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PREFACE.,

Le présent volume forme une sorte de complément de I'Ouvrage
que J’al récemment publié sur I'interprétation de la Mécanique
ondulatoire par la théorie de la double solution (*). J'y reprends
plus en détail certaines questions que me paraissent nécessiter un
nouvel examen du role de la mesure en Physique quantique déve-
loppé d’une fdwn plus concréte et plus proche de la réalité expé-
rimentale qu’on ne I'a fait jusqu’ici. :

Le plan de I'Ouvrage est le suivant. Aprés avoir, dans un
premier chapitre, rappelé quelques principes bien connus de la
Mécanique ondulatoire, j'expose dans les chapitres IT et Il la
théorie de la Mesure due a M. J. von Neumann et, en reprenant
des arguments développés naguére par Einstein et M. Schro-
dinger, je montre ue cette théorie, malgré le caractére élégant
et en apparence parfaitement satisfaisant de son formalisme,
conduit cependant a des conséquences trés difficilement accep-
tables. Les difficultés qu’elle souléve proviennent, d’une part, du
fait qu’en accord avec les idées actuellement dominantes elle
n’admet pas la localisation permanente des corpuscules dans
I'espace et, d’autre part, qu’elle envisage les processus de mesure
d’une maniére trop abstraite.

Aprés avoir résumé dans les chapitres IV et V les conceptions
fondamentales de la théorie de la double solution en y ajoutant,
quelques compléments qui n’avaient pas trouvé place dans mes
exposés antérieurs, je reprends dans les chapitres VI et VII
Tétude des processus de mesure d’un point de vue plus concret.
Jy introduis les idées essentielles que les trains d’ondes sont
ltoujours limités et que nous ne pouvons faire d’observations ou

(1) Bibliographie {3 .
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de mesures sur la réalité microphysique que par I'intermédiaire
des phénoménes macroscopiques observables déclenchés par
l'action locale d’un corpuscule. En ajoutant & ces remarques
fondamentales I'idée de la localisation permanente des corpus-
cules dans I'espace telle qu’elle résulte de la théorie de la double
solution, je montre qu'on obtient ainsi une image claire des
processus de mesure qui ne souléve plus les mémes objections que
la théorie de von Neumann et de ses conlinuateurs.

Un dernier chapitre est consacré a un examen trés rapide de la
Thermodynamique de von Neumann el a son interprétation a
l'aide des idées précédemment exposées.

Le but du présent Quvrage est en somme de faire voir pour
quelles raisons il me parait nécessaire de rétablir I'image d’une
localisation permanente des corpuscules microphysiques et pour-
quoi, redevenu conscient de cette nécessité, j'ai cherché¢ dans ces
derniéres années a reprendre la tentative d’interprétation de la
Mécanique ondulatoire que j’'avais esquissée en 1927.

Septembre 1956.

Louis v Brocrik



LA THEORIE DE LA MESURE
~ EN MECANIQUE ONDULATOIRE

INTERPRETATION USUELLE
ET INTERPRETATION CAUSALE

CHAPITRE 1.

RAPPEL DE GENERALITES SUR LA MECANIQUE ONDULATOIRE
ET SUR LA MESURE.

1. Quelques principes connus de Mécanique ondulatoire. — L’inter-
prétation actuellement admise de la Mécanique ondulatoire suppose que
Pon peut décrire d’une facon aussi compléte que possible un corpuscule
ou un systtme de corpuscules a I'aide d’une fonction d’onde W suscep-
tible d’ailleurs d’avoir plusieurs composantes comme dans la théorie de
Pélectron de Dirac ou dans celle des corpuscules de spin plus élevé.
La fonction W est toujours supposée « normée » par la formule

(1) f{lwdr=1.

L’évolution de la fonction d’onde au cours du temps est régie par
une équation aux dérivées partielles, I'équation des ondes, qui dans le
cas le plus simple, celui d’'un corpuscule sans spin & I'approximation
non relativiste, est 'équation bien connue de Schrodinger. Elle prend
des formes plus compliquées pour les particules a spin (électron de
Dirac par exemple) car dans ces cas elle devient en réalité un systéme
d’équations aux dérivées partielles liant entre elles les diverses compo-
santes du W. D’une facon générale, I'équation d’ondes avec des condi-

L. DE BROGLIE, 1




2 CHAPITRE 1.

tions iniliales et des conditions aux limites données détermine entié-
rement ’évolution de la fonction W'

Oubliant compleétement les origines de la Mécanique ondulatoire et
les intuitions physiques sur lesquelles elle était fondée, la plupart
des auteurs considérent la fonction ¥ comme un simple instrument
mathématique servant a prévoir les probabilités des divers résultats
des mesures effectuées sur le corpuscule ou le systene, cette fonction
se trouvant (par hasard?) avoir la méme forme que les ondes de la
Physique classique.

Voici maintenant, briévement résumés, les postulats qui constituent
des sortes de « recettes » perméttant d’utiliser la fonction W', supposée
connue, pour le calcul de la probabilité des mesures que 'on peut faire
des grandeurs corpusculaires. On admet qu’a chacune de ces grandeurs
correspond un opérateur linéaire et hermiticn A dont I'¢quation aux
valeurs propres

(2) Ag=uap

permet de définir un ensemble continu ou discontinu (ou méme par-
tiellement continu et partiellement discontinu) de valeurs propres o et
de fonctions propres ¢(a) correspondantes. Les fonctions propres ¢
forment un systéme complet de fonctions de base orthonormales de
sorte que 'on peut toujours éerire

(3) v =fc(a>‘p(a>da

ou plus simplement dans le cas d’un spectre discontinu
(4) W=N iz
i

en numérotant par un indice les valeurs propres et les fonctions pro-
pres. Un formalisme mathématique comme I'intégrale de Stieltjes
permetirait d’ailleurs de réunir les deux cas du spectre continu et du
spectre discontinu en une seule formule. L’ensemble des valeurs
propres de A forment le « spectre » de cet opérateur.

Le principe fondamental que 'on prend comme base ecst alors le
suivant. Soit ¥ la fonction d’onde d’un corpuscule (ou d’un systéme)
sur lequel on veut effectuer, & l'aide d’un dispositif approprié, la
mesure d’une grandeur A. On développera le W suivant les fonctions
propres ¢ de Popérateur A correspondant et'on pourra affirmer que la
probabilité pour que la mesure donne une valeur appartenant & un

0
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intervalle da est [c(a)[?da. Dans le cas d'un spectre discontinu, on
dira plus simplement que la probabilit¢ de la valeur «; est donnée

a

par | ¢;

L’espérance mathématique de la valeur o; ou, si I'on veut, la valeur
moyenne du résultat de la mesure de A effectuée sur un trés grand
nombre de corpuscules ayant la méme fonction W sera

Gy A:Zm;ui:fw*mrd—,.

Ces principes généraux appliqués a la mesure de la position d'un
corpuscule donne le résultat suivant : la probabilité pour que les coor-
données d'un corpuscule soient trouvées comprises dans les inter-
valles x—x+-dx, y—+y +dy, z—>z-+dz, ’est-a-dire pour quele corpus-
cule se trouve dans I'élément de volume dr = dz dy dz est|W > dx dy daz.
Un ¢énoncé analogue est valable pour la probabilité de la présence du
point figuratif d’un systéme dans l'espace de configuration qui lui
correspond.

Les énoncés relatifs a | W |* (principe des interférences ou de locali-
“sation) peuvent se déduire du formalisme général de sorte qu’au point
de vue de ce formalisme, la probabilité de présence |W|> parait

2
.

étre sur le meéme pied que n’'importe quelle autre probabilité |c¢;
L’ensemble de tous les développements possibles du W' suivant les
différents systemes de fonctions propres ¢; correspondant aux diverses
grandeurs mesurables apparaissent ainsi, du point de vue formel,
comme cntiérement équivalents. Cette idée qui sert de base & la
« théorie des transformations » donne licu a d’élégants développements
mathémaliques : nous aurons a en discuter la valeur physique.

Le postulat général admis plus haut relatif a la signification statis-
tique des | c;|* entraine, par des raisonnements que je ne reproduirai
pas, la conséquence suivante : un méme dispositif expérimental ne peut
permetire de mesurer a la fois avec précision deux grandeurs A et B
que si les opérateurs correspondants commutent, c¢’est-a-dire si
l'on a AB¢ =BA 9, quelle que soit 9. S'il n’en est pas ainsi, c’est-a-
dire-si en général ABo 2 BAo, alors tout dispositif expérimental de
mesure permettant d’attribuer & A une valeur atfectée d’une certaine
incertitude laissera subsister sur la valeur de B une incertitude d’autant
plus grande que la mesure de A aura é1é plus précise et inversement.
L’exemple typique de deux grandeurs qui ne sont pas simultanément
mesurables avec précision est fourni par tout couple de grandeurs « cano-
niquement » conjuguées au sens de la Mécanique analytique, comme




4 CHAPITRE 1.

par exemple la coordonnée z d'un corpuscule et la composante p.
correspondante de la quantité de mouvement. Dans ce dernier cas les

h 0
2% do

opérateurs correspondants <qui sont =z et — > sont tels

h .
ue AB—BA — — et, par suite, ne commutent pas; on montre alors
q omt p ’ pas;

que les incertitudes existant sur les valeurs de z ct de p. satisfont
toujours aux inégalités d’Heisenberg

(6) Sxdprnh

et, par suite, ne peuvent jamais élre simultanément nulles.

Il existe d’ailleurs des grandeurs qui, sans éire canoniquement
conjugudes ne commautent cependant pas, par exemple les trois compo-
santes rectangulaires My, My, M; du mouvement de la quantit¢ de
mouvement pour lesquels on trouve

My My— MyMy = O—}j—im,. .

et 'on montre alors que les incertitudes sur la valeur de deux de ces
composantes ne peuvent pas en géndéral étre nulles simultanément.

On peut traduire ces résultats dans un langage un peu différent en
disant que notre principe général fait correspondre a la valeur de toute
grandeur physique mesurable une distribution de probabilité corres-
pondant a la forme du W. Dans le cas discontinu, les probabilités des

valeurs a; sont P;=¢;|* et dans le cas continu la densité de probabilité
sera p(a) =|c(«)|?. L'état d’'un corpuscule (ou d’un systéme) ¢lant

défini par une certaine fonction W, a Pensemble des lgrandeurs physi-
ques mesurables correspondra un ensemble de distribution de probabi-
lité que la théorie actuelle considére (peut-étre a tort, nous le verrons)
comme intervenant exactement sur le méme pied pour le corpuscule
(ou le systeme) dans 'état W.

On peut alors définir pour chaque distribution de probabilité une
« dispersion » égale a la racine carrée du carré moyen de I'écart par

rapport de la valeur moyenne. On pose donc pour cette dispersion

(7) s(A)=V(a—ap= Vai—a,
On peut ensuite démontrer que 'on a pour deux grandeurs A et B

(8) c(A)c(B);%]AB—-BAL

Si les opérateurs A et B commutent, le second membre de (8) est
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nul, ce que l'on interprétera en disant qu’on peut obtenir par une
méme opération de mesure des valeurs précises, donc a dispersion
nulle, des grandeurs A et B. Si les opérateurs A et B ne commutent
pas, le seccond membre de (8) donne une borne inférieure non nulle
pour le produit des dispersions de sorte qu’aucune opération de mesure
ne doit pouvoir fournir simultanément des valeurs précises pour A et
pour B. Pour decux grandeurs canoniquement conjuguées, on
a AB—BA = T’; et Fon trouve

2

s

(8 bis) s(A)s(B)x

b

E=N

ce qui constitue une sorte d’énoncé plus précis des relations d’incer-
titude (6).

Avant de poursuivre I'étude des conséquences de ce formalisme, je
voudrais insister sur ce qu’il a d’extrémement abstrait. La fonction
d’onde W est considérée comme une simple fonction mathématique
solution complexe d'une ¢quation aux dérivées partielles qui aurait,
pour ainst dire fortuitement, da forme d’une équation de propagation
d’ondes. En jetant un voile sur les considérations physiques qui
m’avaient guidé au début de mes recherches ct sur celles qui avaient
¢été ensuite développées par M. Schrédinger, on ne cherche plus a se
faire aucune jimage physique des rapports de P'onde et du corpuscule.
On ne sait méme plus bien si 'onde W est autre chose qu’une expres-
sion mathématique permettant ’évaluation de probabilités et s'il lui
reste quelque ombre de réalit¢ physique. D’autre part, la considération
simultanée de tous les développements de onde W et la mise sur le
pied d’égalité de toutes les répartitions de probabilités qui s’en dédui-
sent a quelque chose d’étrange puisque I'on sait que chacune de ces
répartitions n’aura une signification physique qu’apres exécution de
la mesure correspondante, mesure qui, nous allons le voir, modifie
completement 1'état de chose initial. Evidemment on peut toujours
dire que le physicien qui conmait le W a le droit de s’en servir
pour calculer les valeurs d’une grandeur physique qui sont les résultats
possibles d’une mesure de cette grandeur et les probabilités corres-
pondantes. Mais les répartitions de probabilités ainsi obtenues n’ont
gqu’une valeur subjective et ne peuvent prendre une valeur objective
qu'aprés Lexécution effective de la mesure entrainant Pintervention
d’un dispositif approprié. Nous reviendrons plus tard sur ces questions
qui restent assez obscures dans le formalisme actuellement utilisé et
nous allons poursuivre I'étude des conséquences de ce formalisme.
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‘

2. Réduction du paquet de probabilité. — Dans l'interprétation
actucllement admise du formalisme exposé plus haut, la mesure joue
un réle qui, bien qu'un peu mystérieux, est essentiel. Gest elle qui, en
nous apportant des informations nouvelles, change 1'état de nos con-
naissances sur le systtme étudi¢ et par suite, nous oblige a modifier
brusquement la forme de 'onde W qui représente nos connaissances
sur le corpuscule (ou sur le systéme). Si, par exemple, la mesure est
une mesure de position plus ou moins précise, le train d'ondes W
initialement associé au corpuscule se trouvera « réduit » & un train
d’ondes moins étendu qui peut méme étre presque ponctuel si la
mesure est précise, puisque la région ou la probabilité de présence | W* |
est différente de zéro a diminué d’étendue. D’ow le nom de « réduction
du paquet de probabilité » donné naguére par M. leisenberg a cette
modification du . Si la mesure consistait au contraire dans la déter-
mination de I'une des composantes de la quantité de mouvement p,,
c’est dans L'espace des moments qu’aurait licu la réduction du paquet
de probabilité puisque ce serait alors I'étenduc des valeurs de p.
figurant effectiuemeut dans la représentation de Fourier de W qui
aurait diminué.

La question de la réduction du paquet de probabilité pose dans
I'interprétation actuelle un probleéme difficile; est-ce l'action du dispo-
sitif de mesure qui modifie 'onde W ou est-ce la connaissance que nous
acquérons des résultats de la mesure qui entraine cette modification ?”
Je ne sais pas si tous les auteurs qui adoptent I'interprétation proba-
biliste actuelle seraient d’accord sur la réponse a faire a cette
question.

Les uns (et ce serait probablement le cas de M. Bohr) scraient
soucieux de conserver un certain caractére de réalité physique a
londe W et diraient que c’est l'action de lappareil de mesure sur
Ponde W qui provoque la réduction du paquet de probabilité. D’autres,
peut-étre plus logiques avec eux-mémes, diraient que ¢’est la connais-
sance du résultat de la mesure qui nécessite la modification de I'onde
puisque, tant que le résultat de la mesure ne nous est pas connu, ce
sont les anciennes prévisions de probabilités correspondant i la forme
primitive du W qui pour nous restent valables pour faire des prévisions
Mais si I'on adopte cette seconde opinion, 'onde W n’est plus qu’une
représentation purement subjective des probabilités et ne peut étre a
aucun degré une représentation de la réalité objective. Gomment alors
se fait-il qu’elle obéisse a une équation de propagation d’ondes et que,
malgré tout, elle fournisse une représentation statistique probablement
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exacle de phénomenes dont la réalité objective ne saurait étre mise en
doute? La question reste vraiment obscure : nous y reviendrons.

La réduction du train d’ondes W donne lieu & une situation nouvelle
caractérisée par une nouvelle forme du W, situation qui élait imprévi-
sible & I'avance puisque scules les probabilités des diverses mesures
possibles pouvaient étre calculées avant une mesure effective. Nous
aurons A nous demander st cette imprévisibilité résulte d’'une réelle
indélermination, comme on l'admet actuellement, ou au contraire
de la valeur de certaines variables cachées comme le prétend la théorie
de la double solation, question en relation étroite avec un théoréme
énoncé par M. von Neumann dans sa théorie de la Mesure en Mécani-
que ondulatoire.

Les relations d'incertitude de Heisenberg montrent qu'un dispositif
permettant d’effectuer simultanément des mesures diverses sur un
corpuscule ne peut pas nous faire connaitre a la fois avec précision la
valeur de toutes les grandeurs caractérisant le corpuscule. 11y a donc
une connaissance maximum incompléte de ces grandeunrs qui est com-
patible avec les relations d’incertitude. Ayant acquis cette connais-
sance maximum, nous pouvons construire la fonction d’onde qui
convient pour représenter nos connaissances immédiatement apres la
mesure et, a partir de cette forme initiale du ¥, nous pourrions suivre
son ¢volution ultéricure au cours du temps & l'aide de 1'équation
des ondes. Nous pourrons ainsi a tout instant calculer la probabilité
des résultats des diverses mesures que I'on pourrait opérer i cet ins-
tant. Il en sera ainsi jusqu'a ce que nous connaissions le résultat de
nouvelles mesures modifiant 1’état de nos connaissances et inter-
rompant brusquement I'évolution régulitre de I'onde W. L’évolution
réguliere de cette onde entre deux mesures, évolution réglée par I’équa-
tion d’ondes, est, elle, entierement déterminée par la forme initiale
du W (et éventuellement par les conditions aux limites) puisque I'équa-
tion d’ondes est du premier ordre par rapport au temps. Ainsi il y a
déterminisme de I'évolution du W entre deux mesures, mais non pas
d¢terminisme des phénomenes observables puisque la connaissance
de la foncuion d’onde ne donne pour ceux-ci que des probabilités. Si la
description de la réalité physique par la fonction W est une description
complete, s'il n’existe pas de description plus compléte introduisant
par exemple des variables cachées, il n’y a pas de déterminisme des
phénomenes physiques.

3. Effacement des phases par la mesure. Interférences des proba-
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bilités. -—— La mesure introduit une discontinuité dans 1’évolution
de la fonction d'onde : la connaissance de celle-ci aprés la mesure
ne permet aucunement de remonter a la forme qu'elle avait avant la
mesure.

Considérons un tres grand nombre de corpuscules (ou de systémes)
se trouvant initialement dans le méme état représenté par le méme W,
Mesurons pour chacun d’eux une certaine grandeur A de fonctions
propres ¢; et de valeurs propres a;. Apres ces mesures, la proportion
des corpuscules (ou systémes) pour lesquels on aura trouvé pour A les
diverses valeurs o; nous fourniront les carrés des modules des coeffi-

. Wl .

cients ¢; dans le développement ‘F:}_J ¢19; de la fonction d’onde
14

avant la mesure. La connaissance des W' pour tous les corpuscules (ou

systémes) aprés la mesure nous fournit donc les valeurs des | ¢/, mais
pour connaitre les ¢; eux-mémes, 1l nous manque la connaissance de
leurs arguments, donc des phases relatives des composantes ¢; 9, de la
fonction d’onde initiale.

C’est cette remarque qui a amené M. Bohr a souligner que toute
mesure a pour conséquence d’éffacer complétement les phases. Clest
cet effacement des phases par l'acte de mesure qui fait que celui-ci
constitue une coupure dans l'évolution du W. En effet, les différences

de phases entre les composantes du développement 20;91 ont une
/

imporlance capitale et toute connaissance relative a la fonction d’onde
qui ne comporte pas la connaissance de ces différences de phase est
radicalement incomplete. Cette importance des phases va se manifester
clairement a nous dans I'étude du phénomene de linterférence des
probabilités.

Considérons deux grandeurs A et B dont les opérateurs ne commu-
tent pas et qui, par suite, ne sont pas simultanément mesurables. Les
valeurs et fonctions propres de A sont %; et ¢;, celles de B sont 5 et y,.
On démontre aisément que, A et B ne commutant pas, le systéme
des ¢; ne peut pas coincider avec celui des . Cependant, comme
les % forment un systéme complet, chaque ¢; peut s’exprimer a l'aide
des x sous la forme

(9) ) <?i=25ikxk,
k

les s;; étant les éléments d'une matrice unitaire 8. Dans ce développe-
ment figurent en général plus d’un terme au second membre puisque
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le systtme des g; et celui des y; ne coincident pas. Supposons alors
que I'état du corpuscule (ou systtme) examiné soit représenté par la
fonction d’onde

. QN » 1
(10) it -—_—S‘ci?(: 2 CiSik fk+
i ik

Si alors on mesure la grandeur A, on trouve l'une des valeurs
cj|?. Apres la
mesure, le corpuscule (ou systéme) se trouvera dans P'état o; et, dans.

propres a;, la probabilité de trouver «; étant @ prior:

ce nouvel ¢tat, une mesure de B conduit a la valeur 8, avec la probabi-

hite Sik

2, Ainsi la probabllité de trouver la valeur 3, pour B en mesu-

D]

rant d’abord A, puis B, sera égale a Z [ei]?] s

Z
Mais supposons maintenant que nous ayons cffectué la mesure de B
directement sur Pétat initial. Alors d’aprés la forme du dernier membre
de (10), le principe général relatif aux probabilités des résultats de
mesure nous apprend que la probabilité de trouver 3, cst égale
1
2 CiSik
i

dente parce qu'elle dépend des phases (ou arguments) des ¢; et des s

alors que 2
i

nomme « I'interférence des probabilités ».

a

%, Gette expression est entiérement différente de la précé-

i ] sie |?

visiblement n’en dépend pas. Clest la ce qu’on

Mlustrons ceci par un exemple simple. Prenons un domaine a une
~dimension de longucur L. Dans ce domaine, les fonctions propres

2T
) . I — .
normces de la quantité de mouvement sont g;= e " - Soit alors

VL

o Co N G e e
(11) l_z ‘/Lc 2]01] =
i

i

la fonction d’onde du corpuscule dans son état initial. Si 'on mesure
d’abord p, puis &, la probabilité de la position z = z, sera

S

24T
1 -——/—/2;:!:0 2
— e t

JL

- 1 . . oy
ou simplement L’ €t qui exprime Iégale probabilité de toutes les

positions sur le segment de longueur L.
Mais si, au contraire, on mesure directement la coordonnée z dans
I'état initial, la probabilité de la valeur 2 = x, sera | W' (zo) |2 et elle
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fait intervenir l'interférence des ondes planes dont la superposition
constitue le W, résultat qui est nécessaire pour rendre compte des
interférences en Optique et de la diffraction des ¢lectrons. L'on voit
donc que linterférence des probabilités, dont I'existence est nécessaire
pour l'interprétation des faits expérimentaux, dépend essentiellement
des phases dont le réle se montre ainsi capital.

Le fait que la probabilité de la valeur 3, de B mesurce directement

. . . . Wl
dans l'état initial soit \A“c,-s,-/f

2 .
et non Zl ci|*|si]? pourrail au
i i

premier abord paraitre contraire au théoréme des probabilités com-

. . . . e, R o
osées, mais en réalité il n’en est rien : la probabilite N ¢ /2 si !
p ? P — Lo |

. i
bien celle que U'on doit attendre quand on fait d’abord la détermination
de A, puis celle de B, puisqu’elle est égale a la somme des produits de
la probabilité pour obtenir d’abord une valeur a; pour A par la probabi-
lit¢ d’obtenir ensuite la valeur 3; pour B. Le théoréme des probabilités
composées est donc sauf et, si 'on envisage les probabilités uniquement
au point de vue subjectif, on peut dire qu’il n’y a aucune raison pour la

probabilité Z Lei?] si
{

? soit égale a celle d'obtenir directoment la

valeur 2, de B par une mesure de cette grandeur dans 1'état initdal.
Mais, si I'on analyse bien cette idée, I'on voit que toutes les répartitions
de probabilité introduites par la théorie usuelle (sauf, sans doute,
le |W|*) n’existent dans l'état initial que subjectivement pour le
physicien qui veut faire des prévisions sur le résultat des mesures pos-
sibles; ces répartitions n’existent objectivement qu’apres que la mesure
correspondante a été effectuée quand on ignore encore le résultat
de cette mesure. Clest cette circonstance qui expliquera plus loin
pourquoi le schéma de I'interprétation probabiliste usuelle de la Méca-
nique ondulatoire n’est pas en accord avec le schéma habituellement
admis par les statisticiens.

4. Divergence entre le schéma statistique de la Mécanique ondula-
toire et le schéma usuel des statisticiens. — Dans l¢ schéma usuel des
statisticiens, que nous exposerons en supposant que I'on a affaire a des
variables continues), on définit pour chaque variable aléatoire X une
densit¢ de probabilité py(z) telle que py(z) dz soit la probabilit¢ pour
que X ait une valeur comprise entre z et x -+ dz. Pour une autre
variable aléatoire continue Y, on définira de méme py(y).

On définit ensuite une densité p (2, y) telle quep(z, y) dz dy soit
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la probabilit¢ d’obtenir par une méme opération de mesure (les statis-
ticiens disent sonvent par une méme épreuce) des valeurs de X et Y
comprisentrespectivement dans les intervalles z—z +dxet y — y ++dy.
Cette définition parait toute naturelle si 'on adopte une image concrete
de la probabilit¢ en se figurant des « individus » pour chacan desquels
les grandeurs X et Y ont une valeur déterminée, la statistique s’intro-
duisant par la considération simultanée d’un tres grand nombre
d’individus pour lesquels X et Y ont des valeurs différentes.

En dehors de ox(2), py(y), et p(x, ¥), les statisticiens considérent
aussi la densité de probabilité de Y lide par X, pM'(z, y) qui corres-
pond i la probabilité d’obtenir la valeur y de Y quand on sait que X
@ la valeur z et on définit de méme la probabilite de X lige par Y a
Paide de o{' (2, y).

Maintcnant P'on doit avoir entre les cing densités de probabilité
que nons venons de définir les relations suivantes que 'on considere
comme évidentes :

sty =[ete,pidy, i) = [ el ) de,
(12)
g _ ez 0) X ROIC D)
ox (.,C,‘)/) = _F\'(‘}") ] oy (‘I/’: }) —PX(‘Z') 7

d’ou on tire
(13) px(-l’):] N rs ) ex () dy,s F"‘Q"'):fﬁ‘x‘“(w, ¥)ex(®) da.

Or le fait essenticl est que le schéma précédent, habituellement
considéré par les statisticiens comme allant de soi, n'est pas applicable
aux répartitions de probabilités envisagées par I'interprétation actuelle
de la Mécanique ondulatoire. En effet, il est en général impossible de
définir pour deux grandeurs mesurables la densité p(z, y) puisqu’il
est en général impossible de mesurer simultanément la valeur des gran-
deurs X et Y. Les formules (12) n’ont donc plus de sens ici. Sans doute
il est toujours possible de définir les densités px(x), oy (¥), o' (2, ¥)
et ¢f'(z, y), mais clles ne sont plus reliées par les formules (12)
et (13).

Reprenons comme exemple le cas précédemment examiné de deux

grandeurs mesurables A et B non commutantes et récrivons les for-
mules (9) ‘et (10) en passant du cas discontinu au cas continu. Nous
avons

(14) s(a)= [ stn, y(@)ds, 7(3)= [ e B p(e)
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Si W estde la forme

(15) g =fc(o<):;(oc)doc :ﬁc(a)s(a, 3) 7 (3)dads,
on tréuve
(16) m@=le@r  w@ = [e@is o,

la seconde formule exprimant I'interférence des probabilités, puis

s, B,

@) Ao B=le@Pls@ B B8 =| [emsin hay

mais ict les produits py(3) o (, 8) et py(a) pi'(e, 3) n'ont aucune
raison d’étre égaux, ce qui montre bien 'inexistence de la densité p(a, )
qui devrait étre égale a leur valeur commune.

D’ou vient ce caractére particulier, assez étrange, des distributions
statistiques de la Mécanique quantique actuelle ? La réponse parait étre
contenue dans le role essentiel qu'y joue la mesure. Les distributions
de probabilité de la Mécanique guantique actuelle (& 'exception peut-

étre de quelques-unes d’entre clles) ne constituent pas des probabilités
objectives pouvant étre considérées comme correspondant toutes, a un
méme instant, a une collections d’individus pour lesquelles les gran-
deurs auraient des valeurs bien déterminées. I’hypothése implicite,
qui pour le statisticien rend « évidentes » les relations (12) et (13),
n’est pas ici réalisée.

Clest seulement apreés Paction du dispositif de mesure d'une gran-
deur sur le corpuscule (ou sur le systéme) que la répartition de proba-
bilité peut ¢tre considérée comme réalisée objectivement; pour parler
plus exactement, si 'on imagine que la mesure d’une certaine grandeur
est effectuée simultanément sur une infinité de corpuscules (ou de
systémes) ayant initialement la méme fonction W, c’est sculement apres
Pexécution de la mesure sur tous ces corpuscules (ou systémes) que
Pon a réellement une collection d’individus possédant chacun une
valeur précise de la valeur mesurée, ces valeurs étant réparties suivant
1a loi de probabilité en |¢(|*. Et encore faut-il bien remarquer que la
loi de probabilité en | ¢4
un collectif que pour la grandeur mesurée et celles qui commutent avec

Pl

2 ne se trouve ainsi réalisée objectivement par

elles, a I'exclusion des autres. Dans I’¢tat initial, quand aucune mesure
n’a encore été effectuée, le physicien, s’il connait la fonction d’onde,
peut calculer les diverses répartitions de probabilité qu’il peut ensuite
se décider 4 mesurer; mais chacune de ces réparlitions ne pourra se
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trouver ainsi réalisée et correspondre a un collectif qu’apres Pexécution
de Ia mesure correspondante. Jamais toutes les répartitions ne pourront
sc trouver A la fois réalisées puisq{l’on ne peut pas mesurer ‘simultané—
ment toutes les grandeurs et que, pour mesurer deux grandeurs non
commutantes, il faudrait employer deux dispositifs de mesure qui sont
incompatibles. ’

Certes le physicien a toujours le droit de considérer simultanément
avant toute mesure 'ensemble des distributions de probabilité qui
peuvent s¢ déduire des différents développements du W initial, mais
ces probabilités ont alors un caractére subjectif et ne sont pas des
probabilités objectives statistiquement réalisées par un méme collectif
d’individus. Si donc on veut raisonner sur 'ensemble des distributions
de probabilité correspondant a une forme donnée de la fonction d’onde,
on ne devra jamais supposer que loutes’ ces distributions ont, avant
toute mesure, la nature de probabilités objectives correspondant & un
méme collecuif d’individus. C’est cela qui empéche, nous l'avons vu
d’attribuer aux distributions de probabilité de la Mécanique ondula-
toire usuelle les propriétés (12) et (13) qui sont évidentes pour des
probabilités objectives se rapportant a un collectif d'individus a carac-
téristiques bien déterminées. Glest, pensons-nous, pour la méme raison
que le célebre théoreme de M. von Neumann dont nous parlerons
bientot n’est au fond qu’un trutsme et ne prouve nullement 'tmpossibi-
lit¢ de rétablir le déterminisme en Mécanique ondulatoire par Iintro-
duction de variables cachées.




CHAPITRE 1.

LA THORIE DE LA MESURE D’APRES M. VON NEUMANN (7).

1. Cas purs et mélanges. — Reprenons d’abord quelques considéra-
tions sur U'interférence des probabilités. Soit un trés grand nombre IC
de corpuscules (on de systemes) quiont tous la méme fonction d’onde .
A ¢étant une grandeur physique mesurable de valeurs propres o, et de

. .« 30 % . .
fonctions propres ¢y, sil'on a W :Z ¢k i, lamesure de A doit conduire

1.
2

a trouver pour |c¢;[* I systemes la valeur a2y, pour | ¢y |* IT systtmes
la valeur as, ete. La valeur moyenne de A surz | ek 2oy
&

Imaginons maintenant qu’au lieu d’avoir 9T sysiemes dans le méme
état, nous ayons |cy > 9T dans Uétal o, [co|* IU systémes dans
Vétat gs, ctc. Alors la mesure de A nous donnera les mémes résultats
statistiquement que dans le premier cas. On pourrait done croire que
les deux cas sont équivalents, mais nous allons voir qu’il n’en est rien.

