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PRÉFACE.

Le présent volume forme une sorte de complément de l’Ouvrage 
que j’ai récemment publié sur l’interprétation de la Mécanique 
ondulatoire par la théorie de la double solution (1). J’y reprends 
plus en détail certaines questions que me paraissent nécessiter un 
nouvel examen du rôle de la mesure en Physique quantique déve 
loppé d’une façon plus concrète et plus proche de la réalité expé 
rimentale qu’on ne l’a fait jusqu’ici.

Le plan de l’Ouvrage est le suivant. Après avoir, dans un 
premier chapitre, rappelé quelques principes bien connus de la 
Mécanique ondulatoire, j’expose dans les chapitres II et III la 
théorie de la Mesure due à M. J. von Neumann et, en reprenant 
des arguments développés naguère par Einstein et M. Schrô 
dinger, je montre que cette théorie, malgré le caractère élégant 
et en apparence parfaitement satisfaisant de son formalisme, 
conduit cependant à des conséquences très difficilement accep 
tables. Les difficultés qu’elle soulève proviennent, d’une part, du 
fait qu’en accord avec les idées actuellement dominantes elle 
n’admet pas la localisation permanente des corpuscules dans 
l’espace et, d’autre part, qu’elle envisage les processus de mesure 
d’une manière trop abstraite.

Après avoir résumé dans les chapitres IV et Y les conceptions 
fondamentales de la théorie de la double solution en y ajoutant 
quelques compléments qui n’avaient pas trouvé place dans mes 
exposés antérieurs, je reprends dans les chapitres VI et Vil 
l’étude des processus de mesure d’un point de vue plus concret. 
J’y introduis les idées essentielles que les trains d’ondes sont 
toujours limités et que nous ne pouvons faire d’observations ou

(1 ) Bibliographie [3 |-
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de mesures sur la réalité microphysique que par l’intermédiaire 
des phénomènes macroscopiques observables déclenchés par 
l’action locale d’un corpuscule. En ajoutant à ces remarques 
fondamentales l’idée de la localisation permanente des corpus 
cules dans l’espace telle qu’elle résulte de la théorie de la double 
solution, je montre qu’on obtient ainsi une image claire des 
processus de mesure qui ne soulève plus les mêmes objections que 
la théorie de von Neumann et de ses continuateurs.

Un dernier chapitre est consacré à un examen très rapide de la 
Thermodynamique de von Neumann et à son interprétation à 
l’aide des idées précédemment exposées.

Le but du présent Ouvrage est en somme de faire voir pour 
quelles raisons il me paraît nécessaire de rétablir l’image d’une 
localisation permanente des corpuscules microphysiques et pour 
quoi, redevenu conscient de cette nécessité, j’ai cherché dans ces 
dernières années à reprendre la tentative d’interprétation de la 
Mécanique ondulatoire que j’avais esquissée en 1927.

Septembre 1956.

Louis DE Br o g l ie



LA THÉORIE DE LA MESURE 
EN MÉCANIQUE ONDULATOIRE

INTERPRÉTATION USUELLE 
ET INTERPRÉTATION CAUSALE

CHAPITRE I.
RAPPEL DE GÉNÉRALITÉS SUR LA MÉCANIQUE ONDULATOIRE 

ET SUR LA MESURE.

1. Quelques principes connus de Mécanique ondulatoire. — L’inter- 
prélalion actuellement admise de la Mécanique ondulatoire suppose que 
l’on peut décrire d’une façon aussi complète que possible un corpuscule 
ou un système de corpuscules à l’aide d’une fonction d’onde W suscep 
tible d’ailleurs d’avoir plusieurs composantes comme dans la théorie de 
l’électron de Dirac ou dans celle des corpuscules de spin plus élevé. 
La fonction 'F est toujours supposée « normée » par la formule

(i) J [R’|2(* = I.

L’évolution de la fonction d’onde au cours du temps est régie par 
une équation aux dérivées partielles, l’équation des ondes, qui dans le 
cas le plus simple, celui d’un corpuscule sans spin à l’approximation 
non relativiste, est l’équation bien connue de Schrôdinger. Elle prend 
des formes plus compliquées pour les particules à spin (électron de 
Dirac par exemple) car dans ces cas elle devient en réalité un système 
d’équations aux dérivées partielles liant entre elles les diverses compo 
santes du VF. D’une façon générale, l’équation d’ondes avec des condi-

L. DE BROGL1E. 1



2 CHAPITRE I.

tions initiales et des conditions aux limites données détermine entiè 
rement l’évolution de la fonction V.

Oubliant complètement les origines de la Mécanique ondulatoire et 
les intuitions physiques sur lesquelles elle était fondée, la plupart 
des auteurs considèrent la fonction lF comme un simple instrument 
mathématique servant à prévoir les probabilités des divers résultats 
des mesures effectuées sur le corpuscule ou le système, cette fonction 
se trouvant (par hasard?) avoir la même forme que les ondes de la 
Physique classique.

Voici maintenant, brièvement résumés, les postulats qui constituent 
des sortes de « recettes » permettant d’utiliser la fonction TF, supposée 
connue, pour le calcul de la probabilité des mesures que l’on peut faire 
des grandeurs corpusculaires. On admet qu’à chacune de ces grandeurs 
correspond un opérateur linéaire et hermitien A dont l’équation aux 
valeurs propres
( 2 ) A ç = a 9

permet de définir un ensemble continu ou discontinu (ou même par 
tiellement continu et partiellement discontinu) de valeurs propres a et 
de fonctions propres cp(«) correspondantes. Les fonctions propres cp 
forment un système complet de fonctions de base orthonormales de 
sorte que l’on peut toujours écrire

(3) T = J' c(a)'cp (a )

ou plus simplement dans le cas d’un spectre discontinu

(4)
i

en numérotant par un indice les valeurs propres et les fonctions pro 
pres. Un formalisme mathématique comme l’intégrale de Stieltjes 
permettrait d’ailleurs de réunir les deux cas du spectre continu et du 
spectre discontinu en une seule formule. L’ensemble des valeurs 
propres de A forment le « spectre » de cet opérateur.

Le principe fondamental que l’on prend comme base est alors le 
suivant. Soit W la fonction d’onde d’un corpuscule (ou d’un système) 
sur lequel on veut effectuer, à l’aide d’un dispositif approprié, la 
mesure d’une grandeur A. On développera le 'F suivant les fonctions 
propres cp de l’opérateur A correspondant et l’on pourra affirmer que la 
probabilité pour que la mesure donne une valeur appartenant à un
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intervalle da est [c(a)[2 dot. Dans le cas d’un spectre discontinu, on 
dira plus simplement que la probabilité de la valeur a,- est donnée 
par [ a [-.

L’espérance mathématique de la valeur a, ou, si l’on veut, la valeur 
moyenne du résultat de la mesure de A effectuée sur un très grand 
nombre de corpuscules ayant la môme fonction ff" sera

( 5) _ À = |c,' [2a,- = J'tF* A *F dz.

i

Ces principes généraux appliqués à la mesure de la position d’un 
corpuscule donne le résultat suivant : la probabilité pour que les coor 
données d’un corpuscule soient trouvées comprises dans les inter 
valles x-^x-ydx, y-^y + dy, z^zy-dz, c’est-à-dire pour quele corpus 
cule se trouve dans l’élément de volume dz = dx dy dz est j W |'2 dx dy dz. 
Un énoncé analogue est valable pour la probabilité de la présence du 
point figuratif d’un système dans l’espace de configuration qui lui 
correspond.

Les énoncés relatifs à [ff’l2 (principe des interférences ou de locali 
sation) peuvent se déduire du formalisme général de sorte qu’au point 
de vue de ce formalisme, la probabilité de présence jWj2 paraît 
être sur le môme pied que n’importe quelle autre probabilité |c,-[2. 
L’ensemble de tous les développements possibles du V suivant les 
différents systèmes de fonctions propres cp,- correspondant aux diverses 
grandeurs mesurables apparaissent ainsi, du point de vue formel, 
comme entièrement équivalents. Cette idée qui sert de base à la 
« théorie des transformations » donne lieu à d’élégants développements 
mathématiques : nous aurons à en discuter la valeur physique.

Le postulat général admis plus haut relatif à la signification statis 
tique des | Ci |-’ entraîne, par des raisonnements que je ne reproduirai 
pas, la conséquence suivante : un même dispositif expérimental ne peut 
permettre de mesurer à la fois avec précision deux grandeurs A et B 
que si les opérateurs correspondants commutent, c’est-à-dire si 
l’on a ABcp = BAcp, quelle que soit cp. S’il n’en est pas ainsi, c’est-à- 
dire si en général ABcp^BAcp, alors tout dispositif expérimental de 
mesure permettant d’attribuer à A une valeur affectée d’une certaine 
incertitude laissera subsister sur la valeur de B une incertitude d’autant 
plus grande que la mesure de A aura été plus précise et inversement. 
L’exemple typique de deux grandeurs qui ne sont pas simultanément 
mesurables avec précision est fourni par tout couple de grandeurs « cano 
niquement » conjuguées au sens de la Mécanique analytique, comme



CHAPITRE I.

par exemple la coordonnée x d’un corpuscule et la composante px 
correspondante de la quantité de mouvement. Dans ce dernier cas les
opérateurs correspondants ^qui sont x et —sont le^s 

hque AB — BA = -—. et, par suite, ne commutent pas; on montre alors

que les incertitudes existant sur les valeurs de x et de px satisfont 
toujours aux inégalités d’Heisenberg

(6) Sx Spx h

et, par suite, ne peuvent jamais être simultanément nulles.
Il existe d’ailleurs des grandeurs qui, sans élre canoniquement 

conjuguées ne commutent cependant pas, par exemple les trois compo 
santes rectangulaires Mx, Mv, Mz du mouvement de la quantité de 
mouvement pour lesquels on trouve

MxMy— M yM \  ----- . M / ....
2ZI

et l’on montre alors que les incertitudes sur la valeur de deux de ces 
composantes ne peuvent pas en général être nulles simultanément.

On peut traduire ces résultats dans un langage un peu différent en 
disant que notre principe général fait correspondre à la valeur de toute 
grandeur physique mesurable une distribution de probabilité corres 
pondant à la forme du 'F. Dans le cas discontinu, les probabilités des 
valeurs a, sont P,= | c,-j3 et dans le cas continu la densité de probabilité 
sera p(«) = | c(«) |2. L’état d’un corpuscule (ou d’un système) étant 
défini par une certaine fonction *F, à l’ensemble des jgrandeurs physi 
ques mesurables correspondra un ensemble de distribution de probabi 
lité que la théorie actuelle considère (peut-être à tort, nous le verrons) 
comme intervenant exactement sur le même pied pour le corpuscule 
(ou le système) dans l’état IF.

On peut alors définir pour chaque distribution de probabilité une 
« dispersion » égale à la racine carrée du carré moyen de l’écart par 

rapport de la valeur moyenne. On pose donc pour cette dispersion

(7) cr(A)= v/(a — 5)°-=

On peut ensuite démontrer que l’on a pour deux grandeurs A et B

(8) t7(A)<j(B)^i| AB —BA|.

Si les opérateurs A et B commutent, le second membre de (8) est
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nul, ce que l’on interprétera en disant qu’on peut obtenir par une 
même opération de mesure des valeurs précises, donc à dispersion 
nulle, des grandeurs A et B. Si les opérateurs A et B ne commutent 
pas, le second membre de (8) donne une borne inférieure non nulle 
pour le produit des dispersions de sorte qu’aucune opération de mesure 
ne doit pouvoir fournir simultanément des valeurs précises pour A et 
pour B. Pour deux grandeurs canoniquement conjuguées, on

a AB — BA = ——. et l’on trouve
2 T. L

{S bis) 2(A)s(B)^^,
4

ce qui constitue une sorte d’énoncé plus précis des relations d’incer 
titude (6).

Avant de poursuivre l’étude des conséquences de ce formalisme, je 
voudrais insister sur ce qu’il a d’extrêmement abstrait. La fonction 
d’onde 'F est considérée comme une simple fonction mathématique 
solution complexe d’une équation aux dérivées partielles qui aurait, 
pour ainsi dire fortuitement, «la forme d’une équation de propagation 
d’ondes. En jetant un voile sur les considérations physiques qui 
m’avaient guidé au début de mes recherches et sur celles qui avaient 
été ensuite développées par M. Schrôdinger, on ne cherche plus à se 
faire aucune [image physique des rapports de l’onde et du corpuscule. 
On ne sait môme plus bien si Fonde W est autre chose qu’une expres 
sion mathématique permettant l’évaluation de probabilités et s’il lui 
reste quelque ombre de réalité physique. D’autre part, la considération 
simultanée de tous les développements de l’onde W et la mise sur le 
pied d’égalité de toutes les répartitions de probabilités qui s’en dédui 
sent a quelque chose d’étrange puisque l’on sait que chacune de ces 
répartitions n’aura une signification physique qu'après l’exécution de 
la mesure correspondante, mesure qui, nous allons le voir, modifie 
complètement l’état de chose initial. Évidemment on peut toujours 
dire que le physicien qui connaît le ¥ a le droit de s’en servir 
pour calculer les valeurs d’une grandeur physique qui sont les résultats 
possibles d’une mesure de cette grandeur et les probabilités corres 
pondantes. Mais les répartitions de probabilités ainsi obtenues n’ont 
qu’une valeur subjective et ne peuvent prendre une valeur objective 
qu’après l’exécution effective de la mesure entraînant l’intervention 
d’un dispositif approprié. Nous reviendrons plus tard sur ces questions 
qui restent assez obscures dans le formalisme actuellement utilisé et 
nous allons poursuivre l’étude des conséquences de ce formalisme.
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2. Réduction du paquet de probabilité. — Dans l’interprétation 
actuellement admise du formalisme exposé plus haut, la mesure joue 
un rôle qui, bien qu’un peu mystérieux, est essentiel. C’est elle qui, en 
nous apportant des informations nouvelles, change l’état de nos con 
naissances sur le système étudié et par suite, nous oblige à modifier 
brusquement la forme de l’onde *F qui représente nos connaissances 
sur le corpuscule (ou sur le système). Si, par exemple, la mesure est 
une mesure de position plus ou moins précise, le train d’ondes JF 
initialement associé au corpuscule se trouvera « réduit » à un train 
d’ondes moins étendu qui peut même être presque ponctuel si la 
mesure est précise, puisque la région où la probabilité de présence j'F2 ; 
est différente de zéro a diminué d’étendue. D’où le nom de « réduction 
du paquet de probabilité » donné naguère par M. Ileisenberg à cette 
modification du JF. Si la mesure consistait au contraire dans la déter 
mination de l’une des composantes de la quantité de mouvement px, 
c’est dans l’espace des moments qu’aurait lieu la réduction du paquet 
de probabilité puisque ce serait alors l’étendue des valeurs de px 
figurant effectiuemeut dans la représentation de Fourier de *F qui 
aurait diminué.

La question de la réduction du paquet de probabilité pose dans 
l’interprétation actuelle un problème difficile; est-ce l’action du dispo 
sitif de mesure qui modifie l’onde W ou est-ce la connaissance que nous 
acquérons des résultats de la mesure qui entraîne cette modification? 
Je ne sais pas si tous les auteurs qui adoptent l’interprétation proba 
biliste actuelle seraient d’accord sur la réponse à faire à celle 
question.

Les uns (et ce serait probablement le cas de M. Bohr) seraient 
soucieux de conserver un certain caractère de réalité physique à 
l’onde *F et diraient que c’est l’action de l’appareil de mesure sur 
l’onde JF qui provoque la réduction du paquet de probabilité. D’autres, 
peut-être plus logiques avec eux-mêmes, diraient que c’est la connais 
sance du résultat de la mesure qui nécessite la modification de l’onde 
puisque, tant que le résultat de la mesure ne nous est pas connu, ce 
sont les anciennes prévisions de probabilités correspondant à la forme 
primitive du JF qui pour nous restent valables pour faire des prévisions 
Mais si l’on adopte cette seconde opinion, l’onde W n’est plus qu’une 
représentation purement subjective des probabilités et ne peut être à 
aucun degré une représentation de la réalité objective. Comment alors 
se fait-il qu’elle obéisse à une équation de propagation d’ondes et que, 
malgré tout, elle fournisse une représentation statistique probablement



exacte de phénomènes dont la réalité objective ne saurait être mise en 
doute? La question reste vraiment obscure : nous y reviendrons.

La réduction du train d’ondes ¥ donne lieu à une situation nouvelle 
caractérisée par une nouvelle forme du 'F, situation cjui était imprévi 
sible à l’avance puisque seules les probabilités des diverses mesures 
possibles pouvaient être calculées avant une mesure effective. Nous 
aurons à nous demander si cette imprévisibilité résulte d’une réelle 
indétermination, comme on l'admet actuellement, ou au contraire 
de la valeur de certaines variables cachées comme le prétend la théorie 
de la double solution, question en relation étroite avec un théorème 
énoncé par M. von Neumann dans sa théorie de la Mesure en Mécani 
que ondulatoire.

Les relations d’incertitude de Heiscnberg montrent qu’un dispositif 
permettant d’effectuer simultanément des mesures diverses sur un 
corpuscule ne peut pas nous faire connaître à la fois avec précision la 
valeur de toutes les grandeurs caractérisant le corpuscule. Il y a donc 
une connaissance maximum incomplète de ces grandeurs qui est com 
patible avec les relations d’incertitude. Ayant acquis cette connais 
sance maximum, nous pouvons construire la fonction d’onde qui 
convient pour représenter nos connaissances immédiatement après la 
mesure et, à partir de cette forme initiale du *F, nous pourrions suivre 
son évolution ultérieure au cours du temps à l’aide de l’équation 
des ondes. Nous pourrons ainsi à tout instant calculer la probabilité 
des résultats des diverses mesures que l’on pourrait opérer à cet ins 
tant. Il en sera ainsi jusqu’à ce que nous connaissions le résultat de 
nouvelles mesures modifiant l’état de nos connaissances et inter 
rompant brusquement l’évolution régulière de l’onde L’évolution 
régulière de cette onde entre deux mesures, évolution réglée par l’équa 
tion d’ondes, est, elle, entièrement déterminée par la forme initiale 
du V (et éventuellement par les conditions aux limites) puisque l’équa 
tion d’ondes est du premier ordre par rapport au temps. Ainsi il y a 
déterminisme de l’évolution du *F entre deux mesures, mais non pas 
déterminisme des phénomènes observables puisque la connaissance 
de la fonction d’onde ne donne pour ceux-ci que des probabilités. Si la 
description de la réalité physique par la fonction W est une description 
complète, s’il n’existe pas de description plus complète introduisant 
par exemple des variables cachées, il n’y a pas de déterminisme des 
phénomènes physiques.

3. Effacement des phases par la mesure. Interférences des proba 
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8 CHAPITRE I.

bilités. — La mesure introduit une discontinuité dans l’évolution 
de la fonction d’onde : la connaissance de celle-ci après la mesure 
ne permet aucunement de remonter à la forme qu’elle avait avant la 
mesure.

Considérons un très grand nombre de corpuscules (ou de systèmes) 
se trouvant initialement dans le môme état représenté par le môme ff-. 
Mesurons pour chacun d’eux une certaine grandeur A de fonctions 
propres (fi et de valeurs propres ai. Après ces mesures, la proportion 
des corpuscules (ou systèmes) pour lesquels on aura trouvé pour A les 
diverses valeurs a; nous fourniront les carrés des modules des coeffi 

cients ci dans le développement de la fonction d’onde
/

avant la mesure. La connaissance des ff" pour tous les corpuscules (ou 
systèmes) après la mesure nous fournit donc les valeurs des [e/[, mais 
pour connaître les ci eux-mêmes, il nous manque la connaissance de 
leurs arguments, donc des phases relatives des composantes cifi de la 
fonction d’onde initiale.

C’est cette remarque qui a amené M. Bohr à souligner que toute 
mesure a pour conséquence d’élfacer complètement les phases. C’est 
cet effacement des phases par l’acte de mesure qui fait que celui-ci 
constitue une coupure dans l’évolution du ffé En effet, les dilférences

de phases entre les composantes du développement ’̂ cioi ont une
/

importance capitale et toute connaissance relative à la fonction d’onde 
qui ne comporte pas la connaissance de ces différences de phase est 
radicalement incomplète. Cette importance des phases va se manifester 
clairement à nous dans l’étude du phénomène de l’interférence des 
prohabilités.

Considérons deux grandeurs A et B dont les opérateurs ne commu 
tent pas et qui, par suite, ne sont pas simultanément mesurables. Les 
valeurs et fonctions propres de A sont a, et cp,-, celles de B sont p/( et y/c. 
On démontre aisément que, A et B ne commutant pas, le système 
des cp,- ne peut pas coincider avec celui des yj. Cependant, comme 
les y_k forment un système complet, chaque cp, peut s’exprimer à l’aide 
des y/i sous la forme

(9) ?ï=2*i*X*>
k

les su; étant les éléments d’une matrice unitaire S. Dans ce développe 
ment figurent en général plus d’un terme au second membre puisque
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le système des cp, et celui des yj; ne coïncident pas. Supposons alors 
que l’état du corpuscule (ou système) examiné soit représenté par la 
fonction d’onde
(io) 'F=^ Cl yj.

i ik

Si alors on mesure la grandeur A, on trouve l’une des valeurs 
propres a./, la probabilité de trouver xj étant a priori |cy|-. Après la 
mesure, le corpuscule (ou système) se trouvera dans l’état œ,- et, dans 
ce nouvel état, une mesure de B conduit à la valeur (3* avec la probabi 
lité | su; [-. Ainsi la probabilité de trouver la valeur (3 4 pour B en mesu 

rant d’abord A, puis B, sera égale à ^ ] a ]- j sa,- j2.
i

Mais supposons maintenant que nous ayons effectué la mesure de B 
directement sur l’état initial. Alors d’après la forme du dernier membre 
de (10), le principe général relatif aux probabilités des résultats de 
mesure nous apprend que la probabilité de trouver (34 est égale

2. Cette expression est entièrement différente de la précé 

dente parce qu’elle dépend des phases (ou arguments) des c; et des se 

niors que ^ | Ci |2 ] s i 4 [2 visiblement n’en dépend pas. C’est là ce qu’on

nomme « l'interférence des probabilités ».
Illustrons ceci par un exemple simple. Prenons un domaine à une 

dimension de longueur L. Dans ce domaine, les fonctions propres

normées de la quantité de mouvement sont 0,= — e h ■ Soit alors

(11)
tr e,----i—Pi.-c

t/L

la fonction d’onde du corpuscule dans son état initial. Si l’on mesure 
d’abord p, puis x, la probabilité de la position x = x0 sera

ou simplement J > ce qui exprime l’égale probabilité de toutes les

positions sur le segment de longueur L.
Mais si, au contraire, on mesure directement la coordonnée x dans 

l’état initial, la probabilité de la valeur x = x0 sera |lP(.T,ü)j2 et elle

2
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fait intervenir l’interférence des ondes planes dont la superposition 
constitue le 'F, résultat qui est nécessaire pour rendre compte des 
interférences en Optique et de la diffraction des électrons. L’on voit 
donc que l’interférence des probabilités, dont l’existence est nécessaire 
pour l’interprétation des faits expérimentaux, dépend essentiellement 
des phases dont le rôle se montre ainsi capital.

Le fait que la probabilité de la valeur |3k de B mesurée directement

dans l’état initial soit V Ci SU; et non ^ | Ci [- | s,/; j2 pourrait au

premier abord paraître contraire au théorème des probabilités com 
posées, mais en réalité il n’en est rien : la probabilité ^ J c, j- ! s,•/• [- est

bien celle que l’on doit attendre quand on fait d’abord la détermination 
de A, puis celle de B, puisqu’elle est égale à la somme des produits de 
la probabilité pour obtenir d’abord une valeur a, pour A par la probabi 
lité d’obtenir ensuite la valeur |3/; pour B. Le théorème des probabilités 
composées est donc sauf et, si l’on envisage les probabilités uniquement 
au point de vue subjectif, on peut due qu’il n’y a aucune raison pour la
probabilité ^ j c,-1- j su; [- soit égale à celle d’obtenir directement la

valeur |3h de B par une mesure de celte grandeur dans l’état initial. 
Mais, si l’on analyse bien cette idée, l’on voit que toutes les répartitions 
de probabilité introduites par la théorie usuelle (sauf, sans doute, 
le j W j - ) n’existent dans l’état initial que subjectivement pour le 
physicien qui veut faire des prévisions sur le résultat des mesures pos 
sibles; ces répartitions n’existent objectivement qu’après que la mesure 
correspondante a été effectuée quand on ignore encore le résultat 
de cette mesure. C’est cette circonstance qui expliquera plus loin 
pourquoi le schéma de l’interprétation probabiliste usuelle de la Méca 
nique ondulatoire n’est pas en accord avec le schéma habituellement 
admis par les statisticiens.

4. Divergence entre le schéma statistique de la Mécanique ondula 
toire et le schéma usuel des statisticiens. — Dans le schéma usuel des 
statisticiens, que nous exposerons en supposant que l’on a affaire à des 
variables continues), on définit pour chaque variable aléatoire X une 
densité de probabilité px(a?) telle que p\(x) dx soit la probabilité pour 
que X ait une valeur comprise entre x et x -H dx. Pour une autre 
variable aléatoire continue Y, on définira de même pY(y).

On définit ensuite une densité p(x, y) telle quep(tr, y) dx dy soit
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la probabilité d’obtenir par une môme opération de mesure (les statis 
ticiens disent souvent par une môme épreuve) des valeurs de X et Y 
composent respectivement dans les intervalles x-^-x-y dx et,y-> y-y dy. 
Cette définition paraît toute naturelle si l’on adopte une image concrète 
de la probabilité en se figurant des « individus » pour chacun desquels 
les grandeurs X et Y ont une valeur déterminée, la statistique s’intro 
duisant par la considération simultanée d’un très grand nombre 
d’individus pour lesquels X et Y ont des valeurs différentes.

En dehors de px(a?), py(y), et p(x, y), les statisticiens considèrent 
aussi la densité de probabilité de Y liée par X, p:'Y](x, _p)qui corres 
pond à la probabilité d’obtenir la valeur y de Y quand on sait que X 
a la valeur x et l’on définit de même la probabilité de X liée par Y à 
l’aide de pT(x, y)-

Maintenant l’on doit avoir entre les cinq densités de probabilité 
que nons venons de définir les relations suivantes que l’on considère 
comme évidentes :

(12)

Px <>, y)

k(x> yîdy->

p(-r> y)

P v(r)= J o(x,y)dx,

x / \ p(cT, y)py (x, y) = -i v ; y ypxO)P y  (y)

d’où l’on tire

<i3) px(>-j= J Px 1 (x, y) pv (jk  ) dy, ?y (j ) = f Py"' (x, y) px(«) dx.

Or h: fait essentiel est que le schéma précédent, habituellement 
considéré par les statisticiens comme allant de soi, n’èst pas applicable 
aux répartitions de probabilités envisagées par l’interprétation actuelle 
de la Mécanique ondulatoire. En effet, il est en général impossible de 
définir pour deux grandeurs mesurables la densité p(x, y~) puisqu’il 
est en général impossible de mesurer simultanément la valeur des gran 
deurs X et Y. Les formules ( 12) n’ont donc plus de sens ici. Sans doute 
il est toujours possible de définir les densités px(,3?), pY(y), Px](x, y) 
et p!y '(x, y), mais elles ne sont plus reliées par les formules (12) 
et (13).

Reprenons comme exemple le cas précédemment examiné de deux 
grandeurs mesurables A et B non commutantes et récrivons les for 
mules (9) et (10) en passant du cas discontinu au cas continu. Nous 
avons

( 14) ?(«) = j •«(«, ?)X (?)<#> /„(?) = j *-*(«, 3) ?(a) dx.
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Si V est de la forme

(i5) a, \i ) ’/ C'}) dx d'j,

on trouve

( 16 ) Pa(«) = ! c(a) I2

la seconde formule exprimant l’interférence des probabilités, puis

mais ici les produits p„([3) px^a, j3) et pA(a) pîjA!(a, (3) n’ont aucune 
raison d’étre égaux, ce qui montre bien l’inexistence de la densité p(a, (3) 
qui devrait être égale à leur valeur commune.

D’où vient ce caractère particulier, assez étrange, des distributions 
statistiques de la Mécanique quantique actuelle? La réponse paraît être 
contenue dans le rôle essentiel qu’j joue la mesure. Les distributions 
de probabilité de la Mécanique quantique actuelle (à l’exceptton peut- 

être do quelques-unes d’entre elles) ne constituent pas des probabilités 
objectives pouvant être considérées comme correspondant toutes, à un 
même instant, à une collections d’individus pour lesquelles les gran 
deurs auraient des valeurs bien déterminées. L’bjpolbèse implicite, 
qui pour le statisticien rend « évidentes » les relations (12) et ( 13 ), 
11’est pas ici réalisée.

C’est seulement après l’action du dispositif de mesure d’une gran 
deur sur le corpuscule (ou sur le système) que la répartition de proba 
bilité peut être considérée comme réalisée objectivement; pour parler 
plus exactement, si l’on imagine que la mesure d’une certaine grandeur 
est effectuée simultanément sur une infinité de corpuscules (ou de 
systèmes) ayant initialement la même fonction VF, c’est seulement après 
l’exécution de la mesure sur tous ces corpuscules (ou systèmes) que 
l’on a réellement une collection d’individus possédant chacun une 
valeur précise de la valeur mesurée, ces valeurs étant réparties suivant 
la loi de probabilité en |c a |'2. Et encore faut-il bien remarquer que la 
loi de probabilité en J c/f |2 ne se trouve ainsi réalisée objectivement par 
un collectif que pour la grandeur mesurée et celles qui commutent avec 
elles, à l’exclusion des autres. Dans l’état initial, quand aucune mesure 
n’a encore été effectuée, le physicien, s’il connaît la fonction d’onde, 
peut calculer les diverses répartitions de probabilité qu’il peut ensuite 
se décider à mesurer; mais chacune de ces répartitions ne pourra se
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trouver ainsi réalisée et correspondre à un collectif qu’après l’exécution 
de la mesure correspondante. Jamais toutes les répartitions ne pourront 
se trouver à la fois réalisées puisqu’on ne peut pas mesurer simultané 
ment toutes les grandeurs et que, pour mesurer deux grandeurs non 
commutantes, il faudrait employer deux dispositifs de mesure qui sont 
incompatibles.

Certes le physicien a toujours le droit de considérer simultanément 
avant toute mesure l’ensemble des distributions de probabilité qui 
peuvent se déduire des différents développements du W initial, mais 
ces probabilités ont alors un caractère subjectif et ne sont pas des 
probabilités objectives statistiquement réalisées par un même collectil 
d’individus. Si donc on veut raisonner sur l’ensemble des distributions 
de probabilité correspondant à une forme donnée de la fonction d’onde, 
on ne devra jamais supposer que toutes’ ces distributions ont, avant 
toute mesure, la nature de probabilités objectives correspondant à un 
même collectif d’individus. C’est cela qui empêche, nous l’avons vu 
d’attribuer aux distributions de probabilité de la Mécanique ondula 
toire usuelle les propriétés (12) et ( 13 ) qui sont évidentes pour des 
probabilités objectives se rapportant à un collectif d’individus à carac 
téristiques bien déterminées. C’est, pensons-nous, pour la même raison 
que le célèbre théorème de M. von Neumann dont nous parlerons 
bientôt n’est au fond qu’un truisme et ne prouve nullement l’impossibi 
lité de rétablir le déterminisme en Mécanique ondulatoire par l’intro 
duction de variables cachées.



CHAPITRE II.
LA THÉORIE DE LA MESURE D’APRÈS M. VON NEUMANN (A-

1. Cas purs et mélanges. — Reprenons d’abord quelques considéra 
tions sur F interférence des probabilités. Soit un très grand nombre 9Z 
de corpuscules (ou de systèmes) qui ont tous la même fonction d’onde HA 
A étant une grandeur physique mesurable de valeurs propres a* et de

fonctions propres cp/-, si l'on u lF ='Vc/(<p/(, la mesure de A doit conduire

à trouver pour | c\ j'- 9Z systèmes la valeur , pour j c2 DZ systèmes 

la valeur a2, etc. La valeur moyenne de A sur^| c* j2*/,-
t

Imaginons maintenant qu’au lieu d’avoir 9Z systèmes dans le môme 
étal, nous ayons jci|2 9Z dans l’état cp1; ( c2 |2 9Z systèmes dans 
l’état ©2, etc. Alors la mesure de A nous donnera les mômes résultats 
statistiquement que dans le premier cas. On pourrait donc croire que 
les deux cas sont équivalents, mais nous allons voir qu’il n’en est rien.

