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PRÉFACE

Cet Ouvrage est, pour l’essentiel, la rédaction du dernier cours 
que j’ai fait à l’Institut Henri-Poincaré dans l’hiver 1961-1962 
avant de prendre ma retraite.

Depuis environ douze ans, j’ai repris une tentative d’interprétation 
de la Mécanique ondulatoire que, sous les noms de théorie de l’onde- 
pilote, puis de théorie de la double solution, j’avais proposée sans 
succès en 1926-1927 peu de temps après ma thèse de Doctorat. Des 
réflexions prolongées sur ce sujet me conduisent maintenant à affirmer 
que l’interprétation actuellement admise de la Mécanique quantique 
n’apporte pas véritablement d’explication raisonnable de certains 
faits expérimentaux essentiels et incontestables (*) et que, par suite, 
elle doit être revisée en rétablissant la constante localisation du cor 
puscule dans l’espace au cours du temps, en rendant à l’onde qui 
l’accompagne le caractère d’une réalité physique et en postulant 
l’existence entre l’onde et le corpuscule d’une liaison appropriée.

J’avais d’abord repris mon ancienne tentative de réinterprétation 
sous la forme que je lui avais donnée autrefois en y introduisant 
cependant un certain nombre de compléments importants. Mais 
de plus en plus dans ces toutes dernières années, j’ai été amené à 
penser que la forme hydrodynamique de cette réinterprétation, tout 
en étant une base de départ nécessaire, devait être complétée par des 
considérations d’ordre statistique. Or, en 1946-1948, avant d’avoir 
repris mes recherches sur la réinterprétation de la Mécanique ondu 
latoire, j’avais étudié les anciennes théories de Helmholtz et de Boltz 
mann qui tendaient à établir une correspondance entre des grandeurs 
mécaniques et des grandeurs thermodynamiques et j’avais cru y 
voir l’amorce d'une thermodynamique de la particule isolée. Tout 
récemment, à la suite de la publication d’un travail de M. Terletsky,

0) Voir, par exemple, bibliographie [2], [3] et [4].
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j’ai eu l’idée d’essayer d’utiliser l’hypothèse du milieu subquantique 
de MM. Bohm et Vigier, en le concevant comme une sorte de thermostat 
caché, pour construire cette Thermodynamique de la particule isolée. 
L’objet du présent livre est d’exposer cette tentative.

Les cinq premiers chapitres de l’Ouvrage rappellent des résultats 
qui sont bien connus, mais j’y ai insisté sur certains points, soit 
parce qu’ils ont été parfois mal interprétés, soit parce qu’ils sont 
très importants pour ce qui suit. Les chapitres essentiels sont les 
quatre derniers (chap. VI, VII, VIII et IX) où sont introduites 
progressivement, dans le cadre de l’image hydrodynamique qu’offre 
la théorie de la double solution sous sa forme primitive, les conceptions 
de perturbations aléatoires et de thermodynamique statistique qui 
conduisent à la Thermodynamique de la particule isolée et à une 
théorie des fluctuations du mouvement de la particule dans son onde.

Je crois qu’on parvient ainsi à une forme tout à fait remarquable 
et prometteuse de la réinterprétation de la Mécanique ondulatoire 
que je crois nécessaire. Je ne puis que souhaiter bien vivement qu’un 
plus grand nombre de jeunes chercheurs veuillent bien s’intéresser 
à cette tentative, car c’est dans cette voie que me semblent devoir 
s'accomplir les plus grands progrès futurs de la Physique quantique.



CHAPITRE PREMIER

RAPPEL DE QUELQUES PRINCIPES 
DE LA MÉCANIQUE CLASSIQUE

1. Le principe d’action stationnaire de Hamilton. — On sait 
que toute la Dynamique classique, du moins quand les forces 
dérivent d’un potentiel (nous laissons de côté le cas de l’exis 
tence d’un potentiel-vecteur sur lequel nous reviendrons), peut 
être ramenée à un principe général d’action stationnaire. Pour 
énoncer ce principe, on introduit une fonction des coordonnées 
des N points matériels du système considéré, des composantes
de leurs vitesses et éventuellement du temps : la fonction de

• •

Lagrange Z(xr, . .zN; . . ., zN, t), le point indiquant une déri 
vation par rapport au temps. Qu’il y ait ou non des liaisons à 
condition qu’elles soient holonomes, on peut exprimer les coor 
données à l’aide de n paramètres qk ; s’il n’y a pas de liaison n = 3N> 
s’il y a des liaisons n < 3N. Mais, de toute façon, la fonction de 
Lagrange est de la forme £(qu . . ., qn ; qx, . . ., qn, t).

En Mécanique classique non relativiste, on précise la forme de 
la fonction de Lagrange, en posant :
(1) C = T — U,
où T est l’énergie cinétique globale et U l’énergie potentielle glo 
bale du système, toutes deux exprimées à l’aide des variables
Ql> • • ■ > Qn ) Çl) ■ • * > Ù

On peut alors ramener toute la Dynamique au principe suivant : 
Si le système part d'une certaine configuration définie par les valeurs 
q{f , .. ., q{°] des q à l’instant t0 pour parvenir à une autre configuration 
q[1], q[1}, .. ., q^ à l’instant tu les équations du mouvement sont telles
que l’intégrale J\dt soit stationnaire pour une variation infiniment

petite du mouvement entre l’état initial et l’état final. C’est le principe 
d’action stationnaire de Hamilton.

DE BROGLIE 1
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On peut préciser cet énoncé en introduisant la notion d’espace 
de configuration. Chaque configuration du système est définie 
par l’ensemble des valeurs des n coordonnées qu ..qn et peut 
par suite être représentée par un point dans un espace à n dimen 
sions dont chaque point est repéré par les n coordonnées qu ..qn. 
L’état instantané du système se trouvant ainsi représenté par un 
point de l’espace de configuration, ce point figuratif part d’un 
point A à l’instant t0 pour aboutir à un point B à l’instant tu après 
avoir décrit une certaine trajectoire dans l’espace de configuration. 
La trajectoire du point figuratif est donc définie par n fonctions 
du temps qdi), q2{t).......... qn(t) qui définissent entièrement le
mouvement du système. Sur la courbe C, la fonction t(qt, ..., qn ;
• •

qu • • • , Qn, 0 a une valeur bien déterminée en chaque point et 
l’intégrale curviligne A = f 'tdt a un sens bien défini. Cette inté-

J <o
grale, qui a les dimensions physiques d’une énergie multipliée 
par un temps (ou d’une quantité de mouvement multipliée par 
une longueur) ML2T-1, est nommée l’intégrale d’Action ou, plus 
précisément, l’intégrale d’Action hamiltonienne.

Si l’on fait varier infiniment peu la forme de la courbe C en 
maintenant fixes ses extrémités ainsi que les instants t0 et tu 
on aura :

(2, SA - - J> « - SI 2,(| * + | *)*
et comme

*Qi - 8 dt - dt

il vient par intégration par parties :

(3) a-
w S qidt.

puisque les Sqi sont nuis aux deux extrémités de la courbe C. Si 
l’intégrale f tdt est stationnaire, le second membre de l’équation (3)

J

doit être nul, quels que soient les SOn obtient alors :

d /dt \ _ dt 
d* w g,-/ ^Qi(4) (i = h 2........n).
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Ce sont les célèbres « équations de Lagrange » sous la forme 
valable quand les forces dérivent d’un potentiel et que les liaisons 
sont holonomes. On voit donc que ces équations sont des consé 
quences du principe d’action stationnaire de Hamilton et celui-ci 
nous apparaît donc comme la clef de voûte de la Dynamique ana 
lytique classique.

2. Moments de Lagrange. Théorèmes de conservation. — Les 
variables de configuration qt sont souvent nommées les « coordon- 
nées » de Lagrange. Les sont les « vitesses généralisées » corres 
pondantes qui définissent le mouvement du système. Si les points 
matériels de ce système ne sont pas soumis à des liaisons et si 
l’on utilise des coordonnées cartésiennes rectangulaires, les <p 
et les qt sont les coordonnées et les composantes de vitesse au sens 
usuel.

Au lieu d’employer les qit on peut employer des grandeurs pt 
dites « moments de Lagrange » définies par les relations :

(5) pi=‘̂ L (i = 1,2........ n).
*Qi

Les équations (5) permettent d’exprimer les qt à l’aide des p,-. 
La variable pt est dite « canoniquement conjuguée » de la variable qt. 
S’il n’y a pas de liaisons et si l’on emploie des coordonnées rec 
tangulaires, on peut poser :

(6) c = \ + bl + h) ~ u(xi> • • •. Zn , 0 .
k

d’où :
dt 7>T

(7) • — P$k — * —
ûxk d-xh

La grandeur pXk canoniquement conjuguée de xk est donc alors 
égale à la composante x de la quantité de mouvement du kiéme point 
matériel.

Dans le cas général, les équations de Lagrange peuvent s’écrire :

<8> !-‘=ss .........">•

Si donc Z est indépendant de qk, la grandeur pk restera constante 
au cours du mouvement. En particulier, dans le cas de l’absence
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de liaison et de l’emploi des coordonnées rectangulaires, si 
U(Xi, ..., zN, /) ne dépend pas d’une des variables, mettons de xk,

on a —— = 0 et, par suite, pXk — Cte. On en conclut que, si laO'Xjf
composante suivant l’un des axes rectangulaires de la force est 
nulle, la composante de la quantité de mouvement du point maté 
riel suivant cet axe est constante. C’est le théorème de la conser 
vation de la quantité de mouvement.

Considérons maintenant dans le cas général la grandeur E définie 
par :
(9) E = 2 Pl,qk ~ C‘

k

Nous l’appellerons Yénergie du système. Comme nous supposons 
que U ne dépend pas des vitesses et qu’on voit aisément que T est 
une fonction quadratique homogène des vitesses si les liaisons ne 
dépendent pas du temps, le théorème d’Euler sur les fonctions 
homogènes nous permet d’écrire :

(10) OT NT • ùT
2T = Z qi^z 

V* ^
d’où :

n
(H) e  = y piÇi-z=

d-t
i :

E est donc bien l’énergie totale somme de l’énergie cinétique et de 
l’énergie potentielle. On trouve d’ailleurs :

(12) dE
dt = 2j (pù +pm) - X ( dt • 3C ••

H—s- q,ïqi
dt
dt’

D’après les équations de Lagrange, le premier terme du second 
membre compense le troisième et, d’après la définition des pt, le 
second terme compense le quatrième. Il reste :

(13) dE _ _ M _ d\J 
dt ~ dï~~ -dt '

Si les forces extérieures sont constantes ou nulles (système conser 
vatif ou isolé), U ne dépend pas de t et E = Cte. C’est le théorème 
de la conservation de l’énergie.
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3. Le principe de moindre action de Maupertuis. — La défini 
tion (9) de E nous permet d’écrire :

n

(14) dA = tdt = pidqi — E dt.
1

Imaginons alors un espace de configuration-temps en adjoignant 
à l’espace de configuration une dimension de temps. Soit P le 
point de cet espace qui représente la configuration initiale et 
l’instant initial Q le point qui représente la configuration finale 
et l’instant final tx. L’intégrale d’action hamiltonienne s’écrira :

(15) A = pjdqi — Edi].
i

C’est une intégrale curviligne prise dans l’espace de configuration- 
temps le long de la ligne qui représente le mouvement du système 
entre /„ et tx. Le principe d’Hamilton s’écrit alors :

n

(16) SA = S J ‘Cdt = $ jQpidqi — EcZ/j = 0,
1

les points P et Q étant maintenus fixes dans la variation.
De l’énoncé précédent du principe d’action stationnaire, on 

peut déduire, dans le cas particulier des champs constants au cours 
du temps, un autre principe analogue : le principe de moindre action 
de Maupertuis.

Dans le cas des champs constants, l’énergie du système est une 
constante, une intégrale première. Si A et B sont les points limites 
des trajectoires dans l’espace de configuration correspondant 
aux temps /„ et tu il est aisé de voir qu’on ne peut pas faire varier 
cette trajectoire en maintenant fixes A, B, t0 et tx si l’énergie 
totale reste constante pendant la variation. On le voit aisément 
sur le cas simple d’un point matériel libre : la trajectoire est alors 
une droite et, si l’on fait varier la forme de la trajectoire en main 
tenant fixes ses extrémités A et B, on allonge forcément sa longueur 
d’après la définition même de la ligne droite et la vitesse et, par 
suite, l’énergie ne peuvent rester constantes si ta et tx restent fixes. 
C’est là la raison pour laquelle on ne peut pas déduire directement 
le principe de Maupertuis, où l’on opère une variation à énergie
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constante, du principe de Hamilton où l’on opère une variation 
à t0 et tj, constants. Pour faire cette déduction, il faut passer par 
l’intermédiaire d’une formule qui est souvent appelée « le principe 
de l’action variée ».

Pour trouver la formule en question, partons de l’expression (15) 
de l’action hamiltonienne, mais supposons qu’on fasse varier les 
points limites P et Q, ce qui revient à faire varier non seulement 
les points limites A et B de l’espace de configuration, mais aussi 
les instants limites t0 et fx. On obtient alors la formule cherchée :

n

(17) SA = sj\tf/ = JVdf + ~ Ew][-
1

L’intégrale du dernier membre représente la variation de l’intégrale 
d’action hamiltonienne due à la variation du mouvement quand A, 
B, t0 et U restent fixes : elle est nulle d’après le principe de Hamilton. 
Le crochet représente la variation de l’action due à la variation des 
points P et Q de l’espace de configuration-temps et l’on a :

(18)
n

SA = 1PkMk — ES/J*.

Revenons maintenant à l’espace de configuration proprement dit. 
On peut y définir l’intégrale :

(19)

C’est l’intégrale d’action de Maupertuis. Elle est prise dans l’espace 
de configuration depuis le point A qui représente la configuration 
initiale jusqu’au point B qui représente la configuration finale.

Dans le cas des systèmes conservatifs ou isolés (actions exté 
rieures constantes ou nulles), l’énergie totale E du système est 
constante et l’intégrale (19) est indépendante du temps. Nous 
avons :

(20)

donc

(21)

i;:w'
î̂

sJ''Cd/ = SA-J^SEd/-
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d’où, en remplaçant le premier membre par la valeur donnée 
par (18),

(22)
n

Sit = I V pkSqk 1 + P‘sEdt
] 0 J tt

Supposons maintenant qu’on maintienne fixes dans la variation 
les points A et B de l’espace de configuration ainsi que la valeur E 
de l’énergie. Il vient alors :
(23) U = 0.
C’est là le principe de moindre action de Maupertuis où la variation 
doit s’effectuer en maintenant fixes les configurations extrêmes et 
la valeur de l’énergie, mais pas les époques extrêmes t0 et tx.

Dans le cas particulier où les qt sont les 3N coordonnées carté 
siennes des N points matériels d’un système non soumis à des 
liaisons, on a :

3N N

(24) ^j)kdqk = J” ^mk(vXh<lxk + vVkdyk + vX]dzk)
1 1

et, pour un seul point matériel :

(25) A = I m(vxdx + vydy + vzdvz)=J mv ds,

l’intégrale étant alors prise de A en B le long de la trajectoire 
dans l’espace physique à trois dimensions.

4. Équations de Hamilton. — Nous pouvons prendre comme 
variables définissant le mouvement d’un système n variables qi de
Lagrange et les moments p; = —r correspondants qui forment

ÙÇi
un système de variables « canoniques ». Nous pouvons alors expri 
mer les vitesses généralisées (p en fonction des <p, des p( et éventuel 
lement du temps par des relations de la forme :

(26) qt = fi(q, p,t) (i = 1, 2, ..., n).
L’énergie E sera exprimée en fonction des mêmes variables par 
la « fonction hamiltonienne » H(<p p, t) telle que :

n

E ='^ipiqi — C(q, q, t) = H(?, p, t),(27)
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les q, ayant été au second membre exprimées en fonction des q, 
des p et de t. On aura donc :

Tl | Tl ''A O
=q*+y p A- y ^-*£=9*.

J-—ii <^Pk (sQi
(28)

NH _ ^
l ûPk q ZF dpk Zi dQi &Ph

1 1
^ _ v H* _ Z. _ v ^
Zqk ~ ZF' ^<h *qk Zi dqt dfh<

3-C
N//t — Pk>

d’après la définition des p, et les équations de Lagrange. On a 
ainsi obtenu le célèbre système des équations de Hamilton :

(29) ù h
qk~*Pk’ Pk = 

et l’on en tire aisément :

ÙH
N/,( (k— 1,2, ..., n)

(30) dH _ V Z31! * , • \, __ aH
dt ~ Zi \a?l r/l + dp, Plj + aT ~ "at ’

1

d’où, si U et, par suite, H ne dépendent pas explicitement du temps, 
H = Cte, ce qui est le théorème de la conservation de l’énergie.

5. Mécanique classique et Mécanique relativiste. — Nous 
venons de rappeler quelques points de la Mécanique analytique 
classique. L’introduction par Einstein du principe de Relativité 
l’a conduit en 1905 à modifier les formules de la Mécanique clas 
sique. Nous ne rappellerons pas ici les principes bien connus de la 
théorie de la Relativité restreinte. Nous nous bornerons à résumer 
dans le chapitre suivant les principes de la Dynamique relativiste 
du point matériel en insistant particulièrement sur le principe 
de l’inertie de l’énergie qui jouera un rôle très important dans tout 
ce qui suivra.



CHAPITRE II

LA DYNAMIQUE DE LA RELATIVITÉ

1. Formules générales. — La Mécanique newtonienne admet 
le groupe de transformation de Galilée avec le temps absolu, 
c’est-à-dire que ses équations gardent leur forme quand on fait 
une transformation de Galilée, mais elle n’admet pas le groupe 
de transformation de Lorentz qui, lui, conserve les équations 
de l’électromagnétisme et, en particulier, celle de la propagation 
de la lumière dans le vide. Mais, comme les formules de transfor 
mation des deux groupes ne diffèrent que par des termes de l’ordre

v2
de p2 = — , la divergence est très faible pour les mouvements

que considère la Mécanique rationnelle classique, y compris les 
mouvements des astres. La transformation de Lorentz se trouvant 
confirmée par l’identité des phénomènes d’interférences dans tous 
les systèmes de référence galiléens, comme les phénomènes d’inter 
férences peuvent être observés avec infiniment plus de précision 
que les phénomènes mécaniques, il est naturel de supposer que le 
principe de Relativité s’applique à tous les phénomènes naturels 
et que les équations de la Mécanique classique ne sont pas rigou 
reusement exactes, qu’elles doivent être modifiées de façon à devenir 
invariantes pour la transformation de Lorentz.

La condition essentielle que doit alors remplir a priori la Dyna 
mique relativiste du point matériel est évidemment de se confondre 
avec la Dynamique classique chaque fois que (32 sera négligeable 
devant l’unité, car il faut nécessairement retrouver l’ancienne 
Dynamique comme première approximation dans le cas des vitesses 
faibles par rapport à la vitesse c de la lumière dans le vide (approxi 
mation dite « newtonienne »). On est ainsi amené à mettre à la 
base de la Dynamique relativiste un principe d’action stationnaire 
qui se réduira au principe usuel de Hamilton quand on pourra 
négliger (32 devant l’unité. Pour cela, on doit adopter une fonction C
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des coordonnées et des vitesses du point matériel telle que les 
équations de la Dynamique relativiste dérivent toutes de l’équa 
tion :
(1) SA = sJ‘‘Cd/ = 0,

la variation étant opérée en maintenant fixes les positions initiale 
et finale du point matériel et les valeurs des instants /„ et U comme 
dans le principe classique de Hamilton. Le calcul habituel qui permet 
de passer du principe de Hamilton aux équations de Lagrange 
s’applique encore ici et donne :

(2)

ou, en posant :

(3)

(4)

d /M\ _ 3£ 
dt \dx/

d-Z
Px -- ■ >

d-x
dpx _ ZC 
dt ~7>x’

Or, en Mécanique classique, on posait :

(5) £ = T— U = f >m(x3 + y3 + z3) — U(x, y, z, t).

mais ici nous devons choisir différemment la fonction £.
D’ordinaire, en théorie de la Relativité, on représente chaque 

« événement » défini par l’ensemble de ses quatre coordonnées x, y, 
z, t par un point dans l’espace-temps à quatre dimensions. Le 
mouvement d’un point matériel est alors représenté par une suite 
continue de points-événements formant ce qu’on nomme la « ligne 
d’univers » du point matériel dans l’espace-temps. Quand on passe 
d’un système galiléen de référence à un autre, les coordonnées 
de chaque point de cette ligne d’univers varient puisqu’il faut faire 
sur ces coordonnées une transformation de Lorentz. Il existe 
cependant une quantité invariante attachée à chaque élément 
de la ligne d’univers. Soit, en effet, dans un système galiléen dx, dy, 
dz, dt les variations des coordonnées correspondant à un petit 
élément de la ligne d’univers ; considérons la quantité :

(6) ds = \f c2dt2 — dx* — dy3 — dz3 = \/ c3dt3 — dl3,
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dl étant l’élément de la trajectoire décrit par le point matériel dans 
le temps dt. Une des propriétés essentielles de la transformation 
de Lorentz est que la grandeur (6) est un invariant de cette trans 
formation.

Comme y = (3c = ^ est la vitesse du point matériel, on peut 

écrire :

(7) ds = cdty/\ — (32 = cdz,

où dz = dt\/1 — p2 est l’élément de temps propre du point matériel 
correspondant à l’élément ds de sa ligne d’univers, dz est l’intervalle 
de temps indiqué par une horloge entraînée par le mouvement 
du point matériel pendant que celui-ci se déplace de dl pendant 
le temps dt. La formule (7) exprime le « ralentissement des hor 
loges ».

En Dynamique relativiste, on considère la présence du point 
matériel aux instants t0 et tx aux points x0y0z0 et x1ylz1 de l’espace 
comme définissant deux points-événements de l’espace-temps 
P(x0y0z0t0) et et l’on cherche un principe d’action sta 
tionnaire de la forme (1), l’intégrale étant prise le long de la ligne 
d’univers de P en Q et la variation n’affectant pas les points P 
et Q.

On obtient une forme satisfaisante de la fonction de Lagrange C 
en posant :

(8) C = — m0c2\/l — p2

pour un point matériel libre, m0 étant une constante dite la « masse 
propre » qui caractérise le point matériel envisagé. Cette forme 
permet d’écrire :

(9) A = J 'idt = — m0c2JQ1 — p2df = — jam0cds

et l’invariance de l’intégrale d’action A devient évidente, ce qui 
est satisfaisant. De plus, si (32 est petit devant l’unité, on aura :

(10) C = —m0c2 + ^ m0v2

et, comme le terme constant n’a pas d’importance puisqu’il ne 
donne rien lors de la variation, nous retombons sur l’expression
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classique C. = T = \ mv2 de la fonction de Lagrange pour un

point matériel libre comme cela devait être.
Si le point matériel est soumis à un champ dérivant d’un poten 

tiel U, nous nous contenterons pour l’instant, par analogie avec 
la Mécanique classique, d’ajouter dans C le terme — U au terme 
« cinétique » — m0c2\/1 — p2 et nous écrirons le principe d’action 
stationnaire sous la forme :

(11) 8A = sJQ(-m„cVl-P2-U)d/ = 0,

ce qui, par le raisonnement classique, donne les équations de 
Lagrange :

(12) d /D£\ _ M _ _ MJ
dt iâï) “ fcc ~ *x‘

Il est aisé de calculer les moments de Lagrange px, py, pz : on trouve :

(13) 3-C m0x 
dx y/1 — P2

Si l’on définit alors le vecteur « Impulsion » ou quantité de mou 
vement par :

(14)

on aura :

P =
__ m0v__
Vi - pa ’

(15) dp
ht — grad U.

On peut d’ailleurs écrire p = mv en posant m = ;

m est appelée la « masse en mouvement » du point matériel : elle 
augmente avec la vitesse du point. Pour un observateur lié au 
point matériel, p = 0 et m = m0 : la masse m se réduit à la masse 
propre m0 ou « masse au repos ». Pour v tendant vers c, m tend vers 
l’infini : la masse en mouvement augmente indéfiniment quand 
la vitesse approche de c. La vitesse c est dont la vitesse limite de 
tous les mouvements corpusculaires.
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2. Énergie et Impulsion d’univers. — Les équations générales 
obtenues ci-dessus nous permettent, comme en Dynamique clas 
sique, de démontrer que la quantité :

(16) W = xpx +ÿpy +zpx — Z

a pour dérivée totale par rapport au temps :

(17) dW W
dt ~

et qu’elle reste donc constante si le champ extérieur est constant 
au cours du mouvement et ceci nous amène encore à considérer W 
comme l’énergie du point matériel.

En Mécanique classique où C = T — U, nous avions trouvé 
E = T -f- U. Ici, comme nous posons C = — m0c2\/1 — (32 — U et

que nous avons p = - m°v -, nous trouvons :
Vi - p2

(18) W - - - + U-
V1 — P2

L’énergie totale du point matériel est donc la somme de l’énergie

potentielle U et du terme L=—= que nous devons maintenant

interpréter. Pour (3 = 0, c’est-à-dire pour un observateur lié au 
mobile, ce terme se réduit à m0c2 et représente l’énergie interne 
propre du mobile. Pour un observateur qui voit passer le mobile avec

ITIq C^la vitesse (3c, la partie cinétique de l’énergie W est — me2

qui représente l’énergie interne propre du mobile.
Généralisant ce résultat, Einstein est parvenu à l’énoncé sui 

vant : A toute masse m est toujours associée une énergie égale au 
produit de cette masse par le carré c2 de la vitesse de la lumière dans 
le vide. Nous étudierons plus loin d’une façon plus approfondie 
ce principe de l’inertie de l’énergie.

On peut appeler « énergie cinétique » l’augmentation de l’énergie 
due au mouvement quand le mobile passe du repos à la vitesse (3c. 
On pose alors :

T = m0c2

Vw"2
— m0c2 = m0c2 (\/i - P2(19)
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Si (3 <C c, on voit que T se réduit à ^ m0v2 comme cela doit être. 
Finalement, on peut poser :

(20) W = m0c2 + T + U = m0c2 + E

en appelant E l’énergie T + U, somme de l’énergie cinétique 
et de l’énergie potentielle. Ainsi l’énergie totale W de la Mécanique 
relativiste s’obtient en ajoutant à E l’énergie interne m0c2 qui est 
caractéristique de la théorie de la Relativité. Tandis que E peut 
être positif ou négatif, W est toujours positif.

En chaque point de la ligne d’univers d’un point matériel, 
on peut définir un quadrivecteur « Vitesse d’univers » de compo 
santes :

(21)

En multipliant ce quadrivecteur par l’invariant m0c, on en déduit
■—^ ►

le quadrivecteur « Impulsion d’univers » I = m0c u de composantes :

(22)

On voit que les trois composantes d’espace de l’Impulsion d’univers 
sont les composantes de la quantité de mouvement tandis que la 
composante de temps est égale à l’énergie divisée par c (abstraction 
faite de l’énergie potentielle). Le quadrivecteur I rassemble donc 
en un seul être géométrique la quantité de mouvement et l’énergie.

La partie cinétique de l’action hamiltonienne :

qui est un invariant, est donc la circulation du quadrivecteur I 
le long de la ligne d’univers. Il est facile de vérifier qu’en vertu 
de l’équation (16), on peut l’écrire sous la forme :
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Ceci permet de la considérer, au signe près, comme l’intégrale 
du produit scalaire dans l’espace-temps du quadrivecteur impulsion 
d’univers par le quadrivecteur ds de composantes dx, dy, dz, cdt 
et donc d’écrire pour le corpuscule libre :

(23) A = J°CdZ= - J“(î.ds).

