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PREFACE

L’on dit parfois que, sur ses vieux jours, I’homme revient vers
ce qui ’a attir¢ dans sa jeunesse. Peut-étre est-ce pour celte raison
que, depuis quatre ans environ, s’est posée & mon esprit la ques-
tion suivante : les conceptions qui avatent orienté mes recherches
de 1922 4 1928 lors de mes premiers travaux sur la Mécanique
ondulatoire ne seraient-elles pas plus exactes et plus profondes
que celles qui ont prévalu depuis ?

Dés 1923, j’avais apercu clairement qu’il fallait associer la
propagation d’une onde au mouvement de tout corpuscule, mais
Ponde continue du type de celles de 1'Optique classique que
j'avais ¢té amené a considérer et qui est devenue I'onde W de la
Mécanique ondulatoire usuelle, ne me paraissait pas décrire
exactement la réalité physique : seule sa phase, directement reliéc
au mouvement du corpuscule, me semblait avoir une signification
profonde et c’est pourquoi j’avais nommé l'onde que j'associais
au corpuscule « I'onde de phase », dénomination aujourd’hui bien
oubli¢e, mais qui pour moi avait sa raison d’étre. Cependant, au
fur et 4 mesure que les travaux d’autres savants faisaient progresser
la Mécanique ondulatoire, il devenait de jour en jour plus évident
que Ponde W avec son amplitude continue ne pouvait servir qu’a
des prévisions stalistiques : aussi s’orientait-on peu a peu vers
Pinterprétation « purement probabiliste » dont MM. Born, Bohr
et Heisenbery furent les principaux promoteurs. Iitonné de cette

“évolution qui ne me paraissait pas conforme a la mission « expli-
cative » de la Physique théorique, j’ai été amené a penser vers
1925-1927 qu’il y avait lieu de considérer dans tout probléme de
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Mécanique ondulatoire deux solutions couplées de 'équation des
ondes : 'une, 'onde W, exacte par sa phase, mais qui, a cause du
caractére continu de son amplitude, n’a qu’une signification
statistique ct subjective; I'autre, 'onde «, ayant méme phase que
I'onde W, mais dont I'amplitude présente de trés hautes valeurs
autour d’un point de P’espace et qui, précisément en raison de
cette singularité locale (qui peut, d’ailleurs ne pas étre une singu-
larité au sens strict des mathématiciens) est susceptible de décrire
objectivement le corpuscule. J'obtenais ainsi, en accord avec les
conceptions de M. Einstein, ce qu'il m’avait toujours semblé
nécessaire de chercher : une image du corpuscule ou celui-ci
apparait comme le centre d’'un phénoméne ondulatoire étendu
auquel 1l est intimement incorporé. Et, grice au parallélisme
postulé par la théorie entre 'onde u et Ponde W, cette derniére
conservait, me semblait-il, toutes les propriétés statistiques que
I'on venait, a juste titre, de lui attribuer.

Telle est 'idée qui avait germé dans mon esprit ct dont la
curieuse subtilité m’étonne encore aujourd’hui. Je I'avais appelée
la « théorie de la double solution » et ¢’était elle qui traduisait
dans toute sa complexité ma véritable pensce. Mais, pour la
commodité de I'exposé, je lui avais parfois donné une forme sim-
plifiée, & mon avis beaucoup moins profonde, que j'avais nommée
la « théorie de 'onde-pilote » dans laquelle le corpuscule, supposé
donné a priort, était considéré comme piloté par I'onde continue W'
Découragé par 'accueil peu favorable fait a mes idées par la
plupart des physiciens théoriciens que séduisaient 'élégance
formelle et I'apparente rigueur de I'interprétation purement pro-
babiliste, je me suis rallié¢ a cette interprétation ct je Pai admise
comme exacte pendant plus de vingt ans.

Comme Je l'ai dit, depuis 1951, je me suis & nouveau demandé
s1 ma premiére idée, au fond, n’était pas la_bonne. De nouvelles
réflexions sur ce probléme si ardu m’ont amené a perfectionner
sur certains points la forme primitive de la théorie de la double
solution et méme sur d’autres a la modifier, notamment par l'intro-
duction d'une hypothése qui me parait aujourd’hui essentielle :
celle que I’équation de propagation de I'onde u est, en principe,
non linéaire et, par suite, différente de celle admise pour 'onde ¥,
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bien que les deux équations puissent presque partout étre consi-
dérées comme 1dentiques.

L’on trouvera dans le présent Ouvrage, aprés un résumé de
I'interprétation purement probabiliste actuellement « orthodoxe »
et des objections qui lui ont ¢té adressées par des savants peu
nombreux mais illustres, un exposé d’ensemble de I’état présent
de mes réflexions sur la théorie de la double solution. Je me
permets d’attirer particuliérement I'attention du lecteur sur les
chapitres XVII a XIX qui contiennent des suggestions aven-
tureuses certes, mals qui pourraient avoir une trés grande portée.
Je souhaite (ue de jeunes théoriciens doués d'intuition physique
et aussi des mathématiciens exercés veuillent bien s’intéresser aux
hypothéses que j'ai avancées dans cette fin de mon Ouvrage sans
pouvoir en donner de véritables justifications.

Jairepris cette étude de mes anciennes et primitives conceptions
sur la Mécanique ondulatoire sans idées précongues d’aucune
sorte et sans aucun amour-propre d’auteur. Il se peut que j'ai tort
de vouloir revenir a4 des conceptions plus claires que celles qui
prévalent actuellement en Physique théorique. Mais je voudrais
que I'on examine avec soin si ces chemins, que I'on a abandonnés
depuis vingt-cing ans parce qu'on les considérait comme abou-
tissant a4 des impasses, ne seralent pas au contraire ceux qlii
pourraient déboucher vers la véritable Microphysique de ’Avenir.

Aolt 1954.

Louis nE BROGLIE.

——— 36 O G



UNE TENTATIVE D'INTERPRETATION
CAUSALE ET NON LINEAIRE

DE LA MECANIQUE ONDULATOIRE

(LA THEORIE DE LA DOUBLE SOLUTION)

PREMIERE PARTIE.

LES IDEES DE BASE DE LA MECANIQUE ONDULATOIRE
ET SON INTERPRETATION PUREMENT PROBABILISTE USUELLE.

CHAPITRE 1.

LES IDEES DE BASE DE LA MECANIQUE ONDULATOIRE.

1. Point de départ. — L'idée qui, dans mes travaux de 1923-1924,
" a servi de point de départa la Mécanique ondulatoire, a été la sutvante :
puisque, pour la lumiere, il existe un aspect corpusculaire et un aspect
ondulatoire reliés entre eux par la relation énergic =4 >< fréquence on
figure la constanle /2 des quanta de Planck, il est naturel de supposer
que, pour la mati¢re aussi, il existe un aspect corpusculaire et un aspect
ondulatoire, ce dernier jusque 1a méconnu. Ces deux aspects doivent
étre relids par des formules générales o figure la constante de Planck
et doivent contenir comme cas particuliers les relations applicables a la
lumigre.

Pour développer cette idée, il m’était apparu en 1923 qu'il fallait
chercher a associer un ¢lément périodique au concept de corpuscule.
Imaginons un corpuscule qui se meut d’'un mouvement rectiligne et
uniforme dans une certaine direction en 'absence de tout champ exté-
rieur. Nous fixerons uniquement notre attention sur I'état de mouvement

f.. DE BROGLIE. i



2 CHAPITRE 1.

du corpuscule en faisant abstraction de sa position dans 'espace. Ce
mouvement s’cffectuera dans une certaine direction que nous prendrons
comme axe des z et il sera défini par deux grandeurs, I'éncrgic et la
quantité de mouvement, dont les expressions relativistes en fonction de
la masse propre m, du corpuscule sont données par les formules

myc? myv . )
(1) W= 22, p= <d:#)
Vi—p2 Vi—
dont on déduit la relation
W W

2 = = —|Vv|= — ¢.
(2) |Pl.17 cgll Pl

L’¢état de mouvement se trouve ainsi défini pour un certain observa-
teur A 1ié a un systeme de référence galiléen, observateur qui emploie
un temps ¢ et des coordonnées rectangulaires z, y, z.

Soit maintenant un autre observateur B qui posséde par rapport au
premier la vitesse ¢ dans la direction Oz, autrement dit un observaleur
li¢ au corpuscule. Nous pouvons supposer que B a choisi un axe 0020
qui ghsse sur Oz et des axes Ogzy et Ogy, respectivement paralleles a
Oz et a Oy. Cela étant, les coordonnées xy, yo, o, to d’espace et de
temps de B sont reliées aux coordonnées z, y, z, ¢ de A par les formules
bien connues de la transformation simple de Lorentz,

(3) z z ¥ 5 — vt ' 4
0= 0=} By= 0= ="
’ ’ Vi— g Vi@
Or, pour I'observateur B, la vitesse du corpuscule est nulle : il pose
donc comme valeurs de 'énergic et de la quantité de mouvement

(4) W =mgc, p=o.

Suivant notre idée de base, nous devons maintenant chercher a
introduire un élément périodique et nous tenterons de le définir d’abord
dans le systeme propre du corpuscule, ¢’est-a-dire dans le systeme de
référence de 'observateur B. Comme dans ce systéme toul esl au repos,
il est naturel d’y définir élément périodique souhaité sous la forme
d’une onde stationnaire. Pour cela, nous définirons I'élément périodique
par la grandeur supposée scalaire .

(5) » Wo= a €2% Voo

qui a la forme de la représentation complexe d’une onde stationnaire.
W, oscille en fonction du temps propre avec une fréquence v, caracté-
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ristique de la nature du corpuscule envisagé. Nous admettrons que a,
est une constante (en géndéral complexe) de sorte que Wy ait la méme
valeur en tout point du systeéme propre de 'observateur B a I'instant ¢,.

Nous pouvens nous représenter la répartition des valeurs de Wy en
imaginant une infinité de petites horloges disposées en tous les points
du systeme propre du corpuscule, synchronisées entre elles et possédant

. . 1 . X
une période Ty = ' Ces petites horloges représentant en quelque

sorte en chaque point la « phase » du phénomeéne périodique qui est la
méme partout pour I'observaleur B 4 un méme instant ¢y de son temps
propre.

Quelle valeur convient-1l de donner a la fréquence propre vo? Nous
devons ¢videmment chercher a la définir a partir d’une grandeur qui
caractérise le corpuscule dans le systéme propre B : or, dans ce systeme,
nous ne disposons que d’une seule grandeur non nulle, 1’énergie
W= mqoc?. Litant donné le role joué par la constante de Planck 4 dans
toules les questions quantiques, il est naturel de poser

W, myce?

(6) o=t =22

analogue a la relation d’Einstein pour les photons.

Comment va se manifester pour I'observateur A I'élément périodique
que nous venons de définir pour 'observateur B? En supposant, ce qui
est naturel ici, que I'élément ' est un invariant, il suffira pour obtenir
son expression pour A de substituer dans son expression pour B la
valeur de ¢, fournie par la quatrieme équation (3) de Lorentz, ce qui
donne

SN

%) Wiz = ae V),

s1l'on pose

(8) v=—2_, v=0=C
Vi—2 g
Ainsi, pour Pobservateur A qui voit passer le corpuscule avec la

vitesse ¢ dans le sens Oz, les phases du phénomene périodique W sont

réf)Aa'i'ties comme celles d'une onde plane mbnochromatique dont la

fréquence v et la vitesse de phase V auraient les valeurs (8).

"~ On peut encore exprimer cecl en revenant a 'image d’une infinité de

petites horloges distribuées en tous les points de Pespace et ayant la

méme phase pour I'observateur B. Par suite du phénomene relativiste

e LTI T

e i




4 CHAPITRE 1.

du ralentissement des horloges en mouvement, chacune de ces horloges
apparait a I'observateur A comme ayanl une fréquence diminude,

(9) Vi = Yo V/I — sz,

mais la répariition de Uensemble des phases de toutes les horloges est
donnée pour A par la formule (7), ¢’est-a-dire qu’clle coincide avee la
répartition des phases d’une onde plane monochromatique de fréquence
v et de vitesse de phase V données par (8).

En comparant les formules (8) et (9), on remarquera la différence
essenticlle entre la fréquence apparente vy d’une horloge individuelle en
mouvement qui est diminuée par Uinfluence du mouvement et la {ré-
quence v de Vonde associée qui est augmentée par celle influence. Cette
différence entre les variances relativistes de la fréquence d’une horloge
et de la fréquence d'une onde est essentielle : elle avait fortement attiré
mon attention et ¢'est en v réfléchissant que J’avais ¢1¢ orienté dans mes
recherches.

On peut résumer ce qui précede en disant que le corpuscule assimilé
A l'une des petites horloges glisse par rapport a la phase de I'onde avec

. 1— (32 . .
la vitesse V-—¢=¢ —— de facon a rester toujours en phase avec

Ponde.

Reprenons cette derniere idée sous une forme plus précise. Parmi
I'infinité de petites horloges que nous avions imaginées plus haut,
supposons qu’il y en ait une qui joue un role particulier. Ce sera
I'horloge régulatrice que nous identifierons avec le corpuscule, les
autres horloges représentant les phases du phénomene ondulatoire dont
le corpuscule serait le centre. Dans le systéme propre, loutes les
horloges sont immobiles et ont la méme fréquence vy, Dans le systéme
de l'observatcur qui voit passer toutes les horloges avec la vitesse ¢,

I'ensemble des phases de ces horloges est donnée par le facteur v < (— ;)

avee les définitions (8). Pendant un temps d¢, horloge régulatrice se

déplace de ¢ d¢ dans le sens Oz et son indication varie de vey/1-—(32 dt.

La phase de l'onde au point ot se trouve cette horloge varie de
v o dt . . . B
—\/,‘):' (dl — —\—) Comme ces deux variations doivent élre égales, on
I— 32\
doit avoir
(10) 1 = ! 1— ou (B2 =
) v N v =y

//I j—
y

en accord avec la seconde relation (8).
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Laissons maintenant de ¢oté ces images sur lesquelles nous revien-
drons plus tard et revenons aux formules obtenues. La comparaison des
premiéres relations (1) et (8) nous donne

(11) W = /iy,

relation qui doit évidemment étre valable dans tout systeme galiléen
puisque I'observateur A est un observateur gahléen quelconque.

o — v
En définissant comme d’habitude par la formule 3 = 5 la longueur
d’onde de onde W, on lui trouve la valear

(12) ;\:,c:l,li:,/';.
: ¢ W P

On a ainsi trouvé les deux formules fondamentales (11) et (12) qui
définissent la {réquence et la longueur d'onde de Ponde associée au
corpuscule a partir de I'énergie ct de la quantit¢ de mouvement de
celui-c1. Pour les vilesses faibles devant celle de la lumiére dans le vide,
la formule (12) prend Ia forme approximative

(13) e M

’Il}”
. . . . . .
Pour une particule de vilesse ¢gale 4 ¢ (ou indiscernable de ¢), on a

ey I

(1) =V =1, W = /v, p — =
On trouve bien ainsi les formules fondamentales de la théorie des
quanta de lumi¢re (Einstein, 19od) applicables aux photons.
Nous pouvons maintenant écrire la grandeur W, évaluée par l'obser-
vateur A, sous la forme

e

(17 V= aye *

(W i—p3)

el, plus généralement, s1 on n’a pas pris la direction de propagation

comme axe des =

ST =T i .
. . . ';' W= per—pyy—p.7) G (Wi—p.r)
(16) Wir,y, 5,0)=wuye " =ape "

formule qui montre que la phase de Ponde W coincide, au facteur == prés
1 1 p ) 7 Pres,

avee action hamiltonienne du corpuscule. En constatant cette propor-
tionnalité entre P'action du corpuscule et la phase de 'onde W qui lui est
associde, on apercoit que le principe d’action stationnaire de la Dyna-
mique du corpuscule doil étre une traduction du principe de Fermat
valable pour I'onde associée. Mais la théorie ondulatoire nous apprend
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que le principe de Fermat est sculement valable dans le domaine ot
I'Optique géométrique est utilisable et qu'il n’a plus de sens dans le
domaine de I'Optique physique proprement ondulatoire. J’étais ainsi
parvenu dés 1923 a l'idée fondamentale que 'ancienne Mécanique (aussi
bien sous sa forme relativiste que sous sa forme newtonienne classique)
n’est qu'unc approximation ayant le méme domaine de validité que
I'Optique géométrique. Des lors, J'avais été amené a concevoir la
nécessité de construire une nouvelle Mécanique, une Mécanique ondu-
latoire, « qui scrait @ la Mécanique ancienne c¢ que I'Optique ondula-
toire est & 1'Optlique géométrique ». Tel fut le point de départ de la
Mécanique ondulatoire.

2. Premiers développements de la Mécanique ondulatoire. — Au
moment ot les idées que je viens de résumer me sont venues a Pesprit,
j'étais imbu des idées classiques sur la possibilité de représenter les phé-
nomenes d’une fagon objective et déterministe dans le cadre de 'espace-
temps. L’association onde-corpuscule me paraissait donc nécessai-
rement devoir sc¢ faire sous la forme suivante : le corpuscule serait unc
sorte de singularit¢ au scin d’'un phénomene ondulatoire étendu dont 1l
serait solidaire et le mouvement de cetle singularité, bien que s’effec-
tuant sans doute selon des lois dynamiques nouvelles, devait & mes yeux
comporter, conformément aux images classiques, une trajectoire dans
I'espace et une vitesse déterminée en chaque point de cette trajectoire.

I1 en résultait, dans mon esprit, que 'onde W plane et monochroma-
tique associde dans mes raisonnements primitifs au mouvement rectiligne
et uniforme d’un corpuscule libre ne pouvait réellement décrire la
réalité, mais qu’elle ne devait donner d’une facon exacte que la phase
du phénomene ondulatoire entourant le corpuscule, Pamplitude cons-
tante o ne pouvant représenter la véritable amplitude de ce phénomene.
En effet, celle-ci devait a mon sens comporter une singularité, le corpus-
cule, et sans doute décroitre avec la distance a cette singularité. La
véritable fonction d’onde représentant 'ensemble du phénomene ondu-
latoire et de sa singularité me semblait devoir étre, dans le cas du
mouvement rectiligne et untforme, de la forme

o, 5 0
(r7) u(x,_y, 2, t):f(x7}/; 3, t)e & 3
¢ élant la phase We¢—p.r et f(x, y, z, ¢t) une fonction comportant’
une singularité mobile avec la vitesse ¢. La fonction d’onde

. oty 20
(18) =age "
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aurait une phase ¢ correcte qui serait celle des petites horloges fictives
entrainées par le mouvement du corpuscule, mais son amplitude cons-
tante ne décrirait pas la répartition réelle du phénomene ondulatoire
dans I'espace. Tout au plus peut-elle représenter une sorte de moyenne
statistique quand on ignore tolalement laquelle des droites paralltles a
la direction du mouvement est cffectivement décrite par le corpuscule
et en quel point de la trajectoire il se trouve au temps ¢.

C’est parce que la phase ¢ me paraissait avoir un sens physique pro-
fond relié¢ a des effets de relativité et parce qu’elle me paraissait devoir
se retrouver dans la fonction d’onde réelle u, que javais appelé la
fonction W' «I'onde de phase », voulant ainsi réserver 2 un examen plus
approfondi la question de la signification de son amplitude.

Les idées que je viens de rappeler, je les avais adoptées dans tous mes
premiers cxposés de la Mécanique ondulatoire de 1924 a 1927. Elles
devaient me conduire en 1927 & la théorie de la double solution a
laquelle sera consacrée la seconde partie de cet Ouvrage. Mais, dans
Pintervalle, en 1926, M. Schrodinger élait parvenu dans d’admirables
travaux 4 faire considérablement progresser le formalisme mathématique
de la nouvelle Mécanique ondulatoire. Il en avait écrit les équations
générales et il les avait appliquées au calcul des étals stationnaires des
systemes quantifiés, remplacant ainsi par unc théorie rigoureuse la
justification intuitive que j'avais donnée dans mes premiers travaux des
formules de quantification de I'anciennc théorie des quanta. Enfin, il
avait montré l'identité fonciere des méthodes de la Mécanique ondula-
toire et de la Mécanique quhntique des matrices développée en 1927 par
M. Heisenberyg, identité qui était dissimulée par la diflérence de leurs
aspecls mathématiques.

Pour faire ainsi progresser la Mécanique ondulatoire, M. Schrédinger
s’est surtout servi de 'analogie entre la Mécanique analytique et’Optique
géométrique signalée par Hamillon, un siécle auparavant, en tenant
compte, bien entendu, de I'existence des quanta et en s’inspirant des
idées que j'avais mises en avant dans mes premiers travaux et résumées
dans ma theése de Doctoral en 1924.

Je vais exposer maintenant cette seconde maniére d’aborder la Méca-
nique ondulatoire, voie que M. Schrédinger a suivie en s’en tcnant &
Vapproximation newtonienne sans tenir comple des corrections de
Relativite.



CHAPITRE II.

ACCES DE LA MECANIQUE ONDULATOIRE PAR LA METHODE D'HAMILTON.
(ANALOGIE DE LA MECANIQUE ANALYTIQUE AVEC L'OPTIQUE GEOMETRIQUE).

1. Mécanique classique du point matériel. Théoréme de Jacobi. —
Avec les conceptions anciennes, un corpuscule (point matériel) doil
avoir 4 chaque instant une position bien déterminée dans Pespace au
cours du temps : sous 'influence du chamyp de force auquel il est soumis,
il déerit une certaine courbe de l'espace, sa trajectoire. Nous suppo-
scrons d’ailleurs ici que le champ de force dérive d’un potenticl
V(z, y, 5, t). A chaque instant, la position du corpuscule est repérée
par trois coordonnées d’espace 2 (), y(t), z(¢). Les équations classiques
du mouvement sont alors les suivantes :
drr IV d?y Jv d*z A%

= = m — = - m ——= = — - -
de2 dr’ dt2 f))” 2 Js’

(1) m

m étant une conslante caractéristique du corpuscule ¢l nommée sa
masse.

Les trois équations différenticlles (1) du second ordre en ¢ délinissent
entierement les variations des coordonnées au cours du temps, ¢’est-a-dire
sonmouvement, quand onsedonne séz constantes arbitraires représentant
les coordonnées et les composantes de la vitesse & un instant donné ¢,
dit « instant initial ». Le déterminisme de 'ancienne Mécanique consiste
en ce que, I’élat initial de position et de vitesse étant supposé connu,
les états ultéricurs sont rigoureusement détermings.

Nous renvoyons aux traités de Mécanique rationnelle pour la démons-
tration des théoremes généraux de la Dynamique du point matériel et
pour la théorie des équations de Lagrange, de Hamilton, etc. Nous nous
bornerons a énoncer le théoréme de Jacobi qui nous sera utile pour la
suite : ‘
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Tukorkmr. — S¢ Pon parvient & trouver une intégrale compléte
(Cest-a-dire une solution dépendant de trois constantes arbitraires
a, B, v non additives) de-l'équation aux dérivées partielles (équation
de Jacobi)

. i (/,)5>2+ SN (N v g s = O
t2) am |\ dr 1)}') A\ vz ) 0 5 =0
les équations

JS JS J8
(3) = =t T

ol a, b, ¢ sont de nouvelles constantes arbitraires, définissent un des
mouvements possibles du corpuscule dans le champ de force. Les
composantes de la quantité de mouvement du corpuscule quand, en
exécutant Uun de ces mousvements, il occupe au temps t la position
z, ¥, 5, sont données par les relations

IS dS JS

(4 = TR, = — Dy == THAy == o )y = DU = e
L) Y - dr’ P R '/}_7 Pz 4 0z
solt

p=mv=—gradS.

Nous voyons donc que, d'apres ce théoreme de Jacobi, les mouvements
possibles du corpuscule se divisent en classes, les mouvements d’une
méme classe correspondant & une méme intégrale complete de I'équation
de Jacobi S(=z, y, 5, ¢, «, B, ¥) avec des valeurs données des « constantes
primaires » %, 3, y. Chacune de ces classes contient une infinité de
mouvements possibles, chacun d’eux étant caractérisé par la valeur des
« constantes secondaires » «, &, c.

Rappelons que P'équation de Jacobi peut s’obtenir en partant de
I'expression de I'énergic en fonction des coordonnées et des moments
conjugués (ou expression hamiltonienne de P'énergie)

PN N . I 2 9 9 14
(o) Kl y, 5 pu Pys P 1) = S ([’.1‘“’“]’]‘ +pz)+V(x, ¥, 5, )

J8 a8 a8

et, en y remplacant p., p,, p. respecltivement par — gz’ a9 s

’

oS
dt
Le théoreme de Jacobi prend une forme particuliérement simple dans

puis en égalant I'expression ainsi obtenue a

le cas important ou la fonction potentielle V ne dépend pas explicitement
du temps : on sait que dans ce casil y a conservation de P'énergie, c’est-
a-dire que, pendant le cours du mouvement, la somme de P'énergie
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. ; . . I . - }

cinétique ct de I'énergie potenticlle, 5wt V, garde unce valeur cons-
tante E. La constante E joue ici le rdle d’une des constantes primaires,
par exemple y. Si l'on pose alors

(6) S(z, 7,2 ¢, 8, B)y=Et—8,(x, ¥, 5,23, E),

ou S; ne dépend plus du temps, on aura a chercher une intégrale
compléte dépendant de la constante E et de deux autres constantes o ¢t &
de I'équation aux dérivées partielles (dite équation de Jacobiraccourcie)

I Jd81\* TR IS, \2 ) NS
() T [<:)I.> - <)7> ~ (%) ]*V“”f’ a=b

Le théoreéme général de Jacobi appliqué a ce cas particulier nous

apprend que, si 'on a trouvé une solution intégrale complete de 'équa-
tion (7), le mouvement défini par les équations

98, oS, IS 08,
(8) PP e O T TS

ol a, b, ¢ sont trois constantes arbitraires, sera un des mouvements
possibles du corpuscule dans le champ de forces constant. Quant a la
quantité de mouvement du corpuscule lors de son passage au point
z,y, 5, elle sera donnée par

J8,

(9) Pa=mee= o

p=mv=gradS,.

Les mouvements possibles sont ainsi répartis en classes correspondant
chacune a une méme valeur de I'énergie et des deux conslantes primaires
a el B : chaque classe comprend une infinit¢ de mouvements possibles
caractérisés chacun par la valeur des trois constantes secondaires a, b, c.

Les deux premiéres équations (8) ne contiennent pas le temps : elles
définissent une courbe de Pespace qui est la trajectoire du corpuscule.

o , o 0S ‘
La troisitme équation (8), qu'on peut éerire E =l donne le

mouvement le long de la trajectoire (équation de I'horaire). L'on voit
ainsi que, dans le cas des champs permanents, I'étnde de la trajectoire
peut se faire indépendamment de I'étude du mouvement, ce qui n’a pas
licu dans le cas des champs variables avec le temps.

Un autre résullal important valable dans le cas des chumps permanents
est le suivant : Les trajectoires d'un méme classe correspondant a
une méme intégrale compléte Sy (z, y, z, «, 3, E) sont orthogonales
auz surfaces Sy = const. Ceci résulte immdédiatement de I’équation ().
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Cetle propriété des trajectoires d’étre normales aux surfaces S;=—const.
permet de retrouver le principe de moindre action de Maupertuis. Pour
cela, considérons toutes les surfaces Sy== const., correspondant a des
valeurs infiniment voisines de la constante comprises entre Gy et Gy, et
représentons-en quelques-unes vues par la tranche.

Soit AEB unc trajectoire de la classe correspondant a S; et AFB une
courbe infiniment voisine de AEB. Si ’on nomme dn I’élément de nor-

male aux surfaces Sy = const., I'intégrale f%s,?’ ds prisé le long de AEB

est égale & Co— Cy, Pélément de courbe ds élant ici ¢gal & dn. Prenons
la méme intégrale le long de AFB. La contribution a celte intégrale d’un

petit élément tel que FG est supérieur ou au moins égale a la variation

de S; de F en G : en effet, si FG est normal aux surfaces S; = const.

qui passenl par ses extrémités, on a FG=dn ot F(IMS (G)—S, (F),

tandis quc, si FG n'est pas normal aux surfaces S;=const., on a

FG>dn et > l* G est supéricur & S;(G)— S, (F). Or tous les ¢léments

de AFB ne peuvent ‘¢lre normaux aux surfaces ;= consl., sans quot

B0S,
dan

AFB coincident avee la trajectoire AEB : donc l’intégralef ds est

plus grande le long de AFB que le long de AEB. '
D’apres Iéquation (7), on a

. ( l)b ()S 2 dS,\2 n
(10) —\/ (M d)’l) + (?zi> = Vam|E—V(2, ¥, 3)]

Nous parvenons donc a I'énoncé suivant: La trajectoire passant par
deux points A et B de Uespace est caractérisée par le fait que U'inté-

B
gralef Vom(E—V) ds est plus petite pour la trajectoire réelle que
A
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pour toute courbe infiniment voisine allant de A a B. Cest le principe
de moindre action de Maupertuis ().

Un exemple trés simple permet d'illustrer les considérations précé-.
dentes. Envisageons le mouvement d’un corpuscule en Pabsence de
champ. Alors V==10 et, comme il y a conservation de 'éncrgie, on peut

.

éerire I'équation (7) sous la forme

L[908\ (a8 s
(II> o l‘(i(hl) -+ (T)},) T (\ Jz /) ] = I

On obuent une intégrale complete en posant

(12) Sy =yambE (ar 4+ gy +3), avec =1 — a?-- 3%
D’apres le théoreme de Jacobi, on obtient les trajectoires en derivant

S, P - -
(13) ——(E: 2771«]4(.[*—'4.)://‘.

IS /—( B
= fom i {y— - d’,) = 0.

N i J i " i

Ce sont donc des droites de cosinus directeurs a, 3, », normales aux
surfaces Sy = const. Le mouvement le long d'une de ces droites est

défini par I'équation de Ihoraire

J5 m .

(Ii\ ’)T‘l:T—‘r(l(l‘%—ﬁ'}’%—‘[:):l—«/o.
JI. © P ¢ ’

yaml.

2l

m

Il est done rectiligne et uniforme et il s’effectuc avee la vitesse ¢ :':\/
Enfin, on vérific aisément les relations

—=  dJ5
Pa=myp=maxy =ayamli=—— e

)
d.r

L'intégrale complete envisagée définit done la classe des mouvements

T
2

rectilignes et uniformes de direction «, 3, v et de \'ilessc\/

2. Propagation des ondes dans un milieu isotrope. Approximation de
I'Optique géométrique. -— Pour amorcer le passage de la Mécanique
classique a la Mécanique ondulatoire, faisons maintenant une rapide
¢tude de la propagation des ondes monochromatiques dans un milieu

(') Notons quc la courbe AFB doit étre continue ainsi que sa dérivie, Notons aussi
que le raisonnement est en défaut quand les trajectoires ont une enveloppe et que AEB
touche cette enveloppe entre A et B. L’intégrale de Maupertuis est alors toujours station-
naire, mais elle peut étre maximum au lieu d’¢tre minimuam.
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réfringent, isotrope el dispersif, & propriélés permanentes dans le temps.
Nous admettrons que celte propagation est régie par 'équation

(13) AT =

W ¢lant la fonclion d’onde et U une grandeur généralement fonction du
point , ¥, z et de la fréquence v de Ponde. ¥ est la vitesse de propa-
gation de la phase ou, plus brievement, la «vitesse de propagation ».
Nous ¢crirons pour unce onde monochromatique, c’est-d-dire de
fréquence v bien déterminée

(IG:I 11-("" ¥, 5, [) — a(‘[, 7, :)e;):ivl

et nous poserons pour définie Pindice de réfraction n du milieu

. I nix,y, s.v)

(1- _ ), 5.

N ) Cv 0\70

¥V, dtant la vitesse de propagation dans un milieu de référence on
Pindice de réfraction serail égal a 1. On a alors

f=rtnv?

Q92
i

(18) AU+ U = o.

Rigourcusement élude de la propagation de I'onde monochroma-
tique dans le milicu dispersif 4 propriétés permanentes doit se faire en
déterminant la solution de I'équation (18) qui correspond aux conditions
aux limites imposées, mais il arrive souvent que I'on puisse résoudre le
probleme par un procédé approximatif qui est a la base de 'Optique
ghomdétrique.

Pour bien comprendre le sens de celte approximation, considérons
d’abord le cas ou I'indice n ne dépend pas de z, 37, 5 (milieu homogene).
On obticnt alors une solution rigoureuse de I'équation (18) en posant

ol n{v - N N
~.~zval—~%Lo¢.v;—»-(i)- Vi—ar— 93)
Y'=gqe

SR

(19) T

« ¢tant unc constante appelée Pamplitude de Uonde. Cette solution (19)
représenle une « onde monochromatique plane ». Nous nommerons
phase de cette onde la fonction linéaire

n{v)
Vy

(0 leny. 5 1y =t— 0 (a4 By e T B Fa) = vl — 9, ¥, 3,

Les surfaces d’égale phase o = const., nommées aussi « surfaces
d’ondes », sont des plans normaux a la direction de cosinus directeurs
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a, B3, ‘Y:‘/I—-a2—52. Au cours du temps, les valeurs de la phase et,
par suite, de la fonction W, progresseront dans cetle direction avec la
vitesse

(21) V=

A un instant donné, on retrouvera la méme valeur de W sur des
lans d’égale phase séparés les uns des autres par la distance
gale p p p

(22) e 0¥

nyv v
nommée « longueur d’onde » et, en un point donné¢, on retrouvera les
mémes valeurs de W a des intervalles de temps égaux a la période

T=1

v
Considérons maintenant un milicu non homogtne ou 'indice varie
avec z, ¥, %, mais cependant assez lentement pour rester sensiblement
constant a U'échelle de la longueur d'onde. On voit alors aisément que
les dérivées.de a(z, y, z) seront négligeables en comparaison de celles
de ¢4 (z, y, 5) sil'on pose pour I'onde monochromatique avec a réel :

(23) IIF(Z‘. Y 2, t) - a(z’, Y z)e'lﬁi[vt—@(.v,y, 21

et, en inlroduisant (23) dans (18), on obtiendra unec équation approxi-
malive qui est connue sous le nom « d’équation de I’Optique géomé-
trique » :

%1 doi\? dp\2 _ vn*x, ¥, 3)
(4) (ﬂ () + () ==

L’6quation (24) permet de déterminer les variations de la phase de
I'onde monochromatique (qui ici n’est plus linéaire en 2, y, z) sans
avoir a se préocuper des variations, lentes a Péchelle de la longueur
d’onde, de 'amphitude a(z, y, z).

Soit alors ¢,(z, y, 5, @, B, v) une inlégrale complete de Féqua-
tion (24) dépendant des trois conslantes v, «, 5. La fonction

W= qemilvi—=ailr, x5, %0

ou a est lentement variable & grande échelle, représente donc alors une
solution approximative de I'équation de propagation. Par définition, les
courbes orthogonales aux surfaces ¢y = const. sont les « rayons » de
I'onde. Comme on a justifi¢ plus haut le principe de moindre action de
Maupertuis pour les trajectoires corpusculaires normales aux surfaces
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S; = const., on peut ict démontrer de méme le « principe de Fermat »
suivant lequel, si une courbe G est un rayon d’une propagation d’ondes
passant par deux points A et B de espace, 'intégrale

B By
f 991 gy — f 23 g
L oon )

prise le long du rayon G est plus petite que la méme intégrale prise le
long d’une courbe infiniment voisine de G et joignant les points A et B(*).

L’Oplique géoméirique n’est qu’une approximation valable seulement
st Uindice n varie peu a Véchelle de la longueur d’onde locale définie

N —1 .
par A :(~~ ) - Quand la longueur d’onde tend vers zéro, cette approxi-

mation tend a devenir rigoureuse.

La présence de la fréquence v dans 1'équation (18) doit retenir notre
attention. Au licu de considérer une onde monochromatique, nous
pouvons considérer, puisque I'équation de propagation (15) est linéaire
en W, une somme ou, comme l'on dit, une « superposition » d’ondes
monochromatiques obéissant chacune a Péquation (18). Il est donc
désirable de trouver une forme de Péquation de propagation ou la
fréquence ne figure pas ct a laquelle satisfasse la fonction d’onde, méme
quand clle est formée d’une superposition d’ondes monochromatiques.

Pour donner un exemple, supposons que Vindice soit donné par une
loi de dispersion

(25) n(z, y, 3, v):\/r—_(w,

4r2v2

ou F est une certaine fonction du lieu. Alors, on pourra adopter comme
équation de propagation indépendante de v,

. I U .
(26) AV — s S =Ty, )Y,
car, pour une onde monochromatique de la forme (16), on retrouvera
Péquation (18). Nous allons trouver des ¢quations analogues & (26) en
Mécanique ondulatoire.

3. Passage de la Mécanique classique 4 la Mécanique ondulatoire. —
Nous avons pu noter dans les deux premiers paragraphes une grande
analogie de forme entre la Dynamique analytique du point matériel et

(1) Pour éviter toute confusion, précisons que 5%‘ est la dérivée de ¢ le long de la

normale 2 la surface ¢; = const. (et non la dérivée de ¢, par rapport a l'indice n).
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I'Optique géométrique. Elle avail été apergue, il y a plus d'un sigcle, par
Hamilton avant d’étre précisée par Jacobi : aujourd’hui, clle peut nous
conduire a retrouver la syntheése réalisée par la Mécanique ondulatoire.

Pour cela, commencons par comparer le mouvement d’un corpuscule
en l'absence de champ (V == 0) avec la propagation d’unc onde dans un
milieu homogene ou I'indice 72 est indépendant de «, ), 5. Nous avons
trouvé pour le corpuscule en T'absence de champ la fonction de Jacobi

raccourcic

(27)

{ Si= yemblar + 31 +73} (y?=1—a2— [12),

I

me [ar+ 3y + v

D’autre part, pour une onde monochromatique dans un milicu
homogtne, puisque la longueur d’onde 2 est alors constante, on peut
éerire la phase ¢, a Papproximation de I'Optique géométrique sous la
forme

N T,

(28) o= = (ar—+
) ) IS

0 . .

«, 3, v ¢lant les mémes que dans (27) sinous supposons que la direction

du mouvement du corpuscule coincide avec celle de la propagation de
I'onde. Les fonctions completes S et  sont alors

‘ S=KEt—mp(ar+ 3y +73),

(29) " ~
(e + 3y +73)

":«:Vl’—

P

Il est dans 'esprit de la théorie des quanta de poser K= Av, c'est-
a-dire d’associer au mouvement corpusculaire d’¢énergic I la propa-

. I . o
gation d’une onde de fréquence v = - Ceci nous conduit & poser

S
30) T =
(30) ’ h
Si, par hypothese, nous admettons cette relation, 1l en résulie les
deux formules fondamentales de la Mécanique ondulatoire (non relati-
viste)
. h

(31) = hv ho= - .
(31 : -

En d’autres termes, au mouvement rectiligne et uniforme du corpus-
cule d’¢nergie E et de quantité de mouvement me, nous associons la
propagation dans la direction de ce mouvement d’une onde plane mono-
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. i 1o . h
chromatique ayant la fréquence , et la longueur d'onde o) onde dont

Pexpression est

(32) P=re’ (@ constant)

avec la valeur (2¢) de S.

(Celte correspondance entre onde et mouvement se généralise dans le
cas du mouvement d’un corpuscule dans un champ permanent défini
par la fonction potentielle V(z, y, z). Il faut alors comparer ce mouve-
ment avec la propagation d’'une onde dans un milieu non homogene
ol l'indice n et par suite la longueur d’onde 7 varient d’un point a un
autre. Les expressions a comparer de la fonction de Jacobi et de la
phase sont alors

S=Ft—S8(r, 1, 3),
! 108, )5 S ),
33
(33) '.

o=Vl — (&, ), 5),

les fonctions Sy et ¢y ¢tant respectivement des intégrales completes des

¢quations
FdS,\ 2 S, t2 3, 2
|50+ () (52 ) =omie =Yy e
(34) ' S o
o " doy 2 dp1\2 [ dey (2 1
?(,71:7) '+<d7',) +(\E) T W@y,

[l est tout naturel de faire encore ici Phypothese exprimée par (30) et
par suite de poser

(35) k= /v, Si=ho,.

La seconde formule fournit aisément
(36) P "
jgrade, | tgrad S| \om[E=V(z, 5. 5]

. . . ¥ 9 7
et, comme en toul point on doit avoir E— 5 my? +V{x, y,5) on

retrouve la seconde ¢quation (31), mais ici ¢ et 2 varient d’un point a un
autre.

Comment écrire I'équation de propagation qui correspond au mouve-
ment dans le champ permanent? Ecrivons I'équation (18) sous la forme

(37) AT 4 /——‘—— =0

et substituons-y la valeur (36) de 4 ; il vient

8azm
h?

(38) AY [E —\(‘1/ ¥, ,z)]ll,“ = 0.

En faisant V=0, on retrouve I'¢quation valable en I'absence de champ.

1.. DE BROGLIE. 2
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Chaque fois que 'Oplique géoméirique sera suftisante pour décrire la
propagation de 'onde W, nous pourrons écrire

9 ; 2 ;
s B8y, x, 2]

(39) V=ae” =aeh

et les trajectoires prévues par I'ancienne Dynamique du point matériel,
normales aux surfaces S;= const., ne seront pas autre chose que les
rayons de la propagation de 'onde W, normaux aux surfaces ¢;= const.

Nous arrivons ainsi a4 'une des idées essentielles de la nouvelle Méca-
nique. Tandis que la Mécanique ancienne attribuait a ses ¢quations un
caraclére rigoureux ct les considérait comme loujours valables, la nou-
velle Mécanique donne a l'onde le role essentiel : elle ne considere plus
les équations de 'ancienne Mécanique que comme des approximations
valables seulement quand 'approximation de I'Optlique géomélrique est
suffisante pour décrire la propagation de I'onde.

La Dynamique classique n’apparait donc plus que comme une approxi-
mation : elle n’est utilisable que, quand l'indice n relatit & Ponde W
varie peu a échelle de la longucur d’onde ou, ce qui revient au méme,
quand le potentiel V varic lentement & cette échelle. Toutefois, si la
longuecur d'onde de I'onde W était infiniment petite, la Dynamique
ancicnne serail rigoureusement valable. D’apres la formule (37), Pon
voit que cela serait toujours réalisé, pour une vitesse ¢ non nulle, si /4
était infiniment petit. D’ou cette conclusion depuis longtemps connue :
si 'on fait tendre £ vers zéro dans les formules, tous les effets quantiques
doivent disparaitre et la Dynamique classique doit retrouver toule sa
riguecur.

4. Equations générales de la Mécanique ondulatoire du corpuscule. —
Nous venons d’étre conduits a substituer aux équations classiques de la
Dynamique du point matériel dans un champ constant I'équation de
propagation d’unc onde monochromatique. Mais, comme nous le verrons
bientot, on est amené a considérer des trains d’ondes formés par une
superposition d’ondes monochromatiques. 1l est donc utile de chercher
a obtenir une équation de propagation a laquelle satisfasse la fonction W
quand eclle représente une telle superposition d’ondes monochroma-
tiques. L'¢équation

Sx2m dnim oW
4 [ /A (o v, 2\ —
(40) AU 7 Vix, v, 5)¥ = Y

satisfail & cetle condition car pour une onde plane monochromatique de
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5
‘1

I . .
fréquence ' elle nous ramene a 'équation (38). Mais la forme (40) nous

h
permet de ne pas nous borner aux ondes monochromatiques et de
considérer des superpositions de telles ondes. De plus, elle nous suggere
la maniére d’étendre la nouvelle Mécanique au cas des champs variables
avee le temps. En effet, comme elle nous permet de ne plus nous borner
aux ondes monochromatiques, le temps n’y joue plus un réle parti-
culier et il est alors naturel d’admettre que la forme de 1'équation doit
se conserver quand V dépend du temps, donc d’écrire

8x2m fmim (_)ll_f'

72 V(z, y, 5 O)¥ = “h ot

(41) AV —

comme forme générale de 'équation de propagation des ondes W en
Mécanique ondulatoire non relativiste du corpuscule unique.

5. Procédé automatique permettant de retrouver I’équation des ondes.
— Nous allons indiquer un procédé formel permettant de retrouver
automatiquement I'équation des ondes, procédé¢ dont P'importance avait
¢été soulignée par M. Schrédinger.

En Mécanique classique, on appelle « fonction hamiltonienne » la
fonction qui exprime I'énergie a 'aide des coordonnées et des moments
de Lagrange conjugués. En coordonnées rectangulaires, 1’expression
bien connue de cetle fonction est

I 2 9
(42) H(x, y, 3, px, py, Pss 1) = —— (P2 +p} +p2)+V(z, ¥, 5, 1).

am

. . h 9
S1 dans cette expression, nous remplagons p, par — w7 95 Propar

k0 | ar — h o 1s oblenons un opérateur, 'opérat
omi Uy €L pz par — — —~» NO P eur, l'opéraleur
hamiltonien
( , , S
LN L2 )
(43) }lop = ;ﬁ (2—7:7> <d£2 -+ ()}/2 -+ I)Z2> + ¥ (.’L‘, Y, 3, l).

En appliquant Popérateur (43) a la fonction W, ¢’est-a-dire en multi-
pliant W en avant par l'opérateur (43), puis en ¢galant le résultat

h T .
m W’ on Ol)llcnt
I h \2 h oW
4 PR T ; - Ve —
(44) ')m<f>rz> AV +V(x, y, 5 O 27 o

équation identique a ’équation générale (4o0).
q i { 8 }
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Nous vovons ainsi que 'équation générale de propagalion peut se
b { ) I 8
mellre sous la forme

o ov
45 H{x. y, 5. Py, Py, Poo ) = — ——
(43) (s gy 5 Pay Py, Pt TR
T . . h 0 h
ou P, P,, . sont respectivement les opérateurs — — ——y — — =
- vmtl dr ame dy
J . ,
el — — - que nous faisons donc correspondre aux composantes de la
ATL J3

quantité de mouvement.
Il importe de remarquer que le procédé automatique pour obtenir
I 1
Iéquation des ondes que nous venons d’indiquer ne réussirail pas en
général si I'on employait des coordonnées curvilignes. Ainsi, avec des
coordonnées sphériques, on n’obtliendrait pas par ce procédé la forme
correcle de Popérateur A figurant dans I'équation. Cetle difficulté est
g q
lide au fait qu’on ne peut alors déduire univoquement par ce procédé a
partir de la fonction hamiltonienne classique la forme de Topérateur
hamiltonien parce qu’un terme de la forme ., par cxemple duns la
I q Py | p
fonction classique peut dans opérateur donner naissance a des termes
7 I
gV, +Pyq
NUESRIA'
R

ql)‘l7 P‘l (77

ete. sutvant I'ordre qu’on adopte pour les facteurs
et ces lermes ne sont pas ¢quivalents.

Pour obtenir Pexpression correcte, il faut procéder a une symétrisa-
tion préalable en p et ¢ de 'expression classique.

6. Théoréme sur la vitesse de groupe. Raccord avec la Mécanique
classique. — Nous allons maintenant démontrer un théoréme qui se
trouvait déja dans ma These : celui de la vitesse de groupe.

Rappelons d’abord qu’'un groupe d'ondes est formé par une superpo-
sition d'ondes monochromatiques ayant des fréquences et des directions
de propagation trés vodsines. On peut donce lui attribuer une fréquence,
une longucur d’onde et une direction de propagation approximativement
bien déterminées, bien qu'il ne soit pas rigourcusement équivalent a
une onde monochromatique.

Un groupe d’ondes peutl avoir des dimensions linies parce que les
ondes qui le composent et qui sont en concordance de phase au centre
des trains d’ondes doivent se détruire par interférence en dehors de ses
limites. Il est facile de voir que les dimensions d'un tel groupe d’ondes
limit¢ doivent toujours étre grandes par rapport a la longueur d’onde
moyenne %o. Si, cn effet, les diverses composantes sont en concor-
dance de phase au centre du groupe d’onde et si celui-ci est formé par
une superposition d’ondes de longueurs d’ondes comprises dans Pinter-
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valle dg— A% — 70+ Al avee A% <2, pour que les composantes puissent
s¢ détruire par interférence en dehors du domaine qu’occupe le groupe
d’ondes, il faut que le déphasage des ondes de longueur d’onde 24 et

7o = Ak soit en moycenne de 7 quand on passe du centre au bord du
groupe d’ondes. Si 4 est la distance moyenne du centre au bord, on doit
donc avoir

4 ol A

46 L T
(46) o 2o T2 AN

MR

ou R R T
/\\-, p
C.Q.F.D.

Démontrons maintenant la formule de Rayleigh qui donne la « vitesse
de groupe ». Dans un milieu a indice variable, nous pouvons écrire
Pexpression d'une onde monochromatique a Papproximation de'Optique
géométrique sous la forme (23). Un groupe d’ondes dans ce milieu sera
donc représenté par

oAy

(4= lr:f WV R T dy (Av
wy— Av

Posons v =—=v,+ v, n variant de —Av & -+Av. Nous pouvons écrire
approximalivement '
Ay ‘\_“.lrl (’)?1

min) —{

(4%) W= et etz [ (e P
oAy .

1

[ e, . ] p
ol <’()T>(, est la dérivée de g4 par rapport i v pour v == v¢. Dans {48),

L . . N X P
Uintégrale est une fonction du parametre ¢ — (El\) et lon peut éerive
Yoo

/

(49) e (%)

QT Vgl Ty, ¥y 5 V)
N

Le train d’ondes se comporte donc approximativement pendanl un
cerlain temps comme une onde monochromatique de fréquence v, dont

I'amplitude serait fonction seulement du parametre £ — <’ ?’> - Donc si
0

v
nous nous déplacons le long d’un rayon, c¢’est-a-dire d’une courbe ortho-
. 2 .
gonale aux surfaces 3, == const. de facon que d¢— T:;; ds soit nul, nous

accompagnerons une méme valeur de Pamplitude. Nous pouvons donc
dire que les amplitudes du groupe d’ondes se déplacent en bloc le long
des rayons avec la vitesse

- . ds Jro \ 1
(50} L‘-m—</}vd5> )
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. do . . N
Mais nous savons que —(}Si =|grad ¢, | est en chaque point égal a

I'inverse de la longueur d’onde locale A(z, y, 2, v). Nous avons donc

) (>
(51) 1_d<1>_’ ‘v)_ 1 d(nv)
U™ v \2)  —ov TR ov

Telle est la célebre formule de lord Rayleigh qui donne la vitesse de
groupe U.
Si le milieu est homogene, U est indépendant de 2, y, 5. Si, de plus,

. . . Jn .
il est sans dispersion (E :o), on a U=V et la vitesse de groupe se

confond alors avec la vitesse de phase.

Le déplacement en bloc d’un groupe d’ondes avec la vitesse U n’est
pas rigoureux car dans la formule (48), nous avons négligé les termes en
72, 3, ... qui contiendraient les dérivées supérieures de g, par rapport
av. On peut voir que Pexistence des termes négligés a la conséquence
suivante : au bout d'un temps suffisamment long, le groupe d’ondes ne
peut plus ¢éire considéré comme se déplagant sans se déformer et, & la
longue, il s’étale de plus en plus dans I'espace avec diminution corréla-
tive de son amplitude. Nous aurons plus tard & nous préoccuper de cette
dissémination progressive des groupes d’ondes représentée par une inté-
grale de Fourier du type (47).

Arrivons maintenant au théoréme de la vitesse de groupe en Méca-
nique ondulatoire. Pour le mouvement d’un corpuscule se déplacant
dans un champ permanent qui dérive du potentiel V(z, ¥, z), nous
avons trouvé pour lalongueur d’onde I'expression (36), dont nous tirons
en nous souvenant que E = /v,

(52) -9

d<z> _
/) dyam(E—V) m o
N JE T Vem(E—V) ¢

¢ élant la vitesse corpusculaire correspondant a I'énergie E. La formule
de Rayleigh nous donne alors

(53) U=r¢.
D’ou I'important théoréme sur la vitesse de groupe en Mécanique ondu-
latoire : )

St lon associe au mouvement d'un corpuscule un groupe d’ondes W
dont la fréquence centrale correspond a U'énergie du corpuscule, la
vitesse du groupe est égale & la vitesse du corpuscule.
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Montrons comment ceci conduit a raccorder la Mécanique ondula-
toire & la Mécanique classique dans le domaine macroscopique. Dans
les expériences de I'échelle macroscopique, les champs et par suite
lindice de réfraction pour les ondes W varient peu a l'échelle de la
longueur d’onde. De plus, les longueurs d’onde étant trés petites, on
peut considérer des groupes d’ondes qui, a notre échelle, sont quasi
ponctuels. Envisageons dans ces conditions la propagation de I'onde
monochromatique qui posstde la fréquence centrale v, du groupe
d'ondes. Il Iui correspond une famille de surfaces d’égale phase
91(2, ¥, 7, vo) = const. et les rayons sont les courbes orthogonales a
ces surfaces. A 'échelle macroscopique, le groupe d’ondes sera analogue
a un pelit globule qui glisserait le long d’'un tube de rayons trés délié.

%Cs

Fig. 2.

A Véchelle de la longueur d’onde, il serait dans sa partie centrale assi-
milable 4 une onde monochromatique et c’est seulement sur les bords
que linterférence des diverses composantes ferait tomber a zéro son
amplitude.

Le petit groupe d’ondes quasi ponctuel & notre échelle se transporte
le long d’un rayon central avec la vitesse de groupe U qui est égale
d’apres (53) a celle d’un corspuscule ponctuel classique décrivant ce
rayon-trajectoire. Gomme a I'échelle humaine nous ne pouvons pas
distinguer les uns des autres les divers points du groupe d’ondes et que
le corpuscule ne peut se manifester qu’a Pintéricur de celui-ci (comme
cela résulte du principe de localisation que nous ¢tudierons au chapitre
suivant), nous aurons I'impression d’étre en présehcc d’un corpuscule
ponctuel anim¢ da mouvement défini par la Mécanique classique.

Nous parvenons ainsi a comprendre comment pourra se faire le
raccord entre la Mécanique classique et la Mécanique ondulatoire dans
le cas des phénomenes macroscopiques on la propagation d'un petit
groupe d’ondes W peut étre déerite par I'approximation de 'Optique
géométrique.
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7. Equation de propagation de la Mécanique ondulatoire relativiste a
un W. — Nous avons trouvé les équations de propagation valables en-
Mécanique ondulatoire quand on peut nééliger les corrections de relati-
vité. On peut chercher a élendre la théorie précédente en tenant compte
de la Relativité.

En Dynamique relativiste, un corpuscule dc masse propre m, placé
en dchors de tout champ posséde comme énergie el comme quantité de
grandeur

. . myc? myv 4
(54) W= e po MV <g=ﬁ>
vi— [ VI1—

et I'on peut décomposer W en deux parties suivant la formule

. . 1
(D) W=myc2+ E, avec E=myc? [ —= —1)-
vi—p®
Le terme moc?* est I'énergie propre du corpuscule qui, d'apris le
rincipe de U'inertie de Iénergic, correspond a existence de la masse

p g1,
propre mo. Quant & E, c’est le supplément d’énergie dia au mouvement
ou «énergie cinétique », seul terme considéré par la Mécanique classique
qui ignore l'énergic interne mqc?.

Quand la vitesse ¢ est trés petite par rapport a ¢ (5<<1), on retrouve
les expressions classiques

1
21

9

)

- 1 .
) E = - mye2 = MV k=
( 6) B ok, P 0V,

la masse propre m, coincidant avec la masse constante m de la Méca-
nique classique. Cette Mécanique classique apparait donc ici comme
une approximation valable pour 3 <1, ce qui est le cas usuel des mou-
vemenls macroscopiques.
Tandis que les formules classiques conduisent immédiatement pour
le corpuscule libre a la forme suivante de la fonction hamiltonienne
1

s (P2 PR+ 1),

(57) E=H(r, ¥, 3, px, Py, P5) =

les formules relativistes conduisent a poser

(58) W =H(z, y, 5, pa; Py, Ps) == cymjc*~+ pi—+ pi -+ pi,
c’est-a-dire a la relation
W2

— 2 2 2
o = mict+p

(59)

L’équation de Jacobi s’obtient en Dynamique classique quand on
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N . . e .
substitue '7[ a E et —grad S a p dans la troisicme équation (56}, ce qui
[/

donne

6o r}bi_ 1 ('/)S 2 dS\? aS\?2
(60) o T eml o) T\ay) T\os) |

L’¢quation de Jacobi dans la Dynamique relativiste s’obtient de la
méme maniére en partant cette fois de la relation (59) et a la forme

(61) LIS\ (93 2—+— IS 2—0— 98 i—t—m‘zc?
o) e\t )~ \or dy 0z v
Pour parvenir a 'équation de propagation de la Mécanique relativiste,

il parait alors naturel de partir de la relation (59) et d’y faire les substi-
[ p 9 y

tutions
J h 0

Weosmiae P

.
927l O

"

ce qui conduit & I'équation de propagation
i

m3cr’ =o.

9 g 47
(62) Oou + e

Proposée simultanément par plusieurs auteurs au début de 1'¢té 1926,

tout de suite aprés les travaux de M. Schrodinger, Péquation (62) est
p ger, teq

connue sous le nom d’équation de Klein-Gordon. A l'approximation
newlonienne, avec expression (55) de W, on retrouve aisément i
partiv de (62) la forme non relativiste de I'équation des ondes [for-
mule (40) avec V=o0].

Sil'on veut passer maintenant au cas ot unchamp agit sur le corpus-
cule, il faut donner a ce champ une forme relativiste. Dans le cas d’un
¢lectron de charge électrique ¢ dans un champ électromagnétique
dérivant d’un potentiel scalaire V et d’un potentiel vecteur A, on posera

ny C? . myv 3
(63) ‘ W= —]U——M—FE\; PZ/—O——':—FEA
Vi—p2 Vi—p

et on en déduira la relation hamiltonienne :

. 1 - € 2 5 o
(64) LWeevp=¥ <1)I—2Ax> S+ mie
et 'équation de Jacobi :

(65) I.,<(3§—av>': Z <db +EA1‘>-+IILSCE.

et \ dt du c

x, 2,3

En tenant compte de la relation de Lorenlz entre les potentiels
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%:— -+ div A = o, le procéd¢ habituel de passage a la Mécanique ondula-

toire conduit a I'équation de propagation

L . 3 r
06)  pw- A ERIE AReN o

—+ 4;—:. [m%ch— % (V?——J\‘-’)] Y=y,

Les équations précédentes connues dés 1926 sont valables pour des
ondes W représentées par une fonction d’onde invariante a une seule
composante. Le développement ultérieur de la Mécanique ondulatoire a
montré que ces équalions ne peuvent convenir que pour les particules
dont le «spin» est égal & zéro. Pour les particules de spin non nul, la
fonction ¥ doit étre considérée comme un ¢lre mathématique ayant
plusicurs composantes qui subissent certaines transformations bien
définies lors d’une transformation de Lorentz. Ces composantes sont
liées entre elles par un systtme d’équations aux dérivées partielles
simultanées qui sont linéaires et du premier ordre en z, y, 5, ¢. Le
nombre des composantes du W ct celui des équations correspondantes
s’élevent quand la valeur du spin augmente. Toutes ces formes mathé-
matiques sont aujourd’hui bien ¢tudiées ().

Le cas le plus simple est celui de 'électron qui posstde, comme

sans doule toutes les autres particules « dlémentaires », un spin égal a ;
h .
27
ondulatoire de 1'électron est connue sous le nom de « théorie de Dirac ».
Elle utilise une fonction ¥ a quatre composantes Wy, Wy, ¥, ¥, qui
obdissent 4 quatre ¢quations aux dérivées partielles simultanées du
premier ordre en z, y, z, {. De ces équations, Pon déduit qu'en
labsence de champ, chacun des W) obéit séparément a I'¢quation (62).

Nous ne développerons pas icila théorie de Dirac. Nous y reviendrons
dans la seconde partie de I'Ouvrage (chap. XVI).

en unité

Découverte en 1928 par M. P. A. M. Dirac, la Mécanique

(') On pourra consulter a ce sujet 'Ouvrage de Uauteur : Théorie générale des par-
ticules a spin, 2¢ ¢d., Gauthier-Villars, 1954.



CHAPITRE IIL

PREMIERS PRINCIPES RELATIFS A L'INTERPRETATION PROBABILISTE
DES ONDES V.

1. Le grand probleme de linterprétation de la Mécanique ‘ondula-
toire. — Des le début de la Mécanique ondulatoire, le probleme de la
signification exacte qu’il convenait d’attribuer i Vonde W est apparu
comme comportant de grandes difficultés. On s’est vite apercu qu'il
n’était pas possible de considérer la fonclion W comme une grandeur
physique au sens ancicn, par exemple comme représentant la vibration
de quelque milieu. L’équation générale de propagation contient, en
effet, un coefficient z':\/: de sorte que la fonction W est essentielle-
ment complexe contrairement & ce qui se passait dans la théorie
classique des ondes et des vibrations ou 'emploi de fonctions complexes
apparaissait comme un artifice mathématique souvent commode, mais
toujours possible a éviter. De plus, nous verrons que, pour les systémes
de corpuscules, I'onde W' se propage dans l'espace de configuration,
espace abstrait et ficuf.

Plus 16 formalisme de l'utilisation de Uonde W se précisait, plus elle
apparaissait’ comme une sorte de représentation formelle et subjective
permettant d’évaluer les probabilités de certains résultats de mesure.
Nous aurons 'occasion de montrer en étudiant cetie interprétation pro-
babiliste de la fonction ¥ que cette fonction d’onde définic a la fagon
usuelle comme solution des équations de propagation linéaires men-
tionnées au chapitre précédent ne peut certainement pas étre considérée
comme unc réalité objective, mais comme un élément ayant le méme
caraclere subjectif que les probabilités qu’elle représente et susceptible
de varier suivant les connaissances de celui qui 'emploie.

La question capitale est alors de savoir si 'interprétation probabiliste
de 'onde W qui conduit certainement & des prévisions exacles constitue
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une représentation « compléte » au-dela de laquelle il n’y a pas licu de
rechercher une description objective de la réalité ou si, au contraire, la
description des phénomeénes a aide de la seule onde W est « incompléte »
ct doit laisser place a une description plus profonde ct plus détaillée de
la réalité physique. Nous aurons 'occasion de revenir plus d'une fois
sur ce probleme.

Pour I'instant, nous allons nous contenter d’énoncer et d’étudier deux
principes fondamentaux de 'iterprétation probabiliste de 'onde W qui
se sont imposés dés 1926-1927 notamment & la suile des travaux de
M. Max Born et dont I'exactitude ne parait pas douteuse.

2. Principe de localisation ou principe des interférences. — Le¢
premier principe qui s’est imposé en Mécanique ondulatoire quand on
a voulu ntiliser la fonction d’onde U pour la prévision des phénomenes
a été le principe que je nommerai « principe de localisation » ou « prin-
cipe des interférences » et dont voici 'énoncé :

Le carré du module de la fonction W mesure en chaque point et &
chague instant la probabilit¢ pour que la présence du corpuscule
soit observée en ce point & cet instant.

La fonction W étant une quantité complexe, nous pouvons loujours

e

I’¢erire sous la forme ¥ — e *

b

, olt @ et ¢ sont des grandeurs réelles
. , . .
que nous nommerons respectivement I'amplitude et la phase de W. St
nous désignons par ¥ la quantité complexe conjuguée de W égale &

eni

o

ae " ,nousaurons

9

(1) @ =Y = |

(est cetle grandeur réelle qui intervient dans le principe des interfé-
rences.

Il est facile de rattacher le principe des interférences a des idées qui
¢taient bien connues dans les anciennes thdéories de la lumicre. Dans
ces théories, on admettait toujours que U'intensité de onde lumineuse,
c’est-a-dire le carr¢ de son amplitude, mesurait en chaque point a
chaque instant la quantité d’énergic lumineuse qu’on y pouvait
recueillir : ¢’est cette régle qui permettait la prévision exacte des franges
d’interférences et de diffraction. Mais nous savons aujourd’hui que tout
se passe dans les échanges énergétiques entre la matiere et la lumidre
comme si la lumiere était formée de corpuscules d’énergie /v : ce sont -
les « photons ». Si nous nous représentons une onde lumincuse entrai-
nant avec elle un grand nombre de photons, 'explication des interfé-
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rences exigera que lintensité de I'onde mesure en chaque point la
densit¢ du nuage de photons : nous oblenons ainsi une interprétation
statistique du principe des interférences appliqué aux photons.

Mais cetle interprétation statistique doit prendre la forme d’une
interprétation probabiliste. En effet, on a pu obtenir des phénoménes
d'interférences de la lumiere du type usuel en employant pendant un
temps trés long une lumiere d’intensité extrémement faible, si faible
qu’il ne pouvail jamais y avoir a la fois plus d’un photon dans I'appareil
d'interférences. Ce sont les expériences fondamentales de Taylor et de
Dempster et Batho (*). Or, d’autres expcériences dues a Silberstein et
confirmées par celles de Vavilov (2) ont montré que I'tmpression des
plaques photographiques est duc a des effets photoélectriques produils
localement dans lenr couche sensible par Parrivée successive des pho-
tons. Des lors, la scule interprétation qu'on puisse donner des expé-
riences du type Taylor est la suivante : chaque photon arrive sur I'appa-
reil d’interférences avee son train d’ondes qui y subit les interférences
calculées par la théorie des ondes et, au bout d’un temps trés long,
quand il est arrivé un grand nombre de photons, ceux qui ont ét¢ captés
par la plaque photographique se trouvent avoir produit des effets photo-
¢lectriques sur cette plague répartis proportionnellement & l'intensitd
locale de I'onde. On est ainsi conduit a dire que lintensité de 'onde
mesure la probabilité pour que le photon produise en un point de
Iespace un effet observable. Cette interprétation probabiliste du prin-
cipe des interférences permet de justifier le succes des expériences de
Taylor et de Dempster et Batho.

Ce que nous venons de dire concerne les photons, mais extension
du principe des mterférences au cas des particules matérielles et de
leurs ondes associées parait s'imposer puisque avee clles aussi, on peut
obienir des phénomenes d'interférences ct de diffraction. Pour les
électrons par excmple que 'on peut facilement utiliser dans les expé-
riences (¢lectrons de quelques centaines a quelques centaines de milliers

. . .k
d’électrons-volis), Ponde associée a, d’apres la formule 2= =, une
b] ? p I)

longueur d’onde de l'ordre de 10™* a 10 ¥ em. On doit done pouvorr
avec des ¢lecirons obtenir des phénomenes analogues a ceux que 'on
obtient avee des rayons X ou v dont la longueur d'onde est du méme

() G. I. Tavror, Proc. Camb. Phil. Soc., t. 13, 1909, p. 114 ; DEMPSTER et Batno, Phys.
Reo.. t. 30, 1927, p. 644.
(*) S. I. Vavirov, Progres des sciences physiques, t. 16, 1936, p. 8g2.
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ordre. Clest bien, on le sait, ce qu’'ont montré en 1927 les expdériences
de Davisson et Germer, bientot reprises par G. P. Thomson, Rupp,
Ponte, Kikuchi, etc. Elles ont montré¢ qu'un faisceau d’¢lectrons de
méme énergie, donc associées A une onde monochromatique, peut, en sc
diffractant sur un cristal, donner naissance & des phénomenes lout a
fait analogues a ceux qu'on observe avec les rayons X dans les expériences
du type Laue-Bragg. D’ailleurs Rupp a pu obtenir la diffraction des
électrons par un réseau optique ordinaire sous des incidences trés
rasantes et, en 1940, Borsch, répélant avec des ¢lectrons une expérience
mémorable de Fresnel sur la lumiere, a pu observer la diflraction des
électrons par le bord d’un éeran. Enfin, rappelons qu’on a pu obtenir la
diffraction par les cristaux de toute une série de particules matérielles
autres que les électrons, par exemple les protons, divers noyaux d’atomes
et méme les neutrons. Toutes ces belles expériences ontapporté une excel-
lente confirmation des idées générales de la Mécanique ondulatoire et

. . . . . Y/ N
une vérification quantitative trés précise de la formule 2 — Ij' Elles ont

aussi apporté un appui décisif a 'idée qu’il convient d’étendre & toutes
les particules le principe des interférences puisque ce principe est a la
base de tous les calculs qui permettent de prévoir les phénomenes
d’interférences et de diffraction.

Il est certain que le principe des interférences doit, pour toutes les
particules, recevoir linterprélation probabiliste que nous avons ¢té
amené plus haut a lui attribuer dans le cas des photons et de l'onde
lumineuse. La chose ne parait plus faire de doute puisque MM. Bider-
mann, Souchkine et Fabrikant (1) ont pu veérifier que les figures de
diffraction obtenues avec des électrons sc produisent aussi par des
aclions localisées dues aux arrivées successives des ¢lectrons sur la
plaque photographique qui les enregistre.

3. Enoncé précis du principe des interférences. Fluide de probabilité.
— Pour préciser le principe des interférences, nous remarquerons que
I'onde W, solution d’une équation aux dérivées partielles lincaire n'ayant
pas le caractére d'une grandeur physique mesurable, n’est déterminde
qu’a un facteur multiplicatif complexe prés. Nous pouvons choisir ce
facteur de facon a avoir

(2) ﬁ'[wgnhzl,

I'intégrale élant étendue a tout espace. Le choix de ce facteur arbitraire

" Bépports a P Académie des Sciences de 'U.R.S.S., t. 66, 1949, p. 185.
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nous permet done de « normer » la fonction d’onde par la relation (2),
du moins a un instant donné. Nous allons montrer que la fonction W
ainsi normée restera normée a tout instant £. On pourra donc préciser
I'énoncé du principe des interférences en disant : La probabilité pour
qu'une observation permeltte de localiser un corpuscule, dont la fonc-
tion d’onde normce est Wz, y, z, t), dans un élément de volume dr
a Uinstant t est égale a U'expression

‘F<'7"7 Y 3, t)llf'*(.’li', NEED) t)d—" = I IF(.Z‘, Y %, t) |2 dr.
Pour représenter les variations de Ia probabilité de présence | W|? au

cours du temps, nous imaginerons un fluide fictif dont, par hypothese,
la densité en chaque point a chaque instant serait donnée par

(3) P(J;’.y) zal):llr<'z'>.y: Z t)‘p*(x,% 2, t)'

Nous définissons le mouvement de ce fluide en posant que sa vitesse
an point 2, ¥, z i Pinstant ¢ a pour valeur

(4) v = (Vgrad ¥*— Y grad V') = — % grad ¢.

[W {2 grim

Or, les fonctions W et W* obéissent rcspectlvemenl a I'équation (41)

.

du chapitre IT (p. 19) et a I'équation conjuguée, d’ot Pon tire aisément

hmim J(WE*)  fmim dp

3 U AU — PAY™ — — .
(5) I AU — WAY = -

On peut done éerire

do _
at — fmim

(6) (VAW — WAY™) = —

Z D (g MY O
()_ ox oz )
Ty ¥y
ou d’aprés (4)
o .
(7) ’——%—dlv(pv):o.
Jdt
Celte équation, bien connué en Hydrodynamique sous le nom d’équa-
tion de continuilé, exprime que le fluide fictif de densité p se conserve
au cours du temps, c’est-a-dire que I'intégrale ﬁ'l W |2dr reste cors-
tante. La normalisation du W a donc bien un caractére permanent.
4. Lesrelations d’incertitude d’Heisenberg. — L’ancienne Mécanique
admettait qu’il ¢tait possible d’attribuer au corpuscule une position et

une vitesse bien détermincées. En d’autres termes, on attribuait aux
coordonnées z, y, z du corpuscule ainsi qu’a son ¢énergie E ct a sa
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quantité de mouvement p des valeurs bien déterminées a chaque instant.
Nous allons montrer qu'en Mécanique ondulatoire, du moins si l'on
envisage exclusivement la fonction d’onde continuce I', on ne peut plus
maintenir celte affirmation.

Etudions le cas simple du mouvement rectiligne uniforme en dehors
de tout champ. Nous savons qu'au mouvement d’énergie L et de guantitg
de mouvement p s’opérant dans la direction de cosinus directeurs «, 3, ~

N
i

correspond la propagation de I'onde plane monochromatique

2T

Llilr—\/‘_’m Kix.ae . 3»\'+"[:)1‘
(8) W=we”

) I h o .
de fréquence ; et de longueur d’onde -, du moins & lapproximation
h ° me

newlonienne. Cette onde monochromatique plane correspond done a un
élat de mouvement bien déterminé; mais elle ne donne aucune indi-
cation sur la position du corpuscule car elle a la méme amplitude en
tout point de Pespace. La probabilité de présence |W[* est donc la
méme en lous les points.

Mais, au lieu d’étre une onde plane monochromatique, la solution W
de I'équation d’ondes qui convient a I'état du corpuscule peut ¢tre une
superposition d’ondes plancs monochromatiques représentant un train
d’ondes de dimensions limitées. Alors 'intensité

W' [* ne sera différente
de zéro que dans une région limitée de l'espace et, d'aprés le principe
des inlerférences, la présence du corpuscule ne pourra étre décelée que
dans cetle région. L’incertitude sur la position est alors moins grande
que dans le cas de l'onde plane monochromatique. Par contre, si a
chaque composante monochromatique de fréquence v et de longueur
d’onde 7 présente dans la composition spectrale du W, nous faisons
correspondre I'état de mouvement défini par

nous ne pouvons plus attribuer au corpuscule un état de mouvement
bien défini. En passant du cas de 'onde plane monochromatique a celui
du train d’ondes limité, nous avons donc vu diminuer I'incertitude sur
la position, mais en revanche nous avons vu augmenter Uincertitude sur
I'état de mouvement.

Nous pouvons maintenant passer au cas limite d’un train d’ondes de
dimensions infiniment petites. 11 est alors nécessaire de faire intervenir
pour la représentation analytique de ce train d’ondes une superposition
d’ondes monochromatiques ayant toutes les fréquences, toutes les
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longucurs d’onde et toutes les directions possibles. Ce cas limite, symé-
trique de celui de 'onde plane monochromatique, correspond a une
localisation bien déterminée du corpuscule, mais & une ignorance
complete de son état de mouvement.

En résum¢, micux la position du corpuscule est définie, plus grande
est Pincertitude sur son élat de mouvement et inversement. Cette cons-
tatation qualitative peul étre précisée par unc analyse exacte de la
représentation d’un train d’ondes W' par unc intégrale de Fourier. On
parvient ainsi & montrer que, si la connaissance de 'onde W laisse
subsister des incertitudes Az, Ay, Az sur les coordonnées du corpus-

cule et des incertitudes A p,, Ap,, Ap. sur les composantes de sa quan-

tité de mouvement, on a entre ces incerlitudes les relations

{(10) ArApe >k, AyAp, > A, Az Ap; > A,

valables en ordre de grandeur. Ce sonl 1 « les relations d’incertitude
d’Heisenberg ». Elles nous apprennent que le produit de I'incertitude
sur une coordonnée par 'incertitude sur la composante correspondante
de la quanlit¢ de mouvement est toujours de Pordre de 4.

Aux relations (10), on adjoint une quatriéme relation d’incertitude
qui en est la conséquence

(11) ALAE X A,

en ordre de grandeur. L'interprétation de la relation (11) est la suivante :
si une mesure permettant d’évaluer 'énergie E d’un corpuscule dure un
temps A¢, la valeur oblenue pour E est affeciée d’une incertitude AE

qui est supericure ou cgale a A-l

5. Le principe de décomposition spectrale (Born). — Dans les
raisonnements que nous venons de faire, nous avons implicitement
admis un principe qu'il importe maintenant d’énoncer nettement. Ce
principe qui s’'est dégagé dans les premieres applications de la Méca-
nique ondulatoire et que M. Born a le premier clairement apercu est le
sulvanl :

St Uonde W est formée par la superposition d’un certain nombre
d’ondes planes monochromatiques, a chacune de ses composantes
correspond un état de mouvement possible du corpuscule, c’est-a-dire
qu’une observation peut permettre d attribuer cet état de mouvement
au corpuscule. '

L. DE BROGLIE. 3
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D’une fagon précise, on peut dire avec M. Born :

St Ponde W est formée par une superposition d’ondes planes mono-
chromatiques formant une suite discontinue, c’est-a-dire si l'on a

. Iy
(12) ‘F:Zc(pk)e’l

k

[Egl - PgT)

ot Ey est U'énergie correspondant & la quantité de mouvement py, la
probabilité pour qu’une observation conduise & attribuer au corpus-
cule un mouvement de quantité de mouvement p; est donnée par
Le(pi) ?. St, au contraire, Uonde W est formée par une superposition
d'ondes planes monochromatiques formant un spectre continu (ce
qui est le cas des trains d’'ondes usuels), c’est-a-dire si lon a

2R _por)

(13) ‘I':fc(p)e 2 dp  (dp = dpudpydps)

la probabilité pour qu'une observation conduise a attribuer au
corpuscule une quantité de mouvement comprise entre p etp -+ dp
est donnée par |c(p) |? dp, étant rappelé que c(p) est donné en fonc-
tion de W(r, () par la formule d'inversion de Fourier :

X
i Ki—p.r)

(14) o(p) = %f‘lf'(r; e 7 dr  (dr = dedyds).

On peut donc dire que la probabilité de chaque élat est mesurée par
par « 'intensité » de la composante spectrale correspondante. Les états
de mouvement qui ne figurent pas dans le développement de Fourier de
la fonction d’onde W ont donc une probabilité nulle : on peut considérer
cette conclusion comme élant a la base de la théorie des élats quantifiés
en Mécanique ondulatoire.

6. Commentaire des résultats précédents. — Les résultats qui pré-
cédent nous permettent de préciser la signification de 'onde W. Elle ne
constitue pas une .grandeur physique au sens classique : elle est scule-
ment un instrument de prévision, plus exactement de prévision de pro-
babilité. Sa forme résulte d’observations antéricures dont le résultat est
parvenu i la connaissance de I'observateur et qui lui ont apporté des
informattons sur I'élat du corpuscule : a partir de ces données initiales
et tant que de nouveaux renseignements ne .parviennent pas a la
connaissance de l'utilisateur, elle évolue conformément a I'équation des
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ondes. Bien que cette évolution de l'onde W soit entitrement déter-
minée, il n’en résulle pas, nous le verrons, une prévision rigoureuse
des observations futures. En effet, la connaissance de 'onde ¥ ne nous
permet pas de dire quelle valeur d’une grandeur donnée sera observée
lors d’une nouvelle observation, mais seulement qu’elles sont les valeurs
que 'on pourra trouver pour la grandeur ct leurs probabilités respec-
lives. v

Chaque fois qu’une nouvelle observation nous apporte de nouvelles
informations sur le corpuscule, la forme de Ponde W s’en trouve modifide.
Ceci ne peut se comprendre que si 'onde W est seulement une repré-
sentation de nos connaissances actuelles sur le corpuscule et non la
représentation d’une réalité objective. Comme l'a dit récemment
M. Schradinger, 'onde W a quelque chose de « psychologique ».

Nous verrons que des observations faite  simultanément au cours
d’une méme expérience ne peuvent jamais nous fournir sur les grandeurs
caractérisant le corpuscule des connaissances plus précises que ne le
permettent les relations d’incertitude d'Heisenberg. Si nous mesurons
avec précision la valeur de certaines grandeurs, la valeur des grandeurs
canoniquement conjuguées nous reste totalement inconnue. Il y a donc
des expériences « maximales » qui nous fournissent la plus grande
connaissance possible sur le corpuscule qui soit compatible avec les
relations d’Heisenberg. S'il existait des expériences nous permettant de
connaitre exaclement toutes les grandeurs attachées au corpuscule, les
relations d’incertitude d’Heisenberg ne seraient plus satisfaites et il
résulle des raisonnements faits précédemment qu’aprés une expérience
de ce genre, nous ne pourrions plus représenter I'état de nos connais-
sances par une onde W'; mais de subtiles analyses dues surtout a
MM. Bohr et Heisenberg ont montré qu’aucune expérience de ce genre
ne peut étre réalisée ct cela en raison méme de Pexistence du quantum
d’action 4. '

Telles sont les conclusions auxquelles on parvient en se placant
exclusivement au point de vue actuellement considéré comme orthodoxe
suivant lequel 'onde W nous fournit une description complete de I'état
du corpuscule. Toutes ces conclusions paraissent d’ailleurs bien vérifices
et nous aurons a nous demander comment on aurait & interpréter leurs
succts si 'on adoptait un autre point de vue que le point de vue
orthodoxe.