Considérons en cffet une grandeur physique mesurable B qui ne
commute pas avece A. Les fonctions propres de B de coincident pas avec
celles de A et st 8, et 7, sont les valeurs propres et les fonctions propres

de B, on aura @A-:Zd/;[z[, le développement contenant en général
{
plusieurs termes. Envisagecons d’abord le premier cas, celui ou nous

avons U systémes tous dans le méme état

v ZECI; Ok ‘—‘-ch drif 1
k kL

7, .
Alors la mesure de B pour tous ces systémes donnera I fois

EClcdl;l

k

(') Voir bibliographie [1!, [2].
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la valeur 3, et la valeur moyenne de B sera

(1) EZZ'Eckdkl
{ k

avec

‘.Gz:f'lF*BlL' d~ :2(;;0[]3(/(?1)’
134

Plagons-nous ensuite dans le second cas ou nous avons I|c, |2
systéemes dans l'état ¢;. La mesure de A sur les 9U|e |* premiers
systemes donnera la valeur $; pour une proportion de ces systémes
égale a | dy, |*, ete. Au total, la valeur 3; de B sera obtenue

-%ZI ck 2 dr 2
-

. } .
fois et par suite la valeur moyenne de B sera

(2) B = Blecl [ dult b= Y| exl? BE,
kil

k

avec

On voit ainsi que, pour toute grandeur qui ne commute pas avec A\,
les deux cas envisagés sont tout a fait différents. Dans le premier, il v a
interférence des probabilités, dans le second cetle interférence n'a pas
lieu. On ne peut donc pas considérer que les IU systemes forment un
collectif comprenant 9| ¢, |* individus ayant pour A la valeur «,, cte.
D’ailleurs, il est évident qu’il serait tout ainsi légitime de considérer
les 9T systemes comme formant un collectif comportant 9T |d|*

systémes ayant la valeur 3, pour B, avec d, :20/‘4[“, cte. et ce second
%
collectif ne coinciderait pas avec le premier. Nous ne pouvons donc pas
considérer ensemble des 9T systémes comme formant un collectif bien
déterminé puisque ce collectif varierait suivant la grandeur envisagée.
Nous retrouvons la l'iddée que nous avions précédemment mise en
lumiere : les probabilités envisagées en Mécanique ondulatoire usuelle
ne sont pas des probabilifés objectives correspondant a un collectif
unique réalisé dans I’état W. Pour distinguer le cas ou la répartition de
probabilité pour unc grandeur A n’a qu’une valeur subjective avant
la mesure de celui ow, aprés la mesure, cette répartition est réalisée,
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M. von Neumann dit que le premier cas constitue un « cas pur » tandis
(ue le second constitue un « mélange ».

Sans faire intervenir un acte de mesure, on peut imaginer 9, systémes
ayant une fonction d’onde W), 9T, systémes ayant une fonction
d’onde W), ete. L'ensemble de tous les IU systemes forment alors un
« mélange » de Iy cas purs correspondant a Wit de I, cas purs
correspondant a W), etc. Nous retrouverons le second cas étudié au
debut du paragraphe en prenant I, =9 |ey|*, .... Si nous

osons — = p;, nous aurons un « mélange » défini par I'ensemble des
ot — P 3

« potds statistiques » py; avecZ])k: 1.
&

S1 nous posons ¢, = \/;)7 e+, nous voyons que les p,=/|c;|* sont les
poids statistiques du mélange qui est équivalent, en ce qui concerne la
mesure de A, au cas pur W. Mais ce mélange n’est réalisé qu’apres la
mesure qui transforme le cas pur initial en ce mélange. Le mélange
équivalent au cas pur ¥ pour la mesure d’une grandeur B non commu-
table avec A ferait intervenir des poids statistiques différents des précé-
dents et ne serait réalisé que par une mesure faisant intervenir un
dispositif d’un type différent. C’est pourquoi on ne peut pas réduire un
cas pur 4 un mélange délerminé.

Nous avons vu que. pour le cas pur W, la valeur moyenne de B était
donnée par la formule (1). Sil'on remplace ce cas pur par le mélange
qui se trouve réalisé par la mesure de A, la valeur moyenne de B est
donnée par la formule (2). Il est facile de préciser en quoi different les
deux expressions (1) et (2). La formule (1) peut s’écrire

(3) B =2| el ] o] ei*=20 B,
ki

Si I'on suppose tout a fait inconnues les phases a; (arguments des ag)
avec égale probabilité de leurs valeurs possibles, la valeur moyenne de
Iexpression (3) s’obtiendra en faisant une moyenne sur les valeurs des oy
supposces toutes également probables. Les termes ou & =£ { donneront
zéro et mous retrouverons 'expression (2). Autrement dit, on passe du
cas pur W au mélange réalisé par la mesure de A en supposant que cette
mesure a fait perdre entiérement la connaissance des phases o;. Nous
retrouvons bien ici la conclusion que la mesure de A effectuée sur Pétat

. .. Y N

initial représenté par W :Z ¢ a pour effet d’effacer completement les
k

diftérences de phasec existant entre les composantes ¢, du W initial.

L. DE BROGLIE, 2
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Finalement, nous avons obtenu une idée nette de la différence entre
un « cas pur » défini par une fonction d’onde ¥ ¢t un « mélange » formé
par un cnsemble de cas purs de fonctions d’onde Wy, ¥, ... affectés de
poids statistiques pi, ps,

2. La matrice statistique de J. von Neumann pour un cas pur. —
Envisageons d’abord un cas pur défini par une fonction d’onde de forme
donnée. Cette fonction peut étre considérée comme un vecteur dans
Pespace de Hilbert. Si o0y, 92, ..., 9,, ... esl un systtme complet
orthonormé de fonctions de base (par exemple les fonctions propres d’un
opérateur A lindaire et hermitien), les ¢; pcuvent ¢tre considérées comme
formant un systéme complet de vecteurs unitaires dans Pespace de
Hilbert et I'expression ‘F:chcp/; sera analogue a l'expression d’un

3
vecteur a l'aide de ses composantes sur des directions orthogonales
définies par des vecteurs unitaires. On peut dire que les ¢, sont les
composantes du W dans le systeme de base des ¢, L’espace de Hilbert
(ue nous considérons est un espace complexe et les composantes ¢; sont
en général complexes.

Soient alors deux vecteurs de 'espace de Hilbert.

-
w=New et z=%dis
Cl Sk 7 (273

I I

Par définition, leur produit scalaire est (1) étant le domaine de variation
des variables des o) '

) e g - * > * ~ N >
&) (¥.7) 2./1:11‘ 7 A= =20k dlv/“\?k?/’j'v =;Ck Ll/U/./:\_/JCA-_’/A
134 k k

etl'on a
(5) (£ W)= (W7

on a bien ainsi la généralisation pour des vecteurs complexes de I'expres-
sion classique du produit scalaire.

Le produit scalaire d'un vecteur W par lui-méme, analogue au carré
de la longueur d’un vecteur ordinaire, est appelé la « norme » de
ce vecleur et a pour valeur

) N(E) = (00 = [ WEds =Y e
b -
Si le vecteur est normé, on a

N(W)y=1 et Z:cm: 1.
k
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Dans espace de Hilbert, un opérateur correspond a Popérateur qui
fait passer d'un vecteur a un autre. y = AW définit ainsi 'opération qui
fait passer de W a y et l'on a

(7) zdm:AZcm,‘
! k

d’ot, en multipliant par ¢ et en intégrant dans D,

-
(8) (//’=> ckff?; Aopds = 3 ;i Ck-
b
. k k

Les aji, éléments de la matrice engendrée par A dans le systeme des gy,
sont donc les coefficients de la transformation linéaire qui fait passer des
composantes de W a celle de . I.a conservation de la norme impose que
la matrice @ soit unitaire.

W ¢tant de nouveau la fonction d'un « cas pur », envisageons dans
I'espace de Hilbert 'opération « projection sur le vecteur ¥ ». Soit Py
I'opérateur correspondant. Il est ¢évident que Pip = Py et plus générale-
ment que Py =Py Toules les puissances de P étant identiques, on dit
(ue cet opérateur est « idempotent ».

Soit alors un systtme complet de fonctions de base ortho-

normeées g4, ..., @,, .... Nous avons pour le ¥ un développement
~ " . O
v :}_‘ckw, avec ¢y :‘/D o Fdr et Z[Ck[is 1.
k k

On peut ¢videmment trouver unc infinité de systémes de base ortho-
normés dont le W soit 'un des vecteurs de base. Dans 'un de ces
systémes, la fonction ¢, aura un développement de la forme

(9) sp=dU +. .., avec d= | Wordi=cj.
D

L’opérateur Py qui est le « projecteur » sur W est défini par
(10) Pysr=d¥ =ci W

pour tout ¢;. La matrice engendrée par 'opérateur Py dans le systeme
de base des g a pour élément d’indices m, n

(11) (PU"),,,, = fcp,*,l Pyonde=c, [;,*,L Yde=cpep.

D D
Ainsi la matrice Py attachée au cas pur considérée s’exprime a Iaide
des coefficients du développement du W dans le systeme de base utilisé.
On a ainsi défini ce que M. von Neumann appelle la « matrice statis-
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tique » attachée au cas pur W : la formule (11) rend visible que cette
matrice est hermitienne.
La matrice statistique posséde deux propriétés fondamentales :

1° Sa matrice est égale a 1. En effet,

(12) TrPy =¥ (P Yun = D€ n= 15
n n

2° Elle est idempotente. En effet, on a

(13) (P‘flf>/nn :zcmc/:-cpc; =cpuc,= <]’|I('>Ill!ly

177

d’oi, en matrice, Pi = Py et, par récurrence, P = Pyp.

Soit maintenant une grandeur A du systéme considéré. Les ¢ élant
des fonctions de base orthonormées quelconques (ce ne sont plus ici les
fonctions propres de A), nous avors vu que la valeur moyenne de A
était

- Y -
(14) A :Zc; ciA'g),
ki

les Al étant les ¢léments de la matrice engendrée par lopérateur A dans
le systeme des g et ¢y étant la composante du W suivant g,. On peut
aussi écrire

(15) K:Z(Pw),uxﬁzTr(Pm A)=Tr(ADy).
ki

Ainsi la connaissance de la matrice statistique nous fournit un moyen
simple de calculer A.

La matrice statistique d'un cas pur est souvent nommdée « matrice
statistique ¢lémentaire » (einzelmatrix) par opposilion aux matrices
statistiques plus générales que nous allons rencontrer plus loin en
étudiant les mélanges de cas purs.

Une malrice statistique élémentaire peut étre aisément mise sous la
forme diagonale. Il suffit pour cela de prendre comme systéme de base
un systeme ot le W considéré soit I'une des fonctions de base, par
exemple ¢; = W. La matrice statistique élémentaire prend alors la forme

|

[¢]
o ...
o |

0
O O o
o 0o o

(16)
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Tous les termes sont nuls sauf le premier terme diagonal qui est égala 1 :
ceci résulte aisément de (11). La trace de Ia matrice statistique est un
invariant pour les changements de fonctions de base par suite d’une
propriété connue des transformations unitaires : elle doit donc étre ¢gale
a 1 comme le montre le tableau (16). Ce tableau permet aussi de vérifier
immédiatement que la matrice statistique est idempotente.

3. La matrice statistique pour un mélange de cas purs. — Nous allons
maintenant considérer un mélange de cas purs. Nous avons déja défini
un tel mélange en considérant IU systémes dont IUp, sont dans
‘élat W, I ps dans Pétat Wizl avecEp/,-:: 1. Mais nous pouvons

"
aussi introduire I'idée de mélange pour un seul systéme. 11 se peut, en
eflet, que nous ignorions la forme cxacte de la fonction d'onde d'un
systtme et que nous sachions seulement qu’il a une probabilité p,
d’étre dans un état W, une probabilité ps d’¢re dans un état W2 ete.,

n
1 . bl . IJ “Q

une probabilité p, d’étre dans un élat Wi ﬁVeCZ,_[)/--: 1. L’état de nos
1

connaissances sur le systéme est alors représenté par un mélange de cas

purs avee les poids statistiques py.
Chacun des cas purs du mdélange a sa matrice statistique élémen-
taire Py . Nous attribuerons au mélange une matrice statistique hermi-

tienne
n
{17) P=2k1)k1’q~k,
1
avec
I
N k ) %
{18) P["L:kakclk)c’”/;l s
1

ou les poids statistiques pi sont des nombres positifs compris entre o
et 1 et dont la somme est ¢gale a 1. Les ¢!¥ sont les composantes des
divers WM dans le systeme de base ¢4, ..., 9,. La matrice statistique (17)
apparait ainsi comme une superposition de matrices statistiques élémen-
taires.

Comme exemple, supposons que l'on ait pris comme fonctions de base
les fonctions propres relatives a la position 6(¢g —¢'), ¢ étant la fonction
singulitre de Dirac. La formule

(19) Wiki(g, t) =f‘1"(“(({, 1)3(g —q)Hdy
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montre qualors les ¢/’ sont ¢gaux & W% (¢, ¢) et Pon trouve pour les
composantes de la matrice slatistique

n
2 Pig, ¢ =N prWhi(g)y W (g").
(20) (¢ ¢ =2 pr¥H(gHT (g
1
Clest la la matrice statistique de Dirac.
La valeur moyenne d’une grandeur mesurable A du systeme est

n

—
(21) A :_"}_Jk]’/: A\Yuk;v
1

Ay étant la valeur moyenne qu’aurait A si le systéme était dans Uétat
Wy ¥ | y
pur W9, D’aprés (15) nous obtenons alors

(22) A =2kka(qu,A),-,-=2 kafcf’u'w‘ ji
1 j J 1

= Tr(PA) = Tr(AP).

La formule est donc la méme que pour un cas pur.
La matrice statistique d’un mélange, comme celles d'un cas pur, a
toujours sa trace égale a 1, car

n n
— — -
(" r P = E — E O alRrx 2 (k) j2 —
<3‘;) Tl P_‘ I’Illllt"} k]j/cc(n[: CIIL ’(—3 kP/.‘ |cm l = 1.
1 m 1 1 m

Par contre, tandis que la matrice d’un cas pur est toujours idempo-
tente, 1l n’est pas de meéme pour la matrice stalistique d'un mélange. On
peut, en effet, démontrer que toute matrice statistique idempotente est
¢lémentaire. Pour cela, on admet que P2*=DP et 'on écrit P sous forme
diagonale, ce qui est toujours possible. Si p; est le 1'*"° élément
diagonal de P, la relation P? =P exige que lon ait p; = p; et les p;
sont donc nuls ou égaux a 1. L’¢quation TrP =1 satisfaites par toutes
les matrices statistiques montre alors qu’un seul des p; est différent de o
et égal & 1. Le systeme a alors un ¥ unique qui se confond avec I'une
des fonctions de base qui ramene P a sa forme diagonale. Donc la condi-
tion nécessaire et suffisante pour qu’une matrice statistique soit idempo-
tente est qu’elle soit ¢lémentaire.

Considérons maintenant la matrice stalistique non élémentaire d’un
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mélange. Siles Wi, W . Wn» définissent les cas purs qui figurent
dans le mélange étaient orthogonales (ce qui ne peut arriver qu’excep-
tionnellement), on pourrait les prendre comme les 2 premiéres fonctions
de base d'un systtme orthonormé. Alors ¢ =4y, puisque W se
réduit a 94 et Py, est nul pour / £ mtandis que les Py sont éganx aux p;,
pour k =7 et nuls pour £ > n. La malrice statistique prend alors la
forme diagonale suivante :

<

Mo

. T
)

<

{91
(1) 0 o 0 p,
) O 0 {0
Mais c’est la un cas exceptionnel. Lin général les fonctions Wit . Wim

ne sont pas orthogonales. On peut cependant, méme dans ce cas,
ramener la matrice PP a la forme diagonale, mais les éléments diago-
naux p ne sont plus égaux a py, ..., pa, 0, 0, .... La matrice P étant
iermitienne, les p, sont des nombres réels. De plus, comme TrP —
hermitienne, les p; , ,

ona¥ /), = 1. Nous allons montrer que les p), ne peuvent étre négatifs.
K

Pour cela, les Z; élant les composantes d’un vecleur = dans 'espace de

Hilbert, considérons le produit scalaire de Z par PZ. 1 a pour valeur

n

- »— P= (hx N\ — LYY
(25) (E.PE) =y "”Z preiB el Z,lzzkp/;](é-m*“) :
mn 1
Le carré¢ d’'un module ¢tant forcément positif ou nul, nous voyons que
le produit scalaire (25) est nécessairement positif ou nul. Or, si nous
mettons P sous sa forme diagonale, ce produit scalaire a pour expression

(26) (E.I’E)=2]l',,, PEmi

qui doit étre > o et ceci quel que soit Z. Donc les p), doivent tous étre

n

positifs ou nuls. Comme leur somme est égale & 1, ona o =~ p, =< 1.0On

n —

en lre p\, — p»> o, d’ou pour un vecteur Z quelconque de Pespace de
Hilbert

(,)_,) (E-(P’“PZ :‘ V(/’m ;5)‘51/1,[250-

m

4. Irréductibilité des cas purs. — Nous arrivons maintenant i un
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théoréme qui joue un grand role dans la démonstration par laquelle
M. von Neumann a voulu établir "'impossibilité d’expliquer le caractere
probabiliste actuel de la Mécanique ondulatoire a I'aide de variables
cachdes.

L’importent théoréme en question s’énonce comme il suit :

1l est impossible de représenter un cas pur sous la forme d’un
mélange, ou encore : Un cas pur n'est jamais réductible ¢ une super-
position de cas purs.

I1 établit donc le caractére véritablement spécifique des cas purs.
En effet, si ce théoréme n’était pas vrai, il devrait étre possible, au
moins dans certains cas, d’obtenir une relation de la forme

(28) P :Zain

P et les Q; ¢tant des matrices statistiques élémentaires, ¢’est-a-dire des
matrices hermitiennes, idempotentes et de traces 1 et les «; des nombres.

« en Wl .
ositifs tels que Y ;== 1. Or on aurait alors
p {

N o I ‘ - |
(29) In:Zz; Q;+Ei/_;z,~a,-<QiQ,-+<s,~Qi>

1 N N .
=3 a Q +“ Swo [QF + Q= (Q—=Q))2

_Z [ +a12 ]QE _Zi/aia,«waQ/‘)ﬂ

/,,z

_Ea,Ql —z wpa;(Qi— Q) )3,

1>/

;—=1— ;. Donc on aurait

(30) 1'2_1>:Zai(Q —Q )_2 o (Qr— Q1.

t>/

Mais P2 =D et Q* — Q;, d'oit

o

i>j

et, puisque tous les a; sont positifs,

(32) (LQ[-Q/)"Z‘:-O.
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Or le carré d’une matrice hermitienne ne peut étre nul que si la matrice
elle-méme cst nulle : en effet, si A e¢st une matrice hermitienne, les
éléments de A? sont

(a?)ix =2 aa ZZOLHGZI
. .

et siles (a?);; sont nuls, on doit avoir aussiE]a,ﬂ?: 0, c¢ qui exige
l
que a;=o et, par suite, A = o.
Q;—Q; étant une matricc hermitienne, la  condition (32)
entraine Q;= Q;. Tous les Q; seraient les mémes et 'on aurait

P :Za[QiZ Q, puisque ? %= 1.

e
: i
Daés lors P ne scrail pas vraiment une somme de matrices statistiques
élémentaires, ce qui serait contraire a I hypothése.

Il est donc hien prouvé que les cas purs sont irréductibles et ne
peuvent jamais étre ramends a des mélanges de cas purs. Le cas pur de
la Mécanique ondulatoire posséde donc les deux propriélés suivantes :
1° 11 est représenté par une matrice statistique ¢lémentaire (idempo-
tente) alors que tout mélange a une matrice statistique qui n’est pas
¢lémentaire (non idempotente); 2° Il ne peut par aucun moyen étre
-ramené a un mélange de cas purs.

5. Les lois statistiques de la Mécanique quantique seraient impossibles
a interpréter par lintroduction de variables cachées. —— En Physique
théorique classique, chaque fois que 'on devait faire intervenir des
probabilités au lieu des lois rigoureuses, on supposait toujours qu’il
existaitun délerminisme des phénomenes, mais que ce déterminisme était
trop compliqué ou trop subtil pour que nous puissions le suivre en
détail, les apparences observables étant d’ordre stalistique et s’exprimant
pour cette raison par des probabilités. Les lois de probabilité et le hasard
qu’elles semblent faire intervenir ne seraient pas la preuve d'une
véritable contingence, mais le résultat de nolre incapacité a suivre un
déterminisme trop fin ou trop compliqué. C’estla la définition du hasard
que I'on trouve sous la plume de tous les savants avant le développement
de la Mécanique ondulatoire et, en particulier, dans les ccuvres de
Henri Poincaré.

L’exemple le plus connu d’une telle théorie pseudo-statistique en
Physique est la théorie cinétique des gaz. On y admet que les mouve-
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ments des molécules des gaz ainsi que leurs chocs mutuels sont régis
par les lois rigoureuses de la Mécanique classique de sorte qu’il y a un
déterminisme sous-jacent. Mais les molécules sont tellement nombreuses,
leurs mouvements sont si compliqués que nous ne pouvons aucuncment
suivre dans ses détails ce déterminisme élémentaire @ d’ailleurs les
mouvements moléculaires échappent complélement a nos sens et nous
ne pouvons prévoir que des cffets macroscopiques de ces mouvements
tels que pression, température, fluctuations locales de densit¢ ou
d’éncrgie, agitation brownienne d'un granule visible due au choc irré-
gulier des molécules, ctc. Ces phénomenes macroscopiques résultant
d’un nombre énorme de phénomenes ¢lémentaires compliqués nous
semblent relever d’une théorie statistique faisant intervenir uniquement
des probabilités, mais cette intervention du hasard n’est qu'une appa-
rence et par exemple les mouvements désordonnés d’un granule dans son
agitation brownicnne nous apparaitraient régis par un délerminisme
rigourcux si nous savions calculer tous les mouvements des molécules
du gaz ambiant et leurs chocs avec le granule.

Puisque cette élimination du hasard au profit d'un déterminisme
sous-jacent avait réussi en Physique classique, il pouvait paraitre
tentant de l'introduire en Physique quantique. Nous avons trouvé cn
Mécanique ondulatoire des lois de probabilité : ne pourrait-on pas
supposer qu’elles résultent de notre ignorance d'un déterminisme
caché¢? Si l'on réussissait dans cette entreprise, on aurait une fois de plus
éliminé I'indéterminisme et maintenu la conception classique du hasard :
si, au contraire, 'on échouait, il faudrait abandonner le déterminisme
et admettre une contingence absolue des phénomeémes microphysiques.
Pour employer le langage de M. von Neumann, dans le dernier cas la
Mécanique ondulatoire serait une théorie « véritablement statistique ».
Or M. von Neumann a cru pouvoir trancher définitivement la question
en démontrant un théoréme dont il pensait pouvoir déduire I'impossibi-
lité de ramener les lois de probabilité de la Mécanique ondulatoire a un
déterminisme cachd.

Pour établir sa démonstration, M. von Neumann est parti des
remarques suivantes :

Admettre un déterminisme sous-jacent, c’est admettre Pexistence de
variables dont nous ignorons les valeurs cxactes (paramétres cachés)
telles, par exemple, que les positions ct les vitesses des molécules d'un
gaz et les probabilités s'introduisent alors par suite de notre ignorance
de ces parametres cachés. Dans une théorie déterministe a paramétres
cachés, I'état réel d’un gaz par exemple est a chaque instant entiérement
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déterminé : toutes les molécules du gaz ont des positions et des vitesses
bien définies et, si nous connaissions tous ces paramétres, nous pour-
rions représenter I'état du gaz par un point dans I'extension-en-phase.
Mais nons ignorons la valeur exacte des parametres cachés et, pour
représenter les apparences statistiques globales seules accessibles a nos
sens, nous envisageons un « mélange » d’états élémentaires avec des
poids statistiques convenablement choisis. Les états ¢lémentaires formant
le mélange correspondent & des valeurs bien détermindes de toules les
grandeurs : ils sont donc indécomposables et aussi « sans dispersion »,
car toute grandeur A ayant une valeur bien définie est égale a sa valeur

o

*—(A)? est nulle, ainsi d’ailleurs que

moyenne et la dispersion o =: \/
toutes les différences \7— (X)”.

LEn d’autres termes, toute théorie statistique délerministe & paramaétres
cachés introduit un collectif portant sur des individus pour lesquels
toutes les grandeurs qui les caractérisent ont des valeurs bien détermindes
et sont par suite excmples de dispersion. Les dispersions n’apparaissent
que pour le collectif dans son ensemble. Dans ces conditions, les distri-
butions de probabilité valables pour le collectif doivent satisfaire au
schéma usuel des statisticiens que nous avons étudié précédemment. Or
nous savons que ce n’est pas le cas des distributions de probabilité dela
Mécanique ondulatoire usuelle et 'on peut se croire déja autorisé¢ & en
déduire que la Mécanique ondulatoire ne peut pas étre interpréiée par
une théorie déterministe & parametres cachés.

M. von Neumann a retrouvé ce résultat par la voie suivante : Il part
de la remarque qu’une théorie statistique ne peut se ramener a un schéma
déterministe a paramétres cachds que si les distributions de probabilité
apparaissant dans cette théorie peuvent toules se ramener a des mélanges
d’états 6lémentaires indécomposables et sans dispersion. Il a démontré
que ce n'élait pas le cas des distributions envisagées en Mécanique
ondulatoire en s’appuyant sur le théoréme suivant :

Les états que 'on rencontre en Mécanique ondulatoire ne sont
Jamalis sans dispersion.

Autrement dit, pour aucun état réalisable, on ne peut avoir pour toute
grandeur mesurable A2 = (A)-2.
Eun rcalité, la démonstration belle, mais un peu lourde, de

M. von Neumann n¢ nous apprend rien de bien nouveau. Dés que 'on

R . . . g
connait les relations d’incertitude sous la forme ¢(z)o(p.)> =5 l'on
4%
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sail déja que, pour les distributions de probabilit¢ de la Mécanique
ondulatoire usuelle, toutes les grandeurs ne peuvent pas éire sous
dispersion.

Mais suivons le raisonnement de M. von Neumanun. Nous avons vu que
tout état (qu'il soit mélange ou cas pur) est caractérisé par une matrice
statistique hermitienne et de trace égalc a 1 telle que la valeur moyenne
de toute grandeur dans cet état soit donnée par la formule (15). Donc,
pour qu’un état soit sous dispersion, il faudrait que 'on ait pour toute
grandeur A
(33) Tr(PA?) = [Tr(PA) .

Soit maintenant un systéme complet oy, ¢2, ..., ¢, ... de fonctions
de base orthonormées. Considérons dans Uespace de Hilbert Vopérateur
qui projetle tout vecteur de cet espace sur le vecteur ;. Ge projecteur
est un opérateur P, hermitien lindaire et nous pouvons prendre A =1,
S1 Pétat était sans dlspersmn, il faudrait avoir en particulier

(39) Tr(PPg) = [Tr(PPy,) .
Mais, comme on a P;, =P, il vient
(33) Tr(PPg,) = [ Tr(PPy,) .

Or

(36) Tr(PP@i)—Z(PP Lm_ZfoA PP, 5 d

et comme P_ g =

i 9i, on obtient finalement

(37) Tl‘(PPgi)sz oi Poy ddx 3y :f;; Po, dx = Py
& D b
Cette trace devant étre égale d son carré, ou P;;== 1 ou P;,= 0. El ccci

doit étre vrai pour tous les indices 7, car nous pouvons raisonner de
méme pour tous les P%. Mais on pourrait supposer que certains P;; sont

" Iy X o o N . N .
égaux a 1 et d’autres & o et pour satisfaire a la relauonZP;i.—_— 1, 1l

1
fandrait alors que tous les P;; soient nuls sauf un. Mais cette dernidre
hypothese peut étre rejetée car nous pouvons faire varier d'une facon
continue le systéme des fonctions de base orthonormées dans I'espace de
Hilbert par une opération qui correspond a une rotation des axes dans
cet espace fonctionnel. Nous pouvons ainsi faire venir successivement
coincider, par une opdération continue, chacun des axes primitifs avec
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les autres axes. Au cours de cette opération, chacun des Py; doit varier
d’une facon continue et, comme ils ne peuvent prendre que les valeurs o
et 1, ils doivent garder leurs valeurs initiales. Donce, ou bien les Py; sont
tous égaux @ 1 ou bien ils sont tous égaux a o. Or aucunc de ces deux

hvpotheses n’est compatible avec ¥ P;i— 1, car ¥ P;; serait infinie dans
» I s
i i

un cas ct nulle dans Pautre.

Finalement il ne peut exister aucune matrice statistique P acceptable
qui corresponde & une absence de dispersion pour toutes les grandeurs
et M. von Neumann en a conclu qu’il est impossible de rendre compte
des distributions de probabilit¢ de la Mécanique ondulatoire par un
déterminisme caché.

6. Critique de la conclusion précédente. — Apres y avoir longuement
réfléchi, je pense maintenant que la démonstration de M. von Neumann
n’a pas la portée qu’il lui a attribuce. Elle montre bien que les distribu-
tions de probabilité de lan Mécanique ondulatoire usuelle ne sont jamais
toutes a la fois sans dispersion, qu’elles ne peuvent pas par suite corres-
pondre & un collectif d'individus & propriétés bien déterminées. Mais
cela nous Pavions déja constaté et ce résullat est d’ailleurs contenu dans
les relations d’incertitude.

Quant a en déduire 'impossibilité d’interpréter la Mécanique ondula-
toire par un schéma déterministe a variables cachées, c’est une autre
affaire. Nous I'avons déja dit, les distributions de probabilité en | ¢4 |? ne
sont en géndral réalisées qu'apres Uexécution de la mesure correspon-
dante. Comme les dispositifs de mesure pour les diverses grandeurs sont
en géndéral incompatibles, on n’a @ priori aucune raison de s’attendre a
ce que toutes les distributions de probabilité en | ¢k |* correspondant a
un méme collectif et, en fait, cela n’est pas. Mais rien n’empéche
d’imaginer qu’en introduisant des variables cachées, on puisse définir
des distributions de probabilité, cachées elles aussi, qui dans 1'état
rnitial, avant l'exécution de toute mesure, correspondrait & un collectit
unique et permettrait d’obtenir un schéma déterministe. Ces distributions
de probabilité existant dans I'état initial avant toute mesure resteraient
cachées parce qu’en général 'exécution de la mesure d’'une grandeur A,
en agissant sur le systeme étudié, ferait disparaitre cette distribution de
probabilit¢ cachée initiale et ferait apparaitre celle que 'on considere
habituellement. Nous verrons que cette hypotheése parfaitement admis-
sible est celle qui correspond a I'interprétation causale de la Mécanique
ondulatoire a I'aide des idées de double solution ou d’onde pilote et nous
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I'étudicrons plus loin en détail. En dernieére analyse, le célebre théoreme
de M. von Neumann ne me parait pas avoir la portée qu’on lui avait
attribuée et ne me semble pas constituer un obstacle insurmontable a
I'édification d’'une interprétation déterministe de la Mécanique ondula-
toire introduisant des variables cachées.

—— > Q G




CHAPITRE I1I.

LA THEORIE DE LA MESURE D’APRES M. VON NEUMANN (suite).

1. Généralités sur la mesure. ~— Comme nous 'avons vu, la mesure
joue un role essentiel dans la Physique quantique. Ce role est, en effet,
tout a fait différent en Microphysique de ce qu’il était en Phy51que
macroscopique classique. En Physique classique, la mesure, du moins
quand elle est effectuée avec des précautions convenables, est une simple
« constatation » qui précise nos connaissances sur la réalité objective
sans troubler appréciablement celle-ci. Les états élémentaires réels étant
supposés parfaitement déterminés, toute ignorance de notre part se tra-
duirait par des probabilités portant sur un mélange avec des poids statis-
tiques convenables des divers états ¢lémentaires et les mesures étaient
considérées comme susceptibles de diminuer notre ignorance ou meéme
de la supprimer en nous faisant connaitre un état élémentaire parfai-
tement déterminé (par exemple un corpuscule avec les valeurs exactes
des grandeurs de position et de mouvement qui le caractérisent ).

Les distributions de probabilité qui se présentent en Physique clas-
sique ont donc toujours le caractére de mélanges d’états élémentaires ot
toutes les grandeurs ont des valeurs déterminées ( c’est-a-dire de collec-
tifs portant sur des individus dont toutes les caractéristiques ont des
valeurs bien définies). La mesure est alors supposée nous faire connaitre
la valeur réelle d'une grandeur telle qu’elle existait objectivement avant
la mesure et, si la mesure est bien faite, sans la modifier apprécia-
blement.

