enceinte. Par 
exemple,'si deux parois de l’enceinte sont planes, parallèles et distantes 
de D, il pourra exister des ondes stationnaires dont la demi-longueur

d’onde sera un sous-muultiple de D
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11 existera donc un ensemble d’ondes W stationnaires correspondant 
aux mouvements quantifiés possibles dos électrons dans l’enceinte. 
Nous verrons dans le chapitre XVI. en étudiant les statistiques 
quantiques, qu’au point de vue de la Mécanique statistique dii gaz 
d’électrons, l’existence de ces états stationnaires est équivalente 
à l’existence de cellules d’extension-en-phase de grandeur h3. 
Le principe de Pauli nous apprend alors qu’à chaque onde stationnaire 
(ou ce qui revient au même à chaque cellule d’extension-en-phase) 
peuvent être associés au maximum deux électrons. Pourquoi deux? 
Parce que, pour caractériser entièrement l’état stationnaire d’un 
électron dans l’enceinte, il ne suffit pas de se donner l’onde stationnaire 
à laquelle il est associé : il faut encore se donner la direction de son spin. 
Pour cela, on choisira une direction de référence A et l’on se donnera 
la composante suivant A du spin de l’électron considéré. Or, cette
composante a deux valeurs possibles =t -A) et, par suite, à une onde

stationnaire donnée correspondent deux états non dégénérés de l’élec 
tron : une onde stationnaire peut donc porter deux électrons dont 
les valeurs du spin sont opposées. Nous verrons que la statistique 
quantique obtenue on prenant le principe de Pauli ainsi précisé pour 
base, la statistique de Fermi-Dirac, est bien celle qui paraît 

-s’appliquer aux assemblées d’électrons et donner la clef de certaines 
difficultés de la théorie des métaux.

Nous avons maintenant à chercher la traduction mathématique 
du principe de Pauli, mais* pour pouvoir le faire, il nous faut d’abord 
connaître les grandes lignes do la Mécanique ondulatoire (non relativiste) 
des systèmes de corpuscules dont nous n’avions pas encore parlé.

3. La Mécanique ondulatoire des systèmes de corpuscules. — Jusqu’à 
présent, en Mécanique ondulatoire, nous avons considéré uniquement 
'le mouvement du corpuscule dans un champ de force donné. 
Un problème plus général est celui dù mouvement d’un système 
de corpuscules qui interagissent les uns avec les autres. Schrôdinger 
a indiqué la façon dont on devait appliquer la Mécanique ondulatoire 
à ce cas, en négligeant toutefois les corrections de Relativité.

Pour obtenir cette Mécanique ondulatoire non relativiste des systèmes, 
il faut partir de l’idée que l’on doit envisager l’espace de configuration 
à 3 N dimensions formé à l’aide des 3N coordonnées rectangulaires 
des N corpuscules constituant le système et associer 'au mouvement 
du système la propagation d’une onde dans cet espace de configuration.
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Pour que le raccord avec la Mécanique classique (misse se faire, 
il faut que l’Optique géométrique de cette propagation d’ondes nous 
ramène à la tliéorie de Jacobi.

Pour obtenir la propagation de l’onde W dans l’espace de configu 
ration, le moyen le plus simple est d’employer le procédé automatique 
qui a réussi dans le cas d’un seul corpuscule : on remplacera donc 
dans l’expression hamiltonienne classique de l’énergie du système 
les coordonnées x/;, Z/; du /c16"10 constituant par les opérateurs
« multiplication par Xiy>, « multiplication par _y/;», « multiplication 
par zh » et les moments de Lagrange pri, pyi, p.k par les opérateurs

h à h à h /)
■>. cci dxk ’ 2zi ôyk ’ 2 cei dzu

On obtient ainsi un opérateur hamiltonien

h à
()X\ ’

H (x, y, 3, ..., xy, rx, =n , — A — ^
2~i àzji ’ J

En appliquant cet opérateur à la fonction d’ondes 'Ir(a?i, .... -3N, t) 

et en égalant le résultat à on obtient l’équation de propagation

h téf’ / h à h à, \
---- ■ ~TT = H ( Xi, . . Zy,-------- • J— , • • • )-------- : V- ) t )2 zi àt \ 2 TC t ax 1 ’.r.i dzy /

Les coordonnées xt, . . ., Zy étant des coordonnées rectangulaires, 
l’expression hamiltonienne classique de l’énergie s’écrit

N

11 (x> > - • ■, -M, P* o — , /»*„. t ) = T. (Pi„ + Ph + Plt) + V(.r,, . . ., cN, t ).

L’éuei’gie potentielle V(xt, .... zy, t) est formée de deux sortes 
de termes :

i° des termes d’actions mutuelles entre les corpuscules de la forme

V// f v ( X, — Xj y*-h {yt — >7 P -t- ( Z, — Zj y-) ;

2° des termes exprimant l’action du champ extérieur éventuellement 
appliqué au système, termes qui sont de la forme Vfi, z/. t).

En procédant comme il a été indiqué ci-dcssus, on trouve donc 
comme équation de propagation dans l’espace de configuration

4
\s 1 /d2Xl’ d2U' dl *F \ ir.- r 4-1 d<i'

JZÎ -hà7ï~i~^ïJ ’ • • •> 3*’l)* - — ~Tt '
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S’il n’y a qu’un soûl corpuscule (N — 1), l’espace de configuration 
se réduit à l’espace physique ordinaire et l’on retombe sur l’équation 
d’ondes antérieurement étudiée.

Etudions le cas particulier où le champ extérieur, s’il existe, 
est constant. Alors V est indépendant du temps et le système est 
.conservatif. On peut donc considérer des solutions monochromatiques

— tU
dépendant du temps par le facteur e k et obéissant à l’équation 
de Schrôdinger

N

1 à-e'i
d’-W
<>yi à*l ) v(*„ , 2n )]>F = o .

Dans une région de l’espace de configuration où V varie lentement 
à l’échelle de la longueur d’onde, l’Optique géométrique sera applicable 
à la propagation de l’onde 'F et l’on pourra écrire celle-ci sous la forme

¥ = ae i(.r„

où a est une fonction lentement variable dont les dérivées sont négli 
geables par rapport à celles de Si. En substituant cette forme du V 
dans l’équation d’ondes on trouve

..........«>-■.

ce qui est l’équation de Jacobi de la Mécanique classique des systèmes. 
On voit donc bien qu’ici, comme dans le cas d’un seul corpuscule, 
la Dynamique classique correspond à l’approximation de l’Optique 
géométrique.

Un cas intéressant à envisager est celui où les corpuscules sont 
sans interaction les uns avec les autres : on doit alors pouvoir les consi-

N

dérer isolément. Or la fonction V se réduit alors V/. (, y/;, zk, t)
1

et l’équation d’ondes dans l’espace de configuration s’écrit

N
!ai± fE _v £-!- —
h dt 2^k L «U V dx'l dy\ "+" dz\

1

Si nous posons

V(a;,, zn, i) = 'F,(a:,, ylt y,, zit t) ... »Fn (*n , yx, z*, t),

) — V*(.r*, yk, zk, t) jT.
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l’équation précédente se décompose en N équations indépendantes 
de la forme

mk\àxl dy\ + dz% A* Vk{xk,yk, Zk, t)Wk = 4 ~ ' àxl'k 
h <k

et ce résultat exprime précisément que l’on peut considérer chaque 
corpuscule isolément. La fonction d’onde du système dans l’espace de 
configuration est donc alors le produit des fonctions d’onde de chaque 
corpuscule considéré isolément dans l’espace à trois dimensions.

Il est aisé de transposer le principe de localisation dans la Mécanique 
ondulatoire des systèmes. On doit ici l’énoncer comme il suit :

Si l'état d'un système est représenté par la fonction d'onde 
. . ., £n, t) dans l'espace de configuration, la probabilité pour 

qu'une mesure faite au temps t permette de localiser le point figu 
ratif du. système dans l'élément de volume dx - ~ dx, dy, . . . dzy 
de l'espace de configuration est mesurée par

.. ., zx, I, . .., Zn, t)dx.

S’il y a un seul corpuscule (N = i ), nous retombons sur le principe 
de localisation sous la forme étudiée antérieurement. Si les N 
corpuscules du système sont sans interactions les uns sur les autres, 
la fonction 'F du système sera le produit des fonctions individuelles W/, 
des constituants et nous aurons

| ’ï’Oi, .. .,^N, t)\*dx
= | *Fi(a;i, y,, zh t)\*dx,dy,dz, .. . y*, zx, t)^dxxdyy,dzx-

Ce résultat est en accord avec le théorème des probabilités composées, 
car, les constituants ne réagissant pas les uns sur les autres, leurs 
présences dans les différents éléments de volume de l’espace physique 
sont des événements indépendants. Nous apercevons alors pourquoi 
la fonction V du système devait, dans ce cas, être le produit 
des fonctions d’onde individuelles des constituants.