"~ En passant, nous noterons encore que les répartitions de probabilité
fournies par le principe des interférences et par le principe de décom-
position spectrale pour deux grandeurs canoniquement conjuguées z et
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P« conduisent & établir rigoureusement entre les « dispersions »

(18) o=z —ar,  op=V (o por
la relalion

h
(16) CxGp, = F) .

C’est 1a une forme précise des relations d’incertitude, mais, contrai-
rement & ce que 'on dit parfois, clle n’est pas exactement ¢quivalente &
la forme qualitative

(17) Az Ap, > h, ... ecn ordre de grandeur.

Il peut, en effet, se présenter des cas ou la relation (16) n’apporte
aucun renseignement préceis (si 'une des dispersions est infinie) alors
que la relation qualitative (17) conserve une valeur pratique pour
Pexpérimentateur.

7. Transposition relativiste de la théorie du fluide de probabilité. —
Il est facile de transposer la théorie du fluide de probabilité dans le cas
de I’équation d’ondes relativiste

2
(18) D‘F—&—%nzﬁc‘“lf:o.

T
Il suffit de poser W' =ae ” ¥ et de définir la densité et la vitesse du
fluide de probabilité par

o, 0 _ ,gradg
(19)‘ p—a-'m, v =—c¢? —T)_:P__.

Jt
pour vérifier I'équation de continuité

(20) %{;—l—div pV =o.

C’est ce que l'on vérifie facilement en portant P'expression de W dans
(18) et annulant les termes imaginaires purs dans I'équation obtenue.

Si, au lieu d’un corpuscule libre, on considérait un électron soumis a
un champ électromagnétique dérivant des potentiels V et A, on aurait &
remplacer 'équation (18) par Iéquation (66) du chapitre 11 (p. 26).
L’on verrait alors que, pour retrouver toujours 1'équation de conti-
nuité (20), il faut poser au lieu de (19) les formules

grad ¢ + S A

dJdp
ot

(21) P=a2<%f—sV>, v =-—2c?

— eV
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Nousretrouverons I'expression de v sous le nom de « formule du guidage »
dans la tentative de théorie causale développée dans la seconde partie.
On vérifie aisément qu’on peut écrire (21) sous la forme

| d "
S A h <1Fl)| _1[,**(2)_]11“?5\’;

. f=mi ot 74
(22) \ he?
( eV = ZZ% (¥ grad¥™* — ¥ grad¥') — [¥|2ecA.

Ces formules permettent de vérifier que pc et les trois composantes
de pv forment les quatre composantes d’un quadrivecteur d’espace-
temps.

I est ais¢ de vérifier aussi qu'a Dapproximation newtonienne

. do . . .
<0u or = Mo 0"\), les formules (19) nous ramenent aux formules du
; )

paragraphe 3, o n’¢lant ¢videmment définie qu’a une constante multi-
plicative pres.

Le quadrivecteur densité-courant (p, pv) de la théorie de Dirac sera
étudi¢ ultéricurement (11° partie, chap. XVI).
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LA MECANIQUE ONDULATOIRE DES SYSTEMES DE CORPUSCULES.

»

1. L’ancienne Dynamique des systémes de points matériels. —
Jusqu’ici, nous n’avons considéré que le cas d’un corpuscule unique
placé dans un champ de force connu. Comment généraliser les résultats
exposés précédemment dans le cas d'un ensemble de corpuscules agis-
santles uns sur les autres? Pour le voir, il fautd’abord rappelerles grandes
lignes de la Dynamique classique des systémes de points matéricls.

Considérons un systeme formé de N corpuscules. La masse du &™°
est my, ses coordonnées sont z;, ¥y, ;. I énergie cinétique du systéme
est

2 AN 1 o .9 .y . d.l,l
(1) 1_5ani(xi +yi+ 3}, avec &= -
i
Les moments de Lagrange conjugués sont
(2) Z m; L2 n @ m, 3
.= ;o Dy == I, —— 0. — P »
P Fdr? Pr e’ Pai e
L’¢nergie potenticlle du systetme V{zy, ..., zy, £) est formée de

deux sortes de termes :

0

1° ceux qui expriment action mutuelle des corpuscules et qui ne

sont supposés dépendre que de leurs distances; ils sont de la forme

(3) Vi = Vylver =20 =y + G =50 s

2° ceux qui expriment l'action éventuelle d’'un champ extéricur sur
chacun des corpuscules : ils sont de la forme V;(2;, yi, 3, ¢).
L’expression hamiltonienne donnant l'expression de l'énergie en
fonction des coordonnée et des moments esl

N
(4) H(zy,...,3x, 1) :Z_;;W(p;{.i+1)‘;-’.i+p§i) +V(&y, .00y 3x, L)
1
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Si le champ extéricur ne dépend pas du temps ou est nul, V ne contient
pas ¢ et I'on sait qu’alors H garde une valeur constante E au cours du
mouvement (systéme conservatif).

La théorie de Jacobi se laisse étendre anx systémes. L’équation de
Jacobi pour le systeme est

N

. I [/ d5 \2 JdS \* dS \2 , ) _d8
(5) 2]‘-———2”” |<-’)—f—/> +<d—}/_/\\) +<Tm> J‘*“(-‘"u", z, 1) = %

/
1

Si Pon parvient i trouver unc intégrale compléte de celle équation
contenant 3N constantes arbitraires non additives ay, ..., a;y, On
obtiendra I'un des mouvements possibles du systéme en écrivant

()S('L‘h ey ENp Ly, e .706-_yy)

(6) = (£=1,2,...,3N),

1)11'
ou les «; sont de nouvelles constantes arbitraires et les moments de
Lagrange seront donnés par les formules

JS JS JS

(7) P-r/:‘“rtl_’ I".u:*,)j:i’ P:s:‘ljgi'

Dans le cas particulier important ol les aclions exiérieurcs sont
indépendantes du temps (ou nulles), V ne contient pas ¢ et I'on peut
cnvisager des solutions de (5) de la forme

(8) S=EL—8,(&r, vy 3, 21y oo ey @iy 1, B)

avec 3N constantes 2y, . . ., o,y 4, 5. L’on est alors amené a considérer
Péquation de Jacobi « raccourcie »

N
O L [/9S\ L [0S [9S\] L o o

¢t a en chercher une intégrale compléte contenant 3N constantes arbi-

traires @y, ..., a;x_,, K. Les équations du mouvement sont d’abord
. 08, . .
10 =y {=1....,3N —1
(10) dx; : ( : ) )

qui donnent la trajectoire du point représentatif du systéme dans
Vespace de configuration formé a Vaide des variables 24, ..., zy. Puis
on a 'équation de I’horaire

(11) —— =1t—{,.
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Enfin

_ gi __ 95, a5,
(12) P‘U"_d.z‘i’ P)'i“ljy‘i’ =

Comme dans le cas d’un point matériel unique, I'¢quation de Jacobi
permet de définir des « classes » de mouvement du point représentatif
du systéme dans l'espace de configuration, chaque classe correspondant
a une fonction Sy(@y, ..., 35,01, -0y Xy g, E) avec des valcurs
données des constantes primaires oy, ..., oy, B, les divers mouve-
ments d’'une méme classe ¢lant caractérisés par la valeur des constantes
secondaires ay, ..., Ayx_1, Lo

2. Mécanique ondulatoire des systémes de corpuscules. — Pour
obtenir une Mécanique ondulatoire des systémes de corpuscules,
M. Schrodinger dans ses travaux de 1926 a introduil I'idée qu’il fallait
considérer une propagation d’ondes W dans I'espace de configuration
du systeme, I'Optique géométrique de celle propagation d’ondes devant
nous ramener a la théorie de Jacobi du paragraphe précédent.

On admet alors que Péquation de propagation des ondes W dans
I'espace de configuration doit s’obtenir par le méme procédé automa-

g P
tique qui a réussi dans le cas du corpuscule unique. On part donc de
Uexpression hamiltonienne classique H(xl, v BNy Pay v os Pag l> de
I'énergie qui convient pour le systéme envisagé et I'on transforme cette
fonction en un opérateur en y remplacant p,., p,,, p,, par les opérateurs

h 0 h h J
Pop = — — 2 o= P, =2 2.
(13) ok oni dxp Py ami I)yk’ 2k 2Tl 3
On obtient ainsi Popérateur hamiltonien H (x,, cen g Py oo P t)
et Pon adopte comme équation de propagation du W dans Pespace de
configuration
h oW
; > > r— .
(14) H(xy, ... 58, Poy oo, Po, )Y Sw ot
On trouve ainsi, Zy, . . ., 3y 6tant les coordonnées rectangulaires des N
corpuscules,
. LR S LY SRR . JW
s B L (Y 2N 2T dmy g o Al
(15) Zk my \ dx} + dy? + LY “h Viwy, .ooozy, W = h Jt
1

Pour N =1, on retrouve bien ’équation valable dans le cas d’un seul
corpuscule.



LA MECANIQUE ONDULATOIRE DES SYSTEMES DE CORPUSCULES. 41

N . IV .
Pour les systemes conservatifs (W :0), on peut considérer des

solutions monochromatiques ne dépendant du temps que par le facteur

SR,

6" et I'équation (13) s’éerira
. 8
3 2
(16) Ek;nI—k AW+ —/% [E—V(x, ..., 20)] ¥ =o0.

1

Si, dans une région de lespace de configuration, V varie peu a
I'échelle de la longueur d’onde locale, Poplique géométrique est valable
et 'onde a la forme approximative

ors
2T Kt — 8y

(17) V=ae' )

« ¢élant unc amplitude lentement variable dont les dérivées sont tres
petites par rapport a celles de S;. En substituant (17) dans (16), on
voit que Sy doit étre une solution de I'équation de Jacobi (g9), ce qui
¢tablit la jonction avee la Mécanique classique.

Un cas particulier intéressant est celui ou les corpuscules du systéme
n’agissent pas les uns sur les autres. On peut alors les considérer aussi
bien comme isolés que comme formant un systeme. La fonction V se
réduisant aux termes Vi(x;, yi, %i, t) qui expriment Paction du champ
extérieur sur les divers corpuscules, Péquation (13) s’éerit

N N
N 8n2 3O jri oW
T Aar_TN v, . 4Tt IR
(18) 24/( m Al h? H}(VA((L'&, Vi 36 O h Ot
1 1
Si nous posons
(19) Uz, ..., zx, ) =T (x, ¥, 2, ) ... ¥'n(@N, ¥N, 2N, L),

nous trouvons que I'équation du systéme se décompose en N ¢quations
du type
4w oWy

1 8x2
A, — 2 N . v g, — 30L 0k
(20) - AU e Vilxr, yi, 3, t)We T

et nous voyons que 'on peut considérer isolément chaque corpuscule.

Néanmoins la forme (19) des solutions n’est pas la plus géndrale :

Iéquation de propagation admet aussi comme solutions des combinai-

sons linéaires quelconques des produils I—I‘P'/.-(x/g, Yy Bis L) Ces
K

combinaisons conviennent pour ddécrire les cas ou, les corpuscules
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ayant été antérieurement en interaction, leurs ¢tats individuels actuels
ne sont pas’ indépendants : nous aurons 3 revenir sur ces élats
« corr¢lés » résultant d’interactions antéricures. les solutions du type
(19) ne conviennent que si les états des corpuscules sont indépendants.

3. Interprétation probabiliste de la Mécanique ondulatoire des sys-
temes de corpuscules. — Il est ais¢ de transposer le principe des inter-
férences au cas des systemes de corpuscules. Onl'¢nonce alors en disant :

Si Uétat dun systéme de corpuscules est représenté dans Uespace de
configuration par la fonction d’onde W(z, ,. .., zy, t), la probabilité
pour qu'une observation permette de localiser au temps t le point
Siguratif du systéme dans Uélément de volume

dv=dx,dydz, ... dexdysxday
de Uespace de configuration est égal a |W(zy, ..., 3y, ) |* dr.

S'il n’y a qu’un seul corpuscule, on retombe évidemment sur la forme
précédemment étudiée du principe des interférences. Pour N corpus-
cules n’interagissant pas et n’ayant jamais interagi (corpuscules indé-
pendants), on peut adopter U'expression (19) de W et par suite éerire

(1) |V |2dr = | Wi(xy, y1, 84, 8) |2 daidydzy ... | Un{zN, ¥N, 3N, 1) |2 dexdynday.

La probabilité pour que le point figuratif du sysieme soit trouvé dans
I'élément de volume dz; . . .dzy de I'espace de configuration est alors le
produit des probabilités individuelles pour que le premier corpuscule
soit trouvé dans I'élément de volume dzidyidzy, ..., le N¥*° dans
Iélément de volume dxydyydzy. Ce résultat est en accord avec le
théoreme des probabilités composées car les présences des divers
corpuscules dans les différents éléments de 'espace physique sont ici
des ¢vénements indépendants ct nous voyons bien pourquoi cn ce cas
la fonction d’ordre W doit avoir la forme (19).

Pour que la grandeur

W [? donne, en valeur absolue, la probabilité
de présence du point figuratif du systtme dans I'élément de volume dr
de I'espace de configuration, il faut normer le W en posant

(22) /mfl‘b

o/

2dt =1,

ce qui détermine W a un facteur constant e prés.
Il faut encore démontrer que la normalisation (22) eflectuée a un
instant ¢ subsiste ensuite. Pour cela, on considérera un fluide fictif
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défini dans Iespace de configuration par les formules

; ‘ p=|Tp;
(23) 0V = _h [¥ grad; ¥*—U*grad; ¥] = — L[lp‘lz rad
| 2 V6= fmrm [V gTads grad(W]=— _ |V gradse,
e dzy d ds
- o T axr Ay 43
avec W=qe , V; ayant comme composanles i dr t~—dt et

J et
dzr ()}/\ I)ZA
En multipliant 1'équation de pI‘Opd ation (15) par W', I'équation

grad; ayant pour composantcs

conjuguée par ¥ et en soustrayant, on obtient alors

N
U . . sz J .
(24) Z,ﬁ[’ [ AW — WA W] = T2 2 (W),
1
d’oti on déduit avee les définitions (23)
N
~ Jo ST _
(25) S 2 v (pva) =0,
1

équation qui est la géndralisation de 1’équati0n de continuité hydro-
dynamique pour un fluide fictif en mouvement dans un espace a 3N
dimensions. Le fluide de probabilité se conserve donc dans son mou-
vement dans 'espace de configuration et la normalisation du ¥ a un
caracleére permanent.

Le principe de décomposition spectrale s’énonce ici comme pour un
scul corpuscule. Si le systeme est conservatif, onde W peut toujours
étre représentée par une superposition d’ondes monochromatiques et
Pintensité de chaque composante spectrale donne la probabilité pour
qu'une observalion permeltte d’assigner au systéme DP'énergie corres-
pondante.

En étudiant la représentation d’un train d’ondes W dans I'espace de
configuration par une intégrale de Fouricr et en comparant les distri-
butions de probabilité pour zx et p,,, on retrouverait les relations
d’incertitude qualitatives

(26) AxpApy > h en ordre de grandeur

et la relation précise entre les dispersions

h

(27) i, 2
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Dans la théorie précédente, nous supposons les corpuscules libres de
se mouvoir dans tout I'espace (systéme sans liaisons) et nous avons
employ¢ les coordonnées cartésiennes rectangulaires de ces corpuscules
pour repérer le systéme. Si I'on veut employer des coordonndes curvi-
lignes, ce qui est normal dans le cas des systémes a liaisons ou le
nombre des degrés de liberté est inférieur a 3N, il faut développer
un peu différemment les calculs qui précédent. Nous n’y insisterons
pas ici.

4. Systémes de corpuscules de méme nature physique. — L¢ cas d'un
systéme formé de corpuscules de méme nature physique présente des
particularités trés importantes que nous allons résuiner. Ce cas est en
particulier celui des atomes dans la mesare ou I'on peul considérer le
noyau comme un simple centre de forces entouré d’électrons.

Ce qui caraclérise un systéme contenant des corpuscules de méme
nature physique, c’est que son état ne doit étre nullement modifi¢ si
I'on y permute le role de deux quelconques de ces constituants iden-
tiques. Deux corpuscules de méme nature, deux électrons par exemple,
sont tellement semblables qu'il est tmpossible de leur autribuer une
individualité : ¢’est un des résullats essentiels de la Physique quantique
que d’avoir mis en lumiére cetle « indiscernabilité » des corpuscules de
méme nalure.

On doit donc admettre que toute grandeur observable, telle que

v,
doit étre insensible & une permulation quelconque du role des corpus-
cules. Ceci conduit a restreindre la forme possible des fonctions d’onde.
Comme les interactions des corpuscules sont toujours des fonctions
symétriques de leurs coordonnées, si l'on a trouvé une solution
W(Z1, Y1y 81y «vov Tiy Yis Biy ovvy Liy Yy Thy ooy Txy Yo 3y, £) de
I'équation des ondes, la fonction que 'on obtient en permulant le réle
des corpuscules i et &, soit W (xy, ¥y, 81y .-y Ziy Yy Bty o010 Liy YViy Biy oens
Zxn, ¥ny By, ), est'encore solution, ainsi que toule combinaison linéaire
des deux solutions ainsi obtenues de la forme

aW(@y, Y1, 81, -, Ziy Viy Biy oy Liy VEy 3ky - oy Ny YN, 8¥, 1)
+ W (&1, Y1, B1y ooy Lhy YRy Bhy ovey Liy Vis Biy <oy TNy ¥Ny BN, 1).

Si alors nous éerivons que le | W2 correspondant a celte combinaison
linéaire est insensible a la permutation des corpuscules ¢ ¢t &, nous
arrivons 4 la condition & = =+« ct 'on peut aussi vérifier que toute
grandeur physique observable construite 2 I'aide de ce W est également
inscnsible a cette permutation si b = -+ «.
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Pour ¢énoncer ces résultats sous une forme générale, introduisons les
définitions suivantes : une fonction d’onde sera dite '« symétrique » si,
quand on y intervertit le role de deux quelconques corpuscules de
méme nature, elle n’est pas modifiée; une fonction d’onde sera dite
«antisymétrique » si, lors d’une telle permulation, elle change de signe
" sans changer de valeur absolue. Nous pouvons alors énoncer le résultat
auquel nous sommes parvenus sous la forme suivante : La fonction
d’onde W d’un systeme qui contient des corpuscules de méme nature
dott étre soit symétrique, soit antisymétrique par rapport a
Uensemble de ces constituants.

On peut montrer qu’il existe toujours une infinité d’élats symétriques,
et une inflinit¢ d’états antisymétriques. On admet que, pour chaque
genre de particules, sculement 'une ou P'aulre de ces deux catégories
d’¢états est réalisable dans la naturc. Pour justifier cette hypothése, on
démontre, en s’appuyant toujours sur la symdtrie des interactions que,
si le systeme est initialement dans un état symétrique, il ne peut subir
de transitions que vers un aulre ¢lat symélrique et que, s'il est inilia-
lement dans un ¢état antisymétrique, il ne peut subir de transitions que
vers un aulre état anlisymélrique. Ainsi les étals symétriques d’une
part, les états anusyméiriques d'autre part forment des ensembles
fermés et ne peuvent se combiner qu’entre cux.

On peut donc tres bien admettre que, suivant la nature physique des
constituants de méme espece, une seule des deux catégories d’'états est
réalisée dans la nature. L’expcérience a confirmé cette hypothése en
montrant que les photons, les particules «, cerlains noyaux d’atome
sont des particules 4 états smtsymétriques tandis que les électrons, les
protons, les neutrons et certains aulres noyaux d’atomes sont des parti-
cules & élals antisymétriques.

Si l'on étudie les statistiques qui sont valables pour des ensembles de
particules de 'une ou de l'autre catégorie, on constate que ces slalis-
tiques different entre elles et qu’clles different toutes les deux de la
statistique classique de Bollzmann-Gibbs. Les particules a états symé-
triques suivent une slatistique dite « statistique de Bose-Einstein », ce
qui leur fait souvent donner le nom de bosons. Les particules 4 états
anlisymélriques suivent une statistique dite « statistique de Fermi-
Dirac », ce qui les fait souvent appeler des fermions. Les fermions
obéissent au principe de Pauli suivant lequel, dans une assemblée de
ces particules, deux constituants ne peuvent pas se trouver dans le
méme 6tal individuel. En effet, si nous avions deux constituants jouant
exactement le méme role dans un dlat antisymétrique du systéme, la
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permutation de ces deux constituants, qui doit changer le signe de la
fonction W, ne devrait aussi amener aucun changement. La fonction
d’onde, devant a la fois rester la méme et changer de signe, serait
nécessairement nulle, ce qui veut dire que I'état considéré ne peut pas
réellement exister. Notons d’ailleurs qu’une étude plus compléie montre

que, pour appliquer correctement le principe de Pauli, il faut tenir

compte du spin, ce que nous ne ferons pas ici.

5. Remarques sur la Mécanique ondulatoire des systémes de corpus-
cules. — La Mécanique ondulatoire des systemes de corpuscules telle
que nous venons de la développer a la suite de M. Schridinger est une
théorie essentiellement non relativiste parce qu’elle suppose que les
interactions peuvent étre représentées a chaque instant par des fonctions
de la distance actuelle des corpuscules alors que dans une théorie rela-
tiviste des interactions, celles-ci se propagent avec une vitesse finie, ce
qui introduit des retardements. Une Mécanique ondulatoire relativiste
des systémes ne peut s¢ développer suivant les lignes que nous avons
indiquées ct 'on n’a entrepris de la construire que récemment dans le
cadre de la théorie quantique des champs (travaux de Tomonaga,
Schwinger, Feynman, etc.). Bornons-nous a souligner le fait que la
théorie exposéc plus haut n’est valable qu’a 'approximation newtonienne.

L’idée de M. Schrodinger de définir I'onde W d’un systeme dans
I'espace de configuration m’avait au début beaucoup scandalisé parce
que, 'espace de configuration étant purement ficuf, cette conception
enléve a 'onde W toule réalité physique : pour moi, P'onde de la Méca-
nique ondulatoire devait évoluer dans I'espace physique a trois dimen-
sions. Les succeés nombreux et éclatants qui découlerent du point de
vuc de M. Schrédinger m’obligerent a reconnaitre sa valeur, mais je
restai longtemps persuadé que la propagation de 'onde W dans l'espace
de configuration était une manicre fictive de représenter des phénomenes
ondulatoires qui, en réalité, se déroulent dans 'espace. Nous verrons
dans la deuxi¢me partie de cet Ouvrage (chap. XII) comment, d¢s 1927,
javais cherché a développer cetie maniére de voir dans le cadre de la
théorie de la double solution.



CHAPITRE V.

. VUE GENERALE
SUR L'INTERPRETATION PROBABILISTE DE LA MECANIQUE ONDULATOIRE.

1. Idées générales. — Le développement de la Mécanique ondulatoire
a fortement auiré Pattention sur U'influence des opérations de mesure
sur notre connaissance de la rcalité physique de l'échelle alomique.
Dans ce domaine, on peut appeler « mesure » toute observation faite a
l'aide d’un dispositif macroscopique approprié qui permet d’attribuer
une cerlaine valeur a I'une des grandeurs caractérisant une particule ou
un systeéme de 'échelle atomique.

La Physique classique supposait implicitement que I'on pouvait, a
I'aide d’une technique expérimentale assez fine, diminuer indéfiniment
la perturbation qu’une opération de mesure peut exercer sur 'état de
choses existant avant la mesure de sorte qu’aux erreurs d’expérience
pres, chaque mesure traduirait exaclement la situalion existant avant el
également aprés la mesure. La Physique quaﬁtique s'est apergue que
Pexistence du quantum d’action ne permettait pas de diminuer indéfi-
niment la perturbation qu’une mesure produit dans la situation anté-
rieure : la perturbation minimum résiduclle, qui est insignifiante a
grande ¢chelle, ne peut plus étre négligée a petite échelle : c’est ce que
montrent des exemples de mesure comme celui qui est connu sous le nom
de « microscope d’Heisenberg ». La mesure d’une grandeur ne révele
donc pas en général une situation existant avant la mesure, mais une
situation fabriquée en quelque sorte par la mesure. En général, on ne
peut pas dire que la valeur mesurée de la grandeur existait déja avant la
mesure.

Il résulte d’ailleurs des analyses de Bohr et Heisenberg dont nous
avons déja parlé qu’aucune opération de mesure ne peut fournir simul-
tanément avec précision les valeurs de deux grandeurs canoniquement
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conjuguées : toute tentative de les mesurer simultanément laisse toujours
finalement subsister sur leurs valeurs des incertitudes Ag ct Ap telles
que la relation Ag Ap > £ soit satisfaite. Donc une opération de mesure,
méme effectuée avec toute la précision que permet lexistence du
quantum d’action (mesure maximale), laisse encore inconnue la valeur
d’au moins la moitié des grandeurs physiques caractérisant le corpuscule
ou le systtme étudié.

Meéme si 'on devait en revenir a une interprélation causale de la
Mé¢canique ondulatoire, il semble que toutes les idées auxquelles nous
venons d’arriver devraient subsister. Mais l'interprétation probabiliste
actuellement adoptée leur attribue une signification trés particuliere.
Selon elle, dans I'état de choses antéricur a la mesure, une grandeur
physique n’aurait pas en général une valeur bien déterminée, mais
seulement des valeurs possibles, ¢’est-a-dire des valeurs que 'opération
de mesure peut extraire de 1'état de choses antérieur. Cependant la
connaissance de la fonction W avant la mesure doit nous permettre de
dire quelles sont les valeurs possibles d’'une grandeur ct les probabilités
respectives de ces grandeurs possibles. La fonction W étant connue, les
grandeurs ont seulement des valeurs « potentielles » et tout ce que 'on
peut préciser, c’est une « répartition de probabilité » pour ces valeurs
potenticlles.

Il est possible d’illustrer ces affirmations en s’appuyant sur le principe
des interférences et sur celul de décomposition spectrale. Pour un train
d’ondes W limité, les coordonnées du corpuscule ont comme valeurs
possibles celles qui correspondent a tous les poinls intérieurs au train
d’ondes : le corpuscule serait présent « a I'état potentiel » en tout point
du train d’ondes. La répartition de probabilité des diverses posilions
possibles & 'intéricur du train d’ondes est donndée par la valeur corres-
pondante du |W|* & Plinstant considéré. De méme, si Fonde W est
formée par une superposition d’ondes planes monochromatiques de la
forme W :Zc/;llf,\-, le corpuscule est avant la mesure « al’état potentiel »

&
dans tous les étals de mouvement correspondant aux indices &, la
répartition de probabilité étant donnée par les | ¢ |*. Si 'on mesure soit
la position, soit la quantité de mouvement, on obtient une des valeurs
possibles, la probabilité @ priori du résultat étant fournie par la répar-
tition de probabilité correspondante.

Tel estle point de vue de I'interprétation probabiliste actuelle. 1l existe
un autre point de vue dont nous aurons & reparler. Il consiste a admettre
que les grandeurs attachées au corpuscule auraient avant la mesure des
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valeurs bien déterminées, d’ailleurs en général inconnues : la mesure
troublerait la situation en substituant aux valeurs initiales des grandeurs
mesurcées I'une ou 'autre des valeurs prévues par la théorie usuelle, et
cela avec la probabilité correspondante.

2. Analyse du role des opérations de mesure en Physique quantique.
— Quelle que soit Pinterprétation adoplée, il est intéressant de se faire
une image du role de la mesure en Physique quantique. Pour cela, nous
envisagerons le cas des photons et de 'onde lumincuse, la transposition
au cas des particules matériclles et de leurs ondes associées se faisant
ensuite immdédiatement.

Considérons une onde luminecuse quelconque : nous pouvons
« décomposer » cette onde en nous plagant a des points de vue diffé-
rents. Si Pon se place au point de vue des fréquences et des directions
de propagation, on peut décomposer I'onde « speciralement » en une
suile finie ou infinic d’ondes monochromatiques planes. Ceci s’effectue
analyliquement en développant la fonction d’onde en série ou en inté-
grale de Fourier. Si I'on envoie 'onde sur un appareil qui sépare les
composantes monochromatique, un réseau par exemple, on obtient
séparé¢ment chaque composante de Fourier avec son intensité propre.
Si maintenant on associe les photons a Ponde lumincuse, comme nous
savons qu'on doit le faire, on voit qu’on doit traduire 'action du réscau
en disant qu’il répartit les photons entre les composantes spectrales
proportionnellement 4 lintensité de chaque composante. Avant le
passage dans le réscau, chaque photon ne pouvait pas étre considéré
comme possédant une fréquence déterminée puisqu’il était 1ié & une
onde ol plusicurs fréquences figuraient, mais aprds le passage a travers
le réscau le photon a une fréquence bien déterminée ct la probabilité de
chaque valeur possible de la fréquence est proportionnelle a Pintensité
de la composante de Fourier correspondante dans U'onde incidente. Le
ré¢scau est done un dispositif de mesure des fréquences qui permet
d’auribuer au photon une fréquence bien déterminée et par suite

hv .
4 sa quantité de
C

d’attribuer une valeur v a son ¢énergie et une valeur
mouvement. On peut dire encore que la composition spectrale de 'onde
incidente représente les valeurs possibles, apres le passage dans le
réscau, de la fréquence du photon (c’est-a-dire de son énergic et de sa
quantité de mouvement) et leurs probabilités respectives de se mani-
fester apres Paction du réseau. Les valeurs possibles sent celles qui
figurent dans le développement de Fourier de 'onde incidente et les

probabilités sont les carrés des amplitudes spectrales correspondantes.

L. DE BROGLIE. 4
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Appliqué & un corpuscule matériel tel que l'électron, la méme corres-
pondance entre les valeurs de 'énergie et de la quantité de mouvement
d’une part, la décomposition spectrale de 'onde associée d’autre part
conduit au principe de décomposition spectrale précédemment exposé.

Le cas particulier que nous venons d’examiner fournit une image du
role de la mesure en Physique quantique qui parait pouvoir se généra-
liser pour toutes les grandeurs. L’appareil de mesure est finalement
toujours un dispositif qui permet de dissocier les diverses composantes
d’un certain développement de 'onde W' correspondant a la nature de
la grandeur mesurée. Il est essentiel de remarquer que la mesure ne
peut s’effectuer que si le dispositif permet de séparer dans [’espace les
diverses composantes de I'onde. Ainsi, dans le cas du réscau, si Pon
considere la région voisine de la sortie du réseau, ot tous les faisceaux
diffractés se superposent, la présence du photon dans cette région de
Iespace ne permettrait pas de lui attribuer une fréquence et une
direction de propagation. Mais le réseau ainsi que le faisceau incident
ont toujours des dimensions latérales finies : ¢’est pourquoi les faisceaux
diffractés finissent toujours par se séparer dans U'espace aprés la sortie
du réseau et le p'hotén, s’'il se trouve dans I'un des faiscecaux ainsi
séparés, doit alors posséder une fréquence et une direction de propa-
gation bien délerminges.

Dans I'analyse de tout processus de mesure, il est done essentiel de
faire entrer en ligne de compte les dimensions finies non seulement du
dispositif de mesure, mais des trains d’ondes qui interviennent dans le
phénomene. Toute mesure s’opére finalement par la localisation d’un
corpuscule dans un faisceau que le dispositif de mesure a extrait de
Ponde initiale.

3. Formalisme général de I'interprétation probabiliste. — En résumé,
nous sommes parvenus aux idées générales suivantes. Tout dispositif
permettant de mesurer exactement 'une des grandeurs qui caractérisent
un corpuscule oblige ce corpuscule & se révéler dans un Gtat ot cette
grandeur a une valeur bien déterminée, mais antéricurement a la mesure
la Mécanique ondulatoire, du moins si elle se borne a Iemploir des
ondes W, ne permet pas d'attribuer 4 la grandeur une valeur bien
définie : elle peut sculement lui attribuer des valeurs possibles affectées
de probabilités. Pour trouver ces valeurs possibles et ces probabilités,
on doit effectuer une certaine décomposition de 'onde W initialement
associée au corpuscule, décomposition déterminée par la nature de la
grandeur & mesurer et correspondant au dispositif de mesure : dans
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cette décomposition, chagque composante correspond a I'une des valeurs
possibles el son intensité (carré du module de Vamplitude) donne la
probabilit¢ de cette valeur possible. Aprés la mesure, la grandeur
mesurée a pour le corpuscule une valeur précise, mais il n’en est pas en
général de méme pour une aulre grandeur qui exige pour sa mesurc un
autre dispositf. .

Ces circonslances ont pu éire représentées par un formalisme élégant
et préeis dont je donnerai seulement ici une vue d’ensemble trés
succincte.

A chaque grandeur physique, ce formalisme fait correspondre un
opérateur lindaire qui est hermitique (ou selfadjoint). Or, un tel opéra-
teur A permet de définir (a laide de Y'équation Ag = a9) unc série de

nombres réels &y, ..., @;, ... quisont ses valeurs propres et une série
de fonctioms gy, ..., 9, ... finies, uniformes et continues dans le

domaine D des variables considérées qui sont les fonctions propres
correspondanl respectivement aux valeurs propres. I1 peut d’ailleurs
arriver qu’a une méme valeur propre, correspondent plusieurs fonctions
propres linéairement indépendantes : ce sont les cas de « dégénd-
rescence » sur lesquelles je n’insiste pas.

Sous réserve de quelques précautions a prendre dans les cas de
dégéndérescence, on peut dire que les fonctions propres ¢; forment une
suile de fonclions orthogonales, ¢’est-a-dire que 'on a

() [eigids=0 (i)
D

Définies par un opérateur linéaire, les ¢; ne sont déterminées qu’a
une constante multiplicative complexe prés. On peut done leur imposer
la condition d’étre « normées », c¢’est-a-dire de vérifier la relation

(2) '[|;jI?(Z1=.

Il ne reste plus alors dans Pexpression des ¢; qu'un facteur multipli-
catif arbiiraire e de module unité.

Les fonctions propres forment aussi une suite « compléte » qui nous
permet de développer une fonction des variables du domaipe D telle que
le ¥ sous la forme

(3) ‘17:20:'%

i

les ¢; éltant des coefficients constants qui généralisent les coefticients
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classiques de Fourier et qui sont donnés par
(4 c,-:fq:}‘th.
D

De cette maniere, on fait correspondre a toute grandeur ou, si 'on
veut, a tout dispositif permettant la mesure de cette grandeur, une
certaine décomposition de 'onde W.

On admet alors comme principes fondamentaux correspondant aux
idées générales développées plus haut que :

1° Toute mesure de la grandeur fournit nécessairement une des
valeurs propres oy.

a® La probabilité pour qu'une mesure fournisse la valeur propre a,
est mesurée par le carré du module | ¢z|? du coefficient correspondant
4 o) dans le développement du W suivant les ¢;.

Dans certains cas sur lesquels je n’insiste pas, ces ¢énoncés ont besoin
d’élre convenablement inlerprétés.

On démontre qu’appliqués aux cas de la mesure d'une coordonnée
ou d’une composante de quantit¢ de mouvement, ces ¢noncés permettent
de retrouver le principe des interférences et le principes de décompo-
sition spectrale.

Un point tres important de ce formalisme est le suivant. On montre
que la condition nécessaire et suffisante pour que deux opérateurs A et B
correspondant & des grandeurs mesurables différentes puissent admelttre
le méme systéme de fonctions propres ¢; est qu’ils « commutent »,
c’est-a-dire qu’ils fournissent le méme résultat quand on les applique a
une fonction du domaine D soit dans un certain ordre, soit dans U'ordre
inverse. On peut alors éerive

(5) AB - BA

et on dit que le commultateur AB — BA des deux opérateurs est nul.
S'il en est ainsi, le développement (3) sera le méme pour les deux
grandeurs A et B et un méme dispositif pourra mesurer i la fois A et B,
c’est-a-dire qu’il pourra fournir a la fois les valeurs o; et 3; des deux
grandeurs qui correspondent au méme g; avec la méme probabilité

9

ei]?.
Mais, si les opérateurs A et B ne commutent pas, les deux dévelop-

" . N . .
pements ¥ :Zcicp,- et W :Zd/fy‘,\- suivant les fonctions propres de A
{ %

et de B ne pourront pas coincider et alors les dispositifs de mesure des
grandeurs A ct B scront différents. Si un dispositif est, par exemple,
adapté au premier développement, il permettra une mesure exacte de A
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et pourra fournir pour A unc des valeurs précises «; avec la probabi-
lité | ¢;|?, mais cetle mesure de A étant effectuée, comme ¢; ne coincide
avec aucun des yy, le développement suivant les y, du W apres la mesure
comportera plusicurs termes non nuls. Ainsi toute mesure laissera sub-
sister une certaine incertitude sur 'une au moins des grandeurs A et B.

C’est ce qui se produit notamment pour les grandeurs « canonique-
ment conjuguées » lelles que x et p, auxquelles correspondent les
opérateurs

h 0

(6) A=z B=—— =

. h . .
dont le commutatcur AB —BA | égal a o n’est pas nul. Ceci explique

pourquoi toute opération de mesure laisse subsister sur ees grandeurs
des incertitudes Az et Ap,, telles que Az Ap, > h.

Dans ce formalisme, on désigne par valeur moyenne A ou (A de la
grandcur A Pespérance mathématique de la valeur de A avant la mesure,
c’est-a-dire

. ~
) A=CA>=DNlaly
et 'on démontre aisément que 'on a

(8) K:f‘l)“*A‘If‘d-c.
D

Je laisserat de colé ict des questions importantes telles que celle des
intégrales premidres ct je me contenterai de rappeler que I'on est amené
a faire un grand usage des « matrices » engendrées par un opérateur A
dans le systeme des fonctions propres W; de I'opérateur hamiltonien.

Les ¢léments a; de la matrice A sont définies par

(9) ag= / Wr AW de
“D

et obéissent & la régle de multiplication non commutative

(10) (ab)ik:Za,-,-b,-k.
7
Tout le formalisme qui vient d’étre résumé s’étend d’ailleurs au cas
des systemes de corpuscules en remplacant Pespace ordinaire par
I'espace de configuration et le corpuscule par le point représentatif du
systeme dans l'espace de configuration.
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DIVERS ASPECTS DE L'INTERPRETATION PROBABILISTE
DE LA MECANIQUE ONDULATOIRE.

1. Notion de superposition. — Nous venons de voir que chaque
fonction ¢; d’un opérateur A correspondant a une grandeur mesurable
(« observable » au scns de Dirac) déerit un état du systéme ou la
grandeur A a la valeur précise «;. Mais en général le W du systéme ne se

réduit pas a un seul g; @ il est égal & une somme de ¢; de la forme Zc;cp,-.
i

On dit alors que le W est une « superposition » de ¢; : cette expression

vient du principe de superposition des pelits mouvements, bien connue

dans la théorie classique des vibrations.

Mais ici la superposition n’a pas du toul le méme sens que dans les
théories classiques. Il ne s’agit plus de la vibration d’un milieu qui
s’obtiendrait en ajoutant quelques vibrations ¢lémentaires, il s’agit de
Paffirmation suivante : 8¢ la fonction d’onde W d’un corpuscule (ou

d’un systeme) est de la forme W :Zci@[ et si U'on cherche a aitri-
i

buer & ce corpuscule un certain état ¢, par une mesure de la gran-
deur A, il y a une probabdité égale a |c|* d’étre effectivement
conduit par la mesure a lui attribuer cet état. Donc, avant la mesure,
le corpuscule (oule systeme) se trouvait potentiellement dans plusieurs
états ¢;, chacun possédant une probabilit¢ non nulle |¢;|*. Clest 1a,
du moins, ce que dit I'interprétation probabiliste orthodoxe : or, c’est
la une idée entitrement nouvelle, tout a fait ¢trangere aux concep-
tions classiques qui considerent I'état d’un systéme comme toujours
caractérisé par des valeurs bien définies de toutes les grandeurs
du systtme. Cete notion nouvelle de superposition est l'unc des
plus importantes qu’ait introduites le développement de la nouvelle
Mécanique.
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Dans la théorie classique des vibrations, quand on considére une

. . . em'[v,-t - —]
vibration représeniée par une expression de la forme zci a;e A
i
cela signifie que la grandeur de la vibration est donnée en chaque point et
a chaque instant par I'addition d’ondes planes monochromatiques dont
les contributions sont mesurées par les valeurs des ¢;. En Mécanique

ondulatoire, la condition /] W [*dr =1 que 'on impose au ¥ pour que
~ D

| W |* soit en wvaleur absolue la probabilité de localisation ne permet
plus de regarder le W comme ayant une amplitude physiquement déter-
minée : le ¥ ne peut donc plus représenter une vibration ayant le sens
objectif classique.

Précisons ceci par un exemple. En Physique classique, deux mouve-

vi—Z

. ‘11[1'( ) ) ‘zm(vt—f
ments ondulatoires W'y — ¢, e 4 et W= cqe A

) de mémes
fréquence et direction de propagation donnent par leur superposition
un mouvement ondulatoire Wy - W'y d’amplitude ¢, + ¢2. Au contraire,
en Mécanique ondulatoire, les élats associés a des ondes Wy et W ayant
les expressions ci-dessus doivent, si on les considére 1solément, satisfaire

.. . I .
aux conditions de normalisation |¢;|==|cy|= ﬁ, ou { est Pétendue

du domaine D. Si 'on superpose ces états, 'onde W devient W, - Wy,

. . . . . I .
mais avec la condilion de normalisation | ¢y + ca| = = de sorte qu’il
1%

n’y a pas du tout simple addition des amplitudes. Cet exemple montre
bien I'abime qui sépare les notions de fonctions d’onde en Physique
classique et en Mécanique ondulatoire usuelle.

Il est & peine besoin de remarquer que, si la superposition au sens
précisé plus haut est valable pour les fonctions W, ¢’est parce que ces
fonctions sont solutions d’une équation de propagation lnéaire. La
superposilion ¢tant une condition essenticlle pour que I'interprétation
probabiliste de 'onde W soit possible, il faut absolument admetire que
l'onde W obéit & une équation de propagation linéaire. Mais nous aurons
a nous demander si, c¢n introduisant un autre type d’onde obéissant a
une équation de propagation non linéaire, nous ne pourrions pas
dépasser le point de vue purement probabiliste et atteindre ainsi une
couche plus profonde de la réalité physique.

2. Equivalence des représentations. Théorie des transformations. —
Les idées générales admises par 'interprétation probabiliste conduisent
naturellement 4 admettre I'équivalence de tous les développements




56 CHAPITRE VI.

du W qui correspondent, peut-on dire, & diverses hypotheses, toutes
¢galement admissibles, sur la mesure que P'on se propose d’effectuer.

Considérons par exemple les développements du W correspondant
respectivement a une mesure de position dans Pespace et 4 une mesure
de quantité de mouvemenlt, mesures qui, nous le savons, s’excluent
I'une I'autre puisque aucun dispositif ne peut nous donner a la fois avec
précision la localisation et I'état de mouvement. Pour la localisation en
un point ro (e, Yo, %o) de I'espace, on démontre que la fonction propre
est la fonction singuli¢re de Dirac

B(r — 1) = d(x — £0)3(¥ — yu) 3(5 — o)

et, comme l'on peut écrire le ¥ sous la forme
(1) W(z, ¥, 3, t) :f\P’(zo, Yoy Zo, £)8(xr — To) day dy,, dz,.

on voit que le coefficient de la fonction propre o(r—r,) est
W{(xo, ¥o ,%0, L), ce qui est en accord avec le principe de localisation
puisque la probabilité de localisation au ‘poinl Py au lemps ¢ est
| W (20, ¥o, z0, t) |*. Pour la quantité de mouvement P, les fonctions
propres sont les ondes planes monochromatiques @ et k1) ou I'on a
posé
2T 27T

) k=""W Exs
(2) he k h P
et ot & est une fonclion connue de K. Le W se développe alors sous la
forme

(3) [ :fc<k)ak eikt—k.0) gk (dk = dk, dk, dk.)

el la probabilité pour qu'une mesure de la quantilé de mouvement
fournisse la valeur Kk est donnée par |¢(k) .
L’¢quivalence apparait done compléte entre les développements (1)

et (3) et tous les autres développements du type Ec;cp; que on pourrait
i

avoir a envisager pour le W en considérant d’autres grandeurs physiques.
Celle équivalence sert de base & une tres élégante théorie mathématique
due @ M. Dirac et connue sous le nom de « théorie des transformations ».

Sans développer cetle théorie, réfléchissons a son idée de base en
nous restreignant au cas de la localisation et de la quantité de mouve-
ment. Elle affirme que, dans I'état représenté par le W considérd, le
corpuscule est potenticllement présenl en tout point xo, Yo, Zo de I'espace
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avec la probabilité

W20, ¥o, Zo, ) |* et quil posséde aussi potentielle-
ment toutes les quantités de mouvement kK avec les probabilités | ¢ (k) |2
On peut done dire que lalocalisation et la quantité de mouvement existent
I'une et Pautre, du moins d’une mani¢re potentielle, avant Popération
de mesure que va préciser la valeur de I'une de ces caractéristiques du
corpuscule.

Cette équivalence suggérée par la symétrie des développements (1)
et (3) et admise par la théorie des transformations s'impose-t-elle abso-
lument? A mon avis elle ne s'impose pas et ¢’est 1a un point qui aura
dans la suite de notre exposé une grande importance. En fait, ce que
I'on enregistre toujours dans une observation faite sur un corpuscule,
c’est sa position. Quand par un dispositif, genre prisme ou réseau
oplique, on sépare les faisceaux correspondant a des valeurs différentes
de k, c’est en constatant par une localisation la présence du corpuscule
dans I'un de ces faisccaux qu’on parvient a lui attribuer une quantité de
mouvement. D’ailleurs, I'action d’'un corpuscule en un point, par
exemple 'impression locale d’une plaque photographique par I'impact
d’un photon ou d’un électron est un phénomene qui n’exige pour son
observation aucun dispositif particulier (aulre que la présence purcment
passive de la plaque photographique). Il n’en est pas de méme pour Ia
quantité de mouvement dont la mesure exige un dispositif agissant sur
le corpuscule.

Ces considérations m’avaient porlé a croire, il y a 25 ans, que la
probabilité | W |2 relative a la localisation avait, contrairement a l'idée
de base de la théorie des transformations, une signification beaucoup

? relative a la quantité de mouve-

plus directe que la probabilité | e (k)

ment. La premicre serait cffectivement la probabilité pour que le corpus-
cule soit en un point de Pespace dans I'état inital décrit par le W. La
scconde, au conlraire, n’existerait qu'aprés opération de mesure de la
quantité de mouvement : la ‘mesure effectuée et le résullat en 6lant
encore ignoré, la probabilité pour que la valeur trouvée soit k serait
|c(k)|2. Ce point de vue est celui de I'interprétation causale que nous
développerons dans la seconde partie de cet Ouvrage.

Celle opposition de points de vue est apparentée a une conlroverse
qui a été célebre dans Phistoire de 'Optique classique. Certains auteurs
soulenaient que, quand un train d'ondes non monochromatique
traverse un appareil du type prisme ou réseau, les fréquences observées
apres le passage dans le dispositif ¢taient créées par I'action de celui-ci :
d’autres auteurs disaient au contraire que les fréquences existaient déja
dans le train d’ondes primitif. Au point de vue mathéma;ique, ces

e — |

T ————————

i
:
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derniers avaient raison puisque la décomposition de IFFourier de Vonde
incidente est possible analytiquement et fait apparaitre les fréquences
séparées par le prisme. Mais du point de vue physique, dans le cadre
des idées classiques, il ne me parait pas douteux que la premicre
opinion était exacte. En effet, avec les conceptions classiques, la
fonction d’onde représente une vibration objective : c’est la fonction,
généralement trés complexe, du temps représentant en chaque point
cette vibration objective qui a un sens physique et non la décomposition
de Fourier qui est purement mathématique. Autrement dit, c’est
Pamplitude résultante de la vibration qui a une signification physique
directe et non les composantes de Fourier : celles-ci ne prennent un
sens physique que si on les isole en décomposant la vibration par un
dispositif d’analyse harmonique (analogue & un dispositif de mesure de
la quantité de mouvement dans la Physique quantique). C’est ce point
de vue, certainement exact en Physique classique, qui est celui de
I'interprétation causale que nous exposerons.

Je citerai encore un argument qui, en Physique classique, pouvait
servir pour rejeler I'idée que les fréquences préexistent 4 Iaction du
prisme. Considérons un train d’ondes de dimensions limitées qui vient
frapper le prisme : on peut le représenter par une superposition d’ondes
planes monochromatiques qui se détruisent par interférences ¢n dehors
des limites du train d’ondes. Si ces ondes planes avaient unc existence
réelle dans la lumiere incidente, comme une onde plane n’a pas de
limites dans Tespace et dans le temps, les faisccaux monochromatiques
qui sortent du prisme devraient exister avant méme que le train d’ondes
incident n’ait atteint le prisme, ce qui est physiquement absurde. Le
train d’ondes ne peut interagir avec le prisme et se diviser, par suite de
cette interaction, en fractions sensiblement monochromaliques que
quand il a atteint le prisme. Ceci montre bien que, dans le train d’ondes
incident, scule la fonction d’onde globale a une signification physique
et que la décomposition de Fourier n’est qu’une simple vue de Vesprit
tant que le prisme n’en a pas sépar¢ les composantes.

Tirées de conceptions classiques, les considérations précédentes nc
prouvent sans doute pas que I'idée d’équivalence absolue de tous les
développements de la fonction ¥ postulée par la théorie des transfor-
malions soit inexacte : elles prouvent cependant que cette équivalence
ne s’impose pas d'une facon irrésistible.

3. Mécanique ondulatoire et Mécanique quantique. — Dans la théorie
des représentations, on considére comme équivalentes les équations
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d’¢volution des cocfficients ¢, pour n’importe quelle grandeur physique.
Ces équations d’¢volution, dites équations de variations des constantes
de Dirac, ont la forme générale

dei X
1 @k _ 2Rt Z oo
(4) dt h Haje),
1

ot I;; est P'élément kj de la matrice correspondant a I'énergie. Cepen-
dant, quand on considere la grandeur « position dans I'espace », c’est-
a-dire quand on adopte ce que la théorie des représentations appelle
« la représentation ¢ », on constate que I’équation (4) n’est pas autre
chose que I'équation de 'onde W. En effet, on doit alors poser

(5) WM, t):fB(M—P)w’(P, £y ap

et 'équation (4) nous donne

(6) %W(P, z):%fﬂpqu, t) dQ.
Or
(7) Hpg = fB(MwP)IIM 3(M—Q)dM = Hp3(P — Q),

H, ¢tant la valeur de l'opérateur hamiltonien au point P. Il vient donc

(8) )—/f—, /;)[ (P, z):fﬂ,,ur(q, £)8(P — Q)dQ = HpW(P, 1),
ce qui n’est pas autre chose que I'équation de propagation de I'onde W.

Donc, dans le cas de la représentation g, 'équation (4) prend la
forme d’une équation de propagation comportant des dérivées partielles
par rapport aux coordonnées d’espace. La représentation ¢ a donc cect
de particulier qu’elle met en lumiére un aspect ondulatoire liée & une
équation de propagation. Si 'on considere ce fait comme essentiel et si
Von attache une importance particuliére a cette propagation d’ondes, on
sera amené a conserver de préférence le nom suggestif de « Mécanique
ondulatoire ». St au conlraire on veut, avec 'interprétation actuellement
orthodoxe, considérer toutes les représentations comme équivalentes et
se¢ borner ainsi a un formalisme abstrait sans images physiques, on
préférera le nom de « Mécanique quantique ». G'est pourquoi le choix
entre ces deux noms de la Mécanique nouvelle a plus d’importance
qu’on ne le croit souvent.

Le premier point de vue a certainement ma préférence. Voici, par
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exemple, une des raisons qui me font penser que la représentation ¢ a
plus de sens physique que les autres. Considérons le probleme de la
délermination des ondes stationnaires d'un électron dans une enceinte
parall¢lipipédique, Ce probleéme conduit, on le sait, a ne considérer
comme possibles que certaines valeurs de p définissant un certain
réseau régulier de points « permis » dans U'espace p., py, p:. Or, le
probléme ne peut étre posé¢ clairement que dans Pespace physique
ordinaire, car c’est seulement dans cet espace que sont définies les
conditions aux limites : c’est parce que la propagation de Pélément
ondulatoire est limitée par la présence d’obstacles, qui sont ici les parois
de I'enceinte, que la quantification apparait liée a I'existence d’ondes
stationnaires. Ceci parait encore bien donner un role privilégié a la
représentation ¢, ¢’est-a-dire en somme a 'espace physique.

4. Notion de complémentarité (Bohr). — Précisons d’abord un point
important, Dans les traités élémentaires d’Oplique, on donne généra-
lement le nom d’ondes aux ondes planes monochromatiques. Cela vient
de ce que, dans la pratique, les trains d’ondes lumincux usuels sont
assez longs, bien que limités, pour que 'on puisse dans presque loute
leur extension les assimiler 4 une onde monochromatique plane. Une
« onde » ainsi définie a donc une fréquence, une longueur d’onde, une
direction de propagation bien déterminées : la Mécanique ondulatoire
lui fait correspondre un vecleur quantité de mouvement P qui pointe
dans la direction du mouvement et est reli¢ a la longueur d’onde par la

. h . .
relation A = o Le vecteur P suffit donc a définir Ponde considérée.

Cette onde plane monochromatique est homogéne ¢l ne permet
aucune localisation du corpuscule : elle est P'idéalisation de Pidée de
mouvement sans aucune localisation spatiolemporelle. Au contraire les
coordonnées z, y, z du corpuscule correspondent a I'idée d’une locali-
salion spatiale & un instant ¢. Les variables canoniquement conju-
gudes pu, py, ps etz, ¥, 5 correspondent donc respectivement a Paspect
ondulatoire du corpuscule qui est purement dynamique sans localisation
et a aspect corpusculaire avec localisation spatiotemporelle qui, en un
certain sens, exclut 'idée de mouvement. Si alors on se reporte aux
inégalités d’Heisenberg, on voit qu’un corpuscule de I'échelle atomique
n’est représenté par une onde plane ou par un grain localisé que dans
des cas extrémes. En général, aspect onde plane et Paspect grain loca-
lisé existent tous deux, mais sont tous deux un peu flous, 'onde W
associée étant formée par une superposition d’un certain nombres
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d’ondes planes monochromatiques et la localisalion restant incertaine
dans une région plus ou moins étendue de Pespace.

Les relations d’incertitude nous apprennent que, plus une observation
nous permet de préciser I'un des aspects du corpuscule, plus 'autre
s'estompe. Cecei permet d’expliquer comment la Mécanique ondulatoire
peut utiliser simultanément les deux conceptions, en apparence contra-
dictoires, d’onde planc homogeéne indéfiniment étendue et de grain
localisé. Clest ce que ces deux images si différenles ne peuvent jamais
enlrer en contradiction flagrante, chacune d’elles tendant a s’effacer
quand Vautre s’affirme. M. Bohr a exprim¢ celte circonstance en disant
que londe plane et le corpuscule localisé sont des « aspects complé-
mentaires » de la réalité. Ghaque fois que le comportement de Dentité
« corpuscule » peut se représenter par la propagation d’une onde plane
monochromatique, son aspect granulaire disparait : chaque fois que ce
comporlementl peut se représenter par le déplacement d’un grain bien
localis¢ dans Pespace, son aspect ondulatoire disparait.

[’idée de complémentarité, bien qu'nn peu fuyante, est intéressante :
on a cherché i en faire des applications dans divers domaines, ce qui
n’est pas toujours sans danger. Mais de ce que les procédés de mesure
ne peavent pas nous permelire d’attribuer simultanément a un corpuscule
une position et un élat de mouvement, est-on nécessairement obligé de
conclure que, dans la réalit¢, le corpuscule n'ait pas de position, ni de
vitesse ?

5. La réduction du paquet de probabilité par la mesure. — Dans
I'interprélation de la Mécanique ondulatoire, la mesure joue un role
essenticl. G’est elle qui, en nous apportant des informations nouvelles,
change Pétat de nos connaissances sur le corpuscule ou le systeme
étudié et modific brusquement la forme de la fonction W qui représente
ces connaissances. Si, par exemple, la mesure est une mesure de
position plus ou moins précise, le train d’ondes représentant le ¥ avant
la mesure sera « réduit » en un train d’ondes moins étendu, peut-étre
presque poncluel si la mesure est lrés précise @ de la, le nom de
« réduction du paquet de probabilit¢ » donné par M. Heisenberg a cette
brusque modification du W. Si, au contraire, la mesure étlait unce déter-
mination des composantes de quantité de mouvement, ¢’est dans I'espace
des impulsions, et non dans celui des coordonnées, qu’il y aurait une
brusque réduction du paquet d’ondes.

La réduction du train d’ondes donne lieu a une situation nouvelle qui
était imprévisible a 'avance, puisque scules les probabilités des diverses
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possibilités pouvaient étre calculées avant la mesure. Aprds une expeé-
rience « maximale », ¢’est-d-dire qui fournit le maximum de connais-
sance compatibles, avec la théorie des grandeurs non commutantes et les
relations d’incertitude, nous pouvons construire une fonction d'onde
représcntant nos connaissances aprds la mesure et suivre ensuile son
évolution au cours du temps & Paide de équation des ondes jusqu’a ce
que nous connaissions le résultat de nouvelles mesures modifianl a
nouveau I'¢tat de nos connaissances el interrompant brusquement I'évo-
lution réguliere de 'onde W. L'évolution réguliere de Ponde W est
réglée par 'équation des ondes entre deux mesures : elle est entierement
déterminée par la forme initiale du ¥ puisque 'équation de propagation
est lindaire en ¢. Il y a donc déterminisme de I'évolution des probabilités
entre deux mesures, mais non pas déterminisme de la suite des faits
observables.

M. Bohr a insisté sur le fait que la mesure a pour effet d’effacer
completement les relations de phase entre les composantes du W. En
effet, si la grandeur A mesurée correspond aux fonctions propres 9; ¢t

s1 avant la mesure on avait W‘:Zc[cp,-, la mesure 1sole une des fonc-
:

tions o, de sorte qu'aprds la mesure on a W == g, mais elle ne nous

fournit aucune indication sur les relations de phase entre les ¢;. Si l'on

recommencait la méme mesure sur une infinité de corpuscules ayant

tous la méme fonction W :Z ¢;o; avant la mesure, la répartition statis-
i

tique des. valeurs obtenues donnerait les |¢;

)

* mais ne donnerait

toujours pas les phases des ¢;.

L’effacement des phases par la mesure a pour eftfet que lacte de
mesure constitue une coupure infranchissable dans I'évolution du W
aussi bien dans le sens passé-avenir que dans le sens avenir-passé. Or
les différences de phase entre les composantes dans le développement
du W ont une importance essentielle : tout renscignement sur la
fonction ¥ qui ne comporte pas la connaissance des phases est radica-
lement incompléte. Cette importance des phases est bien mise en
évidence par l'étude, st importante en Mécanique ondulatoire, de
Pinterférence des probabilités.

6. L’interférence des probabilités. — Considérons deux grandeurs
observables (que nous supposerons non commutantes) A et B. Les
valeurs et fonctions propres de la premiere sont «; et ¢; celles de la
seconde 3; et y;. Le systeme des o; et celut des y; ne peuvent pas
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coincider puisque les opérateurs A et B ne commutent pas. Supposons

que I'état initial soit représenté par la fonction d’onde ‘IV:ZCMPI'-

1

Comme les ¢ forment un systeéme complet, on peut exprimer chaque o;
sous la forme

(9) ?122&%’/_1«
-

les s;; ¢tant les éléments d’une matrice unitaire S. On a done
. RN X
(10) | :Zciql-:z‘cis“.xk.
i ik

Si1, sur le systéme dans I'état W, on mesure la grandeur A, on trouve
I'une des valeurs propres a;, la probabilité de «; étant |¢;|*. Apres la
mesure de A, le systéme se trouvera dans I'élat ¢; et, dans cet état, une
mesure de B conduit a la valeur f; avec la probabilité

sir |*. La proba-
bilit¢ totale de trouver pour B la valeur 3, en effectuant d’abord la mesure
. TG 0 ) ) L2 . 2
de A, puis celle de B, ¢st done Z[c,l | sik .
i
Mais supposons maintenanl que nous ayons cllectué la mesure de B
directement dans 1'état initial W. Alors, d’aprés (10), la probabilite de

~ 2 . o,
trouver pour B la valeur 3, est Zcis;/..l : elle est entizrement différente

i

de la précédente parce qu’elle dépend des phases relatives des ¢; alors
P I q P p
que la précédente n'en dépend pas. Le fait que la probabilité de la

— 9
ZCI'S,'/_-

i

valeur 8, de B mesurée directement dans 1'état iniual soit et

12 ] e, |2 AT O ¢ k3 " v _
non Z‘C" | sir|? peut, au premier abord, paraitre contraire au théo
i

réme des probabilités composées, mais en réalité, il n’en est rien : la

probabilité E | ¢i | [$ix|? est bien celle que Pon doit avoir quand on fait

d’abord la mesure de A, puis celle de B, puisqu’elle est égale a la somme
des produits de la probabilité pour oblenir d’abord une valeur «; de A
par la probabilité d’obtenir 8, pour B quand on sait gu’on a obtenu «;
pour A. Le théoréme des probabilités composées est donc sauf, mais 1l

. sy al
n’y a aucune raison pour que la probabilité Z

i |* | sip |? soit égale &

&
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celle d’obtenir directement la valeur 34 de B par une mesure de B dans
Pélat initial.

Ce qui jette un peu de confusion dans celle question, c¢’est qu’en
statistique mathématique, on admet que la mesure d’une grandeur
aléatoire (toujours de nature macroscopique en statistique usuelle),
mesure que les statisliciens nommentl généralement « épreuave », ne
modifie aucunement les probabilités relatives aux autres grandeurs
aléatoires. Ainsi, si I'on veut établir des stalistiques sur Ja taille et le
tour de poitrine d'un lot de conscrits, on mesure ces deux grandeurs
sur tous les conscrits el Pon admet que la mesure de la taille ne peut
pas modifier le tour de poitrine ou inversement. Si z désigne la taille
et y le tour de poilrine, on aura

(11) Prob(x;) :Z Prob (y:) Py, (x4 ),

ou P, (z;) est la probabilité de la taille 2, pour un conscrit qui a le tour
de poitrine y; el il n’y a pas lieu de préciser st la mesure de z a 616 faite
avant celle de y ou 1nversement.

Mais ces hypotheses, certainement valables dans le domaine macros-
copique, ne le sont pas nécessairement & I'échelle microphysique. A
celte dernitre échelle, I'existence du quantum d’action fait que Ia
mesure d'une grandeur aléatoire modific la probabilité pour les autres
grandeurs. La probabilit¢ de B n’est pas la méme avant ct aprés la
mesure de A. Comme nous I'avons vu, la probabilité d’une valeur de B,
si Pon commence par mesurer A, est correctement donnée par le théo-
réme des probabilités composées, mais elle n’est pas égale de la méme
valeur de B mesurée directement dans 1'élat initial.

J’al insisté sur ces circonslances dans un article de la Revue scienti-
Sigue (1948, p. 259) en donnant des exemples faniliers et j'ai précisé
en quoi le schéma des probabilités en Mécanique ondulatoire différe du
schéma usucl des statisticiens. Dans ce schéma usuel, on définit les
densités de probabilités py(2) et py(y) relatives a deux variables aléa-
toires X et Y [py(2) d2 estla probabilit¢ d’une valeur de X comprise
entre x et x + dz et définition analogue pour py(y)]. On admet aussi
I'existence d’une densité de probabilit¢ p(2, y) correspondant a la
possibilité d’obtenir dans une méme épreuve des valeurs z et y pour X
et Y. On définit aussi la probabilité de Y liée par X, o (z, y), qui
correspond a la probabilité d’obtenir la valeur y pour Y quand on sait
que X a la valeur z et 'on définit de la méme fagon la probabilité pf’
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(2, y) de X liée par Y. Entre ces cinq grandeurs, on a les relations

s ex () =j Pl y)dy, px(y) = f.ﬁ(a’; y)yde;
(x2) e
( P(x‘v)(ﬁlli." .’(‘Ly.}/).

X |
MO, vy = ,
ey (2 ) ()’

les intégrales devant éire remplacées par des sommes dans le cas des
8 P
probabilités discontinues. On en tire

(13) )= [ W) a A w)=[ Ve 1) ele)de

Or, en Mécanique quantique, sil’on consideére deux grandeurs X et Y
canoniquement conjuguées, par exemple X =z et Y = p., on peul
définir py () et py(y), mais on ne peut plus définir p (2, ¥) puisqu’il
est impossible d’oblenir simultanément la valeur des grandeurs canoni-
quement conjugudes X ct Y. Les grandeurs ¢y (2, y) et p'¥ (2, »)
peuvent encore ¢tre définies, mais on n’a plus les relations (13) puis-
qu’elles résnltaient dans le schéma classique des relations (12) qui ici
n’ont plus de sens, p(x, ¥) n’existant plus.

Si donc on admet que, dans un état W, toutes les grandeurs ont des
distributions de probabilités définies pour les résultats possibles de
mesures effectuces sur le systeme dans cet état, il est impossible de
mainlenir le schéma statistique classique avec un g(z, y) et les rela-
tions (12) et (13). Toute tentative faite dans ce sens est condamnée a
un échec dans le cadre de Pinterprétation usuelle de la Mécanique
ondulatoire.

Mais est-on obligé d’admettre que toutes les distributions de probabi-
lités définies par Pinterprétation slatistique usuelle de la Mécanique
ondulatoire existent déja dans I'état U initial? Comme nous 'avons vu,
il ne semble pas qu'il en soit ainsi. On peut wés bien admetire que la
probabilité de présence | W |* existe dans I’état initial pour la localisation
tandis que la probabilité

¢(k)|* d’une valeur de la quantité de mou-
vemenl n’existe qu’aprés Uexécution de la mesure quand on ne connait
pas encore le résultat de cetie mesure. Dans I'état initial U7, la quantité de
mouvement pourrait trés bien avoir une valeur précise (non détermi-
nable par une mesure qui aurait pour conséquence de la modifier) et la
probabilité de cette valeur, différente de |¢ (k) [2, permettrait de rétablir
le schéma statistique usuel pour I'élat initial. Nous verrons que clest

Justement ce qui se lrouve réalisé dans I'interprétation causale que nous
développons plus loin.

L. DE BROGLIE. 5
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L’impossibilité de maintenir dans interprétation actuelle le schéma
statistique usuel proviendrait donc du fait que on y compare des distri-
butions de probabilités qui ne sont pas simultanément valables, les uncs
élant valables dans 'état inilial avant la mesure, les autres dans I'état
final aprés la mesure quand on n’en connait pas encore le résultat. G'est
cette possibilité qui n’a pas é1é envisagée par M. von Neumann quand
il a conclu a 'impossibilité de rétablir les conceplions classiques par
I'introduction de variables cachdes.

7. Théoreme de M. von Neumann. — Dans son imporlanl, Ouvrage :
Les fondements mathématiques de la Mécanique ondulatorre (1),
M. J. von Neumann a fait un exposé d’une rigucur trés grande de
U'interprétation probabiliste de la Mécanique ondulatoire. kin particulier,
il a é1é amené a étudier de trés prés la théorie de la mesure. On
lrouvera notamment cette théorie reprise d'une facon tres claire dans
un fascicule des -lctualités scientifiques et industriclles (*) publié
par MM. London et Bauer sous le litre La théorie de Uobsercation en
Mécanique qua,nti'que. ‘

Un des mérites de Pexposé de M. von Neumann, ¢'est d’avorr distingué
clairement les « cas purs » des « mélanges ». Il y a cas pur quand P'état
d’'un systeéme esl représenté par une fonction W, les distributions de
probabilités des diverses grandeurs ¢tant données par les carrés des
modules | ¢, |* des coefficients du développement du W' suivant les fone-
tions propres de la grandeur : ces distributions de probabilités sont
caractérisées par Uinterférence des probabilités et s’écartent, nous 'avons

vu, du schéma des distributions de probabilités envisagées en statistique
usuelle. Il y a, au contraire, mélange lorsque la fonction W du systéme
n’est pas exactement connue ct qu'on peul seulement lui attribuer

diverses fonctions d'ordre Wi avec des probabilités p, <telles

que 2))/,-: 1)- Ici les coefficients de probabilité p, sont défintes d'nne
"
fagon tout a fait classique. Pour caraciériser chaque systeme du point
de vue statistique, M. von Neumann a défini une « matrice stalistique »
hermitienne dont la trace est égale & I'unilé : il s’est servi pour cela de
la notion de « projecteur ». Pour un cas pur, la matrice statistique
appelée alors « matrice statistique ¢lémentaire » jouit de la propriété

(') Traduction francaise, Alcan, Paris, 1946.
(*) Hermann, Paris, 1939, n° 775.
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7
d’ewre idempotente, c’est-a-dire que P7=P, quel que soit n. Pour un
mélange, au contraire, la matrice statistique n’est pas idempotente : la
condition nécessaire ¢t suffisante pour que la matrice statistique d’un
systéme soit idempotente est que le systéme soit dans un cas pur. On
trouve ainsi un critérium pour distinguer les cas purs des mélanges.
Analysant avec soin la notion de mesure, M. von Neumann a montré
ue la mesure avait pour effet de transformer le cas pur en mélange, ce
qui revient & peu pres d dire que le dispositif de mesure a pour effet
disoler des trains d’ondes correspondant aux différentes composantes
du W pour la grandeur considérée, un seul de ces trains d’ondes corres-
pondant & une hypothese physiquement réalisée.

C’est an cours de ces recherches que M. von Neumanun a eru pouvoir
démontrer I'impossibilité de rendre compte des distributions de proba-
bilités de la Mceanique ondulatoire en introduisant des « variables
cachées ». Cette démonstration semble exclure définitivement la possi-
bilit¢ de revenir & une théorie causale et objective des phénomeénes
microscopiques.

Sans reprendre tout le raisonnenrent, indiquons-en la marche géné-
rale. Von Neumann a d’abord démontré le théoreme suivant : Il est
impossible e repriésenter un cas pur sous la forme d’un mélange.
Autrement dit, un cas pur n’est jamais réductible & une somme de cas
purs.

Ce pomnt établi, M. von Neumann fait la remarque que voier @ s'il
était possible d’obtenir une interprétation classique des distributions de
probabilités de la Mécunique ondulatoire par Vintroduction de variables
cachées (comme, en Physique classique, la théoric cinétique cn fournis-
sait une pour les lois des gaz), la connaissance des valeurs exactes des
parametres cachds permetirait en principe d’obtenir un élat « sans
dispersion », ¢’est-a-dire un état ou pour toute grandeur A la disper-

sion o, = Y/ (A — A)? serait nulle. On obtiendrait les propriétés statis-
tiques du systeme en considérant des mélanges de ces états sans disper-
sion : c’est ce que font les théories statistiques de la Physique classique.
Bref, pour qu'une théorie stalistique puisse se¢ réduire & un schéma
déterministe a4 parametres cachés, il faut que les distributions statis-
tiques de cette théorie puissent se ramener a des mélanges d’érats
élémentaires indécomposables et sans dispersion. Or, M. von Neumann
montre que ce n’esl pas le cas pour la Mécanique ondulatoire qui, par
conséquent, ne pourrait par aucun moyen se ramener d un schéma
déterministe a paramétres cachés.
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Le raisonnement reposc essentiellement sur le théoréme suivant
Les états que Uon rencontre en Mécanique ondulatoire ne peucent
Jamals étre sans dispersion. Von Neumann a juslifi¢ cel énoncé en
montrant qu’il existe en Mcécanique ondulatoire aucune matrice statis-
tique P acceptable qui corresponde a une absence de dispersion pour
toutes les grandeurs. D'ailleurs, ce résultat peut se prévoir tres simple-
ment en remarquant que déja pour un cas pur (systéme ayant une
fonction d’onde W bicn déterminée), les dispersions o, et a,, de deux
grandeurs canoniquement conjuguées ne peuvent simultanément nulles
en raison dn théoréme sur les dispersions cxprimé par linéga-
It

Lit¢ o, o

/ui\i 1

Nous ne pou?ons done pas ramener les distributions de probabilité de
la Mécanique ondulatoire & des mélanges d’états indécomposables sans
dispersion. I y existe bien des dlats indécomposables, les cas purs,
mais ils ne sont jamais sans dispersion. La conclusion de M. von Neumann
peut donc étre obtenue uniquement par 'élude des cas purs, mais
Ianalyse plus générale qu’il a donnée permet une comparaison plus
exacte avec les théories probabilistes 4 parametres cachés de la Physique
classique.

La belle tenue mathématique de la dédaction de M. von Neumann
pouvail entrainer la conviction que toul relour aux conceptions causales
et objectives de la Physique classique était désormais impossible en
Microphysique. On pouvait bien objecter que Ja démonstration reposait
sur le postulat que les distributions de probabilités admises par la
Mécanique ont une validité générale, mais on pouvail répondre que
Iexpérience apporte une confirmation complete de ce postulat. On
pouvait dire aussi que la démonstration de M. von Neumann n’ajoulait
pas grand’chose a ce que 'on savait déja puisque la conclusion est déja
contenue dans les relations d’incertitude, mais cetle remarque ne dimi-
nuait en rien la solidité de cette conclusion.

Mais, comnie nous le verrons, il existe au moins une théorie, la
théorie causale que nous étudierons plus loin, qui permet de retrouver
les distributions de probabilité de la Mécanique ondulatoire et qui est
unc théoric déterministe i parametres cachés. 1l se peut ‘quc celle théorie
ne soit pas physiquement exactle, mais elle existe et son existence scule
est déja en contradiction avec le théoreme de von Neumann. Comment
cela est-il possible?

E’examen de cette question m’a amené, en accord sur ce poinl avec
M. David Bohm, a penser que la démonstration de M. von Neumann
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implique une hypothése qui ne s'impose pas absolument ct qui n’est pas
remplie dans la théorie causale en question. Cette hypothese, ¢’est que,
quand un systéme cst dans un état W, les distributions de probabilités
définies par la Mécanigque ondulatoire sont valables avant toute opération
de mesure. Or, il résulte que la facon méme dont on doit correctement
énoncer ces lois de probabilités (par exemple, | ]2 est la probabilité
pour qu’'une mesure précise de la grandeur A fournisse la valeur ;) que
ces lois ne sont valables qu’une fois la mesure effectuée quand on n'en
connait pas encore le résultat. Pour deux grandeurs non commulantes
les lois de probabilités doivent méme ne jamais entrer en jeu simultané-
ment puisqu’elles ne peuvent devenir valables qu’apres des opdérations
de mesure qui sont incompatibles. Il se peut qu’une certaine distribution
de probabilités soit déja valable dans Pétat initial et ne soit que confirmée
par la mesure @ ¢’est Ie cas dans la théorie causale de la distribution
en ' 2 pour la localisation. Mais, en général, la distribulion de proba-
bilités sera le vésultat de Popération de mesure et pourra succéder a une
distribution de probabilités inconnue, peuat-étre méme inobservable,
existant avant la mesure : c’est le cas, dans la théorie causale, de la
probabilité | ¢ (k) [* pour la quantité de mouvement.

Ces remarques me paraissent maintenant rendre douteuse la validite
du postulat implicite sur lequel repose la démonstration de M. von Neu-

mann et par suite faire tomber la force probante de son raisonnement.
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CHAPITRE VII.

OBJECTIONS OPPOSEES A L'INTERPRETATION PUREMENT PROBABILISTE
DE LA MECANIQUE ONDULATOIRE.

1. Conséquences de la disparition de la notion de trajectoire. — l)ans
I'interprétation purement probabiliste actuelle de la Mécanique ondula-
toire, la notion de trajectoire disparait, du moins chaque fois que 'on
sort du domaine de validité de P'Optlique géoméirique pour la propaga-
tion de Ponde ¥. Quand cette approximation est valable, on peut garder
la notion de trajectoire et considérer des trains d’ondes presque ponc-
tuels décrivant des rayons-trajectoires, mais dés qu’inlerviennent par
cxemple des phénomenes d’interférences et de diflraction, lx nétion de
rayon et par suile celle de trajectoire deviennent inutilisables. Le
corpuscule dans l'espace physique (ou le point figuralif d’un systéme
dans P'espace de configuration) ne peut étre localisé que e loin en loin
par une mesure et, entre les localisations, aucune trajectoive ne lui serait
attribuable. 11 en résulterait des différences importantes en ce qui
concerne la notion méme de probabilité en Physique classique et en
Microphysique, comme nous allons Pexpliquer.

Considérons, dans le cadre de la Mécanique classique tous les mouve-
ments possibles correspondant a une méme fonction S de Jacobi. La
théorie de Jacobi nous apprend a considérer toutes les trajectoires
envisagées comme étant les rayons d’une propagation d’ondes dont les
surfaces S = const. sont les surfaces d’ondes. Si nous avons aflaire a
une infinité de corpuscules décrivant toutes les trajectoires possibles de
la classe considérée, on peut imaginer que les corpuscules sont répartis
dans le nuage avec la densité spatiale g = | W |2, 1" étant onde définie
par la théorie de Jacobi : en effet, p se conserve au cours du temps. On
peut alors dire aussi que |W|* mesure la probabilit¢ pour que nous
trouvions un corpuscule déterminé en un point donn¢ a un instant
donné. Ici la probabilité s’introduit d’une fagon touta fail classique par
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suite de notre 7gnorance de la trajectoire efleclivement décrite par le
corpuscule cnvisagé ot de sa position sur cette trajectoire. En principe,

les équations de la Dynamique nous permettraient de calculer la trajec-

toire effectivement décrite et Ie mouvement sur cette trajectoire si nous
connaissions la position et la vitesse initiales du corpuscule. Mais, si une
partic de ces données nous manque, nous saurons seulement quelles
sont les trajectoires possibles et nous n’aurons plus qu’une probabilité,
et non une certitude, de trouver le corpuscule au point M a P'instant ¢.
St une observation nous permet de déceler la présence du corpuscule au
point M i I'tnstant ¢, nous saurons que la trajectoire décrite passe par M
et des lors nous serons certains de ne plus pouvoir déceler la présence
du corpuscule ailleurs que sur cette trajectoire. La probabilité de
présence, qui était diflérente de zéro daps une région étenduc de
Iespace, traduisait sculement notre ignorance de la trajectoire effective-
ment décrite @ elle perd toute signification dés que nous connaissons la
trajectoire. Tel est le point de vue de la Physique classique : il ¢tait
conforme A des conceptions intuitives traditionnelles dans la Science.
En particulior, il admettait le délterminisme des mouvements et la
probabilit¢ ne s’introduisait que par suite de notre ignorance des
données nécessaires pour suivre ce déterminisme. On restait ainsi en
accord avec la conception de la Probabilité admise par tous les grands
maitres de la Science classique depuis Laplace jusqu’a Henri Poincaré.

Tout autre est le point de vue de U'interprétation probabiliste actuelle
de la Mécanique ondulatoire. Pour elle, la notion de trajectoire n’est
qu’une premicre approximation, valable seulement quand POptique
géométrique cst applicable a la propagation de 'onde W'. Dés qu’il n’en
est plus ainsi, en particulier chaque fois qu’il y a interférences ou
diffraction de l'onde ¥, la notion de trajectoire devient inutilisable et
I'on doit seulement parler de localisations successives du corpuscule
dans 'espace (ou du point figuratif dans espace de configuration) qui
résultent d’observations comportant mesure de position.

Alors la probabilité doit s’introduire avec un caractére nouveau
elle n’est plus I'expression de notre ignorance d’une trajectoire suivie
par le corpuscule puisqu’il n’y a plus de trajectoire. M. von Neumann
semblait méme avoir démontré par son fameux théoréme que l'inter-
vention des probabilités en Physique quantique ne pouvait d’aucune
maniere provenir de notre ignorance de certains paramétres cachés qui
nous échapperaient. Deés lors, il n’y a plus de déterminisme : rien ne
nous permet plus de prévoir exactement, sauf dans des cas exceptionnels,
le résultat exact d’'une mesure, nous pouvons seulement assigner une
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probabilité a chaque résultat possible d’une mesure. La probabilité
s'introduirail sans qu’il y ait de notre part ignorance ’une situation
cachée. Contrairement aux affirmations de tous les savants de Fépoque
préquantique, la probabilité pourrait exister « i l'étal pur » sans étre
le résultat d’un déterminisme qui nous échapperait. C'est une conception
nouvelle trés intéressante, mais qui souléve aussi des difficultés.

La description du monde microscopique, étant rattachée unique-
ment & la connaissance d’une fonction, Ponde W, qui n’est qu'une
représentation de probabilité et dépend des connaissances de 'utilisateur,
prend un caractere subjectif et le caractére objectif de la réalité physique
se trouve ainsi mis en question d’une mani¢re assez singulicre. Nous
allons voir notamment quelles conséquences élranges comporle
I’'abandon de la notion de trajectoire.