Il en est toutautrement dans la théorie quantique. Ict le maximum de
nos connaissances sur un systéme est réalisé quand nous pouvons le
considérer comme un cas pur, c¢'est-d-dire lui attribuer une fonction W
bien déterminée. Dans cet état de connaissance maximum, il nous est
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impossible de préciser la valeur de toutes les grandeurs du systéme
puisqu’aucun dispositif expérimental ne i)eut nous les fournir toutes a
la fois. Au cas pur W, correspondent des distributions de probabilité
{qui, en principe, ne seraient réalisées qu’apres 'exécution de la mesure
correspondante) comportant des dispersions non nulles pour certaines
grandeurs. Une nouvelle mesure effectuée ensuite ne peut nous fournir
au micux qu’'un nouveau cas pur comportant lui aussi des dispersions
non nulles pour certaines grandeurs : elle augmente notre connaissance
de certaines grandeurs, mais de telle facon que notre connaissance
optimum de I'état du systéme reste toujours représentée par un cas pur
avec des dispersions. De plus, Ja mesure n'augmente aucunement notre
connaissance de P'état du systeme antéricur a la mesure car elle crée
par son action sur le systéme un état entiérement nouveau.

Je pense que ce sont la des résultats de la Physique quantique qui
ont un caractére définitif, mais, contrairement a ce que 'on admet, ils
n’entrainent pas du tout I'impossibilit¢ de maintenir I'idée classique
d’individus, de corpuscules, pour lesquels toutes les grandeurs ont des
valeurs déterminées. On peut imaginer, nous le verrons, que dans tout
cas pur il existe un collectif unique donnant des répartitions de proba-
bilité pour toutes les grandeurs ct satisfaisant a toutes les régles habi-
tuclles de la statistique [avec Pexistence de p(z, »)]. Sculement ces
répartitions de probabilité ne sont pas en géncéral celles qu’on envisage
d’ordinaire en Mécanique ondulatoire, car chacune de celles-ci n'est
réalisée qu’apreés 'exécution de la mesure correspondante. Les répar-
titions que nous introduirons ne peuvent pas étre miscs c¢n évidence
puisque, pour le faire, il faudrait exécuter des mesurcs et que toute
mesure, par P'action qu’elle exerce sur les objets qui lui sont soumis,
change en général les répartitions de probabilité. C'est finalement pré-
cisément le role nouveau joué par la mesure en Microphysique qui nous
permettra d’imaginer sans contradiction des répartitions de probabilité
qui restent cachées. Nous reviendrons sur cette question.

Faisons encore une remarque importante sur laquelle nous aurons
aussi a revenir. Un dispositif de mesure, portant sur des individus
microphysiques, comporte nécessairement apparition d'un phénomeéne
macroscopique observable déclenché par un individu microphysique. 11
faut bien qu’il en soit ainsi puisque la mesurc ne peut résulter que
d’une observation faite par le physicien. Ainsi, dans une chambre de
Wilson, Pobservation d’une trajectoire corpusculaire, qui peul per-
metlre soit une localisation, soit l'évaluation d’une énergie ou d’unc
quantité de mouvement, résulte d’un phénomeéne de condensations de
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gouttelettes observable macroscopiquement qui est déclenché par
I'action ionisante du corpuscule en mouvement. I en est de méme pour
les enregistrements photographiques ou l'action ¢lémentaire d'an cor-
puscule (photon ou particule chargée) déclenche un phénomeéne chi-
mique observable macroscopiquement. Cette remarque trés importante
nous scrvira ultéricurement pour reprendre sur des bases nouvelles la
théoric de la Mesure.

2. Statistique de deux systémes en interaction d’aprés M. von
Neumann. —- Reprenons les analyses de M. von Neumann et considérons
deux corpuscules ou deux systémes de corpuscules intervenant dans une
mesure. M. von Neumann dit que le premier est le « systeme étudié »
et le second « Pappareil de mesure ». Nous aurons a critiquer ces déno-
minations, mais passons.

Soient /() un ensemble de fonctions propres orthonormées pour le
premier systéme, v, (y) un ensemble analogue pour le second systeme.
Quand les deux systemes sont isolés I'un de Vautre (état initial), leurs
fonctions d’onde W, et W, évoluent séparément conformément & I'équa-
tion d’ondes correspondante et 'on peut poser

(0 ‘FIZECA-(Ult/:(~/¢% ‘l"u=2 dy(t) vp(2).

i

e systeme | 6tant ¢évidemment dans un cas pur reste dans ce cas pur.
Le systeme total, dont I'hamiltonien II est alors la somme des hamil-
toniens 1 -4 T, des deux systemes, a pour fonction d’onde

Gy Wy, ) =W, Wy, 0 = Yer(t) dy(£) ur(2) 0 ().

»
koo

Elle représente un cas pur du systeme qui subsiste tant que I’interaction
n'esl pas commencée.

Quand Dinteraction commence, il s'ajoute aux termes ;- Ho de
I'hamiltonien global un terme d’interaction H; qui dépend des coor-
données z et y des deux systémes sous une forme qui n’est pas sim-
plement additive. Alors la foncuion d’onde du systeme global cesse d’étre
le produit d’un w, (x) par un ¢,(y), mais comme les produits u,(z) v, (y)
continuent & former un systtme de base completl et orthonormé pour
I'ensemble des variables x et ¥, on pourra écrire

(3) W, ¥, t) :ECA-p(t) we(@) g (¥),
ko

L. DR BROGLIK, 3
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mais les G, ne sont plus de la forme ¢, d,. Comme nous avons toujours
pour le systeme total une onde W évoluant suivant une équation d’ondes,
Pétat du systeme total reste toujours un cas pur. La matrice statistique
correspondante est donnée par

(4) Pkp,lo- = Ckp C;O'-

Remarquons qu’il faut ici deux indices pour représenter un ¢tal du
systéme global. Portons maintenant notre attention sur le systéme I et
envisageons une certaine grandeur A de ce systéme telle que la matrice
correspondante soit définie par

(5) A/;ZZIMZ(J?)AU/(.%)[LL‘.
‘ i

La valeur moyenne de A pendant 'interaction est

e N O * T s Vot
(6) X =[£IIP*A1L d::chpcmfnukp,mdx./h Vhosdy =¥ Cig Cip A

kolo kio

Or la matrice statisique du systéme I pendant interacuon devra ¢ire
telle que
(7) A= Tr(PrA),
ce qui conduit a écrire
O ; Q% Al REd
(8) (Pl)/k:z‘(dpbk[:.

-
4

On trouvera de méme pour la matrice statistique du systeme II,

.. . N N X
(9) (Pn)cp:ZCka;-
k

[aa matrice statistique P du systéme total est hermitienne, de trace
égale 4 1 et idempotente comme on le vérific aisément sur (4) en tenant
compte du caractére orthonormé des produits wu; ()¢, (y) : c'est done
une matrice statistique élémentaire. Il n’en est pas de méme des
matrices P; et P), qui permetient le calcul de la valeur moyenne des
grandeurs pour I'un ou I'autre systeme. Ce sont bien des matrices her-
mitiennes de trace 1, mais elles ne sont pas idempotentes. Donc les
statistiques des systemes I et Il considérés séparément ne sont plus des
cas purs, mais des mélanges.

Pour préciser la composition de ces mélanges, reprenons la for-
mule (3). Pour une valeur donnée de lindice g, nous avons dans le
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développement (3) une somme de termes de la forme

"{1(-'")20‘?(’) wp (L), avec 2 [ Crpf2=1.
P’

kg

On peut donc dire que pour une valeur donnée de o (c’est-a~dire pour
un certain ¢tat du systeme II), le systtme I a une probabilité propor-
tionnelle a [ Gy, [* de se trouver dans P’état & : en valeur absolue, cette

9

robabilité sera égale a | C/f’
P 3 k

si l'on pose

Cr
(10) P = o
A <
'
oyt Cet
/
. . ARPAIARE
de fagon a avonrz [CEP =1
k
On pourra alors éerire
(10 (1P[',)K,/zﬁl)ptl*,f’(]‘,m',

avee

. N\ al Iy
f12) Pr= ,1b/p|-
/

et 'on trouverait de méme

; N ki Ok
(13 (Pu)p(,—:ZPkC;f ci,
P’

avece

Cip
e e e =TI Y [
T

(
4 \/2% o |2

Les matrices Py et Py apparaissent donc bicn comme définissant des
mélanges avee les poids statistiques p, ct p, respectivement.

Ainsi, tandis que le systeme total reste dans un cas pur malgré Uinter-
action, chacun des deux systemes partiels considéré isolément est trans-
formé¢ par I'interaction de cas pur ¢n mélange. Et M. von Neumann
ajoute : « Tandis que la connaissance du systeme global reste maximum,
celle des deux systémes composants cesse d’étre maximum. Chaque
systeme partiel peut étre considéré comme se trouvant dans un cas pur
que nous ignorons, le mélange représentant cette ignorance. Une simple
constatation pourra alors suftire 4 lever celte ignorance en nous faisant
connaitre le cas pur clfectivement réalisé. »
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En étudiant la forme des matrices statistiques P, et Py, on constate
que, pour chaque systeme, le mélange est déterminé par les états de
l'autre systéme. C’est ce qui se traduit par exemple dans la formule (11)
par le fait que la somme dans le second membre porte sur un indice p
qui concerne le second systeme. C’est en constatant I'élal du deuxieme
systeme (c’est-a-dire la valeur de p cffectivement réalisée) que nous
pourrons dire quel cas pur il faut attribuer au premier. Mais, et ¢’est
un point capital insuffisamment mis en relief dans la théoric de
M. von Neumann, pour constater 'état du second systeme, il faudra que
celui-ci déclenche un phénomene macroscopique que nous puissions
observer directement. C’est un point qui nous apparaitra plus clairement
quand nous reprendrons la question d'une maniere plus physique.

3. La mesure d’une grandeur dans le formalisme de M. von Neumann.
— Nous venons d’étudier 'interaction de deux systémes, mais pour que
cette interaction puisse nous fournir la mesure d’une grandeur du pre-
mier systtme, il faut que le résultat de Pinteraction soit d’'un type
particulier. Autrement dit, n’importe quelle interaction ne peul pas
servir a la mesure d’une grandeur du premier systéme. Nous avons vu,
en cffet, qu'en constatant macroscopiquement I'état du second systéme
apres la mesure, on peut en déduire que le premicr se trouve dans un
certain cas pur. Mais, comme dans un cas pur unc grandeur physique
n’a pas en général une valeur précise, nous n’obtiendrons pas ainsi en
général une mesure de la grandeur qui nous intéressait.

Soit A la grandeur physique du premier systéme que nous désirons
mesurer. Prenons pour fonctions de base du premier systeme les fone-
tions propres de A. Pour quel'interaction avec le second systeme puisse
servir & mesurer A, il faut qu’il existe une grandeur B du sccond sys-
teme telle que, ¢,(y) ¢tant les fonctions propres de B, le W du systeme
total soit apres Uinteraction de la forme

(15) W= g (@) 0 (1),

ko

avec Cpp== Gy 9y, c’est-a-dire que l'on ait

(16) W:ZCk wr(z) vr(y).
&

On peut alors établir une correspondance biunivoque entre les ¢ et
les w ou, si on préfere s’exprimer autrement, entre le phénomene
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observable déclenché par le second systeme et la valeur de A pour le
premicr. Nous reprendrons ultérieurement ce point en détail dune
facon qui le rendra beaucoup plus clair.

Calculons P, quand (16) est réalisée. Nous avons

Crp Cr 84

(17) C

=

) — _
kT —
~\ \ N P
oLy
!
et
(18) pPZZm,P]z:E1ap,(j,yz:|cp
l !

d’ou
G

AV Y Ao~ CZ* o~ S
(19) (P1)4-1=Zpr, WG :zolpp xp c, e G, == 0x1| Cr I3

2
?

P; est donc une matrice diagonale dont les termes diagonaux sont
les | G [?. On voit aisément qu’il en est de méme pour Py, qui est iden-
tique a Py.

On a donc ainsi un mélange d’états correspondant chacun a une valeur
de a; ct & une valeur de B, que se correspondent biunivoquement, la
probabilité de la paire de valeurs o, (; étant | G > La constatation de
la valeur 8, de B par un phénomene observable déclenché par le second
systéme permet alors d’attribuer a A la valeur «; : il y a donc récllement
« mesure ». La constatation que nous devons supposer résulter d’un
phénomeéne macroscopique que I'on peut observer ou enregistrer précise
notre connaissance de A en nous montrant qu’elle est, dans le mélange
provoqué par U'interaction, la valeur de A qui se réalise effectivement.

Examinons dans quelles conditions Phypothese faite sur la forme (16)
du W peut se trouver satisfaite. Supposons qu’avant la mesure le sys-
teme Il soit dans Pétat vo(y) et le systeme I dans I'état w,(z). Alors la
fonction d’onde du systéme global dans I’état initial sera

(20) Wiw, y) = vo(y) wi(2).

L’hypothese faite sur la forme finale du W sera réalisée s1, a la fin du
processus d’interaction, on a, quelle que soit la fonction propre u,(x)
réalisée a l'origine,

(21) Wiz, y) = wu(z)er(y),

() étant une fonction propre de la grandeur B qui correspond biuni-
voquement a (). En effet, a cause du caractere linéaire de 'équation
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d’ondes, si I'élat initial, au lieu d’étre représcnté par (20), Uest par la
superposition

(22) ‘F(J;,}/):ZCk vo(y ) Uk L),

I3

a la fin de I'interacuon la fonction d’onde aura bien la forme (16) et la
mesure de A sera possible.

Dans I'exposé que nous venons de faire de la théorie de la Mesure
d’apres M. von Neumann, nous avons évité de dire, comme on le fait
généralement dans les exposés usuels, que le systeme II est un appareil
de mesure et que la grandeur B est, par exemple, la position d’une
aiguille. En fait, le systeme Il doit étre un systéme microscopique de
I'échelle atomique comme le systeme I et son role est de déclencher
dans un dispositif de mesure un phénomene macroscopique ohservable.
Aucune mesure ne peut se faire en faisant agir directement un corpus-
cule sur un corps macroscopique.

D’ailleurs la théorie de M. von Neumann présente i notre avis, comme
d’ailleurs beaucoup de théories de la Physique quantique actuelle, un
caractére exagérément abstrait. Elle ne precise pas assez les conditions
physiques du processus de mesure et la nécessit¢ du déclenchement
dans ces processus d’un phénomene macroscopique observable : se
contentant d’un pur formalisme, elle ne nous donne aucunc image
physique précise de la fagon dont un processus de mesure peut nous
faire passer d’un cas pur a un mdélange.

4. Conséquences peu admissibles de la théorie de la Mesure dans
I'interprétation actuelle de la Mécanique ondulatoire. — L’¢volutton de
l'onde W, dit M. von Neuman, se déroule continiment pendant la
mesure, le systéme global restant dans un cas pur tandis que I'état de
chacun des systémes partiels devient un mélange bien défini. Il y »
rupture de la continuité de cette évolution ¢t création d’une situation
nouvelle quand I'ohservateur, constatant Uétat du systéme LI, peut attri-
buer au systéme | une fonction d’onde qui corresponde & une valeur
bien définie de la grandeur A. Dans cette maniere de voir, ¢’est done la
« conscience de I'observateur » qui, en constatant ’état du systeme I,
permet de réduire a Pun de ces termes le mdélange relatf a Uétat du
systeme étudié tel qu’il vésulte de Iinteraction.

Que la connaissance d’une grandeur a la suite d’une mesure résulte
d’une prise de conscience du résultat de la mesure par I'obscrvateur,
cela est bien évident. Mais il semble qu’entrainés par l'interprétation
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actuelle de la Mécanique ondulatoire qui ne peut donner a l'onde W
qu'une signification subjective, M. von Neumann cl ses commentateurs
en soient arrivés & des conceptions vraiment difficiles a admettre. Je
vais en donner le résumé d’apres Pexposé fait naguere par MM. London
et Bauer (1),

Considérons trois systeémes partiels : Pobjet étudié (&), appareil de
mesure () et 'observateur (z) qui forment un systeme global unique.
Décrivons le systéme global a Paide de la fonction d’onde

-
(23 U(a, 1, 3) :ch ) ep(y)ywr(s).
P

Pour le systeme global, nous avons un cas pur qui subsiste pendant
- la mesure et pour les syslémes partiels, nous avons un mélange. La
fonction d'onde (23) nous donne une connaissance maximum du sys-
teme  global sans que Pon connaisse exactement D'état. de lobjet
étadie (.Z“)

Mais I'observateur a un autre point de vue car pour Iui ¢’est seulement
Iobjet (z) et Pappareil de mesure (y) qui apparticnnent au monde
objectif extéricur. En ce qui les concerne, il est dans une situation
toute différente car il possede la conscience ou faculté d’introspection
qui lui permet de connaitre dircetement son élat. Clest en vertu de celte
connaissance immdédiate qu’il se eroit le droit (?) de créer sa propre
ohjectivité en coupant la chaine des coordinations statistiques exprimées
par le W et en conslatant : « Je suis dans I'élat w,, donc Pappareil de
mesure est dans état ¢ et par suite objet dans I'état u; », constatation
qui entraine Pattribution d'une valeur bien déterminée a la grandeur A,
¢’est-a-dire une mesure de cetie grandeur.

Tel est Pexposé de MM. London ct Bauer qui ajoutent : « Ge n’est
done pas mne inleraction mystérieuse entre appareil de mesure et
P'objet qui produit dans la mesure Papparition d’'un nouveau W du
systeme. (Vest seulement la conscience d'un Moi qui se sépare de la
fonction W(z, y, 5) ancienne et constitue une nouvelle objectivité en
vertu de son observation conscicnte cn attribuant désormais a Pobjet
une nouvelle fonction d’onde w.(z). »

Jai cité ce texte, mais je ne le comprends pas bien : « ce Moi qui se
sépare de la fonction d’onde » me parait beaucoup plus mystéricux que
ne le pourrait étre une interaction entre Pobjet et 'appareil de mesure.

(V) Voir bibliographic 12",
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On comprend que M. Schrédinger ait pu dire avee un jeu de mot
ironique : « La théorie de 'onde W est devenue une théoric psycholo-
gique ». Il ne sert pas a grand chose d’ajouter que ces considérations
viennent & Pappui de I'opinion de M. Bohr suivantlaquelle en Physique
quantique on ne peut plus tracer une limite exacte entre Uobjectif et le
subjectif car cette affirmation ecst, elle aussi, peu comprébensible et
n’éclaircit rien. Plus on y réfléchit et plus on a Pimpression que toute
celte inlerprétation est i reprendre sur une autre base.

Continuons ’étude du fascicule TLondon-Bauer. Les autcurs remar-
quent que leurs idées soulevent une difficulté : si la réalité objective est
créée par un acte de conscience de P'observateur, cette réalité ne va-t-elle
pas varier d’un observateur a I'autre ? Or il est cerlain qu’il n’en est pas
ainsi sans quoli loute science collective, toute science commune aux
hommes serait impossible. Mais, nous dit-on, il faut remarquer que la
constatation qui permet la mesure est une constatalion macroscopique
ne modifiant pas I'état de choses observé. Rien n’empéche par suite un
autre obscrvateur de faire le méme relevé et ¢’est un fait d’expérience
qu’aux crreurs d’observation pres, tous les observateurs font ln méme
constatation. G’est ce fait, ajoute-t-on, qui permet de faire abstraction
de la-personnalit¢ de Pobservateur, et de créer une science ayant un
caraclere objectif. En somine, dans le mélange qui résulte de Pinter-
action de mesure, 1l y a une possibilité et une seule qui se révele comme
réalisée pour tous les observateurs.

Cette explication nous parait insuffisante car clle revient a constater
le fait que I'on veut expliquer. L’existence d’une science commune aux
hommes nous parait bien difficile a comprendre dans une théorie qui
veul tout décrire a I'aide d’une fonction Wa caractere subjectif, fonction
qui dépend de ce qui sc passe dans la conscience de Pobservatcur.
L’accord indéniable des observations faites par des observateurs diff¢-
renls ne nous parait pouveir se comprendre que sil’on n’admet pas Pexis-
tence d'une réalité objective et, si 'on admet son existence, cette véalite
objective doit pouvoir étre «ddcrite par autre chose que par cette fonce-
tion W subjective que I'interprétation actuellement orthodoxe de la
M¢canique ondulatoire nous condamne a uniquement envisager.

L’interprétation actuelle de la Mécanique ondulatoire semble ainsi se
perdre dans des contradictions parce qu'elle ne sait pas quel sens exact
attribuer a Ponde W. Logiquement, elle est amende & lut attribuer le
sens d'une simple représentation de probabilité purement subjective,
dépendant des connaissances de Pobservateur et de ses « prises de
conscience » el soumise a la réduction du paquet de probabilité lorsque
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T'utilisateur recoil des informations nouvelles. Mais alors elle ne peut
plus rendre compte de U'existence d’une science commune aux hommes
et d’une réalité objective indépendante des observateurs. Il existe d’ail-
leurs des arguments pour attribuer a Ponde W' une réalité objective.
Ainsi supposons qu'un observateur ait connaissance de I'état W d’un
corpuscule (ou d’un systeme) et qu'il calcule avec cetie fonction d’onde
les probabilités du résultat d'une mesure a effectuer. Si avant qu’il
effectue Ia mesure projetée un autre observateur a fait a ’insu du pre-
mier une mesure sur le corpuscule, en général les prévisions stalistiques
du premier observateur se trouveront éire fausses. C’est done l'action
du dispositif de mesure et non la prise de conscience de l'observaleur
qui modifie le W et ceci semble imposer de rendre a la fonction d’onde
un certain caractere de réalité objective. M. Bohr semble toujours avoir
reconnu ce caraclére, mais sa pensée trés subtile est souvent obscure.
Iin réalité, presque tlous les auteurs qui ont exposé¢ linterprétation
actuelle de la Mécanique ondulatoire ont passé alternativement de 'idée
d’une fonction W simple représentation subjective de probabilité a 'idée
d’une onde gardant un certain caractere de réalité et ¢’est a 'aide de ce
sublerfuge inconscient quo’ils ont pu éviter les contradictions trop
flagrantes.

QQuant au corpuscule, on sail encore moins qu'elle est son exacte
nature et I'on se borne & dire : « En Microphysique quantique, un cor-
puscule est porteur non pas de grandeurs a valeurs déterminées, mais
d’un ensemble de répartitions potenticlles se rapportant 4 chaque gran-
deur mesurable, répartitions dont chacune ne peut entrer en vigueur
que lors de la mesure correspondante ». Et cela ne donne pas une 1dée
bien claire de ce que peut étre un corpuscule.

Nous allons maintenant examiner si Pon ne pourrait pas, en adoptant
une interprétation causale et objective plus claire de la Mécanique ondu-
latoire, parvenir a mieux comprendre ce qui se passe dans les processus
de mesure.



CHAPITRE IV.

INTERPRETATION CAUSALE DE LA MECANIQUE ONDULATOIRE.
(THEORIE DE LA DOUBLE SOLUTION).

1. Idées de base de la théorie de la double solution.—- Je vais résumer
rapidement les bases de linterprétation de la Mécanique ondulatoire
par la théorie de la « double solution » que javais esquissée des 1927 et
que J’al & nouveau développée depuis quelques années a la suite d’un
travail de M. David Bohm et en collaboration avec M. J. P. Vigier. J'ai
fait un exposé de cette question dans nn Ouvrage récemment paru auquel
on pourra s¢ reporter (1).

Aux début de mes travaux sur la Mécanique ondulatoire, mon idée
initiale avait été qu’il fallait conserver la conception d’une réalité
physique indépendante de P'observateur et chercher, comme l'avait
toujours fait In Physique classique, une représentation claire des
processus physiques dans le cadre de Vespace et du temps. J'avais ainsi
été amené a rechercher une vue synthétique de la dualité des ondes et
des corpuscules compatible avec les idées que j'avais introduites
(Mécanique ondulatoire, 1923-1924) el qui venaient de se confirmer
d’une fagon remarquable (travaux de M. Schrodinger en 1926, décou-
verte de la difftaction des ¢lectrons en 1927}, Suivant un courant d’idées
qui s’6tait manifesté dans les travaux de Mie et d’Einstein, je cherchais
a me représenter le corpuscule comme une sorte d’accident local, de
singularité, au sein d’'un phénomene ondulatoire étendu. Cela m’avait
amen¢ & me représenter la réalité physique non pas par les solutions
continues W de 'équation des ondes exclusivement considérées par
M. Schrédinger et ses continuateurs, mais par d’autres solutions de

7

(') Bibliographie [3], Voir aussi la these de M. Vigier [4].
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cette méme équation que pour les distinguer des solutions régulieres W
je désignais par u et qui comporteraient une singularité. En y réflé-
chissant, je voyais tout de suite un grand avantage a celle coneeplion
d’un corpuscule ainsi « incorporé » a un champ ondulatoire ¢lendu et.
par conséquent, solidaire de I'évolution globale de ce champ : elle me
paraissail permettre de comprendre que le corpuscule soit localisé et
que cependant son mouvement puisse éire influencé par la présence
d’obstacles ¢loignés de sa trajectoire, comme cela est néeessaire pour
pouvoir interpréter, en conservant I'idée de corpuscule localisé, Pexis-
tence des phénomenes d’interférences ct de diflracuon.

Néanmoins I'interprétation probabiliste de I'onde réguliere W, primi-
tivement issue des travaux de M. Born et confirmée par ses succes, me
paraissait devoir étre maintenue. Tandis que Ponde w serait la véritable
deseription de la structure des unités physiques, Ponde W' serait une
onde ficlive, & caractere subjectif, susceptible de nous fournir des rensei-
gnements statistiques exacls sur la position ¢l le mouvement des corpus-
cules. Mais, pour qu’elle puisse remplir ce role, encore faut-il qu’elle
soit reliée d’une certaine facon a 'onde u.

Mes premieres recherches sur la Mécanique ondulatoire m’avait
conduit a attribuer une importance particuliere a la « phase » de Ponde
que j'associais au corpuscule. Glest essentiellement accord des phases
du corpuscule considéré comme une sorte d’horloge et de l'onde envi-
ronnante qui m’avait amené a derive les formules fondamentales de la
Mécanique ondulatoire <W = hy; k= ;) : ¢’était donc la fréquence el
la longueur d’onde, éléments contenus dans la phase, qui ¢lablissaient
ainsi un pont entre la propagation de 'onde et le mouvement du corpus-
cule. Ceci me conduisait a écrire la fonction d’onde usuellement envi-
sagée sous la forme

(1) ‘ We=cge®’

avec a et ¢ réels et a attribuer a la phase ¢ (qui a Papproximation de
U'Optique géomeétrique coincide avec la fonction de Jacobi S) une signi-
fication physique profonde. Au contraire, 'amplitude @, qui est continue,
ne me semblait pas avoir une signification objective, mais seulement une
signification statistique.

Parmi les probabilités envisagées par 'interprétation probabiliste de
la Mécanique ondulatoire déja admise a cette époque, la probabilité de
présence |W[*=a® me paraissait avoir une sorte de priorit¢ car elle
correspondait & mes yeux & la possibilité que le corpuscule soit en un
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point donn¢, indépendamment de tout processus de mesure. Les autres

.- >N\ |2 > .
probabilités telles que c(p) l pour la valeur p de la quantité de mouve-

ment [(:(/ﬁ éant le coefficient de Fourier correspondant a ]? dans le
développement du W suivant les ondes planes monochromatiquesJ
devait avoir selon moi un sens moins immédiat : elles ne seraient
valables qu’apres Iaction, sur onde réelle u a laquelle le corpuscule est
incorporé, d’un dispositif de mesure de la grandeur envisagée quand on
ne connail pas encore le résullat de cette mesure.

Muni de ces 1ddes générales, j'avais admis le principe suivant auquel
Javais donné le'nom de « principe de la double solution » :

A toute solution régulicre du type (1) de Uéquation des ondes de
la Mécanique ondulatoire, doit correspondre une solution @ singu-
larité du type

QT

.
(2) . w=/fe” 7,

ayant la méme phase ¢ que la solution (1), mais avec une amplitude
J présentant une singularité ponctuelle, en général mobile.

A T'époque oi j'éerivais mon Mémoire sur la double solution au prin-
temps de 1927, on connaissait 'équation des ondes de Schrodinger
8w 2m frim I

= i)
h? Vi h ot

() AW —

correspondant au mouvement d'un corpuscule de masse m dans un
champ ddérivant de la fonction potentielle V(z, y, 5, t) supposée
connue. Aujourd’hui on doit considérer I'équation (3) comme valable
seulementa Papproximation newtonienne pour les corpuscules de spin o.
Peu apros les premiers Mémoires de Schrodinger, on avait apercu quelle
doit ¢tre Véquation qui généralise 'équation (3) quand on doit tenir
compte des corrections de relativité. Gette nouvelle équation qu’on
nomme habituellement « I'équation de Klein-Gordon » et qui constitue
I'équation des ondes relativistes pour les particules de spin o s’éerit

. dmic oV odmie, OV 4w, 2Ty
(+y v *%‘27‘24‘7 SA G T mier— e (Ve AW = o,

xys
ol my est la masse propre de la particule, e sa charge électrique, ¢ la

-

vitesse de la lumiére dans le vide, V et A les potentiels scalaire et
vecteur dont dérive le champ électromagnétique auquel le corpuscule
est soumis.
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L’équation . (4) ¢étant la plus générale et contenant I'équation (3)
comme forme dégénérée a I'approximation non relativiste, c¢’est sur
Uéquation (4) que j'avais raisonné. Duns le cas de Pabsence de champ,

on a alors

() OV +==mic2U" =0

et la solution la plus simple de cette équation quand on se Imite aux
ondes continues esl 'onde plane monochromatique

Lo . (Wi—pz
(6) Vel s
W2 2y - ), :
avec « constant el - = mgc* - p*. W est énergie du corpuscule ¢n
) . - . - myc? ~ .
mouvement avec la vitesse v—=[¢, soit W= 7——~, ¢l p est sa quantilé
— 32
.
) > moy . . ) .
de mouvement p = —==> la direction du mouvement étanl prise

\/I — p-
comme axe des z.
Or javais facilement wouvé que 'équation de Klein-Gordon admet
aussi la solution & singularité mobile

2L
. , . const. 5 (Wi-psi
) wlaw, v, 3,8 = e

7 : R
@ )R

qui prend, dans le systéme propre du corpuscule on ¢ = o, la forme

9=z

ol
const, gty
ek

(8) w (e, Vo, To. o) = (ro=Vai+ i+ ).

™y
La solution (7) a la méme phase que la solution (6), mais son ampli-
tude présente une singularité ponctuelle au point x =y — o, 5= ot
qui se déplace avec la vitesse ¢ dans la direction de¢ propagation de
I'onde, ce qui fournit une image claire du mouvement du corpuscule.
Dans ce cas particulier on obtient ainsi exactement ce que je cherchais
et la valeur constante de 'amplitude de I'onde W apparait comme ayant
simplement la signification suivante : si 'on ignore la position du
corpuscule-singularité, on doit considérer loules les trajectoires
paralleles et toutes les positions possibles du corpuscule a toul instant ¢

comme également probables.

oy . .

Encouragé par ce premier succes, j'ai considéré le cas général de

>
I'éqnation (4) avec des potentiels V et A fonctions continues données
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7
de z, y, 5, t et j’ai pu dés 1927 démontrer les résultats suivants :

1# §'il existe deux solutions W et « de Véquation (4) Punc & amplitude
continue, 'autre & amplitude comportant une singularité ponctuelle
mobile et qui ont la méme phase ¢ [ ce qui veut dire qu’elles peuvent
étre ¢erites sous les formes (1) et (2)], la singularité de « se déplacera

. . . > .. .
dans Uespace avec la vitesse instantanée ¢ définie par la formule

— Pl
grady + - A
(9 Cla, v, 3ty = —¢? ‘
< =t N (B_:\
Jt

Cest la « formule du guidage », qui, quand on peut négliger les correc-

tions de relativité et supposer nul le champ. magnétique (c’est-zl-dire

‘ >
poser )—: — eV~ mgetr et A = <)> » donnera simplement
f,

* > | St
(10} v = — — grad 2,

forme qui correspond & 'équation (3) de Schrodinger. Si, de plus, la
propagation s'opere a l'approximation de I'Oplique géométrique, on
pourra poser ¢ ~ S oit 5 est la fonction de Jacobi et (10) ne sera alors

: —_—

. > o
pas autre chose que la formule classique m¢ =—grad$S de la théorie
d’Hamilton-Jacohi.

2" Le mouvement du corpuscule est le méme que s'il élait soumis ¢n

plus de la force classique dérivant des potentiels V et A a une force
—

« quantique » égale a —grad ), ) ¢tant un « potentiel quantique »

ignoré des théories classiques et qui, a approximation non relativiste

de 'équation (3), s’écrit simplement

(1) 0= h? <A_f\):_ h2 (:\g>,

— /
Sraue \ f ) . a

les quantités entre parentheses étant calculées au point ou se trouve le
corpuscule d linstant ¢ et Végalité des deux expressions (11) de Q
découlant automatiquement de '’hypothése que les deux ondes W et u
ont la méme phase o.