On démontre que l’intégrale J"... J' (WprfT est constante au cours

du temps, ce qui permet de normer d’une façon permanente la fonc 
tion en la posant égale à i.

Le principe de décomposition spectrale s’énonce pour un système 
comme pour un corpuscule unique. En particulier, si le système est 
conservatif, l’onde W peut toujours être décomposée en une série 
d’ondes monochromatiques et l’intensité de chaque composante



speclrale donne la probabilité pour qu’une mesure permette d’attribuer 
au système l’énergie correspondante.

En étudiant la représentation d’un train d’ondes *E dans l’espace 
de configuration par une intégrale de Fourier, on retrouve les relations 
d’incertitude sous la forme

h.

Bref, tous les résultats essentiels obtenus par la Mécanique ondulatoire 
du corpuscule unique se transposent aisément dans la Mécanique 
ondulatoire dos systèmes de corpuscules, mais la propagation 
de l’.ondc *E d’un système dans l’espace de configuration a un caractère 
très abstrait et montre clairement combien les ondes de la Mécanique 
ondulatoire sont loin d’avoir la signification concrète des ondes 
de l’ancienne Physique.

4. Cas des systèmes formés de corpuscules de même nature. —Le cas
des systèmes formés de corpuscules de même nature est très important. 
Il comprend, en particulier, tous les atomes qui, quand on considère 
les noyaux comme de simples centres de forces, sont des systèmes 
de ce genre puisqu’ils sont formés d’électrons. Ce qui caractérise 
ces systèmes, c’est que si l’on y considère un certain état quantique, 
l’état n’est en réalité aucunement modifié si l’on y permute le rôle 
de deux des particules constituantes. On doit donc admettre que toutes 
les grandeurs observables telles que le | *E |2 doivent être insensibles 
à une permutation quelconque du rôle de deux constituants. Ce postulat 
conduit à restreindre la forme possible des fonctions d’onde. Comme 
les interactions entre deux corpuscules sont toujours des fonctions 
symétriques de leurs coordonnées, si l’on a trouvé une solution 
de l’équation d’ondes W(xk, yi, z-i, ..., x,, y,, Zj, ..., xk,yk, zk, ...,t), 
la fonction *E(;ri, yk, zk, .. ■, xk, yk, zk, . . ., a?,-, y,-, Zi, ..., t) obtenue 
en permutant le rôle des particules i et k sera aussi une solution ainsi 
que toute combinaison linéaire de la forme

aW(xt, y,, z,, .. .. xh yh zlt ..., xk, yk, zk, ...,t)
-+- yu z«, • ■ Xk, yk, Zk, ■■■, Xi, yt, Zi, . .., t).

Si nous écrivons alors que | *E |3 doit être insensible à une permutation 
des particules i et k, nous sommes conduit à poser b = ±a et nous 
pourrions ensuite vérifier que, si cette condition est réalisée, toutes 
les autres grandeurs observables sont aussi insensibles à la permutation 
de i et de k.

LA MÉCANIQUE ONDULATOIRE DES SYSTÈMES DE CORPUSCULES. 267



.268 CHAPITRE XV.

Pour énoncer ce résultat sous une forme plus générale, introduisons 
les définitions suivantes : une fonction d’onde sera dite « symétrique » 
si, quand on y intervertit le rôle de deux particules de même nature, 
elle ne change pas de valeur; une fonction d’onde sera dite « anti 
symétrique » si, quand on y intervertit le rôle de deux particules 
de môme nature, elle garde la mémo valeur absolue, mais en changeant 
de signe. Ceci posé, le résultat général auquel on arrive en exprimant 
que toutes les grandeurs observables doivent être insensibles à la 
permutation de deux particules de môme nature peut s’énoncer ainsi : 
la fonction d'onde W d'un système contenant des particules de même 
nature doit être, soit symétrique, soit antisymétrique pour tout 
couple de ces particules.

On peut démontrer qu’il existe toujours une infinité d’états 
symétriques et d’états antisymétriques possibles pour un système 
de particules identiques. En effet, soit *E(i, 2, . . ., N, t) une solution 
de l’équation d’ondes du système contenant N particules (« représente 
l’ensemble des trois coordonnées x-,, yt, zi). Soit ^) une permutation
quelconque des N nombres 1,2, .... N. La fonction .........N,«)
est la fonction obtenue en effectuant la permutation 'JJ sur les arguments 
de la fonction vF(i, 2, . . ., N, t). Il est alors évident que là 
fonctionnel)*F( 1, 2, .... N, t) où la somme ^ porte sur toutes

P P
les permutations possibles, y compris la permutation identique,
est une fonction symétrique et l’existence d’une infinité de fonctions 
symétriques se trouve ainsi démontrée. D’autre part, soit la fonc 
tion 2±!DE(., 2, ..., N, t) où l’on prend le signe -f- «levant 

P
les permutations paires (c’est-à-dire celles qui dérivent de la 
suite 1, . . . ,'N par un nombre pair d’échanges simples) et le signe — 
devant les permutations impaires (c’est-à-dire celles qui dérivent 
de la suite 1, 2, . . ., N par un nombre impair d’échanges simples) : 
la fonction obtenue est visiblement antisymétrique, ce qui démontre 
l’existence d’une infinité d’états antisymétriques.

Donc, parmi les états possibles a priori pour le système, se trouvent 
une infinité d’états symétriques et une infinité d’états antisymétriques. 
On doit admettre que, pour les systèmes à particules de nature 
identique, seuls ces états sont réalisés dans la nature. Ce qui achève 
de justifier cette hypothèse, c’est le théorème suivant que l’on démontre 
en s’appuyant sur la symétrie des fonctions qui expriment les inter 
actions :



Un système qui est initialement dans un état symétrique ne peut 
subir de transition que vers un autre état symétrique et un système 
qui est initialement dans un état antisymétrique ne peut subir 
de transition que vers un autre état antisymétrique.

Ainsi, les étals symétriques, (l’une part, les états antisymétriques, 
d’autre part, forment (les ensembles fermés et ne peuvent se combiner 
qu’entre eux.

On peut donc très bien supposer que, suivant la nature physique 
des particules envisagées, une seule (1e ces catégories d’états se trouve 
réalisée dans la nature car, si à un instant donné une seule de ces 
catégorie existe, l’autre n’apparaîtra jamais. La Mécanique ondulatoire 
n’impose pas l’existence d’une seule catégorie d’états (symétriques 
ou antisymétriques) pour chaque genre de particules, mais elle est 
compatible avec le principe supplémentaire suivant lequel, pour chaque 
genre de particules, existent exclusivement, soit les états symétriques, 
soit les états antisymétriques. L’expérience a montré qu’il en est 
bien'ainsi.

Suivant que l’on suppose seule possible l’une ou l’autre de ces deux 
catégories d’étals, on obtiendra pour le genre de particules considéré 
des statistiques très différentes. Si l’on suppose que les états symétriques 
sont seuls possibles, il n’y a aucune raison pour qu’on ne puisse pas 
avoir un nombre quelconque de particules dans le même état individuel 
et l’application des méthodes de la statistique quantique conduit alors 
à la statistique de Bose-Einstein. Les photons, les particules a, certains 
noyaux d’atome suivent cette statistique et sont donc des particules 
à états symétriques : on les nomme parfois des « Bosons ». Par contre, 
si l’on suppose seuls possibles les étals antisymétriques, il ne pourra 
y avoir plus d’un corpuscule dans chaque état individuel. En effet., 
si nous avions deux corpuscules dans un même état antisymétrique, 
en permutant leur rôle, il devrait y avoir changement de signe de la 
fonction d’onde qui est, par hypothèse, antisymétrique, mais il ne 
devrait aussi y avoir aucun changement puisqu’on n’a fait que permuter 
deux corpuscules identiques occupant des états individuels identiques : 
la fonction d’onde, devant à la fois rester la même et changer de signe, 
est nécessairement nulle et ce fait signifie que cet état ne peut exister. 
On retrouve ainsi la règle d’exclusion de Pauli et, en appliquant 
les méthodes de la statistique quantique, on parvient ainsi à la statistique 
de Fermi-Dirac. Le principe de Pauli est donc seulement valable 
pour les particules à états antisymétriques. On trouve que les électrons,
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les protons, les neutrons et certains noyaux (l’atome sont des particules 
de ce genre et on leur donne parfois le nom générique de « Fermions ».

