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PREFACE

Cet Ouvrage est, pour Uessentiel, la rédaction du dernier cours
que j’ai fait a Ulnstitut Henri-Poincaré dans [hiver 1961-1962
avant de prendre ma refraife.

Depuis environ douze ans, j’ai repris une tentative d’interprétation
de la Mécanique ondulatoire que, sous les noms de théorie de I'onde-
pilote, puis de théorie de la double solution, j’avais proposée sans
succes en 1926-1927 peu de temps aprés ma thése de Docloral. Des
réflexions prolongées sur ce sujet me conduisent maintenant a affirmer
que Uinterprétation actuellement admise de la Mécanique quantique
n’apporte pas véritablement d’explication raisonnable de certains
faits expérimentaux essentiels et inconfestables (*) et que, par suife,
elle doit étre revisée en rétablissant la constante localisation du cor-
puscule dans Uespace au cours du temps, en rendant a Uonde qui
Paccompagne le caractére d’une réalité physique et en postulant
Uexistence entre l'onde et le corpuscule d’une liaison appropriée.

Javais d’abord repris mon ancienne lentative de réinferprétation
sous la forme que je lui avais donnée autrefois en y introduisant
cependant un cerfain nombre de compléments importants. Mais
de plus en plus dans ces toules derniéres années, j'ai élé amené a
penser que la forme hydrodynamique de cette réinterprétation, tout
en étant une base de départ nécessaire, devail élre complétée par des
considérations d’ordre statistique. Or, en 1946-1948, avant d’avoir
repris mes recherches sur la réinterprétation de la Mécanique ondu-
latoire, j’avais étudié les anciennes théories de Helmholtz et de Boltz-
mann qui tendaient a éfablir une correspondance entre des grandeurs
mécaniques et des grandeurs thermodynamiques et javais cru y
voir I'amorce d’une thermodynamique de la particule isolée. Tout
récemment, a la suite de la publication d’un travail de M. Terletsky,

(*) Voir, par exemple, bibliographie [2], [3] et [4].




VI PREFACE

jai eu Uidée d’essayer d’utiliser I'hypothése du milieu subquantique
de MM. Bohm et Vigier, en le concevant comme une sorte de thermostat
caché, pour construire cette Thermodynamique de la particule isolée.
L’objet du présent livre est d’exposer celte tentative.

Les cing premiers chapitres de 'Ouvrage rappellent des résultats
qui sont bien connus, mais j'y ai insisté sur certains points, soit
parce qu’ils ont été parfois mal interprétés, soit parce qu’ils sont
frés importants pour ce qui suif. Les chapitres essentiels sont les
quatre derniers (chap. VI, VII, VIII et 1X) o1 sont introduites
progressivement, dans le cadre de I'image hydrodynamique qu’offre
la théorie de la double solution sous sa forme primitive, les conceptions
de perturbations aléatoires et de thermodynamique statistique qui
conduisent a la Thermodynamique de la particule isolée et a une
théorie des fluctuations du mouvement de la particule dans son onde.

Je crois qu’on parvient ainsi a une forme tout a fait remarquable
et prometteuse de la réinterprétation de la Mécanique ondulatoire
que jJe crois nécessaire. Je ne puis que souhaiter bien vivement qu’un
plus grand nombre de jeunes chercheurs veuillent bien s’intéresser
a ceftte tentative, car c’est dans celte voie que me semblent devoir
s’accomplir les plus grands progrés futurs de la Physique quantique.




CHAPITRE PREMIER

RAPPEL DE QUELQUES PRINCIPES
DE LA MECANIQUE CLASSIQUE

1. Le principe d’action stationnaire de Hamilton. — On sait
que toute la Dynamique classique, du moins quand les forces
dérivent d’un potentiel (nous laissons de c6té le cas de Vexis-
tence d’un potentiel-vecteur sur lequel nous reviendrons), peut
étre ramenée a un principe général d’action stationnaire. Pour
énoncer ce principe, on introduit une fonction des coordonnées
des N points matériels du systéme considéré, des composantes
de leurs vitesses et éventuellement du temps : la fonction de
Lagrange £(x,, ..., zZy; Tis + ey Zno 1), le point indiquant une déri-
vation par rapport au temps. Qu’il y ait ou non des liaisons a
condition qu’elles soient holonomes, on peut exprimer les coor-
données a ’'aide de n parametres ¢ ; s’il n’y a pas de liaison n = 3N,
s’il y a des liaisons n < 3N. Mais, de toute facon. la fonction de
Lagrange est de la forme £(qy, ..., qn3 Gu .., (}n, 1.