La formule du guidage et la définition du potentiel quantique permet-
tent de metire sous forme lagrangienne la dynamique du corpuscule
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incorporé comme singularité dans son onde. Je n’insiste pas sur ce poinl
que j’ai traité ailleurs (1),

2. Autre maniére d’exprimer la formule du guidage et généralisa-
tions. — La formule du guidage traduit sous forme mathématique le fait
que le corpuscule, parce qu’il est intégré dans onde, est analogue a une
'horloge qui se déplace en restant en phase avec 'onde. A ce point de
vue, clle est le couronnement de mes considérations initinles sur
Ponde et le corpuscule en Mdécanique ondulatoire. Mais on peut lui
donper une autre forme qui permettra une géndralisation plus grande.

Toutes les formes actuellement connues de la Mécanique ondulatoire
permettent de construire une image hydrodynamique associée a la
propagation de 'onde, c’est-a-dire de ddéfiniv un fluide fictif dont la

densité ¢ et la densité de flux p;‘) sont donndes en chaque point & chaque
instant par des fonctions biliné¢aires de la fonction d’onde et de la fonc-
tion complexe conjugude.

Ainsi dans le cas de I'équation (3) de Schrodinger, le fluide fietif et
son mouvement sont donnés par les formules primitivement utilisées
par Madelung

. ——y —
(12) =T = |2, o= }L, U™ grad ¥ — 4’ rl'u?l y
. / ¢ | 5 g 9

f=im

o ¥ est la quantité complexe conjuguée de W. Grice a (1), on peut
écrire aussi
—_—

e I ¢

3 o = a? ¢ —=-— — orado.
(13) s ¢ ™ srado
L it par Uexpression de ¢ la formule du guidage L s’expri

on voit par I'expression de ¢ que la formule du guidage peut s’expri-
mer en disant que le corpuscule suit yne des lignes de courant.

Dans le cas de 'équation (4) de Klein-Gordon, le fluide fictif doit étre
défini par

5 = i_ ! <1p“* ﬂ‘i *‘l/")‘l”*‘) & VU

, 4= i mye? a¢ Jt o c?
1
G0 N b (e o )& e
pop=— -—— \ W grad¥'— W grad U™ ) — AWy
Arimy * myc
ou, grice & (1),
- 1 do Z - > I > z >
(15) p=—= S-a?— —— Va2, op=— —a?gradg — a*A,
moc® ot mgyc? ‘ my Hy¢

() Voir [3], chap. X.
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d’ou
> e
grade + - A
Lo > . c
(16) b=t
[74¢ -
IR ) ¥
ot

Nous retrouvons la formule du guidage pour I'équation de Kleimn-Gordon :
le corpuscule suit donc encore unc ligne du courant. Nous voyons
d’ailleurs aussi que Phypothese exprimée par (1) et (2) suivant laquelle
W et w ont la méme phase o revient a supposer que les lignes de courant
sont les mémes pour les deux ondes, ou si l'on préfere que le champ des
. >

vecteurs vitesse v (z, ¥, 2, t) est le méme pour les deux.

Sous cetle forme, la relation établie entre les deux ondes w et ¥ va

b

pouvoir se généraliser aux ¢quations des particules de spin non nul.

L. . . h .
Ainsi, pour les particules de spm/—'_ tels que les électrons, I'onde W a
‘Ah

quatre composantes W qui obdéissent aux quatre équations aux dérivées
partielles simultanées (équations de Dirac)

h d Q h d
e S v = Y (AL
() <‘z,7:i M V) Vi Adj<:).:1' d ;
. ’

avec k=1, 2, 3, 4. Les malrices a4, a», oy, o, sont les matrices de

Sl

A,—j aj+ mocay, | Uy,
/

Dirac i quatre lignes ct quatre colonnes telles que
{18) @i Ajag= 20,1,

1 ¢tant la matrice unité. Le fluide fictif est alors défini par

. N A s N - + .
(19) o= 2/»]‘1”1, gpj=—c 2/»11,{:4;‘1;\4 (J=r1,2,3),
= :

1

d’ot pour les composantes de la vitesse du fluide

& &

- )
2 WUy E Uhujtg
P k

(20)

1 1

En théorie de la double solution, c’est cette vitesse qu'il convient
d’attribuer au corpuscule-singularité de sorte que (20) constitue la
formule du guidage en théorie de Dirac (ot 'on ne peut plus en général

L. DE BROGLIE, 4
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introduire une phase o unique pour les quatre composantes de onde).
On devra ict remplacer le postulat des phases ¢ par celut que le champ
de vitesses ¢ est commun & W et & u, ce qui justificra I'égalité des deux
expressions (20) de ¢;.

Pour les particules de spin supérieur a /I—L (photons, particnles z,

4w

gravitons, etc.}, on a des fonctions d’onde a plus de quatre composantes
qui obéissent toujours a un systéme d’équations aux dérivées partielles
simultanées. Mais toujours on pourra définir par des formules bilinéaires
analogues a (14) et (19) la densité p et le flux pgd’un fluide fictif et
obtenir la formule du guidage correspondante en admettant que le
corpuscule-singularité de 'onde w, suit toujours unc des lignes de
courant communes aux ondes W el u.

Maintenant un fait fondamental est que, pour loutes les équations
d’onde que I'on peut avoir 4 considérer, le fluide ficuf est conservauf et
obgit a 'équation de continuité

(21) %‘;—hdiv(p?):o

qui est une conséquence des équations d’ondes. Glest I'équation (21)
qui permet de prendre la densit¢ p comme probabilité de présence et de
«normer » le W (qui est une simple représentation de probabilité) parla

formulefp dr=1. Dans le cas de I’équation de Schrédinger, on obtient
D .

ainsi comme formule de normalisationf|‘If|2 dr=1ctl'on doit prendre
b

| W |* = a* comme probabilité de présence. Nous allons voir que ¢’est en
partant de l'équation (21) que l'on peut obtenir dans tous les cas la
démonstration de la formule du guidage.

3. Démonstration de la formule du guidage. — Nons commencerons
par remarquer que, st 'on admet qu’a toute solution réguliere W de
I'équation des ondes correspond une solution z a singularité mobile
ayant les mémes lignes de courant, les deux densités p(u) ct p(W)
obéissent a la méme équation de continuité puisque le champ de

> . .
vecteurs ¢ est le méme dans les deux cas, mais, tandis que p(WF) est

partout réguliére, p(u) devra présenter une singularité ponctuelle, en
général mobile.

Une premiére maniere d’obtenir la formule de guidage, qui est au
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fond équivalente a celle que J'avais donnée en 193~ (1), consiste 2
écrire pour o(u) Péquation de continuité sous la forme

] . > T L >
plu)y+v.grado(u)+ s(u)dive=o,

( ‘
22) -
) ’ ot

d'on, apris division parv ()

. ) - N .
(23) :)7 logo(uw)+ ?‘.grud logge(u)=— (h\'?‘,

Stow ety par suite, o(u) prennent des valeurs tres élevées dans une
trés pelite région (éventuellement autour d'une singularité) logo(u) el

ses dérivées y auront des valeurs tres élevées; pour ¢ donnde, le second

”

membre de (23) sera alors néghgeable devant le premier et, en désignant

¢

D L . )
par = la dérivée totale par rapport au temps prise le long de la ligne de

D¢
courant (2 — . J
oura =2 o aurs
d Dl 7 ¢ . gra )7 on auri
(24 D joeciu)
2 - —logelu)=o.
! l)f [ BN 7

Done loge(w) et, par suite, p(w) demeureronl constanis quand on
: . . > .. .
sutvra la ligne de courant avee la vitesse ¢. Ainsi, tandis que pour des
ot . P e
valeurs modérées de g, 1l y a en général (pour dive £ 0> convergence el
divergence des lignes de courant et que, par suile, p ne conserve pas

unc valeur constante quand on sc¢ déplace le long d’une ligne de courant

. > .
avec la vitesse ¢, 11 n’en est plus de méme quand ¢ prend des valeurs
extrémement ¢levées : alors Ies valeurs localement tres élevées de la

densité se déplacent le long des lignes de courant avec la vitesse 0 sans
se disperser, ni s’affaiblir. On voit ainsi que la singularité de p(u)
suivra I'une des lignes courant, communes par hypothese a w et a W,
avec la vitesse ¢ correspondante, ce qui nous donne la forme générale
de la formule du guidage.

Une autre méthode pour oblenir la formule du guidage consiste a
mlégrer par la méthode bien connue l'équation de continuité éerite
sous la forme

. 7 e do g L
(29 < ey ey o ez~ o dive= o,
ot Ay dy iz ’

(') On trouvera celle-ci en (3], p. 101 et suiv.
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L’on sait que 'intégration d’une telle équation aux dérivées partielles
lin¢aire de premier ordre peut se ramener & Pintégration du systeme
d’équations différentielles

dr _dy ds do
bx Py odive

(26)

ou v, ¢, ¢; sont des fonctions supposées connues de z, y, 3, £. L'inté-

‘ gration des trois premidres équations différentielles (26) donne des
3 intégrales de la forme

(27) Jilz, ¥, 5, t) =1, ./“Z(x: Y, & ) =u, Ja(z, yy 5, 8) =,

Lorsque 2, ., v ont des valeurs constantes, ces formules définissent dans
I'espace-temps une ligne de courant d'univers, c’est-&-dire une ligne

dr dy dsz .
a’ ﬁZ’ v sont respectivement

égales aux valeurs ¢4, ¢y, 02 en ce point. Gette ligne de courant d’univers

d’univers en chaque point de laquelle

représente a la fois la trajectoire ¢t le mouvement des moléeules du
fluide ficuf. .

Les équations (27) permettent d’exprimer z, ¥, 5, ¢ en fonction de
. . . . > .
J, 4y v, t et, par suite, d’exprimer dive sous la forme 1°(%, u, v, ¢). Pour
obtenir l'intégration de I’équation aux dérivées partielles, il suffit alors
d’écrire la quatrieéme équation différentielle (26) sous la forme

ds

o BN IUSPITAE

puis de U'intégrer a %, 11, v constants, ce qui donne

)
— FOu W, v, 0dt R
e / DAy, v),

(29) p=
ot Pintégration dans 'exposant de 'exponenticlle doit étre effectuée
sur £ & A, (4, v contants et ot @ est une fonction arbitraire. On aura donc,
puisque I'équation de continuité est par hypothése valable pour W et
pour u avec les mémes valeurs de v, ¢y, 0-

S l

— F{k, . v, 01 dt

sy =e T 0,0,
(30)

14
~f Foh b, v, 8 de
\ o(u)=e q’2()‘7fj'a V).

Puisque p(W¥') est régulier, les deux facteurs dans son expression
doivent étre réguliers. Dans l'expression de p(u), le premier facteur
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étant le méme que dans Pexpression de p (W), doit aussi étre régulier :
la singularité de o(u) doit donc provenir de @,. 11 en résulte que ®,
doit avoir une singularité pour une certaine valeur de &, p, v, soit 2=12,,

1= [to, ¥ ="Vg, €¢ qui Ilraduit Uexistence d’une singularité ponctuelle
de w occupant une position 2o, ¥, 5o & l'instant ¢,. Mais alors cette
singularité se retrouvera tout le long de la ligne de courant d’univers
définic par les valeurs 2y, po, vo de 2, p, v. Autrement dit, p(u) et par
suite © présenteront une singularité ponctuelle dans l'espace a tout
instant ¢ el le mouvement de cette singularité au cours du temps sera
représentée dans Uespace-lemps par la ligne de courant d’univers définie
par 2 =z Ao, . = b et v =v.

La singularité, quand clle occupe a 'instant ¢ la position z, y, z, est
donc animdée de la vitesse 3(1‘, ¥, 5, ¢). Gest encore le théoréme du
cuidage sous sa forme la plus générale et nous pouvons énoncer notre
résultat en disant : 87 deux solutions des équations d’onde de la Méca-
nigque ondulatoire, U'une régulicre et Uautre & singularité ponc-
tuelle mobile, admettent les mémes lignes de courant, la singularité
de la seconde solution suit U'une de ces lignes de courant.

I1 est important de remarquer que notre démonstration serait encore
valable si la solution u, au lieu de présenter une véritable singularité
mathématique, comportait seulement une trés petite région en général
mobile ou elle atteint des valeurs trés élevées tandis que la solution
réguliere couplée W ne comporte pas d’accident analogue. Alors les
expressions (30) montrent encore que I'existence de cetle « région singu-
liere » doit se traduire par une forme particuliere de @, qui doit présenter
des valeurs trés élevées quand 2, 11, v ont des valeurs voisines de certaines
valeurs Zq, 119, vo. Mais ceci signifie encore le mouvement au cours du
temps de la tres petite région ot u prend de tres grandes valeurs est
représenté dans l'espace-temps par un tube d’univers trés délié dont
I'axe est défini par 2 == Xy, B = o, ¥ = v,.

Sous la forme générale que nous venons de lui donner, la théorie du
guidage permet de mieux apercevoir le rapport entre 'onde « et 'onde
W. Ces ondes devant avoir les mémes lignes de courant, Uonde ¥
représente aussi bien que 'onde u {’ensemble des mouvements possibles
du corpuscule, mais il lui manque un élément essentiel qui est le
corpuscule lui-méme déerivant l'une des lignes de courant : clest
pourquoi, sclon ce point de vue, si Ponde W peut donner une image
statistique exacte des mouvements du corpuscule, elle ne peut consti-
tuer unc description compléte de la réalité physique. Nous rejoignons
ici une opinion qu’Einstein a toujours soutenue.
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4. Introduction de lanon-linéarité et forme de la fonction d’onde . -
Quand j’ai repris, il y a quelques anndes, avec active collaboration de
M. Vigier, I'étude de la théorie de la double solution, nous avons tout
de suite ¢té frappés par la grande analogic qu’elle présente avec les
idées d’Einstein sur la liaison des corpuscules ¢t des champs qu
s’apparentent aussi a celle de Mie dans sa théorie non lincaire de
l’ﬁlectromagnétisme. Dans la théorie de la double solution comme dans
les conceptions de Mie et d’Einstein, le but recherché est d’dncorporer
le corpuscule au champ sous la forme d’unc ires petite région ou le
champ prendrait des valeurs trés élevées (pouvant comporter ou ne pas
comporter une véritable singularité mathématique). Mais dans la théorie
de la double solution, le champ auquel on cherche a incorporer le
corpuscule n’est plus le champ électromagnétique ou le champ gravi-
fique, mais le champ u« ondulatoire el quantique qui doit donner une
représentation objective de la structure du corpuscule.

Parvenu a ce point, nous apercevons la nécessité d'introduire une
idée nouvelle.

En effet, quand on admet pour un champ des équations d’évolution
linéaires, méme cn y introduisant comme en théorie de Lorentz des
termes de sources indépendants du champ, on ne peut pas comprendre
comment un corpuscule peut avoir son mouvement déterminé par
I'évolution du champ : ¢’est un point sur lequel Einstein a beaucoup
insisté. Pour échapper a cette ditficulié, 1l est nécessaire de supposer
que les équations du champ soient non linéaires. 1idée de non-linca-
rité, qui est nouvelle en Mécanique ondulatoire, y a cependant éi¢
introduite dans ces derniéres années par quelques autcurs, notamment
par M. Heisenberg, mais dans le cadre d’'idées trés différentes des notres.

Cependant ce que nous avons dit précédemment nous amene a penser
que, si I'équation de 'onde « est non linéaire, les termes non linéaires
qui y figurent ne doivent avoir de 'importance que dans la petite région
singuliere ot les valeurs de u sont trés élevées, tres petite région qui
conslitue le corpuscule : en dehors de cette trés petite région, les termes
non linéaires doivent étre irés petits et 'équation de propagation de u
doit devenir approximativement linéaire et coincider avec 'équation de
propagation usuellement admise pour 'onde W, ce qui nous ramene a
I'hypothese précédemment admise que n et W obéissent a la méme
¢quation.

En creusant cette idée, nous nous sommes apercus, M. Vigier el moi,
({ue, pour pouvoir rendre compte du succes du calcul usuel des phéno-
meénes d'interférences et de diffraction ot aussi du succeés du calcul
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usuel des valeurs propres de I'énergie correspondant aux états station-
naires des systémes quantifiés, il était nécessaire de préciser la forme de
I'onde u par I'hypothése suivante : dans la région singuliere ou I'équa-
tion de u est trés approximativemént linéaire, u doit avoir la forme

(31) o= Uy—+ v,

ol iy est une solution de Péquation lin¢aire a singularité ponctuelle au
centre de la région singulitre et ou ¢ est une solution régulidre de la
méme équation. Nous préciserons comme il suit la forme des deux termes
de Pexpression (31). Le terme w, doit étre extrémement petit par
apport a ¢ en dehors du voisinage immédiat de la région singuliére :
cette hypothiése a une wrés grande importance. La fonction uo croit
extrémement rapidement quand on approche de la région singuliére et
elle deviendrait Infinic au centre de cette région si 'on pouvait 'y
prolonger, c’est-a-dire si Péquation linéaire restait valable a I'intérieur
de la région singulicre. Quant a ¢, c¢’est une solution régulitre de
"équation linéaire qui doit, du moins en général, coincider 4 un facteur
constant prés avee la forme usucllement admise pour Ponde W dans le
probleme considéré. Nous montrerons plus loin que Pensemble des
hypotheses que nous venons de faire peut se trouver réalisé.

Ainsi la solution w«, de I'équation linc¢aire apparait de l'extéricur
comme une sorte d'aigunille tres fine implantée sur une onde ¢ qui a
méme forme que Vonde W, Or, dapres le théoreme du guidage, la fone-
tion cu aiguille wo devra se déplacer le long de l'une des lignes de cou-
rant de I'onde ¢. Mais, si P'équation de 'onde w ¢tait partout linéaire et
coincidait partout avec I'équation usuelle de la Mécanique ondulatoire,
les solutions uq ¢l v scraient tolalement mdépendantes : il 0’y aurait
aucune raison pour qu'elles admettent les mémes lignes de courant et
pour que le déplacement de aiguille uy soit déterminé par les lignes de
couranlt de ¢. llen est tout autrement si 'équation de u n’est pas linéaire
dans la région singuliére ou, en raison des grandes valeurs de uo, les
termes non lindaires sont importants : dans cette région, les termes u,
et ¢ sont liés Pun a lautre par la non-lincarité. In d’autres termes,
I'équation non-liéaire en u admet une solution u et ce n’est qu’approxi-
mativement dans la région extéricure & la région singuliere que la
décomposition (31) est valable : cect apparaitra trés clairement sur
I'exemple que je vais donner tout a heure.

Drailleurs la non-linéarité tres localisée de 'équation de l'onde u
apparait comme essentielle pour bien comprendre le sens du théoréme
du guidage. Les démonsirations que nous avons données de ce théoréme
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en partant de Uéquation lindaire reposent sur 'hypothese que la solution
réguliere ¢ (ou W) et la solution régulitre w = wuo--¢ ont les mémes
lignes de courant. Or cette hypothese cst entiérement arbitraire dans le
cadre d’une théorie partout linéaire : elle cesse de Pétre s'il existe une
non-linéarité locale dans la petite région singulitre car alors la non-
linéarité, bien que tres localisée, est en quelque sorte le « ciment » qui
unit les solutions u, et ¢ ().

Nous allons maintenant donner un exemple qui illustre utilement

loutes ces considérations.

5. Illustration par un exemple des hypothéses faites sur u. — Consi-
dérons le cas simple d’un corpuscule de spino mmmobile dans un
systeme galiléen, le centre de sa région singuliere étant pris comme
origine des coordonnées, et supposons arbitraivement que U'équation de
Ponde u soit 'équation non linéaire

1w I~
s = —Au A+ L =— ?
c? Jit,

RN
avec ko= 0

donnerait I'équation de Klein-Gordon. Le second membre non lindaire

-

moe. ligalé a zéro, le premier membre de (32) nous

a une forme en w®u" dé¢ja envisagée par les auteurs qui ont cherché
récemment & introduire de la non-lingarité en Mécanique ondulatoire -
il contient une fonction de la distance a l'origine r que nous avons
choisie arbitrairement et deux constantes G et @ dont la premidre cst
une constante numérique et la seconde une trés petite longueur qui
définit une sorte de « rayon » du corpuscule a symétrie sphérique. Plus
loin nous poserons, par définition, ¢ = Ga.

Comme on doit avoir = fe¢' avec f fonction de r seulement, on
trouve pour f I’équation
a
-

. _f o df 1 —ira? "
&t Voegarew=as Twh

a

(1) Remarquons que le théoréme du guidage peut s’exprimer en disant que, dans
I’espace-temps, les valeurs trés élevées de la fonction d’onde u sont contenues & l'inté-
rieur d’un tube d’Univers trés délié dont les parois sont formées par des lignes de
courant de 'onde « extérieure » ¢ (partie réguliére de Ponde «). Quand on énonce sous
cette forme la formule du guidage, sa parenté avec la maniére dont MM. Georges
Darmois et André Lichnérowicz énoncent le principe des géodésiques en Relativité
générale devient évidente (woir, par exemple, LicaNERowIcz, Théories relativistes de la
gravitation et de UKlectromagnétisme, Masson, 1955, livre T. chap. III).
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équation qui admet la solution

«a

(34) \ f=Ce".

Cetle solution prend des valeurs trés clevées au voisinage de origine
(pour r<Za) ct elle a méme unc singularité en r = o.

Nous pouvons ici admetire que la région extérieure & la région singu-
liere est définie par r>>a. On voit alors que, dans la région extérieure
ainsi définie, f prend la forme approximative

(55) f:u+; (g=Ca.
e N T T N TRy Sf 1 X
Ceci s’explique par le fait, facile & vérifier, que & ol oy sont de

i a . oo
Uordre de S tandis que le second membre de (33) est de lordre

G/ e \2 - . .
de —.,<—> » donc négligeable par rapport au premier membre si r> a.
A gl

Dans la région extérieure, I'équation non lindaire (33) se réduit sensi-
blement a Péquation linéaire Af'= o et il est naturel de trouver que f
prend approximativement la forme d’une solution i symétrie sphérique
de cette ¢quation.

Dans la région singulicre qui entoure Porigine, la ot 7 est de ordre
de @ ou inféricur a «, les deux membres de I'équation non lindaire
deviennent du méme ordre de grandeur et il faul prendre pour f
Pexpression rigourcuse (34).

Maiuntenant, st Péquation lin¢aire Af = o était valable partout, sa
solution géndérale & symétrie sphérique serait

B
(3()) f: A+77

ott A ¢t B auraient des valeurs constantes arvbitraires. Dans la région
extéricure ot I'équation de Uonde u se réduit sensiblement a I'équation
de Klein-Gordon, nous avons trouvé pour f'la forme approximative (35)
qui coincide bien avee la forme générale (36), mais avec des valeurs
particulieres déterminées de A et de B, savoir A=C et B=¢=Ca.
Eu Pon voit bien que ces valeurs particulieres sont imposées par la
non-linéavité de I'équation de I'onde 2 dans la trés petite région singu-
ligre qui entoure Uorigine.

La solution approximative (35 ) correspond d’ailleurs bien a la forme
o+ ¢, ¢y ayant une singularité el ¢ ¢tant une fonction réguliére.

< .Uy € a - - .
De ])lus, comme 0n A ICL-= == 5 == --» 0N votl aussl que Up devient
Iy o I
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beaucoup plus peut que ¢ dés quon séloigne de la région singuhiere.
Nous avons ainsi retrouvé la décomposition u = wy-+ ¢ dans la région
extérieure avec toutes les caractéristiques que nous lui souhaitions.

On peut d’ailleurs noter que u se trouve étre la somme de la solution

. .8 T . . .. . B
singulieére ~e ! ue J’avais déja envisagée en 1g2- pour un corpus-
J .] o] . /

cule unmoblle obéissant & une équation de Klem Gordon en U'absence

9

m,,: 2

de champ (1) et d’une solution réguliere Ce a qut, rapportée a un
systeme de référence on le corpuscule wurait un mouvement reculigne
et uniforme, prendrait la forme de l'onde plane monochromatique
classique envisagée des les débuts de la Mécanique ondulatoire. Dans ce
systeéme de référence en dehors de la région singuli¢re mobile 1a forme
de u serait done, d’apres (7).

¢ ' /‘_ W/ pz

(37) w= [ C+

(z—vt)

g
— 3

\/zﬂ—n—v + —

Tout ceci se recoupe trés bien.

Ajoutons encore une remarque. La solution (34) présente une singu-
lavité en 7 =o. Si, en accord avec une opinion souvent exprimée par
Einstein, on considérait comme désirable d’éviter toute singularité
mathématique dans la représentation du corpuscule incorporé au champ,
on n’aurait qu’d prendre pour ¢quation non linéaire de w, a la place de
I'équation (32), celle qu'on obtient en y remplacant la variable r par la
variable p=r + &, ofi 2 est une longucur positive Lres petite par
rapport a a (o =La=<
en

< a). Grice a cetartifice, on tranforme la solution (34)

“ a

f (e)‘—~1 el

—~
w
o

de sorte que f posseéde une valeur ires élevée, mais finie pour r = o.
La modification introduite ne se fait évidemment sentir que dans le
centre de la région singuliere, 1a ou r<<- ¢« devient de I'ordre de . 1l en
résulte aisément que les valeurs que nous avions déduites de Uéquation
(32) restent encore valables.

Naturellement nous n’avons aucunc raison de penser que I'équation
{32) avec son second membre arbitrairement choisi sort la véritable

(') Voir ci-dessus ¢équation (8).



INTERPRETATION CAUSALE DE LA MéCANIQUE ONDULALOIRE. 59

équation non linéaire de 'onde & pour un corpuscule de spino. Mais
elle a lavantage de nous offrir un exemple simple de la facon dont une
non-linéarité trés localisée de I'équation du champ ondulatoire u peut
souder ensemble les deux termes de Pexpression u = wo—+ ¢ valable a
Pextérienr de la région singuliére et déterminer complétement la valeur
des coefficients G el ¢ qui figurent dans u, el v.

6. La relation entre u et &' — Cherchons a préciser maintenant la
velation entre la fonction ¢ ct la fonction ¥ utilisée en Mécanique ondu-
latoire. Comme la fonction « est dans la théorie de la double solution
une réalité physique objective indépendante des connaissances de 'obser-
vateur, la fonction ¢ qui est une partie de u et qui se confond pratique-
ment avec u des qu'on s’éloigne de la région singuliére (parce qu’alors
wy<< o), a aussi le caractere d’une réalité objective. En particulier, ¢
doit avoir une amplitude parfaitement déterminée qui n’est pas a la
disposition de 'utilisateur et qui ne peut pas étre normeée a son gré.
Mais 'observateur peul construire dans son esprit une fonction W qui
doit en principe étre partout proportionnelle & ¢, mais avec un coeffi-
cient de proportionnalité G que lutilisateur, libre de lur donner du
valeur qu’il désire, peut choisir de fagon que la fonclion W soit normée.
Cette fonction scrait donc une construction de Vesprit, a caractére
subjectif ayant uniquement pour role de permetire le calcul de certaines
probabilités, mais elle devrait étre construite par Putilisateur, dans la
mesure ou ses informations sur la forme de la fonction ¢ sont exactes, a
Paide de la relation

(39) = e,

Clest parce que la fonction 7 serait construite ainsi 4 partir de ¢ qui est
une réalité objective, qu’elle permettrait, malgré son caractére subjeciit,
une ¢valuation statistique exacte des probabilités ().

Si la fonction ¢ occupe plusieurs régions disjointes de l'espace
physique, le corpuscule se trouvant dans P'une d’clles, P'utilisateur

(Y Au sujet de la formule W(w, y, 5, ¢):: Co(x, ), 5, ¢), on peut remarquer avec
M. Jean-Louis Destouches que, malgré I'égalité des deux membres de cette équation, la
signification des lettres @, ¥, 3 n'est pas la méme a droite et & gauche. Dans ¢, elles
désignent les variables courantes d’espace, tandis que dans W elles représentent les
coordonnées du corpuscule. Dans le cas d’un seul corpuscule dans un champ donné que
nous étudions seul ici, cette remarque qui est exacte peut paraitre un peu subtile : elle
prend toute sa valeur quand on étudic Pinterprétation de la Mécanique ondulatoire des
systémes de corpuscules dans Pespace de configuration par la théorie de la double
solution.
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pourra, saivant I'état de ses connaissances sur la position du corpuscule,
choisir la constante G de facon différente pour chacune des régions en
question et l'on peut voir aisément comment cela permet d’interpréter
la réduction du paquet de probabilité.

Dans le méme ordre d’idées, il est intéressant de réfléchir a Vidée
« d’onde-pilote » que j'avais introduile en 1927 et qui a ¢té reprise dans
des travaux récents, notamment dans ceux de M. David Bohm. J’avais
remarqué en 1927 que le corpuscule devant, selon la formule du
guidage, suivre I'une des lignes de courant de 'onde W, on pouvail
adopter le point de vue suivant : ne considérer que I'onde W de la
Mécanique ondulatoire usuelle et ajouter arbitrairement la notion d'un
corpuscule qui s¢ déplacant le long de T'une des lignes de courant de
Ponde se trouverait ainsi étre guidé par Ponde W, ce qui permetirait de
donner a celle-ci le nom d’onde-pilote. Mais je considérais alors, ct je
considere plus que jamais anjourd’hui, la théorie de la double solution
qui incorpore le corpuscule & 'onde comme beaucoup plus profonde.
D’ailleurs, 'onde W de la Mécanique ondulatoire usuelle a sans aucun
doute un caractére subjectif puisqu’elle change avec nos informations
et 'on ne peut admettre comme réel le « guidage » du corpuscule par
quelque chose de subjecuif.

La question s’éclaire si Pon distingue ¢ de W. L’onde w comportant
un accident trés localisé représenté par w,, tout se passe comme si cet
accident (le corpuscule) ¢tait guidé dans son mouvement par Uonde ¢
dont il suit Pune des lignes de courant. En réalité, avec les conceptions
exposées plus haut, il en serait ainst parce que w, et ¢ forment un
ensemble unique, la fonction d'onde u (égale & wy—+ ¢ a Uextérieur de
la région singuliére), u, et ¢ étant soudces ensemble par la non-linéarité
dans la région singuliere. Mais on peut, en faisant abstraction de ces
raisons profondes, considérer le corpuscule comme piloté par Ponde ¢. Ici
il 0’y a plus aucun paradoxe parce que U'onde ¢ est une réalit¢ physique
et que, par conséquent, le corpuscule peut étre puidé par elle. Mais
comme 'onde W doit, en principe, étre choisie proportionnelle a ¢ et
avoir par suite les mémes lignes de courant, on a I'impression que le
corpuscule est guidé par 'onde W, ce qui est paradoxal. Nous pouvons
donc nous servir de 'image du corpuscule guidé par une onde regulicre
dont 1l suit une des lignes de courant, mais a condition de nous souvenir
que cette onde réguliere est 'onde ¢ ¢l que le corpuscule n’cst pas un
objet arbitrairement surajouté a cette onde, mais constituc avec elle unc
réalité unique, Ponde « a région singuliere.

Nous pensons aussi que la distinction qui vient d'étre précisée entre
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I'onde W ct Uonde ¢ permet de comprendre pourquoi, depuis une tren-
taine d’anndes, les théoriciens paraissent avoir constamment oscillé plus
ou moins consciemment entre 1'idée d’une onde a caractere objectif et
celle d’une fonction ondulatoire simple reprdsentation abstraite de
probalilités. .
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QUELQUES COMPLEMENTS SUR LA THEORIE DE LA DOUBLE SOLUTION
ET SUR LE GUIDAGE.

1. Existence des solutions singulidres dans le probléme extérieur. —
Nous appellerons probléme extérieur I'étude des solutions de I'équation
de I'onde v a I'extéricur de la région singuligre, 1a ou cetle équation se
confond, au moins en premidre approximation, avec 'équation linéaire
de propagation envisagée pour le corpuscule considéré par la Mécanique
ondulatoire usuelle et on elle admet une solution approximative de la
forme wo =+ v.

En 1927, j'employais exclusivement 1'équation de Klein-Gordon et sa
forme dégénérée, 'équation de Schrédinger, et je ne distinguais pas ¢
de W. J'aurais voulu démontrer qu’a chaque solution W de la Mécanique
ondulatoire déja usuelle correspondait une solution a singularité mobile
uo ayant la méme phase que W. Dans le cas de I'absence du champ,
J'avais trouvé la solution précédemment indiquée (*); mais ¢’était 1a un
cas trés particulier et je n’avais pas vu comment on pourrait établir
d'une fagon géncérale 'existence de la fonction u,.

