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PRÉFACE

L’on dit parfois que, sur scs vieux jours, l’homme revient vers 
ce qui l’a attiré dans sa jeunesse. Peut-être est-ce pour celte raison 
que, depuis quatre ans environ, s’est posée à mon esprit la ques 
tion suivante : les conceptions qui avaient orienté mes recherches 
de 1922 à 1928 lors de mes premiers travaux sur la Mécanique 
ondulatoire ne seraient-elles pas plus exactes et plus profondes 
que celles qui ont prévalu depuis ?

Dès 1923, j’avais aperçu clairement qu’il fallait associer la 
propagation d’une onde au mouvement de tout corpuscule, mais 
l’onde continue du type de celles de l’Optique classique que 
j’avais été amené à considérer et qui est devenue l’onde tp de la 
Mécanique ondulatoire usuelle, ne me paraissait pas décrire 
exactement la réalité physique : seule sa phase, directement reliée 
au mouvement du corpuscule, me semblait avoir une signification 
profonde et c’est pourquoi j’avais nommé l’onde que j’associais 
au corpuscule « l’onde de phase », dénomination aujourd’hui bien 
oubliée, mais qui pour moi avait sa raison d’être. Cependant, au 
fur et à mesure que les travaux d’autres savants faisaient progresser 
la Mécanique ondulatoire, il devenait de jour en jour plus évident 
que l’onde \É avec son amplitude continue ne pouvait servir qu’à 
des prévisions statistiques : aussi s’orientait-on peu à peu vers 
l’interprétation « purement probabiliste » dont MM. Born, Bohr 
et Heisenberg furent les principaux promoteurs. Étonné de cette 
évolution qui ne me paraissait pas conforme à la mission « expli 
cative » de la Physique théorique, j’ai été amené à penser vers 
1925-1927 qu’il y avait lieu de considérer dans tout problème de
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Mécanique ondulatoire deux solutions couplées de l’équation des 
ondes : l’une, l’onde ff’, exacte par sa phase, mais qui, à cause du 
caractère continu de son amplitude, n’a qu’une signification 
statistique et subjective; l’autre, l’onde 11, ayant même phase que 
l’onde ffr, mais dont l’amplitude présente de très hautes valeurs 
autour d’un point de l’espace et qui, précisément en raison de 
cette singularité locale (qui peut, d’ailleurs ne pas être une singu 
larité au sens strict des mathématiciens) est susceptible de décrire 
objectivement le corpuscule. J’obtenais ainsi, en accord avec les 
conceptions de M. Einstein, ce qu’il m’avait toujours semblé 
nécessaire de chercher : une image du corpuscule où celui-ci 
apparaît comme le centre d’un phénomène ondulatoire étendu 
auquel il est intimement incorporé. Et, grâce au parallélisme 
postulé par la théorie entre l’onde u et l’onde 'F, celte dernière 
conservait, me semblait-il, toutes les propriétés statistiques que 
l’on venait, ajuste titre, de lui attribuer.

Telle est l’idée qui avait germé dans mon esprit et dont la 
curieuse subtilité m’étonne encore aujourd’hui. Je l’avais appelée 
la « théorie de la double solution » et c’était elle qui traduisait 
dans toute sa complexité ma véritable pensée. Mais, pour la 
commodité de l’exposé, je lui avais parfois donné une forme sim 
plifiée, à mon avis beaucoup moins profonde, que j’avais nommée 
la « théorie de l’onde-pilote » dans laquelle le corpuscule, supposé 
donné npriori, était considéré comme piloté par l’onde continue \F. 
Découragé par l’accueil peu favorable fait à mes idées par la 
plupart des physiciens théoriciens que séduisaient l’élégance 
formelle et l’apparente rigueur de l’interprétation purement pro 
babiliste, je me suis rallié à cette interprétation et je l’ai admise 
comme exacte pendant plus de vingt ans.

Comme je l’ai dit, depuis ig5i, je me suis à nouveau demandé 
si ma première idée, au fond, n’était pas la. bonne. De nouvelles 
réflexions sur ce problème si ardu m’ont amené à perfectionner 
sur certains points la forme primitive de la théorie de la double 
solution et même sur d’autres à la modifier, notamment par l’intro 
duction d’une hypothèse qui me paraît aujourd’hui essentielle : 
celle que l’équation de propagation de fonde u est, en principe, 
non linéaire et, par suite, différente de celle admise pour fonde ff",
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bien que les deux équations puissent presque partout être consi 
dérées comme identiques.

L’on trouvera dans le présent Ouvrage, après un résumé de 
l’interprétation purement probabiliste actuellement « orthodoxe » 
et des objections qui lui ont été adressées par des savants peu 
nombreux mais illustres, un exposé d’ensemble de l’état présent 
de mes réflexions sur la théorie de la double solution. Je me 
permets d’attirer particulièrement l’attention du lecteur sur les 
chapitres XVII à XIX qui contiennent des suggestions aven 
tureuses certes, mais qui pourraient avoir une très grande portée. 
Je souhaite que de jeunes théoriciens doues d’intuition physique 
et aussi des mathématiciens exercés veuillent bien s’intéresser aux 
hypothèses que j’ai avancées dans cette fin de mon Ouvrage sans 
pouvoir en donner de véritables justifications.

J’ai repris cette étude de mes anciennes et primitives conceptions 
sur la Mécanique ondulatoire sans idées préconçues d’aucune 
sorte et sans aucun amour-propre d’auteur. Il se peut que j’ai tort 
de vouloir revenir à des conceptions plus claires que celles qui 
prévalent actuellement en Physique théorique. Mais je voudrais 
que l’on examine avec soin si ces chemins, que l’on a abandonnés 
depuis vingt-cinq ans parce qu’on les considérait comme abou 
tissant à des impasses, ne seraient pas au contraire ceux qui 
pourraient déboucher vers la véritable Microphysique de l’Avenir.

Août 1954. 

Louis d e  Br o g l ie .



UNE TENTATIVE D’INTERPRÉTATION
CAUSALE ET NON LINÉAIRE

DE LA MÉCANIQUE ONDULATOIRE
(LA THÉORIE DE LA DOUBLE SOLUTION)

PREMIÈRE PARTIE.
LES IDÉES DE HASE DE LA MÉCANIQUE ONDULATOIRE 

ET SON INTERPRÉTATION PUREMENT PROBABILISTE USUELLE.

CHAPITRE 1.
LES IDEES DE BASE DE LA MÉCANIQUE ONDULATOIRE.

1. Point de départ. — L’idée qui, dans mes travaux de 1928-1924, 
a servi de point de départ à la Mécanique ondulatoire, a été la suivante : 
puisque, pour la lumière, il existe un aspect corpusculaire et un aspect 
ondulatoire reliés entre eux par la relation énergie —hx fréquence où 
figure la constante h des quanta de Planck, il est naturel de supposer 
que, pour la matière aussi, il existe un aspect corpusculaire et un aspect 
ondulatoire, ce dernier jusque là méconnu. Ces deux aspects doivent 
être reliés par des formules générales où figure la constante de Planck 
et doivent contenir comme cas particuliers les relations applicables à la 
lumière.

Pour développer cette idée, il m’était apparu en 1928 qu’il fallait 
chercher à associer un élément périodique au concept de corpuscule. 
Imaginons un corpuscule qui se meut d’un mouvement rectiligne et 
uniforme dans une certaine direction en l’absence de tout champ exté 
rieur. Nous fixerons uniquement notre attention sur l’état de mouvement

L. DIÎ BROGLIH. I



2 CHAPITRE I.

du corpuscule en faisant abstraction de sa position dans l’espace. Ce 
mouvement s’effectuera dans une certaine direction que nous prendrons 
comme axe des z et il sera défini par deux grandeurs, l’énergie et la 
quantité de mouvement, dont les expressions relativistes en fonction de 
la masse propre m0 du corpuscule sont données par les formules

(O W = m o c- 7«0V H =

dont on déduit la relation
W W

(2) I P i =P = ~î I V|= V.

L’état de mouvement se trouve ainsi défini pour un certain observa 
teur A lié à un système de référence galiléen, observateur qui emploie 
un temps t et des coordonnées rectangulaires x, y, z.

Soit maintenant un autre observateur B cjui possède par rapport au 
premier la vitesse v dans la direction O*, autrement dit un observateur 
lié au corpuscule. Nous pouvons supposer que B a choisi un axe Oo^o 
qui glisse sur Os et des axes O0a?o et O0yo respectivement parallèles à 
Ox et à O y. Cela étant, les coordonnées x0, y0, z0, t0 d’espace et de 
temps de B sont reliées aux coordonnées ,r, y, z, t de A par les formules 
bien connues de la transformation simple de Lorentz,

z —vt 1 c ~
(3) x0 — x, y0 = y, z0 = , !»=-===•

v1 — P' v/i — [y

Or, pour l’observateur B, la vitesse du corpuscule est nulle : il pose 
donc comme valeurs de l’énergie et delà quantité de mouvement

(4) W = m0c-, p = o.

Suivant notre idée de base, nous devons maintenant chercher à 
introduire un élément périodique et nous tenterons de le définir d’abord 
dans le système propre du corpuscule, c’est-à-dire dans le système de 
référence de l’observateur B. Comme dans ce système tout est au repos, 
il est naturel d’y définir l’élément périodique souhaité sous la forme 
d’une onde stationnaire. Pour cela, nous définirons l’élément périodique 
par la grandeur supposée scalaire

(5) tt’0= «„e^

qui a la forme de la représentation complexe d’une onde stationnaire. 
'Fo oscille en fonction du temps propre avec une fréquence v0 caracté-
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! ristique do la nature du corpuscule envisagé. Nous admettrons que a0 
1 est une constante (en général complexe) de sorte que 'F0 ait la môme 
i valeur en tout point du système propre de l’observateur B à l’instant t0- 

Nous pouvons nous représenter la répartition des valeurs de Wo en 
imaginant une infinité de petites horloges disposées en tous les points 
du système propre du corpuscule, synchronisées entre elles et possédant

une période T0 = ÿ ■ Ces petites horloges représentant en quelque

sorte en chaque point la « phase » du phénomène périodique qui est la 
même partout pour l’observateur B à un même instant t0 de son temps 
propre.

Quelle valeur convient-il de donner à la fréquence propre v0? Nous 
devons évidemment chercher à la définir à partir d’une grandeur qui 
caractérise le corpuscule dans le système propre B : or, dans ce système, 
nous ne disposons que d’une seule grandeur non nulle, l’énergie 
Wo = /ra0c2. Etant donné le rôle joué par la constante de Planck h dans 
toutes les questions quantiques, il est naturel de poser

(6)
_ Wo _ ttlr, c- 

h h

analogue à la relation d’Einstein pour les photons.
Comment va se manifester pour l’observateur A l’élément périodique 

que nous venons de définir pour l’observateur B? En supposant, ce qui 
est naturel ici, que l’élément W est un invariant, il suffira pour obtenir 
son expression pour A de substituer dans son expression pour B la 
valeur de t0 fournie par la quatrième équation (3) de Lorentz, ce qui 
donne

ï- iv ( t — )(7) 'F(j, y, z, Z) = «o e V v',

si l’on pose 

(8)
Vu .. c c-

Ainsi, pour l’observateur A qui voit passer le corpuscule avec la 
vitesse v dans le sens Oz, les phases du phénomène périodique W sont 
réparties comme celles d’une onde plane monochromatique dont la 
fréquence v et la vitesse de phase Y auraient les valeurs (8).

On peut encore exprimer ceci en revenant à l’image d’une infinité de 
petites horloges distribuées en tous les points de l’espace et ayant la 
même phase pour l’observateur B. Par suite du phénomène relativiste



CHAPITRE I.

du ralentissement des horloges en mouvement, chacune de ces horloges 
apparaît à l’observateur A comme ayant une fréquence diminuée,

(9) V<| = v0 VI — é'é

mais la répartition de Vensemble des phases de toutes les horloges est 
donnée pour A par la formule (7), c’est-à-dire qu’elle coïncide avec la 
répartition des phases d’une onde plane monochromatique de fréquence 
v et de vitesse de phase V données par (8).

En comparant les formules (8) et (9), on remarquera la différence 
essentielle entre la fréquence apparente vl( d’une horloge individuelle en 
mouvement qui est diminuée par l’influence du mouvement et la fré 
quence v de l’onde associée qui est augmentée par celte influence. Celte 
différence entre les variances relativistes de la fréquence d’une horloge 
et de la fréquence d’une onde est essentielle : elle avait fortement attiré 
mon attention et c’est en y réfléchissant que j’avais été orienté dans mes 
recherches.

On peut résumer ce qui précède en disant que le corpuscule assimilé 
.à l’une des petites horloges glisse par rapport à la phase de l’onde avec
la vitesse V—c = c 1 ■■ ^ de façon à rester toujours en phase avec 

l’onde.
Reprenons cette dernière idée sous une forme plus précise. Parmi 

l’infinité de petites horloges que nous avions imaginées plus haut, 
supposons qu’il y en ait une qui joue un rôle particulier. Ce sera 
l’horloge régulatrice que nous identifierons avec le corpuscule, les 
autres horloges représentant les phases du phénomène ondulatoire dont 
le corpuscule serait le centre. Dans le système propre, toutes les 
horloges sont immobiles et ont la même fréquence v0. Dans le système 
de l’observateur qui voit passer toutes les horloges avec la vitesse c,

l'ensemble des phases de ces horloges est donnée parle facteur — ~^r j

avec les définitions (8). Pendant un temps dt, l’horloge régulatrice se

déplace de c dt dans le sens Oz et son indication varie de v0y/1—(3- dt.
La phase de l’onde au point où se trouve celle horloge varie de

V° ( dt — 'l • Comme ces deux variations doivent être étrales, on 
V V )

doit avoir
.« ?-ç

en accord avec la seconde relation (8).
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Laissons mainlcnanl do côté ces imagos sur lesquelles nous revien 
drons plus Lard et revenons aux formules obtenues. La comparaison des 
premières relations ( i ) et (8) nous donne

(il) W = /iv,

relation qui doit évidemment être valable dans tout système galiléen 
puisque l’observateur A est un observateur galiléen quelconque.

VEn définissant comme d’habitude par la formule 1 = — la longueur 

d’onde de l’onde T, on lui trouve la valeur

O.) c- h h
r W

On a ainsi trouvé les deux formules fondamentales (i i) et (12) qui 
définissent la fréquence et la longueur d’onde de l’onde associée au 
corpuscule à partir de l’énergie et de la quantité de mouvement de 
celui-ci. Pour les vitesses faibles devant celle de la lumière dans le vide, 
la formule ( 12 ) prend la forme approximative

h(il) A = - •mv

Pour une particule de vitesse égale à c (ou indiscernable de c

(O) W = Av, A.

on a

O11 trouve bien ainsi les formules fondamentales de la théorie des 
quanta de lumière (Einstein, U)o5) applicables aux pilotons.

Nous pouvons maintenant écrire la grandeur 'E, évaluée par l’obser 
vateur A, sous la forme

et, plus généralement, si l’on n’a 
comme axe des c

< 1 (>) y, z, t) = //„ e h

pas pris la direction de propagation

p*-r-p}y-p-.z) (\v/-p.r)
= a„e h

formule cjui montre que la phase de l’onde W coïncide, au facteur ^ près,

avec l’action hamiltonienne du corpuscule. En constatant cette propor 
tionnalité entre l’action du corpuscule et la phase de l’onde^ qui lui est 
associée, on aperçoit que le principe d’action stationnaire de la Dyna 
mique du corpuscule doit être une traduction du principe de Fermât 
valable pour l’onde associée. Mais la théorie ondulatoire nous apprend
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que le principe de Fermât est seulement valable dans le domaine où 
l’Optique géométrique est utilisable et qu’il n’a plus de sens dans le 
domaine de l’Optique physique proprement ondulatoire. J’étais ainsi 
parvenu dès 1923 à l’idée fondamentale que l’ancienne Mécanique (aussi 
bien sous sa forme relativiste que sous sa forme newtonienne classique) 
n’est qu’une approximation ayant le même domaine de validité que 
l’Optique géométrique. Dès lors, j’avais été amené à concevoir la 
nécessité de construire une nouvelle Mécanique, une Mécanique ondu 
latoire, « qui serait à la Mécanique ancienne ce que l’Optique ondula 
toire est à l’Optique géométrique». Tel fut le point de départ de la 
Mécanique ondulatoire.

2. Premiers développements de la Mécanique ondulatoire. — Au
moment où les idées que je viens de résumer me sont venues à l’esprit, 
j’étais imbu des idées classiques sur la possibilité de représenter les phé 
nomènes d’une façon objective et déterministe dans le cadre de l’espace- 
temps. L’association onde-corpuscule me paraissait donc nécessai 
rement devoir se faire sous la forme suivante : le corpuscule serait une 
sorte de singularité au sein d’un phénomène ondulatoire étendu dont il 
serait solidaire et le mouvement de cette singularité, bien que s'effec 
tuant sans doute selon des lois dynamiques nouvelles, devait à mes yeux 
comporter, conformément aux images classiques, une trajectoire dans 
l’espace et une vitesse déterminée en chaque point de cette trajectoire.

Il en résultait, dans mon esprit, que l’onde V plane et monochroma 
tique associée dans mes raisonnements primitifs au mouvement rectiligne 
et uniforme d’un corpuscule libre ne pouvait réellement décrire la 
réalité, mais qu’elle ne devait donner d’une façon exacte que la phase 
du phénomène ondulatoire entourant le corpuscule, l’amplitude cons 
tante a0 ne pouvant représenter la véritable amplitude de ce phénomène. 
En effet, celle-ci devait à mon sens comporter une singularité, le corpus 
cule, et sans doute décroître avec la distance à cette singularité. La 
véritable fonction d’onde représentant l’ensemble du phénomène ondu 
latoire et de sa singularité me semblait devoir être, dans le cas du 
mouvement rectiligne et uniforme, de la forme

— 9 (x, y, z, l)
(17) u(x, y, z, t)=f(x, y, z, t)e h

cp étant la phase W( — p.r et f(x,y, z, t) une fonction comportant 
une singularité mobile avec la vitesse v. La fonction d’onde
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aurait une phase © correcte qui serait celle des petites horloges fictives 
entraînées par le mouvement du corpuscule, mais son amplitude cons 
tante ne décrirait pas la répartition réelle du phénomène ondulatoire 
dans l’espace. Tout au plus peut-elle représenter une sorte de moyenne 
statistique quand on ignore totalement laquelle des droites parallèles à 
la direction du mouvement est effectivement décrite par le corpuscule 
et en quel point de la trajectoire il se trouve au temps t.

C’est parce que la phase cp me paraissait avoir un sens physique pro 
fond relié à des effets de relativité et parce qu’elle me paraissait devoir 
se retrouver dans la fonction d’onde réelle u, que j’avais appelé la 
fonction W « l’onde de phase », voulant ainsi réserver à un examen plus 
approfondi la question de la signification de son amplitude.

Les idées que je viens de rappeler, je les avais adoptées dans tous mes 
premiers exposés de la Mécanique ondulatoire de 1924 à 1927. Elles 
devaient me conduire en 1927 à la théorie de la double solution à 
laquelle sera consacrée la seconde partie de cet Ouvrage. Mais, dans 
l’intervalle, en 1926, M. Schrôdinger était parvenu dans d’admirables 
travaux à faire considérablement progresser le formalisme mathématique 
de la nouvelle Mécanique ondulatoire. Il en avait écrit les équations 
générales et il les avait appliquées au calcul des étals stationnaires des 
systèmes quantifiés, remplaçant ainsi par une théorie rigoureuse la 
justification intuitive que j’avais donnée dans mes premiers travaux des 
formules de quantification de l’ancienne théorie des quanta. Enfin, il 
avait montré l’identité foncière des méthodes de la Mécanique ondula 
toire et de la Mécanique quanlique des matrices développée en 1927 par 
M. Hcisenbcrg, identité qui était dissimulée par la différence de leurs 
aspects mathématiques.

Pour faire ainsi progresser la Mécanique ondulatoire, M. Schrôdinger 
s’est surtout servi de l’analogie entre la Mécanique analytique et l’Optique 
géométrique signalée par Hamilton, un siècle auparavant, en tenant 
compte, bien entendu, de l’existence des quanta et en s’inspirant des 
idées que j’avais mises en avant dans mes premiers travaux et résumées 
dans ma thèse de Doctorat en 192.4.

Je vais exposer maintenant cette seconde manière d’aborder la Méca 
nique ondulatoire, voie que M. Schrôdinger a suivie en s’en tenant à 
l’approximalion newtonienne sans tenir compte des corrections de 
Relativité.



CHAPITRE II.
ACCÈS DE LA MÉCANIQUE ONDULATOIRE PAR LA MÉTHODE D’HAMILTON. 
(ANALOGIE DE LA MÉCANIQUE ANALYTIQUE AVEC L’OPTIQUE GÉOMÉTRIQUE).

1. Mécanique classique du point matériel. Théorème de Jacobi. —
Avec les conceptions anciennes, un corpuscule (point matériel) doit 
avoir à chaque instant une position bien déterminée dans l’espace au 
cours du temps : sous l’influence du champ de force auquel il est soumis, 
il décrit une certaine courbe de l’espace, sa trajectoire. iNous suppo 
serons d’ailleurs ici que le champ de force dérive d’un potentiel 
Y(x, y, z, t). A chaque instant, la position du corpuscule est repérée 
par trois coordonnées d’espace x(t), }'(/), z(t). Les équations classiques 
du mouvement sont alors les suivantes :

DV
ô j :

àX
,)z

d- y _ <)X

m étant une constante caractéristique du corpuscule et nommée sa 
masse.

Les trois équations différentielles ( i ) du second ordre en t définissent 
entièrement les variations des coordonnées au cours du temps, c’est-à-dire 
son mouvement, quand on se donne six constantes arbitraires représentant 
les coordonnées et les composantes de la vitesse à un instant donné la 
dit « instant initial ». Le déterminisme de l’ancienne Mécanique consiste 
en ce que, l’état initial de position et de vitesse étant supposé connu, 
les états ultérieurs sont rigoureusement déterminés.

Nous renvoyons aux traités de Mécanique rationnelle pour la démons 
tration des théorèmes généraux de la Dynamique du point matériel et 
pour la théorie des équations de Lagrange, de Ilainilton, etc. Nous nous 
bornerons à énoncer le théorème de Jacobi qui nous sera utile pour la 
suite :
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Th é o r è me . — Si Von parvient à trouver une intégrale complète 
(c’est-ci-dire une solution dépendant de trois constantes arbitraires 
a, p, y non additives) de-Véquation aux dérivées partielles (équation 
de Jacobi)

<>)
i

■>, m
-+- V(.r, T, s, t) =

ÙS 
àt ’

les équations

(3; i) = a,
<)S
1rs b,

ÙS
àf

où a, b, c sont de nouvelles constantes arbitraires. définissent un des 
mouvements possibles du corpuscule dans le champ de force. Les 
composantes de la quantité de mouvement du corpuscule quand, en 
exécutant Vun de ces mouvements, il occupe au temps t la position 
x, y, z. sont données par les relations

, ùS et S f)S
(4 ) p.x ~ nu\r = — > P y — ",r.r = — ~jÿ ’ Pz ~ mv~ = ~ JP ’
soit

p = mv = — grad S.

Nous voyons donc que, d’après ce théorème de Jacobi, les mouvements 
possibles du corpuscule se divisent en classes, les mouvements d’une 
môme classe correspondant à une même intégrale complète de l’équation 
de Jacobi S(x, y, z, t, a, p, y) avec des valeurs données des « constantes 
primaires » a, p, y- Chacune de ces classes contient une infinité de 
mouvements possibles, chacun d’eux étant caractérisé par la valeur des 
« constantes secondaires » a, b, c.

Rappelons que l’équation de Jacobi peut s’obtenir en partant de 
l’expression de l’énergie en fonction des coordonnées et des moments 
conjugués (ou expression hamiltonienne de l’énergie)

(;■>) VJ.K, y, Z, Py, pz, t) = (pi + Pï -4-/>!)•+• V(*, y, s, t)

. . <)S àS àSet, en y remplaçant p,T, pr, p: respectivement par — — , —

puis en égalant l’expression ainsi obtenue à

Le théorème de Jacobi prend une forme particulièrement simple dans 
le cas important où la fonction potentielle V ne dépend pas explicitement 
du temps : on sait que dans ce cas il y a conservation de l’énergie, c’est- 
à-dire que, pendant le cours du mouvement, la somme de l’énergie



10 CHAPITRE II.

cinétique et de l’énergie potentielle, ~ mv- + V, garde une valeur cons 

tante E. La constante E joue ici le rôle d’une des constantes primaires, 
par exemple y. Si l’on pose alors

(6) Sl>, y, z, t, et, 3, E) = VA— S^-r, y, z, a, ,3, E),

où Si ne dépend plus du temps, on aura à chercher une intégrale 
complète dépendant de la constante E et de deux autres constantes a et [3 
de l’équation aux dérivées partielles (dite équation de Jacohi raccourcie )

(7)
i

a m
JSA
ôx ) V(>, 7, E.

Le théorème général de Jacohi appliqué à ce cas particulier nous 
apprend que, si l’on a trouvé une solution intégrale complète de l’équa 
tion (y), le mouvement défini par les équations

(8)
JS, JS, JS JS,
<h. "■ J, JE ' JE '•

où a, b, c sont trois constantes arbitraires, sera un des mouvements 
possibles du corpuscule dans le champ de forces constant. Quant à la 
quantité de mouvement du corpuscule lors do son passage an point 
x, y, z, elle sera donnée par

(9) px = mv
JS, 
<)x ’ p = mv = grad S,.

Les mouvements possibles sont ainsi répartis en classes correspondant 
chacune à une même valeur de l’énergie et des deux constantes primaires 
a et P : chaque classe comprend une infinité de mouvements possibles 
caractérisés chacun parla valeur des trois constantes secondaires a, b, c.

Les deux premières équations (8) ne contiennent pas le temps : elles 
définissent une courbe de l’espace qui est la trajectoire du corpuscule.

La troisième équation (8), qu’on peut écrire —■ = t—l0, donne le

mouvement le long de la trajectoire (équation de l’horaire). L’on voit 
ainsi que, dans le cas des champs permanents, l’élude de la trajectoire 
peut se faire indépendamment de l’étude du mouvement, ce qui n’a pas 
lieu dans le cas des champs variables avec le temps.

Un autre résullal important valable dans le cas des champs permanents 
est le suivant : Les trajectoires d1 un même classe correspondant à 
une même intégrale complète St(x, y, z, a, p, E) sont orthogonales 
aux surfaces St ~ const. Ceci résulte immédiatement de l’équation (9).



Cette propriété des trajectoires d’être normales aux surfaces S1 = const. 
permet de retrouver le principe de moindre action de Maupertuis. Pour 
cela, considérons toutes les surfaces S1=const., correspondant à des 
valeurs infiniment voisines de la constante comprises entre C, et C2, et 
représcntons-en quelques-unes vues par la tranche.

Soit AEB une trajectoire de la classe correspondant à Si et AFB une 
courbe infiniment voisine do AEB. Si l’on nomme dn l’élément de nor 
male aux surfaces S! = const., l’intégrale J" ™ ds prise le long de AEB

est égale à C2—Ct, l’élément de courbe ds étant ici égal à dn. Prenons 
la même intégrale le long de AFB. La contribution à cette intégrale d’un

ACCÈS DE LA MÉCANIQUE ONDULATOIRE PAR LA MÉTHODE D’HAMILTON. II

Fig. 1.

petit élément tel que FG est supérieur ou au moins égale à la variation 

de Si de F en G : en effet, si FG est normal aux surfaces Si = const.
^g ____

qui passent par ses extrémités, on a FG =ofn ct~ FG = Si(G)—Si (F), 

tandis que, si FG n’est pas normal aux surfaces Si = const., on a 

FG > dn et FG est supérieur à Si (G) — Si (F). Or tous les éléments 

de AFB ne peuvent être normaux aux surfaces S4= const., sans quoi 

AFB coïncident avec la trajectoire AEB : donc l’intégrale J ds est 

plus grande le long de AFB que le long de AEB.
D’après l’équation (7), on a

(10)
dS, //dSA* / àS, »2 / dS, \ 
1)jp, \ \àx ) "+" \ dy ) \ àz j \Jï m [ E — V(a:, y, z )].

Nous parvenons donc à l’énoncé suivant : La trajectoire passant par 
deux points A et B de l'espace est caractérisée par le fait que l'inté 

grale / —V) ds est plus petite pour la trajectoire réelle que
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pour toute courbe injiniment voisine allant île A it I!. C’est le principe 
de moindre action de Mauperluis (4).

Un exemple très simple permet d’illustrer les considérations précé 
dentes. Envisageons le mouvement d’un corpuscule en l’absence de 
champ. Alors V = o et, comme il y a conservation de l’énergie, on peut 
écrire l’équation (y) sous la forme

On obtient une intégrale complète en posant

(12) St = ij-ini K (a«r -i- $y ■+■ 75). avec -a = 1 — —'y.

D’après le théorème de Jacold, on obtient les trajectoires en écrivant

, ,, rfS, /-----p / * \ 'AS, ,-----p j '
(li) = y 2 m I' ( — - s ) = ", -y/ = \ | r— - s J = b.

Ce sont donc des droites de cosinus directeurs a, ,3, y, normales aux 
surfaces St= consl. Le mouvement le long d’une de ces droites est 
défini par l’équation de l’horaire

( 14 ) ctS,
dE

m 
m F.

( -J. x -t- [iy + •';) = ! — /„

Il est donc rectiligne et uniforme et il s’cUcctuc avec la vitesse c 

Enfin, on vérifie aisément les relations

2 K
rn

/>, = n le. m x r = a y 2 ni F 'tS,
<)P

L’intégrale complète envisagée définit donc la classe des mouvements

rectilignes et uniformes de direction a, 3, et de vîtessse^/ a F 
m

2. Propagation des ondes dans un milieu isotrope. Approximation de 
l’Optique géométrique. — Pour amorcer le passage de la Mécanique 
classique à la Mécanique ondulatoire, faisons maintenant une rapide 
étude de la propagation des ondes monochromatiques dans un milieu

(l ) Notons que la courbe AFB doit être continue ainsi que sa dérivée. Notons aussi 
que le raisonnement est en défaut quand les trajectoires ont une enveloppe et que AFB 
touche cette enveloppe entre A et B. L’intégrale de Maupertuis est alors toujours station 
naire, mais elle peut être maximum au lieu d’être minimum.



ACCÈS DE LA MÉCANIQUE ONDULATOIRE PAR LA MÉTHODE D’HAMILTON.

réfringent, isotrope et dispersif, à propriétés permanentes dans le temps. 
Nous admettrons que celte propagation est régie par l’équation

(i>)
<>c- ’

'F étant la fonction d’onde et 'V une grandeur généralement fonction du 
point x, y, z eL de la fréquence v de l’onde. est la vitesse de propa 
gation de la phase ou, plus brièvement, la «vitesse de propagation». 
Nous écrirons pour une onde monochromatique, c’est-à-dire de 
fréquence v bien déterminée

( 16) 'I 5, ( ) = a(j:, y. z)e~“1'"

et nous poserons pour définir l’indice de réfraclion n du milieu

I /l(.L\ f Z, '))
i1 y ) en Xï i

V N 0

<l?u étant la vitesse de propagation dans un milieu de référence où 
l’indice de réfraction serait égal à i. On a alors

(18) A>f + U' = o.

Rigoureusement l’élude de la propagation de l’onde monochroma 
tique dans le milieu dispersif à propriétés permanentes doit se faire en 
déterminant la solution de l’équation (i8) qui correspond aux conditions 
aux limites imposées, mais il arrive souvent que l’on puisse résoudre le 
problème par un procédé approximatif qui est à la base de l’Optique 
géométrique.

Pour bien comprendre le sens de cette approximation, considérons 
d’abord le cas où l’indice n ne dépend pas de x, j-, z (milieu homogène). 
On obtient alors une solution rigoureuse de l'équation (18) en posant

(1 •)) = « e

a étant une constante appelée l’amplitude de l’onde. Cette solution (19) 
représente une « onde monochromatique plane ». Nous nommerons 
phase de celle onde la fonction linéaire

(-'<->) ?(•/', y. z, 0 = v<— ^r- (»/ + -+- v/i — [i2s) = '11— 91O, y, 5).
V#

Les surfaces d’égale phase a = consl., nommées aussi « surfaces 
d’ondes», sont des plans normaux à la direction de cosinus directeurs

ta., n — »>— fi’;) J
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oc, (3, y = y/1—a-—j32. Au cours du temps, les valeurs de la phase et, 
par suite, de la fonction progresseront dans cette direction avec la 
vitesse

14

A un instant donné, on retrouvera la même valeur de V sur des 
plans d’égale phase séparés les uns des autres par la distance

(22) V0 = V 
nv v

nommée « longueur d’onde » et, en un point donné, on retrouvera les 
mêmes valeurs de ’L à des intervalles de temps égaux à la période

T= i.
V

Considérons maintenant un milieu non homogène où l’indice varie 
avec x, y, z, mais cependant assez lentement pour rester sensiblement 
constant à l'échelle de la longueur d'onde. On voit alors aisément que 
les dérivées de a(x, y, z) seront négligeables en comparaison de celles 
de <p4 (x, y, z) si l’on pose pour l’onde monochromatique avec a réel :

(23) ^(.r, y, z, t) = a(x, y, z) e'27ti'iv< — *)]

et, en introduisant (23) dans (18), on obtiendra une équation approxi 
mative qui est connue sous le nom « d’équation de l’Optique géomé 
trique » :

(24) V / àyi y / djfi Y _ x, .Y, z)
àx j \ ày ) \àz ) VI

L’équation (24) permet de déterminer les variations de la phase de 
l’onde monochromatique (qui ici n’est plus linéaire en x, y, z) sans 
avoir à se préocuper des variations, lentes à l’échelle de la longueur 
d’onde, de l’amplitude a{x, y, z).

Soit alors <pt(a?, y, z, oc, [3, v) une intégrale complète de l’équa 
tion (24) dépendant des trois constantes v, a, (3. La fonction

W = a e?(''.r, v, a, (3)ij

où a est lentement variable à grande échelle, représente donc alors une 
solution approximative de l’équation de propagation. Par définition, les 
courbes orthogonales aux surfaces <p4 = const. sont les « rayons » de 
l’onde. Comme on a justifié plus haut le principe de moindre action de 
Maupertuis pour les trajectoires corpusculaires normales aux surfaces



Si = consl., on peut ici démontrer de même le « principe de Fermât » 
suivant lequel, si une courbe C est un rayon d’une propagation d’ondes 
passant par deux points A et B de l’espace, l’intégrale
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prise le long du rayon C est plus petite que la même intégrale prise le 
long d’une courbe infiniment voisine de C et joignant les points A et BQ ).

L’Optique géométrique n’est qu’une approximation valable seulement 
si l’indice n varie peu à l’échelle de la longueur d’onde locale définie

par À = J ■ Quand la longueur d’onde tend vers zéro, cette approxi 

mation tend à devenir rigoureuse.
La présence de la fréquence v dans l’équation ( 18) doit retenir notre 

attention. Au lieu de considérer une onde monochromatique, nous 
pouvons considérer, puisque l’équation de propagation ( i5) est linéaire 
en lF, une somme ou, comme l’on dit, une « superposition » d’ondes 
monochromatiques obéissant chacune à l’équation (18). Il est donc 
désirable de trouver une forme de l’équation de propagation où la 
fréquence ne figure pas et à laquelle satisfasse la fonction d’onde, même 
quand elle est formée d’une superposition d’ondes monochromatiques.

Pour donner un exemple, supposons que l’indice soit donné par une 
loi de dispersion
(25) n(x, y, a, v) =\J\— IIAl AiAIZîI.,

où F est une certaine fonction du lieu. Alors, on pourra adopter comme 
équation de propagation indépendante de v,

(26) ù'F— = FO, y, z)iF,

car, pour une onde monochromatique de la forme (16), on retrouvera 
l’équation (18). Nous allons trouver des équations analogues à (26) en 
Mécanique ondulatoire.

3. Passage de la Mécanique classique à la Mécanique ondulatoire. —
Nous avons pu noter dans les deux premiers paragraphes une grande 
analogie de forme entre la Dynamique analytique du point matériel et

(’) Pour éviter toute confusion, précisons que est la dérivée de ç, le long de la 

normale à la surface çi = const. (et non la dérivée de 91 par rapport à l’indice n).
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l’Optique géométrique. Elle avait été aperçue, il y a plus d’un siècle, par 
Hamilton avant d’être précisée par Jacobi : aujourd’hui, elle peut nous 
conduire à retrouver la synthèse réalisée par la Mécanique ondulatoire.

Pour cela, commençons par comparer le mouvement d’un corpuscule 
en l’absence de champ (V = o) avec la propagation d’une onde dans un 
milieu homogène où l’indice n est indépendant de x, y, z. Nous avons 
trouvé pour le corpuscule en l’absence de champ la fonction de Jacobi 
raccourcie

S, = \ K[a.r -+- pr -+-73] (y* = 1 — a2— |b2),

= rnv [u: -+- |3y -+- y s].

D’autre part, pour une onde monochromatique dans un milieu 
homogène, puisque la longueur d’onde 1 est alors constante, on peut 
écrire la phase cpf à l’approximation de l’Optique géométrique sous la 
forme

( 28 ) 91 = y ( x x -+- p y -+- y ; ),

«, (5, y étant les mêmes que dans (2y) si nous supposons que la direction 
du mouvement du corpuscule coïncide avec celle de la propagation de 
l’onde. Les fonctions complètes S et o sont alors

I. ! — />ï.e (a x -h p y -i- •( z),

W — - (« + py -+- Z ).

Il est dans l’esprit de la théorie des quanta de poser E = Av, c’est- 
à-dire d’associer au mouvement corpusculaire d’énergie E la propa 

gation d’une onde de fréquence v = y' - Ceci nous conduit à poser

, . S
(3°, ?=/t-

Si, par hypothèse, nous admettons cette relation, il en résulte les 
deux formules fondamentales de la Mécanique ondulatoire (non relati 
viste)

( 31 ) H = ùv, À = -—.
mv

En d’autres termes, au mouvement rectiligne et uniforme du corpus 
cule d’énergie E et de quantité de mouvement mv, nous associons la 
propagation dans la direction de ce mouvement d’une onde plane mono-
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]’ /,
chromatique avant la fréquence et la longueur d’onde —, onde dont 

1 1 n ° mv
l’expression est

hA- S
(3a) 'F = a e 1 («constant)

avec la valeur (29) de S.
Cette correspondance entre onde et mouvement se généralise dans le 

cas du mouvement d’un corpuscule dans un champ permanent défini 
par la fonction potentielle Y(x, y, z). Il faut alors comparer ce mouve 
ment avec la propagation d’une onde dans un milieu non homogène 
où l’indice n et par suite la longueur d’onde /. varient d’un point à un 
autre. Les expressions à comparer de la fonction de Jacobi et de la 
phase sont alors

I S = V.t — S| {.r, y, s),
I <p= v/ — çi(.r. y, z),

(33

les fonctions Si et ©( étant respectivement des intégrales complètes des 
équations

( 3.{)

<*<\2 . ,, éS | '
èx ) 1 ' ■ Ay.

r / <*?■
jy ) ^ 1\ ày,) ^\Tz\ À2 ( x, y, z )

Il est tout naturel de faire encore ici l’hypothèse exprimée par (3o) et 
par suite de poser

(35) E = h v. S, = ho,.

La seconde formule fournit aisément
1 h h(36)

;rrafl c \ grad S, yam[ K—V(<r, y, s)]

et, comme en tout point on doit avoir E = ^ mv- + Y (cc, y, z) on 

retrouve la seconde équation (3 1 ), mais ici v et À varient d’un point à un
autre.

Comment écrire l’équation de propagation qui correspond au mouve 
ment dans le champ permanent? Écrivons l’équation ( 18) sous la forme

(3?) A»r 'F = o
>-2(x, y, z)

et substituons-y la valeur (36) de A ; il vient 

( 38 ) AT + [ E - V(-r, y, z )] T = o.

En faisant V == o, on retrouve l’équation valable en l’absence de champ.
!.. DE BROGLIB. 2
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Chaque fois que l’Oplique géométrique sera suffisante pour décrire la 
propagation de l’onde 'F, nous pourrons écrire

(39)
2 71/

T = a e h «e h

et les trajectoires prévues par l’ancienne Dynamique du point matériel, 
normales aux surfaces Sl=const., ne seront pas autre chose que les 
rayons de la propagation de l’onde *F, normaux aux surfaces cp4=const.

Nous arrivons ainsi à l’une des idées essenlielles de la nouvelle Méca 
nique. Tandis que la Mécanique ancienne attribuait à ses équations un 
caractère rigoureux et les considérait comme toujours valables, la nou 
velle Mécanique donne à l’onde le rôle essentiel : elle ne considère plus 
les équations de l’ancienne Mécanique que comme des approximations 
valables seulement quand l’approximation de l’Optique géométrique est 
suffisante pour décrire la propagation de l’onde.

La Dynamique classique n’apparaît donc plus que comme une approxi 
mation : elle n’est utilisable que, quand l’indice n relatif à Fonde T 
varie peu à l’échelle de la longueur d’onde ou, ce qui revient au même, 
quand le potentiel Y varie lentement à celte échelle. Toutefois, si la 
longueur d’onde de Fonde T’ était infiniment petite, la Dynamique 
ancienne serait rigoureusement valable. D’après la formule (3^), l’on 
voit que cela serait toujours réalisé, pour une vitesse v non nulle, si h 
était infiniment petit. D’où cette conclusion depuis longtemps connue : 
si l’on fait tendre h vers zéro dans les formules, tous les effets quanliqucs 
doivent disparaître et la Dynamique classique doit retrouver toute sa 
rigueur.

4. Équations générales de la Mécanique ondulatoire du corpuscule. —• 
Nous venons d’être conduits à substituer aux équations classiques de 1a 
Dynamique du point matériel dans un champ constant l’équation de 
propagation d’une onde monochromatique. Mais, comme nous le verrons 
bientôt, on est amené à considérer des trains d’ondes formés par une 
superposition d’ondes monochromatiques. 11 est donc utile de chercher 
à obtenir une équation de propagation à laquelle satisfasse la fonction 'F 
quand elle représente une telle superposition d’ondes monochroma 
tiques. L’équation

(4°) AT
8 x-m
~hT \(æ. ■W

4 r.im ùT 
h <)t

satisfait à cette condition car pour une onde plane monochromatique de



fréquence elle nous ramène à l’équation (38). Mais la forme (4o) nous

permet de ne pas nous borner aux ondes monochromatiques et de 
considérer des superpositions de telles ondes. De plus, elle nous suggère 
la manière d’étendre la nouvelle Mécanique au cas des champs variables 
avec le temps. En effet, comme elle nous permet de ne plus nous borner 
aux ondes monochromatiques, le temps n’y joue plus un rôle parti 
culier et il est alors naturel d’admettre que la forme de l’équation doit 
se conserver quand Y dépend du temps, donc d’écrire
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(40 AW — 8 j c - m
h- V(a?, y, =

4 jc  im (üp 
h àt

comme forme générale de l’équation de propagation des ondes *E en 
Mécanique ondulatoire non relativiste du corpuscule unique.

5. Procédé automatique permettant de retrouver l’équation des ondes.
— Nous allons indiquer un procédé formel permettant de retrouver 
automatiquement l’équation des ondes, procédé dont l’importance avait 
été soulignée par M. Schrôdinger.

En Mécanique classique, on appelle « fonction hamiltonienne » la 
fonction qui exprime l’énergie à l’aide des coordonnées et des moments 
de Lagrange conjugués. En coordonnées rectangulaires, l’expression 
bien connue de cette fonction est

(4a) H (æ,y, z,p.r,pr,p,, t)= — (pl + />]■+/>!) -hV{x, y, z, t).

h àSi dans celle expression, nous remplaçons pæ par---------. — > pr par
2 TC L (J JC

-A 4- et p. par------—. -A nous obtenons un opérateur, l’opérateur
2 jc  i à y ' ' 1 zr.i a z 1 12 Tci à y 

hamiltonien

(43)
î i [ h y / iP rp

2 m \2xiJ \àx- ày- àz- Y(.r, y, z, t).

En appliquant l’opérateur (43) à la fonction tE, c’est-à-dire en multi 
pliant W en avant par l’opérateur (43), puis en égalant le résultat
. h àW , , • ,a —: j on obtient2 jc  t àt

(44) J_(A.
7 m \ 2 r.i M'h - V(x, y, z, Olf' =

h à*F 
2 j:i àt *

équation identique à l’équation générale (4°)*
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]Nous voyons ainsi que l'équation generale de propagation peut se 
mettre sous la forme

(43) H(j :. y, z; 1>,.. l\, 1>:. /)«]• = A

où P,, P,, P- sonL rcspoclivomenl les opérateurs------—. -A------4-
1 1 y. r.i <).r \ir.i à y

et — A^ ~ que nous faisons doue correspondre aux composantes de la 

quantité de mouvement.
11 importe de remarquer que le procédé automatique pour obtenir 

l’équation des ondes que nous venons d’indiquer ne réussirait pas en 
général si l’on employait des coordonnées curvilignes. Ainsi, avec des 
coordonnées sphériques, on n’obtiendrait pas par ce procédé la forme 
correcte de l’opérateur A figurant dans l’équation. Cette difficulté est 
liée au fait qu’on ne peut alors déduire univoquement par ce procédé à 
partir de la fonction hamiltonienne classique la forme de l’opérateur 
hamiltonien parce qu’un terme de la forme qpt/ par exemple dans la 
fonction classique peut dans l’opérateur donner naissance à des termes
qVq, Pv<7, ^ 1 '' * ''^ ; etc. suivant l'ordre qu’on adopte pour les facteurs

et ces termes ne sont pas équivalents.
Pour obtenir l’expression correcte, il faut procéder à une symétrisa 

tion préalable en p et q de l’expression classique.

G. Théorème sur la vitesse de groupe. Raccord avec la Mécanique 
classique. — (Nous allons maintenant démontrer un théorème qui se 
trouvait déjà dans ma Thèse : celui de la vitesse de groupe.

Rappelons d’abord qu’un groupe d'ondes est formé par une superpo 
sition d’ondes monochromatiques ayant des fréquences et des directions 
de propagation très voisines. On peut donc lui attribuer une fréquence, 
une longueur d’onde et une direction de propagation approximativement 
bien déterminées, bien qu’il ne soit pas rigoureusement équivalent à 
une onde monochromatique.

Un groupe d’ondes peut avoir des dimensions finies parce que les 
ondes qui le composent et qui sont en concordance de phase au centre 
des trains d’ondes doivent se détruire par interférence en dehors de ses 
limites. Il est facile de voir que les dimensions d’un tel groupe d’ondes 
limité doivent toujours être grandes par rapport à la longueur d’onde 
moyenne A0. Si, en effet, les diverses composantes sont en concor 
dance de phase au centre du groupe d’onde et si celui-ci est formé par 
une superposition d’ondes de longueurs d'ondes comprises dans l’inter-
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vallc X,— A/.—*-/.0 + AX avec AX<cX0, pour que les composantes puissent 
se détruire par interférence en dehors du domaine qu’occupe le groupe 
d’ondes, il faut que le déphasage des ondes de longueur d’onde X0 et

/.o rh A À soit en moyenne de - quand on passe du centre au bord du

groupe d’ondes. Si d est la distance moyenne du centre au bord, on doit 
donc avoir

(46)
d il il AÀ
À(t /. 0 A/. À i( DU

d
/•Il

Àp
X).

I.

C. Q . F. D .

Démontrons maintenant la formule de Rayleigh qui donne la « vitesse 
de groupe». Dans un milieu à indice variable, nous pouvons écrire 
l’expression d’une onde monochromatique à l’approximation de l’Optique 
géométrique sous la forme (23). Un groupe d’ondes dans ce milieu sera 
donc représenté par

(47) M ' = J ii ( v ) ë l~?l l/'l ( Av V;t I .

Posons v = Vd+ Yj, r) variant de—Av à +Av. (Nous pouvons écrire 
approximativement

V ^ J Chr,(4^) ']•= e- /' "(■' 
-U A-/

r, ) e

dv /„ est la dérivée de par rapport à v pour v = v0. Dans (48), 

l’intégrale est une fonction du paramètre l— ^ et l’on peut écrire

' <)$ i
(49) '1' = F ‘-U P- i ! vo / • - Z

Le train d’ondes se comporte donc approximativement pendant un 
certain temps comme une onde monochromatique de fréquence vD dont

l’amplitude serait fonction seulement du paramètre t—' l^onc si 

nous nous déplaçons le long d’un rayon, c’est-à-dire d’une courbe ortho 

gonale aux surfaces cp, =const. de façon que dt— c^s soit m|l> noos

accompagnerons une même valeur de l’amplitude. Nous pouvons donc 
dire que les amplitudes du groupe d’ondes se déplacent en bloc le long 
des rayons avec la vitesse

( 20 )
ils I à- ?| \—1
dt \ ih ils )
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Mais nous savons que ^ = | grad <pt | est en chaque point égal à 

l’inverse de la longueur d’onde locale A(x, y, z, v). Nous avons donc

(50 -s(i) dv
d(rav)

dv

Telle est la célèbre formule de lord Rayleigh qui donne la vitesse de 
groupe U.

Si le milieu est homogène, U est indépendant de x, y, z. Si, de plus, 
il est sans dispersion = o^, on a U = et la vitesse de groupe se

confond alors avec la vitesse de phase.
Le déplacement en bloc d’un groupe d’ondes avec la vitesse U n’est 

pas rigoureux car dans la formule (48), nous avons négligé les termes en 
v;a, ï)3, . . . qui contiendraient les dérivées supérieures de cp4 par rapport 
à v. On peut voir que l’existence des termes négligés a la conséquence 
suivante : au bout d’un temps suffisamment long, le groupe d’ondes ne 
peut plus être considéré comme se déplaçant sans se déformer et, à la 
longue, il s’étale de plus en plus dans l’espace avec diminution corréla 
tive de son amplitude. Nous aurons plus tarda nous préoccuper de cette 
dissémination progressive des groupes d’ondes représentée par une inté 
grale de Fourier du type (47)-

Arrivons maintenant au théorème de la vitesse de groupe en Méca 
nique ondulatoire. Pour le mouvement d’un corpuscule se déplaçant 
dans un champ permanent qui dérive du potentiel V(x, y, z), nous 
avons trouvé pour la longueur d’onde l’expression (36), dont nous tirons 
en nous souvenant que E = hv,

(52)
d[l) à \jim{ E —V)

dv dE \Jïm( E — V)
i

ç étant la vitesse corpusculaire correspondant à l’énergie E. La formule 
de Rayleigh nous donne alors

(53) U = r.

D’ou l’important théorème sur la vitesse de groupe en Mécanique ondu 
latoire :

Si Von associe au mouvement d'un corpuscule un groupe d ’ondes V 
dont la fréquence centrcde correspond à Vénergie du corpuscule, la 
vitesse du groupe est égale à la vitesse du corpuscule.
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Montrons comment ceci conduit à raccorder la Mécanique ondula 
toire à la Mécanique classique dans le domaine macroscopique. Dans 
les expériences de l’échelle macroscopique, les champs et par suite 
l’indice de réfraction pour les ondes W varient peu à l’échelle de la 
longueur d’onde. De plus, les longueurs d’onde étant très petites, on 
peut considérer des groupes d’ondes qui, à notre échelle, sont quasi 
ponctuels. Envisageons dans ces conditions la propagation de l’onde 
monochromatique qui possède la fréquence centrale v0 du groupe 
d’ondes. Il lui correspond une famille de surfaces d’égale phase 
cfi(x,y, z, v0) = const. et les rayons sont les courbes orthogonales à 
ces surfaces. A l’échelle macroscopique, le groupe d’ondes sera analogue 
à un petit globule qui glisserait le long d’un tube de rayons très délié.

A l’échelle de la longueur d’onde, il serait dans sa partie centrale assi 
milable à une onde monochromatique et c’est seulement sur les bords 
que l’interférence des diverses composantes ferait tomber à zéro son 
amplitude.

Le petit groupe d’ondes quasi ponctuel à notre échelle se transporte 
le long d’un rayon central avec la vitesse de groupe U qui est égale 
d’après (53) à celle d’un corspuscule ponctuel classique décrivant ce 
rayon-trajectoire. Comme à l’échelle humaine nous ne pouvons pas 
distinguer les uns des autres les divers points du groupe d’ondes et que 
le corpuscule ne peut se manifester qu’à l’intérieur de celui-ci (comme 
cela résulte du principe de localisation que nous étudierons au chapitre 
suivant), nous aurons l’impression d’ôtre en présence d’un corpuscule 
ponctuel animé du mouvement défini par la Mécanique classique.

Nous parvenons ainsi à comprendre comment pourra se faire le 
raccord entre la Mécanique classique et la Mécanique ondulatoire dans 
le cas des phénomènes macroscopiques où la propagation d’un petit 
groupe d’ondes •E peut être décrite par l’approximation de l’Optique 
géométrique.
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7. Équation de propagation de la Mécanique ondulatoire relativiste à
un W. — Nous avons trouvé les équations de propagation valables en 
Mécanique ondulatoire quand on peut négliger les corrections de relati 
vité. On peut chercher à étendre la théorie précédente en tenant compte 
de la Relativité.

En Dynamique relativiste, un corpuscule de masse propre m0 placé 
en dehors de tout champ possède comme énergie et comme quantité de 
grandeur

04) w = m0c- m«T
P= - -, ■■ 7 -

V I — '?
8 =

et l’on peut décomposer W en deux parties suivant la formule

(55) W= mac'l+ E, avec E = m0c- ( —==^=. — i ) •
V v'i — P2 J

Le terme m0c- est l’énergie propre du corpuscule qui, d’après le 
principe de l’inertie de l’énergie, correspond à l’existence de la masse 
propre rn0. Quant à E, c’est le supplément d’énergie dû au mouvement 
ou « énergie cinétique », seul terme considéré par la Mécanique classique 
qui ignore l’énergie interne m0c'2.

Quand la vitesse v est très petite par rapport à c (j3<«g i ), on retrouve 
les expressions classiques

(56) E = - 7n0C-, p = m„v, E = —— p’-,
2 >.m o

la masse propre m0 coïncidant avec la masse constante m de la Méca 
nique classique. Cette Mécanique classique apparaît donc ici comme 
une approximation valable pour (3 i, ce qui est le cas usuel des mou 
vements macroscopiques.

Tandis que les formules classiques conduisent immédiatement pour 
le corpuscule libre à la forme suivante de la fonction hamiltonienne

(5?) E = «(.r, Tj s, px, py, p3)= — (/».|. -4-pl -hj'l),

les formules relativistes conduisent à poser
(58) W = H (a:, y, z, p.v, py> pz) = c c'- + p* p\ +/);,
c’est-à-dire à la relation

W-(5g) — = mlc*--hp\

L’équation de Jacobi s’obtient en Dynamique classique quand on
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substitue -y à E et —gradS à p dans la troisième équation (56), ce qui 

donne

(60)

L’équalion de Jacobi dans la Dynamique relativiste s'obtient de la 
même manière en parlant cette fois de la relation (5q) et a la forme

Pour parvenir à l’équation de propagation de la Mécanique relativiste, 
il paraît alors naturel de partir de la relation (5q) et d’y faire les substi 
tutions

h <)
W ->----. > p ,•>. ~l<)l

h () 

2 T.i ô j :

ce qui conduit à l’équation de propagation 

(62 )   ’r -+- J"- ml c- »r = o.

Proposée simultanément par plusieurs auteurs au début de l'été 1926, 
tout de suite après les travaux de M. Schrodinger, l’équation (62) est 
connue sous le nom d’équation de Klein-Gordon. A l’approximation 
newtonienne, avec l’expression (55) de W, on retrouve aisément à 
partir de (62) la forme non relativiste de l’équation des ondes [for 
mule (4°) avec V = o].

Si l’on veut passer maintenant au cas où un champ agit sur le corpus 
cule, il faut donner à ce champ une forme relativiste. Dans le cas d’un 
électron de charge électrique s dans un champ électromagnétique 
dérivant d’un potentiel scalaire Y et d’un potentiel vecteur A, on posera

(63) W
m0 c- £ Y : rn 0 v s . P = . -J— A

v;i — P-

et l’on en déduira la relation hamiltonienne :

(64) A(w-ey p= y P.r------ Aa
C

et l’équation de Jacobi 

1 làS(62)
c- V >)t

tV V1 /dS s .
Z

En tenant compte de la relation de Lorenlz entre les potentiels
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+ div A = o, le procédé habituel de passage à la Mécanique ondula 

toire conduit à Inéquation de propagation

(66) . 4 j i i £ V dT 4 rc i £ V1 » dVDï ^ T TT 1)7 - T- c 2j A* âF

4*2?[" Sfv- -A*)]v=o.

Les équations précédentes connues dès 1926 sont valables pour des 
ondes W représentées par une fonction d’onde invariante à une seule 
composante. Le développement ultérieur de la Mécanique ondulatoire a 
montré que ces équations ne peuvent convenir que pour les particules 
dont le « spin » est égal à zéro. Pour les particules de spin non nul, la 
fonction V doit être considérée comme un être mathématique ayant 
plusieurs composantes qui subissent certaines transformations bien 
définies lors d’une transformation de Lorenlz. Ces composantes sont 
liées entre elles par un système d’équations aux dérivées partielles 
simultanées qui sont linéaires et du premier ordre en x, y, z, t. Le 
nombre des composantes du 'F et celui des équations correspondantes 
s’élèvent quand la valeur du spin augmente. Toutes ces formes mathé 
matiques sont aujourd’hui bien étudiées (1).

Le cas le plus simple est celui de l’électron qui possède, comme

sans doute toutes les autres particules « élémentaires », un spin égal à - 

hen unité — • Découverte en 1928 par M. P. A. M. Dirac, la Mécanique

ondulatoire de l’électron est connue sous le nom de « théorie de Dirac ». 
Elle utilise une fonction *F à quatre composantes 'F1, ’IÇ, ’F:l, V,, qui 
obéissent à quatre équations aux dérivées partielles simultanées du 
premier ordre en x, y, z, t. De ces équations, l’on déduit qu’en 
l’absence de champ, chacun des 'F/; obéit séparément à l’équation (62).

Nous ne développerons pas ici la théorie de Dirac. Nous y reviendrons 
dans la seconde partie de l’Ouvrage (chap. XVI).

(*) On pourra consulter à ce sujet l’Ouvrage de l’auteur : Théorie générale des par 
ticules à spin, 2e cd., Gauthier-Villars, 1954.



CHAPITRE III.
PREMIERS PRINCIPES RELATIFS A L’INTERPRÉTATION PROBABILISTE

DES ONDES B’.

1. Le grand problème de l’interprétation de la Mécanique ondula 
toire. — Dès le début de la Mécanique ondulatoire, le problème de la 
signification exacte qu’il convenait d’attribuer à l’onde 'F est apparu 
comme comportant de grandes difficultés. On s’est vite aperçu qu’il 
n’était pas possible de considérer la fonction VF comme une grandeur 
physique au sens ancien, par exemple comme représentant la vibration 
de quelque milieu. L’équation générale de propagation contient, en 

effet, un coefficient i = y/— i de sorte que la fonction W est essentielle 
ment complexe contrairement à ce qui se passait dans la théorie 
classique des ondes et des vibrations où l’emploi de fonctions complexes 
apparaissait comme un artifice mathématique souvent commode, mais 
toujours possible à éviter. De plus, nous verrons que, pour les systèmes 
de corpuscules, l’onde V se propage dans l’espace de configuration, 
espace abstrait et fictif.

PI us lé formalisme de l’utilisation de l’onde B' se précisait, plus elle 
apparaissait comme une sorle de représentation formelle et subjective 
permettant d’évaluer les probabilités de certains résultats de mesure. 
Nous aurons l’occasion de montrer en étudiant cette interprétation pro 
babiliste de la fonction W que cette fonction d’onde définie à la façon 
usuelle comme solution des équations de propagation linéaires men 
tionnées au chapitre précédent ne peut certainement pas être considérée 
comme une réalité objective, mais comme un élément ayant le môme 
caractère subjectif que les probabilités qu’elle représente et susceptible 
de varier suivant les connaissances de celui qui l’emploie.

La question capitale est alors de savoir si l’interprétation probabiliste 
de l’onde W qui conduit certainement à des prévisions exactes constitue
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une représentation « complète » au-delà de laquelle il n’y a pas lieu de 
rechercher une description objective de la réalité ou si, au contraire, la 
description des phénomènes à l’aide de la seule onde T est « incomplète » 
et doit laisser place à une description plus profonde et plus détaillée de 
la réalité physique. Nous aurons l’occasion de revenir plus d’une fois 
sur ce problème.

Pour l’instant, nous allons nous contenter d’énoncer et d’étudier deux 
principes fondamentaux de l’interprétation probabiliste de l’onde V qui 
se sont imposés dès 1926-1927 notamment à la suite des travaux de 
M. Max Born et dont l’exactitude ne paraît pas douteuse.

2. Principe de localisation ou principe des interférences. — Le
premier principe qui s’est imposé en Mécanique ondulatoire quand on 
a voulu utiliser la fonction d’onde W pour la prévision des phénomènes 
a été le principe que je nommerai « principe de localisation » ou « prin 
cipe des interférences » et dont voici l’énoncé :

Le carré du module de la fonction 'I mesure en chaque point et à 
chaque instant la probabilité pour que la présence du corpuscule 
soit observée en ce point ci cet instant.

La fonction 'L étant une quantité complexe, nous pouvons toujours
2 TZ î __

l’écrire sous la forme 1‘ = ae 4 ', où a et cp sont des grandeurs réelles 
que nous nommerons respectivement l’amplitude et la phase de 1F. Si 
nous désignons par *F* la quantité complexe conjuguée de V égale à

2 7Z i
ae h , nous aurons

(1) «2 = w*= pr|2.

C’est cette grandeur réelle qui intervient dans le principe des interfé 
rences.

Il est facile de rattacher le principe des interférences à des idées qui 
étaient bien connues dans les anciennes théories de la lumière. Dans 
ces théories, on admettait toujours que l’intensité de l’onde lumineuse, 
c’est-à-dire le carré de son amplitude, mesurait en chaque point à 
chaque instant la quantité d’énergie lumineuse qu’on y pouvait 
recueillir : c’est cette règle qui permettait la prévision exacte des franges 
d’interférences et de diffraction. Mais nous savons aujourd’hui que tout 
se passe dans les échanges énergéticpies entre la matière et la lumière 
comme si la lumière était formée de corpuscules d’énergie h v : ce sont 
les « photons ». Si nous nous représentons une onde lumineuse entraî 
nant avec elle un grand nombre de photons, l’explication des interfé-
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renccs exigera que l'intensité de Fonde mesure en chaque point la 
densité du nuage de photons : nous obtenons ainsi une interprétation 
statistique du principe des interférences appliqué aux photons.

Mais cette interprétation statistique doit prendre la forme d’une 
interprétation probabiliste. En effet, on a pu obtenir des phénomènes 
d’interférences de la lumière du type usuel en employant pendant un 
temps très long une lumière d’intensité extrêmement faible, si faible 
qu’il ne pouvait jamais y avoir à la fois plus d’un photon dans l’appareil 
d'interférences. Ge sont les expériences fondamentales de Taylor et de 
Dempslcr et Batho (*). Or, d’autres expériences dues à Silberstein et 
confirmées par celles de \avilov (-) ont montré que l'impression des 
plaques photographiques est duc à des effets photoélectriques produits 
localement dans leur couche sensible par l’arrivée successive des pho 
tons. Dès lors, la seule interprétation qu'on puisse donner des expé 
riences du type Taylor est la suivante : chaxpiejahoton arrive sur l’appa 
reil d’interférences avec son train d’ondes qui y subit les interférences 
calculées par la théorie des ondes et, au bout (l’un temps très long, 
quand il est arrivé un grand nombre de pholons, ceux qui ont été captés 
par la plaque photographique se trouvent avoir produit des effets photo 
électriques sur cette plaque répartis proportionnellement à l’intensité 
locale de Fonde. On est ainsi conduit à dire que l’intensité de Fonde 
mesure la probabilité pour que le photon produise en un point de 
l’espace un effet observable. Cette interprétation probabiliste du prin 
cipe des interférences permet de justifier le succès des expériences de 
Taylor et de Dempster et Batho.

Ce que nous venons de dire concerne les photons, mais l’extension 
du principe des interférences au cas des particules matérielles et de 
leurs ondes associées paraît s’imposer puisque avec elles aussi, on peut 
obtenir des phénomènes d’interférences et de diffraction. Pour les 
électrons par exemple que l’on peut facilement utiliser dans les expé 
riences (électrons de quelques centaines à quelques centaines de milliers
d’éleclrons-volls), Fonde associée a, d’après la formule /. = ^> une

longueur d’onde de l’ordre de io—8 à 10 11 cm. On doit donc pouvoir 
avec des électrons obtenir des phénomènes analogues à ceux que l’on 
obtient avec des rayons X ou y dont la longueur d'onde est du même

C) G. I. Ta y l o r . Proc. Camb. Phil. Soc., t. lf>, 1909, p. 114 ; De mps t e r  et Ba t h o , Phys. 
Pev.. t. 30, 1927, p. 644-

(2) S. I. Va v il o v , Progrès des sciences physiques, t. 16, 1936, p. 892.
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ordre. C’est bien, on le sait, ce qu’ont montré en 1927 les expériences 
de Davisson et Germer, bientôt reprises par G. P. Thomson, Rupp, 
Ponte, Kikuchi, etc. Elles ont montré qu’un faisceau d’électrons de 
même énergie, donc associées à une onde monochromatique, peut, en se 
diffractant sur un cristal, donner naissance à des phénomènes tout à 
fait analogues à ceux qu’on observe avec les rayons X dans les expériences 
du type Laue-Bragg. D’ailleurs Rupp a pu obtenir la diffraction des 
électrons par un réseau optique ordinaire sous des incidences très 
rasantes et, en 1940, Bôrscli, répétant avec des électrons une expérience 
mémorable de Fresnel sur la lumière, a pu observer la diffraction des 
électrons par le bord d’un écran. Enfin, rappelons qu’on a pu obtenir la 
diffraction par les cristaux de toute une série de particules matérielles 
autres que les électrons, par exemple les protons, divers noyaux d’atomes 
et même les neutrons. Toutes ces belles expériences ont apporté une excel 
lente confirmation des idées générales de la Mécanique ondulatoire et
une vérification quantitative très précise de la formule A = A • Elles ont

aussi apporté un appui décisif à l’idée qu’il convient d’étendre à toutes 
les particules le principe des interférences puisque ce principe est à la 
base de tous les calculs qui permettent de prévoir les phénomènes 
d’interférences et de diffraction.

Il est certain que le principe des interférences doit, pour toutes les 
particules, recevoir l’interprétation probabiliste que nous avons été 
amené plus haut à lui attribuer dans le cas des pholons et de l’onde 
lumineuse. La chose ne paraît plus faire de doute puisque MM. Bider- 
mann, Souchkine et Fabrikant (1) ont pu vérifier que les figures de 
diffraction obtenues avec des électrons se produisent aussi par des 
actions localisées dues aux arrivées successives des électrons sur la 
plaque photographique qui les enregistre.

3. Énoncé précis du principe des interférences. Fluide de probabilité.
— Pour préciser le principe des interférences, nous remarquerons que 
l’onde T, solution d’une équation aux dérivées partielles linéaire n’ayant 
pas le caractère d’une grandeur physique mesurable, n’est déterminée 
qu’à un facteur multiplicatif complexe près. Nous pouvons choisir ce 
facteur de façon à avoir

(2)

l’intégrale étant étendue à tout l’espace. Le choix de ce facteur arbitraire

(') Rapports à l'Académie des Sciences de V U.R.S.S.^ t. 66, i[>491 P*



PREMIERS PRINCIPES RELATIFS A L’INTERPRÉTATION PROBABILISTE. 3l

nous permet donc de « normer » la fonction d’onde par la relation (2), 
du moins à un instant donné. Nous allons montrer que la fonction 
ainsi normée restera normée à tout instant t. On pourra donc préciser 
l’énoncé du principe des interférences en disant : La probabilité pour 
qu'une observation permette de localiser un corpuscule, dont la fonc 
tion d'onde normée est W(x, y, z, t), dans un élément de volume dz 
à Vinstant t est égale ci l'expression

y, 3, 0'ir*O, y> t)d~ = ly> OI2

Pour représenter les variations de la probabililé de présence | V |-’ au 
cours du temps, nous imaginerons un fluide fictif dont, par hypothèse, 
la densité en chaque point à chaque instant serait donnée par

(3) p(x, y, z, t) = 'F(a:, y, z, O’F'fa:, y, 0-

Nous définissons le mouvement de ce fluide en posant que sa vitesse 
au point x, y, z à l’instant t a pour valeur

(41
I /i I-—:— ( lI" grad T* — 'F* grad 'l'i =------grad te.'F 2 0 0 m D

Or, les fonctions W et Hr* obéissent respectivement à l’équation (41 ) 
du chapitre Tï (p. 19) et à l’équation conjuguée, d’où l’on lire aisément

ip*AiF - 'J'AT' = 4zim ft(lF'F*) _ t^zim do
dt h dt

On peut donc écrire

(6)
dp
dt .\xim

ou d’après (4) 

(7)

( >F*A'F — tFA'F* ) = _h_ y à_fXYcWf_^dWx 
l^izim Zml dx \ àx dx J

x. y, z

dp
dt

div (pv) = o.

Cette équation, bien connuè en Hydrodynamique sous le nom d’équa 
tion de continuité, exprime que le fluide fictif de densité p se conserve
au cours du temps, c’est-à-dire cjue l’intégrale JjJ'|*F|2efr reste cons 

tante. La normalisation du V a donc bien un caractère permanent.

-ï. Les relations d’incertitude d’Heisenberg.—L’ancienne Mécanique 
admettait qu’il était possible d’altribuer au corpuscule une position et 
une vitesse bien déterminées. En d’autres termes, on attribuait aux 
coordonnées x, y, z du corpuscule ainsi qu’à son énergie E et à sa
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quantité de mouvementp des valeurs bien déterminées à chaque instant. 
Nous allons montrer qu'en Mécanique ondulatoire, du moins si l’on 
envisage exclusivement la fonction d’onde continue lI’, on ne peut plus 
maintenir cette affirmation.

Étudions le cas simple du mouvement rectiligne uniforme en dehors 
de tout champ. Nous savons qu’au mouvement d’énergie Eet. de quantité 
de mouvement p s’opérant dans la direction de cosinus directeurs a, 3, -, 
correspond la propagation de l’onde plane monochromatique

— L Hz v -"f K a■ 3r + ”:]!
(8) 'f=ne h

de fréquence ^ et de longueur d’onde ) du moins à l’approximation

newtonienne. Celle onde monochromatique plane correspond donc à un 
état de mouvement bien déterminé; mais elle ne donne aucune indi 
cation sur la position du corpuscule car elle a la même amplitude en 
tout point de l’espace. La probabilité de présence j’Fj- est donc la 
même en tous les points.

Mais, au lieu d’être une onde plane monochromatique, la solution 'F 
de l’équation d’ondes qui convient à l’état du corpuscule peut être une 
superposition d’ondes planes monochromatiques représentant un train 
d’ondes de dimensions limitées. Alors l’inlensilé [ ’F j- ne sera différente 
de zéro que dans une région limitée de l’espace et, d’après le principe 
des interférences, la présence du corpuscule ne pourra être décelée que 
dans cette région. L’incertitude sur la position est alors moins grande 
que dans le cas de l’onde plane monochromatique. Par contre, si à 
chaque composante monochromatique de fréquence v et de longueur 
d’onde À présente dans la composition spectrale du 'F, nous faisons 
correspondre l’état de mouvement défini par

(9) E = h -, p.v =
h

P y = ij - ’

nous ne pouvons plus attribuer au corpuscule un état de mouvement 
bien défini. En passant du cas de l’onde plane monochromatique à celui 
du train d’ondes limité, nous avons donc vu diminuer l’incertitude sur 
la position, mais en revanche nous avons vu augmenter l’incertitude sur 
l’état de mouvement.

Nous pouvons maintenant passer au cas limite d’un train d’ondes de 
dimensions infiniment peliles. Il est alors nécessaire de faire intervenir 
pour la représentation analytique de ce train d’ondes une superposition 
d’ondes monochromatiques ayant toutes les fréquences, toutes les
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longueurs d’onde et toutes les directions possibles. Ce cas limite, symé 
trique de celui de l’onde plane monochromatique, correspond à une 
localisation bien déterminée du corpuscule, mais à une ignorance 
complète de son état de mouvement.

En résumé, mieux la position du corpuscule est définie, plus grande 
est l’incertitude sur son état de mouvement et inversement. Cette cons 
tatation qualitative peut être précisée par une analyse exacte de la 
représentation d’un train d’ondes fF par une intégrale de Fourier. On 
parvient ainsi à montrer que, si la connaissance de l’onde *F laisse 
subsister des incertitudes Ax, Ay, Az sur les coordonnées du corpus 

cule et des incertitudes Apx, Apr, Ap. sur les composantes de sa quan 

tité de mouvement, on a entre ces incertitudes les relations

(10) Ax A.p.c^h, AyApy^/i, AzAp^^h,

valables en ordre de grandeur. Ce sont là « les relations d’incertitude 
d’Heisenberg ». Elles nous apprennent que le produit de l’incertitude 
sur une coordonnée par l’incertitude sur la composante correspondante 
de la quantité de mouvement est toujours de l’ordre de h.

Aux relations (io), on adjoint une quatrième relation d’incertitude 
qui en est la conséquence

(11) AlAE^h,

en ordre de grandeur. L’interprétation de la relation (i i) est la suivante : 
si une mesure permettant d’évaluer l’énergie E d’un corpuscule dure un 
temps At, la valeur obtenue pour E est affectée d’une incertitude AE 

, , , hqui est supérieure ou égalé a —

5. Le principe de décomposition spectrale (Born). — Dans les 
raisonnements que nous venons de faire, nous avons implicitement 
admis un principe qu’il importe maintenant d’énoncer nettement. Ce 
principe qui s’est, dégagé dans les premières applications de la Méca 
nique ondulatoire et que M. llorn a le premier clairement aperçu est le 
suivant :

Si l'onde 'I est formée par la superposition d'un certain nombre 
d'ondes planes monochromatiques, à chacune de ses composantes 
correspond un étal de mouvement possible du corpuscule, c'est-à-dire 
qu'une observation peut permettre d'attribuer cet état de mouvement 
au corpuscule.

L. DE BROGLIE. 3
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D’une façon précise, on peut dire avec M. Born :

Si Vonde W est formée par une superposition d'ondes planes mono 
chromatiques formant une suite discontinue, c'est-à-dire si l'on a

(12) ¥ : = 2C(P/;)e k
k

! Ki-t Pt-rj

où E/, est Vénergie correspondant à la quantité de mouvement p/,, la 
probabilité pour qu'une observation conduise à attribuer au corpus 
cule un mouvement de quantité de mouvement p* est donnée par 
|c(p*) |2. Si, au contraire, l'onde W est formée par une superposition 
d'ondes planes monochromatiques formant un spectre continu (ce 
qui est le cas des trains d'ondes usuels), c'est-à-dire si l'on a

P üî(E/ —p.r)
(i3) ’I" = 1 c(p)e h dp {dp = dpædpj-dp-)

la probabilité pour qu'une observation conduise ci attribuer au 
corpuscule une quantité de mouvement comprise entre p et p + dp 
est donnée par | c(p) |2 <ip, étant rappelé que c(p) est donné en fonc 
tion de W (r, t ) par la formule cïinversion de Fourier :

( 14) C(P) = jp J'’ï’frj t)e h dr (dr = dxdydz).

On peut donc dire que la probabilité de chaque état est mesurée par 
par « l’intensité » de la composante spectrale correspondante. Les états 
de mouvement qui ne figurent pas dans le développement de Fourier de 
la fonction d’onde W ont donc une probabilité nulle : on peut considérer 
cette conclusion comme étant à la base de la théorie des états quantifiés 
en Mécanique ondulatoire.

6. Commentaire des résultats précédents. — Les résultats qui pré 
cèdent nous permettent de préciser la signification de l’onde VL. Elle ne 
constitue pas une .grandeur physique au sens classique : elle est seule 
ment un instrument de prévision, plus exactement de prévision de pro 
babilité. Sa forme résulte d’observations antérieures dont le résultat est 
parvenu à la connaissance de l’observateur et qui lui ont apporté des 
informations sur l’état du corpuscule : à partir de ces données initiales 
et tant que de nouveaux renseignements ne . parviennent pas à la 
connaissance de l’utilisateur, elle évolue conformément à l’équation des
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ondes. Bien que celte évolution de l’onde W soit entièrement déter 
minée, il n’en résulte pas, nous le verrons, une prévision rigoureuse 
des observations futures. En effet, la connaissance de l’onde W ne nous 
permet pas de dire quelle valeur d’une grandeur donnée sera observée 
lors d’une nouvelle observation, mais seulement qu’elles sont les valeurs 
que l’on pourra trouver pour la grandeur et leurs probabilités respec 
tives.

Chaque fois qu’une nouvelle observation nous apporte de nouvelles 
informations sur le corpuscule, la forme de l’onde V s’en trouve modifiée. 
Ceci ne peut se comprendre que si Fonde ff" est seulement une repré 
sentation de nos connaissances actuelles sur le corpuscule et non la 
représentation d’une réalité objective. Comme l’a dit récemment 
M. Schrôdinger, Fonde V a quelque chose de « psychologique ».

Nous verrons que des observations faite simultanément au cours 
d’une môme expérience ne peuvent jamais nous fournir sur les grandeurs 
caractérisant le corpuscule des connaissances plus précises que ne le 
permettent les relations d’incertitude d’Heisenberg. Si nous mesurons 
avec précision la valeur de certaines grandeurs, la valeur des grandeurs 
canoniquement conjuguées nous reste totalement inconnue. Il y a donc 
des expériences « maximales » qui nous fournissent la plus grande 
connaissance possible sur le corpuscule qui soit compatible avec les 
relations d’Heisenberg. S’il existait des expériences nous permettant de 
connaître exactement toutes les grandeurs attachées au corpuscule, les 
relations d’incertitude d’Heisenberg ne seraient plus satisfaites et il 
résulte des raisonnements faits précédemment qu’aprôs une expérience 
de ce genre, nous ne pourrions plus représenter l’état de nos connais 
sances par une onde T; mais de subtiles analyses dues surtout à 
MM. Bohr et Hcisenberg ont montré qu’aucune expérience de ce genre 
ne peut être réalisée et cela en raison môme de l’existence du quantum 
d’action h.

Telles sont les conclusions auxquelles on parvient en se plaçant 
exclusivement au point de vue actuellement considéré comme orthodoxe 
suivant lequel Fonde ffr nous fournit une description complète de l’étal 
du corpuscule. Toutes ces conclusions paraissent d’ailleurs bien vérifiées 
et nous aurons à nous demander comment on aurait à interpréter leurs 
succès si l’on adoptait un autre point de vue que le point de vue 
orthodoxe.

En passant, nous noterons encore que les répartitions de probabilité 
fournies par le principe des interférences et par le principe de décom 
position spectrale pour deux grandeurs canoniquement conjuguées x et
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px conduisent à établir rigoureusement entre les « dispersions »

0.r= \/(,X — *)S, = \/{Px~ P*)'1,

la relation
h

( 16 ) T.r ^ - j ....