En Mécanique classique non relativiste, on précise la forme de
la fonction de Lagrange, en posant :

(1) £=T—-U,

ot T est I'énergie cinétique globale et U 1’énergie potentielle glo-
bale du systéme, toutes deux exprimées a l'aide des variables
Qis oo s Gns Gus oo vy Qny Lo

On peut alors ramener toute la Dynamique au principe suivant ;
Si le sysieme part d’une certaine configuration définie par les valeurs
¢\, ..., ¢\ des q a Uinstant t, pour parvenir a une autre configuration
¢V, ¢, ..., ¢ a linstant t,, les équations du mouvement sont telles

e 4, b . . . . . . .
que 1 mtegralef £dt soit stationnaire pour une variation infiniment
t

petite du mouvement entre Uétat initial et I'état final. C’est le principe
d’action stationnaire de Hamilton.

DE BROGLIE 1
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On peut préciser cet énoncé en introduisant la notion d’espace
de configuration. Chaque configuration du systéme est définie
par I'ensemble des valeurs des n coordonnées ¢,, ..., ¢, et peut
par suite étre représentée par un point dans un espace a n dimen-
sions dont chaque point est repéré par les n coordonnées ¢, ..., ¢,.
L’état instantané du systéme se trouvant ainsi représenté par un
point de I'espace de configuration, ce point figuratif part d’un
point A A I'instant f, pour aboutir & un point B a I'instant £,, apres
avoir décrit une certaine trajectoire dans I'espace de configuration.
La trajectoire du point figuratif est donc définie par n fonctions
du temps q¢.(f), g.(f), ..., ¢.(f) qui définissent entierement le
mouvement du systéme. Sur la courbe C, la fonction £(q,, ..., ¢, ;
t}l, vy é,,, ) a une valeur bien déterminée en chaque point et

Pintégrale curviligne A = f“ﬁdt a un sens bien défini. Cette inté-
o

grale, qui a les dimensions physiques d’une énergie multipliée
par un temps (ou d’une quantité de mouvement multipliée par
une longueur) ML2T-3, est nommée I'intégrale d’Action ou, plus
précisément, I'intégrale d’Action hamiltonienne.

Si I'on fait varier infiniment peu la forme de la courbe C en
maintenant fixes ses extrémités ainsi que les instants {4, et #,
on aura :

@) aA_sf var=" sﬁdt_ft'Z(anSq, oF q)dt

et comme :
dqi d

3¢i=3 = asqt',

il vient par intégration par parties :

G) sf th—ft.Z[aqL at( )]Sq‘dt

puisque les 8¢; sont nuls aux deux extrémités de la courbe C. Si
t, .

Vintégrale j £dt est stationnaire, le second membre del’équation (3)
t

doit étre nul, quels que soient les 8¢;. On obtient alors :

d (oL of )
4 dt(q) 5 i=12,...,n).
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Ce sont les célébres « équations de Lagrange » sous la forme
valable quand les forces dérivent d’un potentiel et que les liaisons
sont holonomes. On voit donc que ces équations sont des consé-
quences du principe d’action stationnaire de Hamilton et celui-ci
nous apparait donc comme la clef de votite de la Dynamique ana-
lytique classique.

2. Moments de Lagrange. Théorémes de conservation. — Les
variables de configuration ¢; sont souvent nommeées les « coordon-
nées » de Lagrange. Les (},- sont les « vitesses généralisées » corres-
pondantes qui définissent le mouvement du systéme. Si les points
matériels de ce systéme ne sont pas soumis & des liaisons et si
on utilise des coordonnées cartésiennes rectangulaires, les ¢:
et les (},- sont les coordonnées et les composantes de vitesse au sens
usuel.

Au lieu d’employer les ;Ii, on peut employer des grandeurs p;
dites « moments de Lagrange » définies par les relations :

) p,~=a—'.£ i=12,...,n).

oq;
Les équations (5) permettent d’exprimer les Z],- a V'aide des p;.
La variable p; est dite « canoniquement conjuguée » de la variable ¢;.
S’il n’y a pas de liaisons et si I'on emploie des coordonnées rec-
tangulaires, on peut poser :

1 . . .
(6) - ka(x; F R4 B —U@n. .., z20b),
k
d’ou :
of oT .
7 e — Pz, — —— = My Ty.
0 0Ly Pz g o

La grandeur p, canoniquement conjuguée de xx est donc alors
égale & la composante x de la quantité de mouvement du ki*me point
matériel.