3. Dynamique relativiste de l’électron dans un champ électro 
magnétique. — Nous avons pris comme fonction de Lagrange
relativiste : _____

£ = — m0ca\/1 — p2 — U,
mais le terme U n’est pas satisfaisant parce que l’action doit être 
un invariant et que U n’est pas invariant. Nous allons examiner 
de plus près la question en nous plaçant dans le cas d’une charge 
ponctuelle se déplaçant dans un champ électromagnétique (dyna 
mique relativiste de l’électron).

Nous obtiendrons une forme relativiste satisfaisante de C en 
partant de la remarque suivante : l’étude relativiste des grandeurs 
électromagnétiques montre que le potentiel scalaire V et le poten 
tiel vecteur A se transforment, lors d’une transformation de 
Lorentz, comme les variables x, y, z, t, c’est-à-dire qu’ils forment 
les composantes d’un quadrivecteur d’espace-temps dont A*, Ay, Az 
sont les composantes d’espace et Y la composante de temps. Il
en résulte qu’on obtient une intégrale d’action A = J*C qui est

invariante si l’on pose :

(24) £ = — m0c*\/1 — pa — eV + (A. v),

où e est la charge électrique de la particule. En effet, si l’on désigne 
par î le quadrivecteur d’espace-temps « Potentiel d’univers » de 
composantes A„ Ay, Az, V, on vérifie aisément que l’expression 
de l’action s’écrit sous la forme visiblement invariante :

(25) A = — Jm0cds — ^ J*(CT ds),
—y

où if ds est le produit scalaire d’espace-temps des deux quadri- —►
vecteurs if et ds formé suivant la règle :

(A. B) = A4B4 — AjBx — AaBa — A8Bj .
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Les équations de Lagrange s’écrivent toujours :

(26) d /3£\ _
dt^lJ-dx’

et, en posant px dZ
• ;

<>X
, elles prennent encore la forme :

(27) dpx
~dt ~ <Xr ’

On trouve aisément :

(28) px =

ou vectoriellement :

(29) p

dZ m0x s . 
7>x \/l — P2 c

+ * A.
Vi - p2 c

Le vecteur p, dont les composantes sont les moments de Lagrange,

est donc la somme de la quantité de mouvement —. m°U et
Vi - P2

g —►
d’une sorte de « quantité de mouvement potentielle » - A.

Si l’on écrit explicitement les équations de Lagrange (27) en
—►

tenant compte des expressions du champ électrique h et du champ 
magnétique H en fonction des potentiels V et A, on obtient trois 
équations vectorielles de la forme :

d l m0v \ _ 7
dtW l^pV h 

?={h ^/\h ]

et l’on reconnaît dans le vecteur / la force de Lorentz qui agit sur 
la charge s animée de la vitesse v. Ainsi la dérivée par rapport 
au temps de la quantité de mouvement est égale à la force de 
Lorentz, ce qui permet de retrouver la dynamique bien connue 
de l’électron. On remarquera d’ailleurs que l’équation (30) n’est 
pas équivalente à la relation my = / de Newton à cause de la varia 

tion de la masse m = —^ avec la vitesse.
a /i - P2

(30) 

avec :
(31)
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Si l’on calcule l’énergie W par la formule (16), on trouve :

(32) W - /'rc°C— + «V,
Vi -

ce qui est satisfaisant.
WRemarquons enfin que les grandeurs px, py, pz et — formant les

quatre composantes d’un quadrivecteur d’espace-temps l’Impulsion 
d’univers I, défini par :

(33) I = m0cu + 3",

on aura toujours :

JQCd/= - J"Q(Î ds).

4. Le9 équations de Hamilton. — Comme Y dépend en général
• • •

de x, y, z, t, l’énergie W est fonction de x, y, z, x, y, z et t. Mais,
• • •

puisque x, y, z peuvent s’exprimer en fonction de x, y, z, px, py, pz, t, 
on peut écrire :
(34) W = H(x, y, z, px, py, pz, t).
En éliminant vx, vy, vz entre les équations (29) et (32), on trouve 
après quelques calculs :
(35) H(x, y, z, px, py, pz, t) = c 'sJmjjc2 + ~ c A*) + eV’

xyz

Le même raisonnement qui, en Mécanique classique, nous avait 
conduit des équations de Lagrange à celles de Hamilton, nous 
donne encore ici :

dx _ M4 dpx___ ZfH
( } dt ~ 7ypx ’ ”• dt ~ l>x’

Les trois dernières équations sont les équations du mouvement ; 
les trois premières sont faciles à vérifier.

5. Étude sommaire du principe de l’inertie de l’énergie. —■
En étudiant la Dynamique relativiste du point matériel, nous avons 
rencontré le principe de l’inertie de l’énergie suivant lequel il 
existe entre l’énergie et la masse la relation générale W = me*. 
Mais cette relation n’était démontrée que pour un point matériel. 
Dès le début de ses travaux sur la Relativité, Einstein a été amené

DE BROGLIE 2
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à généraliser cet énoncé à un ensemble de points matériels, puis 
à un corps quelconque.

Considérons d’abord un ensemble de points matériels sans inter 
actions et repérons cet ensemble dans un système de référence 
galiléen (numéroté 0) tel que :

(37) 2 mav o = 0,

la somme étant étendue à tous les points matériels. Nous dirons 
que, dans ce système où l’impulsion totale est nulle, l’ensemble des 
points matériels est globalement en repos. Ce système de réfé 
rence est analogue à ce qu’est en Mécanique classique un système 
de référence lié au centre de gravité des particules : nous le nom 
merons le système de référence « propre » de l’ensemble. Dans ce 
système propre, nous avons pour expression de l’énergie :

puisque les particules sont sans interactions.
Passons maintenant à un autre système de référence (numéroté 1) 

qui est animé par rapport au système 0 de la vitesse v = (3c. L’éner 
gie globale des particules dans ce système sera :

Or, en prenant pour axe des z la direction du mouvement relatif 
des deux systèmes de référence 0 et 1, on aura les formules habi 
tuelles d’addition des vitesses :

(40) Vj* = VoxV 1 ~ Pa

1 + vv02 Viy =
VoyV 1 — P2

1 + VoVoz
Voz+V

1 +
w oz

d’où l’on tire : 

1 1 + Woz

(41)
i +L«

Vi-f V'-*''1-*'
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On en déduit :

(42) W1 = 2 m„c2 W„
V»-S + Pc

Vi — p2 V1 — P— a2 ^
m0v0l

V1-1

c2

Le dernier terme est nul en vertu de la définition (37) du système 
propre et il reste :

(43) Wx = W„
Vi - P2 '

Si l’ensemble des particules se réduisait à une seule particule 
de masse propre M0, on aurait :

(44) MpC2

Vi-p2'
On peut donc dire que le système en mouvement d’ensemble 
avec la vitesse |3c se comporte comme une unité ayant une masse 
propre :

(45) M0 = W„ 
c2 ’

formule qui exprime ici l’inertie de l’énergie.
De plus, dans le système de référence 1, la quantité de mouvement —►

global g des particules a pour composante x :

(46)

et, de même, gly = 0. Pour glz, on aura :

1
vr^T2'

Le premier terme étant nul d’après la définition du système propre, 
on a :
/4ox = V V m° = V ^ ^

a /1 - P2 ^ _V\ a /1 - P2 c2 v'i ~ P2

et cette formule montre encore l’inertie de l’énergie.



►

I

On peut remarquer que le principe de l’inertie de l’énergie déter 
mine entièrement la valeur de la constante de l’énergie laissée 
arbitraire par la Mécanique classique : on ne pourrait pas, en effet, 
introduire une constante additive dans l’expression de l’énergie 
sans troubler complètement la variance.

6. Extensions diverses du principe de l’inertie de l’énergie.
— Les raisonnements que nous venons de développer nous montrent 
que le principe de l’inertie de l’énergie est valable pour un ensemble 
de particules sans interaction (absence d’énergie potentielle). 
Elles prouvent, en particulier que, si l’on apporte de la chaleur 
à un gaz supposé parfait, sa masse se trouve augmentée. Nous 
allons maintenant montrer qu’un rayonnement d’énergie W doit

Waussi posséder une masse égale à — et que, par suite, un corps qui

rayonne perd de la masse et qu’un corps qui absorbe un rayonne 
ment acquiert un supplément de masse.

Donnons-en une démonstration due à Einstein lui-même. On 
sait qu’en théorie électromagnétique, on démontre qu’un rayon 
nement d’énergie W possède une quantité de mouvement égale 

Wà — . Donc, quand un corps émet un rayonnement d’énergie

globale W, il prend un mouvement de recul avec la quantité de 
Wmouvement — . Considérons avec Einstein un cylindre creux 

tel que celui de la figure 1.
Imaginons que le fond de gauche du cylindre émette parallèle 

ment à l’axe un petit train d’ondes de rayonnement total W.
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Fig . 1.



LA DYNAMIQUE DE LA RELATIVITÉ 21

Par suite de cette émission, le cylindre va reculer vers la gauche
Wavec une quantité de mouvement — . Si M est la masse du cylindre,

sa vitesse de recul v étant petite devant c, sa quantité de mouve-
Wment sera Mu et l’on aura Mu = — . Lorsque le train d’ondes

sera arrivé sur le fond de droite du cylindre que nous supposerons 
absorbant, il sera absorbé et, le cylindre acquérant alors la quantité 

Wde mouvement — vers la droite, son mouvement s’arrêtera. Mais,

entre l’émission et l’absorption du train d’ondes, le théorème du 
centre de gravité ne serait pas vérifié si le rayonnement n’avait 
pas de masse. Soit x le déplacement global du cylindre vers la

x M exgauche pendant le temps t = - = . Pendant ce temps, le petit

IVI c^xtrain d’ondes se sera déplacé vers la droite de X = et = -yj - •

Pour que le théorème du centre de gravité soit satisfait, il faut 
que le petit train d’ondes ait une masse [z telle que :

(49) 

d’où :

(50)

Mx — fzX = Mx ■ Mc2x .
= o.

W 
c2 '

C’est bien l’expression du principe de l’inertie de l’énergie et 
l’on pourrait d’ailleurs facilement reprendre cette démonstration 
en se servant de la notion de photon.

Une autre généralisation du principe étudié consistera à l’étendre 
à des corps ayant à la fois une énergie cinétique et une énergie 
potentielle et à montrer qu’on a encore W = M0c2. Nous allons 
examiner comment les choses se passent en étudiant deux cas 
particuliers simples.

Considérons d’abord un corps macroscopique de masse Mi qui 
vient heurter avec une vitesse fac un autre corps de masse Ma 
primitivement au repos. Supposons qu’à la suite du choc, les 
deux corps restent collés et soient finalement animés de la vitesse 
commune p2c dans la même direction que pxc. Si nous écrivions
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la conservation de la quantité de mouvement et de l’énergie sous 
la forme :

/Kix MlC2 (Mj + M2)c * _ MjPjC _(M1+Mi)ptc

Vi-pï Vi-pî \A-pï Vi-pï
qui paraîtrait naturelle, nous nous heurterions à une impossibilité, 
les deux équations à une seule inconnue p2 étant incompatibles. 
Mais le choc étant inélastique dégage de la chaleur et, le corps 
unique formé par l’accolement des deux corps primitifs étant le 
siège d’un échaufïement, sa masse M' est supérieure à M, + Mj 
de sorte qu’il faut écrire au lieu des équations (51) :

(52) —M,c2 - + M2c 2 = —; MlPlC= =
Vi-pî Vi-pï Vi-pî a/i-p:

et ces deux équations à deux inconnues p2 et M' sont solubles. 
La première peut s’écrire :

(53) ... MlC2 + M2ca = M'c2 + M'c2 [ -y1---- - - 1

V1 - Pi IV1 - p£
et ceci nous montre que l’énergie initiale totale des deux corps 
se retrouve finalement sous la forme de l’énergie M'c2 des deux 
corps une fois collés et de l’énergie cinétique de leur ensemble. 
On peut encore écrire :

(54) MjC'
a /1-pî

- 1 = [M' - (Mx + M2)]c 2 + M'c1
V1—p;

ce qui montre que l’énergie cinétique initiale du corps 1 a servi, 
d’une part à communiquer à l’ensemble des deux corps la quantité 
de chaleur :

(55) Q = [M' - (Mi + M2)]c 2

qui a porté l’énergie interne de l’ensemble de la valeur (Mi + M2)c2 

à la valeur M'c2 et, d’autre part, à fournir l’énergie cinétique du 
corps unique final. Tout ceci est très clair.

Comme autre exemple simple, considérons un corps qui absorbe 
du rayonnement. Ce peut être un corps macroscopique absorbant 
un train d’ondes ou un système de l’échelle atomique absorbant
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un photon. Soit M„ la masse propre initiale du corps supposé 
d’abord au repos, W l’énergie du rayonnement (ou du photon) 
absorbé, pc la vitesse de recul pris par le corps après absorption.

1 I O v=pc

W 
C

Fig . 2.

De nouveau, ici, si l’on écrivait :

M„r2(56) M„c* + W = ^i±=;
Vi - P2

on se heurterait à une impossibilité.

(57) M„c2 + W
M'c2

Vi — P2 ’

Mo pc _ W 
y/l — p2 c ’

Il faut donc écrire :

m;pc _ w
y/l - p3 _ c

en admettant que l’absorption du rayonnement fait augmenter 
la masse propre du corps.

La première équation (57) peut s’écrire :

(58) W = (M0 - M0)c2 + M0c2 Vï -
-1

Elle montre ainsi que l’énergie apportée au corps par le rayonne 
ment sert : 1° à augmenter l’énergie interne du corps de la quantité 
(M’ — M0)c2 (chaleur dans le cas d’un corps macroscopique, aug 
mentation de l’énergie interne dans le cas d’une unité micro 
physique) ; 2° à donner au corps, dont la masse a ainsi augmenté, 
son énergie finale.

Le problème inverse de l’émission d’un rayonnement (ou d’un 
photon) par un corps macroscopique ou microphysique se traite 
de même et aboutit à des conclusions analogues.

Ainsi le principe de l’inertie de l’énergie paraît bien avoir une 
portée tout à fait générale. On sait que l’exactitude de ce principe 
est entièrement confirmée par le rôle essentiel qu’il joue en Physique 
nucléaire pour établir les bilans d’énergie dans les réactions 
nucléaires.



7. Remarque importante. — Une des idées fondamentales qui 
résultent des considérations que nous venons d’exposer est la 
suivante : Si un corps reçoit de l’énergie qui ne se transforme pas 
en énergie cinétique, sa masse augmente et s’il perd de l’énergie 
qui ne provient pas de son énergie cinétique, sa masse diminue. 
En d’autres termes, et c’est là le point essentiel, une variation de la 
masse propre d’un corps correspond à de l’énergie, reçue ou perdue, 
qui siège à l’intérieur du corps sous forme d’énergie cachée et qui, 
parce qu’elle ne se manifeste pas à l’extérieur, peut être considérée 
comme de la chaleur interne. Nous retrouverons cette idée dévelop 
pée d’une façon plus précise quand nous étudierons la Thermo 
dynamique relativiste et c’est en l’appliquant aux particules 
que nous parviendrons ensuite à esquisser une Thermodynamique 
de la particule isolée.
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CHAPITRE III

NOTIONS
DE THERMODYNAMIQUE STATISTIQUE

1. Introduction. — Nous avons vu l’importance essentielle de 
la grandeur Action en Mécanique classique et relativiste. Cette 
importance a été encore soulignée par le développement de la 
théorie des quanta qui, dès ses débuts, a été amenée, pour quantifier 
les mouvements périodiques d’un corpuscule à l’échelle atomique,
à écrire que l’intégrale de l’action maupertuisienne Jp dl pour toute

une période du mouvement doit être égale à un multiple entier 
de la constante de Planck.

La théorie de la Relativité rattache l’importance de l’action 
hamiltonienne au fait que cette grandeur est invariante. C’est 
l’invariant fondamental de la Mécanique comme l’entropie est, 
nous le verrons, l’invariant fondamental de la Thermodynamique. 
Cette remarque nous prépare à découvrir de curieuses analogies 
entre l’Action et l’Entropie.

Mais, avant de préciser ces analyses, il nous faut maintenant, 
après avoir rappelé les principes de la Mécanique, étudier aussi 
certains aspects de la Thermodynamique. Dans ce qui suit, je 
supposerai connue la Thermodynamique classique « des principes » 
et je m’attacherai seulement à souligner les grandes lignes de l’in 
terprétation statistique de la Thermodynamique.

2. Bases de l’interprétation statistique de la Thermodynamique.
— La Mécanique statistique, développée d’abord par Clausius 
et Maxwell, puis plus complètement par Boltzmann et par Gibbs, 
a permis d’étudier les propriétés statistiques moyennes des 
systèmes très complexes définis par un nombre extrêmement 
grand de paramètres. Son grand succès a été d’être parvenue 
à interpréter les lois de la Thermodynamique de telle façon que



ces lois apparaissent comme dérivant du fait que la Thermodyna 
mique envisage toujours les propriétés globales moyennes de sys 
tèmes très complexes dont la description détaillée ne saurait 
s’effectuer qu’à l’aide d’un nombre énorme de paramètres. Par 
exemple, la Thermodynamique traite des propriétés globales 
des gaz et, aux yeux de la Physique atomique, un gaz est formé 
par un nombre immense de molécules ou d’atomes, l’état de chacun 
de ces éléments étant décrit à l’aide de plusieurs paramètres : 
les lois thermodynamiques des gaz sont alors considérées par la 
Mécanique statistique comme le résultat global observable des 
mouvements incoordonnés des molécules.

Précisons un peu les conceptions qui sont à la base des théories 
de Boltzmann et de Gibbs. En Mécanique statistique classique, on 
admet que les éléments en nombre immense dont sont formés 
les corps matériels obéissent aux lois de la Mécanique classique 
de sorte que, si à un moment donné on connaissait exactement 
la position et la vitesse de tous ces éléments, on pourrait en principe 
calculer rigoureusement toute leur histoire ultérieure. Mais, en 
pratique, on ne peut pas observer l’évolution de toutes les molécules 
et l’on n’observe que des effets statistiques moyens dont la Méca 
nique statistique se propose de déterminer les lois. Ainsi, dans cette 
théorie classique, on admet, du moins en principe, l’existence d’un 
déterminisme sous-jacent, le caractère « probabiliste » des effets 
obtenus provenant uniquement de l’impossibilité d’observer autre 
chose que des effets globaux. L’introduction de la Dynamique 
relativiste à la place de celle de Newton ne change rien d’essentiel 
à ce qui précède, puisque cette Dynamique garde les conceptions 
fondamentales de la Dynamique classique.

3, Extension-en-phase et théorème de Liouville. — Pour déve 
lopper la Mécanique statistique classique, nous envisagerons un 
système très complexe dont la configuration est définie par des 
coordonnées qu q2, .. q* dont le nombre sera en général considéré 
comme très grand.

Nous supposerons que notre système obéit aux lois de la Méca 
nique classique exprimées sous la forme des équations de Hamilton.
Si l’énergie du système est donnée par la fonction .........q* ;
Pu •••. pN> 0. on peut écrire les équations canoniques :

• ZfH • üH 
qi = iïpi’ Pi=~m
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(1) (i = 1, 2, ..., N),
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N étant le nombre des coordonnées qt (nombre des degrés de liberté). 
Dans le cas où le système est isolé ou soumis à des actions exté 
rieures indépendantes du temps, H est constant.

L’état du système étant entièrement défini par la connaissance 
des qt et des p„ on peut représenter cet état par un point dans un 
espace à 2N dimensions formé à l’aide des et des p;. Cet espace 
a reçu de Gibbs le nom « d’extension-en-phase ». Au cours du temps, 
le point figuratif du système décrit une trajectoire dans l’extension- 
en-phase.

Envisageons de très petites variations dq,, ..., dqN ; dpx.........dpN
des coordonnées et des moments à partir de valeurs données. 
A ces variations, correspond dans l’extension-en-phase un petit 
élément de volume dx. Cet élément de volume possède deux pro 
priétés qui lui confèrent une très grande importance. La première 
de ces propriétés est la suivante : Si Von opère un changement de 
variables canoniques faisant passer des variables qlt ..., ; px, ..., pN
pour lesquelles les équations (1) de Hamilton sont vérifiées à de 
nouvelles variables Qu . . ., QN ; Pu ..., PN pour lesquelles les équa 
tions de Hamilton sont encore vérifiées (changement de variables 
canoniques), la valeur de l’élément dx reste la même. Je ne donne 
pas ici la démonstration de ce théorème qui résulte de la façon 
dont sont définies les variables conjuguées p; et : il montre 
que l’élément de volume dx possède une signification intrinsèque, 
indépendante du choix des variables canoniques servant à définir 
le système.

Plus importante pour ce qui suit est la seconde propriété de 
l’élément dx exprimée par le « théorème de Liouville ». Pour énoncer 
ce théorème, nous allons considérer non plus un seul exemplaire 
de notre système, mais un très grand nombre d’exemplaires 
différents de ce même système. A un instant t chacun de ces 
exemplaires sera représenté dans l’extension-en-phase par un certain 
point et, à l’intérieur de l’élément dx qui nous intéresse, il y aura 
un certain nombre de points représentatifs. Fixons notre attention 
sur les points représentatifs qui se trouvent ainsi à l’intant t dans 
l’élément dx. Au cours du temps, ces points vont se déplacer et, 
à un instant ultérieur t', on retrouvera par continuité ces mêmes 
points représentatifs dans un autre élément dx' de l’extension- 
en-phase, élément qui contiendra tous ces points représentatifs 
et ceux-là seulement. Le théorème de Liouville nous dit alors 
que dx’ est égal à dx. Naturellement, dx' peut avoir une forme très



différente de dx, être par exemple un long ruban replié sur lui-même, 
alors que d-x était un petit cube, mais les volumes des deux éléments 
sont les mêmes.

On peut démontrer le théorème de Liouville en comparant le 
mouvement des points représentatifs dans l’extension-en-phase 
au mouvement des molécules d’un fluide dans un espace à 2N dimen 
sions. Le théorème exprime, en effet, à ce point de vue qu’un nombre 
donné de molécules du fluide occupe toujours le même volume 
dans l’espace à 2N dimensions c’est-à-dire que le fluide se comporte 
comme un fluide incompressible. Or la condition d’incompressi 
bilité d’un fluide, c’est que la divergence de sa vitesse soit nulle
en tout point. Ici la vitesse du fluide dans l’espace à 2N dimensions• • • •
a 2N composantes qui sont qu ..., qN ; pu ..., pN et la condition 
d’incompressibilité s’écrit :
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N

Or, cette équation est visiblement satisfaite en vertu des équa 
tions (1) de Hamilton. Le théorème de Liouville en résulte.

Le théorème de Liouville montre qu’une répartition uniforme 
des points représentatifs des exemplaires du système considéré 
dans l’extension-en-phase se maintient indéfiniment. Il est facile 
de comprendre que cela incite à prendre l’élément d’extension- 
en-phase dx comme mesure de la probabilité pour que le système 
se trouve à un instant donné t représenté par un point représentatif 
situé dans d-x. Néanmoins, cette hypothèse appelle quelques 
remarques.

Une première remarque, c’est qu’il arrive souvent que l’évo 
lution d’un système mécanique admette des intégrales premières, 
c’est-à-dire qu’au cours de cette évolution certaines fonctions 
des q et des p restent constantes. Ainsi dans le cas usuel d’un 
système isolé, l’énergie H (q, p) reste constante. Quand il y a des 
intégrales premières, le point représentatif est assujetti à se mou 
voir sur certaines multiplicités à moins de 2N dimensions de 
l’extension-en-phase (par exemple sur une multiplicité à 
2N — 1 dimensions s’il y a une seule intégrale première). Ainsi, 
pour un système isolé, le point représentatif devra se déplacer 
sur l’hypersurface H == E = Cte ou, plus exactement, comme
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l’énergie n’est jamais connue qu’avec une incertitude dE, il est 
toujours contenu dans une couche très mince comprise entre les 
surfaces H = EetH = E-j- dE : ce sont seulement les éléments 
de volume de cette couche qu’il est naturel de considérer comme 
mesures de probabilités.

Une autre remarque essentielle est que le théorème de Liouville 
ne permet pas à lui seul de démontrer rigoureusement qu’on peut 
prendre l’élément dr de l’extension-en-phase comme mesure de 
la probabilité de la présence du point représentatif dans cet élé 
ment, bien qu’assurément cette hypothèse soit suggérée par le 
théorème. Pour obtenir une justification satisfaisante, il faut 
adjoindre un postulat qui est connu sous le nom « d’hypothèse 
ergodique ». En voici l’énoncé : Soit un système admettant l'énergie 
comme seule intégrale première uniforme et ayant un état initial 
d’énergie comprise entre E et E -j- dE : le point représentatif du 
système se déplace dans l'extension-en-phase en restant dans la couche 
comprise entre les hypersurfaces H = E et H = E -f- dE. Nous 
« admettons » alors qu'au bout d’un temps suffisamment long, le point 
représentatif aura « balayé uniformément » toute la couche en question. 
On peut énoncer ce postulat sous une forme un peu moins stricte 
nommée « hypothèse quasi ergodique » qui se contente d’affirmer 
qu’au cours de son déplacement, le point représentatif passe 
aussi près qu’on veut de tout point de la couche en question. 
Si l’une ou l’autre de ces deux hypothèses est exacte, la probabilité 
de la présence du point représentatif dans un élément d’extension- 
en-phase est proportionnelle à la fraction d’un temps très long T 
que le système passe dans cet élément : on peut donc alors con 
fondre les moyennes prises dans l’extension-en-phase avec les 
moyennes prises dans le temps.

Malheureusement, les hypothèses ergodiques ou quasi ergodiques 
ne sont certainement pas toujours exactes : il existe des cas simples, 
comme celui des mouvements périodiques, où elles sont en défaut. 
On peut cependant admettre que ces cas exceptionnels ont une 
probabilité évanouissante. Néanmoins les hypothèses ergodiques 
ou quasi ergodiques sont très difficiles à justifier rigoureusement 
dans la théorie classique et il semble bien que des difficultés ana 
logues subsistent dans les théories quantiques. Boltzmann a intro 
duit une hypothèse du « chaos moléculaire » qui invoque le caractère 
aléatoire des perturbations subies par le mouvement des molécules 
par suite de leurs chocs continuels. Cette hypothèse sur laquelle
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nous reviendrons joue un rôle analogue aux hypothèses ergodiques. 
Nous aurons à revenir sur toute cette question.

Sans nous arrêter aux difficultés qui viennent d’être signalées, 
nous admettrons qu’on peut adopter comme mesure de la proba 
bilité relative des états d’un système représentés par l’élément di 
de son extension-en-phase la grandeur même de cet élément.