C’est là une forme précise des relations d’incertitude, mais, contrai 
rement à ce que l’on dit parfois, elle n’est pas exactement équivalente à 
la forme qualitative

(17) !\x Apx ^ h, ... en ordre de grandeur.

Il peut, en effet, se présenter des cas où la relation (16) n’apporte 
aucun renseignement précis (si l’une des dispersions est infinie) alors 
que la relation qualitative (17) conserve une valeur pratique pour 
l’expérimentateur.

7. Transposition relativiste de la théorie du fluide de probabilité. — 
Il est facile de transposer la théorie du fluide de probabilité dans le cas 
de l’équation d’ondes relativiste

(18) QT-e ^ #n‘e»V=0.

2--- ?
Il suffit de poser V = a e h et de définir la densité et la vitesse du 

fluide de probabilité par

(19) ? = V =

pour vérifier l’équation de continuité

2 grady
dy
Ht

(20) dt -+- div pv=o.

C’est ce que l’on vérifie facilement en portant l’expression de dans 
(18) et annulant les termes imaginaires purs dans l’équation obtenue.

Si, au lieu d’un corpuscule libre, on considérait un électron soumis à 
un champ électromagnétique dérivant des potentiels V et A., on aurait à 
remplacer l’équation (18) par l’équation (66) du chapitre II (p. 26). 
L’on verrait alors que, pour retrouver toujours l’équation de conti 
nuité (20), il faut poser au lieu de (19) les formules

(21)
grad y - A

dy
Ht ■ e V
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Nous retrouverons l’expression de v sous le nom de « formule du guidage » 
dans la tentative de théorie causale développée dans la seconde partie. 

On vérifie aisément qu’on peut écrire (21 ) sous la forme

(22)

___
/\xi

hc-

~ih
■ ip dJÇ

àt ! V I2 E V :

pv = ('Fgrad'F*- - 'F* grad'F) — | VP* [2 scA.

Ces formules permettent de vérifier que pc et les trois composantes 
de pv forment les quatre composantes d’un quadrivecteur d’espace- 
temps.

Il est aisé de vérifier aussi qu’à l’approximation newtonienne
^où ~ mac'^y les formules (19) nous ramènent aux formules du

paragraphe 3, p n’étant évidemment définie qu’à une constante multi 
plicative près.

Le quadrivecteur densité-courant (p, pv) de la théorie de Dirac sera 
étudié ultérieurement (II0 partie, chap. XVI).



CHAPITRE IV.
LA MÉCANIQUE ONDULATOIRE DES SYSTÈMES DE CORPUSCULES.

1. L’ancienne Dynamique des systèmes de points matériels. — 
Jusqu’ici, nous n’avons considéré que le cas d’un corpuscule unique 
placé dans un champ de force connu. Comment généraliser les résultats 
exposés précédemment dans le cas d’un ensemble de corpuscules agis 
santes uns sur les autres?Pour le voir, il fautd’abord rappeler les grandes 
lignes de la Dynamique classique des systèmes de points matériels.

Considérons un système formé de N corpuscules. La masse du flcme 
est mj, ses coordonnées sont x;, y,-, z,-. L’énergie cinétique du système 
est

(') T = \ + i")’ avec ii=lît'

Les moments de Lagrange conjugués sont

dxt dy,
(2) P-Vi = mi —/t  i Pu = nli -JT ' P nij dZi

dt

L’énergie potentielle du système V(a?1, .... zy, t) est formée de 
deux sortes de termes :

i° ceux qui expriment l’action mutuelle des corpuscules et qui ne 
sont supposés dépendre que de leurs distances ; ils sont de la forme

( 3 ) Vi7 = V j j [ y/( Xi — XjY -+- (fi — -+- (z, z j f ] ;

2° ceux qui expriment l’action éventuelle d’un champ extérieur sur 
chacun des corpuscules : ils sont de la forme \i(xy yt, Zi, l).

L’expression hamiltonienne donnant l’expression de l’énergie en 
fonction des coordonnée et des moments est

(4) h (**> •••>**> 0=2,^^ -Pÿ-i ■pli) -t-V(a.'i, .. ., 3n , t)
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Si le champ extérieur ne dépend pas du temps ou est nul, Y ne contient 
pas t et l’on sait qu’alors H garde une valeur constante E au cours du 
mouvement (système conservatif).

La théorie de Jacobi se laisse étendre aux systèmes. L’équation de 
Jacobi pour le système est

L>)

*k 2 m* + V(-f> y, ^ O =
às
àt '

Si l’on parvient à trouver une intégrale complète de cette équation 
contenant 3N constantes arbitraires non addilives a1; . . . , a;iN, on 
obtiendra l’un des mouvements possibles du système en écrivant

te>\ fe1’ •••>*»*) = t/-. . ■,

où les <n sont de nouvelles constantes arbitraires et les moments de 
Lagrange seront donnés par les formules

(7) P-T, = —
«1S
à Xi ’ Py> = P~i =

àS 
<)z i

Dans le cas particulier important où les actions extérieures sont 
indépendantes du temps (ou nulles), V ne contient pas t et l’on peut 
envisager des solutions de (5) de la forme

(8) S = V.t — S, (,r,; .... sx, 2,, . . ., «:!x — 1, K)

avec 3N constantes oct, , alN_,, E. L’on est alors amené à considérer 
l’équation de Jacobi « raccourcie »

(g) V 1 y
^k 2 m* l \àxk j \àyk) (ë)'] -V(x, 0=E

et à en chercher une intégrale complète contenant 3N constantes arbi 
traires ai, . . ., a3T,_i, E. Les équations du mouvement sont d’abord

/ / ' o V \(10) = <n (1= 1. ..., 3î\ — 1)

qui donnent la trajectoire du point représentatif du système dans 
l’espace de configuration formé à l’aide des variables cct, . . ., zK. Puis 
on a l’équation de l’horaire
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(12) P-a =
àS,
dXi ’

etSi
'ty ‘ ’ P-

etSp.
t)Zj

Comme dans le cas d’un point matériel unique, l’équation de Jacobi 
permeL de définir des « classes » de mouvement du point représentatif 
du système dans l’espace de configuration, chaque classe correspondant 
à une fonction St(a?i, . . ., •sN,.<z1, . . a3N_,, E) avec des valeurs
données des constantes primaires ai, . . ., a3N_,, E, les divers mouve 
ments d’une môme classe étant caractérisés par la valeur des constantes 
secondaires . . ., «3N_,, t0.

2. Mécanique ondulatoire des systèmes de corpuscules. — Pour 
obtenir une Mécanique ondulatoire des systèmes de corpuscules, 
M. Schrôdinger dans ses travaux de 1926 a introduit l’idée qu’il fallait 
considérer une propagation d’ondes ’E dans l’espace de configuration 
du système, l’Optique géométrique de cette propagation d’ondes devant 
nous ramener à la théorie de Jacobi du paragraphe précédent.

On admet alors que l’équation de propagation des ondes W dans 
l’espace de configuration doit s’obtenir par le môme procédé automa 
tique qui a réussi dans le cas du corpuscule unique. On part donc de 
l’expression hamiltonienne classique \\{xy, . . ., zy, pXl, .... pzt) de 
l’énergie qui convient pour le système envisagé et l’on transforme cette 
fonction en un opérateur en y remplaçantpXk, pvt, pZk par les opérateurs

, ___<)_ p _____JL 1» ____ ____f±__ 'L..
'1 ' •'* 2ni 0x2 •’* ?.3ti 0yk ** 2m' àzt

On obtient ainsi l’opérateur hamiltonien . . . , .z*-, Pj;i, . . ., P, ,
et l’on adopte comme équation de propagation du *E dans l’espace de 
configuration

04)
h OU'

?. 7C i lit

On trouve ainsi, x±, . . ., étant les coordonnées rectangulaires des ]N 
corpuscules,

1 / à'1 ¥ à'1 ¥ et'2 'F
‘J 2lu mk _t' ày\ + àz\

1

8jt 2
’~h? VOo ■ • • «n , t) 'F =

4 x i 0¥
h àt

Pour N = 1, on retrouve bien l’équation valable dans le cas d’un seul 
corpuscule.
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Pour les systèmes conservatifs on peut considérer des

solutions monochromatiques ne dépendant du temps que par le facteur
2 TC i ,,--- K 1

e h et l’équation ( i5) s’écrira

(16) y — A*
rnk

T ■ 8 7C2
~/ï* [E-V(*„ as)]tf = o.

Si, dans une région de l’espace de configuration, Y varie peu à 
l’échelle de la longueur d’onde locale, l’optique géométrique est valable 
et l’onde a la forme approximative

YJ[k /-s ,]
(i7) ’l'=«e‘

a étant une amplitude lentement variable dont les dérivées sont très 
petites par rapport à celles de Si. En substituant (17) dans (16), on 
voit que Si doit être une solution de l’équation de Jacobi (9), ce qui 
établit la jonction avec la Mécanique classique.

Un cas particulier intéressant est celui où les corpuscules du système 
11’agissent pas les uns sur les autres. On peut alors les considérer aussi 
bien comme isolés que comme formant un système. La fonction V se 
réduisant aux termes V,(yr,, y,-, z-i, t) qui expriment l’action du champ 
extérieur sur les divers corpuscules, l’équation ( i5) s’écrit

(18)
k mt

A *V
8it!
h-

N

yk, Zk, O'f : 4 TC f 
~h àt

Si nous posons

(19) 'F(*1, ■ .., ZN-, 0 = TiUr, y, z, t) . . . »Fn (^n , JKn , z n, t),

nous trouvons que l’équation du système se décompose en N équations 
du type

(20)
1 . 8 JT2 4^1

— AUfx- 7tT v,(^,, yt, Zk, t)Vk = -r
àVk
àt

et nous voyons que l’on peut considérer isolément chaque corpuscule.
Néanmoins la forme (19) des solutions n’est pas la plus générale : 

l’équation de propagation admet aussi comme solutions des combinai 

sons linéaires quelconques des produits n yk, zk, t). Ces
"k

combinaisons conviennent pour décrire les cas où, les corpuscules
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ayant été antérieurement en interaction, leurs états individuels actuels 
ne sont pas indépendants : nous aurons à revenir sur ces états 
« corrélés » résultant d’interactions antérieures, lies solutions du type 
(19) ne conviennent que si les états des corpuscules sont indépendants.

3. Interprétation probabiliste de la Mécanique ondulatoire des sys 
tèmes de corpuscules. — Il est aisé de transposer le principe des inter 
férences au cas des systèmes de corpuscules. On l’énonce alors en disanL :

Si l’état d’un système de corpuscules est représenté dans l'espace de 
configuration par la fonction d’onde W (xy ,. . ., l), la probabilité
pour qu'une observation permette de localiser au temps t le point 
figuratif du système dans l'élément de volume

dz = dx\dy\d,Zi . . . dx^djsdz^

de l'espace de configuration est égal à | *F(;Ti, .... %, t) |2 dz.

S’il n’y a qu’un seul corpuscule, on retombe évidemment sur la forme 
précédemment étudiée du principe des interférences. Pour N corpus 
cules n’interagissant pas et n’ayant jamais interagi (corpuscules indé 
pendants), on peut adopter l’expression (19) de 'F et par suite écrire

(21) | = J'F, Oi,yi, z,,t)\*dxidyidzi... | s n , t) |! dx^dy^dz*.

La probabilité pour que le point figuratif du système soit trouvé dans 
l’élément de volume dxi . . . dzN de l’espace de configuration est alors le 
produit des probabilités individuelles pour que le premier corpuscule 
soit trouvé dans l’élément de volume dxidyydzy, . . ., le Nicmc dans 
l’élément de volume dxydy^dzK. Ce résultat est en accord avec le 
théorème des probabilités composées car les présences des divers 
corpuscules dans les différents éléments de l’espace physique sont ici 
des événements indépendants et nous voyons bien pourquoi en ce cas 
la fonction d’ordre *F doit avoir la forme (19).

Pour que la grandeur |lF|2 donne, en valeur absolue, la probabilité 
de présence du point figuratif du système dans l’élément de volume dz 
de l’espace de configuration, il faut normer le TF en posant

(22) / ... f PF|2«!t  = i,
J 3IV J

ce qui détermine *F à un facteur constant e'01 près.
Il faut encore démontrer que la normalisation (22) effectuée à un 

instant t subsiste ensuite. Pour cela, on considérera un fluide fictif
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défini dans l’espace de configuration par les formules

j ' p = l'F |- ;
(23)

I
p v/ = , ^ - ['Fgradx'F*—T*gradxT] =-----— l'F |2 grad/: <p,

4 jc  t mk mk

71 i ,
~/T 'nr- /, ■ . dxk dyk . dzkavec '1 - se , v* ayant comme composantes et et

à à àgrad/, ayant pour composantes et

En multipliant l’équation de propagation (i5) par VF*, l’équation 
conjuguée par W et en soustrayant, on obtient alors

( 24 ) Y — [ 'F* A* VF - VF Ai VF* ] = ^ ~
^_J/L- mk h ot

i

d’où l’on déduit avec les définitions (23)

N
(25) Jt div*(pv*) =0,

(W),

équation qui est la généralisation de l’équation de continuité hydro 
dynamique pour un fluide fictif en mouvement dans un espace à 3N 
dimensions. Le fluide de probabilité se conserve donc dans son mou 
vement dans l’espace de configuration et la normalisation du f a un 
caractère permanent.

Le principe de décomposition spectrale s’énonce ici comme pour un 
seul corpuscule. Si le système est conservatif, l’onde *E peut toujours 
être représentée par une superposition d’ondes monochromatiques et 
l’intensité de chaque composante spectrale donne la probabilité pour 
qu’une observation permette d’assigner au système l’énergie corres 
pondante.

En étudiant la représentation d’un train d’ondes V dans l’espace de 
configuration par une intégrale de Fourier et en comparant les distri 
butions de probabilité pour X/t et px , on retrouverait les relations 
d’incertitude qualitatives

(26) Apxt en ordre de grandeur

et la relation précise entre les dispersions

h
(27)
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Dans la théorie précédente, nous supposons les corpuscules libres de 
se mouvoir dans tout l’espace (système sans liaisons) cl nous avons 
employé les coordonnées cartésiennes rectangulaires de ces corpuscules 
pour repérer le système. Si l’on veut employer des coordonnées curvi 
lignes, ce qui est normal dans le cas des systèmes à liaisons où le 
nombre des degrés de liberté est inférieur à 3N, il faut développer 
un peu différemment les calculs qui précèdent. Nous n’y insisterons 
pas ici.

4. Systèmes de corpuscules de même nature physique. — Le cas d’un 
système formé de corpuscules de même nature physique présente des 
particularités très importantes que nous allons résumer. Ce cas est en 
particulier celui des atomes dans la mesure où l’on peut considérer le 
noyau comme un simple centre de forces entouré d’électrons.

Ce qui caractérise un système contenant des corpuscules de même 
nature physique, c’est que son état ne doit être nullement modifié si 
l’on y permute le rôle de deux quelconques de ces constituants iden 
tiques. Deux corpuscules de même nature, deux électrons par exemple, 
sont tellement semblables qu’il est impossible de leur attribuer une 
individualité : c’est un des résultats essentiels de la Physique quantique 
que d’avoir mis en lumière cette « indiscernabilité » des corpuscules de 
môme nature.

On doit donc admettre que toute grandeur observable, telle que [ W |-, 
doit être insensible à une permutation quelconque du rôle des corpus 
cules. Ceci conduit à restreindre la forme possible des fonctions d’onde. 
Comme les interactions des corpuscules sont toujours des fonctions 
symétriques de leurs coordonnées, si l’on a trouvé une solution 
f(»i. Ju «I, • • ■, Xi, fi, Zi, .. ., Xk, yk, Zk, • • •, Xx, Jn , t) de 
l’équation des ondes, la fonction que l’on obtient en permulanl le rôle 
des corpuscules i et k, soit1lr(a?1, y,, zt, ..., xk, yk, z/{, ..., x,, y-t, z-i, ..., 
a?N, Jn j ^n > t)i est encore solution, ainsi que toute combinaison linéaire 
des deux solutions ainsi obtenues de la forme

Ou yu *i, ..., xit yt, Zi, ..xk, yk, zk, ..., xx, yy, «s, t)
-t- bW{xu yu Z,, . . ., Xk, Yk, Zk, . . ., Xi, Xi, Zi, . . Xy, fy, Zy, l).

Si alors nous écrivons que le |1r|2 correspondant à cette combinaison 
linéaire est insensible à la permutation des corpuscules i et k, nous 
arrivons à la condition b = ± a et l’on peut aussi vérifier que toute 
grandeur physique observable construite à l’aide de ce W est également 
insensible à cette permutation si b = ± a.



Pour énoncer ces résultats sous une forme générale, introduisons les 
définitions suivantes : une fonction d’onde sera dite « symétrique » si, 
quand on y intervertit le rôle de deux quelconques corpuscules de 
même nature, elle n’est pas modifiée; une fonction d’onde sera dite 
« antisymétrique » si, lors d’une telle permutation, elle change de signe 
sans changer de valeur absolue. Nous pouvons alors énoncer le résultat 
auquel nous sommes parvenus sous la forme suivante : La fonction 
d'onde W d'un système qui contient des corpuscules de même nature 
doit être soit symétrique, soit antisymétrique par rapport à 
l'ensemble de ces constituants.

On peut montrer qu’il existe toujours une infinité d’états symétriques, 
et une infinité d’états antisymétriques. On admet que, pour chaque 
genre de particules, seulement l’une ou l’autre de ces deux catégories 
d’états est réalisable dans la nature. Pour justifier cette hypothèse, on 
démontre, en s’appuyant toujours sur la symétrie des interactions que, 
si le système est initialement dans un état symétrique, il ne peut subir 
de transitions que vers un autre état symétrique et que, s’il est initia 
lement dans un état antisymétrique, il ne peut subir de transitions que 
vers un autre état anlisymétrique. Ainsi les étals symétriques d’une 
part, les états anlisymélriques d’autre part forment des ensembles 
fermés et ne peuvent se combiner qu’entre eux.

On peut donc très bien admettre que, suivant la nature physique des 
constituants de même espèce, une seule des deux catégories d’états est 
réalisée dans la nature. L’expérience a confirmé celte hypothèse en 
montrant que les photons, les particules a, certains noyaux d’atome 
sont des particules à états awfcisymétriques tandis que les électrons, les 
protons, les neutrons et certains autres noyaux d’atomes sont des parti 
cules à états antisymétriques.

Si l’on étudie les statistiques qui sont valables pour des ensembles de 
particules de l’une ou de l’autre catégorie, on constate que ces statis 
tiques diffèrent entre elles et qu’elles diffèrent toutes les deux de la 
statistique classique de Bollzmann-Gibbs. Les particules à états symé 
triques suivent une statistique dite « statistique de Bose-Einstein », ce 
qui leur fait souvent donner le nom de bosons. Les particules à états 
anlisymélriques suivent une statistique dite « statistique de Fermi- 
Dirac », ce qui les fait souvent appeler des fermions. Les fermions 
obéissent au principe de Pauli suivant lequel, dans une assemblée de 
ces particules, deux constituants ne peuvent pas se trouver dans le 
même état individuel. En effet, si nous avions deux constituants jouant 
exactement le même rôle dans un état antisymétrique du système, la
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permutation de ces deux constituants, qui doit changer le signe de la 
fonction *F, ne devrait aussi amener aucun changement. La fonction 
d’onde, devant à la fois rester la même et changer de signe, serait 
nécessairement nulle, ce qui veut dire que l’état considéré ne peut pas 
réellement exister. Notons d’ailleurs qu’une étude plus complète montre 
que, pour appliquer correctement le principe de Pauli, il faut tenir 
compte du spin, ce que nous ne ferons pas ici.

o. Remarques sur la Mécanique ondulatoire des systèmes de corpus 
cules. — La Mécanique ondulatoire des systèmes de corpuscules telle 
que nous venons de la développer à la suite de M. Schrôdinger est une 
théorie essentiellement non relativiste parce qu’elle suppose que les 
interactions peuvent être représentées à chaque instant par des fonctions 
de la distance actuelle des corpuscules alors que dans une théorie rela 
tiviste des interactions, celles-ci se propagent avec une vitesse finie, ce 
qui introduit des retardcments. Une Mécanique ondulatoire relativiste 
des systèmes ne peut se développer suivant les lignes que nous avons 
indiquées et l’on n’a entrepris de la construire que récemment dans le 
cadre de la théorie quantique des champs (travaux de Tomonaga, 
Schwinger, Feynman, etc.). Bornons-nous à souligner le fait que la 
théorie exposée plus haut n’est valable qu’à l’approximation newtonienne.

L’idée de M. Schrôdinger de définir l’onde V d’un système dans 
l’espace de configuration m’avait au début beaucoup scandalisé parce 
que, l’espace de configuration étant purement fictif, cette conception 
enlève à l’onde toute réalité physique : pour moi, l’onde de la Méca 
nique ondulatoire devait évoluer dans l’espace physique à trois dimen 
sions. Les succès nombreux et éclatants qui découlèrent du point de 
vue de M. Schrodinger m’obligèrent à reconnaître sa valeur, mais je 
restai longtemps persuadé que la propagation de l’onde 'F dans l’espace 
de configuration ôtait une manière fictive de représenter des phénomènes 
ondulatoires qui, en réalité, se déroulent dans l’espace. Nous verrons 
dans la deuxième partie de cet Ouvrage (chap. XII) comment, dès 1927, 
j’avais cherché à développer cette manière de voir dans le cadre de la 
théorie de la double solution.



CHAPITRE V.
VUE GÉNÉRALE

SUR L’INTERPRÉTATION PROBABILISTE DE LA MÉCANIQUE ONDULATOIRE.

1. Idées générales. — Le développement de la Mécanique ondulatoire 
a fortement attiré l’attention sur l’influence des opérations de mesure 
sur notre connaissance de la réalité physique de l’échelle atomique. 
Dans ce domaine, on peut appeler « mesure » toute observation faite à 
l’aide d’un dispositif macroscopique approprié qui permet d’attribuer 
une certaine valeur à l’une des grandeurs caractérisant une particule ou 
un système de l’échelle atomique.

La Physique classique supposait implicitement que l’on pouvait, à 
l’aide d’une technique expérimentale assez fine, diminuer indéfiniment 
la perturbation qu’une opération de mesure peut exercer sur l’état de 
choses existant avant la mesure de sorte qu’aux erreurs d’expérience 
près, chaque mesure traduirait exactement la situation existant avant et 
également après la mesure. La Physique quantique s’est aperçue que 
l’existence du quantum d’action ne permettait pas de diminuer indéfi 
niment la perturbation qu’une mesure produit dans la situation anté 
rieure : la perturbation minimum résiduelle, qui est insignifiante à 
grande échelle, ne peut plus être négligée à petite échelle : c’est ce que 
montrent des exemples de mesure comme celui qui est connu sous le nom 
de « microscope d’IIeisenberg ». La mesure d’une grandeur ne révèle 
donc pas en général une situation existant avant la mesure, mais une 
situation fabriquée en quelque sorte par la mesure. En général, on ne 
peut pas dire que la valeur mesurée de la grandeur existait déjà avant la 
mesure.

Il résulte d’ailleurs des analyses de Bohr et Heisenberg dont nous 
avons déjà parlé qu’aucune opération de mesure ne peut fournir simul 
tanément avec précision les valeurs de deux grandeurs canoniquement
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conjuguées : toute tentative de les mesurer simultanément laisse toujours 
finalement subsister sur leurs valeurs des incertitudes Aq et Ap telles 
que la relation Aq Ap ^ h soit satisfaite. Donc une opération de mesure, 
même effectuée avec toute la précision que permet l’existence du 
quantum d’action (mesure maximale), laisse encore inconnue la valeur 
d’au moins la moitié des grandeurs physiques caractérisant le corpuscule 
ou le système étudié.

Même si l’on devait en revenir à une interprétation causale de la 
Mécanique ondulaLoire, il semble que toutes les idées auxquelles nous 
venons d’arriver devraient subsister. Mais l’interprétation probabiliste 
actuellement adoptée leur attribue une signification très particulière. 
Selon elle, dans l’état de choses antérieur à la mesure, une grandeur 
physique n’aurait pas en général une valeur bien déterminée, mais 
seulement des valeurs possibles, c’est-à-dire des valeurs que l’opération 
de mesure peut extraire de l’état de choses antérieur. Cependant la 
connaissance de la fonction *F avant la mesure doit nous permettre de 
dire quelles sont les valeurs possibles d’une grandeur et les probabilités 
respectives de ces grandeurs possibles. La fonction lF étant connue, les 
grandeurs ont seulement des valeurs « potentielles » et tout ce que l’on 
peut préciser, c’est une « répartition de probabilité » pour ces valeurs 
potentielles.

Il est possible d’illustrer ces affirmations en s’appuyant sur le principe 
des interférences et sur celui de décomposition spectrale. Pour un train 
d’ondes V limité, les coordonnées du corpuscule ont comme valeurs 
possibles celles qui correspondent à tous les points intérieurs au train 
d’ondes : le corpuscule serait présent « à l’état potentiel » en tout point 
du train d’ondes. La répartition de probabilité des diverses positions 
possibles à l’intérieur du train d’ondes est donnée par la valeur corres 
pondante du | p à l’instant considéré. De même, si l’onde W est 
formée par une superposition d’ondes planes monochromatiques de la
forme W =^c/1ff'/,, le corpuscule est avant la mesure « à l’état potentiel »

k
dans tous les étaLs de mouvement correspondant aux indices k, la 
répartition de probabilité étant donnée par les | c/, |2. Si l’on mesure soit 
la position, soit la quantité de mouvement, on obtient une des valeurs 
possibles, la probabilité a priori du résultat étant fournie par la répar 
tition de probabilité correspondante.

Tel estle point de vue de l’interprétation probabiliste actuelle. Il existe 
un autre point de vue dont nous aurons à reparler. Il consiste à admettre 
que les grandeurs attachées au corpuscule auraient avant la mesure des
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valeurs bien déterminées, d’ailleurs en général inconnues : la mesure 
troublerait la situation en substituant aux valeurs initiales des grandeurs 
mesurées l’une ou l’autre des valeurs prévues par la théorie usuelle, et 
cela avec la probabilité correspondante.

2. Analyse du rôle des opérations de mesure en Physique quantique.
— Quelle que soit l’interprétation adoptée, il est intéressant de se faire 
une image du rôle de la mesure en Physique quantique. Pour cela, nous 
envisagerons le cas des pholons et de l’onde lumineuse, la transposition 
au cas des particules matérielles et de leurs ondes associées se faisant 
ensuite immédiatement.

Considérons une onde lumineuse quelconque : nous pouvons 
« décomposer » celte onde en nous plaçant à des points de vue diffé 
rents. Si l’on se place au point de vue des fréquences et des directions 
de propagation, on peut décomposer l’onde « speclralement » en une 
suite finie ou infinie d’ondes monochromatiques planes. Ceci s’elfeclue 
analytiquement en développant la fonction d’onde en série ou en inté 
grale de Fourier. Si l’on envoie Fonde sur un appareil qui sépare les 
composantes monochromatique, un réseau par* exemple, on obtient 
séparément chaque composante de Fourier avec son intensité propre. 
Si maintenant on associe les pbotons à l’onde lumineuse, comme nous 
savons qu’on doit le faire, on voit qu’on doit traduire l’action du réseau 
en disant qu’il répartit les pbotons entre les composantes spectrales 
proportionnellement à l’intensité de chaque composante. Avant le 
passage dans le réseau, chaque pholon ne pouvait pas être considéré 
comme possédant une fréquence déterminée puisqu’il était lié à une 
onde où plusieurs fréquences figuraient, mais après le passage à travers 
le réseau le photon a une fréquence bien déterminée et la probabilité de 
chaque valeur possible de la fréquence est proportionnelle à l’intensité 
de la composante de Fourier correspondante dans l’onde incidente. Le 
réseau est donc un dispositif de mesure des fréquences qui permet 
d’atlribucr au photon une fréquence bien déterminée et par suite
d’attribuer une valeur h v à son énergie et une valeur ^ à sa quantité de

mouvement. On peut dire encore que la composition spectrale de l’onde 
incidente représente les valeurs possibles, après le passage dans le 
réseau, de la fréquence du photon (c’est-à-dire de son énergie et de sa 
quantité de mouvement) et leurs probabilités respectives de se mani 
fester après l’action du réseau. Les valeurs possibles sont celles qui 
figurent dans le développement de Fourier de l’onde incidente et les 
probabilités sont les carrés des amplitudes spectrales correspondantes.

L. DE BROGL1B. 4
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Appliqiié à un corpuscule matériel tel que l’électron, la même corres 
pondance entre les valeurs de l’énergie et de la quantité de mouvement 
d’une part, la décomposition spectrale de l’onde associée d’autre part 
conduit au principe de décomposition spectrale précédemment exposé.

Le cas particulier que nous venons d’examiner fournit une image du 
rôle de la mesure en Physique quantique qui paraît pouvoir se généra 
liser pour toutes les grandeurs. L’appareil de mesure est finalement 
toujours un dispositif qui permet de dissocier les diverses composantes 
d’un certain développement de l’onde W correspondant à la nature de 
la grandeur mesurée. Il est essentiel de remarquer que la mesure ne 
peut s’effectuer que si le dispositif permet de séparer dans l'espace les 
diverses composantes de l’onde. Ainsi, dans le cas du réseau, si l’on 
considère la région voisine de la sortie du réseau, où tous les faisceaux 
diffractés se superposent, la présence du photon dans cette région de 
l’espace ne permettrait pas de lui attribuer une fréquence et une 
direction de propagation. Mais le réseau ainsi que le faisceau incident 
ont toujours des dimensions latérales finies : c’est pourquoi les faisceaux 
diffractés finissent toujours par se séparer dans l’espace après la sortie 
du réseau et le photon, s’il se trouve dans l’un des faisceaux ainsi 
séparés, doit alors posséder une fréquence et une direction de propa 
gation bien déterminées.

Dans l’analyse de tout processus de mesure, il est donc essentiel de 
faire entrer en ligne de compte les dimensions finies non seulement du 
dispositif de mesure, mais des trains d’ondes qui interviennent dans le 
phénomène. Toute mesure s’opère finalement par la localisation d’un 
corpuscule dans un faisceau que le dispositif de mesure a extrait de 
fonde initiale.

3. Formalisme général de l’interprétation probabiliste. — En résumé, 
nous sommes parvenus aux idées générales suivantes. Tout dispositif 
permettant de mesurer exactement l’une des grandeurs qui caractérisent 
un corpuscule oblige ce corpuscule à se révéler dans un état où cette 
grandeur à une valeur bien déterminée, mais antérieurement à la mesure 
la Mécanique ondulatoire, du moins si elle se borne à l’emploi des 
ondes V, no permet pas d’attribuer à la grandeur une valeur bien 
définie : elle peut seulement lui attribuer des valeurs possibles affectées 
de probabilités. Pour trouver ces valeurs possibles et ces probabilités, 
on doit effectuer une certaine décomposition de fonde VE initialement 
associée au corpuscule, décomposition déterminée par la nature de la 
grandeur à mesurer et correspondant au dispositif de mesure : dans



cette décomposition, chaque composante correspond à l’une des valeurs 
possibles et son intensité (carré du module de l’amplitude) donne la 
probabilité de cette valeur possible. Après la mesure, la grandeur 
mesurée a pour le corpuscule une valeur précise, mais il n’en est pas en 
général de même pour une autre grandeur qui exige pour sa mesure un 
autre dispositif.

Ces circonstances ont pu être représentées par un formalisme élégant 
et précis dont je donnerai seulement ici une vue d’ensemble très 
succincte.

A chaque grandeur physique, ce formalisme fait correspondre un 
opérateur linéaire qui est bermitiquc (ou selfadjoint). Or, un tel opéra 
teur A permet de définir (à l’aide de l’équation A<p = acp) une série de 
nombres réels «1, . . ., a, , ... qui sont ses valeurs propres et une série 
de fonctions cp4, ..., tp,-, ... finies, uniformes et continues dans le 
domaine D des variables considérées qui sont les fonctions propres 
correspondant respectivement aux valeurs propres. Il peut d’ailleurs 
arriver qu’à une môme valeur propre, correspondent plusieurs fonctions 
propres linéairement indépendantes : ce sont les cas de « dégéné 
rescence » sur lesquelles je n’insiste pas.

Sous réserve de quelques précautions à prendre dans les cas de 
dégénérescence, on peut dire que les fonctions propres cp, forment une 
suile de fonctions orthogonales, c’est-à-dire que l’on a

(>) / = o OV-y).

Définies par un opérateur linéaire, les cp, ne sont déterminées qu’à 
une constante multiplicative complexe près. On peut donc leur imposer 
la condition d’ôtre « normées », c’est-à-dire de vérifier la relation
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Il ne rosie plus alors dans l’expression dos <p, qu’un facteur multipli 
catif arbitraire e'a de module unité.

Les fonctions propres forment aussi une suite « complète » qui nous 
permet de développer une fonction des variables du domaipe D telle que 
le ’b sous la forme

CD

les c,- étant des coefficients constants qui généralisent les coefficients
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classiques de Fourier et qui sont donnés par

(4) «V= f
De cette manière, on fait correspondre à toute grandeur ou, si l’on 

veut, à tout dispositif permettant la mesure de cette grandeur, une 
certaine décomposition de l’onde *F.

On admet alors comme principes fondamentaux correspondant aux 
idées générales développées plus haut que :

i° Toute mesure de la grandeur fournit nécessairement une des 
valeurs propres a*.

2° La probabilité pour qu’une mesure fournisse la valeur propre a/, 
est mesurée par le carré du module je*]- du coefficient correspondant 
à o/, dans le développement du W suivant les cp,.

Dans certains cas sur lesquels je n’insiste pas, ces énoncés ont besoin 
d’être convenablement interprétés.

On démontre qu’appliqués aux cas de la mesure d’une coordonnée 
ou d’une composante de quantité de mouvement, ces énoncés permettent 
de retrouver le principe des interférences et le principes de décompo 
sition spectrale.

Un point très important de ce formalisme est le suivant. On montre 
que la condition nécessaire et suffisante pour que deux opérateurs A et B 
correspondant à des grandeurs mesurables différentes puissent admettre 
le même système de fonctions propres cp, est qu’ils « commutent », 
c’est-à-dire qu’ils fournissent le même résultat quand on les applique à 
une fonction du domaine D soit dans un certain ordre, soit dans l’ordre 
inverse. On peut alors écrire

(5) AB H A

et l’on dit que le commutateur AB — BA des deux opérateurs est nul. 
S’il en est ainsi, le développement (3) sera le même pour les deux 
grandeurs A et B et un môme dispositif pourra mesurer à la fois A et B, 
c’est-à-dire qu’il pourra fournir à la fois les valeurs a,- et (3,- des deux 
grandeurs qui correspondent au même œ,- avec la même probabilité | c/|-,

Mais, si les opérateurs A et B ne commutent pas, les deux dévelop 

pements lF =2c, w,- et T suivant les fonctions propres de A
t k

et de B ne pourront pas coïncider et alors les dispositifs de mesure des 
grandeurs A et B seront différents. Si un dispositif est, par exemple, 
adapté au premier développement, il permettra une mesure exacte de A
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et pourra fournir pour A une des valeurs précises a,- avec la probabi 
lité j a |2, mais celle mesure de A étant effectuée, comme <p; ne coïncide 
avec aucun des yj, le développement suivant les %/;du *F après la mesure 
comportera plusieurs termes non nuis. Ainsi toute mesure laissera sub 
sister une certaine incertitude sur l’une au moins des grandeurs A et B.

C’est ce qui se produit notamment pour les grandeurs « canonique 
ment conjuguées » telles que x et px auxquelles correspondent les 
opérateurs

(6) A =
2 TU i <)x

dont le commutateur AB — BA, égal à n’est pas nul. Ceci explique

pourquoi toute opération de mesure laisse subsister sur ces grandeurs 
des incertitudes Ax et Apx telles que Ax Apx 7^, h.

Dans ce formalisme, on désigne par valeur moyenne A ou <jA j> de la 
grandeur A l’espérance mathématique de la valeur de A avant la mesure, 
c’est-à-dire
(7) A =< A >=^|c,-|2a;

i

et l’on démontre aisément que l’on a

(8) A = f f'*AiF<A.
Ci)

Je laisserai de côté ici des questions importantes telles que celle des 
intégrales premières et je me contenterai de rappeler que l’on est amené 
à faire un grand usage des « matrices » engendrées par un opérateur A 
dans le système des fonctions propres VF,- de l’opérateur hamiltonien. 

Les éléments de la matrice A sont définies par

(9) a,t=* fwi\Wtdx
•'D

et obéissent à la règle de multiplication non commutative

(10) (ab)ik —
i

Tout le formalisme qui vient d’être résumé s’étend d’ailleurs au cas 
des systèmes de corpuscules en remplaçant l’espace ordinaire par 
l’espace de configuration et le corpuscule par le point représentatif du 
système dans l’espace de configuration.



CHAPITRE VI.
DIVERS ASPECTS DE L’INTERPRÉTATION PRORABILISTE 

DE LA MÉCANIQUE ONDULATOIRE.

1. Notion de superposition. — Nous venons de voir que chaque 
fonction cp,- d’un opérateur A correspondant à une grandeur mesurable 
(« observable » au sens de Dirac) décrit un état du système où la 
grandeur A a la valeur précise «/. Mais en général le *F du système ne se

réduit pas à un seul cp,- : il est égal à une somme de cp; de la forme ^ c; cp/.
i

On dit alors que le V est une « superposition » de cp,- : cette expression 
vient du principe de superposition des petits mouvements, bien connue 
dans la théorie classique des vibrations.

Mais ici la superposition n’a pas du tout le môme sens que dans les 
théories classiques. Il ne s’agit plus de la vibration d’un milieu qui 
s’obtiendrait en ajoutant quelques vibrations élémentaires, il s’agit de 
l’affirmation suivante : Si la fonction d'onde W d'un corpuscule (ou

d'un système) est de la forme lF et si l'on cherche à attri-
î

buer à ce corpuscule un certain état cp/,- par une mesure de la gran 
deur A, il y a une probabilité égale à | C/,-1- d'être effectivement 
conduit par la mesure à lui attribuer cet état. Donc, avant la mesure, 
le corpuscule (ou le système) se trouvait potentiellement dans plusieurs 
états cp,-, chacun possédant une probabilité non nulle | c,-12. C’est là, 
du moins, ce que dit l’interprétation probabiliste orthodoxe : or, c’egt 
là une idée entièrement nouvelle, tout à fait étrangère aux concep 
tions classiques qui considèrent l’état d’un système comme toujours 
caractérisé par des valeurs bien définies de toutes les grandeurs 
du système. Cete notion nouvelle de superposition est l’une des 
plus importantes qu’ait introduites le développement de la nouvelle 
Mécanique.
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Dans la théorie classique des vibrations, quand on considère une 
vibration représentée par une expression de la forme '^Ciaie t * l ]

cela signifie que la grandeur de la vibration est donnée en chaque point et 
à chaque instant par l’addition d’ondes planes monochromatiques dont 
les contributions sont mesurées par les valeurs des c(. En Mécanique

ondulatoire, la condition / | W |a = i que l’on impose au y pour que
•du

| *E |2 soit en valeur absolue la probabilité de localisation ne permet 
plus de regarder le lF comme ayant une amplitude physiquement déter 
minée : le 'F ne peut donc plus représenter une vibration ayant le sens 
objectif classique.

Précisons ceci par un exemple. En Physique classique, deux mouve-
«izif'/t — •xnif'/t —

ments ondulatoires y4 = Cj e V et *F2=c2e V */ de mêmes
fréquence et direction de propagation donnent par leur superposition 
un mouvement ondulatoire ’Fi-f- y2 d’amplitude c4-f- c2. Au contraire, 
en Mécanique ondulatoire, les étals associés à des ondes yt et W2 ayant 
les expressions ci-dessus doivent, si on les considère isolément, satisfaire

aux conditions de normalisation Ci !c 2 = ) où “V est l’étendue

du domaine D. Si l’on superpose ces états, l’onde W devient 'Fi + v F2, 
mais avec la condition de normalisation |ct+<?•>! = —^ de sorte qu’il

n’y a pas du tout simple addition des amplitudes. Cet exemple montre 
bien l’abime qui sépare les notions de fonctions d’onde en Physique 
classique et en Mécanique ondulatoire usuelle.

Il est à peine besoin de remarquer que, si la superposition au sens 
précisé plus haut est valable pour les fonctions *F, c’est parce que ces 
fonctions sont solutions d’une équation de propagation linéaire. La 
superposition étant une condition essentielle pour que l’interprétation 
probabiliste de l’onde *F soit possible, il faut absolument admettre que 
l’onde V obéit à une équation de propagation linéaire. Mais nous aurons 
à nous demander si, en introduisant un autre type d’onde obéissant à 
une équation de propagation non linéaire, nous ne pourrions pas 
dépasser le point de vue purement probabiliste et atteindre ainsi une 
couche plus profonde de la réalité physique.

2. Équivalence des représentations. Théorie des transformations. —
Les idées générales admises par l’interprétation probabiliste conduisent 
naturellement à admettre l’équivalence de tous les développements
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du *F qui correspondent, peut-on dire, à diverses hypothèses, toutes 
également admissibles, sur la mesure que l’on se propose d’effectuer.

Considérons par exemple les développements du *F correspondant 
respectivement à une mesure de position dans l’espace et à une mesure 
de quantité de mouvement, mesures qui, nous le savons, s’excluent 
l’une l’autre puisque aucun dispositif ne peut nous donner à la fois avec 
précision la localisation et l’état de mouvement. Pour la localisation en 
un point ro(.£o, yo, ^o) de l’espace, on démontre que la fonction propre 
est la fonction singulière de Dirac

8(r — r0) = 3(> — x0) 8 (y — fo) S(z — z0) 

et, comme l’on peut écrire le 'F sous la forme 

(i) 'FO, y, z, t)= fw(*t)y0, 2„

on voit que le coefficient de la fonction propre o(r — r0) est 
'F(iTo, yo ,-So, t), ce qui est en accord avec le principe de localisation 
puisque la probabilité de localisation au point r0 au temps t est 
|*F(a"0, y o, -So, t) |2. Pour la quantité do mouvement p, les fonctions 
propres sont les ondes planes monochromatiques a e<(krt k r) où l’on a 
posé

(=*) k=TcW' k=fP

et où k est une fonction connue de k. Le lF se développe alors sous la 
forme

(3) <r=]c(k)ake^-k')A {dk = dkx dky dkz)

et la probabilité pour qu’une mesure de la quantité de mouvement 
fournisse la valeur k est donnée par jc(k) |-.

L’équivalence apparaît donc complète entre les développements (i)

et (3) et tous les autres développements du type ^c, œ, que l’on pourrait
i

avoir à envisager pour le *F en considérant d’autres grandeurs physiques. 
Celte équivalence sert de base à une très élégante théorie mathématique 
due à M. Dirac et connue sous le nom de « théorie des transformations ».

Sans développer cette théorie, réfléchissons à son idée de base en 
nous restreignant au cas de la localisation et de la quantité de mouve 
ment. Elle affirme que, dans l’état représenté par le *F considéré, le 
corpuscule est potentiellement présent en tout point x0, y 0, z-o de l’espace
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avec la probabilité | lF(;ro, fo, £0, t) |2 et qu’il possède aussi potentielle 
ment toutes les quantités de mouvement k avec les probabilités |c(k)[2. 
On peut donc dire que la localisation et la quantité de mouvement existent, 
l’une et l’autre, du moins d’une manière potentielle, avant l’opération 
de mesure que va préciser la valeur de l’une de ces caractéristiques du 
corpuscule.

Cette équivalence suggérée par la symétrie des développements (1) 
et (3) et admise par la théorie des transformations s’impose-t-elle abso 
lument? A mon avis elle 11e s’impose pas et c’est là un point qui aura 
dans la suite de notre exposé une grande importance. En fait, ce que 
l’on enregistre toujours dans une observation l’aiLe sur un corpuscule, 
c’est sa position. Quand par un dispositif, genre prisme ou réseau 
optique, on sépare les faisceaux correspondant à des valeurs différentes 
de k, c’est en constatant par une localisation la présence du corpuscule 
dans l’un de ces faisceaux qu’on parvient à lui attribuer une quantité de 
mouvement. D’ailleurs, l’action d’un corpuscule en un point, par 
exemple l’impression locale d’une plaque photographique par l’impact 
d’un photon ou d’un électron est un phénomène qui n’exige pour son 
observation aucun dispositif particulier (autre que la présence purement 
passive de la plaque photographique). Il n’en est pas de môme pour la 
quantité de mouvement dont la mesure exige un dispositif agissant sur 
le corpuscule.

Ces considérations m’avaient porté à croire, il y a a5 ans, que la 
probabilité QFp relative à la localisation avait, contrairement à l’idée 
de base de la théorie des transformations, une signification beaucoup 
plus directe que la probabilité ] c(k) |2 relative à la quantité de mouve 
ment. La première serait effectivement la probabilité pour que le corpus 
cule soit en un point de l’espace dans l’état inital décrit par le IF. La 
seconde, au contraire, n’existerait qu’après l’opération de mesure de la 
quantité de mouvement : la mesure effectuée et le résultat en étant 
encore ignoré, la probabilité pour que la valeur trouvée soit k serait 
j c(k) |2. Ce point de vue est celui de l’interprétation causale que nous 
développerons dans la seconde partie de cet Ouvrage.

Cette opposition de points de vue est apparentée à une controverse 
qui a été célèbre dans l’histoire de l’Optique classique. Certains auteurs 
soutenaient que, quand un train d’ondes non monochromatique 
traverse un appareil du type prisme ou réseau, les fréquences observées 
après le passage dans le dispositif étaient créées par l’action de celui-ci : 
d’autres auteurs disaient au contraire que les fréquences existaient déjà 
dans le train d’ondes primitif. Au point de vue mathématique, ces
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derniers avaient raison puisque la décomposition de Fourier de l’onde 
incidente est possible analytiquement et fait apparaître les fréquences 
séparées par le prisme. Mais du point de vue physique, dans le cadre 
des idées classiques, il ne me paraît pas douteux que la première 
opinion était exacte. En effet, avec les conceptions classiques, la 
fonction d’onde représente une vibration objective : c’est la fonction, 
généralement très complexe, du temps représentant en chaque point 
cette vibration objective qui a un sens physique et non la décomposition 
de Fourier qui est purement mathématique. Autrement dit, c’est 
l’amplitude résultante de la vibration qui a une signification physique 
directe et non les composantes de Fourier : celles-ci ne prennent un 
sens physique que si on les isole en décomposant la vibration par un 
dispositif d’analyse harmonique (analogue à un dispositif de mesure de 
la quantité de mouvement dans la Physique quantique). C’est ce point 
de vue, certainement exact en Physique classique, qui est celui de 
l’interprétation causale que nous exposerons.

Je citerai encore un argument qui, en Physique classique, pouvait 
servir pour rejeter l’idée que les fréquences préexistent à l’action du 
prisme. Considérons un train d’ondes de dimensions limitées qui vient 
frapper le prisme : on peut le représenter par une superposition d’ondes 
planes monochromatiques qui se détruisent par interférences en dehors 
des limites du train d’ondes. Si ces ondes planes avaient une existence 
réelle dans la lumière incidente, comme une onde plane n’a pas de 
limites dans l’espace et dans le temps, les faisceaux monochromatiques 
qui sortent du prisme devraient exist er avan t même que le train d’ondes 
incident n’ait atteint le prisme, ce qui est physiquement absurde. Le 
train d’ondes ne peut interagir avec le prisme et se diviser, par suite de 
cette interaction, en fractions sensiblement monochromatiques que 
quand il a atteint le prisme. Ceci montre bien que, dans le train d’ondes 
incident, seule la fonction d’onde globale a une signification physique 
et que la décomposition de Fourier n’est qu’une simple vue de l’esprit 
tant que le prisme n’en a pas séparé les composantes.

Tirées de conceptions classiques, les considérations précédentes ne 
prouvent sans doute pas que l’idée d’équivalence absolue de tous les 
développements de la fonction T postulée par la théorie des transfor 
mations soit inexacte : elles prouvent cependant que celte équivalence 
ne s’impose pas d’une façon irrésistible.

3. Mécanique ondulatoire et Mécanique quantique. —Dans la théorie 
des représentations, on considère comme équivalentes les équations
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d’évolution des coefficients c/( pour n’importe quelle grandeur physique. 
Ces équations d’évolution, dites équations de variations des constantes 
de Dirac, ont la forme générale

(4)
dck
dt

■>. j ï i
~JT

2

où II/;j est l’élément kj de la matrice correspondant à l’énergie. Cepen 
dant, quand on considère la grandeur « position dans l’espace », c’est- 
à-dire quand on adopte ce que la théorie des représentations appelle 
« la représentation q », on constate que l’équation (4) n’est pas autre 
chose que l’équation de l’onde lIr. En effet, on doit alors poser

(5) >1"(M ,t)=j 8 ( M — P ) *F( P, t) dV 

et l’équation (4) nous donne

(6) 0 = ^/ HpytFCQ, t) rfQ.

Or

(7) IIpQ= Ç8(M — P)Hm 8(M — Q)rfM = HP8(P — Q),

Hp étant la valeur de l’opérateur hamiltonien au point P. Il vient donc

(8) Hi>lF(0, t) 8(1> — Q)dQ = IIPM''(P; t),

ce qui n’est pas autre chose que l’équation de propagation de l’onde W.
Donc, dans le cas de la représentation q, l’équation (4) prend la 

forme d’une équation de propagation comportant des dérivées partielles 
par rapport aux coordonnées d’espace. La représentation q a donc ceci 
de particulier qu’elle met en lumière un aspect ondulatoire liée à une 
équation de propagation. Si l’on considère ce fait comme essentiel et si 
l’on attache une importance particulière à cette propagation d’ondes, on 
sera amené à conserver de préférence le nom suggestif de « Mécanique 
ondulatoire ». Si au contraire on veut, avec l’interprétation actuellement 
orthodoxe, considérer toutes les représentations comme équivalentes et 
se borner ainsi à un formalisme abstrait sans images physiques, on 
préférera le nom de « Mécanique quantique ». C’est pourquoi le choix 
entre ces deux noms de la Mécanique nouvelle a plus d’importance 
qu’on ne le croit souvent.

Le premier point de vue a certainement ma préférence. Voici, par
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exemple, une des raisons qui me font penser que la représentation q a 
plus de sens physique que les autres. Considérons le problème de la 
détermination des ondes stationnaires d’un électron dans une enceinte 
parallélipipédique, Ce problème conduit, on le sait, à ne considérer 
comme possibles que certaines valeurs de p définissant un certain 
réseau régulier de points « permis » dans l’espace py, p-. Or, le 
problème ne peut être posé clairement que dans l’espace physique 
ordinaire, car c’est seulement dans cet espace que sont définies les 
conditions aux limites : c’est parce que la propagation de l’élément 
ondulatoire est limitée par la présence d’obstacles, qui sont ici les parois 
de l’enceinte, que la quantification apparaît liée à l’existence d’ondes 
stationnaires. Ceci paraît encore bien donner un rôle privilégié à la 
représentation q, c’est-à-dire en somme à l’espace physique.

4. Notion de complémentarité (Bohr). — Précisons d’abord un point 
important. Dans les traités élémentaires d’Opüque, on donne généra 
lement le nom d'ondes aux ondes planes monochromatiques. Cela vient 
de ce que, dans la pratique, les trains d’ondes lumineux usuels sont 
assez longs, bien que limités, pour que l’on puisse dans presque toute 
leur extension les assimiler à une onde monochromatique plane. Une 
« onde » ainsi définie a donc une fréquence, une longueur d’onde, une 
direction de propagation bien déterminées : la Mécanique ondulatoire 
lui fait correspondre un vecteur quantité de mouvement p qui pointe 
dans la direction du mouvement et est relié à la longueur d’onde par la

relation 1 = — • Le vecteur p suffit donc à définir l’onde considérée.
P

Cette onde plane monochromatique est homogène el ne permet 
aucune localisation du corpuscule : elle est l’idéalisation de l’idée de 
mouvement sans aucune localisation spatiotemporelle. Au contraire les 
coordonnées x, y, z du corpuscule correspondent à l’idée d’une locali 
sation spatiale à un instant t. Les variables canoniquement conju 
guées px, pyiPz et x, y, z correspondent donc respectivement à l’aspect 
ondulatoire du corpuscule qui est purement dynamique sans localisation 
et à l’aspect corpusculaire avec localisation spatiolcmporelle qui, en un 
certain sens, exclut l’idée de mouvement. Si alors on se reporte aux 
inégalités d’Heisenberg, on voit qu’un corpuscule de l’échelle atomique 
n’est représenté par une onde plane ou par un grain localisé que dans 
des cas extrêmes. En général, l’aspect onde plane et l’aspect grain loca 
lisé existent tous deux, mais sont tous deux un peu flous, l’onde 1Ï’ 
associée étant formée par une superposition d’un certain nombres
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d’ondes planes monochromatiques et la localisation restant incertaine 
dans une région plus ou moins étendue de l’espace.

Les relations d’incertitude nous apprennent que, plus une observation 
nous permet de préciser l’un des aspects du corpuscule, plus l’autre 
s’estompe. Ceci permet d’expliquer comment la Mécanique ondulatoire 
peut utiliser simultanément les deux conceptions, en apparence contra 
dictoires, d’onde plane homogène indéfiniment étendue et de grain 
localisé. C’est ce que ces deux images si différentes ne peuvent jamais 
entrer en contradiction flagrante, chacune d’elles tendant à s’effacer 
quand l’autre s’affirme. M. Bohr a exprimé cette circonstance en disant 
que l’onde plane et le corpuscule localisé sont des « aspects complé 
mentaires » de la réalité. Chaque fois que le comportement de l’entité 
« corpuscule » peut se représenter par la propagation d’une onde plane 
monochromatique, son aspect granulaire disparaît : chaque fois que ce 
comportement peut se représenter par le déplacement d’un grain bien 
localisé dans l’espace, son aspect ondulatoire disparaît.

L’idée de complémentarité, bien qu’un peu fuyante, est intéressante : 
on a cherché à en faire des applications dans divers domaines, ce qui 
n’est pas toujours sans danger. Mais de ce que les procédés de mesure 
ne peuvent pas nous permettre d’attribuer simultanément à un corpuscule 
une position et un état de mouvement, est-on nécessairement obligé de 
conclure que, dans la réalité, le corpuscule n’ait pas de position, ni de 
vitesse ?

5. La réduction du paquet de probabilité par la mesure. — Dans 
l’interprétation de la Mécanique ondulatoire, la mesure joue un rôle 
essentiel. C’est elle qui, en nous apportant des informations nouvelles, 
change l’état de nos connaissances sur le corpuscule ou le système 
étudié el modifie brusquement la forme de la fonction V qui représente 
ces connaissances. Si, par exemple, la mesure est une mesure de 
position plus ou moins précise, le train d’ondes représentant le avant 
la mesure sera « réduit » en un train d’ondes moins étendu, peut-être 
presque ponctuel si la mesure est très précise : de là, le nom de 
« réduction du paquet de probabilité » donné par M. Ileisenberg à cette 
brusque modification du 'F. Si, au contraire, la mesure était, une déter 
mination des composantes de cjuantité de mouvement, c’est dans l’espace 
des impulsions, et non dans celui des coordonnées, qu’il y aurait une 
brusque réduction du paqueL d’ondes.

La réduction du train d’ondes donne lieu à une situation nouvelle qui 
était imprévisible à l’avance, puisque seules les probabilités des diverses
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possibilités pouvaient être calculées avant la mesure. Après une expé 
rience « maximale », c’est-à-dire qui fournit le maximum de connais 
sance compatibles, avec la théorie des grandeurs non commutantes et les 
relations d’incertitude, nous pouvons construire une fonction d’onde 
représentant nos connaissances après la mesure et suivre ensuite sou 
évolution au cours du temps à l’aide de l’équation des ondes jusqu’à ce 
que nous connaissions le résultat do nouvelles mesures modifiant à 
nouveau l’état de nos connaissances et interrompant brusquement l’évo 
lution régulière de Fonde *F. L’évolution régulière de Fonde ’F est 
réglée par l’équation des ondes entre deux mesures : elle est entièrement 
déterminée par la forme initiale du W puisque l’équaliou de propagation 
est linéaire en t. Il y a donc déterminisme de l’évolution des probabilités 
entre deux mesures, mais non pas déterminisme de la suite des faits 
observables.

M. Bolir a insisté sur le fait que la mesure a pour effet d’effacer 
complètement les relations de phase entre les composantes du 'F. En 
elfet, si la grandeur A mesurée correspond aux fonctions propres cp, et

si avant la mesure on avait lF==^c,cp,, la mesure isole une des fonc-
i

lions cp/, de sorte qu’après la mesure on a 'F — cp/,, mais elle ne nous 
fournit aucune indication sur les relations de phase entre les c,-. Si l’on 
recommençait la môme mesure sur une infinité de corpuscules ayant 
tous la môme fonction 'F=^c',?,- avant la mesure, la répartition statis-

i
tique des. valeurs obtenues donnerait les je,)-, mais ne donnerait 
toujours pas les phases des c,-.

L’effacement des phases par la mesure a pour elfet que l’acte de 
mesure constitue une coupure infranchissable dans l’évolution du 'F 
aussi bien dans le sens passé-avenir que dans le sens avenir-passé. Or 
les différences de phase entre les composantes dans le développement 
du W ont une importance essentielle : tout renseignement sur la 
fonction W qui ne comporte pas la connaissance des phases est radica 
lement incomplète. Cette importance des phases est bien mise en 
évidence par l’étude, si importante en Mécanique ondulatoire, de 
l’interférence des probabilités. 6

6. L’interférence des probabilités. — Considérons deux grandeurs 
observables (que nous supposerons non commutantes) A et B. Les 
valeurs et fonctions propres de la première sont a, et cp,-, celles de la 
seconde 3, et y,. Le système des cp, et celui des y, ne peuvent pas
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coïncider puisque les opérateurs A et B ne commutent pas. Supposons 

que létal initial soit représenté par la fonction d’onde 'F=^c,cp,-.
i

Comme les y forment un système complet, on peut exprimer chaque <p; 
sous la forme

(9) k'/_k
k

les Su- étant les éléments d’une matrice unitaire S. On a donc

(10) Cisuyj-

Si, sur le système dans l’état *F, on mesure la grandeur A, on trouve 
l’une des valeurs propres a,, la probabilité de aj étant | c/]-. Après la 
mesure de A, le système se trouvera dans l’état cp; et, dans cet état, une 
mesure de B conduit à la valeur (3/, avec la probabilité | 1-. La proba 
bilité totale de trouver pour B la valeur (3/, en effectuant d’abord la mesure

de A, puis celle de B, est donc ^|c,-|2

Mais supposons maintenant que nous ayons effectué la mesure de B 
directement dans l’état initial'F. Alors, d’après (10), la probabilité de

trouver pour B la valeur jS/,. est CiSik : elle est entièrement différente

de la précédente parce qu’elle dépend des phases relatives des e, alors 
que la précédente n’en dépend pas. Le fait que la probabilité de la

valeur (3/, de B mesurée directement dans l’état initial soit et

non | a |- | su; |a peut, au premier abord, paraître contraire au tbéo-
/

rème des probabilités composées, mais en réalité, il n’en est rien : la 

probabilité ^ | c, |- [ .s-,/, [- est bien celle que l’on doit avoir quand on fait

d’abord la mesure de A, puis celle de B, puisqu’elle est égale à la somme 
des produits de la probabilité pour obtenir d’abord une valeur oc,- de A 
par la probabilité d’obtenir j3A pour B quand, on sait qu'on a obtenu a,- 
pour A. Le théorème des probabilités composées est donc sauf, mais il

n’y a aucune raison pour que la probabilité ^ ] c,-1- J s,-* j2 soit égale à
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celle d’obtenir directement la valeur (3/f de B par une mesure de B dans 
l’état initial.

Ce qui jette un peu de confusion dans celle question, c’est qu’en 
statistique mathématique, on admet que la mesure d’une grandeur 
aléatoire (toujours de nature macroscopique en statistique usuelle), 
mesure que les statisticiens nomment généralement « épreuve », ne 
modifie aucunement les probabilités relatives aux autres grandeurs 
aléatoires. Ainsi, si l’on veut établir des statistiques sur la taille et le 
tour de poitrine d’un lot de conscrits, on mesure ces deux grandeurs 
sur tous les conscrits et l’on admet que la mesure de la taille ne peut 
pas modifier le tour de poitrine ou inversement. Si x désigne la taille 
et y le tour de poitrine, on aura

(il) Prob(.r£ ) =^Prob(/f)Pri(.

où Pv (a?/f) est la probabilité de la taille a?/,- pour un conscrit qui a le tour 
de poitrine y; et il n’y a pas lieu de préciser si la mesure de x a été laite 
avant celle de y ou inversement.

Mais ces hypothèses, certainement valables dans le domaine macros 
copique, ne le sonl pas nécessairement à l’échellc microphysique. A 
celte dernière échelle, l’existence du quantum d’action fait que la 
mesure d’une grandeur aléatoire modifie la probabililé pour les autres 
grandeurs. La probabilité de B n’est pas la môme avant et après la 
mesure de A. Comme nous l’avons vu, la probabilité d’une valeur de B, 
si l’on commence par mesurer A, est correctement donnée par le théo 
rème des probabilités composées, mais elle n’esl pas égale de la môme 
valeur de B mesurée directement dans l’étal initial.

J’ai insisté sur ces circonstances dans un article de la Revue scienti 
fique (1948, P- 259) Gn donnant des exemples familiers et j’ai précisé 
en quoi le schéma des probabilités en Mécanique ondulatoire diffère du 
schéma usuel des statisticiens. Dans ce schéma usuel, on définit les 
densités de probabilités px(#) et pY(_y) relatives à deux variables aléa 
toires X et Y [px(a?) dx est la probabililé d’une valeur de X comprise 
entre x et x + dx et définition analogue pour pY(JK) ]• On admet aussi 
l’existence d’une densité de probabilité p(x, y) correspondant à la 
possibilité d’obtenir dans une même épreuve des valeurs x et y pour X 
et Y. On définit aussi la probabilité de Y liée par X, ply](x, y), qui 
correspond à la probabilité d’obtenir la valeur y pour Y quand on sait 
que X a la valeur x et l’on définit de la môme façon la probabilité p(x>
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(x, y) de X liée par Y. Entre ces cinq grandeurs, on a les relations

(12)

j fxO) = j y) dy, 

| Pxï,(-r! .Y) = 'K y)
pv(.l') ’

P ï(j) = 

p?1 (-'5 y) =

f ?(«•, y)tix-,

y).
?k (x ) >

les intégrales devant être remplacées par des sommes dans le cas des 
probabilités discontinues. On en tire

03) Px(-r) =yV:x O, dOPïO')"'.»'; ?Y(y)=j p'f(.r, y) p\(x) dx.

Or, en Mécanique quantique, si l’on considère deux grandeurs X el\ 
canoniquement conjuguées, par exemple X = x et Y = jttj.-, on peut 
définir px(a?) et pY(y), mais on ne peut plus définir p(x, y) puisqu’il 
est impossible d’obtenir simultanément la valeur des grandeurs canoni 
quement conjuguées X cl Y. Les grandeurs p'J>(ar, y) et p'jpja?, v) 
peuvent encore être définies, mais on n’a plus les relations ( r 3) puis 
qu’elles résiliaient dans le schéma classique des relations (12) qui ici 
n’ont plus de sens, p(.r, y) n’existant plus.

Si donc on admet que, dans un état ff", toutes les grandeurs ont des 
distributions de probabilités définies pour les résiliais possibles de 
mesures efléctuées sur le système dans cet état, il est impossible de 
maintenir le schéma statistique classique avec un p(x, y) et les rela 
tions (12) et (10). Toute tentative faite dans ce sens esl condamnée à 
un échec dans le cadre de l’interprétation usuelle de la Mécanique 
ondulatoire.

Mais est-on obligé d’admettre que toutes les distributions de probabi- 
lil és définies par l’interprétation statistique usuelle de la Mécanique 
ondulatoire existent déjà dans l’état T' initial? Comme nous l’avons vu, 
il ne semble pas qu’il en soit ainsi. On peut très bien admettre que la 
probabilité de présence j T7 j2 existe dans l’état initial pour la localisation 
tandis que la probabilité |c(k)[-’ d’une valeur de la quantité de mou 
vement n’existe qu’après l’exécution de la mesure quand on ne connaît 
pas encore le résultat de cette mesure. Dans l’état initial fF, la quantité de 
mouvement, pourrait très bien avoir une valeur précise (non détermi 
nable par une mesure qui aurait pour conséquence de la modifier) et la 
probabilité de celte valeur, différente de jc(k) j-, permettrait de rétablir 
le schéma statistique usuel pour l’état initial. Nous verrons que c'est 
justement ce qui se trouve réalisé dans l’interprétalion causale que nous 
développons plus loin.

L. DH BROGLIE.
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L'impossibilité de maintenir dans l'interprétation actuelle le schéma 
statistique usuel proviendrait donc du fait que l’on y compare des distri 
butions de probabilités qui ne sont pas simultanément valables, les unes 
étant valables dans l’état initial axant la mesure, les autres dans l’état 
final après la mesure quand on n’en connaît pas encore le résultat. C’est 
cette possibilité qui n'a pas été envisagée par 3\l. von Neumann quand 
il a conclu à l’impossibilité de rétablir les conceptions classiques par 
l’introduction de variables cachées.

7. Théorème de M. von Neumann. — Dans son important Ouvrage : 
Les fondements mathématiques de la Mécanique ondulatoire (*), 
M. J. von Neumann a fait un exposé d’une rigueur très grande de 
l’interprétation probabiliste de la Mécanique ondulatoire, lin particulier, 
il a été amené à étudier de très près la théorie de la mesure. On 
trouvera notamment cette Lhéorie reprise d’une façon très claire dans 
un fascicule des Actualités scientifiques et industrielles (-) publié 
par MM. London et Bauer sous le litre La théorie de /’observation en 
Mécanique quantique.

Un des mérites de l’exposé de M. von Neumann, c’est d’avoir distingué 
clairement les « cas purs » des « mélanges ». 11 y a cas pur quand l’état 
d’un système est représenté par une fonction W, les distributions de 
probabilités des diverses grandeurs étant données par les carrés des 
modules |c*|- des coefficients du développement du ^ suivant les fonc 
tions propres de la grandeur : ces distributions de probabilités sont 
caractérisées par l’interférence des probabilités et s’écartent, nous l’avons 
vu, du schéma des distributions de probabilités envisagées en statistique 
usuelle. Il y a, au contraire, mélange lorsque la fonction lF du système 
n’est pas exactement connue et qu’on peut seulement lui attribuer

diverses fonctions d’ordre 1L'/,) avec des

que 2,Pi1 V Ici les coefficients de probabilité /ç, sont définies d’une

façon loul à fait classique. Pour caractériser chaque système du point 
de vue statistique, M. von Neumann a défini une « matrice statistique » 
hermitienne dont la trace est égale à l’unilé : il s’est servi pour cela de 
la notion de « projecteur ». Pour un cas pur, la matrice statistique 
appelée alors « matrice statistique élémentaire » jouit de la propriété

(>) Traduction française, Alcan, Paris, ig^ti. 
(-) Hermann, Paris, ig3g, n" 775.
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d'être idempotente, c’est-à-dire que P"-=P, quel que soit n. Pour un 
mélange, au contraire, la matrice statistique n’est pas idempotente : la 
condition nécessaire et suffisante pour que la matrice statistique d’un 
système soit idempotente est que le système soit dans un cas pur. On 
trouve ainsi un critérium pour distinguer les cas purs des mélanges. 
Analysant avec soin la notion de mesure, M. von Neumann a montré 
que la mesure avait pour effet de transformer le cas pur en mélange, ce 
qui revient à peu près à dire que le dispositif de mesure a pour effet 
d’isoler des trains d’ondes correspondant aux différentes composantes 
du *F pour la grandeur considérée, un seul de ces trains d’ondes corres 
pondant à une hypothèse physiquement réalisée.

C’est au cours de ces recherches que M. von Neumann a cru pouvoir 
démontrer l’impossibilité de rendre compte des distributions de proba 
bilités de la Mécanique ondulatoire en introduisant des « variables 
cachées ». Cette démonstration semble exclure définitivement la possi 
bilité de revenir à une théorie causale et objective des phénomène* 
microscopiques.

Sans reprendre tout le raisonnement, indiquons-en la marche géné 
rale. Von Neumann a d’abord démontré le théorème suivant : IL est 
impossible île représenter un cas pur sous La forme d'un mélange. 
Autrement dit, un cas pur n’est jamais réductible à une somme de cas 
purs.

Ce point établi, M. von Neumann fait la remarque que voici : s'il 
était possible d’obtenir une interprétation classique des distributions de 
probabilités de la Mécanique ondulatoire par l’introduction de variables 
cachées (comme, en Physique classique, la théorie cinétique en fournis 
sait une pour les lois des gaz), la connaissance des valeurs exactes des 
paramètres cachés permettrait en principe d’obtenir un état « sans 
dispersion », c’est-à-dire un état où pour toute grandeur A la disper 

sion <rA = V (A — A)- serait nulle. On obtiendrait les propriétés statis 
tiques du système en considérant des mélanges de ces états sans disper 
sion : c’est ce que font les théories statistiques de la Phy sique classique. 
Bref, pour qu’une théorie statistique puisse se réduire à un schéma 
déterministe à paramètres cachés, il faut que les distributions statis 
tiques de cette théorie puissent se ramener à des mélanges d’états 
élémentaires indécomposables et sans dispersion. Or, M. von Neumann 
montre que ce n’est pas le cas pour la Mécanique ondulatoire qui, par 
conséquent, ne pourrait par aucun moyen se ramener à un schéma 
déterministe à paramètres cachés.
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Le raisonnement repose essentiellement sur le théorème suivant : 
Les états que Von rencontre en Mécanique ondulatoire ne peuvent 
jamais être sans dispersion. Von Neumann a justifié cet énoncé en 
montrant qu’il existe en Mécanique ondulatoire aucune matrice statis 
tique P acceptable qui corresponde à une absence de dispersion pour 
toutes les grandeurs. D’ailleurs, ce résultat peut se prévoir très simple 
ment en remarquant que déjà pour un cas pur (système ayynl une 
fonction d’onde 'F bien déterminée), les dispersions <7.,. et de deux 
grandeurs canoniquement conjuguées ne peuvent simultanément nullcs 
en raison du théorème sur les dispersions exprimé par l’inéga-
i- • - hIl tO gy. —•

' ■* I “
Nous ne pouvons donc pas ramener les distributions de probabilité de 

la Mécanique ondulatoire à des mélanges d’états indécomposables sans 
dispersion. Il y existe bien des étals indécomposables, les cas purs, 
mais ils ne sont jamais sans dispersion. La conclusion de M. von Neumann 
peut donc être obtenue uniquement par l’élude des cas purs, mais 
l’analvse plus générale qu’il a donnée permet une comparaison plus 
exacte avec les théories probabilistes à paramètres cachés de la Physique 
classique.

La belle tenue mathématique de la déduction de M. von Neumann 
pouvai t entraîner la conviction que tout retour aux conceptions causales 
et objectives de la Physique classique était désormais impossible en 
Microphysique. On pouvait bien objecter que la démonstration reposait 
sur le postulat que les distributions de probabilités admises par la 
Mécanique ont une validité générale, mais on pouvait répondre que 
l’expérience apporte une confirmation complète de ce postulat. On 
pouvait dire aussi que la démonstration de M. von Neumann n’ajoutait 
pas grand’chose à ce que l’on savait déjà puisque la conclusion est, déjà 
contenue dans les relations d’incertitude, mais cette remarque ne dimi 
nuait en rien la solidité de celte conclusion.

Mais, comme nous le verrons, il existe au moins une théorie, la 
théorie causale que nous étudierons plus loin, qui permet de retrouver 
les distributions de probabilité de la Mécanique ondulatoire et qui est 
une théorie déterministe à paramètres cachés. 11 se peut que cette théorie 
ne soit pas physiquement exacte, mais elle existe et son existence seule 
est déjà en contradiction avec le théorème de von Neumann. Comment 
cela est-il possible ?

L’examen de cette question m’a amené, en accord sur ce point avec 
M. David Bohm, à penser que la démonstration de M. von Neumann
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implique une hypothèse qui ne s’impose pas absolument et qui n’est pas 
remplie dans la théorie causale en question. Cette hypothèse, c’est que, 
quand un système est dans un état W, les distributions de probabilités 
définies par la Mécanique ondulatoire sont valables avant, toute opération 
de mesure. Or, il résulte que la façon même dont on doit correctement 
énoncer ces lois de probabilités (par exemple, |c/(|2 est la probabilité 
pour qu’une mesure précise de la grandeur A fournisse la valeur a/,) que 
ces lois 11e sont valables qu’une fois la mesure effectuée quand on n’en 
connaît pas encore le résultat. Pour deux grandeurs non commutantes 
les lois de probabilités doivent même ne jamais entrer enjeu simultané 
ment puisqu’elles ne peuvent devenir valables qu’après des opérations 
de mesure qui sont incompatibles. Il se peut qu’une certaine distribution 
de probabilités soit déjà valable dans l’état initial et ne soit que confirmée 
par la mesure : c’est le cas dans la théorie causale de la distribution 
en 1 T - pour la localisation. Mais, en général, la distribution de proba 
bilités sera le résultat de l’opération de mesure et pourra succéder à une 
distribution de probabilités inconnue, peut-être même inobservable, 
existant avant la mesure : c’est le cas, dans la théorie causale, de la 
probabilité | c(lc) [2 pour la quantité de mouvement.

Ces remarques me paraissent maintenant rendre douteuse la validité 
du postulat implicite sur lequel repose la démonstration de M. von Neu 
mann et par suite faire tomber la force probante de son raisonnement.



CHAPITRE VIL
OBJECTIONS OPPOSÉES A L’INTERPRÉTATION PUREMENT PROBABILISTE 

DE LA MÉCANIQUE ONDULATOIRE.

1. Conséquences de la disparition de la notion de trajectoire. — Dans 
l’interprétation purement probabiliste actuelle de la Mécanique ondula 
toire, la notion de trajectoire disparaît, du moins < Inique lois que l’on 
sort du domaine de validité de l’Optique géométrique pour la propaga 
tion de l’onde 1". Quand cette approximation est valable, on peut garder 
la notion de trajectoire et considérer des trains d’ondes presque ponc 
tuels décrivant des rayons-lra jcctoires, mais dès qu’interviennent par 
exemple des phénomènes d’interférences et de diffraction, la nôtion de 
rayon et par suite celle de trajectoire deviennent inutilisables. Le 
corpuscule dans l’espace physique (ou le point figuralil d’un système 
dans l’espace de configuration) ne peut être localisé que de loin en loin 
par une mesure et, entre les localisations, aucune trajectoire ne lui serait 
attribuable. 11 en résulterait des différences importantes en ce qui 
concerne la notion môme de probabilité en Physique classique et en 
Microphysique, comme nous allons l’expliquer.

Considérons, dans le cadre de la Mécanique classique tous les mouve 
ments possibles correspondant à une même fonction S de Jacobi. La 
théorie de Jacobi nous apprend à considérer toutes les trajectoires 
envisagées comme étant les rayons d’une propagation d’ondes dont les 
surfaces S = const. sont les surfaces d’ondes. Si nous avons affaire à 
une infinité de corpuscules décrivant toutes les trajectoires possibles de 
la classe considérée, on peut imaginer que les corpuscules sont répartis 
dans le nuage avec la densité spatiale p = jff [2, ’I étant l’onde définie 
par la théorie de Jacobi : en effet, p se conserve au cours du temps. On 
peut alors dire aussi que Iffj- mesure la probabilité pour que nous 
trouvions un corpuscule déterminé en un point donné à un instant 
donné. Ici la probabilité s’introduit d’une façon tout à fait classique par
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suite de noire ignorance de la trajectoire effectivement décrite parle 
corpuscule envisagé et de sa position sur cette trajectoire. En principe, 
les équations de la Dynamique nous permettraient de calculer la trajec 
toire effectivement décrite et le mouvement sur cette trajectoire si nous 
connaissions la position et la vitesse initiales du corpuscule. Mais, si une 
partie de ces données nous manque, nous saurons seulement quelles 
sont les trajectoires possibles et nous n’aurons plus qu’une probabilité, 
et non une certitude, de trouver le corpuscule au point M à l’instant t. 
Si une observation nous permet de déceler la présence du corpuscule au 
point M à l’instant t, nous saurons que la trajectoire décrite passe par M 
et dès lors nous serons certains de ne plus pouvoir déceler la présence 
du corpuscule ailleurs que sur cette trajectoire. La probabilité de 
présence, qui était différente de zéro dans une région étendue de 
l’espace, traduisait seulement notre ignorance de la trajectoire effective 
ment décrite : elle perd toute signification dès que nous connaissons la 
trajectoire. Tel est le point de vue de la Physique classique : il était 
conforme à des conceptions intuitives traditionnelles dans la Science. 
En particulier, il admettait le déterminisme des mouvements et la 
probabilité ne s’introduisait que par suite de notre ignorance des 
données nécessaires pour suivre ce déterminisme. On restait ainsi en 
accord avec la conception de la Probabilité admise par tous les grands 
maîtres de la Science classique depuis Laplace jusqu’à Henri Poincaré.

Tout autre est le point de vue de l’interprétation probabiliste actuelle 
de la Mécanique ondulatoire. Pour elle, la notion de trajectoire n’est 
qu’une première approximation, valable seulement quand l’Optique 
géométrique est applicable à la propagation de l’onde W. Dès qu’il n’en 
est plus ainsi, en particulier chaque fois qu’il y a interférences ou 
diffraction de l’onde ff, la notion de trajectoire devient inutilisable et 
l’on doit seulement parler de localisations successives du corpuscule 
dans l’espace (ou du point figuratif dans l’espace de configuration) qui 
résultent d’observations comportant mesure de position.

Alors la probabilité doit s’introduire avec un caractère nouveau : 
elle n’est plus l’expression de notre ignorance d’une trajectoire suivie 
par le corpuscule puisqu’il n’y a plus de trajectoire. M. von Neumann 
semblait même avoir démontré par son fameux théorème que l’inter 
vention des probabilités en Physique quantique ne pouvait d’aucune 
manière provenir de notre ignorance de certains paramètres cachés qui 
nous échapperaient. Dès lors, il n’y a plus de déterminisme : rien ne 
nous permet plus de prévoir exactement, sauf dans des cas exceptionnels, 
le résultat exact d’une mesure, nous pouvons seulement assigner une
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probabilité à chaque résultat possible d’une mesure. La probabilité 
s’introduirait sans qu’il y ait de notre part ignorance d’une situation 
cachée. Contrairement aux affirmations de tous les savants de l'époque 
préquantique, la probabilité pourrait exister « à l’étal pur » sans être 
le résultat d’un déterminisme qui nous échapperait. C’est une conception 
nouvelle très intéressante, mais qui soulève aussi des difficultés.

La description du inonde microscopique, étant rattachée unique 
ment à la connaissance d’une fonction, l’onde fi', qui n’est qu’une 
représentation de probabilité et dépend des connaissances de l’utilisateur, 
prend un caractère subjectif et le caractère objectif de la réalité physique 
se trouve ainsi mis en question d’une manière assez singulière. Nous 
allons voir notamment quelles conséquences étranges comporte 
l’abandon de la notion de trajectoire.