Dans le cas général, les équations de Lagrange peuvent s’écrire :

dpk oL

®) o g k=12, ...,n).
Si donc £ est indépendant de g, la grandeur p, restera constante
au cours du mouvement. En particulier, dans le cas de I'absence
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de liaison et de l'emploi des coordonnées rectangulaires, si
U(xs, .- ., 2y, {) ne dépend pas d’une des variables, mettons de x;,
on a% =0 et, par suite, p; = Cte. On en conclut que, si la
k

composante suivant I'un des axes rectangulaires de la force est
nulle, la composante de la quantité de mouvement du point maté-
riel suivant cet axe est constante. C’est le théoréme de la conser-
vation de la quantité de mouvement.

Considérons maintenant dans le cas général la grandeur E définie
par :

9) E= Z pigic— L.
k

Nous 'appellerons 1’énergie du systéme. Comme nous supposons
que U ne dépend pas des vitesses et qu’on voit aisément que T est
une fonction quadratique homogéne des vitesses éi si les liaisons ne
dépendent pas du temps, le théoréme d’Euler sur les fonctions
homogénes nous permet d’écrire :

(10) oT — i L n P iiéip.-,

1 ' aql 1 ' aql 1

d’ou :

(1 E=> pgi—t=2T—(T—U)=T+U;

E est donc bien I'énergie totale somme de I’énergie cinétique et de
I’énergie potentielle. On trouve d’ailleurs :

dE <o e+ e x> [0£e 0L\ Of
az x5 = Zi(piqi + pgi) — Z (@ g+ g_qi) — 5"
1 1 '
D’aprés les équations de Lagrange, le premier terme du second

membre compense le troisieme et, d’aprés la définition des p;, le
second terme compense le quatrieme. Il reste :

dE o 20U
(13) F it T Ve
Si les forces extérieures sont constantes ou nulles (systéme conser-

vatif ou isolé), U ne dépend pas de f et E = Cte. C’est le théoréme
de la conservation de 1’énergie.
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3. Le principe de moindre action de Maupertuis. — La défini-
tion (9) de E nous permet d’écrire :

(14) dA =tdf = Z_pidq,- _ Edt.
1

Imaginons alors un espace de configuration-temps en adjoignant
4 l'espace de configuration une dimension de temps. Soit P le
point de cet espace qui représente la configuration initiale et
I'instant initial 4, Q le point qui représente la configuration finale
et I'instant final #. L’intégrale d’action hamiltonienne s’écrira :

(15) A= ﬁdz_f (Zpldq, Edt)

C’est une intégrale curviligne prise dans ’espace de configuration-
temps le long de la ligne qui représente le mouvement du systeme
entre {, et {,. Le principe d’Hamilton s’écrit alors :

(16) SA =3 :Iﬁdlzb‘fa(i.pidq,-—Edt):O,
o A2

les points P et Q étant maintenus f{ixes dans la variation.

De 1’¢énoncé précédent du principe d’action stationnaire, on
peut déduire, dans le cas particulier des champs constants au cours
du temps, un autre principe analogue : le principe de moindre action
de Maupertuis.

Dans le cas des champs constants, I’énergie du systéme est une
constante, une intégrale premiére. Si A et B sont les points limites
des trajectoires dans l'espace de configuration correspondant
aux temps , et ¢, il est aisé de voir qu’on ne peut pas faire varier
cette trajectoire en maintenant fixes A, B, #, et {; si I'énergie
totale reste constante pendant la variation. On le voit aisément
sur le cas simple d’un point matériel libre : la trajectoire est alors
une droite et, si 'on fait varier la forme de la trajectoire en main-
tenant fixes ses extrémités A et B, on allonge forcément sa longueur
d’apres la définition méme de la ligne droite et la vitesse et, par
suite, I’énergie ne peuvent rester constantes si f, et {, restent fixes.
C’est 1a la raison pour laquelle on ne peut pas déduire directement
le principe de Maupertuis, ou I'on opére une variation a énergie



6 LA THERMODYNAMIQUE DE LA PARTICULE ISOLEE

constante, du principe de Hamilton ol I'on opére une variation
a 1, et {, constants. Pour faire cette déduction, il faut passer par
I'intermédiaire d'une formule qui est souvent appelée « le principe
de I'action variée ».