On pourrait donc croire que les considérations qui précédent 
peuvent être appliquées directement aux électrons et fournir un énoncé 
mathématique du principe de Pauli. Il n’en est rien parce que 
les électrons sont des corpuscules doués de spin et qu’il est nécessaire 
de tenir compte du spin pour définir correctement la symétrie et l’anti 
symétrie des' fonctions d’onde tandis que, jusqu’à présent dans ce 
chapitre, nous n’avons pas introduit le spin. D’ailleurs, l’énoncé 
du principe de Pauli pour les électrons doit faire intervenir, nous 
l’avons vu, les nombres quantiques j et m qui sont relatifs an momcnl 
de rotation total comprenant le spin, d’où l’impossibilité de retrouver 
correctement ce principe sans faire intervenir le spin.

.'>. Introduction du spin en Mécanique ondulatoire des systèmes. 
Énoncé rigoureux du principe de Pauli. — Jusqu’ici nous n’avons 
développé la Mécanique ondulatoire des systèmes que pour des 
corpuscules sans spin. Pour obtenir rigoureusement une Mécanique 
ondulatoire des systèmes de corpuscules doués de spin, il faudrait 
développer une théorie qui généralise la Mécanique ondulatoire 
relativiste de l’électron due à Dirac. Mais celte théorie comporterait 
nécessairement de grandes complications à cause du caractère « retardé » 
des interactions dans toute théorie relativiste et il faut se contenter 
d’un procédé approximatif. Ce qui permet de construire une théorie 
approximative, c’est que, du moins dans les conditions ordinaires, 
l’existence du spin n’introduit que de légers écarts par rapport à ce qui 
se passerait s’il n’existait pas : le spin n’introduit, en somme, 
que des structures fines au sens de Sommerfeld. Ceci nous permet 
de supposer que la situation d’un système d’électrons, en ce qui 
concerne la position et le mouvement de ses constituants, est très 
approximativement décrite par l’onde V du système calculée à l’aide 
de l’équation de Schrodinger. On peut alors admettre que, pour tenir 
compte du spin, il suffit de multiplier cette fonction d’onde par 
une fonction représentant l’état des spins des constituants. La fonction 
d’onde O représentant entièrement l’état du système sera donc 
de la forme

zy, (Ti, . . ., UN, t) ~ zy, t) =(3,, . . ?>■),

où *F(aô, . . ., Zy, t) est une solution de l’équation de Schrôdinger 
et où <7i, .... crN représentent les spins des N électrons du système
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projetés sur une direction de référence et susceptibles d’avoir les deux

valeurs ± •
4 JT

Le principe de Pauli s’énoncera alors en disant :

Les seuls états possibles pour un système de N électrons sont 
ceux dont l'onde 4> est antisymétrique pour Vensemble des quatre 
variables d'espace et de spin de toute paire d'électrons.

En d’autres termes, les fonctions O représentant les états du système 
réellement réalisables dans la nature sont telles que si l’on permute 
dans 4» les variables .77, y-,, z,, 07 et Xj, yj, Zj, 07 pour une paire 
quelconque d’indices i et J, la fonction 4» change seulement de signe 
sans changer de valeur absolue.

Telle est l’expression mathématique rigoureuse du principe-de Pauli.

6. Théorie du spectre de l’hélium (Heisenberg). — Le principe 
de Pauli est fortement confirmé par l’existence de la saturation 
des niveaux d’énergie atomiques, puisqu’il conduit à la règle de Stoner 
qui traduit les faits expérimentaux : il l’est aussi par le succès de la 
statistique de Fermi-Dirac, par exemple dans la théorie électronique 
des métaux. Mais une autre preuve très remarquable en a été apportée 
par la théorie du spectre de l’hélium due à Heisenberg. L’atome 
d’hélium fournit, en effet, un exemple très simple de système formé 
des corpuscules identiques, puisqu’il comprend deux électrons seulement 
soumis à l’action du champ coulombien du noyau et qu’en première 
approximation, celui-ci peut être considéré comme Un simple contre 
de force.

Avant d’aborder le côté théorique du problème voyons ce que nous 
apprend l’expérience sur le spectre de l’hélium. Un fait fondamental 
est que ce spectre se décompose, à première vue, en deux catégories 
de raies complètement distinctes et formant comme deux spectres 
juxtaposés <jue l’on a nommés « spectre du parhélium » et « spectre 
de l’orthohélium ». Ce qui permet de dire que ces deux spectres sont 
complètement distincts, c’est que, si l’on dresse le tableau des niveaux 
(ou termes spectraux) correspondant aux raies du parhélium et à celles 
de l’orthohélium, il n’y a pas, du moins en première approximation 
quand on néglige certaines raies très faibles, de combinaisons entre 
les deux catégories de termes. Néanmoins, on ne peut pas dire; comme 
on avait cru tout d’abord pouvoir le faire, qu’il y a deux sortes 
d’hélium à atomes différents, le parhélium et l’orLhohélium, car
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les mômes atomes d’héliuni se montrent capables, suivant les circons 
tances, d’émettre l'un ou l’autre spectre. Il y avait là une circonstance 
mystérieuse qui n’a pu être interprétée que par la Mécanique 
ondulatoire.

Si l’on examine plus attentivement les spectres du parhélium et de 
l’ortholiélium, on constate que l’on peut faire correspondre chaque 
niveau de l’un à un niveau de l’autre, mais que chaque niveau 
de l’orthohélium est un peu plus profond que son homologue 
du parhélium. Si l'on représente les terme du parhélium et de l’ortho- 
hélium, on obtient le schéma suivant de niveaux :

Tl- 1

Fig. 3o.

Un fait très remarquable visible sur ce schéma est que le niveau 
fondamental (« = r) du parhélium n’a pas d’homologue dans le spectre 
de l’orthohélium.

Une étude plus approfondie a conduit à découvrir une structure fine 
du spectre de l’orthohélium, chaque niveau de ce spectre devant être 
considéré comme triple, ainsi que nous l’avons indiqué sous la figure 
par des traits pointillés. Il en résulte que le spectre du parhélium 
est un spectre de singulets, mais que le spectre de l’orthohélium est 
un spectre de triplets.

Tels sont les principaux faits expérimentaux, assez singuliers 
au premier abord, dont la théorie avait à rendre compte.

Pour faire la théorie du spectre de l’hélium, on remarquera d’abord 
que, d’après la règle de Stoner, l’atome d’hélium dans son état normal 
non ionisé doit avoir ses deux électrons sur le niveau fondamental n == i. 
Par suite d’une perturbation extérieure, l’un de ces électrons peut être 
porté sur un niveau supérieur caractérisé par l’indice n et les raies 
du spectre usuel de l’hélium doivent être dues aux transitions de cet 
électron excité vers des états de moindre énergie. Le cas où les deux 
électrons se trouveraient excités à la fois doit être considéré comme très 
rare et ne donnant lieu qu’à des raies observées dans des circonstances 
très exceptionnelles. Donc les niveaux du spectre usuel de l’hélium



s’obtiendront en calculant les fonctions d’onde qui correspondent 
à un électron dans l’état fondamental et à l’autre électron dans l’état n. 
Nous les désignerons par *F1|n.

On peut d’abord faire une théorie incomplète sans tenir compte 
du spin. On a alors à résoudre une équation de Schrodinger à six 
variables : z{, oc». y», z2. On trouve des solutions symétriques
et des solutions antisymétriques ,Fj"ï correspondant à des valeurs 
propres E^’ et EJf1. Le calcul de ces valeurs propres fait par Heisenbcrg 
indique que E^’est toujours un peu plus faible que Ej;5) pour une même 
valeur de n. Comme il n’y a pas d’intercombinaisons entre les états 
symétriques et les états antisymétriques, on a donc deux spectres indé 
pendants, comme l’exige l’expérience, et les valeurs relatives de E(n” et 
de EJ,"1 imposent de faire correspondre le spectre du parhélium aux états 
symétriques et le spectre de l’orthohélium aux états antisymétriques. 
Cette attribution est immédiatement confirmée d’une manière très 
remarquable par le fait suivant : la fonction propre antisymétrique vfrSf,j 
étant nulle si n — i, car alors les deux électrons sont dans le même état 
individuel, le niveau fondamental n = i doit manquer dans le spectre 
de l’orthohélium et nous savons qu’il en'est bien ainsi. On pourrait 
objecter que les états symétriques sont à écarter d’après le principe 
de Pauli, ce qui ferait tomber les interprétations précédentes, mais cette 
objection ne vaut pas parce que le principe de Pauli ne peut valablement 
s’appliquer que si l’on a tenu compte du spin et nous ne l’avons pas 
fait jusqu’à présent.