2. Objection de M. Einstein au Conseil Solvay de 1927. — Au Conseil 
Solvay d’octobre 192^, M. Einstein a élevé contre l'interprétation 
purement probabiliste de la Mécanique ondulatoire une objection très 
frappante.

Il a considéré un corpuscule qui arrive normalement sur un écran 
plan percé d’un petit trou : derrière l’écran est placé un film photogra 
phique ayant la forme d’un hémisphère de grand rayon.

Si le trou a des dimensions assez petites, l’onde fi' associée au 
corpuscule sera diffraclée en le traversant et se répandra sur le film 
hémisphérique car le trou jouera le rôle d’une petite source ponctuelle 
placée au centre. Si, à un instant t, une impression photographique 
révèle la présence du corpuscule en un point A du film, l’interprétation 
de ce fait sera très différente suivant que l’on raisonne avec les idées 
classiques ou avec les conceptions nouvelles.

Avec les idées classiques, on doit dire : le corpuscule qui traverse 
l’ouverture a nécessairement une « trajectoire ». Celle-ci, représentée 
sur la figure 3 par une ligne ponctuée, devra nécessairement percer 
l'écran en un de ses points, mais tant que nous n’aurons pas décelé la 
présence du corpuscule en un point de l’écran, nous 11e saurons pas 
quelle est la trajectoire réellement suivie et c’est pourquoi nous 
attribuerons à la présence du coi'puscule en tout point de l’écran une 
probabilité non nulle (égale à | Nf |a). Dès que la présence de corpuscule 
est décelée en A, nous connaissons la trajectoire et la probabilité de 
trouver le corpuscule en tout autre point B de l’écran devient instanta 
nément nulle. Tout cela est très clair.

Mais, avec les conceptions nouvelles, nous sommes obligé d’admettre
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qu’il n’y a pas de trajectoire définissable puisqu’il y a diffraction à 
droite de l’écran. Tant que la localisation en A n’a pas eu lieu, le 
corpuscule doit être considéré comme présent, à l’état potentiel, sur 
toute la surface du l’écran avec la probabilité l'F |-, Dés que le corpuscule 
s’est manifesté en A, la probabilité de le trouver en un antre point de 
l’écran devient instantanément nulle puisque, par hypothèse, il n’y a 
qu’un seul corpuscule associé à l’onde ff'. L’interprétalion de ce fait, 
toute simple quand on peut admettre l’existence d’une trajectoire, 
devient au contraire ici très mystérieuse. Il est, en effet, impossible de

comprendre avec nos idées classiques sur l’espace et sur le temps (et 
même avec les idées relativistes sur l’espace-temps) comment le fait 
d’observer un effet, localisé en A peut empêcher instantanément la 
production d’un effet analogue en tout autre point B du film, même très 
éloigné de A, si l’on admet que le corpuscule est localisé dans l’espace 
à chaque instant et décrit au cours du temps une trajectoire, peut-être 
inconnue de nous, mais bien définie.

Si donc, avec la nouvelle Mécanique, on abandonne la notion de 
trajectoire, il faut admettre que le corpuscule, tout en étant une unité 
indivisible et par instant bien localisable, n’est pas constamment localisé 
dans l’espace et dans le temps : il est comme « virtuellement » présent 
dans tout le train d’ondes et l’on dira avec M. Bohr que « les corpuscules 
sont des individus définis d’une façon floue dans des régions étendues 
de l’espacc-temps » et que leur comportement « transcende » le cadre 
de l’cspace-temps, langage philosophique qu’il est peut-être bien un 
peu dangereux d’introduire en Physique théorique.
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Dans l'exemple d'Einstein, le corpuscule serait en quelque sorte 
répandu à l’état virtuel dans l’espace au-delà de l’écran : au moment où 
se produit un effet localisé en A, le corpuscule se condenserait pour 
ainsi dire en ce point pour y produire un phénomène observable. Or, 
Einstein l’a souligné, aucun mécanisme compatible avec les idées 
anciennes, môme relativistes, sur l’espace et sur le temps ne peut 
rendre compte de cette sorte de contraction brusque du corpuscule qui 
aurait pour conséquence l’action instantanée d’un événement se produi 
sant en A sur ce qui peut se passer au point éloigné H. L'interprétation 
actuelle de la Mécanique ondulatoire nous obligerait donc à considérer 
nos notions usuelles d’espace et de temps comme totalement inexactes 
non seulement à l’échelle microphysique (ce qui serait encore accep 
table), mais même à l’échelle macroscopique puisque les points A et B 
peuvent être très éloignés sur l’écran.

11 est donc légitime de considérer l’exemple d’Einstein comme une 
objection assez grave, à laquelle on n’a jamais nettement répondu, 
contre l’interprétation actuelle de la Mécanique ondulatoire.

3. L’exemple de MM. Einstein, Podolsky et Rosen. — De vives et 
intéressantes discussions, auxquelles ont participé des savants très 
éminents, ont eu lieu au sujet des systèmes « corrélés », c’esl-à-dire des 
systèmes qui, ayant été en interaction, se trouvent ensuite séparés, mais 
dans des étals dont les probabilités ne sont plus indépendantes. Ces 
polémiques ont été amorcées par un Mémoire de MM. Einstein, 
Podolsky et Rosen (*) commenté dans un exposé dc M. Schrodinger (-). 
M. Bohr y a répondu dans un article de la Physiccd Review (:l) et 
d’autres remarques à ce sujet ont été présentées par M. Curry (•*).

Einstein, Podolsky et Rosen avaient d’abord considéré un système de 
deux corpuscules dont l’état était représenté par la fonction d’onde (où cl 
est une constante non nulle)

(i) tf = Il S (a? j — a)o{x-i — b — d)S(a— b)dadb= I Six,— a)o(x2— « — d)da

(’) Phys. Rev., t. 47, ig35, p. 777.
(2) Naturwissenschaften, t. 23, ig35, p. 787, 828 et 844-
(3) Phys. Rev., t. 48, 1935, p. 696. 
(“) Phys. Rev., t. 49, ig36, p. 3g3.
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Le passage de l’expression de la première ligne à celle de la seconde 
s'effectue en se souvenant que l’on a pour la fonction singulière de 
Dirac l’expression symbolique

La forme ( 1) du T montre que la mesure de k2 entraîne tou 
jours/m—— /■> et que la mesure de x2 entraîne toujours xi — x*—d. 
Autrement dit, les grandeurs Ay+ k2 et x2— Xi ont respectivement les 
valeurs o et d, ce qui est possible puisque les opérateurs correspondants 
commutent (bien que /.y et Xi d’une part, k-2 et x2 d’autre part ne 
commutent pas).

A.r

------ >.
_________^ d. x'-j t .r, td

'X'

Fig.

On peut interpréter physiquement la forme ( 1 ) de 'L en considérant 
un écran plan percé de deux fentes parallèles très fines sur lequel 
tombe normalemeni des ondes planes monochromatiques initialement 
associées aux deux corpuscules.

Si, dans l’état initial, nous connaissons exactement le mouvement de 
l’écran le long de Ox (son />.„), la position de l’écran le long de cet axe 
et par suite l’abscisse de la première fente doivent être inconnues d’après 
les relations d’IIeisenberg, toutes les valeurs de xl étant également 
probables. La valeur du 'F du système sur la face postérieure de l’écran

est alors donnée par J o(xL—a)d(x2—a-—d) da qui exprime la

présence simultanée du corpuscule 1 dans la première fente et du 
corpuscule Ü dans la seconde fente, la position des deux fentes séparées 
par la dislance connue d étant indéterminée. Si la quantité de mouve 
ment de l’écran ne varie pas lors du passage des corpuscules dans les 
lentes, 011 doiL avoir /il + A'2 = o en accord avec la troisième expres 
sion ( 1 ) du T.

Le point sur lequel Einstein et ses collaborateurs ont alors attiré
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l’attention est le suivant. Nous sommes libres, l'état initial élan! donné 
par (O, de mesurer soita?2, soit /r2, ce qui nous conduira soit à attribuer 
à la coordonnée x du premier corpuscule1 la valeur a  = j2 -- <1 soit à 
attribuer à la composante conjuguée de sa quantité de mou\ornent la 
valeur Ai = — k2. Comme l’une ou l’autre de ces mesures n’affecte pas 
le premier corpuscule, nous pouvons donc attribuer à celui-ci soit une 
position, soit une quantité de mouvement le long de O.r sans aucune 
ment agir sur lui et cela, si l’interprétation orthodoxe est exacte, bien 
que cette position et cette quantité de mouvement ne puissent pas avoir 
en même temps des valeurs précises. Einstein, Rodolsky et Rosen en 
ont conclu que le corpuscule 1 devait avoir, avant la mesure faite sur 2 
qui n’agil pas sur lui, une position et une quantité de mouvement bien 
déterminées et que, par suite, la description de la réalité à l’aide de 
l’onde 'F est, sinon inexacte, du moins incomplète.

Malheureusement l’exemple de MM. Einstein, Podolsk y et Rosen ne 
semble pas très heureusement choisi parce que, dans l’état délini par la 
forme ( i ) du 'F, les deux corpuscules ne peuvent pas être considérés 
comme « séparés » dans l’espace et qu’ils sont tous deux en interaction 
avec le même dispositif expérimental : l’écran percé de deux trous.

C’est, ce qui a permis à M. Bohr de répondre à ses contradicteurs 
d’une façon qui paraît satisfaisante. R a remarqué qu’avec le dispositif 
envisagé, les deux mesures possibles, celle de la position et celle de la 
quantité de mouvement, correspondent à des arangemenls expérimen 
taux différents. La mesure des positions suppose que nous fixions l’écran 
par rapport au bâti macroscopique qui nous sert à repérer nos coordonnées 
d’espace. Alors la première fente aura une abscisse précise a  — et la 
seconde fente une abscisse x^ = x^ + e/. Mais la connaissance des quan 
tités de mouvement sera entièrement perdue car, les fentes étant fixées 
rigidement au bâti, la quantité de mouvement que l’écran pourrait 
recevoir des corpuscules se perdra dans le support. Inversement, si l’ou 
veut mesurer les quantités de mouvement, il faudra mesurer les impul 
sions initiales de l’écran, ce qui suppose qu’on laisse à celui-ci sa mobi 
lité et que, par suite, on ne puisse connaître exactement l’abscisse des 
fentes : dans ce cas, la variation de la quantité de mouvement de l’écran 
le long de Ox égale à K0—Ki étant connue, la mesure de /f2 donnera 
la valeur A1! = — /i'2+K0—Kj pour /ù  . Ea conclusion de M. Bohr est 
alors la suivante : pour traiter le problème, il faut préciser tous les 
détails du dispositif expérimental car il faut, dès la mise en marche de 
la mesure, avoir un montage approprié à celle des deux mesures que 
l’on veut effectuer.
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Les raisonnements, parfois un peu nébuleux, de AI. Bolir, contiennent 
quelques affirmations contestables telles que celle-ci : la mesure de 
l’impulsion d’un corpuscule se fait toujours en communiquant cette 
impulsion à un corps macroscopique auquel sont applicables les 
conceptions de la Physique classique. Il nous semble au contraire que 
ce n’est jamais de celte façon qu’on mesure l’impulsion d’un corpuscule, 
mais bien en la déduisant de la localisation observée d’un autre corpus 
cule avec application éventuelle de la conservation de l’impulsion. 
Néanmoins, on peut admettre qu’en raison du choix peu heureux de 
l’exemple d’Linstein, Podolsky et Rosen, M. Bolir a pu écarter l’objec 
tion sous la forme où elle était présentée.

4. Objection relative aux systèmes corrélés (Schrôdinger). — La
faiblesse de l’exemple de _MM. lvinstein, Podolsky et Rosen me paraît 
provenir du fait qu’il ne fait pas intervenir explicitement la limitation 
spatiale de tous les trains d’ondes. Physiquement, l’onde associée à un 
corpuscule ne peut pas être une onde plane monochromatique indéfini 
ment étendue dans l’espace et dans le temps : on a toujours nécessaire 
ment alfaire à un train d’ondes spatialement limité. Si les ondes 
associées à deux corpuscules étaient strictement planes et monochroma 
tiques, on ne pourrait pas parler de collision entre eux : l’interprétalion 
actuelle les supposant alors potentiellement présents en tout point de 
l’espace, ils seraient constamment et indéfiniment en étal de choc. 
Physiquement, il est donc nécessaire de toujours tenir compte de 
l’extension limitée des trains d’ondes, point capital sur lequel nous 
aurons constamment à revenir.

Aussi allons-nous maintenant présenter l’objection relative aux sys 
tèmes en faisant intervenir explicitement les dimensions limitées des 
trains d’onde. Sous cette forme qui se rapproche de celle adoptée par 
M. Schrôdinger dans les articles cités plus haut, l’objection me paraît 
très difficile à lever.

Considérons deux groupes d’ondes presque monochromatiques 
associés à deux corpuscules 1 et 2 et supposons qu’ils viennent à la 
rencontre l’un de l’autre.

Parvenus dans la région hachurée R, les deux corpuscules inter 
agissent et leurs ondes se superposent : pour prévoir ce qui va en 
résulter, il faut alors envisager l’onde W du système dans l’espace de 
configuration. La Mécanique ondulatoire nous apprend que le choc 
peut donner lieu à toute une série de mouvements finaux possibles, tous 
compatibles avec la conservation de l’énergie et des composantes de
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l’impulsion. Ou bien le train d’ondes du corpuscule 1 décrira finaleinenl 
la trajectoire 1', le train d’ondes du corpuscule 2 décrivant la trajec 
toire 2'; ou bien le train d’ondes de 1 décrira finalement la trajectoire 1", 
le train d’ondes de 2 décrivant la trajectoire 2", etc. Les trajectoires 
finales seront corrélées entre elles, 1' avec 2', 1" avec 2", etc. La fonction 
d’onde finale du système des deux corpuscules dans l’espace de configu 
ration sera la superposition des produits de la fonction d’onde 1' par la 
fonction d’onde 2', de la fonction 1" par la fonction d’onde 2", etc., les 
coefficients de la superposition donnant par le carré de leur module les 
probabilités des divers états corrélés 1'—2', 1"—2", etc.

Supposons maintenant que nous placions sur la Lrajectoire 1' un 
compteur susceptible de déceler l’arrivée du' corpuscule 1. Si ce 
compteur enregistre celte arrivée, nous saurons que le corpuscule 2 esl 
dans le train d’ondes 2'. Ceci se comprend aisément si les corpuscules 
occupent à chaque instant une position dans l’espace physique car alors 
nous pouvons dire que les trajectoires des corpuscules 1 et 2 sont 
corrélées de telle façon que, si après le choc le premier corpuscule suit 
la trajectoire 1', le second suivra la trajectoire 2', etc. Le fonctionne- 
menl du compteur aura simplement révélé un fait qui existait déjà, 
savoir que le premier corpuscule suivait la trajectoire 1'. L’onde T du 
système sera réduite aux paquets l'—2', les autres paquets disparais 
sant instantanément quand on constate le fonctionnement du compteur 
et ceci s’explique bien puisque fonde ’L n’est qu’une représentation de 
probabilité, élément subjectif qui esl brusquement modifié par une 
nouvelle information.

Mais le point de vue que nous venons d’adopter reviendrait à 
admettre que l’onde 'L n’esl-pas une représentation complète de la 
réaiiLé puisqu’il faudrait,.pour avoir une image complète, se donner en



plus la position (lu corpuscule, c’esl-à-dire les valeurs de ces « para 
mètres cachés » que sont les coordonnées.

Le point de vue actuellement orthodoxe affirme, au contraire, que la 
description du système par le 'F est une description complète et qu’il 
n’y a pas de localisai ion permanente des corpuscules. Après le choc, le 
corpuscule 1 est potentiellement présent dans les trains d’ondes F. I", etc., 
tandis que le corpuscule 2 est potentiellement présent dans les trains 
d’ondes 2', 2', etc. Lorsque le compteur placé sur la trajectoire 1' 
fonctionne, le corpuscule 2 se trouverait instantanément précipité dans 
l’unique train d’ondes 2', bien que 2' puisse se trouver aussi loin que 
l’on veut du compteur qui vient de fonctionner. Gomme l’a dit 
M. Schrodinger, « ce serait de la magie ».

.Mous retrouvons d’ailleurs ici la contradiction qui existe, même à 
l’échelle macroscopique, entre l’interprétation purement probabiliste de 
la Mécanique ondulatoire et les notions d’espace et de temps, contra 
diction déjà signalée par M. Einstein au Conseil Solvay de 1927.

Quand on expose l’inlerprétation purement probabiliste de la Méca 
nique ondulatoire, 011 s’exprime souvent ainsi : Quand un système se 
trouve dans un état où ta grandeur A n’a pas une valeur bien déter 
minée, mais toute une série de valeurs possibles, si nous effectuons 
une mesure précise de A, nous faisons passer le système dans un 
nouvel étal où A a une valeur bitm déterminée; nous produisons 
ainsi sur le système, par /’opération môme de la mesure de A, une 
perturbation incontrôlable qui nous fait perdre la connaissance de la 
valeur des grandeurs qui ne commu tent pas avec A. Puis on explique 
ce fait remarquant que, pour mesurer A, nous exerçons nécessairement 
une action sur le système, action que l’existence du quantum de Planck 
11e permet pas de diminuer indéfiniment. Celte explication, qui est sans 
doute exacte dans certains cas, n’est plus admissible dans le cas des 
systèmes corrélés que nous venons d’étudier. Il est, en effet, inconce 
vable que le compteur placé sur la trajectoire P et agissant sur le 
corpuscule I puisse exercer une action quelconque sur le corpuscule 2.

Pour présenter la difficulté dans un cas un peu différent, mais très 
frappant, considérons l’émission d’un quantum de rayonnement par un 
atome d’hydrogène. Pour simplifier, nous supposerons que l’atome a 
une série d’états stationnaires R, L, M, ... en négligeant leurs struc 
tures fines. En général, dans l’état initial de l’atome, son onde IF sera 
de la forme
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(3) 'Fi = c k . I’k  + ci. Vl  -t- c m 'Fm -+-. . .,
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le carré des modules des c donnant la probabilité des divers états 
d'énergie dans cet état initial. A une certaine distance de l’atome (qui 
peut être très grande), plaçons un dispositif susceptible de déceler 
l’arrivée d’un photon et même de nous donner sa fréquence; c’est le cas 
d’une cellule photoélectrique. Si, à un moment donné, ce dispositif 
nous indique l’arrivée d’un plioton ayant la fréquence de la première 
raie de la série de Bal mer (correspondant dans le schéma de Bohr à la 
transition M ->L), nous devrons dire dans l’interprétation actuelle 
que l’atome, primitivement réparti à l’état virtuel entre les éner 
gies Ek, El, E„, . . . avec les probabilités [ cR |3, | cL |-, | c„ [-, . . . a passé

dans l’état d’énergie E, avec émission de la raie de fréquence v 

et l’état linal de l’atome est représenté par 

(i) 'IV = 'IV.

Ceci se comprendrait fort bien si nous pouvions dire que le processus 
d’émission s’était achevé par le départ hors de l’atome du plioton de 
fréquence hv laissant l’atome dans l’état linal 'F, • L’enregistrement de 
l’arrivée du photon nous aurait alors simplement appris que les choses 
s’étaient ainsi passées : cette information, en modifiant nos connais 
sances sur l’état de l’atonie, nous obligerait à modifier l’onde ,lr qui 
symbolise ces connaissances.

Mais l’interprétation actuellement admise est tout autre. Nous devons 
dire que, tant que le détecteur de pilotons n’a pas fonctionné, l’atome 
est dans l’état T,. C’est le fonctionnement de ce détecteur qui préci 
piterait instantanément l’atome dans l’état lI;/, et cela bien que la 
distance atonie-détecteur de pilotons puisse être très grande. Une telle 
interprétation parait vraiment inadmissible à moins que le ’E ne soit un 
élément purement subjectif représentant l’état des connaissances du 
physicien qui l’utilise, mais alors ce W ne peut guère avoir la prétention 
de fournir une description véritable du phénomène « émission d’un 
photon par un atome ».

o. Diverses autres objections de M. Einstein. —En ip/jfl; à l’occasion 
du sorxante-dixième anniversaire de M. Einstein, a paru aux Etats-Unis 
un livre jubilaire consacré au fondateur de la théorie de la Belativité 
auquel des savants de tous les pays ont consacré des articles (*). l)e 
grands physiciens quantistes tels que MM. Born, Pauli, Ileiller, etc. ont

(*; Albert Einstein philosopher and scientiste The Library of livin^ philosophera 
Kvanston, Illinois.



exprimé dons ce volume, parfois en termes assez vifs, leur désapoinle- 
ment de voir Einstein persister dans une altitude négative vis-à-vis de 
l’interprétation purement probabiliste de la Mécanique ondulatoire.

La plus intéressante des études contenues dans ce livre est sans aucun 
doute celle due à M. Bolir dans laquelle l’illustre savant danois, après 
avoir analysé l’origine de la théorie des quanta, ses premiers dévelop 
pements et l'éclosion de la .Mécanique ondulatoire et quantique, a 
résumé l’ensemble de ses discussions avec M. Einstein sur l’interpréta 
tion de celle Mécanique dans la période qui a suivi le Conseil Solvay 
de uyi~.

Dans sa réponse placée à la fin du volume, M. Einstein persiste à nier 
que la fonction d’onde ? de la Mécanique ondulatoire puisse donner, à 
elle seule, une description complète de la réalité. Selon lui, elle ne peut 
décrire un système individuel, mais seulement l’aspect statistique d’un 
ensemble de systèmes identiques. Einstein reconnaît d’ailleurs que le 
formalisme actuel de la Mécanique ondulatoire décrit d’une façon 
parlaite les phénomènes observables, mais, dit-il, « je suis convaincu 
que le caractère essentiellement statistique de la théorie quantique 
contemporaine doit être attribué au fait que cette théorie se sert d’une 
description incomplète des systèmes physiques ».

Comme exemple, Einstein étudie la théorie actuelle de la désintégra 
tion a d’un corps radioactif. On représente ce phénomène en admettant 
que fonde lF de la particule a est susceptible de s’échapper du noyau 
sous la forme d’une onde sphérique divergente qui filtre progressive 
ment à travers la « barrière du potentiel » entourant le noyau. Cotte 
image, dit .Einstein, est parfaite si l’on se propose seulement d’étudier 
les propriétés statist iques d’un ensemble de noyaux radioactifs, mais elle 
ne peut pas donner une description vraiment complète d’un seul de ces 
noyaux parce qu’elle est incapable de préciser l'époque delà désintégra 
tion et qu’on doit évidemment supposer que chaque noyau se désintègre 
à une époque bien définie. Einstein expose alors la réponse que lui ferait 
sans doute un partisan de l’interprétation actuelle de la Physique quan- 
lique. Celte réponse consisterait essenliellemunt à remarquer que 
l’époque de la désintégration n’est pas connue a priori et qu’il faut une 
observation pour la connaître, observation qui change l’état de nos 
connaissances sur le système. Einstein reconnaît que cette réponse peut 
peut-être paraître suffisante quand on a seulement affaire à un système 
de l’échelle microscopique comme un noyau radioactif, mais il 
ajoute qu’il n’en est plus de même si l'on examine un cas étudié par 
M. S chrodinger.
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On peut, en effet, considérer un système comprenant non seulement 
un noyau radioactif a, mais un dispositif de mesure macroscopique tel 
qu’un compteur de Geiger avec un mécanisme automatique d’enregis 
trement. Ce dernier peut comporter une bande de papier qu’un méca 
nisme d’horlogerie fait se dérouler régulièrement et sur laquelle une 
marque s’inscrit quand le compteur fonctionne. On a alors un système 
très complexe dont l’espace de configuration comporte un nombre très 
élevé de dimensions, mais logiquement rien n’empéche de le considérer. 
Si l’on envisage toutes les configurations possibles après un temps très 
long par rapport à la période de l’atome radioactif, il y aura au plus 
une marque sur la bande d’enregistrement. Mais la théorie actuelle ne 
donnant que la probabilité des configurations, nous ne pouvons calculer 
que les probabilités relatives des positions de la marque sur la bande 
d’enregistrement. Or, remarque Einstein, la position de la marque sur 
la bande est un fait qui relève de la Physique macroscopique, ce qui 
n’est pas le cas de l’instant de désintégration. Si donc nous considérons 
la théorie quanlique actuelle comme donnant une description complète 
du système individuel, nous sommes contraints d’admettre que la posi 
tion de la marque sur la bande n’est pas une chose qui appartienne au 
système en lui-même, mais que cette position dépend essentiellement 
de l’observation qui est faite sur la bande. Einstein considère cette 
conclusion comme hautement invraisemblable.

Étudiant le passage de la Mécanique classique à la Mécanique ondula 
toire, M. E instein trouve encore un nouvel argument contre l'interpréta 
tion purement probabiliste. Considérons avec lui le mouvement en 
dehors de tout champ d’un corps macroscopique que, pour préciser, 
nous supposerons être une sphère homogène de masse M. En Mécanique 
ondulatoire comme en Mécanique classique, on peut démontrer que le 
mouvement du centre de gravité du système (ici le centre de la sphère) 
est le même que celui d’un point matériel de masse Al. 11 est donc repré 
senté par la propagation d’un train d’ondes obéissant à l’équation de pro 
pagation des ondes W avec la valeur M de la masse. A l’instant origine 
t — o, ce train d’ondes aura une forme qui traduira nos incertitudes 
sur la valeur initiale des coordonnées du centre de gravité. Au bout d’un 
temps t très long, le train d’ondes se sera étalé, les incertitudes sur les 
coordonnées du centre de gravité ayant augmenté. Si, à cet instant, 
nous prenons une photographie stéréoscopique du corps en mouvement, 
nous pourrons en déduire avec une très grande précision (compatible 
néanmoins avec les relations d’incertitude) la valeur des coordonnées 
du centre de gravité. Le train d’ondes W se trouvera donc brusquement



réduit d’une façon considérable. Or, l'interprétation actuelle de cette 
réduction du paquet de probabilité, c'est qu'elle résulte de l’action du 
processus de mesure. Mais ici cette interprétation est inacceptable, car 
les faisceaux de lumière qui ont éclairé le corps au moment de la photo 
graphie n’ont certainement pas pu exercer une action appréciable sur ce 
corps dont la masse M peut être considérable. Il y a là encore une 
objection très forte contre l’interprétalion actuelle.

(1. Conclusion. —J'ai tenu à citer quelques-unes des objections qui 
ont été adressées à l'interprétation actuelle de la Mécanique ondulatoire. 
Comme on a pu le voir, elles émanent de quelques-uns des plus grands 
esprits scientifiques de notre temps ('). Pour celte seule raison, il n’est 
pas inutile de reprendre l'examen de la seule tentative qui ait été faite 
pour éviter l’interprétation purement probabiliste, c’est-à-dire celle que 
j’avais faite eu i<>27 sous le nom de « théorie de la double solution ». 
Des travaux récents ont d’ailleurs, comme nous allons le voir, ramené 
l’attention sur cette tentative.
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f'j Nous signalerons aussi un article récent de M. Sc h r o d in g e r  intitule Are there 
quantum jumps'l ( Hrit. J. l*hil. Sc., t. 3, n° Jl, 1962) où l’on trouvera de très intéres 
santes remarques, notamment sur la nécessité de toujours considérer des trains d’ondes 
limités et d’analyser ce qui se passe sur leurs bords.



DEUXIÈME PARTIE.
L V THÉORIE DE LA DOUBLE SOLUTION.

CHAPITRE VIII.
INTRODUCTION ET PROGRAMME.

1. Historique de la théorie de la double solution. — A l’cpoquc où 
me sont apparues les premières idées de la Mécanique ondulatoire, 
j’étais convaincu qu’il fallait réaliser une fusion physique des notions 
d’onde et de corpuscule. Sans doute je savais bien que cela entraînerait 
l’inlroduclion d’un certain nombre d’idées étrangères à la Physique 
classique comme le quantum d’action de Planck, mais je ne pensais pas 
qu’il fallait pour autant renoncer aux types d’explications de la Physique 
classique, ni surtout au désir d’obtenir une représentation claire du 
inonde physique dans le cadre de l’espace et du temps, j’avais donc 
cherché à me représenter la dualité onde-corpuscule par une image où 
le corpuscule serait le centre d’un phénomène étendu. On retrouve 
souvent celte idée dans mes premiers travaux.

Entre i<)2j, date de publication de ma Thèse de Doctoral et 1927, on 
voit mes idées à ce sujet se préciser dans une série de Notes aux 
Uompl.es rendus de VAcadémie des Sciences. Puis je les résume sous 
le nom de « théorie de la double solution » dans un article du Journal 
de Physit/ue [•!](' ). Mon point de départ était le suivant, l’onde plane 
monochromatique que j’avais dans mes premiers travaux associée au 
mouvement rectiligne et uniforme d’un corpuscule libre, ainsi d’ailleurs (*)

(*) Les numéros entre crochets renvoient à la Bibliographie placée à la fin de 
l’Ouvrage.
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que l’onde ff’ du type continu utilisée par M. Schrodinger et les ondes 
continues de la théorie ondulatoire de la lumière, me paraissaient 
représenter correctement la « phase » du phénomène ondulatoire réel 
centré sur le corpuscule, mais non pas son amplitude qui devait, à mon 
sens, comporter une singularité constituant ls corpuscule au sens étroit 
du mot.

J’admis donc hardiment une hypothèse, l’hypothèse de la double 
solution, suivant laquelle les équations linéaires de la Mécanique ondu 
latoire admettaient deux sortes de solutions : les solutions 'Ir continues 
habituellement envisagées, dont la nature statistique commençait alors 
à apparaître nettement grâce aux travaux de ,M. Ilorn, et des solutions à 
singularité qui auraient une signification concrète et seraient la véritable 
représentation physique de la dualité onde-corpuscule. Les corpuscules 
seraient donc bien localisés dans l’espace suivant l’image classique, 
mais ils seraient incorporés à un phénomène ondulatoire étendu. Pour- 
celte raison, le mouvement d’un corpuscule ne suivrait pas les lois delà 
M écanique classique d’après lesquelles le corpuscule est soumis 
seulement à l’action des forces qui s’exercent sur lui le long de sa 
trajectoire sans subir aucune répercussion de l’existence des obstacles 
qui peuvent se trouver au loin en dehors de la trajectoire. Dans ma 
conception, au contraire, le mouvement de la singularité devait dépendre 
de tous les obstacles qui entraveraient la libre propagation du 
phénomène ondulatoire qui l’entoure et il en résulterait une réaction du 
phénomène ondulatoire sur le corpuscule s'exprimant dans ma théorie1 
par l’apparition d’un « potentiel quantique » tout à l’ail différent du 
potentiel des forces ordinaires : ainsi s’expliquerait l’apparition des 
phénomènes d’interférences et de diffraction.

Malheureusement le développement de celte théorie de la double 
solution présentait de grandes difficultés mathématiques. Pour cette 
raison, ayant été chargé de présenter un rapport sur la Mécanique 
ondulatoire au Conseil de Physique Solvay tenu à Bruxelles en 
octobre 1927, je me contentai de donner un exposé de mes idées sous 
une forme incomplète et adoucie à laquelle j’avais donné le nom de 
« théorie de l’onde-pilote » [2]. V oici quelle était la base de celte forme 
tronquée de mes conceptions. Dans mon Mémoire sur la double solution, 
j’avais montré que le mouvement du corpuscule était défini, du moins 
à l’approximation newtonienne, par une formule que j’ai nommée 
depuis « formule du guidage »

i'i) 1 grad- , 
mv = —
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9 étant, au facteur ~~ près, lu phase de l’onde à singularité. Comme,

d’après mes idées, la phase devait être la même pour Fonde à singularité 
et pour Fonde continue 'F, on pouvait donc dire que le corpuscule était 
« guidé » par Fonde .suivant la formule (i). Kl j’appelais « théorie de 
Fonde-pilote » la théorie qui se bornait à postuler l'existence du corpus 
cule et de Fonde 'F sans plus parler d’onde à singularité [2]. Cette 
forme dégénérée de ma conception primitive se trouvait coïncider 
exactement avec celle qu’avait soutenue vers la même époque 
M. Madelung dans son interprétation hydrodynamique de la Mécanique 
ondulatoire, mais elle avait beaucoup moins d’intérêt et de profondeur 
que mes idées initiales sur la double solution. Mon exposé au Conseil 
Solvay fut mal accueilli et l’interprétation purement probabiliste de 
MM. Ilohr, Boni et Ile isenberg soutenue par MM. Pauli, Dirac, etc. eut 
nettement la préférence des savants présents. Fin particulier, M. Pauli 
critiqua ma théorie en s’appuyant sur l’exemple du rotateur quantifié 
de M. Fermi ( ' ').

Les objections, qui me furent faites ainsi que le succès de l’interpré 
tation de Bohr-IIeisenberg auprès de la presque unanimité des Membres 
du Conseil (sauf Lorentz, Schrodinger et Einstein qui développa 
l’objection exposée au chapitre VIT, § 2) firent sur moi une grande 
impression. De plus, en réfléchissant après la fin du Conseil à cette 
théorie de l’onde-pilolc que j’y avais soutenue, je m’aperçus qu’elle ne 
pouvait pas réellement fournir une image concrète, conforme aux 
conceptions de l’ancienne Physique, du dualisme onde-corpuscule. Elle 
suppose, en effet, que le corpuscule est guidé dans son mouvement par 
la propagation de Fonde *F considérée en Mécanique ondulatoire : or, 
ceci ne pourrait conduire à une théorie causale et concrète du type que 
je cherchais à obtenir que s’il était possible de considérer cette onde 'F 
comme une réalité physique objective. .Mais Fonde TF usuellement 
utilisée en Mécanique ondulatoire ne peut pas être une réalité physique : 
sa normalisation est arbitraire, sa propagation est dans le cas général 
censée s’effectuer dans un espace de configuration visiblement fictif et 
le succès de son interprétation probabiliste montre bien qu’elle n’est 
qu’une représentation de probabilités dépendant de l’état de nos 
connaissances et brusquement modifiée par toute information nouvelle. 
Je m’apercevais donc que la théorie de Fonde-pilote ne pouvait pas 
fournir l’interprétation que je cherchais : elle ne réalisait pas la sépa 

(*) Voir plus loin Chap. XIV.
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ration nette de l’objectif et du subjectif à laquelle Bohr el ses disciples 
renonçaient, mais qu’il était nécessaire de maintenir si l’on voulait 
obtenir une interprétalion concrète el causait1 de la Mécanique 
ondulatoire.

A.u contraire, ma théorie primitive de la douille solution, en 
distinguant Fonde W à caractère probabiliste et subjectif de l’onde à 
singularité (onde «) qui, elle, serait une description de la réalité 
objective, pouvait peut-être fournir l'interprétation d'un type plus 
classique que j’avais recherchée. Mais la théorie de la double solution 
comportait aussi, je le savais bien, de nombreuses difficultés, notamment 
en ce qui concernait l’existence et la forme des ondes à singularité, leur 
rapport avec les ondes 'F, la difficulté d’interpréter avec des ondes à 
singularité des expériences d’interférences telle que celle dos trous 
d'Young, etc.

Placé devant toutes ces difficultés, j’ai alors renoncé à poursuivre dos 
efforts dont le résultat me paraissait trop aléatoire. Depuis 1928, je me 
suis rallié à l’interprétation probabiliste de Bolir et j'ai pris cette inter 
prétation comme base de mes travaux personnels, de mon enseignement 
et de mes livres.

Pendant l’été 190 1, j’ai eu, à ma grande surprise, connaissance d’un 
Mémoire de M. David Bolim qui a ensuite paru dans la P hy sic al 
Review [3]. Dans ce Mémoire, M. Bohin reprenait ma théorie de l’onde- 
pilote en considérant l’onde T comme une réalité physique. Il déve 
loppait à ce sujet un certain nombre de remarques intéressantes et, en 
particulier, esquissait une théorie de la mesure qui paraissailécarterles 
objections que M. Pauli m'avait adressées en 192" (1 Ma première 
réaction en présence du travail de AI. Bolim fut de rappeler, dans une; 
iNote aux Comptes rendus de VAcadémie des Sciences [4| les 
objections, à mon avis insurmontables, qui me paraissent s’opposer à 
l’attribution à l’onde W d’un caractère de réalité physique et, par suite, 
à l'adoption de la théorie de l’onde-pilole. M. Takahayasi a d’ailleurs 
repris ensuite ces objections dans des Mémoires dans lesquels il a 
précisé d’une manière intéressante certains aspects de la théorie de 
Bolim [o].

M. Jean-Pierre \ igier, qui poursuivait des recherches sur les théories 
unitaires en Relativité généralisée a alors attiré mon attention sur 
l'analogie entre la démonstration que j’avais donnée en 1927 en éta 
blissant la formule du guidage (1) dans le cadre de la théorie de la

(') Voir chapitre XV.
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douille solution el une démonstration indiquée par VI. Georges Darmois 
dès 1926, (*), développée indépendamment par M3M. Einstein et 
Gromrncr (;l) en 1927 et plusieurs lois reprises depuis sous des formes 
diverses par Einstein lui-même el par Fock, Infeld ( '), Hoffmann, etc. 
dette dernière démonstration établit qu’une singularité du champ 
gravilique doit automatiquement, en vertu même des équations non 
linéaires satisfaites par les coefficients g'av de la métrique de l’espace- 
temps, suivre une géodésique de la métrique définie par le champ gravi- 
fique extérieur qui se superpose au champ de la singularité. M. Yigier 
a d’ailleurs cherché à préciser l’analogie qu’il m’avait signalée en 
admettant que l'onde des corpuscules présents (bien entendu Fonde a 
objective à singularité) détermine d’une certaine manière la structure 
de l’espacc-lemps.

L’analogie signalée par M. \ igier m'avait paru d’un très grand intérêt 
et j’ai été conduit à préciser dans une nouvelle Note [6] la façon dont 
on pourrait essayer de reprendre non pas la théorie de l’onde-pilote qui 
me paraissait rester inacceptable, mais la théorie de la double solution 
qui 11e soulève pas les mêmes objections de principe. Via fin de celle 
Note, j’ai dit qu’elle ne contenait qu’un programme dont l’exécution se 
heurterait à de très grandes difficultés. Laissant de côté, malgré tout 
son intérêt, la question du raccord avec la Relativité générale, je 
voudrais dans la deuxième partie de cet Ouvrage exposer où en est 
.actuellement In réalisation de ce programme.

'i. Problèmes qui vont être traités dans les chapitres suivants. — 
Nous rappellerons d’abord les résultats de notre Mémoire de 1927, en 
particulier la démonstration de la formule du guidage et l’introduction 
du potentiel quanlique. Nous développerons la Dynamique qui en 
résulte pour le point-singularité, dynamique qui, par l’intermédiaire du 
potentiel quantique, se trouve dépendre des conditions aux limites 
imposées au phénomène ondulatoire par la présence d’obstacles. Puis 
nous étudierons quelques conséquences des formules obtenues et une 
récente objection faite à ce sujet par VE Einstein.

Un point important est la justification de la formule du guidage et de 
la signification statistique de l’onde lE dans le cas des systèmes de 
corpuscules en interaction, cas où Fonde lE considérée par la Mécanique

(2) G. Da r mo is , Les équations de la gravitation einsteinienne (Mèm. Sc. math., 
•Gautbicr-Villars, 1927).

C1) Sitz. P/euss. Akad. Jfïss., t. I, 1927.
■(*) Rev Mod. Phy$. i. 21, 19^9, p. i\oS.
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ondulatoire usuelle est censée se propager dans l’espace de configuration, 
espace visiblement fictif. Du point de vue causal de la double solution, 
il faut démontrer que formule du guidage et interprétation statistique 
du *F résultent des interactions entre les régions singulières d’ondes du 
t)pe u évoluant dans l’espace physique à trois dimensions. Dans mon 
article du Journal de Physique de mai 1927, j’avais esquissé une 
démonstration de ce genre en considérant P espace de configuration 
comme formé par les coordonnées des singularités. Je parvenais ainsi 
à une représentation du mouvement des corpuscules en interaction 
comme s’accomplissant dans l’espace physique sans avoir nécessai 
rement à faire appel à l’espace de configuration. Cet espace fictif et la 
propagation de l’onde «F dans cet espace seraient seulement des artifices 
de calcul commodes pour les prévisions statistiques. En poursuivant 
dans celte voie, on devrait obtenir une interprétation physique de 
l’emploi des fonctions d’onde VF symétriques et antisymétriques en 
Mécanique ondulatoire des systèmes de corpuscules. On apercevrait 
mieux la signification physique du principe d'exclusion de Pauli si l’on 
parvenait à montrer que, pour les fermions, Fonde u 11e peut comporter 
qu’une singularité tandis qu'elle pourrait en comporter plusieurs dans 
le cas des bosons. J'exposerai certaines considérations que j’ai pu déve 
lopper a ce sujet et qui paraissent constituer une certaine avance dans 
cette direction [7].

Nous examinerons ensuite l’importante question de la signification
statistique de la grandeur |VF|*. Dans mon .Mémoire de 1927, j’avais
remarqué que, par suite de l'identité des phases des ondes VF et u
postulée par la double solution, la quantité a-=|VF|- obéissait à
l'équation de continuité

/ \ à a-(2) — -I- divta- V ) = o.
at

V étant la vitesse définie par la formule du guidage ( 1 ). Partant de cette 
relation, j’avais montré qu’il est assez naturel de supposer que a- — j W |2 
donne la probabilité de présence du corpuscule en un point quand on 
ignore laquelle des trajectoires possibles est effectivement décrite : on 
retrouve ainsi la signification du j *P |- couramment admise. léhypothèse 
taite pour y parvenir se présente comme un peu analogue à celle qu’on 
fait en Mécanique statistique classique quaud on admet l’égale proba 
bilité des éléments égaux d’extension-en-phase en s’appuyant uniquement 
sur le théorème de Liouville. Mais une justification paraît nécessaire, 
analogue aux démonstrations ergodiques qu’on cherche à établir en
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Mécanique statistique classique. M. Bohm dans un Mémoire récent [8] 
a donné un raisonnement qui semble conduire à cette justification.

Nous examinons ensuite l'objection faite à la formule du guidage par 
M. Pauli en 1927 et la réponse qu’on peut y opposer en s’appuyant sur 
l’idée essentielle de la limitation des trains d’ondes. L’analyse des 
processus de mesure a, dans l’ensemble de ces conceptions une grande 
importance, l'in conservant l’idée introduite par le développement de la 
Physique quantique suivant laquelle tout processus de mesure modifie 
en général complètement l’état existant avant son exécution, elle permet 
de retrouver les relations d’incertitude d’Ileisenborg en les conciliant 
avec le point de vue causal; elle permet aussi de discerner le postulat 
arbitraire qui est à la base à la fois de ce qu’on nomme dans les traités 
usuels « la théorie générale des transformations » et du raisonnement 
de M. von Neumann sur la prétendue impossibilité d’interpréter les lois 
de probabilité de la Mécanique ondulatoire à l’aide de variables cachées. 
Nous exposerons ces questions en nous appuyant notamment sur les 
Mémoires de MM. Bohm et Takabayasi déjà cités [3], [0].

Naturellement, il est nécessaire de pouvoir étendre toutes les consi 
dérations précédentes au cas de l’électron doué de spin obéissant aux 

(■quations relativistes de la théorie de Dirac ( et même plus généralement

aux cas des particules de spin supérieur à Après une première 

tentative insuffisante que j’avais faite en ce sens, M. N igier s’inspirant 
d idées de NI. Bohm a donné une solution de cette question qui me 
paraît plus satisfaisante et (pie j’exposerai [9 |. Tl ne me semble pas que 
l’exlention des idées de la double solution à l’électron de Dirac soulève 
des difficultés particulières.

IJn point très important à élucider est la question de la nature des 
solutions u à singularité postulée par la théorie de la double solution. 
Un certain nombre de raisons que nous exposerons et en particulier la 
parenté probable de la théorie de la double solution avec la Relativité 
généralisée nous ont conduit à modifier d'une façon importante nos 
conceptions primitives de 1927. A cette époque je considérais l’onde u 
comme une solution de l’équation linéaire de propagation de la 
Mécanique ondulatoire qui comporterait une singularité au sens mathé 
matique du mot. 11 me semble aujourd’hui certain qu’il convient (le 
remplacer l’idée de singularité par celle d’une très petite région 
singulière, en général mobile, où la fonction n prendrait des valeurs 
très grandes et obéirait à une équation non linéaire : c’est seulement en 
dehors de celte Irès petite région singulière que la fonction u obéirait
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approximativement à l’équation de propagation linéaire de la Mécanique 
ondulatoire usuelle. Cette nouvelle manière de définir l’onde u est 
conforme aux idées de M. Yigier : il pense que l’on pourrait ainsi 
raccorder la théorie de la double solution avec les idées de M . Einstein 
qui a toujours cherché à représenter les corpuscules par des régions 
singulières du champ et peut-être aussi avec l’électvomagnétisme non 
linéaire de M. Boni.

L’examen de la façon dont se présente dans ce cadre d’idées la. 
question des valeurs propres correspondant aux états quantifiés m’a 
conduit récemment à préciser la forme des ondes u et les' relations de 
cette forme avec celle des ondes lE [10]. Elles comporteraient, confor 
mément d’adleu.rs à une suggestion de M. Vigior, en dehors de la région 
singulière où elles peuvent prendre des valeurs très élevées, une partie 
extérieure « régulière » qui serait proportionnelle, à l’onde 'L normée, 
mais avec un facteur multiplicatif ayant une valeur phv sique parfaitement 
déterminée, ce qui correspond au caractère objectif attribué à l’onde u. 
Ainsi l’onde f ordinairement considérée en Mécanique ondulatoire et 
arbitrairement normalisable continuerait à avoir le caractère subjectif 
et statistique qu’elle possède incontestablement, mais la partie extérieure 
de l’onde u à signification objective et à valeur parfaitement déterminée 
serait proportionnelle à l’onde u normée à l’unité. Ainsi, sans attribuer 
à Fonde *E un caractère de réalité phv sique, la principale objection 
contre la théorie de l’ondc-pilote serait, levée et le point de vue de 
M. Bohm, convenablement, interprété, deviendrait acceptable. Déplus, 
comme je le montrerai, celte conception de Fonde u formée d’un « doigt 
de gant » très élevé et très étroit muni d’ailes représentées par une 
fonction proportionnelle à Fonde ’E paraît pouvoir fournir l’explication 
des expériences d’interférences telle que celle des trous d’\oung, expli 
cation qui m’avait paru, il y a 2,) ans, être pour ma tentative de théorie 
causale un obstacle insurmontable. L’ensemble des idées que nous venons 
de résumer paraît donc apporter un sensible progrès dans les 
conceptions de la théorie de la double solution.

11 reste cependant des points très délicats à élaircir. Il ne semble pas 
possible d’admettre, pour un corpuscule libre associé à un groupe 
d’ondes presque monochromatiques, la partie extérieure régulière de 
Fonde u soit réellement représentée par l’intégrale de Eourier qui repré 
sente Fonde *E dans le cas d’un tel groupe d’ondes. Il est donc' nécessaire 
d’admettre que la proportionnalité entre la partie régulière de l’onde u 
et Fonde 1’ considérée dans le même problème par la Mécanique ondu 
latoire usuelle a des limites et d faut, du moins dans certains cas.



« affaiblir » la liaison établie entre l’onde u et l’onde ’F. L'examen d une 
objection laite par M. Francis Perrin an sujet de la représentation par 
une onde sphérique divergente du phénomène de l’émission de corpus 
cules par uni' source ponctuelle confirme celte nécessité. Nous dévelop 
perons une suggestion suivant laquelle, en raison du caractère non 
linéaire de l'équation de propagation de l’onde u et de la variation 
rapide de u au bord des trains d’ondes, il se produirait aux limites des 
trains d'ondes a des phénomènes non linéaires impossibles à prévoir 
avec l’équation de propagation linéaire usuelle.

Nous étudierons enfin des problèmes très importants et très difficiles 
relatifs à l'interprétation dans la théorie de la double solution du phéno 
mène de la réflexion sur un miroir semi-transparent, de la réduction 
du paquet de probabilité, de la signification des étals stationnaires et 
de la conservation de l’énergie et de l’impulsion, etc. De la possibilité 
de surmonter les difficultés cpii se présentent dans ces problèmes, 
dépendra eu fin de compte le succès ou l’échec de l’interprétation cau 
sale de la Mécanique ondulatoire étudiée dans cet Ouvrage. Il paraît 
certain que. si l’on trouve une manière de surmonter ces difficultés, 
elle fera intervenir essentiellement le fait cpie tous les trains sont limités 
et peut-être aussi l’existence de phénomènes non linéaires sur les fronts 
d’ondes et dans les régions singulières.

Pour terminer et en vue de faciliter le langage, j’introduirai la 
convention suivante : e,ha,que fois qu'il n'y aura pas lieu de distinguer 
entre la théorie de la double solution et sa, forme dégénérée, la 
théorie de /’onde-pilote. j emploierai le terme abrégé de « théorie 
eau sa/e » ( 1 ).
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I1) Ou IniiiiiTj la plupart ilrs textes anciens ou récents cités dans ce chapitre dans 
un opuscule tir l'autour rt de M. Vicier ,11..



CHAPITRE IX.
PRINCIPES DE LA THEORIE DE LA DOUBLE SOLUTION.

I. Idées générales. — Résumons d’abord les principales idées qui 
m’avaienl guidé quand j’avais imaginé en i()2j la lliéorie de la double 
solution.

i° La synthèse des ondes et des corpuscules doit s'eil'ectuer en 
représentant le corpuscule comme une sorte de singularité au sein d’un 
phénomène ondulatoire étendu.

a° L’interprétation probabiliste de l’onde 'L continue est exacte dans 
son ensemble et doit être conservée.

3° L’onde étant écrite sous la tonne ’L = a e (avec a et <p réels), 
la phase o a un sens physique profond correspondant aux indications 
d’une infinité de petites horloges dont le mouvement serait lié à celui 
du corpuscule (voir Chap. I, § 1 ). Cette phase o doit aussi être celle 
de l’onde à singularité qui, dans la théorie à construire, devra repré 
senter la structure réelle du corpuscule et du phénomène ondulatoire 
auquel il est incorporé. Au contraire, l’amplitude a de fonde 'L, qui 
est continue, n’a pas de signification objective : elle n’a que le carac 
tère de représentation d’une probabilité.

4° Parmi toutes les probabilités envisagées par la Mécanique ondu 
latoire usuelle, la probabilité de présence [H'Pa sur les autres une 
sorte de priorité car elle correspond en réalité à la probabilité que le 
corpuscule soit en un point dans l’état représenté par fonde H’. Les

k h .
autres probabilités, telles que ]t‘(k) |- pour la valeur - de la quantité

de mouvement, ont un sens moins immédiat : elles ne sont valables 
qu’après l’action d’un dispositif permettant de mesurer la grandeur 
envisagée quand on ne connaît pas encore le résultat de cette mesure.

5° Tout phénomène réel pouvant se représenter dans le cadre de
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l'espace cl du temps, il n’est pas admissible que l’on ne puisse traiter le 
problème de :\ corpuscules on interaction qu'en considérant une propa 
gation d’ondes dans l'espace de configuration du système, espace 
visiblement ficlil. On doit donc pouvoir poser ce problème, et môme 
en principe le résoudre, en considérant la propagation dans l’espace 
physique à trois dimensions de N ondes à singularité s’inlluençant 
mutuellement. Mais 011 devra ensuite pouvoir démontrer que le résultat 
statistique des interactions est exactement donné par la considération 
de l’onde 'J du système dans l'espace de configuration qui, n’étant 
qu’une représentation de probabilité, peut, elle, n’ètre représentable 
que dans un cadre fictif.

!2. Principe de la double solution. — Muni de ces idées générales, 
je me suis hasardé à admettre le principe suivant auquel j’avais donné 
le nom de « principe de la double solution ».

- “ i 
-------  ?

1 toute solution continue 'F = a e h de réquation de propagation 
de la Mécanique ondulatoire, doit correspondre une solution à

singularité u—fe1' ayant la même phase q que 'F, mais dont 
Vamplitude f comporte une singularité en général mobile.

Dans mon idée, la fonction u était la véritable représentation de 
l’entité physique « corpuscule » qui serait un phénomène ondulatoire 
étendu centré' autour d’un point (ou d’une région quasi ponctuelle) 
constituant le corpuscule au sens étroit du mot. Je considérais alors le 
corpuscule au sens étroit du mol comme défini par une véritable 
singularité mathématique, c’est-à-dire par un point où la fonction f 
deviendrait infinie. Des considérations sur lesquelles je reviendrai me 
conduisent aujourd’hui à penser que le corpuscule doit être assimilé 
non pas à une véritable singularité ponctuelle de u, mais à une très 
petite région singulière de l’espace où u prendrait une très grande 
valeur et obéirait à une équation non linéaire dont l’équation linéaire 
de la Mécanique ondulatoire ne serait qu’une forme approximative 
valable en dehors de la région singulière. L’idée que l’équation de 
propagation de u, contrairement à l’équation classique du 'F, est en 
principe non linéaire m’apparaît même maintenant comme tout à fait 
essentielle.

Quoi qu’il en soit, ma conception du corpuscule solidaire d’un 
phénomène ondulatoire dont il serait le centre me paraissait permettre 
de comprendre que le corpuscule soit localisé et que cependant son 
mouvement (misse être inlluencé par la présence d’obstacles situés loin
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de lui, comme cela parait nécessaire pour interpréter 1 existence des 
phénomènes d’interférences et de diffraction.

Quelle peut, être alors la signification de Fonde continue d’ usuel 
lement considérée en Mécanique ondulatoire? Ce doit, être seulement 
une fonction d'onde fictive à caractère subjectif, susceptible seule 
ment de nous donner des renseignements d’ordre statistique sur les 
divers mouvements possibles du corpuscule suivant qu’il suit l'une ou 
l’autre des trajectoires définies par la phase 9.

Pour voir si ces idées générales pouvaient conduire à des résultats 
acceptables, j’avais d’abord examiné le cas le plus simple : celui du 
mouvement rectiligne et uniforme associé à une onde plane mono 
chromatique, cas qui avait déjà été à l’origine de mes réflexions ini 
tiales sur la Mécanique ondulatoire.

3. Cas du mouvement rectiligne uniforme. — Considérons un 
corpuscule on l’absence de champ. En 1937, on admettait comme 
équation relativiste pour la propagation de l’onde 'P l’équation

4 ~-(1)   T -o yQ ml c- T = <1 (/«o masse propre 1.

On sait aujourd'hui, nous l’avons dit, que celte équation 11e convient 
que pour les corpuscules de spin nul et que, pour les particules de spin
non nul, on doit employer d’autres formes d’équations <1 ondes ^par

exemple les équations de Dirac pour les électrons de spm jz')’’ mais je

laisse cette question de côté pour l’instant.
On vérifie aisément que l’équation (1) admet pour solutions des

ondes planes monochromatiques de la forme f = « e1 avec a 
constant et o égal à

(-0 NV / — p. r \\ =
V 1 ■

P =
«IpV \

Existe-t-il une onde à singularité de même phase 9, satisfaisant à
U!i ,

l’équation (1) et ayant la forme h  = f e h ? Par substitution dans (1), 
on voit que l’on doit avoir   f=o. Comme cette équation est in\a- 
rianle pour une transformation de Lorentz, on peut l’écrire A/’=o en 
se plaçanL dans le système propre du corpuscule où f ne doit pas 
dépendre du temps. Dans ce système propre, l’origine des coordonnées
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coïncidant avec le corpuscule, on trouvera comme solution à symétrie 
sphérique

Q ___________
(3) /(-ro, -Su) = — (■+■ y» -+-z»)

^ 0
et par suite

Q   mt, r* !
( ï) u(xa, y„, z„, („) = — e h

t 0

La fonction d’onde à singularité étant ainsi obtenue dans le système 
propre, une simple transformation de Lorentz en donnera l’expression 
dans un autre système galiléen et, en passant ainsi dans le système 
dont le corpuscule parcourt l’axe Oz avec la vitesse e, on aura (')

(5) “O, y, z, t) =
- (W«-

v/*2- ( Z — vtf

Dans ce cas simple de l’absence de champ, nous avons donc bien pu 
trouver une solution à singularité mobile vérifiant le principe de la 
double solution. Je remarquerai dès à présent que, si l’on veut 
remplacer l’idée d’une singularité par celle d’une très petite région 
singulière où u obéirait à une équation non linéaire différente de 
l’équation satisfaite par 'F, on serait amené à considérer l’équation \f=o 
comme satisfaite dans tous le système propre sauf dans une très petite 
région finie entourant l’origine : la solution à symétrie sphé-

C
rique f = ■- ne pourrait donc représenter f qu’à l’extérieur d’une

très petite sphère entourant l’origine. La solution (5) serait alors 
valable partout sauf à l’intérieur d’un très petit ellipsoïde entourant le 
point x — y = o, z = vt aplati par suite de l’effet de la contraction de 
Lorentz.

La solution u à singularité que nous venons d’obtenir a dans le 
système propre la forme d’une solution du type polaire à symétrie 
sphérique. On pourrait aussi trouver des solutions du type dipolaire

Cxen posant par exemple f{x0, y0, z0) = —^ et de môme des solutions

du type «-polaire. Les choix que l’on peut ainsi faire correspondent à 
des hypothèses diverses sur la « structure interne » du corpuscule et

— (W
(‘) Remarquons que nous pourrions ajouter à(5) une solution ae h avec a

quelconque.

L. DB BROOMK.
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sur ht symétrie de celte structure, ce qui pourrait être très important 
dans une théorie générale des corpuscules.

Dans mon Mémoire de 1937, j’avais aussi indiqué qu’il existait 
d’autres solutions d’un ty pe différent. Si, en effet, on se place dans le 
système propre et si l’on cherche non pas une solution de la Corme

" = ./ e k '" = / e-T-‘Wnl«y

mais des solutions de la forme

a = / e- ~ ' avec v0,

on trouve pour y’dans le système propre l’équation

(6) A/= Ç(viî--V)/

et l’on est amené à envisager les solutions à symétrie sphérique nulles 
à l’infini

C
./ ( ' 0 ) = — COS ■>. T.

/‘O

J-/ \ fi 7 ‘'■'s,
>\1

Ces solutions correspondent à des états du corpuscule où sa masse 
propre ne serait pas égale à la constante rna figurant dans l’équation de

propagation, mais aurait pour valeur —r-- Ces états que j’avais alors

nommés les étals « contraints » du corpuscule sont intéressants. Ils 
présentent une analogie instructive avec les circonstances que l’on 
rencontre pour les photons enfermés dans un guide d’ondes dont les 
mouvements correspondent à des masses propres variables suivant la 
forme du guide d’ondes et le type des ondes propagées, masses propres 
très supérieure à la masse propre normale, nulle ou évanouissante, du 
photon (4). Nous retrouverons des questions de cet ordre dans un 
chapitre ultérieur (chap. XVII, § 6).

Les résultats qui précèdent pourraient avoir de l’importance si la 
théorie causale parvenait un jour à décrire la structure des particules et 
à prévoir les valeurs de leurs masses.

i. Interprétation de l’onde M dans le cas du mouvement rectiligne 
uniforme. — Dans le cas que nous venons d’éludier où il y a, à la fois, (*)

V vo" — ' c; pour

(*) Louis d e Bk o g l ie , Problèmes de propagation guidée des ondes électro 
magnétiques, Gauthier-Yillars, 2e édig5i, p. 3'j-SG.
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absence de champ cl absence d’obslacles à la propagation, nous avons 
trouvé une solution à singularité (ou à région singulière) mobile avec 
la vitesse r le long de O;.

Nous pouvons imaginer un grand nombre de tels corpuscules se 
déplaçant suivant des directions parallèles avec la vitesse V et for 
mant une sorte de lluide à densité uniforme p. Considérons alors

l’onde W —- ne h qui a la même phase o = Wt — pz que l’onde u des 
corpuscules. Puisque n est constant, nous pouvons poser

(H) p = K«S.

Nous voyons alors que Fonde lF représentera par sa phase le 
mouvemenl des corpuscules caractérisé par les valeurs W et p de 
l’énergie et de la quantité de mouvement et représentera ainsi par le 
carré de son amplitude la densité! des corpuscules dans l’espace.

Si nous n’avons a lia ire qu’à un seul corpuscule (nous savons que 
nous devons toujours pouvoir considérer ce cas) et si nous ignorons 
laquelle des trajectoires parallèles à O; il décrit et quel est son horaire 
sur cette trajectoire, il paraît tout naturel de supposer, en raison de 
l’équivalence des trajectoires parallèles et des divers points d’une 
même trajectoire, que la probabilité pour que le corpuscule se trouve 
en un point de l’espace est partout la même. Si l’on a eu soin de normer 
l’onde continue 'F, on pourra donc prendre comme expression de la 
probabilité

(9) ? = «2 = j ’F |'2-

Ainsi apparaît le rôle de l’onde continue dans la théorie de la 
double solution : tandis que l’onde u avec sa région singulière décrirait 
la structure réelle du corpuscule, l’onde continue *F ne serait qu’une 
représentation fictive de l’ensemble des positions possibles de ce 
corpuscule.

Naturellement l’onde u illimitée est une abstraction. Il faudrait dans 
la réalité considérer des trains d’ondes u limités, possédant dans leur 
partie centrale un facteur de phase très sensiblement assimilable à la 
phase d’une onde plane monochromatique : ce train d’ondes u limité 
devrait correspondre à un paquet d’ondes f formé par la super 
position d’ondes planes monochromatiques se détruisant par inter 
férences à l’extérieur des limites du paquet eL assimilable dans sa partie 
centrale à une onde plane monochromatique à amplitude constante. 
Nous aurons à revenir ultérieurement sur cette question.
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o. Étude du cas des champs constants. Les équations (J) et (G). — 
Comme, dans mon article de 1927, je vais maintenant étudier le cas des 
champs constants qui est le plus simple après celui de l’absence de 
champ.

Nous admettrons que, dans le système de référence où nous sommes 
placés, le champ est permanent eL dérive d’un potentiel F (a?, y, z). 
Nous adoptons comme équation d’ondes ici valable,

(10) F{x,y, z) Ù'F
fit

4^
hî O

qui dérive de l’équation d’ondes relativiste à un seul 'F donnée par la 
formule (66) du chapitre III en posant A= o et e V = F.

Imaginons que le corpuscule commence par se déplacer dans une 
région R0 de l’espace où le champ est nul, puis pénètre dans la région 11 
où règne le champ de force considéré. Dans Il0, on pourra représenter

1— (W / — (>Z\
le corpuscule par l’onde u = f(x, y, z, t) e h étudiée au para 
graphe 3. La fonction f présente une singularité (ou région singulière) 
mobile et o coïncide avec l’action de Hamilton du corpuscule.

Four obtenir la représentation du corpuscule dans le champ de force, 
il faut prolonger la solution initiale dans la région R. Pour cela, nous

écrirons toujours u = fe h avec f et cp réels et nous portons cette 
forme dans l’équation ( 10) supposée valable pour u. Ici se présente une 
circonstance essentielle qui se retrouvera pour toutes les autres formes 
de l’équation de propagation. Comme f et cp sont réels, l’équation 
d’ondes va nous fournir, en séparant les termes réels des termes ima 
ginaires, deux équations distinctes. L’une est la généralisation de 
l’équation de Jacobi et sera appelée (J), l’autre est analogue à l’équation 
de continuité et sera nommée (C). Dans le cas présent, elles ont la 
forme suivante et sont valables en dehors de la région singulière,

(J)
()'Ci

ât
ù?y
dx

'V-  / 
4"- / ’

fii)
<c> MS <v

dt —i ,)x dx FU'
x,y’,z

Il est aisé d’interpréter l’équation (J). Le champ étant permanent, la 
région R est analogue à un milieu réfringent à propriétés permanentes et,
en y pénétrant, l’onde restera monochromatique avec la fréquence v— ^ 

qu’elle possédait dans R0 : ceci signifie que l’énergie reste constante.
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On aura donc dans R,

(JA .r, O = — ?, (x, y, 3); = w> C?= — A?.

ol nous pouvons écrire l’équation (J) sous la forme

(■'" (j) j.w -.•v v (ÿiy = ni r. c- -+-
k-
\r--

  / 
/

Il est bien évident que, si nous avions introduit dans l’équation d’ondes
2 T. t 
-------  ?

non pas l’onde u à singularité, mais l’onde correspondante W — ae h 
de môme phase cp, nous aurions trouvé

(i \) (J-) 1 (w - K)» - y d? 1 
<)x

, , h-   u h'1 A«.
= nic- H------------------  = ni 5 c- —----- —1 a \ a

■'.y, -

puisque a ne dépend pas de t en ce cas.
La comparaison de (1.)) avec (10) montre alors que le principe de la 

double solution, qui postule l’identité des phases cp dans u et dans ^L, 
entraîne comme conséquence :

/ - %   / _ _ _ Aa _
./ a a

Tout au moins cette relation est-elle valable en dehors de la région 
singulière, là où u et W obéissent à la même équation linéaire ( 10).

Si les derniers termes de (i3) et de ( 14)? qui vont nous servir plus 
loin à définir le potentiel quanliquc, sont négligeables, l’approximation 
de l’Optique géométrique sera valable : alors les équations (J) et (J') 
deviennent identicpies à l’équation de Jacobi de la Mécanique relativiste 
et l’on voit que ©1 coïncide avec la fonction de Jacobi raccourcie pour les 
champs permanents. Il suffit pour le voir, de poser dans l’équation ((>5) 
du chapitre III :

S = W1 — S,, A = u et t V = F.

6. La formule du guidage. — A l’approximation de la Mécanique 
ancienne (Optique géométrique), la vitesse du corpuscule quand il 
passe au point M est déterminée par le fait que la quantité de mouvement 
est égale à (—gradcp)M= (gradep,),, puisque alors 0 = S et ©1= S,.

Ceci résulte de la théorie de Jacobi. Nous voulons chercher à établir 
que, même en dehors de Vapproximation de VOptique géométrique, 
on a encore cette relation. Nous obtiendrons ainsi une sorte d’extra-



102 CHAPITRE IX.

polalion de la théorie de Jacobi au-delà des limites de validité de 
l’Optique géométrique.

Nous partirons de la remarque que, pour nous, le corpuscule au sens 
étroit du mot est défini par une très petite région singulière mobile et il 
est alors naturel de supposer que, lorsqu’on se rapproche du centre de 
cette région singulière, la fonction / croît très rapidement, sans doute 
comme l’inverse d’une puissance de la distance au centre : par suite la
dérivée % le Ion" du chemin suivi doit croître encore plus rapidement 

os
que /.

Considérons une très petite sphère S entourant la région singulière

et à l’intérieur de laquelle / croît très rapidement. Môme, si l’équation 
d’ondes satisfaite par u à l’intérieur de la région singulière n’est pas 
linéaire, nous supposerons que, sur S, la fonction u obéit encore à 
l’équation d’ondes linéaire de la Mécanique ondulatoire usuelle. Nous 
admettrons cpie sur S la fonction o, et ses dérivées premières ont 
sensiblement partout la môme valeur : cette hypothèse revient à supposer 
que les dimensions de la région singulière sont très petites par rapport 
à la longueur d’onde locale correspondant à la phase cp,. L’amplitude / 
n’a pas, en général, la môme valeur en tous les points de S, car cela 
serait incompatible avec la contraction de Lorentz que la structure du 
corpuscule subit du fait de son mouvement.

Représentons la sphère S de centre O à l’instant l.
Près d’un point M de cette sphère, figurons les positions aux temps 1 

et l dl d’une môme surface /~const. La direction S sera celle 
de grad/en M, la direction n étant celle de grad cpt sur toute la sphère.
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(ni)
./
•>/

ris J H,

Or, l'équation (C) permet d’écrire

07) o- àt <)s <)n >'

Divisons par tenons compte de ( iii) et remarquons que la vitesse

l ôf:
de déplacement de la valeur de/ en M a l’instant t est égale a I — 

il vient
/\

( i S ) e,. = —---- - grad ï i | cos ns.
VV — r

Or, ce résultat est valable en tous les points de la sphère S.
/\

Comme t\,— çcos ns, on en conclut que la vitesse V du mouvement 
d’ensemble de la région singulière a lieu dans la direction H dégrade^ 
et qu’elle est donnée par la formule

0<l) \y°_ |. grad Ti = — w ,, grad ?.

Celte formule fondamentale sera nommée la « formule du guidage ». 
fille montre que le mouvement d’ensemble de la région singulière 
(c’est-à-dire le mouvement du corpuscule) s’obtient tout simplement en 
extrapolant la formule p = — gradS de la théorie classique de Jacobi 
au delà des limites de l’Optique géométrique, c’est-à-dire de l’ancienne 
Mécanique. En effet, on a

VV — F nio
V'i— r

el la formule ( iq) donne
m0v ,p = — ■ - = — grad es.

V i —

Nous savons d’ailleurs que, quand l’approximation newtonienne est 
réalisée (e<Cc), le terme essentiel de W est l’énergie propre mac- qui 
se trouve être beaucoup plus grande que l’énergie potentielle F. On a 
alors W — F ~ m» c1 et la formule du guidage prend la forme

(•>.<> v m grad ? = m grad ? 1 >

m étant la ruasse constante, égale à m0, de la Mécanique newtonienne
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Nous devons taire ici sur la démonstration de la formule (iq) une 
remarque importante qui pourrait conduire à prévoir des phénomènes 
non prévus par l’interprétation actuelle. Nous avons noté que notre 
démonstration de la formule du guidage suppose essentiellement que 
la longueur d’onde doit être beaucoup plus grande que les dimensions 
de la région singulière. Si l’on désigne par d la plus grande dimension 
de la région singulière, la condition précédente s’écrira

<21 ) ''
P

Comme d paraît devoir être au plus de l’ordre de nrl:l cm, on voit 
aisément que, pour les particules usuelles de la Physique atomique, la 
condition ne peut cesser d’être satisfaite que pour des vitesses très

wvoisines de e. On aura alors p ~ — et la condition (21) s’écrira

(22) W
hc
~d

10~
~7T électron-volt (eV).

Pour d c±l 10 1:1 cm, ceci donne 

(a3) W < io'J eV.

Pour des particules d’énergie supérieure à io!leV, la condition 
pourrait n’être plus remplie : on se trouverait alors en présence de 
circonstances toutes nouvelles et les prévisions de la Mécanique ondu 
latoire sous sa forme actuelle pourraient ne plus être vérifiées (4).

7. Introduction de l’onde W : sa signification statistique. — IN e us 
allons maintenant introduire l’onde W dans le cas des champs permanents 
envisagé dans les deux derniers paragraphes.

La phase cp4 étant supposée connue, on peut lui faire correspondre 
une infinité de mouvements possibles qui, d’après (ip), s’exécutent 
suivant les diverses courbes orthogonales aux surfaces o, = const. 
Envisageons l’ensemble de tous les mouvements possibles des corpuscules 
le long de ces trajectoires : nous obtenons ainsi l’image d'un nuage de 
corpuscules. Si nous supposons qu’au début de leur mouvement ces 
corpuscules se trouvaient dans une région Ru ou il n’y avait pas de 
champ, le nuage sera représenté statistiquement dans R„ par une onde 4 
plane et monochromatique (ou plus exactement par un train d’ondes 
limité assimilable dans presque toute son étendue à une onde plane 
monochromatique) qui sera associée à tout l’ensemble de ces mouvements (*)

(*) On trouvera en appendice à la fin du volume une démonstration différente de la 
formule du guidage.
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reclilignos et uniformes. Lne fois parvenus dans la région R, les 
corpuscules auront des vitesses données par la formule du guidage et 
leur mouvement d’ensemble sera comparable au mouvement permanent 
des molécules d’un fluide puisque leur vitesse dépend uniquement de 
leur position et non du temps, la fonction cpi jouant le rôle d’un 
potentiel des vitesses.

Les courbes orthogonales aux courbes cp t = const. sont ici des « lignes 
de courant» : elles forment des tubes à l’intérieur desquels les corpus 
cules se déplacent. Comme ces tubes ont une section droite variable, la 
densité p du fluide varie d’un point à un autre, tout en restant constante 
en chaque point au cours du temps. Dès lors, l’équation de continuité 
hydrodynamique à laquelle doit satisfaire la fonction p(x, y, z, t) se 
réduit à

(24) div(ov) = o

qui, compte tenu de la formule du guidage (19), peut s’écrire

r'';> ' àn (l0g W — F ) = “ j grade?, '

Comme dans le cas de l’absence de champ, nous allons essayer de 
représenter statistiquement les positions des corpuscules du nuage à 
l’aide d’une onde 1' continue. Dans la région R0, l’onde T est au début 
du mouvement un train d’ondes limité assimilable dans presque toute

("( — p.r)
son étendue à une onde plane monochromatique W = a e 1 avec a
constant. Comme nous l’avons vu, il parait naturel de définir la densité p 
en fonction de l’amplitude constante a par la relation p = Ra-, Ensuite 
le train d’ondes TF pénétrera dans la région R où règne le potentiel 
F(,r, y, z) : sa propagation sera alors réglée par l’équation (10) et, 
d’après le principe de la double solution, on doit pouvoir l’exprimer 
sous la forme

~ ?(■-*•,y,--,')
'l'U-, y, s, t) = a(x,y, z)e '

0 étant la même fonction de phase que dans u.
En substituant cette forme de W dans l’équation ( 10), on obtient par 

séparation des termes réels et imaginaires deux relations (J') et (C'). 
L'équation (J') a été écrite plus haut [ formule ( 14)] et nous a conduit 
à la relation (1a) par comparaison avec (.1). Quant à la relation (C'), 
comme a ne dépend pas de t, elle prend la forme simple

— grad a grad 9 -1- y a   9 = o,(26)
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avec
9 — W / — 91 et   9 = A 91,

ce cju'on peut encore écrire 

07)

En comparant avec (a5), on trouve

■>. àa 
a àri ^(log“S): A?,

grad cf,

(‘>8 ) —- = const.

(ait)

— K)

Puisque, dans R0, on a F = o et 0 = K.«-, on doit avoir partout dans H

F(.r, y, s)‘y, -■') = K«-(./•, r, z) W

et l’intensité a- de l’onde *F détermine p. A l’approximation newtonienne 
, Fou -^-r ~ o, on trouve

.0 = K a- = K ] U’ |2.

Nous pouvons maintenant revenir au cas d’un corpuscule en supposant 
que le nuage précédemment imaginé représente un ensemble de possibi 
lités. Nous supposons, en effet, la vitesse initiale donnée dans R0 en 
grandeur et direction et, comme nous ne savons rien de plus, il paraît 
loisible de supposer que toutes les positions dans le train d’ondes initial 
sont également probables : alors, à chaque hypothèse sur la position 
initiale correspondra un mouvement bien déterminé et, en juxtaposant 
par la pensée toutes ces possibilités, nous obtiendrons l’équivalent du 
mouvement d’un nuage infiniment dense de corpuscules identiques. La 
probabilité pour que le corpuscule soit présent, à un instant donné, 
dans un élément de volume dv entourant le point de coordonnées x, y, z 
de la région R est alors donnée par p(x, y, z) dv avec la valeur (29) 
de p. A l’approximation newtonienne, si l’on a pris soin de normer la 
fonction lF, la probabilité de présence du corpuscule sera

(3o) ?(.r, y, z) dv = a-(x, y, z) dv = ' y, z, t) - dv

et nous retrouvons ainsi la signification statistique habituelle de j ff'j-.
La validité du raisonnement précédent, dont je m’étais contenté dans 

mon Mémoire de 1927, peut être contestée. Nous reviendrons sur cette 
question au chapitre XIII.

8. Formule du guidage et théorie de l’onde-pilote. — Nous ferons 
remarquer, dès à présent, que, dans la conception de la double solution, 
la phase cp étant supposée commune à l’onde à région singulière u et à 
l’onde statistique continue ffr, la formule du guidage ( 19) va permettre
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de déduire les trajectoires du corpuscule de la seule connaissance de 
l’onde *F, On peut donc être1 lente de ne plus parler de l’onde u et de 
considérer le corpuscule comme un point matériel dont on postulerait 
l’existence et dont le mouvement serait, par hypothèse, déterminé à 
partir de la phase de l’onde continue ’F par la formule du guidage.

C’est cette forme tronquée, dégénérée, de la théorie de la double 
solution que je me suis malheureusement contenté de présenter au 
Conseil Solvay d’octohre 1927 sous le nom de « théorie de l’onde-pilote ». 
Sous cette forme, mon interprétation coïncidait avec une tentative faite 
vers la même époque par M. Madelung et souvent appelée « l’interprétation 
hydrodynamique de Madelung ».

Il 11e semble pas que la théorie ainsi tronquée soit acceptable. S’il 
existe, comme le suppose la théorie de la double solution, un phénomène 
ondulatoire objectif représenté par une onde u à région singulière dont 
la propagation est modifiée par l’action de champs extérieurs et par la 
présence d’obstacles (interférences et diffraction), on peut concevoir 
que tout se passe comme si la trajectoire du corpuscule, qui lui est en 
réalité imposée par la propagation de l’onde «, était, déterminée par la 
phase de l’on de'F. M ais il est impossible de supposer que ce soit l’onde *F 
qui régisse le mouvement du corpuscule parce que cette onde *F n’est 
qu’une représentation de probabilité à caractère fictif et subjectif.

Nous aurons à revenir plusieurs fois sur cette importante question. 
Nous verrons notamment que, dans son Mémoire de janvier 1902, 
M. David Bohm a repris la théorie de l’onde-pilote en admettant que 
fonde 'F est une « réalité physique ». Ce point de vue me paraît inad 
missible, même quand il s’agit de fonde ’F normée de la Mécanique 
ondulatoire pour un seul corpuscule et à plus forte raison quand il s’agit 
de fonde'F d’un système de corpuscules dans l’espace de configuration.

Nous verrons néammoins plus tard (chap. XVII) qui, dans le cas 
d’un corpuscule, la partie extérieure de l’onde «est probablement (tout 
au moins dans un grand nombre de cas) proportionnelle à fonde *F 
normée correspondante avec un coefficient de proportionnalité parfai 
tement déterminée. Ceci permet d’établir une certaine relation entre 
le point de vue de la double solution et celui de M. Bohm. Mais, bien 
entendu, celte relation ne subsiste pas dans le cas de fonde V (l’un 
système dans l’espace de configuration. Nous approfondirons tous ces 
points ultérieurement.

il. Étude du cas général des champs non permanents. — Pour traiter 
le cas général des champs non permanents, nous partirons encore de
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l’équation relativiste de propagation à un seul (valable pour les 
particules de spin nul). Pour un corpuscule de charge électrique e se 
déplaçant dans un champ électromagnétique qui dérive du polentiel 
scalaire ~V{x, y, z, t) et du potentiel vecteur A.(x, y, z, t), nous avons 
trouvé [formule (66) du chapitre III] l’équation de propagation suivante :

(3i )
S

c- <)t
lü* V ! A ^ 
h c r ,)x ,(V2- A2) Dr = «..