Pour trouver la formule en question, partons de I'expression (15)
de l'action hamiltonienne, mais supposons qu’on fasse varier les
points limites P et Q, ce qui revient & faire varier non seulement
les points limites A et B de I'espace de configuration, mais aussi
les instants limites {, et {,. On obtient alors la formule cherchée :

(17) SA = Sf:ﬁdt =f::8£dt + [’:kakaqk ~ ESI]:.

L’intégrale du dernier membre représente la variation de I'intégrale
d’action hamiltonienne due 4 la variation du mouvement quand A,
B, {; et f, restent fixes : elle est nulle d’aprés le principe de Hamilton.
Le crochet représente la variation de P'action due a la variation des
points P et () de I’espace de configuration-temps et 'on a :

= 1
(18) SA = [Zk DiSqi — ESt]o.
1

Revenons maintenant a P'espace de configuration proprement dit.
On peut y définir 'intégrale :

(19) a=[" ikpkqu.
1

C’est I'intégrale d’action de Maupertuis. Elle est prise dans I'espace
de configuration depuis le point A qui représente la configuration
initiale jusqu’au point B qui représente la configuration finale.

Dans le cas des systémes conservatifs ou isolés (actions exté-
rieures constantes ou nulles), I'énergie totale E du systéme est
constante et l'intégrale (19) est indépendante du temps. Nous
avons :

(20) :s: dt = f : (ik prdg — Edt) A f : Edi,
:

donc :
@1) SJ.tlfldt=8/c— “SEdt — }Egt
t te

b
s
te
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d’ot, en remplacant le premier membre par la valeur donnée
par (18),

(22) SA — ‘ Zk P
1

: + f : sEd.

Supposons maintenant qu’on maintienne fixes dans la variation
les points A et B de I’espace de configuration ainsi que la valeur E
de I’énergie. 11 vient alors :

(23) 34 = 0.

C’est 1a le principe de moindre action de Maupertuis ol la variation
doit s’effectuer en maintenant fixes les configurations extrémes et
la valeur de I’énergie, mais pas les époques extrémes {, et {,.

Dans le cas particulier ou1 les ¢; sont les 3N coordonnées carté-
siennes des N points matériels d’'un systéme non soumis a des
liaisons, on a :

24) A :fA Zk Prdqx =JA kak(v,kdxk ~+ vy, dyx + v;, dzx)
1 1
et, pour un seul point matériel :

(25) A =Fm(vzdx + v,dy+ v,dv;) =fnmf; d;,

'intégrale étant alors prise de A en B le long de la trajectoire
dans l'espace physique & trois dimensions.

4. Equations de Hamilton. — Nous pouvons prendre comme

variables définissant le mouvement d’un systéme n variables ¢; de
of .

Lagrange et les moments p; = —- correspondants qui forment
Z}q,-

un systéme de variables « canoniques ». Nous pouvons alors expri-

mer les vitesses généralisées ¢; en fonction des ¢;, des p; et éventuel-

iement du temps par des relations de la forme :

(26) ¢=fgpt) (=12 ...,n).
L’énergie E sera exprimée en fonction des mémes variables par
la « fonction hamiltonienne » H(g, p, f) telle que :

(27) E=> pdi—£@, ¢ H=HG, p. ),
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les ¢; ayant été au second membre exprimées en fonction des g,
des p et de {. On aura donc:

DH . n D‘.' 1\ D’ﬁ Z)t;, *
— — i ql —_— — — ’
op, =kt > P o Do "

(28) g ’ .
dH & 2q; 8 oL Dg oL .
N = Pi—(1—~“—2‘r4-'=——‘=—l’k,
Ok i Ok Oqk idq oG Ok

1 1

d’apres la définition des p; et les équations de Lagrange. On a
ainsi obtenu le célebre systéeme des équations de Hamilton :

oH . oH

9 T = — , — k=1,2,...,n
(29) “=3p P="5q )

et 'on en tire aisément :

n

dH oH. OH- oI1 oH
(50) = 2 5q P 50 =50
1

d’ol, si U et, par suite, H ne dépendent pas explicitement du temps,
H = Cte, ce qui est le théoréme de la conservation de I’éncrgie.

5. Meécanique classique et Mécanique relativiste. — Nous

venons de rappeler quelques points de la Mécanique analytique
classique. L’introduction par Einstein du principe de Relativité
I'a conduit en 1905 a4 modifier les formules de la Mécanique clas-
sique. Nous ne rappellerons pas ici les principes bien connus de la
théorie de la Relativité restreinte. Nous nous bornerons 4 résumer
dans le chapitre suivant les principes de la Dynamique relativiste
du point matériel en insistant particuliérement sur le principe
de I'inertie de ’énergie qui jouera un réle trés important dans tout
ce qui suivra.