Considérons en effet une grandeur physique mesurable B qui ne 
commute pas avec A. Les fonctions propres de B de coïncident pas avec 
celles de A et si (3/, et yk sont les valeurs propres et les fonctions propres

de B, on aura tp/-=^dkiyj, le développement contenant en général
l

plusieurs termes. Envisageons d’abord le premier cas, celui où nous 
avons DZ systèmes tous dans le môme état

R' =2ct- ,ckd/,/yj-
k kl

Alors la mesure de B pour tous ces systèmes donnera DZ 2 Ckdkl fois

(') Voir bibliographie [1], [21.
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la valeur [31 et la valeur moyenne de B sera

(O

avec

B = y, Ck d/c

k

'?i= f

kl

■Ri?) — D/u —=/riB,, ch.

Plaçons-nous ensuite dans le second cas où nous avons SX, | c4 j2 
systèmes dans l’état çn. La mesure de A sur les St \ |- premiers 
systèmes donnera la valeur (3; pour une proportion de ces systèmes 
égale à j du |-, etc. Au total, la valeur pi de B sera obtenue

in^\ckp\dktp
k

fois et par suite la valeur moyenne de B sera

(2)
kl k

avec
B'fi =J d~-

On voit ainsi que, pour toute grandeur qui ne commute pas avec A, 
les deux cas envisagés sont tout à fait différents. Dans le premier, il y a 
interférence des probabilités, dans le second cette interférence n’a pas 
lieu. On ne peut donc pas considérer que les 9Z systèmes forment un 
collectif comprenant St ] c1 |2 individus ayant pour A la valeur etc. 
D’ailleurs, il est évident qu’il serait tout ainsi légitime de considérer 
les 3Z systèmes comme formant un collectif comportant 9Ï-1 di |-

systèmes ayant la valeur (3j pour B, avec etc. et ce second
k

collectif ne coïnciderait pas avec le premier. Nous ne pouvons donc pas 
considérer l’ensemble des SX, systèmes comme formant un collectif bien 
déterminé puisque ce collectif varierait suivant la grandeur envisagée. 
Nous retrouvons là l’idée que nous avions précédemment mise en 
lumière : les probabilités envisagées en Mécanique ondulatoire usuelle 
ne sont pas des probabilités objectives correspondant à un collectif 
unique réalisé dans l’état Pour distinguer le cas où la répartition de 
probabilité pour une grandeur A n’a qu’une valeur subjective avant 
la mesure de celui où, après la mesure, cette répartition est réalisée,
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M. von Neumann dit que le premier cas constitue un « cas pur » tandis 
que le second constitue un « mélange ».

Sans faire intervenir un acte de mesure, on peut imaginer ffli systèmes 
ayant une fonction d’onde systèmes ayant une fonction
d’onde ff’i-’1, etc. L’ensemble de tous les d'i systèmes forment alors un 
« mélange » de cas purs correspondant à ff-*1), de Sfti cas purs 
correspondant à vF(-’), etc. Nous retrouverons le second cas étudié au 
début du paragraphe en prenant = d'i ) c4 j2, .... Si nous

ex posons = pi, nous aurons un « mélange » défini par l’ensemble des

« poids statistiques » pk avec^/>4 = i.
_ k

Si nous posons C/,-= \Jpk e,%l, nous voyons que les pk = j c4. |2 sont les 
poids statistiques du mélange qui est équivalent, en ce qui concerne la 
mesure de A, au cas pur ff". Mais ce mélange n’est réalisé qu’aprôs la 
mesure qui transforme le cas pur initial en ce mélange. Le mélange 
équivalent au cas pur *F pour la mesure d’une grandeur B non commu- 
table avec A ferait intervenir des poids statistiques différents des précé 
dents et ne serait réalisé que par une mesure faisant intervenir un 
dispositif d’un type différent. C’est pourquoi on ne peut pas réduire un 
cas pur à un mélange déterminé.

Nous avons vu que pour le cas pur 'F, la valeur moyenne de B était 
donnée par la formule (i). Si l’on remplace ce cas pur par le mélange 
qui se trouve réalisé par la mesure de A, la valeur moyenne de B est 
donnée par la formule (2). Il est facile de préciser en quoi diffèrent les 
deux expressions ( 1 ) et (2). La formule ( 1 ) peut s’écrire

(3; 5 =^\ck\.\ci\
kl

Si l’on suppose tout à fait inconnues les phases a* (arguments des a*) 
avec égale probabilité de leurs valeurs possibles, la valeur moyenne de 
l’expression (3) s’obtiendra en faisant une moyenne sur les valeurs des ak 
supposées toutes également probables. Les termes où ky^l donneront 
zéro et nous retrouverons l’expression (2). Autrement dit, on passe du 
cas pur lF au mélange réalisé par la mesure de A en supposant que cette 
mesure a fait perdre entièrement la connaissance des phases ak. Nous 
retrouvons bien ici la conclusion que la mesure de A effectuée sur l’état

initial représenté par *F =^c/, o/; a pour effet d’effacer complètement les
k

différences de phase existant entre les composantes 04 du 'F initial.
L. DE DROGUE. 2
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Finalement, nous avons obtenu une idée nette de la différence entre 
un « cas pur » défini par une fonction d’onde 'F et un « mélange » formé 
par un ensemble de cas purs de fonctions d’onde ffA, . . . affectés de 
poids statistiques pl, p2, ....

2. La matrice statistique de J. von Neumann pour un cas pur. —
Envisageons d’abord un cas pur défini par une fonction d’onde de forme 
donnée. Cette fonction peut être considérée comme un vecteur dans 
l’espace de Hilbert. Si 91, cp2, .... 9,,. ... est un système complet 
orthonormé de fonctions de base (par exemple les fonctions propres d’un 
opérateur A linéaire et hermitien), les 9, peuvent être considérées comme 
formant un système complet de vecteurs unitaires dans l’espace de 
Hilbert et l’expression *F ='V'c/( 9/,- sera analogue à l’expression d’un

k

vecteur à l’aide de ses composantes sur des directions orthogonales 
définies par des vecteurs unitaires. On peut dire que les C/,- sont les 
composantes du W dans le système de base des 9/,. L’espace de Hilbert 
que nous considérons est un espace complexe et les composantes ck sont 
en général complexes.

Soient alors deux vecteurs de l’espace de Hilbert.

'I' c/, z-k et /_ dk ~.k.
k k

Par définition, leur produit scalaire est (D étant le domaine de variation 
des variables des 9)

(4) (»F./J= / W-Ld-

et l’on a
(5)

2ici ^ij' =2C/* ^/5/'/=^i' ; <4

= or. /j*;

on a bien ainsi la généralisation pour des vecteurs complexes de l’expres 
sion classique du produit scalaire.

Le produit scalaire d’un vecteur *F par lui-même, analogue au carré 
de la longueur d’un vecteur ordinaire, est appelé la « norme » de 
ce vecteur et a pour valeur

(6) N(T) = (tr.F ) = f \W |« d-: =V ! c, j*.
T-

Si le vecteur est normé, on a 

N ('!’) = 1 et
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Dans l’espace de Hilbert, un opérateur correspond à l’opérateur qui 
fait passer d’un vecteur à un autre. y = AV définit ainsi l’opération qui 
fait passer de V à ^ et l’on a

C) a 2ic*9*’ '
t k

d’où, en multipliant par 9* et en intégrant dans D,

( « ) d/==^ckSl) °*'A d~ a’k Ck-

Les aj/;, éléments de la matrice engendrée par A dans le système des 94-, 
sont donc les coefficients de la transformation linéaire qui fait passer des 
composantes de V à celle de y. La conservation de la norme impose que 
la matrice a soit unitaire.

V étant de nouveau la fonction d’un « cas pur », envisageons dans 
l’espace de Hilbert l’opération « projection sur le vecteur V ». Soit Pij,* 
l’opérateur correspondant. Il est évident que Pîp= Piy et plus générale 
ment que Pijr = Pii’. Toutes les puissances de P étant identiques, on dit 
que cet opérateur est « idempotent ».

Soit alors un système complet de fonctions de base ortho 
normées ®!, . . ., cp„, .... Nous avons pour le 'F un développement

V =V ex-?*, avec ck = ( 9* V dx et 'V. | ct. |*= 1.

k 'D

On peut évidemment trouver une infinité de systèmes de base ortho 
normés dont le V soit l’un des vecteurs de base. Dans l’un de ces 
systèmes, la fonction 94 aura un développement de la forme

(y) 9* = dxY -1-..., avec d — / V*9*d~ = c\.

L’opérateur Pijr qui est le « projecteur » sur V est défini par 

Do) rk = dr = c|V

pour tout 94. La matrice engendrée par l’opérateur Pip dans le système 
de base des 9/; a pour élément d’indices m, n

Ainsi la matrice Pijr attachée au cas pur considérée s’exprime à l’aide 
des coefficients du développement du V dans le système de base utilisé. 
On a ainsi défini ce que M. von Neumann appelle la « matrice statis-
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tique » attachée au cas pur W : la formule (11) rend visible que cette 
matrice est hermitienne.

La matrice statistique possède deux propriétés fondamentales : 

i° Sa matrice est égale à i. En effet,

(12) TrPiF=2(Pï'),m=2lC’‘Cn= i;
n n

2° Elle est idempotente. En effet, on a

( I 3 ) ( P ÿj* /nn — CmCp . C p Cn — C m Cn — ^ ] j j ;. J ,n n ,
v

d’où, en matrice, Pip = Pip et, par récurrence, Pij,’ ==Pip.

Soit maintenant une grandeur A du système considéré. Les 9/, étant 
des fonctions de base orthonormées quelconques (ce ne sont plus ici les 
fonctions propres de A), nous avons vu que la valeur moyenne de A 
était

04) A=2c‘c'Ai?)
kl

les Aétant les éléments de la matrice engendrée par l’opérateur A dans 
le système des wk et c<, étant la composante du ff; suivant o/,. On peut 
aussi écrire

(i5) A =^(Pvr)«A£i = Tr(P,r A) = Tr(A P,r).
kl

Ainsi la connaissance de la matrice statistique nous fournit un moyen 

simple de calculer A.
La matrice statistique d’un cas pur est souvent nommée « matrice 

statistique élémentaire » (einzelmatrix) par opposition aux matrices 
statistiques plus générales que nous allons rencontrer plus loin en 
étudiant les mélanges de cas purs.

Une matrice statistique élémentaire peut être aisément mise sous la 
forme diagonale. Il suffit pour cela de prendre comme système de base 
un système où le W considéré soit l’une des fonctions de base, par 
exemple 91 = *E. La matrice statistique élémentaire prend alors la forme

I O O O 
O O O O ...

(16)
0 0 0 0
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Tous les termes sont nuis sauf le premier terme diagonal qui est égal à i : 
ceci résulte aisément de (11). La trace de la matrice statistique est un 
invariant pour les changements de fonctions de base par suite d’une 
propriété connue des transformations unitaires : elle doit donc être égale 
à i comme le montre le tableau (16). Ce tableau permet aussi de vérifier 
immédiatement que la matrice statistique est idempotente.

3. La matrice statistique pour un mélange de cas purs. — Nous allons 
maintenant considérer un mélange de cas purs. Nous avons déjà défini 
un tel mélange en considérant D'L systèmes dont d'Cpi sont dans

l’état W*11, dZp2 dans l’état W1-1, . . ., avec^yt/, = i. Mais nous pouvons
k

aussi introduire l’idée de mélange pour un seul système. 11 se peut, en 
effet, que nous ignorions la forme exacte de la fonction d’onde d’un 
système et que nous sachions seulement qu’il a une probabilité pi 
d’être dans un étal 'F'11, une probabilité yt2 d’être dans un état V'-’1 etc.,

n

une probabilité p„ d’être dans un état W1"1 avec^ /;/,■ = i. L’état de nos
1

connaissances sur le système est alors représenté par un mélange de cas 
purs avec les poids statistiques y;/,-.

Chacun des cas purs du mélange a sa matrice statistique élémen 
taire Pip i . Nous attribuerons au mélange une matrice statistique hermi 
tienne

n

<17) P=2iÂ/*IVt’
1

avec
n

O») P lm=^JkPkC'll)C,,^\
1

où les poids statistiques pa - sont des nombres positifs compris entre o 
et 1 et dont la somme est égale à 1. Les c^! sont les composantes des 
divers lF</f) dans le système de base <pt, ..., cp„. La matrice statistique (17) 
apparaît ainsi comme une superposition de matrices statistiques élémen 
taires.

Comme exemple, supposons que l’on ait pris comme fonctions de base 
les fonctions propres relatives à la position <5(<y— q'), S étant la fonction 
singulière do Dirac. La formule

t)=f t)S(q — q')dq'(19)
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montre qu’alors les c'"ik) sont égaux à (q', t) et l’on trouve pour les 
composantes de la matrice statistique

H
( 20) P(q, q") ='Sii PkxV{k](q’) xY'l,t(q").

1

C’est, là la matrice statistique de Dirac.
La valeur moyenne d’une grandeur mesurable A du système est

U
(21) A =2,

1

A\jr> étant la valeur moyenne qu’aurait A si le système était dans l’état 
pur ^L*41. D’après ( 10) nous obtenons alors

= Tr(PA) = Tr(AP).

La formule est donc la même que pour un cas pur.
La matrice statistique d’un mélange, comme celles d’un cas pur, a 

toujours sa trace égale à 1, car

n n

(23) TrP=2P«»«=2 ^lkPlc[iuc'^' I c“! l‘= K
nt m l 1 m

Par contre, tandis que la matrice d’un cas pur est toujours idempo- 
lente, il n’est pas de même pour la matrice statistique d’un mélange. On 
peut, en effet, démontrer que toute matrice statistique idempotente est 
élémentaire. Pour celà, on admet que P3 = P et l’on écrit P sous forme 
diagonale, ce qui est toujours possible. Si pi est le ilfcmc élément 
diagonal de P, la relation P2 = P exige que l’on ait p: = pi et les />,• 
sont donc nuis ou égaux à 1. L’équation TrP == 1 satisfaites par toutes 
les matrices statistiques montre alors qu’un seul des pi est différent de o 
et égal à 1. Le système a alors un *L unique qui se confond avec l’une 
des fonctions de base qui ramène P à sa forme diagonale. Donc la condi 
tion nécessaire et suffisante pour qu’une matrice statistique soit idempo 
tente est qu’elle soit élémentaire.

Considérons maintenant la matrice statistique non élémentaire d’un
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mélange. Si les lF1'), lFl2>, . . ., 1'“ définissent les cas purs qui figurent 
dans le mélange étaient orthogonales (ce qui ne peut arriver qu’excep- 
lionnellemenl), on pourrait les prendre comme les n premières fonctions 
de base d’un système orthonormé. Alors c;*’= ô/,m, puisque W!,,') se 
réduit à cp/,- et P/„, est nul pour l m tandis que les P/,/,- sont égaux aux pi, 
pour k et nuis pour k > n. La matrice statistique prend alors la 
forme diagonale suivante :

1>\ o o o ...
o p-1 o o ...

o 0 o Pn • ■ ■
o o o o ...

Mais c’est là un cas exceptionnel. En général les fonctions xFll:, .... ipon 
ne sont pas orthogonales. On peut cependant, même dans ce cas, 
ramener la matrice P à la forme diagonale, mais les éléments diago 
naux pk ne sont plus égaux k pt, o, o, .... La matrice P étant
hermitienne, les p]. sont des nombres réels. De plus, comme TrP = i,

on aV//, = i. Nous allons montrer que les pk ne peuvent être négatifs.
k

Pour cela, les ?/, étant les composantes d’un vecteur Z dans l’espace de 
Hilbert, considérons le produit scalaire de Z par PZ. Il a pour valeur

». )l

(aà ) (S.PS) =2 =^Jki>k ' (3*WI}
nui i 1

Le carré d’un module étant forcément positif ou nul, nous voyons que 
le produit scalaire (a5) est nécessairement positif ou nul. Or, si nous 
mettons P sous sa forme diagonale, ce produit scalaire a pour expression

(26) (3.PH)=2p»-IUIs
)».

qui doit être Xo et ceci quel que soit Z. Donc les pm doivent tous être 
positifs ou nuis. Comme leur somme est égale à i, on a o ^pm^z i- On 
en lire pm—y/,;’^ o, d’où pour un vecteur Z quelconque de l’espace de 
Hilbert

O 7) (ï.(1> — P2) 3) =2 p’ih) | LIA».
m

k. Irréductibilité des cas purs. — Nous arrivons maintenant à un
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théorème qui joue un grand rôle dans la démonstration par laquelle 
M. von Neumann a voulu établir l’impossibilité d’expliquer le caractère 
probabiliste actuel de la Mécanique ondulatoire à l’aide de variables 
cachées.

L’importent théorème en question s’énonce comme il suit :

Il est impossible de représenter un cas pur sous la forme d'un 
mélange, ou encore : Un cas pur n'est jamais réductible ci une super 
position de cas purs.

11 établit donc le caractère véritablement spécifique des cas purs.
En effet, si ce théorème n’était pas vrai, il devrait être possible, au 

moins dans certains cas, d’obtenir une relation de la forme

(28) I^Vcc-Q,.,

P et les Q, étant des matrices statistiques élémentaires, c’est-à-dire des 
matrices hermitiennes, idempotentes et de traces 1 et les «, des nombres

positifs tels quc^«,= 1. Or on aurait alors

(29) P2— Qr _l_2'■ 2Q/ -l~ bVQi)
i i-rj 1

= 'y ai Q i l [Q;? -H Q; — (Qi— Q/)-]
i i . /

= 2 T ^ + “‘'2 ^ ~(
; | J i>j

i>i

car^T o l  ;= 1 — y.o Donc on aurait
i •• ï

(3o) )’2—r = Va,(Q? — Q,-)—V ceayPL— Q, )-•
■*T ■ “i

1 ‘>J

Mais P-’ = P et Or = Q,-, d’où

( 31 ) "V ot Oj (Qi — Q/)2 = o

et, puisque tous les a,- sont positifs,

(32) (Qi— Q/)2 = o.
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Or le carré d’une matrice hermitienne ne peut être nul que si la matrice 
elle-même est nulle : en effet, si A est une matrice hermitienne, les 
éléments de A2 sont

(a-)ik = ^ ana-ik =

i l

et si les (a2),/ sont nuis, on doit avoir aussi^ | <2,7 |2 = o, ce qui exige
1

que a,v = o et, par suite, A = o.
Q,— Qy étant une matrice hermitienne, la condition (32) 

entraîne Q/= Q/. Tous les Q,- seraient les mêmes et l’on aurait

P =^|a;Qi= Qi, puisque ~^«f = 1.
i i

Dès lors P ne serait pas vraiment une somme de matrices statistiques 
élémentaires, ce qui serait contraire à l’hypothèse.

Il est donc bien prouvé que les cas purs sont irréductibles et ne 
peuvent jamais être ramenés à des mélanges de cas purs. Le cas pur de 
la Mécanique ondulatoire possède donc les deux propriétés suivantes : 
i° Il est représenté par une matrice statistique élémentaire (idempo- 
tenle) alors que tout mélange a une matrice statistique qui n’est pas 
élémentaire (non idempolenle) ; 20 II ne peut par aucun moyen être 
ramené à un mélange de cas purs.

5. Les lois statistiques de la Mécanique quantique seraient impossibles 
à interpréter par l’introduction de variables cachées. — En Physique 
théorique classique, chaque fois que l’on devait faire intervenir des 
probabilités au lieu des lois rigoureuses, on supposait toujours qu’il 
existait un déterminisme des phénomènes, mais que ce déterminisme était 
trop compliqué ou trop subtil pour que nous puissions le suivre en 
détail, les apparences observables étant d’ordre staListique et s’exprimant 
pour celle raison par des probabilités. Les lois de probabilité et le hasard 
qu’elles semblent faire intervenir ne seraient pas la preuve d’une 
véritable contingence, mais le résultat de noire incapacité à suivre un 
déterminisme trop fin ou trop compliqué. C’est là la définition du hasard 
que l’on trouve sous la plume de tous les savants avant le développement 
de la Mécanique ondulatoire et, en particulier, dans les œuvres de 
Henri Poincaré.

L’exemple le plus connu d’une telle théorie pseudo-statistique en 
Physique est la théorie cinétique des gaz. On y admet que les mouve 
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ments des molécules des gaz ainsi que leurs chocs mutuels sont régis 
par les lois rigoureuses de la Mécanique classique de sorte qu’il y a un 
déterminisme sous-jacent. Mais les molécules sont tellement nombreuses, 
leurs mouvements sont si compliqués que nous ne pouvons aucunement 
suivre dans ses détails ce déterminisme élémentaire : d’ailleurs les 
mouvements moléculaires échappent complètement à nos sens et nous 
ne pouvons prévoir que des effets macroscopiques de ces mouvements 
tels que pression, température, fluctuations locales de densité ou 
d’énergie, agitation brownienne d’un granule visible due au choc irré 
gulier des molécules, etc. Ces phénomènes macroscopiques résultant 
d’un nombre énorme de phénomènes élémentaires compliqués nous 
semblent relever d’une théorie statistique faisant intervenir uniquement 
des probabilités, mais cette intervention du hasard n’est qu’une appa 
rence et par exemple les mouvements désordonnés d’un granule dans son 
agitation brownienne nous apparaîtraient régis par un déterminisme 
rigoureux si nous savions calculer tous les mouvements des molécules 
du gaz ambiant et leurs chocs avec le granule.

Puisque cette élimination du hasard au profit d’un déterminisme 
sous-jacent avait réussi en Physique classique, il pouvait paraître 
tentant de l’introduire en Physique quantique. Nous avons trouvé en 
Mécanique ondulatoire des lois de probabilité : ne pourrait-on pas 
supposer qu’elles résultent de notre ignorance d’un déterminisme 
caché ? Si l’on réussissait dans cette entreprise, on aurait une fois de plus 
éliminé l’indéterminisme et maintenu la conception classique du hasard : 
si, au contraire, l’on échouait, il faudrait abandonner le déterminisme 
et admettre une contingence absolue des phénomèmes microphysiques. 
Pour employer le langage de M. von Neumann, dans le dernier cas la 
Mécanique ondulatoire serait une théorie « véritablement statistique ». 
Or M. von Neumann a cru pouvoir trancher définitivement la question 
en démontrant un théorème dont il pensait pouvoir déduire l’impossibi 
lité de ramener les lois de probabilité de la Mécanique ondulatoire à un 
déterminisme caché.

Pour établir sa démonstration, M. von Neumann est parti des 
remarques suivantes :

Admettre un déterminisme sous-jacent, c’est admettre l’existence de 
variables dont nous ignorons les valeurs exactes (paramètres cachés) 
telles, par exemple, que les positions et les vitesses des molécules d’un 
gaz et les probabilités s’introduisent alors par suite de notre ignorance 
de ces paramètres cachés. Dans une théorie déterministe à paramètres 
cachés, l’état réel d’un gaz par exemple est à chaque instant entièrement



déterminé : toutes les molécules du gaz ont des positions et des vitesses 
bien définies et, si nous connaissions tous ces paramètres, nous pour 
rions représenter l’état du gaz par un point dans l’extension-en-phase. 
Mais nons ignorons la valeur exacte des paramètres cachés et, pour 
représenter les apparences statistiques globales seules accessibles à nos 
sens, nous envisageons un « mélange » d’états élémentaires avec des 
poids statistiques convenablement choisis. Les états élémentaires formant 
le mélange correspondent à des valeurs bien déterminées de toutes les 
grandeurs : ils sont donc indécomposables et aussi « sans dispersion », 
car toute grandeur A ayant une valeur bien définie est égale à sa valeur
moyenne et la dispersion <j — \/a 2—(A)2 est nulle, ainsi d’ailleurs que 

toutes les différences A"—(A)" .
En d’autres termes, toute théorie statistique déterministe à paramètres 

cachés introduit un collectif portant sur des individus pour lesquels 
toutes les grandeurs qui les caractérisent ont des valeurs bien déterminées 
et sont par suite exemptes de dispersion. Les dispersions n’apparaissent 
que pour le collectif dans son ensemble. Dans ces conditions, les distri 
butions de probabilité valables pour le collectif doivent satisfaire au 
schéma usuel des statisticiens que nous avons étudié précédemment. Or 
nous savons que ce n’est pas le cas des distributions de probabilité de la 
Mécanique ondulatoire usuelle et l’on peut se croire déjà autorisé à en 
déduire que la Mécanique ondulatoire ne peut pas être interprétée par 
une théorie déterministe à paramètres cachés.

M. von Neumann a retrouvé ce résultat par la voie suivante : Il part 
de la remarque qu’une théorie statistique ne peut se ramener à un schéma 
déterministe à paramètres cachés que si les distributions de probabilité 
apparaissant dans cette théorie peuvent toutes se ramènera des mélanges 
d’états élémentaires indécomposables et sans dispersion. Il a démontré 
que ce n’était pas le cas des distributions envisagées en Mécanique 
ondulatoire en s’appuyant sur le théorème suivant :

Les états que l'on rencontre en Mécanique ondulatoire ne sont 
jamais sans dispersion.

Autrement dit, pour aucun état réalisable, on ne peut avoir pour toute 
grandeur mesurable A2 = (A)2.

Eu réalité, la démonstration belle, mais un peu lourde, de 
M. von Neumann ne nous apprend rien de bien nouveau. Dès que l’on

connaît les relations d’incertitude sous la forme u{x) a{px)é^t -—■> l’on
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sait déjà que, pour les distributions de probabilité de la Mécanique 
ondulatoire usuelle, toutes les grandeurs ne peuvent pas être sous 
dispersion.

Mais suivons le raisonnement de M. von Neumann. Nous avons vu que 
tout état (qu’il soit mélange ou cas pur) est caractérisé par une matrice 
statistique hermitienne et de trace égale à i telle que la valeur moyenne 
de toute grandeur dans cet état soit donnée par la formule (i5). Donc, 
pour qu’un état soit sous dispersion, il faudrait que l’on ait pour toute 
grandeur A
(33) Tr(PA2) = [Tr(PA)p.

Soit maintenant un système complet cp4, o2, p;, ... de fonctions
de base orthonormées. Considérons dans l’espace de Hilbert l’opérateur 
qui projette tout vecteur de cet espace sur le vecteur cp,-. Ce projecteur 
est un opérateur Ps. hermitien linéaire et nous pouvons prendre A = IA.. 
Si l’état était sans dispersion, il faudrait avoir en particulier

(31) Tr(PP|;) = [ Tr( PPcp;)l'2.

Mais, comme on a P|.= P3 , il vient

(33) Tr ( Pf’cpi) = [Tr(PPçi)]2.

Or
(36) Tr(PP?i)=2(PP?i)i*=2/?2-PP?.rW-

k k 11

et comme Pc <p/;= o,-*cp,-, on obtient finalement

(37) Tr( PP?i) = V fn p ?/ ch Sa = f ?* Pc, (h = Vu.
*'D A)

Cette trace devant être égale à son carré, ou P ,7 = i ou P,-, — o. El ceci 
doit être vrai pour tous les indices i, car nous pouvons raisonner de 
même pour tous les Pœ.. Mais on pourrait supposer que certains P,,- sont

égaux à i et d’autres à o et pour satisfaire à la relation^P„ = i, il
i

faudrait alors que tous les P,-,- soient nuis sauf un. Mais cette dernière 
hypothèse peut être rejetée car nous pouvons faire varier d’une façon 
continue le système des fonctions de base orthonormées dans l’espace de 
Hilbert par une opération qui correspond à une rotation des axes dans 
cet espace fonctionnel. Nous pouvons ainsi faire venir successivement 
coïncider, par une opération continue, chacun des axes primitifs avec
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les autres axes. Au cours de cette opération, chacun des P,7 doit varier 
d’une façon continue et, comme ils ne peuvent prendre que les valeurs o 
et 1, ils doivent garder leurs valeurs initiales. Donc, ou bien les P,7 sont 
tous égaux à 1 ou bien ils sont tous égaux à o. Or aucune de ces deux

hypothèses n’est compatible avec^jrP,7 = 1, car^P,,- serait infinie dans
i i

un cas et nulle dans l’autre.
Finalement il ne peut exister aucune matrice statistique P acceptable 

qui corresponde à une absence de dispersion pour toutes les grandeurs 
et M. von Neumann en a conclu qu’il est impossible de rendre compte 
des distributions de probabilité de la Mécanique ondulatoire par un 
déterminisme caché.

6. Critique de la conclusion précédente. —Après y avoir longuement 
réfléchi, je pense maintenant que la démonstration de M. von Neumann 
n’a pas la portée qu’il lui a attribuée. Elle montre bien que les distribu 
tions de probabilité de la Mécanique ondulatoire usuelle ne sont jamais 
toutes à la fois sans dispersion, qu’elles ne peuvent pas par suite corres 
pondre à un collectif d’individus à propriétés bien déterminées. Mais 
celà nous l’avions déjà constaté et ce résultat est d’ailleurs contenu dans 
les relations d’incertitude.

Quant à en déduire l’impossibilité d’interpréter la Mécanique ondula 
toire par un schéma déterministe à variables cachées, c’est une autre 
affaire. Nous l’avons déjà dit, les distributions de probabilité en | c* |2 ne 
sont en général réalisées apx'après l’exécution de la mesure correspon 
dante. Comme les dispositifs de mesure pour les diverses grandeurs sont 
en général incompatibles, on n’a a priori aucune raison de s’attendre à 
ce que toutes les distributions de probabilité en |c/(|2 correspondant à 
un même collectif et, en fait, celà n’est pas. Mais rien n’empêche 
d’imaginer qu’en introduisant des variables cachées, on puisse définir 
des distributions de probabilité, cachées elles aussi, qui dans l’état 
initial, avant l’exécution de toute mesure, correspondrait à un collectif 
unique et permettrait d’obtenir un schéma déterministe. Ces distributions 
de probabilité existant dans l’état initial avant toute mesure resteraient 
cachées parce qu’en général l’exécution de la mesure d’une grandeur A, 
en agissant sur le système étudié, ferait disparaître cette distribution de 
probabilité cachée initiale et ferait apparaître celle que l’on considère 
habituellement. Nous verrons que cette hypothèse parfaitement admis 
sible est celle qui correspond à l’interprétation causale de la Mécanique 
ondulatoire à l’aide des idées de double solution ou d’onde pilote et nous
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l’étudierons plus loin en détail. En dernière analyse, le célèbre théorème 
de M. von Neumann ne me parait pas avoir la portée qu’on lui avait 
attribuée et ne me semble pas constituer un obstacle insurmontable à 
l’édification d’une interprétation déterministe de la Mécanique ondula 
toire introduisant des variables cachées.



CHAPITRE III.
LA THÉORIE DE LA MESURE D’APRÈS M. VON NEUMANN {suite).

1. Généralités sur la mesure. — Comme nous l’avons vu, la mesure 
joue un rôle essentiel dans la Physique quantique. Ce rôle est, en effet, 
tout à fait différent en Microphysique de ce qu’il était en Physique 
macroscopique classique. En Physique classique, la mesure, du moins 
quand elle est effectuée avec des précautions convenables, est une simple 
« constatation » qui précise nos connaissances sur la réalité objective 
sans troubler appréciablement celle-ci. Les états élémentaires réels étant 
supposés parfaitement déterminés, toute ignorance de notre part se tra^ 
duirait par des probabilités portant sur un mélange avec des poids statis 
tiques convenables des divers états élémentaires et les mesures étaient 
considérées comme susceptibles de diminuer notre ignorance ou même 
de la supprimer en nous faisant connaître un état élémentaire parfai 
tement déterminé (par exemple un corpuscule avec les valeurs exactes 
des grandeurs de position et de mouvement qui le caractérisent).

Les distributions de probabilité qui se présentent en Physique clas 
sique ont donc toujours le caractère de mélanges d’états élémentaires où 
toutes les grandeurs ont des valeurs déterminées (c’est-à-dire de collec 
tifs portant sur des individus dont toutes les caractéristiques ont des 
valeurs bien définies). La mesure est alors supposée nous faire connaître 
la valeur réelle d’une grandeur telle qu’elle existait objectivement avant 
la mesure et, si la mesure est bien faite, sans la modifier apprécia 
blement.