Nous allons toujours supposer que le corpuscule envisagé commence 
par se déplacer dans une région R0 de l’espace où le champ est nul et 
où l’onde u a la forme d’un train d’ondes limité dont la phase a presque 
partout la forme 9 = Wt — p.r. Puis le train d’ondes pénètre dans 
une région R où il existe le champ électromagnétique considéré. iNoiis 
cherchons toujours à représenter dans R la solution u sous la forme

" = ./'(■*', -, t)e ''

où y et o sont réels et oùf comporte une très petite région singulière 
mobile. En substituant celte forme dans l’équation (3i ), nous trouvons 
les deux équations (valables en dehors de la région singulière)

'Si le dernier terme de (J) est négligeable, l’Optique géométrique est 
valable et o coïncide avec la fonction de Jacobi S de la Dynamique 
relativiste des champs non permanents. L’écart à partir de l’ancienne

Mécanique est toujours lié à la présence du ternie ’

Dans l’ancienne Dynamique, on devait distinguer, en présence du 
potentiel-vecteur A, la quantité de mouvement totale (moment de 
Lagrange)
(33) P = — grad S = —p=== -i- - A (P = ‘-)

y i — [j - ( \ (

et la quantité de mouvement cinétique

(31) 8 =
en v

v/l — 'y
i (dA
O \ài

— sV v (’)■

{') Car W = <ts
Tt îV.
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colinéaire à V. On est donc amené à poser 

(35) g = — ^gradS-e 3 a J •

Si l’on reprend la démonstration de la formule du guidage en partant 
de la formule (32) (C), on trouve pour la vitesse d’ensemble de la
région singulière

(30) v c-g

Cette formule correspond exactement à celle que l’on obtient à partir 
de (34) et (33 ) en extrapolant la théorie de Jacobi en dehors du domaine 
de l’Optique géométrique et en remplaçant S parcp.

La formule ( iq) valable pour les champs permanents est évidemment 
un cas particulier de (3b). A l’approximation newtonienne, 011 peut

poser -J1- — s V ~ rn0c- et l’on trouve

(37) ' v = -ji(grad9+iA) = ^g.

Il est de nouveau facile d’introduire ici l’onde continue 1’ avec sa 
signification statistique. Il suffît encore de considérer d’abord une 
infinité de corpuscules identiques qui décriraient toutes les trajectoires 
définies par la formule du guidage à partir du la fonction o(.x, y, z, t) 
et qui formeraient une sorte de fluide en mouvement.

L’équation de continuité prendrait la forme

(38) dJt -+- div (?v) = ÿf -+- div = °-

7)t ‘ '

Posons p'
()'0

(U

tenons compte de la relation entre g et grade

àXet de la relation de Lorentz entre les potentiels —- + div A = o. Il vient 

dlogf' 1 / <)o
(39) dn

\dlosf =_
c"- \<n àt LJ ■ ’

où n définit en chaque point la direction du mouvement.
Comme précédemment, nous allons chercher à associer l’onde 

continue 'F à ce lluide statistique en mouvement. Dans la région R0, 
celle-ci doit être un train d’ondes limité assimilable dans presque toute 
son étendue à une onde plane monochromatique de phase 0 = Wt — p.r. 
Dans la région 11, en vertu du principe de la double solution, elle devra



I K) CHAPITRE IX.

s’écrire

( 1°) y, --,>) = a(x, y, z, t ) e h

Ln introduisant la forme (4°) dans l’équation (di), la séparation des 
termes réels et des termes imaginaires fournit deux relations, saveur

La comparaison de l’équation (J') avec l’équation (J) de la formule (da) 
donne

 / Un _
/ "

relation valable partout sauf dans la région singulière.
L’équation (C7) peut s’écrire (« étant compté dans la direction de V) 

à losa-( fl) g- t)n O5 \ <)t ) fit U '

En comparant avec (üq), nous voyons que, si l’on suit le mouvement 

des corpuscules, le rapport reste constant. Puisque dans R0 où V = o, 

on a p = K a-, on en déduit que dans R,

p O, y, s, <) = i- / àz : Y

A l’approximation newtonienne où ^ — £ V ~ «toc*2, on pourra écrire, 

si l’on a normé la fonction ty",

( i j) z(x, y, z, t) = a* = | 'F

Supposons maintenant qu’il n’y ait qu’un seul corpuscule et admettons 
que, dans la région R0, nous puissions considérer toutes les positions 
du corpuscule dans le train d’ondes W initial comme également probables. 
Le nuage de corpuscules considéré plus haut ne représentera plus que 
l’ensemble des mouvements possibles du corpuscule unique corres 
pondant à la fonction de phase <p(x, y, z, t) supposée connue. On en 
conclura, comme précédemment, qu’à l’approximation newtonienne, 
l’intensité a1— j V |2 de l’onde V normée doit donner en valeur absolue 
la probabilité de trouver le corpuscule au point x, y, z de la région R à 
l’instant t. Sous réserve des critiques déjà signalées que l’on peut 
adresser à ce genre de démonstration, nous retrouvons ainsi la signifi 
cation habituellement admise pour | 'F|'-.



CHAPITRE X.
LA DYNAMIQUE DU CORPUSCULE DANS LA THÉORIE CAUSALE.

1. Équations de Lagrange et de Hamilton. — Si nous regardons 
l’équation (J) obtenue au Chapitre précédent [formule (02)], nous 
voyons qu’on peu! lui donner l’aspect habituel de l’équation de .lacobi 
relativiste en l’écrivant

( 11 I / eb
c- V <)t

/NC? 
> àx M5C-

à condition d’attribuer au corpuscule une masse propre variable,

qui est fonction de la position du corpuscule et du temps. Elle s’exprime
à l’aide des deux quantités égales ( 011 c[u‘ doivent être

calculées au voisinage immédiat du corpuscule (sur la sphère S précé 
demment introduite).

Les anciennes Mécaniques négligeaient le second terme sous le radical, 
ce qui revenait à supposer h infiniment petit.

Cela posé, nous allons pouvoir faire découler le mouvement du 
corpuscule du principe de Hamilton et retrouver les équations de 
Lagrange de la Dynamique relativiste à condition d’y faire figurer la 
masse propre variable M0. Mous définirons donc la fonction de Lagrange 
en posant
(3) £ =- M0c‘-i — £ N'-h  ^V.A (;t=^)

et le principe d’action stationnaire de Hamilton s’écrira

(1) 0 / £ dt = o.
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O)

On est alors conduit, comme de coutume, aux équations de Lagrange, 

d ! d£ \ d£
dt\àvv/ dx

ot Ton introduit les moments de Lagrange par les définitions usuelles

( (> )
àlw Mn v-v £ A

P* = xr = -== + - A-o

17 1

de.,,

On désigne toujours sous le nom d’énergie la grandeur suivante :

W = V v rp„— £ = M"6'' + £ V
V7» — [i-

el l’on vérifie aisément qu elle reste constante dans un champ permanent. 
On vérifie aussi qu’en posant

f«)
d’o
dx =Px’

d-o

on retrouve pour o l’équation de Jacobi généralisée,

(il
'do
\dx

D’ailleurs, en combinant les expressions (6), (7) et (<S), 011 retrouve 
aisément la formule du guidage.

On voit donc que, quand on connaît la fonction u (ou la fonction W), 
la théorie d’Hamilton-Lagrange permet en principe de calculer la forme 
des Lrajectoires possibles et le mouvement du corpuscule.

On peut chercher à voir si les équations de cette Dynamique peuvent 
se mettre sous la forme canonique de Ilamilton. L’expression hamilto 
nienne de l’énergie est ici

(10) H(ar, y, z, px, py, pz, t) = ci /^ \px— A.,. ) -1- zW.
V .r, V, z

Comme dans le cas où la masse propre est constante, on vérifie la 
validité des équations

(11)
dqt _ dH
dt dpi (i = 1, 2, H).

On obtient ensuite

(1:0 <<p>- d£ 2 1------^d.M0 à\ s à A-- £ --- _|--- y -----
dt dx C * ‘ dx dx c <)x
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el
__ M _ _ t)\ __ c~

1 ^ dx £ dx \V — £ V c2 Ai,, 2 A-
.JV c rIA
dx c dxH--- V —------ C ~ I ■

<AIq
dx

x, y, z

——, 'AVI o __ dpæ

Le second groupe de équations de Ilarailton :

114J -l it =—^z (î'=i, a, 3)
dH
dçi

_£ dA.r\
c dx /

est donc également valable.

i2. Formalisme relativiste de la Dynamique précédente. — Il est aisé 
de transcrire ce qui précède en utilisant le formalisme de la Relativité 
générale. On écrit alors l’équation d’ondes (i) sous la forme

(1 1 ^„ dxk | * ” dx1 J h dxk = (

où, les gm étant les coefficients classiques de la métrique d’espace- 
lemps, les g‘k sont les composantes contrevariantes correspondantes 
et g le déterminant des gu-. Les P'1 sont les composantes du « potentiel 
d’Univers » égales à A.,, Av, A, et V et l’on a

P2 = P*P* = A2- A2.

Quant à l’opérateur ' \j—g gk 1 j j il est la généralisation du

dalembcrtien :
°=c 2£-a-

Si l’on pose

(iti) tp — a(xi, x«, Xi, e
- ®(x„x,,x„x,)

avec a et cp réels, en adoptant la définition (2) de M0, on trouvera par 
substitution de (16) dans (io)

(J) * \ dxk
eP*) (è — ePij = AI 11 e'2,

(L)
I d [y — ^ “s(â-EPi)] = 0

v/^y dxt

La vitesse d’I nivers de composantes ul= sera donnée par la

L. DE BROGL1E.
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formule

(i«)

CHAPITRE X.

Mo cul= g*1 àx* ■s P*

qui est ici l’expression de la formule de guidage. Bien entendu, on 
a ulUi = i.

L’équation (C) exprime que le vecteur d’IJuivers dont les compo 
santes covariantes sont a-( —j: — sP/,-^ a une divergence nulle. Nous

pouvons donc supposer que ce vecteur est proportionnel au quadri- 
vecteur « densité-courant » C/=;p0M/ du nuage de corpuscules précé 
demment envisagé et nous écrirons
(19) C'= pi«'= K g*‘a* ( ^ — 1

ce qui deviendra en raison de (18)

('>*>) p()= KlVloCu^.

Le nombre des particules par unité de volume dans le nuage est 
donné par la quatrième composante du quadrivecteur, CX, soi 1 d’après 
(17), (19) et (au).
(ai.) ? = Cé = K M„co- id = Ka\^k( ^ _ 3 tq).

S’il n’y a pas de champ gravifique on peut donner aux g,/, leurs 
valeurs galiciennes bien connues (g\"ï = g':“.' = =— 1, -1
et g\l)= o pour i-jL A). L’on retombe alors sur l’ensemble des formules 
obtenues précédent ment.

On peut encore remarquer qu’e« l'absence de champs électro 
magnétiques et gracijiques, le principe de moindre action va s’écrire 
ici

0-0 M, rlli dx'1 = \] 0 fis = O.

l’intégrale étant prise le long de la ligne d’IJnivers et la variation 0 
n’affectant pas les points extrêmes de celte ligne,

Y!L’espace-temps étant alors euclidien, nous poserons dv = ds, d’ou

VI 4 4
( -ï\ ) ,h'- = --4 dxi ds* = ~,k dx> dx*.///,- /nj

avec la définition

/ ,. M,-, .
(24) 7 ;*= -g^gik = ( 1//t.|

hl EK „!.»)
4r.--,nie"- a )blk

ld  7 | ...eu

où les g'i^ sont les valeurs galiléennes de gu- rappelées plus haut.
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Ainsi, même si le; corpuscule n’est soumis à aucun champ gravifîque 
ou électromagnétique, ses trajectoires possibles, telles qu’elles sont

prévues par la théorie (le la double solution et définie ô j da = o, sont

Jes mêmes que si l’espnce-temps possédait la métrique non euclidienne 
définie par les y,/,.

lin d’autres termes, si des phénomènes d'interférences ou de 
diffraction provoqués par des conditions aux limites interviennent et
donnent à la quantité = QZ une valeur différente de zéro, tout se 

1 a j
passe comme si l’cspace-lemps possédait pour le corpuscule une 
métrique non euclidienne définie par les y,/,. Cette remarque est 
apparentée aux efforts poursuivis par M. Yigier pour relier la théorie 
de la double solution aux conceptions de la Relativité générale en 
admettant que la métrique de l’espaco-temps dépend réellement en 
chaque point de la valeur locale (le la (onction a.

3. Le « potentiel quantique » et son interprétation. — Si l’on 
détermine, à l’aide d’un calcul tout à fait classique en théorie de la Rela 
tivité, les géodésiques correspondant à la métrique du- — y;*. dx' dxk, 
on trouve qu’elles ont pour équations

'Alo , . ,,
i :> > i ■ "CUl) = <'~Jrï- << = !,«, 4>

Ces équations nous redonnent exactement pour le corpuscule le mou 
vement déjà obtenu plus haut.

La forme (20) des équations du mouvement est très instructive parce 
qu’elle nous montre que, si M0 était une constante, les compo 
santes Mo ci// de la quantité de mouvement seraient constantes en 
l’absence de champs. Si ces composantes varient en général, c’est, que 
les variations de M» sont équivalentes à l’existence d’un « champ quan 
tique » représenté par le second membre des équations (25). Ce champ 
quanlique peut exister, même en l’absence de tout champ du type clas 
sique (gravifîque ou électromagnétique) : il apparaît dès que les 
conditions aux limites provoquent l’apparition des phénomènes d’inter 
férences ou de dill'raction et rendent non nulle la quantité SZ == i=L!? à

l'endroit où se trouve le corpuscule. Le champ quantique exprime, en 
quelque sorte, la réaction de l’onde u, déformée par les obstacles qui 
supposent à sa libre propagation, sur le corpuscule qui lui est incorporé 
en tant que petite région singulière.
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Pour voir les choses plus clairement., nous allons supposer valable 
l’approximation newtonienne. Elle consiste à négliger les termes en [3- 
et, en plus, à considérer le second terme sous le radical dans l’expres 
sion de M0 comme très petit devant le premier, ce qui nous permet 
d’écrire

(26) M„ ~ m0 ^ / / 
H-^/noC- \ / //in -f-

Id
Ht :'-/iit, c-

les parenLlièses indiquant toujours que les quantités sont calculées à la 
limite de la région singulière sur la sphère S.

Dès lors, on aura pour les composantes de la quantité de mouvement 
et pour l’énergie, en l’absence de champ du type classique, les 
expressions

(•>7) j> = w0c, \V = »î0c  - -h i m„ e - -1-Q,

avec

(28) Q ^ /  / 
8-2/«o\ /

h-
8

  « \
>> 1

Comme à l’a
I () - a ,terme —— dansc- <)t-

pproximation newtonienne, on peut négliger le 

  a, on aura aussi l’expression signalée pur M. Bolnn :

, „ h- ha h- r Au- f <rrad a-)- 1('2»> Q=-8^h7=-Tt^[^r" ' J’

où seul figure a-.
Q est le « potentiel quantique » dont le champ quantique est le 

gradient changé de signe. Les équations de Lagrange prennent alors la 
forme simple

(3o) <!px _ ùQ 
fit i)x

dp
dt = — grad Q.

Naturellement, s’il existait un champ extérieur agissant sur le corpus 
cule, il faudrait ajouter dans l’expression (27) de W un terme d’énergie 
potentielle du type classique dont dériverait un champ au sens ancien 
du mot, champ qui s’ajouterait au champ quanlique-gradQ dans le 
second membre des équations (3o).

L’origine physique du potentiel quantique et du champ qui en dérive 
est maintenant bien claire. Quand il n’y a pas de champs extérieurs du
type classique, la quantité Qjf- = ^-2 peut devenir différente de zéro par

suite delà présence d’obstacles (en langage mathématique, de conditions 
aux limites) qui modifient la propagation de l’onde u et font apparaître
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des phénomènes du type interférences ou diffraction. La contrainte 
ainsi subie par le phénomène ondulatoire qui entoure le corpuscule 
incorporé à l’onde u en tant que petite région singulière réagit alors sur 
le mouvement de cette région singulière et provoque l’apparition de 
trajectoires compliquées déterminées par la foi-mule du guidage, trajec 
toire dont résulteraient les phénomène d’interférences et de diffraction 
lois qu’ils sont observés. Tel est le point de vue, certainement très sédui 
sant, de la théorie de la double solution.

Comme je l’avais remarqué, il y a 20 ans, on est ainsi ramené a une 
très vieille interprétation intuitive des phénomènes de diffraction, celle 
même qui avait été soutenue autrefois, depuis Newton jusqu’à Biot et 
Laplace, les partisans de l’ancienne théorie corpusculaire de la lumière. 
« Si, disaient-ils, la lumière est déviée quand elle passe près du bord 
d’un écran, c’est que le bord de l’écran exerce sur le corpuscule de 
lumière une force qui le dévie de sa route normalement rectiligne. » 
Avec la notion de potentiel quantique, nous pouvons dire d’une façon 
analogue : « Si la lumière est diffraclée par le bord d’un écran, c’est cjue 
l’onde u du photon est gênée dans sa propagation par le bord de l’écran 
et qu’il en résulte une réaction sur le mouvement du photon : cette 
réaction s’exprime par l’intervention du potentiel quanlique et a pour 
effet de courber la trajectoire dû photon ». Cette interprétation, très 
attrayante par son caractère concret, serait naturellement aussi valable 
pour la diffraction d’un corpuscule autre qu’un photon, par exemple 
pour la diffraction d’un électron par le bord d’un écran (phénomène de 
Borscli ).

Il convient d’insister sur le fait que le potentiel quantique apparaît 
chaque fois que l’on sort du domaine de l’Optique géométrique, c’est-à- 
dire non seulement lorsque des obstacles placés sur le trajet de l’onde 
provoquent l’apparition des phénomènes du type interférences ou dif 
fraction, mais aussi lorsque des variations très rapides des champs clas 
siques dans l’espace ne permettent plus de considérer l’Optique géomé 
trique comme valable pour la propagation de l’onde (cas de l’électron 
dans l’atome).

On doit aussi remarquer que la masse propre variable M0 et le poten 
tiel quanlique qui s’en déduit ne sont pas seulement des fonctions de x, 
y, z, t, mais aussi des fonctionnelles des conditions aux limites.

Comme nous venons de le voir, le potentiel quantique est contenu 
dans la variation de la masse propre M0 et, quand l’approximation est 
valable, il s’exprime par la grandeur Q de la formule (28) qui s’exprime
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à volonté par l'un des deux rapports égaux ^j- ou £3-^. On peut donc

être tenté de définir le potentiel quantique uniquement à partir de a, 
c'est-à-dire de l’onde continue fi’. On est ainsi ramené à la théorie de 
l’onde-pilote que j’avais exposée au Conseil Solvay de 1927 cl. que 
AI. Bohrn a reprise dans son article de iq52.

Mais nous le savons, ce point de vue 11e parait guère acceptable : si 
l’on veut revenir à une théorie causale, il faudrait, pour pouvoir définir

le potentiel quantique par attribuera l’onde U' une réalité physique

comme M. Bohm a tenté de le faire et nous avons vu que cela semble 
impossible. La réaction de l’onde sur le corpuscule représentée analyti 
quement par le potentiel quanlique 11e peut pas provenir réellement tle 
l’onde fi’ qui est fictive : elle doiL provenir de l’onde a représentant le 
phénomène physique de nature ondulatoire auquel, dans la conception 
de la double solution, le corpuscule est incorporé en tant que région 
singulière. La véritable expression physique du potentiel quantique doit

donc être celle qui fait intervenir et non celle qui fait intervenir

C’est seulement parce que les conditions imposées par l’hypothèse de la 
double solution conduisent à admettre l’égalité de ces deux rapports 
qu’on peut avoir l’illusion que le potentiel quanlique provient de 
l'onde V.

Néanmoins, on pourrait trouver un peu étrange celle coïncidence 
entre les formules de la solution et celles de l’onde-pilote, déjà visible 
sur la formule du guidage. L’étude que nous ferons plus loin (chap. XVII) 
de la forme u à l’extérieur de la région singulière jettera beaucoup de 
lumière sur celle question.



CHAPITRE XI.
QUELQUES CONSÉQUENCES DE LA FORMULE DU GUIDAGE.

1. Les états stationnaires de l’atome d’hydrogène. — Nous voulons 
étudier quelques conséquences de la formule du guidage et nous 
commençons par l’élude des états stationnaires de l’atome d’hydrogène 
en nous bornant à l’approximation newtonienne.

Les états stationnaires de l’atome H sont caractérisés par trois 
nom lu es quantiques n, /, ni. Le nombre quantique principal n définit

l’énergie quantifiée parla formule classique de Bolir, E„ = — “ ' >

où nio est la masse de l’électron ; le nombre quantique l définit le carré de 
la longueur du momenl cinétique M par la formule M- = /( / + i ) ^ ^ j 

enfin le nombre quanlique ni est lié à la composante z de M par la 

formule M.----m On voit donc que chaque état quantifié (n. /, ni)

est défini en relation avec l’emploi d’un certain axe O^. On a entre les 
trois nombres quantiques les relations — i et ^ /.

La fonction d’onde correspondant à l’état stationnaire (//, l. m) est

0)

avec F,,/ réelle. La phase, que j’appelle ici pour éviter la confusion 

avec l’angle de longitude o, est 4> = E„t— ~mo. La formule du gui-,

dage montre que dans l’état (i), la vitesse de l’électron doit être 
tangente à un parallèle centré sur O; et qu’elle est égale à

d’où

(O

1 i é«l>
mo r <)-i

i ni h

M = M - : ni i, r v-- = m —

>> = (’6 =

/ m Y /)■
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Le momenl (le quantité de mouvement de l’électron autour de O; est
h

donc un multiple entier de — , résultat classique. Dans l’état (i), l’élec 

tron serait animé d’un mouvement circulaire uniforme autour de O; (').
Dans le cas particulier de l’état fondamental, nous avons n — i, 

l = m = o, d’où M-’ = M-= o. Pas de moment cinétique de l’atome II 
dans son état fondamental, autre résultat classique de la Mécanique 
ondulatoire. On trouve alors

(4) v = o.

L’électron serait immobile en un point de l’atome. Ce dernier résultat 
serait également valable pour tous les états s où /, = m — o [et même 
pour les autres états quand on suppose le 'L donné par (i) remplacé par 
l’une des combinaisons linéaires qui font apparaître les fonctions réelles 
sin/raep ou cos/no à la place de l’exponentielle imaginaire e""ï‘|.

Comment l’électron peut-il rester ainsi immobile alors qu’il est 
soumis à la force coulombienne émanant du noyau? La réponse est aisée 
à donner si l’on se souvient que, dans la théorie causale, l’électron 
subit aussi la force quantique dérivant du potentiel quanlique : or cette 
force quantique équilibre exactement la force coulombienne. Vérifions-le 
pour l’état fondamental de l’atome H pour lequel la fonction d’onde M1' 
a la formé

(5) ïi»»=Ce r°eh

où r0 est le rayon du cercle K dans la théorie primitive de Bohr et est

(à)

Ti'- nia e'1

«(/•) = | G | e

et l’on trouve

(') L’onde M' ayant la forme (i), tous les cercles centrés sur l’origine dans le plan 
équatorial sont des trajectoires possibles d’après la formule du guidage. Or parmi ces 
cercles se trouvent les trajectoires circulaires à rayons quantifiés de la théorie primitives

théorie causale, la même équation avec, en plus, au second membre le terme------
ab 

oli Q est le potentiel quanlique, doit également être vérifiée, ti’où le curieux résultat 
suivant : les trajectoires circulaires de liohr sont caractérisées dans le plan équatorial 
par le fait que le potentiel quantique possède pour cette valeur de r un maximum ou 
un minimum.
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d’où pour le potentiel quantique Q,

(«) Q
fi- A a

Hr.2/n,i a
h*

m0 étant toujours la masse de l’électron.
La force quantique est radiale et a pour valeur à cause de la valeur 

de
dQ
t)r

h-
\~-mvrK r-

Le potentiel coulombien étant \ =— la force coulombienne est

radiale et égale à

(10) K<: = -
dV
()r

F(: et sont donc bien égales et opposées et se font équilibre.
11 est aisé de retrouver la valeur de l’énergie quantifiée pour l’état 

fondamental car on a

h - > r.'1 ///,, (y
S h-

(n) K = énergie cinétique 

T //-= o -
tn„ r0 \n

On peut aussi d’ailleurs retrouver immédiatement cette valeur en 
parlant de l’équation de Schrodinger,

(v>) AT h* T = o.

Puisque dans tout état s on a *F — a(r) e h avec a réel, on lit tout 
de suite sur l’équation (12)

( 1 O F = ' ■+■ Q i

ce qui ramène au résultat (t 1).
Commentons les résultats obtenus qui peuvent paraître étranges à 

divers points de vue.
Tout d’abord, si dans les étals s l’électron est immobile dans l’atome, 

sa position jointe à celle du noyau définit un axe privilégié, ce qui peut 
paraître contraire à l’isotropie de l’état fondamental : or cette isotropie
prévue par la Mécanique ondulatoire usuelle (car ]W|2=e a la

symétrie sphérique) est bien vérifiée par l’expérience. De plus, on
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conçoit mal comment, dans les états s oii l’électron serait immobile ou 
même dans le cas plus général d’un état donné par (i) où l’électron 
aurait un mouvement circulaire uniforme le long d’un parallèle, 
pourrait se réaliser la répartition statistique ['F |2 = j F„/(r, 0) |2 des 
probabilités de présence.

A ces objections, on peut Lenter de répondre de la façon suivante. 
D’abord, si dans les étals s l’électron est immobile en un point M, la 
droite OM joignant le noyau à cette position pourra être orientée d’une 
façon quelconque dans l’espace de sorte que pour un ensemble d’atomes 
dans l’état s, il y aura bien une répartition statistique à symétrie sphé 
rique autour du noyau et c’est cette répartition qui se révélera en 
général dans l’expérience. 11 ne faut d’ailleurs pas oublier que dans la 
théorie causale comme dans l’interprétation usuelle le moment de quan 
tité de mouvement des états s est nul, contrairement à ce qui avait lieu 
dans la théorie primitive de Bohr, de sorte que les expériences qui 
paraissent prouver la nullité du moment cinétique des états .v ne sont 
pas en contradiction avec la théorie causale.

En ce qui concerne la réalisation de la probabilité de présence | ’F 
il importe de remarquer qu’un état stationnaire de la forme (î) doil être 
considéré comme exceptionnel : en général, la fonction VF sera une

superposition de tels états de sorte qu’on aura 'F =^c,i/„l'F/1<m. Alors
nlm

la phase aura une forme très compliquée et la loi du guidage impo 
sera au corpuscule un mouvement très complexe, un peu analogue à un 
mouvement brownien, de sorte que la répartition statistique des posi 
tions possibles représentée par.|VF|2 paraît pouvoir se trouver ainsi 
réalisée. Cependant, comme l’a remarqué M. Takabayasi, le mouvement 
très compliqué du corpuscule obéissant à une loi rigoureuse, la formule 
du guidage, n’est pas entièrement comparable à un mouvement aléatoire 
comme le mouvement brownien. On est ainsi amené à penser que la 
justification de la probabilité de présence en j *F |2, analogue au théorème 
crgodique de la Mécanique statistique classique, exigera l’introduction 
de considérations assez délicates. Nous reviendrons sur ce sujet au 
chapitre XIII consacré à la justification, dans le cas général en théorie 
causale, de la signification statistique attribuée à |VF|2.

Nous ferons cependant dès à présent une remarque intéressante à 
ce sujet. Soit un atome H qui se trouve dans un état v de fonction 
d’onde *F;lûo et où l’électron est immobile. Fa plus petite perturbation 
extérieure donnera au W la forme 'F„0o+ o’F et la présence de ôfir dans 
cette expression, en modifiant légèrement la phase, imposera à l’électron
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d’après la formule du guidage un mouvement violent à caractère brow 
nien. Si l’on admet que la probabilité de présence est donnée par | 'F 
on aura dans l’état perturbé une répartition statistique des positions de 
l’électron donnée par j *F„oo -f- o'F j- qui sera extrêmement voisine de celle 
donnée par | lF„oo j". On se rend compte alors que, l’état W„0o étant dans 
la réalité toujours soumis à de légères perturbations extérieures, l’élec 
tron n’y est pas en générai réellement au repos, mais au contraire animé 
presque continuellement de mouvements violents dus aux petites pertur 
bations et l’on comprend mieux comment peut se réaliser une proba 
bilité de présence très sensiblement donnée par j TF^oo j~* Nous retrou 
verons des considérations de ce genre au chapitre XIII.

2. Lies interférences au voisinage d’un miroir (Franges de Wiener).
— Dans'mon livre, Introduction à l'élude de la Mécanique ondula 
toire [2], j’avais étudié le mouvement que devaient avoir les photons au 
voisinage d’un miroir d’après la théorie causale. Je vais reprendre celle 
théorie en me plaçant dans le cas d’un corpuscule de masse quelconque 
fmü yé o) obéissant à l’équation de Klein-Oordon.

a. Miroir parfaitement ré fléchissant. — Soit une onde *F plane 
monochromatique qui tombe sous un angle d’incidence 0 sur un miroir 
parfaitement réfléchissant.

Avant d’entrer dans la région d’interférences où apparaissent les 
franges de Wiener, l’onde plane a la forme initiale

- - 'i -s / — (./• sln 0 -j- " OOS 0
(i i ) If, ^ e2-.ru e '

Dans la région d’interférences, il y a superposition de l’onde inci 
dente 'Fi el de l’onde réfléchie 'lé,

- tr.il (r si il II — T rus 0 „
(Vi) 'I\ ~ e-‘J'" e e'°,

o étant la différence de phase qui peut s’introduire lors de la réflexion. 
On a donc dans la région d’interférences,

/ V 0\ - T. i 'l ( l — —: si Il 0 ) f
(i(jj *r = lI‘i -h XV> = rus ( ■> - y z ros 0 h—-Je ^ ' *e ",

L’onde *F est normée, ce qui introduit le facteur \/2.. On a donc

( a — \f cos ^ 2 ~ — s cos 0 -+- - V

(’7) / , X
I ç = h v I t — -- si a 0 1 -f- coust.
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On a donc dans la région des franges de Wiener d’après la formule 
du guidage,

fi« ;

d’où

(19)

, grad. o
<)o

ôï

r)z

oy  = <7 = o, Px = — o- —;— := sin 0 = p„ ^in 0,O z V
~<Û

<;o— y étant la vitesse du corpuscule dans l’onde plane incidente.

Le corpuscule, qui possède d’abord un mouvement rectiligne uni 
forme de vitesse Ou dans la direction d’incidence, traverse la région 
d’interférences en glissant parallèlement au miroir avec la vitesse vn sin0, 
puis repart d’un mouvement rectiligne dans la direction de réflexion 
avec la vitesse e0. Mais il convient de remarquer qu’à l’entrée et à la 
sortie de la région d’interférences, le corpuscule a un mouvement 
compliqué car, sur les bords du faisceau incident et du faisceau réfléchi 
qui sont limités latéralement, la représentation de ces faisceaux par une 
onde plane monochromatique n’est plus exacte.

La quantité
( ■>(>) a- = | 'F [2 = •> cos2 ^2 r. ÿ z eus 0 -1- = 1 + ois| j![^zn)sO +

donne la probabilité de présence des corpuscules dans les différentes 
couches de cote z. On voit que statistiquement les corpuscules se répar-

V 1 Xtissent en nappes distantes de--------- - —'—r où la densité est maximum11 2 v cos U 2 cos 0
séparées par des nappes de môme équidistance où la densité est nulle. 
On retrouve bien les franges classiques de Wiener.
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b. Miroir imparfaitement réfléchissant. — Supposons maintenant 
que nous avons affaire à un miroir imparfaitement réfléchissant dont le 
coefficient de réflexion soit r\ avec o ^ n <Ç i.

On aura alors pour l’onde W dans la région d’interférences,

( ai) >r= 'F, -+- 'F-, ~ e27UV' e
" ^ (c

'5 e

Le calcul de a-= | W |2 donne aisément

(aa) a const. [ 2 Tj ( COS i
V

V
cos 0 -+• 0 )]•

A:ous retrouvons encore des franges brillantes pour les valeurs de z 
qui rendent le cosinus égal à 1 et des franges sombres intercalées pour 
les valeurs de s qui rendent le cosinus égal à —1 ; mais ici les franges 
obscures ne sont pas noires car l’intensité y est égale à ( 1 — rj)2 > o.

Pour calculer la dérivée de la phase par rapport à l’une quel 

conque q des variables d’espace, nous partirons de la formule

•h = A. j l /,r*
()q 4 7Ï L a’1 V <)q ôq )

qui se vérifie immédiatement à partir de l’expression df = «e 4 
et o réels. La formule du guidage nous donne alors

avec a

(24)

'h
i).i:

Uf
Ut,
()o

Tz
f?
<)t

V sin 0 = e,) siri 0, r,-= o;

i: f — r,- 1 — Tj-
— eus 0 ---------- = e,, ros 0------ -— > o.V a- a1

Les corpuscules descendent donc vers le miroir dans la région d’in- 
terférence, ce cpii fait que certains d’entre eux parviennent à atteindre 
le miroir semi-transparent et à passer dans le faisceau transmis tandis 
que d’autres n’atteindront pas le miroir et passeront dans le faisceau 
réfléchi. La proportion des uns et des autres dépendra naturellement de 
la valeur de /}.

c. Apparition de vitesses supérieures à la vitesse de la lumière 
dans le vide. — En conséquence, en apparence surprenante, des for 
mules (24), c’est qu’en certains points du champ d’interférences la 
vitesse du corpuscule peut être supérieure à e.
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On trouve en effet

(2f>) -t- CO: a-

Or dans les franges obscures.

CCS
Y O-i-o iT e/-=M — -f])-.

d’où
('.«(>) i"2 = T sin2 0 -h  cos21) 1 ‘ ~l~——

Y 2 L ( i — )'-

quantité qui peut être supérieure à c- si ^ = ej; est suffisamment voisin 

de c- et si ’ toujours supérieur à i, est suffisamment grand.

Pour mieux discuter la question, envisageons le cas simple de l’inci 
dence normale où cos0 = i et sin0 = o. Si le miroir est parfaitemeni 
réfléchissant (r) = i), nous avons dans ce cas e,.= vy= v- — o : les 
corpuscules sont immobiles dans les franges de Wiener. On pourrait 
déjà s’étonner de ce résultat car on pourrait se demander comment les 
corpuscules, s’ils sont immobiles dans la région d’interférences, peuvent 
arriver à se placer dans les franges brillantes. Cette objection peut être 
écartée en remarquant une fois de plus que l’onde plane monochroma 
tique sur laquelle nous avons raisonné n’existe pas dans la réalité et 
qu’il faut toujours envisager des trains d’ondes limités ayant un front 
avant et un front arrière. Pour celte raison, notre théorie décrit seule 
ment l’état de régime réalisé pendant que le train d’ondes *1 frappe le 
miroir et non l'état transitoire qui existe quand le front d’ondes vient 
frapper le miroir, état où les corpuscules ont un mouvement compliqué 
au cours duquel ils viennent se placer dans les franges brillantes.

Toujours dans le cas de l’incidence normale, revenons à l’étude du 
miroir imparfaitement réfléchissant. iNous avons alors

/ \ i — Tr(27) vx =(-•,.= o, r-= — —, l’2

et e sera supérieure à c si

c
V

1 — V

Si nous posons u = cc qui donne a- = 1 —t— rj- -+- ari cos u,

la condition (28) s’écrit 

(29) I —r,2>(i rt-■+- 2 t , cos u ) — •
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On voit aisément que cette condition peut aussi s’écrire

F il — T,2)— (1+ T,2)

Ci <>)

J 27

Pour g assez voisin de 1, il y a donc une petite région au voisinage 
de chaque lrange obscure où, la condition précédente étant vérifiée, on 
a c > c. Cette région se rétrécit quand y j augmente et elle se réduit à la 
frange noire elle-même dans le cas du miroir parfaitement réfléchis 
sant (rj = 1 ). Dans ce dernier cas, il ne pourrait donc y avoir de vitesses 
supérieures à c que sur les franges noires, mais comme alors il n’v a pas 
de corpuscules dans les franges noires, il n’apparaît en fait aucune 
vitesse supérieure à c : celte remarque permet de rétablir la continuité 
entre les formules obtenues ici et celles données en a pour le miroir 
parfaitement réfléchissant.

Quand il y a des couches de la région d’interférences où les inéga 
lités (3o) sont satisfaites, la vitesse du corpuscule est, d’après la formule 
du guidage, supérieure à c dans ces couches. Or, nous savons que nous 
devons avoir

ni) w <)j_
(H

= Av,

Mo étant la masse propre variable du corpuscule dans le champ d’inter 
férences. Comme hv est une grandeur réelle et que \/1 — (3- devient 
imaginaire pour v y> c, on peut en conclure que, partout où c esl 
supérieure à c, M0 doit être imaginaire. Nous allons le vérifier en 
parlant de la définition de M0,

,, , , h-   a( i:> ) M = in ), h ---------- ,\ii-c- a

ipn nous donne ici

1 } > ! Al 0 = /«5 e- — . • - — = «tô c
1 -- a

ir-
16-2 a- | 2 a- A a- — ( grad a-)-],

comme 011 le vérifie aisément. Puisque a- = 1 + rr 2ri cos u, ceci
nous fournit

('({ ) M c- = Hiij c! -1---- r—---- ( 4 C1 C- sin’-K-t- \ria1k'1 c o s m ).I h 7:- fi'

V
V
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Or de Xv = V, W = hv, 1 — ^, ou tire aisément —— = — et, comme
p c-p- c-

W2on a — = p'1trajjc2, on en déduit

(35) ■> „ /, v-—=—• m c- = A'-------------h- c-
V2

En partant dans (34), on trouve alors

(36) Mo = —;—- —7 ( 4 ïj - sin-u -+- a- n cos u -+- a1------- -
ibr,- a* \ c-

M0 sera donc imaginaire si 

(37) r. sin- u -+- a'L cos u

c-
al ' V-
,7) (O

V2

En remplaçant sin-’m par i —c o s-ia  et en développant les expressions 
de a- et de a', il vienl

(38) r| ros'- il -+- (i -(- r, - ) ce , (i-eV-)2
1 v2 ü— V2

Or, le polynôme du second degré en cos« qui l'orme le premier
— Il -S- Tf ) ± ^ ( I — T,- )

membre de l’inégalité (38) a les deux racines -------------- —---------------

Comme o < i et o ^ ^ ^ i, on trouve que l’inégalité (38) entraîne

^?(l — T)2 )-(<-*- Tl2)
( 39 ) --------------------------------------------------  > COS II N — I .

2'Cl

On retrouve bien l’inégalité (3o). M0 qui s’annule pour v = c est 
donc bien imaginaire pour c y> c.

Nous avons ainsi finalement établi le résultat suivant : pour tout 
corpuscule obéissant à l’équation de Klein-Gordon, la formule du gui 
dage a pour conséquence qu’au voisinage d’un miroir imparfaitement 
réfléchissant, la vitesse du corpuscule peut en certains points être supé 
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rieure à c (1). Cette conclusion n’est-elle pas en contradiction formelle 
avec la théorie de la Relativité ?

11 faut d’abord remarquer que, si la Dynamique relativiste rejette la 
possibilité d’une vitesse corpusculaire supérieure à c, c’est parce 
qu’elle admet la formule

O)
Wnt-

où TO0 est une constante. Il en résulte que, si c tend vers c, AV tend 
vers l’infini : il faudrait donc fournir une énergie infinie au corpuscule 
pour lui communiquer la vitesse c. De plus, pour \Y sérail
imaginaire.

Mais la théorie causale introduit une réaction de l’onde sur le corpus 
cule inconnue de l’ancienne Dynamique relativiste. Cette réaction est 
traduite dans les équations du mouvement par l’intervention du potentiel 
quantique Q et nous avons montré qu’il en résulte pour le corpuscule 
une dynamique où la masse propre Mo est en général variable suivant 
la loi

(u> =

de sorte que l’expression de l’énergie devient

L’énergie 11e devient donc pas infinie pour e = c, ni imaginaire 
pour e > c, puisque, comme nous l’avons montré, M0 s’annule 
pour c = c et devient imaginaire en môme temps que \! 1 — p- pour c > c. 
11 semble donc (jue la raison qui, en Dynamique relativiste habituelle, 
font écarter la possibilité d’une vitesse e supérieure à c n’existe 
plus ici.

Mais, dira-t-on, les analyses d’Einstein sur les notions d’espace et de 
temps et sur la mesure des longueurs et des durées, qui ont été à la base

(*; Jr i théorie que nous \enons de développer, étant seulement valable pour des 
particules do spin o, n'est pas applicable aux pilotons et aux \éritablcs franges optiques 
de Wiener. J.a Mécanique ondulatoire du pholon que nous avons exposée dans d'autres 
ouvrages montre elairement que les pilotons sont des particules de spin i dont les 
équations d’onde sont les équations de Maxwell. Il résulte donc de ce qui sera dit plus 
loin, notamment dans l’appendice, que le mouvement des pilotons-doit être défini non 
pas par la formule du guidage telle qu’elle a été écrite ci-dessus, mais à l’aide des 
« lignes de courants » de l’onde électromagnétique associée. Il est équivalent de dire 
que le mouvement des pilotons doit être défini à l’aide du vecteur de Pointing. Kn 
reprenant la théorie précédente de cette manière, il me parait certain qu’on ne venait 
plus apparaître de vitesses supérieures à c.

L. DE I1ROG1.IE. 9
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du développement de la théorie de la Relativité, reposent essentiellement 
sur le postulat qu’aucun signal ne peut être transmis avec une vitesse v 
supérieure à la vitesse c de la lumière dans le vide. Le fait qu’un corpus 
cule transportant de l’énergie pourrait dans certains cas se déplacer 
avec une vitesse plus grande que c ne va-t-il pas à l’encontre de ce 
postulat fondamental?

Il semble que l’on puisse aussi lever cette objection. Les vitesses cor 
pusculaires supérieures à c semblent ne pouvoir apparaître dans la théorie 
causale qu’en certaines régions des champs d’interférences. Or, l’appa 
rition des interférences est provoquée par des dispositifs expérimentaux 
bien définis avec conditions initiales et conditions aux limites bien 
déterminées (dans le cas des franges de Wiener, train d’ondes U' 
incident presque monochromatique et conditions aux limites sur le 
miroir). Il est alors impossible de mettre en évidence la présence du 
corpuscule en deux points voisins M et AL du champ d’interférences à 
des instants successifs t et t' de façon à lui faire jouer le rôle d’un signal 
de vitesse supérieure à c. Il faudrait pour cela observer la localisation 
du corpuscule en M et M' .aux temps t et /' et ceci exigerait un autre 
dispositif expérimental incompatible avec l’obtention des franges de 
Wiener. On remarquera l’analogie de cet argument avec certains rai 
sonnements de M. Bohr, mais ici on l’utilise dans le cadre de l’inter 
prétation causale sans renoncer à la localisation du corpuscule.

Il faut bien noter que ce qui change le mouvement du corpuscule 
quand on modifie le dispositif expérimental c’est, du point de vue de la 
théorie causale, que le nouveau dispositif introduit de nouvelles condi 
tions aux limites pour les ondes u, seules réalités physiques, d’où 
résulte la nécessité d’une modification corrélative de l’onde T fictive 
(pie l’on doit associer à l’onde u. Bref, les vitesses corpusculaires supé 
rieures à c prévues dans certains cas par la formule du guidage ne 
semblent pas pouvoir être mises en évidence et par suite ne doivent pas 
pouvoir servir à l’emploi de signaux de vitesse supérieure à c.

Dans la région de l’espace-tcmps où e > e, la ligne d’Univers du 
corpuscule est du genre espace, sa fréquence et son temps propre sont 
imaginaires, du moins si l’on admet toujours les définitions usuelles, 
mais la phase propre v0ê0 reste réelle. Cette conception peut paraître 
étrange, mais l’est-elle plus cjue celle de M. Feynman d’après laquelle 
le positon est un électron qui remonte le cours du temps? 11 y a 
d’ailleurs des rapprochements possibles entre cette idée de Feynman 
et la question que nous étudions ici. En effet, pour que la ligne 
d’Univers d’un électron puisse rebrousser chemin par rapport au temps,
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il faut qu’elle présente soit un point anguleux, soit des éléments du 
genre espace. Dans les deux cas, Faction et la phase varieront toujours 
dans le même sens le long de la ligne d’LJnivers (1).

3. Une objection récente de M. Einstein contre la formule du gui 
dage. — Dans sa contribution récente au livre jubilaire consacré à 
M. Max Jîorn, M. Einstein, tout en se prononçant toujours pour le 
rétablissement d’une interprétation causale en Mécanique ondulatoire, 
a élevé une objection contre la formule dn guidage.

Le principe dont part Einstein est que, chaque fois que l’on a affaire 
à un corps macroscopique, on doit retrouver les images fournies par la 
Mécanique classique qui donne alors sans aucun doute une description 
approchée de la réalité. Ceci posé, il envisage le problème suivant. 
Considérons une particule qui se déplace suivant une droite Ox en 
venant rebondir sur des miroirs placés normalement à Ox aux points 
d’abscisses x = o et x = l. La Mécanique ondulatoire usuelle associe à 
son mouvement, s’il a une énergie bien déterminée, une onde W sta 
tionnaire nulle en x — o et x = l et de la forme

(FL 'F =
«2 A 2
8 ml- ’

avec n entier. Dans l’interprétation usuelle, cette onde représente la 
possibilité de doux mouvements de même quantité de mouve 

ment yt = ~ s’effectuant l’une de droite à gauche, l’autre de gauche à

droite, ces deux mouvements ayant la même probabilité. Au point de 
vue de la Physique macroscopique, si la particule est macroscopique, 
elle a l’un des deux mouvements à l’exclusion de l’autre. L’interprétation 
usuelle, dit Einstein, représente donc exactement la situation statis 
tique au cours du temps, mais non pas l’état réel instantané de la 
particule macroscopique. C’est donc une interprétation statistique 
exacte, mais « incomplète » comme description de la réalité physique.

Tel est le point de vue de M. Einstein qui nous parait très soutenable. 
Mais voici maintenant l’objection qu’il en a tirée contre la formule du 
guidage. Dans la formule (43), la phase cp de l’onde XF se réduit à E„t 
et est indépendante de x : la formule du guidage nous donne donc

v=— ' gradep —o. La particule serait immobile et, si celte particule

(') Mais toute \itcssc supérieure à c disparaîtrait sans doute si l’on définissait s}sté 
matiquement le guidage par les lignes do courant (voir Appendice).
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a une masse macroscopique et constitue une petite bille au sens usuel 
du mot, nous nous trouvons en contradiction avec la Physique macro 
scopique qui nous affirme, et certainement avec raison, cpie la bille doit 
posséder un mouvement de va-et-vient le long de ox avec rebondisse 
ment alternatif sur chacun des deux miroirs. Einstein en conclut que la 
formule du guidage, elle non plus, ne peut représenter la réalité physique.

Les considérations de il. Einstein sont dans leur ensemble très inté 
ressantes, mais elles appellent d’abord une réserve. On peut, en effet, 
remarquer que, si la particule estmacroscopique, elle est nécessairement 
formée par un ensemble de nombreux corpuscules élémentaires et que 
l’onde lF est alors associée au centre de gravité du système, ce qui rend 
l’interprétation plus difficile. Mais, en dehors de cette réserve, on peut, 
me semble-t-il, trouver deux réponses très suggestives à l’objection 
d’Einstein contre la formule du guidage.

Une première réponse part de la remarque suivante : pour que la lorme 
adoptée pour l’onde *F dans.l’exemple d’Einstein puisse être considérée 
comme valable, il faut que les obstacles limitant le mouvement de la 
particule et la propagation de son onde associée puissent être consi 
dérés comme des miroirs plans pour l’onde ffr. Or, ces miroirs sont 
nécessairement formés d’atomes en mouvement thermique et il en 
résulte que la précision avec laquelle est définie leur surface ne peut 
être supérieure à une fraction d’unité angstrôm. En s’inspirant d’une 
théorie développée autrefois par M. Debye pour évaluer l’influence 
des mouvements thermiques des atomes d’un cristal sur la diffraction 
des rayons X, on peut voir que la longueur d’onde ne doit pas être 
supérieure à environ io~10 cm. La validité de l’expression adoptée poul 
ie lF exige donc que la condition

( \ i ) /, = > io—111 cm.
DH'

soit réalisée. Elle montre que, si la particule a une masse macroscopique 
(mettons supérieure à io_" g), la vitesse e doit être sensiblement nulle. 
Donc pour que l’expression (43) du *F puisse être considérée comme 
valable pour une particule de masse macroscopique, il faut que sa 
vitesse soit sensiblement nulle et alors la valeur e = o de la vitesse 
fournie par la formule du guidage est sensiblement exacte. Il semble 
donc qu’on puisse ainsi écarter l’objection de M. Einstein contre la 
formule du guidage. Remarquons d’ailleurs que nous rencontrons ici 
l’idée qu’il faut attribuer une grande importance aux fluctuations 
possibles des conditions aux limites et nous verrons réapparaître cette
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idée quand nous discuterons la justification du sens statistique attribué 
au j T - par la théorie de la double solution (' ).

Passons maintenant à la seconde manière de répondre à l’objection de 
M. Einstein. Elle part de la remarque que l’onde M d’un corpuscule doit 
toujours être considérée comme formant un train d’ondes de dimensions 
limitées. On peut donc, semble-t-il, toujours admettre qu’un train 
d’ondes 'F a des dimensions limitées ne pouvant dépasser un certain mul 
tiple ( d’ailleurs très élevé) de la longueur d’onde. C’est ainsi que dans le 
cas du pholon on sait que le train d’ondes ne peut avoir une longueur 
supérieure à quelques millions de longueurs d’onde. Une limitation ana 
logue doit être valable pour les autres sortes de corpuscules. Comme, pour
une énergie donnée, la longueur d’onde A = ^ diminue quand la

m lî
masse augmente, on voit que le train d’ondes associé à une particule 
d’énergie décelable finira, quand la masse augmente, par avoir une lon 
gueur très inférieure à la distance l des miroirs dans l’exemple d’Einstein. 
Pour une masse suffisamment élevée, il ne sera donc plus possible 
d’imaginer une onde stationnaire due à la superposition, entre les deux 
miroirs, de deux ondes se propageant en sens inverse. On devra, au 
contraire, se représenter un train d’ondes 'F de petites dimensions 
venant se réfléchir alternativement sur chacun des deux miroirs et cette 
image correspondra exactement à l’image macroscopique d’une bille qui 
oscille le long d’une droite en venant alternativement se réfléchir sur 
deux murs parallèles. Celte réponse, très intéressante, à l’objection 
d’Einstein contre la formule du guidage montre, une fois de plus, l’im 
portance du fait que tout train d’ondes a des dimensions limitées.

(') ISntoiis que, pour 1rs éleelrous ( m~ io-21 g), v peut atteindre des valeurs très 
voisines de r ci que, pour des molécules (m^.\o-2ig), on peut atteindre fies vitesses 
<lc Tordre de, îo6 cm/s — to km's, sans que l’inégalité (44) cesse d’être vérifiée. On peut 
floue considérer les parois d'uni: enceinte comme spéculairement bien définies pour 
l'onde U’ pour des mouvements d'électrons très rapides (v c ^l c ) et pour des mouvements 
des molécules dam gaz dans les conditions usuelles, ce qui dans les deux; cas justifie 
l’emploi de l'expression ( ) de fonde



CHAPITRE XII.
PASSAGE DE LA MÉCANIQUE ONDULATOIRE DU CORPUSCULE UNIQUE 

A LA MÉCANIQUE ONDULATOIRE DES SYSTÈMES.

1. Nature du problème en théorie causale. —Nous avons vu comment 
M. Schrôdinger était arrivé à construire la Mécanique ondulatoire d’un 
ensemble de corpuscules en associant au mouvement de ce système la 
propagation d’une onde dans l’espace de configuration correspondant. 
On n’obtient d’ailleurs ainsi qu’une théorie essentiellement non relati 
viste parce qu’elle exprime les interactions entre les corpuscules par des 
fonctions de leurs distances au même instant et qu’admettre ainsi la 
propagation instantanée des interactions est contraire au principe rela 
tiviste que toute perturbation se propage dans l’espace avec une vitesse 
finie.

Malgré la grande beauté formelle de la théorie de Schrôdinger et les 
succès remarquables qu’elle a tout de suite remportés, on pouvait lui 
faire dès l’abord de graves objections.

En premier lieu, aussi bien avec les idées de Bolir qu’avec celles de 
Schrôdinger qui assimilait les corpuscules à des trains d’ondes conti 
nus, on ne considère plus les corpuscules comme ponctuels et, par 
suite, il parait contradictoire de leur attribuer des coordonnées bien 
définies : dès lors, il semble injustifié de considérer un espace de confi 
guration formé à l’aide des 3N coordonnées des constituants du système.

En second lieu, l’espace de configuration est évidemment un espace 
abstrait, fictif, sans réalité physique. Considérer l’onde fi’ comme se 
propageant dans cet espace, c’était nécessairement lui enlever toute 
réalité physique. Si l’on voulait conserver aux ondes de la Mécanique 
ondulatoire un sens physique, il fallait, me semblait-il, pouvoir consi 
dérer le mouvement des corpuscules, etl’évolution du phénomène ondula 
toire qui leur est lié, dans le cadre de l’espace physique à trois dimensions. 
Or, la méthode de Schrôdinger implique nécessairement l’emploi de
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l’espace de configuration et ne permet plus de se représenter le phéno 
mène physique constitué par le mouvement des corpuscules dans le 
cadre de l’espace physique. Sans doute la Mécanique classique se 
servait-elle souvent elle aussi, de l’espace de configuration, mais ce 
n’élait pas pour elle une nécessité : elle pouvait raisonner en considérant 
le mouvement des points matériels du système dans l’espace à trois 
dimensions el elle n’employait l’espace de configuration cjue comme un 
artifice mathémalique permettant de présenter plus élégamment ou 
d’eüecluer plus aisément certains calculs. Dès l’apparition des Mémoires 
de Schrodinger, tout en reconnaissant l’exactitude des résultats obtenus 
par sa méthode, j’avais trouvé paradoxal le principe même de cette 
méthode.

Me plaçant au point de vue de la théorie de la double solution, il me 
paraissait nécessaire de repenser toute la question d’une façon différente. 
Pour moi, les corpuscules étaient incorporés à un phénomène ondula 
toire donl ils constituaient une singularité (je dirais aujourd’hui une 
petite région singulière). Chacune des régions singulières devait être 
considérée comme un centre de force; influant sur la propagation des 
phénomènes ondulatoires associés aux autres corpuscules et, par suite, 
sur le mouvomenL de ces autres corpuscules. Il doit alors en résulter un 
mouvement compliqué de l’ensemble des corpuscules-régions singulières. 
On peut évidemment représenter ce mouvement par le déplacement d’un 
point figuratif dans l’espace de configuration formé à l’aide des coor 
données Xi, . . ., cN des N corpuscules : ici, pas de difficulté puisque 
les corpuscules constitués par de très petites régions singulières presque 
ponctuelles ont pratiquement à chaque instant une position et des coor 
données bien définies. On pouvait alors penser qu’en définissant dans 
l’espace de configuration la propagation d’une onde ^(xi, . . ., sN, t) 
purement fictive, on pourrait faire jouer à la quantité j'F j2 le rôle de 
probabilité de présence du point figuratif aux divers points de l’espace 
de configuration, ce qui permettrait de rejoindre la théorie de 
Schrôdinger.

Il faut bien se rendre compte que, si cette idée est exacte, la descrip 
tion obtenue à l’aide de la propagation de l’onde continue W dans 
l’espace de configuration du système est beaucoup moins complète que 
celle que fournirait la théorie de la double solution en considérant les 
N ondes u des N corpuscules dans l’espace physique avec leurs régions 
singulières mobiles. On obtiendrait par cette dernière description une 
image exacte dans l’espace physique non seulement des N corpuscules, 
mais aussi des N phénomènes ondulatoires, auxquels ils sont incorporés ;
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la méthode de l'espace de configuration ne fournirait, au contraire, que 
des renseignements statistiques sur le déplacement des N régions singu 
lières en ignorant complètement les phénomènes ondulatoires étendus 
dont elles sont le centre. Ainsi la méthode de Schrodinger se trouverait 
justifiée et son succès expliqué, mais en même temps on verrait qu’elle 
masque, pour ainsi dire, un ensemble de phénomènes ondulatoires 
beaucoup plus complexes qui se dérouleraient dans l’espace physique à 
trois dimensions.

Telles étaient les idées qui m’avaient guidé en 1927 lorsque je rédigeais 
le paragraphe de mon Mémoire sur la double solution qui était consacré 
à la Mécanique ondulatoire des systèmes. Je vais d’abord reproduire 
mes raisonnements de 1927, puis j’y ajouterai les résultats de recherches 
récentes. Je considérerai d’ailleurs toujours, pour simplifier, le cas d'un 
système formé de deux corpuscules, car le passage du cas de deux cor 
puscules au cas de N corpuscules n’entraîne aucune difficulté de 
principe (1 ).

2. Raisonnement du Mémoire de 1927. — Considérons deux cor 
puscules qui constituent chacun une petite région singulière dans leur 
onde u individuelle et écrivons les deux équations de propagation des 
ondes u en supposant qu'aucune action extérieure ne s'exerce sur te 
système

(0
I ! u 1 -t-
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h c3

O//,
Ut
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àiu
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mi et m-, étant les deux masses propres des corpuscules, F12 et l'2, les 
potentiels représentant l’action exercée sur chaque corpuscule par la 
présence de l’autre. Je pose

f Fj 2= F [ */( x — x-, )t -t- (y — y, f -+■{;— =., f J ;
( Fo, = F[ s,/(x  — x,y-h (y — y, f- -+- (; — g , )3].

Ici les coordonnées x, y, s, qui figurent dans les  , sont les coor 
données courantes de l’espace physique à trois dimensions. Les expres 
sions (2) signifient que la valeur de F12 au point occupé par le premier 
corpuscule est la môme que celle de F21 au point occupé par le second 
corpuscule : si r désigne la distance des deux corpuscules, cette valeur 
commune est F(r), ce qui est en accord avec le principe classique de

(]) Voir cependant la fin du paragraphe



Faction et de la réaction. Mais on doit remarquer que F12 et F21 sont 
définis à chaque instant en tout point de l’espace physique. La propaga 
tion dans l’espace de chacune des deux ondes Uy et w2 se trouve donc 
dépendre en chaque point de la valeur en ce point à l’instant considéré 
du potentiel correspondant à la position simultanée de la région singu 
lière dans Faillie onde.

Il faut admettre l’existence pour chacune des deux équations (i) d’une 
solution comportant une région singulière mobile et, pour comparer 
avec la théorie de Schrôdinger, nous devons toujours nous contenter de 
l'approximation newtonienne.

En Mécanique classique, il existe pour l’ensemble des deux corpus 
cules une fonction de Jacobi S(xy, . . ., t) telle que

,, <)S <)S<>) ///, <'l.r = — -, /«. <>*, = —•e.i'i i)z«
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Pouvons-nous définir une fonction (f(scy, ■ ■ . ,sx, l) qui jouera le rôle 
de S ?

Pour un instant, nous allons supposer que le mouvement du second 
corpuscule nous est connu : alors le mouvement du premier s’opérera 
dans un champ qui sera une fonction connue de x, y, z, t, cas que nous 
avons déjà étudié. Nous savons alors que nous pouvons associer à 
l’ensemble des mouvements possibles du premier corpuscule appartenant 
à une môme « classe » la propagation dans l’espace à trois dimensions 
d’une onde continue

Zï- ç,(.r,r,s.a
'J , = y, z, t)e A

Or, il résulte des théories développées pour un corpuscule unique dans 
un ohamp donné que l’on peut exprimer son mouvement à l’aide d’équa 
tions de Lagrange de la forme

(i)

avec

d / () J?, , _ t)gy 
di\<h'\xJ ôx

(3) /«, Cf — F(r) — Q,,

ou

(6) h- IAat \
8 -K- m i ai

De même en considérant pour un instant le mouvement du premier
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corpuscule comme connu, on pourra déterminer les équations du second 
en écrivant les équations de Lagrange

(7)

avec

d ( \ _ dA
dt \ <)c.2.r / t)x

(8)

où

(0)

£'■>=- m, v\ — F(r) — Q->,

f) ^ _ h- /   a > \______ h'1 /
\ / ti rd m-,\ «o

Il s’agit maintenant de résoudre simultanément les deux groupes 
d’équations de Lagrange (4) et (j). En Mécanique classique où l’on 
peut aussi considérer les équations de Lagrange individuelles où les 
termes Qt et Q2 sont nuis, on voit aisément que l’on peut définir une 
l’onction de Lagrange pour le système entier (j ?i, yi, Zi ; x->. y-s,
t’i.i:, t’ir, f|;; t-’s.r, psr, e2-) telle que le mouvement du système soit 
donné par les six équations

(i°) d ( \ _ âJS
dt \ t)q ) <)q : JCU dt. .

Pour cela, il suffit de poser

(io bis) J? : m\ rj ■ ■ ïïli V .1 -- i‘ ( /’ ) — 1? | “H -é •> -I— I1 fl),

c’est-à-dire de prendre pour I? la somme des termes cinétiques de et 
diminuée de la demi-somme des termes potentiels. On en tire 

d’ailleurs aisément pour les énergies Et et E2 des deux corpuscules cl 
pour l’énergie totale E du système les expressions

i
E, = - mi rj -i- F(/'); Ks = ni-, e; -+- E(r ) ;

^ )

E = - mi v j -+- - m-y v\ -+- F( ;■) = E, -+- Ea — F ( r).

Elles montrent que l’énergie totale esL la somme des énergies cinétiques 
individuelles augmentée de la demi-somme des énergies potentielles 
individuelles.

Le fait que S n’est pas la somme de lo et de et que E n’est pas la 
somme de Ei et de E2 (parce que le terme d’énergie potentielle ne 
figure qu’une seule fois dans la fonction de Lagrange et dans l’énergie 
totale du système) n’est pas, à ma connaissance, signalé expressément



dans les traités de Mécanique : il esl la conséquence nécessaire du 
principe de l'action et de la réaction et il exprime qu’il y a, en quelque 
sorte, une mise en commun de l’énergie potentielle des deux corpuscules.

Pour que l’on puisse appliquer le même formalisme dans la théorie 
de la double solution, il faut que les termes en Qt et en Q2 présentent 
le même caractère d’action mutuelle que les termes en FJ3 et en F21. 
Dans mon Mémoire de 1927, j’avais admis qu’il en était ainsi et ceci 
constituait évidemment un point faible dans mon raisonnement car il 
aurait fallu démontrer qu’il en était bien ainsi.

Si l’on admet cette hypothèse, on voit aisément qu’on peut obtenir 
une fonction de Lagrange pour le système des deux corpuscules en 
posant

(ut) J? = i m, rf -h i ms p|—F(r) — Q (/•),
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où Q(/’) esl la valeur supposée commune de Qi(;r, y, z, t) au point 
occupé par le second corpuscule et de Qa(a?, z, t) au point occupé 
par le premier corpuscule au même instant t. Le mouvement des deux 
corpuscules doit alors être donné par les équations de Lagrange,

O'D
d (dS\ à£ dt\dj)=àq ^ = *)■

Or, on démontre en Mécanique classique des systèmes que, lorsque 
le schéma lagrangien est valable, on peut trouver une fonction 
S(#i, .... s-j, t) des variables d’espace et du temps telle que les 
composantes de la quantité de mouvement soient données par les rela 
tions (3). Puisque nous retrouvons ici pour le mouvement des deux 
corpuscules un schéma lagrangien, il doit être possible de définir une 
fonction cp(3?t, .... z2, t) des variables de configuration et du temps 
telle que l’on ail

. ào d'c(Mi nuv o- =---- —(JX \ uZ 2

ÎNous inspirant de la méthode de Schrôdinger, nous allons maintenant 
faire abstraction des ondes Ui et u<> qui évoluent dans l’espace physique 
à trois dimensions et fixer uniquement notre attention sur les positions 
successives des deux régions singulières. Nous obtiendrons ainsi une 
théorie incomplète qui, d’après sa nature même, laissera échapper une 
partie importante de la réalité physique, mais qui, le succès de la théorie 
de Schrôdinger nous le prouve, devra nous permettre de retrouver la 
statistique des positions successives des corpuscules représentées par le
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mouvement du point figuratif du système dans l’espace ficlif formé à 
l’aide des six coordonnées Xi, . . ., s2 des deux régions singulières.

Pour suivre la môme ligne d’idées que dans le cas de l’onde fi" d’un 
seul corpuscule, nous supposerons qu’à l’instant inilial les deux cor 
puscules sont suffisamment éloignés l’un de l’autre pour que leurs inter 
actions soient négligeables et que leurs ondes u individuelles soient des 
trains d’onde sensiblement monochromatiques. Les vitesses initiales des 
corpuscules sont alors connues, mais leurs positions initiales dans leur 
train d’onde sont inconnues. Aux diverses hypothèses que l’on peut 
faire sur les positions initiales et qu’il est naturel de considérer comme 
également probables (sous réserve, nous l’avons vu, d’une nécessaire 
justification), correspondront diverses trajectoires du point représentatif 
dans l’espace de configuration. Le mouvement de ce nuage est permanent 
et obéit à l’équation de continuité

(là) div(pv) = o,

où p(Xi, . . ., 5ï) est la densité du nuage et V sa vitesse à six compo 
santes dans l’espace de configuration.

Si l’on tient compte des formules (i4) qui donnent les composantes 
de la vitesse des corpuscules à l’aide de la fonction <p, on voit que 
l’équation (i5) s’écrit

<■*> Z[

Or, si nous définissons avec Schrodinger, la fonction d’onde 
fi^aà, . . ., z2, i) comme solution de l’équation de propagation

dans l’espace de configuration et si nous posons

(18) fi'On • • •, s2, t ) = a . . ., z-,) e u

nous trouvons après substitution dans (17)

y [- 1L 7H \ ôx\ dx\ m<* Ox2 Ox» \m1 Ox 1 dX\ rn» Ox» Ox» ] H----- A, O H------ A., s =0.m 1 ‘

La comparaison de (16) et de (19) montre que l’amplitude « de l’onde 
fictive dans l’espace de configuration va, du point de vue statistique,



jouer pour le point, figuratif le môme rôle que l'amplitude de l'onde 
continue lF dans le cas d’un seul corpuscule. Autrement dit, compte 
tenu de l'hypothèse que toutes les positions des deux corpuscules sont 
équiprobables dans les trains d’ondes séparés et presque monochroma 
tiques qui leur sont associés dans l’état initial, le produit a- d~ = | f j- ch 
en chaque point de l’espace de configuration peut être considéré comme 
donnant la probabilité pour que le point figuratif soit présent à l’instant 
considéré dans cet élément clr : il donnera même la probabilité en valeur 
absolue si l’on a soin de toujours normer la fonction d’onde T dans
l’espace de configuration par la formule usuelle J' | W |2 h \.

Telles sont les considérations que j’avais développées dans mon 
Mémoire de 1927. Mlles avaient l’avantage de bien faire ressortir les 
deux points suivants :

1" L’usage de l'espace de configuration est naturel dans la théorie de 
la double solution parce que les corpuscules y ont une position bien 
définie à chaque instant dans l’espace physique à trois dimensions, ce 
qui permet de définir clairement les variables de configuration, au 
contraire ces variables n’ont pas de sens net si l’on nie l’existence à 
chaque instant d’une position du corpuscule et alors l’emploi de l’espace 
de configuration paraît difficile à justifier.

3” L’évolution réelle des phénomènes ondulatoires solidaires des IN 
corpuscules doit, du point de vue de la double solution, être décrite par 
la propagation dans l’espace physique à trois dimensions de IN ondes u 
comportant chacune une région singulière quasi ponctuelle : c’est seu 
lement, si l’on fait abstraction des ondes u étendues pour ne fixer son 
attention que sur le mouvement des régions singulières, que l’on peut 
faire intervenir l’espace de configuration pour y représenter, suivant la 
méthode de Schrodinger, les probabilités de présence par la propagation 
d’une onde 'F, onde purement fictive comme le sont d’ailleurs toutes les 
ondes V dans la théorie de la double solution. Quel que soit l’avenir 
réservé à la théorie de la double solution, ces considérations nous 
paraissent devoir garder de l’intérêt. En particulier, elles montrent 
clairement qu’en passant d’une description dans l’espace physique à une 
description dans l’espace de configuration, on perd nécessairement la 
possibilité de décrire des « champs » étendus dans cet espace physique 
puisque chaque point de l’espace de configuration ne peut représenter 
que l’ensemble de certains points singuliers de ces champs.

Mais le raisonnement résumé plus haut à des points faibles. D’abord, 
il admet l’hypothèse que les potentiels quantiques ont le môme caractère
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« mutuel » que les potentiels ordinaires sans fournir de justification de 
cette hypothèse. De plus, nous avons admis implicitement : i° qu’il n’y 
a pas de champs extérieurs agissant sur les corpuscules; 2° qu’il n’existe 
pas dans les régions de l’espace où évoluent les ondes u d’obstacles 
provoquant des phénomènes d’interférences ou de diffraction dont 
résulterait l'intervention de potentiels quantiques qui, eux, n’auraient 
certainement pas le caractère mutuel. En d’autres termes, nous avons 
admis que les potentiels F et Q étaient dus uniquement aux actions 
mutuelles des deux corpuscules.

Pour nous affranchir de ces restrictions, nous avons récemment déve 
loppé une autre manière d’attaquer la question dont nous allons faire 
l'exposé.

3. Autre manière d’attaquer la question. — Pour développer notre 
nouveau point de vue, nous allons tout d’abord démontrer le lemme 
suivant.

Fe mme . — Soit deux variables xt et x2 et r une certaine fonction 
de et de x2. Considérons trois fonctions Fi(a;1, r), F2(x2, r) et 
F(;zq, x2, r) et supposons que nous ayons entre ces fonctions les 
relations suivantes :

ÙF \ dV dV âr /r;F,\ éF, ÙF, ()r
âx 1 / , dx\ + Tr àxx \ i / ,rs, dx j ‘+‘ <)r (h:,
!>L\ _ o>F dF âr _/àF2\ _ _ dF., dV-, âr
àx«/.v. dx-. * dî- â^> = \dx, ,V] dx-. <)Xo

De la première relation (20), on déduit que

FOt, Xt, r) = Ft(xh r)-hll(xt) 

et de la seconde relation, (20) on déduit de même que 

F(xi, .î-j , r) = F.>(x 2, /•) G(.ti).

Or ceci ne peut être réalisé que si l’on a

(21) F 1 ( .r], /■) = F n (.r, )-e F12(/■ ); F2(.r.,, /■) = F22(x2) -e F2] (/■),

avec
F,, = G, F,,= H et F,» = F»,.

O11 en conclut donc que les hypothèses

dF
<>X\ /.r.

ÙFV
dx, /.ri et

,)Y

dx
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entraînent pour F la forme

( 22 ) P (a'i, .r2, /') — P 11 (.r, ) -f- P Fj*> (

ce qui constitue le lemme annoncé.
Revenons au système de deux corpuscules sur lequel nous avons 

précédemment raisonné. Chaque point de l’espace physique sera repéré 
par le rayon vecteur R qui joint l’origine à ce point. Les positions des 
deux corpuscules à l’instant t seront donc définies parles deux vecteurs 
Ri(<) et R2(b). La position d’un point R de l’espace par rapport au 
premier corpuscule sera définie par le vecteur r2 == R — Rj(/); sa 
position par rapport au second corpuscule sera définie par le vecteur 
r2 = R — R2(<); enfin la position du premier corpuscule par rapport 
au second sera donnée par le vecteur I*i2 = R,(/) — R2(0- Les 
distances correspondantes auront pour expressions

( ! r, [ = \! j B — Ri(0 |2: r, ! = \J \ R — R2(<) y ;
(2 J) '

I /■l,= v/jB,(«) —R,(«)|2.

Ceci posé, nous allons encore supposer connu le mouvement du 
second corpuscule, c’est-à-dire la fonction Rs(f), et nous écrirons 
l'équation de Jacobi généralisée (Jt) pour le premier corpuscule quand 
il (‘st au point R = R,,(l). Nous aurons

’2Î) (h) <)!. -(grad, ?i)2+ 'L + FJ5+ Qi,

avec

(e,5) 8 »ii v a, /R=R1 8 r.'1 ni) \ Cl) /R=R1

Dans ces équaLions, oL ( R, r2, t) est la phase commune des ondes Ui 
et df, du premier corpuscule dans le champ de force créé parle second, 
compte tenu, s’il y a lieu, de la présence d’obstacles provoquant inter 
férences et diffraction. «i(R, r2, t) est l’amplitude de l’onde continue 
V,. Le symbole grad, cp signifie (grad©, ji^R, et F, (R(, t) représente 
un potentiel extérieur pouvant éventuellement agir sur le corpuscule 1 
tandis que F,2(r,2) représente l’action du deuxième corpuscule sur le 
premier.

De même, supposons maintenant connu le mouvement du premier 
corpuscule, c’est-à-dire la fonction Ri(/t), et écrivons l’équation de 
Jacobi généralisée (J2) pour le second corpuscule quand il est au point

R = R2(0.
(26) ( J2 =2 E2 = ~ (grad2 ?2)2 -+- F2 -t- Fo, -1- Q2,
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avec

O;) Q
à- /   a, \

a.. /R—R.
/i“

8 x- m-y R=R,

Dans ces équations, 9(H, F(, l) est la phase des ondes «2 et lF2 du 
second corpuscule dans le champ de force créé par le premier, compte 
tenu, s'il j a lieu, de la présence d’obstacles provoquant interférences 
et diffraction. La fonction a2(R, r4, t) est l’amplitude de l’onde conti 
nue ff’o. Le symbole grad2cp2 signifie (gradcp2)R=R,- Enfin F2(R2, l) 
représente un potentiel extérieur agissant éventuellement sur le second 
corpuscule tandis que F21(r12) est le potentiel représentant l’action du 
premier corpuscule sur le second. Nous admettrons comme d’habilude 
que Fis = F21. Quant à l’énergie E2 du second corpuscule, elle n’est pas 
constante en général.

Plaçons-nous maintenant au point de vue de l’espace de configuration 
où Rt de composantes xl: yi, Zi et R2 de composantes a;2, y,,, z■> 
deviennent des variables indépendantes et admettons que l’onde conti 

nue ffQRi, R2, é) = rt(R1; Ro, t) e h Y^Kl’R” -1 ohéit à l’équation de 

Schrôdinger.
L’équation de Jacobi généralisée s’écrira pour la position Rf, R2 du 

point figuratif

( a8 ) ( J) = K = ——(gradi ç Fh --- — (grad» ÿ Y--t- IN -+- F., -+- Fr>-+- Q,ot ■>. nu :im-i
avec
(,,,, o = il (J- Oil? + J_ ___ Ü (_L lil +

a ni., a /r ^r , a m-, a /R,,R,

Ici tp(Ri, R •2, t) est la phase de l’onde dans l’espace de configuration, 
a ( R1; R2, t) est son amplitude. F(, F2 et F,2 ont la même signification 
que plus haut.

Or, si nous voulons que la représentation dans l’espace physique à 
trois dimensions, seule exacte physiquement, et la représentation fictive 
dans l’espace de configuration se correspondent, il faut avoir les for 
mules de guidage

( »iiVi = — gradi =i = — gradi ÿ,
( w.Ts = — grad2ç2 = — grad2 ?•

Mais, d’après le lemme, ceci entraîne pour les phases les formes 
suivantes :

ri«, i) — yii(Ri, t) -e 9ei(ri2, t) |
ç 2(R,, ri», t) = ç 22(B2, t) -i- çsifru, t) ) yl‘

9 (Rl 7 } 1*1 2 J t) = 9 11 ( R-l ; O 9’2îi (R'-O t ) 9 l'2 (ri 2) O’

( 3 M



Ainsi se trouve précisée la forme générale, valable môme dans le cas 
d’actions extérieures ou d’obstacles aux propagations, des phases ce etç2 
des ondes individuelles (u et VF) des deux corpuscules et la phase o de 
l'onde fictive 'F dans l’espace de configuration.

On peut remarquer qu’il ne semble pas nécessairement que la fonction 
y 12= y->i soit uniquement fonction de la distance

ci 2= \ (.r, — .r, p-(- ( j-, — ( -'i — ;■»)" :

d suffirait qu’elle soit fonction des trois composantes Xi— x->, —y.,,
Z\— :•» du vecteur IVj .

D’autre part, les « forces quantiques » doivent avoir mômes valeurs 
qu’on les calcule dans l’espace physique ou qu’on les calcule dans 
l’espace de configuration, ce qui entraîne les conditions

(>’! grad, Qi = gradiQ, grad2Q-. = grad-.Q

et l’application du lcmme nous donne encore

| Qi(Ri, ri-j, t) = Qn(Ri, t) + ()|.;(ri!, t) )
(3'i ) QifR.,, r,,, o = Qjo(R.,, È)-t-Qîi(riS, f) ) us ~

( Q (Ri, r ., r,., 11 = Q, i ( Ri, t) -+- ()22(R2, t) -t- Q,2éria. t).

Aous pouvons faire sur Qls= Q>i la môme remarque que nous avons
faite pour cp12 : cette fonction ne semble pas devoir nécessairement 
dépendre de la distance 1*12, il suffit qu’elle soit fonction des trois 
composantes X\ — a?2, yi — y», -St—du vecteur l*,2. Cette remarque 
permet d’adoucir l’hypoLhèse que j’avais faite en 192” surQri.

Les formules (3i) et (33) montrent que le passage de tp1 et cp2 à y eL 
de Qt et Qo à Q doit se faire exactement de la môme façon que le 
passage de A^i et AA à A* et de Et et E2 à E en Mécanique classique des 
systèmes.

Maintenant, en comparant les formules (24), (26) et (28) et en 
tenant compte de (31 ), on obtient

(3D K = F., -+- K, - F,,+ Q — Q, — Q,

ou d’après (33)
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(F.) F = F, -h  lù— F,2— Qla
= ^ ni j t>f -+- - 1112 <d + l;i + F2 -e Fi» -+- Q1 -+- Q» + 012 -

Celle formule paraît d’ailleurs assez naturelle parce qu’elle traite
L. DE HROOLIE. 10
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d’une manière symétrique le potentiel ordinaire d’interaction l’u elle 
« potentiel quantique d’interaction » Q,2.

La méthode que nous venons de suivre a l’avantage de mieux analyser 
la forme générale que doivent avoir les phases el les potentiels quan 
tiques. Mais elle ne fournit pas encore une justification complète du 
passage de la Mécanique ondulatoire du corpuscule unique dans un 
champ donné à la Mécanique ondulatoire des systèmes de corpuscules 
en interaction dans le cadre de la théorie de la double solution. Pour 
obtenir les équations (3o) et (3a), nous avons admis qu’il \ avait 
concordance entre la représentation du mouvement par deux ondes u 
dans l’espace physique et par Fonde fictive lF dans l’espace de configu 
ration : or, c’est précisément cette concordance qu’il faudrait justifier 
rigoureusement. Nous allons maintenant indiquer un genre de raison 
nement qui nous paraît conduire plus près du but.

4. Comparaison du mouvement relatif de deux corpuscules en inter 
action et de la représentation du mouvement du système dans l’espace 
de configuration. — Nous considérons maintenant de nouveau unique 
ment un système isolé formé de deux corpuscules 1 el 2 dont l’interaction 
est représentée par un potentiel V(r), fonction seulement de la distance r. 
Pour l’étudier, nous pouvons toujours adopter un système de référence 
galiléen où le centre de gravité est immobile et choisi par exemple 
comme origine des coordonnées. Le passage à un nuire système galiléen 
ne fera alors qu’introduire en supplément le mouvement rectiligne et 
uniforme du centre de gravité. Mous allons étudier d’abord le cas où 
l’approximation newtonienne de la Mécanique classique (c’est-à-dire, 
du point de vue ondulatoire, l’approximation de l’Optique géométrique) 
est valable. Nous chercherons ensuite à passer au cas général.

a. Approximation de VOptique géométrique. — Quand la Méca 
nique classique est valable, on peut écrire pour les deux corpuscules les 
équations du mouvement de Newton :

( 36 ) m, y, = — gradi V ; nu y-, — — grad2 V.