CHAPITRE 11

LA DYNAMIQUE DE LA RELATIVITE

1. Formules générales. — La Mécanique newtonienne admet
le groupe de transformation de Galilée avec le temps absolu,
c’est-a-dire que ses équations gardent leur forme quand on fait
une transformation de Galilée, mais elle n’admet pas le groupe
de transformation de Lorentz qui, lui, conserve les équations
de l'électromagnétisme et, en particulier, celle de la propagation
de la lumiere dans le vide. Mais, comme les formules de transfor-
mation des deux groupes ne difféerent que par des termes de 1'ordre

2

de B2 = %, la divergence est trés faible pour les mouvements
que considére la Mécanique rationnelle classique, y compris les
mouvements des astres. La transformation de Lorentz se trouvant
confirmée par l'identité des phénoménes d’interférences dans tous
les systemes de référence galiléens, comme les phénomeénes d’inter-
férences peuvent étre observés avec infiniment plus de précision
que les phénomenes mécaniques, il est naturel de supposer que le
principe de Relativité s’applique 4 tous les phénomeénes naturels
et que les équations de la Mécanique classique ne sont pas rigou-
reusement exactes, qu’elles doivent étre modifiées de fagon a devenir
invariantes pour la transformation de Lorentz.

La condition essentielle que doit alors remplir a priori la Dyna-
mique relativiste du point matériel est évidemment de se confondre
avec la Dynamique classique chaque fois que B2 sera négligeable
devant l'unité, car il faut nécessairement retrouver l'ancienne
Dynamique comme premiére approximation dans le cas des vitesses
faibles par rapport a la vitesse ¢ de la lumiére dans le vide (approxi-
mation dite « newtonienne »). On est ainsi amené a4 mettre a la
base de la Dynamique relativiste un principe d’action stationnaire
qui se réduira au principe usuel de Hamilton quand on pourra
négliger p? devant I'unité. Pour cela, on doit adopter une fonction £
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des coordonnées et des vitesses du point matériel telle que les
équations de la Dynamique relativiste dérivent toutes de I'équa-
tion :

Q) SA =5 :‘tdt —0,

la variation étant opérée en maintenant fixes les positions initiale
et finale du point matériel et les valeurs des instants £, et {;, comme
dans le principe classique de Hamilton. Le calcul habituel qui permet
de passer du principe de Hamilton aux équations de Lagrange
s’applique encore ici et donne :

d /oL oL
(2) Z{i (—d_;:) == 5_5 s “o
ou, en posant :
oL
3 = e .y
3) Pz o
dp, oL
() ¥

Or, en Mécanique classique, on posait :
(5) £=T—U=%m(a§2+g}z+22)~—U(x,y,z, 1,

mais ici nous devons choisir différemment la fonction L.
D’ordinaire, en théorie de la Relativité, on représente chaque
« événement » défini par I’ensemble de ses quatre coordonnées z, y,
z, { par un point dans l'espace-temps a quatre dimensions. Le
mouvement d’un point matériel est alors représenté par une suite
continue de points-événements formant ce qu’on nomme la « ligne
d’univers » du point matériel dans I’espace-temps. Quand on passe
d’'un systéme galiléen de référence a un autre, les coordonnées
de chaque point de cette ligne d’univers varient puisqu’il faut faire
sur ces coordonnées une transformation de Lorentz, Il existe
cependant une quantité invariante attachée a chaque élément
de la ligne d’univers. Soit, en effet, dans un systéme galiléen dz, dy,
dz, dt les variations des coordonnées correspondant a un petit
élément de la ligne d’univers ; considérons la quantité :

(6) ds =/ ctdt* — dx* — dy* — dz* = A/ cxdi* — dI,
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dl étant I’élément de la trajectoire décrit par le point matériel dans
le temps df. Une des propriétés essentielles de la transformation
de Lorentz est que la grandeur (6) est un invariant de cette trans-
formation.

Comme v = fc = c% est la vitesse du point matériel, on peut

écrire :
(7) ds = cdtr/1 — g2 = cdx,

oit dr = diy/1 — B* est I'élément de temps propre du point matériel
correspondant a I’élément ds de sa ligne d’univers, d~ est I'intervalle
de temps indiqué par une horloge entrainée par le mouvement
du point matériel pendant que celui-ci se déplace de dl pendant
le temps df. La formule (7) exprime le « ralentissement des hor-
loges ».