4. Entropie et probabilité. Relation de Boltzmann. — La gran 
deur la plus caractéristique et la plus mystérieuse quant à sa 
signification physique introduite par le développement de la 
Thermodynamique classique était certainement l’entropie, cette 
grandeur qui a toujours une tendance à augmenter dans toutes 
les transformations physiques spontanées. Le grand succès de la 
Thermodynamique statistique a été de parvenir à interpréter 
l’entropie comme une grandeur mesurant le degré de probabilité 
de l’état du corps considéré. Il est d’ailleurs aisé de déterminer la 
nature de la relation fonctionnelle entre l’entropie d’un corps et 
la probabilité de son état. En effet, si l’on considère deux systèmes 
sans interactions mutuelles dont les entropies sont Sx et S2, la 
Thermodynamique nous apprend que l’entropie du système global 
formé par l’ensemble des deux systèmes est Sx + S2 ; d’autre part, 
si Px est la probabilité de l’état du premier système et Pa celle de 
l’état du second système, la probabilité de l’état global du sys 
tème 1 + 2 est égal à PiP2 d’après le théorème des probabilités 
composées. Si donc la relation entre l’entropie et la probabilité 
est de la forme S = /(P), on devra avoir :

(3) /(PO + /(PO = /( PiPO-
En différentiant (3) par rapport à Pi, on a :

/'(PO = P2/'(pip0»
puis en différentiant par rapport à P2, on a :

/'(P^O + PiP2/"(PiP0 = 0, 
relation de la forme :

j'(x) + xf"(x) = 0,

d’où l’on tire par double intégration f(x) = C log x -f D. La relation 
fonctionnelle entre l’entropie et la probabilité est donc :
(4) S = k log P + Cte
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qu’on peut écrire en normalisant convenablement la probabilité :

(5) S = k log P.

C’est la fameuse formule de Boltzmann et, comme nous le verrons, 
pour établir l’accord avec la Thermodynamique classique, il faut 
adopter pour la constante k, appelée « constante de Boltzmann », 
la valeur numérique :

k = 1,37.10-16 erg/°K = 1,37.10-23 J/°K.'

Comment doit-on dans la formule de Boltzmann évaluer la 
probabilité P ? La définition la plus naturelle consisterait à dire 
que P est égale au nombre des complexions élémentaires qui 
réalisent l’état considéré du corps divisé par le nombre total de 
toutes les complexions possibles. Mais ce dernier nombre est diffi 
cile à évaluer et son intervention n’ajouterait qu’une constante 
dans l’expression de l’entropie. On a donc convenu de prendre 
pour P le nombre des complexions qui réalisent l’état considéré 
sans diviser par le nombre total des complexions possibles, ce 
qui revient à fixer d’une certaine manière, qui s’est montrée 
adéquate, la constante arbitraire de l’entropie.

Comme valeur de P, on prendra donc, en accord avec le théorème 
de Liouville une valeur proportionnelle au volume d’extension- 
en-phase correspondant à l’état du système. Ici encore, on peut 
hésiter entre diverses possibilités. Considérons un système dans un 
état d’énergie E. L’hypersurface E = Cte est fermée et limite 
dans l’extension-en-phase un certain volume O(E). On peut prendre 
<I>(E) comme probabilité de l’état E. Une seconde définition qui 
peut paraître plus naturelle consiste à regarder l’énergie comme 
n’étant définie qu’à dE près et à remarquer que le point repré 
sentatif du système se déplace alors dans une couche comprise 
entre les hypersurfaces E et E + dE dont le volume est évidemment
ZMI> DOdE, ce qui conduit à poser P = ^ . Enfin, une troisième défi 

nition possible part du fait que, pour une énergie totale donnée, 
la répartition des énergies individuelles entre les divers constituants 
du système peut varier et que l’une de ces répartitions est la plus 
probable, correspondant à un plus grand domaine de l’extension- 
en-phase que les autres : on peut alors définir P en ne tenant compte



que des complexions d’énergie totale E qui correspondent à cette 
répartition la plus probable.

Les trois définitions de P (et, par suite, de S) que nous venons 
de rappeler ne sont pas équivalentes et, dans le cas des systèmes 
à un petit nombre de degrés de liberté (*), elles peuvent donner 
des résultats très différents. Or, il se trouve, et c’est là une circons 
tance remarquable que, pour les systèmes à un très grand nombre 
de degrés de liberté usuellement envisagés par la thermodynamique, 
les trois définitions sont pratiquement équivalentes pour l’appli 
cation de la formule de Boltzmann, ce qui dispense en ce cas de 
justifier un choix plutôt qu’un autre. Nous n’insisterons pas sur 
la démonstration de cette « insensibilité de la formule de Boltz 
mann » qu’on trouvera dans beaucoup d’ouvrages classiques.
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5. Température et équilibre thermique. — En Thermodyna 
mique classique, on définit la variation de l’entropie par la 
formule :

(6)
dE+ cfB 

T
où T est la température absolue, dQ la quantité de chaleur reçue 
par le corps, dE la variation de son énergie interne, dis le travail 
qu’il fournit à l’extérieur. Si le corps ne fournit pas de travail, 

dEon a dS — . Les formules précédentes ne sont valables que si

la transformation est « réversible ».
Comme l’entropie dépend généralement non seulement de l’éner 

gie E, mais aussi d’autres paramètres (tels que le volume V occupé 
par le corps), on conclut de la relation précédente qu’on peut définir 
la température absolue d’un corps par la formule :

(7)
J. _ ÙS 
T ~ ùE '

Si deux corps 1 et 2 sont en contact et peuvent échanger de la 
chaleur (mais pas de travail mécanique macroscopique), les tempé 
ratures des deux corps tendent à s’égaliser et, quand l’équilibre 
thermique est atteint, on a :

(8)

(l) Mais, en ce cas, il est douteux qu’on puisse vraiment parler de l’entropie 
du corps.
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Considérons cette question de l’équilibre thermique du point 
de vue de la Mécanique statistique. Le système global 1 + 2 étant 
supposé isolé, son énergie totale est constante, mais elle peut se 
répartir d’une façon variable entre les deux systèmes 1 et 2. 
La probabilité de l’état global 1 + 2 où le corps 1 a l’énergie Ei 
et le corps 2 l’énergie E2 est :

(9) P = P^EO. P2(E2) = P^EO. P2(E - Ex).
L’état le plus probable du système global 2 + 2 correspond au 
maximum de P défini par la relation :

d- log P
-^r = 0 ou d- log Px fi log P2

f>É, üEi

Comme dE2 — — dEa, on a donc :

(10) fi l0g Pi _ fi l0g P2 
fiËj — fiE2

En multipliant par k et en introduisant la relation de Boltzmann, 
il vient :

(11)
fiSx 3S2 
ÜEx “ <>E2

et cette équation traduit l’égalité des températures des deux corps 
au moment de l’équilibre. On peut donc dire que la température 
d’un corps est reliée à la probabilité Pm de son état le plus probable 
par la relation :

(12) 1 _ a log Pm 
AT f)E ’

ce qui correspond à la troisième définition de l’entropie par la 
formule de Boltzmann qui a été discutée plus haut.

On peut remarquer que la Mécanique statistique, allant plus 
loin que la Thermodynamique classique, peut définir l’entropie 
d’un état quelconque par la relation S = k log P, même si cet état 
n’est pas un état d’équilibre de probabilité maximale. Cette définition 
générale de l’entropie coïncide avec celle de l’entropie thermo 
dynamique pour les états de probabilité maximale : elle fournit 
alors la valeur de l’entropie thermodynamique classique qui peut, 
pour les systèmes à un nombre énorme de paramètres envisagés 
par la Thermodynamique classique, être exprimée à l’aide de 
l’une quelconque des trois définitions de P précédemment signalées.

DE BROGLIE 3
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Mais la formule de Boltzmann permet aussi d’étudier les fluc 
tuations de l’état d’un corps autour de son état le plus probable. 
Nous aurons à revenir ultérieurement sur la théorie des fluctuations 
ainsi obtenue.

6. La répartition canonique de Boltzmann-Gibbs. — Consi 
dérons à nouveau un système formé par la réunion de deux corps 1 
et 2 : nous les supposerons très faiblement couplés et ne pouvant 
échanger entre eux que de la chaleur. Le corps 1 pourra avoir 
un nombre quelconque (petit ou grand) de degrés de liberté, mais 
nous supposerons essentiellement que le corps 2 est un « thermo 
stat », c’est-à-dire un énorme réservoir de chaleur (énergie molé 
culaire incoordonnée) de telle façon que le corps 1 n’ait qu’une 
chance tout à fait négligeable de lui prendre une fraction appré 
ciable de son énergie. En d’autres termes, si E^m) est l’énergie du 
thermostat quand il est dans l’état d’équilibre de probabilité 
maximale avec le corps 1, on peut admettre que, pour tous les 
états pratiquement réalisables, la différence E2 — E^m) est toujours 
extrêmement petite devant E‘m). La probabilité de l’état du corps 2 
étant P2, on peut toujours écrire :

3- loe P(m>
(13) log P, = log P<m) + - 2 - (E, - E«m>) + ...

Les hypothèses faites sur la nature du thermostat nous permettent 
alors de négliger les termes non écrits qui sont d’ordre supérieur 
en E2 — E^m) et, en appelant T la température absolue du ther 
mostat, on aura :
(14) logP1 = logP(“> + jl(Et-Ei'»>),

(15) P2 = P'm,e *T .

Mais, si Ejm) désigne l’énergie du corps 1 quand il est dans son état 
d’équilibre le plus probable avec le thermostat, on a :

E2 - E<m) = E<m) - Ej

par la conservation de l’énergie. Comme nous avons supposé 
faible l’interaction du corps 1 avec le thermostat, la probabilité
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de l’état où le thermostat a l’énergie E2 et le corps 1 l’énergie E2 
est :

(16) P = P^Ex). P2(E2) = Pi(Ex). P<m> e~^~ .

La formule précédente peut encore s’écrire sous la forme :

(17) P = P(E1)<f*^i,

où P(Ej) est le nombre total des configurations du corps 1 ayant 
l’énergie E2 quand on ne lui impose aucune liaison avec le thermo 
stat (probabilité a priori).

Nous avons ainsi obtenu la « loi de distribution canonique » 
de Gibbs qui apparaît comme valable dans un système en contact 
thermique avec un thermostat qui fixe la température T.

La constante F figurant cette loi de distribution canonique 
se calculera en écrivant :

F —E •
(18) ^P(E;) = 1,

la sommation étant étendue à tous les états possibles du corps 
formant par hypothèse une suite discontinue (si la suite étant
continue, on remplacerait la sommation / par une intégrale sur E).

De l’équation précédente, on tire :
F

(19) e-"= 2P(E;)e~ 

d’où :

(20) F = - *T log

Ei
*T = Z,

Z.

La somme (ou intégrale) Z définie par le second membre de (19) 
a été nommée par Planck « la somme d’états ». Elle joue un rôle 
essentiel dans les calculs de la Thermodynamique statistique.

Remarquons que le corps 1 peut être constitué par une seule 
molécule : il en résulte que, pour une seule molécule, la notion de 
température a un sens quand cette molécule se trouve en contact 
énergétique avec un thermostat à température T qui lui impose 
sa température.
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7. Remarques importantes au sujet de la loi de distribution 
canonique. — Dans le chapitre IV de son fameux Ouvrage Ele- 
mentary principles of siatistical Mechanics, Willard Gibbs a écrit 
la loi de distribution canonique sous la forme :

i|i-E

(21) P = e~,
F

ce qui revient à poser, dans la formule (17), kT = 0 et P(Ex)e® = e®. 
Il a ensuite introduit ce qu’il nomme « l’exposant de probabilité » y ) 
en posant :

(22) 7) = log P, P = e\
puis il a montré que y j a, à une constante additive près, les propriétés 
de l’entropie thermodynamique du corps 1 changée de signe (x). 
On peut alors écrire :

c _ S,
(23) 7) = -^+Cte; P = e> = Cte e *.

Or le signe — dans l’exposant de la dernière formule pourrait
surprendre, car il pourrait paraître en opposition avec la formule

i +®i)de Boltzmann (car on aurait tendance à écrire P = Cte e k }.
Ceci a donné lieu à quelques confusions qui ont parfois été commises
dans des ouvrages très sérieux. C’est ce changement de signe
qui explique d’apparentes anomalies dont je parlerai plus loin.

Le changement de signe que nous venons de constater est
cependant facile à expliquer, car la formule P(E) = P(Ei).P(Ea)

s,
dont nous sommes partis nous donne P = Cte ek , d’après la 
formule de Boltzmann appliquée au thermostat. Mais le corps 1 
et le thermostat formant par hypothèse un système isolé de toute 
action extérieure où les échanges d’énergie entre les deux consti 
tuants sont des processus supposés réversibles, il doit y avoir 
conservation de l’entropie totale, ce qui donne :

S, + S2 = S<m> + S<m) = Cte 
_s,

et, par suite, P — Cte e * , ce qui est bien en accord avec la for 
mule (23) de Gibbs.

(x) On suppose que le corps i a un nombre de degrés de liberté assez 
grand pour qu’on puisse lui attribuer une entropie.
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La remarque qui précède jouera un rôle important dans les 
considérations que nous développerons ultérieurement sur l’ana 
logie entre l’Action et l’Entropie. Nous allons y ajouter d’autres 
remarques.

Pour le système formé du corps 1 et du thermostat en contact 
énergétique faible, nous avons trouvé P = Pi x P2, avec :

eW-e ,
(24) P2 ~ P^m) e ^ ,

?!
P2 devant être égal à ek , d’après la formule de Boltzmann. La 
formule (24) ne donne qu’une valeur approchée parce que, pour 
l’obtenir, nous avons négligé les termes d’ordres supérieurs en 
E2 — E*,m). Nous pouvons poser :

F-E, F-_E_,

(25) P2 ~ <• "T ; P~Pxe^

et nous retrouvons la loi de distribution canonique.
Si le corps 1 est complexe et possède un grand nombre de degrés 

de liberté, on a par la définition de la somme d’états Z :

d’où, puisque la probabilité de l’état le plus probable de 1 est 
en ce cas infiniment plus grande que celle de tous les autres états 
possibles :

E(m)

_ 1 F

(27) P<m)e kT ~e ki.

Et l’on en tire, puisque alors on peut introduire sans difficultés
g(m)

la notion d’entropie du corps 1, la relation P^m) = e k d’après 
la formule de Boltzmann de sorte que la formule (27) nous donne :

(28) F ~ E<m) - TS<m>.

Donc, pour un corps ayant un très grand nombre de degrés de liberté 
maintenu à la température T, F est l’énergie libre de la Thermo 
dynamique classique. Mais, si l’on porte la valeur F = E2 — TSj

_
dans la deuxième formule (25), on trouve P ~ e k , ce qui semble



en contradiction avec la formule de Boltzmann. C’est la difficulté 
que nous avions déjà rencontrée plus haut et que nous avons levée
en remarquant Si + S2 = Cte de sorte qu’on retrouve pour P2 la

s_.
formule de Boltzmann P2 ~ ek , ce qui est satisfaisant.

La proportionnalité de l’exposant de l’exponentielle dans la loi 
canonique à S2 et à — Sx est valable, quel que soit le corps 1. Mais, 
dans le cas où le corps 1 possède un grand nombre de degrés de 
liberté, nous avons :

qfrn) ,o(rn) a
S, S. + S, °1 +a2 °m

(29) P ~ Px e * = e k =e k = e *
s,

puisque alors Px est égal à ek d’après la formule de Boltzmann. 
Sm étant ici l’entropie de l’état de probabilité maximale du sys 
tème 1 -f- 2, nous avons :

(30) P ~ P<m>.

Ceci veut dire que, pour le système 1 + 2, l’état de probabilité
maximale est pratiquement le seul réalisé, ce qui est satisfaisant 
étant donné l’hypothèse que le corps 1 est très complexe.

8. Applications de la loi de distribution canonique. — Consi 
dérons d’abord le cas où le corps 1 est un corps très complexe 
défini par un très grand nombre de paramètres (par exemple, 
l’ensemble des molécules d’un gaz). Nous avons montré ci-dessus 
qu’en ce cas F est égal à E — TS et coïncide avec le potentiel 
thermodynamique ou énergie libre du corps. Mais envisageons 
ensuite le cas opposé où le corps 1 est défini par un petit nombre 
de paramètres. La loi de distribution canonique est toujours 
valable, mais F ne représente plus l’énergie libre.

Considérons, par exemple, une molécule d’un gaz : elle est définie 
par un petit nombre de paramètres ; mais, comme on peut la consi 
dérer comme se trouvant en contact énergétique avec un thermostat 
formé par l’ensemble de toutes les autres molécules du gaz supposé 
en équilibre thermique, on peut lui appliquer la loi de distribution 
canonique. Or la probabilité a priori pour que les coordonnées 
et les moments de cette molécule aient des valeurs comprises dans 
les intervalles x -> x + dx, ..., pz -> pz + dpz est, d’après le 
théorème de Liouville, égale à l’élément :

dx = dxdydzdpxdpydp2
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de l’extension-en-phase de la molécule. D’après la loi de distri 
bution canonique, la probabilité pour que la molécule considérée 
comme en contact avec le reste du gaz formant thermostat à 
température T ait son point représentatif dans l’élément dx de

_ J3
son extension-en-phase est Ce kT dx. Il en résulte que le nombre 
des molécules du gaz ayant leurs coordonnées comprises entre x 
et x + dx, ..., et leurs moments de Lagrange compris entre 
Px^ Px + dpx, ..., est :

_ _ _E
(31) dn = Ce kTdxdydzdpxdpydpz = Cm3e kTdxdydzdvxdvydvz>

avec :
E ^ 2ïn (Px + Py + Pl)-

La constante C se détermine en écrivant que jdn = N, N étant le

nombre total des molécules du gaz. La formule (31) constitue la 
célèbre loi de distribution des vitesses entre les molécules d’un gaz 
due à Maxwell.

Comme on peut dans l’extension-en-moment réunir les éléments 
dpx dpy dpz qui forment une couche sphérique entre les sphères :

P!. 
2 m = E et (p + dpf 

2m = E + dE,

couche dont le volume est égal à :
4 t rp2dp = 27t(2m)3/2'v/E dE,

on trouve pour le nombre des molécules d’un gaz dont l’énergie 
est comprise entre E et E + dE par unité de volume :

E __

(32) dnB = Ce k^\/EdE.
Si le gaz se trouve placé dans un champ de force qui agit sur 

les molécules, il faut tenir compte de l’énergie potentielle dans 
l’expression de E. Par exemple, si le gaz est placé dans le champ 
de la pesanteur, on aura :

E=^ + mgz

(z étant l’altitude de la molécule) et, si l’on intègre sur dpxdpydpz, 
l’expression de dn, on trouvera que la densité du gaz varie avec

_ ™gZ
l’altitude z comme e kT . C’est la fameuse « loi barométrique »
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de Laplace qui est applicable aux molécules d’un gaz et également 
aux grains d’une émulsion en suspension dans un liquide. C’est 
en l’appliquant dans ce dernier cas que Jean Perrin a pu, dans 
ses célèbres expériences, il y a un demi-siècle, déterminer la valeur 
du nombre d’Avogadro (JT = 6,06.1023).

Pour montrer à nouveau l’importance d’une remarque faite 
au paragraphe précédent, considérons la ième molécule d’un gaz. 
En contact avec l’ensemble du gaz formant thermostat à la tempé-

_ JL
rature T, elle a une probabilité P = Ce ''T dx d’avoir son point 
représentatif dans l’élément dx de son extension-en-phase. S’il était 
permis de lui attribuer une entropie S;, celle-ci serait donnée d’après 
la formule (23) par S; = — k log P. Même si l’introduction de 
l’entropie S, d’une molécule semble discutable, on admettra sans 
doute plus aisément que l’entropie thermodynamique de l’ensemble 
des molécules du gaz est donnée par la valeur moyenne de S;, 
c’est-à-dire que :
(33) S = Si = - *2P lo§ P-

i

Comme ici P est une fonction continue des variables canoniques 
x, ..., pz, on peut écrire :
(34) S = -/cJ/log/dx.

C’est une formule classique depuis Boltzmann en théorie cinétique 
des gaz. Mais si, entraînés par la relation de Boltzmann, nous avions
posé S, = k log P, nous aurions trouvé S == k jf log / dx avec 

une faute de signe.
A l’aide des formules précédentes, nous pourrions trouver faci 

lement l’expression de toutes les grandeurs qui caractérisent les 
gaz parfaits. Nous nous contenterons de noter qu’on pourra ainsi 
retrouver la loi de Mariotte-Gay-Lussac sous la forme :
(35) pY = NAT,
où N est le nombre des molécules d’un gaz qui occupe le volume V 
à la température T sous la pression p. En appliquant cette formule 
à la molécule-gramme du gaz parfait pour laquelle le nombre N 
des molécules est égal au nombre d’Avogadro JT, on peut écrire 
en posant R = AJT,
(36) pY = RT,
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où R est la « constante des gaz » rapportée à la molécule-gramme 
dont la valeur expérimentale bien connue est R = 8,3.107 ergs/°K. 
On en tire :

(37) 8,3.107 
6,06.10“ 1,37.10-“

et c’est bien la valeur de la constante de Roltzmann que nous avions 
annoncée précédemment.

9. Théorème de l’équipartition de l’énergie. — Dans l’expres 
sion de l’énergie d’une molécule ponctuelle, les moments de Lagrange 
figurent en Mécanique classique par leurs carrés. Si un point matériel 
est rappelé vers une position d’équilibre prise comme origine des 
coordonnées par une force proportionnelle à l’élongation, les 
coordonnées et les moments figurent par leurs carrés dans l’expres 
sion de l’énergie :

E ^2lm(p- + Pl + p^ + ^(x3 + y2 + z^-

D’une façon générale, on dit qu’une variable canonique est un 
« momentoïde » si elle figure par son carré dans l’expression de 
l’énergie. L’exemple le plus simple de momentoïde est un moment 
de Lagrange pour une particule libre et de là vient le nom de 
momentoïde.

Le théorème de l’équipartition de l’énergie peut alors s’énoncer 
en disant : Si l’une des variables canoniques d’un système est un 
momentoïde, quand le système est en équilibre thermique à la tempé 
rature T, le terme correspondant dans l’expression de l’énergie a pour
valeur moyenne^kT. Ainsi l’énergie se partage en moyenne également

entre tous les momentoïdes et, si toutes les variables sont des momen- 
toïdes, elle se partage également en moyenne entre tous les degrés de 
liberté. D’où le nom du théorème.

Supposons par exemple que la variable qk soit un momentoïde 
et démontrons le théorème pour cette variable. L’énergie du sys 
tème est de la forme :

E = *ql + /(?i • • • Qk-1, qk+i Pi ... pN).
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La valeur moyenne du terme ql dans l’équilibre thermique 
température T sera :

(38) *% = ■

:L-Ja qle AT kTdq1 dpt<
2tx(ht 

' AT ,
_f_
kTdqt dp»

à la

En divisant en haut et en bas par le facteur :

C f ..Je kTdq! ... dqk-u dqk ... dpN
J 2N-1 J

et en posant u = ~ qk, on trouve :

f 00__ u2 e~u'du 1
(39) &qï = kT —^----------= 2 AT.J e~u'du

C. Q. F. D.

Naturellement, la même démonstration s’applique à un momen- 
toïde du type pk.

En Mécanique statistique classique, il arrive souvent que toutes 
les variables canoniques soient des momentoïdes et il y a alors 
équipartition de l’énergie entre tous les degrés de liberté. Le théo 
rème de l’équipartition de l’énergie a donné en Mécanique sta 
tistique classique un grand nombre de résultats exacts, mais il a 
conduit aussi à des échecs très significatifs qui ont rendu nécessaire 
l’introduction des quanta en Physique. Nous n’insisterons pas ici 
sur ces points bien connus.

10. La Mécanique statistique relativiste. — La Mécanique rela 
tiviste peut, nous l’avons vu, se développer à partir d’un principe 
d’action stationnaire et elle aboutit à des équations canoniques 
de Hamilton du type habituel :

(40) • _2H • Î>H
qk — Zïpk ’ Pk ~ zyqk ■

Elle permet donc d’introduire l’extension-en-phase et de démontrer 
le théorème de Liouville qui est une conséquence des équations
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de Hamilton. On peut aussi introduire la relation de Boltzmann 
entre l’entropie et la probabilité et choisir l’une ou l’autre des 
trois définitions envisagées précédemment pour le nombre P des 
complexions correspondant à un état d’énergie donnée.

Rien ne sera changé non plus dans la définition de la température, 
ni dans la distribution canonique qui donne la probabilité des états 
d’un système en contact avec un thermostat, ni dans l’identification 
de la grandeur F avec l’énergie libre, quand ce système a un grand 
nombre de degrés de liberté.

Toutes les conclusions précédemment obtenues restent donc 
valables tant qu’on ne fait pas intervenir l’expression explicite 
de la fonction de Lagrange £, des moments pk qui s’en déduisent et de 
la fonction hamiltonienne donnant l’énergie en fonction des qk 
et des pk. Mais dans les applications où l’on a à faire intervenir 
l’expression des moments pk ou la fonction hamiltonienne, il en est 
différemment. Nous en donnerons un exemple en reprenant le 
cas de la loi de Maxwell.

En considérant une molécule d’un gaz comme en contact avec 
un thermostat formé par le reste du gaz, la loi de distribution 
canonique nous a conduit pour le nombre des molécules dont le 
point figuratif est dans l’élément dx de l’extension-en-phase de la 
molécule l’expression :

_ JE

dn — Ce kT dx.
Cette formule reste valable, mais comme ici nous n’avons plus :

E = Pi
2m’

nous ne pouvons plus en tirer la formule de distribution en éner 
gie (32).

Ici, en effet, nous avons pour l’énergie et la quantité de mouve 
ment les relations :

(41 ) w — m°c'2 _ n — m^c yyz — p2'-2 + m2'-4
* } vr-12’ vr^ï2’ p + #

Nous pourrons donc remplacer, dans l’expression de dn, E par W, 
puisque W = E + m0c2 et que remplacer E par W revient seule 
ment à modifier la constante C. De plus, à une variation dW de W 
correspond une variation dp de p telle que :

W dW = pc2dp.



Une couche sphérique de l’extension-en-moment a donc pour
volume : ________

, W Æ /W2 4 7t — \/ r— m2c2 dW. c2 V c2 0

Par suite, le nombre des molécules par unité de volume dont 
l’énergie totale W est comprise entre W et W + dW sera :

JE /wâ
(42) dnw = C e - m02c2 dW.

Si toutes les molécules (sauf quelques-unes en très petit nombre) 
ont une vitesse très inférieure à c (ce qui est usuellement le cas 
pour tous les gaz matériels), on peut retrouver la formule (32) de 
la façon suivante. Posons :

W = E + m0c2 et = >i,IlloL

nous aurons W = m0c2 (1 + **]) et nous pourrons écrire :
e  ______

(43) dnw = Cte e *T(1 + t ))\/(2 + v ))ï) dv),

forme de (42) qui montre qu’à l’approximation newtonienne 
où l’on a y ] < 1, on retrouve bien la formule (32).

11. Application à un gaz de photons. — Considérons le cas 
opposé à celui de l’approximation newtonienne où presque toutes 
les molécules d’un gaz auraient une vitesse très voisine de c. C’est 
ce qui arriverait à toute température si la masse propre des molécules 
tendait vers zéro. Ce cas peut être comparé à celui du rayonnement 
noir, car le rayonnement noir peut être considéré comme un gaz 
de photons, les photons ayant une masse propre nulle ou peut-être 
seulement extraordinairement petite. Comme alors pour presque 
toutes les molécules on aura W > m0c2, on trouve d’après (42) :

w
(44) dnw = Ce MW'dW.