2. Objection de M. Einstein au Conseil Solvay de 1927. — Au Conseil
Solvay d’octobre 1925, M. Einstein a ¢levé contre l'interprélation
purement probabiliste de la Mécanique ondulatoire une objection trés
frappante.

Il a considéré un corpuscule qui arrive normalement sur un écran
plan percé d’un petil trou : derriere I'écran est placé un film photogra-
phique ayant la forme d’un hémisphére de grand rayon.

Si le trou a des dimensions asscz petites, P'onde W associée au
corpuscule sera diffractée en le traversant et se répandra sur le film
hémisphérique car le trou jouera le réle d’une pelite source ponctuelle
placée au centre. Si, a un instant ¢, une impression photographique
révele la présence du corpuscule en un point A du film, I'interprétation
de ce fait sera tres différente suivant que Pon raisonne avee les idées
classiques ou avec les conceptions nouvelles.

Avec les 1dées classiques, on doit dire : le corpuscule qui traverse
I'ouverture a nécessairement une « trajectoire ». Celle-ci, représentée
sur la figure 3 par une ligne ponctuce, devra nécessairement percer
I'éeran en un de ses points, mais tant que nous n’aurons pas décelé la
présence du corpuscule en un point de I'éeran, nous ne saurons pas
quelle est la trajectoire réellement saivie ¢t c’est pourquoi nous
attribuerons a la présence du corpuscule en toul point de 'écran une
probabilit¢ non nulle (égale a | ¥ |?). Des que la présence de corpuscule
est décelée.en A, nous connaissons la trajectoire ct la probabilité de
trouver le corpuscule en tout autre point B de I'écran devient instanta-
nément nulle. Tout cela est trés clair.

Mais, avec les conceptions nouvelles, nous sommes obligé d’admettre
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quil 'y a pas de trajectoire définissable puisqu’il y a diffraction &
droite de Pécran. Tant que la localisation en A n’a pas eu lieu, le
corpuscule doit ¢ire considéré comme présent, a P'état potentiel, sur
toute La surface de 'éeran avec la probabilité | W |2, Dés que le corpuscule
s’est manifest¢ en A, la probabilité de le trouver en un autre point de
Pécran devient instantanément nulle puisque, par hypothise, il n’y a
quun seul corpuscule associé a 'onde W. L’interprétation de ce fait,
toute simple quand on peul admettre Pexistence d’une trajectoire,
devient au contraive et trés mystérieuse. I1 est, en effet, impossible de

Tig. 3.

comprendre avee nos idées classiques sur 'espace et sur le temps (et
méme avee les idées relativistes sur I'espace-temps) comment le fait
d’observer un eflet localisé en A peut empécher instantanément la
production d’un effet analogue en tout autre point B du film, méme trés
éloigné de A, si 'on admet que le corpuscule est localisé dans I'espace
a chaque instant et déerit au cours du temps une trajectoire, peut-étre
inconnue de nous, mais bicn définie.

Si donc, avee la nouvelle Mécanique, on abandonne la notion de
trajectoire, il faut admettre que le corpuscule, lout en élant une unité
indivisible et par instant bien localisable, n’est pas constamment localis¢
dans 'espace et dans le temps @ il est comme « virtuellement » présent
dans tout le train d’ondes et on dira avec M. Bohr que « les corpuscules
sont des individus définis d’une facon floue dans des régions étendues
de Pespace-temps » ct que leur comportement « transcende » le cadre
de Pespace-temps, langage philosophique qu'il est peut-étre bien un
peu dangercux d'introduire en Physique théorique. . :
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Dans lexemple d’Einstein, le corpuscule serait en quelque sorte
répandu a I'état virtuel dans I'espace au-dela de I'éeran @ au moment ot
se produit un effet localisé¢ en A, le corpuscule se condenserail pour
ainsi dire en ce point pour y produire un phénomeéne observable. Or,
Einstein 'a souligné, aucun mécanisme compatible avec les 1dées
anciennes, méme relativistes, sur Pespace et sur le temps ne peul
rendre compte de cette sorte de contraclion hrasque du corpuscule gui
aurait pour conséquence I'action instantanée d’un événement se produi-
sant en A sur ce qui peul se passer au point ¢loigné B. L'interprétation
actuelle de la Mécanique ondulatoire nouns obligerait done a considérer
nos notions usuelles d’espace el de temps comme lolalement inexacles
non seulement a I'échelle microphysique (ce qui serait encore aceep-
table), mais méme a I'échelle macroscopique puisque les points A et B
peuvent ¢étre tres éloignés sur Pécran.

11 est donc légitfme de considérer I'exemple d’Einstein comme unc
objection assez grave, 4 laquelle on n’a jamais netlement répondu,
contre l'interprétation actuelle de la Mécanique ondulatoire.

3. L’exemple de MM. Einstein, Podolsky et Rosen. — D¢ vives et
intéressantes discussions, auxquelles onl participé des savants trés
¢minents, onl cu lieu au sujet des systemes « corrélés », ¢’est-a-dire des
syslémes qui, ayant éLé en interaction, s¢ trouvent ensuile séparés, mais
dans des états dont les probabilités ne sont plus indépendantes. Ces
polémiques ont été amorcées par un Mémoire de MM. Einstein,
Podolsky et Rosen (1) commenté dans un exposé de M. Schrodinger (*).
M. Bohr y a répondu dans un article de la Physical Review (*) et
d’autres remarques & ce sujet ont é1¢ présentées par M. Furry (7).

Einstein, Podolsky et Rosen avaient d’abord considéré un systeme de
deux corpuscules dont I'état était représenté par la fonction d’onde (ou d
est une constante non nulle)

(1 W= ﬂ'e@l )3y — b — ) (— b) dacld =/ 3y — ) 8y — a— d)da
:ﬂa (ky+ /CQ)ezm(k,xi+kgxz) e 2Tikyd dky dk,

:‘/ e‘.’T{ih(;l‘,—.x’ngd) d/Q —_ 6(.1‘1 — Ly {l),
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Le passage de U'expression de la premicre ligne a celle de la seconde
s'effectuc en se souvenant que Von a pour la fonction singuliere de
Dirac l'expression symbolique

t oz
(2) () :f e~k gk

La forme (1) du W montre que la mesure de A, enlraine lou-
jours Ay==—/A, ct que la mesure de z» entraine toujours x4 = z»— d.
Autrement dit, les grandeurs Ay + ks et 22— 2, ont respectivement les
valeurs o el o/, ce qui est possible puisque les opérateurs correspondants
commulent (bien que Ay et zy d'une part, ky et 2y d’autre part ne
commutent pas).

Xz
>
> [i4 a5, =2 +d
X
Fig. 4.

On peut interpréter physiquement la forme (1) de W en considérant
un ¢éeran plan pereé de deux fentes paralleles tres fines sur lequel
tombe normalemeni des ondes planes monochromatiques initialement
associées aux deux corpuscules.

Si, dans Pétat inivial, nous connaissons exactement le mouvement de
Pécran le long de Oz (son p.), la position de I'écran le long de cet axe
et par suite 'abscisse de la premiére fente doivent étre inconnues d’apres
les relations d’Heisenberg, toutes les valeurs de @, étant également
probables. La valeur du W du systeme sur la face postérieure de Pécran
est alors donnée par fr)(llm a)d(xs—a-—d)da qui exprime la
présence simultanée du corpuscule 1 dans la premiere fente et du
corpuscule 2 dans la seconde fente, la position des deux fentes séparées
par la distance connue o étant indéterminée. Si la quantité de mouve-
ment de Véeran ne varie pas lors du passage des corpuscules dans les
fentes, on doit avoir ky+ ks= o0 en accord avec la troisiéme expres-
sion (1) du "

Le pomt sur lequel Einstein et ses collaboratcurs ont alors attiré
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Patlention est le suivant. Nous sommes libres, I’état initial étant donné
par (1), de mesurer soil z,, soit A», ce qui nous conduira soil & attribuer
ala coordonnée 2 du premier corpuscule la valeur Xy= Ty —cd so01l Q
attribuer & la composante conjuguée de sa quantité de mouvement la
valeur &y =—k,. Comme I'une ou lautre de ces mesures n’affecte pas
le premier corpuscule, nous pouvons donc attribuer a celui-ci soit une
position, soil une quantité de mouvement le long de Ox sans «ucune-
ment agir sur lut et cela, si Pinterprétation orthodoxe est exacte, bien
(ue celte posilion et celle quantité de mouvement ne puissent pas avoir
en méme temps des valeurs précises. Einstein, Podolsky et Rosen en
ont conclu que le corpuscule 1 devait avoir, avant la mesure faite sur 2
qui n’agit pas sur lui, une position el une quantité de mouvement bien
déterminées et que, par suile, la description de la réalité a aide de
londe ' est, sinon inexacte, du moins incompleic.

Malbeureusement I'exemple de MM. Linstein, Podolsky et Rosen ne
scmble pas trés heurcusement choisi parce que, dans Pétat défini par Ia
forme (1) du W, les deux corpuscules ne peuvent pas élre considérés
comme « séparés » dans I'espace et qu’ils sont tous deux en interaction
avee le méme dispositif expérimental : Pécran percé de deux trous.

(Vest ce qui a permis & M. Bohr de répondre a ses contradicleurs
dune fagon qui parait satisfaisante. Il a remarqué qu’avee le disposiuf
envisage, les deux mesures possibles, celle de la position et celle de la
quanlité de mouvement, correspondent a des arangements expérimen-
taux différents. La mesure des positions suppose que nous fixions I'éeran
par rapport au biti macroscopique qui nous serta repérer nos coordonnées
d’espace. Alors la premitre fente aura une abscisse précise @, == vl la
seconde fente une abscisse x, = 2o+ d. Mais la connaissance des quan-
utés de mouvement sera enticrement perduce car, les fentes étant fixées
rigidement au biti, la quantité de mouvement que I'écran pourrait
recevolr des corpuscules se perdra dans le support. Inversement, si l'on
veut mesurer les quantités de mouvement, il fandra mesarer les impul-
sions initiales de I'écran, ce qui suppose qu’on laisse a celui-ci sa mobi-
lit¢ et que, par suite, on ne puisse connaitre exactement I'abscisse des
fentes : dans ce cas, la variation de la quantité de mouvement de Péeran
le long de Oz égale a Ko— K, étant connue, la mesure de k2 donnera
la valeur &y =-— Ay + Ko— K, pour A;. La conclusion de M. Bohr est
alors la suivanle : pour trailer le probleme, il faut préciser tous les
détails du dispositif expérimental car il faut, deés la mise en marche de
la mesure, avoir un montage approprié i celle des deux mesures que
Pon veut effectuer.
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Les raisonnements, parfois un peu nébuleux, de M. Bohr, contiennent -
quelques affirmations contestables telles que celle-ci : la mesure de
I'impulsion d’un corpuscule se fait loujours en communiquant cette
impulsion a un corps macroscopique auquel sont applicables les
conceplions de la Physique classique. Il nous semble au contraire que
ce n'est jamais de cette facon qu’on mesure l'impulsion d’un corpuscule,
mais bien en la déduisant de la localisation observée d’un autre corpus-
cule avec application éventuelle de la conservation de Pimpulsion.
Neéanmoins, on peut admetire qu’en raison du choix peu heureux de
I'exemple d’Einstein, Podolsky et Rosen, M. Bohr a pu écarter 'objec-
tion sous la forme ou elle était présenltée.

4. Objection relative aux systémes corrélés (Schrodinger). — lLa
faiblesse de I'exemple de MM. EFinstein, Podolsky et Rosen me parait
provenir du fait qu'il ne fait pas inlervenir explicitement la limitation
spatiale de tous les trains d’ondes. Physiquement, Ponde associée a un
corpuscule ne peut pas étre une onde plane monochromatique indéfini-
ment élendue dans Uespace et dans le temps @ on a toujours nécessaire-
ment affaire @ un train d’ondes spatialement limité. Si les ondes
associées a deux corpuscules étaient strictement planes et monochroma-
liques, on ne pourrait pas parler de collision entre eux : Uinterprétation
actuelle les supposant alors potenticllement présents en tout point de
Pespace, ils seraient constamment ct indéfiniment en étal de choc.
Physiquement, il est donc nécessaire de loujours tenir compte de
Uextension limitée des trains d’ondes, point capital sur lequel nous
aurons constamment A revenir.

Aussi allons-nous mainlenant présenter Pobjection relative aux sys-
temes en faisant intervenir explicitement les dimensions limitées des
trains d’onde. Sous cette forme qui se¢ rapproche de celle adoptée par
M. Schridinger dans les articles cités plus haut, Pobjection me parait
trés difficile a lever.

Considérons deux groupes d’ondes presque monochromatiques
associés & deux corpuscules 1 et 2 el supposons qu’ils viennent a la
rencontre I'un de Pautre.

Parvenus dans la région hachurée R, les deux corpuscules inter-
agissent et leurs ondes s¢ superposent : pour prévoir ce qui va en
résulter, il faut alors envisager 'onde W du syst¢éme dans D'espace de
configuration. I.a Mécanique ondulatoire nous apprend que le choc
peat donner lieu a toute une série de mouvements finaux possibles, tous
compatibles avec la conservation de I'énergie et des composantes de
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I'impulsion. Ou bien le train d’ondes du corpuscule 1 décrira finalement
la trajectoire 1, le train d’ondes du corpuscule 2 décrivant la trajec-
toire 2'; ou bien le train d’ondes de 1 décrira finalement la trajectoire 17,
le train d’ondes de 2 décrivant la trajectoire 2, ctc. Les trajecloires
finales seront corrélées entre elles, 1" avec 2/, 1”7 avec 2, elc. La fonction
d’onde finale du systéme des deux corpuscules dans Uespace de configu-
ration sera la superposition des produits de la fonction d’onde 1’ par la
fonction d’onde 2/, de la fonction 1” par la fonction d’onde 27, etc., les
coefficients de la superposition donnant par le carré de leur module les
probabilités des divers états corrélés 1'— 2/, 1"— 27, etc.

Fig. 5.

Supposons maintenant que nous placions sur la trajectoire 1" un
compteur susceptible de déceler larrivée du’ corpuscule 1. 51 ce
compteur enregistre celle arrivée, nous saurons que le corpuscule 2 est
dans le train d’ondes 2'. Ceci se comprend aisément si les corpuscules
occupent a chaque instant une position dans espace physique caralors
nous pouvons dire que les trajectoires des corpuscules 1 et 2 sont
corrélées de telle facon que, si aprés le choc le premier corpuscule suit
la trajectoire 1', le second suivra la trajectoire 2, ete. Le fonctionne-
ment du compteur aura simplement révélé un fail qui existait déja,
savoir que le premier corpuscule suivail la trajectoire 1. L’onde W du
systéme sera réduite aux paquets 1'-— 2/, les autres paquels disparais-
sant 1Instanlanément quand on constate le fonctionnement du compleur
et ceci s'explique bien puisque Ponde I n'est qu'une représentation de
probabilité, ¢lément subjectif qui est brusquement modili¢ par une
nouvelle information.

Mais le point de vue que nous venons d’adopler reviendrait i
admettre que Ponde W n’est-pas une représentation complete de la
réalité puisqu’il faudrait, pour avoir une image complete, se donner en
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plus la position du corpuscule, c’est-a-dire les valeurs de ces « para-
matres cachés » que sont les coordonndes.

le point de vue actuellement orthodoxe affirme, au contraire, que la
description du systeme par le W est une description complete et qu'il
n’y a pas de localisation permanente des corpuscules. Apros le ehoce, le
corpuscule 1 est poteniiellement présent dans les trains d'ondes 1. 17, ete.,
tandis que le corpuscule 2 est potentiellement présent dans les trains
dondes 2/, 27, ete. Lorsque le compteur placé sur la trajectoire 1/
tonctionne, le corpuscule 2 se trouverail instantanément précipit¢ dans
Punique train d’ondes 2'; bien que 2' puisse se trouver aussi loin que.
lon veut du compteur qui vient de fonctionner. Comme l'a dit
M. Schradinger, « ce serait de la magie ».

Nous retrouvons d’ailleurs ici la contradiction qui existe, méme i
I'échelle macroscopique, entre U'interprétation purement probabiliste de
la Mécanique ondulatoire et les notions d’espace et de temps, contra-
diction déja signalée par M. Einstein an Conseil Solvay de 1927,

Quand on expose 'interprétation purement probabiliste de la Mdéca-
nique ondulatoire, on s’exprime souvent ainsi : Quand un systéme se
rrouve dans un état oic la grandeur A n’a pas une valeur bien déter-
minée, mais loule une série de valeurs possibles, st nous ¢ffectuons
une mesure précise e A, nous fuisons passer le systéme dans un
nowvel ctut ot A a une valear bicn déterminée; nous produisons
ainst sur le systémne, par Uopération méme de la mesure de A, une
prerturbation incontrolable qui nows fait perdre la connaissance de la
valeur des grandeurs qui ne commutent pas avec A. Puis on explique
ce fail remarquant que, pour mesurer A, nous exer¢ons nécessairement
une aclion sur le systéme, action que I'existence du quantum de Planck
ne peemet pas de diminuer indéfiniment. Cette explication, qui est sans
doute exacte dans certains cas, n’est plus admissible dans le cas des
systtmes corrélés que nous venons d’étudier. Il est, en effet, inconce-
vable que le compteur placé sur la trajectoire 1’ et agissant sur le
corpuscule 1 puisse exercer une action quelconque sur le corpuscule 2.

Pour présenter la difficulté dans un cas un peu différent, mais tres
frappant, considérons 'émission d’'un quantum de rayonnement par un
atome d’hydrogéne. Pour simplifier, nous supposerons que I'atome a
une série d’états stationnaires K, L, M, ... en négligeant leurs struc-
tures fines. En général, dans 'état initial de I'atome, son onde W sera
de la forme

(3) ‘lf'l-: (:KlFK—f— (,‘]‘ll"L—F CHII“M—O—...,
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le carré des modules des ¢ donnant la probabilité des divers dlats
d’énergie dans cet état initial. A une certaine distance de I'atome (qui
peut otre trés grande), placons un dispositif susceptible de déceler
l'arrivée d’un photon et méme de nous donner sa fréquence; ¢’est le cas
d’une cellule photoélectrique. Si, & un moment donné, ce dispositif
nous indique l'arrivée d’un photon ayant la fréquence de la premiere
raic de la séric de Balmer (correspondant dans le schéma de Bohr a la
transition M — L), nous devrons dire dans l'interprétation actuelle
que l'atome, primitivement réparti a I'élat virtuel entre les éner-
gies B, E;, Ey, ... avecles probabilités | g [2, [e [, [ex[?, ... a passé
dans I'élat d’énergie F; avec émission de la raie de ﬁ‘équevnce v = Eil/}li
et I'état final de latome est représenté par

() W=

Cect se comprendrait fort bien st nous pouvions dire que le processus
d’¢mission s’était achevé par le départ hors de Patome du photon de
fréquence 2 v laissant Patome dans I'état final W,. L’enregistrement de
I'arrivée du photon nous aurait alors simplement appris que les choses
s’élarent ainst passées @ celte information, en modifiant nos counais-
sances sur 'état de Patome, nous obligerait & modificr Ponde W' qui
symbolise ces connaissances.

Mais I'interprétation actucllement admise est lout autre. Nous devons
dire que, tant que le détecteur de photons n’a pas fonctionné, 'atome
est dans Pétat Wy Clest le fonctionnement de ce détecteur qui préci-
piterait instantanément 'atome dans l'état Wy, ct cela bien que la
distance atome-détecteur de photons puisse ¢tre tres grande. Une telle
interprétation parait vraiment inadmissible 4 moins que le W' ne soit un
¢lément purement subjectif représentant I'élat des connaissances du
physicien qui I'utilise, mais alors ce ¥ ne peut guere avoir la prétention
de fournir une description véritable du phénomene « émission d’un
photon par un alome ».

5. Diverses autres objections de M. Einstein. in 1949, al’occasion
du sorxante-dixiéme anniversaire de M. Einstein, a paru aux Iotats-Unis
un livre jubilaire consacré au fondateurde la théorie de Ia Relativité
auquel des savants de tous les pays ont consacré des articles (). De

grands physiciens quantistes tels que MM. Born, Pauli, Heitler, ete. ont

(1) Albert FEinstein philosoplher and scientist, The Library of living philosophers
Evanston, Iilinois.
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exprimé dans ce volume, parfois en termes assez vifs, leur désapointe-
ment de voir Einstein persister dans une attitude négative vis-i-vis de
Pinterprétation purement probabiliste de la Mécanique ondulatoire.

La plus intéressante des études contenues dans ce livre est sans aucun
doute celle due a M. Bohr dans laquelle I'illustre savant danois, aprés
avoir analys¢ Uorigine de la théorie des quanta, ses premiers dévelop-
pements et 'éelosion de la Mécanique ondulatoire et quantique, a
résumdé Uenscemble de ses discussions avee M. Einstein sur Iinterpréta-
tion de celte Mécanique dans la période qui a suivi le Conseil Solvay
de 127,

Dans sa réponse placée a la fin du volume, M. Einstein persiste & nier
que la fonction Conde W de la Mécanique ondulatoire puisse donner, a
elle seule, une description compléte de la réalité. Selon lui, elle ne peut
décrire un systéeme individuel, mais seulement P'aspect statistique d’un
ensemble de systemes identiques. Einstein reconnait d’ailleurs que le
formalisme actuel de la Mécanique ondulatoire décrit d’une fagon
parfaite les phiénomenes observables, mais, dit-il, « je suis convaincu
que le caractére essenticllement statistique de la théorie quantique
contemporaine doit ¢tre attribué au fait que cette théorie se sert d’une
description éncompléte des systemes physiques ».

Comme exemple, Einstein étudie la theéorie actuelle de la désintégra-
tion o d’un corps radioactif. On représente ce phénomene en admettant
que onde U™ de la particule « est susceptible de s’échapper du noyau
sous la forme d’une onde sphérique divergente qui filtre progressive-
ment A travers la « barricre du potentiel » entourant le noyau. Cette
image, dit Finstein, est parfaite si I'on se propose sculement d’étudier
les propriétés statistiques d’'un ensemble de noyaux radioactifs, mais elle
ne peat pas donner une description vraiment complete d’un seul de ces
noyaux parce qu'elle est incapable de préciser 'épogue de la désintégra-
tion et qu'on doit évidemment supposcr que chaque noyau se désintégre
@ unc époque bien définie. Einstein exposc alors la réponse que lui ferait
sans doute un partisan de 'interprélation actuelle de la Physique quan-
tique. Cette réponse  consisterait essentiellemunt a remarquer que
I'époque de La désintégration n’est pas connue @ priors et qu'il faul une
observation pour la connaitre, observation qui change Iétat de nos
connaissances sur le systéme. Emstein reconnait que cetle réponse peul
peul-étre paraitre suffisante quand on a sculement affaire & un systéme
de Déchelle microscopique comme un noyau radioactif, mais il
ajoute qu'il n’en est plus de méme si Uon examine un cas étadié par
M. Schridinger.

.. DE BROGLIE, 6
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On peut, en effet, considérer un systéme comprenant non seulement
un noyau radioactif «, mais un dispositif de mesure macroscopique tel
qu'un compteur de Geiger avec un mécanisme automatique d’enregis-
trement. Ce dernier peut comporter une bande de papier qu'un méea-
nisme d’horlogerie fait se dérouler régulierement et sur laquelle une
marque s’inscrit quand le comptenr fonctionne. On a alors un systeme
trées complexe dont Pespace de configuration comporte un nombre tres
¢levé de dimensions, mais logiquenent rien n’empeche de le considérer,
Si l'on envisage toutes les configurations possibles aprés un tenmips tres
long par rapport a la période de Patome radioacuif, il y aura au plus
une marque sur la bande d’enregistrement. Mais la théorie actuelle ne
donnant que la probabilité des configurations, nous ne pouvons calculer
que les probabilités relatives des positions de la marque sur la bande
d’enregistrement. Or, remarque Einstein, la position de la marque sur
la bande est un fait qui releve de la Physique macroscopique, ce qui
n’est pas le cas de I'instant de désintégration. Si donc nous considérons
la théorie quantique actuelle comme donnant une description compléte
du systéme individuel, nous sommes contraints d’admettre que la posi-
tion de la marque sur la bande n’est pas une chose qui appartienne au
systéme en lui-méme, mais que celte position dépend essentiellement
de l'observation qui est faite sur la bande. Finstein considére cetle
conclusion comme hautement invraisemblable.

Etudiant le passage de la Mécanique classique ala Mécanique ondula-
toire, M. Jlinstein trouve encore un nouvel argument contre I'interpréta-
tion purement probabiliste. Considérons avec lui le mouvenment en
dehors de tout champ d’un corps macroscopique que, pour préciser,
nous supposerons étre une sphére homogene de masse M. En Mécanique
ondulatoire comme en Mécanique classique, on peut démontrer que le
mouvement du centre de gravité du systeme (ici le centre de la sphere)
est le méme que celui d’un point matériel de masse M. 11 est done repré-
senté par la propagation d’'un train d’ondes obéissani a 'équation de pro-
pagation des ondes W avec la valeur M de la masse. A I'instant origine
t=o0, ce train d’ondes aura une forme qui traduira nos incertitudes
sur la valeur initiale des coordonnées du cenire de gravité. Au bout d’un
temps ¢ tres long, le train d’ondes se sera étalé, les incertitudes sur les
coordonnées du centre de gravité ayant augmenté. Si, i cel instant,
nous prenons une photographie stéréoscopique du corps en mouvement,
nous pourrons en déduire avec une trés grande précision (compatible
néanmoins avec les relations d’'incertitude) la valeur des coordonnées
du centre de gravité. Le train d’ondes W se trouvera donc brusquement
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réduit d'une facon considérable. Or, I'interprétation actuelle de cette
réduction du paquet de probabilité, c’est qu'elle résulte de I'action du
processus de mesure. Mais ick cette interprétation est inacceptable, car
les faisceaux de lwiniere qui ont éclaire le corps au moment de la photo-
graphie n’ont certainement pas pa exercer une action appréciable sur ce
corps dont la masse M peut étre considérable. 11 v a la encore une

objection tres forte contre Uinterprétation actuelle.

6. Conclusion. — J'ai tenu a citer quelques-unes des objections qui
ont €16 adressées 4 linterprétation actuelle de la Mécanique ondulatoire.
Comme on a pu le voir, elles émanent de quelques-uns des plus grands
esprits scientifiques de notre temps ('). Pour cette seule raison, il n’est
pas inutile de reprendre 'examen de la seule tentative qui ait été faite
pour éviter Iinterprétation purement probabiliste, ¢’est-a-dire celle que
Javais faite en 1427 sous le nom de « théorie de la double solution ».
Des travaux récents ont d’ailleurs. comme nous allons le voir, ramené
Pattention sur cetle tentative.

(') Nous signalerons aussi un article récent de M. ScHROUINGELR intitulé Are there
quantum jumps? (Brit. J. Phil. Sc., t. 3, n° 11, 1952) ot l'on trouvera de tres intéres-
santes remarques, notamment sur la nécessité de toujours considérer des trains d’ondes
limités et d’analyser ce qui se passe sur leurs bords.
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" DEUXIEME PARTIE.

LA THEORIE DE LA DOUBLE SOLUTION.

CHAPITRE VIII.

INTRODUCTION ET PROGRAMME.

|. Historique de la théorie de la double solution. — A I'époque on
me sont apparues les premieres idées de la Mécanique ondulatoire,
Jétais convaincu qu’il fallait réaliser une fusion physique des notions
d’onde et de corpuscule. Sans doute je savais bien que cela entrainerait
Pintroduction d’un certain nombre d’idées étrangeres a la Physique
classique comme le quantum d’action de Planck, mais je ne pensais pas
qu’il fallail pour autant renoncer aux types d’explications de la Physique
classique, ni surtout an désir d’obtenir unc représentation claire du
monde physique dans le cadre de I'espace et du temps. Javais donc
cherché & me représenter la dualité onde-corpuscule par une image ou
Je corpuscule serail le centre d’un phénomene étendu. On retrouve
sonvenl cette 1dée dans mes premiers travaux.,

‘ntre 1924, date de publication de ma These de Doctorat et 1927, on
voit mes idées & ce sujet se préciser dans une séric de Notes aux
Comptes vendus de U Académie des Sciences. Puis je les résume sous
le nom de « théorie de la double solution » dans un article du Journal
de Physique [1] (1), Mon point de départ ¢tait le suivant, 'onde plane
monochromatique que javais dans mes premiers travaux associée au
mouvement rectiligne et uniforme d’un corpuscule libre, ainsi d’ailleurs

(1) Les numéros entre crochets renvoicnt a la Bibliographie placée & la fin de¢
{’Ouvrage.
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que Ponde W du type continu utilisée par M. Schridinger et les ondes
continues de la théorie ondulatoire de la lumiere, me paraissaient
représenter correctement la « phase » du phénomene ondulatoire réel
centré sur le corpuscule, mais non pas son amplitude qui devait, & mon
sens, comporter une singularité constituant Is corpuscule au sens étroit
du mot. .

J'admis donc hardiment unc hypothese, Phypothese de 1a double
solution, suivant laquelle les équations lindaires de la Mécanique ondu-
latoire admettaient deux sortes de solutions : les solutions U continues
habituellement envisagées, dont la nature statistique commencgail alors
4 apparaitre nettement grice aux travaux de M. Born, et des solutions a
singularité qui auraient une signification concrete et seraient la véritable
représentation physique de la dualité onde-corpuscule. Les corpuscules
seraient done bien localisés dans Pespace suivant I'image classique,
mais ils seratent fnrcorporés a un phénomene ondulatoire étendu. Pour
celte raison, le mouvement d’un corpuscule ne suivratt pas les lois de la
Mécanique classique d’aprés lesquelles le  corpuscule est soumis
seulement & l'action des forces qui s’exercent sur lui le long de sa
trajectoire sans subir aucune répercussion de 'existence des obstacles
qui peuvent se trouver au loin en dehors de la trajectoire. Dans ma
conceplion, au contraire, le mouvement de la singularité devait dépendre
de lous les obstacles qui entraveraient la libre propagation dn
phénomeéne ondulatoire qui I'entoure et il en résulterait une réaction du
phénoméne ondulatoire sur le corpuscule s’exprimant dans ma théoric
par lapparition d’un « potentiel quantique » tout a fait différent du
potentiel des forces ordinaires : ainsi s’expliquerait Papparition des
phénomenes d’interférences et de diffraction.

Malheurcuscment le développement de cette théorie de la double
solution présentait de grandes difficultés mathématiques. Pour celle
raison, ayanl ¢té chargé de présenter un rapport sur la Mécanique
ondulatoire au Conseil de- Physique Solvay tenu a Bruxelles en
octobre 1927, j¢ me contentar de donuer un exposé de mes idées sous
une forme incompléte et adoucie a laquelle J'avais donné le nom de
« théorie de 'onde-pilote » [2]. Voici quelle était la base de cette forme
tronquée de mes conceptions. Dans mon Mémoire sur la double solution,

Javais montré que le mouvement du corpuscule était défini, du moins

a lapproximation newtonienne. par une formule que j'ai nommée
depuis « formule du guidage »

. I
(1 v=— - -grad:,
) 8 :
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. 2% . .
o ¢lant, au facteur /; prés, la phase de T'onde a singularité. Comme,

«J’aprés mes 1dées, la phase devait étre la méme pour Ponde a singularné
et pour Uonde continue W', on powvait donc dire que fe corpuscule élait
« guidé » par Ponde W suivant la formule (1). Et j’appelais « théorie de
I'onde-pilote » la théorie qui se bornait a postuler Uexistence du corpus-
cule et de Ponde W sans plus parler d’onde a singularité [2]. Cette
forme dégénérée de ma conception primilive se trouvait coincider
exaclement avee celle qu'avait soutenue vers la méme épogue
M. Madelung dans son interprétation hydrodynamique de la Mécanique
ondulatoire, mais elle avait beaucoup moins d'intéret et de profondeur
que mes dées iniliales sur la double solution. Mon exposé au Conseil
Solvay fut mal accueilll et P'interprétation purement probabiliste de
MM. Bohr, Born et lleisenbery soutenue par MM. Pauli, Dirac, etc. eul
netlement la préférence des savants présents. En particulier, M. Pauli
critiqua ma théorie en s’appuyant sur Pexemple du rotateur quantifié
de M. Fernn ().

Les objections, qui me furent faites ainsi que le succes de Uinterpreé-
tation de Bohr-lHeisenberg auprés de la presque unanimité des Membres
du Conseil (sauf Lorentz, Schrédinger et Einstein qui développa
Pobjection exposée au chapitre VII, § 2) firenl sur moi une grande
umpression. De plus, en rélléchissant apres la fin du Conseil a cette
théorie de P'onde-pilote que )’y avais soulenue, je m’aperqus qu’elle ne
pouvail pas réellement fournir une image concréte, conforme aux
conceptions de I'ancienne Physique, du dualisme onde-corpuscule. Elle
suppose, en elfet, que le corpuscule est guidé dans son mouvement par
la propagation de 'onde W' considéréc en Mécanique ondulatoire : or,
cecit ne pourrail conduire a une théorie causale et concreéte du type que
Je cherchais d obtenir que s’il était possible de considérer cette onde W
comme une réalité physique objective. Mais I'onde W usuellement
utilisée en Mécanique ondulatoire ne peut pas étre une réalité physique :
sa normalisation est arbitraire, sa propagation est dans le cas général
censée s’effectuer dans un espace de configuration visiblement fictif et
le succes de son interprétation probabiliste montre bien qu’elle n’est
qu’une représentation de probabilités dépendant de l'état de nos
connaissances ¢t brusquement modifiée par toute information nouvelle.
Je m’apercevais donc que la théorie de onde-pilote ne pouvait pas
fournir I'interprétation que je cherchais : elle ne réalisait pas la sépa-

(1) Voir plus loin Chap. XIV.
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ration nette de U'objectif et du subjectif & laquelle Bohr ct ses disciples
renoncaient, mais qu’il était nécessaive de maintenir si P'on voulait
obtenir une interprétation concréte et causale de Ia Mécanique
ondulatoire.

Au contraire. ma théoric primitive de la double solution, e¢n
distinguant Ponde W a caractére probabiliste ¢t subjectif de Tonde a
singularité (onde w) qui, elle, serait une description de la réalité
objective, pouvait peut-éire fourniv linterprétation d'un type plus
classique que javais recherchée. Mais la théorie de Ia double solution
comportait aussi, j¢ le savais bien, de nombreuses difficuliés, notamment
en ce qui concernait I'existence et la forme des ondes a singularité, leur
rapport avee les ondes W, la difficulté¢ d'interpréter avee des ondes a
singularité des expériences d'interférences telle que celle des trous
dYoung, etc.

Placé devant toutes ces difficultés, jai alors renoncé i poursuivree des
cfforts dont le résultat me paraissait trop aléatoive. Depuis 1928, je me
suis rallié a 'imterprétation probabiliste de Bohr et jai pris cetle inter-
prétation comme base de mes travaux personnels, de mon enscignement
et de mes livres.

Pendant 'ét¢ 1951, J'ai eu, & ma grande surprise, connaissance d’un
Mémoire de M. David Bohm qui a ensuite paru dans la Physical
Review [3]. Dans ce Mémoire, M. Bohm reprenait ma théorie de 'onde-
pilote en considérant onde U" comme une réalité physique. 1l déve-
loppait a ce sujet un certain nombre de remarques inléressanies e, en
particulier, esquissait unc théorie de fa mesure qui paraissait éearter les
objections que M. Pauli m’avait adressées en 1927 (). Ma premidre
réaction en présence du travail de M. Bohm fut de vappeler, dans une
Note aux Comptes rendus de U Académie des Sciences [ 4] les
objections, & mon avis insurmontables, qui me paraissent s’opposer a
I'attribution a Ponde W d’un caractere de véalité physique et, par suite,
a T'adoption de Ia théorie de Ponde-pilote. M. Takabayasi a d’ailleurs
repris ensuite ces objections dans des Mémoives dans lesquels il a
précis¢ d'unc maniére intéressante certains aspeets de la théorie de
Bohm [5].

M. Jean-Picrre Vigicr, qui poursuivait des recherches surles théories
unitaires en Relativité géncralisée a alors attiré mon altention sur
I'analogie entre la démonstration que javais donnée en 1927 en éta-
blissant la formule du guidage (1) dans le cadre de la théorie de la

(') Voir chapitre XV.
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double solution ¢t une démonstration imdiquée par M. Georges Darmots
dos 1926, (*), développée mdépendamment par MM. FEinstein et

Grommer (¥) en 1927 ct plusicurs fois reprises depuis sous des formes
diverses par Einsteimn lut-méme et par Fock, Infeld (+), Hoffmann, cte.
Cotte derniere démonstration établit qu’une  singularité du  champ
gravifique doit automaliquement, en vertu méme des équations non
din¢aires satisfaites par les coefficients L de la mérique de Pespace-
temps, suivee une géodésique de la métrique définie par le champ gravi-
fique extéricur qui se superpose au chamyp de la singularité. M. Vigier
a dhlleurs cherché & préciser Tanalogie qu'il m’avait signalée en
admeltant que Ponde des corpuscules présents (bien entendu onde «
objective a singularité) détermine d’une certaine manicre la structure
de Pespace-lemps.

Lanalogie signalée par M. Vigier mavait paru d’un tres grand térét
et Jai ¢1é conduit a préciser dans une nouvelle Note [6] la facon dont
on pourrait essayer de reprendre non pas la théorie de Ponde-pilote qui
me paraissait rester inaceeptable, mais la théorie de la double solution
qui ne souléve pas les mémes objections de principe. A la fin de cetie
Note, j’at dit qu’elle ne contenait qu'un programme dont Pexécution se
heurterait & de wres grandes difficultés. Laissant de ¢oté, malgré tout
son intéreét, la question du raccord avec la Relativité générale, je
voudrais dans I deuxieme parte de cet Ouvrage exposer ot en est
actuctlement Ia véalisation de ce programme.

2. Problémes qui vont étre traités dans les chapitres suivants. —
Nous rappellerons d’abord les résultats de notre Mémoire de 1927, en
particulier la démonstration de la formule du guidage et Pintroduction
du potentiel quantique. Nous développerons la Dynamique qui en
résulte pour le pomt-singularit¢, dynamique qui, par lintermédiaire du
potentiel quantique, se trouve dépendre des conditions aux limites
imposées au phénomene ondulatoive par la présence d’obstacles. Puis
nous ¢ludierons quelques conséquences des formules obtenues et une
récente objection faite a ce sujet par M. Einstein.

Un point important est la justification de la formule du guidage et de
Ia signification statistique de I'onde ¥ dans le cas des systemes de
corpuscules ¢n interaction, cas ot londe W considérée par la Mécanique

(?) G. Darvors, Les équations de la gravitation einsteinienne (Mém. Sc. math.,
Gauthier-Villars, 1927).

(*) Sitz. Preuss. Akad. Wiss., t. |, 1927.

(*) Rev Mod. Phys. i. 21, 194g, p. 408.
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ondulatoire usuelle est censée se propager dans Vespace de configuration,
espace visthlement fictil. Du point de vue causal de la double solution,
il faut démontrer que formule du guidege el interprélation statistique
du W résultent des interactions entre les régions singuliéres d’ondes dn
type « évoluant dans l'espace physique a trois dimensions. Dans mon
article du Journal de Physique de mai 192y, j'avais esquissé une
démonstration de ce genre ecn considérant Uespace de configuration
comme formé par les coordonnées des singularités. Je parvenais ainsi
4 une représentation du mouvement des corpuscules en interaction
comme s’accomplissant dans l'espace physique sans avoir nécessai-
rement a faire appel a I'espace de configuration. Cet espace fictif et la
propagation de 'onde W dans cel espace seraient seulement des artifices
de calcul commodes pour les prévisions statistiques. En poursuivant
dans cette voie, on devrait obtenir une inlerprétation physique de
Pemploi des fonctions d'onde W syméiriques et antisymétriques cn
Mécanique ondulatoire des systemes de corpuscules. On apercevrait
mieux la signification physique du principe d'exclusion de Pauli si 'on
parvenail a montrer que, pour les fermions, 'onde « ne peut comporter
qu une singularité tandis qu’elle pourrait en comporter plusieurs dans
le cas des bosons. J'exposerai certaines considérations que j'ai pu déve-
lopper a ce sujet et qui paraissent consliluer une certaine avance dans
cette direction [T]. .

Nous examincrons ensuite 'importante question de la signification
statistique de la grandeur | W |*. Dans mon Mémoire de 1927, J"avais
remarqué que, par suite de l'identité des phases des ondes W et w
postulée par la double solution, la quantit¢ a?=|W|[* obéissait a
I'équation de continuité

(2) ()7(1’ +div(atv)=o.

V élant la vitesse définie par la formule du guidage (1). Partant de cette
relation, J'avais montré qu'il estassez naturel de supposer que a2 == | W |2
donne la probabilité de présence du corpuscule en un point quand on
ignore laquelle des trajectoires possibles est effectivement déerite : on
retrouve ainsi la signification du | ¥ |* couramment admise. L’hypothése
taite pour y parwnir se présente comme un peu analogue a celle qu'on
fait en Mécanique statistique classique quaud on admet I’égale proba-
bilité des ¢léments égaux d’extension-en-phase en s’appuyant umquemenl
sur le théoréme de Liouville. Mais une justification parait nécessaire,
analogue aux démonstrations crgodiques qu’on cherche & établir en
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Mécanique statistique classique. M. Bohm dans un Mémoire récent [ 8]
a donné un raisonnement ui semble conduire a cette justification.
Nous examinons ensuite I'objection faite a la formule du gunidage par
M. Pauli en 1927 et la réponse qu’on peut y opposer en s’appuyant sur
I'idée essentielle de la limnation des trains d’ondes. L’analyse des
processus de mesure a, dans Pensemble de ces conceptions une grande
importance. ln conservant I'idée introduite par le développement de Ia
Physique quantique suivant laquelle tout processus de mesure modific
en général completement 'état existant avant son exécution, elle permet
de retrouver les relations d’incertitude d’Heisenberg en les conciliant
avec le point de vue causal; elle permet aussi de discerner le postulut
arbitraire qui est a la base a Ia fois de ce qu’on nomme dans les traités
usuels « la théorie générale des transformations » et du raisonnement
de M. von Neumann sur la prétendue impossibilité d’interpréter les lois
de probabilité de la Mécanique ondulatoire i I'aide de variables cachées.
Nous exposerons ces questions en nous appuvant notamment sur les
Mémoires de MM. Bohm et Takabayasi déja cies 3], [5].
Naturellement, il est nécessaire de pouvoir étendre toutes les consi-
dérations précédentes an cas de U'électron doué de spin obéissant aux

équations relativistes de la théorie de Dirac (et méme plus généralement

aux cas des partcules de spin supérieur a ;) Apreés une premigre
tentative insuffisante que Javais faite en ce sens, M. Vigier s'inspirant
d'idees de M. Bohm a donné une solution de cette question qui me
parait plus satisfaisante et que j'exposerai [9]. Il ne me semble pas que
I"extention des idées de la double solution a I'électron de Dirac souleve .
des difficultés particuliores.

Un point trés important a élucider est la question de la nature des
solutions u a singularit¢ postulée par la théorie de la double solution,
Un certain nombre de raisons que nous exposerons et en particulier Ia
parenté probable de la théorie de la double solution avec la Relativiié
géndralisée nous onl conduit a modifier d'une facon importante nos
conceptions primitives de 1927. \ celte époque je considérais I'onde w
comme une solution de l'équation {inéaire de propagation de la
Mécanique ondulatoire qui comporterait une singularité an sens mathe-
matique du mot. Il me semble aujourd’hui certain qu'il convient de
remplacer idée de singularité par celle d'une trés petite région
singuliére, en général mobile, on la fonction « prendrait des valeurs
trés grandes et obéirait & une équation non linéuire : c’est seulement en
dehors de celle Irés petite région singuliere que la fonction w obéirait
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approximalivement a I'équation de propagation lindaire de la Mécanique:
ondulatoire usuclle. Cette nouvelle maniere de définir l'onde w est
conforme aux idées de M. Vigier : il pense que 'on pourrait ainsi
raccorder la théorie de la double solulion avec les idcées de M. Einstein
qui a toujours cherché a représenter les corpuscules par des régions
singulidres du champ et peat-étre aussi avee Udlectromagndiisme non
lin¢aire de M. Born.

[examen de la fagon dont se présente dans ce cadre dlidées la
question des valeurs propres correspondanl aux élals quantilics m’a
conduit récemment & préciser la forme des ondes w0 et les relations de
celte forme avec celle des ondes W [10]. Elles comporteraient, confor-
mément d’ailleurs & une suggestion de M. Vigier, en dehors de la region
singulicre ot elles peuvent prendre des valeurs tres ¢levées, une partie
extéricure « régulidre » qui serait proportionnelle a 'onde W normée,
mais avec un factenr multuiplicatif ayant une valeur physique parfaitement
déterminée, ce qui correspond au caractire objectil atiribudé a Uonde «.
Ainsi londe W ordinairement considérée en Mdécanique ondulatoire et
arbitrairement normalisable continuerait & woir le caractere subjectif
et slatistique qu’elle posséde incontestablement, mais la partic extérieure
de l'onde w a signification objective ¢t & valeur parfaitement déterminée
serail proportionnelle a 'onde w normée a 'unité. Ainsi, sans attribuer
a P'onde W un caractere de réalité physique, la principale objection
contre la théorie de Ponde-pilote serut levée et le point de vue de
M. Bohm, convenablenient interprété, deviendrait aceeptable. De plus,
comme je le montrerai, cetlte conception de 'onde w formée d'un « doigt
de gant » tres élevé et tres éroit muni d’ailes représentées par une
fonction proportionnelle a Fonde W parait pouvoir fournir Uexplication
des expériences d'interférences telle que celle des trous d’Y oung, expli-
cation qui m'avail paru, il y a 25 ans, étre pour ma tentative de théorie
causale un obstacle insurmontable. L’ensemble des idées que nous venons
de résumer parait donc apporter un sensible progres dans les
conceptions de la théorie de la double solution.

Il reste cependant des points tros délicats a ¢lairciv. 1 ne semble pas
possible d’admettre, pour un corpuscule libre associé a un groupe
d’ondes presque monochromatiques, la partie extérieure régulicre de
l'onde u soit réellement représentée par Uintégrale de Fourier qui reproé-
sente 'onde W dans le cas d'un tel groupe d’ondes. 11 est done néeessaire
d’admetire que la proportionnalité entre la partie régulicre de Ponde «
et Ponde U considérée dans le méme probleme par la Mécanique ondu-
latoire usuelle a des Lmites et il faut. du moins dans certains cas,
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« afluiblir » la liaison établie entre Uonde « et Vonde W, Eexamen d'une
objection faite par M. Francis Perrin au sujet de la fcprésent:llion par
une onde sphérique divergente du phénomene de Pémission de corpus-
cules par une source ponctuelle confirme cette néeessité. Nous dévelop-
perous une suggestion suivant laquelle, en raison du caractére non
lingaive de I'équation de propagation de I'onde w et de la vaviation
rapide de w au bord des trains d’ondes, il se produirait aux limites des
trains Londes « des phénomenes non lindaires impossibles & prévoir
avee 'équation de propagation lindaire usuelle.

Nous ¢tudierons enfin des problemes trés importants et tres difficiles
relatifs & U'interprétation dans la théorie de la double solution du phéno-
wone de Ia rétflexion sur un miroir semi-transparent, de la réduction
du paquet de probabilitg, de la signification des ¢tats stationnaires et
de fa conservation de I'énergic et de 'impualsion, cte. De la possibilité
de surmonter les difticultés qui se présentent dans ces problemes,
dépendra en fin de comple le suceds ou I'échec de Uinterprétation cau-
sale de lTa Mdécanique ondulatoire éndiée dans cet Ouvrage. I1 parail
certain que, si U'on trouve une mani¢re de surmonter ces difficultcs,
elle fera imtervenir essenticllement le fait que tous les trains sont limités
el peut-¢tre aussi Pexistence de phénomenes non linéaires sar les fronts
dondes et dans les régions singulieres.

Pour terminer et en vue de faciliter le langage, jintroduirai la
convention suivanle : chagque fols qu’idl 0’y aura paslicw de distinguer
entre Lo théorie de la double solution et sa forme dégénérée, la
théoriv de Uonde-piote, jemploieral le terme abrégé de « théorie

causcale » (V).

(1) On trouvera fa plupart des textes anciens ou récents citdés dans ec chapitre dans
un opusctile de Fauteur et de M. Vigier {1 .
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PRINCIPES DE LA THEORIE DE LA DOUBLE SOLUTION.

. Idées générales. — Résumons d’abord les principales idées qui
m’avaient guidé quand avais imaginé en 1927 la théorie de lu donble
solution.

1° La syntheése des ondes et des corpuscules doit s'effectucr en
représentant le corpuscule comme une sorte de singularité an sein dun
phénomene ondulatoire étendu.

2* L’interprétation probabiliste de Ponde W' continue est exacte dans
son ensemble et doil ¢tre conservée.

2R

— 3
’

3° T’onde U élant éerite sous la forme W= e” ~ (avec « et gricls),
la phase ¢ a un sens physique profond correspondant aux indications
d’une inflinité de petites horloges dont le mouvement sevait hié i celui
du corpuscule (voir Chap. I, § 1). Cette phase » doit ausst ére celle
de T'onde a singularité qui, dans la théoric a construive, devra repré-
senter la structure réelle du corpuscule ¢t du phénoméene ondulatoire
auquel il est incorporé. Au contraire, 'amplitude @ de Fonde W', qui
est continue, n’a pas de signification objective : elle n’a gue le carac-
tere de représentation d’une probabilité.

4° Parmi toutes les probabilités envisagées par fa Mécanmque ondu-
latoire usuelle, la probabilité de présence |M'[? a sur les autres unc
sorte de priorité car elle correspond en réalité a la probabilite que le
corpuscule soit en un point dans Pétat représenté par Uonde W. Les

e / .
autres probabilités, telles que | ¢(X)|* pour la valeur lf_—[ de la quantité

de mouvemenl, onl un sens moins immédial : elles ne sont valables
qu'apres Paction d’un dispositif permetiant de mesurer la grandeur
envisagée quand on ne connait pas e¢ncore le résultat de cetle mesure.

5¢ Tout phénomene réel pouvant se représenter dans le cadre de
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Pespace el du temps, il n’est pas admissible que I'on ne puisse lraiter le
probleme de N corpuscules en interaction qu’en considérant une propa-
gation d’ondes dans l'espace de configuration du systéme, espace
visiblement ficuf. On doit done pouvoir poser ce probléme, et méme
en prineipe le résoudre, en considérant la propagation dans Vespace
physique a trois dimensions de N ondes a singularité s’influencant
mulucllement. Mais on devra ensuile pouvoir démontrer que le résultat
statistique des inleractions est exactement donné par la considération
de T'onde W du systtme dans 'espace de configuration qui, n’étant
quune représentation de probabilité, peut, elle, n’¢tre représentable
que duns un cadree fictif.

2. Principe de la double solution. — Muni de ces idées générales,
je me suis hasardé & admetire le principe suivant auquel j'avais donné
le nom de « principe de la double solution ».

i
—_— ¢

h

A toute solution continuelW’ = ae de Uéquation de propagation

de Lo Mécanique ondulatoire, doit correspondre une solution
EareRs

singularié u=fe" ) ayant la méme phase o que W, mais dont
Uamplitude [ comporie une singularité en général mobile.

Dans mon idée, la fonction u était la véritable représentation de
Pentité physique « corpuscule » qui serait un phénoméene ondulatoire
étendu centré autour d’un point (ou d'une région quasi ponctuelle)
constituanl le corpuscule au sens étroit du mot. Je considérais alors le
corpuscule au sens élroit du mot comme défini par une véritable
singularité: mathémutique, c¢’est-a-dire par un point o la fonction f
deviendrait infinie. Des considérations sur lesquelles je reviendrai me
conduisent aujourd’hui i penser que le corpuscule doit étre assimilé
non pas 4 une véritable singularité ponctuelle de «, mais a une treés
petite région singuliere de l'espace o u prendrait une rés grande
valeur et obéirail & une ¢quation non linc¢aire dont I'équation linéaire
de la Mécanique ondulatoire ne serait qu’une forme approximative
alable en dehors de la rvégion singuliere. L'idée que Péquation de
propagation de «, conlrairement a Péquation classique du W, est en
principe non linéaire m’apparait méme maintenant comme tout a fait
essentielle.

Quoi qu’il en soil, ma conception du corpuscule solidaire d’un
phénomene ondulatoire dont il serait le centre me paraissait permettre
de comprendre que le corpuscule soit localisé et que cependant son
mouvement puisse étre influencé par la présence d’obstacles situés loin
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de lui, comme cela parait nécessaire pour interpréter Fexistence des
phénomenes d’interférences et de diffraction.

Quelle peut étre alors la signification de Ponde continue ¥ usuel-
fement considérée en Mécanique ondulatoire? Ge doit étre sceulement
une fonction d'onde fictive a caraclere subjecud, susceptible seule-
ment de nous donner des renseignements d’ordre statistique sur les
divers mouvements possibles du corpuscule suivant qu’il suit T'une ou
Pautre des trajecloires définies par Ia phase +.

Pour voir si ces idées générales pouvaient conduire a des résultats
acceptables, javais d’abord examiné le cas le plus simple @ celut da
mouvemenl recliligne et uniforme associé i une ‘onde planc mono-
chromatique, cas qui avait déja ¢é1¢ a Porigine de mes réflexions ini-
tiales sur la Mécanique ondulatoire

3. Cas du mouvement rectiligne uniforme. — Considérons un
corpuscule en T'absence de champ. En 1927, on admettait comme

équation relativiste ponr la propagation de I’ onde W I'équation
42 .
(1) Ou -+ e miec\l = o (1, masse propre ).

On sail aujourd’hui, nous 'avons dit, que celle équation ne convient
que pour les corpuscules de spin nul et que, pour les particules de spin

non nul, on doit emplover d'autres formes d’équations d'ondes { par
) 3 { [

h
exemple les équations de Dirac pour les ¢électrons de spm — i) nisis je

laisse celte (Iuesl]on de coté pour I'mmstant.
On vérifie aisément que Pégquation (1) admet pour solutions des
BEL
ondes planes monochromatiques de la forme Y—ne” avee «
constanl ot o ¢gal a

(2) s=Wi—p.r <\\': g Y )
R N

Existe-t-1l une onde a singularité de méme phase ¢, satisfaisunt a
2ri

équation (1) ct ayant la forme = fe’ "2 Par substitution dans ( (1),
on voit que l'on doit avoir [ f = o. Comune cetle équation e¢st inva-
riante pour une transformation de Lorentz, on peut Pécrire . / =0 ¢n
se placant dans le systéme propre du corpuscule ot f ne doit pas

dépendre du temps. Dans ce systéme propre, Porigine des coordonnées
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coincidant avec le corpuscule, on trouvera comme solution & symétrie

sphérique
. ¥ ——
(3) S, Yo, 50) = ) ("u:\/-'b'ﬁ‘*“)’a—'—;'())
et par suite
2—'——1’;//1,“1"/
1) w(Zo, Vo, Bo, Ly) = 76 U
0

La fonction d’onde a singularité étant ainsi obtenue dans le systeme
propre, une simple transformation de Lorentz ¢n donnera I'expression
dans un autre systeme galiléen et, en passant ainsi dans le systéme
dont le corpuscule parcourt 'axe Oz avec la vitesse ¢, on aura (')

9
it (We—p3)

¢ e
T2y 4 (8 —vtp
|

Dans ce cas simple de Pabsence de champ, nous avons donc bien pu

(%) w(z, y, 5, )=

trouver une solution a singularité mobile vérifiant le principe de la
double solution. Je remarquerai dés a présent que, si l'on veut
remplacer l'idée d’une singularité par celle d’une tres petite région
singuliere o u obéirait a une équation non linéaire différente de
I'équation satisfaite par W, on serait amené a considérer I'équation Af = o
comme salisfaite dans tous le systéme propre sauf dans une trés petite
région finic entourant lorigine : la solution a symétrie sphé-
rique f= ,. hie pourrait donc représenter f qu’a lextérieur d’une
irés petite sphere entourant lorigine. La solution (5) serait alors
valable partout sauf a l'intéricur d'un tres petit ellipsoide entourant le
point z =y = o, z == ¢¢ aplati par suite de l'effet de la contraction de
Lorentz.

La solution « & singularité que nous venons d’obtenir a dans le
systtme propre la forme d’une solution du type polaire & symétrie
sphérique. On pourrait aussi trouver des solutions du type dipolaire
Czy

—— el de méme des solutions
0

en posant par exemple f(xo, ¥o, 50) =

du type n-polaire. Les choix que I'on peut ainsi faire correspondent a
des hypotheses diverses sur la « structure interne » du corpuscule et

ATz -
o (Wi—pz)
(') Remarquons que nous pourrions ajouter a(5) une solution a e * avec a
quelconquc.

-1

L. DB BROGLIE.
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sur la symétrie de cette structure, ce qui pourrail étre irés imporlant
dans une théorie générale des corpuscules.

Dans mon Mémoire de 1927, javais aussi indiqué qu’il existait
d’autres solutions d’un type différent. Si, en cflet, on se place dans le
systéme propre et si 'on cherche non pas unc solution de la forme

)=
27

T
— nig ety

i :./.e g —__—‘/'e'-ﬂi"n/.,)
mais des solutions de la forme
w=fe il avec vy # vo,

on trouve pour f dans le systéme propre I'équation

TI

(6) Af =5 (4

=

E=N

i) S

et 'on est amené a envisager les solutions a syméirie sphérique nulles
a I'infini
. C VIR — " ,
s Slro)= 1: costz::l‘/%——ll o=+ ¢ pour v > v,
(7) -

( Sf(ry) = e pour vy > .

Ces solutions correspondent a des élats du corpuscule ot sa masse
propre ne serait pas égale a la constante m, figurant dans I'équation de
/N
c?

propagation, mais aurait pour valeur - Ces élats que javais alors

nommés les états « contraints » du corpuscule sont intéressants. 1ls
présentent unc analogie instructive avec les circonstances que Pon
rencontre pour les photons enfermés dans un guide d’ondes dont les
mouvements correspondent a des masses propres variables suivant la
forme du guide d’ondes et le type des ondes propagées, masses propres
trés supérieure a la masse propre normale, nulle ou évanouissante, du
photon (*). Nous retrouverons des questions de cet ordre dans un
chapitre ultérieur (chap. XVII, § 6).

Les résultats qui précedent pourraient avoir de Pimportunce s1 la
théorie causale par\ enait un jour a décrire la structure des particules et
a prévoir les valeurs de lenrs masses.

4. Interprétation de 'onde W' dans le cas du mouvement rectiligne
uniforme. — Dans le cas que nous venons d’étudier ot 1l v a, a la fois
{ ya ’

(*) Louis pE BrooLie, Problémes de propagation guidée des ondes électro-
magnétiques, Gauthier-Villars, 2¢ ¢d., 1951, p. 34-36.
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absence de champ ¢t absence d’obstacles a la propagation, nous avons
trouvé une solution a singularité (ou a région singuliere) mobile avec
la vitesse ¢ le long de Oz,

Nous pouvons imaginer un grand nombre de tels corvpuscules se
déplagant suivant des directions paralleles avec la vitesse v et for-
mant une sorte de fluide a densité uniforme p. Considérons alors

27l

LS
/' qui a la méme phase o —= W¢— ps que Ponde # des

londe 1" -~ e

Cor]mscnlcs. l’uisquc (. ¢st constanl, nous pouvons poser

(8) o= Ka?

b

Nous voyons alors que Ponde W rveprésentera par sa phase le
mouvement des corpuscules caractérisé par les valeurs W et p de
Iénergie et de la quantité de mouvement et représentera ainsi par le
carr¢ de son amplitude la densitt des corpuscules dans Iespace.

St nous n’avons affaire qu’a un seul corpuscule (nous savons que
nous devons loujours pouvoir considérer ce cas) ¢t sl nous 1gnorons
laquelle des trajectoires paralleles & Oz il décrit et quel est son horaire
sur cetle trajectoire, il parait tout naturel de supposer, en raison de
I'équivalence des trajectoires paralleles et des divers points d’une
méme trajectoire, que la probabilité pour que le corpuscule se trouve
en un point de Pespace est partout la méme. Sil'on a eu soin de normer
I'onde continue W, on pourra donc prendre comme expression de la
probabilité

* 2

(9) p=w=|U

Ainst apparait le role de l'onde ¥ continue dans la théorie de la
double solution : tandis que l'onde « avec sa région singulitre décrirait
la- structure réelle du corpuscule, 'onde continue W ne serait qu’une
représentation fictive de l'ensemble des positions possibles de ce
corpuscule.

Naturellement Vonde « illimitée est une abstraction. Il faudrait dans
la réalité considérer des trains d’ondes u limités, possédant dans leur
partie centrale un facteur de phase trés sensiblement assimilable a la
phase d'une onde plane monochromatique : ce train d’ondes « limité
devrait correspondre a un paquet d’ondes W formé par la super-
position d’ondes planes monochromatiques se délruisant par inter-
férences a U'extérieur des limites du paquet et assimilable dans sa partie
centrale & unc onde plane monochromatique a amplitude constante.
Nous aurons i revenir ultéricurement sur cette (uestion.
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5. Etude du cas des champs constants. Les équations (J) et (C). —
Comme, dans mon article de 1927, je vais maintenant étudier le cas des
champs constants qui est le plus simple aprés celui de 'absence de
champ.

Nous admettrons que, dans le systeme de référence ot nous sommes
placés, le champ est permanent ct dérive d’un potentiel F(z, y, z).
Nous adoptons comme équation d’ondes ici valable,

i || G F2
3 v 1"t e,, A SN ol OO =
(10) Ou 7 F(z, v, z PTER <m‘,c c‘-’) ] 0

qui dérive de I'équation d’ondes relativiste @ un seul W donnée par la
formule (66) du chapitre Il en posant A=o et eV =F.

Imaginons que le corpuscule commence par se déplacer dans une
région Ry de Pespace o le champ est nul, puis pénétre dans la région R
oi régne le champ de force considéré. Dans Ry, on pourra représenter

2R

le corpuscule par Ponde w=f(z, y, 5, t)e” W ¢tudiée au para-
graphe 3. La fonction f présente une singularité (ou région singulitre)
mobile et ¢ coincide avec 'action de Hamilton du corpuscule.

Pour obtenir la représentation du corpuscule dans le champ de force,
il faut prolonger la solution initiale dans la région R. Pour cela, nous

2R

" " avec f et ¢ réels et nous portons cette

écrirons toujours u = fe
forme dans I’équation (10) supposée valable pour w. Ici se présente une
circonstance essentielle qui se retrouvera pour toutes les autres formes
de Téquation de propagation. Comme f et ¢ sont réels, I'équation
d’ondes va nous fournir, en séparant les termes réels des termes ima-
ginaires, dewx équations distinctes. L’une est la généralisation de
I'équation de Jacobi et sera appelée (1), Pautre est analogue a I'équation
de continuité et sera nommée (C). Dans le cas présent, elles ont la
forme suivante et sont valables en dehors de la région singulicre,

T

1 [/ de N2 N fdp Nt - h? l:_n/
() f_<()—t——F)——Z<;);)_m',c+ Sl
arY,3s

c? 4=
() ) )/ )5 of
1 (09 W NI Y
(e 55<d7_F><ﬁ e s =5/ 0F
LY, %5

I1 est ais¢ d’interpréter P'équation (J). Le champ ¢tant permanent, la
région R est analogue a un milieu réfringent a propriétés permanentes et,
. ; . - w

en y pénétrant, 'onde restera monochromatique avec la fréquence v = .

qu'elle possédait dans Ry @ ceci signifie que Pénergie reste constante.
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On aura donc dans R,

. . 7
() 2l 5 )= We—zi(r, p, 2)5 o =W;  Do=-—As.

el nous pouvons ¢crire I'équation (J) sous la forme

>‘ (!‘f'y—m?(-?—i— e 0
-\ Je ) T TR

(13 4y LW —Fp—

Il est bien évident que, si nous avions introduit dans 'équation d’ondes
Juc, |

2T

T

non pas onde u a singnlarité, mais Ponde correspondante W' —ae
de méme phase o, nous aurions trouvé

() () W ==Y Q')*' | = mictr %—‘f = micr— |

Jdx w2

Rk
sk

AN

puisque « ne dépend pas de £ en ce cas.
La comparaison de (14) avec (13) montre alors que le principe de la
p [ q P P
double solution, qui postule I'identité des phases ¢ dans u et dans W,

e¢niraine comme (:Onséqu«‘nco :

O/ _ de¢_ _ Aa

I a a

(15)

Tout au moins cette relation est-elle valable en dehors de la région
singuliere, la ot u ¢t W obéissent & la méme ¢quation linéaire (10).

Si les derniers termes de (13) et de (14), qui vont nous servir plus
loin i définir le potentiel quantique, sont négligeables, 'approximation
de P'Oplique géométrique sera valable : alors les équations (J) et (J')
deviennent identiques a I'équation de Jacobi de la Mécanique relativiste
et Pon voilt que g, coincide avec la fonction de Jacobi raccourcie pour les
champs permanents. 11 suffit pour le voir, de poser dans I'équation (65)
du chapitre III :

S:\Vl——ﬁ,, A=o et eV=1V.

6. La formule du guidage. — A l'approximation de la Mécanique
ancienne (Optique géomdéirique), la vitesse du corpuscule quand il
passe au point M est détermince par le fait que la quantit¢ de mouvement
est égale & (—gradg)y= (gradg,)y puisque alors o = S et o; = S,.

Ceci résulte de la théorie de Jacobi. Nous voulons chercher a établir
que, méme en dehors de Uapproximation de I’Optique géométrique,
on a encore cette relation. Nous obtiendrons ainsi une sorte d’extra-
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polation de la théorie de Jacobi au-dela des limites de validié de
POptique géoméirique.

Nous partirons de la remarque que, pour nous, le corpuscule au sens
étroit du mot est défini par une trés petite région singuliere mobile et 1l
est alors naturel de supposer que, lorsqu’on se rapproche du centre de
cette région singuliere, la fonction f croit trés rapidement, sans doute
comme l'inverse d’une puissance de la distance au centre @ par suite la

.0 ) C . )
dérivée o le long du chemin suivi doit croitre encore plus rapidement
Js o] | I

que f.

Considérons une trés petite sphére S entourant la région singuliére

1A

W':usd,tz MP cos 1]/:3
=vdtcos 11s

c ¢

Fig. ¢

et a U'intérieur de laquelle f croit trés rapidement. Méme, si 'équation
d’ondes satisfaite par « a l'intérieur de la région singulicre n’est pas
lindaire, nous supposerons que, sur S, la fonction u obéit encore a
I'équation d’ondes lin¢aire de la Mécanique ondulatoire usuelle. Nous
admettrons que sur S la fonction ¢, et ses dérivées premiéres on!
sensiblement partout la méme valeur : cette hypothése revient a supposer
que les dimensions de la région singuliére sont trés petites par rapport
a la longueur d’onde locale correspondant a la phase o,. L'amplitude /
n’a pas, en général, la méme valeur en tous les points de 5, car cela
serait incompatible avec la contraction de Lorentz que la structure du
corpuscule subit du fait de son mouvement.

Représentons la sphere S de centre O a I'instant ¢.

Prés d’un point M de cette sphere, figurons les positions aux temps /
et {+di¢ d’une méme surface f-=const. La direction S sera celle
de grad fen M, la direction n etant celle de grad 1 sur toute la sphére.
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D’apres nos hypotheéses, on a

SN~
(16) df) ~ o.
ds /w,

Or, I'équation (C) permet d’écrire

LW )’)/ U 99 s = Lros.

(17) Jds dn

.. l)/ ' N o ITnQ
Divisons pay ;! lenons comple de (16) et remarquons que la vitesse

af
. . W 1e . ot
de déplacement de la valeur de fen M Uinstant ¢ est égale a ;/ )
i N I)Q M,
1l vient
(18 o? d . /N
(18) vy = m‘gra o] cosns.

Or, ce résuliat est valable en tous les points de la sphere S.
s
Comme ¢,= ¢ cosns, on en conclut que la vitesse v du mouvement

(d’ensemble de la région singuliére a lieu dans la direction n de gradg,
et qu’elle est donnée par la formule

(19) V= grad 1= —

o2
V=T  grads.

Cette formule fondamentale sera nomméce la « formule du guidage ».
Flle montre que le mouvement d’ensemble de la région singuliere
(c’est-d-dire e mouvement du corpuscule) s’obtient tout simplement en
extrapolant la formule p =—grad$s de la théoric classique de Jacob:
au dela des limites de POptique géométrique, c’est-a-dire de I'ancienne
Mécanique. En effet, on a :

W1 niy

et la formule (1g) donne

Nous savons dailleurs que, quand I'approximation newlonienne est
réalisée (v <<Ce), le lerme cssentiel de W est I'énergie propre mgc? qui
se trouve éire beancoup plus grande que I'énergie potenuelle F. On a
alors W — ¥ ~ mqc? et la formule du guidage prend la forme

I ] :
(20) V= mgrad;: ;’igrad;|,

m élant Ia masse constante, égale & my,, de la Mécanique newtonienne
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Nous devons faire ici sur la démonstration de la formule (19) une
remarque importante qui pourrait conduire a prévoir des phénomenes
non prévus par Uinterprétation’ actuclle. Nous avons noté¢ que notre
dé¢monstration de la formule du guidage supposc cssentiellement que .
la longueur d’onde doit étre beaucoup plus grande que les dimensions
de la région singuliere. Sil'on désigne par d la plus grande dimension
de la région singuliere, la condition précédente s’éerira
{21) % s,

Comme d parait devoir étre au plus de Iordre de 107 ¢cm, on voit
aisément que, pour les particules usuelles de la Physique atomique, Ia
condition ne peut cesser d’étre satisfaite que pour des vitesses trés
voisines de ¢. On aura alors p ~ \7\1 ct la condition (21) s’éerira

he 2., 1016 107"
29 [ < — = ——— erg ~ ——— ¢lectron-volt .
(22) W< d a s d " olt (eV)

Pour d ~ 1071 ¢m, ceci donne
(23) W < 1oveV.

Pour des particules d’énergie supéricure a 10*eV, la condition
pourrait n’étre plus remplie : on se trouverait alors en présence de
circonstances toutes nouvelles et les prévisions de la Mécanique ondu-
latoire sous sa forme actuclle pourraient ne plus dtre vérifices (1).

7. Introduction de l'onde W : sa signification statistique. — Nous
allons maintenant introduire 'onde ¥ dans le cas des champs permanents
envisagé dans les deux derniers paragraphes.

La phase o, étant supposée connue, on peut lui faire correspondre
une infinité de mouvements possibles qui, d'aprés (19), s’exéeutent
suivant les diverses courbes orthogonales aux surfaces o= const.
Envisageons 'ensemble de tous les mouvements possibles des corpuscules
le long de ces trajectoires : nous obtenons ainsi 'image d'un nuage de
corpuscules. Si nous supposons qu’au dé¢but de leur mouvement ces
corpuscules se trouvaient dans une région Ry ou il n’y avait pas de
champ, le nuage sera représenté statistiquement dans Ry par une onde ¥
plane et monochromatique (ou plus exactement par un train d’ondes
limité assimilable dans presque toute son étenduc i une onde plane
monochromatique) qui sera associée a tout 'ensemble de ces mouvements

() On trouvera en appendice A la fin du volume une démonstration différente de Ja
formule du guidage.
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rectilignes et uniformes. Une fois parvenus dans la région R, les
corpuscules auront des vitesses données par la formule du guidage et
leur mouvement d’ensemble sera comparable au mouvement permanent
des molécules d’un fluide puisque leur vitesse dépend uniquement de
lewr position et non du temps, la fonction ¢, jouant le role d'un
potentiel des vitesses.

Les courbes orthogonales aux courbes oy == const. sont ici des « lignes
de courant » : elles forment des tubes & Uintérienr desquels les corpus-
cules se déplacent. Comme ces tubes ont une section droite variable, la
densité p du fluide varic d’un point & un autre, tout en restant constante
en chaque point an cours du temps. Des lors, 'équation de continuité
hydrodynamique & laquelle doit satisfaire la fonction p(z, y, =, ¢) sc
reduit a

(24) div(sv)=0

qui, compte tenu de la formule du guidage (19), peut s’écrire

. d [ g N Agy
(23 7)5<10g \\"—F>~~ Teradsy] .

Comme dans le cas de Pabsence de champ, nous allons vssayer de
représenter slatistiquement les positions des corpuscules du nuage a
Paide d’'une onde ¥ continue. Dans la région Ry, U'onde W cst au début
du mouvement un train d’ondes limité assimilable dans presque toute

E(\\'z—p.r)

son ¢lendue d une onde plane monochromatique W =« e ke avee a

constant. Comme nous 'avons vu, il parait naturel de définir la densité p
en fonction de Pamplitude constante @ par la relation p = K2, Ensuite
le train d’ondes W pénéirera dans la région R ot regne le potentiel
F(z, y, 5) : sa propagation scra alors réglée par 'équation (10) et,
d’apres le principe de la double solution, on doit pouvoir I'exprimer
sous la forme

o

ami (X, Y, 5, /)
V(e y, 5, 8)=alax, y, z)e"
¢ ¢tant la méme fonction de phase que dans w.

En substituant cette forme de W' dans 'équation (10), on obtient par
séparation des termes réels et imaginaires deux relations (J') et (C/).
[’équation (J') a été éerite plus haut [ formule (14)] et nous a conduit
d la relation (13) par comparaison avee (J). Quant a la relation (),
comme « ne dépend pas de ¢, clle prend la forme simple

(26) —-gradagrad;—l—%a[j:p-o,
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avec
e =W/l—z5, et O = Agy,
ce qu’on peut encore écrire
2 da J A
27 —~ - = —(loga?) = —
7 a dn an (loga®)
En comparant avec (23), on trouve

[

(>8) AW =T

= const.

Puisque, dans Ry, ona F = o et 0 = K2, on doit avoir partout dans R

(29) plry y, 3)=Ka*(a, ., z‘)[_l— L(LWL-“—)}

et Uintensité ¢* de 'onde W détermine p. A Papproximation newtonienne

N

ou W0, on trouve
s=Kar=K| W2

v

Nous pouvons maintenant revenir au cas d’un corpuscule en supposant
que le nuage précédemment imaging représente un ensemble de possibi-
lités. Nous supposons, en effet, la vitesse initiale donnée dans Ry en
grandeur et direction ct, comme nous ne savons rien de plus, il parait
loisible de supposer que toutes les positions dans le train d’ondes initial
sont ¢galement probables : alors, a chaque hypothese sur la position
initiafe correspondra un mouvement bien délermind et, en juxtaposant
par la pensée loutes ces possibilités, nous obtiendrons I'équivalent du
mouvement d'un nuage infiniment dense de corpuscules identiques. La
probabilité pour que le corpuscule soil présent, & un instant donné,
dans un élément de volume dv entourant Ie point de coordonnées z, y, z
de la région R est alors donnée par o(z, ¥, 5)de avee la valeur (29)
de p. A I'approximation newtonicnne, si I'on a pris soin de normer la
fonction W, la probabilité de présence du corpuscule sera ‘
(30) o, y, 5)de = a2(x, y, s)de ="W(r, ¥, 2z, 1) de

et nous relrouvons ainsi la signification statistique habituelle de | W |2

La validité du raisonnement précédent, dont je m’étais contenté dans
mon Mémoire de 1927, peut étre contestée. Nous reviendrons sur cette
question au chapitre XI1I.

8. Formule du guidage et théorie de l’onde-pilote. — Nous ferons
remarquer, dés & présent, que, dans la conception de la double solution,
la phase ¢ étant supposée commune a I'onde a région singuliére « et a
l'onde statistique continue ¥, la formule du guidage (19) va permettre
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de déduire les trajectoires du corpuscule de la seule connaissance de
Fonde W, On peul done étre tenté de ne plus parler de 'onde u et de
considérer le corpuscule comme un point matériel dont on postulerait
Iexistence et dont le mouvement serait, par hypothese, déterminé a
partir de la phase de 'onde continue W par la formule du guidage.

Clest cette forme tronquée, dégénérée, de la théorie de la double
solution que je me suis malheurecusement contenté de présenter au
Conscil Solvay d’octobre 1927 sous le nom de « théorie de londe-pilote ».
Sous cette forme, mon interprétation coincidait avec une lentative faite
vers la méme ¢poque par M. Madelung etsouventappelée « 'interprétation
hydrodynamique de Madehing ».

Il ne semble pas que la théorie ainst tronquée soit acceptable. Sl
existe, comme le suppose la théorie de la double solution, un phénomene
ondulatoire objectif représenté par une onde # a région singuliére dont
la propagation est modifiée par I'action de champs extérieurs et par la
présence d’obstacles (interférences et diffraction), on peut concevoir
que lout se passc comme si la trajectoire du corpuscule, qui lui est en
réalité imposée par la propagation de Ponde «, était déterminée par la
phase de Ponde W. Mais il estimpossible de supposer que ce soit 'onde W
qui régisse le mouvement du corpuscule parce que cette onde W n'est
qu'une représentation de probabilité a caractere fictif ¢t subjectif.

Nous aurons a revenir plusieurs fois sur cette importante question.
Nous verrons notamment que, dans son Mémoire de janvier 1952,
M. David Bohm a repris la théorie de onde-pilote en admettant que
Fonde W est une « réalité physique ». Ce point de vue me parait inad-
missible, méme quand il s’agit de Ponde W normée de la Mécanique
ondulatoire pour un seul corpuscule et & plus forte raison quand il s’agit
de Ponde W d’un systéme de corpuscules dans Pespace de configuration.

Nous verrons néammoins plus tard (chap. XVII) qui, dans le cas
d'un corpuscule, la partic extérieure de Ponde u est probablement (tout
au moins dans un grand nombre de cas) proportionnelle a 'onde W
normée correspondante avec un cocfficient de proportionnalité parfai-
tement déterminée. Ceel permet d’établir une certaine relation entre
le point de vue de la double solution et celui de M. Bohm. Mais, bien
entendu, cette relation ne subsiste pas dans le cas de Tonde W d’un
systeme dans Pespace de configuration. Nous approfondirons tous ces

points ultéricurement.

). Etude du cas général des champs non permanents. — [our traiter
le cas général des champs non permanents, nous partirons encorce de
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Péquation relativiste de propagation & un seul W (valable pour les
particules de spin nul). Pour un corpuscule de charge électrique ¢ se
déplacant dans un champ électromagnétique qui dérive du potentiel
scalaire V(z, ¥, z, t) et du potentiel vecteur A(x, y, 5, ), nous avons
trouvé [ formule (66) du chapitre III] Péquation de propagation suivante :

Gmis W GmiNvE M AmfoL e
Co V=T 6 =7 e ["l'~“—,,.‘_;<\-~ﬂv\->]‘l =o.

Nous allons toujours supposer que le corpuscule envisagé commence
par se déplacer dans une région R, de 'espace ou le champ est nul et
ou I'onde # a la forme d’un train d’ondes limité dont la phase a presque
partout la forme ¢ = W¢—p.r. Puis le train d’ondes pénctre dans
une région R ou il existe le champ électromagnétique considéreé. Nous
cherchons toujours a représenter dans R la solution u sous la forme

W= f (x5 0)e

oit f et ¢ sont réels et on f comporie une trés pelite région singulidre
mobile. En substituant cette forme dans I'équation (31), nous trouvons
les deux équations (valables en dehors de la région singulitre)

3 ! (ZV s\'>2)—$1 <[)v -+ Av,.>2:m}‘,r"—’+ e EL./’

B RS

(2N ot — N\ 0 1wt/

(32) » ) /.'T"V’“ ) v
7I "j?__,r 4'7*\1 «7;;7 ; (‘ _ﬁlﬁ . .
( (€) 2\ o e > o d (.‘r)‘l,' Te A‘"> de '!‘/ O

[

Si le dernier terme de (J) est négligeable, 'Optique géométrique est
valable et ¢ coincide avec la fonction de Jacobi S de la Dynamique
relativiste des champs non permanents. L’écart a partir de I'ancienne
Mécanique est toujours li¢ a la présence du terme [,]T/

Dans I'ancienne Dynamique, on devait distinguer, en présence du
potentiel-vecteur A, la quantit¢ de mouvement totale (moment de
Lagrange)

myv

(33) p=—gradS= —— —+
V7

et la quantité de mouvement cinétigue

: S
3 — mav — ,I, (()_ e 7> '
(30 8= ez el V)V )

Nl m
P
e
~1 =
——

(1) Car W = (Lb = ﬂ_ I
at Vi@ =
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al

Sil'on reprend la démonstration de la formule du guidage en partant
de la formule (32) (G), on trouve pour la vitesse d’ensemble de la
région singulidre

colinéaire & v. On est donc amené & poser

otm

(35) g=— [gradS+

c? (grad:p -+ 1A> o
(36) v=- A )
de vV Jdy \
o ) It N

Cette formule correspond exactement a celle que l'on obtient a partir
de (34) et (35) en extrapolantla théorie de Jacobi en dehors du domaine
de I'Optique géomdétrique et en remplacant S par g.