Aujourd’hui ou Pensemble de la théorie de la double solution a pris
une forme plus cohérente et plus précise, I'étude de Iexistence des solu-
tions singulieres du probleme exiérieur et de leur couplage avec les
solutions régulitres conserve tout son intérét. Un progrés notable en ce
sens a ¢t¢ accompli récemment dans la these de M. Francis Fer. Dans
ce travail, Yauteur a considéré un type d’équations aux dérivées partielles
qui conticnt comme cas particulier 'équation de Klein-Gordon. Utili-

(1) Chap. 1V, form. (7) et (8).
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sant des méthodes générales d’intégration des équations aux dévivées
partielles, il a démontré l'existence de solutions a singularité qui
s’expriment par des formules du type de celle des potentiels retardés.
Erudiant le raccordement de ces solutions singulidres avec les solulions
régulieres, M. Fer est conduit a retrouver pour le mouvement de la sin-
gularité celui qui est prévu par la formule du guidage. Le travail de
M. Fer parait done apporter une contribution importante a I'établisse-
ment de I'existence des solutions singulieres dans le probléme extérieur
en théorie de la double solution.

Naturellement, ce probléme extérieur, analogue a celui qui se pose en
Relauvité générale quand on étudie le champ a Iextérieur d’un tube
d’anivers tres délié meublé de matiére, correspond a un point de vue
incomplet sil’on admet que la véritable ¢quation sauisfaite par z est non
linéaire et que la décomposition w == 1y - ¢ est sculement une expres-
sion approximalive valable seulement dans la région extéricure.

Sans pouvoir donner ici une démonstration géndérale de Uexistence de
uo dans le probleme extérieur, je vais insister sur une méthode qui
semble permettre de construire effectivemeut la fonction «# du probleme
extérieur dans le cas des ¢tais stationnaires.

2. La formule de Rayleigh-Sommerfeld. — Ce qu'il y a de curieux
dans la méthode que nous allons exposer, ¢’est qu’elle a eu son point de
départ dans la constatation d’un fait qui paraissait conslilucr une trés
importante difficulté pour la théorie de la double solution.

Cette difficulté provient de la théorie des fonctions de Green pour les
équations d’onde qui est exposce dans beaucoup d’Ouvrages (*) et qui
est intimement lice a la théorie générale des ¢quations intégrales
lincaires.

Considérons une fonction d’onde u obéissant a une ¢quation d’ondes
telle que st « est une solution monochromatique, c¢’est-a-dire ne dépen-
dant du temps que par un facteur ¢, clle prenne la forme

(1) Au +[A2—TF(, ¥, 2)]u=o.

Nous savons que c’est le cas par exemple de I'équation de Schridinger
et qu'alors A% est proportionnel a I'énergie £ du corpuscule.
Envisageons un domaine D de 'espace physique d’un seul tenant et
de dimensions finies. Les ondes stationnaires dont le domaine D peut
étre le siége sont définies comme des ondes monochromatique solutions

(') Voir en particulier, bibiiographie [5] ¢t (67,
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de (1) qui s'annulent aux limites du domaine D. Si I'on se borne,
comme en Mécanique ondulatoire usuelle, a considérer des solutions
régulitres W de Péquation (1), on démontre que l'onde stationnaire
n’existe que si la constante & a une des valeurs comprises dans une suite
kiy ..., kn, ... dont I'ensemble forme le spectre de « valeurs propres »
du probleme considéré. En Mécanique ondulatoire, les valeurs propres
définissent, on le sait, les énergies quantifiées du corpuscule dans le
domaine D. Les fonctions d’onde réguliéres et nulles aux limites ¥, qui
leur correspondent sont les « fonctions propres ».

Mais on pourrait aussi envisager des solutions de I'équation (1) qui
seraient nulles aux limites du domaine D, mais qui présenteraient en
un point O de ce domaine une singularité ponctuelle. Ces solutions
sont les « fonctions de Green » de 'équation (1) pour le domaine D et
le point « source » Q. Ces fonctions de Green G(M, Q) dépendent
donc du point courant M et du point source Q. On les astreint aux
deux conditions suivantes :

° Etres nulles aux limites du domaine D;
2° Présenter au point Q une singularité ponctuelle telle que, lorsque

I
M tend vers Q, la fonction G (M, Q) croit comme MQ
Or la théorie générale des équations intégrales linéaires nous fournit,
au sujet de Pexistence des fonctions de Green, le théoréme que voict :

La fonction de Green G(M, Q) existe toujours quand la constante
k a une valeur qui ne coincide avec aucune des valeurs propres ki,
ko, ... SOk coincide avec U'une des valeurs propres k., alors la fonc-
tion de Green G(M, Q) r’existe que dans le cas trés particulier oi la
Jfonction propre cor respondante ¥, (M) est nulle au point Q.

On peut retrouver ce résultat en construisant effectivement la fonc-
tion de Green a I'aide d’une formule donnée naguére par Lord Rayleigh
et fréquemment utilisée ensuite par Sommerfeld.

Ponr la démontrer, nous partirons de la remarque qu’en raison de la

. ., I . .
singularité ponctuelle en - que la fonction de Green doit présenter au

point Q, on doit écrire I'équation satisfaite par u= G(M, Q) sous la
forme

{2) Au+[l2—F(x, ¥, 2)]lu=¢e(M—Q),

ot l'on a introduit au second membre un terme de source comportant

L. DE BROGLIE. . 5
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un coefficient numérique & analogue a une charge électrique dont la
valeur est arbitraire et la fonction singulitre de Dirac ¢(M—Q).
L’équation (1) sera alors satisfaite par u partout sauf au point Q ou elle

. . 1
aura une singularité en —-

Or on peut développer d (M — Q) suivant les fonctions propres W;(M)
sous la forme

3 B(M—Q) = e Wi(M),

avec l

) eo= [[3(M — Q) Wi (M) = = W7 (Q)),
d’ou

(5) B(M— Q)= ¥ W} (Q)Wi(M).

Si nous développons également u = G(M, Q) sous la forme

(6) ‘ u:Zdi‘L’i(M)
i
on devra avoir

(7) [A-+ &2 — F (2ya)] 3 d We(M) = ¢ 3 Wi (Q) Wi(M),

l

et puisque W;(M) est solution de I'équation (1) avec k = k;, il vient

(8) Nk k) Wi (M) = £ 3, WE (Q) (M),

d’ou Pon tire, puisque les ¥; forment un systéme complet,
_ g¥(Q)

(9) di= ik

En portant dans (6), on obtient la formule de Rayleigh-Sommerfeld

(10) u(M) = G(M, Q)= ¥, LD TN,

13

I1 convient de remarquer que la série figurant au dernier membre de
(10) n'est pas absolument convergente. Malgré ce défaut, elle peut en
général, comme Sommerfeld 'a montré, étre utilisée sans danger.

Sur la formule (10), on retrouve aisément les résultats fournis par la

théorie des équations intégrales linéaires. En effet, si la conslante & ne
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coincide avec aucun des k;, la formule (10) nous fournit la fonction de
Green dont l'exisience sc trouve ainsi démontrée. Si, au contraire,
k coincide avec 'un des k;, metions k,, alors le terme d’indice n dans
la somme (10) est infini et Ja formule ne nous fournit pas une fonction
de Green acceplable sauf dans le cas trés particulier ou W, (Q) est nul.
Nous retrouvons donc bien les résultats énoncés plus haut.

Or, en y réfléchissant, ces résultats apparaissent d’abord comme
désastreux pour la théorie de la double solution. En effet, dans cette
théorie il paraissait évident que Pon devait faire correspondre a I'état
stationnaire usucllement représenté par la fonction W, (M) et corres-
pondant & la valeur £, une fonction = G(M, Q) nulle ‘aux limites
de D comme W, présentant une singularité ponctuelle au point Q ou
se trouveraitle corpuscule et correspondant, elle aussi, a la valeur 4k, de
la constante A. Mais précisément cette fonction de Green n’existe pas
ou, du moins, elle ne pourrait exister que sile corpuscule se trouvaiten
un point Q telle que W, (Q)=0. Malheurcusement, en vertu de la
signification statistique certainement exacte de |W{*, le corpuscule
aurait alors une probabilité nulle de se trouver en Q. La contradiction
est flagrante et parait consttuer unc redoutable objection contre la
théorie de la double solution.

Néanmoins, nous allons voir, en regardant les choses de plus pres,
que la formule de Rayleigh-Sommerfeld, bien loin de constituer une
objection contre Vexistence de 'onde u dans le cas stationnaire, fournit
au contraire un moyen de la construire.

3. Construction de la fonction « i I’aide de la formule de Rayleigh-
Sommerfeld dans le cas des états stationnaires. — Nous partirons de la
remarque suivanle : == ,—+ ¢ étant supposée nulle aux limites du
domaine D, la fonction ¢ ne doit pas ¢tre rigoureusement nulle sur ces
limites, mais égale & — u,,. En écartant le cas extrémement improbable
ot Q serait situé¢ si prés de la limite de D que la trés petite région
singulidre entourant () viendrait toucher cette limite, les valeurs — u,
que doit prendre ¢ sur les fronticres sont partout extrémement petites,
mais cependant elles ne sont pas rigoureusement nulles. Par suite, ¢ ne
peut pas étre considérée comme exactement proportionnelle a la fone-
tion propre W, usucllement calculée. Donc ¢ doit étre une solution de
P'équation d’ondes linéaire qui correspond 4 une valeur de & extréme-
ment voisine de k., mais non tout a fait exactement égale a k.

Nous sommes ainsi amenés a penser que la fonction # correspondant
4 P’¢tat stationnaire d’'indice n doit étre égale a la fonction de Green
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G(M, Q) qui correspond a une valeur de & trés légérement différente
de k.. De&s lors cette fonction de Green existe et elle doit nous étre
donnée par la formule de Rayleigh-Sommerfeld !

Pour examiner la forme de cette fonction u, écrivons la formule (10)
en 1solant le terme d’indice n et en désignant par dk, la différence k— k.,
que, pour abréger, je nommerai « le glissement de fréquence ». On
pourra écrire trés approximativement

. W (QYW(M) eV Q)W (M
(11) M(M,Q)=2i£ /((;Q)/(r L+ 2(/?)6/(,( s

i#*n

Soit alors W (M) une fonction solution de Péquation d’ondes pour
k = kn—~+ dky, 0k, correspondant au trés petit glissement de fréquence
dont nous déterminerons plus loin la valeur. La fonction ¥’ étant tres
voisine de la fonction propre ¥, nous poserons

W (M) =W, (M) 3¥, (M),

6W, étant la tres petite variation de W, quand A, varie de ¢4, (1). On
aura alors

. LN W QM) s Wh Q)W (M) e Wa(Q)Wn(M)
(2) (M, Q) =, Bk ak,ok, O 2k, 0kg

i%tn

Nous sommes ainsi assurés d’avoir obtenu une solution du probleme
extéricur nulle aux limites de D et présentant au point Q une singularité
ponctuelle en 7! puisque nous n’avons fait qu’appliquer la formule de
Rayleigh-Sommerfeld pour une valeur de /& différente de tous les 4.
Comme la fonction ¥, (M) est régulidre, la singularité ne peut affecter
que les deux premiers termes du second membre de (12). Donc s1 nous

pOSOHS .
EW(QWAM) e WA(Q) B, (M)

S (M, Q) :21' /E—’Q-—> k2 ok, 6k, !
(13) ion ¢

( (M) = E)lf"éf)lr' (M) = CW,(M),
avec

oy

() o e (Q)

. ~7
vk, ok,

(1) 4", est ég . En négligeant les termes cn ¢k2, on voit que ¥, est

()/.
solution (non nulle aux hmltcs de D) de Véquation (A —F —+ (&, + ok, Pl1W, =0 en
tenant compte de Péquation (A — F -+ A2 )W, = o et de sa dérivée par rapport a 4.
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nous aurons finalement ramené la fonction uz a la forme v = uy, 4+ ¢, u,
et ¢ étant solutions de I'équation linéaire, u#, ayant une singularité ponc-
tuelle en Q et ¢ étant réguliere. De plus nous voyons que ¢ est de la
forme C¥, ~ CW,, c’est-a-dire trés sensiblement proportionnelle a la
fonction ¥, qui est la fonction propre considérée en Mécanique ondu-
latoire usuelle.

. £ . . .
Si le rapport C est considéré comme bien déterminé, nous obtenons

comme expression du glissement de fréquence 0k, la valeur entiérement
déterminée par la position de la singularité

e WA(Q).
=T 2k,

o7
:w

(15)

Mais, dans le probleme extérieur ot I'on ne considére que I'équation
. . 13 . . . .
d’ondes linéaire, la valeur de C ost arbitraire. En effet, ¢ est introduit

artificicllement avec une valeur déterminée dans le second membre
de (2) : quant a G, cette constante n’a aucune valeur imposée a priorc.
La formule (15) ne nous fournit donc pas une valeur déterminée

pour 04 ,.

Mais nous avons vu précédemment que le point de vue adopté dans le
probleme extérieur ou Pon considere implicitement I'équation linéaire
sans second membre (1) comme valable partout sauf au point Q est
insuffisant. Nous devons admettre qu’au voisinage immédiat de Q existe
une trés petite région singuliere ou I'équation (1) n’est plus valable et
ot Pon doit tenir compte d'un second membre non linéaire. Or, comme
je ai montré sur un exemple au chapitre précédent (§ 3), la non-
lindarité localisée dans la région singuliere peut suffire pour 1mposer

des valcurs parfaiternent déterminées a ¢, G et % Il én résulte que cette

non-linéarité locale doit permectire d’obtenir par la formule (15) une
valeur parfaitement déterminée et extrémement petite du glissement de
fréquence ok,.

It convient de faire ici une remarque qui poarrait avoir son impor-
tance. Si la théorie qui précede cst exacte, comme la fréquence A de
I'onde « véritable » o differerait trés légeérement de k., la méthode
habituelle de calcul des énergies quantifiées en Mécanique ondulatoire
qui déduit ces énergies des valeurs propres de 'équation de Schrodinger
serait entachée d’une tres légere inexactitude. Mais dans I'état actuel
de la théorie de la double solution, nous pouvons toujours supposer le
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rapport % assez petit pour qu'il n’en résulte aucun effel observable méme

dans les mesures spectroscopiques les plus précises.

Jai donné ailleurs (*) le calcul complet de la fonction u dans le cas
d’un corpuscule immobile au centre d’une enceinte sphérique et montré
qu'elle peut se représenter par la formule de Rayleigh-Sommerfeld. Le
calcul est rendu trés facile par le fait que les fonctions propres et la

fonction de Green ont alors des formes tres simples (s;———"]l/f." ~ et coi_kr).
M. André Rot vient de faire (2) un calcul analogue dans le cas plus
général d'un corpuscule occupant une position quelconque dans une
enceinte sphérique, puis de I'étendre au cas de tout domaines D fini
quand il y a séparation des variables et méme a certains cas de
domaines infinis. .

Quoiqu’il en soit il semble que, du moins dans le cas de domaines
finis et sous réserve de 'examen de certaines questions de convergence,
la formule de Rayleigh-Sommerfeld, qui paraissait consliluer une grave
difficulté pour la théorie de la double solution, fournit au contraire une
méthode pour consiruire dans le domaine extérieur une fonction d’onde
u possédant toutes les propriélés requises.

4. Interprétation de la sigﬁiﬁcation statistique du | W' |* dans les états
stationnaires. — Nous allons maintenant ¢tudier un probleme qui a 6té
souvent considéré comme fournissant unc forte objection contre la for-
mule du guidage.

Dans toute tentative de rdintlerprétation causale de la Mécanique
ondulatoire, on doit s¢ demander comment on peut justifier le fait,
depuis longtemps bien établi, que le carré du module de la fonction
d’onde W donne la probabilité de présence du corpuscule cn chaque
point & chaque instant. MM. Bohm et Vigier (*) ontapporté une contri-
bution importante a la solution de¢ ce probleme en montrant que, sile
mouvement du corpuscule défini par la « formule du guidage » subit
constamment de petites perturbations aléatoires, la probabilit¢ de pré-
sence en | W [* doit s’établir tres rapidement. Ces petites perturbations
aléatoires jouent le méme role que le « chaos moléculaire » dans la
Mécanique statistique de Boltzmann. A quoi peuvent 8tre dues ces

1

Voir{3] p. 226-230

)

(*) C. R. Acad. Sc., t. 243, 1956, p. 483 et 1281.

(3) D. Boum, Phys. Rev., t. 85, 1952, p. 166 et 180; D. Boum ct J. P. VIGIER, Phys.
Rev., t. 96, 1954, p. 208.
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incessantes petites perturbations al¢atoires ? A des interactions avec
d’autres systémes passant & proximité (collisions), & de faibles fluctua-
tions des condilions aux limites imposées a l'onde, peut-étre méme,
d’aprés M. Vigier, a des interactions avec un champ ondulatoire
tourbillonnaire et incoordonné qui remplirait ce que nous appelons « le
vide ».

D’un point de vue général, on peut remarquer que, dans toute théorie
qui impose au corpuscule une loi de mouvement bien déterminée, il est
nécessaire pour obtenir une Mécanique statistique d’introduire un
élément aléatoire (chaos moléculaire de Boltzmann en Mécanique clas-
sique, hypothtse des perturbations de Bohm et Vigier dans Pinterpré-
tation causale de la Mécanique ondulatoire). Mais le résultal statistique
que lintroduction de cet élément aléatoire permet de justifier est en
quelque sorte contenu d’avance dans les équations du mouvement dont
on part, ce qui permet de prévoir ce résultat @ priori. Ainsi dans le
cadre des anciennes Mécaniques de Newton et d’Einstein, on peut
démontrer le théoreme de Liouville qui affirme la conservation au cours
du temps du domaine d’extension en phase occupé par les points repré-
sentatifs dans cet espace abstrait d’un nuage de corpuscule se déplacant
dans I'espace physique suivant les lois de la Dynamique. Ce théoréme
rend probable « priori qu’en Mécanique statistique classique ou relati-
viste, le principe statistique fondamental doit ¢tre 1'égale probabilité
des éléments égaux de Pextension en phase. Mais la démonstration rigou-
reuse de celte proposition, objet des théories ergodiques, parait exiger

"toujours I'introduction plus ou moins explicite d’'un ¢lément aléatoire
analogue au chaos moléculaire de Boltzmann.

De méme, dans les théories de la double solution ou de 'onde pilote
(la distinction entre les deux est ici sans importance), le role joué dans
les Mécaniques anciennes par le théoréme de Liouville appartient a

Péquation de continuité [g—;— -+ divp?): 0] valable pour le fluide fictif

associé a la propagation de P'onde réguliere. Cette équation rend pro-
bable @ priori que, dans la nouvelle Dynamique découlant de la formule
du guidage, la quantité p do (o0 p = | ¥ |? avec 'équation de Schrodinger)
soit la probabilit¢ pour que le corpuscule soit présent a l'instant ¢ dans
I'élément de volume dy de Pespace physique. Mais ici encore cette
affirmation ne peut étre vraiment justifiée, par des raisonnements ana-
logues a ceux de MM. Bohm et Vigier, qu’en introduisant un élément
aléatoire constitué par les incessantes petites perturbations dont nous
avons parlé plus haut.
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Quelle que soit Porigine physique de ces perturbations, nous pouvons
nous les représenter de la facon suivante. Supposons qu’abstraction
faite de ces perturbations, 1'onde réguliére associ¢e a un corpuscule

(onde W ou onde ¢ peu importe si on les suppose proportionnelles) soit
T

de la forme ae” avec a et ¢ réels: le mouvement du corpuscule
incorporé i cette onde « non perturbée » sera défini par la formule du
guidage qui, en se bornant au cas simple de I'équation de Schrédinger,
s’écrira

> 1 ——ﬁ
¢ = — — grad g.
] m?® ¢

(15 bis)

Introduisons les petites perturbatious : bien qu’elles soient trés nom-
breuses pendant chaque unité de notre temps macroscopique (par
exemple, par seconde), nous les supposerons trés courtes et séparées
dans le temps par des intervalles trés longs par rapport i leur durée.
Pendant l'une de ces perturbations, I'onde prendra la forme

(a+e)eh
et de la phase. En raison du caractere aléatoire des perturbations, il est

e+n

", ou ¢ et n sont les petites perturbatious de 'amplitude
naturel de supposer que les valeurs moyennes dans le temps z et 7 sont
nulles. Pendant la durée de la perturbation, la vitesse du corpuscule
devient la somme de la vitesse non perturbée donnée par (15 bes) et de

; —
. o . > 1 .
la vitesse additionnelle ¢' —— Egradn. Bien que la valeur moyenne de

& soit nulle, ces vitesses additionnelles feront passer le corpuscule de sa
trajectoire non perturbée initiale & une autre trajectoire non perturbée,
puis de celle-ci a une troisitme, etc. Finalement, bien que la durée de
chacune des perturbations soit par hypothese beaucoup plus courte que
celle des intervalles pendant lesquelles le corpuscule décrit une trajec-
toire non perturbée, le nombre énorme des perturbations subies par
seconde aura pour effet qu’au boul d’un temps trés court a notre échelle,
la probabilité de présence | W|*= a? se trouvera réalisée : c’est ce que
paraissent démontrer les raisonnements de MM. Bohm et Vigier. Cette
probabilité se trouve d’ailleurs étre aussi égale & la valeur moyenne du
carré de 'amplitude perturbée (@ +¢)* si 'on s’en tient au premier
ordre, puisque € =o.

Nous en arrivons maintenant a I'application de la formule du guidage
au cas des étals stationnaires, application qui semble au premier abord
conduire & une grosse difficulié. Considérons un état stattonnaire d'un
systéme quantifié, par exemple d’un électron dans I'atome d’hydrogeéne.
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En général, la fonction d’onde correspondante est de la forme

21
a(z, y, z)eT hn[, E, ¢tant la valeur quantifiée de I'énergie et @ une
fonction réelle des variables z, y, 5. La formule (15) nous indique alors
que DPélectron doit rester immobile en un point quelconque. mais bien
déterminé de l'atome; ceci correspond au fait que la force quantique

— grfﬁQ dérivant du potentiel quantiqne Q fait alors équilibre a la force
électrostatique. Dans d’autres cas, on pourra trouver que I'électron est
animé d’un mouvement périodique simple; ainsi, pour I'électron dans.
Patome d’hydrogene, quand la fonction d’onde est de la forme
Feiy,

W =F(r,0)em>e” ~,onr,H, asontlescoordonnées polaires autour
du noyau, comme la phase est alors une fonction linéaire de I'angle de
longitude «, Délectron doit, d'aprés la formule (15), décrire un
« parallele » autour de Paxe polaire avec une vitesse uniforme. Dans
tous les cas, que I'électron soit immobile ou animé d’'un mouvement
périodique trés simple, on ne voit absolument pas comment la probabi-
lité de présence |W|*= a? peut se trouver réalisée. L’objection parait
grave.

Mais introduisons maintenant les petites perturbations aléatoires
brusques et espacées et commencons par envisager le cas ou I'électron
de 'atome d’hydrogeéne a comme mouvement non perturbé un mouve-
ment circulaire uniforme. On pent voir facilement que la longueur de
la trajectoire circulaire doit étre de 'ordre de 107%& 10—? cm et la vitesse
de Télectron de l'ordre de 10® cm/s. La période du mouvement est
donc de lordre de 10-!% s. Admettons alors, a titre d’exemple, qu’il
se produise en moyenne un milliard de perturbations brusques par
seconde : le corpuscule anra néanmoins le temps de décrire en moyenne
dans chaque intervalle de temps entre deux perturbations consécutives
un milliard de tours sur sa trajectoire non perturbée. Cet exemple
montre que le corpuscule pourra étre considéré comme animé presque
constamment du mouvement non perturbé défini par la formule (15)
bien qu’il change de trajectoire circulaire un milliard de fois par seconde.
Ceci nous permet de comprendre comment, malgré la forme circulaire
des trajectoires non perturbées, on puisse s’attendre a trouver I'électron
en n'importe quel point de 'atome avec la probabilité | W |2,

Dans le cas ot Pélectron dans son état non perturbé reste immobile
en un point de atome, on peut dire que le mouvement non perturbé se
réduit a 'immobilité. Mais si nous admettons toujours qu’il se produit
en moyennc un milliard de perturbations par seconde, I'électron sera
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projeté un milliard de fois par seconde en moyenne d’une position dans
une autre et, au bout d’une seconde, il aura occupé un milliard de posi-
tions différentes dans 1'atome, et cela bien qu’il soit resté en moyenne
dans chacune de ces positions pendant un temps trés long par rapport a

la période de son onde (qui, étant toujours voisine de y est del'ordre

mgyc?
de 10720 s>- Ic1 encore, nous arrivons & comprendre comment, grice

au sautillement continuel du corpuscule da aux perturbation, peut se
réaliser la probabilité de présence en | W |* bien que le corpuscule reste
presque constamment immobile.

5. Deux théordmes de la théorie de la double solution-onde pilote. —
Nous allons maintenant démontrer deux théorémes intéressants de
I'interprétation causale de la Mécanique ondulatoire que l'on peut
énoncer dans le langage de la théorie de I'onde pilote qui est ici équi-
valent a la théorie de la double solution. Ces théorémes nous sont
connus depuis assez longtemps : ils ont 6té d’ailleurs donnés par
d’autres auteurs, notamment par M. Herbert Franke.

a. Théoréme sur Uexpression de Uénergie cinétique. — Dans la
Mécanique ondulatoire usuelle, on considere la fonction d’onde W
comme une grandeur complexe indécomposable dont on ne fait pas
intervenir séparément le module et 'argument. On prend comme opé-
rateur hamiltonien

: 1 Y o k2
(16) H:E—’—n«P-—f—V <P ————mA)a

P2 ) e .
lopérateur — correspondant a I'énergie cinétique T de la théorie clas-

sique. La valeur moyenne de l'énergie totale E dans I'état W est alors
dans le formalisme usuel

_ . At
(17) E:/D‘IF <——8—n2’—nA+V>ll!'dr.

. . . . %
En théorie de la double solution-onde pilote, on éerit W =ae* et
lon fait jouer des rdles distincts a Pamplitude « et a la phase ¢. Par

2T

substitution dans I'équation d’ondes, on obtient I'équation de Jacobi
généralisée

s
(18) E:E_Z—”—l(brad@)ﬂ—f—Va—Q,
avec
h?  Aa
(19) Q= .

8xm a
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De plus, I'on obtient aussi I'équation de continuité

J ., ., . a2 ——> _
(20) ,')}(“‘>+d“ (— ;;Lbradp> =o.

Comme U'énergic cinétique T du corpuscule a ici, d’apres la formule du
. . . o . 1 . .
guidage (15), la valeur bien définte T = - (grade)?, on voil que

I'énergic totale E est la somme de Uénergic cinétique, du potentiel clas-
sique V et du potenticl quantique Q. La densité de probabilité de
présence étant [ W [* = «*, on est amend 4 écrire

: 7 I ad? o \ pa
(21) L~£<mbrad ¥+V+Q)a d=.

Or on trouve facilement, en tenant comple de Péquation (20),

h2
8xtm

Yo L (radoy — oA,
AV = 2/n(gldd‘> 8

(22 -
) inim a

En portant (22) dans (17) et en comparant avec (21), on voit que :

1° L'expression usuelle (17) de E coincide avec Pexpression (21)
donnée par la théorie de la double solution-onde pilote ;

. h? .
»* Dans l'expression (21) de E le terme — —— A de lexpression

. ' T .
usuelle (17) ne correspond pas a I'énergic cinétique T définie par la
formule du guidage, mais & la somme de celte énergie cinétique et du
potentiel gnantique. Si ce potentiel ne figure pas explicitement dans la

. 1,
formule (17), ¢’est parce qu'il est contenu dans le terme EPE que la

théoric usuelle consideére comme correspondant a I'énergie cinétique,
mais (u’ici nous interprétons différemment.

Ce théoréme est important pour la comparaison exacte de la théorie
usuclle avee Pinterprétation causale et la formule du guidage.

b. Théoréeme du Viriel. — En Mécanique statistique classique, on
démontre un théoréme connu sous le nom de « théoréme du Viriel »,
théoréme qui joue notamment un réle important en théorie cinétique
des gaz. Je rappelle d’abord la démonstration classique de ce théoréme.

. >
Le mouvement du corpuscule de quantité de mouvement égale a p dans
un champ de force dérivant du potentiel V est
>
dp

3 arad V
(23) ar T T sra
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. > . . ..
On en déduit,  étant le rayon vecteur qui définit la position du
corpuscule,

d e dp
(30) 4R =F i r Y

> —
r.p p-v +rm=2T—r’.grad\’.
On voit alors facilement que, pour un mouvement périodique, le
premier membre de I'équation (24) doit étre nul en moyenne dans le
temps et 'on obtient pour un tel mouvement

{25) . ‘ 2T~?.gradV=o.

La grandeur ———?.é:ﬁV est nommé le « Viriel des forces » et la for-
mule (25) exprime le théoréme classique du Viriel.

Ce théortme peut se transposer dans la Mécanique ondulatoire
usuelle. Pour cela, nous introduisons les définitions suivantes :

Lo —
N=_— ‘l‘"‘(?.grad)@’ d~,
2T n
—
(26) R=_f(?~.gradv) Yy o,
b

T=_L <—/L«> flr* AW s
2m\2ne

Il est visible que R représente ici la valeur moyenne du Viriel. Par-
tant de 'équation de Schrodinger et effectuant plusieurs intégra-
tions par parties, 'on démontre alors que I'on a

. dN
(27) —{{7—2T+R.

27 .
t
Si l'onde est stationnaire <‘If ~e" >, le premier membre de (27) est
nul et il reste
(28) 2T+ R =o,

ce qui est visiblement la transposition en Mécanique ondulatoire usuelle
du théoréme classique du Viriel.

Nous allons interpréter la formule (28) en nous placant au point de
vue de I'interprétation causale.

En tenant compte du théoréme @ et en introduisant le potentiel quan-

. R Aa N .
tique Q = — et sa valeur moyenne [ Qa?dr, nous récrirons
)]

T 8=m a
la formule (28) sous la forme

(29) 2T'+2Q0 +R=o,
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ou T” est ici I'énergie cinétique « véritable » — (grado)? correspondant

a la formule du guidage. Or, dans la théorie de la double solution-onde
pilote, le théoréme du Viriel doit évidemment s’écrire sous la forme

(30) 2T + R+ R =o,
ou
—
(31) R’=——f<7.gradQ)a2dr
D

est la valeur moyenne du Viriel de la force quantique qu'il faut évidem-
ment ici ajouter & la valeur moyenne du Viriel de la force classique R.
Pour démontrer (31), il suffit de montrer que
(39) R’zzan‘ld-c=2(§,
D

sott
(33) faAad—.:——f<r grad——)a d.

Or, on vérifie facilement que

—
(34) __f< v.<rlad& a?dt = f%<3a2+?.grada?>d:
D

= f(BaAa+2Aa_r>.g_r;Ea> dx
D

=2faAad1,
D

car on volt aisément par une suite d’'intégration par parties que

(36) anr Uradad"———faAadr.
D

Le théoréme du Viriel sous la forme (30) se trouve donc démontré.

6. Quelques mots sur la Mécanique ondulatoire des systémes dans
Pespace de configuration. — L’on sait que dans ces beaux Mémoires de
1926, M. Schrodinger avait été amené, pour construire la Mécanique
ondulatoire des systémes de corpuscules de facon qu’elle admette la
théorie classique d’Hamilton-Jacobi comme approximation de I'Optique
géométrique, a associer au mouvement d’un systéme la propagation
d’unc onde dans l'espace de configuration défini par l’ensemble des
3N coordonnées des N corpuscules constituant le systéme. Il a écrit
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I'équation de propagation dans l'espace de configuration sous la forme
q propag P g

N

WU . 82 R fwe oW

i F— W —= 2

(36) DA e T AT
1

ou my est la masse du A*™® corpuscule de coordonnées zy, yi, 5 et ol
92 02 J2

Ap= —— -+ 932
3

PP a7 - Le potentiel V correspond a la fois aux inter-
actions qui peuvent s'exercer de 'extérieur sur le systéme s’il n’est pas
isolé et aux interactions des corpuscules du systéme entre cux. Dans le
cas ot N =1, on retombe sur I'équation valable pour un seul corpuscule
dans un champ extérieur donné.

En mettant ainsi sur le méme pied la propagation de 'onde W d'un
systtme dans l'espace de configuration et celle de 'onde W d’un cor-
puscule dans I'espace physique, on enlevait a Ponde ¥ tout caraclére
de réalité physique car la propagation d’unc onde dans I'espace abstrait
de configuration ne peut éire que purcment fictive. Méme dans le cas
d’un seul corpuscule, si 'on considere I'équation d’onde de ce corpuscule
comme ¢lant un cas particulier pour N==1 de I’équation (36), on
obtient une équation de propagation dans l'espace de configuration du
corpuscule défini par ses coordonnées x, y, 5, el non une équation de
propagation dans I'espace physique définie par les variables d’espace
z, ¥, 5. L’onde devient ainsi une grandeur purement abstraite.