Pour les photons, on posera W = ùv et l’on trouvera pour la 
densité de l’énergie d’un gaz de photons correspondant à l’inter 
valle de fréquence v -> v + dv :

h'i

pvdv = hvdnv == Cte e *Tv3dv.
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(45)
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Or cette forme de densité spectrale est celle que Wien avait jadis 
proposée et qui, en fait, est seulement valable pour les grandes

y
valeurs du quotient . La loi spectrale de Wien est donc la forme

que prend la loi de Maxwell pour un gaz de molécules dont la masse 
propre est évanouissante comme je l’avais signalé dans un article 
du Journal de Physique en 1922.

Mais, en fait, la densité spectrale du rayonnement noir est 
donnée par la loi de Planck :

(45 bis) P(v)dv = ?ÿn/—dv.

e™-l

C’est l’introduction des quanta et les transformations qu’il faut 
faire subir à la Mécanique statistique pour en tenir compte qui 
expliquent la différence entre la loi réelle de Planck et la loi de 
Wien. Nous n’insisterons pas sur cette question bien connue.

Il est curieux de noter ce qui se passe pour la distribution des 
vitesses dans le cas des molécules de masse propre évanouissante. 

m c2Comme W = 0-----: , pour qu’une telle molécule ait une énergie

appréciable, il faut que sa vitesse soit extrêmement voisine de c. 
Donc, quand la vitesse croît de 0 à c — e, W reste sensiblement 
nulle ; puis, v croissant de c — e à c, W croît d’une valeur extrême 
ment petite à l’infini. Ainsi la loi de distribution des énergies (44) 
conserve une forme en cloche analogue à celle de la loi classique 
de Maxwell tandis que la loi de distribution des vitesses est repré 
sentée par une courbe en aiguille au voisinage immédiat de v — c. 
C’est ce qu’illustre la figure 3.

Fig . 3.
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Lorsque m0 tend vers zéro, toute la courbe de distribution des 
vitesses vient en quelque sorte s’écraser contre la droite verti 
cale v = c.

12. Valeur moyenne de pkqk en Mécanique statistique relativiste. 
— En Mécanique statistique relativiste, on ne peut plus démontrer 
l’équipartition de l’énergie cinétique entre les degrés de liberté 
comme en Mécanique classique parce qu’ici l’énergie cinétique 
d’un point matériel :

= m0c2(—7= — l'i = c-v/P2 
W/l - pa /

+ my rriaC1

n’est plus une forme quadratique des pk. Mais nous allons montrer 
qu’en Mécanique statistique relativiste, on a :

(46) pkqk = PT.
En effet, on peut écrire :

(47)

r f • C C D-W - —___ ... k'Tdq1...dpri ... -e ftT<fy1...dpII^ • J 2X J _ J 2N J Ùph
pkqk = - _w — ~ t ~jw_ '

... le ,tTdq1 ... dpN ... e KVdq1... dpKJ 2N J J 2N J

d’après les équations de Hamilton et, comme W tend toujours 
vers l’infini en même temps que pk, une intégration par parties 
fournit aisément la formule (46).

Cette formule, valable d’une façon générale en Mécanique sta 
tistique relativiste, donne à l’approximation newtonienne où
2EC = pkqk la formule (^ :

k
(48) Êc = N~/cT,

ce qui nous ramène à l’expression classique de l’équipartition de 
l’énergie, mais en Dynamique relativiste :

2EC ^ ^pkqk.
k

f1) Pour éviter toute confusion avec la température, nous désignons ici 
l’énergie cinétique par E{.
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On doit remarquer que la formule (46) n’est valable que dans le 
système propre du corps considéré de sorte qu’il est préférable de 
l’écrire sous la forme :

(49) pS = * T„,

les indices 0 rappelant que les quantités sont évaluées dans le 
système propre.

Pour une molécule, on peut toujours, même en théorie relati 
viste, écrire : _________

1 • 3(50) 2 Z,kPokq°k = 2kT°
1

et, comme :

En Dynamique relativiste, la grandeur sous le signe de moyenne 
dans (51), que nous nommerons la « pseudo-énergie cinétique », 
n’est pas égale à l’énergie cinétique : elle ne se confond avec elle 
qu’à l’approximation newtonienne et alors la formule (51) nous 
redonne l’expression classique de l’équipartition de l’énergie. 
Nous verrons que la pseudo-énergie cinétique joue un rôle important 
en Thermodynamique relativiste.



CHAPITRE IV

NOTIONS
DE THERMODYNAMIQUE RELATIVISTE

1. Invariance relativiste de l’Entropie. — L’Action hamiltO' 
nienne est l’invariant fondamental de la Mécanique : nous allons 
maintenant voir que l’Entropie est l’invariant fondamental de la 
Thermodynamique. Pour apercevoir le caractère invariant de 
l’entropie, il suffit de se rappeler que, selon Boltzmann, l’entropie 
d’un état macroscopique est proportionnelle au logarithme du 
nombre de complexions qui réalisent cet état : l’entropie s’exprime 
donc par un nombre dont l’invariance paraît évidente. Pour confir 
mer cette intuition, nous remarquerons que, d’une part, la définition 
de l’entropie par la formule de Boltzmann fait intervenir un nombre 
entier de complexions et que, d’autre part, la transformation de 
l’entropie lors d’un changement de système de référence galiléen 
doit s’exprimer par une fonction continue de la vitesse relative des 
systèmes de référence : il en résulte nécessairement que cette 
fonction continue est constante et égale à l’unité (puisqu’elle est 
égale à 1 quand les systèmes de référence coïncident) et il en découle 
que l’entropie est un invariant.

On peut aussi raisonner autrement. Considérons un corps qui, 
dans un système de référence I, passe d’un état de repos dans un état 
de mouvement de vitesse v en étant accéléré adiabatiquement 
et à pression constante par un corps immobile dans le système 
considéré. L’ensemble des deux corps évoluant adiabatiquement, 
son entropie est constante et, comme le corps qui produit l’accé 
lération garde une entropie constante, il en est de même du corps 
accéléré. Donc Si = S2, les indices 1 et 2 se rapportant à l’état 
initial et à l’état final du corps accéléré. Soit maintenant un sys 
tème primé lié au corps accéléré une fois mis en mouvement 
uniforme. L’état 2 rapporté à ce système est identique à l’état 1



rapporté au système primitif. On a donc S' = St et, par suite, 
S' = Ss, formule qui exprime l’invariance de l’entropie.
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2. Variance relativiste de la température. — La déduction de la 
variance relativiste de la température exige des raisonnements 
assez délicats. Nous donnerons celui qui nous paraît le plus instruc 
tif.

Considérons un corps C qui, envisagé dans un système de réfé 
rence galiléen R0 qui lui est lié, se trouve dans un état d’équilibre 
thermodynamique à la température absolue T0 et possède un volume 
invariable V„. Ce pourra être, par exemple, un gaz enfermé dans une 
enceinte rigide de volume V„ à la température T„. Soit M0 la masse 
propre totale du corps C.

Plaçons-nous maintenant dans un système de référence galiléen R 
où le corps C possède une vitesse v = (3c de translation uniforme 
et supposons que, dans ce système de référence, une source de 
chaleur fournisse à C la quantité de chaleur Q. Nous allons montrer, 
point essentiel, que, pour que le corps C puisse conserver la vitesse pc, 
il faut lui fournir, en même temps que la quantité de chaleur Q, 
un certain travail A.

En effet, le corps conservant par hypothèse la vitesse pc, son

énergie qui était
V'1

ne peut augmenter, par suite de la

réception d’une quantité de chaleur Q et d’un travail A, que si la 
masse propre varie et passe de sa valeur initiale M0 à une valeur 
finale M0 + AM0. En d’autres termes, la chaleur et le travail 
absorbés par le corps C en mouvement auront accru son énergie 
interne, ce qui d’après le principe de l’inertie de l’énergie doit faire 
croître sa masse propre.

Le principe de la conservation de l’énergie nous permet d’écrire :

(1)
AM„c* = Q + A.

Si F désigne la force qu’on a dû exercer sur le corps C pour lui 
communiquer dans le système de référence R le travail A, la dérivée 
de la quantité de mouvement par rapport au temps doit à chaque 
instant être égale à F, ce qui donne :

(M„+AM^-----M= rFd/ = I fFvdt
\/\ - ps \/l — p* J v J

4DE BROGLIE
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puisque v est constant par hypothèse et que A

(3)
AMp

\/l- P2
v2 = A

/Fvdt. On a donc :

et l’on voit que le travail fourni au corps dans le processus envisagé
M0P2est égal à l’augmentation de la pseudo-force vive -------- (double

de la pseudo-énergie cinétique). Finalement, en comparant (3) 
et (1), nous obtenons :

P2(4)
d’où :

A =
1- P' Q.

(5) Q = AM0 c2-y/l - P2 = - AC,
AC étant la variation de la fonction de Lagrange du corps dans le 
processus envisagé due à la variation de la masse propre. Donc, 
ainsi que nous l’avions annoncé, pour que le corps puisse conserver 
dans le système de référence R, la vitesse constante v = [3c quand 
il reçoit la quantité de chaleur Q, il faut que cet apport de chaleur 
soit complété par un apport de travail A donné par (4). De cette 
relation, nous tirons d’ailleurs aisément : 6

(6) AM„ = (A + Q) = {f .
ca c2\/\ - p2

On voit que toutes ces considérations dérivent finalement du prin 
cipe de l’inertie de l’énergie qui permet d’envisager des variations 
de la masse propre d’un corps résultant de la variation de son énergie 
interne.

Revenons maintenant au système de référence R0. Puisque le 
corps y garde une forme invariable, aucun travail n’est effectué 
dans ce système pendant le processus envisagé. Vue dans ce système, 
l’opération effectuée doit donc consister uniquement dans l’apport 
au corps C d’une quantité de chaleur Q0 telle que :

(7)
1 Q 

s/\ - P2 c2

Lors du passage de R0 à R, la quantité de chaleur va se trans 
former suivant la loi :

(8) Q = QoV1 — P2
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et, comme l’entropie S = est invariante, il en résulte que la 

température absolue du corps doit se transformer suivant la loi :

(9) T = ToV^l - P2-

C’est la formule fondamentale donnant la transformation de la 
température quand on passe de R0 à R.

Remarquons encore que l’importante formule (5) peut s’obtenir 
de la façon suivante. Nous partons de la définition de l’énergie

3

W = ^ piÇ'j — C appliquée au corps C dans son mouvement de 
1

translation. Puisque les qt sont constants, nous avons :
3

(10) rfW = g jdpi — dC.

Or :
3 3

(11) ^qidpi=^pidqi = dA,
1 1

car pi = ft, d’où dW = dA — dC et, en intégrant sur tout le pro 
cessus envisagé :

(12) AW = A - AC.

Comme AW = A + Q, d’après la conservation de l’énergie, on a :

(13) Q = - AC.

On en tire :
(14) AS = | 3 AC \ _ _ AS

T °U T- AC’

3. Extension au cas où le volume du corps C varie. — Nous 
allons reprendre le raisonnement précédent en supposant que le 
volume du corps C varie. Nous nous appuierons sur le fait que, dans 
la théorie relativiste de l’Élasticité, la pression dans un corps iso 
trope est un invariant de sorte que nous pourrons poser p = p0.

Plaçons-nous dans le système de référence R. La vitesse du 
corps C restant constante, on lui fournira une quantité de chaleur Q 
et un travail A pendant que son volume varie de AV. Le corps C
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est supposé isotrope et sa pression interne égale à p. La conserva 
tion de l’énergie nous permet d’écrire :

(15) AW AM0ca
V1 — P2

= Q+A — pAY

et, comme on a toujours la relation (3) qui se démontre comme 
précédemment, on trouve aisément :

(16) Q-pAV
A 1 - p2 P ’

On déduit de (15) et de (16) :

(17) AM0 Q — p AV 1
c2 -y/1 - p2

D’autre part, dans le système de référence R0, où A = 0, on a : 

(18) AW0_______ Qo p0 AY0
ca CJ

et la comparaison avec (17) donne :

(19) Q-pAV = (Q„-p„AV)VîirPi-

De plus, en portant (16) dans (15), il vient :

(20) A\V Q — p AV _ T AS — p AV
— r=^ ’i-p

tandis que, dans le système R„ :

(21) AW0 = T0 AS0 — p0AV,

Nous trouvons donc :

T /ÙW„
(22) /ÙW\

Us j. 1 — p2’
(Ir) =T-
\ t)'^>0 /v0

et comme dS = dS0 et dW =
dW„

Vi - P
mule (9) pour la transformation de la température. 4

, on retombe sur la for-

4. Le quadrivecteur « Inverse de la température ». — Divers 
auteurs, notamment Tolman et Eckart, von Dantzig et Bergmann, 
ont proposé de donner une variance tensorielle à la température
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en considérant l’inverse de la température comme la composante 
de temps d’un quadrivecteur dont les composantes d’espace seraient 
nulles dans le système propre du corps. On aurait bien alors :

(23)
1 1 
T _ T0 Vl - P2

en accord avec la formule (9).
On pourrait, par exemple, définir un quadrivecteur 0 d’espace- 

temps par :

(24) e* = u1
T ’ * 0

où U* est la « vitesse d’univers » du système propre du corps C 
car alors on aurait bien 04 = ^ .

A mon avis, malgré l’élégance de cette représentation, son 
exactitude reste assez douteuse, car on ne voit guère quel est le 
sens physique des composantes d’espace du quadrivecteur 0. 
On pourrait faire la même représentation pour le volume d’un corps 
qui, d’après la contraction de Lorentz, se transforme suivant la 
formule :

V = VoA/l-Pa

comme la température. On poserait :

U*
V.’

d’où £4 =
1_
V

Mais le sens physique des composantes Ç1, £2 et £3 n’apparaîtrait 
pas et il est douteux qu’une telle représentation de la contraction 
de Lorentz ait un sens. Ceci peut conduire à se méfier de la repré 
sentation (24) et à se contenter de la loi de transformation (9). S.

S. Précision et extension de la formule Q = — AC. — Nous 
avions démontré la formule (13) en supposant que la vitesse du 
corps C reste constante. Nous allons nous affranchir de cette hypo 
thèse et montrer qu’on peut toujours écrire comme expression de la 
quantité de chaleur fournie à un corps dont la masse propre varie :

(25) 8Q = - 8„C,
où 8MoC représente la variation subie par la fonction de Lagrange 
du corps quand sa masse propre varie, toutes les autres variables
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dont dépend C restant constantes. Cette extension de la formule (13) 
jouera un rôle important dans la suite de notre exposé.

Prenons d’abord le cas du mouvement d’un corps en l’ab 
sence de champ extérieur pour lequel nous pouvons poser 
C = — M0c2\/l — p2 et reprenons la démonstration du para 
graphe 2, mais sans supposer la vitesse constante. On a :

(26) 

et :

M0c2 _ _SM„ c2 ^ M0c2 psp
Vl — P2 _ Vî — P2 + (1 — P2)1

(27) FvBt = SA = S —;=£= . v
Vi-P2

_ SM0 a2 M0aSa
— Vi - p2 Vî - P2

On en tire :

M„a2pSp
O^P2)*'

(28)
_ SM„ (c2 — a2) _ M„aSa M0psp(c2 — a2)
~ V1 - P2 V1 - P2 + (ï - P2)1 

= SM„ c2V 1 — P2.

On a donc bien, même quand la vitesse varie :

(29) SQ = SW — SA = SM„ c2\/1 - p2 = — SM C.

Nous passerons maintenant au cas plus général encore d’un corps 
(une particule, par exemple) qui possède une charge électrique s 
et qui se déplace dans un champ électromagnétique défini par les 
potentiels Y et A. Nous avons alors :

M„r2
(30) W = -7° + «V.

Vi - p2

Introduisons la grandeur :

(31)
M>2 + EA.y = 

c
/ M0v 
\\/l — p2 +ôx

Cette grandeur qui se réduit à la pseudo-force vive pour A = 0, 
en est la généralisation naturelle pour A # 0. Enfin, nous avons 
ici :

C = - M„cVl — P2 — eV + \ A.a.(32)
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Nous voyons donc que :

(33) W = J- - £

et nous en déduisons, les termes en A se compensant, que :

(34)
SW = SC = S -;Ë£L + M0c2S Vl — P2 + eSV + SM„ cVl - P2- 

V1 - P2

On vérifie aisément qu’il est équivalent d’écrire :
i s>ivr ï )2 _____

(35) SW = M0c2S - , - + eSY + + SM0 c2 V1 - P2-
' Vl-P2 a/i-p2

Au second nombre de (35), les deux premiers termes représentent 
le travail que recevrait le corps si sa masse propre restait constante 
tandis que le troisième terme représente le travail reçu corres 
pondant à l’augmentation de sa masse propre. Au total, les trois 
premiers termes en question représentent donc l’ensemble du tra 
vail reçu par le corps dans un intervalle de temps U. Comme nous 
devons avoir toujours :

SW = SA + SQ,

il faut que le dernier terme du second membre de (35) soit égal 
à SQ, ce qui nous redonne bien la formule (25).



CHAPITRE V

ANALOGIES

ENTRE GRANDEURS MÉCANIQUES 

ET GRANDEURS THERMODYNAMIQUES

(Théories de Helmholtz et formule de Boltzmann 
pour les systèmes périodiques).

1. Généralités. — Dans ce qui précède, nous avons résumé 
l’interprétation bien connue des grandeurs thermodynamiques, 
à l’aide de la Mécanique statistique, interprétation où interviennent 
à la fois les lois de la Mécanique et les conceptions du Calcul des 
probabilités. Le succès de cette interprétation, dû surtout aux 
magnifiques travaux de Boltzmann et de Gibbs, a fait quelque 
peu oublier d’autres tentatives faites vers la même époque par 
Helmholtz et par Boltzmann lui-même, tentatives où l’on essayait 
de retrouver certaines conceptions et certaines lois de la Thermo 
dynamique à l’aide seulement de considérations mécaniques sans 
faire aucunement intervenir l’idée de probabilité. Comme le 
premier principe de la Thermodynamique, dès qu’on admet que 
la chaleur est une énergie d’agitation moléculaire, se ramène 
immédiatement au théorème mécanique de la conservation de 
l’énergie, c’est essentiellement l’interprétation du second principe 
de la Thermodynamique et de la notion d’entropie qui lui est liée 
qui a fait l’objet des théories de Helmholtz et de Boltzmann sur 
ce sujet.

Ces tentatives d’explications mécaniques, mais non statistiques, 
du second principe de la Thermodynamique sont restées incomplètes 
et n’ont conduit qu’à des résultats très fragmentaires ne s’appli 
quant qu’à des modèles particuliers. Le succès de l’interprétation 
statistique de la Thermodynamique a eu pour résultat de les faire 
délaisser et, mis à part les travaux d’Ehrenfest sur l’invariance
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adiabatique, il ne semble pas qu’elles aient fait l’objet de recherches 
nouvelles depuis une soixantaine d’années. Elles sont cependant 
très intéressantes et il se peut qu’il y ait quelque chose de très pro 
fond caché derrière les analogies qu’elles révèlent.

2. La théorie de Helmholtz. — Helmholtz était parti de consi 
dérations très générales sur un système mécanique défini par des 
variables qt de Lagrange. Il supposait ce système soumis à des 
forces internes dérivant d’un potentiel U et à des forces externes 
dont le travail sur la coordonnée qt était désigné par Aidqi. On 
désignera toujours ici par T la température absolue et par Ed,, 
l’énergie cinétique.

Les équations de Lagrange pour le système s’écrivent :

(1)
d /D-C\ ZÆ

et Helmholtz, qui écrivait bien avant la naissance de la théorie de 
la Relativité, utilisait la définition classique de la fonction de 
Lagrange :

(2) t = Ecin - U,

Ecin étant fonction des qi et des qt et étant quadratique homogène 
en les qt.

Helmholtz introduisait ensuite l’hypothèse fondamentale que 
les paramètres qt se divisent en deux catégories, les uns qa variant 
très lentement et les autres qb très rapidement. Cette hypothèse 
lui était certainement suggérée par la conception moléculaire de la 
matière, les qb étant par exemple les coordonnées des molécules 
d’un gaz et les qa étant les paramètres infiniment plus lentement 
variables qui déterminent la configuration extérieure du système.

De plus, Helmholtz admettait encore que l’énergie potentielle U 
ne dépend que des qa et que les coordonnées qb n’entraient que 
par leurs dérivées qb dans l’expression de Ecin et donc de C. Ceci 
permet d’écrire pour tout qb :

(3)
ZÆ
Wb 0; m—\=Pb=&b-

\*qj

Par définition, le travail élémentaire sur la coordonnée qb sera : 

(4) dQ6 = Abdqb = pbqbdt = qbdpb.
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Quant aux paramètres qa, comme ils sont par hypothèse à variation 

lente, leur contribution aux termes en ~ pourra être négligée 
et l’on aura :

(5) o-

Helmholtz considérait alors, pour commencer, des systèmes 
qu’il nommait « monocycliques » pour lesquels il y a seulement un 
seul paramètre à variation rapide qb et il démontrait le curieux 
résultat suivant : Pour un système monocyclique, pour lequel on

peut poser Q6 = Q, le quotient est une différentielle exacte.

Soit, en effet, q l’unique paramètre à variation rapide du système. 
Nous avons Q = q dp et, par suite :

(6) dQ
\pk

^ = 2d (log P).

Or, en Mécanique classique, on a :

(7) 2Edn =

parce que Ecin est une fonction quadratique homogène des <p. 
Or, seule la coordonnée q est à variation rapide de sorte que :

(8) 2Ecin~^T? = pç
7>q

et, par suite :

(9) — 2d (log p) = diff. exacte.

C’est le théorème de Helmholtz.
Mais dQ, qui est le travail reçu par le paramètre à variation 

rapide, est analogue à l’énergie fournie à une molécule d’un gaz 
et peut donc être assimilé à une quantité de chaleur élémentaire. 
En définissant la température absolue T comme proportionnelle 
à l’énergie cinétique, on pourra poser :
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et cette relation rejoint la définition de l’entropie par la Thermo 
dynamique. Du reste, la théorie de Helmholtz reste vraie en théorie

portionnel à la température de sorte que la relation (6) conduit 
encore à la formule (10).

Mais le cas des systèmes monocycliques est trop particulier 
et il y a lieu de considérer le cas des systèmes polycycliques compor 
tant plusieurs variables qb à variation rapide. Que le système 
soit monocyclique ou polycyclique, on doit d’ailleurs distinguer 
avec Helmholtz les « systèmes complets » et les « systèmes incom 
plets », ces derniers étant ceux pour lesquels le travail Aadqa cor 
respondant à la variation de l’un au moins des paramètres à 
variation lente qa est nul. Soit qc les paramètres à variation lente 
qui jouissent de cette propriété. On a pour tout qc :

Comme, par hypothèse, C. ne dépend pas des qb et que les qa sont 
négligeables, les relations (11) lient les qa, les qb et les qc. Puisqu’elles 
sont en même nombre que les qc, elles fournissent l’expression de
ceux-ci en fonction des qa et des qb. On peut donc éliminer les qc

• •

et définir la situation du système en fonction des qa et des qb.
Soit alors £' l’expression de C quand on l’exprime à l’aide des qa 

et des qb seulement. On a, d’après (11) :

(12)

Il vient donc pour les paramètres à variation lente qa :

(13)

et pour les qb :

(14)

'a
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et l’on retrouve après élimination des qc :

(15) dQb = qbdpb.

Toutes les équations gardent la même forme pour les systèmes 
incomplets que pour les systèmes complets. En particulier, on a 
toujours pour les systèmes monocycliques, même incomplets,
que ^ est une différentielle exacte.

■È-'cin
Néanmoins, Helmholtz a insisté sur le fait que les systèmes 

incomplets diffèrent sur un point important des systèmes complets. 
L’énergie cinétique est, à l’approximation newtonienne, une fonc 
tion quadratique homogène des <7; dont les coefficients peuvent 
dépendre des qu mais, quand on remplace les qc en fonction des qa
et des qb, l’énergie cinétique peut cesser d’être quadratique en • • 
les qb et peut même être de degré impair en les qb, donc de degré
impair par rapport au temps, circonstance importante car la 
réversibilité par rapport au temps disparaît alors. Ce cas se pré 
sente, par exemple, pour un volant muni d’un régulateur à boules : 
l’énergie du volant n’est pas proportionnelle au carré de sa vitesse 
angulaire parce que son moment d’inertie varie avec cette 
vitesse. Helmholtz a cherché à tirer de ce fait une interprétation 
de l’irréversibilité thermodynamique, mais Henri Poincaré, qui a 
exposé autrefois la théorie de Helmholtz dans le dernier chapitre 
de son traité de Thermodynamique, a donné un raisonnement pour 
démontrer qu’on ne parvient pas réellement ainsi à expliquer 
l’existence de l’irréversibilité.

Pour Helmholtz, les qb correspondent aux mouvements molé 
culaires, les qa aux mouvements macroscopiques visibles. Quand 
les q varient, l’énergie du système varie de :

dE

Or le premier terme est le travail fourni au système correspondant 
aux mouvements visibles tandis que :

dQ



est l’énergie totale fournie au mouvement des molécules, donc 
la chaleur reçue par le système. On a donc :
(16) dQ = dE + dTS,
d’G étant le travail fourni par le système à l’extérieur et ceci est 
l’expression du premier principe de la Thermodynamique tra 
duisant l’équivalence de la chaleur et du travail. De plus, comme

nous avons trouvé que est une différentielle exacte pour les

systèmes monocycliques, nous avons, du moins en ce cas, retrouvé 
les deux principes fondamentaux de la Thermodynamique valables 
pour les transformations réversibles.

Il est évident que les résultats de Helmholtz, tout en étant 
intéressants, sont bien restreints puisqu’ils ne s’appliquent qu’aux 
systèmes monocycliques. De plus, nous avons admis avec Helm 
holtz, que l’énergie potentielle ne dépend pas des paramètres qb à 
variation rapide : cette hypothèse est exacte pour les gaz parfaits 
dont les molécules sont sans actions mutuelles, mais elle ne l’est 
déjà plus pour les gaz réels et, à plus forte raison, pour les liquides 
et les solides. Nous verrons plus loin que Boltzmann, s’inspirant de 
la théorie de Helmhotz l’a généralisée pour les systèmes polycycli 
ques dont l’énergie potentielle dépend des paramètres qb à variation 
rapide, mais il a été obligé de supposer que ces systèmes sont pério 
diques et d’introduire des moyennes prises par rapport au temps 
pendant une période du mouvement. Notons pour terminer, que 
dans la théorie de Helmholtz, la notion de probabilité n’intervient 
nulle part.

3. Le schéma canonique de la Thermodynamique d’après 
Helmholtz. — Indépendamment des considérations intéressantes, 
mais insuffisantes, que nous venons de rappeler, Helmholtz a 
proposé un curieux « schéma canonique » de la Thermodynamique. 

Partons de la relation classique :
(17) dE = dQ - pdV = TdS - pdV = TdS +

i
et introduisons avec Helmholtz une variable s telle que, par défi- 
nition, la température soit la « vitesse » s correspondant à cette 
variable. Nous posons donc :
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(18)
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Si 6 désigne la force généralisée correspondant à e, on aura :

(19) dE = 8 de — p dV = 6e dt — p dV,

d’où, par identification avec dS = :

(20) Ùdt = T dS 

et, compte tenu de (18),

(21) 8 = S.

Nous supposerons que s est une variable du type dit « cyclique »,

c’est-à-dire telle que C ne dépende pas de = oj.
Envisageons alors un processus réversible extrêmement lent 

• DCpour lequel V ~ 0 ; nous aurons —r = 0 et les équations de Lagrange 

pour les variables s et V sont :

(22) “ ^ “ P.

ce qui nous donne :

P
DE
3-V’

ÙC
3e
J = Pe = Jgd/ = Jsd; = s,(23) 

d’où :

(24) pe = S.