Les deux corpuscules décrivent alors dans l’espace plnsique des 
trajectoires L, el L2 avec des mouvements bien déterminés. Les deux 
trajectoires et les mouvements correspondants sont « corrélés » d'une 
manière biunivoque.

Mais on peut aussi représenter le mouvement de l’ensemble des deux 
particules par le déplacement d’un point représentatif dans l’espace de
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configuration X\, . . ., z-> et écrire dans cet espace l’équation de Jacobi : 

t \ ( fVS / <)s \ - / ^S'
t)t >/», / \ày

■ Y (' /■ ),

où ^ a la valeur constante E, énergie totale du système. A chaque inté 

grale complète S (.r,, . . ., s2, t, a, (3, . . . ) de l’équation (3^) corres 
pond une trajectoire E du point représentatif qui est Y une des courbes 
orthogonales aux surfaces S = const. dans l’espace de configuration et 
le mouvement des corpuscules sur les trajectoires Lt et La correspon 
dantes dans l’espace physique est donné par les formules de Jacobi :

I ‘)S I V, = -
///,

gradi S. = - m grad2 S.

Ainsi la représentat ion dans l’espace de configuration fait correspondre 
à l’intégrale complète S l’ensemble des mouvements d’une môme classe 
des deux corpuscules.

Pour étudier le mouvement de l’ensemble des deux corpuscules, on 
peut aussi se servir en Mécanique classique d’une méthode tout à fait 
différente des précédentes qui consiste à envisager le mouvement relatif 
d’une des particules par rapport à l’autre. Il est bien connu que, si nous 
prenons un système d’axes de directions fixes ayant pour origine l’un 
des corpuscules, le mouvement de l’autre corpuscule dans ce système de 
référence non galiléen sera le même que si le système était galiléen et 
si cet autre corpuscule possédait une « masse réduite » p telle que

(A9 >
i

m.
I

m-,

Autrement dit. l’influence du mouvement non uniforme du nouveau 
système de référence se traduit uniquement par une variation apparente 
de la masse du corpuscule en mouvement relatif. Dans le système non 
galiléen lié à un des corpuscules, on peut donc écrire pour le mouve 
ment de l’autre l’équation du type newtonien.

( 1« > ;j . y* = — grad*V.

où l’astérisque indique qu’une quantité est évaluée dans le système non 
galiléen.

Supposons pour préciser que nous prenions le corpuscule 2 comme 
origine du sy stème de référence non galiléen. Nous voyons immédiate-
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incnt que nous aurons comme équation de Jacobi du corpuseuh 
ce système

(40
és <?s;v /és;y /<>>

<)/ 2 U àx* ) <)z \ ( r >■

1 dans

Lo mouvement relatif du corpuscule 1 correspondant à une intégrale 
complète de (40 s’effectuera suivant une trajectoire l.j qui sera une 
courbe orthogonale aux surfaces S(=const. et le mouvement le long 
de 14 sera donné par l’équation

(1-0 vî = — ' grad*s;.

Nous devons maintenant regarder de très près la signification de ces 
équations valables dans le système relatif.

Tandis que, dans le système galiléen lié au centre de gra\ite, les 
énergies partielles Et —Ti-t-V et E2 = T2+ V des . deux corpuscules 
en mouvement étaient variables et que seule l’énergie totale

l( = Tj + T3 + V était constante, l’énergie E( = '~jf (lans le mouvement

relatif est constante, comme on pourrait le déduire de la manière usuelle 
à partir de l’équation (jo). Ceci provient du (ail qu’en passant au 
système lié à 2, nous avons reporté toute l’énergie de, l’ensemble des 
deux corpuscules sur le corpuscule qui reste en mouvement. On a 
d’ailleurs Ej = E, c’est-à-dire

( l'-t ) ^ |J.( Vj — Va)2 -t- V = ~ /»! rf -I- /«a ri; -+- V

comme il est aisé de le vérifier.
Naturellement si nous avions pris pour origine des coordonnées 

relatives le corpuscule 1 en taisant le changement de variables 
x* = x—X\(/) . . ., nous aurions trouvé pour le corpuscule 2 dans ce 
système l’équation de jacobi.

et l’énergie E*= aurait été une constante égale, elle aussi, à E.

Ees deux fonctions de Jacobi S( et Si, obéissant aux deux équations 
(4i) et (44) d*3 même forme, seront égales à une même fonction F 
(r*, t) des coordonnées relatives et du temps.

Voici maintenant le point capital. Considérons une certaine intégrale 
complète de l’équation (4.1), S)(r*, t). Ees diverses courbes orthogo 
nales aux sufarces S( = const. et les mouvements correspondants définis



par (/['>■) représentent des mouvements possibles de la particule 1 autour 
de la particule 2. Soit L* l’une de ces trajectoires possibles; en reve 
nant au système galiléen où le centre de gravité est à l’origine des coor 
données et en se servant de la relation w1i*i+ /«2rs = o, on peut, 
déduire du mouvement Lj les mouvements corrélés Lj et L2 des deux 
corpuscules autour du contre de gravité. Parmi les courbes (C) formant 
la congruence des normales aux surfaces S( = const. dans le système de 
référence non galiléen lié à 2, une seule est effectivement décrite par le 
corpuscule I dans son mouvement relatif; cependant, comme dans le 
système non galiléen lié à 2, le corpuscule 2 ne joue plus que le rôle 
d’un simple centre de forces, nous devons considérer Véquation (41) 
comme non,s donnant, à Vapproximation de VOptique géométrique, 
la propagation de la phase Sj de Vonde u* du corpuscule 1 dans tout 
ce système de référence

On voit donc maintenant que, dans le système de référence relatif, 
la fonction S* nous donne éi la fois l’ensemble des mouvements pos 
sibles d’une même classe Lj du corpuscule I dans le champ central 
permanent créé par le corpuscule 2 et la phase dans tout le système 
relatif de l’onde du corpuscule I quand il décrit l'une quelconque 
des trajectoires Lj. Cctle remarque essentielle esL la clef du présent 
raisonnement.

Naturellement, si nous rapportions le mouvement du corpuscule 2 au 
corpuscule I, ce serait la fonction S* (r*, t) = S j (r*, t') qui nous servi 
rait à représenter l'ensemble des mouvements possibles du corpuscule 2 
dans le champ central permanent créé par le corpuscule I et aussi 
dans tout le système relatif la phase de l’onde u* du corpuscule 2 quand 
il décrit l’une quelconque des trajectoires Lj.

Considérons maintenant la fonction de .Tacobi S pour l’ensemble des 
deux corpuscules dans l’espace de configuration. C’est une fonction 
S (Ri, R2, t) des six variables de configuration æs, . . ., et du temps 
/ qui obéit à l’équation de Jacobi (37). Si nous introduisons les variables 
relatives x* — X\ — x3, . . ., on aura
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ÙS ,) S ÙS ÙS
r)x'<)x 1 , ()■>:■

les variables xi; ..., étant d’ailleurs reliées par les relations 
mtX\ + mnX-2 = o, ... qui expriment la fixité du centre de gravité. 
I/équation de Jacobi pour S prend alors dans le système relatif la forme

ÙS* ÙS*
4?

-+- V( /•).
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L’identité de forme des équations (4 i ), ( 44) ct (4^ ) montre alors que 
la fonction de Jacobi JS du système des deux corpuscules ( qui est égale 
à la phase de l’onde 'F dans l’espace de configuration à l’approximation 
de l’Optique géométrique) a dans le système lié au corpuscule 2 la 
même expression S‘ — F (r, t) que S, et dans le système lié au corpus 
cule 1 la même expression F(r, t) que S2.

Revenant alors au système galiléen lié au centre de gravité, on voit 
qu’en employant les notations du paragraphe précédent, on a

( |6) SRR,, r12, t) = S,(R,. r)2. t) = S(Rt, Rs, O = F(/-js , i)

et la validité, aux points corrélés de Lt et de L2, des formules

»î,V, = — grad. S, = — gradi S. nuv-, = — grad2S-, = — gradsS

devient évidente. Les formules (46) correspondent bien aux formules 
(3i ) du paragraphe précédent avec cptl = <p22 = o et cp)2 = Si2 = F (la 
nullité de cp,, et de cp22 provenant de l’immobilité du centre de 
gravité dans le système galiléen). Si nous adoptions un système de 
référence galiléen où le centre de gravité aurait un mouvement 
rectiligne et uniforme d'énergie E„ et de quantité de mouvement 
P, il faudrait ajouter à S les termes EAr£— (P.,X+ P, Y + P;Z)

où \= m 1 1 ~J' ■ Lés formules (46) prendraient alors la formeIII i -t- III. \ r / 1

/ S,(Rj, r12, t) = SipR,. 0-4- S12(r,.», () ) _
(/|8) | S2iR2. rJ2, n = S22(Rj , O-t- S2I(r)2, /) j *'1‘

( S ( R,, R,. O — S11 (R,, i ) -r- S,..»( R2, 1 ) S ]-,( r12. t ).

ce qui coïncide exactement, à l’approximation del’Optique géométrique, 
avec les formules (3i ) du paragraphe précédent.

Ajoutons une remarque intéressante. Les équations (ji ), (44) et (4^) 
peuvent s’écrire

<k ; = t ; + v. ■ e : =t :+\, k  = t *+ v . 

avec

(ïo i e  = e j=e j , t *= t ; = t : = t , -+- t ,.

D’où

) EJ = ÏT, -t- \' ) -t- T» = E, -+- T 2. E J = ( T» -t- A ) T, = E-, -t- T, :
| E1+K.= E; + E:-|TI+T!] = d':-| E-V;;

soit

(/rj>; E = E,+ E,— V.

i5o
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Nous retrouvons ainsi l’expression signalée précédemment de l’éner 
gie totale E du système des deux corpuscules en fonction de leurs 
énergies individuelles E{ et E2 et nous voyons mieux pour quelle raison 
nous n’avons pas E = E| + JÇ-

Nous venons de raisonner en nous tenant constamment dans l’appro 
ximation de l’Optique géométrique, ce qui a eu l’avantage de nous 
permettre de nous tenir sur le terrain bien assuré de la Mécanique 
classique. Nous allons maintenant par des raisonnements analogues 
tenter d’extrapoler les résultats obtenus au-delà des limites de l’Optique 
géométrique en introduisant les idées de la théorie causale.

b. Etude du même problème en dehors des limites de VOptique 
géométrique. — Ecrivons d’abord l’équation de propagation de 
l’onde M1’ dans l’espace de configuration

(VJ; r.i ,)t
i,i / ,e>r

,)y î
le- /

Hx-m-,\ dr'i dy\

<)*- tf 
'àz\ 

rflf
à z l -l-V(r).

Si l’on exprime 'E sous la forme

if = m . . ., 5î, t) e k

la grandeur E = devra être l’énergie constante du système. Dans le

point de vue de la douille solution, les corpuscules du système doivent 
être bien localisés et décrire dans l’espace physique des trajectoires 
corrélées Lj et C2 représentées dans l’espace de configuration par la 
trajectoire E du point représentatif qui est l’une des courbes orthogo 
nales aux surfaces q = const. Ees mouvements des corpuscules sur les 
trajectoires Li et E2 de l’espace physique seraient donnés par les for 
mules de guidage

< >1) m i grad, o, grad2 9.

Ainsi la représentation dans l’espace de configuration ferait toujours 
correspondre à la phase o l’ensemble des mouvements corrélés d’une 
même classe.

Comme précédemment il est naturel de considérer les mouvements 
relatifs de chacun des corpuscules par rapport à l’autre. On démontre 
aisément que, dans le système non galiléen lié à l’un des deux corpus 
cules, on a pour l’onde 'E l’équation de propagation

(:.5)
h é’I'*

■>, t . i ,)t
le /à^ *f*

dz*'18îi2 u l  \ àjc*'i
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ij . ayant toujours la valeur (09), ce qui à l'approximation de l’Optique 
géométrique, nous ramènerait à l’équation de Jacobi (45) avec 9* = S*.

Quelle doit être, du point de vue de la double solution, l’équation de 
propagation (en dehors de la région singulière) de l’onde U\ du corpus 
cule 1 dans le système de référence lié au corpuscule 2? Si nous l’écri 
vons sous la forme

Q-' ç* (.**, .r*, n
n'(.r*,y*. z*. t) = "*(.>■*. y*. :■*, () e "

nous savons qu’à l’approximation de l’Optique géométrique où cpj = Sj, 
nous devons retrouver l’équation (41)- Ceci nous conduit à écrire 
comme équation de propagation de u\ dans le système non galiléeu 
relatif

( jf> ) h 1)11]
■> T. i l)l

h- / /)- Il 1 l)-ll* é - Il ‘ 
8--;j . \ "+" i)y*- "+" i)z*- V( /■ ).

Le mouvement relatif s'effectuera suivant l’une des courbes orthogo 
nales aux surfaces <pj= consl. avec la vitesse

v r = — i grad* ç ;.

Ici encore, pour les raisons exposées plus haut, E) = ~ sera égale à

l’énergie constante E du système, toute l’énergie du système des deux 
corpuscules se trouvant reportée sur le mouvement relatif du corpuscule I.

^Naturellement, si nous avions pris comme origine des coordonnées 
du système relatif le corpuscule 1, nous aurions dû prendre pour équa 
tion de propagation de l’onde «* du corpuscule 2 dans ce système

(à; >
h 1)11* h'1 1)-11* 1)11* \
■zi ,11 ' S n; A 0,- ’ N <-r>

qui. à l’approximation de l’Optique géométrique, nous redonnerait 
l’équation (44) avec S) = 9). Les fonctions u* et u* obéissant à des 
équations de môme forme peuvent être regardées comme égales à une 
môme fonction de r* et de l, ce qui nous conduit à leur donner l’expres-

Gtli z*[r\ 1 i
sion commune «*(r*, t) e h

Dans le système de référence non galiléen lié au corpuscule 2, ce 
corpuscule ne joue plus que le rôle d’un centre de force et nous sommes 
ramenés au cas du mouvement d’un corpuscule dans un champ donné,

i ~ *
l’onde u] = a]eh '* obéissant à (56). L’ensemble des courbes ortho 
gonales aux surfaces 91= const. et les mouvements définis par
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V* = —i grad*cp* représentent clans ce système l’ensemble des mou 

vements possibles d’une même classe. Si L* est la trajectoire décrite 
par le corpuscule 1, on pourra, en revenant au système galiléen lié au 
centre de gravité et en utilisant la relation mtri+ wt?r2= o, déduire 
du mouvement E) les mouvements corrélés L( et L2 dos deux corpus 
cules autour du centre do gravité.

'2 ~ i
On voit que, dans le système relatif, la fonction a* e h ' représente 

■à la fois l’ensemble des mouvements E) de même classe possibles pour 
le corpuscule l et (sauf dans la région singulière) l’onde u* du corpus 
cule 1 quand il décrit l’une quelconque des trajectoires L). C’est là le 
point capital.

Naturellement, si nous rapportons le mouvement du corpuscule 2 au

corpuscule 1, ce sera la fonction a*e * ' qui nous servira à représenter 
à la fois l’ensemble des trajectoires de même classe L* et l’onde u* 
associée au corpuscule 2 quand il décrit Y une quelconque des trajec 
toires L).

Si maintenant nous comparons les équations (56) et (oy) avec l’équa 
tion (55) satisfaite par l’onde T de l’espace de configuration, on 

voit qu’on peut choisir pour la fonction lI'* la même expression

a* (Y*, /) e * ‘ que pour les fonctions u* et u* (4). On en conclut 
que les formules (3i) et (33) du paragraphe précédent où oü et o->-, 
sont nuis ainsi que Qu et QL>2 et qui se réduisent à

( i r,(r,o, l) = ÿ2(r12, O = ?(r,,, t) = ?I2(rI2, t),
I Qér,-!, /j = Q,(n-2, t) = Q(r,-., t) = Q,a(ri,, t)

sont bien vérifiées.
La nullité de otl et de <yï4 résulte de l’immobilité du centre de gravité 

dans le système galiléen choisi. Dans un autre système galiléen dans 
lequel le centre de gravité aurait un mouvement rectiligne et uni 
forme d’énergie E„ et do quantité de mouvement P, les termes 
E„t — (P., X + Pj. Y + P- Z) s’introduiraient dans la phase et l'on 
retrouverait les formules (31 ).

f1) Le résultat que nous avons obtenu peut s’exprimer en disant que, dans le système 
de référence relatif, où l’un des corpuscules joue seulement le rôle de centre de forces, 
la partie régulière de l’onde u du corpuscule mobile coïncide (à une constante de 
normalisation près) avec son onde U\ C’est un résultat que nous retrouverons nu 
•chapitre XVII.
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Ajoutons encore que la vérification de la forme E — E, +E_, — \ —f > 1 ■_» 
se fait ici de la môme façon que plus liant celle de la formule 
E = Ei-E E2-r Y. Ees équations de Jacobi généralisées correspondant 
aux équations de propagation (55), (56) et (5j) nous donnent en 
posant O = Qu,

(K,) El = TJ -+- \ -+.Q: K.;= T.;+ N +0: li = T‘+V + 0;

avec

( 6o i e  = e î= e :; t *= t ; = t := r,-t-T2.

3\ous en déduisons

i E) = i T, + \ -f- Q) -t- T.» = E, -+- T.. : E* = (T» -+- \ +< h -+- T, = E, + T,;
((il I
v I E,-r- E,= E; -h  e : — ( T, -+- T, ) = •>. K — ( E — \ — (J;:

d’où

(62) E = Ei -t- E, — 5' — Q.

Ees raisonnements précédents sont valables pour deux corpuscules 
en l'absence de champs extérieurs.

S'il existe des champs extérieurs, on retrouve encore aisément les 
formules (3i) et (33) dans le cas où, ces champs étant sensiblement 
constants dans toute l’étendue du système, il y a séparation entre le 
mouvement du centre de gravité et le mouvement relatif. Si cette condi 
tion n’est pas remplie, le problème est plus compliqué et demanderait 
un nouvel examen. Il en est de môme pour le cas de plus de deux 
corpuscules où il faudrait peut-être employer des méthodes analogues 
à celles qu’on emploie en Astronomie mathématique dans le problème 
des il corps. Quoi qu'il en soit, la méthode employée dans ce para 
graphe est très instructive et paraît bien adaptée à la solution du 
problème envisagé.

b. Cas des particules de même nature. — Le cas des systèmes conte 
nant des particules de môme nature physique pose un problème encore 
plus difficile. En particulier, on peut, se demander si le maintien de la 
notion de trajectoire postulée par la théorie de la double solution est 
compatible avec l’indiscernabilité des particules admise par la théorie 
quantique actuelle. Il semble, en effet, que la vérification expérimentale 
de la statistique de Ilose-Einstein pour les bosons apport!' une preuve 
directe de l’indiscernabilité de ces particules et la question est de savoir 
si ce résultat expérimental est compatible avec les conceptions de la
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double solution. Aous appuyant sur les considérations développées 
plus haut, nous allons indiquer comment on peut aborder la question.

Considérons toujours un système de deux particules. Nous les suppo 
serons de mémo nature, c’est-à-dire que /m= L’étude d’un tel 
système dans la Mécanique ondulatoire actuelle montre que, si les 
régions de présence possible des deux particules empiètent l’une sur 
l’autre, il est nécessaire de supposer que l’onde du système dans 
l’espace de configuration est soit symétrique, soit antisymétrique (1).

Comme les équations d’onde des deux particules sont, les mêmes, il 
est naturel de supposer que, si les trains d’ondes u empiètent en partie, 
les ondes peuvent se superposer et former une onde u unique que l'on 
peut représenter par la formule

( 6î ) y, z, t ) = /(>, y. 3, M e A ,

/’amplitude j\x. y, z, t) ayant ici deux régions singulières mobiles 
distinctes, bn d’autres termes, les ondes u individuelles des deux parti 
cules u, (R. r12, t) et u»(R, ri•_>, t) se fondraient en une onde 
unique avec deux régions singulières. Ce serait celte sorte de fusion des 
ondes «, possible pour les Imsons, qui expliquerait la faculté d’associa 
tion que possèdent ces particules.

Supposons l’un des corpuscules placé an point Ri, l'autre ayant une 
position déterminée par ri2. La phase de l’onde u devant être unique, 
nous devons avoir

(64) ÿi(R/. ru, t) — rl2, t) ( i = i, ■>.),

d’où, d’après les formules (3i)

164) ŸiilRe t) = ÿ.ît.Ri, t),

d’où encore

( 60) ÿ (Ri, R2, r1t ) — y 11 ( Ri. 11 -+- ç 11 ( R.,, t ) -t- ^ i-i( rj/ ),

<p(Ri, R-2, r u», t) étant toujours la phase de l’onde W dans l’espace de 
configuration.

De même, pour les amplitudes des ondes 'T individuelles, on devra 
avoir

(67) a, (R,, r,2, t) — u-A R,, rJ2, t )

et l’on lire alors de la définition des potentiels quantiques et des

(1 ) Voir cliiip. 1 \ , § i.
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formules (33)
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(68) Qu (R/, 0 = Q2a(R,-, O,
Q(Ri > R-j- rt2, t ) = O11 ( Ri, / ) -t- O n (R., / ) -t- tIi-,i rio. / ).

Ces toruiules, comme (63) el (66), résultent d’ailleurs du fuit que les 
régions singulières sont indiscernables et peuvent être permutées sans 
que le phénomène ondulatoire représenté par u soil modifié.

Donc le potentiel quanlique de l’espace de configuration

( (n) ) O = /g   i   ) «(Ri, R-e r,2. ! ) (A, ■ A-, ) n
8 ni [ ni Ri, R2. Ti-j . / I 8-- m,

doit être symétrique en Ri el R,.
Si cX(Rt, R2, Fia, t) désigne l’amplitude d’une solution quelconque 

de l'équation des ondes dans l’espace de configuration, CX(R2, Rt, rri, t) 
sera également solution et on devra former une combinaison linéaire de 
la iorme

I ;o ) C<a(R,, Rs, r12, t) -+- Lia (R,, R,. r,.., 11

telle (jue la quantilé

( CDéti'R,, R,, r,o. t)-h l)ncl(R.,. R,, r,,. n
l/M Cd( R,, R.,, r,2. / ) + l)ct{ R,, R,, r]2. / ) ~ ''

où   =   t soit insensible à la permutation de R, et de R2,
c’est-à-ilire à la permutation de la position des deux régions singulières. 
En écrivant cette condition, on trouve aisément G2—!)2, c’est-à-dire 
; C | = | D I et eargC = aargl) + a/tr, d’où

(;■*. ) G = G = -4- G | e'x= -i- G

On est ainsi conduit à n’admettre pour l'onde ’E de l’espace de confi 
guration que les solutions symétriques et les solutions antis) métriques, 
conformément au résultat bien connu de la Mécanique ondulatoire des 
particules de même nature. Mais ici ce résultat apparail comme une 
conséquence du fait cpie les ondes u des particules de même nature, 
quand elles empiètent dans l’espace, se fondent en une onde unique 
comportant plusieurs régions singulières dont les rôles doivent être inter 
changeables, car dans une môme onde u ces régions singulières sont 
identiques et leur permutation ne peut avoir aucun effet. E'image ainsi 
obtenue pour Fonde u nous paraît présenter un grand intérêt.

A partir du résultat classique ainsi retrouvé, il faudrait montrer pour 
quelle raison il convient de prendre la solution symétrique pour les
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Posons cl la solution anlisymétrique pour les fermions et justifier pour 
ces derniers la validité du principe d'exclusion de l’auli. Il faudrait 
donc monlrcT pourquoi les régions singulières « Posons » peuvent se 
grouper en grappe sur une même onde u alors que les régions singu 
lières » fermions » ne peuvent le faire et restent toujours isolées sur 
leur onde u individuelle. Pour bien comprendre ce point, il serait 
certainement nécessaire de faire intervenir la notion de spin dont l’inter 
vention est essentielle pour la définition rigoureuse des fonctions d’onde 
symétriques et antisymétrique. La théorie de la double solution ne peut 
doue aborder celle question qu'après avoir été étendue au cas des parti 
cules de spin différent de zéro et en particulier à la Mécanique ondu 
latoire de l’électron de Dirac, ce que nous ferons seulement au cha 
pitre X\ 1. .Mais, même après cette extension, nous ne serons pas en état 
de résoudre le problème qui se pose ici : il est de ceux qu’à l’heure 
actuelle, nous devons réserver pour de futures recherches.



CHAPITRE XIII.
LA SIGNIFICATION PROBABILISTE DE pF|2 ET SA JUSTIFICATION.

1. Retour sur le raisonnement de 1927. — En ipe.-, j'avais tenté, 
nous l’avons vu, de justifier l’attribution à la grandeur «-= j d' - de la 
signification suivante : elle représente la probabilité de présence à 
l’instant t d’un corpuscule-singularité au point de l’espace corres 
pondant. Pour tenter celte justification, j’étais parti du cas de l’onde 
plane monochromatique en l’absence de champ (physiquement on doit 
dire du cas d’un tram d’ondes très étendu assimilable dans sa presque 
totalité à une onde plane monochromatique). Les trajectoires possibles 
sont alors des droites parallèles à la direction de propagation. Nous ne 
pouvons pas savoir (à moins de faire une observation qui changerait 
complètement la situation) sur laquelle des trajectoires se D ouve le cor 
puscule, ni en quel point il se trouve sur sa trajectoire. Pour cette raison, 
il paraît justifié, disais-je, de considérer toutes les positions du corpus 
cule dans le train d’ondes comme également probables, ce qui permet 
d’adopter pour la probabilité do présence l’expression a- — ! ’F j2 qui est 
alors constante. Si ensuite le train d’ondes pénètre dans une région où 
règne un champ de force quelconque l’équation de continuité

à a- ,.
- t -------h U1V( «-V ) = O

(où V est donnée par la formule du guidage) permettra de conclure que 
la probabilité de présence doit toujours rester égale à ci- — \ *F 2. Natu 
rellement ce raisonnement doit s’appliquer aussi à l’onde W d’un système 
dans l’espace de configuration interprétée comme nous venons de le 
faire dans le dernier chapitre. On pourra en ce cas partir d’un état du 
système où les constituants associés à des trains d’ondes *F de dimen 
sions finies sont suffisamment éloignés les uns des autres pour être
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représentés par un train d’ondes planes monochromatiques dans l’espace 
de configuration. Il est alors naturel d’admettre encore que, au début, 
la probabilité de présence du point représentatif est donnée par la 
constante a- -- | T [- et l’on en conclura que, pendant toute la durée de 
l’interaction, celte probabilité de présence restera égale à | lI" |-. Il en 
résulte aisément que, si après la fin de l’interaction les corpuscules sont 
de nouveau séparés et sans interaction, la probabilité de chacun d’eux 
dans l'espace phvsique se déduira encore de la valeur de J ’F {-.

Considérons comme exemple un électron qui, dans son état initial, se 
trouverait animé d’un mouvement rectiligne uniforme on dehors de tout 
champ. Si ensuite il entre en interaction avec d’autres corpuscules avec 
échange d’énergie et de quantité de mouvement et si finalement il se 
trouve emprisonné dans un état stationnaire à l’intérieur d’un atome, 
les considérations précédentes paraissent justifier de regarder sa proba 
bilité de présence finale aux divers points de l’atome comme donnée 
par le carré du module de la fonction ’F qui représente son état station 
naire final.

Ainsi, si l’on admet qu’en parlant d’un état de mouvement initial rec 
tiligne et uniforme d’un corpuscule, on puisse toujours amener ce 
corpuscule à l’aide d’interactions convenables dans n’importe quel état 
final, on pourra justifier l’identification de | ’F J- avec la probabilité de 
présence et cela d’une façon générale. Toutefois cette conclusion repose 
sur l’hypothèse suivante : quand l’onde ’F est formée par un train 
d’ondes sensiblement, assimilable à une onde plane monochromatique, 
il est légitime de considérer la probabilité de présence comme donnée 
par a- = ’F j-.

Mais celte hypothèse peut paraître arbitraire. D’une façon générale, 
la densité de probabilité de présence p(a?, y, z, t) doit obéir, comme la 
fonction a-, à l’équation de continuité

(n ')?
àï -i- divpv = o,

où v(.x, y, z, /.) est une fonction connue de x, y, z, t. Cette équation 
étant du premier ordre en l, p est complètement déterminée si l’on 
connaît sa forme initiale p(x,y, z, to) à l’instant origine to- Si l’on pose

PC («) = a*(T, y, s. to ) = | ’F(.r, y. s, t„ ) *,

alors la solution de (i) est bien p — a- ==. \ ’F )-. Mais le choix (2) de la 
forme initiale est arbitraire et l’on pourrait en faire une infinité d’autres 
tout aussi acceptables. Même dans le cas de l’onde plane monochro-
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matiquo, le choix p = a- — j 'F |2, bien qu’étant très naturel, a un carac 
tère arbitraire.

Néanmoins, pour défendre la validité de cette hypothèse qui était à la 
base de mes raisonnements de 1927, on peut faire remarquer (pie, 
quand on veut appliquer le calcul des probabilités à une question 
concrète, il y a toujours une hypothèse arbitraire de nature physique 
placée à la base de cette application. Même dans le cas si simple et si 
intuitif du jeu de pile ou lace, quand on attribue une même proba 

bilité - aux deux hypothèses pile et face, on admet implicitement la par 

faite symétrie de la pièce de monnaie. Si l’on envisage un nuage homo 
gène de gouttelettes tombant normalement sur un sol plan, on admet 
tout naturellement que des aires égales du plan ont la même probabi 
lité de recevoir une gouttelette, c’est-à-dire qu'011 admet que le nombre 
des trajectoires verticales des gouttes perçant une surface di du plan est 
proportionnel à clu. C’est, là exactement la même hypothèse que celle 
que nous avions faite dans le cas de l’onde plane monochromatique, car, 
si nous envisageons l’ensemble des trajectoires parallèles possibles du 
corpuscule qui viennent percer un plan d’onde, l’hypothèse faite en 
posant p = a-= const. revenait précisément à admet tre que le nom lire 
des trajectoires possibles traversant une petite aire da du jdan d’onde 
est proportionnel à dv. La nécessité, pour introduire des considérations 
statistiques, d’adopter un postulat de base forcément un peu arbitraire 
semble justifier l’hypothèse si naturelle que nous avions faite. L\olre 
raisonnement me paraît donc avoir conservé une certaine force jiro- 
bante.

Néanmoins, comme celte force probante peut être contestée, il est 
intéressant d’examiner le problème sous d’autres angles.

2. Comparaison avec le théorème de Liouville et la théorie ergo- 
dique. — La Mécanique statistique classique repose sur le théorème de 
Liouville qui se déduit des équations de Ilamilton. Remarquons d’abord 
que, les équations de Hamilton étant valables pour le mouvement des 
corpuscules dans la théorie causale comme nous l’avons montré, le 
théorème de Liouville est également valable (‘I peut aussi être utilisé 
dans la question qui nous occupe.

Rappelons ce qu’est le théorème de Liouville. Soit un ensemble de 
N particules de coordonnées q; avec des moments conjugués p,-. Un tel 
système peut être représenté par un point dans un espace à 6 N dimen 
sions constitué par les qt et les pi. Un ensemble de systèmes du même
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goure sera (loue représenté par un « nuage » de pomls représentatifs 
dans cet espace auquel on donne, depuis Cibles, le nom d'exlension-cn- 
pliase. Le nuage des points représentatifs est analogue à un fluide en 
mouvement dans l’extension-en-pliase : on peut définir sa densité 
v( f/i, pi, l) el sa vitesse V en chaque point. V étant un vecteur à 6 ÎN 
composantes dont les composantes sont données par l’ensemble
<les tf*'""'- '['il 01 (les /'• '[/r

domine le nombre des systèmes envisagés se conserve, le 11uidc en 
question doit obéir à l’équation de continuité

i <h
<)t -+- ( I i v ( 7 V ) =

<h
<)i 7 divV -i- V.grade; = o.

les opérateurs div et grad étant ici définis dans l'extension-en-phase 
à (i \ dimensions. Or, en supposant valables pour chaque indice i les 
équations de lfamillon

'/,=
dit

Pi = — i)i/i

on voit (pie

i ’> i divV ài/i '/•-+- — °>

équation qui exprime, on le sait, que le fluide est incompressible, c’est- 
à-dire que le même nom lire de points représentatifs occupe toujours le 
même volume de l’extonsion-en-pliase. L’équation de continuité donne 
alors

i'G i
,h
,U V. grad 7 = 0 ou 1)7

ITl

■ - étant la dérivée prise en suivant le mouvement des [joints représen 

tatifs. L’équation (o) signifie qu’en suivant le mouvement des points 
représentatifs, on voit la densité <r rester constante, ce qui traduit d’une 
autre manière la propriété d’incompressibilité. Ces résultats constituent 
le théorème de Liouvillc qui peut s’exprimer en disant que, si à un 
instant initial un ensemble de points représentatifs occupe un volume d~.(i 
de l’exlension-en-pliase, à tout instant ultérieur, il occupera un 
volume d~. — i/t „.

L’équation
<h1)7 - / ,) I I ,h éll ,h
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étant du premier ordre par rapport au temps, sa solution t) est
déterminée si l’on connaît la forme initiale ?(qi, pi, fo)', de plus, celte 
équation admet évidemment la solution <r = const.

En Mécanique statistique classique, on considère depuis Boltzmann 
et Gibbs des ensembles de systèmes représentés par des nuages de points 
dans l’extension-en-phase et l’on admet comme postulat statistique que 
c’est la solution a-= const. qui doit être choisie. En d’autres termes, on 
admet, ce que le théorème de Liouville rend possible, que la probabilité 
de trouver le point représentatif d’un système dans un élément de 
volume dr de l’exlension-en-phase est proportionnelle à la grandeur 
de dr. Dans le cas fréquemment réalisé où les systèmes considérés sont 
conservatifs, c’est-à-dire ont une énergie constante E (connue à JE près), 
on considère dans l’cxtcnsion-en-phasc une couche d’épaisseur corres 
pondant à JE et couvrant la multiplicité à GN — i dimensions définie 
par E = const. : c’est à l’intérieur de cette couche que doit s’appliquer 
le postulat statistique que nous venons de rappeler. Les éléments d~ de 
la couche ont une expression de la forme 7r JE et r. peut alors servir de 
mesure à la probabilité de présence du point figuratif dans Jt . Grâce à 

la relation de Boltzmann S —/clogP entre l’entropie S et la probabi 
lité P — 7T, on peut définir l’entropie de l’ensemble des systèmes (’ ).

On peut tenter de justifier le choix arbitraire de la solution u— const. 
de (6) en introduisant « l’hypothèse ergodique » suivant laquelle toute 
trajectoire du point représentatif du système, en s’enroulant indéfi 
niment, finirait par remplir entièrement et sans recouvrement toute la 
portion de l’extonsion-en-phase qui lui est accessible (par exemple toute 
la couche E, E+ JE dans le cas des systèmes conservatifs). Mais cette 
hypothèse est visiblement trop rigoureuse et, en particulier, elle est en 
défaut dans le cas des mouvements périodiques. On lui a donc substitué 
un énoncé adouci que l’on nomme habituellement « l’hypothèse quasi 
ergodique » : toute trajectoire du point figuratif du système, sauf dans 
des cas exceptionnels de probabilité évanouissante, finirait par passer 
infiniment près de tout point de la région d’extension-en-phase qui lui 
est accessible.

Une conséquence essentielle de l’une ou de l'autre de ces lnpothèses
i r' Jest la suivante : la moyenne dans le temps lim I A dt, où A est une
1 J t

(l) Voir par exemple II. A. Lo u e n t /., Les théories statistiques en Thermodyna 
mique, Teubner, Leipzig, 1916: Francis Pe r r in , Mécanique statistique quantique, 
Gauthier-Villars, Paris, 1939.



LA SIGNIFICATION PROBABILISTE DE [ 1” j'2 ET SA JUSTIFICATION. l63

grandeur attachée au système, est indépendante de t et est égale à la 
moyenne

de la grandeur A prise dans la région considérée de volume ‘v’ de 
l’cxlension-en-phase quand on suppose les probabilités proportionnelles 
à dv. Cette coïncidence de la moyenne dans le temps avec la moyenne (8) 
est très importante pour la cohérence de la théorie. Malheureusement 
l’hypothèse ergodique, même sous sa forme adoucie quasi-ergodique, 
est très difficile à justifier. Pour pouvoir le faire, il semble nécessaire 
d’introduire, sous une forme ou sous une autre, un postulat de nature 
.statistique (par exemple l’hypothèse du chaos moléculaire de Boltzmann), 
postulat qui, par sa nature même, est étranger aux lois de la Mécanique 
classique et ne peut être justifié par elle.

En résumé, parmi toutes les solutions possibles de l’équation (6) 
conséquence du théorème de Liouville, la Mécanique statistique clas 
sique (dioisit arbitrairement la solution la plus simple cr = const. et lente 
de | u s t i lier ce choix par la démonstration d’un théorème d’ergodieilé, 
démonstration qui exige l’intervention d’un postulat statistique étranger 
aux lois de la Dynamique classique.

Revenons maintenant à l'interprétation de la Mécanique ondulatoire 
par la théorie causale et à l’interprétalion statistique du j *E|-. Ici, aussi 
bien dans le cas d’un seul corpuscule que dans celui d’un système, on 
considère un espace formé à l’aide des coordonnées du type q-„ sans 
intervention des moments conjugués p,; comme dans l’extension-en- 
phase, et pour un ensemble de systèmes on définit une densité p(q/, t) 
obéissant à l’équation de continuité (i) où V est la vitesse dans l’espace 
physique ou dans l’espace de configuration donnée par la formule du

guidage V --- -- -- grad o. Sauf dans les cas particuliers où divV^Ao

est nulle, celte ('quation ne se réduit pas à = o. Le problème est

donc nettement (lillérenl de celui qui se pose en Mécanique statistique 
classique. Cependant ici encore, nous avons adopté arbitrairement une 
solution particulière de l’équation en p, savoir p = a'2(qj, t) = | V |‘- qui, 
dans le cas de Fonde plane monochromatique se réduit à p = const. 
Cette hypothèse nous a été suggérée par l’évidente équivalence a priori, 
dans le cas d’un mouvement rectiligne uniforme de direction donnée, 
de toutes les trajectoires parallèles et de toutes les positions sur ces 
trajectoires. On peut penser, comme en Mécanique statistique clas 
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sique, qu’il faut chercher à justifier celte hypothèse naturelle, ruais 
arbitraire, par la démonstration d’une sorte de théorème d’ergodicilé.

En Mécanique statistique classique, on tente de justifier l’hypo 
thèse cr = const. de la façon suivante : on considère un ensemble de 
systèmes pour lesquels la densité a dans l’exteiision-en-phase a une 
forme initiale diq-^p^ t0) quelconque et l’on suppose (c'est là l’élément 
purement statistique que l’on ajoute aux lois de la Dr mimique) que cet 
ensemble de systèmes est soumis à des perturbations entièrement incoor 
données. On cherche à déduire que 7 tend vers la forme <7= consl., 
quelle que soit sa forme initiale, de telle sorte que tout se passe comme 
si l’hypothèse ergodique était exacte. C’est une voie analogue qui a été 
suivie par M. David Bolim dans un Mémoire récent [8]. Dans le cadre 
de la théorie causale, il considère un ensemble de systèmes dont les 
points représentatifs dans l’espace de configuration ont initialement une 
densité quelconque p(57, t0) et il introduit l’hypothèse statistique que 
ces systèmes sont soumis à des collisions successives, fies paramètres 
définissant chaque collision ayant des valeurs réparties au hasard : il en 
déduit que, quelle soit sa forme initiale. p(q,-, t) tend vers a-(q,, l) — J Tj-.

3. Bref résumé du Mémoire de M. Bohm de janvier 1953. — M . Bohm 
a commencé par préciser l’analogie de la question avec le théorème 
d’ergodicité en Mécanique statistique classique, en posant

(t>) ?K9h t) =f{qt. t) | d’u/i, 1) ■* = '/{&, 1 )d.--{qh t),

ce que l’on peut toujours faire, et en remarquant que, les équations de

la théorie causale fournissant, la relation + div(«- V ) — o et la()t ' '
conservation des particules imposant la relation de continuité ti), on 
en lire

( id .j j T |2 'j( -+■ f ^ 1 ^ - -t-/div (| \T j!v) -t- ! T ;*v.grad./'= <>

et par suite

(' 0
Bi
I )i

'V
M ‘ v.grad/ ( ).

C’est donc la fonction / qui obéit ici à la môme relation que la den 
sité a dans l’exlension-en-phase, c’est-à-dire reste constante quand on 
suit le mouvement des particules. Le théorème analogue au théorème 
d’ergodicité consistera donc ici à démontrer que la fonction J tend à 
prendre une valeur constante si l’on admet une hypothèse statistique 
d’incoordination.



Je me contenterai de résumer rapidement la marclie du raisonnement 
de VL Rohm, renvoi anl au texte de son article pour le détail des calculs. 
Bolim considère un atome d’hydrogène qui se trouve dans un état excité 
doublement dégénéré. La loncliou d’onde en coordonnées cylindriques 
a alors la lorme

i:,/
t'i'i T — y/'<Jyiy. ; )| f| rus ç -h c., >i n ç i e /'
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a\ ce

r, 2-e ; c

On en déduit aisément le mouvement du corpuscule par la l’or mu le du 
guidage. Bolim suppose alors que l’atome est soumis à une collision a\ee 
une particule très lourde dont le mouvement peut être décrit classi 
quement et il applique la méthode des perturbations pour calculer les 
variations de c \ et de Les valeurs de ces quantités avant le choc sont 
de la forme c->, h, U), où U désigne la vitesse initiale d’approche
de la particule incidente, h le vecteur défini en abaissant la perpendi 
culaire du centre de l’atome sur la direction initiale du mouvement de 
la particule, ci et c-, étant les valeurs après le choc. Il et U sont donc les 
« paramètres d’impact ■» qui définissent la collision.

(/est ici (pie M. Rohm introduit un postulat statistique en admettant 
<pie les divers atomes d’un ensemble d’atomes d’hydrogène subissent 
des collisions correspondant à des valeurs distribuées au hasard de 11 et 
de U de sorte que, si les c/ étant les mêmes pour tous les atomes au 
début, ils se trouvent distribués statistiquement après les collisions.

Parlant. de ce postulat statistique. M. Rohm effectue tics calculs que 
je n’exposerai pas ici et qu'il y aurait sans doute lieu de retoucher sur 
certains points. Il arrive ainsi à montrer que la fonction J\ </;, / i doit 
tendre vers une valeur constante quand / tend vers l’intini. Or, si la pro 

babilité de présence pu/;, t) est normée à l’unité par^ ptk = i et si la

fonction d’oude *b est également normée à l’unité par j ; '1J' j- <]- r.— i. la

définition de f par ( q'i entraîne (pie. si f est une constante, celte 
constante est égale à i. Donc f doit tendre vers i et par suite p doit 
tendre vers | 'L j-. La démonstration cherchée parait donc ainsi obtenue, 
mais dans un cas assez particulier puisque l’on s'est limité à considérer 
un atonie d’hydrogène dans un (Hat, excité doublement dégénéré.

Quelles (pie soient les critiques que l’on puisse adresser à la rigueur 
des raisonnements de M. Rohm et à leur manque de généralité, il appa 

et. ,h = i.
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raît que nous sommes là en présence d’un problème très analogue à celui 
que la démonstration d’ergodicité cherche à résoudre en Mécanique sta 
tistique classique. De môme que l’on cherchait à montrer comment 
l’intervention de pertubations parfaitement incoordonnées tend à réaliser 
la densité <r = const. des points représentatifs dans l’extension-en-phase, 
on doit ici chercher à montrer que l’action de perturbations parfai 

tement incoordonnées doit faire tendre la fonction f ■= vers uneJ I q, 2
constante qui, en raison de la normalisation de p et de j 'Fj- devra être 
égale à i.

En résumé, en ce qui concerne la justification de la signification sta 
tistique du j |2 dans la théorie causale, la situation ne me paraît pas 
plus mauvaise qu’en ce qui concerne la justification rigoureuse de la 
.Mécanique statistique classique et cette conclusion me paraît assez 
encourageante.

4. Remarques complémentaires. — Le principe de la démonstration 
de M. Bohm consiste à remarquer que l’onde lF d’un corpuscule ou d’un 
système est toujours légèrement perturbée par l’existence de petites 
actions extérieures (par exemple de faibles collisions) et à admettre que 
les petits potentiels perturbateurs représentent ces actions avec leurs 
fluctuations entièrement désordonnées. Il s’agit ici de potentiels du type 
classique, mais M. Vigiera justement remarqué qu’on pourrait envisager 
de petits potentiels quantiques perturbateurs dus à de petites fluctua 
tions incoordonnées des conditions aux limites (par exemple le mou 
vement thermique des parois d’un récipient). En cherchant à répondre 
à une objection do M. Einstein contre la formule du guidage, nous avons 
déjà vu (chap. XI, § 3) qu’il peut y avoir lieu d’introduire de telles 
fluctuations des conditions aux limites.

L’idée de M. Vigicr me paraît pouvoir se résumer ainsi. A une forme 
donnée de l’onde VF, correspond une congruence E formée par une infi 
nité de trajectoires possibles définies à partir de la phase de l’onde lF 
parla formule du guidage. De petites actions extérieures du• type clas 
siques ou de petites fluctuations des conditions aux limites s’exprimant 
par de petites perturbations du potentiel quantique font constamment 
sauter le corpuscule d’une trajectoire de la congruence L à une autre. 
Si ces sauts sont entièrement incoordonnés, on conçoit que les corpus 
cules (ou les points représentatifs de systèmes) vont être animés d’une 
sorte clc mouvement brownien, les courbes de la congruence L conti 
nuant à définir des trajectoires moyennes. Il faudrait alors arriver à 
démontrer que ce sautillement d’une trajectoire à une autre se trouve
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réaliser en moyenne la probabilité do présence J 'I1' |-. Cette démonstration 
ferait probablement appel aux propriétés des « chaînes de MarkofF » (1 ).

Quand nous avons étudié certaines conséquences de la formule du 
guidage, nous axons vu que, dans certains états quantifiés, le mouvement 
du corpuscule prévu par la formule du guidage peut être si simple (par 
exemple immobilité ou mouvement circulaire uniforme) qu’on ne voit 
pas du tout comment peut se réaliser la répartition en | j- delà densité 
de probabilité de présence. Mais de petites perturbations aléatoires 
transformeront T en *1* o'F où o*F est une très petite modification 
de 'I'. Celle très petite modification, en modifiant aléatoirement la 
phase 9 de l’onde, suffit pour transformer le mouvement simple non 
perturbé en un mouvement très compliqué à caractère broxvnoïde. Si 
l’on admet que ce mouxement broxvnoïde réalise la distribution de pro 
babilité de présence J *l'‘ + ô’I' |- ~ ] T |-, on comprend pourquoi, si l’on 
lait abstraction des inévitables perturbations aléatoires, on est amené à 
considérer la densité de probabilité de présence dans l’élut non per 
turbé T comme égale à j -. Le ben de ce résultat déjà énoncé précé 
demment avec les idées que nous xenons de développer est évident.

On peut, croyons-nous, résumer ce qui précède de la façon soixante. 
Si l’on fait abstraction des perturbations aléatoires dues les unes à des 
actions extérieures, les autres à des lluctualions aléatoires des conditions 
aux limites, le mouxement du corpuscule (ou du point représentatif) est 
donné directement à partir de la phase de l’onde 'I' non perturbée par 
la formule du guidage. Mais, en réalité, il intervient toujours de petites 
actions extérieures aléatoires et de petites fluctuations aléatoires des 
conditions aux limites : ce sont elles qui, en provoquant une sorte de 
moiixemenl broxvnien du corpuscule (ou du point représentatif) qui le 
lait constamment sauter d’un mouxement non perturbé à un autre, 
assure la réalisation de la densité de présence en *l'j-. On parvient 
ainsi, tout en conserxant la signification physique moyenne des trajec 
toires préxues par la théorie causale, à leur superposer une sorte de 
mouvement broxvnien. Il est curieux de constater que l’on réaliserait de 
cette façon une synthèse des conceptions de la théorie causale avec 
l’affirmation maintes fois répétée par M. Einstein que les succès de 
l'interprétation statistique de la Mécanique ondulatoire impliquent 
l’existence do mouvements corpusculaires sous-jacents à caractère 
broxvnien.

LA SIGNIFICATION PROBABILISTE DE | *1" 2 ET SA JUSTIFICATION.

( 1 i Mil. Ho lui i et \ igici- ont pu h fié rre.rmiiirnt une justification (le la significalion 
sl;il ist itjur du : M* " lopos.ml sur f<‘ ijrnjv dr rorurptions KH.



CHAPITRE XIV.
I.'OIÎJEUTIOX DE M. l’AUl.l A LA THÉORIE DE l/ONDK-PILOTE.

I. Discussion de la théorie de l’onde-pilote au Conseil Solvay 
d’octobre 1927. — A la lin de mon Mémoire du Journal clc Physique 
de mai 1927. après avoir exposé les grandes lignes de la théorie de la 
double solulion. j avais fait la remarque suivante, l.a théorie de la double 
solution m’avail conduit à la lormule du guidage

n)
grad. ÿ -h  - A

en parlant de la Mécanique relativiste à un 'I alors seule connue, puis à 
la lormule de la probabilité de présence correspondante

OUI z. = const. n-
ih
V)/ v)-

File m avait aussi amené à introduire le potentiel quanlique délim par 

,., , () = h-  / = h-   a

à l'approximation newtonienne.
Constatant alors que finalement, 011 pouvait exprimer toutes ces gran 

deurs eu se servant uniquement de l’amplitude a, et de la phase g de
"iTU

l'onde H’' écrite sous la forme a e h , j’écrivais à la fin de mon Mémoire : 
« Si l'on 11e veut point invoquer le principe do la double solution, il 
serait admissible d’adopter le point de vue suivant : 011 admettra l’exis 
tence, en tant que réalités distinctes du corpuscule et de l’onde 
continue T et l’on prendra comme postulat que le mouvement du cor 
puscule est déterminé en fonction de la phase fde bonde V) par la 
relation du guidage. On conçoit alors bonde ’b comme guidant le cor 
puscule : c'est une onde-pilote ».
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Mais je m'empressais (l’ajouter : « Ku prennnl ainsi l’équation du 
guidage comme postulat, ou évite d’avoir à la justifier par le principe de 
la douille solution, mais ce ne peut être là qu’une altitude provisoire. Il 
faudra bien, sans doute, réincorporer le corpuscule dans le phénomène 
ondulatoire et. l’on sera ainsi probablement ramené à des idées ana 
logues à celles qui ont été développées plus haut. »

Ces citations marquent bien quel était mon état d’esprit à la lin de ce 
travail. Je considérais le point de vue de l’onde-pilote comme prati 
quement utilisable, mais comme ne pouvant trouver sa véritable justifi 
cation que dans le cadre d’une théorie plus profonde du ivpe « double 
solution ».

Néanmoins chargé de présenter un rapport sur la Mécanique ondu 
latoire devant le Conseil Solvav qui devait se réunir à Bruxelles en 
octobre iqe-, je reculai devant la difficulté de justifier mathématiquement 
le point de vue de la double solution et je me contentai d’exposer dans 
mon rapport le point de vue de l’onde-pilote. Au Conseil Solvaj, tandis 
que quelques » anciens » (Lorentz, Einstein, Langevin, Schrodinger ) 
maintenaient la nécessité de rechercher une interprétation causale de 
la Mécanique ondulatoire sans cependant se prononcer sur ma tentative, 
MM. Bohr et Boni ainsi que leurs jeunes disciples (MM. Heisenberg. 
Dirac, etc.) se prononçaient catégoriquement en faveur de la nouvelle 
interprétation purement probabiliste qu’ils venaient de développer et 11e 
discutaient même pas mon point de vue. C’est AI. Pauli qui lit la seule 
objection précise à ma théorie en raisonnant sur le cas du choc d’un 
corpuscule et d’un rotateur que M. Fermi venait récemment d’étudier.

Je vais exposer l'objection de M. Pauli, mais, pour le faire, je dois 
d’abord rappeler dans ses grandes lignes le raisonnement qu’avait 
développé M. Fermi.

"1. Choc d’un corpuscule et d’un rotateur plan d’après M. Fermi. — 
Rappelons d’abord qu’on appelle « rotateur plan » un point matériel de 
masse M assujetti à se déplacer dans un plan en restant à une distance 
fixe B de l’origine des coordonnées. Au point de vue mécanique, ce 
rotateur est caractérisé par son moment d’inertie 1 = AIR-,

Le rotateur, dont nous négligeons les dimensions, est supposé place 
eu un point O choisi comme origine des coordonnées; un corpuscule 
assujetti à suivre la droite Os vient heurter le rotateur (O. Une inter-

(1 j son expose M. Kenni avait seulement assujetti le corpuscule à rester dans un,
plan ./Or.
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action, un choc au sons large du mot, a lieu entre le corpuscule et le 
rotateur. Si z est l’abscisse du corpuscule, 0 l’angle polaire rpii fixe la 
configuration du rotateur, la fonction potentiel correspondant à l’inter 
action, sera de la forme U (s, 0) : elle ne sera différente de zéro que 
pour les petites valeurs de z (positives ou négatives) et périodique de 
période ‘à t . en 0.

Ceci posé, le problème à résoudre est le suivant. : sachant qu’au début 
du mouvement, le corpuscule, dont la masse est m, a une certaine 
v itesse (’o, déterminer les divers résultats possibles du choc entre le cor 
puscule et le rotateur.

On représentera le système en considérant l’espace de configurai mu 
formé à l’aide des deux variables z et 0. L’équation de propagation dans 
l’espace de configuration sera

(i)
i é-j T 

H) /J Z -
i

m  tr- OP l < O ) ]lf = o,

E étant l'énergie totale du système. Faisons le changement de v ariables

( •"> ) ; = y.) 0, 7 = y m z.

L’équation de propagation devient

(<> )
()- IJ1
OP — Liopr = o

U(4, t) étant nulle dès que 7 n’est pas très petit et étant périodique de 

période 2 r. y J en p
La fréquence de l'onde *F étant v = j -, nous pouvons écrire

K «J1
i

\ î OO’

et l’équation des ondes devient

(8) w
'I '

' !>V-
I ppl
\ - OP

H -2
= pp'0.0’r.

Voici maintenant la remarque très ingénieuse qui avait permis à 
M. Fermi de résoudre simplement le problème. La fonction LJ n'étant 
différente de zéro qu’au voisinage immédiat de l’axe O4, là où 7 est très 

petit, et étant périodique de période 2~\/i en J, tout se passe comme si 
l’axe des £ jouait dans l’espace de configuration à deux dimensions -, Pie 

rôle d’un réseau d’équidistance 27: \/J susceptible de diffuser l’onde 'F 
incidente.
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Construisons d’abord cette onde *F incidente. L’onde ff'j qui repré 
sente l’état initial du corpuscule incident avant l’interaction est simple 
ment

(9) 'I',

■ir,i
-T- -- /«"os] - [Ei/-V

= a i e

avec
Ki = ~ tnvl.2

D'autre part, soit o>0 la vitesse angulaire initiale du rotateur. L’onde 
initiale de ce rotateur est

[!•:.,/ l«o0j { Ks/ —
( m) lI\ = a-, e 1 = at e h ,

avec
1
2 .1 (.>5

Kn effet, ffÇ doit être solution de l’équation du rotateur isolé 

, ‘I'î üi:2(ni -t- = o pour h =v • àç- h-

Comme *F2 doit reprendre la même valeur quand \ augmente de 2t î \ .1. 
on doit avoir

( i a ') ~ yAl K2. •}. - y/J = (n entier),

soit
.. r , n-h- (i3) h,= -J«5= —r-

C’est la formule bien connue qui donne les valeurs quantifiées de 
l'énergie pour le rotateur plan. L’état initial du rotateur étant nécessaire 
ment quantifié, la vitesse angulaire initiale w0 du rotateur obéit à la 
relation ( 13).

L’onde W du système corpuscule + rotateur dans l’espace de 
configuration a pour forme initiale le produit lFilF2, soit

( i -1 )
^ [(E, l-E.K-éîE.Ï-l ïK.'j

T = (1,(12 eh

Posons

(i'i) eus a si il a — V
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où E =- I'.i -4- K2. Il vient pour lu forme initiale du T,
. T K ^sina ■ 'rusai

( iti) T = a e I ll '• J.

Dans l’espace de configuration, Fonde 'F incidente est donc une onde 

plane monochromatique de fréquence v — et. de longueur d’onde /. 

dont la normale lait l’angle c/. avec O-,
On peut alors, en utilisanl la remarque de M. Lermi, considérer 

1 interaction entre le rotateur et le corpuscule comme produisant une 
dilhision de Fonde 'E dans l’espace de configuration. Les directions de 
diffusion privilégiées sont données par la relation exprimant l’accord

?=V'J B

des phases pour un réseau linéaire de période 2~\ J place suivant O-, 
savoir
t i ; i ■>. r. \ .11. cos *' — en' -j . > = />■/,. ( k entier )

comme on le lit aisément sur la figure (S.
Après l’interaction, Fonde T aura donc la forme

IL -silia' Çnixa' I

h l L
7'

x portant, prendre toutes les valeurs quantifiées par i i - ). L’onde plane 
incidente est ainsi transformée ]iar l’interaction en une superposition 
d’ondes planes cli 11 usées.

Revenons aux variables et 0 et remplaçons /. par sa \aleur, nous 
trouvons pour le 'L final l’expression

! U)) T
LE/ — \ ïntV. csina' uj E Omis y.'

a1
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D’après les principes de la Mécanique ondulatoire, si l’on détermine 
par l’observation l’étal de mouvement final du corpuscule et du rota 
teur, on trouvera un état de mouvement représenté par l’une des 
ondes planes du développement (19). Or, l’une de ces ondes planes 
représente un mouvement d’énergie EJ et de quantité de mouve 
ment \ 2 m EJ — y/a m, E sina' à laquelle correspond la vitesse corpus 
culaire ^/--- sin a! : ce mouvement a une énergie EJ = K sin-‘ a'. A cette

môme onde plane de l’espace de configuration correspond un mouve 
ment corrélé du rotateur d’énergie EJ et de quantité de mouve 

ment \/2 .10. = v 2JE cos a', ce qui donne EJ = E eus- a'. On a 
donc EJ + EJ = E, ce qui exprime la conservation de l’énergie. Il 11’v 
a pas de conservation de la quantité de mouvement parce que nous 
avons implicitement supposé que le rotateur est fixé en O et ne peut pas 
prendre de mouvement d’ensemble lors du clioc et que le corpuscule 
est assujetti à rester sur (.O.

Compte tenu de la définition (i5) de À, l’équation (17) nous donne

I Ml I

et puisque

1' 1 )

il lient

I }

d’où finalement

II ! 1

1 U
ro> 2 — ro“^H------------A -

• •• v •! r-K

_ /E, __ 1 nh
' \ V s K ‘ ~ \ •’— 5

1

\ K. eus y.1 ==■
i. n -+- k ) h

’O.'-I

o>-hky-/>*
1 = . ......... s .1

n et n + /«’ étant îles entiers positifs, négatifs ou nuis.
Si donc l’on détermine par une observation les étals de mouvement 

après le choc, 011 trouvera toujours que Collet du choc a été de faire 
passer le rotateur de l’état quantifié initial caractérisé par le nombre 
quantique n à un état quantifié final caractérisé par le nombre quan- 
liqne n + de sorte que le rotateur se trouvera toujours, aussi bien à 
la fin qu’au début, dans un étal quantifié.

Trois cas peuvent alors se présenter :

i " /■-—<>. — Le corpuscule et le rotateur consenent leurs états 
initiaux. Ee choc a lieu sans échange d’énergie : il est a élastique ».
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2° k Z> o. — Le corpuscule cède de l’énergie au rotateur qui passe 
dans un état quantifié d’énergie supérieure à celle de l'état quantifié 
initial. Il j a « clioc inélastique de première espèce ».

3° À" <! o. — Le rotateur passe de son état quantifié initial à un état 
quantifié d’énergie moindre en cédant de l’énergie au corpuscule inci 
dent. Employant une expression introduite naguère par MM. Klein et 
Rosseland, on peut dire qu’il y a alors « clioc inélastique de deuxième 
espèce ».

Tel est le beau calcul effectué dès 1927 par AL Fermi et relatif au 
clioc d’un corpuscule avec un rotateur plan.

3. Objection de M. Pauli contre la formule du guidage. — Comme 
je l’ai rappelé plus haut, au Conseil de Physique Solvay d’octobre 1927, 
\l. Pauli s’est servi du calcul de Fermi pour critiquer la formule du 
guidage qui est commune à la théorie de la double solution et à celle de 
l’onde-pilote (1).

La formule ( 19) nous donne la forme finale du 'F du système corpus 
cule + rotateur dans l’espace de configuration après le choc sous la 
forme d’une superposition d’ondes planes monochromatiques et l’inter 
prétation probabiliste du 'F nous enseigne que chacune de ces ondes 
planes correspond à un état de mouvement du corpuscule et à un état de 
mouvement du rotateur qui sont corrélés entre eux. 11 n’y a là, disait 
M. Pauli, aucune difficulté, mais une grave difficulté apparaît si l’on 
veut attribuer au point représentatif du système dans l’espace de confi 
guration ,z0 un mouvement défini par la formule du guidage. En effet, il

‘i~i

•faudrait alors écrire le *F final ( 19) sous la forme *F — a e h avec a et o 
réels et, en raison môme de la superposition des ondes planes mono 
chromatiques, la phase o aurait alors une forme très compliquée : le 
mouvement final du point représentatif dans l’espace de configuration 
serait donc un mouvement très complexe sans aucun rapport avec les 
étals finaux quantifiés du rotateur que l’interprétation orthodoxe fait 
tout de suite apparaître et dont l’existence est confirmée par l’expé 
rience. M. Pauli ajoutait qu'il n’était pas possible de lever la difficulté 
en conduisant une onde T’ limitée puisque, en raison de la période 2ir 
de 1» coordonnée 0, il est impossible de supposer l’onde 'F limitée dans 
le sens OO.

(l) \'oiv .rUectron.fi et jdiotons ( Comptes rendus du Ve Conseil de Physique Solvay, 
f.aiil Wr-ViîlrtrF, Paris, tp:>S. p. i.
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Ce dernier argument nie paraît surtout prouv er le caractère très fictif 
de l’espace de configuration et des propagations d’ondes dans cet espace 
(comment pourrait-on, en effet, attribuer un sens physique à cet 
axe OO sur lequel on déroule indéfiniment les valeurs d’un angle qui en 
réalité varie seulement de o à at ï'Ç. Il ne m’avait pas convaincu et je 
voyais dans la limitation des trains d’ondes une manière d’échapper à 
l’objection de M. Pauli. Je lui avais, en effet, répondu : « La difficulté 
signalée par Al. Pauli a son analogue en Optique classique. On ne peut 
parler de faisceau diffracté par un réseau dans une direction donnée que 
si Je réseau et l’onde incidente sont limités latéralement, car autrement 
les faisceaux difl'ractés chevaucheraient et seraient noyés dans l’onde 
incidente. Dans le problème de Fermi, il faut aussi l’onde 'I limitée 
latéralement dans l’espace de configuration ».

Ivxaininons la question de plus près. O11 peut accorder à M. Pauli que 
l’onde f incidente 11'esl pas limitée dans le sens OO, mais elle l’est 
nécessairement dans le sens Os puisque Fonde 'F, du corpuscule inci 
dent est nécessairement un train d’ondes que nous supposons presque 
monochromatique, mais qui est cependant de longueur finie. 11 en 
résulte que l’état final est bien représenté par la formule (îq), mais 
avec cette réserve importante que chacune des ondes planes monochro 
matiques figurant dans ce développement osl en réalité un train d'ondes 
presque monochromatique dont les dimensions sont limitées dans le 
sens ( ) Ohacun de ces trains d’ondes correspond à une valeur diffé 
rente de l’angle quantifié <x' et, par suite, est animé d’une vitesse globale

le long de Os égale, nous l’avons vu, à ~ sin Les vitesses des

divers trains d’ondes diffusés n’étant pas les mêmes le long de Os, ces 
trains d’ondes qui sont superposés à la sortie du réseau constitué par 
l’axe OO finiront par se séparer et, tout en restant indéfinis dans le 
sens OO, correspondant à des régions séparées de l’axe Os.

À la fin du choc, le mouvement du point représentatif supposé donné 
par la formule du guidage l’amènera dans Vun ou Vautre des trains 
d’ondes émergents séparés et cela suivant la position initiale de ce point 
dans le train d’ondes incident. La formule du guidage appliquée à la 
position finale du point représentatif nous montrera alors que le rotateur 
se trouve dons un état final quantifié et que le corpuscule possède le 
mouvement corrélé avec cet état quantifié. On retrouvera donc exacte 
ment les conclusions de F ermi en accord avec l’existence expérimentale 
des seuls états quantifiés pour les rotateurs.

Si, au lieu d’assujettir le corpuscule à rester sur une droite Os, on
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l'assujettissait seulemenl, comme l’avait fait M. Fermi dans son Mémoire, 
à rester dans un plan xOy, il y aurait lieu de limiter le train d’ondes 
incident aussi bien dans la direction O y que dans la direction Ox et 
l’on aurait toujours une séparation finale des trains d’ondes après 
l'interaction.

J’avais donc bien aperçu, comme le montre la citation laite plus haut, 
que la réponse à l’objection de M. Pauli devait s’appuyer sur le lait que 
les trains d’ondes sont toujours limités, idée (pii a été reprise par 
M. Bohrn dans ses récents Mémoires.

Nous avions donc rencontré ici pour la première lois l'idée qu'il ne 
faut jamais, comme M. Schrodinger l'a encore récemment souligné, 
oublier que les trains d’ondes sont toujours limités, (l’est là un point 
que l’on passe le plus souvent sous silence aussi bien en Optique clas 
sique qu’en Mécanique ondulatoire. Nous verrons cependant que, pour 
certains problèmes, la limitation des trains d’ondes a une importance 
capitale.

ï. Abandon des tentatives d’interprétation causale de la Mécanique 
ondulatoire après 1927. —Dans les mois qui suivirent le Conseil Solvav 
d'octobre ip2j, j’ai abandonné le point de vue de l’onde-pilote que j’y 
avais soutenu. Ce n’est pas à cause de l’objection de M. Pauli car je
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croyais apercevoir, je l’ai dit, la manière d’y répondre, mais c'est pour 
d’autres raisons plu s générales que j’ai notamment développées dans mon 
premier cours à l’institut Henri Poincaré publié par la suite sous le titre 
Introduction à Vélude de ta Mécanique ondulatoire i r). Je vais 
résumer ces raisons.

Le corpuscule, conçu comme une réalité physique, ne peut pas. me 
disais-je, être guidé par l’onde f dont le caractère de représentation 
de probabilité, à la l'ois subjective et fonction des connaissances de celui 
qui l’emploie, avait été rendu manifeste par le développement de la 
Mécanique ondulatoire.

Ce caractère fictif do l’onde f s’imposait déjà pour Fonde f associée 
à un seul corpuscule dans l’espace ordinaire : il s’imposait davantage 
encore par Fonde lF d’un système qui se propage dans l’espace de confi 
guration du système, espacé purement abstrait. D’ailleurs, même dans 
le cas d’un seul corpuscule, cas où Fonde ’E (x, y, z, t) paraît s'exprimer 
à l’aide des trois coordonnées courantes de l'espace physique, les 
variables .r, y, z dans l’interprétation admise ne représentent pas réel 
lement les coordonnées d’un point quelconque de Fesjjace physique, 
mais bien les positions possibles du corpuscule dans cet espace. Cette 
distinction, en apparence subtile, est cependant nécessaire pour bien 
comprendre comment on passe du cas général d’un système de corpus 
cules au cas d’un seul corpuscule. Donc, même dans ce dernier cas où il 
suffit d’employer trois coordonnées x, y, z, la fonction d'oncle xV(x, y. :,t 1 
ne peut pas représenter un chant/) ayant une réalité physique dans 
l’espace physique à trois dimensions.

fleisenberg avait d’ailleurs insisté sur le fait que toute constatation 
expérimentale effectuée sur un corpuscule ou sur un système modifie 
instantanément la forme de Fonde W en nous obligeant à opérer ce qu’il 
a appelé « la réduction du paquet de probabilité ». Par le seul effet de 
la constatation expérimentale, toute une portion de Fonde T s’évanouit 
« comme s'évanouit l’espérance d’une éventualité qui ne s'est pas 
réalisée ». Ces propriétés de Fonde W, auxquelles se rattachent les 
objections de MM. Einstein et Schrôdinger, sont compréhensibles si 
cette onde n'esl qu’une représentation de probabilités, mais elles 11e 
permettent pas de lui attribuer le rôle d’une réalité physique : elle 11e 
peut donc pas être un agent physique guidant le mouvement du cor 
puscule.

En regardant les choses de près, 011 voit aussi que, si le mouvement

< 1 ) Uonniinti, l\iris. i ().'!<».

f.. Ht: I5ROGI.IK. 12
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du corpuscule était guidé par l’onde V, il dépendrait non seulement de 
la position que le corpuscule a eue initialement, mais de toutes qu’il 
aurait pu avoir et qu'il n'a pas eues. Cette circonstance paradoxale 
exclut tout espoir d’un véritable retour à une conception causale clas 
sique du mouvement des corpuscules à l’aide de la seule conception de 
l’onde-pilote.

Toutes ces objections fondamentales se trouvent exposées dans 
l’Ouvrage que j’ai cité ci-dessus. On peut en trouver d’autres encore. 
Nous signalons, par exemple, la suivante récemment développée par 
M. Francis Perrin et sur laquelle nous aurons à revenir plus longue 
ment. Si l’on considère l’onde sphérique divergente qui représente 
l’émission isotrope de corpuscules par une source, elle a pour expres 

sion ' e" '/,r et son amplitude décroît comme l’inverse de la dislance à la

source. Le | |- décroît donc en raison inverse du carré de la distance
à la source, ce qui correspond bien à l’interprétation de celle grandeur 
comme densité de probabilité de présence. A une Irès grande distance 
de la source, l’onde T’ n'a donc plus qu’une amplitude extrêmement 
pelite cl cependant, si elle pénètre dans un dispositif d’interférences, 
la théorie de l’onde-pilote nous affirme que le mouvement du corpus 
cule dans cet appareil est guidé par la propagation d’une onde dont 
l’amplitude est infinitésimale : cela est très choquant du point de vue 
physique. Sans doute, du point de vue purement mathématique, on 
pourrait répondre que le potentiel quantique agissant sur le corpuscule

est proportionnel à ~ et par suite ne dépend pas de la videur absolue

de «]; mais physiquement, si l’onde ¥ était vraiment un agent physique 
agissant sur le corpuscule, on conçoit mal comment celte action pourrait 
rester la même, quelque petite que soit l’amplitude de l’onde 'F. 
L'exemple de M. Perrin montre très clairement que Fonde *1’, préci 
sément parce qu’elle représente une probabilité de présence qui 
diminue nécessairement quand l'onde sphérique s’épanouit dans l'espace, 
ne peut pas être considérée comme agent physique guidant le cor 
puscule.

Telles sont les considérations qui m’ont amené en iqn8 à abandonner 
comme insoutenable la théorie de l’onde-pilote. La forme primitive de 
mes idées, c’est-à-dire la théorie de la double solution, ne me paraissait 
pas se heurter nécessairement aux mêmes difficultés, mais j’en étais 
arrivé à la conviction que sa justification mathématique, si elle était 
possible, était au-dessus de mes forces. Chargé d’enseignement à la
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Faculté des Sciences de Paris à partir de novembre 1928, je n’ai pas 
cru avoir le droit d’enseigner une manière de voir que je n’étais pas en 
état, de justifier. Je me suis donc rallié à l’interprétation purement 
probabiliste mise en avant par MM. Born, Bohr et Heisenberg. Malgré 
les critiques de quelques savants isolés comme MM. Einstein et 
Schrodinger, critiques qui ont été exposées précédemment, celle inter 
prétation purement probabiliste a été ensuite adoptée par presque tous 
les théoriciens de la Physique. Elle est ainsi devenue l’interprétation 
« orthodoxe » de la Mécanique ondulatoire. A ma connaissance, 
mitre 1928 et 19b 1, aucune tentative sérieuse n’a été faite pour tenter de 
construire effectivement une autre interprétation se rapprochant davan 
tage des conceptions classiques.

Puis sonl venus les deux Mémoires publiés en janvier 1902 par 
M. David Bohm. Nous allons maintenant les analyser dans leurs grandes 
lignes.



CHAPITRE XV.
LA THÉORIE DE LA MESURE D’APRÈS M. DAVID ROHM 

ET LE SCHÉMA STATISTIQUE DE LA THÉORIE CAUSALE.

I. Les Mémoires de M. Bohm de janvier 1952. — Les (leux .Mémoires 
cohjoints (jue _M. David Bohm a publiés en janvier ip5a. dans la 
Physical Review [3] ont ramené l’attention sur la question de l’inter 
prétai ion de la Mécanique ondulatoire. Dans ces Mémoires, M. Bohm a 
repris la théorie de l’onde-pilole sous la forme que je lui avais donnée au 
Conseil Solvay de i()2j. 11 admet que l’onde M" est une réalité physique 
(môme l’onde 'F de l’espace de configuration!). J’ai dit plus haut pour 
quoi une telle hypothèse me paraissait absolument inadmissible.

M. Bohm écrit (p. i jy, a'' colonne) qu’après la réduction du paquet 
de probabilité par une observation •« la fonction d’onde peut être 
renormalisée parce que la multiplication du TF par une constante nu 
change aucune des quantités avant, une signification physique telles que 
la vitesse de la particule ou le potentiel quantique ». Il est bien exact 
que, si l’on irniltiplie la fonction *F par une constante, on ne modifie ni

le gradient de sa phase <p, ni le rapport : mais il est évident que, si

le *1 ' représentait une réalité physique, on n’aurait aucunement le droit 
de multiplier son amplitude par une constante : ce qui permet de la 
taire, c'est que le VF n’est qu’une représentation de probabilité et que sa 
normalisation a seulement pour but de pouvoir évaluer en valeur 
absolue la probabilité de présence à l’aide de l'expression |*F[-. D'ail 
leurs la rédaction du paquet ne comporte pas seulement une renor 
malisation de la (onction 'F, mais aussi en général une modification 
brusque et complète de sa forme, ce qui serait incompréhensible si lF 
était une réalité physique.

Les Mémoires de Bohm contiennent aussi d’autres affirmations qui 
nous paraissent douteuses. Par exemple, il a sans doute raison de dire 
qu'a très petite échelle ( io~l;l cm ou au-dessous) la formule du guidage
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cl par suite la si”ni(icat.ion slatisüque du 'F pourrait n’ètre plus exacte, 
mais la modification qu’il propose, en conséquence, de laire subir à 
l’équnlion de propagation me parait artificielle.

'Néanmoins, si le travail de NI. Bolim appelle certaines réserves, il a 
aussi des mérites qui me semblent incontestables. En particulier, il a 
ramené i’atlenlion sur la possibilité d’une interprétation de la Méca 
nique ondulatoire autre que celle cpii est actuellement adoptée et il a 
montré qu'il n’est pas inutile de soumettre la question à un nouvel 
examen minutieux. Ee problème qui se pose est clairement défini dans 
les trois premiers paragraphes de son premier Mémoire et l’on peut 
relever dans son texte plusieurs remarques qui paraissent justes et 
intéressantes.

M. Bolim a retrouvé mes anciens résultats relatifs au mouvement du 
corpuscule dans un atonie quantifié et notamment à son immobilité 
dans les états v à moment cinétique nul. Il a aussi analysé le cas du 
passage d'un corpuscule à travers une barrière de potentiel, cas qui est, 
on le sait, particulièrement important pour la théorie de la radioacti 
vité a. On trouve naturellement que les trajectoires doivent être très 
compliquées, mais il n’y a plus l’indélerininisme complet admis par 
l’interprétation actuelle. Ce serait la position initiale inconnue de la 
particule qui, on déterminant tout son mouvement ultérieur, serait la 
cause de la plus ou moins grande rapidité avec laquelle elle traverse la 
barrière. Ea probabilité qui s’introduit ici serait donc une probabilité du 
tvpe classique, compatible avec la causalité, qui s’introduit par suite de 
notre ignorance de la position initiale, exacte du corpuscule cl de son 
mouvement ultérieur.

Etudiant le cas où l’onde 11‘ est formée par une superposition d’ondes 
stationnaires, M. Bohm montre par le calcul que le potentiel quantique, 
l’énergie et la quantité de mouvement du corpuscule llucluenl alors 
constamment et très rapidement et il ajoute : « S’il arrive à la particule 
d’atteindre une région de l’espace où l’amplitude de l’onde H” est petite, 
ces llucluations deviendront tout à l’ait violentes. Nions voyons donc 
qu'eu général, le mouvement de la particule dans un état non station 
naire est très irrégulier et compliqué, ressemblant beaucoup plus à un 
mouvement brownien qu’à l’orbite régulière d’une planète autour du 
Soleil ». Nions avons déjà vu l’intérêt de cette remarque.

relies sont, quelques-uns des résultats intéressants développés par 
NI. Bohm dans ses Mémoires, mais la partie la plus originale de son 
travail est certainement sa théorie de la mesure que nous allons mainte 
nant analyser.
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2. La théorie de la mesure d’après M. Bohm. — M. Bohm a d’abord 
analysé les phénomènes de collision dans la théorie causale. Avant la 
collision, chaque particule a son paquet d’ondes *F séparé dans l’espace 
physique et la fonction d’onde •F dans l’espace de configuration est alors 
simplement le produit des paquets d’ondes individuels. Puis les paquets 
d’ondes se rapprochent et se superposent et l’interaction commence. La 
fonction d’onde W du système devient une somme de produits dont 
chacun correspond à l’un des résultats possibles de l’interaction. Les 
mouvements des particules cessent alors d’être indépendants. Les fonc 
tions a et cp, et par suite les potentiels quantiques et les quantités de 
mouv ement des particules, subissent de rapides et violentes fluctuations 
dans l’espace et dans le temps. Dans les régions de l’espace de configu 
ration où a est petit, les lluctuations s’amplifient et peuvent aboutir à 
de grands échanges d’énergie et d’impulsion dans un temps très court, 
même si le potentiel d’interaction au sens usuel reste petit. A la fin de 
l’interaction, les paquets d’ondes correspondant aux diverses possibilités 
se séparent et ne se superposent plus dans l’espace. Alors le point figu 
ratif du système se trouvera dans l’un des paquets d’ondes de l’espace 
de configuration et, avec la description dans l’espace physique, chaque 
particule aura sa position dans son paquet d’ondes, la probabilité de ces 
positions corrélées étant donnée par |W|-, Puisque les corpuscules 
conservent toujours une position dans l’espace physique, toutes les 
difficultés de l’interprétation actuelle relatives aux systèmes corrélés se 
trouvent levées.