La formule (1) valable pour les champs permanents est évidemment

un cas particulier de (36). A Papproximation newtonienne, on peul

Jo " .
poser —;— —:V ~ mgoc? et 'on trouve
1,

o T L _ 1
(37) v = m(\grad¥+(;A>_ g.

Il cst de nouveau facile d’introduire ici U'onde continue ¥ avec sa
signification staustique. Il suffit encore de considérer d’abord une
mfinité de corpuscules identiques qui décriraient toules les trajectoires
définies par la formule du guidage & partir de la fonclion ¢ (2, y, =, ¢)
el qui formeraient une sorte de fluide en mouvement,

L’¢quation de continuité prendrait la forme

, Jdp . _ .opetg
(33) Ji +div(esv) = ()[—+—dn =0
- —z)
Jt
Posouns p' = 5 ©__, tenons comple de la relation entre g et gradg
2
T E\/
i

. . Vv . .
etde la relation de Lorentz entre les potentiels 07[ -+ divA=o0. 1l vient
[

o Jdlogey’ 1 /de N\ dlogz’
(39) g)a—rip+2i‘<})}_€\])d();‘ =—D0%
ou n définit en chaque point la direction du mouvement.

Comme précédemment, nous allons chercher a associer l'onde
continue W' a ce (luide statistique en mouvement. Dans la région Ry,
celle-ci doit ¢tre un train d’ondes limité assimilable dans presque toute
son ¢tendue & une onde plane monochromatique de phase o == W¢—p.r.
Dans la région IR, en vertu du principe de la double solution, clle devra
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s'éerire

20

PV, 5,0

(f0) W,y s )= ala, y, 5 1)

En introduisant la forme (40) dans I'équation (31), la séparation des
termes réels et des termes imaginaires fournit deux relations, savoir

. 1 [ds A AL B, Lt Qo
S(J) ;:l(_/)i —;\) ~\,_‘ <{—)—;;-+— A,,;) =miect+ — —,

N m

y 17«
FLASA M}
(i) 4
, 1 /de (N de N [Jde & da .
(. W—”)Ti/ T - <,u+z-f‘~">,;7—“ SUSES
RES

La comparaison de Véquation (J') avee Végquation (J) de la formule (39)
donne

D] El,/,—— D“
(i) ¥ T Ta

relation valable partout sauf dans la région singulicre.
L’équation (C') peuat s’éerire (n élant compté dans la direction de V)

Jloga? 1 (/):; i >r}loga‘—’

s )
(i) - o ; dt

Jn c?

in comparant avec (3¢), nous voyons que, si Pon suit le mouvement
. ’
o . s

des corpuscules, le rapport ~3 resle constant. Puisque dans Ry o0 V = o,
on a p=Kga? on en déduit que dans R,

N - [ Jo .
(1) e, vy, 5, ty=Ke? V).

’ ) - 7

, . . . N ; Y PP
A Tapproximation newtonienne on n o E V &~ g e?, on pourra éerive,
171

si I'on a normé la fonction W,

(15) flry, 5 ()= ar=| W2,

Supposons maintenant (u’il n’y ait qu’un scul corpuscule et admettons
que, dans la région Ry, nous puissions considérer toutes les positions
du corpuscule dans le train d’ondes W initial comme également probables.
Le nuage de corpuscules considéré plus haut ne représentera plus que
Iensemble des mouvements possibles du corpuscule unique corres-
pondant a la fonction de phase ¢(z, y, 5, 7) supposée connue. On en
conclura, comme précédemment, qu’'a I'approximation newlonienne,

Pintensité @*=| ¥ |* de 'onde ¥ normée doil donner en valeur absolue

la probabilité de trouver le corpuscule au point z, y, = de la région R a
Pinstant ¢. Sous réserve des critiques déja signalées ue l'on peut

adresser a ce genre de démonstration, nous retrouvons ainsi la signifi-
cation habituellement admise pour | ¥ 2.



CHAPITRE X.

LA DYNAMIQUE DU CORPUSCULE DANS LA THEORIE CAUSALE.

1. Equations de Lagrange et de Hamilton. — Si nous regardons
I'équation (J) obtenue au Chapitre précédent [formule (32)], nous
voyons qu'on peut lui donner Vaspect habituel de I'équation de Jacobi
relativiste en 'éerivant

Wa

(1) ;(%ME '\)‘lﬁE (3—1:+6A ) Maer,

/
Ay, T

a condition d'attribucr au corpuscule une masse propre variable.

() M, :\/ ) \/m(, _,-{7,_-‘-’3 ( %ﬁ)

qui cst fonction de la position du corpuscule et du temps. Elle s’exprime

{

R . . , i 17 . . R
a l'aide des deux quantités dgales (-D/—/) ou <E)—l> qui doivent étre
N ]

calculées au voisinage immdédial du corpuscule (sur la sphere S précé-
demment introduite). ,

Les anciennes Mécaniques négligeaient le second terme sous le radical,
ce qui revenait a supposer /o infiniment petit.

Cela pos¢, nous allons pouvoir faire découler le mouvement du
corpuscule du principe de IHamilton et retrouver les équations de
Lagrange de la Dynamique relativiste a condition d’y faire figurer la
masse propre variable My. Nous définirons donc Ia fonction de Lagrange
en posanl -

(3) *MDC'\/I—)-—-E\%— VA (8:;})

et le principe d’action stationnaire de Hamilton s’écrira

4

9 af 2 di = o.

0
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On est alors conduil, comme de coutume, aux équations de Lagrange,

(5) d AN o8
- ot \ Oy = 9z’

¢t I'on introduit les moments de Lagrange par les définitions usuelles

oL Myv, €
ped ) = — e — A.,.,
IOy \/] — (jl c

(6) P

On désigne toujours sous le nom d’énergie la grandeur suivante :

(7] W:Z PP — £ = L +eV

ey s

sz

ct 'on vérific aisément qu’elle reste constante dans un champ permanent.
On vérific aussi qu’en posanl
Jz do Je d

(+) P i

on retrouve pour o 'équation de Jacobi généralisée,

w3

D’ailleurs, en combinant les expressions (G), (7) et (8), on retrouve
aisément la formule du guidage.

On voit donc que, quand on connait la fonction « (on la fonction W),
la théorie d’Hamilton-Lagrange permet en principe de calculer la forme
des trajectoires possibles et le mouvement du corpuscule.

On peut chercher & voir si les équations de cette Dynamique peuvent
se mettre sous la forme canonique de Hamilton. L’expression hamilto-

nienne de énergie est ici

. >/ 3
(ro) H(x, Yy &5 Pay Pry Pas t)y=c \/M“ ¢+ 24 ([)J:_ ¢ A ) +:V.

2,5

Comme dans le cas ou la masse propre cst conslante, on vérifie la

validité des équations

(11) flt_m (i =1,2, 3)

On obtient ensuile

- dp, __0E My IV s _JA
() G =T = eVi—T Jr  ‘dz ¢ oz
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el
. OH OV e Lo oM, ( ¢ > ¢ dAL
13) — = m T WV [C M%) (e SAs <—z Iz )]
Z2,0, 5
. 7A% £ JA . /——,;;_;()Mo _dp.
_“()./c—kzv%—‘c VI—= & =~
Le second groupe de équations de Hamilton :
(rd) dt T dg; (b=1723)

est donc également valable.

2. Formalisme relativiste de la Dynamique précédente. — Il est aisé
de transcrire ce qui préceéde en utilisant le formalisme de la Relativité
générale. On éerit alors I'équation d’ondes (1) sous la forme

1 J N Z3 J0* i=2 g2
; LA VAR Y O AT 2o 2 =
(13 V— g Jxf [ ae ().'1?‘] U Az <m“L P > F=o

ou, les g élant les coefficients classiques de la métrique d’espace-
temps, les g sonl les composantes contrevariantes correspondantes
ct & le déterminant des giy. Les PP sont les composantes du « potentiel

d’Univers » égales A A, A, Ao etVetlona

Pre P Pf= V2 \2

R . 1 J — ) . e .
Quant a Vopérateur 7 ();—K [\/~ & g“d{;—/]y il est la généralisation du
iy
dalembertien :
1 g?
=12\
U c? Jt?
Si 'on pose
2:itﬁ(r gy Xy, y)
{(16) I — g r Y bR
) = a(xy, Tsy L3, L1) €

avec @ et ¢ réels, en adoptant la définition (2) de My, on trouvera par
substitution de (16) dans (15)

s (J) g“<{%} — sl’k> (% — EPZ) = M3e?,

(17)
. 1 J —_— Jz
(((J) V/— (E;[\/—g’g“a—(()—zl—spl>]_0-

. - dr! ,
La vitesse d’Univers de composantes u/= —— sera donnée par la

L. DE BROGLIE, 8




11 CHAPITRE X.
formule

1757
(18) Mocu!= 4'A/(m—;PA>

qui est ici I'expression de la formmule de guidage. Bien entendu, on
auwlu—=t.
Iéquation () exprime que le vecteur d’Univers dont les compo-

Je .
sanles covartantes sont «* (T—WEPA a unc divergence nulle. Nous

pouvons donc supposer que ce vecteur est proportionnel au quadri-
vecteur « densité-courant » G/=peu! du nuage de corpuscules price-
demment envisagé et nous écrirons

S AR o :
(19) Clzpollel\gA/l(~(m—3[)k)7
ce qui deviendra en raison de (18)
(20) co= KMgenz,

L.e nombre des particules par unit¢ de volume dans le nuage est
donné par la quatriéme composante du quadrivecteur, G/, soit d"apres

(17), (19) €1 (20).
\
(21) s=C'=RKMycaur=Ka2 gtk (z_}():— —z )

S’il 'y « pas de champ gravitique on peat donner aux g leurs
valeurs galilécennes bien connues (&) = g% , gl
et g4= o0 pour ( = k). L’on retombe alors sur I’ uns(‘ml)lv des formules

Obtenues Pl'Ll‘Ct",d(‘, mmenl.

=t

On peul encore remarquer qu’en labsence de champs électro-
magnétiques et gracifiques, le principe de moindre action va s’éerive
ici

(22) af Mycu; det = ¢ Bj Myds = o,

Pintégrale étant prise le long de la ligne d’Univers el la variation 4
n’affectant pas les points extrémes de cette ligne,

.. M
espace-temps étant alors eaclidien, nous poscrons ds == =" ds, d’ou

"
. Mz M3 )
(23) dot = Vst = ) W) ik = vy dai dak,

: msg mg |

avee la définttion

M; Ve ) Nz (o
(4) Y= -3gh = <1+ —_ D—") git = <I+ — D/)xm.'-,

mg fm=rmict jrimier f

ou les gt sont les valeurs galiléennes de gy, rappelées plus haut.
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Ainsi, méme si le corpuscule n’est soumis a aucun champ gravifique
ou électromagnétique, ses trajecloires possibles, telles qu’elles sont

prévues par la théorie de la double solution et définie 6/ do — o, sonl

les mémes que si Pespace-temps possédait Ia métrique non cuclidienne
définie par les vi.

En  dautres termes, st des phénomeénes d'interférences ou de
diffraction provognés par des conditions avx limites interviennent ¢t

. . a " o i
donnent & Ia quantité % = Q/l une valeur différente de zéro, tout se
ol

passe comme st espace-temps posscédail pour le corpuscule une
métrique non enclidienne définie par les ~j.. Celle remarque  est
apparentée aux efforts poursuivis par M. Vigier pour relier la théorie
de Ia double solution aux conceptions de la Relauivité générale en
admettant que la métrique de espace-temps dépend réellement en
chaque point de la valeur locale de la fonction «.

J. Le « potentiel quantique » et son interprétation. — Si l'on
détermine, a Paide d'nn caleul touta fait classique en théorie de la Rela-
tivité, les géodésiques correspondant a la métrique do? =~ da’ dxt,
on tronve qu’elles ont pour équaltions

IM,
ol

(90 (%(]\'4.(:11[):(,' ({=1,2,3,4)

Ces équations nous redonnent exactement pour le corpuscule le mou-
vement déja obtenu plus haut.

La forme (25) des équations du mouvement est Lrds instructive parce
qu'elle nous monire que, si My étail une constante, les compo-
santes Myew; de la quantité de mouvement seraienl constanies en
Iabsence de champs. Si ces composantes varient en général, c’est que
les variations de My, sont équivalentes a 'existence d’un « champ quan-
lique » représenté par le second membre des ¢quations (25). Ce champ
(uantique peut exister, méme en 'absence de tout champ du type clas-
sique (gravifique ou dlectromagnétique) : il apparait des que les
conditions aux limites provoquent I'apparition des phénoménes d’inter-
férences ou de diffraction el rendent non nulle la quantité D—/f — %l a
Fendroit ot se trouve le corpuscule. e champ quantique exprime, en
quelque sorte, la réaction de I'onde u, déformée par les obstacles qui
s‘opposent & su libre propagation, sur le corpuscule qui lui est incorporé
en lanl que petite région singulidre.
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Pour voir les choses plus clairement, nous allons supposer valable
Papproximation newtonienne. Elle consiste a négliger les termes en 32
et, en plus, a considérer le second terme sous le radical dans 'expres-
sion de M, comme irds petit devant le premier, ce qui nous peret
d’écrire

(26) My~ )rlo+—i—<m—1>:z)zl.+__hi_(m”),

8n2mec? \ f Sr2m,c? 17

les parenthéses indiquant toujours que les quantités sont calculées a la
limite de la région singuliere sur la sphere S.

Dés lors, on aura pour les composantes de la quantité de mouvemnent
et pour lénergie, en labsence de champ du type classique, les
expressions

) 1
(27) P =nmyy, W = mper+ —my P2 Q,
avec
3 I h? ler ™
(28) Q=2 ( o/ _ LAY
N 8z2mg \ f S=2m, my 1
Comme a lapproximalion newtonicnne, on peut négliger le
I . . . )
lerme - ”, “ dans 0O «, on aura aussi Pexpression signalée par M. Bohm :
(29" 0= lz‘i Au l2 Aa?  (grad 2y
2( e = — — - =
9) 2 o« w=rm | a2 9 et !

ou scul figure a®.

Q est le « potentiel quantique » dont le champ guantique est le
gradient changé de signe. Les équations de Lagrange prennent alors la
forme simple

dp.  0Q dp
dc — oz’ = 8rad Q.

(30)

Naturellement, s’il existait un champ extérieur agissant sur le corpus-
cule, il faudrait ajouter dans Pexpression (27) de W un terme d'énergic
potentielle du type classique dont dériverait un champ au sens ancien
du mot, champ qui s’ajouterait au champ quantique-gradQ dans le
second membre des ¢quations (30).

L’origine physique du potentiel quantique et du champ qui en dérive
est maintenant bien claire. Quand il n’y a pas de champs extéricurs du
type classique, la quantité fo D =— peut devenir différente de zéro par

suite de la présence d’obstacles (en langage mathématique, de conditions
aux limites) qui modifient la propagation de 'onde u et font apparaitre
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des phénomenes du type interférences ou diffraction. La contrainte
ainsi subie par le phénomene ondulatoire qui entoure le corpuscule
incorporé i 'onde « en tant que petite région singuliére réagitalors sur
le mouvement de cette région singulicre el provoque 'apparition de
trajectoires compliquées déterminées par la formule du guidage, trajec-
toire dont résulteraient les phénomene d'interférences et de diffraction
tels qu'ils sont observés. Tel est le point de vue, certainement tres sédui-
sant, de la théorie de In double solution.

Comme je Pavais remarqué, il y a 25 ans, on est ainsi ramené a unc
tres vieille interprétation intuitive des phénomenes de diffraction, celle
méme qui avait 616 soutenue aulrefois, depuis Newlon jusqu’a Biot et
Laplace, les partisans de Pancienne théorie corpusculaire de la lumiére.
« S1, disaienl-ils, la lumidre est déviée quand elle passe pres du bord
d'un éeran, ¢’est que le bord de éeran exerce sur le corpuscule de
lumicre une force qui le dévie de sa route normalement rectiligne. »
Avec la notion de potentiel quamique, nous pouvons dire d’une facon
analogue 1 « Si la lumiere est diffractée par le bord d’un ¢eran, c’est que
l'onde « du photon est génée dans sa propagation par le bord de 'écran
et qu'il en résulte une réaction sur le mouvement du photon : cette
réaction s’exprime par U'intervention du potentiel quantique et a pour
effet de courber la trajectoire di photon ». Cette interprétation, tros
allrayanle par son caraclére conceret, serail naturellement aussi valable
pour la diffraction d’un corpuscule autre qu’un photon, par exemple
pour la diffraction d’un électron par le bord d’un éeran (phénoméne de
Barsch).

Il convienl d’insister sur le fait que le potentiel quantique apparait
chaque fois que 'on sort du domaine de I'Oplique géométrique, ¢’est-a-
dire non sculement lorsque des obstacles placés sur le trajet de Uonde
provoquent Vapparition des phénoménes du type interférences ou dif-
fraction, mais aussi lorsque des variations tres rapides des champs clas-
siques dans I'espace ne permettent plus de considérer I'Optique géomé-
trique comme valable pour la propagation de 'onde (cas de I'électron
dans 'atome).

On doit aussi remarquer que la masse propre variable M, et le poten-
ticl quantique qui s’en déduit ne sont pas seulement des fonctions de z,
¥, 5, ¢, mais aussi des fonctionnelles des conditions aux limites.

Comme nous venons de le voir, le potentiel quantique est contenu
dans la variation de la masse propre M, et, quand Papproximation es!
valable, il exprime par la grandeur QQ de la formule (28) gui s’exprime

I I g p




118 CHAPITRE X.

os . O«

a volonté par I'un des deux rapports égaux = ou —( On peut douc
[£A

¢tre tenté de définir le potentiel quantique uniquement a partir de «,
¢’est=a-dire de Ponde continue W. On est ainsi ramené a la théorie de
l'onde-pilote que Javais exposée an Conseil Solvay de 1927 et que

M. Bohm a reprise dans son article de 1932,
Mais nous le savons, ce point de vue ne parait guére acceptable : si
I'on veut revenir a une théorie causale, il faudrait, pour pouvoir définir

10 olenliel uanti( ue par — ('llll'i})llcl‘ a 17()11(1(3 W une l‘("il“l(:‘ )]l 'Si( ue
«

comme M. Bohm a lent¢ de le faire et nous avons vu que cela semble
impossible. La réaction de I'onde sur le corpuscule représentée analyti-
quement par le potentiel quantique ne peut pas provenir réellement de
londe W qui est fictive : elle doit provenir de I'onde « représentant le
phénomene physique de nature ondulatoire auquel, dans la conception
de la double solution, l¢ corpuscule est incorporé en tant que région
singuliere. La véritable expression physique du potentiel quantique dott

ny et
¢

donc étre celle qui fait intervenir i et non celle qui fait inlervenir —.

Cest seulement parce que les conditions imposdées par Uhypothese de la
double solution conduisent & admetire I'égalité de ces deux rapports
qu'on peut avoir Tillusion que le potentiel (uantique provient de
I'onde W.

Néanmoins, on pourrait trouver un peu ¢trange celle coincidence
entre les formules de la solution et celles de Ponde-pilote, déja visible
sur la formule du guidage. L’étude que nous ferons plus loin (chap. XVII)
de la forme © & I'extérieur de la région singulicre jettera heaucoup de
lumiére sur cette question.
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QUELQUES CONSEQUENCES DE LA FORMULE DU GUIDAGE.

~

1. Les états stationnaires de l’atome d’hydrogéne. — Nous voulons
étudier quelques conséquences de la formule du guidage et mnous
commencons par Iétude des élats stationnaires de 'atome d’hydrogene
en nous bornant & Papproximation newlonienne.

l.es ¢lats slationnaires de latome H sont caractérisés par trois
nombres quantiques 2, /, m. Le nombre quantique principal n définit
DR et
Tarhr
ol m est la musse de Pélectron; le nombre quantique  définit le carré de
la longueur du momenl cinétique M par la formule M2 = (/4 1) ()/—l_\))

\

Péncreie quantifice par la formule classique de Bohr, E, = —
g1c q I q )

enfin Ie nombre quantique m est lié a la composante 5 de M par la
Lo . , o,
formule M.== s -—- On voit donc que chaque état quanufi¢ (n. /, m)

est défini en relation avec I'emploi d’un certain axe Oz. On a entre les
trois nombres quantiques les relations 0o ==/ Zn—1 ctw—l=m=1.
La fonction d'onde correspondant a V'état stationnaire (n, [, m) est

")7’14:,,1
)=V, U)eimze " s

(1) Woim(r: 8. e, 1

avee I, réelle. La phase, que Jappelle ici ® pour éviter la confusion
. I3 ) .

avec Pangle de longitude 9, est ® =E, 1 — = mo. La formule du gui-,

dage montre que dans 'état (1), la vitesse de l'électron doit éire
tangente & nn parallele centré sur Oz et qu'elle est égale a

(2) 11 Jd 1 mh
9 e e — jht = 0g= 0,
: v me 1 odo myr 2w ! b :
d’ou

" \ n . i
(3) M=M.=myreo=m— (— 1 T 2.

2T
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Le moment de quantité de mouvement de électron autour de Oz est

h . i
52 résultat classique. Dans Iélat (1), Pélec-

donc un multiple entier de
Iron serait animé d’'un mouvement circulaire uniforme autour de O z ().

Dans le cas particulier de l'état fondamental, nous avons n =1,
{=m =0, dot M2= M. = o. Pas de moment cinétique de¢ I'atome H
dans son état fondamental, autre résultat classique de la Mécanique

ondulatoire. On trouve alors
(/l) V == 0.

L’¢lectron serait immobile en un point de I'nome. Ce dernier résuliat
serait également valable pour tous les élats s ot {=m = o [et méme
pour les autres états quand on suppose le W donné par (1) remplacé par
I'une des combinaisons linéaires qui font apparaitre les fonctions réelles
sinmg ou cosmo A la place de U'exponenticlle imaginaire e/¢ .

Comment I'¢lectron peut-il rester ainsi immobile alors qu’il est
soumis & la force coulombienne ¢émanant du noyau? La réponsc est aisée
a donner si 'on se souvient que, dans la théorie causale, 'électron
subit aussi la force quantique dérivant du potenticl quantique : or cetie

, .

force quantique équilibre exactement la force coulombienne. Vérifions-le
pour I'élat fondamental de I'atome H pour lequel la fonction d’onde W
a la forme

’” 2‘—“.1:,
o T T
(3) Vyu=Ce e’

ou ry est le rayon du cercle K dans la théorie primitive de Bohr ot est

h2 . ..
éeal a - L’amplitude « de W est donc 1ci
o iR mg e?
’ _
(6) a(ry=|Cle "

et Yon trouve
( Aa 1 /()i(c+:>, da\ 1 1
7) a  a ( Jdr2 rar )T re\ry

(') L'onde W ayant la forme (1), tous les cercles centeés sur Porigine dans le plan
¢quatorial sont des trajectoires possibles d’apreés la formule du guidage. Or parmi ces
cercles se trouvent les trajectoires circulaires & rayons quantifiés de Ta théorie primitives

, R g2 e’ A e
de Bohr. Sur ces cercles de Bohr, Véquation —— = = doit &tre vérifice e, dans la
2

- A . - d
théorie causale, la méme déquation avec, en plus, au second membre le terme — =5
-

ou Q est le potentiel quantique, doit également étre vérifice. D’ou le curicux résultat
suivant : les trajectoires circulaires de Bohr sont caractérisées dans Je plan équatorial
par le fait que le potentiel quantique posséde pour cette valeur de 7 un maximum ou
un minimum,
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d’ott pour le potenticl quantique Q,

. h?  Aa h? I 2
(8) Q= 20 M (12,
8wZm, «a TInigry \ 7o r
. .,
my étanl toujours la masse de 1'électron.

La force quantique cst radiale et a pour valeur a cause de la valeur
de ry,

. J e I
() O N

r VR 12

. . , - et . .
Le¢ potentiel coulombien étant V—=— ) la force coulombienne est
radiale et égale &
7A% e

T0) I“‘:—r—gz——-:—[“,
(10) « i = o

F, et I, sont donc bien égales ¢t opposées et se font équilibre.
Il est a1sé de retrouver la valeur de I'énergie quantifiée pour I'éiat
fondamental car on a

(11) E = énergic cindtique + V + ()
¢2 Iz 1 ) fo amzmg, e
=0 — — —— — — — - — 5 = — = .
’ 82y re \ 1o 7 SwZmy g h2

On peat aussi d’ailleurs retrouver immédiatement cette valeur en
partant de 'équation de Schrodinger,

(12)

277
. =i i
Puisque dans tout état s ona W=a(r)e "  avec a réel, on lit toul
de suite sur Péquation (12)

(]{) I‘I:\+Q7

ce qui rameéne au résultat (1),

Commentons les résultats obtenus qui peuvent paraitre étranges a
divers points de vue. _
Toul d’abord, si dans les états s Uélectron est immobile dans 'atome,
sa position jointe a celle du noyau définit un axe privilégié, ce qui peut
parvaitee contraire a 'isotropic de I'état fondamental : or celte isotropie

. r

prévue par la Mécanique ondulatoire usuelle <Car IWi=e " a la

symétrie sphériquc> est bien vérifiée par I'expérience. De plus, on
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concoit mal comment, dans les étais s ou I'électron serait immobile ou
méme dans le cas plus général d’un état donné par (1) on I'¢lectron
aurail un mouvement circulaire uniforme le long d’un paralléle,
pourrait se réaliser la répartition statistique |W[2= |1, ,(r, 0)|* des

" probabilités de présence.

A ces objections, on peut tenter de répondre de la fagon suivante.
D’abord, si dans les états s I'électron est immobile en un point M, la
droite OM joignant le noyau & cette position pourra étre orientée d’une
facon quelconque dans 'espace de sorte que pour un ensemble d’atomes
dans Pétat s, il y aura bien une répartition statistique & symétrie sphé-
rique autour du noyau el c’est celle répartition qui se¢ révélera en
général dans Pexpérience. 11 ne faut d’ailleurs pas oublier que dans la
théorie causale comme dans 'interprétation usuelle le moment de quan-
tité de mouvement des états s est nul, contrairement & ce qui avait lieu
dans la théorie primitive de Bohr, de sorte que les expériences qui
paraissent prouver la nullité du moment cinéuque des élats s ne sont
pas en contradiction avec la théorie causale.

En ce qui concerne la réalisation de la probabilité de présence | W2,
il importe de remarquer qu’un état stationnaire de la forme (1) doit étre

considéré comme exceptionnel : en géndral, la fonclion W sera une

superposition de tels élats de sorte qu'on aura ¥ :ch,,,l‘lf,ﬂm. Alors
nlin
la phase ® aura une torme tres compliquée et la loi du guidage 1mpo-
sera au corpuscule un mouvement trés complexe, un pen analogue a un
mouvement brownien, de sorte que la répartition statistique des posi-
tions possibles représentée par |W | parait pouvoir se lrouver ainsi
réalisée. Gependant, comme Va remarqué M. Takabayasi, lc mouvement
trées compliqué du corpuscule obéissant & une loi rigourcuse, la formule
du guidage, n’est pas entiérement comparable & un mouvement al¢atoire
comme le mouvement brownien. On est ainsi amené & penser que la
Justification de la probabilité de présence en | W |2, analogue au théoreme
ergodique de la Mécanique statistique classique, exigera 'introduction
de considérations assez ddlicates. Nous reviendrons sur ce sujet au

. chapitre XIII consacré & la justification, dans le cas général en théorie

»

causale, de la signification stalistique attribude a | W

Nous ferons cependant dés a présent une remarque inléressanle a
ce sujet. Soil un atome H qui se trouve dans un ¢élat s de fonction
d’onde W00 et ou I'électron est immobile. La plus petite perturbation
extéricure donnera au W la forme W40 + oW et I présence de 0¥ dans

cette expression, en modifiant lIégerement la phase. imposera a I'électron
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dapres la formule du guidage un mouvemenlt violent & caractére brow-

P
12

nien. Si on admet que la probabilité de présence est donnée par

on aura dans I'étal perturbé une répartition statistique des positions de
I'électron donnée pariW, o -+ o''|* qui sera extrémement voisine de celle
donnée par

W00 |*. On se rend compte alors que, I'état W,y étant dans
la réalité toujours soumis a de légéres perturbations extérieures, I'élec-
lron n'y est pas en géndéral véellement au repos, mais au contraire animé
presque continuellement de mouvements violents dus aux petites pertur-
bations ¢t 'on comprend mieux comment peut se réaliser une proba-
bilité¢ de présence trés sensiblement donnée par | Wyo |2 Nous retrou-
verons des considérations de ce genre au chapitre XIIL

2. Les interférences au voisinage d’un miroir (Franges de Wiener).
— Dans mon livee, Introduction i Uétude de la Mécanigue ondula-
toire [ 2], pavais ¢tudié le mouvement que devaient avoir les photons an
voisinage d’un miroir d’apres la théorie causale. Je vais reprendre cette
théorie en me placant dans le cas d’'un corpuscule de masse quelconque
(mo £ o) obéissant a I'équation de Klein-Gordon.

«. Miroir parfaitement réfléchissant. — Soit une onde W plane
monochromatique qui tombe sous un angle d’incidence 0 sur un miroir
parfailement réfléchissant.

Avant d’entrer dans Ia région d’interférences on apparaissent les
franges de Wicner, Uonde plane a la forme initiale

. _ rf:zi‘\i,y‘:-sin()ﬁ-:wsew
(]/” 11,1,\, einivi g

Dans la région d’interférences, il y a superposition de l'onde inci-

dente Wy et de Vonde réfléchie Wy,

% {esinl —zcosh

io
e,

- 2T

(1) \°, ~ g2Riv/ @

o ¢tanl la différence de phase qui peut s’'introduire lors de la réflexion.
On a donc dans la région d’interférences,

TR

- 5 o 2 {— l sin0) i
(16) P=U,+4,= \/‘Al'()s<‘z:'\;:(‘(190+g)e ( | >e
s

[’onde W est normée, ce qui introduit le facteur V2. On a donc
- \ °
s a = \/» (‘05(?:: o 5c0s0 + ~>7
2

(17) r
( ¢ = hv(t— i,; sinO) - const.
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On a donc dans la région des franges de Wiener d’apres la formule
du guidage,
rad ¢
(18) v:—l;'l——g “J,
%

Jit
d’on
757
dz ¢, .
52 ’/ =y sinf) = ¢, sinf,
Jdo
o

(19) Yy=¢z=0, Px=—c¢

)

C . . . .
¢o==y, (tant la vitesse du corpuscule dans l'onde plane incidente.

Mirair

Ry S L X

Fig. -,

Le corpuscule, qui posséde d’abord un mouvement rectiligne uni-
forme de vitesse ¢y dans la direction d’incidence, traverse la région
d’interférences en glissant paralltlement au miroir avee la vitesse ¢4 sinf,
puis repart d'un mouvement rectiligne dans la direction de réflexion
avee la vitesse vy. Mais il convient de remarquer qu’a 'entrée et a la
sortie de la région d’interférences, le corpuscule a un mouvement
compliqué car, sur les bords du faisceau incident el du faiscean réfléchi
qui sont limités latéralement, la représentation de ces faisceanx par une
onde plane monochromatique n’est plus exacie.

La quantité

) ) " - v o v N
(v0) @@= |W[r=2cos? z:vzmsf)—n— — ] =1 cos ’,7:-\7zm.~’0+o
2

donne la probabilité de présence des corpuscules dans les différentes
couches de cote z. On voit que statistiquement les corpuscules se répar-

I

. . \'% N . .
lissent en nappes distantes de 3o ou la densité est maximun,

J 080 pcosh
séparées par des nappes de méme équidistance ou la densité est nulle.
On retrouve bien les tranges classiques de Wicner.
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b. Miroir imparfaitement réfléchissant. — Supposons maintenant
que nous avons affaire & un miroir nnparfaitement réfléchissant dont le
coefficient de réflexion soit n avec o == n < 1.

On aura alors pour 'onde W dans la région d’interférences,

N .V .Y
) . . _., mrEigasind —27 iy seos 2ﬁlv:.cos() N
(21) W=W,+WU,~ er7ive e +ne eio ],
Le calcul de @?=| W' |? donne aisément
\ , v -
(22) = canst.[l + 124 2m (cos/.x -\—z cosl + o)].

Nous retrouvons encore des franges brillantes pour les valeurs de =z
¢ui rendent le cosinus ¢gal a 1 et des franges sombres intercalées pour
les valeurs de z qui rendent le cosinus égal a

1; mais ici les franges
obscures ne sont pas noires car U'intensité y est égale a (i—n)*>o.
L. Jo .
Pour calculer la dérivée de la phase =T par rapport a 'une quel-
g

conque ¢ des variables d’espace, nous partirons de la formule

‘ Jo oo/, OW UL il
(- 7Y - B Y A
23 dg 4wl a? (I aq 1 Jdg >

2R

ui se vérifie immédiatementa partir de 'expression W —ae * " aveca
q P P

ct o réels. La formule du guidage nous donne alors
Js
r A .
Pp==— e =y i fl = ¢y sinf, £y=0;
o

2

iz ct [— 1— 1
o= — F e == — cosi) = g, cos ——)—‘ > 0.
Jy a? a’

Les corpuscules descendent donc vers le miroir dans la région d’in-
terférence, ce qui fait que certains d’entre eux parviennent a atteindre
le miroir semi-transparent et @ passer dans le faisceau transmis tandis
que d’autres n’atteindront pas le miroir et passeront dans le faisceau
réfléchi. La proportion des uns et des autres dépendra naturellement de
la valeur de 7.

c. Apparition de vitesses supérieures a la vitesse de la lumicre
dans le vide. — LEn conséquence, en apparence surprenante, des for-
mules (24), c¢’est qu’en certains points du champ d’interférences la

vitesse du corpuscule peut étre supéricure & c.
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On trouve en eftet

- PP L g (L)
(23) =gl pli= | sin?l 4+ cos?f ——0 —— }.
h V2 at
Or dans les franges obscures.
v N .
vos{ 4= Vz:‘os[)—l—o =1 ot ar=(t1—mn),
d’olt
. \ ot . (1+ 1)*
(26) 2= | sin20 4~ (:05‘21)(‘—'—)4,
\'E (1—m)?
. . L. A N N ..
quantité qui peut étre supérieure i c? s1 Vi — v, est suffisamment voisin

de c? et st

I+, . o . :
T’ loujours supéricur & 1, est suffisamment grand.

Pour mieux discuter la question, envisageons le cas simple de Uinci-
dence normale ou cos =1 et sinl = o. Si le¢ miroir est parfaitemeny
réfléchissant (v =1), nous avons dans ce cas v,=¢,=¢,=o0 : les
corpuscules sont immobiles dans les franges de Wiener. On pourrait
déja s’étonner de ce résultat car on pourrait s¢ demander comment les
corpuscules, s’ils sont immobiles dans la région d’interférences, peuvent
arriver A se placer dans les franges brillantes. Cette objection peut étre
écartée en remarquant une fois de plus que l'onde plane monochroma-
tique sur laguelle nous avons ratsonné n'existe pas dans Ja réalité el
qu'il faut oujours envisager des trains d’ondes limités ayant un front
avant et un front arrigre. Pour cette raison, notre théorie décrit séule-
ment U'état de régime réalisé pendant que le train d’ondes W frappe le
miroir et non V'écat transitoire qui existe quand le front d’ondes vient
frapper le miroir, état on les corpuscules ont un mouvement compligué
au cours duquel ils viennent se placer dans les franges brillantes.

Toujours dans le cas de Vincidence normale. revenons a Pétnde du
miroir imparfaitement réfléchissant. Nous avons alors

e - )
=% r= (1T
’ A\ o
et ¢ sera supérieure A ¢ si

, et [ 1—n2\2
2.8 —_ ~. (.
(28) V'—’< az ) -t

o . v . ’ N o
Si nous posons u — fmv 5+, ce qui donne ¥ =1 +7*+ 2ncosu,

(27) Op= 0= 0, .

la condition (28) s'écrit

y V
(29) [—'r.‘—’>(‘1-+—'q‘-’—l—i!'qcosu);-
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On voit aisémenl que cette condition peul aussi s'éerire

%(1—'r,2)—('1+'q2)

(30)

2

Pour v assez voisin de 1, 1l y a donc une pelile région au voisinage
de chaque frange obscure on, la condition précédente étant vérifiée, on
a ¢ > c. Getle région se rétrécit quand » augmenle et elle se réduit a la
frange noire clle-méme dans le cas du miroir parfaitement réfléchis-
sant (n = 1). Dans ce dernier cas, il ne pourrait donc y avoir de vitesses
supérieures a ¢ que surles franges noires, mais comme alors il n’y a pas
de corpuscules dans les franges noires, il n’apparait en fait aucune
vilesse supéricure a ¢ : celle remarque permet de rétablir la continuité
entre les formules oblenues ici et celles données en @ pour le miroir
parfaitement réfléchissant.

Quand il y a des couches de la région d’interférences o les inéga-
lités (30) sont satisfailes, la vitesse du corpuscule est, d’apres la formule
du guidage, supéricure a ¢ dans ces couches. Or, nous savons que nous
devons avoir

_dy Mpe? — Ay
7] —\/I——'ig— ’

(31) W

M, étant la masse propre variable du corpuscule dans le champ d’inter-
férences. Gomme Zv est une grandeur réelle et que /1—pB* devient
imaginaire pour ¢ >>¢, on peut en conclure que, partout ot ¢ esl

supéricure a ¢, M, doit étre imaginaire. Nous allons le vérifier en
partant de la défintuon de My,

(3 Mi =

(qui nous donne ict

he .
m3e?— T | 2e2 A2 — ( grad a?)?],

133y M3cr= mic?—

comme on le vérifie aisément. Puisque a?=1 -+ 7>+ 2ncosu, ceci
nous fournit

. h? .
(34) Mict=mict+ ——— (42h2 sin2u + {nath? cosu),
16=2at o
avece
5 /,—
/x = /IK [~ L- .

<
~
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- h . . /2 vz
Orde v =V, W = Ay, k= ", on tire aisémenl —— = — et, comme
1) C'])‘ c-
2 -
ona — = p*+ m;c?, on en déduit
-
1— —
- 6= Ve
(35) ———miet =L ———.
2 ot
V2
En partant dans (34), on trouve alors
(-
bt k2 RE
36 3= — 1 im¥sintu + fjatncosu + ab ——
(36) 0= 16w an mn rasn pE ’
v
M, sera donc imaginaire si
o2
. . 1 \E
(37) ’ SINtu 4+ at cosu + - —— <o
A
g

En remplacant sin*« par 1 — cos*u et en développant les expressions
de a? et de a', il vienl

-~

38 : 2 1+ 12)? 2
(38) 7 cos2u 4 (14 72) cosu + 1 () < !

i—-’ ™ I—W)<().

Or, Ie polynome du second degré en cosu qui forme le premier

*(1~+—'q'-‘)+%(1~n'—‘)

membre de l'inégalit¢ (38) a les deux racines = .
|
Comme o =Zn <1 et o % <1, on trouve que I'inégalité (38) entraine
(44 5 o
yaI—m)—(1+mn?)
(39) > oS > — |
¢ o 0814 > — 1.

On retrouve bien linégalité (30). M, qui s’annule pour ¢=¢ est
done bien imaginaire pour ¢ > c.

Nous avons ainsi finalement établi le résultat suivant : pour tout
corpuscule obéissant a I'¢quation de Klein-Gordon, la formule du gui-
dage a pour conséquence qu’au voisinage d’un miroir imparfaitement

rétléchissant, la vitesse du corpuscule peut en certains points étre supé-
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rieure & ¢ (). Cette conclusion n’est-clle pas en contradiction formelle
avec la théorie de la Relativité ?

I faut d’abord remarquer que, si la Dynamique relativiste rejette la
possibilit¢ d’une vitesse corpusculaire supéricure a ¢, c’est parce
qu’elle admet la formule

(40) W= —=——,

ott my est une conslante. Il en résulte que, si ¢ tend vers ¢, W tend
vers Uinfini : 1l faudrait donc fournir une énergic infinie au corpuscule
pour lui communiquer la vitesse c¢. De plus, pour ¢>>¢, W serail
miaginaire.

Mais Ia théorie causale introduit une réaction de 'onde sur le corpus-
cule inconnue de I'ancienne Dynamique relativiste. Celte réaction est
traduite dans les équations du mouvement par 'intervention du potentiel
quantique Q et nous avons montré qu’il en résulte pour le corpuscule
ane dynamique ot la masse propre My est en géndéral variable suivant

(2

/

Ia lot

(1 My = my -
1) 0 \ 0 4

de sorte que Uexpression de I'énergie devient
M, e?

Vi— 3

(42) W =

L’¢nergic ne devient donce pas infinie pour ¢=¢, nl Imaginaire
your ¢ > ¢, puisque, comme nous lavons moniré, M, s’annule
2 ’ Y

pour ¢ = ¢ el devienl imaginaire cn méme temps que Vi—p? pour ¢ > ¢.

Il semble done que la raison qui, en Dynamique relativiste habituelle,
font ccarter la possibilit¢. d’une vitesse ¢ supdérieure a ¢ n’existe
plus ici.

Mais, dira-t-on, les analyses d'Einstein sur les notions d’espace et de
temps ct sur la mesure des longueurs et des durdes, qui ont ¢té ala base

(') La théoric que nous venons de développer, étant sculement valable pour des
particules de spin o, n’est pas applicable aux photons et aux véritables franges optiques
de Wiener. La Mcécanique ondulatoire du photon que nous avons exposée dans d'autres
ouvrages montre clairement que les photons sont des particules de spin 1 dont les
¢quations d’onde sont les ¢quations de Maxwell. Il résulte done de ce qui sera dit plus
loin, notamment dans Pappendice, que le mouvement des photons-doit étre défini non
pas par la formule du guidage telle qu'elle a été écrite ci-dessus, mais & FPaide des
« lignes de eourants » de Ponde électromagnétique associée. Il est équivalent de dire
que le mouvement des photons doit &re défini 4 Vaide du vecteur de Pointing. En
reprenant la théorie précédente de cette manicre, il me parait certain qu'on ne verrait
plus apparaitre de vitesses supéricures a c.

L. DE BROGLIE. 9
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du développement de la théorie de la Relativité, reposent essentiellement
sur le postulat qu’aucun signal ne peut étre transmis avec une vitesse ¢
supérieure  la vitesse ¢ de la lumidre dans le vide. Le fait qu'un corpus-
cule transportant de 'énergie pourrait dans cerlains cas se déplacer
avec une vitesse plus grande que ¢ ne va-t-il pas a encontre de ce
postulat fondamental?

Il semble que I'on puisse aussi lever cetle objection. Les vitesses cor-
pusculaires supérieures & ¢ semblent ne pouvoir apparaitre dans la théorie
causale qu’en certaines régions des champs d’interférences. Or, lappa-
rition des interférences est provoquée par des dispositifs expérimentaux
bien définis avec conditions initiales et condilions aux limites bien
détermindes (dans le cas des franges de Wiener, train d’ondes W
incident presque monochromatique et conditions aux limites sur le
miroir). 1l est alors impossible de mettre en ¢vidence la présence du
corpuscule en deux points voisins M et M' du champ d’interférences a
des instants successifs ¢ et ¢ de facon a lul faire jouer le role d’un signal
de vitesse supéricure & . Il faudrait pour cela observer la localisation
du corpuscule en M et M’ aux temps ¢ el (' el ceci exigerait un autre
dispositif expérimental incompatible avee 'obtention des franges de
Wiener. On remarquera 'analogic de cet argument avec certains rais-
sonnements de M. Bohr, mais ict on Putilise dans le cadre de Pinter-
prétation causale sans renoncer a lu localisation du corpuscule.

Il faut bien noter que ce qui change le mouvement du corpuscule
quand on modific le dispositif expérimental ¢’est, du point de vue de la
théorice causale, que le nouveau dispositif introduit de nouvelles condi-
tions aux limites pour les ondes u, seules réalités physiques, d’ou
résulte la nécessité d’une modification corrélative de Vonde W fictive
que 'on doit associer a l'onde . Bref, les vitesses corpusculaires supé-
ricures & ¢ prévues dans certains cas par la formule du guidage ne
semblent pas pouvoir étre mises en ¢vidence et par suite ne doivent pas
pouvoir servir & 'emploi de signaux de vitesse supérieure i c.

Dans la région de Vespace-temps o ¢ > ¢, la ligne d’Univers du
corpuscule est du genre espace, sa fréquence el son temps propre sont
imaginaires, du moins si on admet toujours les définitions usuclles,
mais la phase propre vo¢, reste réelle. Cette conception peul paraitre
étrange, mais l'est-elle plus que celle de M. Feynman d’apres laquelle
le positon est un électron qui remonte le cours du temps? 1l y a
d’ailleurs des rapprochements possibles entre cette idée de Feynman
et la question que nous étudions ici. En eflet, pour que la ligne
d’Univers d’un électron puisse rebrousser chemin par rapport au temps,
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il faut quelle présente soit un point anguleux, soit des ¢léments du
genre espace. Dans les deux cas, Uaction et la phase varieront toujours
dans le meme sens le Jong de la ligne d’Univers (V).

3. Une objection récente de M. Einstein contre la formule du gui-
dage. — Duns sa contribution récente au livre jubilaire consacré a
M. Max Born, M. Kinstein, tout en se pronongant toujours pour le
rétablissement d'une interprétation causale en Mécanique ondulatoire,
a élevé une objection contre la formule du guidage.

Le principe dont part Einstein est que, chaque fois que I'on a aflaire
a un corps macroscopique, on doit retrouver les images fournies par la
Mécanique classique qui donne alors sans aucun doute une description
approchée de la réalité. Ceei posé, il envisage le probléme suivant.
Considérons une particule qui se déplace suivant une droite Oz en
venant rebondir sur des miroirs placés normalement & Oz aux points
d’abscisses ¢ = o ¢t 2 = {. La Mécanique ondulatoire usuelle associe &
son mouvemenl, s'il a une énergie bien déterminée, une onde W sta-
tionnaire nulle en 2 = o0 et z =1 ct de la forme

. . . nm.x .
(43) I" =, <in e i , avee E, =

avee n entier. Dans linterprétation usuelle, cette onde représente la
possibilité de  deux mouvements de méme quantit¢  de mouve-

nh . . N
ment g = - s'effectuant 'une de droite & gauche, 'autve de gauche a

droite, ces deux mouvements ayant la méme probabilité. Au point de
vue de la Physique macroscopique, si la particule est macroscopique,
elle a 'un des deux mouvements a exclusion de Pautre. L'interprétation
usuelle, dit Einstein, représente donc exactement la situation statis-
tique au cours du temps, mais non pas ’état réel instantané de la
particule macroscopique. C’est donc une interprétation statistique
exacle, mais « incomplete » comme description de la réalité physique.

Tel est le point de vue de M. Einstein qui nous parait trés soutenable.
Mais voici maintenant I'objection qu’il en a tirée contre la formule du
guidage. Dans la formule (43), la phase ¢ de I'onde W se réduit a E, ¢
et est indépendante de z : la formule du guidage nous donne donc

] - . o . . .
g=-— gradg =o. La particule serait immobile et, si cette particule

(') Mais toule vitesse supérieure a ¢ disparaitrait sans doute si Pon définissait systé-
matiquement le guidage par les lignes de courant (wvoir Appendice).
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a une masse macroscopique ct constitue unc petile bille au sens usuel
du mot, nous nous lrouvons cn contradiction avee la Physique macro-
scopique qui nous affirme, et certainement avee raison, que la bille doit
posséder un mouvement de va-ct-vient le long de oz avee rebondisse-
ment alternatif sur chacun des deux miroirs. Einstein en conclut que la
formule du guidage, elle non plus, ne peut représenter la véalité physique.

Les considérations de M. Einstein sont dans leur ensemble trés inté-
ressantes, mais elles appellent d’abord une réserve. On pent, en effet,
remarquer que, si la particule est macroscopique, elle est nécessairement
formée par un ensemble de nombreux corpuscules ¢lémentaires et que
I'onde W est alors associée au centre de gravité du systeme, ce qui rend
I'interprétation plus difficile. Mais, en dchors de cette réserve, on peut,
me semble-1-il, trouver deux réponses irés suggestives a l'objection
d’Einstein contre la formule du guidage. '

Une premiere réponse part de la remarque suivante : pour que la forme
adoptée pour 'onde W dans.I’exemple d’Einstein puisse éire considérée
comme valable, il faut que les obstacles limitant l¢ mouvement de la
pacticule ¢t la propagation de son onde associée puissent éire consi-
dérés comme des miroirs plans pour Ponde W. Or, ces miroirs sonl
nécessairement formés d’atomes en mouvementl thermique ot il en
résulte que la précision avec laquelle est définie Ieur surface ne peut
¢lre supérieure a une fraction d’unité angstrom. En s’inspivant d’une
théorie développée autrefois par M. Debye pour évaluer 'influence
des mouvements thermiques des atomes d’un cristal sur la diffraction
des rayons X, on peut voir que la longucur d’onde ne doit pas étre
supdricure & environ 10—*° cm. La validité de I'expression adoptée pour
le W exige done que la condition

ks

(i L= L > 101 cni.
mi

soitl réalisée. Elle montre que, si la particule a une masse macroscopique
(mettons supéricure & 107" g), la vitesse ¢ doit ¢tre sensiblement nulle.
Donc pour que Pexpression (43) du W puisse ¢tre considérée comme
valable pour une particule de masse macroscopique, il faut que sa
vitesse soit sensiblement nulle et alors la valeur ¢ = o0 de la vitesse
tournie par la formule du guidage est sensiblement exacte. 1L semble
donc qu’on puisse ainsi écarter Uobjection de M. Einstein contre la
formule du guidage. Remarquons d’ailleurs que nous rencontrons ici
I'idée qu’il faut attribuer une grande importance aux fluctuations
possibles des conditions aux limites ¢t nous verrons réapparaitre cette
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dée quand nous discuterons la justification du sens statistique attribué
au (W2 par Lo théorie de Ia double solution (*).

Passons maintenant a la seconde maniére de répondre a 'objection de
M. Einstein. Elle partde lu remarque que P'onde W d’un corpuscule doit
toujours étre considérée comme formant un train d’ondes de dimensions
limitées. On peut donc, semble-t-il, toujours admeltre qu'un train
d’ondes W a des dimensions limitées ne pouvant dépasser un certain mul-
tiple ( dilleurs wres ¢levé) de la longueur d’onde. Clest ainsi que dans le
cas du pholon on sait que le train d’ondes ne peut avoir une longueur
supérieure i quelques millions de longueurs d’onde. Une limitation ana-
logue doit ¢tre valuble pour les autres sortes de corpuscules. Comme, pour
une ¢énergic donnde, la longucur d’onde A = \/—)% diminue qnand la
masse augmente, on voit que le train d’ondes associé a une particule
d’¢nergie décelable finira, quand la masse augmenle, par avoir une lon-
gucur tres inférieure a la distance [ des miroirs dans exemple d’Einstein.
Pour unc masse suffisamment ¢levée, i1l ne sera donc plus possible
d’'imaginer une onde stationnaire due a la superposition, entre les deux
miroirs, de deux ondes s¢ propageant en sens inverse. On devra, au
contraire, s¢ représenter un irain d’ondes W de petites dimensions
venant se¢ réfléchir alternativement sur chacun des deux miroirs et cette
tmage correspondra exactement & image macroscopique d'une bille qui
oscille le long d’une droite en venant alternativement se réfléchir sur
deux murs paralleles. Gette réponse, trés intéressante, a 'objection
@’Einstein contre la formule du guidage montre, une fois de plus, I'im-
portance du fait que tout train d’ondes a des dimensions limitées.

(*) Notons que, pour les Heelrous (mo~ 1027 g), ¢ peut atteindre des valeurs tres
voisines e ¢ el que, pour des moléeules (m =10-2% g), on peut atteindre des vitesses
de Vordre de 10® emfs = 1o kny’s. sans gque Vindgalité (44) cesse d’8tre vérifiée. On peut
done considérer les parois d'une enceinte comme spéculairement bhien définies pour
Fonde W pour des mouvements d'¢lectrons trés rapides (¢ o~ ¢) et pour des mouvements
des molécules d'un gaz dans les conditions usuelles, ce qui dans les deux cas justifie
Peniploi de Pexpression (43 de Uonde v,

e e —
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CHAPITRE XIL.

PASSAGE DE LA MECANIQUE ONDULATOIRE DU CORPUSCULE UNIQUE
A LA MECANIQUE ONDULATOIRE DES SYSTRMES.

1. Nature du probléme en théorie causale. — Nous avons vu comment
M. Schrodinger était arrivé & construire la Mdécanique ondulatoire d’un
cnsemble de corpuscules en associant au mouvement de ce systeme la
propagation d'unc onde dans Pespace de configuration correspondant.
On n’obtient d’ailleurs ainsi qu’une théorie essentiellement non relati-
viste parce gu’clle exprime les interactions entre les corpuscules par des
fonctions de leurs distances au méme instant et qu’admettre ainsi la
propagation instantanée des inleractions est contraire au principe rela-
tiviste que toule perturbation se propage dans I'espace avec une vitesse .
finie.

Malgré la grande beauté formelle de la théorie de Schradinger et les
succes remarquables qu’elle a tout de suite remportés, on pouvait lui
faire dés P'abord de graves objections.

En premier licu, aussi bien avee les idées de Bohr quiavece celles de
Schrodinger qui assimilait les corpuscules a des trains d’ondes conti-
nus, on ne considere plus les corpuscules comme ponctluels et, par
suite, il parait contradictoire de leur attribuer des coordonndes bien
définies : des lors, il semble injustifi¢ de considérer un espace de conhi-
guration formé a I'nide des 3N coordonnées des constituants du systeéme.

En second lieu, Vespace de configuration est évidemment un espace
abstrait, fictif, sans réalité physique. Considérer onde W comme se
propageant dans cet espace, ¢’¢tail nécessairement lui enlever toute
réalité physique. Si Pon voulait conserver aux ondes de la Mécanique
ondulatoire un sens physique, il fallait, me semblait-il, pouvoir consi-
dérer le mouvement des corpuscules, et ’évolution du phénomene ondula-
toire qui leur est 1i¢, dans le cadre del’espace physique a trois dimensions.
Or, la méthode de Schriodinger implique nécessairement emploi de
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Pespace de configuralion et ne permet plus de se représenter le phéno-
méne physique constitu¢ par le mouvement des corpuscules dans le
cadre de lespace physique. Sans doute Ia Mécanique classique sc
servait-clle souvent elle aussi, de Pespace de configuration, mais ce
n’élait pas pour clle une nécessité : elle pouvait raisonner cn considérant
le mouvement des points matéricls du systeme dans 'espace & trois
dimensions et elle n’employait Pespace de configuration que comme un
artifice mathématique permettant de présenter plus ¢élégamment ou
d’eftectucr plus aisémenl certains calculs. Des lapparition des Mémoires
de Schrodinger, tout cn reconnaissant exactitude des résultats obtenus
par sa méthode, javais lrouvé paradoxal le principe méme de cette
méthode.

Me plagant au point de vue de la théorie de la double solution, il me
paraissait nécessaire de repenser toute la question d’une fagon différente.
Pour mot, les corpuscules élaient incorporés a un phénomene ondula-
toire dont ils constituaient unce singularité (je dirais aujourd’hui une
petite région singulicre). Chacune des régions singulicres devait étre
considérée comme un centre de force influant sur la propagation des
phénomencs ondulatoires associds aux autres corpuscules el, par suile,
sur le mouvement de ces autres corpuscules. 1l doit alors en résuller un
mouvement compliqué de ensemble des corpuscules-régions singulitres.
On pewt évidemment représenter ec mouvement par le déplacement d’un
point figuratif duns Uespace de configuration formé a 'aide des coor-
données 2y, ..., zy des N corpuscules : ict, pas de difficulté puisque
les corpuscules constitués par de trés petites régions singulidres presque
ponctuclles ont pratiquement a chaque instant une position et des coor-
données bien détinies. On pouvait alors penser qu'en ddéfinissant dans
I'espace de configuration la propagation d’unce onde W (x4, ..., 2y, ¢)
W2 le role de

robabilit¢ de présence du point figuratif aux divers points de Uespace
p P P ) I

purement fictive, on pourrait faire jouer a la quantilé

de configuration, ce¢ qui permetirait de  rejoindre la théorie de
Sehrédimger.

{l faut bien se rendre comple que, si cette idée est exacte, la descrip-
tion obtenue a laide de la propagation de 'onde continue W dans
Pespace de confignration du systeme est beaucoup moins compléte que
celle que fournirait la théorie de la double solution en considérant les
N ondes « des N corpuscules dans Pespace physique avee leurs régions
singulieres mobiles. On obtiendrait par cette derni¢re description une
mmage exacte dans Pespace physique non seulement des N corpuscules,
mais aussi des N phénomenes ondulatoires, auxquels ils sont incorporés ;




136 CHAPITRE XII.

la méthode de l'cspacé de configuration ne fournirait, au contraire. que
des renseignements statistiques sur le déplacement des N régions singu-
lieres en ignorant complétement les phénoménes ondulatoires étendus
dont elles sont le centre. Ainsi la méthode de Schrodinger se trouverait
Justifiée et son succes expliqué, mais en méme lemps on verrait qu’elle
masque, pour ainsi dire, un ensemble de phénomenes ondulatoires
beaucoup plus complexes qui se dérouleraient dans Pespace physique a
trois dimensions.

Telles étaient les idées qui m’avaient guidé en 1927 lorsque je rédigeais
le paragraphe de mon Mémoire sur la double solution qui était consacré
& la Mécanique ondulatoire des systemes. Je vais d'abord reproduire
mes raisonnements de 1927, puis 'y ajouterai les résultats de rechierches
récentes. Je considérerai d’ailleurs toujours, pour simplifier, le cas d'un
systeme formé de deux corpuscules, car le passage du cas de denx cor-
puscules au cas de N corpuscules n’entraine aucune difficulté de
principe (V).

2. Raisonnement du Mémoire de 1927. — Considérons deux cor-
puscules qui constituent chacun une petite région singuliére dans leur
onde u individuelle et écrivons les deux équations de propagation des
ondes u en supposant qu’aucune action extérieure ne s'cxerce sur le
systeme

Loy )
4zt ¥y duy
u) + —_
SD ! h ¢ Jt

(1) { .
O s+ 47t Fayy dus
A
- h ¢ Jt

my ct my étant les deux masses propres des corpuscules, IMys et Iy les
potenticls représentant 'action exercée sur chague corpuscule par la
présence de autre. Je pose

. (e
(F =TV —=2 )+ —yir+ (s a2

D A R RV CEE Nk

Ici les coordonnées z, y, z, qui figurent dans les [, sont les coor-
données courantes de I'espace physique a trois dimensions. Les expres-
sions (2) significnt que la valeur de Fyy au point occupé¢ par le premicr
corpuscule est la méme que celle de Iyy au point occupé par le second
corpuscule : si r désigne la distance des deux corpuscules, cette valeur
commune est F(r), ce qui est en accord avee le principe classique de

(') Voir cependant la fin du paragraphe 4.
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I'action et de la réaction. Mais on doit remarquer que Fya et Fgy sont
définis a chaque instant en tout point de P'espace physique. La propaga-
tion dans I'espace de chacune des deux ondes uy ¢t u, se trouve done
dépendre en chaque point de la valeur en ce point a l'instant considéré
du potenticl correspondant a la position simultanée de la région singu-
liere dans Paulre onde.

[l faut admettre Iexistence pour chacune des deux équations (1) d’une
solution comportant une région singuliere mobile et, pour comparer
avee la théorie de Schrédinger, nous devons toujours nous contenter de
Papproximation newtonicnne.

En Mécamque classique, il existe pour Pensemble des deux corpus-

cules une fonction de Jacobt S(zy, ..., zy, £)telle que
3 0 78] . JS
3 m =— Mooy =— —-
) P ey’ ’ o Jzs
Pouvons-nous définir une fonction ¢(21, ..., 3y, ) qui joucra le role
de S7?

Pour un instant, nous allons supposer que le mouvement du second
corpuscule nous est connu : alors le mouvement du premier s'opérera
dans un chamyp qui scra une fonction connue de z, y, z, ¢, cas que nous
avons d¢ja étudié. Nous savons alors que nous pouvons associer &
I'ensemble des moavements possibles du premier corpuscule appartenant
a une méme « classe » la propagation dans I'espace a trois dimensions
d’une onde continue

2

Tl

V= (r,y, z t)et

O,y 2.0

Or, il résulte des théories développées pour un corpuscule unique dans
un champ donné que 'on peut exprimer son mouvement a 'aide d’équa-
tions de Lagrange de la forme

- AT
4 dt ( r)s'm) - dx
avece
(3) £ = %m,v‘f—l"(r)—Q,,
ou
ER] D 2 \
(6) Q= o (B A (A,
8=, a, 8x2my \ ay

De méme en considérant pour un instant le mouvement du premier
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corpuscule comme connu, on pourra déterminer les équations du second
en écrivant les équations de Lagrange

() d Ly IR,
/ At\dese )]~ dra
avec ’
(%) £y= 2 myw3—F(r) — Q,
on
. A2 Oas h2 Aay®
Oy—= —— - ~ e | —2 ).
(9) ~ 87:'-’mg< [ ) 8n2m.3< s )

Il s’agit maintenant de résoudre simultanément les deux groupes
d’équations de Lagrange (4) et (7). En Mécanique classique ot on
peul aussi considérer les équations de Lagrange individuelles ou les
termes Qy et Q2 sont nuls, on voit aisément que Uon peut définir une
fonction de Lagrange pour le systéme enlier £ (1, yi, 513 20 )2, 525
P1ay Piy; Vlz) V2ay Py, v2-) telle que le mouvement du sysiéme soit
donn¢ par les six équations

. (l(«&_ﬁ’ __()_13 . ( _ o ,A_//(/“
(10) ail\ag )= Oq \q—xj, coey 3N, = W)
Pour cela, 1l suffit de poser
(10 bis) £ = émw}—r— %mgviﬁ— F(ry= 2,4+ £Ly+ F(r),

c’est-a-dire de prendre pour £ la somme des lermes cinéliques de £74 el
£, diminuée de la demi-somme des termes potenticls. On en tire
d’ailleurs aisément pour les énergies Ey et Ey des deux corpuscules ot
pour I'énergie totale E du systeme les expressions

. 1 , L . 1 ) .
Ei=-miei+TF(r); Eo= nwey+1(r);
2 2 - .
(xn)
1 5 ¥ 5 - N N PRV
E =-mei+-nmaei+F(r)y=E+ LL—F(r).
2 2 . )

Elles montrent que Pénergie totale est la somme des énergics cinétiques
individuelles augmentée de la demi-somme des énergies potentielles
individuelles.

Le fait que £ n’est pas la somme de £y et de £72 et que E n'est pas la
somme de E; et de E, (parce que le terme d’énergic potentielle ne
figure qu’une seule fois dans la fonction de Lagrange ct duns 'énergic
totale du systéme) n’est pas, a.ma connaissance, signal¢ expressément
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dans les traités de Mécanique : il est la conséquence nécessaire du
principe de I'action et de la réaction et il exprime qu’il y a, en quelque
sorte, une mise en commun de 'énergie potentielle des deux corpuscules.

Pour que l'on puisse appliquer le méme formalisme dans la théorie
de la double solution, il faut que les termes en Qy et en Q, présentent
le méme caractere d’action mutuelle que les termes en Fy, et en Fay.
Dans mon Mémoire de 1927, javais admis qu’il en était ainsi et cect
constituait ¢videmment un point faible dans mon raisonnement car il
aurait fallu démontrer qu’il en était bien ainsi.

Si 'on admet cette hypothese, on voit aisément qu’on peut obtenir
une fonction de Lagrange pour le systéme des deux corpuscules en
posant

I 1 . .
(12) L= ;m;w}zﬁ— ;I)I,-_)V:_%——-F(l")—Q(l'),

ou Q(r) est la valeur supposée commune de Qy(z, y, 3, ¢) au point
occupé par le second corpuscule et de Qs (z, ¥, 5, £) au point occupé
par le premier corpuscule au méme instant ¢. Le mouvement des deux
corpuscules doit alors ¢tre donné par les équations de Lagrange,

() d({)L>_d£‘

at 5[; _/)_q (g=2uax1, -.., 3N).

\

Or, on démontre en Mécanique classique des systémes que, lorsque
le schéma lagrangien est valable, on peut trouver une fonction
S(xi, ..., 3., t) des variables d’espace et du temps telle que les
composantes de la quantité de mouvement soient données par les rela-
tions (3). Puisque nous retrouvons ici pour le mouvement des deux
corpuscules un schéma lagrangien, 1l doit étre possible de définir une

fonction ¢(ay, ..., 54, t) des variables de configuration ct du temps
telle que I'on ail

(t]) My = 5 Mo Vs = Js

L 1V1r= {)x17 b aVaz=— ’}z‘_’

Nous inspirant de la méthode de Schrodinger, nous allons maintenant
faire abstraction des ondes u; et u. qui évoluent dans 'espace physique
a trois dimensions et fixer uniquement notre attention sur les positions
successives des deux régions singulitres. Nous obtiendrons ainsi une
théorie incomplete qui, d’apres sa nature méme, laissera échapper une
partic importante de la réalité physique, mais qui, le succes de la théorie
de Schrodinger nous le prouve, devra nous permettre de retrouver la
statistique des positions successives des corpuscules représentées par le
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mouvement du point figurauf du systéme dans Pespace fictif formé a
Patde des six coordonndes x,, ..., z» des deux régions singulicres.

Pour suivre Ia méme ligne d'idées que dans le cas de Ponde W d’un
seul corpuscule, nous suppescrons qu’a I'instant initial les deux cor-
puscules sont suffisamment ¢loignés 'un de autre pour que lears inter-
actions soient négligeables et que leurs ondes « individuelles soient des
trains d’onde sensiblement monochromatiques. Les vitesses initiales des
corpuscules sont alors connues, mais leurs positions initiales dans leur
train d’onde sont inconnues. Aux diverses hypothéses que T'on peut
faire sur les positions initiales et qu’il est naturel de considérer comme
également probables (sous réserve, nous U'avons vu, d’une néeessaire
justification), correspondront diverses trajectoires du point représentatif
dans espace de configuration. Le mouvement de ce nnage est permancent
et obéit a I'équation de continuité
(13) div(gv) = o,
ot p(xy, ..., 52) cst la densité du nuage et V sa vilesse a six compo-
santes dans I'espace de configuration.

Si Pon tient comple des formules (14) qui donnent les composantes

de la vitesse des corpuscules & Paide de la fonction ¢, on voit que

Iéquation (13) s’écrit

a6 N[ B e L L D=,
1

my dry  duey ms dxs  dr,

Or, si nous défimissons avec Schrodinger, la fonclion d'onde

Wz, ..., 5, t) comme solution de équation de propagation
ST 8 =2
- AW o SR RO =
(r7) Zimi W+ h? [ ol o

1

dans Pespace de configuration et si nous posons

2w

S B e Dy

(18) U (&, vony S, 8)=a(®y, ..., 50)e "

nous trouvons aprés substitution dans (17)

Jo dloga? Jp Jloga>
(19) 2[1 de dloga L L 99 )O"a]—f—LAl:q-—)LAg'

my dxy dan ms Jdxs Oz, ny ¥ I

3

= 0.

-

ayz

La comparaison de (16) et de (19) montre que Pamplitude « de 'onde
fictive W dans I'espace de configuration va, du point de vue slatistique,




MECANIQUE DU CORPUSCULE UNIQUE ET LA MECANIQUE DES SYSTEMES. 141

jouer pour le point figuratif le méme role que Pamplitude de l'onde
continue ¥ dans le cas d’un seul corpuscule. Autrement dit, compie
tenu de hypothese que toutes les positions des deux corpuscules sont
équiprobables dans fes trains d’ondes séparés el presque monochroma-
tiques quileur sonl associés dans I'étatinitial, le produit ¢ de = | W {* dr
en chaque pomt de Pespace de configuration peut étre considéré comme
donnant la probabilit¢ pour que le point figuralif soit présent a I'instant
considéré dans cet ¢lément dr : il donnera méme la probabilité en valeur

absolue si I'on a soin de toujours normer la fonction d’onde W dans
Pespace de configuration par la formule usuelle f [W 2 dr = 1.

Telles sont les considérations que javais développées dans mon
Mémoire de 1927, Elles avaient Pavantage de bien faire ressortiv les
deux points suivants :

1° Lusage de I'espace de configuration est naturel dans la théorie de
la double solution parce que les corpuscules y ont une position hien
définie & chaque instant dans Pespace physique @ trois dimensions, ce
qui permel de définir clairement les variables de configuration, au
contraive ces variables n'ont pas de sens net si 'on nie Pexistence &
chaque instant d'une position du corpuscule et alors 'emploi de l'espace
de configuration parait difficile a justifier.

2* L'évolution réclle des phénomenes ondulatoives solidaires des N
corpuscules doit, du point de vae de la double solution, ¢tre décerite par
la propagation dans Pespace physique a trois dimensions de N ondes u
comportant chacune une région singuliere quasi ponctuelle : ¢’est seu-
lement, si Von fait abstraction des ondes o étendues pour ne fixer son
altention que sur le mouvement des régions singulitres, que 'on peut
faire intervenir espace de configuration pour y représenter, suivant la
méthode de Schrodinger, les probabilités de présence par la propagation
d’une onde W, onde purement fictive comme le sont d’aillenrs toates les
ondes W dans la théorie de la double solution. Quel que soit Iavenir
réservé A la théorie de la double solution, ces considérations nous
paraissent devoir garder de lintérét. En particulier, elles monlrent
clairement gqu’en passant d’une description dans U'espace physique d une
description dans Pespace de configuration, on perd nécessairement la
possibilit¢ de décrire des « champs » étendus dans cet espace physique
puisque chaque point de Pespace de configuration ne peul représenter
que 'ensemble de certains points singuliers de ces champs.

Mais Ie raisonnement résumé plus haut & des points faibles. D’abord,
il admet 'hypothese que les potentiels quantiques ontle méme caractore
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« mutuel » que les potentiels ordinaires sans fournir de justification de
cette hypothese. De plus, nous avons admis implicitement : 1° qu’il n’y
a pas de champs extérieurs agissant sur les corpuscules; 2° qu'il n’existe
pas dans les régions de Pespace ou évoluent les ondes w d’obstacles
provoquant des phénoménes d’interférences ou de diffraction dont
résulterait I'intervention de potentiels quantiques qui, cux, n’auraient
certainement pas le caractere mutuel. En d’autres termes, nous avons
admis que les potentiels F et Q étaient dus uniquement aux actions
mutuclles des deux corpuscules.

Pour nous affranchir de ces restriciions, nous avons récemment déve-
loppé une autre maniére d'attaquer la question dont nous allons faire
I'exposé.

3. Autre maniére d’attaquer la question. — Pour développer notre
nouveau point de vue, nous allons tout d’abord démontrer I¢ lemme
sulvant.

Lemme. — Soit deux variables x, et xs et 1 une certaine JSonciion
de x, et de xy. Considérons trois fonctions ¥y(zy, 1), Fuo(za, 1) et
V(zy, 22, 1) et supposons que nous ayons entre ces fonctions les
relations suivantes :

oF _JF JdF or JF, ) J¥, dr
<Z;z> Tom T or o T (f;) o T oor an
f JF ~JF JF ar JIFy\  Jl, Iy, dr
(ﬂ;_;)xl T das - dr das = <(}J)2 >m,:" o, - I

De Ia premiére relation (20), on déduit que

(20

Flay, 2y r)y=Fs(x, r)+ H(w,)

et de la seconde relation, (20) on déduit de méme que

3

Fay, 2ay 1) = Falws, 1)+ Gaxy).
Or cecl ne peut étre réalisé que sil'on a
(21) Fioay, ry=Fy(z) + Fua(r); Fo(wn, 1y =Toy(es) + Fui(r),

avece
Fi,=G, Fon=H et Fo=F,,.

On en conclut done que les hypotheses

JF _[IF et JF AL
Dy Jay  \day ) Dy )‘ Dy ),
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entrainent pour I la forme
(o) Flay, o, )= Fi (1) + Foa(wa) + Fial ),

ce qui constitue le lemme annoncé.

Revenons au systeme de deux corpuscules sur lequel nous avons
précédemment raisonndé. Chaque point de Pespace physique sera repéré
par le rayon vecteur R qui joint l'origine a ce point. Les positions des
deux corpuscales & instant ¢ seront donc définies par les deux vecteurs
R, (¢) et Ra(¢). La position d’un point R de espace par rapport an
premier corpuscule sera définie par le vecteur r =R —R;(£); sa
position par rapporl au seccond corpuscule sera définie par le vecteur
r,—=R-—R,(¢); cnfin la position du premicr corpuscule par rapport
au sccond sera donnée par le vecteur r=XR,;(¢)—R,(?). Les
distances corresl)ondantes auront pour exprossions

(ir]=VTR=R(OF: 1=/ R-Ra(0)

(23) RO R
! = \/le(t)*R‘l(t)‘\z'

Cecel posé¢, nous allons encore supposer connu le mouvement du
second corpuscule, cest-a-dire la fonction Rs(z), ¢t nous écrirons
I'équation de Jacobi généralisée (J,) pour le premier corpuscule quand
il est au point R = R, (¢). Nous aurons

. ) o, T
(24 () oz E = ——(grad; 5, 2+ F Fio+ Q
(21) 1) o ! amy 191+ Ky B ~b
avee
2 2
(25) 0, = h O o~ h Ay )
: ~ 8y a) /R=R, 8m2my \ @ /R=R,

Dans ces équations, o (R, Py, ¢) est la phase commune des ondes u,
¢t Wy du premier corpuscule dans le champ de force créé parle second,
compte tenu, s'il y a licu, de la présence d’obstacles provoquant inter-
férences et diffraction. @, (R, rs, ¢) est amplitude de I'onde continue
W,. Le symbole grad, o signifie (grado, )r=r, et Fi(Ry, ¢) représente
un potentiel extérieur pouvant éventucllement agir sur le corpuscule 1
tandis que Fia(ria) représente Paction du deuxiéme corpuscule sur le
premicr.

De méme, supposons maintenant connu le mouvement du premier
corpuscule, c’est-d-dire la fonction R, (¢), et écrivons I'équation de
Jacobi généralisée (J,) pour le second corpuscule quand il est au point

R”—‘—‘Rg(’),

N TR B - -
(AG) (.]2) It == Eg— E(Dradg?2)2+ F2+ P21+(227
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avee

(27) Q.= N /fl <—D (12> ~— ———m <éf2

Dans ces équations, ¢(R, ry, ¢) est la phase des ondes us ¢t ¥, du
second corpuscule dans le champ de force créé par le premier, compte
tenu, s'il y a lieu, de la présence d’obstacles provoquant interférences
et diffraction. La fonction as (R, ry, ¢) est Pamplitude de 'onde conti-
nuc W,. Le symbole grad.g, signific (grades)g_m,. lnfin F.(R.,, )
représente un potentiel extérieur agissant éventuellement sur le second
corpuscule tandis que Fuy (r1») est le potentiel représentant laction du
premier corpuscule sur le second. Nous admettrons comme d’habitude
que Fys =5, Quant a I'énergie Es du second corpusenle, elle n'est pas
constante cn général.

Plagons-nous maintenant au point de vue de espace de configuration
ou R, de composantes zy, yi, 5 et Ry de composanles Zs, )y, 22

deviennent des variables indépendantes et admettons que I'onde conti-
27

nue W(Ry, Ry, ) = a(R,, Ro, t)e # 0

Schrédinger.

ohéit a D'équation de

L'équation de Jacobi généralisée s’¢erira pour la position R, R. du
point figuratif

s . Jdo 1 1 R .

28 J)y T =1=-——(grad, o2+ gradae 2+ F+ Fo+ VFyo+ Q,
(28) ) JE amy ° R 9 M, (grad:5) ! - n+ Q
avece

. 2 I @ 1 s h? I Ma 1 Asa
(29) Q= _— o +,7Q;_ ~ (T 2 .
D 8=2\m, «a 0yt R, R, 8= \my a my a /R,R,

Iei (R4, Ro, 2) est laphase de 'onde W dans Pespace de configuration,
(R, Ry, ¢) est son amplitude. Fy, Fy et F,, ont la méme signification
(ue plus haut.

Or, si nous voulons que la représentation dans Pespace physique a
trois dimensions, seule exacte physiquement, et la représentation fictive
dans Vespace de configuration se correspondent, il faut avoir les for-
mules de guidage
(309 i m,v;=— grad,c,=— grad, <,

my v, =— grad,¢,=— grad, .

Mais, d’aprés le lemme, ceci entraine pour les phases les formes
suivantes :

-G

¢1(Ry, iz, 1) = 50 (R, £) + 310 Tray £
12 = $a1,
(

(31) $2(Ra, Taa, 1) = 902 (Ra, £) + 321 (T2, 1) )
(R, Ra, Ty, 1) = 311(Ry, 1) + 222(Roy £) + 012(Tys, ).
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Ainsi se trouve précisée la forme générale, valable méme dans le cas
d’actions exiérieures on d’obstacles aux propagations, des phases o, et ¢,
des ondes individuelles (w ¢t ') des deux corpuscules ct la phase o de
I'onde fictive W dans espace de configuration.

On peat remarquer qu’il ne semble pas nécessairement que la fonction
912 7= %21 s0il uniquement fonction de la distance

Pie= N — g ) (= ) )i (5 — Fa )

il sutfirait qu’elle soit fonction des trois composantes &y — @, )y — )7,
31— 32 du vecteur ..

D’autre part, les « forces quantiques » doivent avoir mémes valeurs
qu'on les calcule dans T'espace physique ou qu’on les calcule dans
'espace de configuration, ce qui entraine les conditions

(3 grad, ), = grad, Q, grad, Q.= grad.Q
el Iapplication du lemme nous donne encore

Qus = Qu,

<.

‘ QR T2, 1) = Q1 (R £) + Qua(Ti, £) )
(33) : Qu(Ro, Tra )= Qoa(Ro, 1)+ Qo (T10, 1)}
L Q (R, Ry, iy, )= 0Qn(Ryy 2) + Qoa(Ra, £) 4+ Qralrin, 7).

Nous pouvons faire sur Qa== Q2 la méme remarque que nous avons
faite pour ¢, : cette fonction ne semble pas devoir nécessairement
dépendre de la distance ryo, 1l suffit qu’elle soit fonction des trois
composantes Zy-— q, y1— )2, 51— 52 du vecteur ry,. Celle remarque
permet d’adoucir Uhypothése que j'avais faite en 1927 sur Q.

Les formules (31) et (33) montrent que le passage de g1 el ¢z & g el
de Qu et Qo a Q doit se faire exactement de la méme facon que le
passage de &7y el £ a £7 et de By et Ey & E en Mécanique classique des
systémes.

Maintenant, en comparant les formules (24), (26) et (28) et en
tenant compte de (31), on obtient

(31) E=FE +E:—Fo+0Q—0,—0Q,
ou d’apris (33)
(35) K=t +E—F.—0.

T , N o : .
= — 074 —maei+ o+ Fot Fiao+ Q4+ Qu+ Qs
9, 9 2

Cette formule parait d’ailleurs assez naturelle parce qu’elle traite

L. DE BROGLIE. 10
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d’une maniere symétrique le potentiel ordinaire d'interaction Iy, et le
« potentiel quantique d’interaction » Q..

La méthode que nous venons de suivre a I'avantage de mieux analyser
la forme générale que doivent avoir les phases et les potentiels quan-
tiques. Mais elle ne fournit pas encore une justification complite du
passage de la Mécanique ondulatoire du corpuscule unique dans un
champ donné a la Mécanique ondulatoire des systémes de corpuscules
en interaction dans le cadre de la théorie de la double solution. Pour
obtenir les équations (30) et (32), nous avons admis qu’il v avait
concordance entre la représentation du mouvement par deux ondes u
dans U'espace physique et par U'onde fictive ¥ dans U'espace de confign-
ration : or, c’est précisément cette concordance qu'il fandrait justifier
rigourcusement. Nous allons maintenant indiquer un genre de raison-
nement qui nous parait conduire plus pres du but.