Naturellement, a cette époque ou je cherchais a conserver a 'onde
de la Mécanique ondulatoire le caractere d’une réalité objective, je
n’avais pu admetire ce point de vue. Pour moi, tout phénomene réel
devait pouvoir étre décrit dans le cadre de P'espace et du temps : il ne
me paraissait pas admissible que I'on ne puisse traiter le probleme de
N corpuscules en interaction qu’en considérant une propagation d’ondes
visiblement fictive dans un espace de configuration entitrement abstrait.
A mes yeux il devait étre possible de poser, et méme de résoudre, ce
probleme en considérant la propagation dans 'espace physique de
N ondes © a singularité s’influencant mutuellement. On devrait ensuite
pouvoir démontrer que le résultat statistique de ces inleractions est
exactement fourni par la considération de P'onde W de Schrodinger
dans 'espace de configuration, onde W qui n’étant qu’une représenta-
tion de probabilité peut avoir un caractére abstrait : elle ne serait en
somme qu’une représentation statistique des corrélations établies entre
les positions des singularités des ondes u sous U'influence de leurs inter-
actions.
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Conformément a ce programme, on doit chercher a se représenter un
systéme de N corpuscules comme formé par N trains d’ondes u portant
chacun une région singulitre et évoluant dans P'espace physique au
cours du temps, la propagation de chacun de ces trains d’ondes étant
influencée par les actions qu'exercent sur elles les régions singuliéres
des autres trains d’ondes. Déja dans mon Mémoire de 1927, J'avais fait
une premiére tentative pour justifier en me plagant & ce point de vue le
role de l'onde W dans l'espace de configuration. Dans ces derniéres
années, j'ai repris des efforts en ce sens et je les ai exposés dans mon
récent Ouvrage (*). Certes on ne peut pas dire qu'une démonstration
vraiment claire et rigourcuse ait vraiment 6té obtenue jusqu’ici, mais
jai des raisons de penser qu'on parviendra a 'obtenir. Aussi dans le
présent cxposé, jadmettrai que, quand des traces d’ondes u correspon-
dant a divers corpuscules ont interagi, par exemple, dans un diépositif
de mesure, les corrélations statistiques établies entre les positions des
corpuscules par la théorie de 'onde W dans l'espace de configuration
sont exactes. Cette hypothése nous permetira d’obtenir les résultats que
nous désirons sans avoir a traiter le probléme du mouvement de chaque
train d’ondes u pendant la période d’interaction.

Nous allons maintenant revenir au probleme de la Mesure en I'envi-
sageant désormais du point de vue de la théorie de la double solution et
en le soumettant a une analyse plus détaillée qu’on ne I’a fait habituelle-
ment jusqu’ici.

(1) Voir [3], chap. XII et aussi C. R. Acad. Sc., t. 244, 1957, p. 529.




CHAPITRE VI.

POSITION DE L’INTERPRETATION CAUSALE EN FACE DU PROBLEME
DE LA MESURE EN MICROPHYSIQUE.

1. Role particulier joué par la position du corpuscule. — La théorie
de la double solution rétablit une description des phénoménes dans le
cadre de l'espace et du temps. Elle est donc amenée a donner a la
mesure de la position du corpuscule un réle particulier. Ceci semble
d’ailleurs naturel si Pon remarque que toutes les observations sont
nécessairement faites dans le cadre de 'espace physique.

Si P'on réfléchit a la facon dont peut s’opérer la détermination de la
position d’un corpuscule, on est amené aux constatations sulvantes..
D’abord, comme le corpuscule n’est pas directement observable, sa
présence ne peut ¢tre décelée que par un effet macroscopique local dont
il provoque le déclenchement. Et il en est de méme pour tout systeme
microphysique. C’est ainsi qu'un photon arrivant dans la couche
sensible d’une plaque photographique y produit un effet photoélectrique:
et le photoélectron émis déclenche par des effets d’ionisation une
cascade de phénomeénes chimiques qui se traduisent par une réduction
locale de bromure d’argent et par un noircissement local de la couche
sensible visible aprés développement photographique. De méme, un
corpuscule électrisé pénétrant dans une chambre de Wilson déclen-
chera, pour effet d’ionisation, une condensation de goutteleties de
vapeur donnant une trace dans la chambre et une série d’actions ana-
logues consécutives provoquera l'apparition d’une file de goutteleties de
vapeur dessinant grossiérement la trajectoire du corpuscule. :

En y réfléchissant, 1l apparait que tout phénomene observable pro-
voqué par des corpuscules de I'échelle atomique est décelable de cette
maniére seulement. Il y a toujours a P'origine de I'observation I'action

L. DE BROGLIE. 6
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locale d’un oorpuscule déclenchant finalement un phénomeéne macro-
scopiquement observable. C’est l1a un point essentiel qui n’a pas été
suffisamment mis en lumiére par I'analyse de M. von Neumann et par
les commentaires qui en ont été faits. Par contre, dans cette analyse on
fait jouer un role qui nous parait exagéré a Pappareil de mesure et méme
a I'aiguille de I'appareil de mesure. En réalité, Pappareil de mesure et
son aiguille ne peuvent jouer qu’un réle secondaire pour mesurer le
phénomeéne macroscopique déclenché par 'action locale du corpus-
cule : par exemple, un galvanometre pourra servir & mesurer le courant
de décharge provoqué par l'arrivée d'un corpuscule dans un compteur
a pointe, mais c’est le déclenchement de la décharge qui est la chose
essentielle et non sa mesure par le galvanometre. Le role de 'instrument
de mesure nous apparait comme beaucoup moins important qu’on ne le
dit souvent et il y a méme des cas ot I'on peut s’en passer completement
(par exemple dans 'observation visuelle directe d’une plaque photo-
graphique).

Dans P'interprétation usuelle, on considére trés souvent que l'on
mesure la position d’un corpuscule en le faisant passer a travers un trou
percé dans un écran et ouvert pendant un temps trés court : on aurait
ainsi une détermination aussi exacte qu’on le voudrait de la position du
corpuscule. Mais indépendamment du fait qu'on n’exécute jamais en
pratique une pareille mesure de la position d’un corpuscule, on doit
remarquer qu’il faudrait qu’il y ait ensuite un phénomene macro-
scopique observable déclenché¢ par le corpuscule qui a traversé 'écran;
sans quoi, on n’observerait rien du tout. On pourrait faire 'expérience
de la fagon suivante : recevoir le train d’ondes contenant le corpuscule
sur un écran percé d’une infinité de trous trés voisins (tamis) et placer
derriére cet écran une plaque photographique.

L’observation d’un noircissement local de la plaque photographique
permettrait de dire que le corpuscule a passé par le trou situé en face
de ce noircissement. La détermination de la position ainsi effectuée
serait toujours imprécise, les dimensions de la tache noire sur la plaque
photographique étant d’ordre de grandeur macroscopique (puisque cette
tache est observable) et, par suite, beaucoup plus grandes que les
dimensions du corpuscule. Elle aboutit néanmoins a préciser considé-
rablement la position du corpuscule puisque les dimensions d’un trou
du tamis sont beaucoup plus petites que les dimensions transversales du
train d’ondes incident.

Nous parvenons a l'idée générale, trop souvent méconnue, que,
si 'on ne peut déterminer d’une facon trés précise la position d’un
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corpuscule, cependant toute observation ou toute mesure relative  un
corpuscule microphysique s’opére toujours en observant un phénoméne
macroscopique trés localisé déclenché par 'action de ce corpuscule.
Contrairement a ce qu’affirme la théorie trop abstraite des représen-
tations en Mécanique ondulatoire usuelle, la position d’un corpuscule
joue donc un role tout a fait différent des autres grandeurs mesurables.
Répétons que cela est bien naturel puisque toute observation s’opére
dans le cadre de 'espace physique. Méconnaissant ce fait, la théorie des
représenlations lend & mettre exactement sur le méme pied espace des
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moments (p., py, ps) et espace physique (2, y, z), mais c’est la
pousser trop loin 'abstraction : le physicien, son laboratoire et ses
instruments sont dans l'espace physique et 'espace des moments
n’existe que dans 'esprit des théoriciens.

Comme la théorie de la double solution revient a des iddées plus
concrétes et rétablit le role privilégié que joue incontestablement dans
Vexpérience 'espace physique, il n’est pas surprenant qu’clle doive
nous conduire a attribuer un réle particulier a la distribution de proba-
bilité relative a la position (le | W |? dans le cas de I'équation de Schro-
dinger), Elle va nous apprendre, cn effet, que cette distribution de
probabilit¢ correspond a un collectif que I'on doit associer a Détat
initial avant la mesure. Au contraire, la distribution de probabilité que
le formalisme usuel attribue a une grandeur qui n’est pas simultanément
mesurable avec la position n’est pas réalisée en général dans 'état
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initial : elle correspond & un collectif associé a I’état qui existera aprés
P'action sur le corpuscule d’un dispositif permettant la mesure de la
grandeur envisagée.

2. Tout dispositif de mesure comporte une séparation des trains
d’ondes dans 'espace. — Nous allons maintenant insister sur une autre
circonstance qui, elle aussi, a ét¢ jusqu’ici méconnue dans la théorie de
la Mesure.

Plagons-nous d’abord dans le cas ou I'on veut mesurer une grandeur
relative & un corpuscule sans faire intervenir un autre corpuscule. On
devra alors employer un dispositif macroscopique dont 'action sur la
propagation de I'onde a laquelle le corpuscule est incorporé aura fina-
lement pour effet de séparer dans ’espace des trains d’ondes corres-
pondant chacun a une valeur donnée de la grandeur a mesurer. Cette
conclusion est la conséquence immdédiate du fait mis en évidence dans
le dernier paragraphe que toute observation d’un corpuscule consiste
toujours dans sa localisation. Pour que la localisation d’un corpuscule
apres l'action du dispositif de mesure nous permette de dire quelle était
4 ce moment la valeur de la grandeur mesurée, il faut qu’il y ait une
correspondance univoque entre la localisation du corpuscule et la valeur
de la grandeur mesurée et c’est cela qui exige la séparation des trains
d’ondes dans I'espace apres la mesure.

Le dispositif que nous avons envisagé plus haut ( fig. 1) pour la
mesure de la position répond a cette condition puisqu’il a pour effet
d’isoler des trains d'ondes de petites dimensions latérales, ce qui permet
une mesure (un peu imprécise) des coordonnées du corpuscule dans le
plan de 'écran grice au noircissement trés localisé déclenché dans la
plaque photographique placée derriere le tamis.

Envisageons maintenant la mesure de la quantité de mouvement
dont la connaissance nous fournit 'énergie. Pour mesurer la quantité
de mouvement d’un photon (donc son énergie, sa fréquence et sa
« couleur »), on enverra le faisceau incident sur un dispositif du genre
prisme ou réseau qui séparera dans 'espace en les envoyant dans des
directions différentes les trains d’ondes correspondant aux diverses
fréquences. Quand le train d’ondes incident n’est pas monochroma-
tique, le dispositif réalise une véritable décomposition spectrale en
isolant dans 'espace les diverses composantes de Fourier de l'onde,
incidente : mais la méme séparation serait obtenue si le dispositif
recevait successivement des trains d’ondes monochromatiques ayant des
fréquences différentes, car chacun d’eux serait envoyé dans la divection
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qui correspond a sa fréquence. Comme a la sortie immédiate du dispo-
sitif, les trains d’ondes peuvent se superposer, la localisation du photon
dans cette région par l'observation d’un phénoméne macroscopique
qu'il déclencherait ne permettait pas de lui attribuer une fréquence bien
définie. Aussi place-t-on ordinairement derriére le prisme ou le réseau
une lentille qui, séparant les différents faisceaux monochromatiques, les
fait converger sur des petites régions séparées de son plan focal ou ils
donnent chacun une image colorée de la source. Si un phénomene
macroscopique observable (par exemple noircissement local d’une
émulsion photographique) est déclenché par I'arrivée d’un photon dans
I'une de ces régions, on pourra lui attribuer une fréquence déterminée.
Le faisceau initial est ainsi divisé par l'action du dispositif réseau—+len-
uille en unesérie de portions d’onde qui viennent frapper la plaque photo-
graphique en des régions spatialement disjointes et c’est cette séparation
spatiale qui permet la mesure de la fréquence, et par suite de la quantité
de mouvement, du photon. Le fait que nous venons de raisonner sur un
photon n’a aucune importance particuliére car nous savons aujourd’hui
que tout corpuscule peut nous donner des phénomeénes du type optique
et nous pouvons construire pour les ¢électrons, par exemple, des dispo-
sitifs analogues a4 un prisme ou a une lentille. Il n’y a donc, dans le
probleme que nous examinons, aucune différence essentielle entre le
photon et les autres corpuscules.

Plus généralement, nous pouvons analyser ce genre de mesure de la
fagcon suivante. Supposons que nous voulions mesurer une grandeur A
relative au corpuscule. Le train d’ondes initial Ry étant représenté par
la fonction d’onde

(1) W‘:Eckm.,

k

oit ¢/ est la fonction propre de A correspondant a la valeur propre ay,
nous envoyons ce train d’ondes sur un disposttif D (réseau + lentille
dans le cas étudié plus haut) qui sépare les composantes ¢, de telle
sorte qu’a la sortie du dispositif D, chacune d’elles occupe une région Ry
spatialement séparées des régions occupées par les autres.

Si alors nous observons (a 'aide d’un enregistrement photographique
ou autrement) un phénomeéne macroscopique déclenché par le corpus-
cule dans la région R;, nous pourrons affirmer que la grandeur A de ce
corpuscule avait apres Vaction du dispositif la valeur «; et nous aurons
ainsi effectué une mesure de A. Le formalisme de la Mécanique ondula-
toire nous aftirme alors que la valeur o; a la probabilité

c;l?, c'est--
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a-dire que nous recommencions un trds grand nombre de fois la méme
expérience de mesure avec des trains d’ondes représentés par la méme
fonction d’onde (1), la proportion des cas ot nous obtiendrions la

valeur «; serait donnée par | ¢;|*.

Dans I'interprétation usuelle ot Pon ne veut rien ajouter au concept
d’onde W, il n’y a pas de localisation du corpuscule incident dans Ry et
il 0’y en a pas davantage dans les régions Ry, Ra, ..., aprés Paction du
dispositif D. Ce serait seulement au moment ot se produirait un phéno-
méne observable dans R; que brusquement le corpuscule sc localiserait

dans cette région. Il faudrait méme dire dans la théorie de von Neumann-

Ry

d

Ro — D —> |C2 ¥z |R2

™~

Rs

Fig, o.

London-Bauer que c’est la prise de conscience par Pobservateur du
phénomene macroscopique qui localise le corpuscule dans R;. Mais ceci
parait vraiment inacceptable! Il semble évident que le phénoméne
macroscopique se produirait, méme si 'observateur avait les yeux fermés,
de sorte que la prise de conscience par I'observateur n’a rien & voir la-
dedans. '

Ce qui est également incompréhensible dans Pexplication actuclle,
c’est comment il se fait que le déclenchement d’un phénomene macro-
scopique observable dans R; empéche instantanément le corpuscule de
se manifester dans une autre des régions R;. La chose est d’autant plus
surprenante qu’au moment de lalocalisation du corpuscule les divers R;
peuvent se trouver trés éloignés de R;.

C’est en somme cette difficulté qu’Einstein avait signalée, sous une
forme un peu différente, au Conseil Solvay de 1927 et que l'on n’a
jamais pu nettement écarter. « Considérons, disait Einstein, un écran

- plan percé d’un trou sur lequel tomhe normalement un train d’ondes W.
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« Derriere I’écran, si le trou est assez peut, 'onde prendra la forme
d’une onde sphérique dont le trou serait le centre. Disposons alors
derriere I'écran un film hémisphérique F. Si le corpuscule se manifeste
en un point A de I, ceci s’interpréterait trés factlement si le corpuscule
avait suivi une trajectoire bien définie (telle que celle représentée en
pointillée sur la figure 3) qui avait amené en A. Mais si le corpuscule
n'est pas Tocalisé, s'il est répandu & 'état potentiel dans toute onde
hémisphérique derriere I'écran, comment le fait qu’il se manifeste en A
peut-il Pempécher instantanément de se manifester.en toul autre point B
du film, point qui peut étre 4 une grande distance de A? »

Fig. 3.

On voit bien que 'objection est la méme que celle que nous avions
exposée plus haut, car le dispositif d’Einstein est un dispositif de mesure
de la position du corpuscule. On ramenerait d’ailleurs ce dispositif &
celul que nous avions envisagé précédemment (fig. 1) en supposant
que le film hé¢misphérique «est placé immédiatement derriére un écran
également hémisphérique percé d’une infinité de trous.

On pourrait objecter au raisonnement d’Einstein que le corpuscule
ne manifeste pas sa présence en un point A, mais dans une petite région
autour de A. Mais la surface de cette région étant trés petite par rapport
a celle de I’hémisphere I, I'objection d’Einstein garde toute sa valeur.

Revenons a la figure 2. On tombe dans des difficultés qui paraissent
insurmontables si Fon ne veut pas admettre que le corpuscule est
localisé, mais tout s’éclaire si 'on rétablit la localisation du corpuscule
comme le fait la théorie de la double solution. En effet, alors le corpus-
cule doit avoir une position dans le train d’ondes initial. Cette positién,
nous ne pouvons d’ailleurs pas la connaitre parce que, pour la mesurer,
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nous serions obligés d’employer un dispositif qui perturberait entie-
rement le train d’ondes initial. Mais nous admettrons que cette position
existe et que la probabilité pour que le corpuscule se trouve au point M,
du train d’ondes a Vinstant initial ¢y est donnée par | W (M,, ¢) [>. Pour
la justification de cette dernicre hypothese, on se reportera au para-
graphe 4 du dernier chapitre. D’aprés le théoréme du guidage, le
corpuscule partant d'une position initiale M, & Pinstant ¢, doit suivre la
ligne de courant qui passe par My. Le mouvement qui en résulte pour
Iui est en général trés compliqué : 1l n'est rectiligne et uniforme
‘qu’avant I'action du dispositif quand le train d’ondes est sensiblement
monochromatique. Mais nous savons qu’aprés le passage au travers le
dispositif qui sépare les trains d’ondes Ry, Rs, ..., le mouvement du
corpuscule I'aménera finalement dans I'un des trains d’ondes Ry, la
probabilité pour que ce soit dans R; étant ¢videmment

i\l'j‘Z(/::f[c/gﬂi:p,-}?d::}c,-f'l,
R R;

puisque ¢; est normée (1) et nulle en dehors de R;. Si alors le corpus-
cule déclenche un phénomeéne macroscopique observable dans Rj, c’est
parce qu’il est arrivé dans R; et alors la grandeur A a la valeur a;.

Evidemment il faut que l'observateur constate le déclenchement du
phénoméne macroscopique pour qu’il prenne conscience du fait que, le
corpuscule étant dans Rj, A a la valeur ;. Mais ce fait est indépendant
de la prise de conscience par 'observateur et tout redevient clair.

3. Rétablissement du schéma usuel des statistieiens. — Nous allons
montrer maintenant que les idées de la théorie de la double solution
(que lon peut ici employer sous la forme simple de I'onde pilote)
conduisent immédiatement a remetire en ordre toute la question des
distributions de probabilités.

Nous allons envisager le cas ot la grandeur que 'on veut mesurer est

. > .
la quantité de mouvement p. Nous supposerons valable I'équation de
Schrodinger et nous écrirons pour la densité de probabilité de la posi-

.
tion 7

(2) () =|w(F)[.

(1) Dans le développement (1), les ¢, sont en réalité des différentielles propres repré-
sentant des groupes d’ondes.
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Nous poserons dans 'état initial (1)
2T
ST S oy YOO TYC R P 0 Tt
k

Dans I'état initial, le corpuscule, §'il est en un point r, a pour quantité

de mouvement d’apres la formule du guidage
‘ .
(4) p= mgzﬂgrad"p(?).

-

Pour les deux variables aléatoires R et P, on a dans I'état initial, avant

>
la mesure de P, les densités de probabilité
(5) " (P =lw() (5, 7) = 3(p + grade),

la seconde formule signifiant que, si P'on connaissait la valeur dew, done

A X . .
de q;(r), p ala valeur donnée par la formule du guidage. On a encore

(6) S5 5) =l w(F) [ a(f + grads)
et l'on vérifie que
(7) fp<7', Pdp=[w()[=e(7)  (ap=dpudp,dp.).

On a ¢galement

(8) Plt(;) =2| w(7) [

les 7 correspondant aux positions du corpuscule pour lesquelles g_lfﬁcp
a la valeur f) considérée et l'on vérifie que <d1> =dxdy dz)

w [ pyar = [Tw)s(p+grads) di = 3w = o5 (7).

Pour compléter le schéma statistique du type classique relatif a état

C ey e B .
initial, 1l faut encore définir p%")<r, /1), ce que 'on fera en posant

PCYe S G ) S L (G | VRS

5 >
o(i + grado/ dr

TG f] w(7)

> . .
(1) Pour que la mesure de p puisse se faire par séparation de trains d’ondes dans

>
Vespace, il faut que les p, formant une suite discontinue. Néanmoins on peut employer
l'intégrale en la considérant comme portant sur des différentielles propres.
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. e N .
Finalement, en considérant toutes les positions 7 possibles du corpus-

cule dans le train d’ondes initial et les valeurs correspondantes de ;7
données par la formule du guidage, on aura défini un collectif d’indi-
vidus ayant des positions et des mouvements bien définis pour lequel
on aura un schéma statistique du type classique correspondant au tableau
sulvant :

(P = ) =S v,
M | (7 B) =190 ]25(;.4_;;;3@).
> —*)
b Yiry|2s r
B, = gals), AP, =151 s

J— 14
fl W(ry2 5(p + grade) dF
avec les relations également classiques
f (7, p)dr = e (p), fp(? p)dp =g (7),

> > > E
’ (u)( 75 = «(h, 7) 9%‘)_(?;)= e (;P)).
. eplp

)

Mais nous devons insister sur un point important. Les distributions
oy N > . .
de probabilité que nous venons de définir sont, sauf pﬁgr"), des distri-
butions « cachées » en ce sens que nous ne pouvons pas les déterminer
. . > ) .
expérimentalement. En effet, a part pﬁ<r> = | W' (r) |* que nous pourrions
déterminer directement & 'aide du dispositif écran-tamis de la figure 1,
. > .
nous ne pouvons déterminer les valeurs de p sans faire une mesure de
cette grandeur, mesure qui, comportant une séparation spatiale des
composantes W7 du développement (3), change compléetement I'état
ondulatoire en détruisant la superposition des ‘sz et le collectif primitif

qui lui était associé. Ainsi nous avons bien défini un collectif a 'aide
du tableau (1), mais ¢’est un collectf cackhé.
)
Eindions maintenant la situation aprés une mesure de p. Le dispositif
de mesure a morcelé I'onde initiale en trains d’ondes partiels corres-
pondant chacun a 'une des composantes ‘If/*,k. Nous avons vu plus haut

> . . .
que nous aurons alors p;(p/{):[ck [*, ce qui s’écrit en notations
continues

>
(11) e () =1c(p




POSITION DE L'INTERPRETATION CAUSALE. 91

el nous aurons aussi

(12) p;(?)=fic PG P ap
et
(13) (7 7)=1c(p i1k

. . > > . .
La fonction propre ‘F(p, r) ¢tant normée (1), on vérifie tout de suite

que

N . T >N
(14) / p(}‘,p)d[)ur?((’;), Jp(r, ]))(lr:pﬁ(Z).
Comme probabilités lides, nous trouvons

VTP) s }) f8<r——r)dr

(15) DGR =1, 7

. 1 e >
I)l;' éiant la région ont Ponde se réduit  sa composante p.

. . } > . .

La dernitre formule (15) exprime que, pour p connue, si le point r
> >
est dans R, on a p(:‘): I ¢t que, si 7 n’est pas dans R+ on a o} F)_ o et
P i a

ceci n’est pas autre chose que expression mathématique du fzut que si

le corpuscule manifeste sa présence dans R, (en y déclenchant un

phénomene observable), on doit attribuer a la quantité de mouvement

la valeur p. Cest précisément ainsi que la séparation des trains d’ondes

permet la mesure de la quantité de mouvement.

Bref, aprés la mesure, en considérant une infinité de corpuscules qui

a9

?

. . . . . >
seraient répartls enlre les trains R; suivant les proportlons ]c(p)
puis répartis & l'intérieur de chaque train d’ondes R; suivant la den-

. > >\ |2 . C o

sité “F(p, r)l , nous obtenons un collectif formé d’'individus ayant des
positions et des mouvements parfaitement détermings, collectif qui
correspond au schéma statistique suivant du type classique :

a5 =G
(1) .<”]7 :‘C(;.)‘\g(q([’v’)l
PG p=lvGRE DG [ ).

(1) Voir note p. 8g.
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quantités entre lesquelles existent les relations classiques

[ ar=g@) [ o5 dh=n(F)

® (5 3) = £ 0) ®)(3, 3) = 0P
(R p) =520k (BT p) = B R
ex(7) R e(P)

Les relations (II') se vérifient immédiatement, sauf I'avant-derniére qui
S
s’écrit

a6) |e(p)

(III)
o}
“p

o~

W (D= [ e

2

@ ’ ’ I~ ! ~> ’
q(;,?)l‘—’(lpfc(‘;—— )dr
R>
3
Voici comment elle se démontre. Dans (16) la derniére intégrale est
. . .
égale a 1 si le point 7 est dans R> et alors la quantité de mouvement est
OS> . 4
égale a p : elle est nulle si 7 n'est pas dans Ry. Il en résulte que le
N
v (s, 7)

. R - > , .
gm correspond a la position connue r, de sorte que Véquation (16) est
bien vérifide.

9

\ R > 2 >
second membre de (16) se réduit a \ c(p) , payant la valeur

Remarquons que, pour le collectif postérieur a la mesure, aucune des
L o > >\, s
deux distributions de probabilité pﬁ<1> et p»f(p> n’est « cachée ». Ceci

résulte de ce que, d’une part, la distribution pﬁ<r> relative a la position

est, nous le savons, toujours veérifiable par unc expérience statistique
(par exemple a I'aide du dispositif écran-tamis) et que, d’autre part, la

distribution p;(p) résulte de I'action méme du dispositif qui permet la

la mesure de ;) Par contre, la distribution de probabilité correspondant
dans le collectif final & une grandeur qui n’est simultanément mesurable
ni avec la position, ni avec la quantité de mouvement, aura une valeur
parfaitement délerminée, mais restera « cachée », car la mesure de
cette grandeur détruirait le collectif. On voit donc qu'en théorie de la
double solution-onde pilote, a tout état correspond un collectif bien
déterminé, mais qu'il existe toujours des grandeurs dont la répartition
de probabilité est cachée parce que leur mesure détrairaitle collectif (1).

(') On doit remarquer que chaque région R; est occupée par un « groupe d’ondes »
représentable par une différenticlle propre et correspondant non pas i une valeur tout

> >
a fait exacte de p, mais & des valeurs extrémerent voisines de p de telle sorte que les
refations d’incertitude restent valables pour chaque groupe d’ondes R»>.

7
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Il va maintenant étre trés intéressant de comparer les répartitions de
probabilité (I) et (II) qui correspondent respectivement au collectif

réalisé avant la mesure de ;7 et au collecuif réalisé aprés la mesure de ;)
Tout d’abord la comparaison de pﬁ( ) dans (I) et dans (II) nous

montre que nous retrouvons sous la forme habituelle I'interférence des
probabilités.

D’autre part, les répartitions o; (7) = |V |* dans (I) et p (Z) =]l
dans (II) sont aussi celles que consideére le formalisme probabiliste
usuel. Mais ici on voit nettement qu’elles se rapportent a des collectifs
différents réalisés 'un avant la mesure, Pautre apres la mesure. Clest
la raison pour laquelle ces distributions de probabilité ne peuvent pas
vérifier le schéma habituel des statisticiens qui suppose I'existence d'un
collectif unique.

On voit maintenant trés nettement le défaut qui vicie la démonstration
du célebre théoréme de M. von Neumann. Son raisonnement montre
bien qu’il est impossible, méme en introduisant des variables cachées,
de constituer un collecuf correspondant a la fois aux distributions de

probabilité

W2 et Jc(p)’ habituellement envisagées pour les gran-
deurs canonlquement conjuguccs « pOSItlon » et « quantltC de mouve-
ment ». Mais il ne prouve aucunement qu’en introduisant des variables
cachées, on ne puissc pas constituer des collectifs (a distributions de
probabilités partiellement cachées) qui soient du type habituel et qui
correspondent respectivement a I’état initial avant la mesure et a P'état
final apres la mesure. Les probabilités habituellement considérées
figurent dans ces collectifs, mais pas dans le méme collectif. Nous

. . > .
venons de construire en détail dans le cas de la mesure de p les collectifs
en question et nous apercevons bien maintenant que le théoretme de
M. von Neumann n’avait pas la portée qu’on lui attribuait.

4. Interprétation des relations d’incertitude. — Dans I'inlerprétation
usuelle, le fait queles distributions de probabilité pour une coordonnée z
et pour le moment conjugué p, correspondent a des « dispersions »,

s(z) et a(p.), telles que

. h
(17) ()5 (pr) = i

ce qui permel d’écrire la relation qualitative
jui p vd la relation qualital

(18) 0.0 Gpp e
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ou 0z ct dp,, sont les incertitudes sur les valeurs de « et de p, devrait
étre interprété en disant que les incertitudes sur les valeurs de x et
de p. ne peuvent jamais étre toutes deux nulles & la fois. Mais de cette
affirmation prudente on a en général passé a une affirmation beaucoup
plus hardie. On a admis que les quantités telles que dx ¢t dp, ne repré-
senteraient pas de simples incertitudes expérimentales sur la valeur de
ces grandeurs résultant des conditions mémes de la mesure en Micro-
physique, mais qu’elles correspondraient a de véritables indétermi-
nations affectant toujours une partie des grandeurs relatives a un
corpuscule. Dans cette maniere de voir qui parait implicitement admise
par la plupart des auteurs, on est alors obligé de considérer le corpuscule
comme réparti statistiquement entre des états divers, ce qui fournit une
image du corpuscule bien peu intelligible.

Au contraire, avec la théorie de la double solution ou les répartitions
de probabilité py(z) et pp_(p.) se rapportent a des états différents,
U'interprétation des relations d'incertitude n’est plus la méme. Dans
chaque état, le corpuscule a une position dans 'onde qui est bien déter-
minée et une quantité de mouvement ¢galement bien déterminde en
fonction de la position par la formule du guidage. Toutes les grandcurs
relatives au corpuscule qui s’expriment toutes a 'aide des coordonnées
du corpuscule et des moments de Lagrange correspondants ont donc
aussi des valeurs bien déterminées a chaque instant. Mais ces valeurs
ne peuvent pas toutes étre connues simultanément. En effet, a Pexcep-
tion de la position et des grandeurs qui sont mesurables en méme temps
que la position, I'action du dispositif nécessaire pour mesurer une
grandeur A aura pour effet d’envoyer ce corpuscule d’une maniere
parfaitement déterminée dans l'un ou Pautre des trains d’ondes qui
finalement correspondent & une valeur donnée de A. De la sorte, il y a
a priori une incertitude sur le résultat de la mesure de A qui provient
de l'incertitude sur la position (cachée) du corpuscule dans le train
d’ondes initial, incertitude correspondant a la répartition de proba-
bilité | W [*. La dispersion ¢{p.) des valeurs finales possibles de p,
apres la mesure est reliée a la dispersion des valeurs nitiales possibles
de la position par la relation (17). Et on pourra en ce sens dire que la
position et la quantité de mouvement d’un corpuscule sont toujours
affectées d'incertitude dx et dp, telles que la relation (18) soit vérifide.

Mais a notre point de vue, ce sont la sculement des incertitudes sur
les résultats possibles de deux mesures incompatibles (mesure de la
position et mesure de la gquantité de mouvement) exigeant des dispo-
sitifs de mesure différents : ce ne sont pas du tout des indéterminations
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réelles de la position et de la quantité de mouvement d’un corpuscule &
chaque instant. Ces indéterminations proviennent (du moins pour les
grandeurs autres que la position) de Paction du dispositif de mesure
sur le phénomene ondulatoire auquel le corpuscule est incorporé
(onde ¢ et non pas onde W, mais les deux sont proportionnelles).
Comme la liaison entre le corpuscule et son onde fait essentiellement
intervenir la constante de Planck (dont la véritable signification phy-
sique reste encore mystéricuse), on peut rester d’accord avec M. Bohr
pour dire que les incertitudes de Heisenberg sont, par U'intermédiaire de
la réaction de la propagation de 'onde sur le mouvement du corpuscule,
une conséquence inévitable de Pexistence du quantum d’Action, mais,
répétons-le, il n’en résulte aucunement, d’une fagon nécessaire, une
véritable indétermination de la position et de la quantité de mouvement
du corpuscule.