L’énergie sera alors donnée, d’après sa définition générale, par :

(25)

et l’on en tire :

E = ê^ + Ÿ^-C = TS-C 
3e 3V

(26) £ = TS - E = - F,

F = E — TS étant l’énergie libre.
La correspondance (26) entre la fonction de Lagrange et l’énergie 

libre changée de signe est très intéressante : elle a joué un grand 
rôle dans les anciens travaux de Planck sur le rayonnement noir 
et dans divers travaux sur l’Électrostatique et l’Électromagnétisme.
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Pour T = Cte, on aura :

(27) tHS = p dV — — d(E — TS) = - dF

et nous retrouvons ainsi une propriété bien connue de l’énergie 
libre.

Le schéma canonique de la Thermodynamique de Helmholtz 
part essentiellement de l’introduction d’une variable e dont la 
température est la dérivée par rapport au temps, mais la signifi 
cation de la variable e reste mystérieuse. Dans la Thermodyna 
mique de la particule isolée, nous retrouverons la relation (18) 
en donnant un sens précis à la variable e.

4. La théorie de Boltzmann pour les systèmes périodiques. 
Formule préliminaire. — Plus précise que les théories précédentes 
est la théorie de Boltzmann établissant une analogie entre grandeurs 
mécaniques et grandeurs thermodynamiques dans le cas des 
systèmes périodiques. Pour développer cette théorie, il est néces 
saire d’examiner d’abord ce que devient le principe d’action 
stationnaire quand on l’applique à certains systèmes périodiques.

Nous supposerons d’abord que le système envisagé est défini 
par N coordonnées </; de Lagrange. Comme Helmholtz dans la 
théorie analysée précédemment, nous admettrons que les qt se 
divisent en deux catégories. Les uns, ce sont les qb de Helmholtz, 
sont à variations rapides et correspondent aux mouvements 
moléculaires : soient qu .. ., qT ces coordonnées. Les autres qi 
sont du type qa de Helmholtz et varient lentement ; ils corres 
pondent aux liaisons auxquelles le système est soumis : nous les 
nommerons q,+1, ..., </N.

Nous désignerons par U* l’énergie potentielle correspondant aux 
liaisons. La fonction de Lagrange sera :

(28) C = Cx - U - U*.

U étant l’énergie potentielle correspondant aux mouvements 
moléculaires et Cj étant le terme cinétique qui, à l’approximation 
newtonienne, est pris égal à l’énergie cinétique des molécules 
puisque l’énergie cinétique correspondant aux coordonnées du 
type qa est négligeable, du moins dans les processus assez 
lents.

Soit A l’intégrale d’action maupertuisienne correspondant au



mouvement des molécules, c’est-à-dire aux paramètres du type qb. 
On a :

r

(29) A = Sl^dq*-
1

L’intégrale d’action maupertuisienne totale, compte tenu des 
variations des liaisons, c’est-à-dire de la variation des qa, est :

N

(30) A* = A + j^pkdqk.
r-fl

La théorie de l’action maupertuisienne exposée au chapitre premier 
fournit la formule :

PC

(31) U* = JsE*dt + | ;
1

où E* est l’énergie totale du système, somme de l’énergie E des 
mouvements moléculaires et de l’énergie potentielle U* (on a donc 
E* = énergie cinétique des molécules + U + U* = E + U*).

Or la formule de l’action variée, où l’on fait varier les limites 
des q, nous donne :
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N N N

(32) 8.4* = 8.4 -f- 8 J ^ypkdqk = 8.4 -|- J*8^pkdqk -f-
r + 1 r +1 r + 1

Portons cette valeur de 8.4* dans l’équation précédente en tenant 
compte de la relation :

SE* = SE + SU*,
il vient :

n r

(33) 84; = J[SE + SU* - ^^q^dt + I ^PftS?» \
r + l 1

Or il existe des cas importants où les termes en pk^qi, disparaissent. 
C’est ce qui a lieu, par exemple, quand dans le mouvement varié 
les valeurs des coordonnées qr+1........ qN du type qa restent cons 
tantes et quand, de plus, le mouvement actuel et le mouvement 
varié sont tous deux périodiques. La première hypothèse entraîne
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que les qa sont nuis à la fois dans le mouvement naturel et dans le 
mouvement varié de sorte que :

N
s'^i'Phqh = 0;

r +1

la seconde hypothèse entraîne que a la même valeur

aux deux extrémités de la trajectoire non variée puisque ces deux 
extrémités coïncident comme l’illustre la figure 4.

Trajectoire variée 
de période t -k ît

Trajectoire naturelle 
de période x

Fig . 4.

Il reste alors :

(34) U = JT( SE + SU *)dt, 

avec :

(35)

t  étant la période du 
nous avions besoin.

5. La formule de Boltzmann pour les systèmes périodiques. 
— En 1897, Boltzmann reprenant des travaux antérieurs de Clau- 
sius et Szily (1872) a utilisé la formule (34) pour obtenir une très 
intéressante formule qui a été employée plus tard par Ehrenfest 
dans sa théorie des invariants adiabatiques.

Pour démontrer cette formule de Boltzmann (qu’il ne faut pas 
confondre avec la relation S = k log P), nous allons reprendre des 
hypothèses faites plus haut : système défini par r coordonnées 
« moléculaires » à variation rapide du type qb de Helmholtz et 
N — r coordonnées de liaison à variation lente du type qa de

5

= (j)^?i!Pkdqk,
1

mouvement naturel. C’est la formule dont

DE BBOGLIE



Helmholtz ; variation effectuée avec valeur constante des qa ; 
périodicité du mouvement naturel et du mouvement varié.

Considérons d’une façon générale une trajectoire AB corres 
pondant à un état du système et une trajectoire CD correspondant 
à un état voisin (fig. 5).
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Pour passer de P en Q, il faut agir sur toutes les molécules en 
leur donnant de l’énergie, c’est-à-dire en fournissant de la chaleur. 
Cette chaleur sert à augmenter l’énergie interne et à accomplir 
un travail extérieur 8T> = SU*. Donc :

(36) SQ = SE + SU*.

Supposons maintenant qu’on passe très lentement par une 
transformation réversible de P en Q et remarquons que sur les trajec 
toires AB et CD, les coordonnées qr, ..., çN ont des valeurs diffé 
rentes, mais constantes et voisines, de sorte que la première hypo 
thèse admise au paragraphe précédent se trouve bien vérifiée. 
Soit AB la courbe qui représente le passage lent d’une trajectoire 
à l’autre en un temps tx — t0.

On a approximativement :
a t ~ »A?* = -----T SqkIl Cq

Fig . 6.



et, en un temps dt, Aqk varie de :

j a  dtd&qk = -----r 8qk.£i £o
Pendant le même temps dt, la chaleur fournie au système est :

ll £0
et le travail accompli est :

dSU* = SU*.
h *o

Ainsi pour la transformation totale AMD, on a :

(37) AQ = f‘dSQ = ~T (‘l8Qdt = .-1-- f'l(SE + SU*)di.
J i. h — t0 J t, Ii — t0J i.

Introduisons maintenant l’hypothèse que le système est périodique 
de période t  et choisissons l’intervalle de temps égal à t . En compa 
rant avec la formule (34) obtenue plus haut, il vient :
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(38)
1

1avec v = -.T

Cette formule est générale, c’est-à-dire valable aussi bien en Méca 
nique relativiste qu’en Mécanique classique. Si nous nous bornons

à l’approximation newtonienne, nous avons 2EC;;
1

par suite :

(39) 8Q = - S fT V pkdqk = - 8(EcinT),
T JO -t-tlt T

ECin étij^t la valeur moyenne de l’énergie cinétique pour un cycle 
du mouvement (x).

Nous avons ainsi obtenu cette curieuse formule de Boltzmann 
qui a eu, dans le cadre de l’ancienne théorie des quanta vers 1920- 
1925, d’assez nombreuses applications. C’est en partant de cette

(q M. Francis Fer m’a communiqué récemment une nouvelle démons 
tration de la formule (39) de Boltzmann qui paraît plus rigoureuse que celle 
donnée ci-dessus. Voir bibliographie, [12].



68 LA THERMODYNAMIQUE DE LA PARTICULE ISOLÉE

formule qu’Ehrenfest a développé sa belle théorie des invariants 
adiabatiques qui a pu ensuite être transposée en Mécanique ondu 
latoire. M. Léon Brillouin a consacré naguère de très beaux exposés 
à la théorie des invariants adiabatiques et a donné de nombreux 
exemples d’application à des phénomènes divers de la formule (39) 
de Boltzmann : il en a notamment tiré une déduction très simple 
de la formule que Wien avait démontrée par des raisonnements 
de thermodynamique pour la répartition spectrale du rayonne 
ment noir (x).

(l) Voir, en particulier, bibliographie, [Jf], chapitre VII et note annexe 2.



CHAPITRE VI

ORIGINE
DE LA MÉCANIQUE ONDULATOIRE 

ET SON INTERPRÉTATION PAR 
LA THÉORIE DE LA DOUBLE SOLUTION

1. Fréquence cyclique et fréquence ondulatoire. — L’auteur est 
arrivé naguère aux premières idées de la Mécanique ondulatoire 
en réfléchissant à la différence des transformations relativistes 
de la fréquence d’une horloge et de la fréquence d’une onde. Cette 
question présentant pour nous un grand intérêt et étant générale 
ment passée sous silence dans les traités de Mécanique quantique, 
nous allons nous y arrêter un peu.

Nous savons que les formules de transformation pour l’énergie 
et pour la température quand on passe du système propre d’un 
corps à un autre système galiléen animé de la vitesse pc par rapport 
au premier sont :

(1) w = T = T0\/1 — p2.
VI-Ps

Nous voyons que, tandis que l’énergie est plus petite dans le système 
propre que dans l’autre système, l’inverse se produit pour la tem 
pérature. La différence entre les deux genres de transformations 
est la même que celle qui existe pour la fréquence d’une onde et la 
fréquence d’une horloge (fréquence ondulatoire et fréquence 
cyclique).

Considérons dans un référentiel R0 un processus périodique 
variant sinusoïdalement au cours du temps. Il sera représenté 
par une variable de repérage ayant pour expression :
(2) q0 = a0 sin 2k  'j0t0
avec un choix convenable de l’origine du temps t0. Le processus 
en question pourra être, par exemple, le mouvement d’une horloge
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fixe dans R0 et alors la variable q0 pourra être la projection de 
l’extrémité de l’aiguille de l’horloge sur un des diamètres de son 
cadran.

La théorie de la Relativité nous apprend que, pour un obser 
vateur galiléen qui voit l’horloge se déplacer avec la vitesse pc, 
le mouvement cyclique de cette horloge paraît ralenti dans le rap 
port \/l — p2 de sorte que la variable de repérage aura une expres 
sion de la forme :

(3) q = a0 sin 2t iv c/,

où vc est la « fréquence cyclique » de l’horloge pour cet observateur. 
D’après la formule relativiste du ralentissement des horloges, on a :

(4) v„ = VoV 1 - p2.

Imaginons maintenant qu’en tout point du référentiel R0 soit 
placée une horloge immobile de fréquence v0. Ainsi se trouvera 
définie en chaque point de R0 un phénomène périodique de fré 
quence v0 et Yensemble des variables q„ correspondantes, supposées 
toutes en phase, définira dans R„ une onde stationnaire dont 
l’expression sera :

(5) Y0 = aa sin 2rr v„/„

en tout point de R0.
Passons à un autre système de référence galiléen R animé par 

rapport à R0 de la vitesse pc et prenons pour axe des z dans R la 
direction de la vitesse relative de R par rapport à R0. La trans 
formation de Lorentz montre que dans le système de référence R, 
l’onde stationnaire définie par l’ensemble des % prend la forme 
d’une onde progressive d’expression :

(6)

avec :

(7)

T = a0 sin 2nv0
\/l -"P*

= a0 sin 2n

___  Vo_____

a /i-p2’
V _ cV 1 — p2
v vop

L’expression de T donne la répartition des phases des horloges 
telle qu’elle est observée par l’observateur R : cette répartition est
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celle d’une onde en propagation le long de Oz avec la fréquence v 
et la vitesse de phase V.

La formule :

(8) Vo

\/l-p2

montre comment se transforme la « fréquence ondulatoire » quand 
on passe du système galiléen R„ où l’onde est stationnaire au sys 
tème R où elle est progressive. Cette formule fondamentale est 
bien connue et joue un grand rôle dans beaucoup de problèmes 
importants de la théorie de la Relativité, par exemple dans la 
théorie de l’effet Doppler.

Maintenant la comparaison des formules (1), (4) et (8) fait appa 
raître que l’énergie et la fréquence ondulatoire d’une part, la tempé 
rature et la fréquence cyclique d’autre part, se transforment de 
même. Le premier de ces deux faits nous permet de supposer que 
la relation entre l’énergie du corpuscule et la fréquence de l’onde 
que la Mécanique ondulatoire lui associe par la relation W = ùv 
est valable dans tous les systèmes galiléens si toutefois elle est réa 
lisée dans le système propre R0 sous la forme :

(9) W„ = ùv0 = m0c2

qui fait correspondre à la masse propre m0 la fréquence propre v„. 
C’est là le point de départ de la Mécanique ondulatoire.

On pourrait au premier abord être surpris de voir que la quantité 
de chaleur et la température qui se transforment comme une fré 
quence cyclique suivant les formules :

Q = QoVl-P2 et T = T0\/1 — p2

ne se transforment pas comme l’énergie. On sait, en effet, que la 
chaleur est une forme de l’énergie (énergie des mouvements molé 
culaires incoordonnés) et, de plus, la Thermodynamique statis 
tique nous a habitués à considérer la température d’un corps comme 
proportionnelle à l’énergie cinétique moyenne de ses molécules. 
Mais, si l’on se reporte au raisonnement qui nous a permis au 
chapitre IV d’établir la variance relativiste de la température, 
on voit que l’énergie globale fournie à un corps se répartit en chaleur 
et travail et que la répartition est imposée par le fait, inconnu 
des théories antérieures à celle de la Relativité, qu’un apport
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d’énergie est susceptible de faire varier la masse propre du corps. 
C’est la liaison ainsi établie, comme conséquence du principe de 
l’inertie de l’énergie, entre l’énergie interne du corps et la quantité 
de chaleur qu’il reçoit qui permet d’expliquer pourquoi la formule 
de transformation n’est pas la même pour l’énergie et la quantité 
de chaleur. De plus, en ce qui concerne la proportionnalité de la 
température à l’énergie cinétique moyenne des molécules, on doit 
remarquer qu’elle n’est valable que dans le système propre du 
corps et que, même dans ce système, elle n’est valable qu’à l’approxi 
mation newtonienne : ceci résulte des formules données au para 
graphe 12 du chapitre III, Rien n’impose donc à la température 
d’avoir la même formule de transformation relativiste que l’énergie.

2. La Mécanique ondulatoire à l’approximation de l’Optique 
géométrique. — Le point de départ de la Mécanique ondulatoire 
a été d’associer au mouvement rectiligne et uniforme d’un cor 
puscule libre la propagation d’une onde plane monochromatique 
qu’on peut représenter par la fonction complexe :

(10)
l’axe des z étant pris dans la direction de propagation qui est la 
direction du mouvement du corpuscule. Si, dans le système propre 
du corpuscule, on définit la fréquence v0 de l’onde stationnaire 
associée au corpuscule par la formule (9), les formules de transfor 
mation données au paragraphe précédent permettent d’écrire :

____  . ~[Wt-pz)
J

— m°V p ~ ’

W et p étant reliés à v et à X par les formules :

(12) W = /iv, p = j.

On voit que, si l’on pose :
h

(13) <\i = aen , avec fi==2u’

a et <p réels, la phase 9 coïncide avec l’action hamiltonienne A 
changée de signe qui est égale à Wt — pz.

(ü) 9 = ae
avec :

W m0cz
Vi-Pa

et
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Si le corpuscule est soumis à un champ de force, sa trajectoire 
est en général courbe, mais on peut toujours écrire son onde 
associée sous la forme :

(14) <Kx, Vs z, t) = a(x, y, z, t) e~^[x,y'z,t).

Dans le cas particulier où le champ est permanent et où la propa 
gation de l’onde peut être décrite par l’approximation de l’Optique 
géométrique, on a :
,,r> . / s - î A(x,y,Z,e) j (\y(- fp.ds)(15) <1* = a(x, y, z)e n — a(x, y, z) en\ J >,

ds étant l’élément de trajectoire du corpuscule et l’on a encore

cp = — A. On trouve encore p = mais ici p et X sont des fonctions

de x, y, z. On voit alors que le principe de moindre action de Mau- 
pertuis, qui s’exprime par :

Ç B —V
8 p. ds = 0,

coïncide avec le principe de Fermât appliqué au rayon de l’onde 
qui s’exprime par :

•J

Il en résulte que les rayons de l’onde coïncident avec les trajectoires 
possibles du corpuscule et l’on peut conserver l’idée fondamentale 
de la localisation du corpuscule dans l’espace en admettant qu’il 
se déplace en suivant l’un des rayons de l’onde. L’énergie et la 
quantité de mouvement du corpuscule sont alors définies par les 
formules :
(16) W==|f’ P = ~g^d9,

ce qui montre l’identité de la phase <p et de la fonction S de Jacobi. 
De plus, on démontre alors aisément que, si l’on suppose également 
probables toutes les positions initiales possibles du corpuscule 
avant l’entrée dans le champ de force, la probabilité de trouver le 
corpuscule dans l’élément du = dx dy dz de l’espace physique est 
égale à :

a\x, y, z)dx = | <J/(x, y, z. 0 la dx.
Malheureusement, cette image si claire de l’association de l’onde 

et du corpuscule ne subsiste plus en dehors de l’approximation



de l’Optique géométrique. On peut bien toujours trouver pour 
l’onde une expression de la forme (14), mais 9 n’est plus reliée 
simplement à l’action hamiltonienne définie par la Mécanique 
ponctuelle (classique ou relativiste). On ne peut plus définir des 
rayons au sens de l’Optique géométrique et la notion de rayon 
semble perdue. Ces circonstances ont conduit la plupart des 
théoriciens à admettre que le corpuscule n’a pas à chaque instant 
une position bien déterminée, qu’il est répandu à « l’état potentiel » 
dans toute l’étendue de l’onde tandis que l’onde elle-même n’est 
plus qu’une représentation abstraite de probabilités. On ne conserve 
de l’image obtenue à l’approximation de l’Optique géométrique 
que le postulat suivant : La probabilité pour que le corpuscule 
manifeste sa présence à l'instant t dans l’élément de volume d~ est 
donnée par | ^(t , y, z,t) |2 dr, mais ce postulat devient alors tout 
à fait arbitraire.

3. La conception de l’onde pilote. — A l’époque où, en 1927-
1928, se développait cette interprétation très abstraite, j’ai cherché 
à en trouver une autre qui s’accordât mieux avec les conceptions 
assez concrètes qui m’avaient guidé dans mes premiers travaux.

Je partais des trois postulats suivants :
1° Le corpuscule doit être à chaque instant localisé dans l’espace 

et décrire une trajectoire continue au cours du temps ;
2° L’onde de la Mécanique ondulatoire doit être une réalité 

physique et se propager dans l’espace au cours du temps ;
3° Pour interpréter les phénomènes de l’optique de la lumière et 

de l’optique des électrons, il est nécessaire de supposer que le cor 
puscule est intimement lié à son onde de sorte que le mouvement du 
corpuscule soit, en quelque sorte, guidé par la propagation de 
l’onde (*).

Guidé en partie par une représentation hydrodynamique de la 
propagation de l’onde 'F qui venait d’être développée par Madelung 
et que j’avais reprise, je supposais que le corpuscule, toujours 
localisé dans son onde, suivait l’une des lignes de courant de 
l’image hydrodynamique en question. Ceci me conduisait immédia-

(x) Dans un remarquable article paru en 1953, M. Renninger a montré 
que, dans le cas des photons, il existe des raisons expérimentales absolument 
convaincantes d’admettre ces trois postulats (bibliographie, [2]). Voir 
aussi [4], troisième référence.
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tement à supposer que le corpuscule, s’il occupe à l’instant t la 
position x, y, z, y possède une énergie W et une quantité de mou 
vement p données par les formules (16) :

-y __
W = , p = - grad 9,

même en dehors de l’approximation de l’Optique géométrique. 
Comme la Dynamique relativiste établit entre W et p la relation

- Wa 
P=-*' d’où v = pca

W
pour le corpuscule libre, on en tire en ce cas :

grad 9(17) v = — c* ù 9
W

Cette formule fondamentale, que j’ai nommée « la formule du 
guidage », impose en quelque sorte un mouvement déterminé 
au corpuscule dans son onde. A l’approximation newtonienne 
où W - m0c2, elle prend la forme simple :

(18) v — —- grad 9 m
et elle apparaît comme une extrapolation de la formule de Jacobi :

y = — — grad S m °
valable à l’approximation de l’Optique géométrique qui rejoint 
la Dynamique classique.

De ces formules, j’apercevais une bien intéressante interprétation. 
Nous avons été précédemment conduits à assimiler l’ensemble des 
valeurs locales d’une onde en propagation à l’ensemble de petites 
horloges entraînées par le mouvement de l’onde. Si, au sein de 
l’onde, le corpuscule est constamment localisé, nous sommes amenés 
à nous le représenter comme une plus grosse horloge se déplaçant 
au milieu de petites horloges. L’idée vient alors d’admettre que 
cette grosse horloge doit se déplacer de telle façon que son indication 
reste constamment égale à celle des petites horloges qui l’entourent 
immédiatement. En d’autres termes, le corpuscule doit se déplacer 
de telle façon que son oscillation interne reste constamment en phase 
avec l’onde progressive à laquelle il est incorporé.
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Il est facile de vérifier qu’on retrouve ainsi la formule du guidage.
En effet, si le corpuscule se déplace de ds dans l’espace physique
pendant le temps dt, la persistance de l’accord de phase entre la 
vibration interne et l’onde environnante exige évidemment que :

(19)
Comme on a :

vc = vo y/1 — p2,

il vient :
gr.dT.r=v,=

ù cp V
(21)

et cette équation est précisément vérifiée si l’on attribue à v la 
valeur (17), c’est-à-dire si l’on admet la formule du guidage.

Les formules précédentes ont été écrites en supposant le cor 
puscule non soumis à un champ extérieur. Dans le cas plus général 
d’un corpuscule soumis à un champ, on obtiendra une théorie rela 
tiviste en supposant qu’on a affaire à un corpuscule de charge 
électrique e soumis à un champ électromagnétique dérivant d’un 
potentiel scalaire Y et d’un potentiel vecteur A et en adoptant 
l’équation d’ondes de Klein-Gordon dont on déduit que :

On trouve comme formule du guidage :

grad 9 + - A
/<VL C

V — — c2

qui naturellement pour A = V = 0 nous redonne la formule (17).
Il est facile de montrer que cette formule exprime bien encore 

que la vibration interne du corpuscule reste constamment en 
phase avec l’onde environnante. Il suffit de poser :

(24)
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L’accord des phases exige toujours que la relation (19) soit vérifiée, 
ce qui donne ici :

(25) (Il - evj + (grad <p + e|)a = mtc3\^l - p2.A\-

En remplaçant au second membre -\/l — p2 par m0c2

EV
, on vérifie

aisément que la formule (25) est vérifiée si l’on adopte la loi du 
guidage (23), compte tenu de l’équation (22).

4. Le potentiel quantique. — L’interprétation de la Mécanique 
ondulatoire que nous venons d’esquisser a été présentée d’abord 
sous la forme de la théorie de l’onde pilote. On y considérait, 
en somme, l’onde homogène de la Mécanique ondulatoire comme 
ayant une existence physique réelle et l’on imposait (arbitrairement) 
au corpuscule considéré comme ayant toujours une position bien 
définie dans l’onde, l’obligation de suivre, en accord avec la formule 
du guidage, l’une des lignes de courant de la propagation de l’onde.

On pouvait alors voir que cela obligeait à admettre que le cor 
puscule est soumis, en dehors de l’action des potentiels du type 
classique qui traduisent la présence d’un champ de force extérieur, 
à l’action d’un potentiel d’un type nouveau, « le potentiel quanti 
que ». La « force quantique » dérivant de ce potentiel traduirait 
l’existence d’une action que l’onde environnante exercerait sur le 
corpuscule comme cela paraît nécessaire pour interpréter les phé 
nomènes de diffraction et d’interférences dans une théorie qui admet 
la localisation du corpuscule dans l’espace.

Dans le cas de l’équation d’ondes non relativiste de Schrôdinger, 
le potentiel quantique a pour expression :

(26) Q = -
Aa 

2m a
Dans le cas d’un corpuscule sans spin obéissant à l’équation rela 
tiviste de Klein-Gordon, on peut développer toute la dynamique 
du corpuscule sous forme lagrangienne et hamiltonienne comme je 
l’ai fait dans d’autres exposés (voir [3], chap. X). On est alors 
amené à attribuer au corpuscule une masse propre variable suivant 
sa position dans l’onde qui est donnée par la formule :

M0 = Vm! + fi2   a 
c3 a(27)
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et, dans le système propre, c’est la grandeur M0c2 dont le gradient 
changé de signe donne la force quantique. On peut alors définir 
le potentiel quantique en posant :

(27 bis) Q„ = M„ca - m0c2, Q = Q„a /1 - P2-

A l’approximation newtonienne où p < 1 et où   a ~ — A a, 
ce potentiel quantique se réduit bien à l’expression (26) comme on 
le vérifie aisément et l’on peut alors définir le potentiel quantique 
par :

Q = M„c2 — m0c2.

Je n’insisterai pas davantage ici sur cette « dynamique du gui 
dage », ni sur la forme plus complexe qu’elle prend dans le cadre 
des équations de l’électron à spin de Dirac.

5. La théorie de la double solution. — Quand j’ai étudié 
en 1926-1927 cette interprétation de la Mécanique ondulatoire, 
il m’était apparu que la théorie véritable, dépassant le point de 
vue provisoire de l’onde pilote, devait établir un lien bien plus 
intime entre le corpuscule et l’onde. Développant cette idée sous 
le nom de « théorie de la double solution », j’affirmais que l’onde Y 
homogène, déjà usuelle à cette époque en Mécanique ondulatoire, 
ne fournissait qu’une représentation des probabilités et que la 
véritable onde physique du corpuscule devait être une onde u 
comportant une très haute concentration de l’amplitude qui serait 
le corpuscule au sens étroit du mot. En dehors de cette région, 
l’onde u se réduirait à une onde homogène coïncidant sensiblement 
(à une constante de normalisation près) avec l’onde *F homogène 
de la Mécanique ondulatoire usuelle. Le corpuscule serait incorporé 
à l’onde u, celle-ci constituant un champ à bosse (bunched field) 
du type qu’Einstein avait imaginé pour représenter le corpuscule 
comme un accident local du champ.

Après avoir pendant longtemps abandonné cette difficile tenta 
tive, je l’ai reprise depuis une douzaine d’années avec l’aide d’un 
très petit nombre de collaborateurs et d’assez grands progrès 
ont été accomplis dans cette voie. Comment fonde Y usuelle, 
bien que subjective et pure représentation de probabilités, est 
cependant reliée à l’onde u de telle façon que le corpuscule semble 
décrire une des lignes définies par la formule du guidage à partir
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de la propagation de l’onde Y, comment ce mouvement pourrait 
peut-être s’interpréter en supposant que l’équation de propagation 
véritable de l’onde u est non linéaire, cette non-linéarité ne se 
manifestant usuellement que dans la très petite région singulière 
de très haute concentration du champ, c’est ce que j’ai exposé 
ailleurs et je, n’y reviens pas ici (1). Mais je voudrais cependant 
insister sur deux points particuliers.