%. Comparaison du mouvement relatif de deux corpuscules en inter-
action et de la représentation du mouvement du systéme dans I’espace
de configuration. — Nous considérons maintenant de nouveau unique-
ment un systéme 1solé formé de deux corpuscules 1 et 2 dont'interaction
est représentée par un potentiel V(r), fonction sculement de la distance r.
Pour P'étudier, nous pouvons toujours adopter un systéme de référence

“caliléen ot le centre de gravité est immobile et choist par exemple
comme origine des coordonnées. Le passage & un autre systéme galiléen
ne fera alors qu'introduire ¢n supplément le mouvement reculigne et
uniforme du centre de gravité. Nous allons étadier d’abord le cas ot
Papproximation newtonienne de la Mécanique classique (c’est-a-dire,
du point de vue ondulatoire, 'approximation de 'Oplique géomdirique)
est valable. Nous chercherons ensuite a passer uu cas général.

a. Approximation de UOptique géométrigue. — Quand la Méca-
nique classique est valable, on peut écrire pour les deux corpuscules les
équations du mouvement de Newton :

(36) myyy=—grad, V; iy = — grad. V.

Les deux corpuscules décrivent alors dans I'espace physique des
trajectoires Ly el L, avec des mouvements bien déterminés. lLes deux
trajectoires et les mouvements correspondants sont « corrélés » d'une
maniére biunivoque.

Mais on peut aussi représenter le mouvement de 'ensemble des deux
particules par le déplacement d’un point représentatif dans I'espace de
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configuration .ry, ..., %, et écrire dans cet espace 1'équation de Jacobi :

o 2)\ o 0S8 S \? PRASE
L) M oy |\ ) - <Zl 0z 1‘) }
| <(}S 2 J5 \? JS \? o
+— -} () + (- —+ Vi,
D, r),r._,> /))&_, > <1)z._,> :I :

N S X .
ot - a lu valeur constante E, énergie totale du systéme. A chaque inté-
[

grale complete S (o1, ..., 59, £, 2, 3, ...) de Péquation (3%) corres-
pond une trajectoire 1. du point représentatif qui est Pune des courbes
orthogonales aux surfaces S == const. dans I'espace de configuration et
le mouvement des corpuscules sur les trajectoires Ly et L, correspon-
dantes dans Pespace physique est donné par les formules de Jacobi :

3% v =— /—llﬁgradd. Vo= — ;][;_‘ grad.S.

Ainsi la représentation dans 'espace de configuration fait correspondre
a I'intégrale complete S Uensemble des mouvements d’une méme classe
des deux corpuscules.

Pour étudicr le mouvemnent de I'ensemble des deux corpuscules, on
peut aussi se servir en Mécanique classique d'une méthode tout a fait
différente des précédentes qui consiste a envisager le mouvement relatif
d’une des particules par rapport a I'autre. Il est bien connu que, si nous
prenons un sysitme d'axes de directions fixes ayant pour origine l'un
des corpuscules; le mouvement de P’autre corpuscule dans ce systeme de
véférence non galiéen sera le méme que sile systéme était galiléen et
st cet autre corpusenle possédait une « masse réduite » p. telle que

. i | i My,
(39 = e — ou Y=
A n, n., 0y —+= 1o
Autrement dit, U'influence du mouvement non uniforme du nouveau
systeme de référence se traduil uniquement par une variation apparente
de lu masse du corpuscule en mouvement relatif. Dans le systéme non
galiléen 1ié a un des corpuscules, on peut done éerire pour le mouve-
ment de Fautre équation du type newtonien,

(fo> uy'=— grad*V,
ou lastérisque indique gu'une quantité est évaluée dans le systéme non
galiléen.

Supposons pour préciser que nous prenions le corpuscule 2 comme
origine du systéme de référence non galiléen. Nous voyons immédiate-
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ment que NOUs aUrons comme équal,ion de Jacohi du corpuscule | dans
ce systeme

IS, [ ()ST\i ASTNT O SISTNE .
‘ 2 o - .
(f) N 2 '<r).1f* + < e /) + ( f):') M.

Le mouvement relatif du corpuscule 1 correspondant a une intégrale
complete de (1) s'effectucra suivant unce trajectoire L qui sera une
courbe orthogonale aux surfaces S7= const. et le mouvement le long
de 1.} sera donné par I'équation

(42) : v

T=— Vl grad* 81,

Nous devons maintenant regarder de tres pres T signification de ces
équations valables dans le systeme relatif.

Tandis que, dans le systéme galiléen Lié an centre de gravite, les
¢énergies partielles B =T, 4V et L.="T,+V des.deux corpuscules
en  mouvement étaient  variables ot que  scule Ténergie  totale
4 =T, 4 Ts-+V dlaitl constante, Pénergic E7 = %;,—‘ dans le mouvement
relatif est constante, comme on pourrait le déduire de Ia manicre usuelle
a partir de équation (40). Geer provient du fait qu’en passant au
systeme lié i 2, nous avons reporté toute Pénergie de Pensemble des
deux corpuscules. sur le corpuscule qui reste en mouvement. On a
dailleurs E7 = 15, ¢’est-a-dire

. 1 ] . , 1 Y
(43) :IJ.(\VI—“V;{)‘,—F\ ::I)lli'f—i—fl)lg(‘g%—\
2 2 B

comme il est ais¢ de le verifier.
Naturellement si nous avions pris pour origine des coordonndes
relatives le corpuscule 1 en faisant le changement de variables

*

2*—=x-—x,(L)..., nous aurions trouvé pour le corpuscule 2 dans ce

systeme I'équation de Jacobi.

JS] L[/ a85N (()Si‘ 2SS
7 U = a2 — (r
) N 20 [(\ da* ) + Iy* > - ( )3 > I Vi

N\

(

—~

o 083 . , o
et Pénergie B, — d_; aurail ¢L¢ une constante égale, clle aussi, i L.

Les deux fonctions de Jacobi S} et S7, obéissant aux deux équations
(41) et (44) de méme forme, seront égales A une meéme fonction F
(r*, ¢) des coordonnées relatives et du temps,

Voicit maintenant le point capital. Considérons une certaine intégrale
complete de I'équation (41), S](r*, ¢). Les diverses courbes orthogo-
nales aux sufarces S} = const. ctles mouvements correspondants définis
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par (42) représentent des monvements possibles de la particule 1 autour
de la particule 2. Soit L} Pune de ces trajectoires possibles; en reve-
nant au systeme galiléen ou le centre de gravité est a origine des coor-
données ¢t en se servant de la relation m, Py + muPy— o, on peut
déduire du mouvement L7 les mouvements corrdlés Ly et Ly des deux
corpuscules autour du centre de gravité. Parmiles courbes (G) formant
la congruence des normales nux surfaces S} = const. dans le systeme de
référence non galiléen li¢ a 2, une seale est effectivement déerite par le
corpuscule | dans son mouvement relatif; cependant, comme dans le
systeme non galiléen lié a 2, le corpuscule 2 ne joue plus que le role
d'un simple centre de forces, nous devons considérer ’équation (41)
comme nous donnant, & Uapproximation de I’ Optique géométrique,
la propagation de la phase S| delonde w} du corpuscule ¥ dans tout
ce systeme de référence

On voit done maintenant que, dans le systeme de référence relatif,
fa foncuon S7
sibles d’une méme classe L

nous donne ¢ la fors I'ensemble des mouvements pos-

*

. du corpuscule | dans le champ central
permanent c¢réé par le corpuscule 2 et la phase dans tout le systéme
relatif de Ponde ) du corpuscule 1 quand il décrit Uune quelconque
des trajectoires Lj. Cette remarque essenticlle est la clef du présent
raisonnement.

Naturellement, si nous rapportions le mouvement du corpuscule 2 au

s x
a2

corpuscule 1, ce serait la lonction S;(r”, ¢) = S} (P”, ¢) qui nous servi-

rait & représenter Vensemble des mouvements possibles du corpuscule 2
dans le champ centeal permanent créé par le corpuscule | et aussi
dans tout le systeme relauf la phase de Ponde ) du corpuscule 2 quand
il décrit 'nne quelconque des trajectoires L.

Considérons maintenant la fonction de Jacobi S pour Pensemble des
deux corpuscules dans T'espace de configuration. Gest une fonction

S(Ry, R,, #) des six variables de configuration z,, ..., 5, et du temps
¢ qui obéit a 'équation de Jacobi (37). Sinous introduisons les variables
relatives 2" —= 2, — 72, ..., on aura

IS S JS . JS

dry Aot oxs  dr
les vartables 2y, ..., z» élant d’ailleurs reliées par les relations
myxy 4+ maxs=o0, ... qui expriment la fixité du centre de gravité.

I’équation de Jacobi pour S prend alors dans le systéme relatif la forme

KT (OSNe0SY)
(1[’) I - Ry [(I}.L" —+ ) - e + ¥ (1 )
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I’identité de torme des équations (41), (44) et (43) montre alors que
la fonction de Jacobi S du systéme des deux corpuscules ( qui est égale
a la phase de Ponde W dans 'espace de configuration a I'approximation
de I'Optique géométrique) a dans le systeme li¢ au corpuscule 2 la
méme expression S'—=F (1, ¢) que S, et dans le systéme li¢ au corpus-
cule 1 la méme expression ¥(r, ) que S,.

Revenant alors au systéme galiléen lié au centre de gravité, on voit
qu'en employant les notations du paragraphe précédent, on a

&’;6) Sl(;RJ,I‘“, tt):SQ(Rﬂu .. f):S(Rh Rv_y,[):F(l'}z.[}
et la validité, aux points corrélés de L, et de L., des formules
(17 mv,=—grad,S; = —grad, S. myv,=—grad.S, = — grad, S

devient évidente. Les formules (46) correspondent bien aux formules
(31) du paragraphe précédent avec ¢ ==¢2 == 0 €L 9y =S =F (la
nullité de o4, et de .2 provenant de Dlimmobilité du centre de
gravité dans le systeme galiléen). Si nous adoptions un systtme de
référence galiléen ott le centre de gravité aurait un mouvement
vectiligne et uniforme d'énergic K, et de quantité de mouvement
P. il faudrait ajouter a S les termes Eg¢ — (P . X+ P, Y - 1.7)

. % My.ry = s,
(5211 }&:‘_ _—

- Lés formules (46) prendraient alors la forme
my -+ My

j SRy, Pra, 1) = S (R, 1)+ Sq1a(Tya, 8) }
S:(Ry. Ty, 1= Sa(Re, )4 Sey(r)s. 1) |
{ S(R], Rg. {t) = S][(R], 1) =4 S«_)i_)(ng [) -+ S]-_)(I']g, 7).

- (B2 = Sup),

ce qui coincide exactement, a 'approximation de 'Optlique géométrique,
avec les formules (31) du paragraphe précédent.

Ajoutons une remarque intéressante. Les ¢qualions (41), (44) et (45)
peuvent s’éerire

(490 El=T!+V.. E/=T;+\, LE=T4+\.

avece

(301 E=E=E5L T=T/=T;=T,+T,.

Dot

G fEi=(Ti+ V) To=E+ T, Ei=(T.+V)+ T =L+ T
- ! BB =F - E— (T + Ty =2k — (L —V);
soil

(92) E=FE +E,—V.
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Nous retrouvons ainsi U'expression signalée précédemment de P'éner-
gic totale K du systeéme des deux corpuscules en fonction de leurs
énergies individuelles E; et E; et nous voyons micux pour quelle raison
nous n'avons pas Il =E, + E..

Nous venons de raisonner en nous tenant constamment dans 'appro-
ximation de¢ I'Optique géométrique, ce qui a cu l'avantage de nous
permettre de nous tenir sur le terrain bien assuré de la Mécanique
classique. Nous allons maintenant par des raisonnemenls analogues
tenter d’extrapoler les résultats obtenus au-dela des limites de I'Optique
géométrique en introduisant les idées de la théorie causale.

b. Ltude du méme probléeme en dehors des limites de U Optique
géométrigue. — “crivons  d’abord I'équation de propagation de
Ponde W dans I'espace de configuration

(33 . 2 2 N g2’ N A2
) aml T 8mEimgy \ dud dvi Jz3

A UL R E O :)'1‘1‘> iy
( +\N(r).

- = s + E
3 Jv3 733

SN

Si Von exprime W sous la forme
2

= iy, ...,:2,[‘)6/‘ R

Dy ey Seu )

la grandeur E = :j; devra éire 'énergie constante du systeme. Dans le
point de vue de la double solution, les corpuscules du systeme doivent
étre bien localisés el décrire dans Pespace physique des trajectoires
corrélées Ly et L, représentces dans Pespace de configuration par la
trajectoire [ du point représentatif qui est Vune des courbes orthogo-
nales aux surfuces ¢ == const. Les mouvements des corpuscules sur les
trajectoires Ly et Ly de Iespace physique scraient donnés par les for-

mules de¢ guidage

1 T
(") v,=— — grad;s vo=— —grad.z.
1) 1 i g 19, 2 P g 2%

Ainsi la représentation dans I'espace de configuration ferait toujours
correspondre 4 la phase ¢ 'ensemble des mouvements corrélés d'une
méme classe.

Comme précédemment il est naturel de considérer les mouvements
relatifs de chacun des corpuscules par rapport & 'autre. On démontre
aisément que, dans le systtme non galiléen li¢ & Pun des deux corpus-
cules, on a pour 'onde ¥ 'équation de propagation

L R ST WS A S W
EE T 87:'-’p.<r)x"'—’ + g~ o ) TV

~
o
o
~
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@ ayant toujours la valeur (39), ce qui a Fapproximation de POptique

géoméirique, nous ramenerait & 'équation de Jacobi (43) avee ¢" =85,

Quelle doit étre, du point de vue de la double solution, I'équation de
propagation (¢n dehors de la région singuliere) de Ponde w, du corpus-
cule | dans le systtme de référence li¢ an corpuscule 27 Si nous Iéeri-
vons sous la forwe

; =T (et 5k )
st = ai(at ot s e

wy (.t

nous savons qu’a approxumation de 'Optique géoméirique ol ¢ =157,
nous devons retrouver Péquation (41). Ceet nous conduit i éerirve
comme équation de propagation de «) dans le systéme non galiléen
relatif

L oy h? <r)‘—’u,f Puy Jruy

36) . _—
¢ owl M 8=y \ Jdua*? Ay 32

> -+ V().
Le mouvement relauf s’eflectuera suivant Pune des courbes orthogo-
nales aux surfaces o) == const. avec la vitesse

*

I
vi=— Jgrad*;].

. Jo*

: : 0 pRY T for ;

lei encore, pour les raisons exposées plus haut, Bl = ~)—tl sera égale a
’ f

I'énergie constante E du systéme, toute I'énergie du systeme des deux
corpuscules se trouvant reportée sur le mouvement relatif du corpuscule I

Naturcllement, si nous avions pris comme origine des coordonndées
du systeme relatif le corpuscule 1, nous aurions dia prendre pour équa-
tion de propagation de l'onde «] du corpuscule 2 dans ce systeme

(579 e

Gl 8r2u

b dul h2 (()2 wy o drul ()l(§> V()

ot - Jy*? + Jz*?
qui, a Papproximation de I'Optique géométrique, nous redonnerait
Uéquation (44) avec S;=—=¢,. Les fonctions u] ct w) obéissant a des
¢quations de méme forme peuvent éire regardées comme égales a une
méme fonction de r* et de ¢, ce qui nous conduit a leur donner Uexpres-
ewi

sion commune a* (P, t) e»’/'—l e

Dans le systeme de véférence non galiléen lic au corpuscule 2, ce
corpuscule ne joue plus que le role d'un centre de force etnous sommes
-amends au cas du mouvement d’un corpuscule dans un champ donng,

2T

o* . .
londe uj=aje’ ™" obéissanl a (56). L’cnsemble des courbes ortho-

gonales aux surfaces ¢, =— const. el les mouvements définis par
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*

I .
Vie=— - grad’¢; représentent dans ce systeme I'ensemble des mou-
v

vements possibles d’'une meéme classe. Si L] est la trajectoire décrite
par le corpuscule [, on pourra, en revenant au systéme galiléen lié au
centre de gravité et en utilisant la relation m Py ~- m2Ps== o0, déduire
dn mouvement L} les mouvements corrélés L, et Ly des deux corpus-
cules autour du centre de gravité.

2R

h

*

2

On voit que, dans le systéme relatif, la fonction «* e représcnle

«t la fois 'ensemble des mouvements L] de méme classe possibles pour

le corpuscule 1 et (sauf dans la région singulidre) I'onde #] du corpus-
cule 1 quand il déeril 'une quelconque des trajectoires 1.7, Glest Ia le
point capital.

Naturellement, si nous rapportons le mouvement du corpuscule 2 au

2T

- o

corpuscule 1, ce sera la fonction @’e * ° ¢ui nous servira a représenter
a la fois Pensemble des trajecloires de meéme classe L) et Vonde w]
associée au corpuscule 2 quand il décrit Pune quelconque des trajec-
toires ).

Si maintenant nous comparons les équations (56) et (57) avec P'équa-
tion (55) satisfaite par Ponde W de Pespace de configuration, on
voil qu’on peut choisiv pour la fonction W la méme expression
v 06",,“"?*(1«, 1
que les formules (31) et (33) du paragraphe précédent ot 013 el oy

ue pour les fonctions #7 et 7 (1). On en conclut
I 1 2

sont nuls ainsi que Qyy et Quy et qui se réduisent a

{ oei(T, 1) =5

s ( ) = z12(T1a, 1),
P Qe )= Qu

(58) ‘ (
)= Qi2(rye, 1)
sont bien vértfides.

La nullité de ¢y et de gus résulte de 'immobilité du centre de gravité
dans le systeme galiléen choisi. Dans un autre systéme galiléen dans
lequel le centre de gravité aurait un mouvement rectiligne et uni-
forme d’¢nergiec B, et de quantité de mouvement P, les termes
ot — (P, X + P, Y + P.7Z) s'introduiraient dans la phase et l'on
retrouverait les formules (31).

(1) Le résultat que nous avons obtenu peut s'exprimer en disant que, dans le systéme
de référence relatif, ou Pun des corpuscules joue sculement le rdle de centre de forees,
la partie régulicre de Ponde o da corpuscule mobile coincide (i une constante de
normalisation preés) avee son onde W, Clest un résultat que nous retrouverons au
<chapitre XVII.
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Ajoulons encore que la vérification de la forme K = E; +-E, —V — )y,
se fait ici de la wéme fagon que plus haut celle de la formule
E=E;+E,+ V. Les équations de Jacobi généralisdes correspondant
anx ¢équations de propagation (55), (36) et (57) nous donnent en

posant 0O =0,

(99 Er=T;+\V +0Q: =T+ \ +0: E=T"+V 4+ Q:
avee
{ 6oy E=El=LE]; T"=T=T,=T,+ T..

Nous en déduisons

o Er= (T +V+Q)+To= ¥ +T.: Fo= Ty V) + Ty = Fat- T
)

e Byt Fo= B B (T Ty = 2l — (1 — \ — Q)

d’on

(62) L=E+ E— V— .

Les raisonnements précédents sont valables pour deux corpuscules
en Pabsence de champs extérienrs.

Sl existe des champs extéricurs, on retrouve encore aisément les
formules (31) et (33) dans le cas oft, ces champs élant sensiblement
conslants dans toute 'étendue du systéeme, il y a séparation entre le
mouvement du centre de gravité ¢t le mouvement relatif, Si cetie condi-
tion n'est pas remplie, le probleme est plas compliqué et demanderait
un nouvel cxamen. Il en est de méme pour le cas de plus de deux
corpuscules ou il faudrait peut-¢ire employer des méthodes analogues
a celles qu'on emploie en Astronomic mathématique dans le probleme
des n corps. Quoi qu'il en soit, la méthode employée dans ce para-
graphe est tres instructive el parait bien adaptée a la solution du
probléme envisagd.

5. Cas des particules de méme nature. — Le cas des sysiémes conte-
nant des particules de méme nature physique pose un probleme encore
plus difficile. En particulier, on peut se demander si le maintien de la
notion ‘de trajectoire postulée par la théorie de Ia double solution est
compatible avec lindiscernabilité des particules admise par la théorie
quantique actuelle. Il semble, en effet, que la vérification expérimentale
de la staustique de Bose-Einstein pour les bosons apporte une preuve
directe de Pindiscernabilité de ces particules etla question est de savoir
si ce résultat expérimental est compatible avec les conceptions de la



MECANIQUE DU CORPUSCULE UNIQUE ET LA MECANIQUE DES SYSTEMES. 155

double solution. Nous appuyant sur les considérations développées
plus haut, nous allons indiquer comment on peut aborder la question.

Constdérons toujours un systéme de deux particules. Nous les suppo-
serons de méme nature, ¢’est-a-dire que m;—m.. L'¢tude d’un tel
systtme dans la Mécanique ondulatoire actuelle montre que, si les
régions de présence possible des deux particules empigtent 'une sur
Pautre, 1l est néeessaire de supposer que l'onde W du systeme dans
Pespace de configuration est soil symétrique, soit antisymétrique (1).

Comme les équations d’onde des deux particules sont les mémes, il
est naturel de supposer que, si les trains d'ondes u empi¢tent en partie.
les ondes peuvent se superposer et former une onde « unique que F'on
peut représenter par la formule

i

— T, ¥, 5 U0
y rads

(63 (e, ), 3, 0)=f(u, ¥, 5, 1)e s

"

Camplitude [(x, y, 3, t) ayant icl deuzx régions singuliéres mobiles
distinctes. lin Fautres termes, les ondes « mdividuelles des deux pari-
cules w (R, Ty, &) et (R, Py, £) se fondraient en une onde
unique avee deux régions singulieres. Ce serait cette sorte de fusion des
ondes «, possible pour les bosons, qui expliquerait la faculté d’associa-
tion que possédent ces particules.

Supposons I'un des corpuscules placé an point Ry, Fautre ayanl une
])OSil,i()n déterminde par rp.. La 1)}12]5(‘, de Vonde w devant étre uniquc,
nous devons avoir

164) ‘-.7|('R,'V. Ty, )= Z‘:g'\Ri, T, l) (»i: 1, 2),
Q’on, d'apres les formules (31)

163) ?H(R,',l):l}»_g(‘R[, [),

d’on encore

(66) (R, Ry, Tios 1) =510 R 1)+ 511 (R, 1)+ $12(Tp0. L),

o(Ry, Ro, Iy, ) élant toujours la phase de I'onde Y dans I'espace de
configuration.

De meéme, pour les amplitudes des ondes W individuelles, on devra
avoir

(67) @) (Ry, Xyas 0} = ct2( Ry, Tys, )

et Ton tire alors de la définition des potentiels quantiques et des

(1) Voir chap. 1V, § 4.
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§ formules (33)
V: (68) ‘ i QHKR“ 1) = ()2-_)V<Ri~ 1),
(‘ ’ ' Q(Ry, Ry, 1o, 1) = QiR 1)+ Qui(Ry, 1)+ Quat Ty, £,
| Ces formules, comme (65) et (66), résultent d’ailleurs du fait que les
, régions singulieres sont indiscernables ¢t peuvent étre permuiées sans
que le phénomene ondulatoire représenté par w soit modifié.
“7 Done le potentiel quantique de Pespace de configuration
| (6y)y Q= 2 (O + Oy a(Re, Ro. Tpae 1) o It (N 4 Ay
by < Sz, «a{Ry, Ro.1y0. 1) 8=, r
; doit étre symdétrique en Ry el R,

SiAL(R1. Ry, Py, ) désigne Vamplitude d'une solution quelconque
de I'équation des ondes dans Uespace de configuration, A (R, Ry, Py, ¢)
sera également solution et on devra former une combinaison lincéaire de

y La forne

L (70 CA(Ry, Ray Tya, 1) = DA(Rs, Ry, Lya. 1)

N .

telle que ka quantité

i3

i ) COA(R, Ry, r10. H))4+-DOQ(R.. Ri. 1y 1) O

3 7 : ~ ),

E i CA(R, R, T, 1)+ DA(R,, Ry.1i0. 1)

3

: ot O == 01+ Oa. soit insensible 4 la permutation de Ry et de Ry,
c’est-i-dire a la permutation de la position des deux régions singulicres.
L Lu derivant cette condition, on trouve aisément G2=D?, ¢'est-i-dire
8 Cl=|D|et 2argC = 2argD + anz, don

! (72) = Ce¥ D=+ (e¥=1 .

i .

! On est ainsi conduit & n’admettre pour 'onde W de I'espace de confi-
1 guration que les solutions symétriques et les solulions antisymétriques,

conformément au résultat bien connu de Ia Mécanique ondulatoire des
g particules de méme nature. Mais ici ce résultat apparail comme une
conséquence du fait que les ondes u des particules de méme nature,
quand eclles empittent dans l'espace, se fondent en une onde unique
comportant plusicurs régions singulicres dont les roles doivent étre inter-
changeables, car dans une méme onde « ces régions singulitres sont
identiques et leur permutation ne peul avoir aucun effet. L'image ainsi
obtenue pour I'onde « nous parait présenter un grand inlérét.

! A partir du résullat classique ainsi retrouvé, il faudrait montrer pour
|

quelle raison il convient de prendre la solution symétrique pour les
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bosons et La solution antisymétrique pour les fermions et justificr pour
ces derniers lJa validité du principe d'exclusion de Pauli. I faudrait
done monirer pourquoti les régions singulicres « bosons » peuvent se
grouper en grappe sur une méme onde u alors que les régions singu-
licres « fermions » ne peavent le faive et restent loujours isolées sur
lewr onde o individuelle, Pour bien comprendre ce point, 1l serail
certainement néeessaire de faire intervenir la notion de spin dont I'inter-
vention est essentielle pour la définition rigourcuse des fonctions d’onde
symdétriques el anlisyméirique. La théorie de la double solution ne peut
doue aborder cette question qu'apres avoir é1é étendue au cas des part-
cules de spim différent de zéro et en particulier a la Mécanique ondu-
latoire de Pélectron de Dirac, ce que nous ferons seulement au cha-
pitre XV L Mais, meéme apres celte extension, nous ne serons pas en étal
de résoudre le probleme qui se pose ici @ il est de ceux qu’a I'heure
actuelle, nous devons réserver pour de futures recherches.

e 7 W




CHAPITRE XIII.

LA SIGNIFICATION PROBABILISTE DE j%'{2 ET S\ JUSTIFICATION.

1. Retour sur le raisonnement de 1927. — En 1927, javais lenld,
nous 'avons vu, de justifier attribution a la grandeur «* =1 2 de la

signification suivante : elle représente la probabilité de présence a
Iinstant ¢ d’un corpuscule-singularité aun point de T'espace corres-
pondant. Pour tenter cette justification, j’étais parti du cas de Ponde
plane monochromatique en 'absence de champ (physiquement on doit
dire du cas d’un train d’ondes trés ¢lendu assimilable dans sa presque
totalité & une onde plane monochromatique). Les trajectoires possibles
sont alors des droites paralleles & la direction de propagation. Nous ne
pouvons pas savoir (a4 moins de fairc une observation qui changerait
completement la situation) sur laquelle des trajectoires sc trouve le cor-
puscule, nien quel pointilse trouve sur sa trajectoire. Pour cette raison,
il parait justifié, disais-je, de considérer toutes les positions du corpus-
cule dans le train d’ondes comme également probables, ce qui permet
d’adopter pour la probabilité de présence Pexpression «?-= W [ qui est
alors constante. Si ensuite le train d’ondes pénetre dans une région on

régne un champ de force quelconque Péquation de continuité

f)’jl[l +div(arv)=o0

(ot v est donnde par la formule du guidage) permettra de conclure que
la probabilit¢ de présence doit toujours rester égale a a?=— |92, Natu-
rellement ce raisonnement doit s’appliquer aussia 'onde W d’un systéme
dans l'espace de configuration interprétée comme nous venons de le
faire dans le dernier chapitre. On pourra en ce cas partic d’un ¢tat du
systtme ol les constituants associés a des trains d’ondes W de dimen-
sions finics sont suffisamment éloignés les uns des autres pour étre
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représentés par un train d’ondes planes monochromatiques dans 'espace
de configuration. [ est alors natnrel d’admeltre encore que, au début,
la probabilit¢ de présence du point représentatif est donnée par la
U2 et on en conclura que, pendant toute la durée de
2. Il en

constante ¢ =
Pinteraction, cetle probabilité de présence restera égale a | W
résulte aisément que, si apres la fin de interaction les corpuscules sont

de nouveau sépavés ¢l sans interaction, la probabilité de chacun d’cux
dans Pespace physique se déduira encore de la valeur de | W .

Considérons comme exemple un ¢lectron qui, dans son élat initial, se
trouverail anim¢é d’un mouvement rectiligne uniforme en dehors de tout
champ. Si cnsuite 1l entre en 1nteraction avee d’autres corpuscules avec
échange d’énergic et de quantité de mouvement ct si finalement il se
trouve cmprisonné dans un état stationnaire a Pintéricur d’un atome,
les considérations précédentes paraissent justifier de regarder sa proba-
bilité de présence tinale aux divers points de l'atome comme donnée
par le carré du module de la fonction W qui représente son état station-
naire final.

Ainsi, si Pon admet qu’en partant d’un état de mouvement initial rec-
tiligne et uniforme d’un corpuscule, on puisse toujours amener ce
corpuscule a I'aide d’interactions convenables dans n’importe quel état
final, on pourra justifier I'identification de | W |2 avec Ia probabilité de
présence et cela d’une fagon générale. Toutefois cette conclusion repose
sur hypothése suivante : quand Vonde W est formée par un train
d’ondes sensiblement assimilable & une onde plane monochromatique,
il est légitime de considérer la probabilité de présence comme donnée
par 2= "2,

Mais cette hypothese peut paraitre arbitraire. D’une facon générale,
la densité de probabilité de présence p(z, y, z, ¢) doit obéir, comme la
fonction @*. a I'équation de continuité
(1) ’()); +divev =0,
ou V(x, ), &, £) est une fonction connue de z, y, z, ¢. Gette équation
¢élant du premier ordre en ¢, p cst complétement déterminée si on
connait sa forme nitiale ¢ (2, 3, 5, o) 4 U'instant origine ¢,. Si l'on pose

() ol yo s, )= a(aw, v, 5. b)) =1W(e, ¥, 5, L) 2,

alors la solution de (1) est bien p = a*=| ¥ [*. Mais le choix (2) dc la
forme initiale est arbitraire et 'on pourrait en faire une infinité d’autres
tout aussi acceptables. Méme dans le cas de 'onde plane monochro-
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matique, le choix p = a*=| ¥ 2, bien qu’étant trés naturel, a un carac-
tére arbitraire.

N¢anmoins, pour défendre la validité de cette hypothese qui étaita la
base de mes raisonnements de 1927, on peut faire remarquer ue,
quand on veut appliquer le calcul des probabilités a une question
concrete, 1l y a toujours une hypothdse arbitraire de nature physique
placée a la base de cette application. Méme dans Ie cas si simple et si
intuitif du jeu de pile ou face, quand on attribue une meéme proba-

R N . . ..
bilite - aux deux hypotheses pile et face, on admet implicitement la par-

faite symétrie de Ja picce de monnaie. Si Pon envisage un nuage homo-
géne de gouttelettes tombant normalement sur un sol plan, on admel
tout naturellement que des aires égales du plan onl la méme probabi-
hité de recevoir une gouttelette, ¢’est-a-dire qu’on admet que le nombre
des trajectoires verticales des gouttes percant une surface do du plan est
proportionnel & do. C'est la exactement la méme hypothése que celle
que nous avions faite dans le cas de onde planc monochromatique, car,
st nous envisageons I'ensemble des irajectoires paralléles possibles du
corpuscule qui viennent percer un plan d’onde, 'hypothose fuie en
posanl o = ¢ = const. revenait précisémcnt a admettre que [e nombre
des trajectoires possibles traversant une petite aire do du plan d'onde
est proportionnel & do. La nécessité, pour mtroduire des considérations
statistiques, d’adopter un postulat de base forcément un peu arbitraire
semble justifier 'hypothése st naturelle que nous avions faite. Notre
raisonnement me parait donc avoir conservé une certaine force pro-
bante.

Néanmoins, comme cette force probanie peul étre contestie, il est
intéressant d’examiner le probléme sous d’autres angles.

2. Comparaison avec le théoréme de Liouville et la théorie ergo-
dique. — La Mécanique statistique classique repose sur le théoreme de
Liouville qui se déduit des équations de Ilamilton. Remarquons dabord
que, les équations de Hamilton étant valables pour le mouvement des
corpuscules dans la théorie causale comme nous I'avons moniré, le
théortme de Liouville est également valable et peut aussi ctre utilisé
dans la question qui nous occupe.

Rappelons ce qu’est le théoreme de Liouville. Soit un ensemble de
N particules de coordonnées ¢; avec des moments conjugués p;. Un tel
sysleme peul étre représenté paf un point dans un espace & 6N dimen-
sions constitué¢ par les g; et les p;. Un ensemble de systémes du meme
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.

genre sera done représenté par un « nuage » de points représentatifs
dans cet espace nuquel on donne, depuis Gibbs, le nom d'extension-cn-
phase. Le nuage des points représentatifs est analogue a un fluide en
mouvement dans extension-en-phase @ on peut définir sa densité
s(qi, pi, 1) et sa vitesse Voen chaque point, V élant un vecteur a 6N
composanles donl les composantes sont donndes par 'ensemble

. an . dpi
des ¢gi— —(/i’ et des pi-- —’5/1-

Comme Ie nombre des systemes envisagds se conserve, le lluide en

qnestion doit obéir i Péquation de continuité

)5

Js . R ) .
1) o div(sV)= " +3divV + V.grads = o.
’ M N 74
les opérateurs div et grad étant ici définis dans Uextension-cn-phase
1 g
a 6N dimensions. Or, en supposant valables pour chaque indice ¢ les

¢quations de Hamilton

, ol !

v A
on voil que

. Lo <V Jd o0

(5 divy :Z(y/’{/i+ %[n/)zm

équation qui exprime, on le sait, que le fluide est incompressible, ¢’esi-
i-dire que le méme nombre de points représentatifs occupe toujours le
méme volume de Uextension-en-phase. L’équation de continuité donne
alors

s s

(6) T V.grads =o ou T O

o L, . . . ,
i Gtant La dériviée prise en suivan! le mouvement des [mmls represen-

tatifs. L’é([unli()n (5) signific ([u’uu suivant le mouvenment des points
représentatifs, on voit la densité ¢ rester constante, ce qui traduit d’une
autre maniere la propriété d’incompressibilité. Ces résultats constituent
le théortme de Liouville qui peut s’exprimer en disant que, st a un
instant initial un ensemble de points représentatifs occupe un volume flzy
de  Pextension-en-phase, & toul mstant ultérieur, il occupera un
volume dr = d/zy.

L’équation

[RE; s \ (’«)“ 7E] Jll ds

—— = 0
D et )
12

P dg; dgi dp; )

L. DE BROGLELEL 11
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¢tant du premier ordre par rapport an temps, sa solution o(¢;, p;, t) est
déterminée si I'on connait la forme initiale a(qi, pi, #0); de plus, cette
équation admet évidemment la solution o == const.

‘n Mécanique statistique classique, on considére depuis Boltzmann
ct Gibbs des ensembles de systémes représentés par des nuages de points
dans I'extension-en-phase et 'on admet comme postulat statistique que
c’est la solution ¢ == const. qui doit étre choisie. En d’autres termes, on
admet, ce que le théortme de Liouville rend possible, que la probabilité
de trouver le point représentatif d’un systeme dans un élément de
volume dz de Pextension-en-phase est proportionnelle a la grandeur
de dr. Dans le cas fréquemment réalisé on les systémes considérés sont
conservatifs, ¢’est-a-dirc ont une ¢énergic constante X (connue & Il pres),
on considére dans I'extension-en-phase une couche d’épaisseur corres-
pondant a dE et couvrant la muluplicité & 6N — 1 dimensions définie
par Ji — consl. : ¢’est a Pintéricur de cette couche que doit s’appliquer
le postulat statistique que nous venons de rappeler. Les ¢léments dr de
la couche ont une expression de la forme 7 dE et = peut alors servir de
mesure & la probabilité de présence du point figurauf dans d=. Grice a
la relation de Boltzmann S == /A logP entre Pentropic S et la probabi-
lité P == 7, on peut définir Pentropie de I'ensemble des systemes ().

On peut tenter de justifier le choix arbitraire de la solution o= const.
de (6) en introduisant « hypothese ergodique » suivant laquelle woute
Irajectoire du point représentatifl du systéme, en s’enroulant indéfi-
niment, finirail par remplir entierement et suns recouvrement toute la
portion de I'extension-en-phase qui lui est accessible (par exemple toute
la couche E, E +4- dI dans le cas des systémes conservatifs). Mais cette
hypothese est visiblement trop rigoureuse et, en particulier, clle est en
défaut dans le cas des mouvements périodiques. Onlui a done substitué
un énoncé adouci que 'on nomme habituellement « hypothese quasi
ergodique » : toute trajectoire du point figuratif du systéme, sauf dans
des cas exceptionnels de probabilité évanouissante, finirait par passer
imfiniment prés de tout point de la région d’extension-cn-phase qui Tux
¢st accessible.

Une conséquence essentielle de 'une ou de lautre de ces hy potheses

{-+T
f Adt, ot A esl unc
t

. . I
est la suivante : la moyenne dans le temps lim 1
Ty =

(') Voir par exemple H. A. Lorexrtz, Les théories statistiques en Thermodyna-
mique, Teubner, Leipzig, 19x6: Francis PerrIN, Mécanique statistique quantique,
Gauthier-Villars, Paris, 1939.
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grandeur attachée au systeme, est indépendante de ¢ et est égale a la
" moyenne

(8) A=l f A\ d=
O

de la grandeur A prise dans la région considérée de volume 9 de
Pexlension-en-phase quand on suppose les probabilités proportionnelles
a dx. Cette coincidence de la moyenne dans le temps avec la moyenne (8)
est Lees importante pour la cohérence de la théorie. Malhcureuscment
Phypothese ergodique, méme sous sa forme adoucie quasi-ergodique,
est tees difficile a justifier. Pour pouvoir le faire, il semble nécessaire
d’introduire, sous une forme ou sous une autre, un postulat de nature
statistique (par excemple lhypothese du chaos moléeulaire de Boltzmann),
postulat qui, par sa nature m¢me, est étranger aux lois de la Mécanique
classique et ne peut étre justifié par elle.

En résumé, parmi toutes les solutions possibles de I'équation (6)
conséquence du théoreme de Liouville, la Mécanique statistique clas-
sique choisitarhitrairement la solution la plus simple ¢ = const. et lente
de justifier ce choix par la démonstration d’un théoreme d’ergodicité,
démonstration qui exige U'intervention d’un postulat statistique étranger
aux lois de La Dynamique classique.

Revenons maintenant a Uinterprétation de la Mécanique ondulatoire

par la théorie causale et & Pinterprétation statistique du | W |2, lci, aussi

bien dans le cas d’un seul corpuscule que dans celui d’un systeme, on
consideére un espace formé a laide des coordonnces du type ¢, sans
intervention des moments conjuguds pi comme dans Pextension-en-
phase, ¢t pour un ensemble de systémes on définit une densité p(qi, ¢)
ohcissant a 'équation de continuité (1) ou v est la vitesse dans espace
physique ou dans Uespace de configuration donnde par la formule du

. 1 - . . . . .
guldage V =z —— .- 8rads. Sauf dans les cas particuliers ot divv ~ Ag

be
bt

donc nettement différent de celui gui se pose en Mécanique slatistique

est nulle, celle équation ne se rédull pas a 0. Le probleme est

classique. Cependant ici encore, nous avons adopté arbitrairement une
solution particuliere de I'éguation en o, savoir p = a?(¢q;, ) = | W |? qui,
dans le cas de londe plane monochromatique se réduit a p = const.
Cette hypoth&se nous a 616 suggérée par I'évidente équivalence a priord,
dans le cas d’un mouvement rectiligne uniforme de direction donndée,
de toutes les trajectoires paralleles et de toutes les positions sur ces
trajectoires. On peut penser, comme cn Mdécanique statistique clas-
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sique, qu'il faut chercher a justifier cette hypothose naturelle, mais
arbitraire, par la démonstration d’une sorte de théoreme d'ergodicité.
En Mdcanique statistique classique, on tente de justifier 'hypo-
thése ¢ == const. de la facon suivante : on considére un ensemble de
systemes pour lesquels la densité ¢ dans Pextension-en-phase a une
forme nitiale o {¢;, pi, to) quelconque et Pon suppose (¢’est Ia Pélément
purement statistique que on ajoute aux lois de la Dynamique) que cet
ensemble de systémes est soumis a des perturbations entiérement incoor-

données. On cherche a déduire que 7 tend vers la forme o= const.,
quelle que soit sa forme initiale, de telle sorte (ue toul se passe comme
si 'hypothese ergodique était exacte. Glest une voie analogue qui a 616
sutvie par M. David Bohm dans un Mémoire récent [8]. Dans le cadre
de la théorie causale, il considtre un cnsemble de systémes dont les
points représentatifs dans I'espace de configuration ont mitialement une
densité quelconque p(g;, to) et il inlroduit 'hypothese stalistique que
ces systémes sont soumis a des collisions successives, les parametres
définissant chaque collision ayant des valeurs réparties au hasard : il en
déduit que, quelle soit sa forme initiale. p(q;, £) tend vers «? (qi, ) =12

3. Bref résumé du Mémoire de M. Bohm de janvier 1953. — M. Bohm
a_ commencé par préciser analogie de la question avee le théoreme
("ergodicité en Mécanique statistique classique, en posant
() w (g ) =1(q, )1 W (g, ) 2= f(q:, ()2 (qi 1),
ce que P'on peut toujours faire, et en remarquant que, les équations de
L. . . . dee? . s
la théorie causale fournissant la relation o +div(a*v)=o0 el la
Py, \ )
conservalion des particules imposant la relation de conlinuilé (1), on

en ure

(10, L ’:)Z; +f()‘;+ 4+ fdiv (U 2v) + 10" 2v.grad/ = o
et par suite

(1) ]l)—;i‘:%f+v.gradf:u.

(est done la fonclion f qui obéit ict a la méme relation que la den-
sité ¢ dans Pexlension-en-phase, c’est-a-dire reste constante quand on
suit le mouvement des particules. Le théoreme analogue au théoréme
d’ergodicité consistera donc ici a démontrer que la fonction f tend a
prendre une valeur constante si l'on admet une hypothese statistique
d’incoordination.
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Je me contenterai de résumer rapidement fa marche du raisonnement
de M. Bohm, venvoyantau texte de son article pourle détail des calenls.
Bohm considére un atome d’hydrogene qui se trouve dans un élat excité
doublement dégénéré. La fonetion d'onde en coordonnées evlindriques
a alovs la forme

. i I,/
(12 U= \ogio 3)(ecosg ey singie?

avee

On cn déduit aisément le mouvement du corpuscule par fa formule du
gutdage. Bohm suppose alors que Patome est soumis & une collision avec
une particule tres lourde dont le mouvement peut ¢tre déerit classi-
quement et il applique la méthode des perturbations pour caleuler fes
vartitions de ¢ et de ¢y, Les valeurs de ces quantités avant le choe sonl
de la forme ¢; (¢r. 2, B, 1), o0 w désigne la vitesse initiale d’approche
de la particule incidente, b le vecteur défini en abaissant la perpendi-
culaire du centre de Vatome sur la direction initiale du mouvement de
In particule, ¢, ¢l ey ¢tant les valeurs apres le choe. h et u sont done les
« parametres d'tmpact » qui définissent la collision.

Clestict que M. Bohm introduil un postulat statistique en admettant
que les divers wtomes d'un ensemible d’atomes ’hydrogene subissent
des collisions correspondant a des valeurs distribuées au hasard de h et
de @ de sorte que, st les ¢ étant les meémes pour lous les atomes au
début, ils se trouvent distribués statistiquement apres les collisions.

Yarlant de ce postulat statistique, M. Bohm effectue des caleuls que
je nexposerar pas ici et qu'il ¥ aurait sans doute lica de retoucher sur
certains points. I areive ainst & montrer que la fonetion /g, ) doil
tendre vers une valeur constante quand 7 tend vers Uintini. Or, si la pro-

habilitg de présence o( ¢y, #) est normeée i Punité |)ill,'/ pdz=1 et si la
fonction donde W est ¢galement normée & 'unité par / W2 s g,

définition de f/ par (9) enlraine que. st f est une constante, cetle
constante est égale & 1. Done f doit tendre vers 1 et par suite o doit
tendre vers |2, La démonstration cherchée parait donc ainsit obtenue.
mais dans un cas assez particulier puisque Uon s'est lwité a considérer
un alome d’hydrogene dans un état excité doublement deégéunére.
Quelles que sotent les eritiques que 'on puisse adresser a la rigueur

des raisonnements de M. Bohwm et & leur manque de généralité, il appa-
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rait que nous sommes la en présence d’un probleme trés analogue a celui
que la démonstration d’ergodicité cherche i résoudre en Mécanique sta-
tistique classique. De méme que I'on cherchait & montrer comment
Vintervention de pertubations parfaitement incoordonnées tend a réaliser
la densilé ¢ = const. des points représentatifs dans Pextension-en-phase,
on doit ici chercher & montrer que I'action de perturbations parfai-

tement incoordonnées doit faire tendre la fonction f= ﬁf—i—‘ vers unc

conslante qui, en raison de la normalisation de p et de | W'[? devra éure

égale a 1.

En résumé, en ce qui concerne la justification de la signification sta-
ustique du | W |? dans la théorie causale, la situalion ne me parait pas
plus mauvaise qu’en ce qui concerne la justification rigoureuse de la
Mécanique stalistique classique el cette conclusion me parail assez
encourageanlte.

4. Remarques complémentaires. — Le principe de la démonstration
de M. Bohm consiste & remarquer que 'onde W d'un corpuscule ou d'un
systéme est toujours légeérement perturbée par Iexistence de pelites
aclions extérieures (par exemple de faibles collisions)et & admettre que
les pelits potentiels perturbateurs représentent ces aclions avee leuars
fluctuations entierement désordonndes. 1l s’agit ici de polentiels du type
classique, mais M. Vigier a justement remarqué u’on pourrail envisager
de petits potentiels quantiques perturbateurs dus a de petites fluctua-
tions ncoordonnées des conditions aux limites (par exemple le mou-
vement thermique des parois d’'un récipient). En cherchant a répondre
a une objection de M. Einstein contre la formule du guidage, nous avons
dgja vu (chap. XI, § 3) quil peut y avoir licu d'introduire de telles
fluctuations des conditions aux limites.

I’1dée de M. Vigier me parail pouvoir se résumer ainsi. A une forme
donnée de 'onde W, correspond une congruence I. formée par une infi-
nité de trajectoires possibles définies a partir de Ia phase de U'onde W
par la formule du guidage. De pelites actions extérieures du-type clas-
siques ou de petites fluctuations des conditions aux limites s’exprimant
par de petites perturbations du potentiel quantique font constamment
sauter le corpuscule d’une trajectoire de la congruence I. a une autre.
Si ces sauls sont entigrement incoordonnés, on concoit que les corpus-
cules (ou les points représentatifs de systemes) vont étre animés d’une
sorte de mouvement brownien, les courbes de la congruence 1. conii-
nuant & définir des trajectoires moyennes. Il fandrait alors arriver a
démontrer que ce sautillement d’une trajectoire a une aulire se trouve
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2 (Cette démonstration
ferait probablement appel aux propriétés des « chaines de Markoff » ().

réaliser en moyenne la probabilité de présence | W

Quand nous avons ¢ludié certaines conséquences de la formule du
cuidage, nous avons vu que, dans cerlains élats quantifiés, le mouvement
du corpuscule prévu par la formule du guidage peut étre si simple (par
exemple immobilité ou mouvement circulaire uniforme) qu’on ne voit
pas du toul comment peul se réaliser la répartition en [ W' |* de la densité
de probabilité de présence. Mais de petites perturbations aléaloires
transformeront " en " <+ 3% ot oW est une trés petite modification
de W. Celte tres petite modification, ¢n modifiant aléatoirement la
phase ¢ de Fonde, suffit pour transformer le mouvement simple non
perturbé en un mouvement tres compliqué a caractére brownoide. Si
Pon admet que ce mouvement brownoide réalise la distribution de pro-
babilit¢ de présence

Y oW 2~ | W |*, on comprend pourquot, si U'on
fait abstraciion des inévitables perturbations aléaloires, on est amend a
considdrer la densité de probabilité de présence dans I'élat non per-
turbé W comme ¢gale a | W

2. Le lien de ce résultat déja énoncé précé-
demment avee les idées que nous venons de développer est ¢vident.

On peul, croyons-nous, résumer ce qui précede de la fagon suivante.
Si Pon faivabstraction des perturbations aléatoires dues les unes a des
actions extérieures, les autres i des (luctuations aléatoires des conditions
anx limites, Ie mouvement du corpuscale (ou du point représentatif) est
donné dircetement a partiv de la phase de Ponde W non perturbée par
la formule du guidage. Mais, en réalité, il intervient toujours de petites
actions extéricures aléatoires ¢l de petites Hluctuations aléatoires des
conditions aux limites : ce sont elles qui, en provoquant une sorte de
mouvement brownien du corpuscule (ou du poinl représentatif) qui le
fait constamment sauter d'un mouvemen! non perlurhé a un autre,
assure la réalisation de la densité de présence en | W2, On parvient
ainsi, loul en conservant la signilication physique moyenne des trajec-
loires prévues par Ia théorie causale, a leur superposer une sorte de
mouvement brownien. Il est curicux de constater que 'on réaliserait de
cette facon une synthese des conceptions de la théorie causale avee
Pafficmation maintes fois eépétée par M. Einstein que les succes de
Iinterprétation statistique de la Mécanique ondulatoire impliquent
Pexistence de mouvemenls corpusculaires sous-jacents a4 caractére

brownien.

(1) MM. Bohm ¢t Vigier ont publié réccomment une jastification de fa signification
statistique du " 42 peposant sur ce genre de conceptions <16 [
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L'OBIECTION DE M. PAULI A LA THEORIE DE L'ONDE-PILOTE.

I. Discussion de la théorie de l'onde-pilote au Conseil Solvay
d’octobre 1927. — A la fin de mon Mémoire du Journal de Physique
de mai 1927, apres avoir exposé les grandes lignes de la théorie de la
double solution, javais fait ln remarque suivante. La théorie dela double
solutton w’avait conduit a la formule du guidage

grad: + ;A
(~I) V =—c¢* ()? N
ao

en partant de la Mécanique relativiste a un U alors seule connue, puis a
fa formule de La probabilit¢ de présence correspondante
7]

() 9:c0115t.:1—<—(}l— —s\/).

Elle m avait aussi ainendé a introduire le potentiel quantique défini par

/o O/ _ _#_Da

sztm f 0 8xm o«

[

0=

o

a lapproxiniation newtonienne.
Constatant alors que ﬁnalcment, on pouv:lil, cxprimvr toutes ces gran-
deurs en se servant nnigquement de Pamplitude « ev de la phase o de

w
v

e

=

Fonde ¥ éerite sous la forme e’ ", jéerivais ala fin de mon Mémoire :
« Si Fon ne veut point invoquer le principe de la double solution, il
serail admissible d’adopter le pomt de vue suivant @ on admettra Pexis-
tence, en tant que réahtés distinctes du corpuscule et de Ponde
continue ' et Fon prendra comme postulat que le mouvement du cor-
puscule est déterminé en fonction de la phase (de Fonde ¥ par la
relation du guidage. On concott alors 'onde U comme guidant le cor-
puscule @ ¢’est une onde-pilote ».
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Mais je m'empressais d’ajouter @ « ko prenant ainsi I'éguation du
guidage comme postulat, on évite d’avoir a la justifier par le principe de
ta double solution, mais ce ne peut étee la qu’une attitude provisoire. il
faudra bien, sans doute, réincorporer le corpuscule dans le phénomeone
ondulatoire et l'on sera ainsi probablement ramend & des iddes ana-
logues a celles qui ont été développées plus haut. »

Ces citations marquent bien quel était mon état d’esprit a la fin de ce
travail. Je considérais le point de vue de Nonde-pilote comme prati-
quement wtilisable, mais comme ne pouvant trouver sa véritable justifi-
cation que dans le cadree d’une théorie plus profonde du type « double
solution ».

Néanmoins chargé de présenter un rapport sur la Mécanique ondu-
latoire devant le Conseil Solvay qui devait se réunir a Bruxelles en
octobre tgay, je reculai devant la difficulié de justifier mathématiquement
fe point de vue de la double solution et Je me contentai d’exposer dans
mon rapport le point de vue de Ponde-pilote. Au Conseil Solvay, tandis
que quelques « anciens » (Lorentz, Finstein, Langevin, Schrodinger)
maintenaient la néeessité de rechercher une mterprétation causale de
la Mécanique ondulatoire sans cependant se prononcer sur ma lentative,
MM. Bobr ¢t Born ainsi que leurs jeunes disciples (MM. Heisenberg.
Dirac, ete.) se pronongaient catégoriquement en faveur de la nouvelle
interprétation purement probabiliste quiils venaient de développer et ne
discutaient méme pas mon point de vae. Glest M. Pauli qui fit I seule
objection précise & ma théorie en raisonnant sur le cas du choe d’un
corpuscule et dun rotateur que M. ermi venait récemment d’étudier.

Je vais exposer Fobjection de M. Pauli, mais, pouar le faire. je dois
Fabord rappeler dans ses grandes lignes e raisonnement qu’avait
développé ML Feemi,

2. Choc d’un corpuscule et d’un rotateur plan d’aprés M. Fermi. —
Rappelons d’abord quion appelle « rotateur plan » un poit matériel de
masse M assajetti a se déplacer dans un plan en restant a une distance
fixe B de Porigine des coordonnées. Au point de vue mdéeanique, ce
rotateur est caractérisé par son moment d’inertie I = MR*®,

Le votateur, dont nous négligeons les dimensions, est supposé placé
en un point O choist comme origine des coordonnées; un corpuscule
assujetli a suivee la droite Oz vient heurter le rvotateur (). Une inter-

(1) Dans son expos¢ M. Fermi avait sculement assujetti le corpuscule & rester dans un,
plan 0.
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7

action, un choc au sens large du mot, a licu entre le corpuscule et le
rotateur. Si z est I'abscisse du corpuscule, O Vangle polaire qui fixe la
configuration du rotateur, la fonction potentiel correspondant a Uinter-
action, sera de la forme U(z, 0) : elle ne sera différente de zéro que
pour les petites valeurs de z (positives on négalives) et périodique de
période 27 en (.

Ceci posé, le probleme a résoudre est le snivant : suchant qu'au début
du mouvement, le corpuscule, dont la masse est m, a une certaine
vitesse ¢g, déterminer les divers résultats possibles du choc entre le cor-
puscule ct le rotateur.

On représentera le systeme en considérant espace de configaration
form¢ a Paide des deux variables z et 0. L’équation de propagation dans

IPespace de contiguration sera

I ,}:l],’ } )2 l]' 8 =2
e L TR Vs Y = o,
e ge TR i o M b =,

E élant V'énergie tolale du systeme. Faisons le changement de variables
tel o bel
;e v __ 17 o -
() E= 0, I=ymz.
L'équation de propagation devient

7En 7EA N 8t

=2 i &

(6) [E— Ui 3 =0

U(z, 2) ¢tant nulle dos que 2 n'est pas trees pelit et élant périodique de
période 27y J en ¢,

15 .
— ,» nous pouvons ¢erire
h

La fréquence de Ponde W' étant v

82 7R 2
fe SRy = 0 ave -
) h ) Ve g ee \’/ 2

et 'équation des ondes devient

70 S 2R 1 20 .

T A AN
(8) g T TE TN A

Voicl maintenant la remarque lres mgénicuse gui avail permis i
{ B { |

M. Fermi de résoudre simplement Ie probleme. La fonction U n'étant

différente de zéro qu’an voisinage immdédiat de Paxe OF, laon 7 est 1res
D -7 =

petit, et étant périodique de période 27 4/J en 2, Loul se passe comme si

Paxe des £ jouail dans 'espace de configuration a deux dimensions £, Zle

.

role d'un réscau d’équidistance zt\/.] susceptible de diffuser Ponde W
incidente.
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Construisons d’abord cette onde W incidente. L’onde W, qui reprd-
sente Iétat initial du corpuscule incident avant U'interaction est simple-
ment '

TP 9T - —
] . ';_’ Byl o 03] Tl (B —y 3K, 7]
(9) Uy=ae” =a e’

avee

; 9
Fy=—mvej.

[Yaulre part, soit o, la vitesse angulaire initiale du rotateur. L’onde W',
initiale de ce rotateur est

(10) U, =a,e

avece

27, 8= .
i -+ /zr) EYy = o pour L =K,

(1) =

Comme W, doit reprendre la méme valeur quand £ augmente de 27y J,
on doit avoir

AT e - .
(12) e VoEsom ]l =n.ox (n entier),
T2 A
soit
1 n2h?
13 o= -Jwl =——.
(13) T T RRel

(Cest la formule bien connue qui donne les valeurs quantifiées de
I'énergie pour le rotateur plan. L’élat initial du rotateur étant nécessalre-
ment qmmtiﬁé, la vitesse angulaire initiale we du rotateur obéit a la
relation (13).

L’onde W du systeme corpuscule 4 rotatcur dans Despace de
configuration ££ a pour forme initiale le produit W;¥',, soit

. L B — B ey 22
(14) YV'=«ae”
Posons
. . \% h
(1) TR
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ol K ==, + I%,. Il vient pour la forme initiale du W,

TE Isina ¢+ Zeosa
L R 2ﬁ1[— l-———,——]
(16) U= e L )

)

Dans I'espace de configuration, Ponde W incidente est done une onde

plane monochromatique de {réquence v ==, el de longueur d’onde 2
1
dont la normale fait Pangle « avee O:.
On peuat alors, en utilisant la remarque de M. Fermi, considérer
I'interaction entre le rotateur et le corpuscule comme produisant une
diffusion de 'onde ¥ dans I'espace de configuration. Les directions de

diffusion privilégices sont données pir la rvelation exprimant Paccord

£=VJH

X=Vnx

0] —
laB-bAl=cosx -cosw' ) AB

Fig. X,

AB=2aVJ

des phases pour un résean linéaire de période sy J place suivant OF,
savolr
C17) axyJeoss — coszy = kh. (h entier)
comme on le it aisément sur la figure 8.

Apres Pinteraction, Ponde ¥ aura done la forme
I-‘./ sina Zeosx T

(@) S D e n

a' portant prendre loutes les valeurs quantifices par (170, L'onde plane
incidente est ainst transformée par interaction en une superposition
d'ondes planes diffusces.
Revenons aux variables z et 0 et remplacons 2 par sa valeur, nous
trouvons pour le ¥ final 'expression
2T .
' [\y) o :201, e»-j/ LEL—y 2k 2sind g 24 Deoaar .

2
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[Yapres les principes de la Mécanique ondulatoire, si 'on détermine
par 'observation 'é¢tat de mouvement final du corpuscule et du rota-
teur, on lrouvera un d¢tal de mouvement représenté par Pune des
ondes planes du développement (rg). Or, 'une de ces ondes planes
représente un mouvement d’¢énergie El et de quantité de mouve-

ment /am | :\/mn Ksina’ a laquelle correspond la vitesse corpus-

. P . - -
culaire \/ sina': ce mouvement aune énergic B, =1isin*a'. A cette
m *

méme onde plane de Pespace de configuration correspond un mouve-
ment corrélé du rotateur d'énergie K, et de quantité de mouve-
ment VE]—]T :\jl—cos ay ce qui donne ¥, =Ilicos*a’. On a
done I} + I, = 1, ce qui exprime la conservation de Pénergie. 11 w'y
a pas de conservation de la quantit¢ de mouvemenl parce que nous
avous Implicitement supposé que le rotateur est fixé en O) el ne peut pas
prendre de mouvement d’ensemble lors du choc et que le corpuscule
est assujetl a rester sur Oz, '

Comple tenu de Ia définition {13) de &, Péquation (17) nous donne

, 1 h
[T (R4 :1‘1»‘24——-———/{

P \/.] \ ’-E

et paisque

. \/ 1 nh
1) COos L= - ,
DN D
11 viend
. R . tan+ Ky h
£ yhlEeosy = —8v9-——

REENY 24
d'on finalement
(0 =+ k2he

A I, = Keas2z = —
: N 372

b
el e+ Lk Glant des enliers posilifs, négatifs ou nals.

St done lon détermine par wne observation les élats de mouvement
aprés e choce, on rouvera toujours que Ueffet du choe a ¢té de faire
passer le rotatear de I'élal quantifi¢ initial caractérisé par le nombre
quantique 7 4 un élat quantifié final caractérisé par le nombre quan-
tique 7 = A, de sorte que le rotateur se trouvera loujours, aussi bien a
la fin qu’an début, dans un élat quantilic.

T'rois cas peuvent alovs se présenter :

1 h=o0. -— Ll (:nrpusculc ¢l le rotatcur conservent leurs dtats
initiaux. Le choe a licu sans échange d'énervgie @il est « dlastique ».
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2* k> o0. — Le corpuscule céde de P'énergic au rotateur qui passe
dans un délat quantifié d’énergic supéricure a celle de 'état quantifi¢
initial. Il y a « choc inélastique de premiere espece ».

3° k <Co. — Le rotateur passc de son état quantili¢ initial & un éiat
guantifi¢ d’énergie moindre en cédant de Pénergie au corpuscule inci-
dent. Employant une expression introduite naguere par MM. Klein et
Rosseland, on peut dive qu’il y a alors « choc in¢lastique de denxieme
espeee ». :

Tel est le bean calcul effectué des 1927 par M. Fermi et relatif au
choc d’un corpuscule avee un rotateur plan.

3. Objection de M. Pauli contre la formule du guidage. — Comme
Jje Iai rappelé plus haut, au Conseil de Physique Solvay d’octobre 1927,
M. Pauli s’est servi du calcul de Fermi pour critiquer la formule du
guidage qui est commune a la théorie de la double solution ct i celle de
Ponde-pilote (1). '

La formule (19) nous donne la forme finale du W du systeme corpus-
cule -+ rotateur dans I'espace de configuration aprés le choc sous la
forme d'une superposition d’ondes planes monochromatiques et I'inter-
prétation probabiliste du W' nous enscigne que chacune de ces ondes
planes correspond i un état de mouvement du corpuscule cla un ¢tatde
mouvement du rolateur qui sont corrélés entre cux. 1l n’y a la, disait
M. Pauli, aucune difficulté, mais une grave difficulié apparait st 'on
veut attribuer au point représentatif du systeme dans espace de confi-
guration 50 un mouvement défini par la formule du guidage. En eflet, il
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-faudrait alors écrive le W final (19) sous la forme == e ” " avec « cto
réels et, en raison méme de la superposition des ondes planes mono-
chromatiques, la phase o aurait alors une forme trés compliquée : le
mouvement final du point représentatif dans Iespace de configuration
serait donc un mouvenient trés complexc sans aucun rapport avec les
états finanx quantifiés du rotateur que linterprétation orthodoxe fait
toul. de suite apparaitre et dont Pexistence est confirmée par Iexpé-
rience. M. Pauli ajoutait qu’il n’était pas possible de lever la difficulté
en conduisant une onde W limitée puisque, en raison de la période 27
de 11 coordonnée 0, il est impossible de supposer Ponde W™ himitée dans
le sens O0.

(1) Yoir Dlectrons ef photons ( Comples rendus dua Ve Conseil de Physique Solvay,
Gauthier-Villars, Paris, 19280 p. 2Ra-a87 ),
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Ce dernier argumeitt nie parait surtout prouver le caractére trés fictif
de Iespace de configuration et des propagations d’ondes dans cet espace
(comment pourrail-on, en ecffet, attribuer un sens physique a cet
axe O0 sur lequel on déroule inddéfiniment les valeurs d’un angle qui en
véalité varie senlement de o & 27w 7?). Il ne m’avail pas convaincu et je
vovais dans la limitation des trains d’ondes une maniere d’échapper a
I'objection de M. Pauli. Je lui avais, en effet, vépondu : « La difficulté
signalée par M. Pauli a son analogue en Oplique classique. On ne peut
parler de faiscean diffracté par un résean dans une direclion donnée que
st le réseau et Tonde incidente sont limités latéralement, car autrement
les faisceanx diflractés chevaucheratent et seraient noyés dans Ponde
incidente. Dans le probleme de Fermi, il faul aussi Ponde W himitée
latéralement dans Pespace de configuration ».

ixaminons la question de plas pres. On peut accorder a M. Pauli que
Ponde W incidente n'est pas himutée dans le sens OO0, mais elle Pest
nécessaivement dans le sens Oz puisque Ponde Wy du corpuscule mei-
dent est néeessairement un train d’ondes que nous supposons presque
monochromatique, mais qui est cependant de longueur finie. Il en
résulte que état final est bien représenté par la formule (1), mais
avee celle réserve tmportante que chacune des ondes planes monochro-
matiques figurant dans ce développement est en réalité un train d'ondes
presque monochromatique dont les dimensions sont limitées dans le
sens Oz, Chacun de ces trains d’ondes correspond & une valeur diffé-
rente de Pangle quantifi¢ o et, par suite, est animé d’une vitesse globale

le long de Oz édgale, nous Pavons vu, a \/Tf sino’. Les vilesses des
: : "

divers trains d’ondes diffusés n’élant pas les mémes le long de O 5, ces
trains d’ondes qui sont superposés a la sortie du réseau conslitué¢ par
Paxe Q0 finiront par se séparer el, tout en restant indéfinis dans Je
sens O, correspondant a des régions séparces de Paxe O z.

A la fin du choc, le mouvenent du point représentatif supposé donng
par la formule du guidage Pamenera dans U'un ou I'autre des irains
(Pondes émergents séparés et cela suivant Ia position initiale de ce point
dans le train d’ondes incident. La formule du guidage appliquée a Ia
position linale du point représentatif nous montrera alors que le rotateur
se trouve dons un état final quantifié et que le corpuscule possede le
mouvement coreélé avee cet état quantifié. On retrouvera done exacte-
ment les conclusions de Fermi en accord avee I'existence expérimentale
des seuls ¢tats quantifiés pour les rotateurs.

S1, au lieu d’assujettir le corpuscule & rester sur une droite Oz, on
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I'assujettissait sculement, comme Pavait fait M. Fermi dans son Mémoire,
arester dans un plan 20y, 1l y aurait licu de limiter le train d’ondes
incident aussi bien dans la direction Oy que dans la direction Oz ¢t
Fon aurait toujours une séparvation finale des trains d’ondes apres
I'interaction.

Javais douc bien apercu, comme le montre la citation faite plus haut,
que la réponse a I'objection de M. Pauli devait s’appuyer sur le fait que
les trains d’ondes sont toujours limités, idée qui a 61¢ reprise par
M. Bohm dans ses récents Mémoires.

RO
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Nous avions done rencontré ici pour la premidre fois Pidée qu'il ne
faut jamais, comme M. Schriodinger I'a encore récemment souligné,
oublier que les trains d’ondes sont toujours limités. (Vest Ia un point
que Pon passe le plus souvent sous silence aussi bien en Optique clas-
sique qu’en Mécanique ondulatoire. Nous verrons cependant que, pour
certains probleémes, la limitation des trains d’ondes o une importance
capitale.

%. Abandon des tentatives d’interprétation causale de la Mécanique
ondulatoire aprés 1927. — Dans les mois qui suivirent le Conseil Solvay
d’octobre 1927, j'at abandonné le point de vue de 'onde-pilote que j'y
avais soutenu. Ce n’est pas a cause de Vobjection de M. Pauli car je
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croyais apercevoir, je l'ai dit, la maniére d’y répondre, mais ¢’est pour
d’autres raisons plus générales que j'ai notamment développées dans mon
premier cours a U'lnstitut Henri Poincaré publié par la suite sous le titre
Introduction @ Udtude de la Mécanique ondulatoire (). Je vais
résumer ces raisons,

Le corpuscale, congu comme une réalité physique. ne peut pas. me
disais-je, ¢tre guidé par 'onde W dont le caractere de reprisentation
de probabilig, a lafois subjective et fonction des connaissances de celui
qui emploie, avait é1¢ rendu manifeste par le développement de Ia
Mécanique ondulatoire. i

Ce caractere fictif de 'onde W' s’imposait déja pour I'onde W associée
a un scul corpuscule dans U'espace ordinaire : il s’imposait davantage
encore par l'onde W d’un systéme qui se propage dans I'espace de conti-
guration du systeme, espacé purement abstrait. D’aillenrs, méme dans
le cas d’un scul corpuscule, cas ot 'onde ¥" (x, y, z, ¢) parait s’exprimer
a l'aide des trots coordonnées courantes de l'espace physique, les
variables x, 3, & dans Pinterprétation admise ne représentent pas réel-
lement les coordonndées d’un point quelconque de I'espace physique,
mais bien les positions possibles du corpuscule dans cet espace. Cette
distinction, en apparence subtile, est cependant nécessaire pour bien
comprendre comment on passe du cas général d’un systeme de corpus-
cules au cas d’un seul corpuscule. Done, méme dans ce dernier cas ot il
suffit d’employer trois coordonnées z, y, z, la fonctiond’onde W (z, 3, 3, 1)
ne peut pas représenter un champ ayant une réalité physique dans
Uespace physique a trois dimensions.

Heisenberg avait d'ailleurs insisté sur le fail que toute constatation
expérimentale effectuée sur un corpuscule ou sur un systeme modifie
instantanément la forme de l'onde W' en nous obligeant a opérer ce qu’il
aappelé « la réduction du paquet de probabilité ». Par le seul effet de
la constatation expérimentale, toute une portion de 'onde U" s’évanouit
« comme s'évanouit Pespérance d’une éventualité qui ne s’est pas
réalisée ». Ces propriétés de Tonde W, auxquelles se rattachent les
objections de MM. Einstein et Schradinger, sont compréhensibles si
cette onde n'est qu'une représentation de probabilités, mais elles ne
permettent pas de lut atteibuer le role d'une réalité physique : elle ne
peut done pas ¢étre un agent physique guidant le mouvement du cor-
puscule.

En regardant les choses de pres, on voil aussi que, si le mouvement

¢ ) Hevmanng Paris, g3,

i.. bl BROGLIE. - 12
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du corpuscule ¢lait guidé par 'onde W, il dépendrail non seulement de
la position que le corpuscule a cue initialement, mais de toutes qu’il
aurait pu avoir et qu’il n’a pas eues. Cetle circonslance paradoxale
exclut tout espoir d’un véritable retour & une conceplion causale clas-
sique du mouvement des corpuscules a Paide de la seule conception de
Ionde-pilote.

Toutes ces objections fondamentales se¢ lrouvent exposées dans
I'Ouvrage que J'ai cité ci-dessus. On peut en trouver d’autres encore.
Nous signalons, par exemple, la suivante récemment développée par
M. Francis Perrin et sur laquelle nous aurons a revenir plus longue-
ment. Si on considére 'onde sphérique divergente qui représente
I'émission isotrope de corpuscules par une source, elle a pour expres-

. | . . N . . .
sion - €A el son nmphlude décroit comme Vinverse de la distance a la
.

source. Le | W |* déeroit done en raison inverse du carré de lu distance
a la source, ce qui correspond bien a 'interprétation de cette grandeur
comme densité de probabilit¢ de présence. A une trés grande distance
de la source, 'onde W n’a donc plus qu'une amplitude extrémement
pelite et cependant, si elle pénetre dans un dispositif (’interférences,
la théoric de 'onde-pilote nous affirme que le mouvement du corpus-
cule dans cet appareil est guidé par la propagation d’une onde ¥ donl
I'amplitude est infinitésimale : cela est trés choquant du point de vue
physique. Sans doute, du point de vuc purement mathématique, on
pourrait répondre que le potentiel quantique agissant sur le corpuscule

Ac

. . v . ;
est proportionnel a el par suilte ne dépend pas de la valeur absolue

44
de a}; mais physiquement, si 'onde W était vraiment un agent physique
agissant sur le corpuscule, on concoit mal comment cette action pourrait
rester la méme, quelque petite que soit Pamplitnde de Tonde W,
L’exemple de M. Perrin montre tres clairement que Ponde W, préci-
sément parce qu’elle représente une probabilité de présence qui
diminue nécessairement quand Ponde sphérique s'épanouit dans Uespace,
ne peut pas ¢élre considérée comme agent physique guidant le cor-
puscule.

Telles sont les constdérations qqui m’ont amend en 1928 a abandonner
comme Insoulenable la théorie de onde-pilote. La forme primitive de
mes idées, c’est-a-dire In théorie de la double solution, ne me paraissail
pas s¢ hcurter nécessairement aux mémes difficuliés, mais Jen édlais
arrivé & la conviction que sa justification mathématique, si elle était

possible, était aun-dessus de mes forces. Chargé d’enseignement a la
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Faculié des Sciences de Paris a partir de novembre 1928, je n’ai pas
cru avolr le droit d’enseigner une maniére de voir que je n’étais pas en
¢tat de justiGer. Je me suis donc rallié a Dlinterprétation purement
probabiliste mise en avant par MM. Born, Bohr et Heisenberg. Malgré
les critiques de quelques savants isolés comme MM. Einstein et
Schrédinger, critiques qui ont été exposcées précédemment, celle inter-
prélation purement probabiliste a é1¢ ensuite adoptée par presque tous
les théoriciens de la Physique. Elle est ainsi devenue I'interprétation
« orthodoxe » de la Mécanique ondulatoire. A ma connaissance,
entre 1928 et 1951, aucune tentative séricuse n'a ¢ié faite pour tenter de
construire effectivement une autre interprélation se rapprochant davan-
tage des conceptions classiques.

Puis sont venus les deux Mémoires publiés en janvier 1g3a par
M. David Bohm. Nous allons maintenant les analyser dans leurs grandes

lignes.



CHAPITRE XV.

LA THEORIE DE LA MESURE D'APRES M. DAVID BOHM
ET LE SCHEMA STATISTIQUE DE LA THREORIE CAUSALLE.

l. Les Mémoires de M. Bohm de janvier 1952. — Les deux Mémoires
conjoints que M. David Bohm a publiés en janvier 1932 dans la
Physical Review [3] ont ramené Pattention sur la question de U'inter-
prétation de la Mécanique ondulatoire. Dans ces Mémoires, M. Bohm a
repris la théorie de 'onde-pilote sous la forme que je lui avais donndée au
Conseil Solvay de 1927, Il admet que I'onde W est une réalité physique
(méme Ponde W de Pespace de configuration!). J’ai dit plus haut pour-
quoi une telle hypothese me paraissait absolument inadmissible.

M. Bohm éerit (p. 1577, 2° colonne) qu'apres la réduction du paquet
de probabilité par une observation « la fonction d’onde peut ¢cire
renormalisée parce que la multiplication du W par une constante ne
change ancune des quantités avant une signilication physique telles que
la vitesse de la particule ou le potentiel quantique ». Il est bien exact
que, st on muiltiplie la fonction W' par une constante, on ne modifie ni
le gradient de sa phase o, ni le rapport D;{LI mais il est évident que, si
le W' représentait une réalité physique, on n’aurait aucunement le droit
de multiplier son amplitude par une constante : ce qui permel de la
faire, ¢’est que le W n’est qu’une représentation de probabilité et que sa
normalisation a seulement pour but de pouvoir évaluer en valeur
2 ) ail-

l(‘l]l‘s lil 1‘(?(,1!1C1i011 dll l)ﬂ({llet ne COlllpOl‘l(‘ l)EIS SClll(‘,l]lCDl Umne renor-

absolue la probabilit¢é de préscnce a Paide (e I'expression [W

malisation de la fonction W, mais aussi cn général une moditication
brusque el complete de sa forme, ce qui serait incompréhensible si W
¢tait une réalité physique.

Les Mémoires de Bohm contiennent aussi d’autres affirmations qui
nous paraissent douteuses. Par exemple, il a sans doute raison de dire

qui tres petite échelle (107 e ou au-dessous) Ia formule du guidage
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et par suite la signilication siatistique du W' pourrait n’étre plus exacte,
mais la modification qu’il propose, en conséquence, de faire subir a
I'équation de propagation me parail artificielle.

Ndéanmoins, si le travail de M. Bohm appelle certaines réserves, il a
aussi des mérites qui me semblent incontestables. In particulier, il a
ramené Pattention sur la possibilité d’'une interprétation de la Méca-
nique ondulatoire autre que celle qui est actuellement adopiée et il a
montré qu'il n'est pas inutile de soumetire la question & un nouvel
examen minutienx. Le probleme qut se pose est clairement défini dans
les trois premiers pavagraphes de son premier Mémoire et Fon peut
relever dans son texte plusicurs remarques qui paraissenl jusies el
Intéressanles.

M. Bohm a retrouve mes anciens résultats relatifs an mouvement du
corpuscule dans un atome (uanufié ¢t notamment a son immobilité
dans les ¢lats s @ momenlt cinétique nul. Il a aussi analysé le cas du
passage d'un corpuscule & travers une barrieére de potentiel, cas qui est,
on le satl, particulitrement important pour la théorie de la radioacti-
vité . On trouve naturellement que les trajectoires doivent étre trés
compliquées, mais il n’y a plus lI'indéterminisme complet adinis par
Pinterprétation actuelle. Ge serait la position initiale fnconnue de la
particule qui, en déterminant toul son mouvement ultérieur, serait la
cause de la plus ou moins grande rapidité avee laquelle elle traverse la
barriere. La probabilité qui s'introduit ici serait donc une probabilit¢ du
type classique, compatible avec la causalité, qui s'introduit par suite de
notre ignorvance de fa position mitiale exacte du corpuscule ¢t de son
mouvement ultéricur.

Fiudiant le cas on Vonde Y est formée par une superposition d’ondes
stationnaires, M. Bohm montre par le caleul que le potenticl quantique,
Pénergie et la quantite de mouvement du corpuscule iluctuent alors
constamment ¢l trees vapidement et il ajoute : « Sl arrive a la particule
danteindre une région de espace on Pamplitude de Ponde W est petite,
ces fluctuations deviendront tout a fait violentes. Nous voyons done
quen général, le mouvement de la particule dans un ¢état non station-
naire est tres ierégulier el compliqué, ressemblant beaucoup plus a un
mouvemenl brownien i Porbite régulicre d’une plancte autour du
Soleil ». Nous avons déja vu Pintérét de cetie remarque.

Telles sont quelques-uns des résultats miéressants développés par
M. Bohm dans ses Mémotres, mais la partie In plus originale de son
travail est certainement sa théorie de I mesure que nous allons mainte-
nant analyser.
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2. La théorie de la mesure d’aprés M. Bohm. — M. Bohm a d’abord
analysé les phénomenes de collision dans la théorie causale. Avant la
collision, chaque particule a son paquet d’ondes W séparé dans U'espace
physique et la fonction d’onde W dans 'espace de configuration est alors
simplement le produit des paquets d’ondes individuels. Puis les paquets
d’ondes se rapprochent et se superposent et Pinteraction commence. La
fonction d'onde W du systtme devient une somme de produits dont
chacun correspond a I'un des résultats possibles de I'interaction. Les
mouvements des particules cessenl alors d’éire indépendants. Les fonc-
tons « et ¢, el par suite les potentiels quantiques et les quantités de
mouvement des particules, subissent de rapides et violentes fluctuations
dans 'espace et dans le temps. Dans les régions de I'espace de configu-
ration ol @ est petit, les {luctuations s’amplifient et peuvent aboutir a
de grands échanges d’¢énergic et d'impulsion dans un temps lrés court,
méme si le potentiel dinteraction au sens usuel reste petit. A la fin de
I'interaction, les paquets d’ondes correspondant aux diverses possibilités
se séparent el ne se superposent plus dans 'espace. Alors le point figu-
ratif du systéme se trouvera dans I'un des paquels d’ondes de Pespace
de configuralion et, avec la description dans 'espace physique, chaque
particule aura sa position dans son paquet d’ondes, la probabilité de ces
positions corrélées étant donnée par |W

*, Puisque les corpuscules
conservent loujours une position dans l'espace physique, toutes les
difficultés de I'interprétation actuelle relatives aux systémes corrélés se
trouvent levées.

La causalité sera aussi rétablie car le résultat final dépendra des posi-
tions initiales des corpuscules; mais en pratique les trajectoires de ces
particules seront extrémement compliquées et rapidement variables
avec les positions initiales et leur calcul exact sera impossible. La statis-
tique s'introduira donc, mais seulement a la manitre classique : son
intervention résultera a la fois de 'impossibilité de déterminer exacte-
ment les positions initiales sans troubler tout le phénoméne et de notre
incapacité a suivre les trajecloires tandis que, dans Pinterprétation
actuclle, on admet que rien ne détermine le résultat de I'interaction el
Pon suppose a priori quela description des phénomenes est intrinséque-
ment ct inévitablement statistique.