Il en est tout autrement dans la théorie quantique. Ici le maximum de 
nos connaissances sur un système est réalisé quand nous pouvons le 
considérer comme un cas pur, c’est-à-dire lui attribuer une fonction W 
bien déterminée. Dans cet état de connaissance maximum, il nous est
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impossible de préciser la valeur de toutes les grandeurs du système 
puisqu’aucun dispositif expérimental ne peut nous les fournir toutes à 
la fois. Au cas pur ff-, correspondent des distributions de probabilité 
(qui, en principe, ne seraient réalisées qu’après l’exécution de la mesure 
correspondante) comportant des dispersions non nulles pour certaines 
grandeurs. Une nouvelle mesure effectuée ensuite ne peut nous fournir 
au mieux qu’un nouveau cas pur comportant lui aussi des dispersions 
non nulles pour certaines grandeurs : elle augmente notre connaissance 
de certaines grandeurs, mais de telle façon que notre connaissance 
optimum de l’état du système reste toujours représentée par un cas pur 
avec des dispersions. De plus, la mesure n’augmente aucunement notre 
connaissance de l’état du système antérieur à la mesure car elle crée 
par son action sur le système un, état entièrement nouveau.

Je pense que ce sont là des résultats de la Physique quantique qui 
ont un caractère définitif, mais, contrairement à ce que l’on admet, ils 
n’entraînent pas du tout l’impossibilité de maintenir l’idée classique 
d’individus, de corpuscules, pour lesquels toutes les grandeurs ont des 
valeurs déterminées. On peut imaginer, nous le verrons, que dans tout 
cas pur il existe un collectif unique donnant des répartitions de proba 
bilité pour toutes les grandeurs et satisfaisant à toutes les règles habi 
tuelles de la statistique [avec l’existence de p(x. y)]. Seulement ces 
répartitions de probabilité ne sont pas en général celles qu’on envisage 
d’ordinaire en Mécanique ondulatoire, car chacune de celles-ci n’est 
réalisée qu’aprôs l’exécution de la mesure correspondante. Les répar 
titions que nous introduirons ne peuvent pas être mises en évidence 
puisque, pour le faire, il faudrait exécuter des mesures et que toute 
mesure, par l’action qu’elle exerce sur les objets qui lui sont soumis, 
change en général les répartitions de probabilité. C’est finalement pré 
cisément le rôle nouveau joué par la mesure en Microphysique qui nous 
permettra d’imaginer sans contradiction des répartitions de probabilité 
qui restent cachées. Nous reviendrons sur cette question.

Faisons encore une remarque importante sur laquelle nous aurons 
aussi à revenir. Un dispositif de mesure, portant sur des individus 
microphysiques, comporte nécessairement l’apparition d’un phénomène 
macroscopique observable déclenché par un individu microphysique. Il 
faut bien qu’il en soit ainsi puisque la mesure ne peut résulter que 
d’une observation faite par le physicien. Ainsi, dans une chambre de 
Wilson, l’observation d’une trajectoire corpusculaire, qui peuL per 
mettre soit une localisation, soit l’évaluation d’une énergie ou d’une 
quantité de mouvement, résulte d’un phénomène de condensations de
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gouttelettes observable macroscopiquement qui est déclenché par 
l’action ionisante du corpuscide en mouvement. Il en est de môme poul 
ies enregistrements photographiques où l’action élémentaire d’un cor 
puscule (pholon ou particule chargée) déclenche un phénomène chi 
mique observable macroscopiquement. Celte remarque très importante 
nous servira ultérieurement pour reprendre sur des bases nouvelles la 
théorie de la Mesure.

d. Statistique de deux systèmes en interaction d’après M. von 
Neumann. —- Reprenons les analyses de M. von Neumann et considérons 
deux corpuscules ou deux systèmes de corpuscules intervenant dans une 
mesure. M. von Neumann dit que le premier est le « système étudié » 
et le second « l’appareil de mesure ». Nous aurons à critiquer ces déno 
minations, mais passons.

Soient uk(x) un ensemble de fonctions propres orthonormées pour le 
premier système, v0(y) un ensemble analogue pour le second système. 
Quand les deux systèmes sont isolés l’un de l’autre (état initial), leurs 
fonctions d’onde 'Iq et 'Fn évoluent séparément conformément à l’équa 
tion d’ondes correspondante et l’on peut poser

m u/,(./.■), d’n — dp(t) vp(x).
k , p

Le système 1 étant évidemment dans un cas pur reste dans ce cas pur. 
Le système total, dont l’hamiltonien II est alors la somme des hamil 
toniens II4 •+- If2 dos deux systèmes, a pour fonction d’onde

(■>■) d'(.r. y, t) = t)Wn(j, t) =^ck(t) dp(t) uk(x)v9(y).
k. p

Mlle représente un cas pur du système qui subsiste tant que l’interaction 
n’est pas commencée.

Quand l’interaction commence, il s’ajoute aux termes IL+Ho de 
l’hamiltonien global un terme d’interaction II,- qui dépend des coor 
données x cl y des deux systèmes sous une forme qui n’est pas sim 
plement additive. Alors la fonction d’onde du système global cesse d’ôtre 
le produit d’un uk(x) par un i’p(y), mais comme les produits uk(x) v?(ÿ) 
continuent à former un système de base complet et orthonormé pour 
l’ensemble des variables x et y, on pourra écrire

(3) y, t) uk(x) v?(y),

L. DE RROdLIE. 3
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mais les C/,p ne sont plus de la forme Ci;dp. Comme nous avons toujours 
pour le système total une onde W évoluant suivant une équation jd’ondes, 
l’état du système total reste toujours un cas pur. La matrice statistique 
correspondante est donnée par

(4j FVp./d — fh-p G/c t .

Remarquons qu’il faut ici deux indices pour représenter un étal du 
système global. Portons maintenant notre attention sur le système I et 
envisageons une certaine grandeur A de ce système telle que la matrice 
correspondante soit définie par

(5) A/-/= / u\{x)A u,(x) dx.
■Ji)

La valeur moyenne de A pendant l’interaction est

(6) A = f rAÏVT = yc|pC/(, f u% A «/ dx fi’;^dy=y\cl0Cl,Au-
1 D kTia JD ' 11

Or la matrice statistique du système I pendant l’interaclion devra être 
telle que
(7) \ Tr P, \ ,

ce qui conduit à écrire

(8) (Pi)//=^C/pCx*p.

On trouvera de même pour la matrice statistique du système II,

(9 ' ( Pu ,)(Tp — G/-f7 b^-p‘
k

La matrice statistique P du système total est hermitienne, de trace 
égale à i et idempotente comme on le vérifie aisément sur (4) en tenant 
compte du caractère orthonormé des produits ty,/,(x) cr>(y) : c’est donc 
une matrice statistique élémentaire. Il n’en est pas de môme des 
matrices Pj et PJ( qui permettent le calcul de la valeur moyenne des 
grandeurs pour l’un ou l’autre système. Ce sont bien des matrices her 
mitiennes de trace i, mais elles ne sont pas idempotentes. Donc les 
statistiques des systèmes I et II considérés séparément ne sont plus des 
cas purs, mais des mélanges.

Pour préciser la composition de ces mélanges, reprenons la for 
mule (3). Pour une valeur donnée de l’indice p, nous avons dans le
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développement (3) une somme de termes de la forme

rp(.K)^jCx-p(t) uk(js), avec ^ [ Cx, |2 = i.

X k p

On peut donc dire que pour une valeur donnée de o (c’est-à-dire pour 
un certain état du système II), le système I a une probabilité propor 
tionnelle à j G/,p |2 de se trouver dans l’état k : en valeur absolue, cette 
probabilité sera égale à j C)pl [' si l’on pose

Cf =

de façon à avoir ^ j G/ j2 = i.
k

On pourra alors écrire

C*p

(P.^^pGfC'?’-,

avec

/

et Tou trouverait de mémo

<o> (Pn)pa=2^CpiiCÿ •*,

Pk =2 I

Les matrices l-*, et P„ apparaissent donc bien comme définissant des 
mélanges avec les poids statistiques pp etpk respectivement.

Ainsi, tandis que le système total reste dans un cas pur malgré l’inter 
action, chacun des deux systèmes partiels considéré isolément est trans 
formé par l’interaction de cas pur en mélange. Et M. von Neumann 
ajoute: « Tandis que la connaissance du système global reste maximum, 
celle des deux systèmes composants cesse d’être maximum. Chaque 
système partiel peut être considéré comme se trouvant dans un cas pur 
que nous ignorons, le mélange représentant cette ignorance. Une simple 
constatation pourra alors suffire à lever cette ignorance en nous faisant 
connaître le cas pur effectivement réalisé. »

avec

i î i i c{;] =
y i u-* i
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En étudiant la forme des matrices statistiques P, et P„, on constate 
que, pour chaque système, le mélange est déterminé par les états de 
l’autre système. C’est ce qui se traduit par exemple dans la formule (i i) 
par le fait que la somme dans le second membre porte sur un indice p 
qui concerne le second système. C’est en constatant l’étal du deuxième 
système (c’est-à-dire la valeur de p effectivement réalisée) que nous 
pourrons dire quel cas pur il faut attribuer au premier. Mais, et c’est 
un point capital insuffisamment mis en relief dans la théorie de 
M. von Neumann, pour constater l’état du second système, il faudra que 
celui-ci déclenche un phénomène macroscopique que nous puissions 
observer directement. C’est un point qui nous apparaîtra plus clairement 
quand nous reprendrons la question d’une manière plus physique.

3. La mesure d’une grandeur dans le formalisme de M. von Neumann.
— Nous venons d’étudier l’interaction de deux systèmes, mais pour que 
cette interaction puisse nous fournir la mesure d’une grandeur du pre 
mier système, il faut que le résultat de l’interaction soit d’un type 
particulier. Autrement dit, n’importe quelle interaction ne peut pas 
servir à la mesure d’une grandeur du premier système. Nous avons vu, 
en effet, qu’en constatant macroscopiquement l’étal du second système 
après la mesure, on peut en déduire que le premier se trouve dans un 
certain cas pur. Mais, comme dans un cas pur une grandeur physique 
n’a pas en général une valeur précise, nous n’obtiendrons pas ainsi en 
général une mesure de la grandeur qui nous intéressait.

Soit A la grandeur physique du premier système que nous désirons 
mesurer. Prenons pour fonctions de base du premier système les fonc 
tions propres de A. Pour que l’interaction avec le second système puisse 
servir à mesurer A, il faut qu’il existe une grandeur B du second sys 
tème telle que, vp(y) étant les fonctions propres de B, le 'P du système 
total soit après l’interaction de la forme

(15) 1F=2g *p “*(•*) fo(y),

ko

avec C*p= C/fÔAp, c’est-à-dire que l’on ait

(16) T=2C kUk(x)»k{y).
k

On peut alors établir une correspondance biunivoque entre les v et 
les u ou, si l’on préfère s’exprimer autrement, entre le phénomène
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observable déclenché par le second système et la valeur de A pour le 
premier. Nous reprendrons ultérieurement ce point en détail d’une 
façon qui le rendra beaucoup plus clair.

Calculons P, cpiand (16) est réalisée. Nous avons

et

(18) C°=2|C/P|2=2|S?,C/|2=iC?!2’
l l

d?où
(19) (pi)^=2f,PC/flcifi*=2i^P8'tP§f = hipk = I Cj-12,

Pj est donc une matrice diagonale dont les termes diagonaux sont 
les | C4-12. On voit aisément qu’il en est de môme pour Pj, qui est iden 
tique à Pj.

On a donc ainsi ün mélange d’états correspondant chacun à une valeur 
de at/; et à une valeur de (3/; qui se correspondent biunivoquement, la 
probabilité de la paire de valeurs otk, (3/f étant | C/; |a. La constatation de 
la valeur (3* de B par un phénomène observable déclenché par le second 
système permet alors d’attribuer à A la valeur ak : il y a donc réellement 
« mesure ». La constatation que nous devons supposer résulter d’un 
phénomène macroscopique que l’on peut observer ou enregistrer précise 
notre connaissance de A en nous montrant qu’elle est, dans le mélange 
provoqué par l’interaction, la valeur de A qui se réalise effectivement.

Examinons dans quelles conditions l’hypothèse faite sur la forme (16) 
du *F peut se trouver satisfaite. Supposons qu’avant la mesure le sys 
tème Il soit dans l’état e0(y) et le système I dans l’état uk(x). Alors la 
fonction d’onde du système global dans l’état initial sera

(20) x\'(x, y) = Po(/) uk(x).

L’hypothèse faite sur la forme finale du IF sera réalisée si, à la fin du 
processus d’interaction, on a, quelle que soit la fonction propre uk(x) 
réalisée à l’origine,
(21) h’(>, y) = uk(x) vk(y),

t’k(y) étant une fonction propre de la grandeur B qui correspond biuni- 
voquement à uk(.x). En effet, à cause du caractère linéaire de l’équation
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d’ondes, si l’état initiai, au lieu d’être représenté par (20), l’est par la 
superposition

(22) VO, y) =2C* ^(y) K
k

à la fin de l’interaction la fonction d’onde aura bien la tonne (16) et la 
mesure de A sera possible.

Dans l’exposé que nous venons de faire de la théorie de la Mesure 
d’après M. von Neumann, nous avons évité de dire, comme on le fait 
généralement dans les exposés usuels, que le système II est un appareil 
de mesure et que la grandeur B est, par exemple, la position d’une 
aiguille. En fait, le système II doit être un système microscopique de 
l’échelle atomique comme le système I et son rôle est de déclencher 
dans un dispositif de mesure un phénomène macroscopique observable. 
Aucune mesure 11e peut se faire en faisant agir directement un corpus 
cule sur un corps macroscopique.

D’ailleurs la théorie de M. von Neumann présente à notre avis, comme 
d’ailleurs beaucoup de théories de la Physique quanlique actuelle, un 
caractère exagérément abstrait. Elle ne précise' pas assez les conditions 
physiques du processus do mesure et la nécessité du déclenchement 
dans ces processus d’un phénomène macroscopique observable : se 
contentant d’un pur formalisme, elle ne nous donne aucune image; 
physique précise de la façon dont un processus de mesure peut nous 
faire passer d’un cas pur à un mélange.

4. Conséquences peu admissibles de la théorie de la Mesure dans 
l’interprétation actuelle de la Mécanique ondulatoire. — L’évolution de 
l’onde dit M. von Neuman, se déroule continûment pendant la 
mesure, le système global restant dans un cas pur tandis que l’état de 
chacun des systèmes partiels devient un mélange bien défini. 11 y a 
rupture de la continuité de cette évolution et création d’une situation 
nouvelle quand l’observateur, constatant l’état du système II, peut attri 
buer au système I une fonction d’onde qui corresponde à une valeur 
bien définie de la grandeur A. Dans cette manière de voir, c’est donc la 
« conscience de l’observateur » qui, en constatant l’état du système IL 
permet de réduire à l’un de ces termes le mélange relatif à l’état, du 
système étudié tel qu’il résulte de l’interaction.

Que la connaissance d’une grandeur à la suite d’une mesure résulte 
d’une prise de conscience du résultat de la mesure par l’observateur, 
cela est bien évident. Mais il semble qu’entraînés par l’interprétation
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actuelle de la Mécanique ondulatoire qui ne peut donner à l’onde 'F 
qu’une signification subjective, M. von Neumann et ses commentateurs 
en soient arrivés à des conceptions vraiment difficiles à admettre. Je 
vais en donner le résumé d’après l’exposé fait naguère par MM. London 
et Bauer (‘).

Considérons trois systèmes partiels : l’objet étudié (x), l’appareil de 
mesure (y) et l’observateur (z) qui forment un système global unique. 
fJécrivons le système global à l’aide de la fonction d’onde

( 1 *F(ar, y. si «*(#) n(y) «’/■(3 >■

k

Pour le système global, nous avons un cas pur qui subsiste pendant 
la mesure et pour les systèmes partiels, nous avons un mélange. La 
fonction d’onde ( a3 ) nous donne une connaissance maximum du sys 
tème global sans que l’on connaisse exactement l’état, de l’objet 
étudié (x).

Mais l’observateur a un autre point de vue car pour lui c’est seulement 
l’objet (x) et l’appareil de mesure (y) qui appartiennent au monde 
objectif extérieur. En ce qui les concerne, il est dans une situation 
tonte différente car il possède la conscience ou faculté d’introspection 
qui lui permet de connaître directement son état. C’est en vertu de cette 
connaissance immédiate qu’il se croit le droit (?) de créer sa propre 
objectivité en coupant la chaîne des coordinations statistiques exprimées 
par le et en constatant : « Je suis dans l’état tv/,, donc l’appareil de 
mesure est dans l’état ('/, et par suite l’objet dans l’état u/; », constatation 
qui entraîne l’attribution d’une valeur bien déterminée à la grandeur A, 
c’est-à-dire .une mesure de celle grandeur.

Tel est l’exposé de MM. London et Bauer qui ajoutent : « Ce n’est 
donc pas une interaction mystérieuse entre l’appareil de mesure et 
l’objet qui produit dans la mesure l’apparition d’un nouveau du 
système. C’est seulement la conscience d’un Moi qui se sépare de la 
fonction W(x, y, z) ancienne et constitue une nouvelle objectivité en 
vertu de son observation consciente en attribuant désormais à l’objet 
une nouvelle fonction d’onde u/-(x). »

J’ai cité ce texte, mais je ne le comprends pas bien : « ce Moi qui se 
sépare de la fonction d’onde » me paraît beaucoup plus mystérieux que 
ne le pourrait être une interaction entre l’objet et l’appareil de mesure.

( 1 j Voir bibliographie [2
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On comprend que M. Schrôdinger ait pu dire avec un jeu de mot 
ironique : « La théorie de l’onde VF est devenue une théorie psycholo 
gique ». Il ne sert pas à grand chose d’ajouter que ces considérations 
viennent à l’appui de l’opinion de M. Bohr suivant laquelle en Physique 
quantique on ne peut plus tracer une limite exacte entre l’objectif et le 
subjectif car cette affirmation est, elle aussi, pou compréhensible et 
n’éclaircit rien. Plus on y réfléchit et plus on a l’impression que toute 
cette interprétation est à reprendre sur une autre base.

Continuons l’étude du fascicule London-Bauer. Les auteurs remar 
quent que leurs idées soulèvent une difficulté : si la réalité objective est 
créée par un acte de conscience de l’observateur, cette réalité ne va-t-elle 
pas varier d’un observateur à l’autre ? Or il est certain qu’il n’en est pas 
ainsi sans quoi toute science collective, toute science commune aux 
hommes serait impossible. Mais, nous dit-on, il faut remarquer que la 
constatation qui permet la mesure est une constatation macroscopique 
ne modifiant pas l’état de choses observé. Bien n’empéche par suite un 
autre observateur de faire le mémo relevé et c’est un fait d’expérience 
qu’aux erreurs d’observation près, tous les observateurs font la même 
constatation. C’est ce fait, ajoute-t-on, qui permet de faire abstraction 
de la- personnalité de l’observateur, et de créer une science ayant un 
caractère objectif. En somme, dans le mélange cjui résulte de l’inter 
action de mesure, il y a une possibilité et une seule qui se révèle comme 
réalisée pour tous les observateurs.

Cette explication nous paraît insuffisante car elle, revient à constater 
le fait que l’on veut expliquer. L’existence d’une science commune aux 
hommes nous paraît bien difficile à comprendre dans une théorie qui 
veut tout décrire à l’aide d’une fonction W à caractère subjectif, fonction 
qui dépend de ce qui se passe dans la conscience de l’observateur. 
L’accord indéniable des observations faites par des observateurs diffé 
rents ne nous paraît pouvoir se comprendre que si l’on n’udinel pas l’exis 
tence d’une réalité objective et, si l’on admet son existence, cette réalité 
objective doit pouvoir être 'décrite par autre chose que par cette fonc 
tion tp subjective que l’interprétation actuellement orthodoxe de la 
Mécanique ondulatoire nous condamne à uniquement envisager.

L’interprétation actuelle de la Mécanique ondulatoire semble ainsi se 
perdre dans des contradictions parce qu’elle ne sait pas quel sens exact 
attribuer à l’onde ’L. Logiquement, elle est amenée à lui attribuer le 
sens d’une simple représentation de probabilité purement subjective, 
dépendant des connaissances de l’observateur et de ses « prises de 
conscience » et soumise à la réduction du paquet de probabilité lorsque
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l'utilisa leur reçoit des informations nouvelles. Mais alors elle ne peut 
plus rendre compte de l’existence d’une science commune aux hommes 
et d’une réalité objective indépendante des observateurs. Il existe d’ail 
leurs des arguments pour attribuer à l’onde 'F une réalité objective. 
Ainsi supposons qu’un observateur ait connaissance de l’état *F d’un 
corpuscule (ou d’un système) et qu’il calcule avec cette fonction d’onde 
les probabilités du résultat d’une mesure à effectuer. Si avant qu’il 
effectue la mesure projetée un autre observateur a fait à Vinsu du pre 
mier une mesure sur le corpuscule, en général les prévisions statistiques 
du premier observateur se trouveront être fausses. C’est donc l’action 
du dispositif de mesure et non la prise de conscience de l’observateur 
qui modifie le *F et ceci semble imposer de rendre à la fonction d’onde 
un certain caractère de réalité objective. M. Bohr semble toujours avoir 
reconnu ce caractère, mais sa pensée très subtile est souvent obscure. 
En réalité, presque tous les auteurs qui ont exposé l’interprétation 
actuelle de la Mécanique ondulatoire ont passé alternativement de l’idée 
d’une fonction 'F simple représentation subjective de probabilité à l’idée 
d’une onde gardant un certain caractère dé réalité et c’est à l’aide de ce 
subterfuge inconscient qu’ils ont pu éviter les contradictions trop 
flagrantes.

Quant, au corpuscule, on sait encore moins qu’elle est son exacte 
nature et l’on se borne à dire : « En Microphysique quantique, un cor 
puscule est porteur non pas de grandeurs à valeurs déterminées, mais 
d’un ensemble de répartitions potentielles se rapportant à chaque gran 
deur mesurable, répartitions dont chacune ne peut entrer en vigueur 
que lors de la mesure correspondante ». Et, cela ne donne pas une idée 
bien claire de ce que peut être un corpuscule.

Nous allons maintenant examiner si l’on ne pourrait pas, en adoptant 
une interprétation causale et objective plus claire de la Mécanique ondu 
latoire, parvenir à mieux comprendre ce qui se passe dans les processus 
de mesure.



CHAPITRE IV.
INTERPRÉTATION CAUSALE DE LA MÉCANIQUE' ONDULATOIRE. 

(THÉORIE DE LA DOUBLE SOLUTION).

1. Idées de base de la théorie de la double solution.— Je vais résumer 
rapidement les bases de l’interprétation de la Mécanique ondulatoire 
par la théorie de la « double solution » que j’avais esquissée dès 1927 et 
que j’ai à nouveau développée depuis quelques années à la suite d’un 
travail de M. David Bobm et en collaboration avec M. J. P. Vigier. J’ai 
fait un exposé de celte question dans un Ouvrage récemment paru auquel 
on pourra se reporter (4).

Aux début de mes travaux sur la Mécanique ondulatoire, mon idée 
initiale avait été qu’il fallait conserver la conception d’une réalité 
physique indépendante de l’observateur et chercher, comme l’avait 
toujours fait la Physique classique, une représentation claire des 
processus physiques dans le cadre de l’espace et du temps. J’avais ainsi 
été amené à rechercher une vue synthétique de la dualité des ondes et 
des corpuscules compatible avec les idées que j’avais introduites 
(Mécanique ondulatoire, 1928-1924) et qui venaient de se confirmer 
d’une façon remarquable (travaux de M. Schrôdinger en 1926, décou 
verte de la diffraction des électrons en 1927). Suivant un courant d’idées 
qui s’était manifesté dans les travaux de Mie et d’Einstein, je cherchais 
à me représenter le corpuscule comme une sorte d’accident local, de 
singularité, au sein d’un phénomène ondulatoire étendu. Cela m’avait 
amené à me représenter la réalité physique non pas par les solutions 
continues W de l’équation des ondes exclusivement considérées par 
M. Schrôdinger et ses continuateurs, mais par d’autres solutions de

(') Bibliographie [3\ Voir aussi la thèse de M. Vigier [4]
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cette môme équation que pour les distinguer des solutions régulières 'F 
je désignais par u et qui comporteraient une singularité. En y réllé- 
cliissant, je voyais tout de suite un grand avantage à cette conception 
d’un corpuscule ainsi « incorporé » à un cliamp ondulatoire étendu et, 
par conséquent, solidaire de l’évolution globale de ce cliainp : elle me 
paraissait permettre de comprendre que le corpuscule soit localisé et 
que cependant son mouvement puisse ôtre influencé par la présence 
d’obstacles éloignés de sa trajectoire, comme cela est nécessaire pour 
pouvoir interpréter, en conservant l’idée de corpuscule localisé, l’exis 
tence des phénomènes d’interférences et de diffraction.

Néanmoins l’interprétation probabiliste de l’onde régulière lF, primi 
tivement issue des travaux de M. Born et confirmée par ses succès, me 
paraissait devoir être maintenue. Tandis que l’onde u serait la véritable 
description de la structure des unités physiques, l’onde 'F serait une 
onde fictive, à caractère subjectif, susceptible de nous fournir des rensei 
gnements statistiques exacts sur la position et le mouvement des corpus 
cules. Mais, pour qu’elle puisse remplir ce rôle, encore faut-il qu’elle 
soit reliée d’une certaine façon à l’onde u.

Mes premières recherches sur la Mécanique ondulatoire m’avait 
conduit à attribuer une importance particulière à la « phase » de Fonde 
que j’associais au corpuscule. C’est essentiellement l’accord des phases 
du corpuscule considéré comme une sorte d’horloge et de Fonde envi 
ronnante qui m’avait amené à écrire les formules fondamentales de la

Mécanique ondulatoire = hv, A = : c’était donc la fréquence et

la longueur d’onde, éléments contenus dans la phase, qui établissaient 
ainsi un pont entre la propagation de Fonde et le mouvement du corpus 
cule. Ceci me conduisait à écrire la fonction d’onde usuellement envi 
sagée sous la forme

2 71 i
—î— COJ

(i) ? = « e 1

avec a et cp réels et à attribuer à la phase cp (qui à l’approximation de 
l’Optique géométrique coïncide avec la fonction de Jacobi S) une signi 
fication physique profonde. Au contraire, l’amplitude a, qui est continue, 
ne me semblait pas avoir une signification objective, mais seulement une 
signification statistique.

Parmi les probabilités envisagées par l’interprétation probabiliste de 
la Mécanique ondulatoire déjà admise à cette époque, la probabilité de 
présence | W|2=a2 me paraissait avoir une sorte de priorité car elle 
correspondait à mes yeux à la possibilité que le corpuscule soit en un



INTERPRÉTATION CAUSALE DE LA MECANIQUE ONDULATOIRE. 45

point, donne, indépendamment de tout processus de mesure. Les autres 
prohabilités telles que | c (/j ) |~ pour la valeur p de la quantité de mouve 

ment [/•(/;) étant le coefficient de Fourier correspondant à p dans le 
développement du suivant les ondes planes monochromatiques] 

devait avoir selon moi un sens moins immédiat : elles ne seraient 
valables qu’après l’action, sur l’onde réelle u à laquelle le corpuscule est 
incorporé, d’un dispositif de mesure de la grandeur envisagée quand on 
ne connaît pas encore le résultat de cette mesure.

Muni de ces idées générales, j’avais admis le principe suivant auquel 
j’avais donné le nom de « principe de la double solution » :

A toute solution régulière du type (1) de Véquation des ondes de 
la Mécanique ondulatoire, doit correspondre une solution à singu 
larité du type

i ) Je

ayant la même phase cp que la solution (1), mais avec une amplitude 
f présentant une singularité ponctuelle, en général mobile.

A l’époque où j’écrivais mon Mémoire sur la double solution au prin 
temps do 1927, on connaissait, l’équation des ondes de Schrôdinger

O) MF — (S T. '-/N.
~hJ~ VU'=

4 - im
~~hT <)t

correspondant au mouvement d’un corpuscule de masse m dans un 
champ dérivant de la fonction potentielle V(x, y, z, t) supposée 
connue. Aujourd’hui 011 doit considérer l’équation (3) comme valable 
seulement à l’approximation newtonienne pour les corpuscules de spin o. 
Peu après les premiers Mémoires de Schrôdinger, 011 avait aperçu quelle 
doit être l’équation qui généralise l’équation (3) quand on doit tenir 
compte des corrections de relativité. Cette nouvelle équation qu’on 
nomme habituellement « l’équation de Klein-Gordon » et qui constitue 
l’équation des ondes relativistes pour les particules de spin o s’écrit

(i) D’h
4 il

<)t
V
xyz

-A-
c

étF
àx

4^ , 
h1 ml c’- — s5 ( V2 — A* )] T = o,

où m» est la masse propre de la particule, £ sa charge électrique, c la

vitesse de la lumière dans le vide, V et x4 les potentiels scalaire et 
vecteur dont dérive le champ électromagnétique auquel le corpuscule 
est soumis.
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L’équation (4) étant la plus générale et contenant l'équation (4) 
comme forme dégénérée à l’approximation non relativiste, c’est sur 
l’équation (4) que j’avais raisonné. Dans le cas de l’absence de champ, 
on a alors

( à.)   ’I’ -h m\ c- T = o

et la solution la plus simple de cette équation quand on se limite aux 
ondes continues est l’onde plane monochromatique

(64

\\

, - ['Vf—
»1’ = a e k

avec a constant et ~ = m\c-’-j-p-, W est l’énergie du corpuscule en

vitesse e = pc, soit W = - -...i et p est sa quantité
v 1— T

1 > ?71q  Ç , t  • • ,(le mouvement p = —; la direction du mouvement étant prise 
v/i - é2

comme axe des z.
Or j'avais facilement trouvé que l'équation de Klein-Gordon admet 

aussi la solution à singularité mobile

e(.r, y, z, t4 =
a- -+- y- - < 2 — vi y1

qui prend, dans le système propre du corpuscule où e = o, la forme

!« ) f ■ V -rr,

La solution (y) a la môme phase que la solution (6), mais son ampli 
tude présente une singularité ponctuelle au point x = y = o,z = v/ 
qui se déplace avec la vitesse e dans la direction de propagation de 
l’onde, ce qui fournit une image claire du mouvement du corpuscule. 
Dans ce cas particulier on obtient ainsi exactement ce que je cherchais 
et la valeur constante de l'amplitude de l’onde fi' apparaît comme ayant 
simplement la signification suivante : si l’on ignore la position du 
corpuscule-singularité, on doit considérer toutes les trajectoires 
parallèles et toutes les positions possibles du corpuscule à tout instant / 
comme également probables.

Encouragé par ce premier succès, j’ai considéré le cas général de 

1 équation ( j) avec des potentiels V et A fonctions continues données
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île .r, y, z, t <;t j’ai pu dès 1927 démontrer les résultats suivants :

i° s’il existe deux solutions lI'et u de l’équation (4) l’une à amplitude 
continue, l’autre à amplitude comportant une singularité ponctuelle 
mobile et qui ont la même phase 9 [ce qui veut dire qu’elles peuvent 
être écrites sous les formes (1) et (2)], la singularité de u se déplacera
dans l’espace avec la vitesse instantanée t définie par la formule

gradcp
< «.) 1 r( r. z. t >

àt — cY

C’est la « formule du guidage », qui, quand on peut négliger les correc 
tions de relativité et supposer nul le champ magnétique (^c’est-à-dire

poser j j  —sV~ m„c - et A = o J, donnera simplement

• ^ 1 >1 io 1 v =------grad s.m

forme qui correspond à l’équation (3) de Schrôdinger. Si, de plus, la 
propagation s’opère à l’approximation de l’Optique géométrique, on 
pourra poser es ~ S où S est la fonction de Jacobi et ( 10) .ne sera alors

^ "—  
pas autre chose que la formule classique me——gradS de la théorie 
d’IIamiltou-Jacohi.

2" Le mouvement du corpuscule est le même que s’il était soumis en

plus de la force classique dérivant des potentiels \ et A à une torce
---- ^

« quanlique » égale à —gradQ, Q étant un « potentiel quantique » 
ignoré des théories classiques et qui, à l’approximation non relativiste 
de l’équation (3), s’écrit simplement

(ut h- / A/’\ hr / A a
8 n- /n v f J S x-m \ a

les quantités entre parenthèses étant calculées au point où se trouve le 
corpuscule à l’instant t et l’égalité des deux expressions (11) de Q 
découlant automatiquement de l'hypothèse que les deux ondes *F et u 
ont la môme phase ®.