Le premier de ces points est relatif à la démonstration de la 
formule du guidage. J’ai pu en donner deux démonstrations en 
partant des équations linéaires usuelles, mais en y adjoignant 
une hypothèse assez arbitraire de concordance de phase. On peut 
remplacer cette hypothèse par celle d’un raccordement entre les 
lignes de courant de l’onde extérieure avec les lignes de courant 
intérieures à la très petite région de hautes valeurs du champ : 
celle-ci, c’est-à-dire le corpuscule, se trouve ainsi emprisonnée 
dans un tube très délié de lignes de courant du champ extérieur 
et la formule du guidage en résulte immédiatement. La démonstra 
tion prend alors une forme très voisine de celle qu’avait donnée 
autrefois Georges Darmois pour montrer que, dans un champ de 
gravitation, le mouvement d’une particule est représenté par une 
géodésique de l’espace-temps. Comme Einstein l’avait montré 
dans le cas de la Gravitation, le succès de cette démonstration 
est certainement lié au caractère non linéaire des équations du 
champ (ici des équations de propagation de l’onde u).

Un second point sur lequel je voudrais insister est le suivant. 
En théorie quantique usuelle, il existe des phénomènes tels que les 
transitions quantiques de Bohr qu’on déclare échapper entièrement 
à toute description en termes d’espace et de temps et cela paraît 
vrai dans le cadre des équations linéaires qu’on utilise. Mais si 
l’on admet qu’il peut s’introduire de la non-linéarité dans les 
équations d’ondes, la question change d’aspect : on peut, en effet, 
se demander si ces phénomènes déclarés impossibles à décrire 
ne correspondent pas en réalité à des états transitoires très rapides 
à caractère non linéaire. MM. Andrade e Silva, Fer, Leruste et 
Lochak ont entrepris dans cette direction de très intéressantes 
recherches en s’appuyant sur les propriétés des équations non 
linéaires et en particulier sur la théorie des cycles limites (2).

(v) Voir bibliographie, [4].
(2) Bibliographie, [5].



80 LA THERMODYNAMIQUE DE LA PARTICULE ISOLÉE

6. Remarques au sujet de l’aspect hydrodynamique des concep 
tions précédentes. — Nous sommes parvenus à une sorte d’image

i

hydrodynamique de la propagation de l’onde a en en Mécanique 
ondulatoire. On l’obtient en considérant un fluide qui aurait en 
chaque point et à chaque instant la densité p donnée, dans le cas 
de l’équation de Schrôdinger par :

(28) p = a2(x, y, z, t) = | 'FOr, y, z, t) |*
—^

et dont la vitesse locale v serait définie à chaque instant par la 
formule du guidage précédemment étudiée. Il résulte alors de 
l’équation de propagation que ce fluide fictif se conserve de sorte 
que l’équation de continuité hydrodynamique :

(29) + div P n = 0 

soit constamment satisfaite.
Sans qu’on puisse prendre au pied de la lettre une pareille image, 

on peut cependant se représenter le corpuscule comme une sorte 
de granule qui serait entraîné par l’écoulement fluide et décrirait 
l’une des lignes de courant comme ces grains de lycopode que les 
hydrauliciens sèment à la surface d’un liquide en écoulement 
pour que la trajectoire de chacun de ces grains matérialise la forme 
d’une ligne de courant.

Il est utile de faire ici une petite remarque au sujet de l’expres 
sion : le corpuscule suit une des lignes de courant de l’écoulement 
hydrodynamique correspondant à la propagation de son onde. 
La formule du guidage impose au corpuscule d’avoir sa vitesse 
tangente à la ligne de courant sur laquelle il se trouve à l’instant 
considéré. Si l’écoulement est permanent, c’est-à-dire ne varie pas 
au cours du temps, les lignes de courant ne se déforment pas 
et la trajectoire coïncide avec une des lignes de courant. Si, au 
contraire, l’écoulement n’a pas un caractère permanent, les lignes 
de courant se déforment au cours du temps et la trajectoire du 
corpuscule, bien que tangente à chaque instant à une ligne de 
courant, ne coïncide plus avec l’une des lignes de courant. Cette 
circonstance est si connue en Hydrodynamique qu’il est inutile 
d’y insister davantage.

Si l’on étudie le mouvement du corpuscule défini par la formule 
du guidage, on s’aperçoit que, par suite de l’action de la force
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quantique et même quand les forces extérieures sont nulles, l’énergie 
et la quantité de mouvement du corpuscule ne restent pas cons 
tantes. Dans l’image hydrodynamique, la force quantique peut 
donc être considérée comme une pression que le fluide exercerait 
sur le corpuscule (1).

Cependant, on peut démontrer qu’en moyenne, c’est-à-dire 
pour une infinité de corpuscules répartis dans l’espace avec la 
densité p, l’énergie et la quantité de mouvement se conservent. 
Nous nous bornerons à donner ici une démonstration simple 
en ce qui concerne l’énergie dans le cadre de la théorie non relati 
viste.

On peut exprimer la conservation de l’énergie globale W = jiv pd-r, 

soit en écrivant :

(30) ^JP«,* = J(î?ii.+ p^)dT-0,

soit en remarquant que l’énergie moyenne d’une particule varie

de dt dans le temps dt et en écrivant que la valeur moyenne

des variations de l’énergie pendant ce temps est nulle, ce qui conduit 
à écrire :
(31) |p^dT = |p^ + a.grad wjdT = 0.

En supposant p nulle à l’infini, ce qui physiquement est toujours 
réalisé parce que les trains d’onde sont toujours limités, on peut 
démontrer que les formules (30) et (31) sont équivalentes. En effet, 
en tenant compte de l’équation de continuité, l’équation (30) 
peut s’écrire :
(32) J(PW — wdiv pajdx = 0

et, p étant nulle à l’infini, une intégration par partie montre que (32) 
est équivalente à (31).

Utilisant alors la formule (31), nous allons l’appliquer à la forme 
non relativiste de la théorie du guidage en posant :

tlcp -» 1-----►
(33) p = a\ w=zYt’ V = ~mgrad 9

O Cette analogie a été précisée par M. Jean-Louis Destouches dans les 
travaux qu’il a poursuivis dans ces dernières années. Voir notamment 
bibliographie, [6],

DE BROGLIF. 6
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et nous tiendrons compte de l’équation (équation de Jacobi géné 
ralisée) qui se déduit de l’équation de Schrôdinger :

<M) l?=2Sgrad't>'+Q>

fi2 Auoù Q = — ^ — . L’équation (31) nous donne alors :

(35) Ml! “/h ^ 9-g^d|?)dT = 0,

mais, en dérivant (34) par rapport au temps, on voit que la paren-
~vo

thèse de l’équation (35) est égale à ~ de sorte qu’il vient :àt

(36> J“‘ S (t )Jt  = 4 S ~ Aa 5?)^ =

Les fonctions a et ~ étant nulles à l’infini, une double intégration

par parties montre que l’équation (36) est bien vérifiée et, par suite, 
que l’énergie moyenne reste bien constante.

J’ai donné ailleurs (*) une démonstration plus générale de la 
conservation en moyenne de l’énergie et de la quantité de mouve 
ment d’un corpuscule dans le cadre de la théorie relativiste de 
Klein-Gordon.

Nous reviendrons sur la signification de la conservation en 
moyenne de l’énergie et de la quantité de mouvement dans le 
chapitre suivant quand nous aurons introduit l’hypothèse du 
milieu subquantique de Bohm-Vigier.

(*) Voir bibliographie, [3], p. 270-273.



CHAPITRE VU

INTRODUCTION
DE CONCEPTIONS THERMODYNAMIQUES 

EN MÉCANIQUE ONDULATOIRE

1. Le milieu subquantique de Bohm-Vigier. — Nous avons 
obtenu au chapitre précédent une image hydrodynamique de l’in 
terprétation de la Mécanique ondulatoire par la théorie de la double 
solution. Cette image correspond exactement aux idées que j’avais 
développées en 1926-1927 et que j’ai reprises depuis 1951. Mais 
dans ces dernières années, j’ai de plus en plus reconnu qu’elles 
ne constituaient qu’une première approximation et qu’elles devaient 
être complétées par l’introduction d’hypothèses nouvelles faisant 
intervenir la thermodynamique statistique.

Le premier pas dans cette voie a été fait en 1954 par MM. Bohm 
et Vigier Q) quand ils ont introduit l’hypothèse de l’existence d’un 
« milieu subquantique », milieu caché en quelque sorte plus profond 
que le niveau microphysique avec lequel toutes les particules du 
niveau microphysique seraient en contact permanent et pourraient 
constamment échanger de l’énergie et de la quantité de mouvement.

Qu’est-ce qui a amené MM. Bohm et Vigier à adopter cette 
hypothèse ? En dehors de quelques considérations générales, 
c’est le désir de donner une justification satisfaisante du rôle 
de probabilité de présence du corpuscule en un point à un instant 
donné que la Mécanique ondulatoire attribue à la quantité | Y [3.

Nous avons vu que la formule du guidage, en établissant l’obli 
gation pour le corpuscule de suivre l’une des lignes de courant 
de l’écoulement hydrodynamique correspondant à la propagation 
de l’onde, avait conduit à admettre que, si toutes les probabilités 
des positions initiales du corpuscule dans l’onde sont considérées 
comme proportionnelles à | ^(æ, y, z, t0) |2, la probabilité pour que le

(9 Bibliographie, [7].



corpuscule se trouve à l’instant t dans un élément dx de 
l’espace est, du moins à l’approximation non relativiste, égale à 
| Y(x, y, z, t) |2. Cette conclusion se déduisait de l’équation de 
continuité où v est la vitesse définie par la formule du guidage. 
Mais, si l’on examine bien cette démonstration, on s’aperçoit 
qu’elle soulève une difficulté tout à fait analogue à celle qui se 
présente, nous l’avons vu, en Mécanique statistique quand, après 
avoir démontré le théorème de Liouville, on cherche à en déduire 
que la probabilité de la présence du point représentatif d’un système 
dans l’élément dx de l’extension-en-phase est proportionnelle 
à cet élément dx (1). Nous avons vu que, pour parvenir à justifier 
cette conclusion, il fallait ajouter au théorème de Liouville, soit 
une hypothèse ergodique, soit l’hypothèse à caractère plus physique 
du chaos moléculaire.

Plaçons-nous à ce dernier point de vue. Si l’évolution mécanique 
d’un système se poursuit régulièrement sans aucune perturbation, 
il ne serait pas justifié, en général, d’admettre qu’un même tube 
de trajectoires non perturbées dans l’extention-en-phase remplisse 
toute cette extension. Mais on peut supposer que le mouvement du 
système soit soumis à de constantes perturbations aléatoires 
qu’on peut regarder, par exemple, comme traduisant la continuelle 
interaction du système avec un système extérieur (Si le système 
considéré se réduit à une molécule d’un gaz, il s’agira de la constante 
interaction de cette molécule avec l’ensemble des autres molécules 
du gaz.) Alors le point représentatif du système passera constam 
ment d’un tube de trajectoires non perturbées dans un autre et, 
au bout d’un temps suffisamment long (qui peut être extrêmement 
court à notre échelle), on pourra considérer le point représentatif 
(et, par suite, l’élément dx qui le contient) comme ayant parcouru 
successivement tous les tronçons de trajectoires non perturbées 
et ayant ainsi balayé l’ensemble de l’extension-en-phase, ce qui 
justifiera le principe servant de base à la Mécanique statistique.

C’est une hypothèse analogue que MM. Bohm et Vigier ont intro 
duite dans la nouvelle interprétation de la Mécanique ondula-
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O La difficulté qui se présente ici est très clairement illustrée par le fait 
que, dans un atome d’hydrogène à l’état s, l’électron d’après la formule 
du guidage doit rester immobile en un point de l’atome de sorte que, sans 
l’hypothèse de Bohm-Vigier, on ne voit pas du tout comment peut se réa 
liser la probabilité de présence en | Y |2.



toire pour justifier le rôle de probabilité de présence joué par la 
probabilité | Y |2. Ici, c’est le produit p dx qui se conserve dans 
l’espace physique le long d’une ligne de courant en vertu de l’équa 
tion de continuité, c’est-à-dire, si l’on admet la formule du guidage, 
le long d’un tube de trajectoires non perturbées des particules. 
Pour qu’on puisse en déduire que p dx donne la probabilité de pré 
sence du corpuscule dans l’élément dx, il faudrait que le même tube 
de trajectoires s’enroule indéfiniment dans la portion de l’espace 
physique qui est accessible au corpuscule de manière à la remplir 
complètement. Or, il n’y a aucune raison pour qu’il en soit ainsi 
en général O).

Dans le Mémoire cité plus haut, MM. Bohm et Vigier ont présenté 
une justification théorique de l’interprétation statistique du | Y |2 
en admettant une hypothèse de continuelles perturbations aléa 
toires du mouvement des corpuscules analogue à celle que Boltz 
mann avait introduite dans le cadre de la Mécanique statistique 
classique. Si l’on admet que ces perturbations sont représentables 
par l’apparition momentanée dans l’équation des ondes de petits 
potentiels perturbateurs aléatoires, l’équation de continu ité restera 
valable pendant les périodes de perturbation et la grandeur p dx 
se conservera le long d’un tube de trajectoires même dans les por 
tions perturbées de ce tube. Alors un même élément dx passera 
constamment d’un tube de trajectoires non perturbées à un tube 
voisin avec conservation de p dx. On pourra donc considérer un 
élément dx du fluide dans la représentation hydrodynamique de la 
Mécanique ondulatoire comme parcourant successivement, en un 
temps extrêmement court à notre échelle tous les tronçons de 
tubes de courant non perturbés de façon à balayer uniformément 
avec conservation de p dx tout l’ensemble de la région de l’espace 
physique accessible au corpuscule et ceci permettra de considérer 
la quantité p = ) Y |2 comme mesurant la probabilité de la présence 
locale du corpuscule.

Telle est la marche générale du raisonnement développé par 
MM. Bohm et Vigier dans leur Mémoire et ce raisonnement pourrait 
être repris à l’aide de la théorie des chaînes de Markov. Les auteurs 
ont considéré les continuelles perturbations aléatoires auxquelles 
le corpuscule serait soumis comme le résultat des réactions aléa 
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(*) Voir la note de la page précédente.



toires qu’exercerait sur lui un milieu profond et caché qu’ils ont 
appelé « le milieu subquantique ».

2. Comparaison avec le mouvement d’un granule dans l’écou 
lement d’un fluide chaud. — La conception du milieu subquan 
tique, que beaucoup de faits constatés en Microphysique semblent 
confirmer et qui s’introduit sous une forme voilée dans certains 
résultats de la théorie quantique des champs (par exemple quand 
elle attribue au vide des propriétés physiques telles que « la polari 
sation du vide »), présente une grande importance pour le pro 
blème de l’établissement d’une relation entre les grandeurs méca 
niques et les grandeurs thermodynamiques. Il serait, en effet, 
inconcevable que, dans la dynamique d’un corpuscule isolé, 
c’est-à-dire éloigné de tout autre système microphysique, s’intro 
duisent des grandeurs ayant une signification thermodynamique, 
puisque celles-ci paraissent essentiellement liées aux variations 
aléatoires d’un système d’une grande complexité, ce qui ne peut 
être le cas d’un corpuscule isolé. Mais la question apparaît sous un 
tout autre jour si l’on admet qu’un corpuscule de l’échelle micro- 
physique quand il nous apparaît comme isolé est cependant 
toujours en contact énergétique avec un milieu profond et caché 
possédant une structure complexe et aléatoire. Or l’introduction 
de l’hypothèse de l’existence du milieu subquantique conduit à 
l’idée que toute particule du niveau microphysique pourrait être 
considérée comme constamment en contact avec une sorte de 
thermostat caché et il deviendrait alors possible de lui attribuer 
une température ainsi qu’une entropie reliées à son mouvement. 
Tout un horizon nouveau s’ouvre alors devant nos yeux.

Ceci nous amène à reprendre, en la modifiant assez profondément, 
l’image hydrodynamique du mouvement du corpuscule que nous 
avions précédemment envisagée. Nous avions comparé le mou 
vement du corpuscule défini par la formule du guidage avec le 
mouvement d’un granule (d’un grain de lycopode) qui est entraîné 
le long d’une ligne de courant par l’écoulement d’un fluide. Mais, 
si le fluide est chaud, je veux dire s’il n’est pas au zéro absolu, 
le granule ne suivra régulièrement la ligne de courant que s’il 
est assez lourd pour résister aux chocs aléatoires des molécules 
du fluide. S’il est très léger, il sera comme toutes les molécules 
du fluide animé d’une agitation brownienne qui se superposera au 
mouvement régulier que lui impose l’écoulement général du fluide.

86 LA THERMODYNAMIQUE DE LA PARTICULE ISOLÉE



A une différence d’échelle près, le corpuscule serait donc compa 
rable à un granule en suspension dans un fluide chaud qui serait 
animé d’un mouvement brownien dû à ses interactions avec les 
molécules invisibles du fluide, et auquel, pour cette raison, on 
pourrait appliquer des conceptions thermodynamiques. Si le fluide 
est immobile dans son ensemble, le mouvement brownien du 
granule le fait sautiller de-ci, de-là, sans mouvement continu. 
Si, au contraire, le fluide est animé d’un mouvement d’ensemble, 
le granule, qui sans le mouvement brownien serait entraîné régu 
lièrement le long d’une ligne de courant du fluide, passera constam 
ment par suite de l’agitation brownienne d’une ligne de courant 
à une autre. C’est d’ailleurs ce qui doit se produire pour les molé 
cules elles-mêmes du fluide : chaque ligne de courant ne représente, 
en effet, la trajectoire d’une molécule qu’abstraction faite de l’agi 
tation brownienne et l’ensemble des lignes de courant ne donne 
qu’une image statistique du mouvement global des molécules. 
On aperçoit maintenant de quelle manière l’introduction du milieu 
subquantique peut nous conduire à modifier l’image hydrodyna 
mique que nous nous étions faite du mouvement d’un corpuscule 
microphysique.

3. Première tentative pour établir une correspondance entre 
entropie et action, température et fréquence. — Les idées que 
nous venons de développer conduisent naturellement à envisager 
l’établissement de relations entre les grandeurs dynamiques qui 
caractérisent le mouvement d’un corpuscule (conçu à la manière 
de la théorie de la double solution) et des grandeurs thermodyna 
miques telles qu’entropie et température. Quelques auteurs avaient 
eu autrefois des idées analogues. Eddington dans son célèbre 
livre Espace, temps, gravitation (p. 219 de l’édition française) 
avait esquissé, en termes d’ailleurs assez vagues, un rapprochement 
entre les deux invariants fondamentaux de la Relativité, l’Entropie 
et l’Action.

L’étude des théories anciennes de Helmholtz et de Boltzmann 
m’avait amené, il y a une quinzaine d’années, à rechercher l’établis 
sement de correspondances entre l’entropie et l’action et entre la 
fréquence cyclique et la température. Je l’avais tenté dans une 
Note aux Comptes rendus de VAcadémie des Sciences (t. 223, 1946, 
p. 248) et dans mon cours de l’année scolaire 1948-1949. J’en avais 
également parlé dans un article des Cahiers de Physique (n08 31-32,
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janvier 1948, p. 1). J’avais à cette époque envisagé deux manières 
différentes d’établir cette correspondance, mais je ne rappellerai 
ici que la seconde, car elle me paraît la plus intéressante et celle 
qui se raccorde le mieux avec celle que j’exposerai dans le cha 
pitre VIII.

La formule de Boltzmann pour les systèmes périodiques que nous 
avons écrite au chapitre V sous la forme :

(1) SQ=-S^t = vU
T

n’est valable que dans le système propre d’un corps qui est le siège 
d’un processus périodique de fréquence v et de période t . La 
grandeur A représente alors l’intégrale cyclique d’action mauper- 
tuisienne prise sur une période entière du mouvement. Nous devons 
donc écrire d’une façon plus précise :

(2) SQo = v08@,

avec :

(3) ®=
k

où l’indice 0 indique que les quantités sont évaluées dans le sys 
tème propre du corps.

Passons à un système de référence galiléen où le corps est animé 
de la vitesse pc. En multipliant la formule précédente par \/l — p2, 
nous obtenons :

(4) SQ = vc8^).

Comme dQ = T dS, on est amené à poser :

vc = CT et ® =

où C est une constante que, pour des raisons évidentes, il est naturel 
lede prendre égale à ^ . On obtient ainsi les relations :

(5) S
h~k

entre la fréquence cyclique et la température d’une part, entre 
l’intégrale cyclique d’action maupertuisienne et l’entropie d’autre
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part. Comme vc et T se transforment de la même façon quand on 
passe du système propre à l’autre système galiléen, la première 
relation (5) est de ce point de vue satisfaisante. Mais il n’en est pas 
de même de la seconde relation (5), car S est un invariant tandis 
que A ne l’est pas.

On pourrait améliorer la seconde relation (5) en considérant 
comme système périodique un corpuscule conçu à la manière de la 
Mécanique ondulatoire comme le siège d’un processus périodique

de fréquence va = W.
h et de période propre t 0

h h t..T , avec W0 = m0ca. W0
On poserait alors, par définition :

(6)

et, en raison de l’invariance relativiste de l’action hamiltonienne, 
on aurait dans tout système galiléen :

(7) @ = J\<# = (S),

ce qui conduit naturellement à remplacer la deuxième relation (5) 
par :

(8)
©^S 
~h k

et cela est plus satisfaisant.
Ce pas en avant, je ne l’avais pas fait il y a 15 ans. J’avais 

cependant entrevu la possibilité d’une Thermodynamique du 
corpuscule isolé puisque j’écrivais en 1948 dans mon article des 
Cahiers de Physique : « Il y a là l’amorce d’une Thermodynamique 
du point matériel qu’on pourrait chercher à développer dans le 
cadre de la Mécanique ondulatoire : il est assez difficile de dire 
où cette voie pourrait mener et nous nous contenterons d’en avoir 
indiqué le point de départ. » Ce qui m’empêchait d’aller plus loin 
à cette époque, c’est que je n’avais pas encore repris mes recherches 
sur la théorie de la double solution et que je ne pensais pas encore 
au milieu subquantique.

C’est seulement en 1961 en réfléchissant sur un travail récent de 
M. Terletsky que j’ai aperçu la possibilité d’introduire dans la théorie 
de la double solution les relations entre fréquence et température.



entre entropie et action dont j’avais soupçonné l’existence 15 ans 
plus tôt.

4. Sur un Mémoire de M. Terletsky. — M. le Professeur Ter- 
letsky au cours d’un séjour à Paris à l’Institut Henri-Poincaré 
a publié en 1960 deux très intéressants articles dans le Journal de 
Physique (1). Dans le premier de ces Mémoires et dans la seconde 
partie du deuxième, il a envisagé l’hypothèse qu’il pourrait exister 
des particules de masse imaginaire animées de vitesses supérieures 
à la vitesse de la lumière dans le vide, particules qui constitueraient 
une sorte de thermostat caché analogue au milieu subquantique 
de Bohm-Vigier. Malgré l’intérêt des considérations que M. Ter 
letsky a développées à ce sujet, je préfère ne pas introduire ici 
cette hypothèse de l’existence de particules à masse imaginaires 
et je me contenterai de dire quelques mots de la première partie 
de son second Mémoire.

M. Terletsky envisage un ensemble de champs y, z, t) ... 
(x , y, z, t) analogues aux ondes de la Mécanique ondulatoire 

et il définit l’action totale de ce champ par l’intégrale d’espace- 
temps d’une certaine fonction de Lagrange. Il suppose, de plus, 
que ce premier système de champs est en faible interaction éner 
gétique avec un second système de champs qu’il considère comme 
définissant un thermostat et, par des calculs où interviennent des 
fonctionnelles, il en déduit une formule qu’il considère comme 
l’analogue de la loi de distribution canonique de Gibbs, mais qui 
me paraît plutôt devoir être assimilée à la définition boltzmanienne 
de l’entropie S = k log P.

Dans tout ce début, M. Terletsky a défini l’action globale de ces 
N champs par intégrale d’espace-temps, mais ensuite il a montré 
d’une façon très intéressante comment l’hypothèse que les champs 
obéissent à des équations non linéaires permet de ramener cette 
définition à la définition usuelle de l’action hamiltonienne d’un 
corpuscule par une intégrale prise le long de sa ligne d’univers. 
Pour cela, il rappelle d’abord qu’une théorie des champs linéaires 
conduit toujours à ce qu’il nomme « la catastrophe ultraviolette », 
c’est-à-dire au fait que l’intégrale donnant l’énergie totale du champ 
est divergente du côté des très hautes fréquences. On sait que 
cette conséquence inadmissible est apparue en Physique dans la
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0) Bibliographie, [S].



théorie du rayonnement noir et que c’est afin de l’éviter que Planck 
a introduit pour la première fois en 1900 la notion de quantum 
d’Action. On élimine souvent aujourd’hui cette difficulté en intro 
duisant une coupure arbitraire des intégrales du côté des hautes 
fréquences (cut-off) qui élimine les ondes de très hautes fré 
quences responsables de la divergence des intégrales : mais ce 
procédé n’est pas satisfaisant parce qu’il est entièrement arbi 
traire.

Or M. Terletsky remarque qu’il en est tout différemment pour 
les champs non linéaires car alors, s’il existe naturellement dans le 
cas des faibles amplitudes des solutions ayant très approximative 
ment le caractère de solutions classiques en théorie linéaire, il 
peut aussi exister, les travaux de M. Terletsky et de ses élèves 
l’ont montré, des solutions présentant de très petites régions de 
haute concentration du champ qui sont stables et qui ont le carac 
tère des « champs à bosse » d’Einstein. Il y a alors dans l’espace- 
temps des tubes d’univers extrêmement déliés où le champ prend 
de très hautes valeurs. Par suite, l’intégrale d’Action primitive 
ment considéré par M. Terletsky se réduit très approximativement 
à une somme d’intégrales prises le long des tubes d’univers en 
question et l’on retrouve ainsi la notion classique d’action hamil 
tonienne liée au mouvement des corpuscules.