Cette 6tude des phénomenes d'interaction a conduit M. Bohm a
analyser les processus de mesure qui se réduisent en somme a U'inter-
action d’un corpuscule avec un appareil de mesure (p. 179-184 du
second Mémoire). I’éxécution de la mesure élablit des « corrélations »
entre Iétat final de la particule et I'état final de 'appareil de mesure de
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sorte que Pobservation e Pétat final de appareil de mesure permette
de déduire I'état final du corpuscule.

Bohm considere done la mesure d'une certaine grandeur « obser-
vable » lide a un ¢lectron. R représentera la position de I'électron, y la
coordonnde « significative » de Iappareil de mesure, celle qu'on pourra,
par exemple, live sur un cadran. Bohm remarque qu'il suffit de consi-
dérer une mesure « impulsive », ¢’est-a~dire comportant une interaction
trés intense el tres rapide entre Pélectron et Pappareil de mesure. Alors
le systeme n’anra pas e temps d’évoluer de son propre chef pendant
Pinteraction, loule son évolution pendantla mesure provenant de inter-
action clle-méme. On pourra done laisser de coté les parties de
I'hamiltonien relatives au corpuscule seul ou a I'appareil de mesure
seul et il suffira de considérer I'hamiltonien d’interaciion Hy. De plus,
st Hy est fonction sculement de grandeurs qui commulent avec une
grandeur (), le processus d'interaction ne produira aucun changement
incontrolable de la grandeur Q, mais en produira pour les grandeurs
qui commultent avee (). Pour qu'il y ait couplage entre le corpuscule et
Pappareil de mesure, il faut que Hy contienne an opérateur agissant
sur y.

\ utre d'exemple, M. Bohm pose

«h 7
O -

?
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(1) H=aQ{pyhp=—

o1« esk une conslante.
Il faut alors caleuler Pévolution du W du systeéme dans 'espace de
configuration R, y. Pendant interaction, FPéquation d'ondes est
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[t est commode de développer suivant Pensemble complet des fone-
tions propres W, (R de Topérateur Q) ¢ étant ane valeur propre de Q,

Nous éerirons done

hH TR, . 1) :ZA/;,(,;;. HU,(R).
o

Comme par définttion QW, (R) = ¢W¥, (R), I'équation d'ondes nous
donne
o

.. . Jo. .
{ gyl =—wqg- - f,0). ).
L) ’)/.//'. ; ! ql)~l"// ) /
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Péquation dont la solution est
(6) Sylvethv=f,00 — agt),

d’our

(7) Sy —agyW (RO,

Initialement le corpuscule et Vapparetl de mesure sont indépendants
et Pon peut éerive pour £ == o :

. - \ . e
(8) 'y (R, =gy Mo Uy (R).
7
car la fonction d’onde initiale est le produit dela fouction d’onde initiale
de Pappareil de mesurc go(v) et de la fonction d'onde initiale du
corpuscule qui peut se développer suivant les W, (R) avee des coeffi-
cients convenables ¢,. La fonction d’onde go(1°) a la forme d’un paquet

que nous supposerons centré sur la valeur y = o avec la largeur Ay
Des ¢quations précédentes résulie que fy())=cyzo(y) et que par
suile

(o) W(R, 3, )= ¥ e gl — agt) W, (R),
‘
Cette expression montre que Uinteraction dlablit une coreélation
entre ¢ et la coordonnée y de 'appareil.
S’inspirant alors de son analyse des collisions, M. Bohm indique que,
si Pon éerit

. ) . E{;d{.\-.u
: (R} y.y=«aiR, ), t)e ! ’

les fonctions rvéelles @ el o varient tres rapidement dans espace et dans
le temps durant linteraction et qu’il en est de méme du potentiel

quantique

V& Dy

[ ()=— ——
> R=im «

Il en résulte, suivant la loi du guidage, un mouyement tees compliqué
et essenticllement variable du corpuscule. Mais, & Ia fin de U'interaction,
les paquets ' ondes correspondant aux différentes valeurs de g
dans g,() — aqt) se séparent dans Uespuace.

En effet, le centre du g™ paquet d'ondes dans Pespace y est donné
par

.

1) V= aql. d’ont o ="
(1) J=aql. /="
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et, si nous désignons par oy la séparation des valeurs propres adjacentes
de ¢, nous obtenons par la séparation des centres des paquets d’ondes
correspondants

(12) 61 = uldy.

Pour des valeurs suffisamment grandes de ¢, gy deviendra toujours
sapéricure a lua largeur Ay des paquets de sovte que les paquets d’ondes
s¢ séparent dans espace.

M. Bohm en conclut quien vertu de la loi de probabilité en | W2, la
ariable y de I'appareil de mesure doit finalement se retrouver dans 'un
des paquets d'ondes et qu'elle y demeurera ensuite puisqu’elle ne peut
plus prendre une valeur correspondant a Pespace intermédiaire entre
les paquets ot Ta probabilité de présence est nulle. Siune observation
macroscopique permet alors de connaitre Ia valeur de ¢, on saura quel
est le paquet de probuabilité qui correspond a I'état final réalisé et, si
Pon renormalise a Punité la fonction W, on pourra faive correspondre a

P'érat final In foncuon d'onde

(13) U(R, 0, 4= W, (R ol — agt),

avee la valeur mesurée de ¢.

Comme on le voit sur Uexemple particalier développé par M. Bolm,
¢’est bien Ia limutation des trains d’ondes, donnant lieua leur séparation
spatiale dans 'état initial et dans Pétat final, qui permet d’expliquer Ia
possibilité de la mesure, comme elle permet aussi d'une maniere plus
géndrale de se représenter la séparation physique dés divers états finaux
ala fin une interaction. La limitation des faisceaux joue donc ici un
role essentiel et, dans Mappendice de son second Mémoire, en accord
avee mon intervention citée plus haut au Conseil Solvay de 1927,
M. Bohm considére que cette limitation permet déearter les objections
alors faites & ma théorie par M. Pauli.

Laissant de ¢dté certaines considérations thermodynamiques (p. 182)
du Mémoire de M. Bohin qui ne nous semblent pas tees elaires et deman-
deraient & ¢tre préciscées, résumons la fagon dont-il explique 'interven-
tion des probabilités et des relations d'incertitude. Pour lui, conformé-
ment anx idées de la théorie causale, le mouvement du corpuscule et
celui de Tappareil de mesure sont déterminés par la forme initiale de
Ponde Wy (R, 371 el par les valeurs initiales Ry et o des variables qui
fixent la position du corpuscule et de 'appareil de mesuare. Mais, comme
nous ignorons ces valeurs tniliales et que d’ailleurs le mouvement
violent et compliqué du systeme pendant Finteraction est trés sensible a
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la moindre variation des conditions initiales, nous ne connaissons
apreés Pinteraction qu'une distribution de probabilité pour I'état final
donnée par [W(R, y)|*. Pour obtenir la probabilit¢ d'une certaine
valeur ¢ de (), nous devons intégrer |W|? sur R et sur y dans
le ¢'*™° paquet d’ondes de I'état final. Comme les paquets d’ondes sont
alors séparés dans l'espace de configuration (et d’ailleurs aussi dans
'espace physique) et que les fonctions W, (R) et £9(3) sont normées,
on obtient pour cette probabilité la valear

(14) Py=ley*

en accord avec l'interprétation usuelle. D'une fagon plus générale, on
parvient a justifier ainsi toutes les régles de Uinterprétation nsuelle en
leur donnant sculement une signification différenic.

Supposons maintenant que nous ayons obtenu, par exemple a la suite
d’une mesure, un état du corpuscule W, (R) correspondant a la valeur
précise ¢ de la grandeur (). Si nous envoyons ce corpuscule sur un
dispositif adapté a la mesure d'une grandeur P qui ne commute pas
avec Q, nous avons pour le systéme corpuscule —+ appareil de mesure
aprés Uinteraction une fonction d’onde de la forme

(15) W(R,3 1) :Z g (R) ot 5 — apl),
//

ot @,(R) est la fonction propre de la grandeur P qui correspond & la
valeur propre p et ou les «,, sontles coefticients du développement

(16) v, (R) :Z g, (R,

1

5 est la variable du nouvel appaveil de mesure. Quand Finteraction sera
achevée, on pourra, par unc constatation sur lupparcil de mesuare,
réduire la fonction U au scul terme

(17) W=, P,(R)&y( s — apl)

correspondant a la valeur précise p de P et la probabilité de cette éven-
tualité sera égale a | e, |*, toujours en accord avee linterprétalion
usuelle.

Comme un méme appareil de mesure ne peut, a la fin de son inter-
action avec le corpuscule, avoir « séparé » les paquets d’ondes corres-
pondant a des valeurs précises p et ¢ des grandeurs non commutantes P
et Q, on voit qu’il n’est pas possible de mesurer simultanément de telles
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grandeurs el ceci permet de retrouver d’une maniere nouvelle les rela-
tions d’incertitude d’Heisenberg comme traduisant non pas une indéter-
mination réelle des grandeurs P et Q avant la mesure, mais seulement
I'impossibilit¢ matérielle d’obtenir simultanément pour les deux gran-
deurs des valeurs précises a 'aide d'une seule opération de mesure.

Avec le point de vue ici adopté, toute grandeur Q du corpuscule a
une valear bien définie dans I’éiat initial, mais cette valecur est une
« variable cachée » puisque, en général, toute tentative pour la mesurer
aura pour effet de la modifier. Si, exceptionnellement, un dispositif de
mesure a pour cffet de permettre d’obtenir la valeur de Q sans la
modifier, alors ce dispositif modifiera les valeurs de toutes les grandears
P qui ne commutent pas avec Q. '

Il faut donc bien distinguer les « variables eachées » (ui, dans la
théorie causale comme dans la Physique classique, caractériscraient a
chaque instant la position et le mouvement du corpuscule ct les
« observables » au sens de M. Dirac qui sontles valeurs de ces grandeurs
susceplibles d’étre obtenues par une opération de mesare. Ceci montre,
en accord avee certaines idées de M. Bohr mais d’une fagon toute diff¢-
rente de la sienne, importance des opérations de mesure. A ce sujet,
M. Bohm dit tres justement : « Ce qui préctde signific que la mesure
d’une observable n’est pas réellement la mesure d’une propriété physique
appartenant au systeme observeé lui-méme. Au contraire, la valeur d’une
obscervable représente seulement une possibilité, impossible & déerire et
a controler completement, qui dépend ausst hien du dispositif de mesure
que du systeme observe lui-méme ».

'y a cependant un point important sur lequel M. Bohm n’a pas, a
mon avis, suffisamment insisté : ¢’est le fait qu’avec les conceptions de
la théoric causale, la probabilité de présence |W|* a un role privilégié
par rapport aux probabilités | ¢, |* des grandeurs qui ne commutent pas

avec la position. La probabilité de présence | ¥ |* dérive, en effet, de la
P I P ) )

lot da guidage quand on ignore (ce qui est nécessairement ict le cas)
laquelle des trajectoires est effectivement décerite, alors que les probabi-
lités {¢,* pour les valeurs des grandeurs non commutantes avec la
position n’entrenl en jeu qu'apres le processus de mesure de ces gran-
deurs quand on ne connait pas encore le résultat de la mesure. Clest ce
qui, du point de vue de la théorie causale, vendrait inexacte V'élégante,
mais peut-étre factice, « théorie des transformations » qui veul traiter
sur le méme pied 10ns les développements du W suivant les fonctions
propres de toutes les observables @ ¢’est aussi celle circonstance qui, du
méme point de vue, rendrait caduc le raisonnement de M. von Neumann
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sur les variables cachées ainsi que nous Pavons précédemment expliqué.
Kt ceet nous améne a dire ici quelques mots du schéma statistique
valable dans la théorie causale.

3. Schéma statistique de la théorie causale. -— Nous avons précé-
demment () rappelé le schéma employ¢ conramment par les stalisticiens.
En considérant le cas des probabilités continues, on ddéfinit pour deux
grandeurs aléatoires X et Y les densités de probabilité oy (x) et py()7)
amnsi que la densité p(z, y) de la probabilité de trouver simultanément
la valeur & pour X et la valeur ) pour Y. On délinit aussi la probahi-
¢ de X lice par Y a Paide de la densité o' (2, ) d'obtenir pour X la
valeur z quand on sait que Y a la valeur y et la probabilite de Y hide
par X i Taide de la densité o (2, ) dont la délinition estanalogue.

Entre ces quantités, on doit avoir les relations

‘ ;x(,n;):/ sl vadve () :j Floy el

(ilx) / .
RS N A . AN
( o e )= e N,y = S

d’ou résulte

g oxf.) :J A ey ) ey

(19) \
Yl = / SNy axd oy

Or, nous Pavons montré, avee les distributions de probabilité admises
dans Pimterprétation usuelle de la Mdécanique ondulatoire, le schéma
statisuque précédent n'est pas applicable @ deux variables aléatorres N\
et Y qui correspondent @ deux grandeurs non commutantes. Les raisons
en sont : 1° que la quantité p(x, 1) n’existe pas puisqu’il est impossible
de mesurer simultanément N el Y ; 2" qu'une mesare de X change la
répartition de probabilité pour Y et inversement.

Pour la théorie causale qui est d'un type plus classique, il n’en est
pas de méme ct P'on peut retrouver le schéma statistique usucel. Pour
cette théovie, en effet, les distributions de probabilité de Pinterprétation
usuelle n’existent pas toutes simultanément parce qu’au moins une
partie d’entre clles sont crécées par Pacle méme de la mesure @ ¢lesi
pourquoti elles ne rentrent pas dans le schéma statistigque usael. Mais la
théorie causale permet de définir des probabilités qui existent simulta-

(1) Chap. VI, § 6.
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nément avant toute mesure el qui, elles, satisfont au schéma statistique
usuel.

Pour simplificr, raisonnons sur un probleme ot intervien! une scule
variable d’espace ; la géndralisation a trois variables serait aisée. La
variable aléaloire correspondant & z sera nommdée N ¢t nous prendrons
pour Y la composante p, de Iimpulsion, grandeur qui ne commute
pas N. Nous avons alors

(20) (=W Al p) =0 (pes

£

S——

en raison de la signification statistique de

Y et de la formule do
guidage. Pour o(z, p.), nous trouvons d'apres (18)

s JEN
SO P —+ e /’)

(21) Py po) = ox () el (s po) = | ()
el nous avons bien

() [ et pordpe= W) = s

Nous trouvons ElUSSi

. S . . AT as( &2
(23) 2o, pa) z'/;(\.r;. )l :‘/ W (r)2e <‘/;‘,-+ :); )

\

.
=N
. ,

1
. iz . ..
les 2 ctant les valeurs de @ pour losquels — o fa valeur p. considérde.
o.r

Enfin

TN e
( . ey |26 <p_,,+ ) )
. oy . SO Py o
(\911/' ?\1.)(.,.7 Pa) = /v" _ .
R ap i) O A
et Lo Z\ll ()

i

dar Tensemble des formules (20) & (24), nous vovons quon peud
rétabliv entierement dans interprétation causale le sehéma statistique

usuel.

%. Une remarque de M. Takabayasi sur les moments des distributions
de probabilité. — On sait qu’élant donnée unc répartition de probabilite
définie par o(z) pour la variable aléatoire N, on donne le nom de

« moment d’ordre 7 » de cette distribution a la quantité

(23) M :f;(.l;).’x" dur.

Dans son Mémoire de Progress of theoretical Physics de 1952 | H].
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M. Takabayasi a calculé et comparé les moments qui correspondent aux
distributions de probabilité dans l'interprétation usuelle et dans 'inter-
prétation causale. Résumons ses résullals en raisonnant toujours sur
une seule variable x.

Tout d’abord, en ce qui concernc la variable d’espace «, il est évident
que on a, pour 2 entier positif quelconque

(26) S :f wn | W) |2 de

aussi bien dans 'interprétation usuelle que dans Pinterprétation causale.,
Plus généralement, on a méme

(22 _f ) W e

dans P'une et Vautre théorie.

Mais, si Pon considére une grandeur qui ne commule pas avec \, par
exemple P, on doit s’attendre a ne plus trouver tous les moments égaux
dans les deux théories car, si tous les moments étaient les mémes, les
distributions de probabilités pour P, seraient les mémes dans les deux
théories, ce que nous savons n’¢tre pas exact. On démontre, en cifel.
dans le Calcul des probabilités que Pensemble des moments détermine
entierement la distribution de probabilités.

Or, si l'on pose

Lind)

Uir) = /‘c(p.,,) e mv,i(///_,..

on a
(28) MY = / Phlocltpe)|tdp,.

Dans la théorie causale, avee Uexpression trouvée plus haut pour
e( p.), on obtient

" * ! 25 o/ 2
. b W RN 25 1 . — TN iy .
(209) M _/ AR NESY o(,;_wr ’)I)ru ,/,,_L._-/ ( o ’) 1" () |2l

Pour nn =1, nous avons
oV

Y
o 1 Jz ) . Rl
(30) M _f( YT Wide =— — / U

2L o

En remplacant ¥ et W* par leurs développements de Fourier et en
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LI
" (ORI

tenant compte de la formule fe dx —o{ p\,— p.), on lrouve

aisément
5y ML= // P pye( pa) ol plo— pa) dpl. dp . = / pale(per|dp,.

e moment d'ordre © de p, a done la méme valeur dans les deux
théories.
Mais pour le moment d’ordre 2 de la théorie causale,

(321 \|,,'j’,‘=j'<3;*;>"|11'(.,-)}-'(/.,-,

on ne peut plus faire un caleul analogue et ce moment n’est pas égal au
moment (‘,01'1'esp0ndnnlf/).‘;’,] c(p) 2 dp, de la théorie usuelle.

Il 0’y a naturellement I aucune objection conire la théorie causale
car, pour elle, les probabilités considérées par la théorie usuelle
n'existent qulapres la mesure et elles ne sont pas égales a celles qui
existent avant la mesure et qui seraient valables pour un « surobscr-
valeur » suscepuble de connaitre directement la valeur des grandeurs
sans clfectuer de mesures.

On pourrail croive que la divergence entre les résultats obtenus en
calculant M2’ dans Ia théorie usuelle et dans la théorie causale pourrait
conduire @ trancher entre les deux @ ne suffirait-il pas de déterminer
expérimentalement M) ce qui est possible, et de voir laquelle des
deux expressions est conforme a Pobservation? I est évident qu’il n’en
est rien. La détermination expérimentale de M[? exigeant que lon
effectuc des mesures statistiques sur la grandeur P, c’est toujours la
valeur de M,?’ prévue par la théorie habituelle qui traduira les observa-
lions, mais ccla ne prouvera rien contre la théorie causale puisque la
vialeur de M que celle-ci calcule doit, d’apres elle, correspondre a la
distribution de probabilit¢ inobservable qui existe avant toute mesure.

9. Examen d’une remarque de M. Bohr sur la collision d’un cor-
puscule avec un atome. -— Pour' terminer ce chapitre, nous allons
examiner un argament développé, il y a déja longtemps, par M. Bohr et
tendant & prouver que Uionisation d’un atome par le choe d’un cor-
puscule ne peut se comprendre avee les idées classiques sur la locali-
sation des corpuscules.

On sait que, si 'on bombarde un systéme atomique avec des particules
rapides, on peul provoquer Vexcitation ou méme I'ionisation de ce
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systeme. Or ce phénomene, quand on Panalyse avec les 1dées classiques,
apparait. comme incompréhensible. En effet, la partcule incidente
traverse 'atome avee une vitesse ¢ et si  désigne le diametre moyen de

. . . ) o~
Patome, le temps de transit de la particnle sera de Pordre de L Cesl

seulement pendant un temps de cet ordre que la particule incidente
peul agir sur les constitnants de Patome et leur céder de P'énergie de
facon a provoquer une excitation ou une ionisation. Or, pour qu'un
corpuscule de Patome puisse absorber de I'énergie, il faur qu’il puisse

L. 172 .
se déplacer appréciablement pendant le temps 7 == . Cecl exige que ce
P P " seq

temps = soit au moins de Pordre des périodes T du mouvement des
électrons dans ’atome, périodes qui sont clles-memes de Vordre de
grandeur du quotient par  de la vitesse des dlectrons intraatomiques.
Si le corpuscule incident est trés rapide, cette dernicre vitesse sera
inférieure a ¢ et il n’y aura pas d’excitations ou d’ionisations possibles.
Des calculs plus préeis confirment cette conclusion et monirent qu’avec
les coneeptions classiques sur la localisation des particules, les phéno-
meénes dexcitations et d'ionisations par choe expdérimentalement observés
sont inexplicables.

Mais, dit M. Bohr, il nen est pas de méme avee les conceptions de la
théorie indéterministe. En effet, pour pouvoir appliquer au choce 'idée
de la conservation de U'énergie, il faul que I'énergie initiale du cor-

puscule incident soit connue avec une incertitude ol beaucoup plus

petite que le quantum % correspondant a la fréquence v == ll du mouve-
ment des ¢lectrons intraatomiques @ s'il n'en élait pas ainsi, 'incerti-
tude ok serait de Pordre des différences d’énergic AE entre les dlats
stationnaires de Patome et il ne scrait plus possible de vérifier la
conservation de Pénergic. Mais le train d’ondes associé a la particule
incidente a toujours une longueur finic ct, d’apres la quatriéme relation

dincertitude, il mel pour passer sur Patome un temps d¢ de Pordre

(IO

(A . L ., . . .
i Comme, dans Pinterprétation indéterministe ot la particale
Gl

mcidente est potentiellement présente dans toute Uétendue du train
d’ondes, cela n’a aucun sens de vouloir préciser, a 'intéricur de U'inter-
valle de temps 3¢, 'instant oa le corpuscule entre dans 'alome, il en

résulte qu'on ne peut attribuer au temps de transit © une valeur infe-

. oA h I e, . .

rieure i of. Done on a =~ i g ob la différence AE de V'énergie
ol “

/

) . . . R L
entre les étals stationnaires se lrouvant étre de ordre de g0 om aura
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3 T. Geute condition nécessaire pour qu'il y ait possibilit¢ d’exci-
tation ou d’ionisation pent donc, dans Pinterprétation usuelle, étre
considérée comme réalisée parce que la durée de I'interaction entre les
constituants de 'atome et le corpuscule incident, qui est potentiellement
présent dans loute 'élendue de son train d’ondes, ne peut étre regardée
comme inférieure a la durée totale du passage de ce train d’ondes sur
Patome.

On pourrail penser que cet argument de M. Bohr constitue une
objection contre la théorie causale. En effet, dans celle-ci, on restitue
aux corpuscules une position, une vilesse el une trajectoire. Alors un
corpuscule incident associé & un train d’ondes sensiblement monochro-
matique aurail une vitesse initiale ¢ bien déterminée el on pourrait

. . . d .
croire qu’il doit traverser I'atome en un temps de lordre de —» ce qui

nous ferait retomber sous le coup de 'argument de M. Bohr.

En réalit¢, il ne semble pas que Pargument porte contre la théorie
causale. En effet, quand le train d’ondes incident atteint I’atome, une
interaction commence dont I'évolution peut se représenter a I'aide du
formalisme de 'espace de configuration. Durant cette interaction, le
mouvement du corpuscule défini par la loi du guidage sera un mouve-
ment trés compliqué lié aux variations violentes et continuelles du
potentiel quantique. I1 en résulte une sorte de « tourbillonnement » du
corpuscule incident dans la région atomique qui ne permet plus du tout
de le considérer comme traversant celte région avec un mouvement
rectiligne et uniforme de vitesse ¢. Il peut avoir pour effet que le
corpuscule s’attarde dans la région atomique pendant un temps qui peut
¢tre de Dordre de la durée totale © du passage du train d’ondes sur
latome. L’argument de M. DBohr, valable contre Dapplication au
probleme envisagé de la Dynamique classique, ne parait plus s’appliquer
ici et Pexistence des excitations et ionisalions par choc ne parait pas
inconciliable avee la théorié causale (1).

(1) Depuis que ee chapitee a été éerit, Jai fait une étude beaucoup plus détaitlée de
la théoric de Ja Mesure avee Jes conceptions de la double solution pendant mon cours
de Phiver 1g55-1956. Fai le projet de publier cet exposé.

L. DE BROGLIE. 13



CHAPITRE XV

EXTENSION DES IDEES DE DOUBLE SOLUTION
A LA THEORIE DE L’ELECTRON DE DIRAC.

1. Introduction. — Nous avons développé la théorie de la double
solution en partant de 'équation d’ondes relativiste & un W (équation
de Klein-Gordon) qui aujourd’hui doit ¢étre considérée comme valable
seulement pour les particules de spin o. Il faut évidemment trouver des
formes de la théorie applicables aux particules de spin supéricur & o et

<

L1 .k ,
aotamment aux corpuscules de spin ; <en unité > comme I'éleciron.

Cette exlension a é1¢ faite par M. Vigier sous une forme qui me
parait plus satisfaisante qu’une autre forme que j’'avais envisagée anté-
rieurement [10]. C’est donc la théorie de M. Vigier que je vais exposer.

2. Résumsé de la théorie de I’électron de Dirac. — Rappelons d’abord
trés succinctement les principes de la théorie de Uéleciron de Dirac

o . .1 L.
<theorle de la particule de spin :>- Pour plus de détails, on pourra se

reporter a d’autres ouvrages sur ce sujet (').

Dans la théorie de Dirac, on considére 'onde W de Pélectron comme
une grandeur & quatre composantes W, (avec A =1, 2, 3, 4) ct, pour
pouvoir former des combinaisons linéaires des W', on introduil quatre
malrices & quatre lignes et quatre colonnes. Nous prendrons ces maltrices
sous la forme donnée naguere par von Neumann (*), forme qui esi
adaptée au formalisme relativiste. Ces matrices v; sont hermitiennes,
c’est-a-dire que (v;),= (v)5,- De plus, elles satisfont les relations

(1) vi=1 Yitj V=0 pour 1 s/

i

. (. . LT .
(') Par exemple : Louis pr BroeLi, La (héorie des particules de spin - (électrons
de Dirac), Gauthier-Villars, Paris, 1952.
(%) Loc. cit., p. G6.
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(que nous pouvons condenser sous la forme
(7)) i =2 6
Lécriture W, représente alors, par définition, la combinaison

. O . L. . . . .
lmciurcz ()W et Péeriture Wiy, représente de méme la combi-
/

Do Pou Wivi= (v;Wy)" a cause de Uhermiticité

. . . W -
naison linéaire Z W (-
/
1
des i
1 Sy, . | .
Considérons alors un corpuscule de spin S et de charge € sc déplagani

dans un champ électromagnétique dévivant des potentiels A ct V. Pour
des raisous que je ne rappellerai pas ici, M. Dirac a admis que les
quatre W', doivent obéir aux ¢quations d’ondes suivantes :

(3) 2 Ti (— e ,v> Yp=—imycWy (h=1,2,3,4),
2L A ¢

my ¢lant la masse propre du corpuscule. Les x; sont ici les coordonnées
d'Univers

£y = r, L=y, £y = 3, P, = let.

Les A; sont les composantes du potentiel d’Univers
V= A e Ay Au=AL, A=V

Les équations (3) forment un systeme de quatre équations linéaires
aux dérivées particlles du premier ordre simultanées. En introduisant
la convention de sommation des indices usuelle en Relativilé et en
supprimant U'indice & des W), on écrit (3) sous la forme abrégé

fh
(1) ‘[,‘Q*——.'f

N — ey
RNy '\’) V= —dm, eV

/

Q™

Introduisons les W, définis par Y= W;~, ou symboliquement
U~ =W4"*,. Ln prenant Péquation complexe conjuguce de (3),
obtient comme équations d’ondes pour les W+ sous une forme symbo-
lique analogue & (4)

L / ) e ) . ,
() (4—{—.*l_—_+2Ai)llf+yl.—_—zmoc‘}+.

Je me contenlerai de noter les points suivants :

' Les quatre matrices v; ne sont pas entierement déterminées par les
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conditions qui leur sonl imposées, mais celte indétermination des v;
n’affecte pas les prévisions physiques que 'on peut tirer de la théorie.

2” S1 'on change de svstéme de référence galiléen par une transfor-
mation de Lorentz, on peut écrire les nouvelles équations d’ondes sous
la méme forme que les anciennes avec les mémnes matrices v;, mais les
nouveaux W, sont des combinaisons linéaires des anciens.

3 On peut démontrer que les ¢quations (4) conticnnent le spin de
Péleciron aussi bien sous son aspect mécanique (momenl cinéligue
propre) que sous son aspect électromagnétique (moment magnélique et
moment ¢lectrique propres).

Les densités de moment magnétique propre et de moment élecirique
propre sont représentés dans un systéme galiléen par deux vecteurs
d’espace M et P. Au point de vue relativiste ces denx vecteurs s'unissent
pour former un tenseur d’Univers I qui est antisymétrique de rang a.

Ses composantes sont

(M= — Mgy = e Py Doy = — DMiyu = ic Py
(6) Myu= 04 DMy =— Myy=icPy; Moy = — My = Ma;
Mgy = — My = My Mys = — Iy = V..

Des ¢quations (4) et (5), on tire en multipliant la premigre par W
en avant et la seconde par W en arriere et en retranchant

- W o M
(7) i ‘[’).l‘[ll -+ s A 0
ou

J e R
(8) “—-(\ll'+""iq>:().

d.r il

Nous avons ainsi obtenu une équation de continuité pour le quadri-
vecteur

(9) Ji= W W = e ) W
1
C’est 14, en théorie de Dirac, le quadrivecteur « courant-densité »
dont les trois premigres composantes jy = e W W=—cWro, W, ...
donnent les composantes du flux corpusculaive le long des axes d’espace
tandis que la quatriéme j,—=icWry, ¥ = (W'Y représente (au
facteur fc prés introduit par les notations d’Univers) la densié de

probabilité de présence
4 &
f P, W, e,
p= Wile= x|
1 1
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Notons qu’on oblient le quadrivecteur « courant-densité d’électricité »
en multipliant par e les grandeurs ;.

Le quadrivecteur j qui vient d’étre défini peut étre décomposé en
deux parties. Pour le démontrer, multiplions (4) en avant par Wy,
et (3) en arriere par v, W, ajoutons et divisons par 2. 1l vient, compte
tenu de (2)

) . I ’ N 70 Sl
i =y IN
(o) I 1w iny & oy g )
: Al e ) .
— AU = N D,
"o i imy du; ’
it

Nous pouvons done décomposer le quadrivectenr j en deux quadri-
vecteurs JU) et j© définis par

o Y S TE T R :
‘ J) = : (ll‘-—ﬂ A 11')__ A

1= iy day deg myc

. h Y
- SO, LA TFVRVR I
( /i G, Z()J'[(\ vy )
i

i

(Vest ce qu'on nomme « la décomposition de Gordon ».

I1 est ais¢ de retrouver une interprétation physique de ji) et de j*.
On voit d’abord que j*' est le vecteur flux-densité correspondant au
mouvement d’ensemble de la particule : par exemple, en considérant le
cas simple de l'onde plane monochromatique en I'absence de chamyp
(Aj==0) ou I'on peut définir une vitesse

v=P _ P fT— a2,
m my

on trouve
I

el Em = =,

Quant au quadrivecteur j'2), on interprete en partant d'une analogie
avee la théorie classique des milicux polarisés. Considérons un milieu,
sitge d’une polarisation magnétique et d’une polarisation électrique.
Son ¢tat de polarisation est défini en chagque point par deux vecleurs
d’espace, le vecleur M (densit¢ de moment magnéligue ou inlensilé
d’aimuntation) ct le vecteur P (densilé de moment électrique ou polari-
sation électrique). Du point de vue relativiste, ces deux vecteurs
d’espace s’unissent pour former un tenseur d’espace-ltemps I anti-
symétrique de rang 2 dont les composantes s’expriment en notation
d’Univers par

‘ N = o, Ny = — Ny = fel; ({=1,2,3);
(I". j E D]l,-/-: — 3]‘(.,1 = I\]/l
( (4, J, k formant unc permutation paire des trois indices 1, 2, 3).
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Or, la théorie classique des milicux polarisés montre ue cette polari-
sation est ¢quivalente a lexistence d'une densité microscopique de
(,:har"‘e §=—divP et dunc densité microscopique de  courant

i»_ = —;~ rot M. On peul done dire que la polarisation est équivalente
aTexistence d'un vecteur courant-densité j tel que
i
. <
{(13) = — iy,
: ][ Zi ()1',’ fi
1
car celte formule redonne bien les valeurs de ¢ et de 1 que nous venons
de rappeler.
S1 maintenant on compare I'équation (13) avee Pexpression (11) de
J™®, on voit qu’on peut les identitier ¢n posant

1

% Oy — e e
(i) o =g Ay

(lest la précisément <au facieur ¢ pres qui correspond au passage du
courant de probabilité au courant élecirigue ev qui fan apparaitre le
magnéton de Bohr ,l_—’/:l—(\)’ I'expression des composantes non nualles du

=g ¢
tenseur antisymétrique de rang 2 qui, en théorie de Dirac, fournit,
comme nous 'avons vu plus haut, la densité de momenl magnétique
propre el la densité de moment électrique propre donl Pexistence est
hiée a celle du spin.

En résumé, le quadrivecteur courant-densité J de la théorie de Divace
s¢ décompose en un quadrivecteur j*' qui provient du mouvement
d’ensemble (mouvement orbital) du corpuscule et d'un quadrivecteur i)
qui provient de son spin.

3. Guidage du corpuscule en théorie de Dirae. — Nous allons pour
I'instant adopter le point de vue de 'onde-pilote ¢b considérer le cor-
puscule comme guidé par Ponde W. Dans la Mécanique ondulatoive a
ane fonction d'onide, il suflisait pour cela de définir la vitesse du
corpuscule & partir de la phase ¢ de I'onde W éerite sous la forme

vl
]

7

e

W=uae’ . Mais ici, si nous voulons transposer cetle idée, nous ren-

controus une difficulté. Comme il y a, en théoric de Dirac, quatre
composantes du ¥’ nous devons derrre

“Ii

Phlas 5 4)

(13) UWila, ¥y 5, t) = ar(w. y, 5, 1) 8" (h=1,2,3,1%),
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ot les fonctions e et ¢4 sont réelles. Or, il n’y a aucune raison pour
que les 94 soient les mémes : il n’y a donc plus une phase, mais quatre
phases distinctes. Guidé par la méthode qui permet de trouver 'approxi-
mation de I'Optique géométrique en théorie de Dirac, j’ai essayé dans
une Note de septembre 1952 de définir une phase commune ¢ par la
formule 9= o -+ ¢} cL, comme le choix de ¢ est évidemment arbitraire,
Javais cherché a la déterminer par une condition auxiliaire. Mais J'ai
reconnu depuis que, les formules auxquelles je parvenais conduisant a
définir le mouvement par le vecteur jy de la décomposition de Gordon,
ceci revenail a négliger Pinfluence du spin sur le mouvement. M. Vigier
a, plus justement je crois, cherché a définir le mouyement 3 Paide du
vecteur global j, mais dans sa Note sur ce sujet [10], il a néanmoins
conservé Uidée d’une phase commune o (qu’il nomme S). Je pense
maintenant que cela est inultile etartificiel : il faut raisonper directement
sur les quatre phases distinctes ¢y.

Si 'on part de l"exprcssion (15) des W, et si Pon lintroduit dans
Pexpression (10) des composantes j; du quadrivecteur courant-densite,
on ohlient

A

) . 1N\ [ doy H ) I3 N J

(16 =— — ST A )(L'T(l;+ — —(arvivran),

N J1 ", A-(r).r/ o M) ’,::/moﬂr).l',-( ),
il

1
avee
(1/:: oy,

l.e mouvement du corpuscule peut étre défini par sa vitesse d’Uni-
vers U dont les composantes, en nolation d’Univers, sont

o C, dr, e
125} e H Uy = —— = =
- s i ds ey — ot
i 4 .
’ ., ' d.r, /
iy = ———— Wy, = —— = —————*
s ' s Vi—

Pour expliciter le guidage du corpuscule par I'onde W, il parait

naturel d'imposer a celui-ci de suivre une des lignes de courant définies
pav le vecteur j, c’est-a-dire de poser

(18) wi= W j.
b
2

Mais le quadrivecteur u obéit a la relation Z u; —=—1,doul'on tire
i
1

(19 K= e

VR
1
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M. Vigier propose alors de définir la masse propre variable M, du
gier prop prog
corpuscule par la formule

‘ ny Ji ne, Ji
(20) Mycu; = — '/, = Ml
y+y AR
d’on
m B m
(21) M, = e Ji o P
’ a+ra cu; a-a

Nous verrons que cetle définition de My est bien la généralisation en
théorie de Dirac de celle que nous avions adoptée en Mécanique ondu-
latoire relativiste a un W,

Pour préciser, nous introduirons les définitions snivantes :

| N Jdy
: L ara
- = kX A

r); |
IR A s
()‘I?l' :1
@y
2
]
9
h ANA N 2
— (IR e T
. :znzﬂzkr)ﬁi( i an) Es
Pi=— A+ =i 1 = A m
/ ¢/ + ¢/ a ‘
Ek(l/;('lk

1

-, L, ()'“k
La quantité .. €sl une moyenne des quatre dérivées o quand on

de 11.17
atlribue & chacune le « poids » «)a;. Le qundrivcctcur P cst la somme
. £ . . . 2
du quadrivecteur —;A et d’un quadrivecteur proportionnel a ji.
Avec ces définitions, on peut éerive d’apres (16) et (20)
dy Jds e

23 Mycuj=— == + Pi=— = A P,
(23) 0T oa; ¢ de; ¢ !
formule qui joue ici le role de formule du guidage. I’ influence du spin
sur lc mouvement est représenté par le terme P; proportionnel i ;,*'.

Nous voulons montrer que la formule précédente est bien In généra-
hisation de la formule (18) du chapitre X,

(1) Maen! = it (75— )

drk

PP 3 9 1 , . .
(') On en déduit aisément que M5 = my (1— I—), I, et I étant les deux invariants

5

. , . . !
classiques en théorie de Dirac.
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que nous avions obtlenue a partir de I'équation de Klein-Gordon et qui

s'éerit avee nos nolations actuelles etl’emplot des coordonnées d’Univers

au licu des coordonnées d’espace-temps,

(23 M‘,(,‘Ll,':—<-’~)i—+—iz\,‘>=¥i{—s \;.

: r; ¢ g :
Pouar le voir, il suftit de remarquer que, pour passer de la théorie de

Dirac a celle de Klein-Gordon, nous devons : 1¢ négliger Veffet du spin,

¢'est-a-dire le terme P dans (23); 2 supposer que les W se réduisent

ST
aun seal W =qe” ;, ce qui donne 7)'1 = :))O - Lé raccord de (23) et
(25) se fait donce bien. l

Nous trons aisément de (23) les relations

ERER
(Mycu;) /f_z «'m( ;)z+l,~>
*ﬁ§[ o /—;);:4—["\
‘2‘ ' //V!l \ 11.17'/7' />
/ — - - -
R Y 3})_ Ip. 97\
‘i :)1, Yooy ().l'iK 4 ();ﬁ/ S.

. U N du; . .
Comme 2 wie=—1,ona ¥ ==+ =0 et le premier terme du dernier
j / d— Jua
1

. o
(26 ,/x(.\ln”‘z)— ),

%

ZAll
membre vaul ¢ =—* ) “de sorte qu'on a finalement comme équation du

or;
mouvement

o ZAY ~y ~
(27) 7 (\l.,u/,;_(v’)': +ZIL/‘FZ'/‘—+—ZU/‘
i

i

o/ Jo Jd | do\ |
— T | DA
_/)L'/ (Pl l).'I,‘l' ) ()l‘ K / ().I«',')J

JA ; ) ) .
— '——i> est le produit du champ électromagnéuique

().l‘l'

par la charge.
Le dernier terme de (27) exprime 'action du spim sur le mouvement :
il est visiblement nul en 'absence de spin puisqu’alors le quadrivecteur P

Jy e s
est nul et que, 5S¢ réduisant a Jerona
Ly L

J ;)Y _ o Jv
or; 7)1, T oy o ;

Si le spin est nul ou a une action négligeable nous retrouvons I'équation

)\
(28) LM, ‘\1 1(/

qui correspond bien & la Dynamique étudiée au chapitre X.
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Il est facile de vérifier ainsi que la définition (21) de My se ramene,
quand on néglige le spin, a celle que nous avions précédemment adoptée
en partant de I'équation de Klein-Gordon. En cffet, si I'on néghige le
spin, on a

j"—”:(l el j:j”‘
et on peut considérer une scule composante du W, done un seul a et
un scul . On trouve alors

«?

(20) jre— o (grads— S A);

my \
!
Z
t
1

ou grad est le gradient d’Univers. La de¢finition (21) nous donne alors
8

o

<grad o — ( A>>7

3
B
me

%
[ 174
_gs SO
= ,-}i =
4
1

o

(30) )15(;z:_<grad;—ZA>'.

.

Or, léquation de Jacobi généralisée nous donne sous sa forme
relativiste

) / H 2 1/ de v\ 1754 z 2
3y —(grads — ,;A> = (Jz —: > -3 <) i ‘)

2 Qu

i=2  «

J

mie—+

ce qui nous raméne a Pexpression de My déduite de Uéguation de
Klein-Gordon.

Bref, en admetiant la définition (21) de M, et en en déduisant la
formule (23), nous avons obienu wne généralisation natarelle de la
formule du guidage dans la théorie de Dirac. Le corpuscule se tronve
alors assujetti & avoir pour ligne d’Univers une des lignes de courant
définies par le quadrivecteur j. Comme précédemment, el toujours sous
la réserve d’avoir & fournir une démonstration d’ergodicité, on en
conelut que la densité de probabilité de présence est donndée par
(32) e=dt =3 W=

.

2

i

L’extension de l'idée de guidage que nous venons d'indiquer en
passani des équations de Klein-Gordon a celles de Dirac doil pouvoir
" . . . R R
s’effectuer également pour les particules de spin supérieura —- M. Vigier

a montré qu'il en était bien ainsi dans le cadre du formalisme introduit
par la théorie des photons.
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%. Introduction de I'idée de double solution en théorie de Dirac. —
Nous venons de voir comment on peut introduire en théorie de Dirac le
cuidage du corpuscule par Ponde W, ce qui constitue le point de vue de
l'onde-pilote. Ce point de vue ¢tant certainement insuffisant, il y a lieu
d’introduire ici aussi I'idée de la double solution, ¢’est-a-dire d’admettre

i
.. . . . = . . . .
qua chaque solution continue W,=a,e” * des équations de Dirac doit
correspondre une solution

2RI
Fpl vz

wp=fr(x, ¥, 5 t) el
avec les mémes ¢4, ot les f; comportent un méme point singulier mobile
ou plutor une méme petite région singuligre mobile o les 1, auraient
une grande valeur et obéiraient a des équations non linéaires.

En 19275, dans le cadre de la Mécanique ondulatoire relativiste avec
un seul I, nous avions montré (!) que, dans le cas du mouvement
vectiligne et uniforme en Fabsence de champ, il existait dans le systeme
propre d'un corpuscule de masse propre m, une solution a singularité
el a syinétrie sphérique

o .

(33 wol Lo YVos Bo, fo) = II"; e’ ot

et Pon avait seulement a faire une transformation de¢ Lorentz pour
obienir dans un autre systeme galiléen la fonction d’onde u (2, y, =, ¢)
a singularité: mobhile qui représenterait le corpuscule en mouvement.
Bicn entendu, si P'on substitue a U'idée de singularité ponctuelle celle de
petite région singulitre, on doit considérer que la solution obtenue
représente Ponde # d’une particule a symétrie interne sphérique, mais
sealement en deliors de la région singuliore.

I est naturel de chercher a obtenir en théorie de Dirac des solutions
a singularité analogue a la précédente. Considérons un ¢lectron de
Dirae en Pabsence de tout champ et placons-nous dans son syst¢me
‘propre. Les « pelites composantes » 1, et us y seront supposées nulles
et, en adoptant la forme usuelle des matrices de Dirac, on trouvera
pour e, et u, les équations (%)

) iy 7 n Ay . ) ; A v du,
E RS , — =0 — f— = 0]
(3 (/}J' Ay s iz ’ dr ’))") B Jz 05
)
’ / 4 /i it
’ ~I—. ! e = Nyl ! : LA nycie,.
omloe o anl e

(1) boir Chap. IX, § 3.
(%) Pour alléger Uecriture, nous omettons Uindice zéro dont il faudrait affecter les
variables ar, y, 5, ¢ dans le systéme propre.
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On satisfait aux deux dernidres équations en posant

20

2R
T gt e et

(35) uy= foe ,  w=/fe"

qui entrainent

Si nous introduisons les variables

(36) u:u, p:ﬂ,
2 2
nous obtenons
dfv _ dfs A dfy
(37) P F R i =

Ces ¢quations admetlent la solution a singularité

. J? I . J? 1
(38) 'I":r)u()z<;>’ ‘/“:4)3‘-’(;)

e . 9 1
comme on le vérifie immédiatement en se souvenant que A~ = o,
”

Revenons aux varables o et ¥ et remarquons que 1= \/g/;'-' + ¥4 g2
est égal 4 y/4uv + z*. Nous voyons que nous avons obtenu dans le

27

gttt

systéme propre unc solution a singularité du type u,—= fire” avec
. . B - A . 3(r—1y)z
(39) Ji=/[1=0, Js= s T ,/z:—ﬁ—’——‘

En faisant une transformation de Lorentz et en tenant compte de la
transformation correspondante des composantes dé Dirac, on obtiendrait
la forme des wu; dans un autre systéme galiléen ou la singularité aurait
un mouvement rectiligne et uniforme.

Comme les ¢quations (37) se conservent quand on permute stmulta-
nément f; avec f, et u avec — ¢, on en ddéduit Pexistence d’une autre,
solution a singularité donnée dans le systeme propre par

- - o? 1N 3w +iy)s

:
. 2 [1 2 3! :
r= g (h)=

On remarquera que les solutions (39) et (4o0) ne possedent pas la
symétrie sphérique : elles correspondent non pas a des poles isolés,

(40)

mais & des doublets. Pour des particules de spin supéricur a -y on trou-
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verail des solutions & singularité correspondant a des multipoles d’ordre
supéricur (1).

Silon substitue a la notion de singularité ponctuelle celle d’une petite
région singulicre on I'équation en w n’est plus linéaire, on doit consi-
dérer les solutions indiquées ci-dessus comme n’étant valables qu’a
Pextérieur de la petite région singuliére.

Lxaminons maintenant comment se présente en théorie de Dirac la
question de la liaison entre I'onde u et Ponde W,

Pour le mieux voir, reprenons d’abord la question dans la théorie
sans spin. I’équation (23), quand on y néglige le terme P; qui vient du
spin et que 'on considere une seule phase ¢, s’éerit

175 H . .
(41) \I“('u,f:—’f)‘;:—;_\i (f=1,9,3, 1),
;.
ce qui donne
(42) Mo ___,'ii e \, (=12 30 Myci _ 1 ’)i_il\'
! \//1 — . day e A \‘[ T e ot ¢
d’on
(43) Mo (%,
b Vi— 32 ¢\ Jt .
Par division, on obtient alors
’)_"7 A,
P o l),l',* “
(41) Y= — ’
oy
713 N

ce qui est précisément la formule du guidage précédemment obtenue
dans la théorie sans spin [chap. IX, formule (36)]. La vitesse est alors
entidrement délerminée par la phase ¢ commune a » ct & W. L’¢quation
de Jacobi généralisée (J) valable pour z et W impose alors, nous l'avons

vu, I'égalité des rapports %ﬂl et %fy ce qui permet de mettre 'expression

de la masse M, sous les deux formes équivalentes

. ) e da . I
(43) Mo:\/m(,+ ey DT) :\/mg—+— T (%)

Voyons maintenant ce qui se passe en théorie de Dirac. La for-

(') M. Gérard Petiau a étudié trés complétement ces aulves types de solutions
(C. R. Acad. Sc., t. 238, 1954, p. 998).
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mule (23) nous donne

Moo o H . ; .
=t = DA P (F=1, 0, 3,
( \/I . or; ¢
1 :
av) k
Myer 1 dJo I ,
-7——'~va = L »ﬂ—:l\' -+ I’v,l
LT — 2 e Jt ¢
d’on
_ N
(i7) M ()
! \/‘I e 2\ dt A
avece
3 7 ( ’
— —— (i
, amA o ch T
(18 P Gality 5
| - = e = "+
e ¢ T '
P

— est une quantité réelle. Finalemenl nous obtenons par division des
lc

deux formules (46)

J B ,
); =+ ;J\l‘—i— I
C19) ‘-I.:;(x::_*'—? (i=1, 2.3
QS VT
Nl e

Telle est ln forme précise de la formule du guidage en théorie de

Dirac.

5. Conséquences des formules obtenues. — Lc¢ point de vue de la
double solution conduit & supposer que la vitesse (d trois composantes) el
la masse propre M, données par les formules (4¢) et (21) doivent avoir la
méme valeur qu’on les calcule a partir de 'onde « ou gu’on les caleule

. . X . oz
a partir de Ponde W. Or, comme ici les quatre el les quatre Dy
ox;

dépendent des «y, il ne suffit plus de supposer que chaque u; a la méme
phase o, que le W correspondant. Il faut, de plus, que, quand on subs-
(}J.’[

gardent In méme valeur de facon que la vitesse v el la masse propre M,

titue les f; aux ay, les expressions — 7% %AH— D! pouri—1,9, 3,4

gardent aussi la méme valeur.

Au premicr abord, cette condition, qui semble indispensable pour
permettre Uintroduction de la double solution en théorie de Dirac,
parait exirémement restrictive. Nous allons voir cependant qu’elle
découle tout naturellement d’une idée que nous allons vencontrer jci
pour la premiére fois, mais que nous retrouverons au chapitre suivant.
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En somme, ce que nous sommes amené¢s a postuler, c’est que les
lignes de courant définies par les formules de la théorie de Dirac soit a
partiv de Ponde w, soit a partiv de 'onde W coineident. Mais, bien
enlendu, elles ne peavent coincider que dans la région de I'espace on
Ponde « obéit a la méme ¢quation linéaire que l'onde W, ¢’est-d-dire
A Vextéricur de la trés pelite région singulitre mobile ot w a de trés
grandes valeurs et n’obéit plus a I'équation linéaire du W. Affirmer que
Ia région singulicre quasi ponctuelle suit une des lignes de courant
définies par le quadrivecteur j, celui-ci élant calculé¢ a Iaide des
composanles u; de w, ne peut avoir de sens que si 'on calcule j surle
pourtour de la région singuliere, par exemple sur la sphere S que nous
avons introduite au chapitre IX (§ 6) pour la démonstration de la
formule du guidage et qui, contenant & son intéricur toute la petite
région singulitre, se trouve déja dans la région ol u obéit a Péquation
linéaire de propagation. Il faut aussi, bien entendu, que la région singu-
licre soit si petite que l'onde continue W' soit sensiblement constante
dans toute celle région et jusqu’a la sphére S. Alors, sur toute Ia
sphere S, les vecteurs d’espace j (71, 2, J3) sont égaux et paralltles et
Pon doit pouvoir les calculer anssi bien a Paide des u, que des W,

En un point quelconque de la sphere S, Ponde w qui obéit en ce

7

point aux équations linéaires de Dirac satisfait & I'équation de continuité

Jow? . o
(5o) 5 ~+div(lu 2v)=o,
ou V est la vitesse définie localement dans Uespace & partir du quadri-
vecleur courant-densité de la théorie de Dirac. En remarquant que

: - Q o 4 | °
=N = Y fil=
1

1
on peut écrire Péquation (30) sous la forme

af? . .
(1) »;5—,— +v.grad /2 - f2divv=o0

ou, si l'on appelle s la variable d’espace comptée le long de v,

() i)f: -+ ’—)fi

5 o + /rdivv =o.

Or, nous avons supposé (chap. X, § 6) que sur la spheére S, bien que
I'équation lindaire des ondes y soit approximativement valable pour u,

af

. 2
la fonction f commence & augmenter rapidement de sorte que -~ > f*.
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On peut alors négliger le dernier terme de 'équation précédente et 'on

trouve
o
N ds Js
(53) (__——Tﬁ-_ 7),/
ot ot

On voit donc que, en un point quelconque de S, les valeurs de 'ampli-

* de 'onde u sc déplacent dans la direction v avec

tude f'= E/ | /5

la vitesse (53). Cecel signific que la région singulicre quasi ponctuelle
de u se déplace d'un mouvement d’ensemble avec la vitesse ¢ le long des
lignes de courant définies par les vecteurs d’espace j qui sont par hypo-
these tous ¢gaux et paralleles en tous les points de S. Nous avons ainsi
retrouvé en théorie de Dirac la démonstration de la formule du guidage.

Mais les considérations qui précedent, en nous obligeant & admettre
que le calcul du quadrivecteur § sur S conduit au méme résultat qu’on
le fasse a partir des w; ou a partir des Wy, nous conduisent presque
inévitablement & envisager I'idée suivante : « En dehors de la petite
région singuliére, ou elle obéit a une équation non lindaire, la fonction u
serail proportionnelle a la fonction W normdée ; autrement dil, on aurait
a Uextéricur de S, u ~ CW ». La constante C aurait une valeur bien
détermindée puisque #, ayant une signification objective, doil avoir unc
valeur bien déterminée ct ne peut pas étre normée arbilrairement
comme W,

Dans la théorie sans spin, celle hypotheése nous conduil a poser

(1) S= Cla, phase de « = phase de U’ -+ const.

La seconde relation exprime P'égalité des phases (i une constanle
prés, ce qui est sans importance puisque le guidage fait ici seulement
intervenir les dérivées de ¢). La premiere relation (54) donne évidem-

0Of 04«

ment i el nous avons ainsi retrouvés toutes les relations postu-

lées par I'hypotheése de la double solution en Mécanique ondulatoire
sans spin.
En théorie de Dirac, Phypotheése v = C¥ donne

(5%) Sr=1Clay, phase de «; = phase de W+ argC.

La seconde relation (55) exprime le postulat que nous avions intro-
duit en supposant que les composantes de méme indice w; et W avaient
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la méme phase ¢4. De plus, Uensemble des relations (33) montre que
les quadrivecteurs définis par

. . . N - ’ . . Y
(56 Ji= 102‘ Wiy W, Ji= lcz Uitk
k 3
1 1

coincide sur S et a Pextérieur de S a la constante multiplicative prés
|G
propre Mg ont la méme valeur qu’on les calcule sur S a partir de « ou
a partir de W,

% 1 est facile de vérifier qu’alors la vitesse de guidage v et la masse

Nous allons maintenant dans le chapitre suivant étudier de plus pres
la nouvelle 1dée que nous avons été amends a introduire ¢l nous en
verrons toute la portée (1).

(') L'hypothése exprimée par v = CW (en dehors de la région singulicre) souléve en
théorie de Divac une.difficulté qui ne se présente pas dans le cas de la Mécanique ondu-
latoive @ un scul U,

En effer en théorie de Dirvae, le choix des matrices 5 (ou @) est dans une large
meswre avhilraire ely suivant la facon dont ou fait ce choix, la forme des W vavie. Seule
reste invariante la forme des grandeurs bilinéaires en ¥ et U™ qui, dans Pinterprétation
habituelle, constituent les seules grandeurs de ta théorie ayant un sens physique. Comme
le gquadrivectenr § est précisément une grandeur de ce type, le guidage défini par j est
indépendant de Pindétermination existant sur les U, Mais, comme dauns la théorie de la
double solution on veut donner & Ponde ¢ un sens physique, il seable que Pon doive
supposer que les composantes wr ont des valeurs bien déterminées. Alors, dans les
cquations lincaires valables pour Ies e en dehors de la région singuliére, il faut suppo-
ser que fes matrices v ont une forme physiquement déterminée et Ja relation v = CW
ne scera possible que si Pon prend powur .les W une solution des équations de Dirac
éerites avee précisément cette forme des matrices y. L'indétermination des matrices v
et celle des composantes Wy qui en résulte ne s’introduirait donc que quand, cn adop-
tant le point de vue de Pinterprétation usuelle, on ferait abstraction de londe w pour
ne plus conserver a Ponde W continue que le caractére d'une onde fictive de probabilité.

L. DE BROGLIE. 14



CHAPITRE XVII.

LA STRUCTURE DE L'ONDE « ET SES RELATIONS AVEC L'ONDE V.

1. Difficulté de prouver Pexistence et de trouver la forme de ’onde .
— Pour arriver @ metlee vraiment au point la théorie de Ta double solu-
tion, 1l faudrait prouver 'existence de Ponde w, préciser sa lorme et
montrer quelles sont les velations exactes (ui existent entre clle et
Ponde W usuecllement envisagée par la Mécanique ondulatoire. 11 se pose
alors toute une série de questions difficiles que nous allons, an moins en
partic, examiner maintenant. Tant que ces questions n’auront pas été
bien dlucidées, la possibilité de construive une interprétation causale
vratment cohérente de la Mécanique ondulatoire ne sera pas élablie.

Quand j'ai éerit mon Mémoire de 19279, je considérais Ponde w comme
obéissant a une équation de propagation linéaire et comportant une véri-
table singularité mathématique. Naturcllement, je sentais la nécesssité
de démontrer Uexistence de ces ondes ¢ a singularité, Comme [avais
trouvé une solution & singularité dans le cas de Iabsence de champ,
Jespérais qu'on pourrail ¢lendre ce résultat en raisonnant a peu pres
comme il suit. Dans une région Ry ot 1l n’y a pas de champ, il eviste
des solutions u et W, jumelées comme Uexige le principe de la double
solution : si ces ondes pénetrent ensuite dans une végion R oi régne un
champ, la singularité de I'onde w ne peut pas cesser d’exister ¢l Pon
pourrait chercher a démontrer que le prolongement de I'onde o dans la
région R continue & étre lié au prolongement de Ponde W' par les pres-
criptions de la double solution. Mais je ne pouvais aucuncment préciser
cette démonstration.

En résumé, la théorie que je cherchais & développer présupposait le
théoréme d’existence suivant :

Etant donné une certaine équation de propagation valable dans
un certain domaine de Uespace et admettant dans ce domaine une



LA STRUCTURE DE L'ONDE 7z ET SES RELATIONS AVEC L'ONDE W' 211
solution continue W telle que
W, )y, 5 t)y=ale, y, 5, 1)e !

satisfaisant a certaines conditions aux limites, Ul existe une aulre
solution

LWL,

—— SrNvis

H(-l‘, Y, 5, l) :/(1 RER2) [) eh

ayant le méme phase ¢ (zx, y, 5, t), obéissant aux ménmes conditions
aux limites et dont Uamplitude présente une singularité en général
mobile (V).

(") Nous vouwdrions indiquer comment on peut poser le probleme d’existence de la
fonction « en Vabsence du champ.
- o AT e
Dans un espace-temps ewclidien, Véquation [JW 4 —— mj eV = o «'¢erit en coor-
hr

données carvilignes 27 = (a2, 3, 3, €) 2ous la forme

(e )

Fn posant W' == a € /o 7 avee a el o véels, on obtient les deux équalions

) L, 08 J3 w Iz i Jo L
! gt == T et | a s — — ool ——y
S ot dr? her T oV T8 o
\ S
a —— &
() : 4 - g g as o.
o ‘ ars

Considérons les hypersurfaces g (, py 5, 1) — const. =zt de métrigue interne

ds® =z guodeib dat avee 70 Lo2ay 0y 3 el les conrbes Torvthogonales dans Pespace-temps a
. , P 7 .
celte famille Phypersurfaces. Les courbes ' sont définies par g% == g2 —)~f—; et cotneident
' ar?

wvee les lignes de courant déterminées par fa formule du guidage. Gomme les hypersur-
faces ne sonl pas en général géodésiquement paralléles. on aura en tout point de
Pespace-temps cuclidien

o 4 o o " 4 50 5 o i : 3
(b ds?osdsp=-dst s ga(xt, ot b ) (det P os ga(at, ot ot ab) dat dak,
d’on
(( A r e
- ol - it —
) g i’ 8 0.
fe

L'¢quation (G) montre alors que o* y— g g est indépendant de o et, conane on en
7 L, . . . .
conclut que o (a2 v— g ) = o, ceei exprime la conservation du fluide dont La den-
T : ;

Sité propre esl gy - a® y— g. Quant o Péquation (J), elle donne

(d) V— g g — (g —miet)a.

V—g e+

H ! T . . . oo o
On voit alors que = v ' est égale & la masse propre variable My précédemment définie.
¢

Léquation () jointe aux conditions aux limites déiermine une solution Y finie,
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Le probleme était ainsi posé, mais non résoln. D’ailleurs on aurait pu
modifier un peu I'énoncé de ce théoréme d'existence en faisant la
remarque suivante. licrivons les denx ondes sous la forme

p(‘.r,y,:v,/)

2R
(1) ‘ Wix, y, 5, 0)= a(x, Yy 5 t)e g )

( w(r, v, 3, 0) = J(x, v, 5 t)e

e

;%[ D, ¥, 50
Nous avons admis dans I'énoncé¢ précédent « la concordance des

phases » sous la forme stricte
“(La VAR t) = ?/(.’L’, Yy 5 1)

pour tout ensemble de valeurs x, y, z, £. G'est la natarellement une
exigence qui parait trés sévere. Or, ce postulat sert essenticllement a
démontrer la formule du guidage et a opcérer le passage de la Mécanique
ondulatoire du corpuscule unique a la Mécanique ondulatoire des sys-
ttmes de corpuscules dans 'espace de configuration. Si 'on regarde
de quelle maniere Phypothése (2) intervient dans ces raisonnements,
on conslate qu'il n’est pas indispensable d’admetire la concordance des
phases o et ¢' sous la forme (2). I suffirait de supposer que les phases «
el o coincident au voisinage immédiat du corpuscule.

Nous avons été amené, pour des raisons que nous allons déselopper,
a remplacer I'idée que 'onde « comporte une singularité ponctuelle par
I'idée d’une tres petite région singuliere, en général mobile, ou 'onde
obéirait a une ¢quation d’ondes non linéaire. I suffirait alors de pos-
tuler que les phases ¢ et ¢’ ont, ainsi que leurs dérivées premicres, les

uniforme ct continue qui, pour un observatcur galilicn, aura la forme

o= e

. N . . #.r‘ B,y 5, 0
(e) W =a(z!, 2* 7' x')e ! =alz,y, 5 t)e " )
W et par suite ¢ ¢tant ainsi déterminées, considérons Iéqaation de propagation (ue
Ponde « de la double solution satisfait en dehors de la région singulicre

1 7 —a
J Ju 4w 3 .
) V—g Jx* —g8" G T E Mectu = o
8 ;
27

L g . .
En posant « = f(&', x*, x*, x')€ " , nous obtenons, en substituant dans (/) Tes
mémes équations (J) et (C) que ci-dessus, mais ou @ est remplacé par f. L’équation (C)

montre encore que f? V'—gg“ est indépendant de 2t ot Véquation (J) donne

! o o of

0 . 9
(8) _\/T—?’B\ g '()x;,:(é’“—"l()c“)f

II faudrait démontrer qu’il existe des solutions de cette équation qui possedent une
I | 1
ligne singuliére d’espace-temps coincidant avec 'une des courbes I
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mémes valears sur la petite sphere S entourant la région singuliére qui
nous & servi pour la démonstration de la formule du guidage.

Nous avons voulu signaler ici cette possibilité d’affaiblir le postulat (2)
sur la concordance des phases. Nous reviendrons sur celle question un
peu plus loin (voir § 9).

9. Un théoréme sur les fonctions de Green de 1’équation des ondes.
-— Nous allons maintenant exposer une difficulté soulevée par la forme
primitive de mes conceptions sur l'onde .

La difficulté en question résulte d’un théordure sur les fonctions de
Green de I'équation des ondes, théoreme qui, signalé autrefois par lord
Rayleigh, a ¢té¢ utilisé par Sommerfeld dans ses travaux sur la Mécanique
ondulatoire.

Considérons un systeme quantifi¢, par exemple un atome d’hydrogene.
Nous savons que dans un ¢tat s de ce systeme, le corpuscule d’apres la
formule du guidage doit rester immobile en un point Q. SiTonde »
comporte une singularité ponctuelle, cette singularité doit se trouver
en (). ‘

L’équation des ondes W est 1ci de la forme

(3) AV 4+ [l2— F(r)]¥ = o,
ou F(r) est le potenticl coulombien du noyan de 'atome H. Les valeurs

ropres de k; et les fonctions propres correspondantes W; sont définies
prop prop p
par

4 AW+ [k — F ()| W= o.

SiTon suppose qu'il existe une solution de I’équation des ondes ayant
. . I . . . .

une singularité en - au point Q et nulle aux limites du domaine [ ce sera
la fonction de Green de I'équation (3) relative au point Q et au domaine
considéré ], on devra pour
(5) A4 [k —F(rjju=28(M—0Q) (&= const.),
M élant le point courant et 6 (M — Q) la fonction singuliere de Dirac
relative au point Q. L’équation des ondes scra ainsi satisfaite partout
par u, sauf au point Q ou existera une singularité en ’1

Mais on peut développer 6(M — Q) suivant les fonctions propres

V(M) sous la forme

(6) 2O —Q) =N ebiM);  er= [[300— Q)W (M) ds = W (Q);

i
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d’out

(7) B(M — Q)= Z W7 (Q)Ui(M).

Si alors on développe u (M) sous la forme

(8) w(M) :}: M

i

avee de nouveaux coefficients ¢;, on devra avoir

. 5 . N > N QR . 3
(9) [,.\+/‘--z—r(,-)]zo,u,-(m:g_}_‘q, (Q)W;( M)
i i

ou d'apres (4)
Ql - . R
(10 D ek kW) = 2 BT (WO,
] i
d’ot Uon tive, puisque les Wy forment un systeme complel

o U0
(1r) =

Tz l.l_-_"
puis
: RN
(12) u(M):,Z. ,

i

Cette expression de Ia fonction de Green (M, Q) constitue le théo-
réeme anquel avais fait allusion.

Or, dans un ¢iat stationnaire, la fonction « doit avoir une fré(luwu(w
égale & celle de ['état stationnaire considdrd, c’est-a-dire que A doil
étre ¢gal & F'un des £ On voit alors que le coefficient de W (M) duns
(r2) est infini sanl s1 U';(Q) = o. En d’autres lermes, la solution a sin-
gularité que nous avons caleulée n'existe que si lu singularité est placée
en un point ot W; est nulle. Ce résullat, qui est classique en théorie
des vibrations et qui exprime un résultat bien connu de la théorie
mathématique des équations intégrales, semble ici s'opposer fatalement
a la conception d’une onde # a singularité mathématique. En elffet, dans
les ¢états o le corpuscule-singularité devrait ¢tre immobile, il devrait se
trouver en un point QQ ou Vonde W serait nulle, ¢’est-d-dire précisément

en un point of, d'apreés la signification statistique du | W;]*, 1l ne devrait

pas pouvoir se trouver. Le théoréme exprim¢é par la formule (12) parais-

sait done nous contraindre & abandonner mon idée primitive suivant
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y i . . ., 1
laquelle Fonde w présenterait une singularité ponctuelle en ) c¢’est-

a~dire serait fonction de (5) (1).

3. Introduction d’'une équation d’ondes non linéaire pour . — Pour
échapper a ln difficulté que nous venons de signaler, et pour dautres
alsons, nous avons ¢l¢ amend a remplacer 'idée que Vonde n presente
une singularité ponctuelle par une autre idée fortement suggérée par les
remarques de M. Vigier au sujel de Panalogie que présente ma démons-
tration de la formule du guidage avee les résultats de MM. Georges
Darmois et Einstein au sujet du monvement d’une particale en Relati-
vité géndralisée.

in Relativité généralisée, les coefficients g, de la métrique d’espace-

(- N , . . . 1
temps obéissent A des équations non linéaires <Rw,'~ 535"’“: o dans le

vide\ ctil en est de méme naturellement des quantités y,, = £y, — gy,
) ‘ ‘

diflérences entre les g, ct leurs valeurs galiléennes constantes g,
Neanmoins, mises a part de petites régions singulieres de I'espace-temps
qui constitucraient d’apres Einstein les tubes d’univers des corpusenles
et on les v, pourraient prendre de grandes valeurs, les yy, obéissent
approzimativement & des équations linéaires : cetle propridéié est tris
utile pour les calculs eflectuds par la théorie de la Relativité géndéralisée.
Le résultal essentiel des recherches de G. Darmois et d’Einstein est que
ces régions singulicres doivent se déplacer au cours da temps de telle
facon que le tube d’Univers trés délié représentant ce mouvement
coincide avec une géodésique du champ extérieur. Ce résultat est trés
remarquable parce qu’il permet de déduire directement des équations
du champ le mouvement des corpuscules sans avoir a introduire comme
un postulat spéceial (ainsi qu'on le fait dans les exposés ¢lémentaires de
la Relativité géncéralisée) le fait que la ligne d’Univers d'une parti-
cule est une géodésique de Vespace-temps. L'analogie du résultat de
MM. Darmois et Einstein avee ma démonstration de la formule du gui-
dage conduil & penser que le « champ » « pourrail bien étre relié a la
géométrie de Pespace-temps et obéir, lul aussi, & une ¢quation non
linéaire.

Voyons comment on peut préciser cette idée dans le cadre de la
théorie de li double solution. Bien entendu, I'équation 'd’ondes du W,
onde fictive simple représentation de probabilité, doit étre lindaire, car

(') Voir a ce sujet la fin du paragraphe b.
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le principe de superposition, conséquence nécessaire de lu signification
statustique du W, doit étre satisfail. L’équation lin¢aire du West celle que
I'on connait bien en Mécanique ondulatoire usuelle. La théorie de la
double solution suppose que, sauf dans une région trés petite consti-
tuant le « corpuscule » au sens étroit du mot, 'onde « obéit a la méme
équation lindaire que 'onde U'. Mais ceci n’empéche pas d’admettre que
la véritable ¢quation d’ondes de w soil une équation non lincaire, les
termes non lindaires n’ayant unc influence sensible que dans une trés
petite région, en général mobile, de Pespace ou les valeurs de w
deviendraient trégs grandes. ln dehors de cette petite région singu-
licre ('), les termes non linéaires scralent assez faibles pour que «
puisse obéir tres approximativement i la meéme équation d’ondes
lin¢aires que le W. Si 'on adople ce nouveau point de vue, on esl
amené, pour démontrer la formule du guidage, a envisager une petite
sphire 5 entourant la région singulicre et placée & la limite de cette
région, la ot la fonction © commence a augmenter rapidement tout ¢n
obéissant encore a I'équation lindaire.

L’¢quation d’ondes non linéaire satisfaite par « (dont la forme exacte
pourrait résulter des lentatives de M. Vigier ou de tentatives analogues)
esl encore imconnue : elle serait certainement variable suivant la nature
de la particule et la valeur de son spin, et les valeurs de la fonction «
(en geénéral a plusicurs composantes uy) détermineraienl ce qu'on
pourrait appeler la « structure interne » de la particule. Celtle structure,

. . .y ,
dans le cas des particules de spin ; (en unité — ) comme ’électron,
ey
aurail une symétrie correspondant a ce spin ct serait du type « dipole ».
. . e, 1 , . C 1yt 1.
Pour les particules de spin différent de -» elle résulterait, si idée
fondamentale de ma théoric de la « fusion » ¢st exacte, d'une fusion de
plusicurs corpuscules élémentaires de spin - : 1l y aurait alors une sorle
de confluence des régions singulicres qui donnerait licu a Papparition
de symétries différentes de celle du dipole (se réduisant a la simple
symétric sphérique polaire dansle cas du spin nul). Les dimensions de
la région singuliere permettraient sans doute de définir, au moins
<) 8 P )
approximativement, un « rayon » de la particule. On sait que les théories

classiques comme celle de Lorentz introduisaient un tel rayon, notamment
pour lélectron. Les théories actuelles ressentent trés fortement la

(') Ladjectit « singulitre » ne signific pas néeessaivement que « a en un point de cetle
région une véritable singularité ponctuelle (Foir la fin du dernicr chapitre ).
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nécessité de réintroduire la notion de rayon de la particule, mais,
n’ayant a leur disposition pour la description des particules que I'élément
statistique I qui ne permet pas de définir une structure individuelle,
etles se trouvent actucllement aux prises avec de grosses difficultés.

Je voudrais maintenanlt insister sur un point trés important. Einstein
a souligné que, si une équation de champ est linéaire, on peut toujours
irouver une solulion a singularité ot la singularité a un mouvement
prescrit i Pavance. Par exemple, si, dans la théorie de I'électron de
Lorentz, on veut calculer le champ ¢lectromagnélique créé par un
électron ponctuel dont le mouvement est prescrit a I'avance, on peut
toujours trouver la solution. De plus, toujours en raison du caractore
linéaire des équations admises, on peul superposer a la solution & singu-
larité une solution continue sans que la seconde exerce aucune influence
sur la premiere. G'est Ja ce qui oblige la théorie de Lorentz, quand elle
veul calculer Paction d'un champ électromagnétique sur un électron, &
introduire comme postulat supplémentaire Uexistence de la force de
Lorentz exercée par le champ ¢lectromagnétique sur I'électron. Pour
qu’automatiquement la région singuliére se trouve étre « guidée » par
le champ environnant, il faut sortir du domaine de la linéarité et faire
reposer la théorie sur des équations non linéaires. Glest parce qu’en
Relativité geénéralisée les équations du champ (c¢’est-a-dire celles des g,.) -
sont non lin¢aires que MM. Darmois et Einstein ont pu trouver, sans
aucun postulat supplémentaire, une loi de guidage des particules par le
champ. En iransposant ces idées dans I'interprétation causale de la
M¢canique ondulatoire par la théorie de la double solution, on voit que,
si Uon désire tenter d’élablir entre le corpuscule et 'onde une solidarité
qui nc peut exister dans une théorie linéaire, il apparait comme naturel
L’introduire des équations de propagation non linéaires.

On peut méme penser que, si la Mécanique ondulatoire actuelle
warrive pas a préciser clairement les rapports de Uonde et du
corpuscule, cela est di ¢ ce qi’elle senferme a priori dans le cadre
d’'une théorie linéaire.

Cependant, au sujet de ce que nous venons de dire, une remarque
s'impose. La démonstration que javais donnée en 1927 de la formule du
guidage ne parait nullement exiger la non-linéarité de I'équation des
ondes, méme si par ailleurs on trouve des ratsons pour admettre cette
non-linéarité. Ce fait semble en contradiction avec les considérations
d’Einstein puisque, méme en supposant que l'onde © est une solution a
singularité ponctuelle d’une équation Iiné\aire, comme je le faisais dans
mon Mémoire de 1927, la loi du guidage impose un mouvement bien
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déterminé a la singularité. Mais 1l faut remarquer que, pour faire nia
démonstration, Jadmettais, en plus de hypothase de la lincarite de
I'équation d’ondes, la concordance des phases des ondes w et W, au
moins au voisinage immédiat de la singularité. Or, nous verrons plus
loin qu’en dehors de la région singulitre, on doit pouvoir ¢erire 'onde
sous la forme approximative == u,- ¢. Dans celte formule, ¢ désigne
une solution réguliere de I'équation lindaire des ondes qui, lout en ayant
un caractére objectif, doit étre en général proportionnelle a londe W
considérée par Pinterprétation usuelle; quant & u, c’est une solution
singulitre en aiguille de Péquation hinéaire des ondes qui aurait nne
véritable singularité ponctuelle au centre de la région singulicre si
I'équation lingaire était encore valable dans celle-ci. Or, si I'équation
des ondes était partout lindaire, u, ol ¢ seralent des solutions totalement
indépendantes et le postulat de la concordance des phases de u, et de ¢
serait un postulat arbitrairement surajouté. Au contraire, si la véritable
équation des ondes w cst non linéaire, les termes non linéaires élant
essentiels dans la région singuli¢re bien que sensiblement négligeables
en dehors, la décomposition de # en u, et v ne peut &lre approxina-
tivement valable qu’en dehors de la région singuliere @ en réalité, il n’y
a quune onde u indécomposable, les deux termes w, et ¢ se trouvant
dans la région singuliére entidrement « soudds » par la non-linéarité,
On s’explique alors fort bien que le postulat de la concordance des
phases, qui serait entierement arbitraire dans une théorie linéaire, puisse
en fin de compte trouver sa justification dans la non-linc¢arité de Uéquation
de Ponde w dans la région singuliére (1). Ainsi, dans ma démonstration de
1927, 'hypotheése d’une non-linéarité locale de I'équation des ondes ¢tait
sans doute dissimulée derriere le postulat de la concordance des phases.
Nous verrons d’ailleurs bientot qu’il y a encore d’autres raisons pour
adopter, pour la propagation de 'onde u, une équation non linéaire.

4. Difficulté de préciser exactement la relation entre onde u et
onde ¥. — Dans le cadre de la théorie causale de la double solution,
Ponde « et 'onde W ont des caractéres toul a fait différents. L'onde «
doit étre une «réalité objective », ¢’est-a-dire qu’elle doil étee indé-
pendante de I'observaleur et de I'état de ses connaissances (*). L'onde W,

(') Voir plus loin la formule (38).

(®) Le fait que la fonction d’onde z soit une grandeur complexe prouve gquwelle ne
peut représenter directement un phénoméne physiqne tel que la vibration d'un milieu,
mais il ne s’oppose pas A ce quelle ait une signification « objective », ¢’est-a-dire indé-
pendante de Vobscervateur @ or ¢est 1d ce qui, du point de vue de la théorie que nous
exposons, ost la chose essentielle.
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an conlraire, est une représentation de probabilité a caractere subjectif
qui dépend des connaissances de Duatilisateur, des informations que
I'observation ¢t la mesure ont pu lui apporter : ce caractere subjecuf de
I'onde W s’exprime en particulier par la « réduction du paquet de
probabilité » que le physicien doit opérer lorsque des informations, en
lui apportant des connaissances nouvelles sur un corpuscule ou un
systeme, lobligent & modifier sa représentation des probabilités et, en
particulier, & supprimer ce qui y représentait des possibilités qu'il sait
mainlenant n'étre pas réalisées.

Cependant, malgré la différence essentielle de nature entre I'onde «
et Ponde W, il doit exister une liaison étroite entre leurs formes mathé-

maltiques, liaison exprimdée par I'égalité des phases etlarelation DTf — DT(U
dans le cas de Péquation de Klein-Gordon et par Pidentité des vecteurs
courant-densité J construits & laide de w et de W dans le cas des
équations de Dirac. La difficulté est alors de comprendre comment une
telle liatson est possible ¢t comment elle est compatible avec la réduction
du paquet de probabilité qui, trés compréhensible pour I'onde subjec-
tive @', ne doil pas exisler pour une onde objective telle que . On se
trouve done en présence du difficile probleme suivant : dlablir unc
analogic de forme entre w« et W sans cependant que cela ait pour
conséquence de faire participer Uonde w au caractére subjectif de
Uonde .

Nous allons examiner plus en détails quelques aspects particuliers de
cette difficulté géndrale.

Considérons d’abord le cas d’'un systtme quantifié. Les énergies de
ses Clats stationnaires sont définies comme ¢tant les valeurs propres de
I'équation de Schrodinger. Or, ces valeurs propres sont oblenues en
partant d'une équation aux dérivées partielles lindaire avee Uhypothese
essenticlle que les solutions W (fonctions propres) sont partout finies,
uniformes et continues. Mals, si Ponde W est fictive et si la réalité
objective est déerite par Uonde # pour laquelle existe une région singu-
litre, sinon une singularité ponctuclle, comment justifier le succeés du
calcul des valeurs propres a partir de 'onde W'? Ce calcul devrait pouvoir
se faire en se servant sculement de 'onde « sans avoir & se préocuper
de Ponde W statistique et fictive. On sent que cela doit exiger une
analogie de forme mathématique entre 'onde uw etl’onde W, analogie qui
doit cependant respecter leur différence de nature.

Considérons maintenant la propagation d’une onde monochromatique
plane avec phénomenes d'interférences et de diffraction. On sait
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aujourd’hui que ces phénomenes existent non sculement pour la lumiere,
mais pour les électrons et pour tous les autres corpuscules. Comment
interpréter ces phénomenes si les ondes continues du type W sont
fictives et si la réalité objective est décrite par une onde w« possédant
unc région singuliere ? Pour approfondir cette question, raisonnons sur
le cas classique des trous d’Young, c’est-d-dire d’un écran plan percé
de deux petites ouvertures circulaires A et B. Sur cel éeran tombe
normalement une onde plane monochromatique. Si z est la variable
comptée suivant la normale a I'écran, on écrira dans la théorie usuelle
I’onde incidente sous la forme

-Jﬂ/(‘l[——f:) %f;ﬁin\\’/—/f:)
(13 U=uwae’ M=ae " .