La formule du guidage et la définition du potentiel quantique permet 
tent de mettre sous forme lagrangienne la dynamique du corpuscule
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incorporé comme singularité dans son onde. Je n’insiste pas sur ce poini 
que j’ai traité ailleurs (4).

2. Autre manière d’exprimer la formule du guidage et généralisa 
tions. — La formule du guidage traduit sous forme mathématique le fait 
que le corpuscule, parce qu’il est intégré dans Fonde, est analogue à une 
horloge qui se déplace en restant en phase avec Fonde. A ce point de 
vue, elle est le couronnement de mes considérations initiales sur 
Fonde et le corpuscule en Mécanique ondulatoire. Mais on peut lui 
donper une autre forme qui permettra une généralisation plus grande.

Toutes les formes actuellement connues de la Mécanique ondulatoire 
permettent de construire une image hydrodynamique associée à la 
propagation de Fonde, c’est-à-dire de définir un (luide fictif dont la 

densité p et la densité de flux pc sont données en chaque point à chaque 
instant par des fonctions bilinéaires de la fonction d’onde et de la fonc 
tion complexe conjuguée.

Ainsi dans le cas de l’équation (3) de Schrôdinger, le fluide fictif et 
son mouvement sont donnés par les formules primitivement utilisées 
par Madelung

( Ia ') ? = W* = | IF* |, ?c = — -A- (>F* grad'F — «F g7ad >F* ),

où W* est la quantité complexe conjuguée de W. Grâce à (i). on peut 
écrire aussi

-V I — ->
( i3) o~a-: v =------grade.

L’on voit par l’expression de e que la formule du guidage peut s’expri 
mer en disant que le corpuscule suit une des lignes de courant.

Dans le cas de l’équation (4) de Klein-Gordon, le fluide fictif doit être 
défini par

04)
p V = -

" I Hlo c-
h

4 r. im0

()\F d'F*ip* — ij'
àt àt

('F* grad'F— 4’ ;
i»oC- V>F*>F,

rrad'F* '
ni o c A'F*'F

OU, grâce à (i),

(D
, I à-o z
) P = ----- * -T7 a----------r v a1,7W0c2 àt m^c1

> 1 , —4o v =-------a2 irrad c -
m0 °

£ -> ------- a- A.

J1) Voir [3], chap. X.
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d’où

( 16 )

--->
'rrad ç -Ac

à o
- — £ \ 
>)t

.Nous reli'ouvoiis la formule du guidage pour l’équalion de Klein-Gordon : 
le corpuscule suit donc encore une ligne du courant. Nous voyons 
d’ailleurs aussi que l’hypothèse exprimée par ( i ) et (2) suivant laquelle 
'F et u ont la même phase c? revient à supposer que les lignes de courant 
sont les mûmes pour les deux ondes, ou si l’on préfère que le champ des

vecteurs vitesse c(.r, y, z, t) est le môme pour les deux.
Sous cette forme, la relation établie entre les deux ondes « et *1; va 

pouvoir se généraliser aux équations des particules de spin non nul.
Ainsi, pour les particules de spin^ tels que les électrons, l’onde a

quatre composantes 'F* qui obéissent aux quatre équations aux dérivées 
partielles simultanées (équations de Dirac)

f 1
h__ ,)
r. i <)!

"V /_A_ d
\ ■> - l ÔXj 

I
m^coL^ 'Fk 1 K

avec k = 1, 2, 4- l-es matrices cf(, a2, a», a.-, sont les matrices de
Dirac à quatre lignes et quatre colonnes telles que

(' 18) 28//I,

1 étant la matrice unité. Le fluide fictif esL alors défini par

( 19) ? =0£j *'*!*> = 0' = I>2’3)’
1 1

d’où pour les composantes de la vitesse du fluide

4 4

, 1 1
( '>0 ) Vj = ---- C ----;--------------------- = ---- C ------------------------ •

A, Tiiù y, u*kuk
\ 1

En théorie de la double solution, c’est cette vitesse qu’il convient 
d’attribuer au corpuscule-singularité de sorte que (20) constitue la 
formule du guidage en théorie de Dirac (où l’on ne peut plus en général

L. DK HRODLïE.
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introduire une phase o unique pour les quatre composantes de l’onde). 
On devra ici remplacer le postulat des phases cp par celui que le champ

de vitesses v est commun à 'F et à u, ce qui justifiera l’égalité des deux 
expressions (ao) de Vj.

Pour les particules de spm supérieur à (photons, particules oc,

gravitons, etc.), on a des fonctions d’onde à plus de quatre composantes 
qui obéissent toujours à un système d’équations aux dérivées partielles 
simultanées. Mais toujours on pourra définir par des formules bilinéaires

analogues à (i4) et (19) la densité p et le flux pu d’un fluide fictif et 
obtenir la formule du guidage correspondante en admettant que le 
corpuscule-singularité de l’onde u, suit toujours une des lignes de 
courant communes aux ondes 'F et u.

Maintenant un fait fondamental est que, pour toutes les équations 
d’onde que l’on peut avoir à considérer, le fluide fictif est conservatif et 
obéit à l’équation de continuité

5o

à 0 
àt

div(pe U

qui est une conséquence des équations d’ondes. C’est l’équation (21) 
qui permet de prendre la densité p comme probabilité de présence et de 
« normer » le VF (qui est une simple représentation de probabilité) parla

formule / p clz= 1. Dans le cas de l’équation de Schrôdinger, on obtient

ainsi comme formule de normalisation / |VF|3a?r= 1 et l’on doit prendre
Cj)

| *F |- = a- comme probabilité de présence. Nous allons voir que c’est en 
partant de l’équation (21) que l’on peut obtenir dans tous les cas la 
démonstration de la formule du guidage.

3. Démonstration de la formule du guidage. — Nons commencerons 
par remarquer que, si l’on admet qu’à toute solution régulière 'F de 
l’équation des ondes correspond une solution u à singularité mobile 
ayant les mêmes lignes de courant, les deux densités p(w) et p(*F) 
obéissent à la même équation de continuité puisque le champ de

vecteurs u est le même dans les deux cas, mais, tandis que p(*F) est 
partout régulière, p (u) devra présenter une singularité ponctuelle, en 
général mobile.

Une première manière d’obtenir la formule de guidage, qui est au
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loiul équivalente à celle que j’avais donnée en 1907 ('), consiste à 
écrire pour p(u ) l’équation de continuité sous la forme

( M ) <)
1t ' 1 -+- v . grad p ( u ) -1- 0 ( u ) div r = o.

d où. après division par 0(11)

() g>. --- y _
( ai ) — log p(11 ) H- c . grad log p ( u ’> = — div r ,

Si u et, par suite, p(it) prennent des valeurs très élevées dans une 
très petite région (éventuellement autour d’une singularité) logp(w) et 

ses dérivées y auront des valeurs très élevées; pour v donnée, le second 
menilire de (11) sera alors négligeable devant le premier et, en désignant

par -y- la dérivée totale par rapport au temps prise le long de la ligne de

/1’ <> - —fXcourant I -- = — + e . grad 17 on aura

y— log p( U ) = O.

Donc logp(w,j et, par suite, p (u) demeureront constants quand on 

suivra la ligne de courant avec la vitesse v. Ainsi, tandis que pour des
valeurs modérées de p, il y a en général (pour divi^^=0) convergence et 

divergence des lignes de courant cl que, par suite, p 11e conserve pas 
une valeur constante quand on se déplace le long d’une ligne de courant

avec la vitesse e, il 11’en est plus de môme quand p prend des valeurs 
extrêmement élevées : alors les valeurs localement très élevées de la

densité se déplacent le long des lignes de courant avec la vitesse v sans 
se disperser, ni s’affaiblir. O11 voit ainsi que la singularité de p (u) 
suivra l’une des lignes courant, communes par hypothèse à u et à ff*.

avec la vitesse e correspondante, ce qui nous donne la forme générale 
de la formule du guidage.

1 ne autre méthode pour obtenir la formule du guidage consiste à 
intégrer par la méthode bien connue l’équation de continuité écrite 
sous la forme

(h (h àp do >
( v.'j 1 — -e ex 1----H's-;---- e l'z -r + p div t> = o,t)t. 1)à y à z

l ‘) On trouvera celle.ci en 13], p. 101 et suiv.
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L’on, sait que l’intégration d’une telle équation aux dérivées partielles 
linéaire de premier ordre peut se ramener à l’intégration du système 
d’équations différentielles

, , 1 dx d y dz , do
( 2b ) — = — = — = dt =---------- ,CV V- i • Xx .’ - p div r

où er, v}., vz sont des fonctions supposées connues de x, y, L’inté 
gration des trois premières équations différentielles (afi) donne des 
intégrales de la forme

(27) /i(>, r, t) = À, /,(>•, y, z, l) = p, f3(x, y, s, l) = v.

Lorsque À, p., v ont des valeurs constantes, ces formules définissent dans 
l’espace-temps une ligne de courant d’univers, c’est-à-dire une ligne

d’univers en cliaque point de laquelle ~ sont respectivement

égales aux valeurs vx, er, vz en ce point. Cette ligne de courant d’univers 
représente à la fois la trajectoire et le mouvement des molécules du 
fluide fictif.

Les équations (27) permettent d’exprimer x, y, z, t en fonction de
/., p, v, t et, par suite, d’exprimer divi^sous la forme F(À, p, v, t). Pour 

obtenir l’intégration de l’équation aux dérivées partielles, il suffit alors 
d’écrire la quatrième équation différentielle (26) sous la forme

(28) dt do
F(X,;r,W,)f

puis de l’intégrer à À, p, v constants, ce qui donne

r1— ! F;)., [x, v, t) i
(29) $('■> i-1, v),

où l’intégration dans l’exposant de l’exponentielle doit être effectuée 
sur t à À, p, v contants et où est une fonction arbitraire. On aura donc, 
puisque l’équation de continuité est par hypothèse valable pour et 
pour u avec les mômes valeurs de er, vz

(3o)
?<T)

?(«)

F (À, [X, v, t) dt 

F (X. [X, v, t) dt

•ML :j-, v),

4>2(X, p, v ).

Puisque p(*F) est régulier, les deux facteurs dans son expression 
doivent être réguliers. Dans l’expression de p(w), le premier facteur
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étant le môme que. dans l’expression de p (W), doit aussi être régulier : 
la singularité de p (u) doit donc provenir de <S2. 11 en résulte que <1*2 
doit avoir une singularité pour une certaine valeur de À, p, v, soit X=X0, 
p = po, 'j — \>o, ce qui Iraduit l’existence d’une singularité ponctuelle 
de u occupant une position Xq , y0, z0 à l’instant t0. Mais alors cette 
singularité se relrouvera tout le long de la ligne de courant d’univers 
définie par les valeurs X0, p0, v0 de À, p, v. Autrement dit, p(u) et par 
suite u présenteront une singularité ponctuelle dans l’espace à tout 
instant ( eL le mouvement de cette singularité au cours du temps sera 
représentée dans l’espace-lemps par la ligne de courant d’univers définie 
par 1 — /.o, p = p0 et v = v„.

La singularité, quand elle occupe à l’instant t la position x, y, z, est 
donc animée de la vitesse r(x, y, z, t). C’est encore le théorème du 
guidage sous sa forme la plus générale et nous pouvons énoncer notre 
résultat en disant : Si deux solutions des équations d'onde de la Méca 
nique ondulatoire, l'une régulière et l'autre à singularité ponc 
tuelle mobile, admettent les mêmes lignes de courant, la singularité 
de la seconde solution suit l'une de ces lignes de courant.

Il est important de remarquer que notre démonstration serait encore 
valable si la solution u, au lieu de présenter une véritable singularité 
mathématique, .comportait seulement une très petite région en général 
mobile ou elle atteint des valeurs très élevées tandis que la solution 
régulière couplée W ne comporte pas d’accident analogue. Alors les 
expressions (3o) montrent encore que l’existence de cette «région singu 
lière » doit se traduire par une forme particulière de tfL qui doit présenter 
des valeurs très élevées quand À, p, v ont des valeurs voisines de certaines 
valeurs À0, p o, v0. Mais ceci signifie encore le mouvement au cours du 
temps de la très petite région où u prend de très grandes valeurs est 
représenté dans l’espace-temps par un tube d’univers très délié dont 
l’axe est défini par 1 = X0, p = p0, v = v0.

Sous la forme générale que nous venons de lui donner, la théorie du 
guidage permet de mieux apercevoir le rapport entre l’onde u et l’onde 
*F. Ces ondes devant avoir les mômes lignes de courant, l’onde VL 
représente aussi bien que l’onde u Vensemble des mouvements possibles 
du corpuscule, mais il lui manque un élément essentiel qui est le 
corpuscule lui-même décrivant l’une des lignes de courant : c’est 
pourquoi, selon ce point de vue, si l’onde W peut donner une image 
statistique exacte des mouvements du corpuscule, elle ne peut consti 
tuer une description complète de la réalité physique. Nous rejoignons 
ici une opinion qu’Einstein a toujours soutenue.
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4. Introduction de la non-linéarité et forme de la fonction d’onde u. 
Quand j’ai repris, il y a quelques années, avec l’active collaboration de 
M. Vicier, l’étude de la théorie de la double solution, nous avons tout 
de suite été frappés par la grande analogie qu’elle présente avec les 
idées d’Einstein sur la liaison des corpuscules cl des champs qui 
s’apparentent aussi à celle de Mie dans sa théorie non linéaire de 
l’Electromagnétisme. Dans la théorie de la double solution comme dans 
les conceptions de Mie et d’Einstein, le but recherché est (Vincorporer 
le corpuscule au champ sous la forme d’une Irès petite région où le 
champ prendrait des valeurs très élevées (pouvant comporter ou ne pas 
comporter une véritable singularité mathématique). Mais dans la théorie 
de la double solution, le champ auquel on cherche à incorporer le 
corpuscule n’est plus le champ électromagnétique ou le champ gravi- 
fîque, mais le champ u ondulatoire et quantique qui doit donner une 
représentation objective de la structure du corpuscule.

Parvenu à ce point, nous apercevons la nécessité d’introduire une 
idée nouvelle.

En efl'et, quand on admet pour un champ des équations d’évolution 
linéaires, même en y introduisant comme en théorie de Eorenlz des 
termes de sources indépendants du champ, on ne peut pas comprendre 
comment un corpuscule peut avoir son mouvement déterminé par 
l’évolution du champ : c’est un point sur lequel Einstein a beaucoup 
insisté. Pour échapper à cette difficulté, il est nécessaire de supposer 
que les équations du champ soient non linéaires. E’idée de non-linéa 
rité, qui est nouvelle en Mécanique ondulatoire, y a cependant été 
introduite dans ces dernières années par quelques auteurs, notamment 
par M. Heisenberg, mais dans le cadre d’idées très différentes des nôtres.

Cependant ce que nous avons dit précédemment nous amène à penser 
que, si l’équation de l’onde u est non linéaire, les termes non linéaires 
qui y figurent ne doivent avoir de l’importance que dans la petite région 
singulière où les valeurs de u sont très élevées, très petite région qui 
constitue le corpuscule : en dehors de cette très petite région, les termes 
non linéaires doivent être très petits et l’équation de propagation de u 
doit devenir approximativement linéaire et coïncider avec l’équation de 
propagation usuellement admise pour l’onde fiT, ce qui nous ramène à 
l’hypothèse précédemment admise que u et. fi" obéissent à la même 
équation.

En creusant cette idée, nous nous sommes aperçus, M. Vigier et moi, 
que, pour pouvoir rendre compte du succès du calcul usuel des phéno 
mènes d’interférences et de diffraction et aussi du succès du calcul

64
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usuel des valeurs propres de l’énergie correspondant aux états station 
naires des systèmes quantifiés, il était nécessaire de préciser la forme de 
l’onde u par l’hypothèse suivante : dans la région singulière où l’équa 
tion de u est très approximativement linéaire, u doit avoir la forme

l"il ) n = u„-h c,

où «o est une solution de l’équation linéaire à singularité ponctuelle au 
centre de la région singulière et où e est une solution régulière de la 
môme équation. Nous préciserons comme il suit la forme des deux termes 
de l’expression (3i). Le terme u» doit être extrêmement petit par 
rapport à v en dehors du voisinage immédiat de la région singulière : 
celte. hypothèse a une très grande importance. La fonction u0 croît 
extrêmement rapidement quand on approche de la région singulière et 
elle deviendrait infinie au centre de cette région si l’on pouvait l’y 
prolonger, c’est-à-dire si l’équation linéaire restait valable à l’intérieur 
de la région singulière. Quant à e, c’est une solution régulière de 
l’équation linéaire qui doit, du moins en général, coïncider à un facteur 
constant près avec la forme usuellement admise pour l’onde f dans le 
problème considéré. Nous montrerons plus loin que l’ensemble des 
hypothèses que nous venons de taire peut se trouver réalisé.

Ainsi la solution u„ de l'équation linéaire apparaît de l’extérieur 
comme une sorte d'aiguille très fine implantée sur une onde v qui a 
même forme que l’onde U'. Or, d’après le théorème du guidage, la fonc 
tion eu aiguille «0 devra se déplacer le long de l’une des lignes de cou 
rant de l’onde u. Mais, si l’équation de l’onde u était partout linéaire et 
coïncidait partout avec l’équation usuelle de la Mécanique ondulatoire, 
les solutions w0 et e seraient totalement indépendantes : il n’y aurait 
aucune raison pour qu’elles admettent les mômes lignes de courant et 
pour que le déplacement de l’aiguille m# soit déterminé par les lignes de 
courant de v. 11 en est tout autrement si l’équation de u n’est pas linéaire 
dans la région singulière où, en raison des grandes valeurs de u0, les 
termes non linéaires sont importants : dans cette région, les termes u0 
et v sont liés l’un à l’autre par la non-linéarité. En d’autres termes, 
l’équation non-linéaire en u admet une solution a et ce n’est qu’approxi- 
mativeinent dans la région extérieure à la région singulière que la 
décomposition (3i) est valable : ceci apparaîtra très clairement sur 
l’exemple que je vais donner tout à l’heure.

D’ailleurs la non-linéarité très localisée de l’équation de l’onde u 
apparaît comme essentielle pour bien comprendre le sens du théorème 
du guidage. Les démonstrations que nous avons données de ce théorème
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en partant de l’équation linéaire reposent sur l’hypothèse que la solution 
régulière v (ou W) et la solution régulière ?/«+(’ ont les mêmes 
lignes de courant. Or cette hypothèse est entièrement arbitraire dans le 
cadre d’une théorie partout linéaire : elle cesse de l’être s’il existe une 
non-linéarité locale dans la petite région singulière car alors la non- 
linéarité, bien que très localisée, est en quelque sorte le << ciment » qui 
unit les solutions ua et e (1).

Nous allons maintenant donner un exemple qui illustre utilement 
toutes ces considérations.

O. Illustration par un exemple des hypothèses faites sur u. — Consi 
dérons le cas simple d’un corpuscule de spin o immobile dans un 
système galiléen, le centre de sa région singulière étant pris comme 
origine des coordonnées, et supposons arbitrairement que l’équation de 
l’onde u soit l’équation non linéaire

V I à- u I - - 7 a-
( j  2 ) -, —;-------- An -t- /u'5 u  = — -T- e — u2 u ,c- ôt-i r*

avec ktt= -'^mac. Egalé à zéro, le premier membre de (3a) nous

donnerait l’équation de Klein-Cordon. Le second membre non linéaire 
a une forme en u- u déjà envisagée par les auteurs qui ont cherché 
récemment à introduire de la non-linéarité en Mécanique ondulatoire : 
il contient une fonction de la distance à l’origine r que nous avons 
choisie arbitrairement et deux constantes C et a dont la première est. 
une constante numérique et la seconde une très petite longueur qui 
définit une sorte de « rayon » du corpuscule à symétrie sphérique. Plus 
loin nous poserons, par définition, e = C a.

Comme on doit avoir u —fe,J'',rt avec f fonction de r seulement, on 
trouve pour y l’équation

(33) 4C
à±f
r)r2

•>. àf __ 1 
r àr C'2

(1 ) Remarquons que le théorème du guidage peut s’exprimer en disant que, dans 
l’espace-temps, les valeurs très élevées de la fonction d’onde u sont contenues à l’inté 
rieur d’un tube d’Univers très délié dont les parois sont formées par des lignes de 
courant de l’onde « extérieure » v (partie régulière de l’onde u). Quand on énonce sous 
cette forme la formule du guidage, sa parenté avec la manière dont MM. Georges 
Darmois et André Lichnérowicz énoncent le principe des géodésiques en Relativité 
générale devient évidente ( voir, par exemple, Lic h n é r o w ic z , Théories relativistes de la 
gravitation et de VÉlectromagnétisme, Masson, ig55, livre I. chap. III).
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équation qui admet la solution
a

(34; , /=<>'•

Celle solution prend des valeurs très elevées au voisinage de l’origine 
(pour r a 1 et elle a même une singularité en r = o.

Nous pouvons ici admettre que la région extérieure à la région singu 
lière est définie par r ^> a. On voit alors que, dans la région extérieure 
ainsi définie, / prend la forme approximative

('yjj / = <: -a- ~ (s = Cai.

Ceci s’explique par le fait, facile à vérifier, que et, y sont de 

l’ordre de — - tandis que le second membre de (33) est de l’ordre
V'L 7' 1 x '

de > (b>nc négligeable par rapport au premier membre si r)g>a.

Dans la région extérieure, l’équation non linéaire (33) se réduit sensi 
blement à l’équation linéaire A/ = o et il est naturel de trouver que f 
prend approximativement la forme d’une solution à symétrie sphérique 
de celte équation.

Dans la région singulière qui entoure l’origine, là où r est de l’ordre 
de a ou inférieur à a, les deux membres de l’équation non linéaire 
deviennent du même ordre de grandeur et il faut prendre pour f 
l’expression rigoureuse (34).

Maintenant, si l’équation linéaire \j — o était valable partout, sa 
solution générale à symétrie sphérique serait

( 3(> ) /= A + ^,

où A et 11 auraient des valeurs constantes arbitraires. Dans la région 
extérieure où l’équation de l’onde u se réduit sensiblement à l’équation 
de Klein-Gordon, nous avons trouvé pour y la forme approximative (33) 
qui coïncide bien avec la forme générale (36), mais avec des valeurs 
particulières déterminées de A et de B, savoir A—C et B = e = C«. 
El l’on voit bien que ces valeurs particulières sont imposées par la 
non-linéarité de l’équation de l’onde u dans la très petite région singu 
lière qui entoure l’origine.

La solution approximative (33) correspond d’ailleurs bien à la forme 
«o+c, «o ayant une singularité et e étant une fonction régulière.

De plus, comme on a ici — = on voit aussi que n0 devient
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beaucoup plus petit que c dès qu'on s'éloigne de la région singulière. 
Nous avons ainsi retrouvé la décomposition u = «0+ c dans la région 
extérieure avec toutes les caractéristiques que nous lui souhaitions.

On peut d’ailleurs noter que u se trouve être la somme de la solution
2 71 l

c 1 ...
singulière-e que j’avais déjà envisagée en if/2j pour un corpus 

cule immobile obéissant à une équation de Klein-Gordon en l’absence

de champ (*) et d’une solution régulière Ce ‘ qui, rapportée à un 
système de référence où le corpuscule aurait un mouvement rectiligne 
et uniforme, prendrait la forme de l’onde plane monochromatique 
classique envisagée dès les débuts de la Mécanique ondulatoire. Dans ce 
système de référence en dehors de la région singulière mobile la forme 
de u serait donc, d’après (]'),

(z — vt )2

Tout ceci se recoupe très bien.
Ajoutons encore une remarque, l.a solution (o/j) présente une singu 

larité en r = o. Si, en accord avec une opinion souvent exprimée par 
Einstein, on considérait comme désirable d’éviter toute singularité 
mathématique dans la représentation du corpuscule incorporé au champ, 
on n’aurait qu’à prendre pour équation non linéaire de u, à la place de 
l’équation (3a), celle qu’on obtient en y remplaçant la variable r par la 
variable p = r -f- a, où a est une longueur positive très petite par 
rapport à a (o^a<^_a). Grâce à cet artifice, on tranforme la solution (3/j )

(38) /=<’, er+*

de sorte que / possède une valeur très élevée, mais finie pour r= o. 
La modification introduite ne se fait évidemment sentir que dans le 
centre de la région singulière, là où r<s a devient de l’ordre de a. 11 en 
résulte aisément que les valeurs que nous avions déduites de l’équation 
(02) restent encore valables.

Naturellement nous n’avons aucune raison de penser que l’équation 
(03) avec son second membre arbitrairement choisi soit la véritable

(!) Voir ci-dessus équation (8).
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équulioii non linéaire de l’onde u pour un corpuscule de spino. Mais 
elle a l’avantage de nous offrir un exemple simple de la façon dont une 
non-linéarité très localisée de l’équation du champ ondulatoire u peut 
souder ensemble les deux termes de l’expression w = w0-|~e valable à 
l’extérieur de la région singulière et déterminer complètement la valeur 
des coefficients C et s qui figurent dans «0 et c.

(3. La relation entre u et ff' — Cherchons à préciser maintenant la 
relation entre la fonction c ut la fonction utilisée en Mécanique ondu 
latoire. Comme la fonction u est dans la théorie de la double solution 
une réalité physique objective indépendante des connaissances de l’obser 
vateur, la fonction c qui est une partie de u et qui se confond pratique 
ment avec u dès qu’on s’éloigne de la région singulière (parce qu’alors 
«0<r), a aussi le caractère d’une réalité objective. En particulier, c 
doit avoir une amplitude parfaitement déterminée qui n’est pas à la 
disposition de l’utilisateur et qui ne peut pas être normée à son gré. 
Mais l’observateur peut construire dans son esprit une fonction W qui 
doit en principe être partout proportionnelle à e, mais avec un coeffi 
cient de proportionnalité C que l’utilisateur, libre de lui donner da 
valeur qu’il désire, peut choisir de façon que la fonction soit normée. 
Cette fonction serait donc une construction de l’esprit, à caractère 
subjectif ayant uniquement pour rôle de permettre le calcul de certaines 
probabilités, mais elle devrait être construite par l’utilisateur, dans la 
mesure où ses informations sur la forme de la fonction v sont exactes, à 
l’aide de la relation
i ii) ) T = C c.

C’est parce que la fonction U' serait construite ainsi à partir de v qui est 
une réalité objective, qu'elle permettrait, malgré son caractère subjectif, 
une évaluation statistique exacte des probabilités r1).

Si la fonction c occupe plusieurs régions disjointes de l’espace 
physique, le corpuscule se trouvant dans l’une d’elles, l’utilisateur

( ‘) Au sujet lie la formule y, z, t) ■ Cri a;, y, z, t), ou peut remarquer avec
M. Jean-Louis Destouches que, malgré l’égalité des deux membres de cette équation, la 
signification des lettres x, y, s n’est pas la même à droite et à gauche. Dans v, elles 
désignent les variables courantes d’espace, tandis que dans V elles représentent les 
coordonnées du corpuscule. Dans le cas d’un seul corpuscule dans un champ donné que 
nous étudions seul ici, cette remarque qui est exacte peut paraître un peu subtile : elle 
prend toute sa valeur quand on étudie l’interprétation de la Mécanique ondulatoire des 
systèmes de corpuscules dans l’espace de configuration par la théorie de la double 
solution.
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pourra, suivant l’état de ses connaissances sur la position du corpuscule, 
choisir la constante C de façon différente pour chacune des régions en 
question et l’on peut voir aisément comment cela permet d’interpréter 
la réduction du paquet de probabilité.

Dans le même ordre d’idées, il est intéressant de réfléchir à l’idée 
« d’onde-pilote » que j’avais introduite en 1927 et qui a été reprise dans 
des travaux récents, notamment dans ceux de M. David Bohrn. J’avais 
remarqué en 1927 que le corpuscule devant, selon la formule du 
guidage, suivre l’une des lignes de courant de l’onde ff', on pouvait 
adopter le point de vue suivant : ne considérer que l’onde ff' de la 
Mécanique ondulatoire usuelle et ajouter arbitrairement la notion d’un 
corpuscule qui se déplaçant le long de l’une des lignes de courant de 
l’onde se trouverait ainsi être guidé par l’onde ff", ce qui permettrait de 
donnera celle-ci le nom d’ondc-pilote. Mais je considérais alors, et je 
considère plus que jamais aujourd’hui, la théorie de la double solution 
qui incorpore le corpuscule à l’onde comme beaucoup plus profonde. 
D’ailleurs, l’onde ff- de la Mécanique ondulatoire usuelle a sans aucun 
doute un caractère subjectif puisqu’elle change avec nos informations 
et l’on ne peut admettre comme réel le « guidage » du corpuscule par 
quelque chose de subjectif.

La question s’éclaire si l’on distingue c de ’F. L’onde u comportant 
un accident très localisé représenté par m0, tout se passe comme si cet 
accident (le corpuscule) était guidé dans son mouvement par l’onde e 
dont il suit l’une des lignes de courant. En réalité, avec les conceptions 
exposées plus haut, il en serait ainsi parce que u0 et v forment un 
ensemble unique, la fonction d’onde m (égale à m0 + c à l’extérieur de 
la région singulière), u0 et v étant soudées ensemble par la non-linéarité 
dans la région singulière. Mais on peut, en faisant abstraction de ces 
raisons profondes, considérer le corpuscule comme piloté par l’onde c. Ici 
il n’y a plus aucun paradoxe parce que l’onde c est une réalité physique 
et que, par conséquent, le corpuscule peut être guidé par elle. Mais 
comme l’onde W doit, en principe, être choisie proportionnelle à c et 
avoir par suite les mêmes lignes de courant, on a l’impression que le 
corpuscule est guidé par l’onde fl7, ce qui est paradoxal. Nous pouvons 
donc nous servir de l’image du corpuscule guidé par une onde régulière 
dont il suit une des lignes de courant, mais à condition de nous souvenir 
que cette onde régulière est l’onde e et que le corpuscule n’est pas un 
objet arbitrairement surajouté à cette onde, mais constitue avec elle une 
réalité unique, l’onde u à région singulière.

Nous pensons aussi que la distinction qui vient d’être précisée entre
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l’onde V et l’onde v permet de comprendre pourquoi, depuis une tren 
taine d’années, les théoriciens paraissent avoir constamment oscillé plus 
ou moins consciemment entre l’idée d’une onde à caractère objectif et 
celle d’une fonction ondulatoire simple représentation abstraite de 
probalilités.



CHAPITRE V.
QUELQUES COMPLEMENTS SUR LA THÉORIE DE LA DOUBLE SOLUTION 

ET SUR LE GUIDAGE.

1. Existence des solutions singulières dans le problème extérieur. —
Nous appellerons problème extérieur l’étude des solutions de l'équation 
de l’onde u à l’extérieur de la région singulière, là où cette équation se 
confond, au moins en première approximation, avec l’équation linéaire 
de propagation envisagée pour le corpuscule considéré par la Mécanique 
ondulatoire usuelle et où elle admet une solution approximative de la 
forme «o + e-

En 1927, j’employais exclusivement l’équation de Ricin-Gordon et sa 
forme dégénérée, l’équation de Schrôdinger, et je ne distinguais pas e 
de lF. J’aurais voulu démontrer qu’à chaque solution W de la Mécanique 
ondulatoire déjà usuelle correspondait une solution à singularité mobile 
Mo ayant la mémo phase que lF. Dans le cas de l’absence du champ, 
j’avais trouvé la solution précédemment indiquée f1) ; mais c’était là un 
cas très particulier et je n’avais pas vu comment on pourrait établir 
d'une façon générale l’existence de la fonction m0.

Aujourd’hui où l’ensemble de la théorie de la double solution a pris 
une forme plus cohérente et plus précise, l’étude de l’existence des solu 
tions singulières du problème extérieur et de leur couplage avec les 
solutions régulières conserve tout son intérêt. Un progrès notable en ce 
sens a été accompli récemment dans la thèse de M. Francis Fer. Dans 
ce travail, l’auteur a considéré un type d’équations aux dérivées partielles 
qui contient comme cas particulier l’équation de Klein-Gordon. Utili-

(1 ) Chap. IV, form. ( 7 ) et ( 8 ).
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sant des méthodes générales d’intégration des équations aux dérivées 
partielles, il a démontré l’existence de solutions à singularité qui 
s’expriment par des formules du type de celle des potentiels retardés. 
Etudiant le raccordement de ces solutions singulières avec les solutions 
régul iôres, M. Fer est conduit à retrouver pour le mouvement delà sin 
gularité celui qui est prévu par la formule du guidage. Le travail de 
M. Fer paraît dotic apporter une contribution importante à rétablisse 
ment de l’existence des solutions singulières dans le problème extérieur 
en théorie de la double solution.