Il est presque inutile de souligner combien les idées de M. Ter 
letsky sont ici en accord avec les conceptions de la théorie de la 
double solution. L’auteur ajoute d’ailleurs la remarque suivante qui 
pourrait être très utile dans l’étude de certains problèmes difficiles 
qui se présentent dans la nouvelle interprétation de la Mécanique 
ondulatoire : « En dehors des solutions à régions de haute concentra 
tion du champ, les autres solutions ont la forme de paquets d’ondes 
quasi linéaires qui s’étalent rapidement dans tout l’espace et dont 
l’amplitude tend par conséquent vers zéro. »

Étant ainsi revenu à la notion usuelle d’action hamiltonienne 
d’une particule, M. Terletsky a cherché à en tirer la loi de distri 
bution canonique. Mais, comme il n’a pas introduit la notion de 
thermostat imposant aux champs une température bien définie, 
ses conclusions ne m’ont pas paru très claires et je pense qu’elles 
doivent recevoir une interprétation un peu différente de celle que 
leur auteur propose, interprétation qui nous ramènerait aux

A Sformules hvc = kT et ^ ^ qui ont été envisagées plus haut.
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Dans l’ensemble, ce très curieux Mémoire de M. Terletsky m’a 
vivement intéressé et il a attiré mon attention sur la possibilité 
d’introduire dans la réinterprétation de la Mécanique ondulatoire 
par la théorie de la double solution des grandeurs thermodyna 
miques, température et entropie, liées aux caractéristiques du 
corpuscule, fréquence cyclique et action hamiltonienne. C’est 
ce qui m’a amené à développer une « Thermodynamique de la 
particule isolée » que je vais maintenant exposer.
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CHAPITRE VIII

LA THERMODYNAMIQUE 

DE LA PARTICULE ISOLÉE

(ou Thermodynamique cachée des particules)

1. Formules fondamentales. — Les réflexions que m’avait inspi 
rées le travail de M. Terletsky et qui me ramenaient vers les 
anciennes idées que j’avais eues à ce sujet vers 1946-1948 m’ont 
conduit à tenter d’établir dans des Notes récentes (*) une « Thermo 
dynamique de la particule isolée » qu’on pourrait aussi nommer 
« Thermodynamique cachée des particules », puisqu’elle résulterait 
de la continuelle interaction des particules avec un thermostat 
caché qu’il est naturel d’identifier avec le milieu subquantique 
de MM. Bohm et Vigier. J’avais commencé par introduire une 
entropie de la particule isolée, mais ensuite j’ai préféré raisonner 
en introduisant l’entropie du thermostat caché. La raison en est 
qu’il est scabreux de définir une entropie pour la particule parce 
que celle-ci est un système assez simple ne comportant qu’un petit 
nombre de degrés de liberté : au contraire, le thermostat caché 
étant certainement un système très complexe, il est légitime de 
parler de son entropie et l’emploi de cette entropie va nous per 
mettre de suivre la voie autrefois tracée par Einstein dans sa théorie 
des fluctuations.

Pour développer notre nouvelle Thermodynamique, nous admet 
trons d’abord que nous pouvons appliquer à une particule isolée de 
l’échelle microphysique la formule :

(1) SQ = - 8h.C

de la Thermodynamique relativiste en supposant variable la 
masse propre M0 de la particule.

P) Bibliographie, [9],
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De plus, nous admettrons aussi, en accord avec mes anciennes 
idées de 1946-1948, que la particule en contact énergétique perma 
nent avec le thermostat caché peut être considérée comme ayant une 
température T définie par la formule :

(2) kT = /îv c = Av,y/l — p2 = m0c2y/l - p2

qui a la covariance relativiste voulue et où m0 est la masse propre 
constante usuellement attribuée à la particule.

Nous allons définir l’entropie S du thermostat caché en contact 
énergétique avec la particule. Nous inspirant de la méthode employée 
jadis par Einstein dans ses célèbres travaux sur les fluctuations, 
nous écrirons cette entropie sous la forme :

(3) S = S0 + S(M0),

où S0 est la partie de cette entropie qui est indépendante de la 
valeur fluctuante de la masse propre Me de la particule tandis que 
S(M0) est la très petite partie de cette entropie qui dépend de la 
valeur de M0. Nous aurons alors :

(4) Sm>S = 8S(M.) = -Ç=-“£.

Le signe — figurant devant SQ provient du fait que SQ est la chaleur 
cédée par le thermostat caché à la particule. Or, nous pouvons 
écrire la fonction de Lagrange de la particule sous la forme :

(5) C =-MocV1 - P2+ •••>

où les termes non écrits ne dépendent pas de M0. Nous obtenons 
donc par (2) et (5) :
(6) 8S(M.) = -A^,

m0

ce qui nous fournit finalement :

(7) S = S„-/Æ,
UlQ

formule fondamentale où l’invariance du second membre est bien 
mise en évidence.

Nous avons ainsi obtenu les deux formules fondamentales de la
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Thermodynamique de la particule isolée qui sont valables dans tous 
les systèmes de référence galiléens.

(8) AT = Avc>

Nous pouvons remarquer que la formule (4) nous conduit à la
8S 
SC

relation ~ au lieu de la relation ^ ==
1 oL 1 trouvée au cha 

pitre IV. Mais nous ne devons pas nous en étonner parce qu’iei 
S se rapporte au thermostat et C à la particule. S’il était légitime 
d’introduire une entropie S, de la particule comme je le faisais 
dans ma Note d’août 1961, on aurait :

SS, = — SS SS, 
ûû ‘

2. Analogies entre la Thermodynamique de la particule isolée 
et le schéma canonique de Helmholtz. — Nous voulons com 
parer notre nouvelle Thermodynamique avec le schéma canonique 
de Helmholtz que nous avons exposé au paragraphe 3 du chapitre V.

Nous savons que la phase 9 de l’onde associée à la particule étant 
égale à — A, on peut écrire :
(9) 9 = — A = h J vcdt, 

d’où :
(10) 9 = — Â = /lvc,

le point désignant la dérivation par rapport au temps. Si donc 
nous posons :
ai) *=i* = -ïA;

la première formule (8) nous donne :

(12) ?
A — e.

Nous retrouvons ainsi la relation fondamentale admise par Helm 
holtz comme base de son schéma canonique suivant laquelle la 
température est la dérivée par rapport au temps d’une certaine 
grandeur e.



D’autre part, quand le thermostat caché cède à la particule 
une énergie dU qui lui communique un travail dA (avec les notations 
employées au chapitre IV), nous écrirons avec Helmholtz :

(13) — d„tU = — 6 de + dA

et la Thermodynamique relativiste nous donnera :

(14) -dM„U = dQ + dA, 

avec :

(15) dQ = -Td„.S, dA = dM 3L 

MOÙ ^ = —r-°----- est la pseudo-force vive de la particule. Précisons
Vl - P2

que, dans les formules (13) et (14), — dM„ U représente la diminution 
de l’énergie interne du thermostat caché quand M0 augmente. 
De (13) et de (14), compte tenu de (12), on déduit la deuxième 
formule du schéma canonique de Helmholtz :

(16) 8 = S.

Comme dans ce schéma, par hypothèse, s est une variable cyclique 

telle que — = 0, l’équation de Lagrange relative à la variable eas
donne aussi la troisième formule de Helmholtz :

(17) - = Pe = S
3-e

qui peut se vérifier directement sur la formule (4), car elle donne, 
à une constante près :

C = TS = ÊS.

En revanche, comme on n’a plus ici la relation :

U = ê~ — C = TS —C 
(>£

dont la variance relativiste ne serait pas correcte, on ne peut plus 
assimiler l’énergie libre à la fonction de Lagrange. Mais comme 
T est constant, on peut écrire (14) sous la forme :

dM.(U — TS) — — d^JF,
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ce qui nous conduit à assimiler la partie de l’énergie libre du ther 
mostat caché qui dépend de M0 à la pseudo-force vive de la particule 
changée de signe.

3. Le second principe de la Thermodynamique et le principe 
de moindre action de Hamilton. — Dans l’application usuelle 
du principe de Hamilton en Mécanique analytique, on part d’un 
mouvement « naturel », c’est-à-dire d’un mouvement conforme 
aux lois de la Mécanique. On suppose qu’au cours de ce mouvement, 
la particule partant d’un point A de l’espace au temps t0 parvient 
en un point B au temps tu puis on imagine un mouvement « varié » 
qui est fictif et infiniment voisin du mouvement naturel en impo-

Fig . 7.

sant à ce mouvement varié que les points A et B et les instants t0 
et h restent les mêmes que dans le mouvement naturel. En d’autres 
termes, on fait varier très légèrement la forme de la ligne d’univers 
qui dans l’espace-temps représente le mouvement naturel en mainte 
nant fixes les extrémités de cette ligne d’univers.

Le principe de Hamilton nous dit alors que le mouvement 
naturel est caractérisé par l’équation :

(19)

où [SC]Mt est la variation de C quand on maintient la masse propre M0 
constante et égale à sa valeur normale m0- De plus, comme le prin 
cipe de Hamilton est un principe de moindre action, nous pouvons 
aussi écrire (*) :

(20)

(9 A condition qu’entre A et B, il n’y ait pas de foyer cinétique relatif 
au point A. Voir C. R. Acad. Sc., t. 257, 1963, p. 1430.

DE BROGLIE 7
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Nous allons maintenant introduire une idée nouvelle qui paraît 
intéressante. Si l’on admet, comme nous le faisons que la masse 
propre de la particule puisse subir des fluctuations, il devient 
possible de considérer les mouvements variés non plus comme des 
mouvements fictifs purement imaginés, mais comme des mouve 
ments pouvant avoir lieu réellement sous l’action de certaines 
fluctuations momentanées de la masse propre pendant l’intervalle 
de temps t0 tx.

Cette hypothèse admise, le mouvement fluctué AC'B doit, 
en lui appliquant le principe de Hamilton, pouvoir être déterminé 
par l’équation :

(21) J'‘S(C + SC )dt = J'1 (SC + S2C )dt = 0.

Mais ici la masse propre n’étant plus supposée constante, nous 
devons écrire :

(22) SC = [SC]M. + SM C, 82C = [82C]M„ + 8’C

en désignant par S^C l’ensemble des termes qui, dans S2C, dépendent 
de la variation de la masse propre. Nous supposerons, ce que nous 
justifierons plus loin, que dans (21) le terme en S2 sC est négligeable 
par rapport aux autres et il nous restera :

(23) J'* { [SC]Mo + SM C + [82C]Mb } dt = 0.

La première intégrale étant nulle en vertu de (19), nous obtenons :

(24) - P‘SM C dt = -(/*- f0)S^C = f‘ [S ^U.dt > 0,
J tt J fo

8MoC étant une moyenne temporelle prise entre t0 et tl% Alors, comme 
Zx — t0 est positif et que — SMjC est la quantité de chaleur cédée 
par le thermostat caché à la particule, on voit qu’en moyenne 
temporelle cette quantité de chaleur, qui est constamment nulle 
sur la trajectoire naturelle, est positive sur la trajectoire fluctuée. 
Il en résulte que l’entropie S diminue en moyenne quand on passe 
du mouvement ACB au mouvement AC'B. L’entropie est donc 
maximale sur la trajectoire naturelle par rapport aux fluctuations 
soumises aux conditions de la variation hamiltonienne et l’on peut 
dire que le mouvement naturel est plus probable que les mouvements 
variés. On fait ainsi apparaître une très remarquable relation entre



LA THERMODYNAMIQUE DE LA PARTICULE ISOLÉE 99

le principe de moindre action et le second principe de la Thermo 
dynamique (1).

Il nous reste à montrer que nous avons eu raison de négliger dans 
(23) le terme en 8* fC. Or on voit sur l’équation (24) que SMot est de 
l’ordre de [82C]Mo, c’est-à-dire du second ordre par rapport aux 
variations hamiltoniennes de sorte que S^C est du troisième 
ordre et peut être négligé.

La Mécanique ondulatoire, dès ses débuts, avait pu établir 
une relation entre l’Action d’un corpuscule et la phase de son onde 
associée, ce qui lui avait permis d’identifier le principe de Mau- 
pertuis avec le principe de Fermât. Poursuivant le même genre 
d’identification, la théorie précédente rattache le principe de moin 
dre action au second principe de la Thermodynamique et à l’aug 
mentation de l’entropie.

4. Remarques sur la relation /îvc = kT. — Nous voulons main 
tenant faire quelques remarques sur la première des formules 
fondamentales (8) de notre nouvelle Thermodynamique.

Notons d’abord qu’elle soulève la difficulté suivante : Comme la 
fréquence vc est caractéristique de la particule, la température T 
doit en dépendre aussi. Or il semblerait naturel d’attribuer au 
milieu subquantique une température T unique, indépendante 
de la nature des diverses sortes de particules qui sont en contact 
énergétique avec lui. On pourrait chercher à lever cette difficulté 
en imaginant que le thermostat caché soit formé par des ensembles 
de particules (c’est-à-dire probablement de champs à bosse), 
chaque ensemble contenant des particules « cachées » de même 
nature et ayant sa température propre. La particule considérée 
du niveau microphysique serait, peut-être par suite d’un phéno 
mène du genre résonance, uniquement en interaction avec les 
particules cachées de même nature qu’elle et c’est pourquoi l’on 
pourrait avoir dans le système propre de la particule :

T _ hv„ _ m0c2
°“ k ~ k ■

Cette hypothèse peut assurément paraître assez artificielle, mais 
il est curieux de constater que j’avais déjà été amené à l’admettre 
quand, dans une recherche de nature tout à fait différente, j’avais

0) En termes imagés, on peut dire que la trajectoire naturelle suit la 
ligne de talweg d’une vallée de néguentropie.



cherché à déduire l’équation des ondes avec terme de masse d’une 
équation d’ondes universelle sans terme de masse du type de celle 
envisagée par M. Heisenberg (l).

Nous devons encore souligner un autre point délicat, Si l’on 
considère les températures T et T„ comme se rapportant à la parti 
cule elle-même, la relation :

T = T„ VF- P2

qui résulte automatiquement de la première formule (8) est satis 
faisante parce qu’elle correspond à la transformation relativiste 
de la température. Mais si l’on veut rapporter les températures 
au thermostat caché, la relation :

m0cs = kT0
montre que, dans le système propre de toute particule de masse m0, 
le thermostat caché doit posséder la même température T„. Il en 
résulte que, dans tout système galiléen, on doit, du moins en ce 
qui concerne les particules de masse propre m0, attribuer au thermo 
stat caché la même température T„. Cette propriété étrange montre 
que le milieu subquantique n’est pas assimilable à un thermostat 
macroscopique ordinaire dont le système propre définirait un 
système de référence privilégié, ce qui serait d’ailleurs contraire au 
principe de Relativité. Il semble qu’on devrait plutôt l’assimiler 
à un « éther de Dirac », dont les propriétés apparaîtraient identiques 
pour tous les observateurs galiléens (2), ou à un « éther de Ter- 
letsky » [8].

Les remarques qui précèdent montrent qu’il faudrait arriver 
à préciser la structure, certainement très particulière, du milieu 
subquantique de Bohm et Yigier de façon que l’existence de ce milieu 
ne soit pas en contradiction avec le principe de Relativité. La 
conception de M. Terletsky suivant laquelle on pourrait admettre 
que ce milieu serait formé par des particules de masse imaginaire 
se déplaçant avec une vitesse supérieure à la vitesse de la lumière 
pourrait peut-être être utile pour résoudre ce problème, mais je 
pense qu’il serait prématuré d’aborder ici l’étude de cette difficile 
question (voir [iS]).

Il nous paraît intéressant de noter que la formule mBc* = kTt

(q Voir bibliographie, [10], p. 99-103.
(2) Sur l’éther de Dirac, voir mon article du Journal de Physique, [4], 

p. 975.

100 LA THERMODYNAMIQUE DE LA PARTICULE ISOLÉE



LA THERMODYNAMIQUE DE LA PARTICULE ISOLÉE 101

conduit pour les particules matérielles à attribuer à la tempé 
rature T0 une valeur très élevée. En employant les unités C. G. S. 
et les degrés Kelvin, elle donne en effet T0 ~ 103’ m„. Pour l’électron, 
on trouve donc que T0 est de l’ordre de dix milliards de degrés 
absolus et pour les particules plus lourdes on trouverait des tem 
pératures encore plus élevées. Ainsi toute particule matérielle 
se trouverait en constant contact énergétique avec une « chaudière 
cachée » qui serait le siège de températures extrêmement élevées 
et qui serait partout présente dans ce que nous appelons le « vide ». 
D’autres considérations ont déjà amené certains auteurs (Lanczos, 
Bohm) à une conclusion analogue.

5. Les relations M0 = m0 et S(M0) = — k. — Nous allons main 
tenant tirer de la seconde formule (8) définissant l’entropie S 
de très intéressantes conséquences.

Considérons d’abord une particule qui n’est soumise à aucun 
champ extérieur. D’après la formule de Boltzmann S = k Iog P,
la probabilité de l’état d’une particule dont la masse propre fluc-

_s
tuante a la valeur M„ est proportionnelle à ek, donc d’après la

seconde formule (8) à e m°. On en conclut que :

e m°M0dM0
(25) M0 = —---------------- = m„.

e m»dM,

Ainsi la masse propre constante m„ usuellement attribuée à la 
particule nous apparaît comme étant la valeur moyenne de sa 
véritable masse propre instantanée qui est fluctuante.

Nous pouvons préciser cette idée de la façon suivante. Quand 
on fait abstraction des interactions entre la particule et le milieu 
subquantique, la théorie du guidage conduit à définir la masse 
propre variable de la particule dans son système propre par la 
formule :

où Q0 = M0c2 — m0c2 est le potentiel quantique précédemment 
défini dont on vérifie qu’à l’approximation newtonienne il a la



102 LA THERMODYNAMIQUE DE LA PARTICULE ISOLÉE

valeur connue — ------ - . Le potentiel Q traduit l’interaction2m0 a
du corpuscule avec son onde : c’est donc une grandeur du niveau 
microphysique qui ne fait pas explicitement intervenir le milieu 
subquantique. Si l’on veut tenir compte des interactions du milieu 
subquantique avec la particule, il est naturel d’ajouter au dernier 
membre de l’équation précédente un potentiel quantique « fluc 
tuant » Qf pour représenter cette interaction. On écrira donc :

M„c2 = m0c2 + Q0 + Q f.

Comme M. Terletsky l’a suggéré par d’intéressantes considérations 
dans ses importants Mémoires, il y a des raisons de penser que les 
échanges énergétiques entre le milieu subquantique et les particules 
doivent se réduire à des fluctuations de moyenne nulle, ce qui 
conduit à poser Qf = 0. La dernière équation donne alors :

(25 bis) M0c2 == m0c2 + Q0

et, si le potentiel quantique Q0 est nul, on retrouve la relation 
M0 = ma. La masse propre usuelle m„ résulterait donc des échanges 
énergétiques continuels entre la particule et le thermostat caché. 

Si nous introduisons la formule (25) dans l’évaluation de la

valeur moyenne de l’entropie qui, d’après (8), est S = S0 — /c —,
77î0

nous trouvons :

(26) S = S0 — A" ou S(MT) = - A.

Les formules (26) peuvent d’ailleurs se retrouver par le raisonne 
ment suivant. Plaçons-nous dans le système propre de la particule 
et supposons qu’initialement elle ait une masse propre M„ nulle 
de sorte qu’alors W0 et S(M„) soient nuis. Si le thermostat caché 
fournit à la particule la quantité de chaleur dQ0, sa masse propre

augmentera de dM0 = . Quand le thermostat aura fourni la

quantité de chaleur 8Q0 telle que la masse propre M0 ait atteint 
sa valeur moyenne m0, on aura :

(27) 8Q„ = m0c2 = AT„.

L’entropie aura alors diminué de :

(28) SS = - - A.
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Le terme S(M0) dans l’expression de S aura donc passé de la valeur 0 
initiale à la valeur — k et nous retrouvons le résultat (26).

Ajoutons que, pendant les fluctuations de la masse propre, 
M0 peut varier de 0 à + oo, c’est-à-dire que 8M0 = M0 — m0 
peut varier de — m„ à + oo, les valeurs très grandes de 8M„ étant 
naturellement extrêmement peu probables.

6. Comparaison avec la méthode d’Einstein pour l’étude des 
fluctuations. — Rappelons le principe général de la méthode 
employée autrefois par Einstein pour l’étude des fluctuations.

Considérons un système complexe dont l’état dépend, à côté 
d’un très grand nombre d’autres paramètres, d’un certain para 
mètre s. Pour trouver la probabilité d’une fluctuation de l’état du 
système complexe due à une variation du paramètre s, on peut 
suivant Einstein procéder de la manière suivante.

Soit SM l’entropie maximale du système dans son état le plus 
probable et S(e) son entropie pour une certaine valeur du para 
mètre e. On peut écrire la relation de Boltzmann sous la forme :

(29) S(e) = /clogI^£-) + S„,
F 0

où P0 et S0 sont deux constantes. Si nous posons S0 = SM, nous 
devons poser P„ = PM, car S = SM doit correspondre à l’état de 
probabilité maximale PM. Nous aurons donc :

SM-S(e)

(30) P(s) = PMe *

Naturellement, plus S(e) est petit et s’éloigne de SM, plus la proba 
bilité de l’état fluctué P(e) est petite. Il résulte de (30) que la valeur 
moyenne de SM — S(s) est :

(31) SM - SR) = k.

Nous pouvons appliquer le formalisme précédent à la particule 
en contact avec le thermostat caché, système très complexe, 
en prenant pour paramètre e la masse propre variable M0 de la 
particule et en posant :

*>-*-*£.(32)
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S sera maximale pour M„ = 0, d’où SM = S0 et nous retrouvons
_ M. _______

la proportionnalité de P(M0) à e m° et la formule S(M0) = — k.
En vue d’une comparaison qui sera faite au paragraphe suivant, 

nous rappellerons qu’à l’époque (vers 1910), où Jean Perrin venait 
de faire ses célèbres mesures de la constante d’Avogadro par l’étude 
de la répartition en hauteur de granules en suspension dans une 
émulsion sous l’action du champ de la pesanteur, Smoluchovsky 
avait fait la théorie du phénomène par la méthode d’Einstein. 
La probabilité pour qu’un granule de masse m ait une altitude z 
comptée à partir du fond du récipient contenant l’émulsion est 
donnée par la loi barométrique de Laplace sous la forme :

_ mgz

(33) P(z) = Cte e .

En prenant S(0) = 0, l’entropie correspondante est :

(34) S(z) = k log P(z) = — .

On trouve aisément :

(35)

d’où

(36)

L zVizyh _ kT

J" P (z)dz m°

mg kT 
"T" mg k.

L’entropie du granule, normée comme on l’a fait, fluctue de sa 
valeur maximale égale à 0 quand le granule est au fond du récipient 
à l’altitude z — 0 jusqu’à (théoriquement) S = — oo pour z = oo, 
avec comme valeur moyenne S = — k.

7. Vue d’ensemble sur les résultats obtenus jusqu’ici. — Nous 
voudrions maintenant résumer en quelques mots l’image à laquelle 
la théorie de la double solution, maintenant complétée par l’hypo 
thèse de l’existence du milieu subquantique jouant le rôle de 
thermostat caché, nous a finalement conduit.

Le corpuscule est conçu comme une inhomogénéité très localisée 
(petite région de très hautes valeurs du champ ondulatoire) au 
sein d’une onde dont l’équation de propagation contient la masse
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propre du corpuscule. En l’absence de perturbations, la masse 
propre ayant la valeur constante m0, le corpuscule décrirait régu 
lièrement l’une des lignes de courant de la propagation d’ondes 
conformément à la formule du guidage. Mais l’onde et son cor 
puscule se propagent, si l’on peut dire, « à la surface » du milieu 
subquantique jouant le rôle de thermostat caché et, par suite des 
échanges énergétiques qui s’opèrent entre le thermostat caché 
et le corpuscule, la masse propre de celui-ci subit de continuelles 
fluctuations qui lui font parcourir toute une série de tronçons 
de lignes de courant de l’image hydrodynamique de l’onde en 
propagation. Le corpuscule est ainsi animé au sein de l’onde, dont 
il constitue une très petite région singulière, d’une sorte d’agitation 
brownienne et c’est là ce qui introduit la probabilité dans les pré 
visions de la Mécanique ondulatoire et de la Physique quantique.

L’image de la particule suivant bien sagement une ligne de cou 
rant conformément à la formule du guidage a exactement la même 
valeur que celle qu’on utilise en Hydrodynamique quand on consi 
dère une molécule du fluide comme suivant dans son mouvement 
une trajectoire constamment tangente à l’une des lignes de courant 
de l’écoulement hydrodynamique. Mais, dans un cas comme dans 
l’autre, il se superpose en réalité à ce mouvement théorique une 
agitation thermique désordonnée qui fait que l’unité, corpuscule 
ou molécule du fluide, saute constamment d’une ligne de courant 
sur une autre : finalement, c’est seulement l’ensemble des lignes 
de courant qui donne une image statistique du mouvement d’une 
infinité d’exemplaires de l’unité, mais ceci n’implique pas du tout 
que chaque unité n’ait pas à chaque instant une position et un 
mouvement bien définis.

Si nous revenons maintenant aux expériences de Jean Perrin, 
nous pouvons dire qu’un granule soumis dans une émulsion à la 
force de la pesanteur a comme trajectoire naturelle la trajectoire 
verticale qui l’amènerait sur le fond du récipient où il resterait 
immobile, mais l’agitation thermique des molécules cachées du 
fluide où il est en suspension le rejette constamment à droite, 
à gauche, vers le haut ou vers le bas de sorte qu’il a toujours une 
probabilité non nulle, donnée par la loi de Laplace, de se trouver 
à une hauteur 2 au-dessus du fond du récipient. De même, dans notre 
conception actuelle de la Mécanique ondulatoire, la particule a 
pour trajectoire naturelle celle qui lui est attribuée par la formule 
du guidage, mais elle se trouve constamment projetée de-ci, de-là.



par l’agitation provenant de son contact avec le milieu subquan- 
tique et c’est là ce qui lui donne finalement une probabilité non 
nulle, égale à | 4* l2> de se trouver en n’importe quel point de l’onde.

Si ces idées se montraient être bien exactes, un remarquable 
pressentiment d’Einstein se trouverait alors réalisé. Lui, qui, 
en 1905, l’année même où il jetait les bases de la théorie de la Rela 
tivité et où il découvrait l’aspect corpusculaire de la lumière, avait 
aussi étudié avec profondeur la théorie du mouvement brownien, 
il semble avoir toujours pressenti que l’intervention des probabilités 
en Mécanique ondulatoire indiquait l’existence d’une sorte de 
continuel mouvement brownien des particules microphysiques. 
Or qui dit mouvement brownien dit aussi fluctuations et thermo 
dynamique (1).

0) Je signale que, dans ma Note aux Comptes rendus de VAcadémie des 
Sciences du 30 juillet 1962, j’avais défini l’entropie S du thermostat caché 
à l’aide de l’intégrale d’action hamiltonienne de la particule prise sur une
période interne t c = --------de celle-ci, en posant :

m0c2 \/l - p2

(a) SS = |sM„J^Cdf.

Dans le cas de particules matérielles (mais non pas dans celui des photons, 
même si l’on considère leur masse propre comme très légèrement différente
de zéro), la période propre t „ = est extrêmement petite de sorte qu’il
paraît légitime de considérer la masse M0 comme constante pendant cette 
très courte durée. La formule (a) est alors pratiquement équivalente à la 
définition (8) :
(P) S = S „-/3

Ii Iq
adoptée plus haut. Pour les particules matérielles, la formule (b) plus simple 
que (a) paraît donc équivalente à (a). Mais le cas des pilotons, qui soulève 
des difficultés particulières devra faire l’objet d’un examen spécial.
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CHAPITRE IX

STABILITÉ DES ÉTATS, 
ENTROPIE ET ÉNERGIE LIBRE

1. Les transitions quantiques et la « prérogative » des états 
monochromatiques. —- Depuis l’apparition en 1913 de la théorie 
de l’atome de Bohr, on a attribué aux transitions quantiques, 
qui font passer un système quantifié d’un état stationnaire à un 
autre, un caractère qu’on pourrait qualifier de mystique. On 
renonce, en effet, à s’en faire une image quelconque et Bohr n’a 
pas hésité à affirmer qu’elles « transcendaient » toute description 
en termes d’espace et de temps. C’est ce qui a amené Schrôdinger 
à dire ironiquement que, dans la théorie quantique actuelle, on 
décrivait minutieusement les états stationnaires où il ne se passe 
rien, mais qu’on se refusait à décrire les transitions où il se passe 
quelque chose.