Comme la chose est classique en Optique, on caleule Yonde a la
sortie de I'écran en considérant les trous A et B comme deux petites
sources cohérentes de méme intensité et en superposant leurs effets. On
démontre aisément qu'au voisinage de I'axe de symélric et loin de
I'écran, les surfaces ¢ = const. sont des ellipsoides et que les surfaces
d’égale amplitude sont les hyperboloides orthogonaux : on en déduit la
position des franges approximativement rectilignes qui sont effecti-
vement observables sur un écran placé normalement a Oz dans la
région d'interférences. Mais, du point de vue de la théorie de la double
solution, nous devons, pour décrire véritablement la réalité objective,
remplacer I'onde W' continue par une onde « a région singulicre. Alors,
pour que la région singulidre venant de la gauche pénétre dans la région
a droite de I'écran, elle devra avoir passé¢ par 'un des trous d’Young et
les deux trous paraisscnt alors ne plus jouer du tout, comme dans le
calcul classique, des roles symétriques. Il semble naturel de penser que
I'onde u diminue rapidement d’amplitude quand on s’éloigne du centre
de la région singuliere et qu’elle tombe a de tres faibles valeurs deés que
Pon est & des distances macroscopiques de celle-ci. S’il en était ainsi,
I'amplitude de u serait trés grande dans une partic d’un des trous, alors
qu’elle serait trés faible sur toute la surface de I'autre trou : il semblerait
donc impossible d’admettre que les deux trous jouent le role symétrique
de deux petites sources de méme intensité. L’hypolhese de 1'équi-
valence des trous, qui parait cependant cssentielle pour le succés
du calcul des franges effectivement obscrvées, ne pourrait plus étre
maintenue. En y réfléchissant, on a I'impression que la difficulié est
considdérable.

Une aulre série de difficultés est liée a la propriété fondamentale des
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trains d'ondes continues du type classique qui est leur tendance
constante a sc¢ disséminer, c¢’esl-i-dire & s’élendre dans Pespace avec
diminution constante de leur amplitude en chaque point (la seconde

propriété élunt liée a la premiere parce que, l'intégrale J a? dr élant

constante pour les ondes continues du Lype classique, Pextension du
train d'ondes a pour conséquence une diminution locale de a@). Au
contraire, 'onde u, par le fait méme quelle doit décrire la structure
objective du corpuscule, doit posséder une sorte de permancnce tout a
fart différente de la tendance constante i I'étalement, de Uinstabilitg,
des trains d'ondes ¥'. On doit donc s’attendre a trouver de ce cOté une
grande difficulté quand on voudra établir une relation entre la forme
mathématique de « et celle de W. On retrouve 1a, sous une forme
nouvelle asscz diflérente de l'ancienne, Pobjection faite naguere a la
conception de M. Schrodinger qui voulait assimiler le corpuscule a un
groupe d'ondes. Cetle conception, qui se¢ heurtait ausst a Uobjection
qu'un corpuscule insécable et bien localisé ne peut étre représenté par
un train d’ondes homogenc el étendu, a di étre abandonnée parce que
Iexpansion constante d'un train d’ondes au cours du temps, propriété
“essenticlle des ondes continues a propagation linéaire, n'est pas compa-
tible avee la stabilité et la permanence prolongée qu’'implique 'idée de
corpuscule.

Dans un ordre d'idées voisin, on rencontre aussi des difficultés quand
on considére la propriété des trains d’ondes homogenes de pouvoir sc
tronc¢onner ¢n plusieurs trains de moindre amplitude comme cela arrive
quand on envoie un train d’ondes sur un miroir semi-transparent. Pour
les ondes continues W, celte circonstance s’interpréle aisément en
considérant chacun des trains d’ondes finaux comme représentant unc
possibilité d’élat final dont la probabilité est naturellement moindre que
celle (prise égale & U'unité) de Pétat initial. 11 parait ne pas pouvoir en
étre de méme pour U'onde u qui, décrivant la structure objective du
corpuscule, ne parait pas pouvoir se diviser de cette fagon. 1l y a encore
d’autres difficultés pour la théorie de la double solution qui vont inter-
venir quand se produit la réduction du paquet de probabilité qui affecte
I'onde W, mais ne peut affecter 'onde «. Nous verrons que dans cette
question le fait que les trains d’ondes sont toujours limités doit jouer un
role trés important,

Bref, si 'on veut essayer de préciser les rapports exacts entre 'onde
et 'onde W, 1l faut s’attendre a rencontrer beaucoup d’obstacles. Clest
cependant ce que nous allons tenter de faire.
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3. La forme extérieure de onde u«. Cas des états stationnaires
avec corpuscule immobile. — M. Vigier m’avait suggéré que la partie

extéricure de Uonde w en dehors dela végion singuliere, devait coincider
avec I'onde W. Cette iddée présentée sous cette forme simple m’avail
paru soulever de grosses difficultés qui existent en effet et surlesquelles
je reviendrat @ elles m'avaient fawt vejeter Uidée de M. Vigier. Jy suis
cependant revenu dans une Note du 13 avril 1953 [8]. Gette Note o été
le résuliat de réllexions sur la premiere des difficultés que jai signalées
au puragraphe préeédent @ comment se fait-il, si Fonde ¥ est purement
fictive et si Vonde « représente la réalité objective, que le caleul des
valeurs propres d'un systéme quantifié réussisse en partant de I'hypo-
these que Ponde est une solution finie, continue et uniforme de FPéquation
dondes linéaire? Celu parait paradoxal puisque Ponde w, qui seule
posséderait une réalité objective, n'a précisément pis ces proprictés.

Je vais exposer d’abord les considérations auxquelles jai ¢1¢ conduit
en réfléchissant sur ce probleme dans le cas d'nn état stationnaire d’un
systeme quantifié ou le corpuscule reste immobile (6tat s par exeniple).
\lors Ponde O a la forme

ll,/' (;""' ."7 = l/l — N//( L (,y? LZ/) 6 H

a, ¢tant une flonction réelle, finte, uniforme et continue, nulle aux
limites du domaine qui définit le probleme de valeurs propres considére.
Si P'on admetl gue, dans cel élat stationnaire, la réalité physique est

décrite par une onde u de la forme

wie, v, 5, )= flr.y, 35)e .

la question est de savoir pourquoi I est nécessairement ¢gal a 'un
des I, alors que f ne posséde pas du tout les propriéiés des fonetions
propres «,. Pour étudier la question, jai admis, suivanl une sug-
gestion de M. Vigier, que Pon peat décomposer Ponde v en une
partie singulitre g, qui deviendrait trés grande mais pas neécessai-
rement infinie dans la région singuliere et trés petite en dehors,
et en une partie réguligre ¢ qui obéirait a I'équation lincaire de
la Mécanique ondulatoire. Cette décomposition peut paraitre arbitraive
je reviendrai tout @ Uheure sur les considérations qui peuvent servir it la
jusufier et & la préciser.

FJadmettrai encore, ce qui est assez naturel, que  doil étre nulle aux
limites du domaine. Alovs, sauf dans le cas tout & fait exceptionnel i
la région singulitre de dimensions Lres petites («<Z 10~'% cm) se trouverait
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au voisinage immddiat de la limite du domaine, on pourra considérer v
comme scnsiblement nulle sur ces limites oil 1y ~ 0. Cecl nous montre
d’ailleurs qu'il revient presque au méme de supposer que c’est u qui esl
nulle aux limites du domaine ou d’imposer cette condition a ¢. Repré-
sentons la fonction w (naturcllement le probleme est en général a
trois dimensions, ce que nous ne pouvons représenter sur le papier,
mais cela ne change rien).

n dehors de la région singulidre (par hypothése immobile) nous
avons « ~ v. Dans la région singulicre CD, la fonction w a des valeurs
trés élevées symboliquement représentées par la courbe ponctuée. Sur

la courbe w, considérons deux points P et Q ot u coincide encore
sensiblement avec ¢ ¢t remplacons entre P et Q la courbe u par une
portion de courbe P} qui soit une solution finie, conlinue et uniforme
de I'équation linéaire. Alors nous obtenons ane courbe APQB qui pré-
sentera des points anguleux en P et en Q, mais qui sera formée de
troncons finis de courbes représentant des solutions finies, uniformes et
continues de Uéquation linéaire de la Mdécanique ondulatoire. Une telle
fonction « lisse par morceaux » (stiickweise glatt) et nulle aux limites A
et B peut étre représentée par une somme de fonctions propres W, de
la forme Zr/,,, W,. On voit donce qu’a Uextéricur de la région singuliere
"

la fonction « peut s’éerire
! a Wl »
(14 0 = 110—0—2‘ d, 0 ,Lzz d, 1.
1t "
Pour étre rigourcux, 1l faudrait remarquer que les W, ne sont pas
D )

tout a fait les fonctions propres qui correspondent a la condition aux
limites W, =0, mais celles qui correspondent & Ia condition aux



224 CHAPITRE XVII,

limites W,=— — «,, mais les deux conditions aux limites différent
infiniment peu. Nous devons donc avoir pour tout temps ¢

k TR

ELTRy
2: p
= 1y + dyay,(x, ¥y, z2)e "

n

i
—pt
h

(15) Sle, y; z)e

dans toute la région extérieure et ceci n’est possible que si

2R

(16) d,=o pour »n £ m; E=E,; o= folua, ¥, 3) eT

| s

de facon que tous les termes de (15) soient périodiques de méme fré-

| D

h

quence, —~- Finalement on a donc nécessairement

(17) w=j{r,y, 5)e )

E,. ¢tant 'une des valeurs propres calculées par la Mécanique ondu-
latoire usuclle. Ainsi se trouve levé le paradoxe relatif au calenl des
valeurs propres et, du méme coup, nous voyons qu'en dehors de la

région singuliére, nous devons avoir

27

e j D2

(18) w~dy nye =, 1.

Toute la partie extéricure de 'onde 1 coinciderait done sensiblement,
quant a la forme mathématique, avec 'onde W considérée par la Méca-
canique usuelle, mais il faut apporter ici une précision trés importante.
L’onde u étant une réalilé objective, doit avoir une valeur parfaitement
déterminée : donc, si ¥, désigne la m!™™¢ fonclion propre normdée,
d,, doit avoir unc valeur bien déterminée. En dehors de la région singu-
licre, 'onde u est sensiblement proportionnelle a Vonde U considérée
par la Mccanique ondulatoire, mais avec un coefficient physiquement
bien délerminé.

Remarquons aussi que le raisonnement précédent prouve que u, doit
dans la région extérieurc obéir a Uéquation linéaire avee K =1,,.

1 nou nparons les 1dées qui viennen ire dévelopées avee la

S s comparons les idées ( e L d’ére déveloy I
démonstration de la formule du guidage, nous voyons qu'il y a licu de
distingucr trois régions :

1° la « région singulidre » de rayon r¢(ro<"1o="*cm) ou les termes
non linéaires de I'équation e¢n u sonl notables;

2° une « région intermédiaire » définie par ro < r <Cry, o0 ry estausst
tres petit (sans doute du méme ordre de grandeur que ry), dans laquelle
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I'équution des ondes est sensiblement déja linéaire, mais ov w2 wy-+ G
croit rapidement quand 7 dimioue en raison de la croissance déja
rapide de 1o

3% la « région extéricurc » & la sphere r—1r; ou I'équation des
ondes u est sensiblement linéaire et ot 'on peut poser u~v=CW.

(Vest dans la région intermédiaire qu’il faut placer la sphere S
servanl dans la démonstration de la formule du guidage : en eflet
cetie démonsiration suppose que sur S Péquation d’ondes est linéaire,

mais (ue 1 croit trés rapidement quand on péneétre dans la sphere.

A comon d B

Ifig. 11,

Remarquons ausst ue les points G et D de la figure 10 doivent
correspondrent & r—=r.
Représentons par une nouvelle figure Pensemble des Lrois régions (1).
La wvégion trés élroite limitée par les verticales M, et N telles
que == 21y estla « réglon singuliere » ot les termes non linéaires sonl
notables et on « prend des valeurs élevées. La « région extérieure » est,
par définition, celle qui est extérieure aux verticales Ce et Ddd de

distance e == 2r; ¢’est celle ou 'on a w ~ . Enfin la « région intermé-

diatre » (ry<Cr<{ry) cst comprise cntre Mm et Ce d'une part, N et
Dd d'antwe part : I'équation y est encore approximalivement linéaire,
mais la courbe représenlant la variation de wo~ g+ ¢ se détache de
celle qui représente ¢ et commence a monter rapidement. C'est dans cette
région intermédiaire qu’il faut placer la sphere S dont le rayon corres-
pondra par exemple a PQ. [I faul que la région CeDd soit st petite
que fa phase o des ondes w et W puisse y étre considérée comme ayant la

(1) Sur la tigurve 11, ¢ et o devraient étre symétriques par rapport a man.

L. DE BROGLIE. 15
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meéme valeur dans toute cette région. Nous avons déji appelé aliention
sur le fait que, pour des particules de tros grande énergie, cette hypo-
thése peut n’étre plus valable, ce qui imposerait une limite & Pemploi
des ondes W (1).

. Illustration par un exemple de la décomposition extérieure de
I’'onde u. — Pour bien montrer & quoi correspond la décomposition de
Ponde # dans la région extérieurc cn une partie singuliere u, et une
partie réguliere ¢, nous envisagerons un exemple particulierement simple
el instrucuf (2).

Considérons le probleme de la quantification pour une cnceinle
sphérique de rayon R sans champ de force ct envisageons sculement les
fonctions a symétrie sphérique. L’équation des ondes Wa l'approximalion
non relativiste est

PEAYS 2 JF  8zim

10) = 20
19) A= Jre + »odr h?

EV = — 2y

dont la solution générale est

2R

R B <inkr coskr| R
(20) ‘l:[_\ N TRRhLL P
I I
1’onde W devanl rester finic & Porigine, on doit poser B=o et, de
a . - . nw
plus, comme ¥’ doil éwre nul pour r—=1NR, on doit poser A=/, = T

avee n entier. La 2™ fonction propre sera done

2R

sink,r B . VSYE w2 fet
—_—e I, = ) .

8=m ~ SmR?y

(21) Y, = A
7

Introduisons maintenant Pidée de la double solution sous la forme
primitive que je lui avais donnée, c¢’est-a-dire en supposant « dou¢ d’une
. .-, 1 . ] -
singularité¢ ponctuelle en 5oet salistaisanl partoul saul en r=o0 a

Péquation linéaire des ondes. Pour avoir des calculs simples supposons

(que le corpuscule ait une structure interne doudée de symétrie sphérique

. ’ “
(') Notons que pour ==7y,0na f~acl g/—/ ~ B
[£2
(%) Remarquons dailleurs qu’on oblicnt un exemple plus simple encore en considérant
Ponde monochromatique plane se propageant le long de Oz Dapres la formule (5) du
chapitre IN on est alors amend @ poser

wlio, yy 50 d)

A et Coayant des valears physiquement bien déternninées,
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et qu'il soit immobile au centre de 'enceinte sphérique. Alors, Vonde «,
ne pouvant étre fonction que de 7, obéira a I'équation :

(22) — = o+ Au=:3(r)

ct la forme géndérale de Péquation sans second membre donnée plus

haut ¢n (20) nous conduit & considérer pour g la solution suivanie

. .. . . 1
ayant a Porigine une singularité en =

ERTF A

coshp =W o hThE
——e ( = — ) ..
. 8zrm )

{23 "y = — 2

; [} /‘: It

Mais nous pouvons ajouler a wy dans Uexpression de u une solution
continue  quelconque  de Péquation sans  second membre @ nous
obuiendrons ainsi pour ¢ une décomposition e+ v analogue a celle que
nous avions considérée au dernier paragraphe. Sinous nous restreignons
aux fonctions propres a symdétrie sphérique et si nous définissons les
valeurs propres A7 (légerement différentes des 4, ) par la condi-
4mA )
assurer une fréquence unique a tout le phénomene, a adopter les solulions

tion u(R)=o, soit 1g A\ R—=— » nous sommes conduils, pour

O
/ : cosk),r sin k', 7\ et
(21) /1,,:(— - M+ A “ e’ .
N 17 r r
S1 nous supposons e=7A, ce qui correspond au caractére quasi

yoncluel du corpuscule, nous aurons, dés qu’on s’éloignera un peu de
) q ) p

y e
Porigine,
. 2T
sinkl, 7 = Eat
Uy A " gt .
>

Il est alors facile de distinguer trois régions :

1" une {rés petite région sphérique 7 << ry au voisinage immédiat de

Wt .
cos Al 1

lorigine ou le lerme singulier esl entierement prépondérant;

2° une région intermédinire (ry<Cr<<ry) ol w, ct par suite u

croissenl rapidement quand r diminue;

3° enfin la région extérieurc & une treés petile spheére de rayon ry on
2R
T

. sinkl,r X IO
I'on peut confondre w avec A ———r—”e ~ CW,. Nous pouvons

représenter tout cecl sur la figure 12.
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Mais tous ces résultats qui paraissent concorderavec ceux des chapitres
précédents ne sont satisfaisants qu’en apparence : en cffet, dans la
formule (24) la constante A serait arbitraire, elle ne serait aucunement
déterminée par la structure interne du corpuscule. On retrouve ici la
remarque d’Einstein suivant laquelle, quand on part d’une équation
linéaire telle que (22), on peut toujours ajouler a une solution a
singularit¢ ponctuelle une solution continue quelconque de V'équation
sans second membre. On ne peut donc pas rendre solidaires les termes o
et ¢, c’est-a-dire incorporer le corpuscule & Ponde. Au contraire, la
chose deviendra possible si 'on remplace (22) par une équation non

lin¢aire dont les termes non linc¢aires ne seronl notables que dans une
trés petite région singuliere entourant l'origine et qui se réduira tres
approximativement i l'équation linéaire usuelle en dehors de cetie
région. Alors on pourra toujours avoir comme forme asymptolique
approximalive de u, en dehors de la région singuliere, la forme (24),
mais ¢ et A seront toutes deux des constantes parfaitement déterminées
par la forme de 'onde « a Pintérreur de la région singuliere. On voit
bien ici que ce sont les termes non linéaires qui assurent la solidarité de
Ponde singulitre u, et de Ponde régulitére ¢. On peut dire que ¢’est dans
la région non linéaire que s’opere la « soudure » entre 'onde en aiguille
¢l T'onde réguliere environnante.

Revenons maintenant a Ja formule (12) el remarquons que, dans
notre probléeme actuel, la fonction wu,, bien que tres petite aux limiles

de Penceinte, n’y est pas rigoureusement nulle et que les &), sont lége-
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R
la fonction w=u,-+ ¢, fonction a singularit¢ ponctuelle nulle aux

rement différents des &, == r 3 - La formule (12) doit éire valable pour

limites : mais, puisque A = &, ne coincide exactement avec aucun des 4,

elle ne contient plus aucun terme infini. Ainsi se trouve écariée la

difficulté qui semblait résulter du théoréme de Rayleigh-Sommerfeld.
Examinons ce point plus en détail. On peut écrire ici

o bis LN T QM) W (Q) WL (M)
(12 bis) (M) —-Z € ke —+¢€ ek e

Or

Kt — ki~ ok, (K, — ky) =~ 2k, m =S AR

el
. sin Ay,
l]"n«Q):<NE._”I )

7 ST
puisquiici Q est a lorigine. N est un facteur de normalisation
/i

swal !
ooal L .
i n\/zn

On trouve alors, en tenant compte de la valeur des 4,

E'llf;(Q)uf,,(;\l) _ oy cinkar

e
d’ou
) S~ WHOHYW(M sink, r
() N
tn
Comme k,= K’ :
somme K, — k,— m)
\ <ink, r — A sinky,r & cosk, 1',
r r (% R
on trouve
. . . ~ W QY (M) : coskl,r sink), r
w5 bis i M :\E i ) i\ e ) A ot
(25 bis) (M) P yE— - M e "

i%xn
Les deux premiers termes donnent Texpression de la fonction w,
tandis que le troisiéme correspond a la fonction .
Mais Padjonction de ¢ a wy dans Pexpression de « avec une valeur

bien déterminée de \ (qui seule peut donner une valenr bien définie

des k) ne pourrait pas se justifier si I'équation des ondes était partout
linéaire.
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Eu dehors du cas wres pavticulier que nous venons d'étudier, des
considérations analogues pourraient éire d(:'\*uloppées pour tous les
probiemes de quantification avee domaine fini. St 64, =k, — /A,
el W, == 1" — ', sont les variations lres petites subies par les valeors
propres ct les fonctions propres quand on passe de la condition aux
limites classique W = o a la condition aux limites un pen dilférente == o,

on trouve pour expression générale de 1 (M)

N * W, U'*(O) ol P OONVYY (T
Ghr =3 THQWOD | W (Q)aw, | W) W ()

-k k2 S ok ok, Sy Y

i=Zn
qui contient (2 bis) comme cas particulier. Les deux premiers lermes

de lexpression précédente donnent wg, le trotsieme donne ¢, Mais of,
n'est pas déterminé dans une théorie purement lincaire.

7. Extensions diverses des idées précédentes. — Je¢ viens d'exposer
Iidée essentielle de ma Note du 13 avreil 1953 dans le cas d'un élat

3

stationnaire avee corpuscule immobile. Dans cette méme Note, javais
généralis¢ de diverses fagons le résultat ainsi obtlenu.

Une premiere généralisation tres simple concerne le cas des détats
stationnaires ou le corpuscule n’est pas immobile : tel est celui des états
stationnaires de 'atome I dont 'onde W contient le fucteur % (4 angle
de longitude) et o le corpuscule possede, d'apres la formule du guidage,
un mouvement circulaire uniforme. La fonction U, s’éerit alors

20 TR
. s g )L 5 Fat
(27 ) ¥, = Cl”<‘l?, Y, 5) e g e

St nous posons

(28) w=f(x, v,z t)e "

el si nous éerivons, comme précédemment et pour les mémes ratsons,
Pexpression de # an-dela de la région intermédiaire

N N .
(29) [T 2 d, v,
n

nous verrons qu’il faut que d, == 0 sau fpourn=mel que b= E, avec,

en plus,
S b
1=7m et wo= folx, 5, 3,t)e0 .

En d’autres termes, ln phase o de @ et de w, doit coineider avee celle

de W,, e, en dehors de o région singuligre, on aura ;nppr()xinmli—
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vemenl w ~ d,,\F,, ott d,, sera un cocfficient ayant une valeur physique

bien déterminée que Pon saurail calculer si P'on savait calculer u dans
la région singulicre.
Une autre géndéralisation immédiate consisle a considérer un systeme
kel
quantifi¢ qui se trouve dans un ¢tal non stationnaire, c¢’est-i-dire dont
la fonetion U ¢st une somme de fonctions propres de la forme
1

Qe eTi

~ —— [(Epl—y (s 5] Qv 5t
(300 1 :\/‘c,,rr/“ (x,),3)e k =a(r,v.5t)e
I
avee la condition de normalisation \ [enP=1. Ce qui précede noius

"
conduit & penser que la fonction ¢, partie réguliere de l'onde u a I'exté-
ricur de la région intérndédiaire, est de Ia forme v = KW o0 K est une
constante a valeur physigue bien déterminée. On pourra alors poser les
expressions

R e 2T
g S =%

; . . T f .
(31) u=/fe ; W= foe" g

=

WV=uwue 5

ou les amplitudes et les phases sont des fonctions de z, ), z, ¢ et, &
I'extérieny de la végion singulicre, nous devrons avoir a tout instant

(32) fe" T ~Jie e .

Nous scrons condulls a poser o == o, = . En dehors de la région
. Dy == § 8
ami

/l?

intermédiaire, nous aurons donc Irés sensiblement v~ Kae
['onde @ y sera donc proporuonnelle a Ponde W avec un coefficient de
proportionnalité bien défini.

Parvenu & ce point, nous voyons apparaitre I'idée essentielle que les
phases de onde 2 et de 'onde W dorvent étre les mémes, ce qui est le
postulat de départ de la théorie de la double solution. Cet accord des
phases, sur lequel nous reviendrons plus loin, apparait ici comme
nécessaive pour que la fonction ug puisse « s’engrener » avec la fonction
¢ qui lui sert de base. On peut se représenter intuitivement la chose de
la facon suivanlte : les valeurs ¢levées de la fonction u a I'intéricur de la
région singulitre (qui constitue le corpuscule au sens étroit du mot)
forme une sorte daiguaille, de « doigt de gant », qui court & la surface
(ouplatotau sein) de Fonde ¢ = KW de fagon a rester toujours en phase
avee ¢. Ne pas oublicr naturellement que Paiguille en question est
extrémement fine, (que sa base a des dimensions au plus ¢gales & 1074 cm
et quielle peat etre (en dehors du cas des corpuscules d'une énergie
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énorme ) considérée comme quasi ponctuelle a échelle de la longucur
d’onde.

Le résultat obtenu ainsi est res satistaisant parce qu’il peul étre
considéré comme le couronnement de I'idée fondamentale qui m’avail
guidé dans mes premitres recherches sur la Mécanique ondulatoire et
suivant laquelle le corpuscule est une sorte d'horloge qui se déplace
dans une onde de facon a rester constamment en plase avec elle,
comme je l'ai rappelé dans le premier chapitre de cet Ouvrage.

On peul encore transposer les mémes idées dans le cas d’une onde en
propagation libre. En toute rigucur, on doit toujours considérer une
telle onde comme constituant un train d’ondes limité. On se heurte
alors a certaines difficultés que jétudierai en détail dans le chapitre
suivanl et que j’ai signalées dans ane Note du 17 aodt 1953 [12]. Mais on
sail qu'un long triun d'ondes peut étre tres approximativement repré-
senlé, dans toute son élendue saul au voisinage immeédiat de ses bords,
par une onde plane monochromatique : ¢’est ce qui permel aux trailés
élémentaires d’Optique de raisonner sur des ondes planes monochroma-
tiques bien que, dans la réalité, on ait toujours affaire a des trains
d’ondes limités. Procédant comme dans les traités d'Optique, nous
considérerons le corpuscule comme associé a une onde monochroma-
tique plane. La région singuliére court alors au sein de cette onde de
fagon a rester constamment en phase avee elle, ce qui Poblige a avoir

précisément la vitesse ¢ qui correspond a la quantité de mouve-
h R . - . .
ment p— ; el & Pénergic W = /v, St Ponde ¢ qui serl de support a la

région singuliére vient heurter des obstacles qui provoquent dans cette
onde des phénomenes d’interférences ou de diffraction, la région singu-
liere devra se déplacer dans le domaine o ils se produisent de maniere
d rester toujours en phase avee ¢, ¢e qui entraine la formule du guidage:
comme on peut l¢ vérifier facilement. On est alors assuré, sous réserve
de la démonstration du théoreme d’ergodicii¢ dont nous avons lon-
guement parlé, que la probabilité de présence de fa végion singuligre
en un point M du champ d’interférences a Uinstant £ est proportionnelle
a |2 On concilie donc ainsi Pexistence du corpuscule avee Pexpli-
cation classique des interférences.

Pour mieux le voir, reprenons le cas classique des trous d’Young.
L’onde incidente comporte une région singuliere portée par une onde
plane monochromatique ¢ de méme forme que I'onde lumineuse clas-
sique des traités d’Optique. Dire que le photon traverse Pécran d’Young
veut dire que la région singuliere passe par I'un des trous d’Young.
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mais larégion singuliere est st petite que, meéme au moment on elle
fraverse ce trou, elle n’ocenpe quune fraction infime de sa surface dont
les dimensions sont macroscopiques. On peut done considérer que, sur
toute la surface des denx trous, Ponde « coincide constaimment avee
Fonde ¢, ¢’est-a-dire avec Ponde lumineunse classique. Londe qui inter-
tere est done exactement la méme que celle considérée dans I'explication
classique avee cetle seule diftérence que nous lui adjoignons un accident
local de dimensions extraordinairement petites, la région singuliere ou
corpuscule, qui court dans son seim avee la vitesse preserite par la
formule do guidage.

Nous vovons maintenant pourquot U'interprétation des trous d’Young
nous paraissail, au paragraphe 4, si difficile : ¢’est que nous pensions a
une onde # strictement localisée autour du corpuscule (comme Pest le
terme wy dans Pexpression obtenue pour ). $'il en était aunsi, Ponde w
ne serait pas homogene sur le trou o passe le photon et elle aurait
une valeur négligeable sur Fautre trou qui est situé a une distance
macroscopique du premier. I serait alors 1mpossible de comprendre
comment le caleul classique, qui suppose nue méme amplitude sur les
deux trous dont les roles sont parfaitement symétriques. peut donner
un résullal exact. Au conlraire avee nos conceplions actuelles, nous
voyons (ue Loul se passe comme dans Finterprétation classique parce que
Fonde « se prolonge a grande distance de la région singuliere par une
onde continue ot couvre uniformément les deux trous d’Young el sur
laquelle la region singuliere est en quelque sorte implaniée. Ainsi
parait ¢earté Pun des obstacles les plus redoutables qui semblaient
sopposer a Fadoption de Phypothese de la double solution et qui avait
contribud jadis 4 m’y faire renoncer ().

Nous avons vu précédemment que, dans le cas des bosons, on peut
envisager plusicurs bosons associés a une meme onde. Geei veut dire

_que Ponde 7 de ces particules est de la forme

(33) u :Euﬁ?—&— v,

(') On peut considérer I'expéricnce des trous d’Young comme apportant une preuve
directe de la non-linéarité de I'équation de propagation de Vonde wu. En eflet, ¢ se
propage comme IP'onde lumincuse classique. mais si Péquation de propagation de u
¢tait linéaire, la propagation de w, serait indépendante de celle de ¢ et ’on ne pourrait
pas expliquer comment le mouvement du corpuscule est influencé par U'existence du
trou d’Young qu’il ne traverse pas. Seule la non-linéarité de I'équation de u peut avoir
comme résultat que la propagation de wo, c’est-d-dire le mouvement du corpuscule,
dépende de la propagation de v. C'est parce qu’en 127 je n’introduisais pas la non-
linéarité que Pexpcrience des trous d'Young me paraissait étre pour la théorie de la
double solution un ohstacle insurmontable.
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a Pextéricur des régions singulicres. Le premier terme du second
membre de (33) représente les parties singulicres ui sont lides aux
différents bosons et qui sont extrémement petites en dehors de leur
région singuliere individuelle : le terme ¢ représente la partie réguliere
de l'onde w qui est commune a tous les bosons ¢l ¢'est ¢e qui permel
de dire que ces particules sont assocides i une méme onde.

8. Extension A la théorie de Dirac. — Une dernicre extension indi-
quée dans ma Note du 13 avril 1953 est relative a fa théorie de Dirac,
Tous les rvésultats indiqués dans les dernters paragraphes sont obtenus
dans le cadre d’unc Mécanique ondulaloire sans spin reposant sur
I'équation d’ondes non relativiste ou de I'équation relativiste d un seul W
de Klein-Gordon. Mais I'extension au cas de lx théorie de Dirac pour
les corpuscules de spin , peut se faire sans difficulte.

L'onde W aura alors qualre composantes My et Fon devra éerive les

développements du W en série de fonctions propres sous ka forme

a Y - . N
(34) W= YW (k=125 4
"

W, ;o dtant la /"¢ composante de la 2 fonchion propre normée el les

coctficients ¢, ne dépendant pas de U'indice b, Apres avoir posd

2T
- . e e
(35) pr= KU =Kapeh

on sera conduit a écrire avee des notations évidentes

2

I

.
- . @ . ~ O,k .
(36) Jeel T=fe T~ Kue

i i

77[’ ¥ k

(h=1.9.3% %

el & en conclure comme précédemment que @), = 9¢,,= ; pour chacune
des ¢uatre valeurs de A. En dehors de la région singuliere, on aura
sensiblement w;, = K¥,, K ayant une valeur physiquement bien déter-
mindée résultant de la forme de w a U'intérieur de la région singuliere.
Chaque composante u; est donc, en dehors de la région singuliere,
proportionnelle & la composante de méme indice de Ponde W. En se
reportant & ce qui a 6té dit dans le précédent chapitre au sujet du
gutdage du corpuscule en théorie de Dirac, on verra que la région
singuliére doit suivre les lignes de courant de Ia théorie de Dirac et, de
ce pomt de vue, la nouvelle conception des rapports de Vonde u ¢t de
Ponde W' parait ici encore satisfaisante.
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9. Remarques sur la concordance des phases et sur le guidage des
corpuscules. ~— Nous allons reprendre la question de la concordance
des phases ¢n nous placant & notre nouveau point de vue. Eecrivons
comme plus haut :

o

2 E

(3= . AT S R IN Y
(37) w=fe = Uy+ 0= fy € +Kae” .

En examinant les raisonnements faits ci-dessus, nous voyons aisément
qu’il impose la conclusion ¢'== o, mais que I'égalité go=¢ n’en résulte
pas d'une fagon absolument nécessaire. On n'est donc pas, semble-t-il,
obligé d"admettre cette dernitre égalité qui constitue le postulat de la
concordance des phases sous sa forme stricte : il suffirait d’admetire
que oo ¢l g coincident ainst que leurs dérivées premidres au volsinage
immédial du corpuscule, ¢’est-a-dire dans la « région intermédiaire » la
ot il faut placer la sphére S pour démontrer la formule du guidage.

Mais "dans la région extéricure, w, étant négligeable devant ¢, la
phase @, de wy n'a plus dimportance et dans la région singuliere, la
décomposition w=u,-+ ¢ n'a plus de sens. La distinction entre la
concordance faible et la concordance forte des phases est donc 1c1 sans
importance.

On peul présenter la question aulrement. En réalité, la décompo-
sitton 1 == g~ ¢ est fictive 1 il v a une scule fonction « ¢t c’est tout.
Dans toute la région extéricure, c’est-i-dire presque partout, w, cst
néghgeable et u coincide avec ¢ 1 w ¢l ¢ ont donc presque partout méme
amplitade ¢l méme phase. Dans la région intermédiaire ot 'équation des
ondes est par hypothése encore linéaire, u doit toujours avoir la méme
phase que ¢, sans quoi la formule du guidage ne pourrait éire exacte,
mais les amplitudes de w et de ¢ différent, ce qui, en nommant f; la
différence de ces amplitudes, nous permet d’écrire sur le pourtour de la
région singuliere

i 2R

v V]
(38) n=/fe" =(fy+kKa)e

Quant a la forme de « a I'intéricur de la région singuliére, elle nous
restera inconnue lant que nous ne serons pas parvenus a préciser la
forme de Péquation non linéaire de propagation dans cette région. 1l
nous est donc impossible de savoir actuellement si dans cette région la
phase de u continue a étre égale a ¢, mais cela ne nous importe pas ici.

Naturellement des considérations analogues sont applicables e¢n
théorie de Dirac.

Passons mainlenant & une autre question qui montre, comme la pré-
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cédente, I'importance de la région intermédiaire o se fait le couplage
entre uo el ¢. Considérons deux corpuscules sans interaction, par
excmple deux photons ou deux neutrons. Si leurs ondes viennent a se
croiser dans une méme région de 17(’51)51(:0, il semble physiquement
certain qu’elles ne s’influenceront pas 'une Pautre. S1, dans un appareil
d’interférences lumincuses, nous faisons traverser transversalement le
champ d’interférences par un autre faisceau de photons, le phénomene
d’interférences n’en sera pas modifié. Ceci signific que onde d'un
corpuscule ne peut interférer qu’avec clle-méme et non avee l'onde d’un
autre corpuscule.

Nous pouvons comprendre ce point en analysant ce qui se passe dans
la région intermédiaire relative a 'un des corpuscules que nous numeé-
roterons 1, l'autre étant numéroté 2. Saul dans le cas, qui est d’une
probabilité évanouissanie dans tous les cas usuels de croisement de
faisceaux on les deux corpuscules se rencontreraient, c'est-a-dire ou
leurs régions singuliéres viendraient en contact, nous pouvons écrire
l'onde uw dans la région intermédiaire du corpuscule | sous la forme

a7t EXTN 27U

ot

" (g 0" w e 2) g
(39) U=+ u=fe = fiVe + Kaltle + haltle
En effet, w, se réduit a ¢y puisque la région intermédiairve de 1 se
trouve dans la région extérieure de 2. Comme dans la région intermé-
diaire de 1, f§ croit rapidement et devient beaucoup plus grand que a2,
il est évident que 'on a

(40 povol, o fin.

La formule du guidage montre alors, en vertu de la premicre équa-
tion (40) que la présence de wa ne modifie aucunement le mouvenient
de 1.

On peut aussi le voir en considérant la formule

4

Jds

af
Jt

(41) o= —

qui nous a permis au chapitre IX (§36), de déduire Ia formule du
guidage. En introduisant dans (41) la deuxiéme relation (40), on cons-
tate que 'onde u, n’agit pas sur le mouvement du corpuscule (1). Sous
cette forme, la preuve a I'avantage d’¢tre applicable a la théorie de Dirac
comme on peut le voir en se reportant a la formule (53) du chapitre
précédent.
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Ces considérations paraissent bien expliquer pourquoi une onde u
n'interfere qulavee elle-méme el soulignent 'importance de la maniere
dont le « doigt de gant » représenté par iy s'implante dans la région
intermdédiaire sur londe véguliere .

10. Avantages des conceptions précédentes. Difficultés qui subsis-
tent. — lLes conceptions précédentes permettent d’interpréter le fait,
paradoxal en apparence, que dans les états stationnaires des systémes
quantifiés, la fréquence de Ponde w doive ¢tre égale i Pune des valeurs
propres calculées par Ja Mécanique ondulatoire usuelle, alors que
cependant onde « ne posséde pas les propriéiés de régularité imposées
dans ce caleul @ Ponde W. Les mémes conceptions permettent de
comprendre la possibilité des phénomenes d'interférences et de diflrac-
tion en conciliant avec Uexistence de corpuscules localisés les caleuls
classiques qui permettent de les prévoir. Ainsi paraissent se trouver
levées quelques-unes des grandes difficuliés qu’avaient é1¢é les pierres
d’achoppement de toutes les tentatives failes pour parvenir i une repré-
sentation claire du dualisme onde-corpuscule.

Néanmoins, il reste encore de grosses objections & écarter, notamment
en ce qui concerne les Lrains d’ondes, leur tendance constante a Uétale-
ment ¢t lenr fracuonnement dans les cas ot entre en jeu la réduction
des paquets de probabiliie. Ge sont ces difficultés qui m’avaient fait
mitialement rvejeter Phypothese de M. Vigier selon laquelle la partie
extéricure de Ponde 1 serait proportionnelle a l'onde W. De la possi-
bilité de les résoudre d'une facon satisfaisante, dépend sans doute a
Pheure actuelle le sort de la présente tentative d’interprélation causale
de la Mé¢canique ondulatoire.

Terminons par nune vemarque essenticle qui va jouer un certain role
dans les pages qui suivent, Comme nous supposons non linéaire la véri-
table ¢quation de propagation satisfaite par londe w, les termes non
Lingaires de celte ¢quation, hien que tres faibles en dehors de la région
singuliére, existent cependant en principe partoul. St donc ces termes
non lincaires contenaient des dérivées premiéres ou d'ordre supérieur
de w, ces termes, bien quils soient négligeables dans tonte la partie
centrale d’un train d’ondes, pourraient cependant redevenir trés tmpor-
tants sur les bords du wtrain d'ondes, 1a on, 'onde u s’annulant assez

brusquement, ses dérivées auraient de grandes valeurs.
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LES TRAINS D’ONDES
ET LA REDUCTION DU PAQUET DE PROBABILITE

1. Difficulté provenant de 1’étalement spontané des trains d’ondes.
— Une onde plane monochromatique est une abstraction : on a toujours
expérimentalement aftaire a des trains d’ondes limités dans Pespace
dont la durée de passage en un point est limitée dans le temps. Mais on
a souvent affaire & un train d’ondes qui, dans loule sa parlie centrale
sauf tout prés des bords, est assimilable a une onde plane monochro-
matique comme ¢’est le cas pour les trains d’ondes utilisés en oplique.
Un tel train d’ondes est représentable par un « groupe d'ondes », e’est-
a-dire par une superposition d'ondes planes monochromatiques de
longueurs d’onde et de directions de propagation tres voisines. Or, un
groupe d’ondes ainsi constitué¢ a une tendance spontanée a s"élaler dans
Pespace.

Pour le voir, laissons de coté la représentation des dimensions trans-
versales du groupe d’ondes pavr une superposition d’ondes planes de
directions de propagation différentes, un peu inclhinées les unes sur les
autres, et, pour représenter la longueur finte du groupe d’ondes dans le
sens z de la propagation, éerivons simplement

AUy Ap. ,
(I) - :j C(H) RV i— LX) d"“: avec = —e
U..,—A!J‘ IS

La fréquence v est une certaine fonction de p définie par Uéquation de
propagation supposée lindaire a laquelle W obéit el cetle relation
entre v ¢t g correspond i la relation dynamique entre énergie el quan-
tité de mouvement. Posons p == po—=+- 1, vo== v(po) el écrivons le déve-
loppement de Taylor de v(p) :

('l) V(‘*):"n+ (i\i ".—P—l {*)-—v R LY L T e
. ¢ /)lU. o 2 dl'J.z o o™ :
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ou indice o in«li([uc (que les dérivées sonl prises pour g = o el OU ¥y
est la vitesse corvespondant a pe. Nous nous sommes servi du fait
que ¢y est donnée par la formule de Rayleigh pour Ia vitesse de groupe,
501l ¢g== (:j: ) - Nous pouvons done éerire

RVl

VAW [_ ( o

(j;\) ' = @RI gx“.r:)/ C(T}) ernilvyl o gl 3
- Au

ot les [»Oian représentent des termes dordre supdéricur i g% Llinter-

valle Ap élant tees petit par hypothese, pendant un temps tres long &

partiv de Pinstant initial, la seconde exponenticlle sous le signe somme,

dont Pexposant est sensiblement nul, pourra éire prise égale a 1 et Fon

aura

(0 [ = emitrat—w) F (000 — ),

Le groupe dondes aura done méme facteur de phase que U'onde plane
de I'réqucn(:v vy CL son amplitude se déplacera en bloe avee la vitesse ¢,
le tong de Faxe des @ @ il n'y a pas ¢lalement.

Mais, au boul d’un temps suffisamment long par rapport a \' y quelle

4
que soil fa petitesse de Pintervalle Ap., il arrivera toujours un moment
ou Fexposant de Ta dernicre exponentielle cessera d’étre néghigeable :

alors Pintégrale de (3) sera de Ln forme / S, vot — 24, £) d 1 Lon

aura (ssz cependant dans le cas d'un corpuseule de masse propre nulle

Ry
o - - exsl une lronsl;um:>
.
(5) W= gm il Do) I (pgt — 2, 1),

Lamplitude deviendra done aimst variable avec le tenps antrement
que par Pintermédiaire de In combinaison ¢y — 2. Le groupe d’ondes
va done s¢ déformer en progressant et une analyse plus deétaillée

montrerait u’tl va toujours s'étaler. Comme les ¢quations linéaires- de
1)‘1‘()pagali011 entrainent la constance de J a? dz au cours du temps,

I'étalement du train d’ondes a pour conséquence un affaiblissement des
amplitudes locales @il y a affaiblissement du groupe d’ondes qui s’étale.

On peut expliquer intuitivement cet étalement du groupe d’ondes de
la maniere suivante. Les ondes monochromatiques dont la superposition
forme le groupe d'ondes se propagent indépendamment les unes des
autres parce que, par hypothese, Péquation de propagation de Ponde WU
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est linéaire. Chaque composante monochromatique a sa vilesse ¢
correspondant 4 la valeur de p quila spécifie. Sauf dans le cas du corpus-
cule de masse propre nulle o1 v est fonction linéaire de p, les vilesses ¢
sont les unes plus grandes, les autres plus petites que vy, tes différences
étant tres faibles. 11 en résulte qu’a la longue, certaines composantes
prendront de D'avance par rapport a la composanie centrale de {ré-
quence vy tandis que d’autres prendront du retard. 1Y ou I'¢talement du
groupe d'ondes qui, pour ainsi dire, se désorganise lentement en pro-
gressanl. Cetle désorganisation, accompagnée d’élalement dans Pespace,
est intimement lide au caractére lindaire de I'équation de propagation.
Nous pouvons encore retrouver d’une aulre maniére, qui nous servira
plus loin, cet étalement des groupes d’ondes. Pour cela, éerivons Féqua-
tion de Jucobi géndéralisée (J) correspondant a I'équation linéaire de
propagation de la Mécanique ondulatoive relativiste
ht Qu

’ ! '}“P\‘Z o )2 2 A2
(6) €h) -—;2(’»)[-) —(grade P — mict= e,

iy3

Pour que le groupe d’ondes sans déformation

i v
x) @RIVl k) avee - — U=

(7) W= F( 0yt

soit une solution rigoureuse de (6), il faudrait que DI— =o. Or cee

ne peut étre réalisé, pour une forme de K représentant un groupe
d’ondes de dimensions finies, que si ¢g est égale a ¢, ¢est-a-dire dans le
cas des particules de masse propre nulle. Done, pour une particule de
masse propre non nulle, Ie groupe d’ondes sans déformation n’est pas
solution de I'équation lindaire des ondes. Notons que pour un groupe
d’ondes ayant la forme de la figure 13, ¢’est aux limites, 1a on I varie
brusquement, que l’équation OF = o ne sera pas satisfaite.

Voici maintenant la difficulté qui se présente quand on compare ces
résultats avee les conceptions introduites au chapitre précédent. Siun
corpuscule est associ¢ a un groupe d’ondes planes monochromatiques,
nous devrions, semble-t-1l, admetire que son onde w« est tres sensi-
blement représentée, en dehors de la région singnliere, par Pexpression

(8) zt:z¢0+(>:zto+(j1/--.,

.

ou (i est une constante a valeur objectivement déterminée et on f ..
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est intégrale de Fourier qui représente le groupe d’ondes. Malheu-
reuscment, au boul d’un temps suffisamment long, le groupe d’ondes se
sera étalé, disséminé : 'onde réguliére ¢ tendra donc vers zéro en tout
point ¢t « se réduira i sa partie singuliere w,. En termes imagés, on
peul dire que le corpuscule finira par « perdre son onde » et celte
conclusion parait physiquement peu acceplable. En somme, malgré
Iintroduction de 'hypothese « corpuscule-région singulicre de 'onde w »
qui permet a la théorie de la double solution de conserver un sens
objecuf & la notion de corpuscule, nous retrouvons ici Pobjection faite
naguere & Pinterprétation de la Mécanique ondulatoire proposée par
M. Schrédinger qui assimilait les corpuscules a des groupes d’ondes.

15}(-0‘

|“i;.',’. 1),

2. La non-linéarité de 1’é6quation des ondes pourrait permettre d’ima-
giner des groupes d’ondes sans étalement. — PPour lever cetie difficulié
dapparence grave, on peut se demander s’il ne serail pas possible
d'imaginer des groupes d’ondes v qui ne s’élaleraient pas. Il est évident
que ceci ne pourrail provenir que de la différence de I'¢quation des
ondes « ¢t de celle des ondes W, c’est-a-dire de la non-linéarité de la
premiére.

Remarquons d’abord que, comme nous P'avons souligné a la fin du
chapitre précédent, poser u ~ GW en dehors de la région singuliere est
nécessairement une approximation puisque, I'équation des ondes u
étant non linéaire, les termes non linéaires, bien que trds petits en
dehors de la région singulicre, existenl néanmoins partout ct pour-
raient redevenir importants aux limites des trains d’ondes. Pour
connaitie exactement la forme « extérieure » de u, il faudrait pouvoir
évaluer exactement Vinfluence des lermes non linéaires. Il parait
possible de concevoir que la relation uw ~ CW pour » > r, donne une
représentation exacle de « dans ce domaine quand W est une superpo-
sition de fonetions propres appartenant a un spectre discontinu (comme

L. bE BROGLIE. 16
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c’était le cas dans les exemples du chapitre précédent) tandis qu'elle
pourrait donner une représentation erronée. dn moins dans certaines
régions, quand W est une intégrale de Fourier représentant un groupe
d'ondes.

En d’autres termes. tandis que dans le cas d'un systeme quantifié a
spectre discontinu, la partie extérieure de Fonde w pourrait étre repré-
senlée tees sensiblement par o~ CW (ce qui conserverail notre inter-
prétation du succeés du caleul des valeurs propres par la méthode
usuelle), au contraive dans le cas d’un spectre continu et d’un groupe
d’ondes W, Ia parte extéricure de Fonde wne serait pas bien représentée
partout par I'intégrale de Fourier correspondante. Cependant, dans la
partie centrale du groupe d’ondes, la ou Pon ne se trouve pas au voisi-
nage immdédial des bovds, fa partic extérieurve de Ponde w devreait bien
coincider tres sensibleraent avee la fonction « onde plane monochroma-
tique », car ceci esl nécessaire pour conserver Pinterprétation des
phénomenes d'tntertérences (genre ivous d’Young) ue nous avons
oblenue dans le dernter chapitre, Ce serait done auwr limites des trains
d’ondes que Ponde v pourvait n’éive pas bien rveprésentée par Pinté-
grale de Fourier.

Continuons a approfondir ces wlées. Tout d’abord, Pexistence des
termes non lindaires préponddérants dans la région singulicre dott avoir
pour eflet de « souder » ensemble les deux fonctions que nous avons
appelées « partie singuliere wy » el « partie régulicre ¢ » de Tonde w.
Cette soudure deveait avoir pour effet de rendre 'onde ¢ solidairve de la
région singuliere et de Tempécher de se disséminer loin d’elle. Nous
retrouvons encore ict la remarque d’Finstein suivant laquelle des termes
non linéaires ont pour effet de rendre solidaires une solution régulicre
el une solution singuliere des équations du champ qui scraient indépen-
dantes si ces équations ¢étaient lindaires partout. I semble done bien
que l'intervention des termes non linéaires dans fa région singulicre
pourrail avoir pour effet que ¢ ne soil pas exaclement représenté par une
intégrale de Fourier dans le cas du groupe d’ondes puisque cetle repre-
sentation implique I'indépendance des composantes monochromatiques
du groupe d’ondes e, par suite, V'élalement de celui-ci au cours du
temps. Mais il faut regarder de pres ce qui peul se passer aux limites
des trains d’ondes pour empecher cet dtalement.

Nous avons déja noté que les termes non lincaires de I'équation en w,
négligeables dans le corps de la région extéricure du train d'ondes,
peuvent redevenir importants sur ses limites. (Vest [ une circonstance

qui peut intervenir pour nous permetive de concevoir des groupes
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d’ondes sans étalement (). Pour voir quil en est bien ainsi, écrivons
Féquation de Jacobt géndralisée pour Ponde u correspondant a I'équa-

tion non hnéatre (en absence de chamyp) sous la forme

) (L(%)f/,\)‘-‘ e Of Ju du Ju ').lu,...>,.

—fgradey—mie= Bl N e T
A 2 ! iR f ( B R PR TERP X

ot N estune expression non linéaire dépendant de w et de ses dérivées
qui est sensiblement néghigeable en dehors de la région singulidre
saul peut-¢tre wu bord des 1rains d’ondes. Posons, en dehors de la

région singulidre,

(0) wl wy) = l"("nl — ) e i gl — F(O) eﬂ:i(v“v,:i,pfl:
avece

Y me e

2= — et 0= ¢yt — 2.

o~ h

Cette forme de u représente un groupe d’ondes monochromatiques sans
déformation. Elle sera une solution de I'équation J si

h? I
(10) B .[_]T_

, L0V O RF ¥
4 w2 =—N &\‘07 o I | ‘ ‘ : '>7

at’ oz’ o Jxr’

(1) TEestintéressant de remarquer qu'ane cireonstance de ece genre est généralement
wéconnue dans la théorie de la propagation des petites perturbations gravifiques en
Relativité généralisée (wvoir vox Lauk, Die Relativitdtstheorie, 1. 2, p. 191 cl suiv.).
Dans cette théorie, on admet que, dans une petite perturbation gravifique, les g sont
de la forme g gt i ol les @420 sont les valeurs galiléennes constantes des gk et
ou les iz g2 sont considérées comme des infiniment petits du premier ordre. On écrit
cusuite pour les gig les relations Ry — o valables hors de la matiére. Dans 'expression
des R, figarent des produits des grandeurs classiques en Relativité générale 17, = 2 lf }
qui, cllessmémes, <expriment & Paide des gie et de leurs dérivées %é;f On considére
habituellement ces dérivées comme des infiniment petits du premier ordre et 'on
néglige les produits des Ijx comme étant des infiniment petits du second ordre. Les
¢quations non Jindaires Ru== o se réduisent alors trés approximativement (avec un choix
convenable des coordounées) aux équations linéaires [Jviu = o et Pon en conclut que les
trés petites perturbations gravifiques se propagent dans le vide avec la vitesse c.

Mais, comme M. Chazy Pa d’ailleurs soualigné ( Théorie de la Relativité, Gauthier-
Villars, t. II, 1928, p. 148), il nc suffit pas dans cette démonstration de supposer les yir
0% ik

"

trés pelils, il faul aussi supposer trés petites les dérivées + Or ces dérivées peuvent

devenir tres grandes dans des régions étroites de lespace-temps correspondant aux
bords des trains d’ondes si, dans ces régions, les ;1 tombent brutalement & zéro. Dans
de telles régions, I'équation linéaire [Jvi= o n’est plus valable et doit &tre remplacée
par une ¢quation non linéaire. Done, méme pour les trés petites perturbations gravi-
fiques, il peut y avoir des phénomeénes non linéaires sur le bord des trains d’ondes.
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(11) 1)%’2‘24“\(\"“’ o By

N dtF . Cdldye )

Si N était partout négligeable, 1l faudrait avoir soit ¢y ==c¢, ce qui

a2k
n’est possible que pour des particules de masse propre nulle, soit — g =0

ce qui n¢ peut donner une forme acceptable (limitée aux deux extre-
milés) pour le groupe d’ondes. Mais, en tenant comple des termes non
linéaires, on voit apparaitre la possibilité de solutions de 'éguation (J)
qui représenteraient des trains d’ondes limilés sans déformation. En
particulier, un groupe d’ondes ayant la forme représentée sur la fignre 13
pourrait exister en raison de l'intervention des termes N sur les hords
des trains d’ondes on les dérivies de I' seraient grandes.

Il faut remarquer en passant que I doit aussi satisfaire a I'équation
de continuité (C) qui est ici du type

2 ° 2| N

(C) %—4—»‘0 ())l -+ N'(vq. u.l.,.(’%y%,u‘):of
ot N'représente des lermes non linéaires inconnus provenant de l’équn—
tion de¢ propagation de w. La fonction I élant seulement fonetion
de 1 =v¢ol—x, la somme des deux premiers termes de (G sera nulle
et 1l restera
oV d2F A

(12) N’<VU,~ o,y 1y a0’ —d_e?"”():“'

ce qui impose a F une condition qui devra ¢ére compatible avee (11),
c’est-a-dire qu’il devra exister une fonction F(0) satisfaisant a la fors
d(ro)eta (i),

Il est aisé de se représenter d'une fagon intuitive la possibililé de ces
solutions représentant des groupes d’ondes sans déformation. Ferivons
Iéquation des ondes « sous sa forme non linéaire et en absence de
champ, mais en nous bornant a 'approximation non relativiste.

h du

(13) ol T 8"’171Au+N(u
La ou les termes non lindaires N sonl importants, loul se passe
comme s'il existait, malgré l'absence de tout champ, une sorte de
« barriere de potentiel » représentée par les termes N, barrigre qui
s'oppose @ lexpansion du train d’ondes. Mais cetle barricre de
potentiel n’est pas imposée par une action extéricure; clle est créée par
la variation brusque de Ponde « clle-méme sur les bords du train
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d’ondes. En nnaginant des formes suuples par les térmes N (dont la
forme exactle esl inconnue), on peul se rendre compte que de telles
solutions sans étalement doivent bien exister (1).

Néanmoins, on peut se demunder si Pintroduction de groupes d’ondes
sans étalement du type envisagé ci-dessus est compatible avec les rela-
tions d’incertitude d’Heisenberg qui sont intimement reliées a la repré-
sentation des trains d'ondes par une intégrale de Fourier. 1l ne semble
pas qu'il 'y ait de ce e¢dlé une difficulté aussi grande qu’on pourrait le
penser toul d’abord. lin effet, le groupe d’ondes sans ¢talement est
veprésenté par Pexpression () avec

o IW r T
0y = <(—)El>0_ <7)}—)->0 et W =c /p2+ mic

: I T . . . . . . .
(~ — p* a Fapproximation ucwtomeune). Or, & un instant donné, on

2m
reut toujours développer Pamplitude F en intderale de Fourter de la
I J Pi | g
forme

(14) F:/ c(n) e=2rin® gy,
de sorte que on peul éerire en posant g == py—+ 7.
(1) (1) :fc(n) QR = avec v == vo—+ v — iL9).

A un imstant donné, on peut done en conclure, en appliquant le raison-
nement habituel, que, si le train dondes « a la longueur Az, l'inter-
valle Ap des valeurs de p = /A2 intlervenant dans Uintégrale satisfera a
I"inégalité

(16) ArAp = h.

On retrouve done ainsi les relations d’Heisenberg relatives aux variables
d’espace.

Retrouvera-t-on aussi la quatridme relation d’incertitude d’Heisenberg
relative @ la variable de temps? Ce qui pourrait au premier abord en
faire douter, c’est que le temps intervient différemment dans 'expres-
sion (15) de w(p,) et dans Pexpression usuelle du groupe d’ondes
linéaires dont la forme mathématique est la méme, mais ot

o 1 /0%y ,
(17) v="y+ v —1y)+ — (r— o)+ ...
N 2\ du? /o .

(1) La théorie de ces groupes d’ondes sans déformation est & comparer avec celle des
ondes solitaires » en Hydrodynwmigque qui présente avec elle une certaine analogie.
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(Vest en somme en ¢limmant, grice a v non-hinéarité de I'¢quation
en w, tous les termes du développement (17) a partic du troisiéme,
¢’est-a-dire en nous bornant a poser v == vy -+ ¢, (1 — 2,) que nous avons
évité étalement du train d’ondes. Or, en tenant compte de la relation

entre W el p, on voil que la formule (17) s'¢ern

.2 Fpes
(18) AW =W Wo=rdp+! PWO<1~’—;{,—;—>(A1'P+-~
BN L B A SN
—_H)A[)|l+-2-(\l CQ>P—0+...|-

Comme dans un groupe d'onde Ap est toujours beancoup plus petnt
que py, on voit que la parentheése du second membre est sensiblement
¢gale a 1. Quant aux lermes non éerils, ils sont négligeables devantl ¢pd p
(et méme exactement nuls & lapproximation newtonienne). Done,
malgré les modifications que nous avons introduites dans Pexpression
de v en fonction de p— o en passant dn groupe d’ondes avee élalemen
au groupe d'ondes sans étalement. nous avons toujours le droit de poser

(19) AW~ eAp
et, comme la durée A¢ du passage d’un groupe d’ondes en un point de
Pespace est évidemment donnée par

Az

o

(20) At =

on a encore, en tenanl comple de (16),
(21) AWAz~ApAx -

C'est bien la la quatrieme rvelation d'incertitude d’Heisenberg avec
son interprétation usuclle.

Lanalyse que nous venons de faire est d'ailleurs trés instructive en
ce qui concerne le passage du groupe d’ondes usuel au groupe d’ondes
sans déformation. On pourrait objecter & ce passage qu’en supprimant
dans la formule (18) wous les termes du second membre a partr du
seccond, nous modifions la relation entre 'énergie et la quantité de
mouvement d’une manidre qui lui enléve son caraclere de covariance
relativiste. A cette objection, il nous semble que l'on peut faire la
réponse sulvante : la covariance relativiste de la relation entre énergie
et quantité de mouvement est définie dans le cadre de la Relativité
resireinite; or, en introduisant des termes non lindaires qui sont du
type Relativite généralisée, nous sommes en réalité sortis du cadre de
Ia Relativité restreinte.
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Passons maintenant du cas des groupes d'ondes au cas des trains
d'onde ott Ap n'est pas trés pett devant pg. Dans la théorie usuelle de
la représentation, par des intégrales de Fourier, des trains d’ondes de
la M¢canique ondulatoire. on est amend a introdutre la notion de diffé-
renticlles propres et i remplacer Pintégrale de Fourier par une
somme de diflérenticlles propres (). Gomme Pa remarqué notamment
Sommerfeld, Lo sens physigue de Ta notion de différentielle propre est
de veprésenter un groupe d’ondes de dimensions finies en évitant ainsi
d'itroduire Ponde plane monochromatique qui est une abstraction el
qui dailleurs est pas normable @ en remplacant Uintégrale de Fourier
par une somine de différentielles propres, on exprime donc que les
trains dondes sont formeés par La superposition non pas d’ondes planes
monochromatiques, mais de groupes d’ondes limitées. Au point de vue
nouvean anquel nous nous plagons iei en introduisant la non-linéarité

les groupes d'ondes sans ¢lalement, 1l parait naturel de définir les
trains d'ondes par une superposition de groupes d’ondes sans élalement
du type (). cest=a=dire de représenter un train d’ondes par le dévelop-

pement

N . N
(92 w="N¥clu)uim),

L

hl -
la somme ¥ élant étendue 4 une suite de valeurs, généralement extre-
]

L,
mement voisines;, de gy Sioles bords des groupes dondes sont tres
abrupts, on peul considérer les fonctions u(pe) comme sensiblement
orthogonales entre elles. L semble done, sous réscrve d’une étude plus

) Ies raison-

rigourcuse, que Fou puisse appliquer au développement (22
‘nements habituellement faits sur les sommes de difféventielles propres
el retrouver encore ici les relations d'incertitude d’Heisenberg.

3. Affaiblissement de la liaison jusqu'ici admise entre onde u et
onde Y'. — Nous avons énoncé précédemment le théoréme d’existence
qui. au début de mes vecherches sur la double solution, me paraisseit
nécessaire pour la justifier. Je le formulais alors ainsi © A toute onde &
considérée par la Mécanique ondulatoire usuelle doit correspondre
une onde u de méme phase. Nous sommes maintenant en ¢tat de
critiquer cet énoncé el de lui donner une forme plus nuancée.

Remarquons d’abord (il n'est pas logique de partir de Ponde W

(1) Voir par exemple Lo ve Brouwg, Théorie générale des particales & spin, 2 éd.,
Gauthice-Villaes, 133, chap. L § 4.
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puisqu’a nos yeux, elle n'est quune abstraction a caractére subjectf et
statistique, pour y rattacher Pexistence de Ponde « que nous consi-
dérons comme la réalit¢ objective : c¢’est évidemment Pinverse qu’il
convienl de faire. De plus, pour des rvaisons ui nous apparaitront
mienx plus loin, il y a licu d’affacblir la liaison postulée entre v et W
pour éviter que u ne parlicipe au caractére subjectif de W. Nous dirons
done maintenant : 4 toute onde u qui fournit une description objec-
tive d’un corpuscule concu comme le centre d’un phénomene ondu-
latoire, on peut faire correspondire une onde W du type vsuel qui,
dans tout le domaine extéricur  la région singulicre de Uonde u, a
en général trés approximativement la méme forme mathématique
que u de sorte qu'on peut poser W o~ Cou.

Dans ce nouvel énoncé, nous é¢erivons la relatton entre ¥ el « sous Ia
forme " ~ Cu, au lieu de 1 ~ G, pour bhien souligner que P'onde W
est une construction de notre esprit laite & partir de Vonde o a caractere
objectif. De plus, nous avons introdunit dans 'énoncé, en les soulignant,
les mols « en général », car nous devons maintenant penser qu’il peut
y avoir des limites a cette correspondance : ces Limiles sont dues essen-
tiellement au fait que équation de propagation de W est rigoureusement
lindaire, alors que celle de u est non liméaire. Nous venons d’avoir une
premiére indication en ce sens en éludiant les groupes dondes puisque
nous avons ¢Lé amencs a nous demander s'il ne faut pas remplacer,
dans I'expression extérienre de «, le groupe d'ondes W du type classique
par une fonction « sans déformation » gni pourrait difliérer sensiblement
de I'intégrale de Fourier nolamment sur les bords du groupe d’ondes,
siege de phénomeénes non linéaires.

Nous allons retrouver cette méme idée d’une limitation éventucelle de
la correspondance entre onde % ¢t onde ¥ en dludiant successivement
la représentation de Pémission d’une source par une onde divergente,

puis la division d’un train d’ondes par un mireir semi-transparent.

4. Représentation de Pémission d"une source ponctuelle par une onde
divergente. — Comme nous I'avons précédemment signalé, M. Francis
Perrin a indiqué une objection a 'interprétation de la Mécanique ondu-
latoire par la théorie de 'onde-pilote. Quand une source ponctuelle
é¢mel autour d’elle d’une facon isotrope des corpuscules de méme
énergie, la Mécanique ondulatoire admet que Pon doit représenter celte
émission par P'onde sphérique divergente.

EXTIaS

A -kt
23 P — p—ilir g
(23) " = o e
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L étanl une fonction de E définie par I'équation des ondes. Alors | W [2
diminue comme 77 quand on s’éloigne de la source, ce qui exprime la
diss¢émination isotrope des corpuscules autour de celte source et cet
aflaiblissement de T'onde divergente correspond exactement a Pinterpré-
tation probabiliste de la grandeur | W |2, Mais, si on admet, comme le
veul la théorie de Ponde-pilote, que le corpuscule est guidé par onde W,
il faudrait alors admettre que le corpuscule est guidé par une onde de
plus en plus faible a mesure qu’il s’6loigne de la source : comme rien ne
nous empéche d'observer des phénomenes de diffraction ou d’interfé-
rences i de tres grandes distances de la source, ces phénomenes devraient
résulter d'une réaction exercée sur le corpuscule par une onde infi-
niment faible. Gomme le faisait vemarquer M. Perrin, ceci n’est guére
conecevable.

Adoptons maintenant le point de vue de la double solution. Les 1dées
du chapitre précédent prises a la lettre nous conduiraient a dire que la
portion extéricure de Ponde w coinctde Lrés approximativement avee la

. . ,e—ikr . . . .
fonction C-——; C ayunt une valeur bien déterminée. Mais ceci n’est

pas davanlage satisfaisant. Outre que le sens physique de la singularité
a Porigine s’expliquerait ici difficilement, 'onde u se disséminerait dans
Pespace : le corpuscule perdrait peu a pen son onde u extérieure en
s'éloignant de la source, circonstance assez peu admissible, nous I'avons
déja dit.

Du point de vue parement mathématique, on pourrail, il est vrai,
répondre que la réaction de U'onde u sur le corpuscule se traduit par le
Da

a

potentiel quantique qui, dépendant seulement des valeurs égales de

de 0

el =~ voisinage da corpuscule, ne dépend pas des valeurs

absolues de « et de f. Dans le cas do la theorie de Dirac, I'examen des
formules précédemment obtenues pour exprimer le guidage du corpus-
cule permettrail une réponse analogue. Mais, du point de vue physique,
une éehappatoire de ce genre parait peu salisfaisante car elle fait jouer
un rote physique a une onde qui, i la limite, devient inexistante. Il me
semble difficile de se contenter d’une réponse aussi formelle.

En regardant les choses de pres, on s'apercoit d’ailleurs que, méme

e—ikr

avee linterprétation usuelle, Ponde W = ne peut pas donner une

représentalion exacte de chaque corpuscule émis. 11y a d’abord la diffi-
culté provenant du fait que Ponde (23) a une singularité a Porigine, ce
qui est contraire aux conditions généralement imposées aux ondes W et
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empcéche dailleurs de normer Fonde divergente. Physiquement, il est
certain que TPonde W associc¢e a 'un des corpuscules émis par la source
doit avoir un front avant et un front arriere, ¢’est-a-dirve étre représentée
noun pas par une onde sphérique divergente monochromatique et indé-
finie, mais par un groupe d’ondes de ce type. Il se pourrait méme que
I'onde ¥, au lieu de former une pellicule sphérique complete, soit
aussi limitée latéralement. Donc, méme dans le cadre de linterpré-
tation usuellement admise, on doit considérer Ponde sphérique diver-

e—ikr

gente comme n’étant qu’uno 1‘ep1‘éscnulli0n slul,isl,ique moyenne

de I'émission isotrope globale de la source : chaque émission indi-
viduelle devrait ¢tre representée par un gronpe d’ondes sphériques

fimité radialement et peut-¢tre aussi azimutalenient en largeur.

Si alors on introduit Fidée quil peut exister, en rvaison de la non-
linéarité de 'équation de propagation de Fonde w, des groupes d'ondes
limités el sans étalement, la source placée en S pourrail émettre isotro-
piquement dans toutes les directions des groupes d'ondes de forme
conslante (()11 { peu pres conslelnle) conlenant chacune une l‘é;:iou
singulicre (corpuscule).

Comme alors Pamplitude dans chaque groupe d'ondes ne dimimuerait
plus avec r, le paradoxe signalé par M. Francis Perrin disparaitrait.

. . N - n 1 Proe .
Mais on voit qu'alors 'onde divergenie W= -e ¥ ne serait plus en
| p

ce cas une onde associée a chaque corpuscule, mais simplement unc
représentation statistique de I'émission globale, sphériquement isotrope,
de Ta source.

Faisons maintenant qaelques remarques au sujet de idde que nous
venons de développer. La premitre est que, dans cette hypothose,
Fonde W sphérique et divergente serait purement fictive et aucunement

lice dans son ensemble avee les groupes d'ondes w émis par la source.
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Son rdle serait sculement de nous fournir une représentation de la
répartition statistique dans 'espace aulour de la source de I'ensemble
des corpuscules émis. A ce point de vue, elle serait un peu analogue a
londe W d’un systeme dans I'espace de configuration qui, elle aussi,
dans notre manicre de voir, ne représente que le comportement statis-

tique des localisations corpusculaires et non pas le phénomene ondula- |

toire objectif qui entoure chaque région singuliere.

On remarquera encore que cette conception d'une émission par la
source de trains d’ondes limités en azimuts, dont scule la répartition
statistique est représentée par Ponde sphérique divergente, est assez
analogue & Pidée du rayonnement « en aiguille » (nadelstrahlung)
nagnére mise en avant par Einstein pour représenter I'émission lumi-
neuse d'une source photon par photon, chaque ¢mission individuelle
devant saccompagner d'un « recul » de la source.

Remarquons enfin que I'hypotheése suivant laquelle 'onde sphérique
divergente représentant Pémission de photons ou de corpuscules maté-
ricls par une source ne serait qu’une fiction, n’est pas en contradiction
avec I'existence bien observée de la variation de phase de © qui accom-
pagne le passage d’une onde sphérique par un foyer. En cffet, ce phéno-
mene est observé quand il y a passage par un foyer du train d’ondes
associ¢ i un corpuscule. Dans ce cas, la forme mathématique classique
de Ponde W qui converge vers un foyer pour en diverger ensuite doit
bien représenter I partie extérieure réguliere de 'onde v du corpuscule
el cect permet de rendre comple de la variation de la phase lors du
passage par le foyer. Le cas de onde divergente représentant 'émission
d'une sonrce ponctuelle est d’ailleurs tout a fait différent de celui-ci.
En effet, londe sphérique divergente a une singularité an poini-source :
il en résulte que le lux du veeteur « courant de corpuscules » a travers
une petite surface sphérique entourant la source est différent de zéro,
ce qui traduit mathématiquement hypothése d’une émission par le
point-source. \u conlraire, quand on fait la théorie du passage d’une
onde convergente par un foyer (1), on a bien soin de prendre, pour
représenter le phénomene, La solution de 'équation des ondes sphériques

e—ikr
¢l non

. . . . . q. sinkr
qui reste /mu' au loyor, ¢est-a-dire y el cela pour
: r

quil y wit un flux nul de corpuscules a travers une surface sphérique
entourant le foyer, car celui-ci n’est pour les corpuscules ni une source,

ni un puils,

() Foir par exemple @ Henri PorNcariz, 70éorie mathématique de la lumiére, t. 11,
p.ot6s.
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En résumé, nous voyons que, dans le cadre de la tenlative que nous
exposons, 'étude de 'onde sphérique divergente, comme celles des
groupes d’ondes, nous a suggéré Pidée suivante @ la correspondance
que nous avions initialement postulée entre la partic réguliere de
Ponde u et la fonction W de la Mécanique ondulatoire ne doit pas étre
considérée comme ayant un earactere absolument sirict et général. Nous
allons retrouver la méme idée en étudiant In division d'un groupe
’ondes par un miroir semi-transparent.

. Division d’un groupe d’ondes par un miroir semi-transparent. —
Nous allons d’abord rappeler des considérations qui ont é1é développdes

au sujet des mirvoirs semi-transparents par M. Heisenberg des le début
de la discussion sur I'interprétation de la Mécanique ondulatoire.
Considérons, du point de vuae des ondes W', la réflexion du corpuscule
sur un miroir semi-transparent M. L’onde W incidente se partage en
une onde transmise el une onde réfléchie qui représentent les deux
possibilités existant pour le corpuscule : ¢tre transmis ou étre réfléchi.
Adoptant Tinterprétation purement probabiliste de la Mécanique
ondulatoire, M. Heisenberg au Conscil Solvay d’octobre 1927 avait fail
les remarques suivantes. Selon lui, on ne devait pas dire qu’en arrivant
sur le miroir, le corpuscule « fait un choix » entre le faisceaun réfléchi
et le faisceau transmis car I'arrivée du corpuscule sur le mirvoir n’est pas
un fait chservable : au contraire, tant que le corpuscule n’a pas ¢1¢
localisé par une observalion, on doit dire qu’il existe i la fois « a Uélat
potentiel » dans l'onde transmise et dans Ponde réfléchie. Si, & un
moment donné, Yon parvient a déceler la présence du corpuscule dans
I'un des faisceaux, l'autre faisceau cesse immédiatement d’exister parce
qu'il correspond & une possibilité qui ne sest pas réalisée et ceci
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montre bhien le caractere non objecuf de Vonde W. Mais, disait
Heisenberg, si au licu de chercher a localiser le corpuscule dans 'un
des faisceaux, on disposait en M’ un miroir parfaitement réfléchissant,
on pourrait obtenir des interférences dans la région ombrée de la figure
ou les deux faisceaux viennent s¢ superposer. Iy aurait donc alors des
variations de probabilité de localisation dans cetle région, ce qui montre
que jusqu'a la localisation du corpuscule, il faut envisager a la fois le
faisceau réfléchi et le faisceau transmis. Telle est la position sur cette
(]uc,sﬁon de I'interprétation purement probabiliste actuellement admise.

Analysons d’un peu plus prés ce qui se passe lors de la division du
train d’ondes incident par le miroir M semi-réfléchissant. Dans 1'état

Ry
N
R, R,
S
V'4
etat initial etat final
Fig. 16.

initial, nous supposons qu’un groupe d’ondes R, presque monochroma-

tique se dirige vers le miroir. Dans la théorie classique des ondes, la
présence du miroir a pour effel final (aprés une période transitoire
pendant laquelle s’opere le passage du groupe d’ondes sur le miroir) de
séparer le groupe d’ondes incident en deux groupes d'ondes occupant
des régions Ry et Rq qui sont symétri([ues par rapporl a la surface du
miroir ¢l égales a Ro.

- . . E e . 1 .
Si le miroir M a exaclement le coefficient de réflexion S els dans

I'onde imitale on a ‘/(t2(lT:I, comme Uéquation de propagation

assure la constance an cours du lemps de cette inlégralc, nous aurons
a

dans Tétat finul & Pintérienr de Ry et Re une amplitude de facon

(IIIC
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Si 'on place alors le miroir parfaitement rétléchissant M'de la figure 15,
L. . . a . .
les ondes réfléchies et transmises d’amplitude :/—_ interférceront dans la
2
région ombrée. Sur ce point la théorie classique des ondes et la théorie
des ondes W sont d’accord, bien qu’elles interpreétent différemment le
sens physique des interférences dans la région ombrée. Mais si, au lien
de placer le miroir M/, nous avions fait une observation permettant de
localiser le corpuscule dans un des faisceaux, par exemple dans Ry,
alors nous devrions dire apres cetle localisation qu'it 'y a plus d’onde W
dans Ry (car il n’y a plus de possibilité de localisation du corpuscule
dans R.) et nous devrions renormaliser 'onde W' dans Ry en lui avtribuant
R . . « . . . .
a nouveau 'amplitude @ au lien de — de fagon & uvg)u‘f(t-’ dr—1.
2 i,
Naturcllement ceci n’a aucun sens dans la théorie classique des ondes
continues car, dans cette théorie, les ondes ont un sens physique et
une observalion faite sur R, ne peut en rien modifier londe qui existe
dans Ra. Ainsi se trouve bien soulignée la différence de nalure entre
l'onde continue classique qui avait un caractére objectif et 'onde W de
la Mécanique ondulatoire usuelle qui, simple représentation de proba-
bilité, a un caractere subjectif et dépend de nos informations.

6. Etude du méme probldme dans la théorie de la double solution. —-
Introduisons maintenant la théorie de la double solution en faisanl
intervenir Ponde wu: Nous devons supposer gqu’a chaque instant le
corpuscule a une position bien définie dans espace, méme si nous
n’avons fait aucune observation permettant effectivement dele localiser.
Parti d’une position initiale dans Ry, il viendra finalement occuper une
certaine position dans Ry ou dans R,, par exemple la position G, dans
Ry (fig. 16). 11 est done natarel de penser que, dans état final, Vonde
dont la région singulicre entoure le point Gy a une partic extéricure
réguliere qui remplit la région Ry Mais y a-t-il une fraction de Ja partie
extérieure de « qui passe dans Ry et qui par suite, en Pabsence du
miroir M, s’éloigne ensuite indéfiniment du corpuscule en formant ainst
un groupe ondes isolé sans région singulicre? Cette idée m’avait
para d’abord peu satisfaisunte el Javais un moment envisagé Uhypothése
sulvante : au moment ot, dans Pimage classique, action du miroir
partage le groupe d’ondes incident en deux groupes d’ondes séparés
londe w passerait tout enticre dans P'un des groupes d’ondes (par
exemple Ry) Pautre groupe d’ondes élant vide d’onde « et représentant

sculement, tant que nous n’aurons pas d'information sur la position du
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corpuscule, la possibilité que le corpuscule soit venu dans R,. Je vais
expliquer pourquol cette hypothese me parait maintenant devoir étre
rejelée.

Connnencons par rappeler le dispositif connu sous le nom d’interfé-
rometre de Michelson.

Un faisceau de lumicre parallele tombe en A sur un miroir semi-
transparent M incliné a 45° sur SA. Les faisceaux transmis et réfléchis
vonl ensuite se réfléehie respectivement suv des miroirs non trans-
parents My ¢t My; puis le faisccau AB elant revenu en A se rétléchit
particllement sue le mivoir M dans la direction AD tandis que le

— M,
M
S A iB
Ml
YD
Fig. 17.

farsccau AG revenu en A est transmis particllement dans la méme
direction AD. En D, on peut donc observer des interférences qui
correspondent A la différence de marche éventuelle des rayons SACAD
et SABAD. Le dispositif est; on le sait d’une extréme précision.

Voici maintenant la question qui se pose. 51 le train d’ondes incident
a une longucur tres grande par rapport aux dimensions de P'interféro-
metre, il va inonder pendant un temps tres court Pensemble de Pappareil
(fig. 18, a, région ombrée).

II prendra done la forme d'un train d'ondes désarticulé, mais d’un
seul tenant. 51, au contraire, le groupe d’ondes est de dimensions petites
par vapport a ecelles de Tinterférometre, apres avoir é1é divis¢é par
Pacuon du miroir M, il donnera naissance a deux petils trains d’ondes
entigrement séparés qui accomplissent indépendamment les trajets ABA
el ACGA pour venir ensuite se rejoindre et interférer dans la dirce-
ton AD (fie. 18, 0).