Naturellement, ce problème extérieur, analogue à celui qui se pose en 
Relativité générale quand on étudie le champ à l’extérieur d’un tube 
d’univers très délié meublé de matière, correspond à un point de vue 
incomplet si l’on admet que la véritable équation satisfaite par u est non 
linéaire et que la décomposition u — v est seulement une expres 
sion approximative valable seulement dans la région extérieure.

Sans pouvoir donner ici une démonstration générale de l’existence de 
Uo dans le problème extérieur, je vais insister sur une méthode qui 
semble permettre de construire efîectivemeut la fonction u du problème 
extérieur dans le cas des étals stationnaires.

2. La formule de Rayleigh-Sommerfeld. — Ce qu’il y a de curieux 
dans la méthode que nous allons exposer, c’est qu’elle a eu son point de 
départ dans la constatation d’un fait qui paraissait constituer une très 
importante difficulté pour la théorie de la double solution.

Cette difficulté provient de la théorie des fonctions de Green pour les 
équations d’onde qui est exposée dans beaucoup d’Ouvrages (*) et qui 
est intimement liée à la théorie générale des équations intégrales 
linéaires.

Considérons une fonction d'onde u obéissant à une équation d’ondes 
telle que si u est une solution monochromatique, c’est-à-dire ne dépen 
dant du temps (jue par un facteur e‘/icl, elle prenne la forme

(i) \u -+- [k- — F(x, y, z)\u = o.

Nous savons que c’est le cas par exemple de l’équation de Schrôdinger 
et qu’alors k- est proportionnel à l’énergie E du corpuscule.

Envisageons un domaine D de l’espace physique d’un seul tenant et 
de dimensions finies. Les ondes stationnaires dont le domaine D peut 
être le siège sont définies comme des ondes monochromatique solutions

( ') Voir en particulier, bibliographie [5] et [()].
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■de (i) qui s’annulent aux limites du domaine D. Si l’on se borne, 
comme en Mécanique ondulatoire usuelle, à considérer des solutions 
régulières W de l’équation (i), on démontre que Fonde stationnaire 
n’existe que si la constante A'a une des valeurs comprises dans une suite 
ki, . . ., k„, ... dont l’ensemble forme le spectre de « valeurs propres » 
du problème considéré. En Mécanique ondulatoire, les valeurs propres 
définissent, on le sait, les énergies quantifiées du corpuscule dans le 
domaine D. Les fonctions d’onde régulières et nulles aux limites lL/l qui 
leur correspondent sont les « fonctions propres ».

Mais on pourrait aussi envisager des solutions de l’équation (i) qui 
seraient nulles aux limites du domaine D, mais qui présenteraient en 
un point Q de ce domaine une singularité ponctuelle. Ces solutions 
sont les « fonctions de Green » de l’équation (i) pour le domaine D et 
le point « source » Q. Ces fonctions de Green G(M,Q) dépendent 
donc du point courant M et du point source Q. On les astreint aux 
deux conditions suivantes :

i° Êtres nulles aux limites du domaine D ;

2° Présenter au point Q une singularité ponctuelle telle que, lorsque 

M tend vers Q, la fonction G(M, Q) croît comme = -•

Or la théorie générale des équations intégrales linéaires nous fournit, 
au sujet de l’existence des fonctions de Green, le théorème que voici :

La fonction de Green G(M, Q) existe toujours quand la constante 
k a une valeur qui ne coïncide avec aucune des valeurs propres ki, 
ki, . ... Si k coïncide avec l'une des valeurs propres kn, alors la fonc 
tion de Green G(M, Q) n'existe que dans le cas très particulier où la 
fonction propre correspondante lF„(M) est nulle au point Q.

On peut retrouver ce résultat en construisant effectivement la fonc 
tion de Green à l’aide d’une formule donnée naguère par Lord Rayleigh 
et fréquemment utilisée ensuite par Sommerfeld.

Ponr la démontrer, nous partirons de la remarque qu’en raison de la

singularité ponctuelle en i que la fonction de Green doit présenter au

point Q, on doit écrire l’équation satisfaite par w = G(M, Q) sous la 
forme

< 2 ) Am -H [ k- — F ( x, y, z )] u = £o ( M — Q ),

où l’on a introduit au second membre un terme de source comportant
L. DE BROGLIE. 5
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un coefficient numérique z analogue à une charge électrique dont la 
valeur est arbitraire et la fonction singulière de Dirac ô(M — Q). 
L’équation (i) sera alors satisfaite par u partout sauf au point Q où elle

aura une singularité en i»

Or on peut développer ô (M — Q) suivant les fonctions propres W, (M) 
sous la forme

(3) S(M-Q)=2c iTi(M)>
l

avec
(4) C,= rs(M-Q)¥;(M)* = v;(Q)),

d’où

(5) S(M-Q)=2W(Q)V,(M).
i

Si nous développons également u = G(M, Q) sous la forme

(6) «=^<^(*1)
i

on devra avoir
( 7 ) [ A k* - F ( xy z )] 2 di W, ( M ) = £ ^ Vf ( ■Q ^^,( :M ).,

i i

et puisque V,(M) est solution de l’équation (i) avec k = Av, il vient

(8) 2(A«-**)rf,V/(M) = E2,ir‘*(Q)V'(M)>
i i

d’où l’on tire, puisque les 'F,- forment un système complet,

£ W ( Q )(9) d,=

(io)

*2 — /q

En portant dans (6), on obtient la formule de Rayleigh-Sommerfeld

zWÎ (Q)T,(M)t(M) = G(M, Q)=2!
A2 — k'f

Il convient de remarquer que la série figurant au dernier membre de 
(io ) n’est pas absolument convergente. Malgré ce défaut, elle peut en 
général, comme Sommerfeld l’a montré, être utilisée sans danger.

Sur la formule (io), on retrouve aisément les résultats fournis par la 
théorie des équations intégrales linéaires. En effet, si la constante k ne
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coïncide avec aucun des k,-, la formule (10) nous fournit la fonction de 
Green dont l’existence se trouve ainsi démontrée. Si, au contraire, 
k coïncide avec l’un des ki, mettons kn, alors le terme d’indice n dans 
la somme (io)cst infini et la formule ne nous fournit pas une fonction 
de Green acceptable sauf dans le cas très particulier où flb^Q) est nul. 
Nous retrouvons donc bien les résultats énoncés plus haut.

Or, en y réfléchissant, ces résultats apparaissent d’abord comme 
désastreux pour la théorie de la double solution. En effet, dans cette 
théorie il paraissait évident que l’on devait faire correspondre à l’état 
stationnaire usuellement représenté par la fonction 1F„(M) et corres 
pondant à la valeur kn une fonction m = G(M, Q) nulle aux limites 
de D comme Wn, présentant une singularité ponctuelle au point Q où 
se trouveraitle corpuscule et correspondant, elle aussi, à la valeur kn de 
la constante k. Mais précisément cette fonction de Green n’existe pas 
ou, du moins, elle ne pourrait exister que si le corpuscule se trouvait en 
un point Q telle que lF„(Q) = o. Malheureusement, en vertu de la 
signification statistique certainement exacte de I^Fj2, le corpuscule 
aurait alors une probabilité nulle de se trouver en Q. La contradiction 
est flagrante et paraît constituer une redoutable objection contre la 
théorie de la double solution.

Néanmoins, nous allons voir, en regardant les choses de plus près, 
que la formule de Rayleigh-Sommerfeld, bien loin de constituer une 
objection contre l’existence de l’onde u dans le cas stationnaire, fournit 
au contraire un moyen de la construire.

3. Construction de la fonction u à l’aide de la formule de Rayleigh- 
Sommerfeld dans le cas des états stationnaires. — Nous partirons de la 
remarque suivante : u~ua-\-v étant supposée nulle aux limites du 
domaine D, la fonction v ne doit pas être rigoureusement nulle sur ces 
limites, mais égale à — u„. En écartant le cas extrêmement improbable 
où Q serait situé si près de la limite de D que la très petite région 
singulière entourant Q viendrait toucher cette limite, les valeurs —ua 
que doit prendre v sur les frontières sont partout extrêmement petites, 
mais cependant elles ne sont pas rigoureusement nulles. Par suite, v ne 
peut pas être considérée comme exactement proportionnelle à la fonc 
tion propre WH usuellement calculée. Donc v doit être une solution de 
l’équation d’ondes linéaire qui correspond à une valeur de k extrême 
ment voisine de km mais non tout à fait exactement égale à kn.

Nous sommes ainsi amenés à penser que la fonction u correspondant 
à l’état stationnaire d’indice n doit être égale à la fonction de Green
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G(M, Q) qui correspond à une valeur de k très légèrement différente 
de k„. Dès lors cette fonction de Green existe et elle doit nous être 
donnée par la formule de Rayleigh-Sômmerfeld !

Pour examiner la forme de cette fonction u, écrivons la formule (10) 
en isolant le terme d’indice n et en désignant par §kn la différence k—kn 
que, pour abréger, je nommerai « le glissement de fréquence ». On 
pourra écrire très approximativement

(") «(M, Q)=2,.

i'-£n

ey?(Q)^i(M)
k- — k? 2 k,j Skn

Soit alors iF'n(M) une fonction solution de l’équation d’ondes pour 
k = kn+ Skn, §kn correspondant au très petit glissement de fréquence 
dont nous déterminerons plus loin la valeur. La fonction W', étant très 
voisine de la fonction propre lf,!, nous poserons

ô'F,, étant la très petite variation de cpiand kn varie de ôkn (*). On 
aura alors

12) “(M, Q) =2|4

i^é n

e Vî(Q) (M) £ W;(Q ) Sif„(M ) e «F*(Q) (M :
k’i kf 2 k„ 5k„ 2 k„ 5k„

Nous sommes ainsi assurés d’avoir obtenu une solution du problème 
extérieur nulle aux limites de D et présentant au point Q une singularité 
ponctuelle en r~l puisque nous n’avons fait qu’appliquer la formule de 
Rayleigh-Sômmerfeld pour une valeur de k différente de tous les k/.

Comme la fonction (M) est régulière, la singularité ne peut affecter 
que les deux premiers termes du second membre de (12). Donc si nous

posons

03)

j «0(M, Q)=2, £ 'F?(Q) Wi( M) £ ^(Q) ST,,(M)

P ( M ) :

k*-kf 

eï’idQ)

(G)
_ sy*(Q)

2 k,. 5k,,

(’) V) est égal à ^ 6A',(. En négligeant les termes en SA;,, on voit que n-) est
Un n

solution (non nulle aux limites de D) de l’équation [A— F 4- ( A'„-r okn f ] = o eu
tenant compte de l’équation (A — F -r kf{ )U*„ — o et de sa dérivée par rapport à kn.
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nous aurons finalement ramené la fonction « à la forme u = u0 + u, ua 
et v étant solutions de l’équation linéaire, w0 ayant une singularité ponc 
tuelle en Q et v étant régulière. De plus nous voyons que v est de la 
forme C 1F'„ ~ C’Fn, c’est-à-dire très sensiblement proportionnelle à la 
fonction W„ qui est la fonction propre considérée en Mécanique ondu 
latoire usuelle.

Si le rapport^ est considéré comme bien déterminé, nous obtenons

comme expression du glissement de fréquence Skn la valeur entièrement 
déterminée par la position de la singularité

( 1 r> ) Okn = £ d^(Q)
C a kn

Mais, dans le problème extérieur où l’on ne considère que l’équation 

d’ondes linéaire, la valeur de ^ est arbitraire. En effet, e est introduit

artificiellement avec une valeur déterminée dans le second membre 
de (2) : quant à C, cette constante n’a aucune valeur imposée a priori. 
La formule (i5) ne nous fournit donc pas une valeur déterminée 
pour <5/.„.

Mais nous avons vu précédemment que le point de vue adopté dans le 
problème extérieur où l’on considère implicitement l’équation linéaire 
sans second membre (1) comme valable partout sauf au point Q est 
insuffisant. Nous devons admettre qu’au voisinage immédiat de Q existe 
une très petite région singulière où l’équation (1) n’est plus valable et 
où l’on doit tenir compte d’un second membre non linéaire. Or, comme 
je l’ai montré sur un exemple au chapitre précédent (§ 5), la non- 
linéarité localisée dans la région singulière peut suffire pour imposer

des valeurs parfaitement déterminées à c, G et Il én résulte que cette

non-linéarité locale doit permettre d’obtenir par la formule (ia) une 
valeur parfaitement déterminée et extrêmement petite du glissement de 
fréquence okn.

Il convient de faire ici une remarque qui pourrait avoir son impor 
tance. Si la théorie qui précède est exacte, comme la fréquence k de 
l’onde « véritable » a différerait très légèrement de kn, la méthode 
habituelle de calcul des énergies quantifiées en Mécanique ondulatoire 
qui déduit ces énergies des valeurs propres de l’équation de Schrôdinger 
serait entachée d’une très légère inexactitude. Mais dans l’état actuel 
de la théorie de la double solution, nous pouvons toujours supposer le



7o CHAPITRE V.

rapport ^ assez petit pour qu’il n’en résulte aucun effet observable même

dans les mesures spectroscopiques les plus précises.
J’ai donné ailleurs (*) le calcul complet de la fonction u dans le cas 

d’un corpuscule immobile au centre d’une enceinte sphérique et montré 
qu’elle peut se représenter par la formule de Rayleigh-Sommerfeld. Le 
calcul est rendu très facile par le fait que les fonctions propres et la
fonction de Green ont alors des formes très simples ^ et c0SJc--j ■

M. André Rot vient de faire (-) un calcul analogue dans le cas plus 
général d’un corpuscule occupant une position quelconque dans une 
enceinte sphérique, puis de l’étendre au cas de tout domaines D fini 
quand il y a séparation des variables et même à certains cas de 
domaines infinis. •

Quoiqu’il en soit il semble que, du moins dans le cas de domaines 
finis et sous réserve de l’examen de certaines questions de convergence, 
la formule de Rayleigli-Sommerfeld, qui paraissait constituer une grave 
difficulté pour la théorie de la double solution, fournit au contraire une 
méthode pour construire dans le domaine extérieur une fonction d’onde 
u possédant toutes les propriétés requises.

4. Interprétation de la signification statistique du j |- dans les états 
stationnaires. — Nous allons maintenant étudier un problème qui a été 
souvent considéré comme fournissant une forte objection contre la for 
mule du guidage.

Dans toute tentative de réinterprélalion causale de la Mécanique 
ondulatoire, on doit se demander comment on peut justifier le lait, 
depuis longtemps bien établi, que le carré du module de la fonction 
d’onde V donne la probabilité de présence du corpuscule en chaque 
point à chaque instant. MM. Bohm et Vigier ( :1) ont apporté une contri 
bution importante à la solution de ce problème en montrant que, si le 
mouvement du corpuscule défini par la « formule du guidage » subit 
constamment de petites perturbations aléatoires, la probabilité de pré 
sence en | W j2 doit s’établir très rapidement. Ces petites perturbations 
aléatoires jouent le même rôle que le « chaos moléculaire » dans la 
Mécanique statistique de Boltzmann. A quoi peuvent être dues ces

(1) Voir[3] p. 226-230
(s) C. R. Acad. Sct. 243, 1956, p. 483 et 1281.
(3) D. Bo h m, Phys. Rev., t. 85, 1962, p. 166 et 180; D. Bo u m et J. P. Vic ie r , Phys. 

Rev., t. 96, 1954, p. 208.



incessantes petites perturbations aléatoires ? A des interactions avec 
d’autres systèmes passant à proximité (collisions), à de faibles fluctua 
tions des conditions aux limites imposées à l’onde, peut-être même, 
d’après M. Vigier, à des interactions avec un champ ondulatoire 
tourbillonnaire et incoordonné qui remplirait ce que nous appelons « le 
vide ».

D’un point de vue général, on peut remarquer que, dans toute théorie 
qui impose au corpuscule une loi de mouvement bien déterminée, il est 
nécessaire pour obtenir une Mécanique statistique d’introduire un 
élément aléatoire (chaos moléculaire de Boltzmann en Mécanique clas 
sique, hypothèse des perturbations de Bohm et Vigier dans l’interpré 
tation causale de la Mécanique ondulatoire). Mais le résultal statistique 
que l’introduction de cet élément aléatoire permet de justifier est en 
quelque sorle contenu d’avance dans les équations du mouvement dont 
on part, ce qui permet de prévoir ce résultat a priori. Ainsi dans le 
cadre des anciennes Mécaniques de Newton et d’Einstein, on peut 
démontrer le théorème de Liouvillc qui affirme la conservation au cours 
du temps du domaine d’extension en phase occupé par les points repré 
sentatifs dans cet espace abstrait d’un nuage de corpuscule se déplaçant 
dans l’espace physique suivant les lois de la Dynamique. Ce théorème 
rend probable a priori qu’en Mécanique statistique classique ou relati 
viste, le principe statistique fondamental doit être l’égale probabilité 
des éléments égaux de l’extension en phase. Mais la démonstration rigou 
reuse de celte proposition, objet des théories ergodiques, paraît exiger 
toujours l’introduction plus ou moins explicite d’un élément aléatoire 
analogue au chaos moléculaire de Boltzmann.

De même, dans les théories de la double solution ou de l’onde pilote 
(la distinction entre les deux est ici sans importance), le rôle joué dans 
les Mécaniques anciennes par le théorème de Liouville appartient à
l’équation de continuité + divpe=oJ valable pour le fluide fictif

associé à la propagation de l’onde régulière. Cette équation rend pro 
bable a priori que, dans la nouvelle Dynamique découlant de la formule 
du guidage, la quantité p dv (où p = j W |2 avec l’équation de Schrôdinger) 
soit la probabilité pour que le corpuscule soit présent à l’instant t dans 
l’élément de volume dv de l’espace physique. Mais ici encore cette 
affirmation ne peut être vraiment justifiée, par des raisonnements ana 
logues à ceux de MM. Bohm et Vigier, qu’en introduisant un élément 
aléatoire constitué par les incessantes petites perturbations dont nous 
avons parlé plus haut.
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Quelle que soit l’origine physique de ces perturbations, nous pouvons 
nous les représenter de la façon suivante. Supposons qu’abstraction 
faite de ces perturbations, Fonde régulière associée à un corpuscule 
(onde W ou onde v peu importe si on les suppose proportionnelles) soit

2 7Ï i— 9
de la forme ae h avec a et cp réels : le mouvement du corpuscule 
incorporé à cette onde « non perturbée » sera défini par la formule du 
guidage qui, en se bornant au cas simple de l’équation de Schrôdinger, 
s’écrira

(i5 bis) t> =---- -gradç.

Introduisons les petites perturbations : bien qu’elles soient très nom 
breuses pendant chaque unité de notre temps macroscopique (par 
exemple, par seconde), nous les supposerons très courtes et séparées 
dans le temps par des intervalles très longs par rapport à leur durée. 
Pendant l’une de ces perturbations, l’onde prendra la foritte 

— (s + r,)
(a -f- s) e h , où e et rj sont les petites perturbatious de l’amplitude 
et de la phase. En raison du caractère aléatoire des perturbations, il est 
naturel de supposer que les valeurs moyennes dans le temps 1 et rj sont 
nulles. Pendant la durée de la perturbation, la vitesse du corpuscule 
devient la somme de la vitesse non perturbée donnée par (i5 bis) et de

la vitesse additionnelle T>'— — ^gradv). Bien que la valeur moyenne de

P soit nulle, ces vitesses additionnelles feront passer le corpuscule de sa 

trajectoire non perturbée initiale à une autre trajectoire non perturbée, 
puis de celle-ci à une troisième, etc. Finalement, bien que la durée de 
chacune des perturbations soit par hypothèse beaucoup plus courte que 
celle des intervalles pendant lesquelles le corpuscule décrit une trajec 
toire non perturbée, le nombre énorme des perturbations subies par 
seconde aura pour effet qu’au bout d’un temps très court à notre échelle, 
la probabilité de présence |lF[-=a2 se trouvera réalisée : c’est ce que 
paraissent démontrer les raisonnements de MM. Bohm et Vigier. Cette 
probabilité se trouve d’ailleurs être aussi égale à la valeur moyenne du 
carré de l’amplitude perturbée (a + e)2 si l’on s’en tient au premier 
ordre, puisque 1 = o.

Nous en arrivons maintenant à l’application de la formule du guidage 
au cas des états stationnaires, application qui semble au premier abord 
conduire à une grosse difficulté. Considérons un état stationnaire d’un 
système quantifié, par exemple d’un électron dans l’atome d’hydrogène.



En général, la fonction d’onde correspondante est de la forme

a(x, y, z) e h , E„ étant la valeur quantifiée de l’énergie et a une 
fonction réelle des variables x, y, z. La formule (i5) nous indique alors 
que l’électron doit rester immobile en un point quelconque, mais bien 
déterminé de l’atome ; ceci correspond au fait que la force quantique

— gradQ dérivant du potentiel quantiqne Q fait alors équilibre à la force 
électrostatique. Dans d’autres cas, on pourra trouver que l’électron est 
animé d’un mouvement périodique simple; ainsi, pour l’électron dans 
l’atome d’hydrogène, quand la fonction d’onde est de la forme

W = F(r, 0) e""x e h , où r, 0, a sont les coordonnées polaires autour 
du noyau, comme la phase est alors une fonction linéaire de l’angle de 
longitude a, l’électron doit, d’après la formule (id ), décrire un 
« parallèle » autour de l’axe polaire avec une vitesse uniforme. Dans 
tous les cas, que l’électron soit immobile ou animé d’un mouvement 
périodique très simple, on ne voit absolument pas comment la probabi 
lité de présence [*E|-=a- peut se trouver réalisée. L’objection paraît 
grave.

Mais introduisons maintenant les petites perturbations aléatoires 
brusques et espacées et commençons par envisager le cas où l’électron 
de l’atome d’hydrogène a comme mouvement non perturbé un mouve 
ment circulaire uniforme. On peut voir facilement que la longueur de 
la trajectoire circulaire doit être de l’ordre de io~8~à io -9 cm et la vitesse 
de l’électron de l’ordre de io,J cm/s. La période du mouvement est 
donc de l’ordre de io_1* s. Admettons alors, à titre d’exemple, qu’il 
se produise en moyenne un milliard de perturbations brusques par 
seconde : le corpuscule anra néanmoins le temps de décrire en moyenne 
dans chaque intervalle de temps entre deux perturbations consécutives 
un milliard de tours sur sa trajectoire non perturbée. Cet exemple 
montre que le corpuscule pourra être considéré comme animé presque 
constamment du mouvement non perturbé défini par la formule ( 15 ) 
bien qu’il change de trajectoire circulaire un milliard de fois par seconde. 
Ceci nous permet de comprendre comment, malgré la forme circulaire 
des trajectoires non perturbées, on puisse s’attendre à trouver l’électron 
en n’importe quel point de l’atome avec la probabilité [ *F|2.

Dans le cas où l’électron dans son état non perturbé reste immobile 
en un point de l’atome, on peut dire que le mouvement non perturbé se 
réduit à l’immobilité. Mais si nous admettons toujours qu’il se produit 
en moyenne un milliard de perturbations par seconde, l’électron sera
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projeté un milliard de fois par seconde on moyenne d’une position dans 
une autre et, au bout d’une seconde, il aura occupé un milliard de posi 
tions différentes dans l’atome, et cela bien qu’il soit resté en moyenne 
dans chacune de ces positions pendant un temps très long par rapport à
la période de son onde ^qui, étant toujours voisine de est de l’ordre

de io—20 s^ • Ici encore, nous arrivons à comprendre comment, grâce

au sautillement continuel du corpuscule dû aux perturbation, peut se 
réaliser la probabilité de présence en j •P |2 bien que le corpuscule reste 
presque constamment immobile.

5. Deux théorèmes de la théorie de la double solution-onde pilote.—
Nous allons maintenant démontrer deux théorèmes intéressants de 
l’interprétation causale de la Mécanique ondulatoire que l’on peut 
énoncer dans le langage de la théorie de l’onde pilote qui est ici équi 
valent à la théorie de la double solution. Ces théorèmes nous sont 
connus depuis assez longtemps : ils ont été d’ailleurs donnés par 
d’autres auteurs, notamment par M. Herbert Franke.

a. Théorème sur Vexpression de Vénergie cinétique. — Dans la 
Mécanique ondulatoire usuelle, on considère la fonction d’onde 
comme une grandeur complexe indécomposable dont on ne fait pas 
intervenir séparément le module et l’argument. On prend comme opé 
rateur hamiltonien

(16) H = -^-P2-l- V 
2 m

P2 = — h?
4 n* )'

l’opérateur correspondant à l’énergie cinétique T de la théorie clas 

sique. La valeur moyenne de l’énergie totale E dans l’état V est alors 
dans le formalisme usuel

(„) s=Xv’(-«S^i + v)v*.

9
En théorie de la double solution-onde pilote, on écrit W = a e h et 
l’on fait jouer des rôles distincts à l’amplitude a et à la phase cp. Par 
substitution dans l’équation d’ondes, on obtient l’équation de Jacobi 
généralisée
(18) ^ =E= -i^gradcpp + V-t-Q,

avec

(19) Q =
h> Èsa

8 Tpm a
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De plus, Ton obtient aussi l’équation de continuité 

(20) ^ (a2) + div^ grado^ = o.

Comme l’énergie cinétique T du corpuscule a ici, d’après la formule du 

guidage (i5), la valeur bien définie T = (grade?)-, on voit que

l’énergie totale E est la somme de l’énergie cinétique, du potentiel clas 
sique Y et du potentiel quantique Q. La densité de probabilité de 
présence étant j W |- = a-, on est amené à écrire

a- d~.121 ) J (2 m* ■ad- o Q

Or on trouve facilement, en tenant comple de l’équation (20),

< 2.9 )
1 , , v, h----- ( grade)2 — —----------

2 ni X-2 a

En portant (22) dans (1 7) et en comparant avec (2 t), on voit que :

i° L’expression usuelle (17) de E coïncide avec l’expression (21) 
donnée par la théorie de la double solution-onde pilote ;

2" Dans l’expression (21) de E le terme — A de l’expression

usuelle (17) ne correspond pas à l’énergie cinétique T définie parla 
formule du guidage, mais à la somme de cette énergie cinétique et du 
potentiel qnantique. Si ce potentiel ne figure pas explicitement dans la

formule (17), c’est parce qu’il est contenu dans le terme ~^P2 que 1»

théorie usuelle considère comme correspondant à l’énergie cinétique, 
mais qu’ici nous interprétons différemment.

Ce théorème est important pour la comparaison exacte de la théorie 
usuelle avec l’interprétation causale et la formule du guidage.

b. Théorème du Viriel. — En Mécanique statistique classique, on 
démontre un théorème connu sous le nom de « théorème du Viriel », 
théorème cjui joue notamment un rôle important en théorie cinétique 
des gaz. Je rappelle d’abord la démonstration classique de ce théorème.

Le mouvement du corpuscule de quantité de mouvement égale à/> dans 
un champ de force dérivant du potentiel V est

= — grad V dt b(23)
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On en déduit, r étant le rayon vecteur qui définit la position 
corpuscule,

(24) dty r.p)=p.v ■ > dp 
' r ~dt = 2 T ■ - P', grad V.

du

On voit alors facilement que, pour un mouvement périodique, le 
premier membre de l’équation (24) doit être nul en moyenne dans le 
temps et l’on obtient pour un tel mouvement

(25) . 2 T — r.gradV = o.

"---- ^
La grandeur —/'.gradV est nommé le « Viriel des forces » et la for 
mule (25) exprime le théorème classique du Viriel.

Ce théorème peut se transposer dans la Mécanique ondulatoire 
usuelle. Pour cela, nous introduisons les définitions suivantes :

N = —

(26)

j V* ( t. grad ) *1' d

éPîf-

R = — / {r. gradVj 1’* V <h
M

i / h
im AU’ d-.

Il est visible que R représente ici la valeur moyenne du Viriel. Par 
tant de l’équation de Schrôdinger et effectuant plusieurs intégra 
tions par parties, l’on démontre alors que l’on a

(27) dt
= 2T + R.

Si l’onde est stationnaire ~ e k ) , le premier membre de ( 27) est 
nul et il reste
(28) 2 T -+- R = o,

ce qui est visiblement la transposition en Mécanique ondulatoire usuelle 
du théorème classique du Viriel.

Nous allons interpréter la formule (28) en nous plaçant au point de 
vue de l’interprétation causale.

En tenant compte du théorème a et en introduisant le potentiel quan 

tique Q =— g—3 et sa valeur moyenne ÇQa2 dz, nous récrirons
•''U

la formule (28) sous la forme

(29) 2T'+2Q + R = 0,
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où T’ est ici l’énergie cinétique « véritable » (grade)2 correspondant

à la formule du guidage. Or, dans la théorie de la double solution-onde
pilote, le théorème du Yiriel doit évidemment s’écrire sous la forme

îT'+R+R'=o ,(3o)

où

(3i)
D

est la valeur moyenne du Viriel de la force quantique qu’il faut évidem 
ment ici ajouter à la valeur moyenne du Yiriel de la force classique R. 

Pour démontrer (3i), il suffit de montrer que

(32)

soit

Or, on vérifie facilement que

grada2) dz(34)

D

car on voit aisément par une suite d’intégration par parties que

Le théorème du Viriel sous la forme (3o) se trouve donc démontré.

6. Quelques mots sur la Mécanique ondulatoire des systèmes dans 
l’espace de configuration. — L’on sait que dans ces beaux Mémoires de 
1926, M. Schrôdinger avait été amené, pour construire la Mécanique 
ondulatoire des systèmes de corpuscules de façon qu’elle admette la 
théorie classique d’Hamilton-Jacobi comme approximation de l’Optique 
géométrique, à associer au mouvement d’un système la propagation 
d’une onde dans l’espace de configuration défini par l’ensemble des 
3 N coordonnées des N corpuscules constituant le système. Il a écrit
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(36)

N
y -î-a *v

mt
8jt2
h-' V'F = 4 t u  t

A ’

où mk est la masse du k,ime corpuscule de coordonnées xk, yk) zk et où 
A/;= ^5 + ^2* Le potentiel Y correspond à la fois aux inter 

actions qui peuvent s’exercer de l’extérieur sur le système s’il n’est pas 
isolé et aux interactions des corpuscules du système entre eux. Dans le 
cas où N = i, on retombe sur l’équation valable pour un seul corpuscule 
dans un champ extérieur donné.

En mettant ainsi sur le même pied la propagation de l’onde 'F d’un 
système dans l’espace de configuration et celle de l’onde *F d’un cor 
puscule dans l’espace physique, on enlevait à l’onde 'F tout caractère 
de réalité physique car la propagation d’une onde dans l’espace abstrait 
de configuration ne peut être que purement fictive. Môme dans le cas 
d’un seul corpuscule, si l’on considère l’équation d’onde de ce corpuscule 
comme étant un cas particulier pour N = i de l’équation (36), on 
obtient une équation de propagation dans l’espace de configuration du 
corpuscule défini par ses coordonnées x, y, z, et non une équation de 
propagation dans l’espace physique définie par les variables d’espace 
x, y, z. L’onde devient ainsi une grandeur purement abstraite.

Naturellement, à cette époque où je cherchais à conserver à l’onde 
de la Mécanique ondulatoire le caractère d’une réalité objective, je 
n’avais pu admettre ce point de vue. Pour moi, tout phénomène réel 
devait pouvoir être décrit dans le cadre de l’espace et du temps : il ne 
me paraissait pas admissible que l’on ne puisse traiter le problème de 
N corpuscules en interaction qu’en considérant une propagation d’ondes 
visiblement fictive dans un espace de configuration entièrement abstrait. 
A mes yeux il devait être possible de poser, et même de résoudre, ce 
problème en considérant la propagation dans l’espace physique de 
N ondes u à singularité s’influençant mutuellement. On devrait ensuite 
pouvoir démontrer que le résultat statistique de ces interactions est 
exactement fourni par la considération de l’onde V de Schrodinger 
dans l’espace de configuration, onde qui n’étant qu’une représenta 
tion de probabilité peut avoir un caractère abstrait : elle ne serait en 
somme qu’une représentation statistique des corrélations établies entre 
les positions des singularités des ondes u sous l’influence de leurs inter 
actions.