En Dynamique relativiste, on considére la présence du point
matériel aux instants £, et {, aux points z,lJ.z, et x5z, de I'espace
comme définissant deux points-événements de l'espace-temps
P(xoyezels) et Q(zguzity) et Uon cherche un principe d’action sta-
tionnaire de la forme (1), I'intégrale étant prise le long de la ligne
d’univers de P en Q et la variation n’affectant pas les points P
et Q.

On obtient une forme satisfaisante de la fonction de Lagrange £
en posant :

@®) £ = — myc24/1 — g

pour un point matériel libre, m, étant une constante dite la « masse
propre » qui caractérise le point matériel envisagé. Cette forme
permet d’écrire :

9 A= f:fl dt = — mocﬂfzx/r——szdt e J.:mocds

et l'invariance de I'intégrale d’action A devient évidente, ce qui
est satisfaisant. De plus, si p* est petit devant I'unité, on aura :

(10) !Zs—moc’—}——;mov2

et, comme le terme constant n’a pas d’importance puisqu’il ne
donne rien lors de la variation, nous retombons sur I'expression
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classique £ =T = %mv2 de la fonction de Lagrange pour un

point matériel libre comme cela devait étre.

Si le point matériel est soumis & un champ dérivant d'un poten-
tiel U, nous nous contenterons pour l'instant, par analogie avec
la Mécanique classique, d’ajouter dans £ le terme — U au terme
« cinétique » — myc?4/1 — B* et nous écrirons le principe d’action
stationnaire sous la forme :

(11) 8A=8J:(— mecin/T— g — U)dt =0,

ce qui, par le raisonnement classique, donne les équations de
Lagrange :

dppLy L 2U
( )—5&— dx”

(12) di 53
11 est aisé de calculer les moments de Lagrange p,, p,, p.: on trouve :

oL ma.c
13 = e =
(13) Ps =3 Vi 5

Si 'on définit alors le vecteur « Impulsion » ou quantité de mou-
vement par :

- mog
14 ey
(14) p Vi
on aura .
(15) d __ smd v,

. , . — — m
On peut d’ailleurs écrire p = mv en posant m = —, -t

Vi—g’
m est appelée la « masse en mouvement » du point matériel : elle
augmente avec la vitesse du point. Pour un observateur li¢ au
point matériel, = 0 et m = m, : la masse m se réduit 4 la masse
propre m, ou « masse au repos ». Pour v tendant vers ¢, m tend vers
Pinfini : la masse en mouvement augmente indéfiniment quand
la vitesse approche de c. La vitesse ¢ est dont la vitesse limite de
tous les mouvements corpusculaires.
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2. Energie et Impulsion d’univers. — Les équations générales
obtenues ci-dessus nous permettent, comme en Dynamique clas-
sique, de démontrer que la quantité :

(16) W =ap. + yp, + zp: — L
a pour dérivée totale par rapport au temps :

dwW o 2U
{17 T TR o
et qu’elle reste donc constante si le champ extérieur est constant
au cours du mouvement et ceci nous ameéne encore a considérer W
comme ’énergie du point matériel.
En Mécanique classique ot £ =T — U, nous avions trouvé

E = T 4 U. Ici, comme nous posons £ = — myc24/1 — g2 — U et
que nous avons p = :/_;"ili__ , nous trouvons :
— BZ
2
(18) W= "¢ 1y
1—p
L’énergie totale du point matériel est donc la somme de I'énergie
myc?

potentielle U et du terme que nous devons maintenant

V1 —p
interpréter. Pour g = 0, c’est-a-dire pour un observateur lié au
mobile, ce terme se réduit a myc? et représente 1’énergie interne
propre du mobile. Pour un observateur qui voit passer le mobile avec
mec?

—_—— — mc?
V1 —pe

la vitesse Bc, la partie cinétique de I'énergie W est

qui représente I'énergie interne propre du mobile.

Généralisant ce résultat, Einstein est parvenu a l'énoncé sui-
vant : A foute masse m est toujours associée une énergie égale au
produit de cette masse par le carré c* de la vitesse de la lumiére dans
le vide. Nous étudierons plus loin d’une fagon plus approfondie
ce principe de linertie de I'énergie.

On peut appeler « énergie cinétique » 'augmentation de 1'énergie
due au mouvement quand le mobile passe du repos a la vitesse fc.
On pose alors :

(19) T=

m,c?
= — MC% = Mm,C? (

Vs vize )
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Si B <c, on voit que T se réduit a 5 mev? comme cela doit étre.