La théorie ondulatoire classique prévoit dans les deux cas qu'il y a
des interférences en D ¢ an contraire, la théorie de I'onde w, si P'on
admettait lhypothése exposée plus haut, conduirait a dire qu’il pourrait
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Yy avoir des interlérences dans le premier cas parce quil n’y aurait pas
dislocation du train d’ondes incident et que Lout se jouerait a 'intérieur
d’un méme groupe d’ondes, tandis que dans le second cas il n’y aurait
pas d’interférences parce qu’il y aurait alors séparation compléte dans
lespace des deux trains d’ondes dont Pun, vide d’onde w«, serail e¢n
réalité inexistant car il ne représenterait qu'une possibilité non réalisce.
Or, une telle conclusion, qui en vérité est @ priord assez peu vraisem-
blable, est en opposition formelle avec Pexpérience, comme me I'a
signalé en particulier M. Renninger. En effet, Michelson ¢t Dale ont
obtenu des inlerférences avec des trains d’ondes qui avaient ¢L¢ séparés

M,

N
NN

M S ,

7

///,,«
é .
(a) Fig. 13. (h)

dans Pespace par des distances de Pordre de 2 km ('), Nous devons
donc rejeter Vidée suivant laquelle, par Paction d’un miroir semi-
transparent, un train d’ondes s¢ divise en deux trains dondes séparés
dans V'espace, Ponde « se concentrerait dans le train d’ondes ot est
passé le corpuscule, 'autre train d’ondes étant vide d’onde «, car alors
le second train d’ondes serait physiquement inexistant ¢t it ne pourrait
y avoir d’interférences entre ce train d’ondes inexistant et Pautre en
cas de croisement ultérieur.

Ces considérations semblent donc nous amener nécessairement a la
conception suivante. Lorsqu'un train d’ondes est partagé en deux par
laction d'un miroir semi-transparent, onde w se partage entre les
deux trains d’ondes de sorte que finalement nous avons d’un coLé un
train d’ondes u sur lequel est implantée une région singulitre qui est le
corpuscule et de Iautre ¢6té un train d’ondes « sans région singuliére.
[’idée nouvelle qui apparait ici est qu’il peut exister des trains d'ondes u
sans région singuliere. Ceute idée parait d’ailleurs en accord avec le

(V) Nature, t. 113, 1923, p. 336,
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formalisme actuel des « nombres d’occupation » en théorie quantique
I 1
des champs, formalisme suivant lequel 1l peut v avoir associés a une
ps, Y
onde, o ou 1 corpuscule dans le cas des fermions, o, 1, ..., n corpuscules
dans le cas des bosons : dans un cas comme dans Dautre, le nombre
d’occupation peut ére zéro, ce qui correspond bien & nolre conception
1 1 ' 1
de trains d’ondes ¢ sans région singuliere.

[1 ne semble pas que la conception d’ondes # ne portant aucunc
région  singulitre, aucun  corpuscule, soultve en  elle-méme  des
difficultés.

Cerlaines apparaissen! cependant quand on regarde de prés ce gqui se

i i { £ 1
passe dans un cas comme celui du miroir semi-transparent de la
ficure 15. Raisonnons e¢n supposant, pour préciser, que le pouvoir
8 I v | » q

, . . A
réflecteur est égal a o Ce que nous venons de dire nous conduit a

admetire que, st le corpuscule est finalement venu en €y dans le train
d’ondes Ry, il y a néanmoins une portion, partout régulicre, de 'onde u
qui a passé dans le ain d’onde Ry, Or, l'amplitude « de Ponde W ¢t
Pawplitude " de l'onde u (en dehors de Lo région singulicre) satisfont
aux Gquations de conlinuilé

) da? . . Jaf? s

{21 —- - diviar vi=o0 o div (V) = o,

21) il Y ’ ot J*Y) ’

v détant dans les deus équations la méme vitesse définie en chaque point

par La formule du guidage. En éliminant div v entre ces deux équations

. . L, D ) .
et en mmtroduisant la dérivée totale b = f)f + v.grad prisc le long
[ (744
D

) . . . /
d'une ligne de courant, on démontre aisément que Y log " = consl.,

¢’est-a-dire que le quotient [/L doit rester constant quand on se déplace
le long dune ligne de courant avec la vitesse v. Or, en partant d’'un
point quelconque de Ry et en suivant la ligne de courant qui passe par
ce poind, on atteint finalement un certain point de Ry ou un certain
point de Ry suivant la position initiale choisie dans Ry. Comme dans R,
on a = C f d’apres nos hypotheses, il semble qu’on puisse en déduire

gqu'en toutl point de Ry ou de Ry (sauf dans la région singuliere qui

S

enfoure Cl) le rapport
’ o

a la meme valeur G qu'il avait inivalement
dans Re. Or, nous savons, d’aprés la théorie lincaire usuelle de Ponde W,
. . . 1 N
que @ doit diminer dans le rapport \/— quand on passe de R, a Ry ou
2
a Ry : Famplitude f deveait done ausst diminuer dans le méme rapport.
Mais cette conclusion nous fait tomber dans une nouvelle difficulté.

L. D BROGLIE. 17
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Si, en effet, nous acceptons d’admetire que la traversée du miroir
semi-transparent a pour conséquence d'affaiblir la partic extéricure
régulidre de londe w, alors la traversée successive d'un trées grand
nombre de miroirs aura pour conséquence que la partie extéricure de ©
tendra vers zéro. De nouveau, nous arrivons {inalement a la conclusion
que le corpuscule perdra progressivement son onde extéricure, conclu-
sion difficile a admetire du point de vue physique.

U serait beaucoup plus naturel, dans le eadre de nos conceptions,
dadmettre qu'un corpuscule ayant traversé toute une série de miroirs
semi-réfléchissants a exactement les mémes propriétés que s’il érait
encore pres de la source. La question est, en somme, de savoir si un
corpuscule, qu'il sott associ¢ & un groupe d'ondes en propagation libre,
qu’il ait é1é émis par une source ponctuelle éloignée ou (il ait traversé
des miroirs semi-transparents, garde une structure ct des propriétés
invariables ou si, au contraive, sa structure et ses propriélés changent,
antrement dit s'1il « vieillit ». Bien que la scconde hypothese puisse
peut-¢lre élre soutenue, la premigre parait cependant plus vraisem-
blable. Mais celle-ci implique que P'onde © du corpuscule parvenue
dans Ry deveait avoir la méme partie extérieare quelle avait primiti-
vement dans Ry, Pamplitude f étant restée la méme. Or, ceci n'est-il
pas inconciliable avee le résultat que nous avons démontré plus haut a
I'aide des équations (24)?

Ce qui pourrait nous tirver d’aflaire, ¢'est quien réalité la scconde
équation (24) n'est pas vigonrensement valable si Péquation de Tonde u
n'est pas lindaire. La séparation des termes véels et 1maginaires dans

2

Iéquation de «, quand on posc = fe* * conduita une équation de
Jacobi généralisée et & une ¢quation de continuilé qui conticnnent toutes
deuxun second membre des termes non lindaires, Gest cette circonstance
qui, dans le cas de I'équation de Jacobi généralisée, nous 2 conduit an
paragraphe 2 a apercevoir la possibilit¢ de groupes d’ondes sans défor-
mation. La méme circonstance fait que la deusieéme équation de conti-
nuité (24), qui rigoureusement est de la forme %/} +v.grad/*— N,
pourrait cesser d’¢tre valable sur le bord des trains d’ondes cl en
principe ne Uest jamais dans la région singuliere. Ge fail o pour consé-

quence qu'on ne peut plus affirmer que (/l garde la méme valeur dans Ry

et dans Ry que dans Ry. On peut dire aussi que les termes non lincairces
de I'équation de u ont pour effet que le pourtour de la région singuliere
et les bords de trains d’ondes peuvent se comporter comme des sources
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{ou des puits) pour I'onde u. Dans les groupes d’ondes stables sans
déformation que nous avons considérés an paragraphe 2, ces sources
devraient s'annuler; mais, quand un groupe d’ondes de ce type se
déchirerait pour donner naissance i deux groupes d’ondes distincts R,
et Ra, ces sources pourraient réapparaitre et faire varier les amplitudes
de ¢ dans R; et R,. Ces amplitudes seraient d’abord égales et le
resteraient pendant un certain temps au cours duquel linterférence
entre Ry et Ry, en cas de superposition ultéricure scrait encore possible
dans les conditions prévues par la théorie classique. Mais apres un
certain délai Faction des sources pourrait avoir pour effet de régénérer
le groupe d’ondes primitif dans R,. 1l se pourrait aussi que le groupe
d’ondes R, sans corpuscule finisse par disparaitre, peut-éire par étale-
ment indéfini. Ge ne sont la que des suggestions dont la justification,
sans doute 1vés ardue, ne serait possible que si noas parvenions a
connaitr¢ la forme des termes non linéaires dans l'équation des
ondes u (1).

7. Retour sur la relation entre onde u et onde Y. — L’'¢tude du
passage d'un corpuscule a travers un miroir semi-transparent, quelle
que soit la manit¢re dont on soit finalement amen¢ a la développer dans
Ia théorie de la double solution, va nous permettre de préciser certains
points de Ia liaison qui devrait exister entre onde « et onde W. Dans le
groupe d'ondes initial Ry, Fonde W normée ayant une amplitude aq
<l,clle que f((f, dr = 1>, la relation entre 'onde W et la partie exté-

<R,
ricure de Ponde u est W ~~ Cyo avec une constante Gy de valeur bien
déterminée. Aprés la séparation des deux groupes d'ondes Ry et Ry
égaux i Ry, le corpuscule se trouvant dans P'un des groupes d’ondes

sans qu’on sache lequel, on doit imaginer une onde W remplissant les

. a -
deux groupes d’ondes avee, nous 'avons vu, 'amplitude —. St |¢y]

vV

(1) Sans v attacher trop d’importance, nous pouvons iltustrer l'idée que nous venons
d’exposer a Paide d'une image qui nous a été suggérée par M. J. L. Destouches. Dans
une certaine mesure, on peut comparer un corpuscule en mouvement rectiligne et
uniforme entouré de son groupe d’ondes & un bateau en mouvement sur la mer libre
entouré de son sillage. Si le bateau passe prés d’'un mur, d'une digue, une partie de son
sillage peut subir une réflexion et, si elle revient se superposer & une autre partie du
sillage primitif, elle powrra donner lien a des interférences; mais, quand ensuite le
bateau se scra éloigné de la digue, il se retrouvera en mer libre avee son sillage pri-
mitif reconstitué tandis que la partic du sillage réfléchie par la digue aura été se perdre
au large et aura disparu.
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et | vs | représentent les amplitudes des parties extéricures de « dans R,
et dans R,, on aura dans ces deux trains d’ondes respectivement

ay= Cy o] el ay= Co| vy

avec

ainsi, quand on passe de Ry a Ry ou a Ry, la constante de proportion-
nalité varie. Si nous avons alors connaissance du fait que le corpuscule
s¢ trouve dans Ry, nous devons renormaliser 4 I'unité Ponde fictive de
probabilité dans Ry, ce qui lui rendra Vamplitude primitive ao, tandis
que dans Ra, nous devons poser ¥ = o car nous savons mainlenant que
le corpuscule ne se trouve pas dans R.. Naturcllement, Fonde # qui,
pour nous, esl une réalité objective ne peul éire modifice ni dans Ry, ni
dans R, par Pinformation que nous avons reque sur la position de la
région singuliere. Nous devons donc maintenant poser dans Ry la
relation W == ¢y, avec G = 1::’! y ¢’est-d-dire que la constante de
bend
proportionnalité C; doit étre multipliée par \/; Mais dans R, il faul
poser W' =0 < ¢y, c'est-a-dire que la constante de proportionnalilé y

devient nulle.

Nous voyons alors bien comment nous devons assouplir la liaison
possible entre la partie réguliere de Ponde w el Ponde W pour rendre
compalible le caractére objectif de Ponde u avece le caraciore subjectif
de I'onde W. Dans le train d’ondes « o s¢ trouve linalement le corpus-
cule, Ponde W reste toujours proportionnclle a la partie extéricure de
Ponde %, mais la constante de proportionnalité change quand il y o
réduction du paquet de probabilit¢ et renormalisation de Ponde V.
Dans le train d’ondes ot ne se trouve pas le corpuscule, on doil, avant
toute localisation de celui-ci, imaginer une onde W qui représenle sa
probabilit¢ de présence, mais, aprés la localisation du corpuscule
dans Ry, il n’y a plus dans Ry qu'une onde « partout régulicre sans
onde W. Ces considérations nous paraissent jeter une certaine clarté sur
la nature de la liaison qui peut exister entre 'onde « réalité objective
indépendant de nos informations ct I'onde W construction de notre
esprit et représenlation subjective des probabilités qui, clie, dépend
essentiellement de nos informations. Nous avions précédemment signalé
la nécessité d’¢tablir entre les ondes 2 et W une liaison assez souple
pour qu'elle ne fasse pas participer Ponde 2 au caraciere subjectif de
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Ponde W : nous apercevons mainlenant comment on pourrait atteindre
ce bul.

Evidemment il est mathématiquement équivalent d’éerire W = Gy
ou ¢ = CW, mais avantage de la premicre facon d’éerive devient main-
tenant évident. Elle nous donne la possibilité de choisir a nolre conve-
nance la constante G, au besoin en lui atiribuant des valeurs différentes
dans des régions séparées de espace, de facon que Vonde W adnse
construite a partir de ¢ puisse jouer le réle slatistique que nous
souhaitons lur attribuer. Gest pourquoi nous devons poser (= o pour
les régions de Pespace ot nous savons que Ponde u ne comporte pas de
région singuliere, puisque la probabilité de présence de Larégion singu-
licre y est nulle.

8. Extension des idées précédentes aux problémes de collision. —
On peut géndraliser au cas des phénomenes de collision les idées que
nous venons de développer sur Pexemiple du miroir semi-transparent.

Raisonnons sur L collision de deux corpuscules. La théorie usuel-
lementadmise envisage dans Pétat initial denx trains d’ondes W occupant
des régions sépariées de Despace Ry et I et se rapprochant I'un de
Pautre. Puis, apres le phénomene de collision tres complexe que la
théorie actuelle ne pent représenter quien se servant de Tespace de
configuration a six dimensions, on arrive a un dlat final on les trains
d’ondes W des deux corpuscules sontl & nouvean enticrement séparés et
ot il y a plusicurs possibilités By, Rs, ..., pour la position du train
d’ondes du premier corpuscule et plusicurs possibilités R, R,
pour la position du rain d’ondes du second corpuscule. Ces trains
d’ondes sont « corrdlés », ¢’est-a-dire que, si le corpuscule 1 est dans Ry.
le corpuscule 2 est dans R, si le corpuscule 1 est dans Ry, e corpus-
cule 2 est dans R, ete.

Dans I'état mitial, suivant les conceptions de la double solution,
les ondes wy et o

0

des denx corpuscules occupent B, ¢t R : les
ondes W correspondantes Wy — Cyeo et W, =G ¢ sonl seulement
de représentations de probabilités et les constantes G, et G, doivent

¢lre choisies de facon a ce quielles puissent jouer ce role. Dans Pétat

final, 'onde « du premier corpuscule sera vépartic entre Ry, Ry, 1o,
celle du second entve R, R, ..., mais les deux régions singu-

lieres doivenl toujours se trouver dans deux trains d’ondes corrélés
(par exemple le premier dans Ry et le second dans R)). Les ondes
fictives W dotvent ¢tre construites de facon que le carré de leur

module veprésente la probabilité de présence des régions singulieres
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quand on ne sait pas dans quel couple de trains d’ondes corrélés elles
se trouvent. Quand unc observalion ou une information nous a appris
dans quel couple de train d’ondes corrélés se trouvent les corpuscules,
alors nous devons renormaliser les ondes W de maniére qu'elles soient
toutes nulles dans tous les couples de trains d’ondes corrélés, sauf dans
celui ol se trouvent les corpuscules. Naturellement cela ne modifiera
nullement la valeur des ondes « dans les divers trains d’ondes puisque
Vonde w est une réalité objeetive indépendante de nos informations.

N /Y
Région N\
ouva lieu
la collision
/ h
Sa

Fig. 19.

Les ondes W se trouveront ainsi concentrées par la renormalisation
dans les couples de trains d’ondes corrdlés ot se trouvent les régions
singulitres, les coefficients C de la relation ¥ = C¢ devenant nuls dans
tous les autres couples de trains d’ondes corrélés. Ceci se congoit
aisément car les ondes W, construction de notre esprit, ne sont pas en
réalité liées a la structure objective de I'onde w et a ses valeurs locales,
mais doivent simplement pouvoir représenter la probabilité de présence
des régions singuli¢res-corpuscules ().

9. Résumé du chapitre. — Nous avons ¢tudié dans ce chapitre trois
questions qu’il est trés difficile de résoudre du point de vue ol nous

(') Ici encore on pourrait supposer que les trains dondes « pourvues d'une végion
singuli¢re se régénérent, alors que ceux qui en sont dépourvues dégénéreraient et peut-
° =] kl k=)
¢tre disparaitraient.
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nous sommes placé : corpuscule associé¢ 4 un groupe d’ondes en propa-
gation libre, ¢mnission de corpuscules par une source ponctuelle 1sotrope,
corpuscule traversant un miroir semi-réfléchissant pour son onde
associée.

Nous nous sommes alors trouvé en présence du dilemme suivant :
ou bien adnicttre que la partie extéricure de Ponde « s’affaiblit progres-
sivement de telle sorte que le corpuscule tend 4 « perdre » son onde «
extéricure ou bien supposer que le corpuscule conserve au contraire
mtégralement son onde w initiale. La premic¢re hypothose correspond a
la forme des solutions que Pon a 'habitude de considérer en Physique
classique et en Mécanique ondulatoire usuelle pour les équations
lindaires des ondes continues. En théorie de la double solution, elle
entrainerait. qu'il devrait exister une différence entre les corpuscules
« jeunes », ¢’esl-a-dire récemment émis, et les corpuscules « vieux »,
¢'est-a-dire ayanl subi de nombreuses aventures depuis leur ¢mission
et particllement dépouillés de leur onde u extéricure; mais il serait
alors assez difficile de comprendre le fait, cependant presque certain,
que les corpuscules « vieux » ont les mémes plbpriéléﬁ, notamment les
memes propriétés d'interférences, que les corpuscules « jeuncs ». Ll ne
faut pas oublier, en cflet, que I'on obtient couramment des phénomenes
d'interférences avec des photons provenant d’étoiles lointaines qui ont
voyagé dans L'espace pendant d'immenses durées (1). La seconde hypo-
these, au contraire, semble en théorie de la double solution plus satisfai-
sante du point de vue physique parce quelle correspondrait mieux au
caractere de permanence des corpuscules; mais pour la justifier, il
faudrail montrer qu'elle correspond a des propriétés de P'onde u essen-
tiellement lides au caractere non linéaire de son équation de propa-
gation. Malhcurcusement cette justitication, rendue ¢« priori tres ardue
par la difficulté qu'il y a toujours a étudier les solutions des équations
non linéaires, restera tmpossible a développer complétement tant que
subsistera notre ignorance de la forme des termes non linéaires a intro-
duire dans I'¢quation des ondes w.

(1) On pourrait cependant chercher a interpréter par le vicillissement des corpuscules
Papparente «récession» des nébuleuses spirales (au lieu dinvoquer Uhypothétique
«expansion de PUnivers» ).




CHAPITRE XIX.

KETATS STATIONNAIRES, TRANSITIONS QUANTIQUES,
CONSERVATION DE 1’ENERGIE.

1. Les états stationnaires. — Une des concepuons les plus fonda-
mentales introduites par I'ancienne théorie des quanta a 6té celle d’éra
stationnairve d'un systéme quantifié. Dans sa théorie de 'atome, M. Bohr,
en 1913, a introduit I'idée qu’un atome peut senlement se trouver dans
an cerlain nombre d’états stationnaires quantifiés a I'exclusion de toul
autre et il a rattaché cette idée a la théorie des quanta de Planck.
L atome serait susceptible de passer spontanément d’un état stationnaire
d’énergie E; & un autre état stationnaire d’énergic K< E; en émettant
I

(loi des fréquences de Bohr). Irradié par un rayonnement de {ré-

un quantum de rayonnement de fréquence v telle que dvy, = E;

quence vy, 'atome peut aussi passer de I'état stationnaire d’énergie E;
a 'état stationnaire d’¢nergie supéricure IS, en absorbant un quantum
d’éncrgie radiante /vy, Silatome dans U'état E; subitle choc d'un corpus-
cule incident, il peut passer del’étal d’¢énergie E;al'élat d’énergie Ey en
cédant au corpuscule énergic E;— E;. Inversement, si Patome est dans
Pélat d’énergie Ey, il peut passer dans Uétat d’énergie I s1le corpuscule
incident a suffisamment d’énergic pour que Patome puisse lui prendre
I'énergie E;-— k. Tel est dans ses grandes lignes le schéma tres sumple
de la théorie primitive de Bohr. L'étude expérimentale des phénomenes
d’excitation et de désexcitation par choc ainst qque celle des phénomenes
d’ionisation par choc ou 'atome perd completement I'un de ces électrons
internes par suite d’une collision ont enticrement confirné Uexistence
des états stationnaires qui est devenue Pune des conceptions fondamen-
tales de la Physique quantigque.

Dans la conception de M. Bohr, il n’y a plus que des élats station-
naires et on exclut @ préord toute description des transitions brusques

qui accompagnent le changement d’état stationnaire. D’apres M. Bolir,
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I'atome dans un élat stalionnaire est, en quelque sorte, soustrait a
Faction du temps 1 il W’évolue pas. Quant & la transition brusque qui le
fait passer d’un élat & un antre, ¢’est d’apres lui quelque chose qu’il est
absolument impossible de déerive par une image spatiotemporelle.

Lors de T'nvénement de la Mécanique ondulatoire, la notion d'élat
stationnaire a re¢u I'micrprétation suivante : Ponde W qui décrit I'élat
d'un systeme quantifié possede, quand le systdme est dans un éu
stationnaire, la forme d'une « onde stationnairve », ¢'est-a-dive qu’elle a
pour expression pour le 27" dlat stationnaire

(1) 1[“,,:/{,,((]\)6

ot g représente Fensemble des variables de configuration qui déerivent
le systeme. Pour déterminer les étals stationnaires, on devra trouver les
solutions de In forme (1) de I'équation des ondes pour le systeme quan-
tifié qui sont finies, wniformes et continues et qui satisfont aux condi-
tions aux limites du probleme considéré. Ces solutions constituent les
« fonctions propres » de Topérateur hamilionien correspondant a la
grandeur « énergie » et les « valeurs propres » E, sont les énergies des
¢lats stationnaires quandifiés du systeme.

Cest M. Schrodinger qui, le premier, a calenlé de cette facon,
en 1926, les énergies des élats stationnaires. Or, ¢’est lui aussi qui a le
plus séverement eritiqué la notion méme d’état stationnaire. Dans un
article vécent (V). ot il a dlaillears, en accord avec les idées que nous
avons exposées précédemment, insisté fortement sur e role essentiel
que doivent jouer en Mécanique ondulatoire les dimensions limitées des
trains d'onde. il a vemargué avec humour que la considération exclusive
des ¢tals stationnaires avail conduita une théorie « qui déerit minutieu-
sement les élats stationnaires, ¢'est-a-dive ceux qui ne sont pas inté-
ressanls puisquiil ne 8’y passe vien, et qui reste silencicuse sur les états
intermédiaires ». 1 remarque que Fétat d'un atome doit en général étre
représenté par une superposition d’ondes stationnaires de la {forme

)
K

. ~
(2) | :\_('4414((])6 ‘
B

et il en conclut quien Mécanique ondulatoire il doit étre possible de
représenter les transitions (qunli([lws en respectant les « preérogatives »
Ky
Y

des [réquences propres mats en supprimant complétement la

Yy Brit. J. Phil. Seo volo 3, o500, vy 10 el 11,
) 7
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prérogative des états stationnaires. Ces remarques sont 1rés intéres-
santes ¢t nous y revicndrons.

Ajoutons que M. Schrodinger voudrait, conformément a sa tendance
initiale, supprimer autant que possible la notion de corpuscule et assi-
miler les phénomenes d’échange d’¢énergie quantifice lors des choes i
des phénomenes de résonance. Nous ne le suivrons pas dans cetle voie
qut parait trés différente de la nétre et nous allons maintenant étudier
comment se presente, dans la théorie de la double solution, la conser-
vation de I'énergic quand la fonction W est une superposition de fonc-
tions propres de I'hamilionien.

2. Ktude de la conservation de ’énergie lors du choc d’un corpuscule
avec un atome. — Pour ¢tudier un cas précis, nous allons considérer le
choc d’un corpuscule dont I'énergie initiale pent dire considérde comme
ayant une valeur précise Ey avee un atome dont la fonction dondes W a
Pexpression géndrale (2). Le calcul par la Mécanigne ondulatoire montre
quiapres le choc, il y aura toute wne sérvie de possibilités affecties
de probabilités diverses @ pour chacune d'elles, le corpuscule s'¢loi-

Eo),

ou E;, —E,, représente 'une des différences de niveaux ¢nergétiques
I selq

gnera de Patome avee une dénergic de la forme B 4= (K,

de Patome quantific. St Pon conslate apres le choc que le corpuscule
posséde I'énergic Ey+ E,— LK., on devra en conclure que latome a subi
la transition / —> m et qu'il se trouve finalement dans T'état stationnaire
d’énergic E,,. Si dans son dtat initial, Patome s'¢tail trouvé dans Pétat
stationnaire d’énergie Iy, on pourrait dire simplement qu'en subissant,
lors du choe, la transition E;— E,,, il a eédé au corpuscule incident
I'éncrgiec E,—E,, et la conservation de U'énergic aurail alors un sens
wres clair. Mais ce sens est moins clair dans Phypothese ot nous nous
sommes placeés parce quelafonction d’ondes Waalors la forme initiade ( 2).
Avee Pinterprétation actuelle, nous devons dive alors que, dans son délat
initial, Patome a « potenticllement » toules les énergios I avee les
probabilités respectives | ¢, |?. Le fait quapres le choe, le corpuscule
soil trouvé avee 'énergic Eg+ (E;—E,,) montre alors que, dans le

choc, ¢’est Ja possibilité E = E,; qui s'¢sl « actualisée » pour Fatome et

que celai-ci, ayant cédé au corpuscule incident Pénergie E,—L,,, se
trouve finalement dans ['état d'énergie E,,. On voit ainst combien la
conservation de Pénergie est ici plus difficile 2 énoncer que pour la
Physique clz)xssi([m: parce que Vénergie de atome n'a plus dans son état
mitial une valeur bien déterminée. I1 en serait naturellement de méme

st Ponde M" du corpuscule incident compurluil plusicurs composantes
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spectrales et cela méme si Vatome se trouvait alors avoir imitialement
une ¢nergie bien définie.

Comme apres le choc le corpuscule s’éloigne en géndéral indéfiniment
de latome, la constatation de la valeur finale de son énergic peut se faire’
trés loin de Fatome. Clest cependant cette constatation qui, d’apres
Vinterprétation actuelle, mettrait Vatome dans Vétat d’énergie E,, !
Nous retrouvons la Pun des aspect du paradoxe des états corrélds
mis cn lumitre par M. Schrédinger et précédemment exposé au cha-

pitre VI (§ 4).

3. Point de vue de la théorie de 1a double solution. — Dans I'inter-
prétation causale que nous exposons, la phase ¢ joue, nous le savons,
le role d’une fonction de Jacobi extrapolée en dehors du domaine de
POptique géométrique et 'énergie d’un corpuscule (ou d’un systéme)
est, par suite, donnée par la formule

o
;

(3 W = TR

Lei se présente une circonstance remarquable. Méme en 'absence de
champ extéricur variable avec le temps, I'énergic n’est pas en général
constante. Prenons le cas simple d’un corpuscule en Pabsence de tout
champ extéricur. Si Ponde W est une onde plane monochromatique,
c¢'est-i-dire si le corpuscule se trouve dans un groupe d’ondes presque
monochromatique sans étre au voisinage immeédiat de son bord, I'énergie
du corpuscule restera constante. Mais dés que le W est une superpo-
siion d'ondes planes monochromatiques avee un spectre étendu, on
peut voir aisément par le caleul de la phase ¢ que cette phase ne sera
plus une foncuion hndcaire du temps et que Vénergie du corpuscule
définie par (3) ne sera plus constante.

Ce fait est reli¢ a la circonstance suivanle : le potentiel quantique
est alors une fonction explicite du temps. Or on sait que, si £ désignc
la fonction de Lagrange d’un corpuscule (ou d’un systeme), la dérivée
totale de I'éncergic W prise en suivant le mouvement est

AW 2
(i) [4 [7 .

drt T ot

Pour qu’il y ait conservation de I'énergie, 1l faut done que £
ne dépende pas explicitement du temps. Or nous avons vu au cha-
pitre X (§1), qu’en Dynamique de la double solution l¢ schéma lagran-
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gien est valable avec les définitions

1 ; .
(5) K= —mer—F —Q; W= mer+F+Q

(a Papproximation non relativiste}, F ¢tant le potentiel dont dérive le
champ extérieur et Q le potentiel quantique. Donc, méme si I est nul
ou ne conlient pas explicitement le temps, I'énergie ne sera constanie
que si Q ne dépend pas explicitement du temps. Or, dans le cas d'une
superposition d’ondes planes monochromatiques, () dépend en général
explicitement du temps.

Prenons comme cxemple le cas simple de 'atome d’hydrogeéne.
[ électron n’y aura une énergic conslanie que dans les élals stalion-
naires. Dans tous les états ou I'onde U a la forme géndérale (2), Péleciron
aura dans la théoric cansale une trajectoire tres compliquée définie en
fonction de la phase o de 'onde W par la formule du guidage et son
énergie ne demeurera pas constante au cours du mouvement.

Quand un corpuscule incident d’énergic By bien définie vient fruppcr
un atome, la théorie causale conduit done a penser qu’en principe le
vésullat du choce serait enticrement prévisible si 'on pouvait connaitre
la position initiale du corpuscule dans le train d’ondes mcident et celle
des ¢lectrons dans Patome. Mais, comme ces positions resienl néces-
sairemenl ignordes, toute mesure des positions modifiant les posilions
initiales, nous devons nous contenter de calculer, en accord avee les
formules de U'interprétation usuelle, les résultats possibles de la collision
avec leurs probabilités respectives. Le caleal se fasant dlapres la
méthode asuelle, on trouvera le méme résultat final @ le corpusenle doit

EHI.)

correspondant & un gain ou & une perte d’énergic égale a lune des diffeé-

s'éloigner de Patome avee une énergie bien définie égale a By + (E;

rences de nmiveaux énergétiques de atome; coreélativement celui-ci
restera dans un élat final stationnaire d’énergic quantifice 1,,.

I.’on voit ainsi que, comme dans interprétation usuelle, il n'y a
plus, & proprement parler, dans notre interprétation de conservation de
I'énergic puisque l'atome n'a pas en géndéral une énergie constante dans
son ¢lat initial. Tandis que, dans Pintevprétation usuelle, Natome dans
son ¢lat mitial aurait plusicurs valeurs « potentielles » pour son énergice
alfectées de probabilités diverses, en théorie cansale Pélectron atomique
aurait dans Pétat initial une énergie continuellement variable. Ni dans
un cas, ni dans Pautre, les conditions classiques de valeurs initiales et
finales bien définies de U'énergie ne sont satisfailes. La situation au

point de vue de la conservation de I'énergic ne pavait done pas au fond
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étre beauwcoup meilleure dans linterprétation actuelle que dans la
théorie causale.

4. Autre cas instructif de collision entre atome et corpuscule. — A
tire d’exemple, nons allons considérer un aulre cas instructif de collision
cenlre atome el cur[)usculc.

Soit un atome qui se rouve initinlement dans un état stationnaire

y

fondamental d’énergic mmimum E,. Get atome possede deux ¢états
excités d'énergies By et Ey = Bl Le schéma de ses niveaux est done le

suivanl :
\ e
A £
E
Epo 20
A Y, Eo
Iig. 20.

JOEEN DAPRTI I D

Posons I, Lo = g : ce sont deux énergies d’exci-

tation de atome dans son é¢tat normal. L'on a évidemment Fug > 154,.
Nous supposons de plus que, sur Patome dans T'état Ky, areive un

corpuscule dont Fonde W est

B 2R N
B/ 2 pael
ht T+ e h

(G) =

En réalité, point quion oublic géndralement de souligner dans ce
genre de probleme et qui pourrait avoir de I'importance, Fonde W for-
cément limitée n'a cetie forme (6) que dans la partie centrale de deux
groupes d’ondes qui se superposent.

Avee Pinterprétation usuelle, on doit dire que le corpuscule meident
a potenticllement, avee une égale probabilité, les deux cénergies Eyy
et Eyq. Son choe avee Natome peut dene provoquer dans ecet atome 'une
des transitions Fy-» 1y ou By Koo Dans le premicr cas I'énergic ciné-

tque finale de Pélectron mcident sera nulle; dans le second, elle sera

égale soil a Euy— Ky, soit a zéro. On ne peut pas dire quil ¥ anl
conservation de Iénergic an sens classique puisque le systeme n’a pas
dans 'état initial une énergic ayanl une valeur bien ddéfinie.

Avee Pinterprétation causale, au contraire, on déerira l'onde U7 du
corpuscule incident sous la forme

2 [ g+ Fg, g e /'an _]
m > ~

T o o s VR
i 2 2




270 CHAPITRE XIX.
équivalente a (6) et 'on aura

(%) dJs — B+ Ezo’ Je _ Pro-+ P20

) Jt 2 Jdz 2,

L’énergie W du corpuscule incident est donc ici égale a la valeur
Eyo+ Eyy

constante ————; ce qui correspond au fait que, lamplitude de W étant
Lo 27 [ Eyy— E 790 — P
(9\) @ = 005 [77 < 249 10 ‘— 20 P :> l ,

h 2 2 |

. a . . .
le quotient Ej—l et par suite le potentiel quantique () sont conslants et

mdépendants du temps.

Puisque I'énergie finale du corpuscule incident est soit zéro, soit

Eyy—Ej o =E; —E;, on voit que la variation de énergic du systeme
corpuscule + atome correspond & 'un des schémas snivants :

N 5 5 Eio+ Ey Fon— 1900 . | DY DA i
/«1E<}+ = I+ ‘) - ” <7 Ky ———)— .
N Ejo+ ks - - -
o) L+ .__m____'ﬂ/
- i+ E.q ) . | DI = DF Foy— Ey, X Foyg+ Eag
\5 ! . s ; e =L, + = - — S DA —-
(o +Eyy 4+ (Eag—E ) § 9 9 9,

Ici, bien que nous trouvions une énergie conslante pour 'état initial
du corpuscule ¢t que la valeur initiale de I'énergic du systeme soit
constante et bien déterminde, il n’y a cependant pas conservation de
I'énergie, la variation de 'énergie totale pendant le choc étant égale a
—+ %(Eg—Ei). Cette variation cst mathématiquement liée au fait que,
pendant l'interaction, il y a intervention d’un potentiel quantique dépen-
dant explicitement du temps. Il faut remarquer que les deux transitions
possibles (10) ayant la méme probabilité i) et donnant lica a des varia-
tions d’¢nergie ¢gales et de signe contraire, il y aurait une sorte de
conservalion statistique de I'énergie analogue a celle que MM. Bohr,
Kramers et Slater avaient un moment envisagée aprés la découverte de
I'effet Compton.

Mais on pourrait se demander si, en introduisant a colé de Iénergie
3; du corpnscule une ¢énergie lice a Vonde environnante, on ne pourrail
pas rétablir la conservation de I'énergie. Nous allons examiner cette
question en nous aidant d'un résultat que J'avais obtenu des 1927,

5. Le tenseur énergie-quantité de mouvement dans la théorie de
Ponde-pilote. —— Dans une Note aux Comptes rendus de novembre 1927



ETATS STATIONNAIRES, TRANSITIONS, CONSERVATION DE L’ENERGIE. 271
[13], yavais déja montré qu’il existait dans la théorie de Vonde-pilote
an tenscur impulsion-énergie formé a I'nide de 'onde W et possédant
une propriété de conservation. Voici mon raisonnement.
Nous avons vu qu’en théoric causale, on peut développer une Dyna-
wmigue du corpuscule ot celui-ci aurait la masse propre variable

h2 i
(1) M, = \//)13+ - —L"c" <___Daa)
(RO (.

el nous avons trouvé avec les notations de la Relativité géndralisée les

deux ¢quations

o Jo .
v g,"/-‘/<’}‘L:/C _EI)/{> <TI’ _3[’/> = M3 2,
: ! . [ o .
(‘4 I) o okl gn 9% p, _ )

¢ étanl o charge électrique du corpuscule et P le quadrivectour
« potenticl ¢lectromagnétique ». La vitesse d’Univers étant définie par
la!

. . . ., .
w/ = T avee wyu’ =1, la loi du guidage s’éerit
s o)
Jo .
o) cl— okt (75 ip, Y.
(12) Mycul= g (4).1,-/-' .1A>
Comme il résulte de (G) que le vecteur d’Univers de composantes
. . . o { U7 Y ) . ) )
covarianles égales a2 T —EP,I.) a une divergence nulle, nous
\ I *

pouvons le supposer proportionnel au gquadrivecteur
(13) Cl= oy !

qui exprime la densité et le flnx des corpuscules dans un nuage de
corpusenles décrivant toules les trajectoires assoctées i une méme

fonction W. On est alovs conduil a éerire
(1) op= KMjecar.

La densité do nuage étant alors donnée par la quatrieme composante
du vecteur G a pour valear

y Y 2] 7% ,
(1) o= (= I\Nl..tru—w:I\u-g“(’)—ﬁ_—elk .

On peuat voir aisément que, dans cette Dynamique, les ¢quations du
mouvenent du corpuscule prennent la forme

, 7 1 ) XUy ) (/):- oy oM,
i M _ N . k 7(2# < Te —_— 2 M ——_
(16) s (Myewr) = 2 M culu Al +eu \ et r).17i> e !
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Au sccond membre de cette équation, le premier terme représente
Paction du champ de gravitation, le second I'action du chawp dlectro-
magnétique et le troisieme action du potenticl quantique.

Supposons qu’il n’y ait pas de champ de gravitation ct considérons
tonjours le nuage de corpuscules assocté a4 une méme onde W. En mul-
tipliant (16) par Mya? el en tenant compte de I'équation (), on obtient
apres quelques transformations

J - . 1
(17) :):r—/l_("lf—.—ﬂl@_,_sf):n,

oit les S¥ sont les composantes mixtes du lenseur impulsion-énergic
¢électromagnélique bien connu. Les quantités T et I} sont données
par

Tik =z M, ukag,

T da da / Ja da
K i - — (‘?l/ ((L];‘IH 1A —+ 1 D a .

T oxl dre! At et

(18)
S s

i

Les T* sont les composantes mixtes du tenseur usuel impulsion-
¢nergie corpusculaire pour un nuage de densité propre o,, formé de
corpuscules ayant la masse propre M,. Quant au tenscur 117

¢ il repre-
sente des sortes de tensions internes dans le nuage des corpuscules
analogucs aux tensions internes dans un fluide. Si nous laissons de ¢oté
Ie champ ¢lectromagnatique, nous voyons que Péquation (17) nous
conduit 2 la conclusion snivante : en 'absence de champ électromagné-
tique, I'énergic et I'tmpulsion correspondant a la somme des tenscurs
T4 el IIF se conservent.

On pourrait étre tenté d'utiliser ce résultatl pour rétablir la conserva-
tion de U¢nergie en théorie causale. Nous avons va qu'en dchors du cas
de Vonde plane monochromatique, le mouvement du corpuscule défini
par la loi du guidage correspond a une ¢énergie et & une impulsion conti-
nuellement variables. Comme Pénergie et Pimpulsion du corpuscule
sont lides au tenseur T}, on pourrait chercher & interpréter Uintervention
du tenseur Il en disant qu’il ¥ a continuelleruent un échange d’énergie
et de quantité de mouvement entre le corpuscule et la partic extéricure
de son onde u (proportionnelle & W), é¢change traduit par Papparition
du potentiel quantique. On interpréterait alors la relation (17) en disant
quelle exprime la conservation de I'énergie et de I'impulsion toteles du
corpuscule et de son onde extéricure, Si, dans les exemples étudids
dans les paragraphes précédents, nous n’avions pas trouvé de conserva-
tion de I'énergie, ce serail simplement parce que nous n’avions pas tenu
compte de I'énergie de la partie régulicre de U'onde u.
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Malheurcusement, a la réflexion, cette interprétation ne parait pas
acceplable. Le raisonnement fait ci-dessus pour obtenir un tenseur
impulsion-énergie part de l'onde statistique W et définit le quadri-
vecteur courant-densité C/ et le tenseur T# en assimilant a? a la densité
moyenne d'un fluide. Or, ceci n’a de sens que pour une infinité de
corpuscules décrivant toutes les trajectores définies par Fonde W et non
pour un scul corpuscule décrivant 'une de ces trajectoives. Le théoreme
de conservation exprimé par (17) n’a donc qu’un sens statistique et I'on
n'obtient pus avec lui une conservation applicable a un seul corpuscule
comme il le faudrait pour qu'il y ait récllement conservation dans la
théorie causale du mouvement individuel.

Evidemment, on pourrait définir un tenseur 0 a partiv de 'onde «
comme on a défini plus haut IIf a partic de Ponde W : il suffirait
d'adopter pour 0f Pexpression (18) de IIf dans laquelle on aurait rem-
placé @ par f, cette définition n’étant valable d'ailleurs qu’en dehors de
la région singulieére. Ce nouveau tenseur d’ailleurs proportionnel a I,
pourrait définir des tensions dans la partie extérieure de I'onde w, mais
je ne vois pas la possibilité de démontrer, a partir de la, qu'il y ait un
¢change d’énergie et d'impulsion entre la région singualiere et la partie
régulicre de l'onde w assurant la conscrvation globale de ces grandeurs.

\insi, 4 moins qu'il n'existe une maniere de « sauver » la conserva-
tion de Pénergie et de I'impulsion que pour le moment je n'apercois
pas ('), il semble bien que la théorie causale soit obligée dadmettre qu'en
dehors de cas exceptionnels cetle conservation n'est que statistique.

6. Retour sur les processus de mesure. -— En tenanl compte de ce
(ui vient d’¢tre dit, nous allons revenir sur Pinterprétation de la mesure
dans la double solution. Nous raisonnerons sur la grandcuar énergic bien
((ne notre exposé soit transposable pour toute autre grandeur mesurable
et nous considérons un corpuscule bien qu’avec des modifications de
langage approprié¢ les mémes considérations puissent se transposer pour
un systéme.

Comme exemple considérons le cas suivant. Dans P'état initial nous
avons affaire i un corpuscule dont I'onde w extéricure (a laquelle 'onde
statistique fictive W doit ¢ire proportionnelle) est formée en général par
une superposition de fonctions propres de l’op(eraleufhamihonien. Tout
processus de mesare de 'énergle doit aboutir a diviser le train d'ondes

(1) Peut-¢tre pourrait-on supposer que les corpuscules puissent echanger de Pénergie
etode Pimpulsion avee e que nous nommons le «vide».

L. DE BROGLIE. 18
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initial en train d’ondes presque monochromatiques qui sonl séparcs .
dans 'espace et correspondent 4 une valeur bien définie de Pénergie.

Si1 W :20"' W, représente le développemerit de 'onde W dans I'état

k
mitial (el par suite de la partie extérieure de 'onde ¢ & un facteur mul-
tiplicatif prés), linterprélation usuellement admise conduit & dire que
dans cet état nitial le corpuscule n’a pas une énergie bien déterminée,
mais seulement des énergies possibles, chacune d'clles F; ayant une
probabilité

La théorie causale dira, au contraire, que dans P'état initial un cor-

¢, |? de s’actualiser dans une mesure ultérieare de U'énergic.

puscule a un mouvement compliqué et une ¢énergie continuellement
variable. Le processus de mesure de 'énergie, en divisant le train
d’ondes initial en trains d’ondes séparés dans Pespace et presque mono-
chromatiques et en obligeant le corpuscule a rester aceroché a l'un de
ces trains d’ondes, 1impose au corpucule d’avoir finalement une valeur
détermince de son énergie. Sans avoir a faire intervenir la division du
train d’ondes, on pourrait se contenter de dire que le processus de
mesure de I'énergie décroche la région singuliere de son onde ¢ primi-
tive pour Faccrocher sur 'une des composantes monochromatiques
de ¢.

Les deux interprétations rivales ne sausfont ni l'une, ni Pautre aux
conditions d'une vérilable conservation de I'énergie. Elles 1mpliquent
loutes les deux une intervention active du proeessus de mesure qui
modifie completement I'état du corpuscule conformément & une idée
essenticlle de la Physique quantique dont Iexactitude ne parait pas
douteuse. Dans la théorie de la double solution, Pintervention active de
la mesure de Pénergie serait précisément cet ¢ffet d’aiguillage de la
région stnguliére, du doigt de gant, sur lune des composuntes mono-
chromatiques de Uonde primitive de telle sorte que le corpuscule se
trouvant finalement accroclé i Uune des composantes monochroma-
tiques se troucerail alors avoir une énergie constante ().

(1) Mathématiquement cette idée d'aiguillage  pourrait se  traduire de la manicre
suivante :

Soit un corpuscule dont I'élat initial correspond & Ponde W normée ‘l'.)ﬁz Chpt avee

k

\j S g s v fonels VT T N P R wUrer. Siooanroes e
P lew[P== 1, les gp Glant les fonctions propres de la grandeur & mesurer. Si, apres la
k
mesure, Fon apprend que la grandeur & mesurer a la valeur correspondant a Pindice /,
Fon devea remplacer Wo par W= ¢ Cest Paspect que prend ict la réduction du paquet
de probabilité, opération subjective ceffectuée a la suite d'une information.

Au point de vue objectif de Ponde w, nous devons supposer que dans Pétat initial
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Des considérations analogues peuvent étre développées sur d’autres
exemples tels que le choc d’un corpuscule et d'un atome, chacun des
deux constituants d’abord séparés ayant a origine un état représenté
par une superposition de fonctions propres de leur hamiltonien indivi-
duel : dans tous les cas on retrouverait des conciusions semblables aux
précédentes.

11 semble que Uinterprétation offerte par la théorie de la double solu-
tion puisse étre admise aussi bien que Dinterprétation probabilité
usuelle : elle a méme sur celle-cit I'avantage d’offrir 4 notre esprit
une image claire « par figures et par mouvements » et d’échapper aux
objections précédemment étudiées (chap. VH) qui ont pu étre faites a
Iinterprétation usuelle. Toute la théorie de la mesure de M. von
Neumann pourrait étee veprise en se placant au point de vue de Uinter-
prétation causale @ il y aurait une étude intéressante a faire a ce sujet (1),

7. Retour sur la question des états stationnaires et des transitions
quantiques. -— Comme nous 'avons dit, M. Schridinger a trés justement
remarqué que I'état mitial d’un systeme quantifi¢ est, en général, non
pas un état stationnaire, mais une superposilion d’états stationnaires

(‘17:20/‘.‘[]’/), ce qui enléve a Détat stationnaire les prérogatives
3 3

injustifices qu’on lui attribue souvent depuis la théorie primitive de

Fonde ¢ o en dehors de Lo région singulicre la forme w, == (I, Z kg, G Gtant la constante
k

avaleur physique bien déterminée de la relation W = Ce. Le point de vue suggérd dans

le texte conduil & dire que, pendant da mesure, le corpuscule s'est déeroché de Ponde

w, pour acerocher sur la composante d’indice /. L'implantation de la région singulicre

sur celte composante aurait pour conséquence quun processus objectif de durée finie

lice a la non-linéarité ferait s’évanouir toutes les composantes aatres que celle d'indice 7

et de renforeer celle-ci de telle sorte que finalement VYonde « aurait la forme uyp= - ¢,

I
C
Coctant toujours la méme constante. Apres la réduction du paquet de probabilité, la
relation W == G se trouverait done finalement rétablie.

(1) Seit A une grandewr mesurable attachée aun corpuscule ct ¢ les fonctions propres
qui lui correspondent. Si'état initial est uue superposition de ¢, la théorie de Ja double
solution dira que la région singulicre de Vonde o du corpuscule est initialement implantée

sur Vonde ¢ ::'tZ crgr. Elle ajoutera que, par suite des interactions lides & une mesure
n

de A, Ta région singulicre se trouvera finalement implantée sur une onde ¢ proportion-

nelle @ F'un des ¢ Dans la terminologie de M. von Neumann, on dira qu'il y a passage

du « cas pur » initial au « mélange » final quand la région singuli¢re se détachant de la

superposition initiale est venue sattacher & Pune de ses composantes sans que Uon

sache encore Lagquelle.
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Bohr. Et cect est vrai aussi bien dans Pinterprétation causale que dans
I'interprétation usuclle avec cette différence que celle-ci considere 'état
de Patome comme 1mpossible 4 décrire par un mouvement dans Pespace
et comme correspondant a plusieurs valeurs possibles de Pénergie ayant
des probabilités égales aux quantités | ¢ (2, alors que celle-la considere
ce méme état comine Correspondnnt a4 un mouvemenl pal‘faitcmcnt
déterminé au cours du temps, mais dont I'énergie varie continuellement.

I’émission d’'un quantum de rayonnement par alome apparait alors
comme équivalent & un processus de mesure de 'énergie en ce sens qu’a
la fin de I’émission, le photon ¢mis est associé a un groupe d’ondes qui
s’est séparé de l'atome quantifié et qu’en décelant ce photon on peut
savoir dans quel état quantifié final se trouve Patome et par suite Iui
atiribuer une ¢nergie définie et constante.

Le cas est donc analogue & ceux étudiés au paragraphe précédent. On
peut en effet, bien que ce ne soit peut-étre qu'une manitre de parler,
considérer 'atome dans son état initial comme équivalent a un systeme
formé par I'atome et par un photon annihilé¢ d’¢nergie nulle. On est
donc ramené au cas d’un systéme form¢é initialement par un corpuscule
d’¢nergie bien déterminée et par un atome dont Pétat est représenlé par
une superposition d’ondes stationnaires. L'interprétation probabiliste
nous dit alors que dans I'état initial le systéme a toule une séric de

crl

raleurs E; possibles pour son énergie, chacune ayant la probabilité

et que dans I'état final, aprés une transition impossible a décrive par
une image spatiotemporelle, il a pris un état stationnaire correspondant
a Pune des énergies quantifiées E;, le photon emportant unc ¢nergie
égale a la différence E;— E; de deux ¢nergies quantifices de Patome @ de
ce point de vue, tout se passerait donc comme si I'atome avait d’abord
choisi l'élal stationnaire I; parmi ceux de la superposition primitive,
puis subi la transition E;— E; accompagnée de I'émission du photon.
Tout autre est naturellement le point de vue de linterprétation
causale. Pour elle, le mouvement initial des constituants de alome est
en principe parfaitement descriptible a l'aide d'une image spatiotem-
porelle, mais il correspond & une ¢nergie continuellement variable. Par
une suite d’états successifs toujours descriptibles en principe par une
image spatiotemporelle qui constituerait la transition quantique, le
systéme parviendrait 4 un état final ou le photon serait émis sous forme
d’'un groupe d’ondes séparé¢ de l'atome, 'atome se trouvant alors dans
un état final d’énergie quantifiée E; et le photon possédant Pénergic
E;—E;. Ici encore tout s’est passé finalement comme si I'atome avait
choisi I'état quantifié E; parmi ceux de la superposition primitive, puis
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cédé an photon I'énergie E;— E; avec conservation de 'énergic. Mais
on aurait passé de I'état initial a I'état final par un mouvement bien
défini permetlant une description de la transition quantlique en
termes d’espace et de temps : d'aprés ce que nous avons vu précédem-
ment, ce mouvement s’opérerait d’ailleurs sans conservation de I'énergie,
cetle conservalion n'ayant licu que statistiquement en moyenne pour un
tres grand nombre de processus analogues correspondant a des valeurs
initiales diverses pour la position des constituants du systeme.

Plagons-nous dans le cas ot 'on peut attribuer I'émission du photon
au changement d’élat d’un scul électron intraatomique comme c'est le
cas pour 'atome d’hydrogene. Alors dans I'état initial la région singu-
licre qui constitue 'électron alomique se lrouve accrochée sur une
onde ¢ qui correspond a4 une superposition d’ondes statlonnaires : le
départ duphoton aprés une période de mouvement troublé aura eu pour
effet de décrocher Iélectron de Ponde ¢ intuale pour l'acerocher sur
I'une de ses composantes monochromatiques, ce qui aura rendu son
énergic constante. Nous retrouvons ici une image employée au para-
graphe précédent.

Nous devons maintenant insister sur un point qui a une tres grande
nnportance. Dans Pétat actuel de la théorie, on évalue les probabilités
des processus de transitions quantiques par une méthode de caleul,
nagudre suggdérée par le principe de correspondance, en représentant
Paction de la matiere sur le champ ¢lectromagnétique par des expressions
ot figure le champ dlectromagnétique de la théorie classique des ondes
¢lectromagnétiques de Maxwell-Lorentz et ou les éléments clectrisés de
la matiere (les ¢lectrons intraatomiques) interviennent par intermdé-
diaire du quadrivecteur courant-densité défini a partir de 'onde W de
I'atome. On a remarqué depuis pres de 3o ans qu'il y a la une sorte de
contradiction avec la fagon dont on ¢éerit I'équation des ondes a I'ini¢-
rieur de Patome car dans cette équation on fait figurer les potentiels
coulombiens d’interaction entre les particules chargées, ce qui revient a
les regarder comme ponctucelles et bien localisées dans 1'atome. Donc,
d’une parl, pour obtenir la forme de londe W, on considere les dlec-
irons comme bien localisés dans 'atome et, d'autre part, pour calculer
I'interaction avec le rayonnement, on considére ces mémes ¢lectrons
comme dilués dans l'atome avee la densité statistique |W 2. Ceule
contradiction flagrante ne peut gueére s’expliquer qu’en adoplant la
conclusion suivante : toute la théorie actuclle des interactions entre
mati¢re et rayonnement ct la.prévision des probabilités de transition
qui en découle n'ont qu'une valeur statistique, elles permettent de
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prévoir exactement les phénomenes globaux d’¢mission, d’absorption,
de difusion, etc., mais ne fournissent aucune description exacte des
phénomenes individuels. La théorie purement probabiliste actuelle se
tire de la difficulté en niant, semble-t-il, existence méme des phéno-
ménes individuels; mais, outre que ce point de vue me parait assez
difficile a admettre, il me semble aussi en contradiction de P'emploi du
potentiel coulombien pour la représentation des interactions.

Une autre raison me pousse a croire que la théorie actelle des inter-
aclions entre matiére et rayonnement n'a qu’une valeur statistisque,
c’est que le champ dlectromagnétique classique n’est sans aucun doute
rien d’autre que Uonde W a plusieurs composantes de cette particule de
spin 1 qu'est le photon. Ceci ressort clairement de la théorie générale
des particules a4 spin, en particulier sous la forme de la théorie de la
fusion que nous lui avons donnée (). Dans la théorie de la double
solution, I'onde W, n’étant que fictive et statistique, ne peut pas conduire
a une description réelle et individueHe des phénomenes, bien qu’elle
puisse naturellement fournir des prévisions statistiques exactes. La
théorie causale conduit donce a penser que la véritable description du
champ ¢lectromagnétique et de ses interactions avec les particules élec-
trisées doil faire intervenir non pas 'onde W des photons, c’est-a-dire
l'onde ¢lectromagnétique classique, mais bien leur onde u, ¢’est-a-dire
un champ électromagnétique avec régions singulicres.

Il est évidemment tres difficile a 'heure actuelle d’imaginer comment
on devrait déerire I'interaction entre onde u des électrons et 'onde u
des photons (qui, étant des bosons, peuvent se grouper a plusicurs sur
une méme onde) pour obtenir une description réellement individuelle
des phénomenes d’émission, d’absorption, de diffusion, etc. Pour y par-
venir d'une fagon satisfaisante, il faudrait sans doute d’abord arriver a
se représenter, comme je 'ai proposé dans ma théorie de la fusion, les

. . e, 1 . .
particules de spin différent de S comme des particules pouvant résulter

" . . - 1 . . .
de la fusion de constituants de spin -, ce qui doit se traduire dans le
2 .

langage de la double solution en disant que leur région singulicre est
formée par la confluence de plusieurs régions singulieres qui viennent
se fondre en une seule de symétrie généralement différente. Le phéno-
mene inverse de la dissociation d’unc particule c¢n plusicurs autres
particules devrait alors étre représenté par une fragmentation de la

(V) Yoir Théorie générale des particules & spin (méthode de fusion), »° éd.,
Gauthier-Vitlars, 1954,
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région singulidre en plusicurs régions singulieres; d’apres les données
actuelles sur les particules, elles semblent pouvoir « se transformer,
pour ainsi dire a volonté, les unes dans les autres pourvu que le pro-
cessus soit compatible avee les lois de conservation » (en particulier de
la masse de la charge et du spin) (') el ce fait parait indiquer que Ia
fragmentation en question doit pouvoir s’effectuer de plusicurs maniores.
Avec ces conceptions, il devrait ¢étre possible d'interpréter I'émission et
I'absorption des photons, la eréation et I'annihilation des paires d’élec-
trons et plus généralement tout Pensemble des phénomencs de ce genrve
que 'on rencontre maintenant constamment dans la nouvelle Physique
des nucléons ct des mésons. Par cetle voie et en passant par I'intermd-
diaire du formalisme de seconde quantification, on devrail pouvoir
retrouver, loul au moins a titre de représenlation statistique moyenne,
la théorie quantique des champs avec ces nombres d’occupation
vaviables. Peut-¢tre parviendrait-on ainsi & comprendre la véritable
signification de ces méthodes de caleul qui, & Pheure actuelle, font
plutot figure de «recettes » pour des prévisions que de véritables théories
explicatives.

Ces problemes sont assurément tres difficiles et 1l semble prématurd
de les aborder dans DUétat actuel de la théorie de la double solution.
Mais difficile ne veur pas dire 1mpossible et ece qui est insolable

aujourd’hui peut étre résolu demain.

(1) W. Hersessire, La Physique de noyau atonmique, Albin Michel, 1934, p. 35.

e € € §



CHAPITRE XX.

RESUME ET CONCLUSIONS.

1. Vue d’ensemble sur les résultats obtenus. — Si nons cherchons
maintenant a résumer le contenu de la seconde partic de cet Ouvrage,
nous pouvons dire que les chapitres VI a XVI inclus contiennent
"un exposé d’idées qui se trouvaient dé¢ja dans mes travaux de 1927,
mais complétées par de nouvelles recherches. Les questions traitées
dans ces chapilres nous paraissent dans I'ensemble & pen prés bien
posées. 11 y aurait cependant a consolider le passage de la Mécanique
ondulatoire du corpuscule unique dans un champ donné a la Méca-
nique ondulatoire des systmes de corpuscules en interaction, a Ia
compléter par unc interprétation détaillée du principe de Pauli et aussi
a rendre plus rigoureuse la justification du role statistique du | W
Bien qu’il y ait évidemment encore beaucoup de travail a faire dans ces
directions, je n’ai pas I'impression qu'il existe de ce coté des difficuliés
insurmontables.

Beaucoup plus délicats sont les problemes abordés dans les chapitres
XVII, XVIII et NXIX. La relation établic entre Ia forme extéricurce
(ou partic réguliere ¢) de T'onde u et la forme de Ponde W me parait
tout a fait essenticlle pour pouvoir concilier la conception des ondes w
avee les sucees de Pinterprétation actucelle, mais il nous a fallu essayer
de rendre cette liaison assez souple pour ne pas faire participer
Ponde w qui est, par hypothise, une réalité objective, au caractere
subjectif de Ponde  statistique W. L'étude des  difficultés qui se
présentent dans le cas des groupes d’ondes, dans celui des miroirs
semi-transparents ¢t plus généralement lors de la réduction des paquets
de probabilit¢, difficuliés, ot inlervient certuinement Uexistence
souvent passée sous silence des fronts d’ondes, nous o conduit a des
idées intéressantes, mais audacicuses, qui ne sont encore, nous devons

I'avouer, que des suggestions. Lenr développement rigourcux exigerait
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des considérations mathématiques difficiles et ne serait méme possible
que si 'on parvenait, peut-¢ire par des analogies avec la Relativité
généralisée comme Uespere M. Vigier, a préciser la forme des équations
de propagation non lin¢aires satisfaites par les ondes u. linfin la ques-
tion de la conservation de énergie et Iensemble des considérations
exposées au chapitre NIX demanderaient a ¢ire soigneusement appro-
fondies.

Une des idées essentielles auxquelles nous sommes parvenu, nous
parait étre la suivante : « la théorie usuelle, en se bornant a prior: a
des dquations de propagation lincaires, fait disparaitre les accidents
locaux dus a la non-lindarité (tels que régions singulieres et bords de
trains d’ondes), clle eflace ainsi les structures corpusculaires ¢t, par
suite, n’obtient plus qu’unc image continue a caractére slatislique;
la possibilité d’obtenir ainsi une image statistique adéquate est due
au fait que la partie réguliere de Ponde u se trouve étre, par sa forme
analylique, étroitement apparentée a la forme usucllement admise pour
l'onde ¥, du moins avec les réserves que nous avons précisées ».

2. Analogie des conceptions de la théorie de la double solution avec
des idées plus anciennes. — Il est curicux de remarquer que le déve-
loppement de la théorie de la double solution nous a conduit a retrouver,
sous des formes parfois un peu modifiées, des idées qui avaient été
suggérées par divers auteurs au cours de la crise provoquée en Physique
théorique par I'apparition des quanta.

Deés ses premiers travaux sur les quanta de lumiere, M. Einstein
avait inststé sur le fait que 'onde lumincuse (qui est, nous le savons
aujourd’hui, l'onde W associ¢e au photon) ¢tait unc sorle d’onde
« fantome » gui donnait sculement une description statistique de la
répartition des photons; si on admet Pexistence d’une réalité objec-
tive, cette maniere de voir conduil & penser que les photons doivent
¢tre des sortes de singularités du véritable champ lununeux, londe
lumineuse continue classique ne fournissant qu'une représentation
statistique. Or, ¢’est précisément la U'idée qui a servi de base a la
théorie de la double solution.

Plus tard, Einstein, méditant sur la dualité onde-corpuscule et sur le
succts de Pinterprétation probabiliste de la Mécanique ondulatoire,
a ¢1¢ conduit & penser que la probabilité de présence |W|* devait
résulter d’une sorte de mouvement caché des corpuscules a caractére
brownien. Nous avons vu que la « loi du guidage » conduil en

général a des mouvements corpusculaires trés compliqués qui cepen-
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dant ne peuvent étre qualifiés de browniens. Mais nous avons vu
aussi que les fluctuations inévitables des potenticls extérieurs ainsi que
les fluctuations des conditions aux limites provoquant celles des
potentiels quantiques doivent ajouter & la complexité des mouvements
prévus par la loi du guidage et leur donner un caractére aldatoire qui
permet de les qualifier de brownoides. L’image ainsi obtenue apparait
comme trés voisine de celle qu’envisageait Einstein.

Les conceptions introduites dans les chapitres XVII et XVHI sont
aussi & rapprocher de certaines remarques anciennes. M. Schridinger
avait pensé, au début de ses famenses recherches, a obtenir une image du
corpuscule en l'assimilant & un train d’ondes ¥, mais la tendance cons-
tante des trains d’ondes a I'étalement, liée au caracteve linéairve de leur
propagation, ne permettait cependant pas de chercher amnsi i identi-
fier le corpuscule avec I'ensemble d’un train d’ondes W. Les idées que
nous avons développées dans les derniers chapitres nous ont amené 4
nous figurer le phénomene ondulatoire dont le corpuscule serait le
centre comme une sorte de « cellule » au sens biologique formée :

[()

d’un noyau central qui serait Ia région singuli¢re ou corpuscule au
sens étroit du mot; 2° d’une région extérieure élendue (ou u ~ CW)
et 3¢ d’une sorte d’enveloppe constitu¢e par des fronts d’ondes aux
propriétés peul-éire non linéaires. Cette sorte de cellule devrait dans
Vensemble son autonomie et sa stabilité a I'intervention de phénomenes
non linéaires. L'ensemble de 'entité « corpuscule » au sens large du
mot serait ainsi assimilable & un train d’ondes organisé auntour d’un
centre, solidaire de lui et doud d'une cerlaimne permanence. On retrou-
verait donc, sous une forme convenablement modifi¢e, I'idée primitive
de M. Schrodinger.

Nous avous vu aussi que la validité de la relation W= Cu dans la
région extérieure des trains d’onde apportait une sorte de justification
de la théorie de T'onde-pilote (malgré le caractére essentiellement
difiérent des ondes « et W, l'unc objective et Pautre subjective) et,
sans permettre de qualifier 'onde W de réalité pl1y51que expliquait le
succes du point de vue de M. Bohm.

Enfin, en examinant le probleme de 1'émission de corpuscules par
une source et la représentation de ce phénomeéne par une onde
sphérique divergente, nous avons reconnu que londe sphérique
divergente pourrait n'élre qu’une représentation moyenne de 'émis-
sion isotrope par la source de trains d’ondes organisés du type dont
nous venons de parler. On se rapprocherait ainsi de la conception
du rayonnement en aiguillle (nadelstrahlung) développdée autrefois
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par M. Einstein suivant laquelle une source ponctuelle enverrait dans
toutes les directions des trains d’endes limités.

Cet ensemble de rapprochements montre que la théorie causale de
la double solution pourrait scrvir a faire une synthese de diverses
lenlatives anclennes faites pour représenter d’une fagon concréte le
dualisme onde-corpuscule.

3. Possibilités de vérifications expérimentales. — Pour que la
théorie causale puisse vraiment s’imposer, il faudrait non seulement
qu'elle permette de lever les objections opposées a I'interprélation
purement iprobabilisic (ce qu’elle semble dés maintenant faire en
grande partic), mais aussi qu'elle conduise a prévoir des phénomeénes
constatables que interprétation actuelle ne préveit pas. Sans pouvoir
affirmer qu’il en sera ainsi, nous pouvons cependant préciser dans
quelles directions 'on pourrait chercher de telles confirmations.

Tout d’abord, dans le domaine de la Physique du noyau, ou les
théories sont encore actuellement assez cmbryonnaires et assez peu
couronnées de succes, le fait que dans un espace dont les dimensions
sont seulement de U'ordre de 10712 ¢m se trouveralent enlassées, suivant
les conceptions de la double solution un grand nombre de régions
singulieres permettrait de penser que Uinterprétation usuelle pourrait
la se wouver en défaul. En effet, au point de vue de la théorie de la
double solution, la justification de l'interprétation usuelle du role des
ondes W repose sur hypothese que les régions singulieres sont a des
distances mutuelles qui sont grandes par rapport a leurs dimensions,
c’est-a-dire qu’clles ne doivent aucunement empiéter les unes sur les
autres. Cette condition pourrait fort bien ne pas se trouver toujours
réalisée dans les noyaux el alors les prévisions basées sur les propriéilés
statistiques de Ponde W pourraient se trouver en défaut : une descrip-
tion du noyau d’un genre nouveau a l'aide d'ondes u a régions
singulieres tros rapprochées ou méme cmpiétant les unes sur les autres
pourrail permettre de prévoir correclement certains phénomenes
nucléaires.

Nous avons noté (chap. XI, § 6) que la démonstration de la formule
du guidage implique I'hypothese que la phase commune des ondes u
et ¥ a la méme valeur sur toute la sphere S dont nous avons entouré la
région singuliere. Or, cette hypothese cesserait nécessairement d’étre
exacle pour des particules ayant des éncrgies suffisamment ¢levées et
alors la signification statistique du W, qui dans la théorie de la double
solution dérive de la formule du guidage, pourrait ne plus étre valable.
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Comme les progres de la technique expérimentale permettent d’obtenir
des particules d’¢énergies de plus en plus grandes, on peut penser qu'il
arrivera un moment ol les prévisions faites a I'aide de la fonction W par
I'interprétation actuclle cesseront d’étre valables. Il faudrait alors
chercher a voir ce qui se passe pour la propagation des ondes » quand
leur longueur d’onde devient de Pordre des dimensions de la région
singuliere, ce qui devrail permettre une prévision des phénomenes
observables au-dela de la limite de validité de Pusage des ondes W,

S’il existe, suivant les conceptions indiquées au chapitre XVIII, des
groupes d’ondes sans étalement, il se pourrail aussi que quelques-unes
des propriétés usuellement atiribuées aux groupes d’ondes par la théorie
linéaire ne soient pas exactes et qu’il en résulte quelques faits obser-
vables non conformes aux prévisions usuelles tels qu'une limitation
de la finesse des raies que I'on pourrait isoler en prélevant un petit
intervalle spectral dans un fond continu.

Une autre voie de vérifications pour la théorie de la double solution
devrait s’ouvrir du coté des particules de I’échelle atomique. On sait
qu'actuellement cette théoriec se heurte a de graves difficultes,
notamment celle des énergies propres infinies. Une description des
particules élémentaires qui les identifierait avee une région singulitre
dua champ = dans le cadre spatiotemporel permettrait de retrouver la
notion de « rayon » de la particule (rayon de I'¢lectron par exemple)
et d’éviter ainsi I'éeueil des énergies propres infinies. On pourrait sans
doute aussi, peut-étre en faisant intervenir U'idée de fusion, ramener
les propriétés des particules, telles que spin, moment magnétique ou
méme masse, 4 des différences de structure correspondant a des
différences de forme de 'onde w a Pintérieur de la région singulidre.
Si ces espoirs élaient justifiés, on pourail parvenir par celle voie a une
description ct a une classification naturelle des particules que la
découverte incessante de nouvelles sortes de mésons rend chaque jour
plus désirable. Assurément ce n’est la qu’un programme rendu de toute
facon tres difficile a exécuter par l’igxl()l'ance o nous sommes de ce qui
peut se passer exactement a Uintéricur des régions singulidres. Néan-
moins il n’est pas interdit d’espérer que la théorie causale, en nous
permettant de représenter les propriéiés des particules dans un
cadre spatiotemporel, nous fournisse nu jour une théorie réellement
claire et explicative des propriétés des particules : au contraire, Ia
chose parait irréalisable dans le cadre de linterprétation probabiliste
actuelle car celle-ci ne dispose comme intrument de description que
d'une onde W a caraciere statistique et subjecuf et de formalismes
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abstraits et également statistiques comme ceux de la seconde quantifi-
cation et de la théorie quanlique des champs. ‘Dans le cadre d’une
future théorie des particules, des vérifications expérimentales de la
théorie de la double solution apparaissent donc comme possibles.

4. Raccord de la théorie de la double solution avec la Relativité
généralisée (1). — Lanalogie de la formule du guidage avec les
démonstrations de MM. Georges Darmois et Emstein en Relativité géné-
ralisée porte a croire gu'il existe entre les deux points de vue unc
parenté profonde. M. Vigier a poursuivi avee beaucoup d’avdeur le
développement de cette analogie en cherchant a introduire les fonctions
d'onde w dans le cadre d'un espace-temps convenablement défini. Je ne
e prononceral pas sur la valeur des tentatives de M. Vigier qui pour-
raienl sans doule étre modifices de diverses manidres. Mais il est
certain que des tentatives de ce genre présentent un grand ntérét parce
qu’elles pourraient conduire a une unification des iddées de la Relativité
généralisée avec celles des quanta.

Le but a ateindre serait de se représenter chaque type de corpuscule
(v compris le photon) comme une région singuliere dans un chamyp
ondulatoire u convenablement incorporé a la structure de T'espace-
temps : dans cetle représentation devrait s’introduire la constante de
Planck d'une fagon qui viendrait nous ¢éelairer sur la véritable signifi-
ation du quantam  d’action. La maniere méme dont serait définie
Ponde w de chaque type de corpuscule pourrait conduire & trouver la
forme des ¢qualions non lindaires sauisfaites par cette onde w (ou par
ses composantes quand elle en a plusicurs) : on obtiendrait ainsi I'une
des donndes essentielles qui seraient nécessaires pour un développement
complet de Ia théorie de la double solution sous Ia forme que nous
avons adoplée.

Cette manicre de définir les corpuscules par une petite région ot un
certain champ, ob¢issant a des ¢quations aux dérivées partielles non
lingaires, présente des valeurs trés ¢levées est tout a fait conforme aux
conceptions que M. Einstein a toujours développées a ce sujet. Il a éerit
en effet : « Pourtant, ce qui me parait certain, ¢’est qu’il ne fant pas
qu’il y ait dans les fondements d’une théorie consistante du champ un
concept quelconque concernant les particules. Toute la théorie doit étre
basée uniquement sur des équations diflérentielles partielles et leurs
solutions sans singularité » et plus loin : « Si une théorie du champ

(1) Pour cette question, on pourra se reporter & la These de M. Vigier.
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aboutit & une représentation des corpuscules libre de singularité, alors
le comportement de ces corpuscules dans le temps est uniguement
détermindé par les équations différentielles du champ » (1). Soulignons
que, dans la région que nous nommons singuhiere, la fonction u doit
présenter de tres grandes valeurs, mais sans doute pas une véritable
singularit¢ mathématique, ce qui est en accord avec les conceptions
de M. Einstein. Le théoréme du guidage correspond d’ailleurs exacte-
ment a la derni¢re phrase citée plus haut.

M. Einstein a qualifié les champs avec fortes concentrations locales
qu’il pense devoir étre la vérnable représentation des corpuscules de
« champs a bosses (1) ». Dans notre conception les ondes u sont bien
des champs ondulatoires a bhosses.

Réalisant un espoir maintes fois exprimé par le génial physicien qui
découvrit la méme année la Relativité et les quanta de lumidre, la
théorie des ondes u aidera peut-étre un jour a réaliser une magnifigue
synthose de la Relativité généralisée et des Quanta.

(') Albert Eixstay, Coneceptions secientifiques, morales et sociales, Flammarion,
1952, p. 86 et 103.
(') Bunch-like.

> 6
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NOUVELLE DEMONSTRATION DE LA FORMULE DU GUIDAGE.

Un travail vécent de M. Gérard Petiau [ 14] nous a suggéré une
nouvelle démonstration de la formule du guidage s'appuyant sur la
théorie des ¢équations aux dérivées partielles linéaires du premier
ordre [ 15]. ,

Partant de Iéquation de Klein-Gordon comme nous Pavons fail au
chapitre TX, nous oblenons comme équation de continuité de la solution

wri

. e
régulitre ae’ 7,

) . )
(1) —”)’; + Ao yos, 0 :),:’
R e - et _
+Biroyv, 3,00) ay + G(r, y, 3, l>33 + D, y, 5, Oa =0,
avee .
'j‘ AL
O —— dr ¢
l)'{« . !
an
dz 3 Jz
, i ‘ gz e O
D= — 2= 5 C=—c2 ; D= :
9%y Ly rdy
J3 N o at

Pour la solution singuliere « :feTY de méme phase ¢, nous obte-
nons la méme équation de continuité (1), mois ou 'amplitude a singu-
larité f remplace 'amplitude continue a.

Les équations différentielles correspondant & équation aux dérivies
partielles (1) sont

dr dy ds dea
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Les trois premiéres ¢quations (3) admetient trois intégrales premiéres
%) Silw, ¥, 5, 1) =1, Jolw, ¥, 5, 80) = u, Sale, vy 3, 0) =,

qui, pour des valeurs constantes de 2, u, v, définissent des lignes de
courant dans I'espace-temps correspondant, on le voit aisémenl, a la
formule du guidage sous la forme geénérale (36) du chapitre IX].
. .o, . da ,
Mais nous devons en oulre considérer larelalion — == Dz, y,z0)dt.
p . J

Or, les vaviables z, y, 5 peuvent s’exprimer, & Paide de (4), en fonction
de &, p, v et ¢, de sorte que D (z, v, 5, ¢) = 1'(2, ¢, v, £). Le long d'une
ligne de courant, %, u, v étant constanlts, on a

/

N o
- P — ¥k i
(35) loga :j F(a,m, v, 0) ou a=oae / et

o ¢tant une constante et lintégration sur ¢ ¢lant effectuée a 2, p, v
conslants. La méme expression (3) est valable pour f, puisque la
phase o est ko méme pour la solution réguliere et pour la solution
singulidre.

La théorie des ¢quations aux dérivées particlles linéaires du premier
ordre nous apprend que la solution générale de (1) s’obtient en ¢erivant
2:==®(k, 1, v) ot ® est une fonction arbitraire. Nous aurons donc
comme forme commune pour « et pour /'

Al

o RN

at . .
=e * D(n, 1w, ),

(6) ¥

—

le premier facteur du seccond membre étant le méme pour « et pour f,
mais la fonction @ ¢tlant diffiérente dans les deux cas. Comme « est par
définition une fonction réguliere, le premicr facteur ne peul pas
présenter de singularité, sans quoi il n’existerait pas de solution régu-
litre correspondant i la forme adoptée pour ¢, ce qui serait contraire a
I'hypothese. Par suite, f ne peul présenter une singularité au point 2y,
Vo, 5o de lespace au temps &, que st la fonction @ correspondante
présente une singularité pour les valeurs

70 =/1 (2o, oy T, o), Ly Z/; (ros Yoy To; To)s Vo :,/':;("‘07 Yoy Soy Lo)

de &, p, v. Mus alors la fonction f présente dans Pespace-lemps une

ligne singulitre définie par 2 =714, @ = po, v =vo; d'ou le théoreme :

S’il existe une solution u de Uéquation linéaire des ondes présen-
tant une singularité et ayant la méme phase o qu'une solution
réguliere ¢ de la meéme équation, le point singulier de w est animé
aw cours du temps du mouvement précu par la formule du guidage.
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La démonstration donnée ci-dessus dans le cas de 'équation d’ondes
de Klein-Gordon peut étre présentée sous une forme plus générale
applicable a toutes les équations d’ondes que l'on rencontre actuel-
lement en Mécanique ondulaire et en particulier aux équations de
Dirac. Cette forme générale de la démonstration a Pavantage de mieux
faire ressortir la véritable nature du résultat obtenu.

Toutes les équations d’ondes de la Mécanique ondulatoire permettent
d’obtenir une image hydrodynamique en définissant une densité p et

une densité de courant p¢ qui s’expriment bilinéairement a 'aide de la
fonction d’onde et de sa conjuguée et qui obéissent a I'équation de
continuité

(7) :j—i—t—di\'(pz):o.

Supposons que V'équation d’ondes considérée admette deux solutions
« couplées », 'une régulicre W, Pautre a singularité ponctuelle mobile «
et que ces deux solutions aient les mémes lignes de courant définies par

> . .
un méme champ de vecteurs ¢. Pour la solution W, la densité p (W) est
réguliere; pour la solution u la densité p(u) présente une singularité
ponctuelle. On peut ¢erire a la fois pour p(W') et pour o(u)
dp do dp de

(8) of Ty T ey os s

%8 L odivi=o0 .
da Yy ;7 F -

A cette équation aux dérivées partielles linéaire du premier ordre en p,
correspondent les équations différentielles

_dr _dy _dz __dp

Vie vy Yz p div z

(9) dt

Les trois premiéres équations admettent les intégrales :
<19> f1(.’1?, Yy 5 =7, f‘-’(""‘a Yy & )=y, f:;(.’t, Y5 t)=v

qui, pour des valeurs constantes de 7, u, v, définissent unec ligne de

. >
courant dans l'espace-temps. Posons dive=F(4, i1, v, £); nous trouvons
comme plus haut

/

¢
4/‘ Fh, v, tidt
p(¥W)=e -

(D1<;‘7 y V)y
(1) ,

7/‘ F (A, @,v, tjdt .
?(u):e (I)2</‘a u, v

les fonctions ®, et ®; n’étant pas déterminées par Pintégration. Le
premier facteur étant le méme dans les deux expressions (11), il doit

L. DE BROGLIE. 19
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étre régulier et par suite la fonction @, doit a I'instant initial présenter
une singularité pour les valeurs A =1y, p.=po, v="1e. Il en résulte
comme précédemment que la singularit¢ ponctuclle de w« doit suivre
une des lignes de courant.

Appliqué aux dquations de Dirac, ce résultat montre bien que le
guidage doit en ce cas étre ddéfint a aide du quadri-vecteur courant
comme nous l'avions fait au Chapitre XVI.

Nous sommes ainsi parvenu a I'énoncé géncéral suivant : « 57 une
équation d’ondes de la Mécanique ondulatoire admet deux solutions,
lUune réguliere, Uautre & singularité ponctuelle, possédant les mémes
lignes de courant, la singularité doit aw cours du temps suivre Uune
des lignes de courant ».

Remarquons que la démonstration précédente subsiste si l'onde u,
au lieu de présenter une véritable singularité ponctuelle, prisente
une trés petite région singuliere o elle prend des valeurs trés élevées.
En effet, @, doit alors prendre des valeurs trés élevées pour 2, p, v, trés
voisins de Ao, Mo, vo et le mouvement de la région singuliere doit étre
représenté par un tube d’univers extrémement déli¢ dont l'axe coincide
avec une ligne de courant.

i
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