Conformément à ce programme, on doit chercher à se représenter un 
système de N corpuscules comme formé par N trains d’ondes u portant 
chacun une région singulière et évoluant dans l’espace physique au 
cours du temps, la propagation de chacun de ces trains d’ondes étant 
influencée par les actions qu’exercent sur elles les régions singulières 
des autres trains d’ondes. Déjà dans mon Mémoire de 1927, j’avais fait 
une première tentative pour justifier en me plaçant à ce point de vue le 
rôle de l’onde W dans l’espace de configuration. Dans ces dernières 
années, j’ai repris des efforts en ce sens et je les ai exposés dans mon 
récent Ouvrage (1). Certes on ne peut pas dire qu’une démonstration 
vraiment claire et rigoureuse ait vraiment été obtenue jusqu’ici, mais 
j’ai des raisons de penser qu’on parviendra à l’obtenir. Aussi dans le 
présent exposé, j’admettrai que, quand des traces d’ondes u correspon 
dant à divers corpuscules ont interagi, par exemple, dans un dispositif 
de mesure, les corrélations statistiques établies entre les positions des 
corpuscules par la théorie de l’onde dans l’espace de configuration 
sont exactes. Cette hypothèse nous permettra d’obtenir les résultats que 
nous désirons sans avoir à traiter le problème du mouvement de chaque 
train d’ondes u pendant la période d’interaction.

Nous allons maintenant revenir au problème de la Mesure en l’envi 
sageant désormais du point de vue de la théorie de la double solution, et 
en le soumettant à une analyse plus détaillée qu’on ne l’a fait habituelle 
ment jusqu’ici.

SUR LA THÉORIE DE LA DOUBLE SOLUTION ET SUR LE GUIDAGE. 79

(') Voir [3], chap. XII et aussi C. R. Acad. Sc., t. 244, 19^7, p. 529.



CHAPITRE VI.
POSITION DE L’INTERPRÉTATION CAUSALE EN FACE DU PROBLÈME 

DK LA MESURE EN MICROPHYSIQUE.

1. Rôle particulier joué par la position du corpuscule. — La théorie 
de la double solution rétablit une description des phénomènes dans le 
cadre de l’espace et du temps. Elle est donc amenée à donner à la 
mesure de la position du corpuscule un rôle particulier. Ceci semble 
d’ailleurs naturel si l’on remarque que toutes les observations sont 
nécessairement faites dans le cadre de l’espace physique.

Si l’on réfléchit à la façon dont peut s’opérer la détermination de la 
position d’un corpuscule, on est amené aux constatations suivantes. 
D’abord, comme le corpuscule n’est pas directement observable, sa 
présence ne peut être décelée que par un effet macroscopique local dont 
il provoque le déclenchement. Et il en est de même pour tout système 
microphysique. C’est ainsi qu’un photon arrivant dans la couche 
sensible d’une plaque photographique y produit un effet photoélectrique 
et le photoélectron émis déclenche par des effets d’ionisation une 
cascade de phénomènes chimiques qui se traduisent par une réduction 
locale de bromure d’argent et par un noircissement local de la couche 
sensible visible après développement photographique. De même, un 
corpuscule électrisé pénétrant dans une chambre de Wilson déclen 
chera, pour effet d’ionisation, une condensation de gouttelettes de 
vapeur donnant une trace dans la chambre et une série d’actions ana 
logues consécutives provoquera l’apparition d’une file de gouttelettes de 
vapeur dessinant grossièrement la trajectoire du corpuscule.

En y réfléchissant, il apparaît que tout phénomène observable pro 
voqué par des corpuscules de l’échelle atomique est décelable de cette 
manière seulement. Il y a toujours à l’origine de l’observation l’action

L. DE BROGLIE. 6
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locale d’un oorpuscule déclenchant finalement un phénomène macro 
scopiquement observable. C’est là un point essentiel qui n’a pas été 
suffisamment mis en lumière par l’analyse de M. von Neumann et par 
les commentaires qui en ont été faits. Par contre, dans cette analyse on 
fait jouer un rôle qui nous paraît exagéré à l’appareil de mesure et même 
à l’aiguille de l’appareil de mesure. En réalité, l’appareil de mesure et 
son aiguille ne peuvent jouer qu’un rôle secondaire pour mesurer le 
phénomène macroscopique déclenché par l’action locale du corpus 
cule : par exemple, un galvanomètre pourra servir à mesurer le courant 
de décharge provoqué par l’arrivée d’un corpuscule dans un compteur 
à pointe, mais c’est le déclenchement de la décharge qui est la chose 
essentielle et non sa mesure par le galvanomètre. Le rôle de l’instrument 
de mesure nous apparaît comme beaucoup moins important qu’on ne le 
dit souvent et il y a même des cas où l’on peut s’en passer complètement 
(par exemple dans l’observation visuelle directe d’une plaque photo 
graphique).

Dans l’interprétation usuelle, on considère très souvent que l’on 
mesure la position d’un corpuscule en le faisant passer à travers un trou 
percé dans un écran et ouvert pendant un temps très court : on aurait 
ainsi une détermination aussi exacte qu’on le voudrait de la position du 
corpuscule. Mais indépendamment du fait qu’on n’exécute jamais en 
pratique une pareille mesure de la position d’un corpuscule, on doit 
remarquer qu’il faudrait qu’il y ait ensuite un phénomène macro 
scopique observable déclenché par le corpuscule qui a traversé l’écran; 
sans quoi, on n’observerait rien du tout. On pourrait faire l’expérience 
de la façon suivante : recevoir le train d’ondes contenant le corpuscule 
sur un écran percé d’une infinité de trous très voisins (tamis) et placer 
derrière cet écran une plaque photographique.

L’observation d’un noircissement local de la plaque photographique 
permettrait de dire que le corpuscule a passé par le trou situé en face 
de ce noircissement. La détermination de la position ainsi effectuée 
serait toujours imprécise, les dimensions de la tache noire sur la plaque 
photographique étant d’ordre de grandeur macroscopique (puisque cette 
tache est observable) et, par suite, beaucoup plus grandes que les 
dimensions du corpuscule. Elle aboutit néanmoins à préciser considé 
rablement la position du corpuscule puisque les dimensions d’un trou 
du tamis sont beaucoup plus petites que les dimensions transversales du 
train d’ondes incident.

Nous parvenons à l’idée générale, trop souvent méconnue, que, 
si l’on ne peut déterminer d’une façon très précise la position d’un
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corpuscule, cependant toute observation ou toute mesure relative à un 
corpuscule microphysique s’opère toujours en observant un phénomène 
macroscopique très localisé déclenché par l’action de ce corpuscule.

Contrairement à ce qu’affirme la théorie trop abstraite des représen 
tations en Mécanique ondulatoire usuelle, la position d’un corpuscule 
joue donc un rôle tout à fait différent des autres grandeurs mesurables. 
Répétons que cela est bien naturel puisque toute observation s’opère 
dans le cadre de l’espace physique. Méconnaissant ce fait, la théorie des 
représentations tend à mettre exactement sur le môme pied l’espace des

■*-

■*-

-------------------- >-
Train d'ondes 

incident Tamis —Plaque 
photographique

Fis

moments py, pz) et l’espace physique (x, y, z), mais c’est là 
pousser trop loin l’abstraction : le physicien, son laboratoire et ses 
instruments sont dans l’espace physique et l’espace des moments 
n’existe que dans l’esprit des théoriciens.

Comme la théorie de la double solution revient à des idées plus 
concrètes et rétablit le rôle privilégié que joue incontestablement dans 
l’expérience l’espace physique, il n’est pas surprenant qu’elle doive 
nous conduire à attribuer un rôle particulier à la distribution de proba 
bilité relative à la position (le | V |2 dans le cas de l’équation de Schrô 
dinger), Elle va nous apprendre, en effet, que cette distribution de 
probabilité correspond à un collectif que l’on doit associer à l’état 
initial avant la mesure. Au contraire, la distribution de probabilité que 
le formalisme usuel attribue à une grandeur qui n’est pas simultanément 
mesurable avec la position n’est pas réalisée en général dans l’état
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initial : elle correspond à un collectif associé à l’état qui existera après 
l’action sur le corpuscule d’un dispositif permettant la mesure de la 
grandeur envisagée.

2. Tout dispositif de mesure comporte une séparation des trains 
d’ondes dans l’espace. — Nous allons maintenant insister sur une autre 
circonstance qui, elle aussi, a été jusqu’ici méconnue dans la théorie de 
la Mesure.

Plaçons-nous d’abord dans le cas où l’on veut mesurer une grandeur 
relative à un corpuscule sans faire intervenir un autre corpuscule. On 
devra alors employer un dispositif macroscopique dont l’action sur la 
propagation de l’onde à laquelle le corpuscule est incorporé aura fina 
lement pour effet de séparer dans l’espace des trains d’ondes corres 
pondant chacun à une valeur donnée de la grandeur à mesurer. Cette 
conclusion est la conséquence immédiate du fait mis en évidence dans 
le dernier paragraphe que toute observation d’un corpuscule consiste 
toujours dans sa localisation. Pour que la localisation d’un corpuscule 
après l’action du dispositif de mesure nous permette de dire quelle était 
à ce moment la valeur de la grandeur mesurée, il faut qu’il y ait une 
correspondance univoque entre la localisation du corpuscule et la valeur 
de la grandeur mesurée et c’est cela qui exige la séparation des trains 
d’ondes dans l’espace après la mesure.

Le dispositif que nous avons envisagé plus haut ( fig. i) pour la 
mesure de la position répond à cette condition puisqu’il a pour effet 
d’isoler des trains d’ondes de petites dimensions latérales, ce qui permet 
une mesure (un peu imprécise) des coordonnées du corpuscule dans le 
plan de l’écran grâce au noircissement très localisé déclenché dans la 
plaque photographique placée derrière le tamis.

Envisageons maintenant la mesure de la quantité de mouvement 
dont la connaissance nous fournit l’énergie. Pour mesurer la quantité 
de mouvement d’un photon (donc son énergie, sa fréquence et sa 
« couleur »), on enverra le faisceau incident sur un dispositif du genre 
prisme ou réseau qui séparera dans l’espace en les envoyant dans des 
directions différentes les trains d’ondes correspondant aux diverses 
fréquences. Quand le train d’ondes incident n’est pas monochroma 
tique, le dispositif réalise une véritable décomposition spectrale en 
isolant dans l’espace les diverses composantes de Fourier de l’onde, 
incidente : mais la même séparation serait obtenue si le dispositif 
recevait successivement des trains d’ondes monochromatiques ayant des 
fréquences différentes, car chacun d’eux serait envoyé dans la direction
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qui correspond à sa fréquence. Comme à la sortie immédiate du dispo 
sitif, les trains d’ondes peuvent se superposer, la localisation du photon 
dans cette région par l’observation d’un phénomène macroscopique 
qu’il déclencherait ne permettait pas de lui attribuer une fréquence bien 
définie. Aussi placc-t-on ordinairement derrière le prisme ou le réseau 
une lentille qui, séparant les différents faisceaux monochromatiques, les 
fait converger sur des petites régions séparées de son plan focal où ils 
donnent chacun une image colorée de la source. Si un phénomène 
macroscopique observable (par exemple noircissement local d’une 
émulsion photographique) est déclenché par l’arrivée d’un photon dans 
l’une de ces régions, on pourra lui attribuer une fréquence déterminée. 
Le faisceau initial est ainsi divisé par l’action du dispositif réseau+len- 
tille en une série de portions d’onde qui viennent frapper la plaque photo 
graphique en des régions spatialement disjointes et c’est cette séparation 
spatiale qui permet la mesure de la fréquence, et par suite de la quantité 
de mouvement, du photon. Le fait que nous venons de raisonner sur un 
photon n’a aucune importance particulière car nous savons aujourd’hui 
que tout corpuscule peut nous donner des phénomènes du type optique 
et nous pouvons construire pour les électrons, par exemple, des dispo 
sitifs analogues à un prisme ou à une lentille. Il n’y a donc, dans le 
problème que nous examinons, aucune différence essentielle entre le 
photon et les autres corpuscules.

Plus généralement, nous pouvons analyser ce genre de mesure de la 
façon suivante. Supposons que nous voulions mesurer une grandeur A 
relative au corpuscule. Le train d’ondes initial R0 étant représenté par 
la fonction d’onde

(i) ff' ='^JCk9k,
k

où <ff( est la fonction propre de A correspondant à la valeur propre a/(, 
nous envoyons ce train d’ondes sur un dispositif D (réseau + lentille 
dans le cas étudié plus haut) qui sépare les composantes C/;cp/f de telle 
sorte qu’à la sortie du dispositif D, chacune d’elles occupe une région R/, 
spatialement séparées des régions occupées par les autres.

Si alors nous observons (à l’aide d’un enregistrement photographique 
ou autrement) un phénomène macroscopique déclenché par le corpus 
cule dans la région % nous pourrons affirmer que la grandeur A de ce 
corpuscule avait après l’action du dispositif la valeur aj et nous aurons 
ainsi effectué une mesure de A. Le formalisme de la Mécanique ondula 
toire nous affirme alors que la valeur a, a la probabilité jcy|-, c’est-
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à-dire que nous recommencions un très grand nombre de fois la môme 
expérience de mesure avec des trains d’ondes représentés par la même 
fonction d’onde (i), la proportion des cas où nous obtiendrions la 
valeur ay serait donnée par ] cy j-.

Dans l’interprétation usuelle où l’on ne veut rien ajouter au concept 
d’onde W, il n’j a pas de localisation du corpuscule incident dans R0 et 
il n’y en a pas davantage dans les régions R4, R2, . . ., après l’action du 
dispositif D. Ce serait seulement au moment où se produirait un phéno 
mène observable dans Ry que brusquement le corpuscule se localiserait 
dans cette région. Il faudrait môme dire dans la théorie de von Neumann-

London-Bauer que c’est la prise de conscience par l’observateur du 
phénomène macroscopique qui localise le corpuscule dans Ry. Mais ceci 
parait vraiment inacceptable ! Il semble évident que le phénomène 
macroscopique se produirait, môme si l’observateur avait les yeux fermés, 
de sorte que la prise de conscience par l’observaleur n’a rien à voir là- 
dedans.

Ce qui est également incompréhensible dans l’explication actuelle, 
c’est comment il se fait que le déclenchement d’un phénomène macro 
scopique observable dans Ry empêche instantanément le corpuscule de 
se manifester dans une autre des régions R/f. La chose est d’autant plus 
surprenante qu’au moment de la localisation du corpuscule les divers R/, 
peuvent se trouver très éloignés de Ry.

C’est en somme cette difficulté qu’Einstein avait signalée, sous une 
forme un peu différente, au Conseil Solvay de 1927 et que l’on n’a 
jamais pu nettement écarter. « Considérons, disait Einstein, un écran 
plan percé d’un trou sur lequel tombe normalement un train d’ondes W.
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« Derrière l’écran, si le trou est assez petit, l’onde prendra la forme 
d’une onde sphérique dont le trou serait le centre. Disposons alors 
derrière l’écran un film hémisphérique F. Si le corpuscule se manifeste 
en un point A de F, ceci s’interpréterait très facilement si le corpuscule 
avait suivi une trajectoire Lien définie (telle que celle représentée en 
pointillée sur la figure 3) qui l’avait amené en A. Mais si le corpuscule 
n’est pas focalisé, s’il est répandu à l’état potentiel dans toute l’onde 
hémisphérique derrière l’écran, comment le fait qu’il se manifeste en A 
peut-il l’empêcher instantanément de se manifester.en tout autre point B 
du film, point qui peut être à une grande distance de A? »

On voit bien que l’objection est la même que celle que nous avions 
exposée plus haut, car le dispositif d’Einstein est un dispositif de mesure 
de la position du corpuscule. On ramènerait d’ailleurs ce dispositif à 
celui que nous avions envisagé précédemment ( fig. 1) en supposant 
que le film hémisphérique .est placé immédiatement derrière un écran 
également hémisphérique percé d’une infinité de trous.

On pourrait objecter au raisonnement d’Einstein que le corpuscule 
ne manifeste pas sa présence en un point A, mais dans une petite région 
autour de A. Mais la surface de cette région étant très petite par rapport 
à celle de l’hémisphère F, l’objection d’Einstein garde toute sa valeur.

Revenons à la figure 2. On tombe dans des difficultés qui paraissent 
insurmontables si l’on ne veut pas admettre que le corpuscule est 
localisé, mais tout s’éclaire si l’on rétablit la localisation du corpuscule 
comme le fait la théorie de la double solution. En effet, alors le corpus 
cule doit avoir une position dans le train d’ondes initial. Cette position, 
nous ne pouvons d’ailleurs pas la connaître parce que, pour la mesurer,
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nous serions obligés d’employer un dispositif qui perturberait entiè 
rement le train d’ondes initial. Mais nous admettrons que cette position 
existe et que la probabilité pour que le corpuscule se trouve au point M0 
du train d’ondes à l’instant initial t0 est donnée par | ^(Mo, t0) |2- Pour 
la justification de cette dernière hypothèse, on se reportera au para 
graphe A du dernier chapitre. D’après le théorème du guidage, le 
corpuscule partant d’une position initiale M0 à l’instant t0 doit suivre la 
ligne de courant qui passe par M0. Le mouvement qui en résulte pour 
lui est en général très compliqué : il n’est rectiligne et uniforme 
qu’avant l’action du dispositif quand le train d’ondes est sensiblement 
monochromatique. Mais nous savons qu’après le passage au travers le 
dispositif qui sépare les trains d’ondes R1: R2, . . ., le mouvement du 
corpuscule l’amènera finalement dans l’un des trains d’ondes R/,, la 
probabilité pour que ce soit dans Ry étant évidemment

-'H
17 1 d- = ! ci

puisque cpy est normée (*) et nulle en dehors de Ry. Si alors le corpus 
cule déclenche un phénomène macroscopique observable dans Ry, c’est 
parce qu’il est arrivé dans Ry et alors la grandeur A a la valeur ay.

Évidemment il faut que l’observateur constate le déclenchement du 
phénomène macroscopique pour qu’il prenne conscience du fait que, le 
corpuscule étant dans Ry, A a la valeur ay. Mais ce fait est indépendant 
de la prise de conscience par l’observateur et tout redevient clair.

3. Rétablissement du schéma usuel des statisticiens. — Nous allons 
montrer maintenant que les idées de la théorie de la double solution 
(que l’on peut ici employer sous la forme simple de l’onde pilote) 
conduisent immédiatement tà remettre en ordre toute la question des 
distributions de probabilités.

Nous allons envisager le cas où la grandeur que l’on veut mesurer est

la quantité de mouvement p. Nous supposerons valable l’équation de
Schrodinger et nous écrirons pour la densité de probabilité de la posi-

. ^tion r

(2) pO) = k(r)|'2.

(J) Dans le développement (i), les ok sont en réalité des différentielles propres repré 
sentant des groupes d’ondes.
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Nous poserons dans l’état initial (*)

(3) <F = a e =Jc(j>)Xt-)dp

Dans l’état initial, le corpuscule, s’il est en un point r, a pour quantité 
de mouvement d’après la formule du guidage

( 4 ) p = /nï^ =— gradç( t-).

Pour les deux variables aléatoires R et P, on a dans l’état initial, avant 

la mesure de P, les densités de probabilité

(5) pjj(c) = | *lJ'(r) |". c) = o(p -+- grade»),

la seconde formule signifiant que, si l’on connaissait la valeur défi-, donc 
de œ(î'), jtî a la valeur donnée par la formule du guidage. On a encore

(6 ) p( r- p) = | '!’( r) |" S(p -+- grade?)

et l’on vérifie que

<71 y p( r, p) dp = 1 <F( r) |2= pjd r) (dp = dpxdpydpz).

On a également

<8) ?$(p) =^l 'KK) h
1

les r, correspondant aux positions du corpuscule pour lesquelles gradcp 
a la valeur p considérée et l’on vérifie que (dr = dx dy dz)

<9) f p( r, p) clr =y | 'f ( r) j2 ô (|i -I- grad 9) rfr = | lf( r,) [2 = Pj?(/<)-

Pour compléter le scliéma 

initial, il faut encore définir

statistique du type classique relatif à l’état 
(r, p), ce que l’on fera en posant

( 10)
?( r, p) _ 1 *P( r) j~ ô(|> grade)

P?(/0 y | 'F( r) |“ s(/> -e gradç) dr

(l) Pour que la mesure de p puisse se faire par séparation de trains d’ondes dans

l’espace, il faut que les pk formant une suite discontinue. Néanmoins on peut employer 
l’intégrale en la considérant comme portant sur des différentielles propres.
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Finalement, en considérant toutes les positions r possibles du corpus 

cule dans le train d’ondes initial et les valeurs correspondantes de p 
données par la formule du guidage, on aura défini un collectif d’indi 
vidus ayant des positions et des mouvements bien définis pour lequel 
on aura un schéma statistique du type classique correspondant au tableau 
suivant :

pif(':) = kOOh pf;(jp) 1 ^) i2’

p(^> p) = 1 12 s(p -+- gradep)

8(/>-+- grad<p), £) = .
gradep)

f I V(r)|* b{p ■ rad ç) dr

avec les relations également classiques

Mais nous devons insister sur un point important. Les distributions 
de probabilité que nous venons de définir sont, sauf pjj(,r), des distri 

butions « cachées » en ce sens que nous ne pouvons pas les déterminer 
expérimentalement. En effet, à part p>-(r) = | ff-(r) |2 que nous pourrions 

déterminer directement à l’aide du dispositif écran-tamis de la figure i, 

nous ne pouvons déterminer les valeurs de/5 sans faire une mesure de 
cette grandeur, mesure qui, comportant une séparation spatiale des 
composantes V* du développement (3), change complètement l’état 

ondulatoire en détruisant la superposition des et le collectif primitif 

qui lui était associé. Ainsi nous avons bien défini un collectif à l’aide 
du tableau (I), mais c’est un collectif caché.

Étudions maintenant la situation après une mesure de p. Le dispositif 
de mesure a morcelé l’onde initiale en trains d’ondes partiels corres 
pondant chacun à l’une des composantes . Nous avons vu plus haut
que nous aurons alors p>(/>/,-) = [ c* |2, ce qui s’écrit en notations 

continues

(h )
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Pft(r) = f\ C(^)P I >0 P dP

et nous aurons aussi

(12) 

et
(i3) p(r, p) — | c(p) |2 ['f()i, r) |2.

La fonction propre w(p, r) étant normée (l), on vérifie tout de suite 

que

04) j p(c: p)dp = ?^(r)) J p(r,p)<tr = Pp(p)-

Comme probabilités liées, nous trouvons

OM PrP(^’’ p) = £) I Pj[>0'',p)=f S (P—r)dr
»s H

R> étant la région où l’onde se réduit à sa composante p.

La dernière formule (io) exprime que, pour p connue, si le point r 
est dans R>-, on a p^= 1 et que, si r n’est pas dans R>, on a p^ = 0 et

ceci n’est pas autre chose que l’expression mathématique du fait que si 
le corpuscule manifeste sa présence dans Rp (en y déclenchant un 
phénomène observable), on doit attribuer à la quantité de mouvement

la valeur p. C’est précisément ainsi que la séparation des trains d’ondes 
permet la mesure de la quantité de mouvement.

Rref, après la mesure, en considérant une infinité de corpuscules qui 
seraient répartis entre les trains R> suivant les proportions je (/>)(*, 

puis répartis à l’intérieur de chaque train d’ondes R> suivant la den 
sité | wQu, r) j2, nous obtenons un collectif formé d’individus ayant des 

positions et des mouvements parfaitement déterminés, collectif qui 
correspond au schéma statistique suivant du type classique :

(>) Voir note p. 89.
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quantités entre lesquelles existent les relations classiques

| y p(r, p)dr = pp(p), j p(r,p) dp = pj(r),

( pçw K pft/v

Les relations (IF) se vérifient immédiatement, sauf l’avant-dernière qui 
s’écrit

( r6 ) | c()i)|2| ’!'(/>, r) |2= I | c(p') j2 | r(//, r) \"-dp' f o(r' — t-)dP.
J -V*

Voici comment elle se démontre. Dans (16) la dernière intégrale est 

égale à i si le point r est dans R> et alors la quantité de mouvement est 

égale à p : elle est nulle si r n’est pas dans R>. Il en résulte que le 
secon'd membre de (16) se réduit à [ c(p) j" | *1' (p, r) |~,p ayant la valeur

qui correspond à la position connue r, de sorte que l’équation (16) est 
bien vérifiée.

Remarquons que, pour le collectif postérieur à la mesure, aucune des 
deux distributions de probabilité pj(r) et pp(p) n’est « cachée ». Ceci 

résulte de ce que, d’une part, la distribution pjj(r) relative à la position 

est, nous le savons, toujours vérifiable par une expérience statistique 
(par exemple à l’aide du dispositif écran-tamis) et que, d’autre part, la
distribution pp(p) résulte de l’action même du dispositif qui permet la

la mesure de p. Par contre, la distribution de probabilité correspondant 
dans le collectif final à une grandeur qui n’est simultanément mesurable 
ni avec la position, ni avec la quantité de mouvement, aura une valeur 
parfaitement déterminée, mais restera « cachée », car la mesure de 
cette grandeur détruirait le collectif. On voit donc qu’en théorie de la 
double solution-onde pilote, à tout état correspond un collectif bien 
déterminé, mais qu'il existe toujours des grandeurs dont la répartition 
de probabilité est cachée parce que leur mesure détruirait le collectif (*).

(x) On doit remarquer que ehaque région K> est occupée par un « groupe d’ondes » 

représentable par une différentielle propre et eorrespondanl non pas à une valeur tout

à fait exacte de /;, mais à des valeurs extrêmement voisines de p de telle sorte que les 
relations d'incertitude restent valables pour chaque groupe d’ondes Il>.



Il va maintenant être très intéressant de comparer les répartitions de 
probabilité (I) et (II) qui correspondent respectivement au collectif 

réalisé avant la mesure de p et au collectif réalisé après la mesure de p.
Tout d’abord la comparaison de p^(r) dans (I) et dans (II) nous 

montre que nous retrouvons sous la forme habituelle l’interférence des 
probabilités.

D’autre part, les répartitions Pjjf/') — j T" |2 dans (I) et pj(/>) = [ cp |a 

dans (II) sont aussi celles que considère le formalisme probabiliste 
usuel. Mais ici on voit nettement qu’elles se rapportent à des collectifs 
différents réalisés l’un avant la mesure, l’autre après la mesure. C’est 
la raison pour laquelle ces distributions de probabilité ne peuvent pas 
vérifier le schéma habituel des statisticiens qui suppose l’existence d’un 
collectif unique.

On voit maintenant très nettement le défaut qui vicie la démonstration 
du célèbre théorème de M. von Neumann. Son raisonnement montre 
bien qu’il est impossible, même en introduisant des variables cachées, 
de constituer un collectif correspondant à la fois aux distributions de
probabilité I1!"]2 et |c(/i)|~ habituellement envisagées pour les gran 

deurs canoniquement conjuguées « position » et « quantité de mouve 
ment ». Mais il ne prouve aucunement qu’en introduisant des variables 
cachées, on ne puisse pas constituer des collectifs (à distributions de 
probabilités partiellement cachées) qui soient du type habituel et qui 
correspondent respectivement à l’état initial avant la mesure et à l’état 
final après la mesure. Les probabilités habituellement considérées 
figurent dans ces collectifs, mais pas dans le même collectif. Nous

venons de construire en détail dans le cas de la mesure de/i les collectifs 
en question et nous apercevons bien maintenant que le théorème de 
M. von Neumann n’avait pas la portée qu’on lui attribuait.

POSITION DE L’INTERPRÉTATION CAUSALE. gï

4. Interprétation des relations d’incertitude. — Dans l’interprétation 
usuelle, le fait que les distributions de probabilité pour une coordonnée x 
et pour le moment conjugué px correspondent à des « dispersions » ,. 
cr(x) et c t (//,•), telles que

ce qui permet d écrire la relation qualitative

( 1S ) o.r o/l J. _ h.
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où Sx et Spx sont les incertitudes sur les valeurs de x et de px devrait 
être interprété en disant que les incertitudes sur les valeurs de x et 
de px ne peuvent jamais être toutes deux nulles à la fois. Mais de cette 
affirmation prudente on a en général passé à une affirmation beaucoup 
plus hardie. On a admis que les quantités telles que Sx et Sp,r ne repré 
senteraient pas de simples incertitudes expérimentales sur la valeur de 
ces grandeurs résultant des conditions mêmes de la mesure en Micro 
physique, mais qu’elles correspondraient à de véritables indétermi 
nations affectant toujours une partie des grandeurs relatives à un 
corpuscule. Dans cette manière de voir qui paraît implicitement admise 
par la plupart des auteurs, on est alors obligé de considérer le corpuscule 
comme réparti statistiquement entre des états divers, ce qui fournit une 
image du corpuscule bien peu intelligible.

Au contraire, avec la théorie de la double solution où les répartitions 
de probabilité px(a?) et pp^(p.r) se rapportent à des états différents, 
l’interprétation des relations d’incertitude n’est plus la même. Dans 
chaque état, le corpuscule a une position dans l’onde qui est bien déter 
minée et une quantité de mouvement également bien déterminée en 
fonction de la position par la formule du guidage. Toutes les grandeurs 
relatives au corpuscule qui s’expriment toutes à l’aide des coordonnées 
du corpuscule et des moments de Lagrange correspondants ont donc 
aussi des valeurs bien déterminées à chaque instant. Mais ces valeurs 
ne peuvent pas toutes être connues simultanément. En effet, à l’excep 
tion de la position et des grandeurs qui sont mesurables en même temps 
que la position, l’action du dispositif nécessaire pour mesurer une 
grandeur A aura pour effet d’envoyer ce corpuscule d’une manière 
parfaitement déterminée dans l’un ou l’autre des trains d’ondes qui 
finalement correspondent à une valeur donnée de A. De la sorte, il y a 
a priori une incertitude sur le résultat de la mesure de A qui provient 
de l’incertitude sur la position (cachée) du corpuscule dans le train 
d’ondes initial, incertitude correspondant à la répartition de proba 
bilité j^Fj2. La dispersion a(p.c) des valeurs finales possibles de px 
après la mesure est reliée à la dispersion des valeurs initiales possibles 
de la position par la relation (17). Et l’on pourra en ce sens dire que la 
position et la quantité de mouvement d’un corpuscule sont toujours 
affectées d'incertitude Sx et Spx telles que la relation (18) soit vérifiée.

Mais à notre point de vue, ce sont là seulement des incertitudes sur 
les résultats possibles de deux mesures incompatibles (mesure de la 
position et mesure de la quantité de mouvement) exigeant des dispo 
sitifs de mesure différents : ce ne sont pas du tout des indéterminations
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réelles de la position et de la quantité de mouvement d’un corpuscule à 
chaque instant. Ces indéterminations proviennent (du moins pour les 
grandeurs autres que la position) de l’action du dispositif de mesure 
sur le phénomène ondulatoire auquel le corpuscule est incorporé 
(onde v et non pas onde *F, mais les deux sont proportionnelles). 
Comme la liaison entre le corpuscule et son onde fait essentiellement 
intervenir la constante de Planck (dont la véritable signification phy 
sique reste encore mystérieuse), on peut rester d’accord avec M. Bohr 
pour dire que les incertitudes de Heisenberg sont, par l’intermédiaire de 
la réaction de la propagation de l’onde sur le mouvement du corpuscule, 
une conséquence inévitable de l’existence du quantum d’Action, mais, 
rëpétons-le, il n’en résulte aucunement, d’une façon nécessaire, une 
véritable indétermination de la position et de la quantité de mouvement 
du corpuscule.

Dans la théorie de la double solution, les incertitudes de Heisenberg 
gardent toute leur valeur, mais elles doivent être interprétées avec plus 
de prudence qu’on ne le lait d’ordinaire.