Pour compléter la théorie, il nous faut donc nécessairement introduire 
le spin de l’électron. Nous le ferons, comme nous l’avons indiqué 
plus haut, en multipliant la fonction d’onde W des coordonnées, solution 
de l’équation de Schrôdinger, par une fonction représentant l’état 
de spin des deux électrons, de façon à obtenir par ce produit une fonction 
d’onde représentant approximativement l’état du système, compte tenu 
du spin. Le spin de chacun des électrons pouvant avoir les deux

valeurs -4- ~ et — > nous conviendrons de faire correspondre4* 4* r
à la première de ces valeurs la lettre a et à la seconde la lettre b. 
Nous dirons alors que la fonction représentant le spin du système

est a ( i ) 6 ( 2 ) si le premier électron a le spin — et le second spin — ~ > 

qu’elle est a( 1)0(2) si les deux électrons ont le spin etc.
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Heisenberg a montré que l’on est amené à introduire quatre états 
de spin pour le système représentés par les quatre fonctions

a(i)a(Q.), b(i)b(2), a( i ) 6(2) -+- 0,(2) b( 1 ),
a(i)b(2) — a (2)6(1),

les trois fonctions de la première ligne représentant des étals de spin 
symétriques, la fonction de la deuxième ligne un état de spin anti 
symétrique.

Pour obtenir les fonctions d’onde 04i,i du système correspondant 
à un nombre 11 donné, on doit multiplier chacune des deux fonctions 
et 'F!jaj précédemment utilisées par chacune des quatre fonctions de spin 
que nous venons d!écrire. O11 obtient ainsi les huit fondions 
suivantes :

V$,a( 1 ) n(2),T VYXb{ 1 ) b(2), >n;>t[«( * ) b(2) -h 0(2) ô( 1 )J,
— «(2)6(1)]

et
V'a,i«(i)a(2), 1)6(2), 'f<"n)[«(i)6(2)-+-«(2)è(i)],

VS«[a(i)ô(2)-a(2jé(i)].

Les quatre premières sont symétriques, les quatre dernières anti- 
symétriques par rapport à l’ensemble des variables de configuration 
et des spins. D’après le principe de Pauli, nous devons admettre que, 
seules, les quatre dernières représentent des états réellement existant 
dans la nature.

Pour un nombre n donné, nous trouvons donc les quatre états 
suivants :

[«(1 ) b{2) — a{ri) b( 1 )] avec l’énergie E“ -ht, 
x¥^,a(i)a(2) avec l’énergie EJ,"1-t-vji,
Wif1 b( 1 ) 6(2) avec l’énergie E',n) -i- t j2,
'Df1 f a(1 ) b(2) «(2) b( 1 )] avec l’énergie E*,,"1 •+• ï )3.

En effet, l’intervention du spin modifie très légèrement les valeurs 
propres de la théorie sans spin : d’où l’apparition, dans l’expression 
des énergies, des très petites constantes s, wi, r/;i. Ces corrections 
étant très petites, on a toujours le résultat que la valeur de l'énergie 
correspondant à la fonction est un peu supérieure aux énergies
des états en On est donc encore amené à faire correspondre l’état
unique en 'F;’), au spectre du parhélium et les trois états très voisins 
en au spectre de l’orthohélium.

Comme est nul, on a toujours l'interprétation de l’absence



du niveau fondamental n = i dans le spectre de l’orthohélium. Mais ici 
nous avons une précision supplémentaire, car y j*, y )2, rj3 étant de petites 
constantes très légèrement différentes, les niveaux de l’orthohélium 
doivent être triples et tous les faits expérimentaux représentés sur 
le schéma donné ci-dessus se trouvent ainsi expliqués.

Nous avons obtenu par cette théorie une très bonne vérification 
du principe de Pauli, car si l’on supposait, par exemple, qu’il faut pour 
les électrons conserver les états symétriques par rapport aux coordonnées 
et aux spins et rejeter les états antisymétriques, on serait conduit 
à prévoir que les raies de l’orthohélium sont des singulets et celles 
du parhélium des triplets, ce qui serait l’inverse de la constatation 
expérimentale. Le principe de Pauli se trouve ainsi en quelque sorte 
inscrit dans la structure fine du spectre de l’hélium.

La théorie dont nous venons de donner un exposé qualitatif 
est susceptible de vérifications numériques. Heisenberg et CJnsold 
ont pu calculer exactement de cette façon la valeur des termes spectraux 
de l’hélium et de son potentiel d’ionisation.

Nous devons enfin noter qu’il existe, en réalité, dans le spectre de 
l’hélium des raies très faibles correspondant à des combinaisons entre 
les niveaux du parhélium et ceux de l’orthohélium (Jacquinot, 1987), 
ce qui prouve en passant que les deux sortes de niveaux existent bien 
dans le même atome. Heisenberg a pu expliquer la présence de ces raies 
de la façon suivante. La démonstration que les états 'Fl'l et 
11e peuvent se combiner n’est rigoureuse que lorsqu’on néglige le spin : 
si l’on tient compte du spin, ce sont les fonctions O symétriques 
et les fonctions O antisymétriques qui ne peuvent se combiner, ce qui 
permet de ne conserver pour l’électron que ces dernières. Mais comme 
en introduisant le spin on introduit des interactions entre moments 
magnétiques propres qui ne dépendent pas seulement de la distance 
des électrons, mais aussi de l’orientation de leurs moments, on ne peut 
plus démontrer que les états en V(s) et en *F(n> ne se combinent pas. 
Les transitions entre les niveaux du parhélium et ceux de l’orthohélium 
sont donc possibles, mais comme leurs probabilités sont de l’ordre 
des corrections de spin, les raies correspondantes sont très faibles.

LA MÉCANIQUE ONDULATOIRE DES SYSTÈMES DE CORPUSCULES. 2?5

7. Orthohydrogène et parahydrogène. — La théorie des spectres 
moléculaires de la molécule H2, quand on fixe son attention sur le rôle 
des deux protons noyaux des deux atomes H, amène à introduire 
des considérations tout à fait analogues à celles que nous venons
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de rencontrer en étudiant le spectre de l’hélium, et cela parce que 
les protons comme les électrons sont des Fermions.

Le spectre de rotation de la molécule Ha est dû aux transitions 
de la molécule entre états de rotation quantifiés. Dans ces états 
de rotation, la molécule H2 se comporte sensiblement comme une haltère 
dont les noyaux H formeraient les masses terminales, les deux électrons 
de la molécule Ha jouant ici un rôle négligeable. Le système des deux 
noyaux H admet des états stationnaires, les valeurs propres de l’énergie 
correspondant aux niveaux du spectre de rotation et les fonctions 
propres décrivant les états de rotation quantifiés. Par analogie avec 
la théorie du spectre de l’hélium, on voit alors aisément que les niveaux 
de rotation comprendront une série de niveaux simples du type para 
avec fonction propre symétrique d’espace et une série de niveaux triples 
du type ortho avec fonction propre antisymétrique d’espace. La tran 
sition d’un niveau para à un niveau ortho et inversement ne pourra 
être due qu’aux interactions de spin entre les protons ; mais le moment 
magnétique du proton étant environ 600 fois plus petit que celui 
de l’électron, les interactions de spin entre protons doivent être 
beaucoup plus faibles encore que les interactions de spin entre électrons. 
Bref, pour l’émission du spectre de rotation de la molécule Ha, tout 
se passera comme s’il existait deux sortes d’hydrogène, l’orthohydrogène 
et le parahydrogène : la séparation du spectre ortho et du spectre para 
sera, en ce cas, plus complète encore que dans le cas du parhélium 
et de l’orthohélium.

\oici une conséquence curieuse de ce qui précède. Lorsqu’après 
une excitation suivie par l’émission de raies du spectre de rotation, 
certaines molécules Ha sont revenues à l’état d’énergie minimum 
de l’orthohydrogène, elles ne pourront ensuite revenir que très difficile 
ment à l’état fondamental du parahydrogène (qui correspond au 
minimum absolu de l’énergie), puisqu’une telle transition ne se produit 
qu'avec une probabilité extrêmement faible. L’état d’énergie minimum 
de l’orthohydrogène présente donc une métastabilité très marquée. En 
maintenant l’hydrogène à une très basse température où pratiquement 
la totalité des molécules Ha devrait se trouver dans l’état de minimum 
absolu de l’énergie, il faut en réalité près d’une semaine pour que toutes 
les molécules reviennent à cet état à cause de la grande métastabilité du 
niveau inférieur de l’orthohydrogène.

L’existence des deux spectres moléculaires presque entièrement 
séparés de l’ortho et du parahydrogène se manifeste aussi d’une autre
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manière. Si nous excitons brutalement par action d'une forte tempé 
rature des molécules IIo, nous verrons apparailre le spectre de rotation 
au complet avec ses raies orlho et para, les premières étant, toutes 
choses égales d’ailleurs, trois lois plus fortes que les secondes car 
le poids des niveaux de l’orthohydrogène est triple de celui des niveaux 
du paraliydrogène. Mais commençons par maintenir de l’hydrogène 
à très basse température pendant un temps très long de façon à amener 
pratiquement toutes les molécules dans l’état fondamental du para- 
hydrogène, puis portons l’hydrogène ainsi préparé dans un tube de 
Plücker : l’excitalion électrique portera presque tou jours les molécules IL 
de l’état fondamental du parahydrogène à un autre étal du para hydrogène 
en raison delà difficulté des transitions paraorlho. On 11’obtiendra 
donc tout d’abord que les raies du parahydrogène, celles de l'orlho- 
hydrogène qui devraient normalement être trois fois plus intenses étant 
absentes. Peu à peu cependant, les raies de Fort hohydrogène feront leur’ 
apparition au fur et à mesure que des molécules 1I2 ayant subi une 
transition para-> ortlio deviendront capables de les émettre.