Dans la théorie de la double solution, les incertitudes de Heisenberg
gardent toute leur valeur, mais elles doivent étre interprétées avec plus
de prudence qu’on ne le fait d’ordinaire.

Des considérations analogues sont d’ailleurs applicables a la notion
de complémentarité. Dans la théorie de Ia double solution, on peut, si
on le désire, la conserver, mais a condition d’en bien limiter la portée.
Elle signifierait seulement qu'une méme opération de mesure ne peut
nous fournir a la fois la valeur des grandeurs qui déerivent Paspect
ondulatoire (telles que les composantes de la quantité de mouvement)
et celle des grandeurs qui décrivent P'aspect corpusculaire (telles que
les coordonnées du corpuscule). Mais on ne pourrait aucunement en
conclure que ces grandeurs, non simultanément mesurables, n’ont pas a
chaque instant une valeur parfaitement déterminée. Ainsi délimitée, la
notion de complémentarité ne souleverait pas de difficultés essentielles.
Elle n’aurait plus la signification assez peu intelligible qu’on lui attribue
en général et suivant laquelle ce que nous nommons « corpuscule »
serait unc entité protéiforme susceptible de prendre tour & tour un
aspect ondulatoire et un aspect granulaire par suite de processus qui
exclurait toute représentation rationnelle.




CHAPITRE VII.

MESURE DES GRANDEURS PAR L'INTERACTION
DE DEUX CORPUSCULES.

1. Inconvénient de la mesure envisagée précédemment avec un seul
corpuscule. — Nous avons envisagé plus haut la mesure d’une gran-
deur A qui s'effectucrait en envoyant le train d’ondes porteur du cor-
puscule sur un dispositif susceptible de morceler le train d’ondes initial
en trains d’ondes spauialement séparés correspondant chacun a une
valeur déterminée de la grandeur A, c’est-a-dire opérant matériellement
la décomposition spectrale relative 4 A.

Mais ce procédé de mesure a un inconvénient. Quand le corpuscule
aura déclenché un phénoméne macroscopique observable dans la
région R; (ce qui est indispensable pour qu’il y ait mesure), 'observa-
teur pourra attribuer a la grandeur A la valeur ;. Mais il est probable
que, quand P'observateur aura ainsi obtenu la valeur de A, cclle-ci ne
sera plus exacte : en effet, le déclenchement du phénoméne macrosco-
pique observable aura en général réagi sur le mouvement du corpuscule
et la grandeur A n’aura plus ensuite la méme valeur z; qu’elle avait
avant ce déclenchement.

II est donc préférable de procéder autrement et, pour effectuer la
mesure, de se servir d'une interaction entre le corpuscule « étudié » et
un autre corpuscule que nous nommerons le corpuscule « indicateur ».
Tandis gne le processus de mesure étudié au chapitre précédent peut
étre appeldé « mesure de premicre espece », celui que nous allons étu-
dier pourra étre nommé « mesure de seconde espace ». Désignons par 1
le corpuscule étudi¢ et par 2 le corpuscule indicateur. Au début, les
deux corpuscules qui ne sont pas encore entrés en interaction sont
attachés a des trains d’ondes occupant des régions sépardes de 'espace

L. DE BROGLIE. 7
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Ry’ et Ry et sont représentés par des fonctions d’onde ‘I*U“<r1, t> et

/> . R
‘Iﬁ,"(rg, t). La fonction d’onde du systeme dans I'espace de configura-
tion est alors

(1) W (T, 7, ) = W (5, )W (s, 1),

D’accord avec M. von Neumann, nous admettrons que, pour qu'un
processus puisse servir 4 mesurer une grandeur A relative au corpuscule
étudié, il faut que 'onde W finale soit de la forme

(2) ‘1’=2 er 21 (71) 74 (7)),

k

ot les o4 sont les fonctions propres de la grandeur A du corpuscule étu-
dié correspondant aux valeurs propres o et les y; les fonctions propres
du corpuscule indicateur relatives a une grandeur B de ce corpuscule
de valeurs propres 3,. Ainsi, apreés 'action du dispositif de mesure, les
valeurs de A et de B se trouveront « corrélées », la valeur «; de A cor-
respondant a la valeur 3; de B.

Mais cela ne suffit pas. Il faut encore qn’apreés la fin de Pinteraction

de mesure, les fonctions /,(?2> correspondent a des portions d’ondes
spatialement séparés etoccupant par conséquentdes régions del'espace RPY
disjointes. Alors, si le corpuscule indicateur déclenche un phénomene
nous pourrons affirmer

(2]

j ?
que sa grandeur B a la valeur §8; et, par suite, que la grandeur A du

corpuscule étudi¢ a la valeur «; corrélée a §;. La probabilité pour que

P

macroscopique observable dans Ia région R

nous trouvions ainsi A = «; est d’ailleurs égale a | ¢;

On voit Vavantage de cette mesure de seconde espéce sur la mesure
de premicre espéce. Le déclenchement du phénoméne macroscopique
observable par le phénomene indicateur peut troubler le mouvement de
ce corpuscule et faire qu’ensuite sa grandeur B n’ait plus la valeur ;.
Mais, comme aprés la fin de linteraction les deux corpuscules sont
entierement indépendants et séparés dans l'espace, le déclenchement du
phénomene observable dans R\j:—’> ne peut avoir aucune influence sur le
corpuscule étudié ét Pon pourra affirmer avec certitude, apres avoir
constaté le phénomeéne observable, que la grandeur A du corpuscule
étudié a la valeur «;.

Ici d’ailleurs, comme pour la mesure de premitre espece, il n’est pas
nécessaire d’introduire dans notre analyse les coordonnées de « Pappa-
reil de mesure » dont le role ne peut étre que de nous permettre d’obser-
ver avec précision le phénomene macroscopique observable.
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Remarquons que pour faire une mesure de A, il n’est pas nécessaire

que les fonctions Qk(?’i) correspondent dans I'état final & des régions
spatialement séparées R{) de P'espace. Ce qui est indispensable, c’est
que les régions R sotent disjointes. Mais, pour plus de clarté, nous.
allons d’abord supposer que les régions R{ sont séparées, nous réser-
vant de revenir plus tard sur le cas on cette hypothése ne serait pas
réalisée. Nous aurons alors le schéma suivant :

@
Rj
0
Ro / R@
//‘\\ k
~ / \ 7
[ Region
d’interaction
\ /
\ : // '\.R\(})
\ —"
RY ” X

Fig. 4.

Avant Vinteraction, les deux trains d’ondes R[Y et R sont séparés et
indépendants. Puis ils se rapprochentl’un de P'aulre et enirent en inter-
action dans la région I. Apres Pinleraction, la fonction d’onde dans
I'espace de configuration a, par hypothese, la forme (2), les diverses
fonctions ¢, correspondant dans 'espace physique a des trains d’ondes
RY spatialement séparés et les diverses fonctions correspondant de
méme a des trains d’ondes R} spatialement séparés dans Pespace phy-
sique. Alors les corrélations statistiques établies par Uinteraction entre
les présences des deux corpuscules dans les différentes régions R de
I'espace physique et traduites par la forme (2) de la fonction d’onde
nous apprennent que, si un phénomene macroscopique observable est
déclenché dans la région R¥ par le corpuscule indicateur, alors le cor-
puscule étudid se trouve nécessairement dans R(/?’ avec A = a;.

Précisons par un exemple ce processus de mesure pour montrer qu’il
correspond bien a des conditions expérimentales souvent réalisées.
Supposons que nous ayons initialement deux corpuscules dont les éner-
gies ct les quantités de mouvement ont des valeurs connues. Les deux
trains d’ondes R{" et Ry’ viennent en interaction (choc) au voisinage
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d’un point O que nous prenons comme origine des coordonnées. Apreés
interaction, les trains d’ondes corrélés R{ et R s’¢loignent du point O
dans des directions définies par des angles o et g, par rapporl a un

axe Oz contenu dans le plan de symétrie du phénomene.

Tout le phénomene se produisant dans le plan de symétric 20y, on
sait que la corrélation R et R¥ est exprimée par les trois relations de
conservation pour ’énergie et pour les deux composantes x et y de la
quantité de mouvement. Nous avons donc dans I'état final trois rela-
tions entre les angles ¢, et g, ct les longucurs p; et py des quantités de

Y

o™ ORJ

Fig. 5.

mouvement. Si le corpuscule 2 parvient ensuite dans un disposiuf D
(par exemple compteur i pointe) ou il produit un phénomene macrosco-
pique observable, on pourra déterminer angle ¢» et, en ¢liminant p,
enlre les trois équations de conservation, on obliendra P1 el oy, cest-
a-dire que I'on aura mesuré en grandeur ct en direction la quantité de
mouvement finale du premier corpuscule. Et celte mesure n’exercera
évidemment aucune action sur le corpuscule étudic 1 puisque ce corpu-
scule peut se trouver trés €loigné du dispositif ) au moment ou se pro-
duit dans celui-ci le phénoméne macroscopique observable.

2. Interprétation de la mesure de seconde espdce par la théorie

usuelle. — Comment devons-nous interpréter la mesure de seconde
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espéce avec la Mécanique ondulatoire actuelle ou le corpuscule n’est
pas localis¢ dans 'onde W'?

L’interprétation conforme a la théorie de la mesure de von Neumann-
London-Bauer consiste a dire : c’est la prise de conscience par 'obser-
vateur du phénomene macroscopique déclenché dans R(/'?) qui va localiser
dans R{" le corpuscule 1 jusqu’alors réparti statistiquement entre tous
les trains d’ondes R{’. Une telle interprétation semble inadmissible :
quelque chose qui se passe dans la conscience d’un observateur ne peut
pas provoquer a distance un effet physique.

Supposons qu'il y ait deux observateurs pres de la région R, 'un
ayant les yeux ouverls el prenant ainsi conscience du phénoméne
macroscopique obscrvable, 'autre les ycux fermés n’en prenmant pas
conscience. Est-ce la prise de conscience du premier observateur qui
va provoquer la localisation du corpuscule 1 dans RV ou est-ce la non-
prise de conscience du second observateur qui va empécher cette locali-
sation? La question reste sans réponse parce qu’elle est absurde. Mais
une chose parait certaine. L’observateur aux yeux ouverts, aprés avoir
constaté le phénomene macroscopique déclenché par le corpuscule 2,

remplacera la fonction d’ondes W :Z CrOk @1)%/; (Z) par la nouvelle

k

fonction d’ondes W — g, <71>//<?2> et cette « réduction du paquet de
probabilité » lui permettra de faire ensuite des prévisions statistiques
exacles. Donc ce qui compte, ce ne sont pas les connaissances de
I'observateur, c¢’est le fait physique constitué par le déclenchement du
phénomene observable.

Une interprétation qui pourrait paraitre plus raisonnable consisterait
donc a dire : c¢’est le phénomene macroscopique observable provoqué
dans R{ par le corpuscule 2 qui localise brusquement le corpuscule
étudié¢ 1 dans la région corrélée RV, En réalité, cette interprétation
n’est pas plus admissible que la précédente. Le phénomeéne observable
qui se manifeste dans R, ne peut aucunement localiser le corpuscule 1
dans R},et cela d’antant plus que les régions R}V et R} peuvent étre au
moment ou ce phénomene se produit extrémement éloignées 1'une de
Pautre. Une telle localisation produite brusquement a n’importe quelle
distance par le phénomenc observé dans R} est inconcevable. Exposant
cetle objection, M, Schrodinger a éerit @ « Ce serait de la‘magie! » et
effectivement ce serait de la magie.

Au terme de cetle analyse, il apparait done clairement que, dans une
théorie ou les corpuscules ne sont pas localisés dans leurs ondes, aucune
interprétation raisonnable des corrélations représentées par 'onde W de




=

102 CHAPITRE VIIL.

configuration et permetlant la mesure ne semble pouvoir étre donnde.
Nous allons voir que la théorie de la double solution, en rétablissant la
position du corpuscule dans I'onde, fournit pour la mesure de seconde
espéce une interprétation claire et intelligible.

3. Interprétation par la théorie de la double solution. — Revenons
a la figure 4. En théorie de la double solution, nous devons supposer
que les régions R |’ et R{Y sont respectivement occupdes initialement par
londe « de chacun des deux corpuscules, chacun des deux trains
d’ondes ayant sa région singulicre. Puis, arrivés en I, les deux trains
d’ondes commencent a interagir, ¢’est-a-dire que la propagation de cha-
cun d’eux va dépendre de 'action exercée sur lui par I'autre. Comme je
Pai indiqué & la fin du chapitre V, Jadmetirai (en espérant que cette
hypothese pourra étre rigoureusement justifiée en théorie de la double
solution) que Ponde W de Schriodinger dans espace de configuration
des deux corpuscules permet de représenter exactement les corrdlations
des positions possibles des corpuscules au cours ¢t a la fin de P'inter-
action. Ce serait Ia la raison pour laquelle Uonde W de P'espace de
configuration, bien que visiblement fictive ¢t ne représentant aucune-
ment 'évolution réelle du phénomene dans 'espace physique, donnerait
une vue slatistique exacte des résultats possibles de Vinleraction.

Nous sommes donc amenés & penser qu’apres la fin de Uinteraction,
Ponde u du corpuscule 1 se trouvera morcelée en une séric de trains
d’ondes R, ..., Ry, ... spatialement séparés et que, de mé¢me, Ponde u
du corpuscule 2 sera morcelée en une séric de trains d’ondes R{Y,
R§, ... également disjoints. De plus, les corrélations statistiques
représentées par la forme finale (2) de onde W étant supposées exactes,
si la région singuliére constituant le corpuscule 2 est finalement parve-

Y

nue dans R, celle qui constitue le corpuscule 1 sera venue en RY
et la probabilité de cette éventualité sera donnée par jc¢;

En d’autres termes, dans la théoric de la double solution, les deux
corpuscules-régions singulieres auront, suivant Jeurs positions initiales
dans les trains d’ondes R et Ry, des trajectoires entiérement détermi-
nées, trajectoires qui les améneront nécessmirement dans I'élat final &
occuper deux positions bien déterminées dans deux trains d’ondes
« corrélés » RV et Ry’. Ainsi, suivant un veeu souvent émis par Iinstein,

9

la description de 'interaction par 'onde W de I'espace de configuration
restera une théorie stalistique exacte, mais ne sera pas une description
complete, celle-ci élant donnée par la théorie qui rétablit la localisation
des corpuscules et le déterminisme de feurs mouvements.
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lei, linterprétation de la mesure de seconde espece va devenir tout a
fait claire et pourra s’exprimer en quelques mots. Si un phénoméene
macroscopique observable est déclenché par le corpuscule 2 dans la
région R, c’est tout simplement parce que ce corpuscule se trouve
eflectivement dans cette région et alors le corpuscule étudié 1 se trouve
nécessairement dans la région corrélée RYY, ce qui nous permet d’atiri-
buer avee séeurité d la grandeur A la valeur «;. Il 0’y a plus ici aucune
inadmissible action instantande a distance du phénomene observé. Nous
sommes soulagés : 1l n’y a plus de magie !

Quant a la prise de conscience du phénomene observable par Fobser-
vateur qui lui permet d’atiribuer a A la valeur o, clle n’est plus que la
prise de conscience d’une réalité objective extérieure et eclle reprend
ainsi le sens tout a fait raisonnable qu’elle avait en Physique classique.

Nous voulons insister un peu sur la facon dont se présente ict la
question des rapports entre onde z et onde W. Dans les régions Ry et
R, Ponde « de chaque corpuscule a, en dehors de la trés petite région
singuliere, la forme = wo-+ v, oft ¢>> u, est une onde réguliere.
I’onde ¢ a une amplitude parfaitement définie puisqu’elle est une réalité
objective, mais le physicien a le droit de définir une fonction d’onde fic-
tive W en posant W' = Co et en choisissant la constante G de facon que
W soit normée. On définira ainsi dans RV et R les fonctions ¥ indivi-
duclles des deux corpuscules pour I'état initial, puis on formera la
fonction d’onde de Pespace de configuration en faisant le produit des
deux fonctions d’onde individuelles.

Dans 1'¢tat final, aprés la fin de I'interaction, I'onde « du corpus-
cule 1 se¢ trouvera morcelée dans Pespace physique en trains d’ondes
w', ..., u?, .. occupant des régions RYY, ..., R, ... spatialement
disjointes tandis que 'onde # du corpuscule 2 se trouvera de méme
morcelée en trains d’ondes wf, ..., uf’, ... occupant des régions dis-
jointes RP, ..., R, ... de Vespace physique. Mais le corpuscule 1 se
trouvera senlement dans I'une des régions R : dans cette région seule-
ment existera la partic u, de w el dans les aatres régions R, w se
réduira a ¢. Une circonstance analogue se trouvera réalisée par le second
corpuscule. Mais la fonction d’onde (2) devant représenter exactement
les corrélations statistiques dans I'état final, les deux corpuscules se
trouveront certainement dans deux trains d’ondes corrélés. Quand
l'ohservateur aura constaté le déclenchement d’un phénomeéne macros-
copique obscrvable dans RY par le corpuscule indicateur, il saura que le
corpuscule étudié est dans RY et alors il devra construire une nouvelle

(n

fonction d’onde individuelle pour le corpuscule 1 en posant W==Cy¢}",
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¢ ¢tant la fonction ¢ pour le corpuscule 1 dans RY" ¢t G étant choisie de
facon que W soit normée dans R{. C’est la la rupture des corrélations
statistiques dont a parlé M. von Neumann et il y a aussi réduction du
paquet de probabilité puisque 'onde W' du corpuscule 1, au lica d’étre
répartie entre toutes les régions R}, se trouve brusquement réduite a
ne plus occuper que RY'.

lei la réduction du paquet de probabilité prend une signification trés
claire. Elle signifie simplement que Pobservateur, ayant acquis une
information sur la réalité physique, modifie en conséquence la fonction
W qui lut sert & représenter la probabilité des phénomenes observables.
Mais naturellement l'information acquise par 'observateur ne peataucu-
nement modifier la réalité physique elle-méme décrite par 'onde u. La
distribution de Pobjectif et du subjectif se trouve ainsi rétablie d’une
facon tout a fait claire et satisfaisante.

Remarquons que, si la fonction « subjective » W peut fournir des
prévisions statistiques exacles, ¢’est parce que l'utilisateur doit la cons-
truire proportionnelle & 'onde # (ou plutdt a sa partie ¢ exlérieure 4 la
région singuliére en faisant abstraction de cette région singulitre) dans
la région ou Il sait que se trouve le corpuscule. Un observateur aux
yeux ouverts, qui aura constaté le déclenchement du phénoméne macro-
¢tudié la fonction W = GV et pourra faire avec elle des prévisions stu-

scopique observable dans la région R, emploiera pour le corpuscule
tistiques exactes; observateur aux yeux fermés, qui n’a rien observe,
utilisera pour le corpuscule 1 une fonction W qui restera dans chaque
région R¢’ proportionnelle a ¢ff et il fera avec clle des prévisions statis-
tiques inexactes parce qu’il suppose que le corpuscule | peutse trouver
dans des régions Ry autres que R, ce qui n’est pas vrai.

On voil ainsi que, si onde subjective ¥ peut rendre des services,
c’est parce qu’elle est construite par l'utilisateur en fonction de ses
connalssances sur unc certaine réalité physique extéricure. 1l est d’ail-
leurs évident qu’une fonction d’onde subjective pourrait ¢tre construite
arbitrairement et qu’il serait alors incompréhensible qu’elle conduise a
des prévisions exactes. En d’autres termes une interprélation purement
subjective de Ponde W est impossible : 1l faul qu’il y ait derriere elle une
réalité objective. Or I'onde W, qui subit la réduction du paquet de pro-
babilité, ne peut pas étre elle-méme une réalité objective, mais elle peut
atre le reflet des connaissances de utilisateur sur la réalité objective.

Ajoutons que dans le cas de la mesure par interaction de deux corpu-
scules comme nous avons fait dans le cas de la mesure de premiere

espéce avec un seul corpuscule traversant un dispositif, on peut cons-
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truire des collectifs correspondant a I'état iniuial et a Pétat final et repré-
sentant les conceptions de localisation et de mouvement des corpuscules
dans la théorie de la double solution : comme au chapitre précédent,
on retrouverail les distributions de probabilité usuellement envisagées,
mais clles appartiendraient & des collectifs différents avec les consé-
quences que cela entraine. On retrouverait aussi linterférence des
probabilités et 'interprétation des relations de Heisenberg comme repré-
sentant non pas une indétermination de la position ¢t du mouvement
des corpuscules, mais des incertitudes introduites par Uintervention de
la nature ondulatoire des corpuscules dans tout processus de mesure.

Nous signalerons encore une question difficile, mais importante qui
s¢ pose quand on applique les conceptions de la dou{)le solution au pro-
bleme que nous venons d’éludier. Quand Vobservateur a constaté le
phénomene qui se produit dans RYY, il sait que le corpuscule ou région
singuliere de Ponde 't se trouve dans R et il reconstruit son onde
Wt en conséquence pour faire des prévisions statistiques ullérieures.
Mais les fragments de Ponde wt) qui sont venues dans les régions R}
autres que R{" doivent subsister puisque, réalités objectives, elles ne
peuvent dépendre des informations de 'observateur : elles constituent
alors des morceaux de l'onde ¢ du corpuscule étndié qui ne contien-
nent pas de région singulicre. Que deviennent par la suite ces frag-
ments d’onde w sans région singulicre ? kit comment évolue d’autre part
le fragment d’onde u' qui est parvenu dans RY et qui porte la région
singulitre, fragment d’onde dont la partie extérieure ot a ¢té affaiblie,
par rapport a ce qu’elle élait dans I'état initial, par le morcellement de
Ponde u!V? Ces questions appartiennent a un lype de questions diffi-
ciles auxquelles la théorie de la double solution devra s’efforcer de
répondre. Mais il est probable que, st elle réussit 4 y répondre, ce scra
en faisant Intervenir des phénomenes essentiellement non linéaires,
et en particulier des Gtats transitoires, dont les théories lindaires
actuelles ne peuvent nous donner aucune représentation (1). Mais
je¢ nme veux pas insister ici sur un probléme encore a peine abordable
aujourd’hui.

Notons enlin que I'analyse que nous venons de faire des processus de
mesure par interaction de deux corpuscules pourrait, me semble-t-il,
étre transposde sans difficultés pour Pétude de deux systémes de cor-
puscules. Les complications que Ion pourrait rencontrer seraient uni-

3

(1) Yai effleuré ces questions dans les derniers chapitres de mon récent Ouvrage (3],
Voir aussi le trés intéressant livre récent de M. Jean-Louis Destouches [77.
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uement des complicalions d’écriture, les i1dées générales restant les
: o
meémes.

4. Cas d’un processus de mesure par interaction de deux corpuscules
ou les régions singulieres R}’ ne seraient pas spatialement disjointes.—
Nous avons d¢ja remarqué que, la fonction W de Pespace de configura-
tion apres la fin de Vinteraction entre les deux corpuscules étant suppo-
sée avorr la forme (2), il suffit que les trains d’ondes '/./,<}>'> du corpus-
cule indicateur soient spatialement séparés pour que le déclenchement
d’un phénomeéne macroscopique observable dans R(/'?) nous permetle
d’auribuer 4 la grandeur A la valeur z; sans que les RY soient spatiale-
menl séparés.

11 est facile d’en donner un exemple concrel. Soit an atome d’hydro-
géne avec son ¢lectron périphérique qui joue le role de corpuscule
étudié. T'onde de cet ¢lectron occupe la région de Iatome que nous
représenterons par une région sphérique R Un autre corpuscule
jouant le role de corpuscule indicateur vienl passer au voisinage de
Iatome et pendant ce passage interagit avee I'électron atomique. Le
train d’ondes de ce corpuscule indicateur est inttialement contenu dans
ane région de Vespace Ry, Ala finde Uinteraction, la fonction d’onde W
de Pespace de configuration des deux corpuscules aura pris, par hypo-
thise la forme (2) et les ;. correspondront maintenant a des régions Ry
spatialement disjointes tandis que les o, correspondront toujours a la
méme région R,

Dans son élat initial, Pélectron atomique avait ane {onction d’onde
de la forme ‘If‘l,":}: ). JA(;) les o, ¢tant les fonctions propres dune

-
certaine grandeur \ qui sera par exemple Pénergie. Quand on aura
constaté un phénomene macroscopique observable déclenché par le cor-

39

puscule indicateur dans R, on pourra attvibuer i A la valeur 2 et

prendre W' dans cet élat final égal i .

On retrouve ici les mémes considérations que les eas précédemment
étudiés : il ne peut aucunement ¢re question de dire, comme le fail
Pinterprétation actuelle, que c’est la prise de conscience du phénomene
observable par I'observateur ou le déclenchement de phénoméne obser-
vable qui fait passer brusquement Uatome de son élat initial @ son état
final ; ce serail toujours de la magie. La prisc de conscience de I'obser-

212

vateur n'a rien & faire dans cette affaire et, R pouvant étre tres éloigné

de R une influence instantandée du phénomene déclenché dans R% sur
) | /

ce qui se passe dans RtV est inconcevable.
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On peut illustrer cect par un exemple frappant qui, dans Pétat actuel
de nos formalismes, nest pas décrit de la méme fagon que le précédent,
mais qui physiquement lui est tout a fait analogue : celui de ’émission
d’un photon par un atome (atome d’hydrogene par exemple). La gran-
deur A étant I'énergie de Pélectron alomique, les a; = Ey ct les ¢ étant
les valeurs propres ct les fonctions propres correspondantes, nous sup-
posons que atome est initialement dans 'état quantifié d’énergic Ej et
que, par suile, sa fonction d’onde est W' = ¢;. N'il passe par une tran-
sition quantique de cet état initial a I'état quantifi¢ d’énergic Ejilya
Er—E;

h
le photon ¢émis dans un dispositif réseau -+ lentille gui permel, nous

R%

(2)
Q) O
R(z)

@
RJ

smission d'un photon de fréquence v = - Recueillons a distance

Fig. 6.

Pavons vu, de lui attribner une fréquence bien définie en lui faisant pro-
duire un eflet observable, par exemple le noircissement en un point
d’une plaque photographique. De lobservation de¢ ce phénomeéne,
I'observateur pourra déduire que 'alome a passé de I'état initial W) — g,
a Pétat final W' == ~;. Or rien n’empéche de supposer que I'atome est
dans I'éloile Sirius et que Pobservateur est ‘a Paris. Est-il admissible
que la prisc de conscience par un observateur parisien d’un noircisse-
ment local sur une plaque photographique change I'état d'un atome sur
Sirvius ? Est-il méme admissible que le déclenchement physique de ce
noircissement produise cet effet ? Evidemment non et largument, tou-
jours le méme, est ici tres frappant.

Revenons maintenant & la figure 6 et demandons-nous comment on
peut dans ce cas interpréter la mesure de A avec les 1dées de la double
solution. Celd va nous amencr a une conception nouvelle. Puisque la
fonction W, quand elle est bien construite, doit toujours étre propor-

tionnelle & ¢, on doit avoir dans Pétat initial de 'atome vﬁf’NZ Loy et
k




108 CHAPITRE VII.

dans Vétat final, quand le corpuscule indicateur est parvenu dans la
région R on doit avoir ¢! ~ ¢;. Donc, suivant les conceptions de la
double solution, I'¢lectron atomique doit dans I'état initial avoir un
mouvement conforme a la formule du guidage, mouvement trds compli-
qué qui le maintient en phase avec 'onde ¢j! formée par la superposition
des o;. Mais apres la fin de 'interaction il doit avoir un mouvement qui
le maintient en phase avec la seule composante ¢; puisqu’alors ¢t =g .
On peut donc dire que, pendant Vinteraction, le mouvement de 1'élec-
tron atomique I'a progressivement « aiguillé » de fagon a le « décrocher »
de la superposition initiale des ¢, pour finalement « Paccrocher » sur la
seule composante ¢;. Et ¢’est précisément parce que finalement I'élec-
tron atomique s¢ trouve accroché a ¢ 1) = o, tandis que corrélativement
le corpuscule indicateur se trouve dans R, qu’il y a possibilité de
mesure de la grandeur A dont la valeur propre o correspond a g;.

Ici donc, le corpuscule étudié peut, par suite de Pinteraction, se
trouver finalement accroché a une scule des composantes primitives de
son onde ¢ tout en restant localisé dans la méme région R qu’aun
début, mais il est essentiel pour la mesure de A que les régions Ry rela-
tives au corpuscule indicateur soient spatialement séparées de facon que
le déclenchement d’un phénomene macroscopique observable permette
de dire quelle est 'onde ¢/1) ~¢; sur laquelle le corpuscule étudié reste
finalement accroché. Naturellement il n’en était pas ainsi dans le cas
d'une mesure de premicre espece ot I'on eflectue la mesure en faisant
passer le corpuscule incorporé a son onde dans un disposiuf, tel que
réseau + lentille, qui isole les ¢4 en trains d’ondes spatialement dis-
joints. Dans ce cas le corpuscule est en quelque sorte a la'fois corpus-,
cule étudié et corpuscule indicateur et ¢’est la raison pour laquelle la
séparation des trains d’ondes ¢, du corpuscule est alors nécessaire.
Mais elle ne Iest plus pou;' une mesure de seconde espéce.

5. L’idée d’aiguillage. Examen d'une remarque d’Einstein. — En
restant toujours dans le cas envisagé au dernier paragraphe ct en gar-
dant le point de vue de l'interprétation causale, nous pouvons préciser
ce qui précede de la facon suivante. A partir de la position initiale des
deux régions singulieres dans Rit) el dans R, V'interaction ¢volue d’une
maniére entirement détermindée de telle sorte que le corpuscule éludié
soit progressivement au cours de l'interaction aiguillé par le mouvement
que lui impose la loi du guidage vers P'état final ou il se trouve implanté
sur onde ¢ = ¢, tandis que le corpuscule indicateur est progressivement
aiguillé de méme vers I'élat final ou il est implanté sur l'onde ¢ =y,
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localisée dans R%. La méme interprétation serait valable, mutatis
mutandis, dans le cas précédemment étudié ou les régions RY! sont
disjointes. On arrive ainsi a l'idée générale que, pour chaque corpuscule,
les lignes de courant sont animées d’une sorte de frétillement résultant
de Pinteraction et que le corpuscule, obligé par la loi du guidage de
suivre constamment 'une de ces lignes de courant frétillantes, est ainsi
progressivement aignillé vers I'état final qu’il possede a la fin de Vinter-
action.

A la lumiére de ces idées, 1l est intéressant d’examiner un point du
formalisme actuel de la Mécanique ondulatoire qui avait beaucoup
frapp¢ Einstein et qui lui paraissait, semble-t-il, particulicrement diffi-
cile a interpréter par une théorie causale.

Considérons un corpuscule dont 'état initial correspond a la fonction
I'=c;g;, avee |c;|=1, ¢; élant 'unc des fonctions propres d’une
grandeur A. Si A est I'énergic, nous pourrons représenter ’état initial

par un train d’ondes Ry correspondant a I'énergie E; = aj<mathémati—
quement par une différentielle propre du spectre continu de l’énergie

R . E; .
correspondant a la fréquence centrale uj:#> - Si le corpuscule est

soumis pendant une durée limitée & un trés faible champ perturbatear,

son onde W sera devenue W :2 cr o aprés la fin de la perturbation et,
%
comme celle-ci est trés faible, on aura pour |c;| une valeur finale tres

légérement inférieure a 1 et pour les | ¢, |, avee k £ 7 des valeurs extré-
mement petites. Si ensuite le corpuscule passe dans un dispositif D qui
amene les g4 dans des régions spectralement disjointes Ry (tel que le
dispositif réscau-lentille dans le cas ou A est I'énergie), le corpuscule
aura une probabilité voisine de 1 de se¢ manifester dans la région R; et
des probabilités non nulles mais trés voisines de zéro, de se manifester
dans les régions By, avec k £ ;. Comme les 2, peuvent avoir des valeurs
trés différentes, on voil que finalement la tres légere perturbation aura
fait apparaitre de trés petites probabilités pour que I'état du corpuscule
subisse de grands changements. Einstein considérait que 'on obtient
ainsi une description stalistique certainement exacte de ce qui se passe,
mais qu’il serait sans doute tres difficile d’y substituer une description
causale des phénoménes individuels, description qu’il considérait
cependant comme nécessaire pour éviter d’inacceptables paradoxes.
Reprenons ce probleme du point de vue de la théorie de la double
solution. Considérons un train d’ondes R, porteur d’un corpuscule.
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Dans ce train d’ondes le corpuscule occupe une cerlaine position : il est
implanté sur une onde ¢ ~ ¢; qui est une réalité objective remplissant
la région Ry. Nous supposons que le train d’ondes est un groupe d’ondes
presque monochromatique d’énergie E; dont les lignes de courant sont
des droites paralleles. Le train d’ondes se dirige vers un dispositif D
permettant la mesure de l'énergie par séparation des trains d’ondes cor-
respondant i des valeurs différentes de I'éncrgie. Si entre sa position
initiale R, et sonarrivée sur D le train d’ondes ne traverse aucun champ
perturbateur, le corpuscule suivant unc des lignes de courant atteindra
la région D d’un mouvement rectiligne et uniforme, puis Faction du
dispositif D en lui imposant un mouvement plus compliqué I'aménera
dans le train d’ondes qui correspond a la sortic du dispositif & I'éner-
gie E;. Mais si le train d’ondes, avant d’atteindre D, traverse une région
ou régne un petit champ perturbateur, son onde ¢ deviendra propor-
tionnelle a Zc/; o avec ¢j==1-—c¢ el lous les autres ¢, trés petites. Les
%
lignes de courant correspondant a la formule du guidage seront, dans le
train d’ondes ainsi modifi¢, animées d’une sorte de tres petit frémisse-
ment par rapport a la forme rectiligne qu’elles auraient conservée en
I'absence de perturbation. 1l en résultera que, suivant sa position dans
le train d’ondes, le corpuscule sera envoyé aprés la traversée du dispo-
sitif D soit vers le train d’ondes R; (ce sera le cas de beaucoup le plus
probable), soit vers I'un des trains d’ondes Ry correspondanl aux
énergies E; 7 E;, mais ce sera 1a un cas trés rare. Nous sommes sirs
qu'il en scra ainsi car nous savons que s’il y avait dans Ro une infinité

de corpuscules répartis avec la densité cloj’

2, le mouvement le long des
lignes de courant imposé a ces corpuscules par la formule du guidage
en amenerait finalement une proportion égale a |¢4|? dans la région
R;. Comme dans la région Ry le corpuscule a une énergie égale a E;,
on peut dire : Vaiguillage imposé au corpuscule par la nécessité ou il
est de toujours suivre une ligne de courant lui donne, quand on ignore
sa position initiale dans Ry, une probabilité presque égale a 1 d’avoir
conservé la valeur initiale E; de son énergie a la fin du processus de
mesure, mais lut donne aussi de trés petites probabilités de posséder
finalement une énergie Ej; trés différent de E;. On trouve unc image que
représente clairement la circonstance qui avait frappé Einstein dans le
formalisme usuel de la Mécanique ondulatoire.