Finalement, on peut poser :
20) W=my?+-T+U=myet+ E

en appelant E I’énergie T + U, somme de I’énergie cinétique
et de I’énergie potentielle. Ainsi I'énergie totale W de la Mécanique
relativiste s’obtient en ajoutant a E I’énergie interne myc? qui est
caractéristique de la théorie de la Relativité. Tandis que E peut
étre positif ou négatif, W est toujours positif.

En chaque point de la ligne d’univers d’un point matériel,
on peut définir un quadrivecteur « Vitesse d’univers » de compo-
santes :

oG _dzmdt v =B __ v .
o1 PTds T dtds T oy /1—pr PTds T oy/1—p
1) dz v _d(ch) 1

u Ug =

BT o/l &5 T
En multipliant ce quadrivecteur par I'invariant myc, on en déduit
le quadrivecteur « Impulsion d’univers » I = myc u de composantes :

I — _ Ml I — My
1 — T ’ I T
©2) V1—g Vi—p
I mep, mec W
. A

Viee “TVI—p e
On voit que les trois composantes d’espace de I’Impulsion d’univers
sont les composantes de la quantité de mouvement tandis que la
composante de temps est égale a I'énergie divisée par ¢ (abstraction
faite de I'énergie potentielle). Le quadrivecteur T rassemble done
en un seul étre géométrique la quantité de mouvement et I’énergie.

La partie cinétique de l'action hamiltonienne :

f—— mecty/1 — prdt = — fm.,cds

qui est un invariant, est donc la circulation du quadrivecteur_f
le long de la ligne d’univers. Il est facile de vérifier qu’en vertu
de I'équation (16), on peut l'écrire sous la forme :

—ﬂwm—mm—m@—mwy
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Ceci permet de la considérer, au signe prés, comme l'intégrale
du produit scalaire dans I’espace-temps du quadrivecteur impulsion
d’univers par le quadrivecteur ds de composantes dz, dy, dz, cdt
et donc d’écrire pour le corpuscule libre :

(23) A =f“£dt= — f“(?.d?).

3. Dynamique relativiste de I’électron dans un champ électro-
magnétique. — Nous avons pris comme fonction de Lagrange
relativiste :

£ = —myy/1—p—U,
mais le terme U n’est pas satisfaisant parce que I’action doit étre
un invariant et que U n’est pas invariant. Nous allons examiner
de plus prés la question en nous placant dans le cas d’une charge

ponctuelle se déplacant dans un champ électromagnétique (dyna-
mique relativiste de I’électron).

Nous obtiendrons une forme relativiste satisfaisante de £ en
partant de la remarque suivante : I’étude relativiste des grandeurs
électromagnétiques montre que le potentiel scalaire V et le poten-
tiel vecteur A se transforment, lors d’une transformation de
Lorentz, comme les variables x, y, z, {, c’est-a-dire qu’ils forment
les composantes d’un quadrivecteur d’espace-temps dont A, A, A,
sont les composantes d’espace et V la composante de temps. Il

en résulte qu'on obtient une intégrale d’action A = f £dl qui est
invariante si 'on pose :

24) — —mec*y/T—p?— eV + —Z A7),

ol ¢ est la charge électrique de la particule. En effet, si I’on désigne
par 7 le quadrivecteur d’espace-temps « Potentiel d’univers » de
composantes A, A, A, V, on vérifie aisément que l’expression
de laction s’écrit sous la forme visiblement invariante :

(25) A= [moeds — < [@ &),

ou §ds est le produit scalaire d’espace-temps des deux quadri-
vecteurs & et ds formé suivant la régle :

(K.ﬁ) = A‘B‘ - AlBl - AgBa b AaBa.
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Les équations de Lagrange s’écrivent toujours :

d /oL oL
(26) il ) —
oL
et, en posant p, = S elles prennent encore la forme :
T
dp, oL
(27) a3
On trouve aisément :
Ds: mo;v €
28 z T + L Az
(28) Pe= < =Viog e
ou vectoriellement :
(29) b= "E:L+_ZK.