La difficulté des transitions para-> orllio et des transitions inverses 
a aussi comme conséquence que des équilibres thermodynamiques 
ne peuvent s’établir rapidement qu’entre des molécules Hs dans des états 
para ou entre des molécules Ha dans des états ortho. Il en résulte que 
dans des mesures faites rapidement à température pas trop basse telles 
que les mesures de chaleurs spécifiques, l’hydrogène doit se comporter 
comme un mélange de deux gaz différents, l’orthohydrogène et le 
parahydrogène, mélangés dans la proportion de 3 à 1 et dont l'un 
ne serait susceptible que d’états antisymétriques d’espace et l’autre 
d’états symétriques d’espace. Cette remarque a permis à Heisenberg 
d’expliquer quantitativement les anomalies apparentes qui avaient été 
observées par Dennison pour les chaleurs spécifiques de l’hydrogène.

Tout comme le parhélium et l’orthohélium, le parahydrogène 
et l’orthohydrogène ne sont pas des éléments différents, mais corres 
pondent seulement à deux catégories de niveaux quantifiés, difficilement 
combinables entre elles, d’un môme système quantifié qui est l’atome Ile 
dans un cas et la molécule H3 dans l’autre.

8. Applications diverses. — La Mécanique ondulatoire des systèmes 
de corpuscules a permis, en introduisant la notion nouvelle d’énergie 
d’échange, de rendre compte de la stabilité des molécules homopolaires 
et, en particulier, de faire une belle théorie de la liaison des deux 
atomes H dans la molécule H2 (Heitler et London).



Si l’on veut appliquer la Mécanique ondulatoire des systèmes à des 
atomes plus compliqués que celui d’hélium, on tombe dans de grandes 
difficultés mathématiques et il a fallu des méthodes puissantes comme 
celles de la théorie des Groupes pour parvenir à des résultats généraux.

Néanmoins, des méthodes d’approximation ingénieuses ont permis 
d’aborder les questions relatives à l’interaction des atomes dans les 
molécules, à l’interprétation de la notion chimique de valence, 
à la structure et aux propriétés des molécules complexes de la Chimie 
organique, aux phénomènes deMésomérie, etc. Il y a là toute une science 
nouvelle, la Chimie théorique quantique, qui est en plein dévelop 
pement, mais dont nous ne pouvons entreprendre ici l’exposé. Nous 
ne pouvons que renvoyer aux Ouvrages spéciaux [5], [6], [7], [8].
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CHAPITRE XVI.
LES STATISTIQUES QUANTIQUES.

1. Les cellules d’exteusion-en-phase dans la théorie des Quanta. —
Dans le chapitre IV, nous avons exposé les principes de la Mécanique 
statistique en introduisant l'hypothèse que l’extension-en-phasc était 
subdivisée en cellules de grandeur a et nous avons obtenu ainsi une 
expression de l’entropie où la constante de l’entropie dépend de loga. 
Or nous avons remarqué que dans la Mécanique statistique classique, 
lous les points de l’extension-en-phase représentant des états possibles, 
il est logique d’admettre que a est nulle et, par suite, de faire tendre a 
vers zéro dans toutes les formules obtenues. On tombe alors sur la diffi 
culté que la constante de l’entropie devrait être infinie. La théorie des 
Quanta a levé cette difficulté en attribuant à a une valeur très petite, 
mais finie.

En effet, dès le début de ses recherches sur les quanta, Planck avait 
remarqué que la théorie des Quanta conduit à subdiviser l’extension- 
en-phase d’une molécule en cellules finies de grandeur h K Au point de 
vue des dimensions, cette hypothèse est évidemment admissible car, le 
produit dxdpæ ayant comme h les dimensions d’une action ML'2T~1, 
l’élément d’extension-en-phase pour une molécule a bien les dimensions 
de h:'. Le quantum h jouant dans la théorie quantique le rôle d’une 
sorte d’atome d’action, il est donc naturel de prendre la grandeur des 
cellules d’extension-en-phase égale à h-'.

On peut justifier cette hypothèse d’une façon plus précise en raison 
nant comme il suit. Considérons le cas d’un mouvement périodique 
quantifié défini par une seule coordonnée q. La condition de quanta
adoptée par Planck pour les mouvements quantifiés éliùuj) p dq = nh : 

elle exprime que la trajectoire fermée décrite par le point figuratif dans
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l’extension-en-phase à deux dimensions (q, p) limite une aire intérieure 
égale à nh.

Puisque n est un entier, cela revient à dire que l’extension-en-phase 
est divisée en cellules élémentaires de grandeur h. D’après les condi 
tions de Wilson-Sommerfeld, pour un mouvement périodique à n coor 
données, la môme conclusion est exacte pour chacun des plans qtpi et, 
comme l’extension-en-phase a alors 2 n dimensions, il en résulte que 
cette extension est divisée en cellules élémentaires de volume hn. Pour 
l’extcnsion-en-phase d’une molécule qui est à six dimensions, les 
cellules élémentaires ont bien le volume h3.

Dès ses débuts, la Mécanique ondulatoire a fourni une interprétation

P

q
Fig 3i.

très intéressante de la division apparente de l'exlension-en-phase d’une 
molécule en cellules élémentaires de volume h3. Dire que l’extension- 
en-phase est divisée en cellules de volume h3, cela revient en effet à 
dire que l’intervalle de quantité de mouvement (p, p + dp) correspond

ivoir chap. IV), puisqu’ici a~h3. Or la Mécanique ondulatoire 
explique très bien ce fait.

En effet, nous rappelons d'abord que, si l'on calcule le nombre des 
ondes stationnaires qui peuvent exister dans une enceinte de volume ‘v’ 
sous la condition d’ôtro milles aux limites de l’enceinte, on trouve qu’il 
y en a un nombre

(1)

correspondant à l’intervalle de fréquence (v, v -f- c/v). Y est ici la vitesse
de phase des ondes considérées pour la fréquence v et U la vitesse de
groupe définie par la formule-de Rayleigh (voir chap. IX, § 6)

U ô'i (h
1 _ JL W
V _ V2 dü
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qui diffère de Y si A dépend de v. Si les ondes considérées sont les 
ondes lumineuses et si l'enceinte est vide, on a \ = U = c et l’on 
trouve simplement

4jtV*rfvdn = ——— \>,

281

résultat (ju’il faut encore doubler pour tenir compte des deux états de 
polarisation possibles de la Lumière. Nous retrouvons ainsi la formule 
due à Jeans que nous avions rencontrée au chapitre Y, paragraphe -4. 
La démonstration de la formule générale (1) se trouve dans le livre de 
Léon Brillouin sur les Statistiques quanliques [1] à la page 36.

Mais, en Mécanique ondulatoire, à un mouvement rectiligne uniforme 
d’une molécule avec une quantité de mouvement p, est associée la pro 
pagation d’une onde V de longueur d’onde

On a donc

h
p'

Nous pouvons donc écrire la formule (1) pour les ondes associées à la 
molécule sous la forme

fin 4r.(h'i\-hd't 4 ,/v\ 4 x p-dpv = h*(T) — = Mv] hd\v) = lô'

Or, en Mécanique ondulatoire, les seuls mouvements stables possibles 
sont ceux qui correspondent à des ondes stationnaires : c’est le principe 
même de la quantification des mouvements dans la nouvelle Mécanique. 
Le nombre du représente donc le nombre des états possibles pour la 
molécule dans l’enceinte qui correspondent à l’intervalle (p, p + dp). 
Or pour ce nombre, la Mécanique statistique nous fournit la valeur
^JE-ÉE.ioù a est la grandeur de la cellule d’exlension-en-phase. On

voit donc, bien que tout doit se passer comme si l’extension-en-phase 
était divisée en cellules «élémentaires de volume h ' et cela parce que les 
états possibles sont associés à des ondes stationnaires pouvant s’établir 
dans l’enceinte envisagée.

L’ancienne théorie des Quanta avait donc posé a = h'' et montré 
qu’en conservant la méthode statistique de Boltzmann-Gibbs, on retrou 
vait les formules classiques de la Thermodynamique statistique, mais 
cette fois avec une valeur finie de la constante de l’entropie, valeur qui 
était entièrement calculable pour un gaz monoatomique parfait à partir
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de la valeur numérique de h. Stem avait indiqué comment on pouvait 
vérifier la valeur de la constante de l’entropie par l’étude de la loi des 
tensions de vapeurs saturantes. L’accord obtenu a été satisfaisant.