Néanmoins, st I'on voulait étudier & fond Pidée d'aigunillage esquissce
ci-dessus, on aurait a étudier la question de la conservation de énergie
dans la théorie de la double solution ainsi que des problemes analogues
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a ceux auxquels noas avons fait allusion a la fin du paragraphe 3. Nous
n’entreprendrons pas ici cetie étude qui d’ailleurs serait prématurée.

6. Conclusion. Cas purs et mélanges. — L’¢tude de la Mesure que
nous venons de faire dans les chapitres VI et VII nous a montré qu’il.
fallait envisager la mesure en Microphysique sous un aspect con-
cret, ce qui est dailleurs évident, et ne pas s’en tenir au formalisme
trop abstrait dont on se contente habituellement. Il est essentiel de
tenir comple du {ait que tous les renseignements que nous obtenons sur
Ia réalité microphysique sont dus i 'observation de phénoménes macro-
scopiques déclenchés par action locale d’un corpuscule. I est égale-
ment essentiel de remarquer que I'onde d laquelle un corpuscule est
incorporé ne s'étend toujours qu’a une région limitée de Pespace @ il
n’existe gque des trains d’ondes limités, 'onde plane monochromatique
illimitée dans Vespace et dans le temps ainsi d’ailleurs que les ondes
stationnaires s’étendant jusqu’a Pinfini sont des abstractions. Clest ce
caraciere limité des trains d’ondes qui seul permet, ainst qu;! M. Schro-
dinger I'a trés justement remarqué, de parler du commencement et de la
fin d’une inleraction; ¢’est lui qui, en permettant de construire des dis-
positifs ayant pour effet de séparer dans Pespace des trains d’ondes
" correspondant chacun a une valeur bien définie d’une grandeur A, per-
mel d'ellectuer des mesures & Péchelle microphysique. Il apparait alors
que cette conception concrdte de la Mesure est compatible avec une
localisation permanente et un mouvement bien déterminé des cor-
puscules et les arguments de MM. Einstein et Schrodinger, apparaissant
dans toute leur foree, montrent clairement qu’il faut admettre une loca-
lisation du corpuscule dans onde si on veat éviler certaines consé-
quences veaiment inadmissibles de Pinterprétation actuelle.

Avec notre maniére de voir, la distinetion entre les cas purs et les
mdlanges, trés justement introduite par M. von Neumann, prend une
signilicalion concréte qui n'apparait pas dans le formalisme exact,
mais trop abstrait, expos¢ dans les Chapitres I et IIT.

Il y & « cas pur » quand 'onde ¢ (partie extérieure de I'onde u) d'un
corpuscule ¢tant formée par une superposition de composantes qul
interferent, le corpuscule suil 'une des lignes de courant qui résultent
de cette superposition. Au contraire, il y a « mélange » quand, a la fin
d’une interaction, les diverses composantes de 'onde ¢ initiale cessent
d’interférer soit par suite d’une séparation spatiale de trains d’ondes,
soit par suile d’un phénomene d'aiguillage au sens donné a ce mot dans
les derniers paragraphes; alors le corpuscule se trouve aceroché a I'une
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seulement de ces composantes et, tant qu'on ignore laquelle, cette
ignorance est représentée par un mclange.

C’est en se placant a ce point de vue qui, distinguant soigneusement
Ponde u objective et 'onde W subjective et prévisionnelle, rétablit une
distinction claire entre I'objectif et le subjectif, que le formalisme de la
théoric de M. von Neumann nous parait devoir étre repris et
interpréié.

C’est d’ailleurs & une conclusion analogue que nous allons parvenir
dans le dernier chapitre en ce qui concerne la Thermodynamique
de von Neumann.




CHAPITRE VIIL

COUP D'OEIL SUR LA THERMODYNAMIQUE DE M. VON NEUMANN.

{. Introduction du formalisme de M. von Neumann en Thermodyna-
mique. — Rappelons d’abord quelques points de Thermodynamique
statistique classique. Bollzmann a établi entre I'entropie d’un systeme
physique et la probabilité de I'état de ce systeme la célebre relation

(1) S =klogP,

ot k, constante de Boltzmann, a pour valeur, avec les unités C.G.S. et
Péchelle des températures absolues, 1,37.107t%. La relation (1) se
trouve confirmée par 'immense ensemble de vérifications tirées de ses
conséquences.

Si nous considérons un ensemble de N systdmes répartis en un
certain nombre d’états au sens classique macroscopique, du mot de
telle sorte quil y ait n; ¢lats dans I'état 7 avec <Z ni== N) , on trouve

i /

aisément que la probabilité de cette répartition est

N!

nylng!l...

(2) P=

Comme N et les n; sont supposés grands, la formule de Stirling permet
de poser trés approximativement N!=NVe™ et n;! =nfie™™ et 'on

obtient aisément

(3) logP:logN‘.—Zlogni!gNIogN——znilogni.

H I

Posons pi= %’, pi étant le poids statistique de I'état 7 dans la répar- ~
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- < Wl
tition. Comme Zpi: 1. nousS aurons

i

. 'w . BN
(4) logP=--N zpilogpi-i— NlogN —N 24]“ logN =— N }_‘1),- logpi.
i i ‘

1

Par suite, d’apres la formule (1),

(5) S=— kN ¥ pilogp,
i

formule classique en Thermodynamique statistique.

Si nous voulons maintenant conslruire unc Thermodynamique
quantique, il nous faut modifier la définition de I'entropic en rempla-
cant la conception classique des états d’un systeme par sa fonction
d’onde.

Reprenons les algorithmes du clldpitre II. Lorsque les diflérents
états des N systtmes que nous considérons sont définis par des fone-
tions d’onde ¢4, ..., ¢;, ... formant un systeéme orthonormal complet
de fonctions de base (ce sont par exemple les {onctions propres d’une
grandeur mesurable), on raménera la matrice statistique P de von
Necumann a sa forme diagonale en prenant les ¢; comme fonctions de
base, ¢’est-a-dire qu’on aura alors

s N O *
(6) Pri=pr g (Z}M—Zl)-
k

De plus la matrice log P dont les ¢léments sont (logP ) = 6, logps u
aussi la forme diagonale. Il est alors maturel de transposer la formule
de Boltzmann en définissant P'entropie a partir de la matrice statistique
P en posant '

(7 S=-—kNTr(PlogP),

car cette expression, qui a une valeur indépendante du sysieme de
fonctions de base choisien raison de l'invariance de la trace, s’exprime
dans le systtme de base ol les matrices P et logP sont diagonales par

(%) S:——kNZpklogpk
k

de sorte que nous retombons sur Pancienne formule (3).
Nous allons chercher a déterminer le maximum de Ventropic quand
on suppose donnés le nombre N des systémes et la valeur E de leur
" énergic totale.
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Rappelons d’abord le calcul de ce maximum en Thermodynamique
statistique  classique, On peat écrire dlogP =0 avec les condi-
tions 8 N = o ¢t ok = o, ce qui conduit a introduire des multiplicateurs
de Lagrange o ¢t 3 ¢t a éerire
(9) o (logP —aN — 3E) =0,
soit, d'apres (4),
(10) »-—NESpi[logp[+1+a+fJEi]:o
t
L. X , .
pour toute variations des p; telles  que Zp,- reste ¢égal & 1
i
’ T2 W IR T Y
( car oLf ’—izhi oni— N Zh[ opi ) . On en déduit
i .

N i

(11) pi=e 4Bk

(Pest la loi classique de Boltzmann-Gibbs qui, compte tenu de la

.. 9 C .
condition Z]),-: 1, peut aussi 8’écrire
-

(22"
— B

2 e— BEr

k

(12) pi=

Si Pon compare cette expression avec la théorie des gaz parfaits, on
. 1 -
peul voir que = 7 o I' est la température absolue de I'ensemble
3
des N systémes supposée bien définie, par exemple par contact avec un
y pP » P piep

thermostat.

On trouve alors aisément pour I'entropie de la distribution la plus

probable (qui est presque toujours réalisée)

(13) S:—kNEpilogpz:/fN IogZe_‘?-F kT"l—E“ .
i &

i

i

E
Posons Z:Ee KT ¢’est la « somme d’états » de Planck. Nous

avons
. ,0logl
S = kN [logL—P_gé’—].
(14) dlog?Z
Jag
 F=E— TS =— ANTlogZ

L. bE BROGLIY, 8

E=—N
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comme expressions de entropie, de I'énergie et de I'énergie libre.

En Thermodynamique quantique de von Neumann, le calcul est tout
a fait parallele au précédent. On doit exprimer que Ientropie (7)
est maximum sous les condilions
(15) TrP =1, ., E=NE=NTr(PH)=const.,

ou H est la matrice hamiltonienne de I'un quelconque des N systémes.
On doit donc écrire

s SZPH logPrzr=o, avec 82P/¢k=0;
k k

( SZPk1H1k=O,
kL

d’out en introduisant les multiplicateurs de Lagrange o et 3,

(16)

(17) 5 ,Pkklongk+a82Pkk+ﬁBEPHH,k:o,
k k ki

ce qu’on peut écrire aussi

(18) EBPM[IogPM—c-I—f—za—BHM]+{128Pk11lk1=0,
k kol
relation qui doit étre vérifiée pour toute valeur des P I faut donc
que les systtmes soient dans des états propres de Y'énergie (Hy==o
pour k£ 1) et de plus que
(19) Pri= e~ 2= 3N,
avec, puisqueEPM: 1, e*“E e B —1. D'ouen posant Z(B)==Tre P!
k %

(20) e-fu o—fu

Z(E)

T Tre-pu
On démontre comme dans la théorie classique que B =

L
: AT
et Pon trouve pour létat le plus probable (en tenant comple

dlogZ 1 dZ I _8n
de 8% — ) e =— 7 TrHe ™)

T e
& S = G0 Tole- #1811 - togz)] = N [10gz - BT ]
dlogZ
:l{ ol — 3
(21) ¢ N[loo B 75 ]a
dlogZ
(E:NTr(PH):..N_%,
F=E— TS =—ANTlogZ.
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On retrouve donc les formules (14) de la Thermodynamique statis-
tique classique, mais avec une définition différente de Z. La for-
mule (20) nous apprend d’ailleurs que le poids statistique de état

B
quantifié W, d’énergic E; == H,, dans le mélange est ——g—L, ce qui
e—BE;
B
nous raméne bien a la loi canonique de Boltzmann-Gibbs.

2. Evolutions réversibles et irréversibles. — Les considérations
précédentes ont conduit M. von Neumann a distinguer a Péchelle
microphysique deux genres d’évolutions : les évolutions réversibles et
les ¢évolutions irréversibles résultant de la mesure.

L’évolution réversible d’un systeme ou d'un ensemble de systemes
est représentée par Pévolution entierement déterminée, de la fonction
d’onde du systéme ou de toutes les fonctions d’onde des systemes de
Pensemble. Si Pon a affaire aun cas pur et si W(o) est la forme
initiale de la fonclion d’onde, celle-ci évoluera suivant 'équation

by

22 3
(22 2Tt ot

ou H est Popérateur bamiltonien du systéme qui, s1 le systeme est
ic0lé, est indépendant du temps. On a donc

2R

t
(23) r(ty=e * (o),

w1 oKl n e
avec e 2.1 — (T tH> - Alors le cas pur initial reste un cas pur.

2T b3

o .. .
I’opérateur e *  a pour adjointe *  comme on le vérifie aisément

de sorte que son inverse coincide avec son adjoint : c’est donc un
opérateur unitaire conservant les traces des matrices, I'entropie S d’un
ensemble de N systtmes dans I'état W égale & — ANTr(P logP) reste
donc invariable au cours de évolution : le processus est réversible.

Considérons maintenant non plus un cas pur, mais un mélange de
cas purs. Chacune des fonctions W¥(¢) des cas purs évolue suivant
I'équation d’onde (22) ot H est 'opérateur hamiltonien de chacun des
systémes identiques considérés. Chacune de ces évolutions entiérement
déterminées est donc représentée par

2T

(24) Wiki(¢) = b WiK(0),
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¢est-d-dire par une transformation unitaire des Wt (o). L'évolution de
la matrice statistique sera donc donnée par

(25) P(t) =Y piPi(t)

ou, si Wi (£) =¥ e (¢) 1, par

/

(26} (PCO)m= P phef eyl (o).

.

N [ 3 o P
La trace de P, égale a Z‘pk2| () ]* est conservée par la trans-
k ‘

formation unitaire (25) des W qui conserve la norme de Wi, c’est-a-

dire Z}cif)(t) [*. Donc, ici encore, comme pour un cas pur, Uentro-
7

pie S du mélange reste invariable.

Les transformations irréversibles correspondraient, d’apres M. von
Neumann, a des processus non soumis au déterminisme qui se pro-
duiraient au moment des interactions de mesure. Linteraction duo
systtme ou du corpuscule étudi¢ 1 avec un apparcil de mesure 2
(ou dans notre présentation avec un corpuscule indicateur 2) corres-
pondrait & wune ¢volution déterminée et réversible du  systeme
global 142 jusqu’a ce que la constatation macroscopique de Pétat
individuel du systeme 2 par Pobservateur vienne interrompre cette
évolution par un processus qui, dans U'interprétation actuelle, n’est ni
réversible, n1 méme causal.

I26tat imitial du systéme 1 ¢tant un cas pur, tous les p; sont nuls
sauf un seul qui est égal a 1 : I'entropie S du systeme est alors nulle
et elle le reste tant que le systéme est isolé et évolue réversiblement.
Si l'interaction suivie de mesure avee le systeéme 2 transforme ensuite
Iétat du systéme 1 en un mélange, tous les p; deviennent inféricurs a 1
et entropie du systeme 1 devient visiblement positive.

Le processus de mesure est donc irréversible et s’accompagne d’une
augmentation de DPentropie. La chaine de V'évolution réversible est
rompue et 'on ne peut plus remonter par aucun moyen de Pétat qui
suit la mesure a celui qui I'a précédé,

M. von Neumann a aussi montr¢, par un raisonnement assez long,
que, st Iétat initial est déja un mélange, toute mesure qui modifie
effectivement ce mélange a pour eflet d’augmenter 'entropie.

La conclusion de M. von Neumann est que toule mesure augmente
Uentropie et a, par suite, un caractere irvéversible. Cetie irréversibilité
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est visiblement lice a Veflacement déja signalé des difiérences de
phase par la mesure et a I'impossibilité, qui en résulte, de remonter
de I'état existant apres la mesure a I'état qui existait avant la mesure.

3. Comment la théorie de la double solution devra interpréter l'irré-
versibilité résultant du processus de mesure. — [.’augmentation de
I'entropic provoquée par un processus de mesure élant lie & une
irréversibilité, quelle est Porigine de cette irréversibilité qui, dans une
théorie causale, ne doit pas résulter d’un indéterminisme ? Il semble
que, dans le cadre des idées que nous avons exposées, celle irréver-
sibilité doive ¢tre interprétée de la fagon suivante. Aprés la mesure, ou
bien l'onde w initiale s’est fragmentée en portions spatialement
séparées Ry, le corpuscule se trouvant finalement dans l'un de ces
trains d’ondes; ou bien le corpuscule se décrochant de londe u
initiale s’est finalement accroché, par un processus du type « aiguil-
lage », sur 'une de ces composantes ¢;. Dans un cas comme dans
Pautre, il n'y a plus apres la mesure d’interférences entre les compo-
santes o, de ¢ el les diflérences de phase entre ces composanies
n’interviennent plus. Sil'on admet ce point de vue, il apparail claire-
ment que Paugmentation de Pentropie de von Neumann lors de la
mesure n'est aucunement liée a une prise de conscience du résultat
de la mesure par 'obscrvateur, mais au fait objectif que le corpuscule,
par suite de 'action du dispositif de mesure, se trouve finalement étre
accroché & l'une scule des composantes ¢, dont la superposition
conslituail l¢ cas pur initial.

Nos idées sur les relations de 'onde u et de Ponde W nous permet-
tent de préciser davanlage. Pour représenter I'état des probabilités
aprés la mesure, le physicien sera amené a construire des fonctions Wy,
correspondant & « P'accrochage » du corpuscule sur chacune des com-
posantes ¢, de 'onde initiale. Si le résultat de la mesure n’est pas
connu, il devra pour représenter Iétat des probabilliés envisager un
« mélange » de ensemble des Wy avee des poids statistique pr=1{cy|?
égaux aux carrés des modules des cocflicients des ¢, dans l'onde
primitive. Mais dés que Pobservation d’un phénomeéne macroscopique
observable lui aura permis de connaitre le résultat du processus de
mesure, il ne devra plus conscerver que Pun des Wy qui constituera a
nouveau un cas pur. Alors les relations de phase entre les ¢, auront
disparu ¢t on ne pourra plus remonter du ¥ final au ¥ initial. Clest
pourquoi, dans lu théorie de von Neumann qui fait intervenir exclu-
sivement la fonction d’onde subjective W, Paugmentation de I'entropie
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par la mesure correspond & une perte de nos « informations » sur les
différences de phase quand nous passons du cas pur initial au mélange'
qut représente Pétat des probabilités apres la mesure quand on n’en
connait pas le résultat. Getle conception est en accord avee 'idée, bien
connue en Cybernélique, d’aprés laquelle I'information correspond a
une entropie changée de signe (neg-entropie) de sorte qu’une diminu-
tion de Yinformation a pour conire partie une augmentation de Pen-
tropie (Shannon, Léon Brillonin, ete.).

Malgre¢ le grand intérét des rapprochements qui ont pu étre faits
entre 'information et 'entropie (changée de signe), il semble certain
que l'entropie d’un systéme physique correspond a une siluation
objective et ne peut étre définie uniquement a partir des informations
(qui peuvent étre plus ou moins exacles) des observateurs. L’augmen-
tation d’entropie provoquée par la mesure doit, & notre avis, élre
ratlachée non pas au fait que 'observateur prend conscience du résul-
tat de la mesure, mais & un processus objectif qui provoque la
cessation des interférences entre les composantes de 'onde ¢ iniliale.
Dans la théoriec de la double solution ou I'évolution de 'onde w est
entitrement déterminée, les phases des composantes ¢, de ¢ gardent
une valeur bien définie mé¢me apres la fin du processus de mesure, mais
comme le corpuscule n’est plus alors accroché qu’a I'une des compo-
santes ¢; et que toute observation nous fournissant des connaissances
sur les phénomeénes microphysiques implique I'action localisée d’un
corpuécule, il n’y a plus aprés la mesure aucune possibilité de con-
naitre les phases des composanles autres que g;.

II serait trés intéressant d’analyser en délail I'interprétation par la
théorie de la double solution de 'augmentation d’entropie provoquée
par la mesure. Une telle analyse permetirait probablement de micux
comprendre le sens véritable de la Thermodynamique de von Neumann.



APPENDICE

LTUDE DU PASSAGE DE LA MECANIQUE CLASSIQUE
A LA MECANIQUE ONDULATOIRE SUR UN EXEMPLE PARTICULIER.

Nous allons, dans cet Appendice, étudier un cas expérimental précis
pour bicn montrer comment s’introduit, dans I'interprétation actuelle le
passage de la Mécanique classique a la Mécanique ondulatoire.

Nous envisagerons un « canon a électrons » dont le fond est formé par
une plaque P incandescente émettant des électrons devant laquelle est
placée une grille G portée a un potentiel électrostatique trés supérieur
a celui de la plaque.

-
|

1
Ell
i

OpF=-——n

Fig. 7.

Par 'embouchure E du canon a électrons sort donc un flux d’électrons
ayant sensiblement tous la méme ¢énergie W et formant un faisceau
parallele. Ce faisceau sera en Mécanique ondulatoire associé a un train
d’ondes ayant une section égale a celle de 'embouchure E et sensible-
ment assimilable & un morceau d'onde plane monochromatique de

h 3

fréquence v = w et de longueur d’onde } = —.
h P
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Dans la région R les élecirons passent dans un champ électrostatique
créé par des moyens humains et qui, par suite, varie trés peuil’échelle
delalongucur d’onde (quiest au plus de Pordre de ro™#cm). Nous savons
qu'il en résulte que I'onde associée a I'un des électrons se propage
suivant les lois de 'Optique géométrique, ce qui permet de définir
des rayons-trajectoires & la facon classique. Ayant traversé ce champ
statique, les électrons arrivent sur une plaque photographique IT ou
leurs arrivées s’inscrivent par des actions locales successives.

Nous allons ainsi supposer que nous disposons d’un « tamis» ‘I que
nous pouvons éventuellement placer sur Pembouchuare I du canon a
électrons. Ce tamis est percé de trous ¢gaux, extrémement rapprochés
et régulierement distribuds a sa surface, le diametre des trous Glant si
petit qu’ils nous apparaissent comme presque ponctuels et cependant
assez grand pour étre trés supérieur a la longueur d’onde .

Nous allons analyser la production du phénoméne observé sur la
plaque photographique, dans le cas ot il n’y a pas de tamis et dans le
cas ol le tamis est placé sur 'embouchure en adoptant successivement
le point de vue de la Mécanique classique, celui de Pinterprétation de
la Mécanique ondulatoire par la double solution et enfin celui de inter-
prétation usuelle de la Mécaniyue ondulatoire. Cette étude sera treés

instructive.
1. Point de vue de la Mécanique classique. — «. [.e tamis n'est pas
en place. — Par tous les points de Pembouchure du canon a électrons

passe une trajectoire possible qui est normale au plan de cette embou-
chure. Dans la région R, le champ statique courbe les trajectoires, ce
ui a pour elfet d’augmenter leur densité dans certaines régions et de
les raréfier dans d’autres régions. Il en résulte que le nombre relatif des
trajectoires traversant des aires ¢gales o du plan IT varie d’un point a
un autre de ce plan, d’ou des variations de 'impression photographique
sur la plaque. Dans la théorie d’Hamilton-Jacobi, les trajectoires sont
les rayons de la propagation d’une onde fictive a 'approximation de
I'Optique géométrique et il en résulte que la densité des trajectoires qui
viennent percer une aire de du plan Il entourant un point M doit varier
proportionnellement au carré de 'amplitude (M) de 'onde d"Hamilton-
Jacobi an point M, si toutefois on admet hypothese trés naturelle que
toutes les trajectoires sortant de I'embouchure du canon a dlectrons
sont également probables. L’expérience montre bien, en ecllet, que les
variations de 'iapression photographique sont proportionnelles & @* (M)
aux différents points M de la plaque.
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b. Le tams est en place. — Certaines trajectoires électroniques
vont étre arrétées par les parties pleines du tamis, d’auires passeront par
les trous du tamis. Comme ces trous sont trés rapprochés et unifor-
mément répartis 4 la surface du tamis, nous aurons un ensemble trés
dense de pinceaux de trajectoires ¢lectroniques qui s’échapperont des
trous du tamis. Chacun de ces pinceaux peut étre considéré comme un
pinceau de rayons de P'onde d’Hamilton-Jacobi : il en résulte encore que
la densité des trajectoires qui viennent percer le planIlde la plaque est,
¢n moyenne, proportionnelle a a2 (M) et, par suite, qu’il en est de méme
de 'impression photographique. Il n’y a donc aucune diflérence essen-
tielle entre le cas @ et le cas & quant a interprétation de la répartition
des impacts d’¢lectrons sur la plaque photograghique 1.

2. Point de vue de linterprétation de la Mécanique ondulatoire par
la théorie de la double solusion. — a. Le tamis n'est pas en place. —
Dans la théorie de la double solution, I'électron est un accident tres
localisé dans la structure d’une onde u objective & laguelle 'onde W doit
étre supposée, en dehors de cel accident, partout proportionnelle.
Chaque ¢lectron qui s’¢chappe du canon est done incorporé & un train
d’onde ¢ dont les dimensions transversales sont macroscopiques,
puisqu’elles sont égales aux dimensions de 'embouchure. Mais 'électron
aune position el une trajecloire bien déterminée au sein de I'onde et.
comme la trajecloire est délinie par la formule du guidage et que la
phase commune des ondes ¢ et W est égale a la fonction S de Jacobi,
I'on voit <puisqu0 [ %graﬁS) que les trajectoires possibles de
Pélectron coincident encore avec les rayons de 'onde d’Hamilton-Jacobi.
Ainsi bien qu’ici Pélectron ne soit plus congu comme un point matériel
isolé, mais comme un accident local incorporé a une onde, les trajectoires
des électrons sontles mémes qu’en Mécanique classique el linterprélation
des variations de I'impression photographique ala surface de la plaque I
reste la méme qu’en 1, «.

b. Le tamis est en place. — Ici, quand un dlectron sort du canon,
nous devons dire qu’un petit train d’ondes ¢ portant I'électron sort par
un des trous du tamis. Comme ces trous ont des dimensions trés petites
a notre échelle, mais trés grandes par rapport a la longueur d’onde,
nous pouvons considérer le train d’ondes sortant d’un des trous comme
coincidant avec un petit morceau de 'onde d’Hamilton-Jacobi. Et comme
sur la surface du tamis les trous sont trés nombreux el régulicrement
distribuds, la formule du guidage nous montrera encore que les trajec-
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toires des électrons coincident, comme en 1, b, avec un ensemble bres
dense de pinceaux de rayons de P'onde d’Hamilton-Jacobi. L'interpre-
tation de la répartition des impressions photographiques sur la plaque Il
sera donc encore exactement la méme ici qu'en 1, &.

3. Point de vue de l’interprétation usuelle de la Mécanique ondula-
toire. — a. Le tamis est en place. — Conlrairement & ce que nous
avons fait aux paragraphes | et 2, nous allons commencer par le cas
o le tamis est en place : ¢’est, en eflet, en ¢ludiant ce cas que nous
allons faire le raccord entre la Mcécanique classique et la Méca-
nique ondulatoire suivant une méthode fréquemment indiquée dans les
exposés usuels.

St le tamis ne comportait qu’un seul trou, Ponde W d’un électron une
fois sortie du canon se réduirait & un petit train d’ondes dont les
dimensions transversales seraient ndégligeables a notre ¢échelle, mais
cependant grandes par rapport a la longueur d’onde : ce petit train
d’ondes glisserait le long d’un des rayons-trajectoires de la théorie
d’Hamilton-Jacobi. L'interprétation usuelle nous dit alors que I'électron
n’est pas localisé dans le train d’ondes, qu’il est réparti statistiquement.
dans toute son étendue. Mais comme le train d’ondes est sensiblement
ponctuel a notre échelle, tout se passe pratiguement comme sil’¢lectron
était un point matériel décrivant I'une des trajectoires prévues par la
Mg¢canique classique. Clest ainsi que dans ce cas on la propagation de
I'onde est conforme a 1'Optique géométrique et ou la trajectoire cst
approximativement définie a notre échelle par le trou percé dans le
tamis qui recouvre 'embouchure du canon, nous pouvons faire le raccord
entre la Mécanique classique et la Mécanique ondulatoire. Mais ce
raccord dissimule une grande différence de principe puisque, dans
Pinterprétation usuclle de la Mécanique ondulatoire, le corpuscule n’est
plus rigoureusement localis¢ dans le train dondes : il n’y a plus de
trajectoire rigourcuscment définie, mais sculement un pinceau tres fin
de rayons-trajectoires d’Hamilton-Jacobi constituant une sorte de petit
tube troés délié ot le corpuscule est présent sans y étre localisé et gui, a
notre échelle nous apparait comme une ligne sans épaisscur. C’est une
sorte de « pseudo-trajectoire ».

Passons maintenant au cas ot le tamis est percé d’un trés grand
nombre de trous trés pelits et régulicrement distribués a sa surface.
Quand 'électron est sorti du canon, son onde W est constituée par un
tres grand nombre de pelits trains d’ondes sépards qui définissent un
faisceau trés dense de psendo-trajectoires. Il est aisé de se rendre compte



PASSAGE DE LA MI'ECANIQUE CLASSIQUE A LA MéCANIQUE ONDULATOIRE. 125

que la répartition sur la plaque photographique des intersections des
pseudo-trajectoires avec le plan II est toujours donnée par la fonc-
ton a2 (M). D’apres Uinterprétation usuelle, I'électron ne décrit aucune
de ces pscudo-trajectoires : il est réparti statistiquement, avec une égale
probabilité sur tout 'ensemble de ces pseudo-trajectoires. C'est 1a une
conceplion un peu étrange : ce qu'il est plus encore, c¢’est qu’an moment
ol se produit U'impression photographique locale, I'¢lectron choisit en
quelque sorte une de ces pseudo-trajectoires pour s’y localiser 'au point
ot elle perce le plan II. Malgré I'éirangeté de cette conception, elle
permet cependant encore de comprendre origine de la répartition
en a? (M) des impressions photographiques suar la plaque : cette répar-
tition provient, en effet, de la répartition des intersections des pseudo-
trajectoires avee le plan II.

b. Le tames rlest pus en place. — Glest le cas le plus intéressant.
Quand 1'¢lectron s’échappe du canon, il est alors associé & un train
L’ondes W dont la scction transversale a des dimensions macroscopiques,
celles de Pembouchure. Linterprétation usuelle de la Mécanique ondu-
latoire nous dil que I'électron est répandu statistiquement dans tout le
volume de dimensions macroscopiques occupé par le train d’ondes : il
n’est donc plus question de définir des trajectoires, ni méme des pscudo-
trajectoires. De nouveau, nous sommes amendés a dire qu’au moment ot
Pélectron produit ¢n un point de II une impression photographique
locale, 1l choisit brusquement la tres petite région ou il se localise,
conclusion qui, comme Einstein  Davait souligné autrefois, est en
contradiction avec la validité des notions habituelles d’espace et de
temps, méme & Péchelle macroscopique. De plus, pour étre en accord
avec l'expérience, nous sommes loujours obligés d’admetire que la
répartition des localisations photographiques sur la plaque Il est donnée
par la fonction « (M), mais ici cetle affirmalion ne peut aucunement se
justifier par la considération de Pintersection des trajectoires ou des
pseudo-trajectoires avee la plaque photographique puisqu’il n’y a plus
ai trajectoires, ni pseudo-trajectoires : elle devient donc un postulat
purement arbitraire.

Conclusion. —- De cetle analyse détaillée du dispositif expérimental
étudié, on peult tirer les conclusions suivantes, Peut-éire ne prouve-t-clle
pas d’une fagon rigoureunse la fausseté de l'interprétation actuelle de la
Mécanique ondulatoire, mais elle montre sans aucun doute pour le moins
que la lot de répartition des localisations corpusculaires en a?={W|? a
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dans I'interprétation de la Mécanique ondulatoire par la double solution
| comme en Mécanique classique une origine parfaitement intelligible
tandis qu’elle prend ' Vaspect d’un postulat entidrement arbitraire dans
Pinterprétation actuelle. Et, malgré tout, cela jette un certain doute sur
la validité de cette interprétation actuelle.
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