La causalité sera aussi rétablie car le résultaL final dépendra des posi 
tions initiales des corpuscules; mais en pratique les trajectoires de ces 
particules seront extrêmement compliquées et rapidement variables 
av ec les positions initiales et leur calcul exact sera impossible. La statis 
tique s’introduira donc, mais seulement à la manière classique : son 
intervention résultera à la fois de l’impossibilité de déterminer exacte 
ment les positions initiales sans troubler tout le phénomène et de notre 
incapacité à suivre les trajectoires tandis que, dans l’interprétation 
actuelle, on admet que rien ne détermine le résultat de l’interaction et 
l’on suppose a priori que la description des phénomènes est intrinsèque 
ment et inévitablement statistique.

Cette élude des phénomènes d’interaction a conduit M. Bohm à 
analyser les processus de mesure qui se réduisent en somme à l’inter 
action d’un corpuscule avec un appareil de mesure (p. 179-184 du 
second Mémoire). L’éxécution de la mesure établit des « corrélations » 
entre l’état final de la particule et l'état final de l’appareil de mesure de
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sorte que l’ohscrvaliou do l’état final de l'appareil de mesure permette 
de déduire l étal lilial du corpuscule.

Bohm considère donc la mesure d’une certaine grandeur « obser 
vable » liée à un électron. R représentera la position de l’électron, y la 
coordonnée « significative » de l’appareil démesuré, celle qu’on pourra, 
par exemple, lire sur un cadran. Bohm remarque qu'il suffit de consi 
dérer une mesure « impulsive », c’est-à-dire comportant une interaction 
très intense et très rapide entre l’électron et l’appareil de mesure. Alors 
le système n’aura pas le temps d’évoluer de son propre chef pendant 
l’interaction, toute son évolution pendant la mesure provenant de l’inter 
action elle-même. On pourra donc laisser de côté les parties de 
l’hamiltonien relatives au corpuscule seul ou à l’appareil de mesure 
seul et il suffira de considérer l’hamiltonien d’interaction H4. De plus, 
si Hi est fond ion seulement de grandeurs qui commutent avec une 
grandeur Q, le processus d’interaction ne produira aucun changement 
incontrôlable de la grandeur Q, mais en produira pour les grandeurs 
qui commutent avec Q. Pour qu’il y ail couplage entre le corpuscule et 
l’appareil de mesure, il faut que ITt contienne un opérateur agissant 
sur j.

V titre d’exemple, M. Bohm pose
' / f(h ùM l I I , = tt O ( py )>l]t — — —( } -J ^ ,

où a esl une conslanlo.
Il faut alors calculer l’évolution du 'P du système dans l’espace de 

configuration R, y. Pendant l’interaction, l’équation d’ondes est 
approxuna I i v emeul

i •>. i
h ot<r 

•>. ~ i <)! npr al, ,n-— (I — >.-( ' ,) y
ou

i '1 ) é\T
,U « Q

idl' 
<) r

Il est commode de développer suivant l’ensemble complet des fonc 
tions propres *P7( R ) de l'opérateur O, (j étant une valeur propre de Q, 
Nous écrirons donc

( | ,i W(R. r. /) = ^/viy. /) R).

•/

Gomme par définition Q'P^t'R) = i/’P^R), l’équation d’ondes nous 
donne

( " <> = - «q0vJ<i{x 
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l’équation dont la solution est

(6) ./y.r. r' =/vÙ' — aqt ).

d’où

(71 *1'(R, y, /)=»^./?(y—aqtyv^CR
7

Initialement le corpuscule et l’appareil de mesure sont indépendants 
et l’on peut écrire pour t — o :

(8) ’I'0(R, y) = ^d.iOV e?'l'(/(R).
V

car la l’onction d’onde initiale est le produit delà fonction d’onde initiale 
de l’appareil de mesure y0(r) et de la fonction d’onde initiale du 
corpuscule qui peut se développer suivant les avec des coeffi 
cients convenables c,r La fonction d’onde ga{v) a la forme d’un paquet 
que nous supposerons centré sur la valeur y — o avec la largeur Ay.

Des équations précédentes résulte que — c,tgn (y) et que par
suite

(ù) *I’(R, y. t) ='N c.,gv(y — aqt) ,I\/(R).
v

Cette expression montre que 1 interaction établit une corrélation 
entre q et la coordonnée y de l’appareil.

S’inspirant alors de son analyse des collisions, M. Jlolmi indique que, 
si l’on écrit

?iR.v./ï
U'(R, y, f i = "(R, y, l)e " ,

les fonctions réelles a et cp varient très rapidement dans l’espace et dans 
le temps durant l'interaction et qu’il en est de même du potentiel 
quantique

< lu i O = —
h'

S r.- m a

<) - a 

() ) -

Il en résulte, suivant la loi du guidage, un mouvement très compliqué 
et essentiellement variable du corpuscule. Mais, à la fin de l’interaction, 
les paquets d'ondes correspondant auor différentes râleurs de q 
dans ga{y — aqt) se séparent dans Vespace.

En effet, le centre du q"'""' paquet d’ondes dans l'espace y est donné 
par

(•O y = aqt. d’où •t = al
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cl. si nous désignons par o</ ia séparation des valeurs propres adjacentes 
de q, nous obtenons par la séparation des centres des paquets d’ondes 
correspondants

( i ■> ) or = al oÿ.

Pour des valeurs suffisamment grandes de t, or deviendra toujours 
supérieure à la largeur Ay des paquets de sorte que les paquets d’ondes 
se séparent dans l’espace.

M. Bolurt eu conclut qu’en vertu de la loi de probabilité en | W |s, la 
variable y de l’appareil de mesure doit finalement se retrouver dans l’un 
des paquets d’ondes et qu elle y demeurera ensuite puisqu’elle ne peut 
plus prendre une valeur correspondant à l'espace intermédiaire entre 
les paquets où la probabilité de présence est nulle. Si une observation 
macroscopique permet alors de connaître la valeur de q, on saura quel 
est le paquet de probabilité qui correspond à l’état final réalisé et, si 
l’on renonnali.se à l’unité la fonction 'P, on pourra faire correspondre à 
l’état final la (onction d’onde

(éi) ']'(R. r, / i = lrf/ (R) A'o(.i' — 'u]t')-

avec la valeur mesurée de q.
(lomme on le voit sur l’exemple particulier développé par M. Bolnn, 

c’est bien la limitation des trains d'ondes, donnant lieu à leur séparation 
spatiale dans l'étal initial et dans l’étal final, qui permet d’expliquer la 
possibilité de la mesure, comme elle permet aussi d'une manière plus 
générale de se représenter la séparation physique dès divers états finaux 
à la fin d'une interaction. Lu limitation des faisceaux joue donc ici un 
rôle essentiel et, dans l'appendice de son second Alémoire, en accord 
avec mon intervention citée plus liant au Conseil Solvay de 1(127, 
Al. Bolnn considère que celte limitation permet d'écarter les objections 
alors faites à ma ihéorie par M. Pauli.

Laissant de côté certaines considérations thermodynamiques (p. 182) 
du Mémoire de M. Bolnn qui 11e nous semblent pas très claires et deman 
deraient à ("‘Ire précisées, résumons la façon dont-il explique l’interven 
tion des probabilités et des relations d'incertitude. Pour lui, conformé 
ment aux idées de la théorie causale, le mouvement du corpuscule et 
celui de l’appareil de mesure sont déterminés par la forme initiale de 
l'onde *F»(R, y ) et par les valeurs initiales R0 et y0 des variables qui 
fixent la position du corpuscule et de l’appareil de mesure. Mais, comme 
nous ignorons ces valeurs initiales et que d’ailleurs le mouvement 
violent et compliqué du svstème pendant l'interaction est très sensible à
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la moindre variation des conditions initiales, nous ne connaissons 
après l’interaction qu'une distribution de probabilité pour l étal final 
donnée par j ^'(R, y) |-. Pour obtenir la probabilité dune certaine 
valeur q de Q, nous devons intégrer | *1; |- sur R et sur y dans 
le q'em° paquet d’ondes de l’état final. Comme les paquets d’ondes sont 
alors séparés dans l’espace de configuration (et d’ailleurs aussi dans 
l’espace physique) et que les fonctions Wy(R) et g'o(r) sont normées, 
on obtient pour cette probabilité la valeur

( G ) l’v = I c</ i"

en accord avec l'interprétation usuelle. D une façon plus générale, on 
parvient à justifier ainsi toutes les règles de l’interprétation usuelle en 
leur donnant seulement une signification différente.

Supposons maintenant que nous ayons obtenu, par exemple à la suite 
d’une mesure, un étal du corpuscule ff'^R) correspondant à la valeur 
précise q de la grandeur (). Si nous envoyons ce corpuscule sur un 
dispositif adapté à la mesure d’une grandeur P qui ne commute pas 
avec Q, nous avons pour le système corpuscule + appareil de mesure 
après 1 interaction une fonction d’onde de la forme

( 1 •'») 'I’(R.;, /) «,„, <!>,,( R)£„i — api)..
P

où «^(R) est la fonction propre de la grandeur P qui correspond à la 
valeur propre p et où les apl/ sont les coefficients du développement

(• <>) ’f,/(R) = a

p

z est la variable du nouvel appareil de mesure. Quand 1 interaction sera 
achevée, on pourra, par une constatation sur l’appareil de mesure, 
réduire la fonction T au seul terme

(17) T = a/:i/ 'Q (R ) ( ; — api 1

correspondant à la valeur précise p de P et la probabilité de cette éven 
tualité sera égale à \ap<!\-, toujours en accord avec l’interprétation 
usuelle.

Gomme un môme appareil de mesure ne peut, à la fin de son inter 
action avec le corpuscule, avoir « séparé » les paquets d’ondes corres 
pondant à des valeurs précises p et q des grandeurs non commutantes P 
et Q, on voit qu’il n’est pas possible de mesurer simultanément de telles
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grandeurs et ceci permet de retrouver d’une manière nouvelle les rela 
tions d’incertitude d’Heisenberg comme traduisant non pas une indéter 
mination réelle des grandeurs P et Q avant la mesure, mais seulement 
l’impossibilité matérielle d’obtenir simultanément pour les deux gran 
deurs des valeurs précises à l’aide d’une seule opération de mesure.

Avec le point de vue ici adopté, toute grandeur Q du corpuscule a 
une valeur bien définie dans l’état initial, mais celte valeur est une 
« variable cachée » puisque, en général, toute tentative pour la mesurer 
aura pour effet de la modifier. Si, exceptionnellement, un dispositif de 
mesure a pour effet de permettre d’obtenir la valeur de Q sans la 
modifier, alors ce dispositif modifiera les valeurs de toutes les grandeurs 
P qui ne commutent pas avec Q.

Il faut donc bien distinguer les « variables cachées » qui, dans la 
théorie causale comme dans la Physique classique, caractériseraient à 
chaque instant la position et le mouvement du corpuscule et les 
«. observables » au sens de M. Dirac qui sont les valeurs de ces grandeurs 
susceptibles d’èlre obtenues par une opération de mesure. Ceci montre, 
en accord avec certaines idées de M. llolir mais d’une façon toute diffé 
rente de la sienne, l’importance des opérations de mesure. A ce sujet, 
M. Bohm dit très justement : « Ce qui précède signifie que la mesure 
d’une observable 11’est fias réellement la mesure d’une propriété physique 
appartenant au système observé lui-même. Au contraire, la valeur d’une 
observable représente seulement une possibilité, impossible à décrire et 
à contrôler complètement, qui dépend aussi bien du dispositif de mesure 
que du système observé lui-méme ».

Il y a cependant un point important sur lequel M. Bohm n’a pas, à 
mon avis, suffisamment insisté : c’est le fait qu’avec les conceptions de 
la théorie causale, la probabilité de présence | *1 j- a un rôle privilégié 
par rapport aux probabilités ] des grandeurs qui ne commutent pas 
avec la position. La probabilité de présence 11Ij - dérive, en effet, de la 
loi du guidage quand on ignore (ce qui est nécessairement ici le cas) 
laquelle des trajectoires est effectivement décrite, alors que les probabi 
lités | c,, |- pour les valeurs des grandeurs non commutantes avec la 
position n’entrent en jeu qu’a près le processus de mesure de ces gran 
deurs quand on ne connaît pas encore le résultat de la mesure. C’est ce 
qui, du point de vue de la théorie causale, rendrait inexacte l’élégante, 
mais peut-être factice, « théorie des transformations » qui veut traiter 
sûr le même pied tous les développements du >F suivant les fonctions 
propres de toutes les observables : c’est aussi celle circonstance qui, du 
même point de vue, rendrait caduc le raisonnement de M. von Neumann
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sur les variables cachées ainsi que nous l’avons précédemment expliqué. 
.Et ceci nous amène à dire ici quelques mots du schéma statistique 
valable dans la théorie causale.

3. Schéma statistique de la théorie causale. — l\ous avons précé 
demment (l) rappelé le schéma employé couramment par les statisticiens. 
En considérant le cas des probabilités continues, on définit pour deux 
grandeurs aléatoires X et Y les densités de probabilité ov(.ï) et pv(y) 
ainsi que la densité p(x, y) de la probabilité de trouver simultanément 
la valeur x pour X et la valeur )' pour Y. On définit aussi la probabi 
lité de X liée par Y à l’aide de la densité p'^'(x, y ) d’obtenir pour X la 
valeur x quand on sait que Y a la valeur y et la probabilité de Y liée 
par X à l’aide de la densité pyi:(x, y ) dont la définition est.analogue.

Entre ces quantités, on doit avoir les relations

1 Ÿ\(x) = 1 SI y'ufy. iyi IM = / ri
( 1 N ) ! J J

i .y . . ./•. r’i fV,.. . z(.c. r I

d'où résulte

l ?*<■'■ > = / sv f r) s y t r i t/y.
ntt) J J

1 ?'M.C)= j -qXl(.r, y ) )<l.r.

Or, nous l’avons montré, avec les distributions de probabilité admises 
dans l’interprétalion usuelle de la Mécanique ondulatoire, le schéma 
statistique précédent n’est, pas applicable à deux variables aléatoires X 
et Y qui correspondent à deux grandeurs non commutantes. Ees raisons 
en sont : i" que la quantité p(x, V ) n’existe pas puisqu’il est impossible 
de mesurer simultanément X el Y ; a" qu’une mesure de Y change la 
répartition de probabilité pour Y et inversement.

Pour la théorie causale qui est d’un type plus classique, il n’en est 
pas de même et l’on peut retrouver le schéma statistique usuel. Pour 
cette théorie, en effet , les distributions de probabilité de l’interprétai ion 
usuelle n’existent pas toutes simultanément parce qu'au moins une 
partie d’entre elles sont créées par l’acte même de la mesure : c'est 
pourquoi elles ne rentrent pas dans le schéma statistique usuel. Mais la 
théorie causale permet de définir des probabilités qui existent sinudUi-

(1 ) Itliap. VI. § (t.



némcnt, avant toute mesure cl. qui, elles, satisfont au schéma statistique 
usuel.

Pour simplifier, raisonnons sur un problème où intervient une seule 
variable d’espace x) la généralisation à trois variables serait aisée. La 
variable aléatoire correspondant, à x sera nommée X et nous prendrons 
pour Y la composante pde l’impulsion, grandeur qui 11e commute 
pas Y. Nous avons alors

(20) ?*(•'■) = I!-; ?£(*, />■>■) = ''(/>.*-+- '■£)
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en raison des la signification statistique de | U-- j- et de la lormule du 
guidage. Pour p(.r,/>., ), nous trouvons d’après (18)

(9.1 ?(x. = px (./••) />,:) = | lI'(>) |* S (^.r -+- )

et nous avons bien

{■>■>.) j' ;-(x, I dpx = ! >1'(x) |-= ?x(>).

Nous trouvons aussi

<:>.'!) px) = J';-(x. <iv, = J | U'(.c) [2 0 ( ^ I =

les x,- ('tant les \alcurs de x pour lesquels — a la valeur p v considérée. 

Knli 11

( a 1 ) p w p ( •/* p.r )/V < ^ = ------—
S).

( I -

Par l’ensemble des formules ( 20) à (ai ), nous voyons qu 011 peut 
rétablir entièrement dans l’interprétation causale le schéma statistique 
usuel.

4. Une remarque de M. Takabayasi sur les moments des distributions 
de probabilité. — On sait, qu’étant donnée une répartition de probabilité 
délinie par o(x) pour la variable aléatoire X, on donne le nom de 
« moment d’ordre n » de celte distribution à la quantité

= C'Ax)xndx.

Dans son Mémoire de Progress of theoretical Physirs de iq.Vi | ;>].
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M. Takabajasi a calculé et comparé les moments qui correspondent aux 
distributions de probabilité dans l’interprétation usuelle et dans l’inter 
prétation causale. Résumons ses résultats en raisonnant toujours sur 
une seule variable x.

Tout d’abord, en ce qui concerne la variable d’espace x, il est évident 
que l’on a, pour n entier positif quelconque

(!2(i) \1<")=/ x" | U’(x) I2 dx
5C

aussi bien dans l’interprétation usuelle que dans l’interprétation causale. 
Plus généralement, on a même

0-7) >«/‘W;= / ./ï-'OITOri^/x

dans l’une et l’autre théorie.
Mais, si l’on considère une grandeur qui ne commute pas avec \, par 

exemple P.,„ on doit s’attendre à ne plus trouver tous les moments égaux 
dans les deux théories car, si tous les moments étaient les mêmes, les 
distributions de probabilités pour P.r seraient les mêmes dans les deux 
théories, ce que nous savons n’être pas exact. On démontre, en effet, 
dans le Calcul des probabilités que l’ensemble des moments détermine 
entièrement la distribution de probabilités.

Or, si l’on pose

>l\x) = f c(p,,)e~~!r'’t:'' dp,..

on a

(:-8) M;"' = j p", ci p,) 2 dp,.

Dans la théorie causale, avec l’expression trouvée plus haut pour 
p (p.,-), on obtient

0-9) M/,"; = |'///.|T(x)ps(^x+ '>l)dxdp,.= f (- ÿ- )" | >l'(x) j* i/.r.

Pour /- = i, nous avons

( 3° ) = /V'f,
J \ 9.7:1 a 2 / 9.ntj <)x

En remplaçant W et 'P* par leurs développements de Fourier et en
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/~J~ (/'» “ “ /' .(• )e 1 ' dx

aisément

('■il ) M/,', = jj {/>.,-) c< P-r) à (/).’,•  dp K dp.K.

r.c moment d’ordre i de p., a donc la même valeur dans lies deux 
théories.

Mais pour le moment d’ordre u de la théorie causale.

ou ne peut plus hure un calcul analogue et ce moment n’est pas égal au 
uiomenl correspondant J' p* \ c(p.,: ) |- dp.,- de la théorie usuelle.

Il n(y a naturellement là aucune objection contre la théorie causale 
car. pour elle, les probabilités considérées par la théorie usuelle 
n’existent qu’après la mesure et elles ne sont pas égales à celles qui 
existent avant la mesure et qui seraient valables pour un « surobscr- 
valeur » susceptible de connaître directement la valeur des grandeurs 
sans eUecluer de mesures.

On pourrait croire que la divergence entre les résultats obtenus en 
calculant Mj,*’ dans la théorie usuelle et dans la théorie causale pourrait 
conduire à trancher entre les deux : ne suffirait-il pas de déterminer 
expérimentalement Mj,”, ce qui est possible, et de voir laquelle des 
deux expressions est conforme à l’observation? Il est évident qu’il n’en 
est rien, l.a détermination expérimentale de Mj,2j exigeant que l’on 
effectue des mesures statistiques sur la grandeur P.,, c’est toujours la 
valeur de M^2/ prévue par la théorie habituelle qui traduira les observa 
tions, mais cela 11e prouvera rien contre la théorie causale puisque la 
valeur de MJ,*' que celle-ci calcule doit, d’après elle, correspondre à la 
distribution de probabilité inobservable qui existe avant toute mesure.

0. Examen d’une remarque de M. Bohr sur la collision d’un cor 
puscule avec un atome. - Pour' terminer ce chapitre, nous allons 
examiner un argument développé, il y a déjà longtemps, par M. Bohr et 
tendant à prouver que l’ionisation d’un atome par le choc d’un cor 
puscule 11e peut se comprendre avec les idées classiques sur la locali 
sation des corpuscules.

On sait que, si l’on bombarde un système atomique avec des particules 
rapides, on peut provoquer l’excitation ou même l’ionisation de ce

= !$(//,.-----P-r), 011 ITOUVC

■ = j P-v ! <-'{ P-c) |2 d
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système. Or ce phénomène, quand on l’anal) se a\ec les idées classiques, 
apparaît comme incompréhensible. En effet, la particule incidente 
traverse l'atome avec une vitesse v et si <1 désigne le diamètre moyen de

l'atome, le temps de transit, de la particule sera de l’ordre de C’est

seulement pendant un temps de cet ordre (pie la particule incidente 
peut agir sur les constituants de l’atome et leur céder de l’énergie de 
façon à provoquer une excitation ou une ionisation. Or, pour qu’un 
corpuscule de l’atome puisse absorber de l’énergie, il faut qu’il puisse
se déplacer appréciablemenL pendant le temps t  = ^■ Ceci exige que ce

temps r soit au moins de l’ordre des périodes T du mouvement des 
électrons dans l’atome, périodes qui sont elles-mêmes de l’ordre de 
grandeur du quotient par d de la vitesse des électrons intraalomiques. 
Si le corpuscule incident est très rapide, cette dernière vitesse sera 
inférieure à e et d n’y aura pas d’excitations ou d’ionisations possibles. 
Des calculs plus précis confirment cette conclusion et montrent qu’avec 
les conceptions classiques sur la localisation des particules, les phéno 
mènes d’excitations et d’ionisations par choc expérimentalement observés 
sont inexplicables.

M aïs, dit M. Bolir, il n'en est pas de même avec les conceptions de la 
théorie indéterminisle. En effet, pour pouvoir appliquer nu choc l’idée 
de la conservation de l’énergie, il faut que l’énergie initiale du cor 
puscule incident soit connue avec une incertitude oE beaucoup plus

petite (pie le quantum ~ correspondant à la fréquence v = / du mouve 

ment des électrons intraalomiques : s’il n’en était pas ainsi, l’incerti 
tude ôE serait de l’ordre des différences d’énergie AE entre les états 
stationnaires de l’atome et il ne serait plus possible de vérifier la 
conservation de l’énergie. Mais le train d’ondes associé à la particule 
incidente a toujours une longueur finie et, d’après la quatrième relation 
d incertitude, il met pour passer sur l’atome un temps ôl de l’ordre
de Jj-• Gomme, dans l’interprétation indéterminisle où la particule

incidente est potentiellement présente dans toute l’étendue du train 
d’ondes, cela n’a aucun sens de vouloir préciser, à l’intérieur de l’inter 
valle de temps dt. l’instant où le corpuscule entre dans l’atome, il en 
résulte qu’on ne peut attribuer au temps de transit t  une valeur infé 

rieure à dt. Donc on a ~ et. la différence AE de l’énergie
o I-. AI', -

entre les états stationnaires se trouvant être de l’ordre de on aura
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t ^>ï . Celle condition nécessaire pour qu’il y ait possibilité d’exci 
tation ou d’ionisation peut donc, dans l’interprétalion usuelle, être 
considérée comme réalisée parce que la durée de l’interaction entre les 
constituants de l’atome et le corpuscule incident, qui est potentiellement 
présent dans toute l’étendue de son train d’ondes, ne peut être regardée 
comme inférieure à la durée totale du passage de ce train d’ondes sur 
l’atome.

On pourrait penser que cet argument de M. Bohr constitue une 
objection conLre la lliéoric causale. En effet, dans celle-ci, on restitue 
aux corpuscules une position, une vitesse et une trajectoire. Alors un 
corpuscule incident associé à un train d’ondes sensiblement monochro 
matique aurait une vitesse initiale v bien déterminée et l’on pourrait

croire qu’il doit traverser l’atome en un temps de l’ordre de —•> ce qui

nous ferait retomber sous le coup de l’argument de M. Bohr.
En réalité, il 11e semble pas que l’argument porte contre la théorie 

causale. En effet, quand le train d’ondes incident atteint l’atome, une 
interaction commence dont l’évolution peut se représenter à l’aide du 
formalisme de l’espace de configuration. Durant cette interaction, le 
mouvement du corpuscule défini par la loi du guidage sera un mouve 
ment très compliqué lié aux variations violentes et continuelles du 
potentiel quantique. Il en résulte une sorte de « tourbillonnement » du 
corpuscule incident dans la région atomique qui ne permet plus du tout 
de le considérer comme traversant cette région avec un mouvement 
rectiligne et uniforme de vitesse v. Il peut avoir pour effet que le 
corpuscule s’attarde dans la région atomique pendant un temps qui peut 
être de l’ordre de la durée totale t  du passage du train d’ondes sur 
l’atome. L’argument de M. Bohr, valable contre l’application au 
problème envisagé de la Dynamique classique, ne paraît plus s’appliquer 
ici et l’existence des excitations et ionisations par choc ne paraît pas 
inconciliable avec la théorié causale (*).

f1) Depuis que ce chapitre a été écrit, j’ai fait une élude beaucoup plus détaillée de 
la théorie de la Mesure a\cc les conceptions de la double solution pendant mon cours 
de l’hiver jqoô-jqSb. .l’ai le projet de publier cet exposé.

L. DE BROOI.IR. 13



CHAPITRE XYI.
EXTENSION DES IDÉES I)E DOUBLE SOLUTION 

A LA THÉORIE DE L’ÉLECTRON DE DIRAC.

1. Introduction. — Nous avons développé la théories de la double 
solution en partant de l’équation d’ondes relativiste à un ’F (équation 
de Klein-Gordon) qui aujourd’hui doit être considérée comme valable 
seulement pour les particules de spin o. 11 faut évidemment trouver des 
formes de la théorie applicables aux particules de spin supérieur à o et
aotamment aux corpuscules de spin i ^en unilé comme l’électron.

Cette exLension a été faite par M. Vigier sous une forme qui me 
paraît plus satisfaisante qu’une autre forme que j’avais envisagée anté 
rieurement [10]. C’est donc la théorie de M. Vigier que je vais exposer.

2. Résumé de la théorie de l’électron de Dirac. — Rappelons d’abord 
très succinctement les principes de la théorie de l’éleclron de Dirac
^théorie de la particule de spin ■ Pour plus de détails, on pourra se

reporter à d’autres ouvrages sur ce sujet ( ').
Dans la théorie de Dirac, on considère l’onde W de l’éleclron comme 

une grandeur à quatre composantes U-'/, (avec /,• = i, 2, 3, f\) et, pour 
pouvoir former des combinaisons linéaires des 'F/,-, on introduil quatre 
matrices à quatre lignes et quatre colonnes. Nous prendrons ces matrices 
sous la forme donnée naguère par von Neumann (-), forme qui esi 
adaptée au formalisme relativiste. Ces matrices y, sont hermitiennes, 
c’est-à-dire que (y,•),-,= (y)*,.. De plus, elles satisfont les relations

(1) r/ = U ï<ï/-+- 7/7/= <> Pour ' /: J

(*) Par exemple : Louis d e Iîk o g l ie , La théorie des particules de spin - (électrons 

de Dirac), Gautliier-Villars, Paris, 1962.
(2 ) Loc. citp. 66.
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que nous pouvons condenser sous la forme 

( ■>. ) 7i 7/ "H 7/7* =

L’écriture y/W/, représente alors, par définition, la combinaison

linéaire ^ et l’écriture Uy.y,' représente de môme la combi-
1

liaison linéaire ^ My (y,:)//,- d’où *ly.y,= (y,-'F*)* à cause de l’hermiticité 
1

des y/.
Considérons alors un corpuscule de spin * et de charge e se déplaçant

dans un champ électromagnétique dérivant des potentiels A et V. Pour 
des raisons que je ne rappellerai pas ici, M. Dirac a admis que les 
quatre M'/, doivenL obéir aux équations d’ondes suivantes :

( 'i ) A 'lh =— im0c'l'/; (* i h

ni0 étant la masse propre du corpuscule. Les ,xy sont ici les coordonnées 
d'Univers

r ; = .r, .1:, — y, = 3. a.'i = ici.

Les A; sont les composantes du potentiel d’Univers

\, = \ ,., A,= A,., A:i= Aj, A, = iV.

Les équations (3) forment un système de quatre équations linéaires 
aux dérivées partielles du premier ordre simultanées. En introduisant 
la convention de sommation des indices usuelle en Relativité et en 
supprimant l’indice /. des V/,, on écrit (A) sous la forme abrégée

( i i -y ( TU - — - A / ) lI ' = — iin„c 'U.
\ > -1 /M’i c J

Introduisons les 'ly. définis par 1 J= U*'* y., ou symboliquement 
'L = 'L'y,. En prenant l’équation complexe conjuguée de (A), on 
obtient comme équations d’ondes pour les sous une forme symbo 
lique analogue à (4)

( "> ) 11. A
1 t . i il.i’i tf’+y( = — ini()cW+.

Je me contenterai de noter les points suivants :

i" Los quatre matrices y, ne sont pas entièrement déterminées par les
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condilions qui leur sonl imposées, mais celte indétermination des y,- 
n’affecte pas les prévisions physiques que l’on peut tirer de la théorie.

2“ Si l’on change de système de référence galiléen par une transfor 
mation de Lorenlz, on peut écrire les nouvelles équations d’ondes sous 
la même forme que les anciennes avec les mêmes matrices y,-, mais les 
nouveaux Wl; sonl des combinaisons linéaires des anciens.

3" On peut démontrer que les équations (/j) contiennent le spin de 
l’électron aussi bien sous son aspect mécanique (moment cinétique 
propre) que sous son aspect électromagnétique (moment magnétique et 
moment électrique propres).

Les densités de moment magnétique propre et de moment électrique 
propre sont représentés dans un système galiléen par deux vecteurs 
d’espace Mi et P. Au point de vue relativiste ces deux vecteurs s’unissent 
pour former un tenseur d’Univers JTL qui est antisymétrique de rang 2. 
Ses composantes sont

/ 011,, = — OU, j = ic l>æ ; OU4( = — 011,, = ic I', ;
(6) Oïl,,- = o | OU,,, = — 011,= ic 1». ; Ole,,, = — Oit;,., = Mx;

( 0)l:il = — 011;,, = .VI,.; OU,., = — OR.,, = Vl.,.

Des équations (4) et (5), on tire en multipliant la première pari” 
en avanl et la seconde par V en arrière et en retranchant

(71

ou

(8)

à ... 0>I- ...'L-7, —R -+- -—7,1 = "
ll.l'i l>Xj

-j--(U’-»-y, U”) = o. 
àx, '

Nous avons ainsi obtenu une équation de continuité pour le quadri- 
vecteur

(9) jt= 'c1% 7, T = 'I’IT'iVi1!’/..

C’est là, en théorie de Dirac, le quadrivecteur « couranl-densilé » 
dont les trois premières composantes j\ = /e'F*yi 'F =— c'I% a DF, . . . 
donnent les composantes du flux corpusculaire le long des axes d’espace 
tandis que la quatrième j , - - b'F y , 'J ' - ic 'F* ff représente (au 
facteur ic près introduit par les notations d’Univers) la densité de 
probabilité de présence

l'U-
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Notons qu’on obtient le quadrivecleur « courant-densité d’électricité » 
en multipliant par e les grandeurs j-,.

Le quadrivecleur j qui vient d’étre défini peut être décomposé en 
deux parties. Pour le démontrer, multiplions (/j.) en avant par 
et (5 ) en arrière par y/1!1-, ■ajoutons et divisons par Il vient, compte 
tenu de ( a )

(m , .// :

— Adl'- 'P ■

d*r-
<).ïi
h

T

I à j c ('D ï/V/'l'é

Nous pouvons donc décomposer le quadrivecteur j en deux quadri- 
vecteurs j(1* et j<-> définis par

d'r (éfJj — ■ { 1
<),rt <}.Vl

Il Ô
J/ ~ 4-ù/(„ 2j <).r,

(»!•+..<ï/ln.

("est ce qu’on nomme « la décomposition de Gordon ».
11 est aisé de retrouver une interprétation physique de jll) et de j(->. 

On voit d’abord que j!li est le vecteur flux-densité correspondant au 
mouvement d’ensemble de la particule : par exemple, en considérant le 
cas simple de l’onde plane monochromatique en l’absence de champ 
( A/= o) où l’on peut définir une vitesse

on trouve
i .

P P ------ ~v = = — v i — j ■m.

= ? = '!'* ‘J’,

Quant au quadri\ecleur j1-), on l’interprète en partant d’une analogie 
avec la théorie classique des milieux polarisés. Considérons un milieu, 
siège d’une polarisation magnétique et d’une polarisation électrique. 
Son état de polarisation est défini en chaque point par deux vecteurs 
d’espace, le vecteur M (densité de moment magnétique ou intensité 
(l’aimantation) et le vecteur P (densité de moment électrique ou polari 
sation électrique). Du point de vue relativiste, ces deux vecteurs 
d’espace s’unissent pour loi-mer un tenseur d’espace-lemps <711 anti 
symétrique de rang 2 dont les composantes s’expriment en notation 
d’Univers par

/ 7Un = o, Al'Cj', = — = icVf (/’= i, a, 3;;
('•■U ] ■m,7 = -A1i/i= M/,

( (Ù j, formant une permutation paire des trois indices i, a, ’i).
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Or, la théorie classique des milieux polarisés montre que cel te polari 
sation est équivalente à l’existence d’une densité microscopique de 
charge è=—divP et d’une densité microscopique de courant

ï~ — -)- rot M. O11 peut donc dire que la jiolari.sal.ion est équivalente 

à l’existence d’un vecteur courant-densité j tel que

(i'n

1-98

car cette formule redonne bien les valeurs de ô et de i que nous venons 
de rappeler.

Si maintenant, on compare l’équation (i3) avec l’expression (qi) de 
j'-), on voit qu’on peut les identifier en posant

C’est là précisément ^au

courant de probabilité au

magnéton de Bohr ——— )> 
0 1 r.mac /

lacleur £ près qui correspond au passage du 

courant électrique et qui lait apparaître le 

l’expression des composantes non milles du

tenseur antisymétrique de rang 2 qui, en théorie de Dirac, fournit, 
comme nous l’avons vu plus haut, la densité de moment magnétique 
propre et la densité de moment électrique propre dont l’existence est 
liée à celle du spin.

En résumé, le quadrivecteur courant-densité j de la théorie de Dirac 
se décompose en un quadrivecteur j11 qui provient du mouvement 
d'ensemble (mouvement orbital) du corpuscule et d’un quadrivecteur j!- > 
qui provient de son spin.

3. Guidage dti corpuscule en théorie de Dirac. — Nous allons pour 
l’instant adopter le point de vue de l’onde-pilote et considérer le cor 
puscule comme guidé par l’onde T. Dans la Mécanique ondulatoire à 
une fonction d’olide, il suffisait pour cela de définir la vitesse du 
corpuscule à partir de la phase tp de l’onde *1' écrite sous la forme

W = ae/' '. Mais ici, si nous voulons transposer celle idée, nous ren 
controns une difficulté. Comme il y a, en théorie de Dirac, quatre 
composantes du fl’, nous devons écrire

( 15) y, t) = a/L-(.r. y, 3, l)eh (/■ = 1, 2, :t, î),



où les fonctions a* et <p* sont réelles. Or, il n’y a aucune raison pour 
que les cp* soient les mêmes : il n’y a donc plus une phase, mais quatre 
phases distinctes. Guidé par la méthode qui permet de trouver l’approxi 
mation de l’Optique géométrique en théorie de Dirac, j’ai essayé dans 
une Note de septembre 1902 de définir une phase commune 0 par la 
formule cp*=: 9 + cpj. et, comme le choix de cp est évidemment arbitraire, 
j'avais cherché à la déterminer par une condition auxiliaire. Mais j’ai 
reconnu depuis que, les formules auxquelles je parvenais conduisant à 
définir le mouvement par le vecteur ji de la décomposition de Gordon, 
ceci revenait à négliger l’inlluence du spin sur le mouvement. M. Vigier 
a, plus justement je crois, cherché à définir le mouvement à l’aide du 
vecteur global j, mais dans sa Note sur ce sujet [10], il a néanmoins 
conservé l’idée d’une phase commune 9 (qu’il nomme S). Je pense 
maintenant que cela est inutile et artificiel : il faut raisonner directement 
sur les quatre phases distinctes cp*.

Si l'on part de l’expression ( 15) des T/, et si l’on l’introduit dans 
l’expression (10) des composantes ji du quadrivccteur courant-densité, 
on obtient
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1
' A,C a 'rk a/c h v«=—7 -— ( a \r. im(l Àrni t).ri l'

/ «/■ ).

Le mouvement du corpuscule peut être défini par sa vitesse d’Uni- 
vers U dont les composantes, en notation d’Univers, sont

f 17

«■/./•, r,. <lX:

lis f. v/, — 'y-' " ~ ~ ~7t7

i/.n, c- </.r,
'/* rv = -717

Leur expliciter le guidage du corpuscule par l’onde *1, il paraît 
naturel d’imposer à celui-ci de suivre une des lignes de courant définies 
par le vecteur j, c’est-à-dire de poser

(IS ! 11 i = K /,.

Mais le quadrivccteur U obéit à la relation

(19;
I

— 1, d’où l’on tire

K =
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M. Vigier propose alors de définir la masse propre variable M<> du 
corpuscule par la formule

(■>o)

d’où

'»!!,// __ IH^Jt 
tp+ip - a, a ’

(21)
mn J-, ni, i 1 

a^a CU( a' a c

Nous verrons que celle définition de M0 est bien la généralisai ion on 
théorie de Dirac de colle que nous avions adoptée en Mécanique ondu 
latoire relativiste (à un 'I .

Pour préciser, nous introduirons les définitions suivantes :

(22)

V /'*
k <)x ;

<)x,

X

Py = -

h

i -X j 1 Jr■-------- i
rr*- a

a, ak

I.a quantité --- est une moyenne des quatre dérivées y y- quand on 

attribue à chacune le « poids » a£a*. Le quadrivecteur P est la somme 
du quadrivecteur —y A et d’un quadrivecteur proportionnel à j(-’. 

A-vec ces définitions, on peut écrire d’après (ib) et (ao)

(2.3) Mil c m ,- = - ùcp
()j'i

] >, = —
<)xi A H I’-

formule qui joue ici le rôle de formule du guidage. L’inllueneo du spin 
sur le mouvement est représenté par le terme P' proportionnel à //21.

Nous voulons montrer que la formule précédente est bien la généra 
lisation de la formule (18) du chapitre X,

(a))

(*) On en déduit aisément que M I.-I
-i—irI

classiques en théorie de Dirac.

i*t Iü étant les deux, invariants
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qui! nous avions obtenue à partir de l’équation de Klein-Gordon et qui 
s'écrit avec nos notations actuelles et l’emploi des coordonnées d’Univers 
au lieu des coordonnées d’espace-ternps,

Pour le voir, il suffit de remarquer que, pour passer de la théorie de 
Dirac à celle de Klein-Gordon, nous devons : i° négliger l’effet du spin, 
c’est-à-dire le terme P) dans (23); 20 supposer que les W* se réduisent
à un seul *P = a e /; ', ce qui donne ^ • Lé raccord de (28) et

(an) se fait donc bien.
Nous lirons aisément de (a3) les relations

(ali i
t/s

( \l nrlli) ■ V
I t)x

’> w tl''i --(.Mo eu,-; -
f/s

+ U ;
t)z

/)./'{ OjL'i
à't
ÔX j y

Comme 2, i, on a
<)llj 

' Ô X i o et le premier terme du dernier

é\lmembre vaut c -jy de sorte qu’on a finalement comme équation du

mouvement

h':> Tïs M 1 ’ —',/77 11J FiJ 1
à i p, à

r i<)x j ÔXi
.’L f l". — -3-
àXi\ y ôx.

Où F,j = est le produit du champ électromagnétique
c / t)\i f)\ j 

C \ ÔX j ÔXi

par la charge.
Le dernier terme de (ay) exprime l’action du spin sur le mouvement : 

il est visiblement nul en l’absence de spin puisqu’alors le quadrivecleur P
est nul et que, se réduisant à -fY-> on a

1 ÔXi OXj

t) t)z _ <) ôz

t)x i t)j'i t)x i <)x j

Si le spin est nul ou a une action négligeable nous retrouvons l’équation

(281 ~ ( Mono) = t: f/yF,/

y

qui correspond bien à la Dynamique étudiée au chapitre X.
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Il est facile do vérifier ainsi que la définition (ai) de M0 se ramène, 
quand on néglige le spin, à celle que nous avions précédemment adoptée 
en partant de l’équation de Klein-Gordon. Kn effet, si l’on néglige le 
spin, on a

joe = O et j=j"

et l’on peut considérer une seule composante du V, donc un seul a et 
un seul o. On trouve alors

Oj) j ' ~r ( grad s - * A);
//f0 v t j

où grad est le gradient d’Univers. La définition (ai) nous donne alors

( 3o ) .M o c2 = — ^grad ? — ^ .

Or, l’équation do Jacobi généralisée nous donne sous sa (orme 
relativiste
(3l) -(grad:? .. A) 2(2 • : -v”)i

., /<-   "
= />lÿC--h , -------- )

1 "

ce qui nous ramène à l’expression de M0 déduite de l’équation de 
Klein-Gordon.

Bref, en admettant la définition (ai) de M0 et. en en déduisant la 
formule (a.'i), nous avons obtenu une généralisation naturelle de la 
formule du guidage dans la théorie de Dirac. Le corpuscule se trouve 
alors assujetti à avoir pour ligne d’Univers une des lignes de courant 
définies par le quadrivecteur j. Comme précédemment, et toujours sous 
la réserve d’aVoir à fournir une démonstration d’ergodtcilé, on en 
conclut qùe la densité de probabilité de présence est donnée par

1

L’extension de l’idée de guidage que nous venons d'indiquer en 
passant des équations de Klein-Gordon à celles de Dirac doit pouvoir

s’effectuer également pour les particules de spin supérieur à -• M. \ igier

a montré qu’il en était bien ainsi dans le cadre du formalisme introduit 
par la théorie des photons.
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i. Introduction de l’idée de double solution en théorie de Dirac. —
jNous venons de voir comment on peut introduire en théorie de Dirac le 
guidage du corpuscule par l’onde ce qui constitue le point de vue de 
l’onde-pilote. Ce point de vue étant certainement insuffisant, il y a lieu 
d’introduire ici aussi l’idée de la double solution, c’est-à-dire d’admettre

qu’il chaque solution continue ï’/, = «/,■ e k '* des équations de Dil’ac doit, 

correspondre une solution

’it=/k(-«, V, z, t) e h '*

avec les mêmes o/,-, où les /), comportent un même point singulier mobile 
ou plutôt une même petite région singulière mobile où les U/, auraient 
une grande valeur et obéiraient à des équations non linéaires.

Un 1927, dans le cadre de la Mécanique ondulatoire relativiste avec 
un seul T, nous avions montré (4) que, dans le cas du mouvement 
rectiligne et uniforme en l’absence de champ, il existait dans le système 
propre d’un corpuscule de masse propre m0 une solution à singularité 
et à symétrie sphérique

,1-7- "V-'u
( ^ > 1 Hu< «Ad  )'(t- s<>: ^0 ) = G 1

et l’on avait seulement à faire une transformation île Lorenlz pour 
obtenir dans un autre système galiléen la fonction d’onde u(x, y, z, l) 
à singularité mobile qui représenterait le corpuscule en mouvement, 
bien entendu, si l’on substitue à l’idée de singularité ponctuelle celle de 
petite région singulière, on doit considérer que la solution obtenue 
représente l’onde u d’une particule à symétrie interne sphérique, mais 
seulement en dehors de la région singulière.

Il est naturel de chercher à obtenir en théorie de Dirac des solutions 
à singularité analogue à la précédente. Considérons un électron de 
Dirac en l’absence de tout champ et plaçons-nous dans son système 

•propre. Les « petites composantes » iii et Uo y seront supposées nulles 
et, en adoptant la forme usuelle des matrices de Dirac, on trouvera 
pour u-. et uj, les équations (-)

ni

1) . <) \dr + ' ,)y ) + 7LT = ()./: 1 <)y ?/;] 1)111
= o ;

h 1 i)u:] 
■>. ~ I r <)!

h I <)U\

>T.i V (U m„eu ;.

( 1 ) f oir Cliap. 1\, § .'î.
( ~ j Pour alléger l’ecrilurc, nous oiiicttoiis l'indice zéro dont il faudrait affecter les 

\arialdes .r, y, -, t dans le svslrnie propre.
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On satisfait aux deux dernières équations en posant

20'J

(35) -T- >»O1’'1 i
f*eh U, =J

~r "l<\ e h

qui entraînent
y,=y ■, — o.

Si nous introduisons 1 es variables

(36) U
./“ y- i y

)2
./• — i Y

i2

nous obtenons

(37)
<)/)
<)v

40
=~ yy

40 =
Ou

(38)

Ces équations admettent la solution à singularité

<r-
A Ou Oz /:

comme on le vérifie immédiatement en se souvenant que A 1 = o.

Revenons aux variables x et y et remarquons que r = y x- -+- z- 

est égal à y4uv-\-z-. Nous voyons que nous avons obtenu dans le

système propre une solution à singularité du type U/~ fu > avec

(39) /] =/■•= <>. f, = ■ x- — r-
A

3 ( x — i y ) z

En faisant une transformation de Lorenlz et en tenant compte de la 
transformation correspondante des composantes dé Dirac, on obtiendrait 
la forme des Uk dans un autre système galiléen où la singularité aurait 
un mouvement rectiligne et uniforme.

Comme les équations (3y) se conservent quand on permute simulta 
nément f3 avec /), et u avec —e, on en déduit l’existence d’une autre 
solution à singularité donnée dans le système propre par

(4‘>)
A=A = O,

A

A =

' 03?

0i / i \ _ 'i( x -h i y ) z
iwï W ~~ 0

a' - — y* 
/-»

On remarquera que les solutions (dp) et (4°) ne possèdent pas la 
symétrie sphérique : elles correspondent non pas à des pôles isolés,

mais à des doublets. Pour des particules de spin supérieur à -j on trou-
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verail dos solutions à singularité correspondant à des multipôles d’ordre 
supérieur (d ).

Si l’on substitue à la notion de singularité ponctuelle celle d’une petite 
région singulière où l'équation en u n’est plus linéaire, on doit consi 
dérer les solutions indiquées ci-dessus comme n’étant valables qu’à 
l’extérieur de la petite région singulière.

Examinons maintenant comment se présente en théorie de Dirac la 
question de la liaison entre l’onde u et l’onde lF.

Pour le mieux voir, reprenons d’abord la question dans la théorie 
sans spin. E’équalion (ad), quand on y néglige le terme P) qui vient du 
spin et que l’on considère une seule phase », s’écrit

(/il) M ,(•«,• = — i ( /'= i, 3, 1),

ce qui donne

(la)

d’où

M„r,-

VI — ë2

ù-ÿ
tJj'i

A , (7=i. 2, 3 ) ;
c.

Ai0<7

V 1 — ë2

(43)

1 à-f 
ir <)t - - /'V, 

c

Par division, on obtient alors 

( i i ) vi = -

<)o

à./',
XL

àt

ce qui est précisément la formule du guidage précédemment obtenue 
dans la théorie sans spin [chap. IX, formule (36)]. La vitesse est alors 
entièrement déterminée par la phase cp commune à u et à W. L’équation 
de Jacobi généralisée (J) valable pour u et W impose alors, nous l’avons
vu, l’égalité des rapports ct QZ, ce qui permet de mettre l’expression 

de la masse M0 sous les deux formes équivalentes

(45)

Voyons maintenant ce qui se passe en théorie de Dirac. La for- (*)

(*) M. Gérard Petiau a étudié très complètement ces autres types de solutions 
(C. K. Acad. Sct. ‘238, 5904, p. 998).



206 CHAPITRE XVI.

mule (23) nous donne

Mu

v'i — >- àxi c
M||C7 I ij-Ç Z

2 IC <)t C,

_r-A^r; (/ = ■• ■>, •) 1,

iV -+- K, ;
\ 1

,M„ 1 / <h

v'i —

l'i _ ?•./«(, 
/c 2/ ,/

c2 V iV + 77/ ’

(.-IG)

d’où 

( 17 ) 

avec

( 1* .1

j j ',
-A est une quantité réelle. Finalement nous obtenons par division des 

deux formules (4b)

(. i<),)
-r- -+- --a r>;

•> C , • .,r; = —f---------------- —

_L — C. V —h -r~
,), ic ,

Telle est la forme précise de la formule du guidage en théorie de 
Dirac.

o. Conséquences des formules obtenues. — Le point de vue de la
double solution conduit à supposer que la vitesse (à trois composantes) et 
la masse propre M0 données par les formules (’4q) ol (2 1 ) doivent avoir la 
même valeur qu’on les calcule à partir de l’onde u ou qu’on les calcule

à partir de l’onde lF. Or, comme ici les quaire ' — et les quatre In 

dépendant des ak, il ne suffît plus de supposer que chaque U/, a la même 
phase cp/,- que le 'F/, correspondant. Il faut, de plus, que, quand on subs 

titue les fk aux a in les expressions — _ ^À,-+ P' pour t = 1, 2, 3, 4

gardent la même valeur de façon que la vitesse V et la masse propre Mu 
gardent aussi la même valeur.

Au premier abord, cette condition, qui semble indispensable pour 
permettre l’introduction de la double solution en théorie de Dirac, 
paraît extrêmement restrictive. INous allons voir cependant qu’elle 
découle tout naturellement d’une idée que nous allons rencontrer ici 
pour la première fois, mais que nous retrouverons au chapitre suivant.



En somme, ce que nous sommes amenés à postuler, c’est que les 
lignes de couninl définies par les formules de la théorie de Dirac soit à 
partir de l’onde 11, soil à partir de l’onde coïncident. Mais, bien 
entendu, elles ne peuvent coïncider que dans la région de l’espace où 
Fonde u obéit à la môme équation linéaire que l’onde W, c’est-à-dire 
à l’evLérieur de la très petite région singulière mobile où u a de très 
grandes valeurs et n’obéit plus à l’équation linéaire du W. Affirmer que 
la région singulière quasi ponctuelle suit une des lignes de courant 
définies par le quadrivecteur j, celui-ci ôtant calculé à l’aide des 
composantes uk de «, ne peut avoir de sens que si l’on calcule j sur le 
pourtour de la région singulière, par exemple sur la sphère S que nous 
avons introduite au chapitre IX (§ 6) pour la démonstration de la 
formule du guidage et qui, contenant à son intérieur toute la petite 
région singulière, se trouve déjà dans la région où u obéit à l’équation 
linéaire de propagation. Il faut aussi, bien entendu, que la région singu 
lière soit si petite que Fonde continue 'F soit sensiblement constante 
dans toute cette région et jusqu’à la sphère S. Alors, sur toute la 
sphère S, les vecteurs d’espace j (ji, J >, J:-,) sont égaux et parallèles et 
l’on doit pouvoir les calculer aussi bien à l’aide des u/; que des *!"/,.

En un point quelconque de la sphère S, Fonde u qui obéit en ce 
point aux équations linéaires de Dirac satisfait à l’équation de continuité

(5o) ~"ir~ ! u ~v-> ~

où v est la vitesse définie localement dans l’espace à partir du quadri- 
veclcur courant-densité de la théorie de Dirac. En remarquant que
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i11 !’’ = I uk F = 21/* I2 = !/n
I 1

on peut écrire l’équation (5o) sous la forme 

Cm) '?‘j - v.grad / --e f- divv = o

ou, si l’on appelle s la variable d’espace comptée le long de V,

. ')f'~ >>f2 ,, ,.( >:>. ) ------- h v - , —H / - div V = o.7 f)1 r)x J

Or, nous avons supposé (chap. IX, § 6) que sur la sphère S, bien que 
l’équation linéaire des ondes y soit approximativement valable pour u,

\ j Ti>
la fonction /commence à augmenter rapidement de sorte que ~ f1.
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On peut alors négliger le dernier terme de l’équation précédente et l’on 
trouve

ôJl <>/
às às

( 53 )

,)t \)t

On voit donc que, en un point quelconque de S, les valeurs de l’ampli-

I//.■ |a ^0 l’onde u se déplacent dans la direction V avectude f —

la vitesse (53). Ceci signifie que la région singulière quasi ponctuelle 
de u se déplace d’un mouvement d’ensemble avec la vitesse v le long des 
lignes de courant définies par les vecteurs d’espace j qui sont par hypo 
thèse tous égaux et parallèles en tous les points de S. Nous avons ainsi 
retrouvé en théorie de Dirac la démonstration de la formule du guidage.

Ma is les considérations qui précèdent, en nous obligeant à admettre 
que le calcul du quadrivecteur j sur S conduit au même résultat qu’on 
le fasse à partir des u/: ou à partir des 'F/,. nous conduisent presque 
inévitablement à envisager l’idée suivante : « En dehors de la petite 
région singulière, où elle obéit à une équation non linéaire, la fonction u 
serait proportionnelle à la fonction 'F normée ; autrement dit, on aurait 
à l’extérieur de S, u ~ CW ». La constante G aurait une valeur bien 
déterminée puisque «, ayant une signification objective, doit avoir une 
valeur bien déterminée et ne peut pas être normée arbitrairement 
comme '! .

Dans la théorie sans spin, celle hypothèse nous conduit à poser 

( à \ ) /= G ' a, phase de u = phase de M' const.

La seconde relation exprime l’égalité des phases (à une constante 
près, ce qui est sans importance puisque le guidage fait ici seulement 
intervenir les dérivées de cp). La première relation (54) donne évidein-

Q f Q n . . , .
ment —j- - - —— et nous avons ainsi retrouves toutes les relations postu 

lées par l’hypothèse de la double solution en Mécanique ondulatoire 
sans spin.

En théorie de Dirac, l’hypothèse « = CF donne 

(55) fk = j C | (u-, phase de iik = phase de -i- argC.

La seconde relation (55) exprime le postulat que nous avions intro 
duit en supposant que les composantes de même indice «/, et 'F/; avaient



la même phase «/,. De plus, l’ensemble des relations (55) montre que 
les quart rivectcurs définis par

(r><;' ji = ic ^ YO'dl’/,! ji=ic'S «Ï7,v,«*

l 1

coïncide sur S et à l’extérieur de S à la constante multiplicative près 
| G |-. 11 est facile de vérifier qu’alors la vitesse de guidage V et la masse 
propre Mo ont la môme valeur qu’on les calcule sur S à partir de u ou 
à partir de *1.

Nous allons maintenant dans le chapitre suivant étudier de plus près 
la nouvelle idée que nous avons été amenés à introduire et nous en 
verrons toute la portée (4).
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(') J/hvpothèsr exprimée par u — CM’ (en dehors de la région singulière) soulève en 
théorie de Dirac une.difficulté qui ne se présente pas dans le cas de la Mécanique ondu 
latoire a un seul

Kn elle! eu théorie de Dirac, le choix des matrices 7 (ou a) est dans une large 
mesure arbitraire d. sui\anl la façon dont on tait ce choix, la forme des M’a varie. Seule 
reste invariante la forme des grandeurs bilinéaires en U’ et M’* qui, dans l’interprétation 
habituelle, constituent les seules grandeurs de la théorie ayant un sens physique. Comme 
le quadri\ecteuv j est précisément une grandeur de ce type, le guidage défini par j est 
indépendant de ['indétermination existant sur les M’a. Mais, comme dans la théorie delà 
doulde solution on veut donner à l’onde u un sens physique, il semble que l’on doive 
supposer que les composantes /a- ont des valeurs bien déterminées. Alors, dans les 
équations linéaires valables pour les Uk en dehors de la région singulière, il faut suppo 
se]* que les matrices y ont une forme physiquement déterminée et la relation u = CAF 
ne sera possible que si l’on prend pour les M’a une solution des équations de Dirac 
écrites avec précisément celte forme des matrices 7. L’indétermination des matrices 7 
et celle des composantes M’a qui en résulte 11e s’introduirait donc que quand, cri adop 
tant le point de vue de l’interprétation usuelle, 011 ferait abstraction de Fonde u pour 
ne plus conserver à l’onde M’ continue que le caractère d’une onde fictive de probabilité.

L. DE BROGLIE. 14



CHAPITRE XVII.
LA S TRUCTURE DE L’ONDE u ET SES RELATIONS AVEC L’ONDE M\

1. Difficulté de prouver l’existence et de trouver la forme de l’onde u. 
— Pour arrixer à me lire vraiment au poinl la théorie de la douille solu 
tion, il faudrait prouver l’exislence de l’onde u, préciser sa forme et 
montrer quelles sont les relations exactes qui existent en Ire elle et 
l’onde *F usuellement envisagée par la Mécanique ondulatoire. Il se pose 
alors toute une séné de questions difficiles que nous allons, au moins en 
partie, examiner maintenant. Tant que ces questions n’auront pas été 
Lien élucidées, la possibilité de construire une interprétation causale 
\raiment cohérente de la Mécanique ondulatoire ne sera pas établie.

Quand j’ai écrit, mon Mémoire de 1927, je considérais l'onde u comme 
obéissant à une équation de propagation linéaire et comportant une véri 
table singularité mathématique. Naturellement, je sentais la nécesssité 
de démontrer l’existence de ces ondes a à singularité. Comme j’avais 
trouvé une solution à singularité dans le cas de l’absence de champ, 
j’espérais qu'on pourrait étendre ce résultat en raisonnant à peu prés 
comme il suit. Dans une région R0 où il n’y a pas de champ, il existe 
des solutions u et W, pimelées comme l'exige le principe de la double 
solution : si ces ondes pénétrent ensuite dans une région R où régne un 
champ, la singularité de l’onde u ne peut pas cesser d’exister et l’on 
pourrait chercher à démontrer que le prolongement de l'onde u dans la 
région R continue à être lié au prolongement de l’onde 'F par les pres 
criptions de la double solution. Mais je ne pouvais aucunement préciser 
cette démonstration.

En résumé, la théorie que je cherchais à développer jirésupposait le 
théorème d’existence suivant :

Etant donné une certaine équation de propagation valable dans 
un certain domaine de /’espace et admettant dans ce domaine une
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solution continue telle que

'r(.r, \\ s, t) = a(x, y, s, /) e A

satisfaisant à certaines conditions aux limites, il existe une autre 
solution

u(x,r, s, /)=/(>, r, s, t)e h

ayant la même phase q(x, y, z, t), obéissant aux mêmes conditions 
aux limites et dont Vamplitude présente une singularité en général 
mobile (1).

(') Nous \oudrions indiquer comment on peut poser le problème d’existence de lu 
fonction u en l’absence du champ.

4^
J>aiis un espace-temps euclidien, l’équation []T+ —— ml e~xV ; cent en coor 

donnée

(ft)

«pies x''- : \',,A x. y, z, () sous la forme

; ^11 
t).r-j

- nt ji c- U*

lin posant M'

(.1)

(Ci

a & h Y a\ec a et g réels, ou obtient les deux équations

, ()r '}'i
t.).v- t).r>

t <)a t)z a <)
t).r<)x> ^ bx’'-

m ü c- I (t : <)(i 
âx> ’

Considérons les li \ persurfaces ç ( .r, }\ z. 1 ) — const. x'1 de métrique interne
dz--- g;k dxl dxk a\<*e /, k - i, d et les courbes l" orl hogonales dans l’espace-temps à

cette famille d’lt\nersurfaces. Les courbes T sont définies nar u'K — igO-~-7 et coïncident■ 1 1 ()X-J
avec 1rs lignes de courant déterminées par la formule du guidage. Gomme les hypersur- 
faces ne sont ])as en général géodésiquemenf parallèles, ou aura eu tout point de 
IVspace-temps euclidien

( b ) ds- : - ds j' - • dz- : g u ( ,r\ x-, .r\ x' ) ( dx’1 )- -\- gygx'. x-, xg x'1 ) dx‘ dx'g

don

(C) g'1' - g1'1 = 0.

L'équation (G) montre alors que a- \—g,g“ est indépendant <b‘ x'1 et, comme on en 

conclut que -y-- {n- \ — g ur'-) ~ o, ceci exprime la eonseix atiou du lliude dont, la den 

sité propre est a- \ — g. Quant à l'équation ,( J ), elle donne

uh h - . <)x,J-
} ^u 
‘ bx:- _ m ô c- ) <

On voit alors que - \g‘,,‘ est égale à la masse propre variable Mo précédemment délinie. 

L’équation (d) jointe aux conditions aux limites détermine une solution W fi nie,
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Le problème était ainsi posé, mais non résolu. D’ailleurs on aurait pu 
modifier un peu l’énoncé de ce théorème d’existence en faisant la 
remarque suivante. Ecrivons les deux ondes sous la forme

l y,
«T(.r, y, z, t) = a(x, y, s, t) e ‘ ;

(0 ) ~i Ç'cr.v.s,/)
\ “O, y, -, t) — ./(•», ,T. -,0e'

Nous avons admis dans l’énoncé précédent « la concordance des 
phases » sous la forme stricte

?(*» r> 0 = ?'<>, y, -, O

pour tout ensemble de valeurs x, y, s, t. C’est là naturellement une 
exigence qui paraît très sévère. Or, ce postulat sert essentiellement à 
démontrer la formule du guidage et à opérer le passage de la Mécanique 
ondulatoire du corpuscule unique à la Mécanique ondulatoire des sys 
tèmes de corpuscules dans l’espace de configuration. Si l'on regarde 
de quelle manière l’hypothèse (2) intervient dans ces raisonnements, 
on constate qu’il n’est pas indispensable d’admettre la concordance des 
phases cp et cp' sous la forme (2). 11 suffirait de supposer que les phases o 
et cp' coïncident au voisinage immédiat du corpuscule.

Nous avons été amené, pour des raisons que nous allons dé\elopper, 
à remplacer l’idée que l’onde u comporte une singularité ponctuelle par 
l’idée d’une très petite région singulière, en général mobile, où l’onde 
obéirait à une équation d’ondes non linéaire. Il suffirait alors de pos 
tuler que les phases cp et cp' ont, ainsi que leurs dérivées premières, les

uniforme et continue qui, pour un observateur galilien, aura la forme

(e) u* = a(xl, x-, x'\ x' ) e h --- a {x, y, z, t ) e h ’

U* et par suite 9 étant ainsi déterminées, considérons l’équation de propagation que 
l’onde u de la double solution satisfait en dehors de la région singulière

(/t V;— S
, du 

ôx> lt-

Kn posant u= f{x\ x-, x'\ x’')G /l , nous obtenons, en substituant dans {/) les 
mêmes équations (J) et (C) que ci-dessus, mais où a est remplacé par/. L’équation (G) 
montre encore que f- \J—g g™ est indépendant de x’1 et l’équation (J) donne

__ r)
'Jzrgdx% v é>' »

âl
djû = (<?' mlc1)/.

Il faudrait démontrer qu’il existe des solutions de cette équation qui possèdent une 
ligne singulière d’espace-temps coïncidant avec l’une des courbes l\
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mômes valeurs sur la petite sphère S entourant la région singulière qui 
nous a servi pour la démonstration de la formule du guidage.

Nous avons voulu signaler ici cette possibilité d’affaiblir le postulat (2) 
sur la concordance des phases. Nous reviendrons sur cette question un 
peu plus loin (voir § 9).

2. Un théorème sur les fonctions de Green de l’équation des ondes.
— Nous allons maintenant exposer une difficulté soulevée par la forme 
primitive de mes conceptions sur l’onde u.

La difficulté en question résulte d’un théorème sur les fonctions de 
Green de l’équation des ondes, théorème qui, signalé autrefois par lord 
Rayleigh, a été utilisé par Sommerfeld dans ses travaux sur la Mécanique 
ondulatoire.

Considérons un système quantifié, par exemple un atome d'hydrogène. 
Nous savons que dans un état s de ce système, le corpuscule d’après la 
formule du guidage doit rester immobile en un point Q. Si l’onde u 
comporte une singularité ponctuelle, cette singularité doit se trouver 
en Q.

L’équation des ondes est ici de la forme 

(3) AiF-i-[A'2—F(r)]q' = o,

où F(r) est le potentiel coulombien du noyau de l’atome H. Les valeurs 
propres de Av et les fonctions propres correspondantes lF(- sont définies 
par

0!) A^+[Ay-l-(r)]q’;=o.

Si l’on suppose qu’il existe une solution de l’équation des ondes ayant

une singularité en ÿ au point Q et nulle aux limites du domaine [ce sera

la fonction de Green de l’équation (3) relative au point Q et au domaine 
considéré], on devra pour

(3) A». -4-[A2—F(/■)■) u = e  8(M — Q) (E = const.),

M ôtant le point courant et â(M— Q) la fonction singulière de Dirac 
relative au point Q. L’équation des ondes sera ainsi satisfaite partout 
par u, sauf au point Q où existera une singularité en

Mais on peut développer â(M — Q) suivant les fonctions propres 
'IGM ) sous la forme

- Q ) =2Ci ,r'( M ) >• c‘ = /s (M — Q ) 'F* (M )(h = 'D* ( Q ) ;(6) B(M
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d’où
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(7) 8(M — Q) =^iI’,*(Q) T;(M).

Si alors on développe w(M) sons la forme

(8) „■ \| ■ - V r ip . \| .

avec de nouveaux coefficients a, on devra avoir

( 9 ) U-+- k- - V ( /• ) | 2 V, = '!’* ( Q ) V, < M )
i i

ou d’après (4)

( IO ) V a{ /■'- — kf ) T, ( M ) = Î ^ '17 ( O ) CM),

d’où l’on tire, puisque les W; forment un système complet

(") £»r;< )
/. kf ’

puis

(m) «(M)=2 £'17 I Q (M 
'■ /•’

Celle expression de la fonction de Green z<(,M, ()) constitue le lliéo- 
rème auquel j’avais fait allusion.

Or, dans un état slntionnairc, la fonction u doit avoir une fréquence 
égale à celle do l’état stationnaire considéré, c’est-à-dire que k doit 
être égal à l’un des /,/. On voit alors que le coefficient de dans
(12) est infini sauf si 'T,(Q) = o. E11 d’autres ternies, la solution à sin 
gularité que nous avons calculée n’existe que si la singularité est placée 
en un point où 'G,- est nulle. Ce résultat, qui est classique en théorie 
des vibrations et qui exprime un résultat bien connu de la théorie 
mat hématique des équations intégrales, semble ici s'opposer fatalement 
à la conception d’une onde «à singularité mathématique. En ellel, dans 
les étals où le corpuscule-singularité devrait être immobile, il devrait se 
trouver en un point Q où l’onde W serait nulle, c’est-à-dire précisément 
en un point où, d’après la signification statistique du |'E,j-, il ne devrait 
pas pouvoir se trouver. Le théorème exprimé par la formule (12) parais 
sait donc nous contraindre à abandonner mon idée primitive suivant
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laquelle Fonde U présenterait une singularité ponctuelle en i> c’est- 

à-dire serait fonction de (5) (l).

3. Introduction d’une équation d’ondes non linéaire pour u. —- Pour 
échapper à la difficulté que nous venons de signaler, et pour d’autres 
raisons, nous avons été amené à remplacer l’idée que Fonde u présente 
une singularité ponctuelle par une autre idée fortement suggérée par les 
remarques de M. Vigier au sujet de l’analogie que présente1 ma démons 
tration de la formule du guidage avec les résultats de MM. Georges 
Darmois et Einstein au sujet du mouvement d’une particule en Relati 
vité généralisée.

En Relativité généralisée, les coefficients g^v de la métrique d’espace- 
temps obéissent à des équations non linéaires ^R^-— ^Rg'av= o dans le

vide^ et il en est de même naturellement des quantités y;j.v = g,v,— g'^i

différences entre; les g'uv et leurs valeurs galiléennes constantes 
Néanmoins, mises à part de petites régions singulières de l’espace-temps 
qui constitueraient d’après Einstein les tubes d’univers des corpuscules 
et où les y,,,, pourraient prendre de grandes valeurs, les y^v obéissent 
approximativement à des équations linéaires : cette propriété est très 
utile pour les calculs effectués par la théorie de la Relativité généralisée. 
Le résultat essentiel des recherches de G. Darmois et d’Einstein est que 
ces régions singulières doivent se déplacer au cours du temps de telle 
façon que le tube d’LJnivers très délié représentant ce mouvement 
coïncide avec une géodésique du champ extérieur. Ce résultat est très 
remarquable parce qu’il permet de déduire directement des équations 
du champ le mouvement des corpuscules sans avoir à introduire comme 
un postulat spécial (ainsi qu’on le fait dans les exposés élémentaires de 
la Relativité généralisée) le fait que la ligne d’Univcrs d’une parti 
cule est une géodésique de l’espace-temps. L’analogie du résultat de 
MM. Darmois et Einstein avec ma démonstration de la formule du gui 
dage conduit à penser que le « champ » a pourrait bien être relié à la 
géométrie de l’cspace-teinps et obéir, lui aussi, à une équation non 
linéaire.

Voyons comment on peut préciser cette idée dans le cadre de la 
théorie de la double solution. Rien entendu, l’équation d’ondes du 
onde fictive simple représentation de probabilité, doit être linéaire, car

(1 ) Voir à ce sujet lu lin du paragraphe B.
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le principe de superposition, conséquence nécessaire de la signification 
statistique du VL, doit être satisfait. L’équation linéaire du lFest celle que 
l’on connaît bien en Mécanique ondulatoire usuelle. La théorie de la 
double solution suppose que, sauf dans une région très petite consti 
tuant le « corpuscule » au sens étroit du mol, l’onde u obéit à la même 
équation linéaire que l’onde T. Mais ceci n’einpôche pas d’admettre que 
la véritable équation d’ondes de u soit une équation non linéaire, les 
termes non linéaires n’ayant une influence sensible que dans une très 
petite région, en général mobile, de l’espace où les valeurs de u 
deviendraient très grandes. Ln dehors de cette petite région singu 
lière (’ ), les termes non linéaires seraient assez faibles pour que a 
[misse obéir très approximativement à la même équation d’ondes 
linéaires que le ff'. Si l’on adopte ce nouveau [mini de vue, on esl 
amené, pour démontrer la formule du guidage, à envisager une petite 
sphère S entourant la région singulière et placée à la limite de cette 
région, là où la fonction u commence à augmenter rapidement tout en 
obéissant encore à l’équation linéaire.

L’équation d’ondes non linéaire satisfaite par u (dont la forme exacte 
pourrait résulter des tentatives de M. Vigier ou de tentatives analogues) 
est encore inconnue : elle serait certainement variable suivant la nature 
de la particule et la valeur de son spin, et les valeurs de la fonction u 
(en général à plusieurs composantes «/,) détermineraient ce qu’on 
pourrait appeler la « structure interne » de la particule. Celle structure,

dans le cas des particules de spin i (en unité ) comme l’électron, 

aurait une symétrie correspondant à ce spin et serait du type« dipûle ». 

Pour les particules de spin différent de 11 elle résulterait, si l’idée 

fondamentale de ma théorie de la « fusion » est exacte, d’une fusion de 

plusieurs corpuscules élémentaires de spin ^ : il y aurait alors une sorte

de confluence des régions singulières qui donnerait lieu à l’apparition 
de symétries différentes de celle du dipôle (se réduisant à la simple 
symétrie sphérique polaire dans le cas du spin nul). Les dimensions de 
la région singulière permettraient sans doute de définir, au moins 
approximativement, un « rayon » de la particule. On sait que les théories 
classiques comme celle de Lorentz introduisaient un tel rayon, notamment 
pour 1 électron. Les théories actuelles ressentent très fortement la

( 1 ) JJadjcctil' « singulière » ne signifie pas nécessairement que a a en un point de celle 
région une \érilai>lc singularité ponctuelle (Voir la lin du dernier chapitre ).
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nécessité de réintroduire lu notion de rayon de la particule, mais, 
n’ayant à leur disposition pour la description des particules que l’élément 
slatistiquc 'F qui ne permet pas de définir une structure individuelle, 
elles se trouvent actuellement aux prises avec de grosses difficultés.

Je voudrais maintenant insister sur un point très important. Einstein 
a souligné que, si une équation de champ est linéaire, on peut toujours 
trouver une solution à singularité où la singularité a un mouvement 
prescrit à l'avance. Par exemple, si, dans la théorie de l’électron de 
Lorenlz, on veut calculer le champ électromagnétique créé par un 
électron ponctuel dont le mouvement est prescrit à l’avance, ou peut 
toujours trouver la solution. De plus, toujours en raison du caractère 
linéaire des équations admises, on peut superposera la solution à singu 
larité une solution continue sans que la seconde exerce aucune inlluencc 
sur la première. C'est là ce qui oblige la théorie de Lorenlz, quand elle 
veut calculer l’action d’un champ électromagnétique sur un électron, à 
introduire comme postulat supplémentaire l’existence de la force de 
Lorenlz exercée par le champ électromagnétique sur l’électron. Pour 
qu’aulomatiquement la région singulière se trouve être « guidée » par 
le champ environnant, il faut sortir du domaine de la linéarité et faire 
reposer la théorie sur des équations non linéaires. C’est parce qu’en 
Relativité généralisée les équations du champ (c’est-à-dire celles des g,,.',) 
sont non linéaires que MM. Dannois et Einstein ont pu trouver, sans 
aucun postulat supplémentaire, une loi de guidage des particules par le 
champ. En transposant ces idées dans l’interprétation causale de la 
Mécanique ondulatoire par la théorie de la double solution, on voit que, 
si l’on désire tenter d’établir entre le corpuscule et l’onde une solidarité 
qui ne peut exister dans une théorie linéaire, il apparaît comme naturel 
d'introduire des équations de propagation non linéaires.

On peut, même penser que, si la Mécanique ondulatoire actuelle 
rüarrive pas à préciser clairement les rapports de Fonde et du 
corpuscule, cela est dû, à ce cpéelle s'enferme a priori dans le cadre 
dé une théorie linéaire.

Cependant, au sujet de ce que nous venons de dire, une remarque 
s’impose. La démonstration que j'avais donnée en 1927 delà formule du 
guidage ne paraît nullement exiger la non-linéarité de l’équation des 
ondes, môme si par ailleurs on trouve des raisons pour admettre cette 
non-linéarité. Ce fait semble en contradiction avec les considérations 
d'Einstein puisque, môme en supposant que l'onde u est une solution à 
singularité ponctuelle d’une équation linéaire, comme je le faisais dans 
mon Mémoire de 1927, la loi du guidage impose un mouvement bien
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déterminé à la singularité. Mais il faut remarquer que, pour taire ma 
démonstration, j’admettais, en plus de l'hypothèse de la linéarité de 
l’équation d’ondes, la concordance des phases des ondes u et U”, au 
moins au voisinage immédiat de la singularité. Or, nous verrons plus 
loin qu’en dehors de la région singulière, on doit pouvoir écrire l’onde a 
sous la forme approximative u — w0+ e. Dans celte formule, e désigne 
une solution régulière de l’équation linéaire des ondes qui, tout en ayant 
un caractère objectif, doit être en général proportionnelle à l’onde *I; 
considérée par l’interprétation usuelle; quant à u0, c’est une solution 
singulière en aiguille do l’équation linéaire des ondes qui aurait une 
véritable singularité ponctuelle au centre de la région singulière si 
l’équation linéaire était encore valable dans celle-ci. Or, si l’équation 
dos ondes était partout linéaire, u0 et e seraient des solutions totalement 
indépendantes et le postulat de la concordance des phases de m0 et de e 
serait un postulat arbitrairement surajouté. Au contraire, si la véritable 
équation des ondes u est non linéaire, les termes non linéaires étant 
essentiels dans la région singulière bien que sensiblement négligeables 
en dehors, la décomposition de u en ua et e ne peut être approxima 
tivement valable qu’en dehors de la région singulière : en réalité, il n’y 
a qu’une onde u indécomposable, les deux termes u0 et <> se trouvant 
dans la région singulière entièrement « soudés » par la non-linéarité. 
On s’explique alors fort bien que le postulat de la concordance des 
phases, qui serait entièrement arbitraire dans une théorie linéaire, puisse 
en lin de compte trouver sa justification dans la non-linéarité de l’équation 
de l’onde u dans la région singulière (1 ). Ainsi, dans ma démonstration de 
1927, l’hypothèse d’une non-linéarité locale de l’équation des ondes était 
sans doute dissimulée derrière le postulat de la concordance des phases.

Nous verrons d’ailleurs bientôt qu’il y a encore d’autres raisons pour 
adopter, pour la propagation de l’onde u, une équation non linéaire.

4. Difficulté de préciser exactement la relation entre onde u et 
onde W. — Dans le cadre de la théorie causale de la double solution, 
l’onde u et l’onde T ont des caractères tout à fait dilférents. l/onde u 
doit être une «réalité objective», c’est-à-dire qu’elle doiL être indé 
pendante de l’observateur et de l'état de ses connaissances (-). L’onde W.

(!) Voir plus loin la formule (38).
(2) Le fait que la fonction d’onde u soit une grandeur complexe prouve qu’elle ne 

peut représenter directement un phénomène physique tel que la vibration d’un milieu, 
mais il ne s’oppose pas à ce qu’elle ait une signification « objective », eVsl-à-dirr indé 
pendante de l’observateur : or c’est là ce qui, du point de \ue de la théorie que nous 
exposons, est la chose essentielle.

218
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au conlrairc, esl une représentation de probabilité à caractère subjectif 
qui dépend des connaissances de l’utilisateur, des informations que 
l'observation et la mesure ont pu lui apporter: ce caractère subjectif de 
bonde W s’exprime en particulier par la « réduction du paquet de 
probabilité » que le physicien doit opérer lorsque des informations, en 
lui apportant des connaissances nouvelles sur un corpuscule ou un 
système, l'obligent à modifier sa représentation des probabilités et, en 
particulier, à supprimer ce qui y représentait des possibilités qu'il sait 
maintenant ii’élre pas réalisées.

Cependant, malgré la différence essentielle de nature entre l'onde u 
et bonde *F, il doit exister une liaison étroite entre leurs formes mathé 
matiques, liaison exprimée par l’égalité des phases et la relation SZ -= i=Lb

dans le cas de l'équation de Klein-Cordon et par l’identité des vecteurs 
courant-densité j construits à l’aide de u et de ff” dans le cas des 
équations de Dirac. La difficulté est alors de comprendre comment une 
telle liaison esl possible et comment elle est compatible avec la réduction 
du paquet de probabilité qui, très compréhensible pour l’onde subjec 
tive ff', ne doit pas exister pour une onde objective telle que u. On se 
trouve donc en présence du difficile problème suivant : établir une 
analogie de forme entre u et W sans cependant que cela ait pour 
conséquence de faire participer l'onde u au Caractère subjectif de 
Ponde 'I '.

i\ous allons examiner plus en détails quelques aspects particuliers de
celte difficulté générale.

Considérons d’abord le cas d’un système quantifié. Les énergies de 
ses étals stationnaires sont définies comme étant les valeurs propres de 
l’équation de Schrodinger. Or, ces valeurs propres sont obtenues en 
partant d’une équation aux dérivées partielles linéaire avec l’hypothèse 
essentielle que les solutions *F (fonctions propres) sont partout finies, 
uniformes et continues. Mais, si bonde W est fictive et si la réalité 
objective est décrite par bonde u pour laquelle existe une région singu 
lière, sinon une singularité ponctuelle, comment justifier le succès du 
calcul des valeurs propres à partir de bonde lF ? Ce calcul devrait pouvoir 
se faire en se servant seulement de bonde u sans avoir à se préocuper 
de bonde 'F statistique et fictive. On sent que cela doit exiger une 
analogie de forme mathématique entre l’onde u et bonde VF, analogie qui 
doit cependant respecter leur différence de nature.