Mais le développement des théories quantiques a conduit à penser 
qu’il ne suffisait pas de compléter les méthodes statistiques classiques 
en posant a = h \ mais qu’il fallait leur apporter des modifications plus 
profondes que nous allons maintenant examiner.

2. Nouvelles méthodes statistiques. — La Mécanique statistique doit 
avant tout faire le dénombrement des répartitions élémentaires qui 
réalisent une certaine répartition globale des constituants d’un système 
complexe entre les diverses énergies. Dans la méthode classique de 
Boltzmann, ce dénombrement doit se faire en considérant comme diffé 
rentes deux répartitions élémentaires dont la seule différence est que le 
rôle de deux particules de môme nature y est permuté. En d’autres 
termes, on accordait aux particules une individualité suffisante pour 
qu’il faille distinguer le cas où la fième particule est dans un état a et 
la A'lèrae dans un état b et le cas où la flème particule est dans l’état b et 
la /clèm0 dans l’état a. Or le développement de la Mécanique ondulatoire 
des systèmes de particules de môme nature a montré qu’il n’y avait pas 
lieu, pour un tel système, de considérer comme différents deux états 
qui ne diffèrent que par la permutation du rôle de deux de ces par 
ticules. Pour faire la statistique d’un tel système, on doit donc compter 
les complexions en tenant compte de ce fait, c’est-à-dire en considérant 
comme identiques deux complexions qui ne diffèrent que par la permu 
tation de deux particules de môme nature. En faisant le dénombrement 
de cette façon, on trouvera évidemment des nombres de complexions 
inférieurs à ceux que donnait la méthode classique et toutes les formules 
en seront modifiées.

Mais, de plus, il y a lieu de distinguer deux cas très différents. Nous 
avons vu, en effet, que les particules se divisent en deux catégories : les 
unes (bosons) pour lesquelles la fonction d’onde est toujours symé 
trique, les autres (fermions) pour lesquelles elle est toujours antisymé 
trique. Nous avons remarqué que, pour un système formé de particules 
identiques de la première catégorie, il pouvait y avoir un nombre quel 
conque de particules dans le même état tandis que, pour un système 
formé de particules de la seconde catégorie, il ne peut y avoir plus d’une 
particule par état.

Soit alors un système formé d’un très grand nombre N de particules 
de môme nature. Nous voulons trouver le nombre de répartitions élér
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mentaires qui réalisent une répartition globale donnée (//, ; ..//,; ... ) 
entre les divers intervalles d’énergie (E4, Et + i/Et;... ; E,-, E;-f- c/E,-; ... i. 
INous savons évaluer le nombre gi de cellules d’exlension-en-phase affé 
rentes à chaque intervalle, maintenant que nous savons que la grandeur 
de ces cellules est h3. Nous supposons que les dEj sont des infiniment 
petits physiques, c’est-à-dire qu’ils sont suffisamment petits pour per 
mettre de remplacer les sommations sur les intervalles par des intégra 
tions, mais qu’ils sont cependant suffisamment grands pour que les g-, 
soient très grands : ces deux suppositions ne sont pas contradictoires 
à cause de l’extrême petitesse des cellules h3.

Dès lors, si les particules considérées sont des hosons, nous aurons à 
calculer le nombre de manières dont on peut répartir les n,- particules 
du intervalle entre les gi cellules de cet intervalle sans nous préoc 
cuper de l’individualité des particules et sans limiter le nombre, des 
particules qui peuvent se trouver dans une même cellule. Nous obtien 
drons donc le nombre des répartitions de n,- particules entre les g/ cel 
lules en prenant de toutes les façons possibles «, des gi cellules, chaque 
cellule pouvant être prise plusieurs fois. Le nombre des répartitions 
cherché est donc le nombre des combinaisons avec répétition de gi 
objets pris «, à n, qui est, d’après l’analyse combinatoire, égal 
... +

■ (gt — O !
En partant de là, nous construirons une statistique

quantique qu’on appelle la statistique de Bose-Einstein.
Si, au contraire, nos particules sont des fermions, nous aurons à 

calculer le nombre de manières dont on peut répartir les //,• particules 
du ilème intervalle entre les gi cellules de cet intervalle sans nous préoc 
cuper de l’individualité des particules, mais en limitant à une le nombre 
des particules par cellule. Nous obtiendrons donc le nombre de répar 
titions cherché en prenant de toutes les façons possibles «, des gi cel 
lules, chaque cellule ne pouvant maintenant être prise qu’une fois (ce 
qui exige d’ailleurs ni^-gi). Le nombre des répétitions cherché est 
donc le nombre des combinaisons sans répétition de gi objets pris n -, 
à ni : une formule élémentaire d’analyse combinatoire nous apprend 

gt\qu’il est égal à —,, ° ----77 • Partant de là, nous construirons une autre
statistique quantique qu’on nomme la statistique de Fermi-Dirac.

Nous allons maintenant effectivement développer ces deux statis 
tiques.

3. La statistique de Bose-Einstein. — Considérons un système formé 
d’un très grand nombre N de particules identiques pour lesquelles les
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états symétriques sont seuls possibles. Nous avons vu que le nombre des 
répartitions des m particules du flèmc intervalle d’énergie entre les g-, 
cellules d’extcnsion-cn-phase de cet intervalle est donné par le nombre 
des combinaisons avec répétition de g-, objets pris n-, à m. Ce nombre

gfest égal a —r,° nt\(gt
-i)!

■O!
La démonstration de cette formule par l’analyse combinatoire est un 

peu longue et ne se. trouve pas dans les traités élémentaires. Nous allons 
en donner une ingénieuse démonstration imagée qui a été indiquée par 
M. Fermi. Représentons les n,- particules clu i1*“* intervalle d’énergie 
par des cercles et alignons ces m cercles. Traçons ensuite gi—i traits 
verticaux séparant ces cercles en groupes suivant le schéma suivant :

OOO I OO | | OOOO [..............00 | 00 | O.

Ce schéma représente une des distributions possibles des particules 
entre les £7 cellules, car nos gi—i traits verticaux répartissent les 
cercles en gi sections et nous pouvons supposer que les cercles de la 
première section représentent des particules placées dans la première 
cellule, etc. Or, nous obtiendrons tous les schémas du type ei-dessus 
en permutant de toutes les façons possibles les ni cercles et les gi— i 
traits verticaux, ce qui fait au total m + gi—i objets. Il y a («,•-+-£7—i)î 
permutations de cette sorte. Mais parmi les («;+£7—i)! schémas 
ainsi obtenus, tous ceux qui ne diffèrent que par la permutation de 
deux cercles ou par la permutatiou de deux traits représentent la même 
répartition des particules identiques entre les gi cellules puisqu’on 
n’attribue plus d’individualité aux particules. Donc le nombre des
répartitions distinctes est bien —pÿr et, comme on suppose gi

très grand par rapport à l’unité, on peut écrire approximative 
ment ‘ Le nomkrc des manières de réaliser la répartition globale
(/it; ...) entrç les intervalles d’énergie est donc

P TT<w*+*‘>!
11 ni\gl\ t

et, en employant la formule de Stirling, on trouve 

logP — log/i/! — logé',! J
i

=28g‘)~l) — rt,(logra,— i) — gt{\o%gi— i)] 

gi) — gi logtft-»! log»,].
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Pour déterminer l’état le plus probable, seul réalisé en pratique, écri- 
\ons que ôlogl* est nul pour une variation, des coniple tenu des 
deux conditions

^E(o«i=o. 
i t

Kn introduisant des multiplicateurs de Lagrange a et (3, on écrit 

O = S log 1’ -+- a^S/n-t- P^Ei Sn(=2|8«/[log(/i;-i- ,§•;) — log«,-t- * -i- ?Ei]
i t i

et, les ôiti pouvant maintenant être pris arbitrairement, chaque crochet 
de la somme doit être nul, ce qui donne aisément

En raisonnant comme nous l’avoiis fait en Mécanique statistique clas 
sique au chapitre IV, paragraphe 5, on trouve que (3 = pp* Quant à «.

sa valeur est déterminée par la condition^ n,= N.
i

Supposons que notre système de particules identiques forme un gaz 
monoatomique parfait (gaz d’Einstein). Alors on doit poser

8i =
jr.p* dp _ 2 t(i»i)! y/E dE 

h3 11 h3 s

et l’on trouve pour le nombre des atonies dont l’énergie appartient à 
l’intervalle (Ë, E + efE) :

v/lirfE
dnv- =----*3----^-------k ------

n a. _i_ tL

Si e* est très grand, on pourra négliger l’unité au dénominateur et 
l’on retrouvera la loi de distribution classique de Maxwell. Si, au con 
traire, e“ est petit devant l’unité, on aura une loi très différente de celle 
de Maxwell : on dit alors que le gaz est « dégénéré ». Or e* est déter 
miné par l’équation

f >/» = \.