Des considérations analogues sont d’ailleurs applicables à la notion 
de complémentarité. Dans la théorie de la double solution, on peut, si 
on le désire, la conserver, mais à condition d’en bien limiter la portée. 
Elle signifierait seulement qu’une même opération de mesure ne peut 
nous fournir à la fois la valeur des grandeurs qui décrivent l’aspect 
ondulatoire (telles que les composantes de la quantité de mouvement) 
et celle des grandeurs qui décrivent l’aspect corpusculaire (telles que 
les coordonnées du corpuscule). Mais on ne pourrait aucunement en 
conclure que ces grandeurs, non simultanément mesurables, n’ont pas à 
chaque instant une valeur parfaitement déterminée. Ainsi délimitée, la 
notion de complémentarité ne soulèverait pas de difficultés essentielles. 
Elle n’aurait plus la signification assez peu intelligible qu’on lui attribue 
en général et suivant laquelle ce que nous nommons « corpuscule » 
serait une entité protéiforme susceptible de prendre tour à tour un 
aspect ondulatoire et un aspect granulaire par suite de processus qui 
exclurait toute représentation rationnelle.



CHAPITRE VIL
MESURE DES GRANDEURS PAR L’INTERACTION 

DE DEUX CORPUSCULES.

1. Inconvénient de la mesure envisagée précédemment avec un seul 
corpuscule. — Nous avons envisagé plus haut la mesure d’une gran 
deur A qui s’effectuerait en envoyant le train d’ondes porteur du cor 
puscule sur un dispositif susceptible de morceler le train d’ondes initial 
en trains d’ondes spatialement séparés correspondant chacun à une 
valeur déterminée de la grandeur A, c’est-à-dire opérant matériellement 
la décomposition spectrale relative à A.

Mais ce procédé de me'sure a un inconvénient. Quand le corpuscule 
aura déclenché un phénomène macroscopique observable dans la 
région Ry- (ce qui est indispensable pour qu’il y ait mesure), l’observa 
teur pourra attribuer à la grandeur A la valeur a y. Mais il est probable 
que, quand l’observateur aura ainsi obtenu la valeur de A, celle-ci ne 
sera plus exacte : en effet, le déclenchement du phénomène macrosco 
pique observable aura en général réagi sur le mouvement du corpuscule 
et la grandeur A n’aura plus ensuite la même valeur v.j qu’elle avait 
avant ce déclenchement.

Il est donc préférable de procéder autrement et, pour effectuer la 
mesure, de se servir d’une interaction entre le corpuscule « étudié » et 
un autre corpuscule que nous nommerons le corpuscule « indicateur ». 
Tandis qne le processus de mesure étudié au chapitre précédent peut 
être appelé « mesure de première espèce », celui que nous allons étu 
dier pourra être nommé « mesure de seconde espèce ». Désignons pari 
le corpuscule étudié et par 2 le corpuscule indicateur. Au début, les 
deux corpuscules qui ne sont pas encore entrés en interaction sont 
attachés à des trains d’ondes occupant des régions séparées de l’espace

L. DE BROOLIE. 7
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Rij1’ et RJ,2’et sont représentés par des fonctions d’onde t) et

t). La fonction d’onde du système dans l’espace de configura 
tion est alors

(1) = t)wri% t).
D’accord avec M. von Neumann, nous admettrons que, pour qu’un 

processus puisse servir à mesurer une grandeur A relative au corpuscule 
étudié, il faut que l’onde finale soit de la forme

(2) = yjÇr-, ),
k

où les cp/f sont les fonctions propres de la grandeur A du corpuscule étu 
dié correspondant aux valeurs propres ak et les yj les fonctions propres 
du corpuscule indicateur relatives à une grandeur R de ce corpuscule 
de valeurs propres [3/,. Ainsi, après l’action du dispositif de mesure, les 
valeurs de A et de R se trouveront « corrélées », la valeur a/, de A cor 
respondant à la valeur (3/t de R.

Mais cela ne suffit pas. R faut encore qn’après la fin de l’interaction
de mesure, les fonctions x/iÇj'z) correspondent à des portions d’ondes 

spatialement séparés et occupant par conséquent des régions de l’espace Rj2) 
disjointes. Alors, si le corpuscule indicateur déclenche un phénomène 
macroscopique observable dans la région R*?1, nous pourrons affirmer 
que sa grandeur R a la valeur (3j et, par suite, que la grandeur A du 
corpuscule étudié a la valeur «/ corrélée à [3j. La probabilité pour que 
nous trouvions ainsi A= aj est d’ailleurs égale à | cj [-.

On voit l’avantage de cette mesure de seconde espèce sur la mesure 
de première espèce. Le déclenchement du phénomène macroscopique 
observable par le phénomène indicateur peut troubler le mouvement de 
ce corpuscule et faire qu’ensuite sa grandeur R n’ait plus la valeur (3y. 
Mais, comme après la fin de l’interaction les deux corpuscules sont 
entièrement indépendants et séparés dans l’espace, le déclenchement du 
phénomène observable dans R^> ne peut avoir aucune influence sur le 
corpuscule étudié ét l’on pourra affirmer avec certitude, après avoir 
constaté le phénomène observable, que la grandeur A du corpuscule 
étudié a la valeur a j.

Ici d’ailleurs, comme pour la mesure de première espèce, il n’est pas 
nécessaire d’introduire dans notre analyse les coordonnées de « l’appa 
reil de mesure » dont le rôle ne peut être que de nous permettre d’obser 
ver avec précision le phénomène macroscopique observable.
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Remarquons que pour faire une mesure de A, il n’est pas nécessaire
que les fonctions cp*(ri) correspondent dans l’état linal à des régions 

spatialement séparées R1)’ de l’espace. Ce qui est indispensable, c’est 
que les régions R'jr* soient disjointes. Mais, pour plus de clarté, nous 
allons d’abord supposer que les régions R1*1 sont séparées, nous réser 
vant de revenir plus tard sur le cas où cette hypothèse ne serait pas 
réalisée. Nous aurons alors le schéma suivant :

/ Région \ 
\d‘ interaction /

Fig. 4.

Avant l’interaction, les deux trains d’ondes Rj,1) et RJ,21 sont séparés et, 
indépendants. Puis ils se rapprochentl’un de l’autre et entrent en inter 
action dans la région I. Après l’interaction, la fonction d’onde dans 
l’espace de configuration a, par hypothèse, la forme (2), les diverses 
fonctions correspondant dans l’espace physique à des trains d’ondes 
R*J> spatialement séparés et les diverses fonctions y/; correspondant de 
mémo à des trams d’ondes R<|> spatialement séparés dans l’espace phy 
sique. Alors les corrélations statistiques établies par l’interaction entre 
les présences des deux corpuscules dans les différentes régions R de 
l’espace physique et traduites par la forme (2) de la fonction d’onde 
nous apprennent que, si un phénomène macroscopique observable est 
déclenché dans la région Rj2* par le corpuscule indicateur, alors le cor 
puscule étudié se trouve nécessairement dans R)1 avec A = y.j.

Précisons par un exemple ce processus do mesure pour montrer qu’il 
correspond bien à des conditions expérimentales souvent réalisées. 
Supposons que nous ayons initialement deux corpuscules dont les éner 
gies et les quantités de mouvement ont des valeurs connues. Les deux 
trains d’ondes R|,l) et R[,2) viennent en interaction (choc) au voisinage
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d’un point O que nous prenons comme origine des coordonnées. Après 
l’interaction, les trains d’ondes corrélés R)’1 et R)2) s’éloignent du point O 
dans des directions définies par des angles 91 et par rapport à un 
axe Ox contenu dans le plan de symétrie du phénomène.

Tout le phénomène se produisant dans le plan de symétrie xOy, on 
sait que la corrélation R)» et R)2) est exprimée par les trois relations de 
conservation pour l’énergie et pour les deux composantes x et y de la 
quantité de mouvement. Nous avons donc dans l’état final trois rela 
tions entre les angles cp4 et o> et les longueurs pt etp3 des quantités de

Fig. 5.

mouvement. Si le corpuscule 2 parvient ensuite dans un dispositif D 
(par exemple compteur à pointe) où il produit un phénomène macrosco 
pique observable, on pourra déterminer l’angle o2 et, en éliminant p.2 
entre les trois équations de conservation, on obtiendra pt et wly c’est- 
à-dire que l’on aura mesuré en grandeur et en direction la quantité de 
mouvement finale du premier corpuscule. Et cette mesure n’exercera 
évidemment aucune action sur le corpuscule étudié 1 puisque ce corpu 
scule peut se trouver très éloigné du dispositif D au moment où se pro 
duit dans celui-ci le phénomène macroscopique observable.

2. Interprétation de la mesure de seconde espèce par la théorie 
usuelle. — Comment devons-nous interpréter la mesure de seconde
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espèce avec la Mécanique ondulatoire actuelle où le corpuscule n’est 
pas localisé dans Fonde W?

L’interprétalion conforme à la théorie de la mesure de von Neumann- 
London-Bauer consiste à dire : c’est la prise de conscience par l’obser 
vateur du phénomène macroscopique déclenché dans R1?’ qui va localiser 
dans Rj'1 le corpuscule 1 jusqu’alors réparti statistiquement entre tous 
les trains d’ondes R1*1. Une telle interprétation semble inadmissible : 
quelque chose qui se passe dans la conscience d’un observateur ne peut 
pas provoquer à distance un effet physique.

Supposons qu’il y ait deux observateurs près de la région Rj2), l’un 
ayant les yeux ouverts et prenant ainsi conscience du phénomène 
macroscopique observable, l’autre les yeux fermés n’en prenant pas 
conscience. Est-ce la prise de conscience du premier observateur qui 
va provoquer la localisation du corpuscule 1 dans Rj1) ou est-ce la non- 
prise de conscience du second observateur qui va empêcher cette locali 
sation? La question reste sans réponse parce qu’elle est absurde. Mais 
une chose paraît certaine. L’observateur aux yeux ouverts, après avoir 
constaté le phénomène macroscopique déclenché par le corpuscule 2, 
remplacera la fonction d’ondes W c/fcp/{ (rj)yj (r2) par la nouvelle

k

fonction d’ondes tF = o/, ) yj,-(ra) et cette « réduction du paquet de

probabilité » lui permettra de faire ensuite des prévisions statistiques 
exactes. Donc ce qui compte, ce ne sont pas les connaissances de 
l’observateur, c’est le fait physique constitué par le déclenchement du 
phénomène observable.

Une interprétation qui pourrait paraître plus raisonnable consisterait 
donc à dire : c’est le phénomène macroscopique observable provoqué 
dans Rjf1 par le corpuscule 2 qui localise brusquement le corpuscule 
étudié 1 dans la région corrélée Rj11. En réalité, cette interprétation 
n’est pas plus admissible que la précédente. Le phénomène observable 
qui se manifeste dans Rjr1, ne peut aucunement localiser le corpuscule 1 
dans R?1,et cela d’autant plus que les régions Rj11 et Rjr1 peuvent être au 
moment où ce phénomène se produit extrêmement éloignées l’une de 
l’autre. Une telle localisation produite brusquement à n’importe quelle 
distance par le phénomène observé dans Rj2) est inconcevable. Exposant 
cette objection, M, Schrôdinger a écrit : « Ce serait de la imagie! » et 
effectivement ce serait de la magie.

Au terme de celle analyse, il apparaît donc clairement que, dans une 
théorie où les corpuscules ne sont pas localisés dans leurs ondes, aucune 
interprétation raisonnable des corrélations représentées par Fonde de
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configuration et permettant la mesure ne semble pouvoir être donnée. 
Nous allons voir que la théorie de la double solution, en rétablissant la 
position du corpuscule dans Fonde, fournit pour la mesure de seconde 
espèce une interprétation claire et intelligible.

3. Interprétation par la théorie de la double solution. — Revenons 
à la figure 4- En théorie de la double solution, nous devons supposer 
que les régions R jj1 et Rj2) sont respectivement occupées initialement par 
Fonde u de chacun des deux corpuscules, chacun des deux trains 
d’ondes ayant sa région singulière. Puis, arrivés en I, les deux trains 
d’ondes commencent à interagir, c’est-à-dire que la propagation de cha 
cun d’eux va dépendre de Faction exercée sur lui par l’autre. Comme je 
l’ai indiqué à la fin du chapitre V, j’admettrai (en espérant que cette 
hypothèse pourra être rigoureusement justifiée en théorie de la double 
solution) que Fonde *1' de Schrodinger dans l’espace de configuration 
des deux corpuscules permet de représenter exactement les corrélations 
des positions possibles des corpuscules au cours et à la fin de l’inter 
action. Ce serait là la raison pour laquelle l’onde 'F de l’espace de 
configuration, bien que visiblement fictive et ne représentant aucune 
ment l’évolution réelle du phénomène dans l’espace physique, donnerait 
une vue statistique exacte des résultats possibles de l’interaction.

Nous sommes donc amenés à penser qu’aprôs la fin de l’interaction, 
Fonde u du corpuscule 1 se trouvera morcelée en une série de trains 
d’ondes R)1’, ..., RjjV, ... spatialement séparés et que, de même, Fonde u, 
du corpuscule 2 sera morcelée en une série de trains d’ondes R)41, . . ., 
R)2', . . . également disjoints. De plus, les corrélations statistiques 
représentées par la forme finale (a) de l’onde *F étant supposées exactes, 
si la région singulière constituant le corpuscule 2 est finalement parve 
nue dans Rj?1, celle qui constitue le corpuscule 1 sera venue en R1)1 
et la probabilité de cette éventualité sera donnée par |c/|-.

En d’autres termes, dans la théorie de la double solution, les deux 
corpuscules-régions singulières auront, suivant leurs positions initiales 
dans les trains d’ondes R)’,1 et Rj21, des trajectoires entièrement détermi 
nées, trajectoires qui les amèneront nécessairement dans l’état final à 
occuper deux positions bien déterminées dans deux trains d’ondes 
« corrélés » Rj11 etRj,2). Ainsi, suivant un vœu souvent émis par Einstein, 
la description de l’interaction par l’onde W de l’espace de configuration 
restera une théorie statistique exacte, mais ne sera pas une description 
complète, celle-ci étant donnée par la théorie qui rétablit la localisation 
des corpuscules et le déterminisme de leurs mouvements.
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Ici, l'interprétation de la mesure de seconde espèce va devenir tout à 
fait claire et pourra s’exprimer en quelques mots. Si un phénomène 
macroscopique observable est déclenché par le corpuscule 2 dans la 
région RQ c’est lout simplement parce que ce corpuscule se trouve 
effectivement dans cette région et alors le corpuscule étudié 1 se trouve 
nécessairement dans la région corrélée Rj", ce qui nous permet d’attri 
buer avec sécurité à la grandeur A la valeur otj. Il n’y a plus ici aucune 
inadmissible action instantanée à distance du phénomène observé. Nous 
sommes soulagés : il n’y a plus de magie !

Quant à la prise de conscience du phénomène observable par l’obser 
vateur qui lui permet d’at tribuer à A la valeur otj, elle n’est plus que la 
prise de conscience d’une réalité objective extérieure et elle reprend 
ainsi lu sens tout à fait raisonnable qu’elle avait en Physique classique.

Nous voulons insister un peu sur la façon dont se présente ici la 
question des rapports entre onde u et onde 'F. Dans les régions R„ et 
Ry', l’onde u de chaque corpuscule a, en dehors de la très petite région 
singulière, la forme u = u9-\- v, où e^>w0 est une onde régulière. 
L’onde v a une amplitude parfaitement définie puisqu’elle est une réalité 
objective, mais le physicien a le droiLde définir une fonction d’onde fic 
tive *1" en posant 'F = Ce et en choisissant la constante C de façon que 
*F soit normée. On définira ainsi dans Rj/) et R[f’ les fonctions 'F indivi 
duelles des deux corpuscules pour l’état initial, puis on formera la 
fonction d’onde de l’espace de configuration en faisant le produit des 
deux fonctions d’onde individuelles.

Dans l’étal final, après la fin de l’interaction, l’onde u du corpus 
cule 1 se trouvera morcelée dans l’espace physique en trains d’ondes 
«,l:, . . ., ifi, . . . occupant des régions R1,", . . ., RJ-?1, . . . spatialement 
disjointes tandis que l’onde u du corpuscule 2 se trouvera de même 
morcelée en trains d’ondes uf, .... »Jf’, ••• occupant des régions dis 
jointes R(,s), . . ., Ry;'. ... de l’espace physique. Mais le corpuscule 1 se 
trouvera seulement dans l’une des régions RJP : dans cette région seule 
ment existera la partie u0 de u et dans les autres régions RI1), u se 
réduira à v. Une circonstance analogue se trouvera réalisée par le second 
corpuscule. Mais la fonction d’onde (2) devant représenter exactement 
les corrélations statistiques dans l’état final, les deux corpuscules se 
trouveront certainement dans deux trains d’ondes corrélés. Quand 
l’observateur aura constaté le déclenchement d’un phénomène macros 
copique observable dans R’f par le corpuscule indicateur, il saura que le 
corpuscule étudié est dans RQ et alors il devra construire une nouvelle 
fonction d’onde individuelle pour le corpuscule 1 en posant VF=CQ11.
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v'p étant la fonction v pour le corpuscule 1 dans R)" etC étant choisie de 
façon que *F soit normée dans R)". C’est là la rupture des corrélations 
statistiques dont a parlé M. von Neumann et il j a aussi réduction du 
paquet de probabilité puisque l’onde ^F du corpuscule 1, au lieu d’étre 
répartie entre toutes les régions RJJ>, se trouve brusquement réduite à 
ne plus occuper que RI".

Ici la réduction du paquet de probabilité prend une signification très 
claire. Elle signifie simplement que l’observateur, ayant acquis une 
information sur la réalité physique, modifie en conséquence la fonction 
*F qui lui sert à représenter la probabilité des phénomènes observables. 
Mais naturellement l’information acquise par l’observateur ne peut aucu 
nement modifier la réalité physique elle-môme décrite par l’onde u. La 
distribution de l’objectif et du subjectif se trouve ainsi rétablie d’une 
façon tout à fait claire et satisfaisante.

Remarquons que, si la fonction « subjective » T peut fournir des 
prévisions statistiques exactes, c’est parce que l’utilisateur doit la cons 
truire proportionnelle à l’onde u (ou plutôt à sa partie v extérieure à la 
région singulière en faisant abstraction de cette région singulière) dans 
la région où il sait que se trouve le corpuscule. Un observateur aux 
yeux ouverts, qui aura constaté le déclenchement du phénomène macro 
scopique observable dans la région R)“’, emploiera pour le corpuscule 
étudié la fonction W = Ce)" et pourra faire avec elle des prévisions sta 
tistiques exactes; l’observateur aux yeux fermés, qui n’a rien observé, 
utilisera pour le corpuscule 1 une fonction 'F qui restera dans chaque 
région Rf1 proportionnelle à e(" et il fera avec elle des prévisions statis 
tiques inexactes parce qu’il suppose que le corpuscule 1 peut se trouver 
dans des régions R^" autres que R)", ce qui n’est pas vrai.

On voit ainsi que, si Fonde subjective *F peut rendre des services, 
c’est parce qu’elle est construite par l’utilisateur en fonction de ses 
connaissances sur une certaine réalité physique extérieure. 11 est d’ail 
leurs évident qu’une fonction d’onde subjective pourrait être construite 
arbitrairement et qu’il serait alors incompréhensible qu’elle conduise à 
des prévisions exactes. En d’autres termes une interprétation purement 
subjective de l’onde 'F est impossible : il faut qu’il y ail derrière elle une 
réalité objective. Or l’onde fF, qui subit la réduction du paquet de pro 
babilité, ne peut pas être elle-même uni' réalité objective, mais elle peut 
être le reflet des connaissances de l’utilisateur sur la réalité objective.

Ajoutons que dans le cas de la mesure par interaction de deux corpu 
scules comme nous l’avons fait dans le cas de la mesure de première 
espèce avec un seul corpuscule traversant un dispositif, on peut cons 

i<>4



truire des collectifs correspondant à l’état initial et à l’état final et repré 
sentant les conceptions de localisation et de mouvement des corpuscules 
dans la théorie de la double solution : comme au chapitre précédent, 
on retrouverait les distributions de probabilité usuellement envisagées, 
mais elles appartiendraient à des collectifs différents avec les consé 
quences que cela entraîne. On retrouverait aussi l’interférence des 
probabilités et l’interprétation des relations de Heiscnberg comme repré 
sentant non pas une indétermination de la position et du mouvement 
des corpuscules, mais des incertitudes introduites par l’intervention de 
la nature ondulatoire des corpuscules dans tout processus de mesure.

Nous signalerons encore une question difficile, mais importante qui 
se pose quand on applique les conceptions de la double solution au pro 
blème que nous venons d’étudier. Quand l’observateur a constaté le 
phénomène qui se produit dans Ryj il sait que le corpuscule ou région 
singulière de l’onde «<*> se trouve dans RI11 et il reconstruit son onde 
ff'ii) en conséquence pour faire des prévisions statistiques ultérieures. 
Mais les fragments de l’onde ull> qui sont venues dans les régions RjJ1 
autres que HJ” doivent subsister puisque, réalités objectives, elles ne 
peuvent dépendre des informations de l’observateur : elles constituent 
alors des morceaux de l’onde a'11 du corpuscule étudié qui ne contien 
nent pas de région singulière. Que deviennent par la suite ces frag 
ments d’onde u sans région singulière? Et comment évolue d’autre part 
le fragment d’onde «!t) qui est parvenu dans U)1’ et qui porte la région 
singulière, fragment d’onde dont la partie extérieure e(1> a été affaiblie, 
par rapport à ce qu’elle était dans l’état initial, par le morcellement de 
l’onde «l‘>? Ces questions appartiennent à un type de questions diffi 
ciles auxquelles la théorie de la double solution devra s’efforcer de 
répondre. Mais il est probable que, si elle réussit à y répondre, ce sera 
en faisant intervenir des phénomènes essentiellement non linéaires, 
et en particulier des états transitoires, dont les théories linéaires 
actuelles ne peuvent nous donner aucune représentation (*). Mais 
je ne veux pas insister ici sur un problème encore à peine abordable 
aujourd’hui.

Notons enfin que l’analyse que nous venons de faire des processus de 
mesure par interaction de deux corpuscules pourrait, me semble-t-il, 
être transposée, sans difficultés pour l’élude de deux systèmes de cor 
puscules. Ees complications que l’on pourrait rencontrer seraient uni-
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f1) J’ai effleuré ces questions dans les derniers chapitres de mon récent Ouvrage [3], 
Voir aussi le "très intéressant livre récent de M. Jean-Louis Destouclies [7].
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quemciit des complications d’écriture, les idées générales restant les 
mêmes.

4. Cas d’un processus de mesure par interaction de deux corpuscules 
où les régions singulières RJ1 ne seraient pas spatialement disjointes.— 
Nous avons déjà remarqué que, la fonction 'F de l’espace de configura 
tion après la fin de l’interaction entre les deux corpuscules étant suppo 
sée avoir la forme (2), il suffit que les trains d’ondes y_/,.(r) du corpus 

cule indicateur soient spatialement séparés pour que le déclenchement 
d’un phénomène macroscopique observable dans R1:1 nous permette 
d’attribuer à la grandeur A la valeur ay sans que les RJ'! soient spatiale 
ment, séparés.

Il est facile d’en donner un exemple concret. Soit un atome d’hydro 
gène avec son électron périphérique qui joue le rôle de corpuscule 
étudié. L’onde de cet électron occupe la région de l’atome que nous 
représenterons par une région sphérique R'11. Un autre corpuscule 
jouant le rôle de corpuscule indicateur vient passer au voisinage de 
l’atome et pendant ce passage interagit avec l’électron atomique. Le 
train d’ondes de ce corpuscule indicateur est initialement contenu dans 
une région de l’espace HJ1. A la fin de l’interaction, la fonction d’onde'F 
de l’espace de configuration des deux corpuscules aura pris, par hypo 
thèse la forme (2) et les /k correspondront maintenant à des régions 1FJ 
spatialement disjointes tandis que les &/, correspondront toujours à la 
même région R1'.

Dans son état initial, l’électron atomique avait une fonction d’onde 
delà forme lF;,' = ^ c\. ok ( r ), les ©/, étant les fondions propres d’une

k

certaine grandeur A qui sera par exemple l’énergie. Quand on aura 
constaté un phénomène macroscopique observable déclenché par le cor 
puscule indicateur dans RJ1, on pourra attribuer à A la valeur ay et 
prendre lFll) dans cet état final égal à

On retrouve ici les mêmes considérations que les cas précédemment 
étudiés : il ne peut aucunement être question de dire, comme le lait 
l’interprétation actuelle, que c’est la prise de conscience du phénomène 
observable par l’observateur ou le déclenchement de phénomène obser 
vable qui fait passer brusquement l’atome de son état, initial à son étal 
final ; ce serait toujours de la magie. La prise de conscience, de l’obser 
vateur n’a rien à faire dans cette affaire et, RJ1 pouvant être très éloigné 
de RR), une influence instantanée du phénomène déclenché dans RJ! sur 
ce qui se passe dans Rlli est inconcevable.
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On peut, illustrer ceci pur tm exemple frappant qui, dans l’état actuel 
de nos formalismes, n’est pas décrit de la même façon que le précédent, 
mais qui physiquement lui est tout à fait analogue : celui de l’émission 
d’un photon par un atome (atome d’hydrogène par exemple). La gran 
deur A étant l’énergie de l’électron atomique, les a/- = E/,- et les <p/; étant 
les valeurs propres et les fonctions propres correspondantes, nous sup 
posons que l’atome est initialement dans l’état quantifié d’énergie E/; et 
que, par suite, sa fonction d’onde est 'Fj,” = 94. S’il passe par une tran 
sition quantique de cet état initial à l’étal quantifié d’énergie E/, il y a

émission d’un photon de fréquence v = —* ■Recueillons à distance

Je photon émis dans un dispositif réseau f lentille qui permet, nous
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l’avons vu, de lui attribuer une fréquence bien définie en lui faisant pro 
duire un effet observable, par exemple le noircissement en un point 
d’une plaque photographique. De l’observation de ce phénomène, 
l’observateur pourra déduire que l’atome a passé de l’état initial 'Fj)’) = cpA. 
à l’état final fF'1>= o;. Or rien n’empêche de supposer que l’atome est 
dans l’étoile Sirius et que l’observateur est à Paris. Est-il admissible 
que la prise de conscience par un observateur parisien d’un noircisse 
ment local sur une plaque photographique change l’état d’un atome sur 
Sirius ? Est-il même admissible cjue le déclenchement physique de ce 
noircissement produise cet effet ? Évidemment non et l’argument, tou 
jours le même, est ici très frappant.

Revenons maintenant à la figure 6 et demandons-nous comment on 
peut dans ce cas interpréter la mesure de A avec les idées de la double 
solution. Celà va nous amener à une conception nouvelle. Puisque la 
fonction 'F, quand elle est bien construite, doit toujours être propor 

tionnelle à c, on doit avoir dans l’état initial de l’atome c^cp/, et



io8 CHAPITRE VII.

dans l’étal final, quand le corpuscule indicateur est parvenu dans la 
région R1?1 on doit avoir où) ^ cpy. Donc, suivant les conceptions de la 
double solution, l’électron atomique doit dans l’état initial avoir un 
mouvement conforme à la formule du guidage, mouvement très compli 
qué qui le maintient en phase avec fonde ci,1* formée par la superposition 
des o/;. Mais après la fin de l’interaction il doit avoir un mouvement qui 
le maintient en phase avec la seule composante 9/ puisqu’alors 
On peut donc dire que, pendant l’interaction, le mouvement de l’élec 
tron atomique l’a progressivement « aiguillé » de façon à le « décrocher » 
de la superposition initiale des 9/, pour finalement « l’accrocher » sur la 
seule composante 9y. Et c’est précisément parce que finalement l’élec 
tron atomique se trouve accroché à e(1)= 9/, tandis que corrélativement 
le corpuscule indicateur se trouve dans Rf1, qu’il y a possibilité de 
mesure de la grandeur A dont la valeur propre a/ correspond à 9,-.

Ici donc, le corpuscule étudié peut, par suite de l’interaction, se 
trouver finalement accroché à une seule des composantes primitives de 
son onde v tout en restant localisé dans la môme région R(1> qu’au 
début, mais il est essentiel pour la mesure de A que les régions R91 rela 
tives au corpuscule indicateur soient spatialement séparées de façon que 
le déclenchement d’un phénomène macroscopique observable permette 
de dire quelle est l’onde pi11 ^9/ sur laquelle le corpuscule étudié reste 
finalement accroché. Naturellement il n’en était pas ainsi dans le cas 
d’une mesure de première espèce où l’on efïectuc la mesure en faisant 
passer le corpuscule incorporé à son onde dans un dispositif, tel que 
réseau -f- lentille, qui isole les 9* en trains d’ondes spatialement dis 
joints. Dans ce cas le corpuscule est en quelque sorte à la lois corpus-, 
cule étudié et corpuscule indicateur et c’est la raison pour laquelle la 
séparation des trains d’ondes 9/, du corpuscule est alors nécessaire. 
Ma is elle ne l’est plus pour une mesure de seconde espèce.

5. L’idée d’aiguillage. Examen d’une remarque d’Einstein. — En 
restant toujours dans le cas envisagé au dernier paragraphe et en gar 
dant le point de vue de l’interprétation causale, nous pouvons préciser 
ce qui précède de la façon suivante. A partir de la position initiale des 
deux régions singulières dansR(1)el dans RJ,2), l’interaction évolue d’une 
manière entièrement déterminée de telle sorte que le corpuscule étudié 
soit progressivement au cours de l’interaction aiguillé par le mouvement 
que lui impose la loi du guidage vers l’étal final où il se trouve implanté 
sur fonde e = 9 / tandis que le corpuscule indicateur est progressivement 
aiguillé de même vers l’état final où il est implanté sur fonde e = yj
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localisée dans R1?1. La même interprétation serait valable, mutatis 
rnulandis, dans le cas précédemment étudié où les régions R/l' sont 
disjointes. On arrive ainsi à l’idée générale que, pour chaque corpuscule, 
les lignes de courant sont animées d’une sorte de frétillement résultant 
de l’interaction et que le corpuscule, obligé par la loi du guidage de 
suivre constamment l’une de ces lignes de courant frétillantes, est ainsi 
progressivement aiguillé vers l’état final qu’il possède à la fin de l’inter 
action.

A la lumière de ces idées, il est intéressant d’examiner un point du 
formalisme actuel de la Mécanique ondulatoire qui avait beaucoup 
frappé Einstein et qui lui paraissait, semble-t-il, particulièrement diffi 
cile à interpréter par une théorie causale.

Considérons un corpuscule dont l’état initial correspond à la fonction 
,F=c /9/) avec | Cj ) = i, cpy étant l’une des fonctions propres d’une 
grandeur A. Si A est l’énergie, nous pourrons représenter l’état initial
par un train d’ondes R0 correspondant à l’énergie Ey = uj (^mathémati 

quement par une différentielle propre du spectre continu de l’énergie 

correspondante! la fréquence centrale = Si le corpuscule est 

soumis pendant une durée limitée à un très faible champ perturbateur, 

son onde V sera devenue 'l;=2c*<p/; après la fin de la perturbation et,
k

comme celle-ci est très faible, on aura pour | Cj \ une valeur finale très 
légèrement inférieure à i et. pour les | c/, |, avec k^j des valeurs extrê 
mement petites. Si ensuite le corpuscule passe dans un dispositif D qui 
amène les cp/, dans des régions spectralement disjointes R/t (tel que le 
dispositif réseau-lentille dans le'cas où A est l’énergie), le corpuscule 
aura une probabilité voisine de i de se manifester dans la région Ry et 
des probabilités non milles mais très voisines de zéro, de se manifester 
dons les régions R/, , avec k j. Comme les a* peuvent avoir des valeurs 
très différentes, on voit que finalement la très légère perturbation aura 
fait apparaître de très petites probabilités pour que l’état du corpuscule 
subisse de grands changements. Einstein considérait que l’on obtient 
ainsi une description statistique certainement exacte de ce qui se passe, 
mais qu’il serait sans doute très difficile d’y substituer une description 
causale des phénomènes individuels, description qu’il considérait 
cependant comme nécessaire pour éviter d’inacceptables paradoxes.