Considérons maintenant la propagation d’une onde monochromatique 
plane avec phénomènes d’interférences et de diffraction. On sait
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aujourd’hui que ces phénomènes existent non seulement pour la lumière, 
mais pour les électrons et pour lous les autres corpuscules. Comment 
interpréter ces phénomènes si les ondes continues du type 'F sont 
fictives et si la réalité objective est décrite par une onde u possédant 
une région singulière? Pour approfondir celle question, raisonnons sur 
le cas classique des trous d’Young, c’est-à-dire d’un écran plan percé 
de deux petites ouvertures, circulaires A et B. Sur cet écran tombe 
normalement une onde plane monochromatique. Si z est la variable 
comptée suivant la normale à l’écran, on écrira dans la théorie usuelle 
l’onde incidente sous la forme

Comme la chose est classique en Optique, on calcule l’onde à la 
sortie de l’écran en considérant les trous A et B comme deux petites 
sources cohérentes de même intensité et en superposant leurs elï'ets. On 
démontre aisément qu’au voisinage de l’axe de symétrie et loin de 
l’écran, les surfaces cp == const. sont des ellipsoïdes et que les surfaces 
d’égale amplitude sont les hyperboloïdes orthogonaux : on en déduit la 
position des franges approximativement rectilignes qui sont effecti 
vement observables sur un écran placé normalement à Os dans la 
région d’interférences. Mais, du point de vue de la théorie de la double 
solution, nous devons, pour décrire véritablement la réalité objective, 
remplacer l’onde W continue par une onde u à région singulière. Alors, 
pour que la région singulière venant de la gauche pénètre dans la région 
à droite de l’écran, elle devra avoir passé par l’un des trous d’Young el 
les deux trous paraissent alors ne plus jouer du tout, comme dans le 
calcul classique, des rôles symétriques. Il semble naturel de penser que 
l’onde u diminue rapidement d’amplitude quand on s’éloigne du centre 
de la région singulière et qu’elle tombe à de très faibles valeurs dès que 
l’on est à des distances macroscopiques de celle-ci. S’il en était ainsi, 
l’amplitude de u serait très grande dans une partie d’un des trous, alors 
qu’elle serait très faible sur toute la surface de l’autre trou : il semblerait 
donc impossible d’admettre que les deux trous jouent le rôle symétrique 
de deux petites sources de même intensité. L’hypothèse de l’équi 
valence des trous, qui paraît cependant essentielle pour le succès 
du calcul des franges effectivement observées, ne pourrait plus être 
maintenue. En y réfléchissant, on a l’impression que la difficulté est 
considérable.

Une autre série de difficultés est liée à la propriété fondamentale des
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trains d’ondes continues du type classique qui est leur tendance 
constante à se disséminer, c’est-à-dire à s’étendre dans l’espace avec 
diminution constante de leur amplitude en chaque point (la seconde

propriété étant liée à la première parce que, l’intégrale J ci-dz étant

constante pour les ondes continues du type classique, l'extension du 
train d'ondes a pour conséquence une diminution locale de a). Au 
contraire, Fonde par le lait môme qu’elle doit décrire la structure 
olijecli\e du corpuscule, doit posséder une sorte de permanence tout à 
l'ait différente de la tendance constante à l’étalement, de l’instabilité, 
des trains d’ondes fi'. On doit donc s’attendre à trouver de ce côté une 
grande difficulté quand on voudra établir une relation entre la forme 
mathématique de a et celle de VF. On retrouve là, sous une forme 
nouvelle assez différente de l'ancienne, l’objection faite naguère à la 
conception de M. Schrodinger qui voulait assimiler le corpuscule à un 
groupe d’ondes. Cette conception, qui se heurtait aussi à l’objection 
qu'un corpuscule insécable et bien localisé ne peut être représenté par 
un train d'ondes homogène et étendu, a dû être abandonnée parce que 
l’expansion constante d’un train d'ondes au cours du temps, propriété 
essentielle des ondes continues à propagation linéaire, n’est pas compa- 
tihl e avec la stabilité et la permanence prolongée qu’implique l’idée de 
corpuscule.

Dans un ordre d'idées voisin, on rencontre aussi des difficultés quand 
on considère la propriété des trains d’ondes homogènes de pouvoir se 
tronçonner en plusieurs trains de moindre amplitude comme cela arrive 
quand on envoie un train d’ondes sur un miroir semi-transparent. Pour 
les ondes continues V, celte circonstance s’interprète aisément en 
considérant chacun des trains d’ondes finaux comme représentant une 
possibilité d’élat final dont la probabilité est naturellement moindre que 
celle (prise égale à l’unité) de l’état initial. Il paraît ne pas pouvoir en 
êlre de môme pour Fonde u qui, décrivant la structure objective du 
corpuscule, ne paraît pas pouvoir se diviser de cette façon. 11 j a encore 
d’autres difficultés pour la théorie de la double solution qui vont inter 
venir quand se produit la réduction du paquet de probabilité qui affecte 
Fonde fi’, mais ne peut affecter Fonde u. Nous verrons que dans cette 
question le fait que les trains d’ondes sont toujours limités doit jouer un 
rôle très important.

Bref, si l’on veut essayer de préciser les rapports exacts entre Fonde u 
et Fonde fi", il faut s’attendre à rencontrer beaucoup d’obstacles. C’est 
cependant ce que nous allons tenter de faire.
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3. La forme extérieure de V’onde u. Cas des états stationnaires 
avec corpuscule immobile. — M. Vigier m’avait suggéré que la partie 
extérieure de l’onde u en dehors de la région singulière, devait coïncider 
avec l’onde 'I". Cette idée présentée sous celte forme simple m’avail 
paru soulever de grosses difficultés qui existent en effet et sur lesquelles 
je reviendrai : elles m'avaient fait rejeter l’idée de M. Vigier. J’y suis 
cependant revenu dans une Noie du i,‘> avril icp3 [8 |. Celle Noie a été 
le résultat de réflexions sur la première des difficultés que j’ai signalées 
au paragraphe précédenl : comment se tail-il, si Fonde I1 esl purement 
ficlivc et si l’onde u représente1 la réalité objective, que le calcul des 
\aleurs propres d’un svslème quantifié réussisse en parlant de Fliypo- 
th( ■se que Fonde' est une; solution finie, continue et uniforme ele1 l'équation 
d’onelets linéaire! Cela paraît paradoxal puisepie Fonde u, epei seede 
posséderait une réalité objective, n’a précisément pas ces propriétés.

Je vais exposer d’abord les considérations auxquelles j’ai élé conduit 
en réfléchissant sur ce problème dans le cas d’un état stationnaire il’un 
système quantifié où le corpuscule resle immobile fêlai s par exemple).
Mors Fonde f a la forme

lr„(.r, ,C, ;, t ) = n„(.r, f, z) e ,

an étant une fonclion réelle, finie, uniforme et continue, nulle aux 
limites du domaine qui définit le problème de valeurs propres considéré. 
Si l’on admet que, dans cet état stationnaire, la réalité physique est 
décrite par une onde u de la forme

r /
u{ ./•, r, z, t) =/( ./■. y, z ) e

la question est de savoir pourquoi K est nécessairement égal à F un 
des K„, alors que f ne possède pas du tout les propriétés des fonctions 
propres a„. Pour étudier la question, j’ai admis, suivant une sug 
gestion de M. Vigier, que l’on peut décomposer Fonde n en une 
partie singulière «0, qui deviendrait très grande mais pas nécessai 
rement infinie dans la région singulière et très petite en dehors, 
et en une partie régulière e qui obéirait à l’équation linéaire de 
la Mécanique ondulatoire. Celle décomposition peut paraître arbilraire : 
je reviendrai tout à l’heure sur les considérations qui peuvent servir à la 
justifier el à la préciser.

J’admettrai encore, ce qui est assez naturel, que u doit être nulle aux 
limites du domaine. Alors, sauf dans le cas tout à fait exceptionnel où 
la région singulière de dimensions très petites io~l;l cm) se trouverait
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au voisinage immédiat de la limite du domaine, on pourra considérer v 
comme sensiblement nulle sur ces limites où uü ~ o. Ceci nous montre 
d’ailleurs qu’il revient presque au même de supposer que c’est u qui est 
nulle aux limites du domaine ou d’imposer celle condition à v. Repré 

sentons la fonction u (naturellement le problème est en général à 
trois dimensions, ce que nous ne pouvons représenter sur le papier, 
mais cela ne change rien).

lin dehors de la région singulière (par hypothèse immobile) nous 
avons u es; e. Dans la région singulière CD, la fonction u a des valeurs 
très élevées symboliquement représentées par ht courbe ponctuée. Sur

t’i;;. u).

la courbe u, considérons deux points P et Q où u coïncide encore 
sensiblement avec v et remplaçons entre P et Q la courbe u par une 
portion de courbe PQ qui soit une solution finie, continue et uniforme 
de l'équation linéaire. Alors nous obtenons une courbe APQR qui pré 
sentera des points anguleux en P et en Q, mais qui sera formée de 
tronçons finis de courbes représentant des solutions finies, uniformes et 
continues de l’équation linéaire de la Mécanique ondulatoire. Une telle 
fonction « lisse par morceaux » (sliickweise glati.) et nulle aux limites A 
et 11 peut être représentée par une somme de fonctions propres W„ de

la forme ^ dn V,,. On voit donc qu’à l’extérieur de la région singulière
II

ht fonction u peut s’écrire

( i i i ii = u » -l- ^ dn ’F,, ~ ^ dn 'F„.
Il II

Pour être rigoureux, il faudrait remarquer que les W,, ne sont pas 
tout à fait les fonctions propres qui correspondent à la condition aux 
limites tp„=o, mais celles qui correspondent à la condition aux
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limites '1,,= — m0, mais les deux conditions aux limites diffèrent 
infiniment peu. Nous devons donc avoir pour tout temps t :

'1 T. i '2 T, i--- K t „ --- Kn /
(rj) J\x,y,z')ek = i<»+2^dnii„(x, y, z)e h
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dans tonte la région extérieure et ceci n’est possible que si

^ E,„ I
(16) (/„ = o pour 11 rn ; E = Em; na =■-/„(x, y, z) e '

de façon que tous les termes de (10) soient périodiques de même fré 

quence, ■ Finalement on a donc nécessairement

^r-‘ r,„ 1
(i~) a =/{.£, y, z) e ,

Em étant l’une des valeurs propres calculées par la Mécanique ondu 
latoire usuelle. Ainsi se trouve levé le paradoxe relatif au calcul des 
valeurs propres el, du même coup, nous voyons qu’en dehors de la 
région singulière, nous devons avoir

(18) a ~ dm am e = 1/m 'I’„,.

Toute la partie extérieure de l’onde u coïnciderait donc sensiblement, 
quant à la forme mathématique, avec l’onde T’ considérée par la Méca- 
canique usuelle, mais il faut apporter ici une précision très importante. 
L’onde u étant une réalité objective, doit avoir une valeur parfaitement 
déterminée : donc, si ¥m désigne la m1''""1 fonction propre normée, 
dm doit avoir une valeur bien déterminée. En dehors de la région singu 
lière, l’onde u est sensiblement proportionnelle à l’onde T considérée 
par la Mécanique ondulatoire, mais a\ec un coefficient physiquement 
bien déterminé.

Remarquons aussi que le raisonnement précédent prouve que «0 doit 
dans la région extérieure obéir à l’équation linéaire avec F> = E,„.

Si nous comparons les idées qui viennent d’élre dé\dopées avec la 
démonstration de la formule du guidage, nous voyons qu’il y a lieu de 
distinguer trois régions :

i° la « région singulière » de rayon r0(r0^ io -1* cm) où les termes 
non linéaires de l’équation en u sont notables ;

20 une « région intermédiaire » définie par 7-0 <C r < i\, où i\ est aussi 
très petit (sans doute du même ordre de grandeur que v0), dans laquelle



l'équation des ondes e.sl sensiblement déjà linéaire, mais où tt~M0+Cff' 
croît rapidement quand r diminue en raison de la croissance déjà 
rapide de «0 ;

la « région extérieure » à la sphère r —1\ où l’équation des 
ondes u esl sensiblement linéaire et où l’on peut poser M~e = C,ï1'.

(/est dans la légion intermédiaire qu’il faut placer la sphère S 
servant dans la démonstration de la formule du guidage : en effet 
celle démonstration suppose que sur S l’équation d’ondes esl linéaire, 
mais que u croît très rapidement quand on pénèlre dans la sphère.

LA STRUCTURE DE LONbE U ET SES RELATIONS AVEC L’ONDE 'F. 2*5
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Remarquons aussi que les points C et 1) de la figure 10 doivent 
correspondront à r = /y.

Représentons par une nouvelle ligure l’ensemble des trois régions (*).
La région tries étroite limitée par les verticales M/;l et Nn telles 

que rnn = ■>. /•„ est la « région singulière » où les termes non linéaires sont 
notables et où a prend des valeurs élevées. La « région extérieure » est, 
par définition, celle qui est extérieure aux verticales Ce et Dd de 

distance c<l — ‘U’i ; c’est celle ou l’on a u ~ c. Enfin la « région intermé 
diaire a (/'o< r O'i ) est comprise entre Mm et Ce d’une part, ï\« et 
I)d d’autre part : l’équation y est encore approximativement linéaire, 
mais la courbe représentant la variation de w ~ a0 4- c se détache de 
celle qui représente e et commence à monter rapidement. C’est dans cette 
région intermédiaire qu’il faut placer la sphère S dont le rayon corres 

pondra par exemple à PQ. Il faut que la région CcDii soit si petite 
que la phase o des ondes u et ff’puisse y être considérée comme ayant la

( 1 ) Sur la ligure u, c cl d devraient être symétriques par rapport à nui.

!.. DR RROC.LIK, 13
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mémo valeur dans toute cette région. Nous avons déjà appelé l'attention 
sur le fait que, pour des particules de très grande énergie, celte hypo 
thèse peut n’êtrc plus valable, ce qui imposerait une limite à l’emploi 
des ondes T (1).

(>. Illustration par un exemple de la décomposition extérieure de 
l’onde u. — Pour bien montrer à quoi correspond la décomposition de 
Fonde u dans la région extérieure en une partie singulière «0 et une 
partie régulière e, nous envisagerons un exemple particulièrement simple 
et instructif (-).

Considérons le problème de la quantification pour une enceinte 
sphérique de rayon R sans champ de force et envisageons seulement les 
fonctions à symétrie sphérique. L’équation des ondes 'I a l’approximation 
non relativiste est

(19 ) AT
<)r-

2 PT

r àr
8 -’-m
~ïi^~ !•: T = — kl ’I'

dont la solution générale est

(20) t  = [a ^+ i;^],

L’onde V devant, rester finie à l’origine, on doit poser R = o et, de 
plus, comme T doit être nul pour r = R, on doit poser k — k„ = -j-’- 

avec n entier. La /Füme fonction propre sera donc

(21 i T„ = A 1 b, =
iïh'-
8 T.'1 III

II- h1 

8 ni K -

Introduisons maintenant l’idée de la double solution sous la forme 
primitive que je lui avais donnée, c’est-à-dire en supposant «doué d’une 

singularité ponctuelle en ~ et satisfaisant partout saul en r = o à

l’équation linéaire des ondes. Pour avoir des calculs simples supposons 
que le corpuscule ait une structure interne douée de symétrie sphérique

(1 ) Notons que poui ; i, on a f 1 H  /

(2 ) Remarquons d’ailleurs qu’on obtient un exemple plus simple enr.ore en considérant 
l’onde monochromatique plane se propageant le long de <);. JVaprés In formule {') ) du 
chapitre I\ on est alors amené à |>oser

u ( ,r. c. / )
( z — vt )-

A et (1 ayant des \alems physiquement bien déterminées.



cl qu’il soit immobile au centre de l'enceinte sphérique. Alors, l’onde u, 
ne pouvant être fonction que de r. obéira à l’équation
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1/ '- a 

t)r-
2 du 
r dr

-+- k'1 u = s8( r)

et la tonne générale de l’équation sans second membre donnée plus 
haut en ( 20) nous conduit à considérer pour a0 la solution suivante

ayant, à l’origine une singularité en

cos kr U = 8 r:- m ,

Mais nous pouvons ajouter à ua dans l’expression de u une solution 
continue quelconque de l’équation sans second membre : nous 
obtiendrons ainsi pour u une décomposition «0 + e analogue à celle que 
nous avions considérée au dernier paragraphe. Si nous nous restreignons 
aux fonctions propres à symétrie sphérique et si nous définissons les 
valeurs propres />■', (légèrement différentes des /,•„ ) par la condi 

tion u(R) = o. soit tg /i'n!l=—■ ; nous sommes conduits, pour

assurer une fréquence unique à tout le phénomène, à adopter les solutions

( 11
COS k'n

Si nous supposons " A, ce qui correspond au caractère quasi 
ponctuel du corpuscule, nous aurons, dès qu’on s’éloignera un peu de 
l’origine,

11 est alors lacile de distinguer trois régions :

1" une très petite région sphérique r < r» au voisinage immédiat de 
l’origine où le terme singulier C°S^"' est entièrement prépondérant;

20 une région intermédiaire (/’u<i'<r 1) où u0 et par suite u 
croissent rapidement quand r diminue;

.5° enfin la région extérieure à une très petite sphère de rayon ri où

l’on peut confondre u avec A - e h ~ Nous pouvons

représenter tout ceci sur la figure 12.
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Mais tous ces résultats qui paraissent concorder avec ceux des chapitres 
précédents ne sont satisfaisants qu’en apparence : en effet, dans la 
formule (24) la constante A serait arbitraire, elle ne serait aucunement 
déterminée par la structure interne du corpuscule. On retrouve ici la 
remarque d’Einstein suivant laquelle, quand on part d’une équation 
linéaire telle que (22), on peut toujours ajouter à une solution à 
singularité ponctuelle une solution continue quelconque de l’équation 
sans second membre. On ne peut donc pas rendre solidaires les termes u0 
et r, c’est-à-dire incorporer le corpuscule à l’onde. Au contraire, la 
chose deviendra possible si l’on remplace (22) par une équation non

Fif;. 12.

linéaire dont les termes non linéaires ne seront notables que dans une 
très petite région singulière entourant l’origine et qui se réduira très 
approximativement à l’équation linéaire usuelle en dehors de cette 
région. Alors on pourra toujours avoir comme forme asymptotique 
approximative de w, en dehors de la région singulière, la forme (24), 
mais e et A seront toutes deux des constantes parfaitement déterminées 
par la forme de l’onde u à l’intérieur de la région singulière. On voit 
bien ici que ce sont les termes non linéaires qui assurent la solidarité de 
l’onde singulière u0 et de l’onde régulière v. On peut dire que c’est dans 
la région non linéaire que s’opère la « soudure » entre l’onde en aiguille 
et l’onde régulière environnante.

Revenons maintenant à la formule (12) et remarquons que, dans 
notre problème actuel, la fonction u0, bien que très petite aux limites 
de l’enceinte, n’y est pas rigoureusement nulle et que les k'n sont légè-
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renient différents des /<•„-— n “ • I,a iormule (12) doit être valable pour

la (onction u—ua-t-v, fonction à singularité ponctuelle nulle aux 
limites : mais, puisque k = k'n 11e coïncide exactement avec aucun des A„, 
elle ne contient plus aucun terme infini. Ainsi se trouve écartée la 
difficulté qui semblait résulter du théorème de Rajleigh-Sommerfeld. 

Examinons ce point plus en détail. O11 peut écrire ici

(i:< bis)

Or

et

XV '17 ( Q ) 'l '< ( M ) , _ WH ( Q ) U-„ ( M )
' k’,f-kf £ k'I — kl •

kl ~ 2 k„ ( k’„ — k,L ) ~ 2 k„ knE
PAR 2- \H

’MQ) = = (wiîn-^)

puisqu’ici Q est à l’origine. N est un facteur de normalisation
1 I . / knégal - l /----

* je \ 2 n
On trouve alors, en tenant compte de la valeur des A„,

'FUQOOO'O = 4 sink»

d’où

( 2 A )

kn kr.

„ ( M, = y E + a .
L.r — k, r

Comme k„ — k'.

011 trouve

V 5\ - A K

^ i n k„ r 
r

= A Ùll k'n s cos k'., r
It

(2',/««) n<m  ) = v £w' ^ \ .
— Av —AT 1" H /•
ijZn

Les deux premiers ternies donnent l’expression de la fonction u0 

tandis que le troisième correspond à la fonction v.
Mais l’adjonction de v à «„ dans l’expression de a avec une valeur

bien déterminée de ' (qui seule peut donner une valeur bien définie

des k'n) ne pourrait [ias se justifier si l’équation des ondes était partout 
linéaire.
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Eu dehors du cas très particulier que nous Muions d’étudier, des 
considérations analogues pourraient être développées pour tous les 
problèmes de quantification avec domaine fini. Si o/,-„ — —/,„
et è*T„ — T'„— »I\, sont les variations très petites subies par les valeurs 
propres et les fonctions propres quand on passe de la condition aux 
limites classique 'F = o à la condition aux limites un peu dilléreute a o, 
on trouve pour expression générale de w(M)

..,v,v V *F*(Q) lF(M) . lI'7,(Q) S’F„ , .<!•;,(( »)>r„( Ml uçs I)=>^s kl_kf-------- ‘ ^ -LÜ. -
i n

qui contient (20 bis) comme cas particulier. Les deux premiers termes 
de l’expression précédente donnent uu, le troisième donne e. Mais o/,„ 
n’est pas déterminé dans une théorie purement linéaire.

23o

7. Extensions diverses des idées précédentes. — Je viens d’exposer 
l’idée essentielle de ma iNole du 1.! avril îqàd dans le cas d'1111 état 
stationnaire avec corpuscule immobile. Dans cette même Note, j'avais 
généralisé de diverses laçons le résultat ainsi obtenu.

Une première généralisation très simple concerne le cas des états 
stationnaires où le corpuscule n’est pas immobile : tel est celui des états 
stationnaires de l’atome II dont l’onde W contient le facteur e""? (o angle 
de longitude) et où le corpuscule possède, d’après la formule du guidage, 
un mouvement circulaire uniforme. Fa fonction *1 „ s’écrit alors

(271 'I',, = au(x, y, z)e h Z“ ' ’ eh

Si nous posons

(28) u =/(*, r, s, t) e * X' e h

et si nous écrivons, comme précédemment et pour les mêmes raisons, 
l’expression de a au-delà de la région intermédiaire

( 29) u ~ «0 -+-^ dn 'l'„

!)

nous verrons qu’il faut que dn = o sauf pour n -- m et que K = E„ avec, 
en plus,

~"~i— .I'-»» ^ /m'1
/. = /,«( et l(| = /o(l,J',;, t)8 ‘ ' •

En d’autres termes, la phase o de a et de «0 doit coïncider avec celle 
de 'F,,,, et, en dehors de la région singulière, 011 aura approximati-
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veinent a ~ dmyVm où d„, sera un coefficient ayant une valeur physique 
bien déterminée que I on saurait calculer si l’on savait calculer u dans 
la région singulière.

Une autre généralisation immédiate consiste à considérer un système 
quantifié qui se trouve dans un état non stationnaire, c’est-à-dire dont 
la fonction ’l est une somme de fonctions propres de la forme

V Cn'h, (x, y, : ,
- [E,tl~/„ i.r,y,

a(x, iç t ) e

avec la condition de normalisation^ | c„ |- = i. Ce qui précède nous
H

conduit à penser que la fonction e, partie régulière de l'onde u à l’exté 
rieur de la région inlérmédiaire, est de la forme r = KW où R est une 
constante à valeur physique bien déterminée. On pourra alors poser les 
expressions

(oi) u~Je ; lia — t/o e ; ’i = a e ;

où les amplitudes et. les phases sont des fondions de x, y. z, t et, à 
1 extérieur de la région singulière, nous devrons avoir à tout instant

. - /• h ^ ,• h 'r,fl h ^< Je i Je ~ y (i e -eue.

Nous serons conduits à poser à — = o. En dehors de la région
•2 7Î i---- Ç

intermédiaire, nous aurons donc très sensiblement K~Kae 1 :
l'onde u y sera donc proportionnelle à l’onde *1 avec un coefficient de 
proportionnalité bi(>n défini.

Parvenu à ce point, nous voyons apparaître l’idée essentielle que les 
phases de l’onde u et de l'onde *i-‘ doivent être les mêmes, ce qui est le 
postulat de départ de la théorie de la double solution. Cet accord des 
phases, sur lequel nous reviendrons plus loin, apparaît ici comme 
nécessaire pour que la fonction un puisse « s’engrener » avec la fonction 
c qui lui sert de hase. On peut se représenter intuitivement la chose de 
la laçon suivante : les valeurs élevées de la fonction u à l’intérieur de la 
région singulière (qui constitue le corpuscule au sens étroit du mot) 
forme une sorte d’aiguille, de « doigt de gant », qui court à la surface 
(ou plutôt au sein) de Fonde e = K f de façon à rester toujours en phase 
avec e. Ne pas oublier naturellement que l’aiguille en question est 
extrêmement fine, que sa base a des dimensions au plus égales à io”13 cm 
et qu’elle peut, être (en dehors du cas des corpuscules d’une énergie
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énorme) considérée comme quasi ponctuelle à l’éclielle de la longueur 
d’onde.

Le résultat obtenu ainsi est très satisfaisant parce qu’il peut être 
considéré comme le couronnement de l’idée fondamentale qui m’avait 
guidé dans mes premières recherches sur la Mécanique ondulatoire et 
suivant laquelle le corpuscule est une sorte d'horloge qui se déplace 
dans une onde de façon à rester constamment en phase avec elle, 
comme je l’ai rappelé dans le premier chapitre de cet Ouvrage.

On peut encore transposer les mêmes idées dans le cas d’une onde en 
propagation libre. En toute rigueur, on doit toujours considérer une 
telle onde comme constituant un train d’ondes limité. On se heurte 
alors à certaines difficultés que j’étudierai en détail dans le chapitre 
suivant et que j’ai signalées dans une Note du i - août i y53 [121. Mais on 
sait qu’un long train d’ondes peut être très approximativement repré 
senté, dans toute son étendue saul au voisinage immédiat de ses bords, 
par une onde plane monochromatique : c’est ce qui permet aux traités 
élémentaires d’Optique de raisonner sur des ondes planes monochroma 
tiques bien que, dans la réalité, on ait toujours affaire à des trains 
d’ondes limités. Procédant comme dans les traités d’Optique, nous 
considérerons le corpuscule comme associé à une onde monochroma 
tique plane. La région singulière court alors au sein de cette onde de 
façon à rester constamment en phase avec elle, ce qui l’oblige à avoir 
précisément la vitesse c qui correspond à la quantité de mouve 
ment p = ^ et à l’énergie W = hv. Si l’onde c qui sert de support à la

région singulière vient heurter des obstacles qui provoquent dans celle 
onde des phénomènes d’interférences ou de diffraction, la région singu 
lière devra se déplacer dans le domaine où ils se produisent de manière 
à rester toujours en phase avec c, ce qui entraîne la formule du guidage' 
comme on peut le vérifier facilement. On est alors assuré, sous réserve 
de la démonstration du théorème d’ergodicité dont nous avons lon 
guement parlé, que la probabilité de présence de la région singulière 
en un point M du champ d’interférences à l’instant t. est proportionnelle 
à J Lf |-. On concilie donc ainsi l’existence du corpuscule avec l’expli 
cation classique des interférences.

Pour mieux le voir, reprenons le cas classique des trous d’Young. 
L’onde incidente comporte une région singulière portée par une onde 
plane monochromatique c de même forme que l’onde lumineuse clas 
sique des traités d’Optique. Dire que le photon traverse l’écran d’Young 
veut dire que la région singulière passe par l’un des trous d’Young,
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mais la région singulière csl si petile que, môme au moineiU où elle 
lL'averse ce trou, elle n’occupe qu’une traction intime de sa surface dont, 
les dimensions sont macroscopiques. On peut donc considérer que, sur 
toute la surlace des deux trous, l’onde u coïncide constamment avec 
l’onde e, c’est-à-dire avec l’onde lumineuse classique. L’onde qui inter 
fère est donc exactement la même que celle considérée dans l’explication 
classique avec cette seule dillérence que nous lui adjoignons un accident 
local de dimensions extraordinairement petites, la région singulière ou 
corpuscule, qui court dans son sein avec la vitesse prescrite par la 
formule du guidage.

ï\oiis vovons maintenant pourquoi l’interprétation des trous d’Young 
nous paraissait, au paragraphe d, si difficile : c’est que nous pensions à 
une onde //. strictement localisée autour du corpuscule ( comme l’est le 
terme «„ dans l’expression obtenue pour u). S’il en était ainsi, l’onde u 
ne serait pas homogène sur le trou où passe le photon et elle aurait 
une valeur négligeable sur l’autre trou qui est situé à une distance 
macroscopique du premier. Il serait alors impossible de comprendre 
comment le calcul classique, qui suppose une même amplitude sur les 
deux trous dont, les mies sont parfaitement symétriques, peut donner 
un résultat exact. Au contraire avec nos conceptions actuelles, nous 
voyons que tout se passe comme dans l’interprétation classique parce que 
l’onde u se prolonge à grande distance de la région singulière par une 
onde continue qui couvre uniformément les deux trous d’Young et sur 
laquelle la région singulière est en quelque sorte implantée. Ainsi 
parait écarté l’un des obstacles lies plus redoutables qui semblaient 
s’opposer à l’adoption de l’hypothèse de la double solution et qui avait 
contribué jadis à m’y laire renoncer (*).

Nous avons vu précédemment que, dans le cas des bosons, on peut 
envisager plusieurs bosons associés à une même onde. Ceci veut dire 
que l’onde u de ces particules est de la forme

( 33 ) Il = Y M(n1 -I- V,

(]) On peut considérer l’expérience des trous d’Young comme apportant une preuve 
directe de la non-linéarité de l’équation de propagation de l’onde u. En effet, v se 
propage comme l’onde lumineuse classique, mais si l’équation de propagation de u 
était linéaire, la propagation de serait indépendante de celle de v et l’on ne pourrait 
pas expliquer comment le mouvement du corpuscule est influencé par l’existence du 
trou d’Young qu’il ne traverse pas. Seule la non-lincarité de l’équation de u peut avoir 
comme résultat que la propagation de Mo, c’est-à-dire le mouvement du corpuscule, 
dépende de la propagation de c. C’est parce qu’en 1927 je n’introduisais pas la non- 
linéarité que l’expérience des trous d’Young me paraissait être pour la théorie de la 
double solution un obstacle insurmontable.
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à l’extérieur des régions singulières. Le |ii'einier terme du second 
membre de (33) représente les parties singulières qui sont, liées aux 
différents bosons et qui sont extrêmement petites en dehors de leur 
région singulière individuelle : le terme e représente la partie régulière 
de l’onde u qui est commune à tous les bosons et c'est ce qui permet 
de dire que ces particules sont associées à une même onde.

8. Extension à la théorie de Dirac. — Une dernière extension indi 
quée dans ma Note du i3 avril iq53 est relative à la théorie de Dirac. 
Tous les résultats indiqués dans les derniers paragraphes sont obtenus 
dans le cadre d’une Mécanique ondulatoire sans spin reposant sur 
l’équation d’ondes non relativiste ou de l’équation relativiste à un seul >1' 

de Klein-Gordon. Mais l’extension au cas de la théorie de Dirac poul 

ies corpuscules de spin i peut se taire sans difficulté.

L’onde f aura alors quatre composantes U’/, et l’on devra écrire les 
développements du lF en série de fonctions propres sous la forme

(34,i (/- = i. •}.. 3. i'i.
n

V„,/f étant la /.•,enie composante de la n"-'mv fonction propre normée et les 
coefficients <:„ ne dépendant pas de l’indice Après avoir posé

( 35 ) r/; = K M'/ = K n/; e à ' ,

on sera conduit à écrire avec des notations évidentes

'171 i -iT./ '171 i-/-®o,k -r Zi-
(36) jk e ‘ = ./«./• e 1 -4- K <r,. e 1 ( fc = 1. 3. f)

et à en conclure comme précédemment que <p* = <p0,/.-= 7/, pour chacune 
des quatre valeurs de k. En dehors de la région singulière, on aura 
sensiblement ui:. = RW*, K avant une valeur physiquement bien déter 
minée résultant de la forme de u à l’intérieur de la région singulière. 
Chaque composante u/; est donc, en dehors de la région singulière, 
proportionnelle à la composante de môme indice de l’onde ff". En se 
reportant à ce qui a été dit dans le précédent chapitre au sujet du 
guidage du corpuscule en théorie de Dirac, on verra que la région 
singulière doit suivre les ligues de courant de la théorie de Dirac et, de 
ce point de vue, la nouvelle conception des rapports de l’onde u et de 
l’onde ff' paraît ici encore satisfaisante.

2 34
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11. Remarques sur la concordance des phases et sur le guidage des 
corpuscules. — Nous allons reprendre la question de la concordance 
des phases en nous plaçant à noire nouveau point de vue. Écrivons 
comme plus haut

( 3-) h  = /e ‘ = u0 -+- c =/,e 1 ' + K«e“ .

lin examinant les raisonnements laits ci-dessus, nous voyons aisément 
qu’il impose la conclusion <p'= o, mais que l’égalité cpo= <p n’en résulte 
pas d’une façon absolument nécessaire. On n’est donc pas, semble-t-il, 
obligé d’admettre cette dernière égalité qui constitue le postulat de la 
concordance des phases sous sa forme stricte : il suffirait d’admettre 
que 'j/0 eL w coïncident ainsi que leurs dérivées premières au voisinage 
immédial du corpuscule, c’est-à-dire dans la « région intermédiaire » là 
où il faul placer la sphère S pour démontrer la formule du guidage.

Mais "dans la région extérieure, u„ étant négligeable devant e, la 
phase œ0 de n0 n’a plus d’importance et dans la région singulière, la 
décomposition u = un -f- c n’a plus de sens. La distinction entre la 
concordance faible et la concordance forte des phases est donc ici sans 
importance.

On peut présenter la question autrement. En réalité, la décompo 
sition u — «o-f-e est, fictive : il y a une seule fonction a et c’est tout. 
Dans toute la région extérieure, c’est-à-dire presque partout, u,0 est 
négligeable et u coïncide avec e : u et v ont donc presque partout môme 
amplitude et mémo phase. Dans la région intermédiaire où l’équation des 
ondes est par hypothèse encore linéaire, u doit toujours avoir la même 
phase que e, sans quoi la formule du guidage ne pourrait être exacte, 
mais les amplitudes de u et de v différent, ce qui, en nommant f0 la 
différence de ces amplitudes, nous permet d’écrire sur le pourtour de la 
région singulière

( 3 fi ) u = / e h ' = (/„ -+- K a ) e h

Quant à la lorme de u à l’intérieur de la région singulière, elle nous 
restera inconnue tant que nous ne serons pas parvenus à préciser la 
forme de l’équation non linéaire de propagation dans cette région. Il 
nous est donc impossible de savoir actuellement si dans celte région la 
phase de u continue à être égale à œ, mais cela ne nous importe pas ici.

Naturellement des considérations analogues sont applicables en 
théorie de Dirac.

Passons maintenant à une autre question qui montre, comme la pré 
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cédente, l’importance de la région intermédiaire où se fait le couplage 
entre u0 et e. Considérons deux corpuscules sans interaction, par 
exemple deux pilotons ou deux neutrons. Si leurs ondes viennent à se 
croiser dans une môme région de l’espace, il semble physiquement 
certain qu’elles ne s’influenceront pas l’une l’autre. Si, dans un appareil 
d’interférences lumineuses, nous faisons traverser transversalement le 
champ d’interférences par un autre faisceau de pilotons, le phénomène 
d’interférences n’en sera pas modifié. Ceci signilie que l’onde d’un 
corpuscule ne peut interférer qu’avec elle-même et non avec l’onde d’un 
autre corpuscule.

Nous pouvons comprendre ce point en anal) sant ce qui se passe dans 
la région intermédiaire relative à l’un des corpuscules que nous numé 
roterons 1, l’autre étant numéroté 2. Saul dans le cas, qui est d’une 
probabilité évanouissante dans tous les cas usuels de croisement de 
faisceaux où les deux corpuscules se rencontreraient, c’est-à-dire où 
leurs régions singulières viendraient en contact, nom pouvons écrire 
l’onde u dans la région intermédiaire du corpuscule I sous la forme

(3ij) u = ul^-uï=feh = /(01>e/‘ ' ■+- K «<*) e *' 9 -+- K «<2! e h 9 .

En effet, ;<2 se réduit à e2 puisque la région intermédiaire de 1 se 
trouve dans la région extérieure de 2. Comme dans la région intermé 
diaire de lj/ô*1 croît rapidement et devient beaucoup plus grand que a(2K 
il est évident que l’on a

(do) o~od!, /~/(0u.

La lormule du guidage montre alors, en vertu de la première équa 
tion (4°) que la présence de u2 ne modifie aucunement le mouvement 
de 1.

On peut aussi le voir en considérant la formule

àl
, , , às

Ôt

qui nous a permis au chapitre IX (§36), de déduire la formule du 
guidage. En introduisant dans (41) la deuxième relation f 4°)7 en cons 
tate que l’onde it2 n’agit pas sur le mouvement du corpuscule (1). Sous 
cette forme, la preuve a l’avantage d’ôtre applicable à la théorie de Dirac 
comme on peut le voir en se reportant à la formule (53) du chapitre 
précédent.
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(les considérations paraissent bien expliquer pourquoi une onde u 
n’interfère qu’avec elle-même et soulignent l’importance de la manière 
dont le « doigt de gant » représenté par «„ s’implante dans la région 
intermédiaire sur l'onde régulière c.

10. Avantages des conceptions précédentes. Difficultés qui subsis 
tent. — Les conceptions précédentes permettent d’interpréter le fait, 
paradoxal en apparence, que dans les états stationnaires des systèmes 
quantifiés, la fréquence de l’onde u doive être égale à l’une des valeurs 
propres calculées par la Mécanique ondulatoire usuelle, alors que 
cependant l’onde u ne possède pas les propriétés de régularité imposées 
dans ce calcul à l’onde *1'. Les mêmes conceptions permettent de 
comprendre la possibilité des phénomènes d’interlérences et de diffrac 
tion en conciliant avec l’existence de corpuscules localisés les calculs 
classiques qui permettent de les prévoir. Ainsi paraissent se trouver 
levées quelques-unes des grandes difficultés qu’avaient été les pierres 
d’achoppemenl de toutes les tentatives faites pour parvenir à une repré 
sentation claire du dualisme onde-corpuscule.

INéanmoins, il reste encore de grosses objections à écarter, notamment 
en ce qui concerne les trains d’ondes, leur tendance constante à l’étale 
ment et leur fractionnement dans les cas où entre en jeu la réduction 
des paquets de probabilité. Ce sont ces difficultés qui m’avaient fait 
initialement rejeter l’hypothèse de M. Vigicr selon laquelle la partie 
extérieure de l’onde a serait proportionnelle à l’onde V. De la possi 
bilité de les résoudre d’une façon satisfaisante, dépend sans doute à 
l’heure actuelle le sort de la présente tentative d’interprétation causale 
de la Mécanique ondulatoire.

Terminons par une remarque essentielle qui va jouer un certain rôle 
dans les pages qui suivent. Comme nous supposons non linéaire la véri 
table équation de propagation satisfaite par l’onde u, les termes non 
linéaires de celte (‘quation, bien que très faibles en dehors de la région 
singulière, existent cependant en principe partout. Si donc ces termes 
non linéaires contenaient des dérivées premières ou d'ordre supérieur 
de a, ces ternies, bien qu’ils soient négligeables dans toute la partie 
centrale d’un train d’ondes, pourraient cependant redevenir très impor 
tants sur les bords du train d’ondes, là où, l’onde a s’annulant assez 
brusquement, ses dérivées auraient de grandes valeurs.



CHAPITRE XVIII.
LES TRAINS D’ONDES

ET LA RÉDUCTION DU PAQUET DE PROBABILITÉ

1. Difficulté provenant de l’étalement spontané des trains d’ondes. 
— Une onde plane monochromatique est une abstraction : on a toujours 
expérimentalement affaire à des trains d’ondes limités dans l’espace 
dont la durée de passage en un point est limitée dans le temps. Mais on 
a souvent affaire à un train d’ondes qui, dans loule sa partie centrale 
saut’ tout près des bords, est assimilable à une onde plane monochro 
matique comme c'est le cas pour les trams d’ondes utilisés en optique. 
Un tel train d’ondes est représentable par un « groupe d'ondes », c’est- 
à-dire par une superposition d’ondes planes monochromatiques de 
longueurs d’onde et de directions de propagation très voisines. Or, un 
groupe d’ondes ainsi constitué a une tendance spontanée à s’étaler dans 
l’espace.

Pour le voir, laissons de côté la représentation des dimensions trans 
versales du groupe d’ondes par une .superposition d'ondes planes de 
directions de propagation différentes, un peu inclinées les unes sur les 
autres, et, pour représenter la longueur (inie du groupe d’ondes dans le 
sens x de la propagation, écrivons simplement 

,11, + Aii
(i) R* — ( c([i) eW*<-W dp, avec p = -i.

—Au. A

La fréquence v est une certaine fonction de j j . définie par l’équation de 
propagation supposée linéaire à laquelle *L obéit et cette relation 
entre v et p correspond à la relation dynamique entre énergie et quan 
tité de mouvement. Posons p = p0 + r,, v0 = v(p0) cl écrivons le déve 
loppement de Taylor de v(p) :

(U V ( JX ) = V y -+-
th \ i /à'2'/
àv. /„ 1 + 2 Vffx2 V "+■ • • • — '"'it -+• *"o **}
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où l’indice o indique que les dérivées sont prises pour y. = y0 et où «>« 
est la vitesse correspondant à y0- Nous nous sommes servi du l'ait 
que t’o est donnée par la formule dit Rayleigh pour la vitesse de groupe.
soit ('o= (y- ) ■ Nous pouvons donc écrire

où les points représentent des termes d'ordre supérieur à ri1. L'inter 
valle Ay. étant très petit par hypothèse, pendant un temps très long à 
partir de l’instant initial, la seconde exponentielle sous le signe somme, 
dont l’exposant est sensiblement nul, pourra être prise égale à i et l'on 
a n lut

( \ ) 'F = e'-^'èV-iVO F ( e01 — x ').

Le groupe d’ondes aura donc même facteur de phase que l'onde plane 
de fréquence v„ et son amplitude se déplacera en bloc avec la vitesse <•„ 
le long de l'axe des x : il n'y a pas étalement.

Mais, au bout d’un temps suüisammeut long par rapport à ' , quelle

que soit la petitesse de l’intervalle Ay., il arrivera toujours un moment 
où l’exposant de la dernière exponentielle cessera d’ôtre négligeable :

alors l’intégrale de (3 ) sera de la forme j f(r,, val — x0, l) dr, et l'on

aura (sauf cependant, dans le cas d’un corpuscule de masse propre nulle

, '>') \ou , est une constante
,h. /

(5) *l‘ = <>.„■,) V(v„f — x, l).

L’amplitude deviendra donc ainsi variable avec le temps autrement 
que par l'intermédiaire de la combinaison l — x. Le groupe d’ondes 
va donc se déformer en progressant et une analyse plus détaillée 
montrerait qu’il va toujours s’étaler. Comme les équations linéaires de

propagation entraînent, la constance de J a- dr au cours du temps,

1’étnlemeul du train d’ondes a pour conséquence un affaiblissement des 
amplitudes locales : il y a affaiblissement du groupe d’ondes qui s’étale.

On peut expliquer intuitivement cet étalement du groupe d’ondes de 
la manière suivante. Les ondes monochromatiques dont la superposition 
forme le groupe d’ondes se propagent indépendamment les unes des 
autres parce que, par hypothèse, l’équation de propagation de l’onde 'L
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est. linéaire. Chaque composante monochromatique a sa \ilesse e 
correspondant à la valeur de p qui la spécifie. Sauf dans le cas du corpus 
cule de masse propre nulle où v est fonction linéaire de p, les vitesses c 
sont les unes plus grandes, les autres plus petites que r», les différences 
étant très faibles. 11 en résulte qu’à la longue, certaines composantes 
prendront de l’avance par rapport à la composante centrale' de fré 
quence v0 tandis que d’autres prendront du retard. D’où l'étalement du 
groupe d’ondes qui, pour ainsi dire, se désorganise lentement en pro 
gressant. Celle désorganisation, accompagnée d’étalement dans l’espace, 
est intimement liée au caractère linéaire de l’équation de propagation.

Nous pouvons encore retrouver d’une autre manière, qui nous servira 
plus loin, cet étalement des groupes d’ondes. Pour cela, écrivons l’équa 
tion de Jacobi généralisée (J) correspondant à l’équation linéaire de 
propagation de la Mécanique ondulatoire relativiste

>4 o

(fi) (■')
,)j
<)t

ùy Qu 
1 -- «

Pour que le groupe d’ondes sans déformation

(7) >F = F( r01 — x) avec - - — us = h-

soit, une solution rigoureuse de ((>), il faudrait que -=p- — o. Dr ceci

ne peut être réalisé, pour une forme de F représentant un groupe 
d’ondes de dimensions finies, que si Co est égale à c, e’esl-à-dire dans le 
cas des particules de masse propre nulle. Donc, pour une particule de 
masse propre non nulle, le groupe d’ondes sans déformation n’est pas 
solution de l’équation linéaire des ondes. Notons que pour un groupe 
d’ondes ayant la forme de la figure Fi, c'est aux limites, là où F varie 
brusquement, que l’équation nF = o ne sera pas satisfaite.

Voici maintenant la difficulté qui se présente quand on compare ces 
résultats avec les conceptions introduites au chapitre précédent. Si un 
corpuscule est associé à un groupe d’ondes planes monochromatiques, 
nous devrions, semble-t-il, admettre que son onde a est très sensi 
blement représentée, en dehors de la région singulière, par l’expression

( b ) II = I/.Q H- (’ = Hq H- (_, Ç • • • ?

où F est une constante à valeur objectivement déterminée et où / . . .



est l'intégrale de Fourier <jui représente le groupe d’ondes. Malheu 
reusement, au bout d’un temps suffisamment long, le groupe d’ondes se 
sera étalé, disséminé : l’onde régulière v tendra donc vers zéro en tout 
point et u se réduira à sa partie singulière u0. En termes imagés, on 
peut dire que le corpuscule finira par « perdre son onde » et cette 
conclusion paraît physiquement peu acceptable. En somme, malgré 
l’introduction de l’hypothèse « corpuscule-région singulière de l’onde u » 
qui permet à la théorie de la double solution de conserver un sens 
objectif à la notion de corpuscule, nous retrouvons ici l’objection faite 
naguère à l’interprétation de la Mécanique ondulatoire proposée par 
M. Schrodinger qui assimilait, les corpuscules à des groupes d’ondes.
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2. La non-linéarité de l’équation des ondes pourrait permettre d’ima 
giner des groupes d’ondes sans étalement. — Pour lever cette difficulté 
d’apparence grave, on peut se demander s’il ne serait pas possible 
d'imaginer des groupes d’ondes u qui ne s’étaleraient pas. Il est évident 
que ceci ne pourrait provenir que de la différence de l’équation des 
ondes u et de celle des ondes V, c’est-à-dire de la non-linéarité de la 
première.

Remarquons d’abord que, comme nous l’avons souligné à la fin du 
chapitre précédent, poser u ~ CW en dehors de la région singulière est 
nécessairement une approximation puisque, l’équation des ondes u 
étant non linéaire, les termes non linéaires, bien que très petits en 
dehors de la région singulière, existent néanmoins partout et pour 
raient redevenir importants aux limites des trains d’ondes. Pour 
connaîlie exactement la forme « extérieure » de u, il faudrait pouvoir 
évaluer exactement l’influence des termes non linéaires. Il paraît 
possible de concevoir que la relation ti ~ C¥ pour r > r, donne une 
représentation exacte de u dans ce domaine quand W est une superpo 
sition de fonctions propres appartenant à un spectre discontinu (comme

J.. DU HROGI.IE. 16
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c’était le cas dans les exemples du chapitre précédent) tandis qu’elle 
pourrait donner une représentation erronée, du moins dans certaines 
régions, quand est une intégrale de Fourier représentant un groupe 
d’ondes.

Fin d’autres termes, tandis que dans le cas d’un système quantifié à 
spectre discontinu, la partie extérieure de l’onde u pourrait être repré 
sentée très sensiblement par u ~ CM' (ce qui conserverait notre inter 
prétation du succès du calcul des valeurs propres par la méthode 
usuelle), au contraire dans le cas d’un spectre continu et d’un groupe 
(Fondes 'F, bipartie extérieure de Fonde « ne serait pas bien représentée 
partout par l’intégrale de Fourier correspondante. Cependant, dans la 
partie centrale du groupe d’ondes, là où l’on ne se trouve pas au voisi 
nage immédiat des bords, la partie extérieure de l’onde u devrait bien 
coïncider très sensiblement avec la fonction « onde plane monochroma 
tique », car ceci est nécessaire pour conserver l’interprétation des 
phénomènes d’interférences (genre trous d’\ oung) que nous avons 
obtenue dans le dernier chapitre. Ce serait donc aux limites des trams 
d’ondes que Fonde u pourrait n’èlre pas bien représentée par l’inté 
grale de Fourier.

Continuons à approfondir ces idées. Tout d’abord, l’existence des 
termes non linéaires prépondérants dans la région singulière doit avoir 
pour effet de « souder » ensemble lies deux tondions que nous avons 
appelées « partie, singulière «() » et « partie régulière e » de Fonde u. 
Cette soudure devrait avoir pour effet de rendre Fonde r solidaire de la 
région singulière et do l’empêcher de se disséminer loin d’elle. Nous 
retrouvons encore ici la remarque d’Einstein suivant laquelle des termes 
non linéaires ont pour effet de rendre solidaires une solution régulière 
et une solution singulière des équations du champ qui seraient indépen 
dantes si ces équations étaient linéaires partout. Il semble donc bien 
que l’intervention des termes non linéaires dans la région singulière 
pourrait avoir pour effet que c ne soit pas exactement représenté par une 
intégrale de Fourier dans le cas du groupe d’ondes puisque cette repré 
sentation implique l’indépendance des composantes monochromatiques 
du groupe d’ondes et, par suite, Félalement de celui-ci au cours du 
temps. Mais il faut regarder de près ce qui peut, se passer aux limites 
des trains d’ondes pour empêcher cet étalement.

Nous avons déjà noté que les termes non linéaires de l’équation en 
négligeables dans le corps de la région extérieure du train d’ondes, 
peuvent redevenir importants sur ses limites. C’est là une circonstance 
qui peut intervenir pour nous permettre de concevoir des groupes

-2 4-A
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d’ondes sans étalement (* 1). Pour voir qu'il en est bien ainsi, écrivons 
l’équation de .lacolii généralisée pour l’onde a correspondant à l’équa- 
lion non linéaire (en l’absence de champ) sous la forme

(J.)
i ;,)z\

c- ' Ot ) ( gnul 9 )’- — ml c‘ h '1  / / Ou Ou 0-u. O'1 u
|-“ f 0/ ’ <)x' O/2 ’ Ox- ’

où \ est une expression non linéaire dépendant de u et de ses dérivées 
(pii est sensiblement négligeable en dehors de la région singulière- 
saut peut-être au bord des trains d’ondes. Posons, en dehors de la 
région singulière,

(9) u(<j*)= h'(i’nl — F(0) e-'é'»’—teep

avec
//15 c-

— X.

Cette lorme de u représente un groupe d’ondes monochromatiques .sans 
déformation. Elle sera une solution de l’équation J si

(10) !f_ oy
i-2 !•' N vrn X-O:

<)V àF
' ât ’ ôx

f  <)* y
<)t2 ’ <)x2

f 1 j II rsl intéressant tic remarquer qu’une circonstance de ci' genre est généralement 
méconnue flans la théorie de la propagation des petites perturbations gravifiques en 
Relativité généralisée (voir v o n La ijk , Die Delativitàtstheoi'ie, l. p. 191 cl suiv. ). 
dans cette théorie, on admet que, flans une petite perturbation gravifique, les gik sont
de la forme 
où les y **-----

//. - y u où les gK'j,1- sont les valeurs galiléennes constantes des gu et
"JJ.!1 sont considérées comme des infiniment petits du premier ordre. On écrit 

ensuite pour les gik les relations R;*- — 0 valables hors de la matière. Dans l’expression
i ik )des R,à , figurent des produits des grandeurs classiques en Relativité généi*ale l'J). — [

qui, elles:mêmes, s'expriment à l’aide des g;k et de leurs dérivées -y-- ■ On considère 
oxr

babiluellcnumt (-es dérivées comme des infiniment petits du premier ordre et l’on 
néglige les produits des r^- comme étant des infiniment petits du second ordre. Les 
équations non linéaires Ru — 0 se réduisent alors très approximativement (avec un choix 
convenable des coordonnées) aux équations linéaires Q7**= o et l’on en conclut que les 
très petites perturbations gravifiques se propagent dans le vide avec la vitesse c.

M ais, comme M. Chazy l’a d’ailleurs souligné ( Théorie de la Relativité, Gauthier- 
Yillars, l. II, 1928, p. i/jHj, il ne suffit pas dans cette démonstration de supposer les ya

très petits, il faut aussi supposer très petites les dérivées ^7* Or ces dérivées peuvent

devenir très grandes dans des régions étroites de l’espace-temps correspondant aux 
bords des trains d’ondes si, dans ces légions, les yu- tombent brutalement à zéro. Dans 
de telles régions, l’équation linéaire  y «’*= o n’est plus valable et doit être remplacée 
par une équation non linéaire. Donc, même pour les très petites perturbations gravi 
fiques. il peut y avoir des phénomènes non linéaires sur le bord des trains d’ondes.
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soit

(ni h- ( vï
t ^'21*' \ c-

\ d- F
l)lW ■ — N ( V(| j

. dV 
dh ’ d<l-

Si N était partout négligeable, il faudrait avoir soit r0 -~c, ce qui 

n’est possible que pour des particules de masse propre nulle, soit =-. o,

ce qui ne peuL donner une tonne acceptable (limitée aux deux extré 
mités) pour le groupe d’ondes. Mais, en tenant compte des termes non 
linéaires, on voit apparaître la possibilité de solutions de l’équation (J) 
qui représenteraient des trains d’ondes limités sans déformation. En 
particulier, un groupe d’ondes ayant la forme représentée sur la figure i l 
pourrait exister en raison de l’intervention des termes !\ sur les bords 
des trains d’ondes où les dérivées de F seraient grandes.

Il laut remarquer en passant que F doit aussi satisfaire à l’équaliou 
de continuité (C) qui est ici du type

dF* dF* v>. dV d1 F \
(Cl —— -h C0 -T— -+- .N I '!,)■ ~~Jn > —,t t t ’ ••• —'’•

où iN' représente des termes non linéaires inconnus provenant de l’équa 
tion de propagation de u. La fonction I*' étant seulement fonction 
de 0 = <•<>/— x, la somme des deux premiers termes de (G) sera nulle 
et il restera

(12) Y Vo, ;j -o . F,
i/F d- F 

dF’
" ().

ce qui impose à F une condition qui devra être compatible avec (îii, 
c’est-à-dire qu’il devra exister une fonction F(ô) satisfaisant à la fois 
à (io) et à (ii).

Il est aisé de se représenter d’une façon intuitive la possibilité de ces 
solutions représentant des groupes d’ondes sans déformation. Ecrivons 
l’équation des ondes a sous sa forme non linéaire et en l’absence de 
champ, mais en nous bornant à l’approximation non relativiste.

(i3) h du 
•>. - i <)t A u -+- N(«.

Là où les termes non linéaires A sont importants, tout se passe 
comme s’il existait, malgré l’absence de tout champ, une sorte de 
« barrière de potentiel » représentée par les termes A, barrière qui 
s’oppose à l’expansion du train d’ondes. Mais celte barrière de 
potentiel n’est pas imposée par une action extérieure; elle est créée par 
la variation brusque de l’onde u elle-même sur les bords du train



LES TRAINS D'ONDES ET LA RÉDUCTION DU PAQUET DE PROBABILITÉ.

d’ondes. En imaginant des formes simples par les lérmes N (dont la 
forme exacte est inconnue), on peut se rendre compte que de telles 
solutions sans étalement doivent bien exister (').

Néanmoins, on peut se demander si l’introduction de groupes d’ondes 
sans étalement, du type envisagé ci-dessus est compatible avec les rela 
tions d’incertitude d’IIeisenberg qui sont intimement reliées à la repré 
sentation des trains d'ondes par une intégrale de Fourier. 11 ne semble 
pas qu’il y ail de ce côté une dilficulté aussi grande qu’on pourrait le 
penser tout, d’abord. En effet, le groupe d’ondes sans étalement est 
représenté par l’expression (<)) avec

l'o =
év\
d ; j . J o

et W =e \/p- -H mftc-

( ~ YmJ'1 :l l’approximation newtonienne j. Or, à un instant donné, on

peut toujours développer l’amplitude F en intégrale de Fourier de la 
forme

(l4) 1' — / c(-T))

de sorte que l'on peut écrire en posant y. = y.() -j- y,.

(iâ; h (;j.u)= J^c(ri) e-r-'(v/— dy, avec v = v0+e0(u.— ;■*.<>)•

A un instant donné, on peut donc en conclure, en appliquant le raison 
nement habituel, que, si le train d’ondes u a la longueur \x, l’inter 
valle A p des valeurs de p — h y. intervenant dans l’intégrale satisfera à 
l’inégalité

(16) A.r Ap'^.h.

On retrouve donc ainsi les relations d’ileisenberg relatives aux variables 
d’espace.

Retrouvera-t-on aussi la quatrième relation d’incertitude d’Heisenberg 
relative à la variable de temps? Ce qui pourrait au premier abord en 
faire douter, c’est que le temps intervient différemment dans l’expres 
sion (i5) de u(y.0) et dans l’expression usuelle du groupe d’ondes 
linéaires dont la forme mathématique est la môme, mais où

(•7) v = v»-+- l’uO — :*»)■+- ~ (jdO (’x ~ )2 + —

(1 ) La théorie de ers groupes d’ondes sans déformation est à comparer avec celle des 
ondes solitaires » en IIydrod \ namitjne qui présente avec elle line certaine analogie.
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C’est, en somme en éliminant, "race à la non-linéarité de l’équation 
en it, Ions les termes du développement (i~) à partir du troisième, 
c'est-à-dire en nous bornant à poser' v vn-t- (;jc  — p.„) ijue nous avons 
évité l’étalement du train d’ondes. O)', en tenant compte de la relation 
entre W et p, on voit que la formule (17) s’écrit

(j«) A\V = W — W0 = r'oAy; 

= r„A p

W
V
p a

k{1 PôC2

W; (A p )-' -

Comme dans un groupe d'onde \p est toujours beaucoup plus petit 
que p(n on voit que la parenthèse du second membre est sensiblement 
égale à 1. Quant aux termes non écrits, ils sont négligeables devant e0A/> 
(et même exactement nuis à l’approximation newtonienne). Donc, 
malgré les modifications que nous avons introduites dans l’expression 
de v en fonction de y— y„ en passant du groupe d’ondes avec étalement 
au groupe d'ondes sans étalement., nous avons tou|ours le droit de poser

(19) AW r0A/i

et, comme la durée Al du passage d’un groupe d’ondes en un point de 
l’espace est évidemment donnée par

(20) Al =
isx
l’o

on a encore, en tenant compte de (it>),

(21) A W A t ~ \p A x .. h.

C’est bien là la quatrième relation d’incertitude d’Heisenberg avec 
son interprétation usuelle.

L’analyse que nous venons de laire est. d’ailleurs très instructive en 
ce qui concerne le passage du groupe1 d’ondes usuel au groupe d’ondes 
sans déformation. On pourrait objecter à ce passage qu’en supprimant 
dans la formule (18) tous les termes du second membre à partir du 
second, nous modifions la relation entre l’énergie et la quantité de 
mouvement d’une manière qui lui enlève son caractère de covariance 
relativiste. A celle1 objection, il nous semble que l’on peut faire la 
réponse suivante : la covariance relativiste de la relation entre énergie 
et quantité de mouvement est définie dans le cadre de la Relativité 
restreinte; or, en introduisant des termes non linéaires qui sont du 
type Relativité généralisée, nous sommes en réalité sortis du cadre de 
la Relativité restreinte.
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Plissons maintenant (lu eus des groupes d’ondes au cas des trains 
d’onde où Ap n’est pas 1res pelil devant p„. Dans la théorie usuelle de 
la représenlalion, |iar des intégrales de Fourier, des trains d'ondes de 
la Mécanique ondulatoire, on est amené à introduire la notion de diffé 
rentielles propres el à remplacer l’intégrale de Fourier par une 
somme de différentielles propres (’). Connue l'a remarqué notamment 
Sommerléld, le sens phvsique delà notion de différentielle propre est 
de représenter un groupe d’ondes de dimensions Unies en évitant ainsi 
d'introduire l'onde plane monochromatique qui est une abstraction et 
qui d’ailleurs n’est pas normable : en remplaçant l’intégrale de Fourier 
par une somme de différentielles propres, on exprime donc que les 
trains d'ondes sont lormés par la superposition non pas d’ondes planes 
monochromatiques, mais de groupes d'ondes limitées. Au point de vue 
nouveau auquel nous nous plaçons ici en introduisant, la non-linéarité 
(‘I les groupes d’ondes sans étalement, il paraît naturel de définir les 
trains d'ondes par une superposition de groupes d ondes sans étalement 
du l\pe il)), c’est-à-dire de représenter un train d’ondes par le dévelop 
pement

go.) «(, g,, ).

la somme ^ étant étendue à une suite de valeurs, énéralemenl extrê 

mement voisines, de p.0. Si les bords des groupes d'ondes sont très 
abrupts, on peut considérer les fonctions u (p.,, ) connue sensiblement 
orthogonales entre elles. Il semble donc, sous réserve d’une étude plus 
rigoureuse, que l’on puisse appliquer au développement (22) les raison 
nements habituellement laits sur les sommes de différentielles propres 
et retrouver encore ici les redations d’incertitude d'Heisenberg.

3. Affaiblissement de la liaison jusqu’ici admise entre onde u et 
onde M'. —Mous avons énoncé précédemment le théorème d’existence 
qui. au déduit de mes recherches sur la double solution, me paraissait 
nécessaire1 pour la justifier. Je le formulais alors ainsi : A toute onde d 
considérée par la Mécanique ondulatoire usuelle doit correspondre 
une onde u de même phase. Mous sommes maintenant en étal de 
critiquer cet énoncé et de lui donner une forme plus nuancée.

Remarquons d’abord qu'il 11'est pas logique de partir de l’onde T

(‘) Voir pur exemple !.. ne liKoeui;, Théorie générale (tes particule* à spin. tel., 
< ctul ifirr-Yilln rs, ujY.t. 1. 5;
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puisqu’il nos yeux, elle n'osl qu’une abstraction à cura cl ère subjectil el 
statistique, pour v rattacher l’existence (le l’onde u. que nous consi 
dérons comme la réalité objective : c’est évidemment l’inverse qu'il 
convient de faire. De plus, pour des raisons qui nous apparaîtront 
mieux plus loin, il y a lieu d'affaiblir la liaison postulée entre u et T 
pour éviter que u ne participe au caractère subjectif de T. Nous dirons 
donc maintenant : A toute onde u qui fournit une description objec 
tive d'un corpuscule conçu comme le centre de un phénomène ondu 
latoire, on peut faire correspondre une onde T du type usuel qui, 
dans tout le domaine extérieur à. la région singulière de l'onde u, a 
en général très approximativement la même forme nuit hématique 
que u de sorte qu'on peut poser T ~ Cm.

Dans ce nouvel énoncé, nous écrivons la relation entre T et u sous la 
forme T ~ Cm, au lieu de u ~ CT, pour bien souligner que l’onde T 
est une construction de notre esprit laite à partir de l’onde u à caractère 
objectif. De plus, nous avons introduit dans l’énoncé, en les soulignant, 
les mots a en général », car nous devons maintenant, penser qu’il peut 
y avoir des limites à celle correspondance : ces limites sont dues essen 
tiellement au fait que l’équation de propagation de T est rigoureusement 
linéaire, alors que celle de u est non linéaire. Nous venons d’avoir une 
première indication en ce sens en étudiant les groupes d’ondes puisque 
nous avons été amenés à nous demander s’il ne laut pas remplacer, 
dans l’expression extérieure de u, le groupe d’ondes T du type classique 
par une fonction « sans déformation » qui pourrait dillérer sensiblement 
de l’intégrale de Foncier notamment sur les bords du groupe d’ondes, 
siège de phénomènes non linéaires.

Nous allons retrouver cette môme idée d’une limitation éventuelle de 
la correspondance entre onde u et onde T en étudiant successivement 
la représentation de l’émission d’une source par une onde divergente, 
puis la division d’un train d’ondes par un miroir semi-transparent.

4. Représentation de l’émission d’une source ponctuelle par une onde 
divergente. — Comme nous l’avons précédemment signalé, M. Francis 
Perrin a indiqué une objection à l’interprétation de la Mécanique ondu 
latoire par la théorie de l’onde-pilote. Quand une source ponctuelle 
émet autour d’elle d’une façon isotrope des corpuscules de môme 
énergie, la Mécanique ondulatoire admet que l’on doit représenter cette 
émission par l’onde sphérique divergente.
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h étant une fonclion do E définie par l’équalion des ondes. Alors [*Irj- 
diminue comme r~- quand on s’éloigne de la source, ce qui exprime la 
dissémination isotrope des corpuscules autour de celte source et cet 
affaiblissement de Fonde divergente correspond exactement à l’interpré 
tation probabiliste de la grandeur I 'E |-\ Mais, si l’on admet, comme le 
veut la théorie de l’onde-pilote, que le corpuscule est guidé par l’onde *F, 
il faudrait alors admellre que le corpuscule est guidé par une onde de 
plus en plus faible à mesure qu’il s’éloigne de la source : comme rien ne 
nous empêche d’observer des phénomènes de diffraction ou d’interfé 
rences à de très grandes distances de la source, ces phénomènes devraient 
résulter d'une réaction exercée sur le corpuscule par une onde infi 
niment faible. Comme le faisait remarquer M. Perrin, ceci n’est guère 
concevable.

Adoptons maintenant le point de vue de la double solution. I,es idées 
du chapitre précédent prises à la lettre nous conduiraient à dire que la 
portion extérieure de Fonde u coïncide très approximativement avec la

q—i k/‘
fonction C—•—, C ayant une valeur bien déterminée. Mais ceci n’est

pas davantage satisfaisant. Outre que le sens physique de la singularité 
à l’origine s’expliquerait ici difficilement, Fonde u se disséminerait dans 
l’espace : le corpuscule perdrait peu à peu son onde u extérieure en 
s'éloignant de la source, circonstance assez peu admissible, nous l’avons 
déjà dit.

Du point de vue purement mathématique, on pourrait, il est vrai, 
répondre que la réaction de Fonde u sur le corpuscule se traduit par le

potentiel quanlique qui, dépendant seulement des valeurs égales de

et de S4 au voisinage du corpuscule, ne dépend pas des valeurs

absolues de a et de f. Dans le cas de la théorie de Dirac, l’examen des 
formules précédemment obtenues pour exprimer le guidage du corpus 
cule permettrait une réponse analogue. Mais, du point de vue physique, 
une échappatoire de ce genre paraît peu satisfaisante car elle fait jouer 
un rôle physique à une onde cpii, à la limite, devient inexistante. Il me 
semble difficile de se contenter d’une réponse aussi formelle.

En regardant les choses de près, on s’aperçoit d’ailleurs que, même
Q—ikr

avec Finterprétalion usuelle, Fonde V == —-— ne peut pas donner une

représentation exacte de chaque corpuscule émis. Il y a d’abord la diffi 
culté provenant du fait que Fonde (a3) a une singularité à l’origine, ce 
qui est contraire aux conditions généralement imposées aux ondes W et
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empêche d'ailleurs de nonner Fonde divergente. Ph\snpiemenl, il est 
certain que Fonde U1' associée à l'un des corpuscules émis par la source 
doit, avoir un front avant et un front arrière, c'est-à-dire être représentée 
non pas par une onde sphérique divergente monochromatique et indé 
finie, mais par un groupe d’ondes de ce type. Il se pourrait même que 
Fonde 'F, au lieu de former une pellicule sphérique complète, soit 
aussi limitée latéralement. Donc, même dans le cadre de F interpré 
ta lion usuellement admise, on doit considérer Fonde sphérique diver-

e~iir , ...
gente ——comme n étant qu une représentation statistique moyenne

de l’émission isotrope globale de la source : chaque émission indi 
viduelle devrait être représentée par un groupe d’ondes sphériques 
limité radialemenl et peut-être aussi aziimitalemenl en largeur.

2.5 O

Si alors on introduit l’idée qu'il peut exister, en raison de la non- 
linéarité de l’équation de propagation de Fonde a, des groupes d’ondes 
limités et sans étalement, la source placée en S pourrait émettre isolro- 
piquement dans toutes les directions des groupes d'ondes de forme 
constante (ou à peu près constante) contenant, chacune une région 
singulière ( corpuscule).

Comme alors l’amplitude dans chaque groupe d ondes ne diminuerait 
[dus avec r, le paradoxe signalé par M. Francis Perrin disparaîtrait.

Mais on voit qu’alors Fonde divergente 'F — -e lhr ne serait plus en

ce cas une onde associée à chaque corpuscule, mais simplement une 
représentation statistique de l’émission globale, sphériqiiement.isotrope, 
de la source.

Faisons maintenant, quelques remarques au sujet de 1 idée que nous 
venons de développer. La première est que, dans cette hypothèse, 
Fonde 4" sphérique et divergente serait purement fictive et aucunement 
liée dans son ensemble avec les groupes (Fondes u (unis par la source.
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Son rôle serait seulement de nous fournir une représentation de la 
répartition statistique dans l’espace autour de la source de l’ensemble 
des corpuscules émis. A ce point de vue, elle serait un peu analogue à 
l’onde *tr d’un système dans l’espace de configuration qui, elle aussi, 
dans notre manière de voir, ne représente que le comportement statis 
tique des localisations corpusculaires et non pas le phénomène ondula 
toire objectif (pii entoure chaque région singulière.

On remarquera encore que cette conception d’une émission par la 
source de trains d’ondes limités en azimuts, dont seule la répartition 
statistique est représentée par l’onde sphérique divergente, est assez 
analogue à l’idée du rayonnement « en aiguille » (nadelstrahlung) 
naguère mise eu avant par Einstein pour représenter l’émission lumi 
neuse d’une .source pholon par photon, chaque émission individuelle 
devant s’accompagner d’un « recul » de la source.

Remarquons enfin que l’hypothèse suivant laquelle l’onde sphérique 
divergente représentant l’émission de pilotons ou de corpuscules maté 
riels par une source 11e serait qu’une fiction, n’est pas en contradiction 
avec l’existence bien observée de la variation de phase de ic qui accom 
pagne le passage d’une onde sphérique par un foyer. En effet, ce phéno 
mène est observé quand il \ a passage par un foyer du train d’ondes 
associé à un corpuscule. Dans ce cas, la forme mathématique classique 
de l’onde 'f qui converge vers un foyer pour en diverger ensuite doit 
bien représenter la partie extérieure régulière de l’onde u du corpuscule 
et ceci permet de rendre compte de la variation de la phase lors du 
passage par le foyer. Ee cas de fonde divergente représentant l’émission 
d’une source ponctuelle est d’ailleurs tout à fait différent de celui-ci. 
En effet, fonde sphérique divergente a une singularité au point-source : 
il en résulte que le llux du vecteur « courant de corpuscules » à travers 
une petite surface sphérique entourant la source est différent de zéro, 
ce cpii traduit mathématiquement l’hypothèse d’une émission par le 
point-source. Vu contraire, quand on fait la théorie du passage d’une 
onde convergente par un foyer (*), on a bien soin de prendre, pour 
représenter le phénomène, la solution de l’équation des ondes sphériques

sin kr e------- et non — et cela pourqui reste finie au loyer, c'est-à-dire

qu’il y ait un llux nul de corpuscules à travers une surface sphérique 
entourant le lover, car celui-ci n’est pour les corpuscules ni une source, 
ni un puits.

\'oir p;ii' cvmpic : Henri Po ix e a r é , Théorie mathématique de la lumière, t. II.
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En résumé, nous voyons que, dans le cadre de la tentative que nous 
exposons, l’étude de l’onde sphérique divergente, comme celles des 
groupes d’ondes, nous a suggéré l’idée suivante : la correspondance 
que nous avions initialement postulée entre la partie régulière de 
l’onde u et la fonction 'F de la Mécanique ondulatoire ne doit pas être 
considérée comme ayant, un caractère absolument strict et général. Nous 
allons retrouver la même idée en étudiant la division d’un groupe 
<1 ondes par un miroir semi-transparent.

o. Division d’un groupe d’ondes par un miroir semi-transparent. —
Nous allons d’abord rappeler des considérations qui ont été développées

au sujet des miroirs semi-transparents par M. Heisenberg dès le début 
de la discussion sur l’interprétation de la Mécanique ondulatoire.

Considérons, du point de vue des ondes U", la réflexion du corpuscule 
sur un miroir semi-transparent M. L’onde ’F incidente se partage en 
une onde transmise et une onde réfléchie qui représentent les deux 
possibilités existant pour le corpuscule : être transmis ou être réfléchi.

Adoptant l’interprétalion purement probabiliste de la Mécanique 
ondulatoire, M. Heisenberg au Conseil Solvay d’octobre 1927 avait fait 
les remarques suivantes. Selon lui, on ne devait pas dire qu’en arrivant 
sur le miroir, le corpuscule & lait un choix » entre le faisceau réfléchi 
et le faisceau transmis car l’arrivée du corpuscule sur le miroir n’est pas 
un fait observable : au contraire, tant que le corpuscule n’a pas été 
localisé par une observation, on doit dire qu’il existe à la fois « à l’état 
potentiel » dans Fonde transmise et dans Fonde réfléchie. Si, à un 
moment donné, l’on parvient à déceler la présence du corpuscule dans 
l’un des faisceaux, l’autre faisceau cesse immédiatement d’exister parce 
qu’il correspond à une possibilité qui ne s’est pas réalisée et ceci
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montre bien le caractère non objectif de l’onde f. Mais, disait 
Heisenbcrg, si au lien de chercher à localiser le corpuscule dans l’un 
des faisceaux, on disposait en M' un miroir parfaitement réfléchissant, 
on pourrait obtenir des interférences dans la région ombrée de la figure 
où les deux faisceaux viennent se superposer. Il y aurait donc alors des 
variations de probabilité de localisation dans cette région, ce qui montre 
que jusqu’à la localisation du corpuscule, il faut envisager à la fois le 
faisceau réfléchi et le faisceau transmis. Telle est la position sur cette 
question de l’interprétation purement probabiliste actuellement admise.

Analysons d’un peu plus près ce qui se passe lors de la division du 
train d’ondes incident par le miroir M semi-réfléchissant. Dans l’état

état initia! état final
Fig. 16.

initial, nous supposons qu’un groupe d’ondes R0 presque monochroma 
tique se dirige vers le miroir. Dans la théorie classique des ondes, la 
présence du miroir a pour effet final (après une période transitoire 
pendant laquelle s’opère le passage du groupe d’ondes sur le miroir) de 
séparer le groupe d’ondes incident en deux groupes d’ondes occupant 
des régions R4 et R2 qui sont symétriques par rapporta la surface du 
miroir et égales à R0-

Si le miroir M a exactement le coefficient de réflexion - et si dans
2

l’onde initiale on a J a'1 dv = 1, comme l’équation de propagation 

assure la constance au cours du temps de celte intégrale, nous aurons 

dans l’état final à l'intérieur de R) et R2 une amplitude de façon
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Si l’on place alors le miroir parfaitement réfléchissant M'do la figure 15,

les ondes réfléchies et transmises d’amplitude interféreront dans la
V2

région ombrée. Sur ce point la théorie classique des ondes et la théorie 
des ondes 'h sont d’accord, bien qu’elles interprètent différemment le 
sens physique des interférences dans la région ombrée. Mais si, au lieu 
de placer le miroir M', nous avions fait une observation permettant de 
localiser le corpuscule dans l’un des faisceaux, par exemple dans IR, 
alors nous devrions dire après cette localisation qu’il n’y a plus d’onde lF 
dans Rj (car il n’y a plus de possibilité de localisation du corpuscule 
dans R2) et nous devrions renormaliser l’onde V dans Ri en lui attribuant

à nouveau l’amplitude « au lieu de ™ de façon à avoir ( a- (h = i.
v/2 -Ai.

Naturellement ceci n’a aucun sens dans la théorie classique des ondes 
continues car, dans cette théorie, les ondes ont un sens physique et 
une observation faite sur Ri ne peut en rien modifier fonde qui existe 
dans R2. Ainsi se trouve bien soulignée la différence de nature entre 
l’onde continue classique qui avait un caractère objectif et fonde 'F de 
la Mécanique ondulatoire usuelle qui, simple représentation de proba 
bilité, a un caractère subjectif et dépend de nos informations.

fi. Étude du même problème dans la théorie de la double solution. — 
Introduisons maintenant la théorie de la double solution en faisant 
intervenir fonde u. Nous devons supposer qu’à chaque instant le 
corpuscule a une position bien définie dans l’espace, même si nous 
n’avons fait aucune observation permettant effectivement de le localiser. 
Parti d’une position initiale dans IR, il viendra finalement occuper une 
certaine position dans R, ou dans R2, par exemple la position Ci dans 
Ri {fig. tf>). H est. donc naturel de penser que, dans l’état final, fonde u 
dont la région singulière entoure le point (., a une partie extérieure 
régulière qui remplit la région JR. Mais y a-t-il une fraction de la partie 
extérieure de a qui passe dans R2 et qui par suite, en l’absence du 
miroir M', s’éloigne ensuite indéfiniment du corpuscule en formant ainsi 
un groupe d’ondes isolé sans région singulière? (lelte idée m’avait 
paru d’abord peu satisfaisante et j’avais un moment envisagé l’hypothèse 
suivante : au moment où, dans l’image classique, faction du miroir 
partage le groupe d’ondes incident en deux groupes d’ondes séparés 
fonde u passerait tout, entière dans l’un des groupes d’ondes (par 
exemple Ri i l’autre groupe d’ondes étant vide d’onde u et représentant 
seulement, tant que nous n’aurons pas d’information sur la position du

'A 5 4
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corpuscule, la possibilité que le corpuscule soit venu dans R2. Je vais 
expliquer pourquoi cette hypothèse me paraît maintenant devoir être 
re j e I ce.

Commençons par rappeler le dispositif connu sous le nom d’inlerfé- 
romètre de Michelson.

( n laisccaii de lumière parallèle tombe en A sur un miroir semi- 
transparent M incliné à 45° sur SA. Les faisceaux transmis et réfléchis 
vont ensuite se rélléchir respectivement sur des miroirs non trans 
parents M, et VL; puis le faisceau AB étant revenu en A se réfléchit 
partiellement sur le miroir VI dans la direction AD tandis que le

faisceau AC revenu en V est transmis partiellement, dans la môme 
direction Ai). En I), on peut donc observer des interférences qui 
correspondent à la différence de marche éventuelle des rayons SACAD 
et SABA1). Le dispositif est, on le sait d’une extrême précision.

Voici maintenant la question qui se pose. Si le train d’ondes incident 
a une longueur très grande par rapport aux dimensions de l’interféro- 
mètre, il va inonder pendant un temps très court l’ensemble de l’appareil 
(iJig. 18, a, région ombrée).