En faisant les calculs, on peut montrer que l’ordre de grandeur de e* 
dépend du paramètre sans dimensions

D = N h3

V(2xmkT)-
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nommé « paramètre de dégénérescence ». Si D est petit devant l’unité, 
e® est grand et la statistique classique est très approximativement valable. 
Si D est grand devant l’unité, le gaz est dégénéré et ses propriétés 
peuvent différer beaucoup des propriétés classiques.

Il est facile de voir que D est toujours très petit pour les gaz matériels 
dans les conditions usuelles. On ne doit donc pas s’attendre à pouvoir 
mettre aisément en évidence des écarts par rapport aux propriétés clas 
siques provenant de la dégénérescence.

Si l’on calcule l’énergie totale U du gaz et sa pression p en suppo 
sant D assez petit pour qu’on puisse négliger son carré, on trouve

U = I
2 l

D\
1 ’

Le gaz doit donc, pour un volume donné, avoir une oression plus faible 
que ne l’indique la loi de Mariotte-Gay-Lussac. Les cas les plus favo 
rables (hélium à 4° absolus) donnent des écarts de quelques pour-cent 
par rapport à la loi classique, mais ces écarts, observables en principe, 
peuvent être masqués par les écarts provenant de ce qu’aucun gaz n’est 
parfait. Néanmoins, les propriétés étranges de l’hélium à très basse 
température paraissent apporter la confirmation que ce gaz obéit à la 
statistique de Bose-Einstein (les noyaux Ho ou particules oc sont des 
bosons).

4. Application de la statistique de Bose-Einstein au rayonnement 
noir. — La statistique de Bose-Einstein reçoit une vérification impor 
tante dans l’étude du rayonnement noir. Du point de vue de la théorie 
des Photons, le rayonnement noir est assimilable à un « gaz de pho 
tons ». Il est d’ailleurs aisé de calculer la valeur des gi pour les photons. 
Les photons dont l’énergie est comprise entre hv et. A(v-f-dv) onl des

■ , , • /(V /t(v -H th ) .quantités de mouvement comprises entre -- et ----- ;----- ; on a donc

P =
. h 'hdp = ---- ,c

4 ~'i- dv

Il faut encore doubler ce nombre pour tenir compte îles deux états de 
polarisation possibles du photon et l’on obtient finalement

et c’est précisément le nombre des ondes stationnaires de lréquences 
comprises entre v et v + ch qui peuvent exister dans 1 enceinte
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Nous avons maintenant à appliquer aux pilotons, qui sont des liosons, 
la formule (2), mais ici il faut faire un peu attention parce qu’en pré 
sence de matière le rayonnement noir peut gagner ou perdre des pilo 
tons si la matière présente en émet ou en absorbe. L’équilibre du 
rayonnement noir en présence de la matière n’est donc pas absolument 
comparable à celui d’un gaz enfermé dans une enceinte, mais plutôt à 
celui d’une vapeur saturante en présence de sa phase condensée. Il en 
résulte que, le nombre des pilotons pouvant varier, on ne doit pas
imposer au gaz de photons la condition^o et, si nous reprenons

i
la démonstration de la formule donnant les /t,, nous devrons poser x — o. 
On obtient donc
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et l’on en conclut que le nombre des photons dans le rayonnement noir 
qui correspond à l’intervalle de fréquence (v, v + c/v) est donné par

. 8 7tv'2 d't 1
d,lw = ~ ----

par unité de volume. D’où pour la densité spectrale

8j iAv 3 1
p( v ) rh •= d/iyh't — d>.

e/r — 1

On retrouve bien ainsi'la loi de Planck, ce qui montre que les photons 
sont bien des particules à états symétriques obéissant à la statistique de 
Bosc-Einslein. La statistique classique nous aurait conduit à la formule

p(v)tfv
87c Av

/V

;' ï d'1

ayant la forme de la loi empirique de YYien qui n’est valable que pour 

les grandes valeurs de ^ • Quant à la statistique de Fermi-Dirac, elle

nous aurait donné —|—au lieu de — 1 au dénominateur, ce qui serait 
tout à fait incompatible avec l’expérience.

b. La statistique de Fermi-Dirac. — Considérons un système formé 
d’un grand nombre N de particules identiques ne possédant que des
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états antisymclriques et soumises au principe de Pauli (Fermions). Le 
nombre des répartitions des «, particules du t1*"1* intervalle d’énergie 
entre les gi cellules d’extension-en-phase de cet intervalle est donné par 
le nombre des combinaisons sans répétition de g-, objets pris à

Ce nombre est égal à ———. avec la condition g;. La démons-

tration de cette formule est classique et se trouve dans les traités élé 
mentaires.

Le nombre des répartitions élémentaires réalisant une répartition 
globale (nl ; ... ; »,•; ...) entre les intervalles d’énergie est donc

-n «<! i.Si— «/)'

et la formule de Stirling nous donne

logP — "/(log«/— 0 — (gi— «t) (log( fft— «/) — 1>)
t

= 21 logtf i “ ni *°S n‘ ~ ( g t ~ ni ) >°g( Si — n, )].

Pour déterminer l’état le plus probable, nous devons toujours écrire 
que ôlogP est nul pour une variation des n,- soumise aux conditions

^Sn,= o et ^E;I b/li — O.

L’introduction des multiplicateurs de Lagrange nous donne 

O = S logP -+- a28ni+ P^E,- s'!/ = 2s,ti[1°g(o <— »/) — log«/+ * + pE,■].

Ceci devant être vérifié quels que soient les ô«,-, tous les crochets de la 
somme doivent être nuis, ce qui nous donne aisément

(3) Si
8I4v SK;_|~ t

La formule (o) a une forme analogue à celle de la formule (2), mais 
avec la différence essentielle qu’il ja + i au lieu de —n au dénomina 
teur. On démontre, toujours par le même genre de raisonnement que

dans les cas précédents, que (3 = Quant à la constante ot, elle peut

se déterminer par la condition N.
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Le quotient — nous donne le nombre moyen de particules par cellule 
St

pour le s1*"0 intervalle d’énergie. D’après (3), ce nombre est toujours 
inférieur à l’ujiité, ce qui est bien en accord avec le principe de Pauli.

Nous pouvons supposer que notre système de particules à états anti 
symétriques forme un gaz monoatomique parfait (gaz de Fermi). Si le 
spin des particules a s valeurs possibles, il faut multiplier pars la valeur 
de gi calculée au paragraphe 3 et l’on a

irA-ï.mŸ- v/E dE
ffi = s-------- Si-------- V-

L’introduction du nombre entier s correspond à l’introduction du fac 
teur 2 dans le cas des photons. Pour les électrons, il faut poser s = 2. 
Le nombre des particules pour l’intervalle d’énergie (E, E + <LE) est 
donc

3
dn = aîI5(2m)8 V \fËdE ' 

h3 a* E

289

Si e* est 1res grand devant l’unité, on retrouve la loi de Maxwell et les 
résultats de la statistique classique. Si, au contraire, e* est petit devant 
l’unité, le gaz est « dégénéré » et scs propriétés s’écartent beaucoup des
propriétés classiques. En calculant e* par la condition J'dn = 1S, on

peut encore montrer que l’ordre de grandeur de ea dépend de la valeur 
du « paramètre de dégénérescence » dont l’expression est toujours

V(’2xmkTy

Pour les gaz dans les conditions usuelles, D est toujours petit devant 
l’unité et l’on ne peut avoir que de très petits écarts par rapport aux lois 
classiques. Par exemple, 011 trouve pour la pression aux termes d’ordre 
.supérieur à 1) près

NAT/ 1» \
,i=T ,+ j

La pression pour un volume donné est donc ici plus grande (pie ne le 
prévoil la loi de Mariotle-Gay-Lussac et le gaz de Fermi s’écarte de la 
loi classique en sens inverse du gaz d’Einstein. L’écart, toujours assez 
petit (8 % au maximum), est masqué par les écarts dus au caractère 
non parfait des gaz réels.-

I.. DE BROOLIE. 19
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6. Le gaz de Fermi dans un état fortement dégénéré. — En vue dos
applications à la théorie des électrons libres dans les métaux,. il est 
intéressant d’étudier les propriétés d’un gaz de Fermi fortement 
dégénéré.