L’idée introduite par la théorie de la double solution que la 
Mécanique ondulatoire doit en dernière analyse reposer sur des 
équations non linéaires permet de penser que, si les transitions 
quantiques échappent à toute description dans la théorie actuelle, 
c’est qu’elles constituent des processus essentiellement non linéaires. 
Elles seraient des processus transitoires de très courte durée ana 
logues à ceux qu’on a déjà rencontrés dans plusieurs théories 
non linéaires en Mécanique et en Physique quand il y a passage 
brusque d’un cycle limite à un autre. Cette idée très attrayante 
avait déjà été envisagée, il y a quelques années, par MM. Cap 
et Destouches et elle a été reprise récemment par MM. Fer, Lochak, 
Andrade e Silva et Leruste qui ont publié à ce sujet des travaux 
d’un grand intérêt (1).

Or, quand MM. Lochak et Andrade e Silva ont eu connaissance 
de ma première Note d’août 1961 sur la Thermodynamique de 
la particule isolée, après m’avoir fait justement remarquer que mes

O Voir bibliographie, [5] et [11].
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formules déduites de la relation dS = ~ ne s’appliquaient qu’aux
processus réversibles, ils m’ont suggéré que les états transitoires 
très brusques qu’ils avaient envisagés pourraient avoir un carac 
tère irréversible et s’accompagner d’une brusque variation de 
l’entropie (ou de l’énergie libre) et que le passage d’un état sta 
tionnaire à un autre pourrait comporter le franchissement d’une 
vallée d’entropie (ou d’une montagne d’énergie libre).

J’ai été ainsi amené à réfléchir plus profondément à ces intéres 
santes questions. Pour faire comprendre l’orientation de ma pensée 
à ce sujet, je partirai de la remarque que, dans la théorie usuelle, 
on accorde une sorte de prérogative aux états qu’on peut qualifier 
de « monochromatiques ». Je dois préciser que j’entends par « états 
monochromatiques », d’une part, les états stationnaires des sys 
tèmes quantifiés qui sont représentés par une fonction propre de 
l’hamiltonien et sont associés à une onde stationnaire de fréquence 
déterminée, mais aussi d’autre part, dans le cas des particules 
en mouvement progressif, aux états associés à des groupes d’ondes 
assimilables dans presque toute leur extension à une onde plane 
monochromatique. La prérogative accordée à ces états consiste 
en ceci qu’on les regarde comme plus normalement réalisés que les 
états représentés par une superposition de fonctions propres ou 
d’ondes planes monochromatiques. Dès les débuts de la théorie de 
l’atome de Bohr, on a considéré l’atome comme devant nécessaire 
ment se trouver toujours dans un état stationnaire et quand, 
plus tard, on a traduit la théorie de Bohr dans le langage de la 
Mécanique ondulatoire, on a admis que les états représentés par 
une superposition de fonctions propres n’avaient qu’une existence 
très fugitive et que l’atome était toujours saisi par l’observation 
dans un état stationnaire représenté par l’une de ses fonctions 
propres. En théorie quantique des champs, la même préoccupation 
se manifeste par le fait que les « nombres d’occupation » sont en 
général rapportés aux ondes planes monochromatiques.

Dans un des articles très pénétrants qu’il avait consacrés à la 
critique des conceptions quantiques actuelles, Schrodinger s’était 
étonné avec raison de cette prérogative accordée aux états mono 
chromatiques. Il pensait qu’elle était injustifiée parce qu’a priori 
un état de superposition a un caractère plus général qu’un état
monochromatique (la fonction T = 2CiTi est plus générale que
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la fonction Y = Yk). Et cependant le succès de l’hypothèse que 
les états monochromatiques ont effectivement une prérogative 
ne permet guère de douter, contrairement à l’opinion de Schrôdinger 
que cette prérogative ne soit justifiée. Comment expliquer 
cela ?

L’idée qui m’a paru pouvoir apporter l’explication cherchée, 
c’est que les états de superposition auraient une probabilité plus 
faible que les états monochromatiques, qu’ils seraient donc en 
quelque sorte instables et que des transitions quantiques, processus 
non linéaires très rapides, tendraient toujours à ramener particules 
ou systèmes à un état monochromatique plus stable. Il est évident 
que, du point de vue thermodynamique, la stabilité d’un état 
doit être rattachée à un maximum d’entropie ou à un minimum 
d’énergie libre. Pour voir plus clair dans cette affaire, nous allons 
étudier un certain nombre de cas particuliers. Et, pour commencer, 
nous allons d’abord examiner deux cas où l’on a affaire à un système 
isolé qui n’échange pas d’énergie avec le milieu extérieur et nous 
verrons sur ces exemples que, dans de pareils cas et conformément 
à la relation de Boltzmann S = k log P, c’est le maximum de l’en 
tropie qui correspond à l’état le plus probable.

2. Cas d’une particule libre à l’approximation newtonienne. — 
Je rappelle d’abord la définition du potentiel quantique. Dans le 
cas relativiste général, c’est la grandeur M0c2 donnée par :

(1)

qui, dans le système propre de la particule, joue le rôle de potentiel 
quantique dont le gradient changé de signe donne la force quantique. 
Comme le potentiel quantique Q doit se transformer comme une 
quantité de chaleur dans un changement de système de référence 
galiléen et qu’il n’est défini qu’à une constante près, nous pouvons 
poser :

Q0 = M0c2 — m„c2, Q = QoV 1 — p2.(2)

A l’approximation newtonienne, nous retrouvons aisément l’ex 
pression :

(3)
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Considérons alors une particule qui se déplace librement sans 
être soumise à aucune force. Son onde associée peut être un groupe 
d’ondes assimilable à une onde plane monochromatique et son 
mouvement est alors rectiligne et uniforme ou bien être formée par 
une superposition plus générale d’ondes planes monochromatiques, 
comme dans les phénomènes d’interférences ou de diffraction, 
et alors la formule du guidage lui assigne un mouvement compliqué. 
Je vais montrer que, dans ces conditions, un état de superposition a 
une entropie moyenne inférieure à celle d’un état monochromatique.

En effet, dans un état monochromatique, l’amplitude a de l’onde 
étant constante, le potentiel Q donné par (3) est nul tandis que 
dans un état de superposition la valeur moyenne de Q pour toutes 
les positions de la particule dans son onde sera :

(4) Q
h2
2m

r Aa , H2 f A ,la2— flx = — a Aaax. J a 2m J
Comme a est toujours nul à l’infini, une intégration par parties 
donne :

(5) Q = ss /(grad dx > 0,

c’est-à-dire d’après (2), M„ > m0. Donc, dans un état de super 
position, la valeur moyenne de la masse propre M0 est supérieure à 
sa valeur normale moyenne m0. Il suffit alors de se rappeler que nous 
avons défini l’entropie S par la relation :

M
(6) S = S0 — /c —’ m0
pour voir que l’entropie Sm d’un état monochromatique et la valeur
moyenne Ss d’un état de superposition ont pour valeurs :

(7) Sm = S„ - Ss = S„ - < Sm,jJlQ
ce qui montre bien que l’état monochromatique, ayant une entropie 
supérieure à celle de l’état de superposition, doit avoir une proba 
bilité et une stabilité plus grandes (x).

3. Cas du choc de deux particules. — Le cas que nous venons 
d’étudier était très simple parce que nous considérions une particule 
isolée. Nous allons maintenant envisager le cas plus compliqué

P) Pour l’extention de ce raisonnement au cas de l’électron de Dirac, 
voir l’Appendice.



du choc de deux particules en nous en tenant toujours à l’approxi 
mation newtonienne. Le problème a été traité par la Mécanique 
ondulatoire dès 1927 par Max Born et c’est à ce moment qu’il a 
introduit le premier l’interprétation probabiliste de la nouvelle 
Mécanique.

Nous supposerons qu’à l’instant initial les deux particules sont 
suffisamment éloignées l’une de l’autre pour être pratiquement 
sans interaction et que chacune d’elles est alors portée par un train 
d’ondes assimilable à une onde plane monochromatique. La fonction 
d’onde dans l’espace de configuration a alors une forme Y* qui est 
égale au produit des fonctions d’onde individuelles des deux 
particules. Quand les particules se rapprochent, l’interaction 
commence et le calcul qu’on fait dans la théorie usuelle peut, 
à notre avis, s’interpréter de la façon suivante. Il y a d’abord 
une évolution linéaire et causale de l’onde Y de Schrôdinger dans 
l’espace de configuration : cette fonction Y devient une super 
position de composantes de Fourier de la forme Y = ^ CjYj

qui correspond à l’ensemble des propagations d’ondes individuelles 
corrélées vx et v2 dans l’espace physique. On admet ensuite, dans le 
calcul classique développé par Born que tout se passe comme si, 
à la fin de la collision, il s’était produit brusquement un processus 
qui avait rompu les relations de phase entre les composantes de 
Fourier Y, et qui avait eu finalement pour résultat que chacune 
des particules se retrouve attachée à la fin de l’interaction à un 
train d’ondes assimilable à une onde plane monochromatique, 
l’énergie et la quantité de mouvement globales du système se 
trouvant conservées. La forme Y^ finale de la fonction d’onde Y 
de l’espace de configuration est donc devenue égale à l’une des 
fonctions Yj produit des fonctions d’onde finales des deux par 
ticules. Au total, il y a eu passage de l’état initial Y; à l’un des 
états finaux — Yfc, ce passage ayant a priori d’après les lois de 
probabilités de la Mécanique ondulatoire une probabilité | ck |2 
de se produire. Le passage s’est donc opéré en deux étapes : la 
première relativement lente, linéaire et causale est bien décrite 
par les équations usuelles de la Mécanique ondulatoire à l’aide de 
l’évolution de la fonction Y, la seconde très brève et, suivant nos 
conceptions, sans doute non linéaire qui comporte un échange 
brusque et important d’énergie et de quantité de mouvement 
entre les deux particules. La description de cette seconde étape
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échappe complètement à la théorie linéaire usuelle et est simple 
ment postulée par elle sans aucune tentative d’interprétation.

Nous voulons maintenant tenter de prouver que l’état initial 
et l’état final, qui sont tous deux représentables par des trains 
d’ondes assimilables à des ondes planes monochromatiques, ont 
une entropie supérieure à celle de l’état de superposition inter 
médiaire. La difficulté de le faire provient de ce que jusqu’à présent 
nous n’avions développé la thermodynamique cachée que pour une 
particule unique et isolée et qu’il nous faut maintenant généraliser 
les formules obtenues au cas d’un système de particules. Sous réserve 
d’une étude plus approfondie de la question, il nous paraît naturel 
de le faire en définissant, à l’approximation newtonienne, la tem 
pérature T d’un système de deux particules de masses Hq et m, 
et la masse propre totale du système par les formules :

(8) A:T = (/rii + /n2)c2 

et :
(9) M0ca = (mj + m2)c2 + Q,

où Q est le potentiel quantique du système défini à partir de l’am 
plitude a de l’onde T dans l’espace de configuration par :

(10) q  = -#>ÿ  A
rrii

A iCL 
a

Or, nous avons pour l’énergie W et la fonction de Lagrange £ du 
système, compte tenu des termes de masse, les formules :

...... ( w = (/77i -f- 7772)c2 + Ec -f- V -j- Q,
( } ( £ = - (nq + m2)c2 + Ec -V-Q,

où Ec est l’énergie cinétique totale des deux particules et V leur 
énergie potentielle d’interaction. Nous éliminerons Ec qui dépend 
du mouvement des deux particules défini par la formule du guidage 
en soustrayant W de £, ce qui donne :

(12) £ = - 2(171! + /n2)c2 - 2Q + W - 2V.

Comme W, énergie totale du système, est une constante et que V 
ne dépend pas de M0, nous pouvons écrire :
(13) £ = - 2M0c2 + ....
les termes non écrits ne dépendant pas de M0.
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S £Or nous savons que 8S = -**•- et, en tenant compte des for 

mules (8) et (9), nous trouvons aisément :

(14) S = S0 — 2k Mo 
n?! + m. = S„ - 2k- 2k

(n?! + m2)c‘‘ Q.

Pour l’état « monochromatique » initial et pour l’état « mono 
chromatique » final, nous avons, a étant constant, Q = 0, d’où :

(15) Sm = S0-2 k.

Le terme — 2k est satisfaisant puisque les deux particules sont 
alors indépendantes et apportent chacune à l’entropie une contri 
bution égale à — k. Pour l’état de superposition, nous trouvons 
d’après (14) :

(16) S, = S„ - 2k- 2k
(ni! + m2)c2 Q,

où Q est la valeur moyenne de Q calculée dans l’espace de configu 
ration où la probabilité de présence du point représentatif du sys 
tème en chaque point est donnée par a2. Compte tenu de l’ex 
pression (10) de Q, un calcul tout à fait analogue à celui que nous 
avions fait dans l’espace physique pour obtenir la formule (5) 
nous montre que Q > 0. La comparaison des formules (15) et (16) 
nous montre alors immédiatement que :

(17) Ss < S„.

Nous retrouvons, donc notre conclusion précédente sur l’insta 
bilité des états de superposition et nous voyons que le processus
transitoire brusque qui correspond au passage de l’état Y = ^>'cj Yt

i
à l’état final Yfc s’accompagne d’une brusque augmentation de 
l’entropie conformément aux idées de MM. Lochak et Andrade 
e Silva. L’état initial et l’état final étant monochromatiques corres 
pondent à la valeur S0 — 2k de l’entropie et nous pouvons repré 
senter par le diagramme de la figure 8.

Sur ce diagramme, la courbe AB en trait plein représente sché 
matiquement la première étape de la collision correspondant à 
l’évolution causale et linéaire de la fonction Y usuellement calculée

d e b r o g u e 8



tandis que la ligne ponctuée BC représente la transition brusque 
et sans doute non linéaire qui, après franchissement d’une vallée 
d’entropie, ramène le système de l’état de superposition B à l’état 
monochromatique final C avec augmentation de l’entropie.
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4. Introduction de l’énergie libre en Thermodynamique cachée 
des particules. — Nous venons d’étudier deux cas où une particule 
ou un système est isolé et n’échange aucune énergie avec le milieu 
extérieur, ne se trouvant en contact qu’avec le thermostat caché. 
Nous avons alors trouvé que la stabilité des états correspond 
à un maximum de l’entropie et il doit sans doute en être de même 
dans tous les cas de ce genre. Mais le cas des systèmes qui peuvent 
échanger de l’énergie avec le milieu extérieur doit être différent. 
Dans sa très intéressante Note d’avril 1963, M. Lochak a insisté 
sur le fait que, pour un système quantifié pouvant échanger de 
l’énergie avec le milieu extérieur, la stabilité des états quantiques 
doit correspondre à un minimum d’une fonction « énergie libre » 
de la forme F = U — TS. Les états quantifiés du système qui, 
sauf l’état de moindre énergie, sont seulement métastables cor 
respondraient à une série de petites cuvettes d’énergie libre sur 
le flanc d’une montagne d’énergie libre. Cette conception nous 
paraît exacte, mais il y a lieu de bien préciser la définition de cette 
énergie libre qui n’est pas tout à fait la même qu’en Thermody 
namique usuelle.

Désignons par Q la quantité de chaleur cédée à une particule 
par le thermostat caché et par Q le potentiel quantique de cette 
particule. Les formules de notre thermodynamique nous donnent 
dans le système propre de la particule :

S = *Q
m0c2 = S. - * - Q

T ’(18)



STABILITÉ DES ÉTATS, ENTROPIE ET ÉNERGIE LIBRE 115

d’où :

(19) 8û = - T SS = SQ.

Il est essentiel de noter que, malgré leur égalité, les grandeurs 
8Q et SQ ont des sens physiques très différents : en effet, SQ est 
la quantité de chaleur échangée entre le thermostat caché et la 
particule tandis que SQ est la variation de la masse propre de la 
particule qui en résulte. La chaleur Q ne peut circuler qu’entre 
le thermostat caché et la particule et ne peut pas intervenir direc 
tement dans la dynamique de la particule et dans ses échanges 
d’énergie avec l’extérieur, sans quoi le thermostat caché ne serait 
pas caché.

L’énergie de la particule peut s’écrire :

(20) W = m„c2 + Ec + V+Q,

où V est l’énergie potentielle classique et Ec l’énergie cinétique 
M c2—:=L=r. — M„c2 qui, à l’approximation newtonienne, se réduit

a/i ~ P*
à ^ /n„n2, v étant la vitesse définie par la formule du guidage. Soit

13 le travail extérieur, c’est-à-dire l’énergie fournie par la particule 
au milieu extérieur. Si nous posons, par définition :
(21) U = Ec + V,

la conservation de l’énergie nous impose d’écrire :

(22) STS = — SW = — 8(U + Q)

et, si nous adoptons comme définition de l’énergie libre :

(23) F = U - TS,
nous avons :
(24) 813 = - 8(U + Q) = - S(U - TS) = - 8F.
Nous retrouvons donc la formule classique S13 = — SF : elle 
entraîne que l’état le plus stable correspond à la valeur minimale 
de F.

Mais nous devons remarquer que la définition (23) adoptée pour 
l’énergie libre n’est pas identique à celle qui est adoptée par la 
Thermodynamique usuelle. Dans celle-ci, en effet, on considère 
un corps qui contient une énergie mécanique et thermique totale U



et qui peut échanger avec l’extérieur de la chaleur et du travail. 
On est alors amené à écrire :

(25) SU = 8Q - 81S,

8Q étant ici la chaleur reçue de l’extérieur par le corps et 815 le 
travail qu’il fournit à l’extérieur. En posant :

(26) F = U - TS,

on obtient pour une transformation réversible :

(27) STS = - 8(U - TS) = - 8F.

Mais, dans le problème que nous étudions, les choses sont diffé 
rentes. Nous avons une particule dont l’énergie est donnée par la 
formule (20). Cette particule est en contact avec le milieu extérieur, 
mais elle ne peut lui emprunter ou lui fournir que du travail, 
c’est-à-dire de l’énergie mécanique ordonnée : elle se trouve égale 
ment en contact avec le thermostat caché auquel elle ne peut 
emprunter ou fournir que de la chaleur avec variation corres 
pondante de sa masse propre. La conservation de l’énergie doit être 
valable pour les échanges d’énergie entre la particule et le milieu 
extérieur, abstraction faite de la présence du thermostat caché. 
La présence de celui-ci se manifestera seulement dans nos calculs 
par la nécessité de prendre des moyennes sur la position de la 
particule.

Ce sont ces circonstances qui nous ont amené à prendre pour U 
la définition (21) qui est différente de la définition de la Thermo 
dynamique usuelle que nous venons de rappeler puisque notre 
grandeur U ne représente pas la totalité de l’énergie du système 
considéré. Et quand nous avons posé F = U — TS, nous avons 
obtenu une définition de l’énergie libre qui diffère de celle de la 
Thermodynamique classique d’abord parce que U n’a pas la même 
définition dans les deux théories et aussi parce que S n’est plus 
l’entropie du système considéré (la particule ne contenant pas 
de chaleur sous forme d’énergie calorifique désordonnée), mais 
est celle du thermostat caché qui, lui, est un réservoir de chaleur.

Bref, la raison essentielle de la différence qui existe entre les 
formules (24) et (27), dont l’aspect est identique, est qu’une par 
ticule n’est pas un corps macroscopique contenant de la chaleur 
sous forme d’agitation moléculaire interne.
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5. Exemples d’application des formules précédentes. — Nous 
allons maintenant donner quelques applications de notre définition 
de l’énergie libre.

a) Électron dans un atome d'hydrogène. — Comme exemple 
d’application à un système quantifié, nous considérerons le cas 
simple d’un électron dans un atome d’hydrogène en nous bornant 
au cas des états complètement stationnaires où la vitesse de gui 
dage v est nulle. On a alors :
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Or j’ai pu démontrer dans mon livre sur la Théorie de la Mesure [4\ 
(p. 76-77) que, dans la théorie de la double solution, le théorème du 
viriel prend la forme :

(28) 2(Ëe + Q) — (r. grâd V) = 0
qui donne ici, avec Ec = 0 et — (r. grad V) = V,

(29) V + 2Q = 0.
Les moyennes sont prises en | Y |2, c’est-à-dire sur les perturba 
tions Bohm-Vigier.

Comme dans les états quantifiés V + Q = Cte quelle que soit 
la position fluctuante de la particule dans son onde, nous avons :

(30) S(V + Q) = 8(V + Q) = 8V = - 8Q = TSS.

On voit aisément que, pour les transitions avec émission d’énergie, 
on a SV < 0 et 8Q > 0. D’où, pour ces transitions :

(31) 8TS=-8(V+Q) = -^SV = SQ.

La diminution de l’énergie potentielle compense donc à la fois la 
production de travail extérieur et l’augmentation 8Q de l’énergie 
de masse propre. On voit que la conservation de l’énergie oblige 
ici l’entropie S à diminuer. La stabilité des états sera donc déter 
minée par la diminution de l’énergie libre F telle que nous l’avons 
définie et non par l’augmentation de l’entropie S, ce qui est en accord 
avec les conceptions de M. Lochak.

Bien entendu, s’il y a apport d’énergie extérieure (813 < 0), 
V + Q augmente, l’augmentation de V provenant à la fois de 
l’apport d’énergie extérieure et de la diminution de l’énergie de 
masse Q accompagnée d’une augmentation de l’entropie S.
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b) Cas de l’oscillateur linéaire harmonique. — Dans le cas des états 
stationnaires de l’oscillateur linéaire harmonique, la phase 9 de l’onde
ne peut dépendreque dutemps etla vitessedeguidagen = — igrad 9

est toujours nulle. Quant à l’énergie potentielle, elle a la forme
V = ^ Kx2. On a donc U = V = ^ Kx2. Or le théorème du viriel (28)

nous donne ici :

(32) Q = V.

On peut donc écrire :

(33) U + Q = V + Q = V + Q = 2V = 2Q 

et :

(34) VS = - 8(V + Q) = - 8(U - TS) = - 28V = - 28Q.

Quand l’oscillateur émet de l’énergie vers l’extérieur, les deux 
potentiels V et Q diminuent en moyenne de la môme quantité. 
Contrairement à ce qui se passe dans le cas de l’atome d’hydrogène, 
la diminution de V s’accompagne d’une augmentation de S, mais 
il y a toujours diminution de F = U — TS.

c) Cas d’une particule qui n’échange pas d’énergie avec l’extérieur.
■— Nous allons étudier le cas d’une particule placée en dehors de 
tout champ (V = 0) qui n’échange aucune énergie avec l’extérieur. 
Ses variations d’énergie ne peuvent alors provenir que de varia 
tions de sa masse propre dues à des emprunts ou des cessions 
de chaleur au thermostat caché et ici, nous l’avons vu, nous devons 
nous attendre à voir les états stables correspondre aux maximums 
de l’entropie S.

Nous allons encore comparer deux états de même énergie de la 
particule, l’un, l’état m, où l’onde T est assimilable à une onde 
monochromatique plane, l’autre, l’état s, où l’onde T est une super 
position d’ondes monochromatiques planes de même fréquence. 
Dans l’état m, Q est nul et Fm se réduit à l’énergie cinétique. 
Dans l’état s, Q n’est pas nul et l’on peut démontrer que Qs > 0. 
Comme l’énergie Ec -)- Q reste constante, nous avons dans les 
deux cas

F — Ec -j- Q — Ec + Q > 0.



Mais, comme, par hypothèse, le travail extérieur 15 est nul, nous 
avons pour la transition s -> m :
(35) 8smF — SsmEc 8smQ = 0, 

d’où :

(36) 8smQ = - TSsmS = - Qs < 0 

et, par suite :

(37) SsmS > 0, 8smEc > 0.

Ainsi, lors de la transition s -> m, il y a à la fois augmentation 
de l’entropie S et de l’énergie cinétique. Pour une particule qui 
n’échange aucune énergie avec l’extérieur, les « états monochro 
matiques » m sont plus probables que les états de superposition 
et correspondent à un maximum de l’entropie ainsi que nous l’avions 
déjà vu au paragraphe 3.

6. Conclusions. — Nous pouvons résumer ce qui précède en 
disant : « Dans le cas d’une particule ou d’un système de particules 
n’échangeant pas d’énergie avec l’extérieur, la stabilité d’un état 
correspond à un maximum de l’entropie ; dans le cas d’un système 
qui peut donner ou emprunter de l’énergie mécanique à l’extérieur 
(tel un atome quantifié qui peut émettre ou absorber un photon 
et aussi, échanger de l’énergie avec une particule extérieure dans 
une collision) la stabilité d’un état correspond à un minimum d’une 
fonction énergie libre convenablement définie. »

On pourrait encore envisager d’autres cas, par exemple celui 
d’un système quantifié en contact avec un thermostat macrosco 
pique extérieur de température 0. On sait que, dans ces conditions, 
l’état d’énergie quantifiée E„ a, d’après la loi de distribution 
canonique de Boltzmann-Gibbs, une probabilité d’être réalisée

proportionnelle à e kQ. Comme toute particule se trouve, suivant 
nos conceptions, en contact énergétique avec le thermostat caché, 
on est amené à concevoir deux Thermodynamiques qui entreraient 
simultanément en jeu : une Thermodynamique « externe » due aux 
échanges de chaleur du système avec le thermostat macroscopique 
et une Thermodynamique « interne » due aux échanges de chaleur 
avec le thermostat caché. M. Lochak dans la Note citée au para 
graphe 4 a insisté sur ce point en faisant une intéressante remarque
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à ce sujet, mais le problème demanderait évidemment à être exa 
miné de plus près.

Nous voulons, en terminant, attirer l’attention sur le lien étroit 
qui existe entre, d’une part, notre Thermodynamique cachée des 
particules et les conclusions que nous en avons tirées et, d’autre 
part, les notions de potentiel quantique et de masse propre variable 
qui sont caractéristiques de la Dynamique du guidage et de la 
Théorie de la double solution. Il nous paraît probable que la Théorie 
de la double solution complétée par la Thermodynamique que nous 
avons esquissée dans ce volume soit appelée à jouer un rôle impor 
tant dans les développements futurs de la Physique quantique.
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APPENDICE

Sur l’instabilité des états de superposition dans le cas 
de l’électron de Dirac

A la page 200 de l’Ouvrage cité au numéro [3] de la bibliographie 
j’ai donné comme expression de la masse propre variable de l’électron 
de Dirac :

(1)

où /(j. est le quadrivecteur « courant-densité » de la théorie de Dirac. Or on a 
/n = p„ «n avec u^uv- = — c2, ce qui permet d’écrire :

(2) M0 = iPo.

Si l’on définit les deux invariants bien connus de la théorie de Dirac par :

(3) Ou = Y+Y = Y+TlY ; Q2 = Y+y^-^Y, 

une des relations classiques de Pauli-Kofink donne :

(4) po = ~~ ivi* = Dj-(- 

On a donc d’après (2), (3), (4) :

Mais, en théorie de Dirac, l’invariant est nul pour une onde plane 
monochromatique tandis qu’il ne l’est pas pour une superposition. Comme 
l’entropie du thermostat cachée a été définie d’une façon générale par la 

Mformule S = S0 — k —~ , on voit tout de suite que l’on a : in0
(6) Sj < Sm.

Ici encore, on arrive au résultat que l’état de superposition est moins 
stable que l’état mochromatique et l’on voit avec quelle simplicité cette 
conclusion se déduit de la formule (5).
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