Il prendra donc la lorme d’un train d'ondes désarticulé, mais d’un 
seul tenant. Si, au contraire, le groupe d’ondes est de dimensions petites 
par rapport à celles de l’inlerféromètre, après avoir été divisé par 
l’action du miroir M. il donnera naissance à deux petits trains d'ondes 
entièrement séparés qui accomplissent indépendamment les trajets AB A 
et ACA pour venir ensuite se répondre et interférer dans la direc 
tion Al) {Jiii■ i 8, b).

La théorie ondulatoire classique prévoit dans les deux cas qu’il y a 
des interférences en J) : au contraire, la théorie de l’onde u, si l’on 
admettait l’hypothèse exposée1 plus haut, conduirait à dire qu’il pourrait
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y avoir des interférences dans le premier cas parce qu’il n’y aurait pas 
dislocation du train d’ondes incident et que tout se jouerait à l’intérieur 
d’un même groupe d’ondes, tandis que dans le second cas il n’y aurait 
pas d’interférences parce qu’il y aurait alors séparation complète dans 
l’espace des deux trains d’ondes dont l’un, vide d’onde u, serait en 
réalité inexistant car il ne représenterait qu’une possibilité non réalisée. 
Or, une telle conclusion, qui en vérité est a priori assez peu vraisem 
blable, est en opposition formelle avec l’expérience, comme me l’a 
signalé en particulier M. Renninger. En effet, Miclielson et IJale ont 
obtenu des interférences avec des trains d’ondes qui avaient été séparés

</>>

dans l’espace par des distances de l'ordre de 2 km (1 ). Nous devons 
donc rejeter l’idée suivant laquelle, par l’action d’un miroir semi- 
transparent, un train d’ondes se divise en deux trains d'ondes séparés 
dans l’espace, l’onde u se concentrerait dans le train d’ondes où est 
passé le corpuscule, l’autre train d’ondes étant vide d’onde u, car alors 
le second train d’ondes serait physiquement inexistant et il 11e pourrait 
y avoir d’interférences entre ce train d’ondes inexistant cl l’autre en 
cas de croisement ultérieur.

Ces considérations semblent donc nous amener nécessairement à la 
conception suivante. Lorsqu’un train d’ondes est partagé en deux par 
l’action d’un miroir semi-transparent, l’onde a se partage entre les 
deux trains d'ondes de sorte que finalement nous avons d’un coté un 
train d’ondes u sur lequel est implantée une région singulière qui est le 
corpuscule et de l’autre côté un train d’ondes u, sans région singulière. 
L’idée nouvelle qui apparaît ici est qu’il peut exister dus trains d’ondes u 
sans région singulière. Celle idée paraît d’ailleurs en accord avec le

(') Nature, t. 113, 19 2 ; !, p. 556.
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formalisme nctiiel des « nombres d’occupation » en théorie quantique 
des champs, formalisme suivant lequel il peut y avoir associés à une 
onde, o ou i corpuscule dans le cas des fermions, o, i, ..., n corpuscules 
dans le cas des bosons : dans un cas comme dans l’autre, le nombre 
d’occupation peut dire zéro, ce qui correspond bien à notre conception 
de trains d’ondes u sans région singulière.

Il ne semble pas que la conception d’ondes u ne portant aucune 
région singulière, aucun corpuscule, soulève en elle-même des 
difficull és.

Certaines apparaissent cependant quand on regarde de près ce qui se 
passe dans un cas comme celui du miroir semi-transparent de la 
ligure io. Raisonnons en supposant, pour préciser, que le pouvoir 

réllecleur est égal à Ce (pie nous venons de dire nous conduit à

admettre que, si le corpuscule est finalement venu en Ci dans le train 
d’ondes R4, il y a néanmoins une portion, partout régulière, de l’onde u 
qui a passé dans le train d’onde R2. Or. l'amplitude a de l’onde W et 
l’amplitude f de l’onde u (en dehors de la région singulière) satisfont 
aux équations de continuité

')(!■ ,. ,- -+- divt a'- Y ) = o, àJ2
<)l -+- dh (/2v) = o.

V étant dans les deux équations la même vitesse définie en chaque point 
par la formule du guidage. En éliminant div V enlre ces deux équations

et en introduisant la dérivée totale ~ +V.grad prise le long

d’une ligne de courant, on démontre aisément que ~ log ■- = const.,

c’cst-à-dire (pic le quotient -- doit rester constant quand on se déplace

le long d’une ligne de courant avec la \itesse V. Or, en partant d’un 
point quelconque de R0 et en suivant la ligne de courant qui passe par 
ce point, on atteint finalement un certain point de R4 ou un certain 
point de R2 suivant la position initiale choisie dans R0. Comme dans R() 
on a a = Cf d’après nos hypothèses, il semble qu’on puisse en déduire 
qu’en tout point de R, ou de R2 (sauf dans la région singulière qui

fentoure Ci) le rapport'' a la même valeur C qu’il avait initialement

dans R0. Or, nous savons, d’après la théorie linéaire usuelle de l’onde *F, 
que a doit diminer dans le rapport ~ quand on passe de R0 à R4 ou

à R.j : l’amplitude y devrait donc aussi diminuer dans le même rapport. 
Mais cette conclusion nous fait tomber dans une nouvelle difficulté.

b. !)!■; RR001.IK, 17
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Si, en effet, nous acceptons d’admettre que la traversée du miroir 
semi-transparent a pour conséquence d'affaiblir la partie extérieure 
régulière de Fonde «, alors la traversée successive d’un 1res grand 
nombre de miroirs aura pour conséquence que la partie extérieure de u 
tendra vers zéro. De nouveau, nous arrivons finalement à la conclusion 
que le corpuscule perdra progressivement son onde extérieure, conclu 
sion difficile à admettre du point de vue physique.

11 serait beaucoup plus naturel, dans le cadre de nos conceptions, 
d’admettre qu'un corpuscule ayant traversé toute une série de miroirs 
semi-rélléchissanls a exactement les mômes propriétés que s’il était, 
encore près de la source. La question est, en somme, de savoir si un 
corpuscule, qu'il soit associé à un groupe d'ondes en propagation libre, 
qu’il ait été émis par une source ponctuelle éloignée ou qu’il ail traversé 
des miroirs semi-transparents, garde une structure el des propriétés 
invariables ou si, au contraire, sa structure el ses propriétés changent, 
autrement dit s'il « vieillit ». Rien que la seconde hypothèse puisse 
peut-être être soutenue, la première paraît cependant plus vraisem 
blable. Mais celle-ci implique que l’onde u du corpuscule parvenue 
dans Rj devrait avoir la môme partie extérieure qu’elle avait primiti 
vement dans Ho, l’amplitude f étant restée la môme. Or, ceci n’est-il 
pas inconciliable avec le résultat que nous avons démontré [tins haut à 
l’aide des équations (a/j.)?

Ce qui pourrait nous tirer d’alfaire, c'est qu'en réalité la seconde 
équation (24) n'est pas rigoureusement valable si l'équation de l'onde u 
n’est pas linéaire. La séparation des termes réels el imaginaires dans

l’équation de u, quand on pos c«—/« h conduit à une équation de 
Jacobi généralisée et à une équation de continuité qui contiennent toutes 
deux un second membre des termes non linéaires. C’est cette circonstance 
qui, dans le cas de l’équation de Jacobi généralisée, nous a conduit au 
paragraphe 2 à apercevoir la possibilité de groupes d’ondes sans défor 
mation. La môme circonstance fait que la deuxième équation de conti 

nuité ( 24), qui rigoureusement est de la forme ^ + V. grad f- --= Y,

pourrait cesser d’être valable sur le bord des trains d'ondes et en 
principe ne l’est jamais dans la région singulière. Ce fait a pour consé-

quencc qu'011 ne peut plus affirmer que garde la môme valeur dansRt

et dans Ra que dans R„. On peut dire aussi que les termes non linéaires 
de l’équation de u ont pour effet que le pourtour de la région singulière 
et les bords de trains d’ondes peuvent se comporter comme des sources



(ou dos puits) pour l’onde u. Dans les groupes d’ondes stables sans 
déformation que nous avons considérés au paragraphe 2, ces sources 
devraient s’annuler; mais, quand un groupe d’ondes de ce type se 
déchirerait pour donner naissance à deux groupes d’ondes distincts Rj 
et IR, ces sources pourraient réapparaître et faire varier les amplitudes 
de v dans Rt et R2. Ces amplitudes seraient d'abord égales et le 
resteraient pendant un certain temps au cours duquel l’interférence 
entre Rt et IR en cas de superposition ultérieure serait encore possible 
dans les conditions prévues par la théorie classique. Mais après un 
certain délai l’action des sources pourrait avoir pour effet de ri-générer 
le groupe d’ondes primitif dans R4. 11 se pourrait aussi que le groupe 
d’ondes R2 sans corpuscule finisse par disparaître, peut-être par étale 
ment indéfini. Ce ne sont là que des suggestions dont la justification, 
sans doute très ardue, ne serait possible que si nous parvenions à 
connaître! la forme des termes non linéaires dans l'équation des 
ondes u (1 ).

7. Retour sur la relation entre onde u et onde ff'. — L'étude du 
passage d’un corpuscule à travers un miroir semi-transparent, quelle 
que soit la manière dont on soit finalement amené à la développer dans 
la théorie de la double solution, va nous permettre de préciser certains 
points de la liaison qui devrait exister entre onde U et onde ff". Dans le 
groupe d’ondes initial IR, l’onde d normée ayant une amplitude «o
^telle que ^ al dz = i ^ > la relation entre l’onde ’F et la partie exté 

rieure de Fonde u est W~C0e avec une constante Co de valeur bien 
déterminée. Après la séparation des deux groupes d’ondes Ri et R2 
égaux à IR, le corpuscule se trouvant dans l’un des groupes d’ondes 
sans qu’on sache lequel, on doit imaginer une onde ff' remplissant les

deux groupes d’ondes avec, nous l’avons vu, l’amplitude™- Si | (’i |
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f1) Sans y attacher trop d’importance, nous pouvons illustrer l'idée que nous venons 
d’exposer à l’aide d’une image qui nous a été suggérée par M. J. L. Destouches. Dans 
une certaine mesure, on peut comparer un corpuscule eu mouvement rectiligne et 
uniforme entouré de son groupe d’ondes à un bateau en mouvement sur la mer libre 
entouré de son sillage. Si le bateau passe près d’un mur, d’une digue, une partie de son 
sillage peut subir une réflexion et, si elle revient se superposer à une autre partie du 
sillage primitif, elle pourra donner lieu à des interférences; mais, quand ensuite le 
bateau se sera éloigné de la digue, il se retrouvera en mer libre avec son sillage pri 
mitif reconstitué tandis que la partie du sillage réfléchie par la digue aura été se perdre 
au large et aura disparu.
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et | (’2 | représentent les amplitudes des parties extérieures dis u dans Rt 
et dans R2, on aura dans ces deux trains d’ondes respectivement

= C, [ i>, | et a-, = C» ] t’-i \

avec

ainsi, quand on passe de R0 à Rt ou à R2, la constante de proportion 
nalité varie. Si nous avons alors connaissance du fait que le corpuscule 
se trouve dans R1; nous devons renormaliser à l’unité l’onde fictive de 
probabilité dans IR, ce qui lui rendra l’amplitude primitive a0, tandis 
que dans R2, nous devons poser f = o car nous savons maintenant (pie 
le corpuscule ne se trouve pas dans R2. Naturellement, l’onde u qui, 
pour nous, est une réalité objective ne peut être modifiée ni dans Rt, ni 
dans Ro, par l’information que nous avons reçue sur la position de la 

région singulière. Nous devons donc maintenant poser dans Rt la 

relation *F = C, m, avec G, = . ""■■■ > c’est-à-dire que la constante de
! ci | 1

proportionnalité Ci doit être multipliée par y/a. Mais dans R2, il faut 
poser ¥ = ox v->, c'est-à-dire que la constante de proportionnalité y 
devient nulle.

Nous voyons alors bien comment nous devons assouplir la liaison 
possible entre la partie régulière de l’onde u et l’onde lF pour rendre 
compatible le caractère objectif de l’onde u avec le caractère subjectif 
de l’onde lF. Dans le train d’ondes « où se trouve finalement le corpus 
cule, l’onde *F reste toujours proportionnelle à la partie extérieure de 
l’onde u, mais la constante de proportionnalité change quand il y a 
réduction du paquet de probabilité et renormalisation de l’onde 'F. 
Dans le train d’ondes où ne se trouve pas le corpuscule, on doit, avant 
toute localisation de celui-ci, imaginer une onde *F qui représente sa 
probabilité de présence, mais, après la localisation du corpuscule 
dans Ri, il n’y a plus dans R2 qu’une onde u partout régulière sans 
onde ’F. Ces considérations nous paraissent jeter une certaine clarté sur 
la nature de la liaison qui peut exister entre l’onde a réalité objective 
indépendant de nos informations et l’onde 'F construction de notre 
esprit et représentation subjective des probabilités qui, elle, dépend 
essentiellement de nos informations. Nous avions précédemment signalé 
la nécessité d’établir entre les ondes u et 'F une liaison assez souple 
pour qu’elle ne fasse pas participer l’onde u au caractère subjectif (le



l’onde W : nous apercevons mainlenant comment on pourrait atteindre
ce Imt.

Evidemment il est mathématiquement équivalent d’écrire U Ce 
ou <' = CW, mais l’avantage de la première, façon d’écrire devient main 
tenant évident. Elle nous donne la possibilité de choisir à notre conve 
nance la constante C, au besoin en lui attribuant des valeurs différentes 
dans des régions séparées de l’espace, de façon que l’onde W ainsi 
construite à partir de e puisse jouer le rôle statistique que nous 
souhaitons lui attribuer. C’est pourquoi nous devons poser C = o poul 
ies régions de l’espace où nous savons que Fonde u ne comporte pas de 
région singulière, puisque la probabilité de présence de la région singu 
lière y est nulle.

8. Extension des idées précédentes aux problèmes de collision. — 
O11 peut généraliser au cas des phénomènes de collision les idées que 
nous venons de développer sur l’exemple du miroir semi-transparent.

Raisonnons sur la collision de deux corpuscules. La théorie usuel 
lement. admise envisage dans l’état initial deux trains d’ondes f occupant 
dus régions séparées de l’espace R0 et I!( et se rapprochant l’un de 
l’autre. Puis, après le phénomène de collision très complexe que la 
théorie actuelle ne peut représenter qu’en se servant de l’espace de 
configuration à six dimensions, on arrive à un état final où les trains 
d’ondes W des deux corpuscules sont à nouveau entièrement séparés et 
où il v a plusieurs possibilités IR, TC, . . ., pour la position du train 
d'ondes du premier corpuscule et plusieurs possibilités R,, R.,, .... 
pour la position du train d’ondes du second corpuscule. Ces trains 
d'ondes sont « corrélés », c’est-à-dire que, si le corpuscule 1 est dans IR, 
le corpuscule 2 est dans IV,, si le corpuscule 1 est dans IC, le corpus 
cule 2 est dans R',, etc.

Dans l'étal initial, suivant les conceptions de la double solution, 
les ondes ut) et u'0 des deux corpuscules occupent R(> et IV0 : les 
ondes <F correspondantes V» = C(,i-o et W'(l = G'(, c'(l sont seulement 
de représentations de probabilités et les constantes C(l et C’„ doivent 
être choisies de façon à ce qu'elles puissent jouer ce rôle. Dans l’étal 
final, l’onde a du premier corpuscule sera répartie entre R4, IC, . . ., 
celle du second entre IV,, IV,, . .., mais les deux régions singu 
lières doivent tou|ours se trouver dans deux trains d’ondes corrélés 
(par exemple le premier dans IR et le second dans R,). Les ondes 
fictives U* doivent être construites de façon que le carré de leur 
module représente la probabilité de présence des régions singulières
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quand on ne sait pas dans quel couple de trains d’ondes corrélés elles 
se trouvent. Quand une observation ou une information nous a appris 
dans quel couple de train d’ondes corrélés se trouvent les corpuscules, 
alors nous devons renormaliser les ondes 'F de manière qu’elles soient 
toutes nulles dans tous les couples de trains d’ondes corrélés, sauf dans 
celui où se trouvent les corpuscules. Naturellement cela ne modifiera 
nullement la valeur des ondes a dans les divers trains d’ondes puisque 
l’onde u est une réalité objective indépendante de nos informations.

Les ondes 'F se trouveront ainsi concentrées par la renormalisalion 
dans les couples de trains d’ondes corrélés où se trouvent les régions 
singulières, les coefficients G de la relation fi' = Ce devenant nuis dans 
tous les autres couples de trains d’ondes corrélés. Ceci se conçoit 
aisément car les ondes fi;, construction de notre esprit, ne sont pas en 
réalité liées à la structure objective de l’onde u et à ses valeurs locales, 
mais doivent simplement pouvoir représenter la probabilité de présence 
des régions singulières-corpuscules (*).

9. Résumé du chapitre. — Nous avons étudié dans ce chapitre trois 
questions qu’il est très difficile de résoudre du point de vue où nous

(’) Ici encore on pourrait supposer que les trains (Tondes u pourvues d'une région 
singulière se régénèrent, alors que ceux qui en sont dépourvues dégénéreraient tt peut- 
être disparaîtraient.
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nous sommes placé : corpuscule associé à un groupe d’ondes en propa 
gation libre, émission de corpuscules par une source ponctuelle isotrope, 
corpuscule traversant un miroir semi-réflécbissant pour son onde 
associée.

Nous nous sommes alors trouvé en présence du dilemme suivant : 
ou bien admettre que la partie extérieure de l’onde u s’affaiblit progres 
sivement de telle sorte que le corpuscule tend à « perdre » son onde a 
extérieure ou bien supposer que le corpuscule conserve au contraire 
intégralement son onde u initiale. La première hypothèse correspond à 
la forme des solutions que l’on a l’habitude de considérer en Physique 
classique et en Mécanique ondulatoire usuelle pour les équations 
linéaires des ondes continues. En théorie de la double solution, elle 
entraînerait qu’il devrait exister une différence entre les corpuscules 
« jeunes », c’est-à-dire récemment émis, et les corpuscules « vieux », 
c'est-à-dire ayant subi de nombreuses aventures depuis leur émission 
et partiellement dépouillés de leur onde u extérieure; mais il serait 
alors assez difficile de comprendre le fait, cependant presque certain, 
que les corpuscules « vieux » ont les mêmes propriétés, notamment les 
mêmes propriétés d'interférences, que les corpuscules « jeunes ». Il ne 
faut pas oublier, en effet, que l'on obtient couramment des phénomènes 
d'interférences avec des photons provenant d'étoiles lointaines qui ont 
voyagé dans l’espace pendant d'immenses durées (•). La seconde hypo 
thèse, au contraire, semble en théorie de la double solution plus satisfai 
sante du point de vue physique parce qu elle correspondrait mieux au 
caractère de permanence des corpuscules ; mais pour la justifier, il 
faudrait montrer qu’elle correspond à des propriétés de l'onde u essen 
tiellement liées au caractère non linéaire de son équation de propa 
gation. Malheureusement cette justification, rendue a priori très ardue 
par la difficulté qu il y a toujours à étudier les solutions des équations 
non linéaires, restera impossible à développer complètement tant que 
subsistera notre ignorance de la forme des termes non linéaires à intro 
duire dans l'équation des ondes u.

(:) Ou pourrait cependant chercher à interpréter par Je vieillissement des corpuscules 
l’apparente «récession» des nébuleuses spirales (au lieu d'invoquer Fliypolhétique 
«expansion de Fljnivers» ).



CHAPITRE XIX.
ÉTATS STATIONNAIRES, TRANSITIONS QUANTIQUES, 

CONSERVATION DE L’ÉNERGIE.

1. Les états stationnaires. — Lue des conceptions les plus fonda 
mentales introduites par l’ancienne théorie des quanta a été celle d’étal 
stationnaire d'un système quantifié. Dans sa théorie de l’atome, M. Bohr, 
en i<)i3, a introduit l’idée qu’un atome peut seulement se trouver dans 
un certain nombre d’états stationnaires quantifiés à l’exclusion de tout 
autre et il a rattaché cette idée à la théorie des quanta de Planck. 
L'atome serait susceptible de passer spontanément d'un état stationnaire 
d’énergie E, à un autre état stationnaire d'énergie E/, < E,- en émettant 
un quantum de rayonnement de fréquence v,-;,telle que //v,7, = E;—E/, 
(loi des fréquences de Bohr). Irradié par un rayonnement de fré 
quence v,7,-, l’atome peut aussi passer de l’état stationnaire d’énergie E/, 
à l’état stationnaire d’énergie supérieure E, en absorbant un quantum 
d’énergie radiante hv,7,. Si l’atome dans l’étal E,- subit le choc d’un corpus 
cule incident, il peut passer de l’état d’énergie E,-à l’état d’énergie E* en 
cédant au corpuscule l’énergie E;—E*. Inversement, si l’atome est dans 
l’état d’énergie E*, il peut, passer dans l’état d’énergie E; si le corpuscule 
incident a suffisamment d’énergie pour que l’atome puisse lui prendre 
l'énergie E,- — E*. Tel est dans ses grandes lignes le schéma très simple 
de la théorie primitive de Bohr. L’étude expérimentale des phénomènes 
d’excitation et de désexcitation par choc ainsi que celle des phénomènes 
d ionisation par choc où l’atome perd complètement l’un de ces électrons 
internes par suite d’une collision ont entièrement confirmé l’existence 
des états stationnaires qui est devenue l’une des conceptions fondamen 
tales de la Physique quanlique.

Dans la conception de M. Bohr, il n’y a plus que des états slation- 
naires et l’on exclut a priori toute description des transitions brusques 
qui accompagnent le changement d’état stationnaire. D’après M. Bohr,



l'atome dans un étal .stationnaire est, en quelque sorte, soustrait à
I action du temps : il n’évolue pas. Quant à la transition brusque qui le 
lait passer d’un élat à un autre, c'esl d'après lui quelque chose qu’il est 
absolument impossible de décrire par une image spatiotemporelle.

Lors de l'avènement de la Mécanique ondulatoire, la notion d’élai 
stationnaire a reçu l'interprétation suivante : l’onde 'F qui décrit l'état 
d'un système quantifié possède, quand le système est dans un état 
stationnaire, la forme d'une « onde stationnaire », c’est-à-dire qu'elle a 
pour expression pour le état stationnaire

u„/
II ) = u„ (g) e

où rj représente l’ensemble des variables de configuration qui décrivent 
le système. Four déterminer les états stationnaires, on devra trouver les 
solutions de la forme (i) de l'équation des ondes pour le système quan 
tifié qui sont finies, uniformes et continues et qui satisfont aux condi 
tions aux limites du problème considéré. Ces solutions constituent les 
« fonctions propres » de l’opérateur hamiltonien correspondant à la 
grandeur « énergie » et les « valeurs propres » E„ sont les énergies des 
états stationnaires quantifiés du système.

C’est M. Schrodinger qui, le premier, a calculé de celle façon, 
en iqa.G, les énergies des états stationnaires. Or, c’est lui aussi qui a le 
plus sévèrement critiqué la notion même d’état stationnaire. Dans un 
article récent ('), où il a d'ailleurs, en accord avec les idées que nous 
avons exposées précédemment, insisté fortement sur le rôle essentiel 
que doivent jouer en Mécanique ondulatoire les dimensions limitées des 
trains d'onde, il a remarqué avec humour que la considération exclusive 
des étals stationnaires avait conduit à une théorie « qui décrit minutieu 
sement les états stationnaires, c'est-à-dire ceux qui ne sont pas inté 
ressants puisqu'il ne s’y passe rien, et qui reste silencieuse sur les états 
intermédiaires ». Il remarque que l'état d'un atome doit en général être 
représenté par une superposition d'ondes stationnaires de la forme

—,— K/.- /
\<‘k«/, ( g) e '

k

et il en conclut qu'en Mécanique ondulatoire il doit être possible de 
représenter les transi lions quanliques en respectant les « prérogatives »

des fréquences propres mais en supprimant complètement la
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prérogative des états stationnaires. Ces remarques sont 1res intéres 
santes et nous y reviendrons.

Ajoutons que M. Schrodinger voudrait, conformément à sa tendance 
initiale, supprimer autant que possible la notion de corpuscule et assi 
miler les phénomènes d’échange d’énergie quantifiée lors des chocs à 
des phénomènes de résonance. Nous ne le suivrons pas dans cette voie 
qui paraît très différente de la nôtre et nous allons maintenant étudier 
comment se présente, dans la théorie de la double solution, la conser 
vation de l’énergie quand la fonction U'est une superposition de fonc 
tions propres de l’hamiltonien.

2. Étude de la conservation de l’énergie lors du choc d’un corpuscule 
avec un atome. — Pour étudier un cas précis, nous allons considérer le 
choc d’un corpuscule dont l’énergie initiale peut être considérée comme 
ayant une valeur précise Eu avec un atome dont la fonction d’ondes lL a 
l’expression générale (2). Le calcul par la Mécanique ondulatoire montre 
qu’après le choc, il y aura toute une série de possibilités affectées 
de probabilités diverses : pour chacune d’elles, le corpuscule s’éloi 
gnera de l’atome avise une énergie de la forme E.>± (K*—E,„), 
où E\i — E,„ représente l’une des différences de niveaux énergétiques 
de l’atome quantifié. Si l’on constate après le choc que le corpuscule 
possède l’énergie E0+E;—Em, on devra en conclure que l'atome a subi 
la transition l-y m et qu'il se trouve finalement dans l’étal stationnaire 
d’énergie E,„. Si dans son état initial, l’atome s'était, trouvé dans l’état 
stationnaire d’énergie E/, ou pourrait dire simplement qu'en subissant, 
lors du choc, la transition E/->- E,„, il a cédé au corpuscule incident 
l’énergie E;—E„, et la conservation de l’énergie aurait alors un sens 
très clair. Mais ce sens est moins clair dans l’hypothèse où nous nous 
sommes placés pat ce que la fonction d’ondes ffa alors la forme initiale (2). 
Avec l’interprétation actuelle, nous devons dire alors que, dans son état 
initial, l'atome a « potentiellement » toutes les énergies E/, avec les 
probabilités respectives J C4 |-. Le fait qu’après le choc, le corpuscule 
soit trouvé avec l’énergie E0 + (E/—E,„) montre alors que, dans le 
choc, c’est la possibilité E = E/ qui s'est « actualisée » pour l'atome et 
que celui-ci, ayant cédé au corpuscule incident l’énergie E/—E,„, se 
trouve finalement dans l étal d’énergie E,„. On voit ainsi combien la 
conservation de l'énergie est ici plus difficile à énoncer (pie pour la 
Physique classique parce que l'énergie de l’atome n’a plus dans son étal, 
initial une valeur bien déterminée. Il en serait naturellement de même 
si l’onde ff' du corpuscule incident comportait plusieurs composantes
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spectrales et cela même si l’atome se trouvait alors avoir initialement 
une énergie bien définie.

Comme après le choc le corpuscule s’éloigne en général indéfiniment 
de l’atome, la constatation de la valeur finale de son énergie peut se faire 
très loin de l'atome. C’est cependant cette constatation qui, d’après 
l’interprétation actuelle, mettrait l’atome dans l’état d’énergie Em ! 
Nous retrouvons là l’un des aspect du paradoxe des états corrélés 
mis en lumière par M. Schrôdinger et précédemment exposé au cha 
pitre VII (§4).

3. Point de vue de la théorie de la double solution. — Dans l’inter 
prétation causale que nous exposons, la phase cp joue, nous le savons, 
le rôle d une fonction de Jacobi extrapolée en dehors du domaine de 
l’Optique géométrique et l’énergie d’un corpuscule (ou d’un système) 
est, par suite, donnée par la formule

Ici se présente une circonstance remarquable. Môme en l’absence de 
champ extérieur variable avec le temps, l’énergie n’est pas en général 
constante. Prenons le cas simple d’un corpuscule en l’absence de tout 
champ extérieur. Si l’onde 'F est une onde plane monochromatique, 
c'est-à-dire si le corpuscule se trouve dans un groupe d’ondes presque 
monochromatique sans être au voisinage immédiat de son bord, l’énergie 
du corpuscule restera constante. Mais dès que le *F est une superpo 
sition d'ondes planes monochromatiques avec un spectre étendu, on 
peut voir aisément par le calcul de la phase cp que cette phase ne sera 
plus une fonction linéaire du temps et que l’énergie du corpuscule 
définie par (.'>) ne sera plus constante.

Ce fait est relié à la circonstance suivante : le potentiel quantique Q 
est alors une fonction explicite du temps. Or on sait que, si £ désigne 
la fonction de Lagrange d’un corpuscule (ou d’un système), la dérivée 
totale de l’énergie W prise en suivant le mouvement est

d\\r
~dT

rW
Ht

Pour qu’il y ait conservation de l'énergie, il faut donc que £ 
ne dépende pas explicitement du temps. Or nous avons vu au cha 
pitre Y (§1), qu’en Dvnamique de la double solution le schéma lagran 
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gien (!sl valable avec les définitions

( 5 ) J? = - me- — F — O ; \\ = 1 me- -t- F -y O
9. ' 2

(à l’approximation non relativiste), F étant le potentiel dont dérive le 
champ extérieur et Q le potentiel quanticpie. Donc, même si F est nul 
ou ne confient pas explicitement le temps, l'énergie ne sera constante 
que si Q ne dépend pas explicitement du temps. Or, dans le cas d’une 
superposition d’ondes planes monochromatiques, () dépend en général 
explicitement du temps.

Prenons comme exemple le cas simple de l’atome d’hydrogène. 
L’électron n’y aura une énergie constante que dans les étals station 
naires. Dans tous les états où l’onde l’a la forme générale (2), l’électron 
aura dans la théorie causale une trajectoire très compliquée définie en 
fonction de la phase <p de l’onde f par la formule du guidage et son 
énergie ne demeurera pas constante au cours du mouvement.

Quand un corpuscule incident d’énergie E„ bien définie vient frapper 
un atome, la théorie causale conduit donc à penser qu’en principe le 
résultat du choc serait entièrement prévisible si l’on pouvait connaître 
la position initiale du corpuscule dans le train d’ondes incident et celle 
des électrons dans l’atome. Mais, comme ces positions restent néces 
sairement ignorées, toute mesure des positions modifiant les positions 
initiales, nous devons nous contenter de calculer, en accord avec les 
formules de l’interprétation usuelle, les résultats possibles de la collision 
avec leurs probabilités respectives. Le calcul se faisant d’après la 
méthode usuelle, 011 trouvera le même résultat final : le corpuscule doit 
s'éloigner de l’atome avec une énergie bien définie égale à E„ + (E;— E,„ ) 
correspondant à un gain ou à une perte d’énergie égale à l’une des diffé 
rences de niveaux énergétiques de l’atome; corrélativement celui-ci 
restera dans un état final stationnaire d’énergie quantifiée E,„.

L’on voit ainsi que, comme dans l’interprétation usuelle, il n’y a 
plus, à proprement parler, dans notre interprétation de conservation de 
l’énergie puisque l’atome n'a pas en général une énergie constante dans 
son état initial. Tandis que, dans l'interprétation usuelle, l’atome dans 
son étal initial aurait plusieurs valeurs « potentielles » pour son énergie 
aliénées de probabilités diverses, en théorie causale l’électron atomique 
aurait dans l’état initial une énergie continuellement variable. JNi dans 
un cas, ni dans l’autre, les conditions classiques de valeurs initiales et 
finales bien définies de l’énergie ne sont satisfaites. La situation au 
point de \ue de la conservation de l’énergie 11e parait donc pas au lond



être beaucoup meilleure dans l’inlerprélalion actuelle que dans la 
ihéorie causale.

4. Autre cas instructif de collision entre atome et corpuscule. — A 
litre d’exemple, nous allons considérer un nuire cas instructif de collision 
entre alome el corpuscule.

Soit un alome qui se trouve initialement dans un état stationnaire 
fondamental d’énergie minimum Pin. Cet atome possède deux étals 
excités d’énergies Ei et E» y> IA. Le schéma de ses niveaux est donc le 
suivant :
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; l

O
LL)

E20

A
t'ig- 2».

Posons L, — L„ — L10 et IA — E0 — lAo : ce sont deux énergies d’exci 
tation de l'atome dans son étal normal. L’on a évidemment IAo> Ll0.

Nous supposons de plus que, sur l’atome dans l’état PA. arrive un 
corpuscule dont l'onde W est

Ln réalité, point qu’011 oublie généralement de souligner dans ce 
genre de problème el qui pourrait avoir (le l'importance, l’onde lf for 
cément limitée n'a celle (orme (6) que dans la partie centrale de deux 
groupes d’ondes qui se superposent.

Avec l’interprétation usuelle, on doit dire que le corpuscule incident 
a potentiellement, avec une égale probabilité, les deux énergies PA» 
et JA». Son choc avec l’atome peut donc provoquer dans cet atome l'une 
des transitions E„IA ou L»—VPA- Dans le premier cas l'énergie ciné 
tique finale de l’électron incident sera nulle; dans le second, elle sera 
égale soit à PA»— IA», soit à zéro. On 11e peut pas dire qu'il y ail 
conservation de l'énergie au sens classique puisque le système n’a pas 
dans l’étal initial une énergie ayant une valeur bien définie.

Avec l’interprétation causale, au contraire, 011 écrira l’onde ’I du 
corpuscule incident sous la lorme



270 CHAPITRE XIX.

équivalente à (6) et l’on aura 

0 ()z hjoH-IUo /eo~+-/,20
(8) Ji =-------â-------’ Tz="------- 2-------

L’énergie YV du corpuscule incident est donc ici égale à la valeur
K -4- Pconstante -dü——— > ce qui correspond au fait que, l’amplitude de W étant

(«) pi» — !>ui

le quotient et pai- suite le potentiel quanlique Q sont constants et 

indépendants du temps.
Puisque l’énergie finale du corpuscule incident est soit zéro, soit 

E20—E10=E2 — E1? on voit que la variation de l’énergie du système 
corpuscule + atome correspond à l'un des schémas suivants :

K10 H- t. •> 0
/fKo -h 11 1 E.,„ K.,„— k „,+ k 2

------------------' Il,, H-----------------

\f K° ^ Es» ï = K, -+- J
( lCo -s— 1‘- ! ,> —H- ( 0--E|u) j

■ e ,„ Ii2ll — E1(>

Ici, bien que nous trouvions une énergie; constante pour l’état initial 
du corpuscule et que la valeur initiale de l’énergie du système soit 
constante et bien déterminée, il n’y a cependant pas conservation de 
l’énergie, la variation de l’énergie totale pendant le choc étant égale à 
-+- ’ (Ea—E4). Cette variation est mathématiquement liée au fait que, 

pendant l’interaction, il y a intervention d’un potentiel quanlique dépen 
dant explicitement du temps. Il faut remarquer que les deux transitions

possibles ( 10) ayant la même probabilité i et donnant lieu à des varia 

tions d’énergie égales et de signe contraire, il y aurait une sorte de 
conservation statistique de l’énergie analogue à celle que MM. Bohr, 
Kramers et Slater avaient un moment envisagée après la découverte de 
l’effet Compton.

Mais on pourrait se demander si, en introduisant à côté de l’énergie 
à"
-- du corpuscule une énergie liée à l’onde environnante, on ne pourrait 
pas rétablir la conservation de l’énergie. Nous allons examiner cette 
question en nous aidant d’un résultat que j’avais obtenu dès iqaj.

5. Le tenseur énergie-quantité de mouvement dans la théorie de 
l’onde-pilote. — Dans une Note aux Comptes rendus de novembre (927
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[13], j’avais déjà montré qu’il existait dans la théorie de l’onde-pilole 
un tenseur impulsion-énergie formé à l’aide de l’onde W et possédant 
une propriété de conservation. Voici mon raisonnement.

Nous avons vu qu’en théorie causale, on peut développer une Dyna 
mique du corpuscule où celui-ci aurait la masse propre variable

et nous avons trouvé 
deux équations

(.1) x'-i

avec les notations de la Relativité

(h
àjk M r, f-

généralisé les

,':i o,•

s étant la charge électrique du corpuscule et P le quadrivectcur 
« potentiel électromagnétique ». La vitesse d’Lnivers étant définie par

u' = avec mu'r— i, la loi du guidage s’écrit

O»)
l)'0

*)xk

Comme d résulte de (C) que le vecleur d’Univers de composantes 
eovarianles égales à a- (^jyk—sP/,j a une divergence nulle, nous 

pouvons le supposer proportionnel au quadrivecleur

(Vi i ( \l — uJ

qui exprime la densité et le llux des corpuscules dans un nuage de 
corpuscules décrivant toutes les trajectoires associées à une même 
fonction 'F. On est alors conduit à écrire

( i \) p«= KM,c(i:l.

La densité du nuage étant alors donnée par la quatrième composante 
du vecteur C a pour valeur

/ <h \
fi >) y = <>= Ml.crtèi1 = ku-ip ■[ Ÿ~k — îl’/t 1 •

On peut voir aisément que, dans cette Dynamique, les équations du 
mouvement du corpuscule prennent la forme

(i(> ) d
du f M, M cil "k

,)x‘ Uc d.Vi
ÙM„
<)x‘ '

i
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Au second membre de celte équation, le premier terme représente 
l’aclion du champ de gravitation, le second l’action du champ électro 
magnétique et le troisième l’action du potentiel quantique.

Supposons qu’il n’y ait pas de champ de gravitation et considérons 
toujours le nuage de corpuscules associé à une mémo onde •F. En mul 
tipliant ( 16) par M0£ï2 et en tenant compte de l’équation (C), on obtient 
après quelques transformations

(*7) + ) = <'-

où les Sf sont les composantes mixtes du tenseur impulsion-énergie 
électromagnétique bien connu. Les quantités Tf et H,- sont données 
par

Tf =00M„

272

Les Tf sont les composantes mixtes du tenseur usuel impulsion- 
énergie corpusculaire pour un nuage de densité propre o0, formé de 
corpuscules ayant la masse propre M0. Quant au tenseur II/', il repré 
sente des sortes de tensions internes dans le nuage des corpuscules 
analogues aux tensions internes dans un fluide. Si nous laissons de côté 
le champ électromagnalique, nous voyons que l’équation (17) nous 
conduit à la conclusion suivante : en l’absencc de champ électromagné 
tique, l'énergie et l’impulsion correspondant à la somme des tenseurs 
Tf et Ilf se conservent.

On pourrait être tenté d’utiliser ce résultat pour rétablir la conserva 
tion de l’énergie en théorie causale. Nous avons vu qu’en dehors du cas 
de l’onde plane monochromatique, le mouvement du corpuscule délini 
par la loi du guidage correspond à une énergie et à une impulsion conti 
nuellement variables. Comme l’énergie et l’impulsion du corpuscule 
sont liées au tenseur Tf, on pourrait chercher à interpréter l’intervention 
du tenseur II en disant qu’il v a continuellement un échange d’énergie 
et de quantité de mouvement entre le corpuscule et la partie extérieure 
de son onde u (proportionnelle à *E), échange traduit par l’apparition 
du potentiel quantique. On interpréterait alors la relation (17) en disant 
qu’elle exprime la conservation de l’énergie et de l’impulsion la laïcs du 
corpuscule et de son onde extérieure. Si, dans les exemples étudiés 
dans les paragraphes précédents, nous n’avions pas trouvé de conserva 
tion de l’énergie, ce serait simplement parce que nous n’avions pas tenu 
compte de l’énergie de la partie régulière de l’onde u.

i)a (la
ùr7 V i)a <)a

()./■'" r).r" + u   U



Malheureusement-, à la réflexion, cette interprétation ne paraît pas 
acceptable. Le raisonnement lait ci-dessus pour obtenir un tenseur 
impulsion-énergie part de l’onde statistique ff' et définit le quadri- 
vecleur courant-densité C' et le tenseur Tf en assimilant a- à la densité 
moyenne d’un lluide. Or, ceci n’a de sens que pour une infinité de 
corpuscules décrivant toutes les trajectoires définies par l’onde ’F et non 
pour un seul corpuscule décrivant Vune de ces trajectoires. Le théorème 
de conservation exprimé par (17) n’a donc qu’un sens statistique et l'on 
n'obtient pas avec lui une conservation applicable à un seul corpuscule 
comme il le faudrait pour qu’il y ait réellement conservation dans la 
théorie causale du mouvement individuel.

Évidemment, on pourrait définir un tenseur Ofà partir de Fonde u 
comme on a défini plus haut TI;1 à partir de l’onde 'F : il suffirait 
d'adopter pour Of l’expression (18) de Hf dans laquelle on aurait rem 
placé a par/, cette définition n’étant valable d'ailleurs qu’en dehors de 
la région singulière. Ce nouveau tenseur d’ailleurs proportionnel à Ilf, 
pourrait définir des tensions dans la partie extérieure de Fonde u, mais 
je ne vois pas la possibilité de démontrer, à partir de là, qu’il y ait un 
(■change d'énergie et d'impulsion entre la région singulière et la partie 
régulière de Fonde « assurant la conservation globale de ces grandeurs.

Vinsi, à moins qu'il n’existe une manière de « sauver » la conserva 
tion de l'énergie et de l'impulsion que pour le moment je n’aperçois 
pas (1 ), il semble bien que la théorie causale soit obligée d'admettre qu'en 
dehors de cas exceptionnels cette conservation n’est que statistique.

6. Retour sur les processus de mesure. — En tenant compte de ce 
qui vient d’étre dit, nous allons revenir sur l’interprétation de la mesure 
dans la double solution. Nous raisonnerons sur la grandeur énergie bien 
que notre exposé soit transposable pour toute autre grandeur mesurable 
et nous considérons un corpuscule bien qu’avec des modifications de 
langage approprié les mûmes considérations puissent se transposer pour 
un système.

Comme exemple considérons le cas suivant. Dans l’étal initial nous 
avons affaire à un corpuscule dont l'onde u extérieure (à laquelle Fonde 
statistique fictive doit être proportionnelle) est formée en général par 
une superposition de fonctions propres de l’opérateur hamiltonien. Tout 
processus de mesure de l'énergie doit aboutir à diviser le train d'ondes
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(]) Peul-ètre pourrait-on supposer que les corpuscules puissent échanger de l'énergie 
el de l’impulsion avec ce que nous nommons le «\ide».
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initial en train d’ondes presque monochromatiques qui sont séparés . 
dans l’espace et correspondent à une valeur bien définie de l’énergie.

Si V=^c/;1F/; représente le développement de l’onde VF dans l’état
k

initial (et par suite de la partie extérieure de l'onde v à un facteur mul 
tiplicatif près), l’interprétation usuellement admise conduit à dire que 
dans cet état initial le corpuscule n’a pas une énergie Lien déterminée, 
mais seulement des énergies possibles, chacune d’elles E* ayant une 
probabilité ] c* |2 de s’actualiser dans une mesure ultérieure de l’énergie. 
La théorie causale dira, au contraire, que dans l’état initial un cor 
puscule a un mouvement compliqué et une énergie continuellement 
variable. Le processus de mesure de l’énergie, en divisant le train 
d’ondes initial en trains d’ondes séjtarés dans l’espace et presque mono 
chromatiques et en obligeant le corpuscule à rester accroché à l’un de 
ces trains d’ondes, impose au corpucule d’avoir finalement une valeur 
déterminée de son énergie. Sans avoir à faire intervenir la division du 
train d’ondes, on pourrait se contenter de dire que le processus de 
mesure de l’énergie décroche la région singulière de son onde e primi 
tive pour l’accrocher sur- l’une des composantes monochromatiques 
de e.

Les deux interprétations rivales ne satisfont ni l’une, ni l’autre aux 
conditions d’une véritable conservation de l’énergie. Elles impliquent 
toutes les deux une intervention active du processus de mesure qui 
modifie complètement l’état du corpuscule conformément à une idée 
essentielle de la Physique quantique dont l’exactitude ne paraît pas 
douteuse. Dans la théorie de la double solution, l’intervention active de 
la mesure de l’énergie serait précisément cet effet d'aiguillage de la 
région singulière, du doigt de gant, sur F une des composantes mono 
chromatiques de Fonde primitive de telle sorte que le corpuscule se 
trouvant finalement accroché à F une des composantes monochroma 
tiques se trouverait alors avoir une énergie constante (1).

(]) Mathématiquement celte idée d'aiguillage pourrait se traduire de la manière 
sui\aute :

Soil un corpuscule dont l'état initial correspond à l'onde 'Pilonnée ^ Ck-Zk avec

k
| c/,. [-j, Ies Zk étant les fonctions propres de la grandeur à mesurer. Si, après la 

k
mesure, Ton apprend que la grandeur à mesurer a la udeur correspondant à l'indice /, 
l'on de\ra remplacer M*0 par '1 */= 9/. C'est l’aspect que prend ici la réduction du paquet 
de probabilité, opération subjective effectuée à la suite d'une information.

Vu point de ue objectif de l’onde nous devons supposer que dans l’état initial



Des considérations analogues peuvent être développées sur d’autres 
exemples tels que le choc d’un corpuscule et d’un atome, chacun des 
deux constituants d’abord séparés ayant à l’origine un état représenté 
par une superposition de fonctions propres de leur hamiltonien indivi 
duel : dans tous les cas on retrouverait des conclusions semblables aux 
précédentes.

Il semble que l’interprétation offerte par la théorie de la double solu 
tion puisse être admise aussi bien que l’interprétation probabilité 
usuelle : elle a même sur celle-ci l’avantage d’offrir à notre esprit 
une image claire « par figures et par mouvements » et d’échapper aux 
objections précédemment étudiées (chap. Vit) qui ont pu être faites à 
l’interprétation usuelle. Toute la théorie de la mesure de M. von 
Neumann pourrait être reprise en se plaçant au point de vue de l’inter 
prétation causale : il y aurait une étude intéressante à faire à ce sujet f1).

7. Retour sur la question des états stationnaires et des transitions 
quantiques. — Comme nous l’avons dit, M. Schrôdinger a très justement 
remarqué que l’étal initial d’un système quantifié est, en général, non 
pas un état stationnaire, mais une superposition d’états stationnaires
p' V,..q- /,^>ce qui enlève à l’état stationnaire les prérogatives 

injustifiées qu’on lui attribue souvent depuis la théorie primitive de
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Fonde u ;i ni dehors de I;i région singulière la former, G étant la constante

à \alrur physique bien déterminée de la relation H* Ce. Le point de vue suggéré dans 
le texte conduit à dire qui*, pendant la mesure, le corpuscule s'est décroché de l’onde 
Uo pour s’accrocher sur la composante d’indice l. L’implantation de la région singulière 
sur celle composante aurait pour conséquence qu’un processus objectif de durée finie 
liée «1 la non-linéarité ferait s’évanouir toutes les composantes autres qui* celle d’indice l

et de renforcer celle-ci de telle sorte que finalement l’onde a aurait la forme u/~ -^,9/,

G étant toujours la même constante. Après la réduction du paquet de probabilité, la 
relation M' ~ Go se trouverait donc finalement rétablie.

f1) Soit A une grandeur mesurable attachée à un corpuscule et 9* les fonctions propres 
qui lui correspondent. Si l’état initial est une superposition de 9*, la théorie de la double 
solution dira que la région singulière de Fonde u du corpuscule est initialement implantée

su]' Fonde c
k

Klle ajoutera que, par suite des interactions liées à une mesure

de A, la région singulière se trouvera finalement implantée sur une onde v proportion 
nelle à Fui 1 des 9t. Dans la terminologie de Al. von Neumann, on dira qu’il y a passage 
du « eus pur » initial au « mélange » final quand la région singulière se détachant de la 
superposition initiale est venue s’attacher à l’une de ses composantes sans que Von 
sache encore laquelle.
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Bohr. El ceci est vrai aussi bien dans l’interpréta lion causale que dans 
l’interprétation usuelle avec cette différence que celle-ci considère l’état 
de l’atome comme impossible à décrire par un mouvement dans l’espace 
et comme correspondant à plusieurs valeurs possibles de l’énergie ayant 
des probabilités égales aux quantités | c* |-, alors que celle-là considère 
ce môme état comme correspondant à un mouvement parfaitement 
déterminé au cours du temps, mais dont l’énergie varie continuellement.

L’émission d’un quantum de rayonnement par l’atome apparaît alors 
comme équivalent à un processus de mesure de l’énergie en ce sens qu’à 
la fin de l’émission, le photon émis est associé à un groupe d’ondes qui 
s’est séparé de l’atome quantifié et qu’en décelanl ce plioLon on peut 
savoir dans quel état quantifié final se trouve l’atome et par suite lui 
attribuer une énergie définie et constante.

Le cas est donc analogue à ceux éludiés au paragraphe précédent. On 
peut en effet, bien que ce ne soit peut-être qu’une manière de parler, 
considérer l’atome dans son état initial comme équivalent à un système 
formé par l’atome et par un photon annihilé d’énergie nulle. On est 
donc ramené au cas d’un système formé initialement par un corpuscule 
d’énergie bien déterminée et par un atome dont l’état est représenté par 
une superposition d’ondes stationnaires. L’interprétation probabiliste 
nous dit alors que dans l’état initial le système a toute une série de 
valeurs E/, possibles pour son énergie, chacune ayant la probabilité | c/,- j- 
et que dans l’état final, après une transition impossible à décrire par 
une image spatiotemporelle, il a pris un état stationnaire correspondant 
à l’une des énergies quantifiées E,-, le photon emportant une énergie 
égale à la différence E/—E,- de deux énergies quantifiées de l’atome : de 
ce point de vue, tout se passerait donc comme si l'atome avait d’abord 
choisi l'état stationnaire Ey parmi ceux de la superposition primitive, 
puis subi la transition Ey—>E; accompagnée de l’émission du photon.

Tout autre est naturellement le point de vue de l'interprétation 
causale. Pour elle, le mouvement initial des constituants de l’atome esl 
en principe parfaitement descriptible à l’aide d’une image spaliolem- 
porelle, mais il correspond à une énergie continuellement variable. Par 
une suite d’étals successifs toujours descriplibles en principe par une 
image spatiotemporelle qui constituerait la transition quantique, le 
système parviendrait à un état final où le photon serait émis sous forme 
d’un groupe d’ondes séparé de l’atome, l’atome se trouvant alors dans 
un état final d’énergie quantifiée E,- et le photon possédant l’énergie 
E/—E,. Ici encore tout s’est passé finalement comme si l’atome avait 
choisi l’état quantifié Ey parmi ceux de la superposition primitive, puis



cédé au photon l'énergie Ey—E, avec conservation de l’énergie. Mais 
on aurait passé de l’étal initial à l’état final par un mouvement bien 
défini permettant une description de la transition quantique en 
termes d’espace et de temps : d’après ce que nous avons vu précédem 
ment, ce mouvement s’opérerait d’ailleurs sans conservation de l’énergie, 
celle conservation n’ayant lieu que statistiquement en moyenne pour un 
très grand nombre de processus analogues correspondant à des valeurs 
initiales diverses pour la position des constituants du système.

Plaçons-nous dans le cas où l’on peut attribuer l’émission du pholon 
au changement d’état d’un seul électron intraatomique comme c’est le 
cas pour l’atome d’hydrogène. Alors dans l’état initial la région singu 
lière qui constitue l’électron atomique se trouve accrochée sur une 
onde v qui correspond à une superposition d’ondes stationnaires : le 
départ du pholon après une période de mouvement troublé aura eu pour 
effet de décrocher l’électron de Fonde v initiale pour l’accrocher sur 
l’une de ses composantes monochromatiques, ce qui aura rendu son 
énergie constante. Nous retrouvons ici une image employée au para 
graphe précédent.

Nous devons maintenant insister sur un point qui a une très grande 
importance. Dans l’état actuel de la théorie, on évalue les probabilités 
des processus de transitions quantiques par une méthode de calcul, 
naguère suggérée par le principe de correspondance, en représentant 
l’action de la matière sur le champ électromagnétique par des expressions 
où figure le champ électromagnétique de la théorie classique des ondes 
électromagnétiques de Maxwell-Lorentz et où les éléments électrisés de 
la matière (les électrons intraatomiques) interviennent par l’intermé 
diaire du quadrivecteur courant-densité défini à partir de Fonde *F de 
l’atome. On a remarqué depuis près de 3o ans qu’il y a là une sorte de 
contradiction avec la façon dont on écrit l’équation des ondes à l’inté 
rieur de l’atome car dans cette équation on fait figurer les potentiels 
coulombiens d’interaction entre les particules chargées, ce qui revient à 
les regarder comme ponctuelles et bien localisées dans l'atome. Donc, 
d’une part, pour obtenir la forme de Fonde 'F, on considère les élec 
trons comme bien localisés dans l’atome et, d’autre part, pour calculer 
l’interaction avec le rayonnement, on considère ces mômes électrons 
comme dilués dans l’atome avec la densité statistique | *F |3. Cette 
contradiction flagrante 11e peut guère s’expliquer qu’en adoptant la 
conclusion suivante : toute la théorie actuelle des interactions entre 
matière et rayonnement et la prévision des probabilités de transition 
qui en découle n’ont qu’une valeur statistique, elles permettenl de
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prévoir exactement les phénomènes globaux d’émission, d’absorption, 
de diffusion, etc., mais ne fournissent aucune description exacte des 
phénomènes individuels. La théorie purement probabiliste actuelle se 
tire de la difficulté en niant, semble-t-il, l’existence môme des phéno 
mènes individuels; mais, outre que ce point de vue me paraît assez 
difficile à admettre, il me semble aussi en contradiction de l’emploi du 
potentiel coulombien pour la représentation des interactions.

Une autre raison me pousse à croire que la théorie actelle des inter 
actions entre matière et rayonnement n’a qu’une valeur slatistisque, 
c’est que le champ électromagnétique classique n’est sans aucun doute 
rien d’autre que l’onde a plusieurs composantes de cette particule de 
spin 1 qu'est le photon. Ceci ressort clairement de Ja théorie générale 
dos particules à spin, en particulier sous la forme de la théorie de la 
fusion que nous lui avons donnée (1). Dans la théorie de la double 
solution, l’onde *F, n’étant que fictive et statistique, ne peut pas conduire 
à une description réelle et individuelle des phénomènes, bien qu’elle 
puisse naturellement fournir des prévisions statistiques exactes. La 
théorie causale conduit donc à penser que la véritable description du 
champ électromagnétique et de ses interactions avec les particules élec 
trisées doit faire intervenir non pas l’onde W des pilotons, c’est-à-dire 
l’onde électromagnétique classique, mais bien leur onde «, c’est-à-dire 
un champ électromagnétique avec régions singulières.

Il est évidemment très difficile à l’heure actuelle d’imaginer comment 
on devrait décrire l’interaction entre l’onde u des électrons et l’onde u 
des pilotons (qui, étant des bosons, peuvent se grouper à plusieurs sur 
une môme onde) pour obtenir une description réellement individuelle 
des phénomènes d’émission, d’absorption, de diffusion, etc. Pour y par 
venir d’une façon satisfaisante, il faudrait sans doute d’abord arriver à 
se représenter, comme je l’ai proposé dans ma théorie de la fusion, les

particules de spin différent de - comme des particules pouvant, résulter

de la fusion de constituants de spin - , ce qui doit se traduire dans le

langage de la double solution en disant que leur région singulière est 
formée par la confluence de plusieurs régions singulières qui viennent 
se fondre en une seule de symétrie généralement différente. Le phéno 
mène inverse de la dissociation d’une particule en plusieurs autres 
particules devrait alors être représenté par une fragmentation de la

( 1 ) Voir Théorie générale des particules <1 spin (méthode de fusion), ,,a éd., 
Gaut liit*r-Y i i i a rs, 1 .



région singulière en plusieurs régions singulières; d'après les données 
actuelles sur les particules, elles semblent pouvoir « se transformer, 
pour ainsi dire à volonté, les unes dans les autres pourvu que le pro 
cessus soit compatible avec les lois de conservation » (en particulier de 
la masse de la charge et du spin) (') et ce fait paraît indiquer que la 
fragmentation en question doit pouvoir s’effectuer de plusieurs manières. 
Avec ces conceptions, il devrait être possible d'interpréter l’émission et 
l'absorption des pilotons, la création et l'annibilation des paires d’élec 
trons et plus généralement tout l’ensemble des phénomènes de ce genre 
<[ue l’on rencontre maintenant constamment dans la nouvelle Physique 
des nucléons et des mésons. Par cette voie et en passant par l’intermé 
diaire du formalisme de seconde quantification, on devrait pouvoir 
retrouver, lout au moins à titre de représentation statistique moyenne, 
la théorie quantique des champs avec ces nombres d’occupation 
variables. Peut-être parviendrait-on ainsi à comprendre la véritable 
signification de ces méthodes de calcul qui, à l’heure actuelle, font 
plutôt figure de « recolles » pour des prévisions que de véritables théories 
explicatives.

Ces problèmes sont assurément très difficiles et il semble prématuré 
de les aborder dans l’étal actuel de la théorie de la double solution. 
\1 ais difficile ne \oul pas dire impossible et ce qui est insoluble 
aujourd’hui peut être résolu demain.
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CHAPITRE XX.
RÉSUMÉ ET CONCLUSIONS.

1. Vue d’ensemble sur les résultats obtenus. — Si nous cherchons 
maintenant à résumer le contenu de la seconde partie de cet Ouvrage, 
nous pouvons dire que les chapitres VIII à XVJ inclus contiennent 
un exposé d’idées qui se trouvaient déjà dans mes travaux de 1927, 
mais complétées par de nouvelles recherches. Les questions traitées 
dans ces chapitres nous paraissent dans l’ensemble à peu près bien 
posées. Il y aurait cependant à consolider le passage de la Mécanique 
ondulatoire du corpuscule unique dans un champ donné à la Méca 
nique ondulatoire des systèmes de corpuscules en interaction, à la 
compléter par une interprétation détaillée du principe de Pauli et aussi 
à rendre plus rigoureuse la justification du rôle statistique du | M-1" |-. 
Bien qu’il y ait évidemment encore beaucoup de travail à (aire dans ces 
directions, je n’ai pas l’impression qu’il existe de ce côté des difficultés 
insurmontables.

Beaucoup plus délicats sont les problèmes abordés dans les chapitres 
XVII, X\ III et XIX. La relation établie entre la forme extérieure 
(ou partie régulière e) de l’onde u et la forme de l’onde me paraît 
tout à fait essentielle pour pouvoir concilier lit conception des ondes u 
avec les succès de l’interprétation actuelle, mais il nous a fallu essayer 
de rendre cette liaison assez souple pour ne pas faire participer 
l’onde u qui est, par hypothèse, une réalité objective, au caractère 
subjectif de l’onde statistique V. L’élude des difficultés qui se 
présentent dans le cas des groupes d’ondes, dans celui des miroirs 
semi-transparents et plus généralement lors de la réduction des paquets 
de probabilité, difficultés, où intervient certainement l’existence 
souvent passée sous silence des fronts d’ondes, nous a conduit à des 
idées intéressantes, mais audacieuses, qui ne sont encore, nous (lésons 
l’a\ouer, que des suggestions. Leur développement rigoureux exigerait
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dos considéra lions mathématiques difficiles et no serait même possible 
que si l’on parvenait, peut-être par des analogies avec la Relativité 
généralisée comme l’espère M. Vigier, à préciser la forme des équations 
de propagation non linéaires satislaites par les ondes u. Enfin la ques 
tion de la conservation de l’énergie et l’ensemble des considérations 
exposées au chapitre XIX demanderaient à être soigneusement appro 
fondies.

Une des idées essentielles auxquelles nous sommes parvenu, nous 
paraît être la suivante : « la théorie usuelle, en se bornant a priori à 
des équations de propagation linéaires, fait disparaître les accidents 
locaux dus à la non-linéarité (tels que régions singulières et bords de 
trains d’ondes), elle efface ainsi les structures corpusculaires et, par 
suite, n’obtient plus qu’une image continue à caractère statistique; 
la possibilité d’obtenir ainsi une image statistique adéquate est due 
au fait que la partie régulière de l’onde u se trouve être, par sa forme 
analytique, étroitement apparentée à la forme usuellement admise pour 
l’onde ff, du moins avec les réserves que nous avons précisées ».

2. Analogie des conceptions de la théorie de la double solution avec 
des idées plus anciennes. — Il est curieux de remarquer que le déve 
loppement de la théorie de la double solution nous a conduit à retrouver, 
sous des formes parfois un peu modifiées, des idées qui avaient été 
suggérées par divers auteurs au cours delà crise provoquée en Physique 
théorique par l’apparition des quanta.

Dès ses premiers travaux sur les quanta de lumière, M. Einstein 
avait insisté sur le fait que l’onde lumineuse (qui est, nous le savons 
aujourd’hui, l’onde ’E associée au plioton) était une sorte d’onde 
« fantôme » qui donnait seulement une description statistique de la 
répartition des photons; si l’on admet, l’existence d’une réalité objec 
tive, cette manière de voir conduit à penser que les pilotons doivent 
être des sortes de singularités du véritable champ lumineux, l’onde 
lumineuse continue classique ne lourmssanl qu’une représentation 
statistique. Or, c’est précisément là l’idée qui a servi de base à la 
théorie de la double solution.

PI us tard, Einstein, méditant sur la dualité onde-corpuscule et sur le 
succès de l’interprétation probabiliste de la Mécanique ondulatoire, 
a été conduit à penser que la probabilité de présence ] W j- devait 
résulter d’une sorte de mouvement caché des corpuscules à caractère 
brownien. Xous avons vu que la « loi du guidage » conduit en 
général à des mouvements corpusculaires très compliqués qui cepen 
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dant ne peuvent être qualifiés de browniens. Mais nous avons vu 
aussi que les fluctuations inévitables des potentiels extérieurs ainsi que 
les fluctuations des conditions aux limites provoquant celles des 
potentiels quantiques doivent ajouter à la complexité des mouvements 
prévus par la loi du guidage et leur donner un caractère aléatoire qui 
permet de les qualifier de brownoïdes. L’image ainsi obtenue apparaît 
comme très voisine de celle qu’envisageait Einstein.

Les conceptions introduites dans les chapitres XVII et XVIII sont 
aussi à rapprocher de certaines remarques anciennes. M. Schrodinger 
avait pensé, au début de ses fameuses recherches, à obtenir une image du 
corpuscule en l’assimilant à un train d’ondes ï', mais la tendance cons 
tante des trains d’ondes à l’étalement, liée au caractère linéaire de leur 
propagation, ne permettait cependant pas de chercher ainsi à identi 
fier le corpuscule avec l’ensemble d’un train d’ondes ll". Les idées que 
nous avons développées dans les derniers chapitres nous ont amené à 
nous figurer le phénomène ondulatoire dont le corpuscule serait le 
centre comme une sorte de « cellule a au sens biologique formée : 
i° d’un noyau central qui serait la région singulière ou corpuscule au 
sens étroit du mot; 3° d’une région extérieure étendue (où a~C*I’) 
et üu d’une sorte d’enveloppe constituée par des fronts d’ondes aux 
propriétés peut-être non linéaires. Celte sorte de cellule devrait dans 
l’ensemble son autonomie et sa stabilité à l’intervention de phénomènes 
non linéaires. L’ensemble de l’entité « corpuscule » au sens large du 
mot serait ainsi assimilable à un train d’ondes organisé autour d’un 
centre, solidaire de lui et doué d’une certaine permanence. On retrou 
verait donc, sous une forme convenablement modifiée, l’idée primitive 
de M. Schrodinger.

Nous avons vu aussi rpie la validité de la relation 'F = C« dans la 
région extérieure des trains d’onde apportait une sorte de justification 
de la théorie de l’onde-pilotc (malgré le caractère essentiellement 
différent des ondes a et lL, l’une objective et l’autre subjective) et, 
sans permettre de qualifier l’onde *E de réalité physique, expliquait le 
succès du point de vue de M. Bohm.

Enfin, en examinant le problème de l’émission de corpuscules par 
une source et la représentation de ce phénomène par une onde 
sphérique divergente, nous avons reconnu que l’onde sphérique 
divergente pourrait n’êlre qu’une représentation moyenne de l’émis 
sion isotrope par la source de trains d’ondes organisés du type dont 
nous venons de parler. On se rapprocherait ainsi de la conception 
du rayonnement en aiguillle (nadelstrahlung) développée autrefois
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par M. Einstein suivant laquelle une source ponctuelle enverrait dans 
toutes les directions des trains d’ondes limités.

Cet ensemble de rapprochements montre que la théorie causale de 
la double solution pourrait servir à faire une synthèse de diverses 
tentatives anciennes laites pour représenter d’une façon concrète le 
dualisme onde-corpuscule.

3. Possibilités de vérifications expérimentales. — Pour que la 
théorie causale puisse vraiment s’imposer, il faudrait non seulement 
qu’elle permette de lever les objections opposées à l’interprétation 
purement îprobabilisle (ce qu’elle semble dès maintenant faire en 
grande partie), mais aussi qu’elle conduise à prévoir des phénomènes 
constatables que l’interprétation actuelle ne prévoit pas. Sans pouvoir 
affirmer qu’il en sera ainsi, nous pouvons cependant préciser dans 
quelles directions l’on pourrait chercher de telles confirmations.

Tout d’abord, dans le domaine de la Physique du noyau, où les 
théories sont encore actuellement assez embryonnaires et assez peu 
couronnées de succès, le fait que dans un espace dont les dimensions 
sont seulement de l’ordre de io"12 cm se trouveraient entassées, suivant 
les conceptions de la double solution un grand nombre de régions 
singulières permettrait de penser que l’interprétation usuelle pourrait 
là se trouver en défaut. En effet, au point de vue de la théorie de la 
double solution, la justification de l’interprétation usuelle du rôle des 
ondes lF repose sur l'hypothèse que les régions singulières sont à des 
distances mutuelles qui sont grandes par rapport à leurs dimensions, 
c’est-à-dire qu’elles ne doivent aucunement empiéter les unes sur les 
autres. Cette condition pourrait fort bien ne pas se trouver toujours 
réalisée dans les noyaux et alors les prévisions basées sur les propriétés 
statistiques de l’onde 'F pourraient se trouver en défaut : une descrip 
tion du noyau d’un genre nouveau à l’aide d’ondes u à régions 
singulières très rapprochées ou même empiétant les unes sur les autres 
pourrait permettre de prévoir correctement certains phénomènes 
nucléaires.

Nous avons noté (chap. XI, g ü) que la démonstration de la formule 
du guidage implique l’hypothèse que la phase commune des ondes u 
et •F a la même valeur sur toute la sphère S dont nous avons entouré la 
région singulière. Or, cette hypothèse cesserait nécessairement d’être 
exacte pour des particules ayant des énergies suffisamment élevées et 
alors la signification statistique du W, qui dans la théorie de la double 
solution dérive de la formule du guidage, pourrait ne plus être valable.
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Comme les progrès de la teclinique expérimentale permettent d’obtenir 
des particules d’énergies de plus en plus grandes, on peut penser qu’il 
arrivera un moment où les prévisions faites à l’aide de la fonction U' par 
l'interprétation actuelle cesseront d’être valables. Tl faudrait alors 
chercher à voir ce qui se passe pour la propagation des ondes u quand 
leur longueur d’onde devient de l’ordre des dimensions de la région 
singulière, ce qui devrait permettre une prévision des phénomènes 
observables au-delà de la limite de validité jde l’usage des ondes ll;.

S’il existe, suivant les conceptions indiquées au chapitre XVIII, des 
groupes d’ondes sans étalement, il se pourrait aussi que quelques-unes 
des propriétés usuellement attribuées aux groupes d’ondes parla théorie 
linéaire ne soient pas exactes et qu’il en résulte quelques faits obser 
vables non conformes aux prévisions usuelles tels qu’une limitation 
de la finesse des raies que l’on pourrait isoler en prélevant un petit 
intervalle spectral dans un fond continu.

Une autre voie de vérifications pour la théorie de la double solution 
devrait s’ouvrir du côté des particules de l’échelle atomique. On sait 
qu’actuellement cette théorie se heurte à de graves difficultés, 
notamment celle des énergies propres infinies. Une description des 
particules élémentaires qui les identifierait avec une région singulière 
du champ u dans le cadre spatiotemporel permettrait de retrouver la 
notion de « rayon » de la particule (rayon de l’électron par exemple) 
et d’éviter ainsi l’écueil des énergies propres infinies. On pourrait sans 
doute aussi, peut-être en faisant intervenir l’idée de fusion, ramener 
les propriétés des particules, telles que spin, moment magnétique ou 
même masse, à des différences de structure correspondant à des 
différences de forme de l’onde u à l’intérieur de la région singulière. 
Si ces espoirs étaient justifiés, on poitrail parvenir par celte voie à une 
description et à une classification naturelle des particules que la 
découverte incessante de nouvelles sortes de mésons rend chaque jour 
plus désirable. Assurément ce n’est là qu’un programme rendu de toute 
façon très difficile à exécuter par l’ignorance où nous sommes de ce qui 
peut se passer exactement à l’intérieur des régions singulières. Néan 
moins il n’est pas interdit d’espérer que la théorie causale, en nous 
permettant de représenter les propriétés des particules dans un 
cadre spaliotemporel, nous fournisse uu jour une théorie réellement 
claire et explicative des propriétés des particules : au contraire, la 
chose parait irréalisable dans le cadre de l’interprétation probabiliste 
actuelle car celle-ci ne dispose comme intrument de description que 
d’une onde ff' à caractère statistique et subjectif et de formalismes
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abstraits et également statistiques comme ceux de la seconde quantifi 
cation et de la théorie quanlique des champs. Dans le cadre d’une 
fui lire théorie des particules, des vérifications expérimentales de la 
théorie de la double solution apparaissent donc comme possibles.

4. Raccord de la théorie de la double solution avec la Relativité 
généralisée (*). — L’analogie de la formule du guidage avec les 
démonstrations de MM. Georges Darmois et Einstein en Relativité géné 
ralisée porte à croire qu’il existe entre les deux points de vue une 
parenté profonde. M. Vigier a poursuivi avec beaucoup d’ardeur le 
développement de celle analogie en cherchant à introduire les fonctions 
d'onde u dans le cadre d’un espace-temps convenablement défini. Je ne 
me prononcerai pas sur la valeur des tentatives de M. Vigier qui pour 
raient sans doule être modifiées de diverses manières. Mais il est 
certain que des tentatives de ce genre présentent un grand intérêt parce 
qu’elles pourraient conduire à une unification des idées de la Relativité 
généralisée avec celles des quanta.

Le but à atteindre serait de se représenter chaque type de corpuscule 
( y compris le photon) comme une région singulière dans un champ 
ondulatoire u convenablement incorporé à la structure de l’espace- 
temps : dans cette représentation devrait s’introduire la constante de 
Planck d’une façon qui viendrait nous éclairer sur la véritable signifi 
cation du quantum d’action. La manière même dont serait définie 
l’onde u de chaque type de corpuscule pourrait conduire à trouver la 
forme des équations non linéaires satisfaites par celte onde u (ou par 
ses composantes quand (die en a plusieurs) : on obtiendrait ainsi l’une 
des données essentielles qui seraient nécessaires pour un développement 
complet de la théorie' de la double solution sous la forme que nous 
avons adoptée.

Cette manière de définir les corpuscules par une petite région où un 
certain champ, obéissant à des équations aux dérivées partielles non 
linéaires, présente des valeurs très élevées est tout à fait conforme aux 
conceptions que M. Einstein a toujours développées à ce sujet. Il a écrit 
en effet : « Pourtant, ce qui me paraît certain, c’est, qu’il ne faut pas 
qu'il y ait dans les londemcnts d’une théorie consistante du champ un 
concept quelconque concernant les particules. Toute la théorie doit être 
basée uniquement sur des équations différentielles partielles et leurs 
solutions sans singularité » et plus loin : « Si une théorie du champ

(*) Pour celle question, on pourra se reporter à la Thèse de M. Vicier.
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aboutit à une représentation des corpuscules libre de singularité, alors 
le comportement de ces corpuscules dans le temps est uniquement 
déterminé par les équations différentielles du champ » (1). Soulignons 
que, dans la région que nous nommons singulière, la fonction u doit 
présenter de très grandes valeurs, mais sans doute pas une véritable 
singularité mathématique, ce qui est en accord avec les conceptions 
de M. Einstein. Le théorème du guidage correspond d’ailleurs exacte 
ment à la dernière phrase citée plus haut.

M. Einstein a qualifié les champs avec fortes concentrations locales 
qu’il pense devoir être la véritable représentation des corpuscules de 
« champs à bosses (*) ». Dans notre conception les ondes u sont bien 
des champs ondulatoires il bosses.

Réalisant un espoir maintes fois exprimé parle génial physicien qui 
découvrit la même année la Relativité et les quanta de lumière, la 
théorie des ondes u aidera peut-être un jour à réaliser une magnifique 
synthèse de la Relativité généralisée et des Quanta.

(1 ) Albert Eix s t e ix , Conceptions scientifiques, morales et sociales, Flammarion, 
j902, p. 8G et io'3.

(1 ) Bunch-Iike.



APPENDICE.
NOUVELLE DÉMONSTRATION DE LA FORMULE DU GUIDAI.E.

Un travail récent de M. Gérard Pcliau [14] nous a suggéré une 
nouvelle démonstration de la formule du guidage s’appuyant sur la 
théorie des équations aux dérivées partielles linéaires du premier 
ordre [ 15].

Partant de l’équation de Klein-Gordon comme nous l’avons fait au 
chapitre IX, nous obtenons comme équation de continuité de la solution

régulière a e/l ' ,

lu
<)a . . ■ <)n
,, - V(-r- - ‘i.i

i > / ■ /-+- l>( w 3, / ) - - -h (,(./•
<)v . y, ^ il

Q+^ 
j '1

avec

, ,)X + r V'

*

(■')

Si la phase cp est connue, on connaît A, B, G, I).

Pour la solution singulière u = f e * ' de même phase », nous obte 
nons la même équation de continuité (i ), mois où l’amplitude à singu 
larité y remplace l’amplitude continue a.

Les équations différentielles correspondant à l’équation aux dérivées 
partielles (1) sont

d.i- dy dz dtt
X = TT = G = D u '(3)
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Les (rois premières équations (3) admettent (rois intégrales premières

(4) /iO, y, s, l) = À, /2(.r, y, s, = v, z, /.) = v.

qui, pour des valeurs constantes de /., (u, v. définissent des lignes de 
courant dans l’espace-temps correspondant, on le voit aisément, à la 
formule du guidage [sous la forme générale (36) du chapitre IX].

Mais nous devons en outre considérer la relation ^ = — D(x, y, s, l)dt.

Or, les variables x, y, z peuvent s’exprimer, à l’aide de (.']), en fonction 
de À, p, v et t, de sorte que D(at, y, s, t) = F()., p, v, t). Le long d’une 
ligne de courant, ~k, p, v étant constants, on a

('>) p. v, !)

x étant une constante et l’intégration sur t étant effectuée à À, p, v 
conslants. La môme expression (5) est valable pour f, puisque la 
phase © esL la môme pour la solution régulière et pour la solution 
singulière.

La théorie des équations aux dérivées partielles linéaires du premier 
ordre nous apprend que la solution générale de (i) s’obtient, en écrivant 
a— <S(À, p, y) où est une fonction arbitraire. INous aurons donc 
comme forme commune pour a et pour f :

(b)
" (■ 

/) '

/
p, v).

le premier facteur du second membre étant le môme pour a et pour y, 
mais la fonction <I> étant différente dans les deux cas. Comme a est par 
définition une fonction régulière, le premier facteur ne peut pas 
présenter de singularité, sans quoi il n’existerait pas de solution régu 
lière correspondant à la forme adoptée pour cp, ce qui serait contraire à 
l’hvpothèse. Par suite, f ne peut présenter une singularité au point xu. 
Ko, ~o de l’espace au temps ta que si la fonction 4* correspondante 
présente une singularité pour les valeurs

i-o — Ji (x ii? J"o, Z(/: /|é), po — J z-!)y //,), ( a'it, y», «o, t1, i

de A, [J., v. Mais alors la fonction f présente dans l’espace-temps une 
ligne singulière définie par /. = /„, p. = p.„, v = v0 ; d’où le théorème :

S'il existe une solution u de' Véquation linéaire des ondes présen 
tant une singularité et ayant la même phase à qu’une solution 
régulière v de la même équation, le point singulier de u est animé 
au cours du temps du mouvement prévu par la formule du guidage.
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La démonstration donnée ci-dessus dans le cas de l’équation d’ondes 
de Klein-Gordon peut être présentée sous une forme plus générale 
applicable à toutes les équations d’ondes que l’on rencontre actuel 
lement en Mécanique ondulaire et en particulier aux équations de 
Dii ac. Cette forme générale de la démonstration a l’avantage de mieux 
faire ressortir la véritable nature du résultat obtenu.

Toutes les équations d’ondes de la Mécanique ondulatoire permettent 
d’obtenir une image hydrodynamique en définissant une densité p et

une densité de courant pc qui s’expriment bilinéairement à l’aide de la 
fonction d’onde et de sa conjuguée et qui obéissent à l’équation de 
continuité
(7) 'h

<u
div(pc' — o.

Supposons que l’équation d’ondes considérée admette deux solutions 
« couplées », l’une régulière V, l’autre à singularité ponctuelle mobile u 
et que ces deux solutions aient les mômes lignes de courant définies par

un môme champ de vecteurs v. Pour la solution T", la densité p(W) est 
régulière; pour la solution u la densité p (u) présente une singularité 
ponctuelle. On peut écrire à la fois pour p(,P) et pour p(u)

W
dp àp àp dp
-JT ■+■ ~]----------Vy ------ ---------dt dx - dy o z p divc = 0.

A cette équation aux dérivées partielles linéaire du premier ordre en p, 

correspondent les équations différentielles

(9)
dx dy dz
V%C Vy VZ

dç>
J •p dive

Les trois premières équations admettent les intégrales :

(19) /lO, y, 0 = G /sO, y, 2, 0 = .GO, y, 0 = ^

qui, pour des valeurs constantes de /., p., v, définissent une ligne de 

courant dans l’espace-temps. Posons divc = F(A, p, v, t) ; nous trouvons 
comme plus haut

(11)

— fi Fp,U.,v.(irff
P (T) = e <I»i(À, u, v),

-f
J $2(a , u■j (u ) = e 2(G ,u, v),

les fonctions dq et d>2 n’étant pas déterminées par l’intégration. Le 
premier facteur étant le môme dans les deux expressions fn), il doit

L. DB DROGLIK. 19
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('■Ire régulier et par suite la l’onction doit à l’instant initial présenter 
une singularité pour les valeurs À = À0, p. = p.0, v = v(>. 11 en résulte 
comme précédemment que la singularité ponctuelle de u doit suivre 
une des lignes de courant.

Appliqué aux équations de Dirac, ce résultat montre bien que le 
guidage doit en ce cas être défini à l’aide du quadri-vecteur courant 
comme nous l’avions fait au Chapitre XVI.

Nous sommes ainsi parvenu à l’énoncé général suivant : « Si une 
équation d’ondes de la Mécanique ondulatoire admet deux solutions, 
l’une régulière, l’autre à singularité ponctuelle, possédant les mêmes 
lignes de courant, la singularité doit au cours du temps suivre l’une 
des lignes de courant ».

Remarquons que la démonstration précédente subsiste si l’onde u, 
au lieu de présenter une véritable singularité ponctuelle, présente 
une très petite région singulière où elle prend des valeurs très élevées. 
En effet, doit alors prendre des valeurs très élevées pour 1, g, v, très 
voisins de A0, p0, v0 et le mouvement de la région singulière doit être 
représenté par un tube d’univers extrêmement délié dont l’axe coïncide 
avec une ligne de courant.

■}. 90
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