Reprenons ce problème du point de vue de la théorie de la double 
solution. Considérons un train d’ondes R0 porteur d’un corpuscule.
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Dans ce train d’ondes le corpuscule occupe une certaine position : il est 
implanté sur une onde t-- -—' cpy qui est une réalité objective remplissant 
la région R0. Nous supposons que le train d’ondes est un groupe d’ondes 
presque monochromatique d’énergie Ey dont les lignes de courant sont 
des droites parallèles. Le train d’ondes se dirige vers un dispositif D 
permettant la mesure de l’énergie par séparation des trains d’ondes cor 
respondant à des valeurs différentes de l’énergie. Si entre sa position 
initiale R0 et son arrivée surD le train d’ondes ne traverse aucun champ 
perturbateur, le corpuscule suivant une des lignes de courant atteindra 
la région D d’un mouvement rectiligne et uniforme, puis l’action du 
dispositif D en lui imposant un mouvement plus compliqué l’amènera 
dans le train d’ondes qui correspond à la sortie du dispositif à l’éner 
gie Ey. Mais si le train d’ondes, avant d’atteindre D, traverse une région 
où règne un petit champ perturbateur, son onde v deviendra propor 

tionnelle à 2e, (fk, avec cy= i — £ et tous les autres c, très petites. Les
k

lignes de courant correspondant à la formule du guidage seront, dans le 
train d’ondes ainsi modifié, animées d’une sorte de très petit frémisse 
ment par rapport à la forme rectiligne qu’elles auraient conservée en 
l’absence de perturbation. 11 en résultera que, suivant sa position dans 
le train d’ondes, le corpuscule sera envoyé après la traversée du dispo 
sitif D soit vers le train d’ondes Ry(ce sera le cas de beaucoup le plus 
probable), soit vers l’un des trains d’ondes R, correspondant aux 
énergies E,yz=Ey, mais ce sera là un cas très rare. Nous sommes sûrs 
qu’il en sera ainsi car nous savons que s’il y avait dans R0 une infinité 
de corpuscules répartis avec la densité | œy|3, le mouvement le long des 
lignes de courant imposé à ces corpuscules par la formule du guidage 
en amènerait finalement une proportion égaleà|c,|2 dans la région 
R*. Gomme dans la région R, le corpuscule a une énergie égale à E,, 
on peut dire : l’aiguillage imposé au corpuscule par la nécessité où il 
est de toujours suivre une ligne de courant lui donne, quand on ignore 
sa position initiale dans R0, une probabilité presque égale à i d’avoir 
conservé la valeur initiale Ey de son énergie à la fin du processus de 
mesure, mais lui donne aussi de très petites probabilités de posséder 
finalement une énergie E, très différent de Ey. On trouve une image que 
représente clairement la circonstance qui avait frappé Einstein dans le 
formalisme usuel de la Mécanique ondulatoire.

Néanmoins, si l’on voulait étudier à fond l’idée d’aiguillage esquissée 
ci-dessus, oit aurait à étudier la question de la conservation de l’énergie 
dans la théorie de la double solution ainsi que des problèmes analogues



MESURE DES GRANDEURS PAR L’INTERACTION DE DEUX CORPUSCULES. 111

à ceux auxquels nous avons fait allusion à la fin du paragraphe 3. Nous 
n’entreprendrons pas ici celte élude qui d’ailleurs serait prématurée.

6. Conclusion. Cas purs et mélanges. — L’étude de la Mesure que 
nous venons de faire dans les chapitres VI et VII nous a montré qu’il . 
fallait envisager la mesure en Microphysique sous un aspect con 
cret, ce qui est d’ailleurs évident, et ne pas s’ert tenir au formalisme 
trop abstrait dont on se contente habituellement. Il est essentiel de 
tenir compte du fait que tous les renseignements que nous obtenons sur 
la réalilé microphysique sont dus à l’observation de phénomènes macro 
scopiques déclenchés par l’action locale d’un corpuscule. Il est égale 
ment essentiel de remarquer que l’onde à laquelle un corpuscule est 
incorporé ne s’étend toujours qu’à une région limitée de l’espace : il 
n’existe que des trains d’ondes limités, l’onde plane monochromatique 
illimitée dans l’espace et dans le temps ainsi d’ailleurs que les ondes 
stationnaires s’étendant jusqu’à l’infini sont des abstractions. C’est ce 
caractère limité des trains d’ondes qui seul permet, ainsi que M. Schrô 
dinger l’a très justement remarqué, de parler du commencement et de la 
fin d’une interaction; c’est lui qui, en permettant de construire des dis 
positifs ayant pour elfet de séparer dans l’espace des trains d’ondes 
correspondant chacun à une valeur bien définie d’une grandeur A, per 
met d’ellèctuer des mesures à l’échelle microphysique. Il apparaît alors 
que cette conception concrète de la Mesure est compatible avec une 
localisation permanente et un mouvement bien déterminé des cor 
puscules et les arguments de MM. Einstein et Schrôdinger, apparaissant 
dans toute leur force, montrent clairement qu’il faut admettre une loca 
lisation du corpuscule dans l’onde si l’on veut éviter certaines consé 
quences vraiment inadmissibles de l’interprétation actuelle.

Avec notre manière de voir, la distinction entre les cas purs et les 
mélanges, très justement introduite par M. von Neumann, prend une 
signification concrète qui n’apparaît pas dans le formalisme exact, 
mais trop abstrait, exposé dans les Chapitres II el III.

Il y a « cas pur » quand l’onde v (partie extérieure de l’onde u) d’un 
corpuscule étant formée par une superposition de composantes qui 
interfèrent, le corpuscule suit l’une des lignes de courant qui résultent 
de celle superposition. Au contraire, il y a « mélange » quand, à la fin 
d’une interaction, les diverses composantes de l’onde e initiale cessent 
d’interférer soit par suite d’une séparation spatiale de trains d’ondes, 
soit par suite d’un phénomène d’aiguillage au sens donné à ce mot dans 
les derniers paragraphes; alors le corpuscule se trouve accroché à l’une
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seulement de ces composantes et, tant qu’on ignore laquelle, cette 
ignorance est représentée par un mélange.

C’est en se plaçant à ce point de vue qui, distinguant soigneusement 
l’onde u objective et l’onde T' subjective et prévisionnelle, rétablit une 
distinction claire entre l’objectif et le subjectif, que le formalisme de la 
théorie de M. von Neumann nous paraît devoir être repris et 
interprété.

C’est d’ailleurs à une conclusion analogue que nous allons parvenir 
dans le dernier chapitre en ce qui concerne la Thermodynamique 
de von Neumann.



CHAPITRE VIII.
COUP D’OEIL SUR LA THERMODYNAMIQUE DE M. VON NEUMANN.

I. Introduction du formalisme de M. von Neumann en Thermodyna 
mique. — Rappelons d’abord quelques points de Thermodynamique 
statistique classique. Boltzmann a établi entre l’entropie d’un système 
physique et la probabilité de l’état do ce système la célèbre relation

( i) S = k logP,

où k, constante de Boltzmann, a pour valeur, avec les unités C.G.S. et 
l’échelle des températures absolues, 1,37. io~10. La relation ( 1 ) se 
trouve confirmée par l’immense ensemble de vérifications tirées de ses 
conséquences.

Si nous considérons un ensemble de N systèmes répartis en un 
certain nombre d’états au sens classique macroscopique, du mot de

telle sorte qu’il y ail n-, états dans l’état i avec «,== > on trouve

aisément que la probabilité de cette répartition est

Comme N et les m sont supposés grands, la formule de Stirling permet 
de poser très approximativement N ! = NNe-N et nt ! ■=nniie~ni et l’on 
obtient aisément

(3) logP = logN ! — ^ log/ij ! ~ N logN —

i i

Posons pi— pi étant le poids statistique de l’étal i dans la répar- '



CHAPITRE VIII.

Par suite, d’après îa formule (i),

s =— A-N ^.p, logPi,

formule classique en Thermodynamique statistique.
Si nous voulons maintenant construire une Thermodynamique 

quantique, il nous faut modifier la définition de l’entropie en rempla 
çant la conception classique des étals d’un système par sa fonction 
d’onde.

Reprenons les algorithmes du chapitre II. Lorsque les différents 
états des N systèmes que nous considérons sont définis par des fonc 
tions d’onde cp4, ... formant un système orlhonorinal complet
de fonctions de base (ce sont par exemple les fonctions propres d’une 
grandeur mesurable), on ramènera la matrice statistique P de von 
Neumann à sa forme diagonale en prenant les comme fonctions de 
base, c’est-à-dire qu’on aura alors

De plus la matrice logP dont les éléments sont (logP)/,./:-: <5/,7 log//* a 
aussi la forme diagonale. Il est alors naturel de transposer la formule 
de Boltzmann en définissant l’entropie à partir de la matrice statistique 
P en posant
(7) S =— *NTr(PlogP),

car cette expression, qui a une valeur indépendante du système de 
fonctions de base choisi en raison de l’invariance de la trace, s’exprime 
dans le système de base où les matrices P et logP sont diagonales par

(B)
k

de sorte que nous retombons sur l’ancienne formule (5).
Nous allons chercher à déterminer le maximum de l’entropie quand 

on suppose donnés le nombre N des systèmes et la valeur E de leur
énergie totale.
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Rappelons d’abord le calcul de ce maximum en Thermodynamique 
slatistique classique, On peul écrire ôIogP = o avec les condi 
tions ô N = o et ôE = o, ce qui conduit à introduire des multiplicateurs 
de Lagrange a et P et à écrire

( 9 ) S(logP — a iN — ’i E ) = -o,

soit, d’après (4),
(10) — N ^Sjodlog/ue- i -t- a -e [5E,] = o

t

pour toute variations des />, telles que reste égal à i
L

^ car ôE - VE, on,- = N ^E,- ô/),- j • On en déduit
\ i i

(n) pi = e~ * — PK;.

C’est la loi classique de Boltzmann-Gibbs qui, compte tenu de la 
condition 'V'm = i, peut aussi s’écrire

k

Si l’on compare cette expression avec la théorie des gaz parfaits, on 

peut voir que (3= > où T est la température absolue de l’ensemble

des N systèmes supposée bien définie, par exemple par contact avec un 
thermostat.

On trouve alors aisément pour l’entropie de la distribution la plus 
probable (qui est presque toujours réalisée)

113) S=—A:N ^^jDjlogp/= £N lo:

E ,e ^

k T ' ET
V . ' Ft

r-i
Posons Z=^e lci : c’est la « somme d’états » de Planck. Nous 

i = *N[logZ-fl^
avons

04) E = — N à logZ 
' dp ’

F= E — TS = — A NT logZ
I.. I>lî BROOLIli. 8
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comme expressions de l’entropie, de l’énergie et de l’énergie libre.
En Thermodynamique quantique de von Neumann, le calcul est tout 

à fait parallèle au précédent. On doit exprimer que l’entropie (7) 
est maximum sous les conditions

(i5) TrP = 1, . E = NE = N Tr(PH) = const.,

où H est la matrice hamiltonienne de l’un quelconque des N systèmes. 
On doit donc écrire

(■6)

>^P/t* logP**= o, avec 5^,P** = o;

* k

o ,
kl

d’où en introduisant les multiplicateurs de Lagrange a et (3, 

(17) S^Pix- logP**-t~ *S^P*t+ psV = °>

k k kl

ce qu’on peut écrire aussi 

(ï8) ^SPx^flogP/x-t-1 +a ■ ■pH*i]-pp2SP«n*' = 0’

relation qui doit être vérifiée pour toute valeur des oP<-/. 11 faut donc 
que les systèmes soient dans des états propres de l’énergie (H/,;=o 
pour k l) et de plus que 
(19) P**=e-*-?>'**,

avec

(20)

puisque^P/,/^ 1, e P"“ = 1. D’où en posant Z([3) = Tre P"

P = -Pu P— P TI

Ti- e- P « Z (p)

On démontre comme dans la théorie classique que (3 = ™

et l’on trouve pour l’état le plus probable ^en tenant compte 

à logZ   1 <7Z
à\i Z àr$

TrpH e-P»'

de ■

(ai) [

S = |^)Tr[e-P»(im + logZ)l = *N [logZ + Trp“e — ]

E = N Tr(PH) = -NÜ^, 
"P

F = E — TS = — itNTlogZ.
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On retrouve donc les formules (i/j ) de lu Thermodynamique statis 
tique classique, mais avec une définition différente de Z. La for 
mule (20) nous apprend d’ailleurs que le poids statistique de l’état,

e- [i ni-
quantifié 'F/, d’énergie E* — Idans le mélange est,------------ ! ce qui

2-
k

nous ramène bien à la loi canonique de Boltzmann-Gibbs.

2. Évolutions réversibles et irréversibles. — Les considérations 
précédentes ont conduit M. von Neumann à distinguer à l’échelle 
microphysique deux genres d’évolutions : les évolutions réversibles et 
les évolutions irréversibles résultant de la mesure.

L’évolution réversible d’un système ou d'un ensemble de systèmes 
est représentée pur l’évolution entièrement déterminée, de la fonction 
d’onde du système ou de toutes les fonctions d’onde des systèmes de 
l’ensemble. Si l’on a affaire à un cas pur et si vL(o) est la forme 
initiale de la fonction d’onde, celle-ci évoluera suivant l’équation

(22.)
h dT

■>. r. i ôt = h  >r,

où H est l’opérateur hamiltonien du système qui, si le système est 
isolé, est indépendant du temps. On a donc

(2.3) >F(t) = e h T(o),

'17. i.
avec e h iTT (~7T~ • Alors le cas pur initial reste un cas pur.

Tl
2 71 l 2 TZ i ^

L’opérateur e h a pour adjoint e h comme on le vérifie aisément 
de sorte que son inverse coïncide avec son adjoint : c’est donc un 
opérateur unitaire conservant les traces des matrices, l’entropie S d’un 
ensemble de N systèmes dans l’état *T égale à —ANTr(PlogP) reste 
donc invariable au cours de l’évolution : le processus est réversible.

Considérons maintenant non plus un cas pur, mais un mélange de 
cas purs. Chacune des fonctions BP*(A') ( i) des cas purs évolue suivant 
l’équation d’onde (22) où H est l’opérateur hamiltonien de chacun des 
systèmes identiques considérés. Chacune de ces évolutions entièrement 
déterminées est donc représentée par

ïA-'m
qTO(t) = e A TW(o),(24)
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c'est-à-dire par une transformation unitaire des 'L(/,l( ob L’évolution de 
la matrice statistique sera donc donnée par

(Là; Y(l) ='^PjPk Pk{t)

ou, si ¥<*>(«) =2ci/!(f) 9h par
/

( ■>()) ( P(g))f„t = kc)k)(t)c'iï* ( t).

La trace de P, égale à c',kl) (t) |2 est conservée par la trans-
k l

formation unitaire (25) des qui conserve la norme de 'F141, c’est-à- 

dire 2lclt)(0|2- -Donc, ici encore, comme pour un cas pur, l’entro-
i

pie S du mélange reste invariable.
Les transformations irréversibles correspondraient, d’après M. von 

.Neumann, à des processus non soumis au déterminisme qui se pro 
duiraient au moment des interactions de mesure. L’inleraclion du 
système ou du corpuscule étudié 1 avec un appareil de mesure 2 
(ou dans notre présentation avec un corpuscule indicateur 2) corres 
pondrait à une évolution déterminée et réversible du système 
global 1+2 jusqu’à ce que la constatation macroscopique de l’état, 
individuel du système 2 par l’observateur vienne interrompre cette 
évolution par un processus qui, dans l'interprétation actuelle, n’est ni 
réversible, ni môme causal.

L’état, initial du système 1 étant un cas pur, tous les pi sont nuis 
sauf un seul qui est égal à 1 : l’entropie S du système est alors nulle 
et elle le reste tant que le système est isolé et évolue réversiblement. 
Si l’interaction suivie de mesure avec le système 2 transforme ensuite 
l’état du système 1 en un mélange, tous les p,- deviennent, inférieurs à 1 
et l’entropie du système 1 devient visiblement positive.

Le processus de mesure est donc irréversible et s’accompagne d’une 
augmentation de l’entropie. La chaîne de l’évolution réversible est 
rompue et l’on ne peut plus remonter par aucun moyen de l’état qui 
suit la mesure à celui qui l’a précédé,

M. von Neumann a aussi montré, par un raisonnement assez long, 
que, si l’état initial est déjà un mélange, toute mesure qui modifie 
effectivement ce mélange a pour effet d’augmenter l’entropie.

La conclusion de M. von Neumann est que toute mesure augmente 
l’entropie et a, par suite, un caractère irréversible, dette irréversibilité

II»
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usI visiblement liée à l’cfl’aceinent déjà signalé des dillérences de 
phase par la mesure et à l’impossibilité, qui en résulte, de remonter 
de l’état existant après la mesure à l’état qui existait avant la mesure.

3. Comment la théorie de la double solution devra interpréter l’irré 
versibilité résultant du processus de mesure. — L’augmentation de 
l’entropie provoquée par un processus de mesure étant liée à une 
irréversibilité, quelle est l’origine de cette irréversibilité qui, dans une 
théorie causale, ne doit pas résulter d’un indéterminisme? 11 semble 
que, dans le cadre des idées que nous avons exposées, celle irréver 
sibilité doive être interprétée de la façon suivante. Après la mesure, ou 
bien l’onde u initiale s’est fragmentée en portions spatialement 
séparées R/,, lu corpuscule se trouvant finalement dans l’un de ces 
trains d’ondes; ou bien le corpuscule se décrochant de l’onde u 
initiale s’est finalement accroché, par un processus du type « aiguil 
lage », sur l’une de ces composantes cpj. Dans un cas comme dans 
l’autre, il n’y a plus après la mesure d’interférences entre les compo 
santes cp/, de e et les dillérences de phase entre ces composantes 
n’intcrvieniienl plus. Si l’on admet ce point de vue, il apparaît claire 
ment que l’augmentation de l’entropie de von Neumann lors de la 
mesure n’est aucunement liée à une prise de conscience du résultat 
de la mesure par l’observateur, mais au fait objecûf que le corpuscule, 
par suite de l’action du dispositif de mesure, se trouve finalement être 
accroché à l’une seule des composantes cp/, dont la superposition 
constituait le cas pur initial.

Nos idées sur les relations de l’onde u et de l’onde VF nous permet 
tent de préciser davantage. Pour représenter l’état des probabilités 
après la mesure, le physicien sera amené à construire des fonctions VF/; 
correspondant à « l’accrochage » du corpuscule sur chacune des com 
posantes cp/, de l’onde initiale. Si le résultat de la mesure n’est pas 
connu, il devra pour représenter l’état des probabilités envisager un 
« mélange » de l’ensemble des VF* avec des poids statistique/>* = | c/,-[2 
égaux aux carrés des modules des coefficients des cp* dans l’onde 
primitive. Mais dès que l’observation d’un phénomène macroscopique 
observable lui aura permis de connaître le résultat du processus de 
mesure, il ne devra plus conserver que l’un des *F/( qui constituera à 
nouveau un cas pur. Alors les relations de phase entre les cp* auront 
disparu et l’on ne pourra plus remonter du VF final au *F initial. C’est 
pourquoi, dans la théorie de von Neumann qui fait intervenir exclu 
sivement la fonction d’onde subjective W, l’augmentation de l’entropie
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par la mesure correspond à une perle de nos « informations » sur les 
différences de phase quand nous passons du cas pur initial au mélange 
qui représente l’élat des probabilités après la mesure quand on n’en 
connaît pas le résultat. Celle conception est en accord avec l’idée, bien 
connue en Cybernétique, d’après laquelle l’information correspond à 
une entropie changée de signe (neg-entropic) de sorte qu’une diminu 
tion de l’information a pour contre partie une augmentation de l’en 
tropie (Shannon, Léon Brillonin, etc.).

Malgré le grand intérêt des rapprochements qui ont pu être faits 
entre l’information et l’entropie (changée de signe), il semble certain 
que l’entropie d’un système physique correspond à une situation 
objective et ne peut être définie uniquement à partir des informations 
(qui peuvent être plus ou moins exactes) des observateurs. L’augmen 
tation d’entropie provoquée par la mesure doit, à notre avis, être 
rattachée non pas au fait que l’observateur prend conscience du résul 
tat de la mesure, mais à un processus objectif qui provoque la 
cessation des interférences entre les composantes de l'onde v initiale. 
Dans la théorie de la double solution où l’évolution de l’onde u est 
entièrement déterminée, les phases des composantes cp/( de v gardent 
une valeur bien définie même après la fin du processus de mesure, mais 
comme le corpuscule n’est plus alors accroché qu’à l’une des compo 
santes cpj et que toute observation nous fournissant des connaissances 
sur les phénomènes microphysiques implique l’action localisée d’un 
corpuscule, il n’y a plus après la mesure aucune possibilité de con 
naître les phases des composantes autres que cp j.

Il serait très intéressant d’analyser en détail l’interprétation par la 
théorie de la double solution de l’augmentation d’entropie provoquée 
par la mesure. Une telle analyse permettrait probablement de mieux 
comprendre le sens véritable de la Thermodynamique de von Neumann.



APPENDICE
ÉTUDE DU PASSAGE DE LA MÉCANIQUE CLASSIQUE 

A LA MÉCANIQUE ONDULATOIRE SUR UN EXEMPLE PARTICULIER.

Mous allons, dans cet Appendice, étudier un cas expérimental précis 
pour bien montrer comment s’introduit, dans l’interprétation actuelle le 
passage de la Mécanique classique à la Mécanique ondulatoire.

Nous envisagerons un « canon à électrons » dont le fond est formé par 
une plaque P incandescente émettant des électrons devant laquelle est 
placée une grille (I portée à un potentiel électrostatique très supérieur 
à celui de la plaque.

Par l’embouchure E du canon à électrons sort donc un flux d’électrons 
ayant sensiblement tous la même énergie W et formant un faisceau 
parallèle. Ce faisceau sera en Mécanique ondulatoire associé à un train 
d’ondes ayant une section égale à celle de l’embouchure E et sensible 
ment assimilable à un morceau d’onde plane monochromatique de

fréquence v •-= ~ et de longueur d’onde A = —•
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Dans la région R les électrons passent dans un champ électrostatique 
créé par des moyens humains et qui, par suite, varie très peu à l’échelle 
delà longueur d’onde (qui est au plus de l’ordre de ro~8cm). Nous savons 
qu’il en résulte que l’onde associée à l’un des électrons se propage 
suivant les lois de l’Optique géométrique, ce qui permet de définir 
des rayons-trajectoires à la façon classique. Ayant traversé ce champ 
statique, les électrons arrivent sur une plaque photographique fl où 
leurs arrivées s’inscrivent par des actions locales successives.

Nous allons ainsi supposer que nous disposons d’un « tamis» T que 
nous pouvons éventuellement placer sur l’embouchure K du canon à 
électrons. Ce tamis est percé de trous égaux, extrêmement rapprochés 
et régulièrement distribués à sa surface, le diamètre des trous étant .si 
petit qu’ils nous apparaissent comme presque ponctuels et cependant 
assez grand pour être très supérieur à la longueur d’onde 1.

Nous allons analyser la production du phénomène observé sur la 
plaque photographique, dans le cas où il n’y a pas de tamis et dans le 
cas où le tamis est placé sur l’embouchure en adoptant successivement 
le point de vue de la Mécanique classique, celui de l’interprétation de 
la Mécanique ondulatoire par la double solution et enfin celui de l’inter 
prétation usuelle de la Mécanique ondulatoire. Cette étude sera très 
instructive.

1. Point de vue de la Mécanique classique. — a. Le tamia ri est pas 
en place. — Par tous les points de l’embouchure du canon à électrons 
passe une trajectoire possible qui est normale au plan de celle embou 
chure. Dans la région R, le champ statique courbe les trajectoires, ce 
qui a pour effet d’augmenter leur densité dans certaines régions et de 
les raréfier dans d’autres régions. 11 en résulte que le nombre relatif des 
trajectoires traversant des aires égales du du plan II varie d’un point à 
un autre de ce plan, d’où des variations de l’impression photographique 
sur la plaque. Dans la théorie d’Hamilton-Jacobi, les trajectoires sont 
les rayons de la propagation d’une onde fictive à l’approximation de 
l’Optique géométrique et il en résulte que la densité des trajectoires qui 
viennent percer une aire du du plan II entourant un point M doit varier 
proportionnellement au carré de l’amplitude a(M) de l’onde d’Hamilton- 
Jacobi au point M, si toutefois on admet l’hypothèse très naturelle que 
toutes les trajectoires sortant de l’embouchure du canon à électrons 
sont également probables. L’expérience montre bien, en elfet, que les 
variations de l’impression photographique sont proportionnelles à a-(M) 
aux différents points M de la plaque.
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b. Le tamis est en place. — Certaines trajectoires électroniques 
vont être arrêtées par les parties pleines du tamis, d’autres passeront par 
les trous du tamis. Comme ces trous sont très rapprochés et unifor 
mément répartis à la surface du tamis, nous aurons un ensemble très 
dense de pinceaux de trajectoires électroniques qui s’échapperont des 
trous du tamis. Chacun de ces pinceaux peut être considéré comme un 
pinceau de rayons de l’onde d’IIarnilton-Jacobi : il en résulte encore que 
la densité des trajectoires qui viennent percer le plan II de la plaque est, 
en moyenne, proportionnelle à a- (M) et, par suite, qu’il en est de même 
de l’impression photographique. Il n’y a donc aucune différence essen 
tielle entre le cas a et le cas b quant à l’interprétation de la répartition 
des impacts d’électrons sur la plaque photo graqhique II.

2. Point de vue de l’interprétation de la Mécanique ondulatoire par 
la théorie de la double solusion. — a. Le tamis n'est pas en place. — 
Dans la théorie de la double solution, l’électron est un accident très 
localisé dans la structure d’une onde u objective à laquelle l’onde 'F doit 
être supposée, en dehors de cet accident, partout proportionnelle. 
Chaque électron qui s’échappe du canon est donc incorporé à un train 
d’onde v dont les dimensions transversales sont macroscopiques, 
puisqu’elles sont égales aux dimensions de l’embouchure. Mais l’électron 
a une position et une trajectoire bien déterminée au sein de l’onde et. 
comme la trajectoire est délinie par la formule du guidage et que la 
pha se commune des ondes e et ff1' est égale à la fonction S de Jacobi, 
l’on voit (^puisque r —----- - grad S ^ que les trajectoires possibles de

l’électron coïncident encore avec les rayons de l’onde d’Hamilton-Jaeobi. 
Ainsi bien qu’ici l’électron 11e soit plus conçu comme un point matériel 
isolé, mais comme un accident local incorporé à une onde, les trajectoires 
des électrons sont les mêmes qu’en Mécanique classique et l’interprétation 
des variations de l’impression photographique à la surface de la plaque II 
reste la même qu’en 1, a.

b. Le tamis est en place. — Ici, quand un électron sort du canon, 
nous devons dire qu’un petit train d’ondes v portant l’électron sort par 
un des trous du tamis. Comme ces trous ont des dimensions très petites 
à notre échelle, mais très grandes par rapport à la longueur d’onde, 
nous pouvons considérer le train d’ondes sortant d’un des trous comme 
coïncidant avec un petit morceau de l’onde d’Hainillon-Jacobi. Et comme 
sur la surface du tamis les trous sont très nombreux et régulièrement 
distribués, la formule du guidage nous montrera encore que les trajec 
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toires des électrons coïncident, comme en t, b, avise un ensemble très 
dense de pinceaux de rayons de l’onde d’Hamilton-Jacobi. L’interpré 
tation de la répartition des impressions photographiques sur la plaque II 
sera donc encore exactement la môme ici qu’en 1, b.

3. Point de vue de l’interprétation usuelle de la Mécanique ondula 
toire. — a. Le tamis est en place. — Contrairement à ce que nous 
avons fait aux paragraphes 1 et 2, nous allons commencer par le cas 
où le tamis est en place : c’esi, en ellet, en étudiant ce cas que nous 
allons faire le raccord entre la Mécanique classique et la Méca 
nique ondulatoire suivant une méthode fréquemment indiquée dans les 
exposés usuels.

Si le tamis ne comportait qu’un seul trou, l’onde *L d’un électron une 
fois sortie du canon se réduirait à un petit train d’ondes dont les 
dimensions transversales seraient négligeables à notre échelle, mais 
cependant grandes par rapport à la longueur d’onde : ce petit train 
d’ondes glisserait le long d’un des rayons-trajectoires de la théorie 
d’Hamilton-Jacobi. L’interprétalion usuelle nous dit alors que l’électron 
n’est pas localisé dans le train d’ondes, qu’il est réparti statistiquement, 
dans toute son étendue. Mais comme le train d’ondes est sensiblement 
ponctuel à notre échelle, tout se passe pratiquement comme si l’électron 
était un point matériel décrivant l’une des trajectoires prévues par la 
Mécanique classique. C’est ainsi que dans ce cas où la propagation de 
l’onde est conforme à l’Optique géométrique et où la trajectoire test 
approximativement définie à notre échelle par le trou percé dans le 
tamis qui recouvre l’embouchure du canon, nous pouvons faire le raccord 
entre la Mécanique classique et la Mécanique ondulatoire. Mais ce 
raccord dissimule une grande différence de principe puisque, dans 
l’interprétation usuelle de la Mécanique ondulatoire, le corpuscule n’est 
plus rigoureusement localisé dans le train d’ondes : il n’y a plus de 
trajectoire rigoureusement définie, mais seulement un pinceau très fin 
de rayons-trajectoires d’Hamilton-Jacobi constituant une sorte de petit 
tube très délié où le corpuscule est présent sans y être localisé et qui, à 
notre échelle nous apparaît comme une ligne sans épaisseur. C’est une 
sorte de « pseudo-trajectoire ».

Passons maintenant au cas où le tamis est percé d’un très grand 
nombre de trous très petits et régulièrement distribués à sa surlace. 
Quand l’électron est sorti du canon, son onde 'I' est constituée par un 
très grand nombre de petits trains d’ondes séparés qui définissent un 
faisceau très dense de pseudo-trajectoires. Il est aisé de se rendre compte
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que la répartition sur la plaque photographique des intersections des 
pseudo-trajecloires avec le plan II est toujours donnée par la fonc 
tion «-(M). D’après l’interprétation usuelle, l’électron ne décrit aucune 
de ces pseudo-trajectoires : il est réparti statistiquement, avec une égale 
probabilité sur tout l’ensemble de ces pseudo-trajectoires. C’est là une 
conception un peu étrange : ce qu’il l’est plus encore, c’est qu’au moment 
où se produit l’impression photographique locale, l’électron choisit en 
quelque sorte une de ces pseudo-trajectoires pour s’y localiser au point 
où elle perce le plan II. Malgré l’étrangeté de cette conception, elle 
permet cependant encore de comprendre l’origine de la répartition 
en a-(M) des impressions photographiques sur la plaque : cette répar 
tition provient, en effet, de la répartition des intersections des pseudo- 
trajectoires avec le plan II.

b. Le tamis n'est pas en place. — C’est le cas le plus intéressant. 
Quand l’électron s’échappe du canon, il est alors associé à un train 
d’ondes V dont la section transversale a des dimensions macroscopiques, 
celles de l’emhouchure. L’interprétation usuelle de la Mécanique ondu 
latoire nous dit que l’électron est répandu statistiquement dans tout le 
volume de dimensions macroscopiques occupé par le train d’ondes : il 
n’est donc plus question de définir des trajectoires, ni même des pseudo 
trajectoires. De nouveau, nous sommes amenés à dire qu’au moment où 
l’électron produit en un point de II une impression photographique 
locale, il choisit brusquement la très petite région où il se localise, 
conclusion qui, comme Einstein l’avait souligné autrefois, est en 
contradiction avec la validité des notions habituelles d’espace et de 
temps, même à l’échelle macroscopique. De plus, pour être en accord 
avec l’expérience, nous sommes toujours obligés d’admettre que la 
répartition des localisations photographiques sur la plaque II est donnée 
par la fonction a? (M), mais ici cette affirmation ne peut aucunement se 
justifier par la considération de l’intersection des trajectoires ou des 
pseudo-trajectoires avec la plaque photographique puisqu’il n’y a plus 
ni trajectoires, ni pseudo-trajectoires : elle devient donc un postulat 
purement arbitraire.

Conclusion. — De cette analyse détaillée du dispositif expérimental 
étudié, on peut tirer les conclusions suivantes, Peut-être ne prouve-t-elle 
pas d’une façon rigoureuse la fausseté de l’interprétation actuelle de la 
Mécanique ondulatoire, mais elle montre sans aucun doute pour le moins 
que la loi de répartition des localisations corpusculaires en a‘J= jWI2 a
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dans l’interprétation de la Mécanique ondulatoire par la double solution 
comme en Mécanique classique une origine parfaitement intelligible 
tandis qu’elle prend l’aspect d’un postulat entièrement arbitraire dans 
l’interprétation actuelle. Et, malgré tout, cela jette un certain doute sur 
la validité de cette interprétation actuelle.
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