Nous considérons donc un gaz de Fermi pour lequel D est très grand

devant l’unité. On peut alors calculer ea, puis l’énergie totale U = j hLdn

en développant les formules suivant les puissances de ^ qui esL très

petit et en s’arrêtant au premier terme en ^• On trouve alors pour IJ 
l’expression

(4)
h- n"
ms"

ms* k* T -

33

où n = cy et où le second terme est de l’ordre de ^ ^ j • Four T = o, 

on obtient pour U la valeur non nulle (énergie au zéro absolu)

Dans la .Mécanique statistique classique où 1: = ^N/.-T et aussi dans

celle de Bose-Einslein, 1 tend vers zéro avec T. Ici, il en va différem 
ment car, le paramètre de dégénérescence de tout gaz de Fermi tendant 
toujours vers l’infini quand T tend vers zéro, on peut dire que, pour 
T = o, le gaz de Fermi garde toujours une énergie résiduelle non nulle.

Celte divergence entre les différentes statistiques est aisée à expliquer. 
En statistique classique et en statistique de Bose-Einslein, rien ne 
s’oppose à ce que toutes les particules viennent occuper la cellule 
d’énergie nulle. Vu zéro absolu où l’agitation thermique disparaît, les 
particules obéissant, à ces statistiques viendront donc toutes occuper la 
cellule d’énergie nulle et il n’y aura pas d’énergie résiduelle pour T = o. 
Mais, en statistique de Fermi-Dirac, il ne peut y avoir plus d’une par 
ticule par cellule. Donc, même au zéro absolu, les particules ne peuvent 
pas toutes venir se placer dans la cellule d’énergie nulle et elles vien 
dront seulement se serrer autour de l'origine dans les cellules les plus 
voisines de la cellule d’énergie nulle à raison d’une par cellule. Montrons 
qu’il en résulte pour l’énergie résiduelle Uo la valeur (5).

Si nous considérons dans l’exlension-en-moments (constituée à l’aide 
des variables rectangulaires />,, p.) une sphère de rayon p entourant
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l’origine des coordonnées, le volume de cette sphère sera — p'\ i’exlen-

sion-en-phase correspondante est ^-p:l‘V et le nombre des cellules de

celle extension, compte tenu du nombre s des valeurs possibles du spin,

est Au zéro absolu, les particules du gaz de Fermi occuperont

toutes les cellules correspondant dans l’espace des moments à l’intérieur 
d’une sphère de rayon telle que

4X5/^ _ v
3 te ’
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d’où

P» = {/:3NA:|
4 xsV

L’énergie résiduelle du |gaz au zéro absolu |sera donc ^puisqu’il y aura 

une particule d’énergie par cellule^

•'O

1 l,xsp- dp p-
le V.

On Irouve tout de suite

11 _ zxs'V vnsV / 3KAJ\»_ 3 /fi\5 h-n3
0 lunle^* iinlr'\^7:s‘v) 4o\x/ 4

/ns"

Nous relrouvons bien l’expression (5).
F11 nous reportant maintenant à la formule (4), nous voyons que, 

pour une température supérieure au zéro absolu, mais néanmoins assez 
faible pour que I) îÿ> 1, l’énergie augmente parce que l’agitation ther 
mique tend à faire sortir les particules de la sphère de rayon /?„ et ceci 
explique la présence du terme en T- dans la formule (4).

La chaleur spécifique à volume constant d’un gaz de Fermi fortement 
dégénéré s’obtient à partir de (4) en écrivant

(«0
1 «HJ _ 
V àT ~

± 5.
25 X3

3:l
ms3 A- T 
—y----- n.

w h-

Comoie nous allons le voir, celle formule lève une grande difficulté qui 
se présentait dans la théorie de la conductibilité des métaux.

7. La théorie électronique des métaux et la statistique de Fermi- 
Dirac. — Le fait que les métaux soient conducteurs de l’électricité
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conduit à penser qu’il existe dans ces corps des électrons libres ou 
presque libres qui sont susceptibles de prendre sous l’action d’un champ 
électrique un mouvement d’ensemble uniforme constituant le courant 
électrique dans le conducteur. Drude, puis Lorentz ont développé une 
théorie des électrons libres dans les métaux dans laquelle ils considé 
raient les électrons libres comme formant un gaz soumis aux lois de la 
Mécanique statistique classique. Celte théorie a fourni une explication, 
satisfaisante dans l’ensemble, non seulement de la conductibilité élec 
trique, mais de la conductibilité calorifique dans les métaux. En parti 
culier, elle rend compte du lait que le rapport des deux conductibilités 
est sensiblement le même pour tous les métaux à une température 
donnée (loi de Wiedemann-Frantz). Néanmoins, le coefficient numé 
rique de cette loi de Wiedemann-Frantz n’a pas la valeur prévue par la 
théorie rigoureuse de Lorentz.

L’hypothèse qu’il existe dans les métaux des électrons libres, bien 
que paraissant nécessaire pour expliquer la conductibilité électrique et. 
donnant dans l’ensemble de bons résultats, se heurtait avec les idées 
classiques à une grave objection. En effet, soit /t<"> le nombre des 
atomes du métal par unité de volume. Ces atomes, étant susceptibles 
d’osciller autour d'une position d’équilibre, prennent dans l’étal d’équi 
libre thermique à la température absolue T d’après la Mécanique statis 
tique classique une énergie moyenne égale à 3À"T par atome, soit au 
total La chaleur spécifique du métal par unité de volume est
donc

,njw
~àT~ 3 iûa'k.

Rapportée à l’atome-gramme, la chaleur spécifique est donc 3 9Xk = 3{R, 
91 étant le nombre d’Avogadro. Si l’on calcule cette chaleur spécifique 
atomique en calories, on trouve 6 environ : c’est la loi de Dulong et 
Petit qui est bien vérifiée par les métaux.

Tout semble; donc d’abord aller très bien, mais ici se présente! la 
elifficullé annoncée. La chaleur spécifique que nous venons dei calculer 
est elue uniepiemenl au mouvement d’oscillation eles atomes. S’il y a 
élans le métal eles électrons libres, il faut évidemment y ajouter la cha- 
leur spécifique epii provient élu mouvement de ces électrons. Si nous 
désignons par le nombre des électrons libres par unité de volume, 
chacun doit prendre en moyenne d’après la Mécanique statistique clas- 

3
sique une énergie -AT. Or le développement de la théorie électronique 

des métaux avait montré que l’on devait considérer nle> comme étant de
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l’ordre «(M). Alors la chaleur spécifique d’origine électronique sera égale 
par unité de volume à

e(‘'> = ■ = -nMk -àl 2

et sera du mémo ordre que c{aK La chaleur spécifique totale égale 
à c'") + c'e) sera supérieure d’environ oo % à c("). Ceci est en complète 
contradiction avec l’expérience puisque la loi de Dulong et Petit est 
bien vérifiée.

On a pu lever cette grave difficulté à l’aide de la statistique de Fermi- 
Di rac. En effet, 011 sait maintenant que les électrons obéissent au prin 
cipe de Pauli et suivent la statistique de Fermi-Dirac. De plus, si l’on 
calcule la valeur du paramètre de dégénérescence pour le gaz des élec 
trons libres dans un métal, paramètre dont l’expression s’écrit ici

7i(e) h3D = (2-mekT )-J

on le trouve de l’ordre de 2 5oo. Le gaz d’électrons en question est donc 
fortement dégénéré. La forte valeur trouvée pour D vient de ce que la 
masse mK de l’électron est beaucoup plus petite que celle des atomes 
(i85o fois plus petite que celle de l’atome le plus léger).

Dès lors, s’il est permis pour les atomes d’employer la Mécanique 
statistique classique et de poser

?("'= 3nln)h

pour les électrons, il faut utiliser les formules valables en statistique de 
Fermi-Dirac pour les gaz fortement dégénérés et poser [tour la chaleur 

pie par unité de volume

, ( 2:i m,.(2):l À-T , i,;(<;)■= --------- Li-J------ «!'■>"

en faisant s = 2, n = n'e) dans la formule (G).
En comparant les valeurs précédentes de e("! et de c(e), on voit alors 

que e|c) est une très petite fraction, de l’ordre du centième, de c1"1. 
Tout se passe donc comme si les électrons libres, tout en assurant la 
conductibilité électrique et calorifique du métal, ne contribuaient pra 
tiquement pas à sa chaleur spécifique. La raison en est cpie ces électrons 
forment un gaz dégénéré et se trouvent, par suite, dans un état très 
particulier, inconnu des conceptions classiques.

Divers auteurs (Sommerfeld, Léon Brillouin, F. Bloch, Peierls) ont
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repris la théorie électronique des métaux sur la base de la Mécanique 
ondulatoire et de la statistique de Fermi-Dirac. On a pu ainsi retrouver 
les résuit ats de Drude et Lorentz en les améliorant sur certains points : 
ainsi le nouveau coefficient de.la loi de Wiedemann-Frantz est en 
accord avec l’expérience. Toute la théorie des conducteurs et des semi 
conducteurs est devenue aujourd’hui un vaste champ d’applications 
importantes pour la Mécanique ondulatoire et les statist iques quantiques.
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