Le vecteur 5, dont les composantes sont les moments de Lagrange,

-

myb
V1 — g

d’une sorte de « quantité de mouvement potentielle » EK

et

est donc la somme de la quantité de mouvement

Si T'on écrit explicitement les équations de Lagrange (27) en
tenant compte des expressions du champ electrlque R et du champ
magnétique H en fonction des potentiels V et X, on obtient trois
équations vectorielles de la forme :

w )
avec .
31) 7={h+§3Aﬁ]

et U'on reconnait dans le vecteur7 la force de i.orentz qui agit sur
la charge ¢ animée de la vitesse . Ainsi la dérivée par rapport
au temps de la quantité de mouvement est égale & la force de
Lorentz, ce qui permet de retrouver la dynamique bien connue
de I'électron. On remarquera d’ailleurs que l'équation (30) n’est
pas équivalente a la relation m? = ?de Newton a cause de la varia-

. m
tion de la masse m = ———

V1= g

avec la vitesse.
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Si 'on calcule I'énergie W par la formule (16), on trouve :

myc?

(32) »\/ 1 — Ba

+ eV,

ce qui est satisfaisant.

Remarquons enfin que les grandeurs p,, p,, p. et \l—! formant les

quatre composantes d’un quadrivecteur d’espace-temps !’ Impulsion
d’univers I, défini par :

- —_

(33) i = macii +

on aura toujours :

€ =
_ﬂ"
[

f‘:s:dtz — f‘:dd’s’).

4. Les équations de Hamilton. — Comme V dépend en général
de z, y, z, t, 'énergie W est fonction de z, y, z, x, f], z et t. Mais,
puisque x, i], z peuvent s’exprimer en fonction de z, y, z, p., Py, Pas &
on peut écrire :

(34) W =H(z, y, 2, s, Pys P» 1)
En éliminant v,, v,, v entre les équations (29) et (32), on trouve
aprés quelques calculs :

(35 H@, 4, 2 pas Py P t)=0\/m262+2(pz—zAx) + V.

xyz

I.e méme raisonnement qui, en Mécanique classique, nous avait
conduit des équations de Lagrange & celles de Hamilton, nous
donne encore ici :

dr OoH dp.  °oH
(36) & = 3p,’ = —

Les trois derniéres équations sont les équations du mouvement ;
les trois premiéres sont faciles a vérifier.

5. Etude sommaire du principe de Dlinertie de I’énergie. —
En étudiant la Dynamique relativiste du point matériel, nous avons
rencontré le principe de l'inertie de I’énergie suivant lequel il
existe entre I'énergie et la masse la relation générale W = mc2.
Mais cette relation n’était démontrée que pour un point matériel.
Dés le début de ses travaux sur la Relativité, Einstein a été amené

DE BROGLIE 2
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a généraliser cet énoncé a un ensemble de points matériels, puis
a4 un corps quelconque.

Considérons d’abord un ensemble de points matériels sans inter-
actions et repérons cet ensemble dans un systéme de référence
galiléen (numéroté 0) tel que :

37) > e,

la somme étant étendue a tous les points matériels. Nous dirons
que, dans ce systéme ol I'impulsion totale est nulle, I’ensemble des
points matériels est globalement en repos. Ce systeme de réfé-
rence est analogue a ce qu'est en Mécanique classique un systéme
de référence lié au centre de gravité des particules : nous le nom-
merons le systéme de référence « propre » de I’ensemble. Dans ce
systéme propre, nous avons pour expression de I'énergie :

(38) Wo=> L

puisque les particules sont sans interactions.

Passons maintenant a un autre systeme de référence (numéroté 1)
qui est animé par rapport au systéme 0 de la vitesse v = pc. L’éner-
gie globale des particules dans ce systéme sera :

(39) Wo=">—7 Mo

V-G

Or, en prenant pour axe des z la direction du mouvement relatif
des deux systémes de référence 0 et 1, on aura les formules habi-
tuelles d’addition des vitesses :

— [R2 __ 2
(40) V= 2wV I TP Uo;'\/l 5 Dy = on'\/l B Do — Uo:+ D

’ 1y — ’ 1z = 7 T

1+UUOZ 1+UOUOZ 1+ Uvoz
d’ou l'on tire :
DDy, B
1 + c? 1 1 —I— Euoz

1 1
41 = == = .
RV AV SV VAR
1—3 1-2 - 1—=



LA DYNAMIQUE DE LA RELATIVITE 19

On en déduit :

. mer W, Be MgV,
2) W= 1 ug_\/l—ﬁﬂ+\/l—ﬁzz .

Le dernier terme est nul en vertu de la définition (37) du systéme
propre et il reste :

(43) Wo

Wys= ———,

T ViI-p
Si Pensemble des particules se réduisait & une seule particule
de masse propre M,, on aurait :

Moc
Vi—g’
On peut donc dire que le systéme en mouvement d’ensemble
avec la vitesse fc se comporte comme une unité ayant une masse
propre :

(45) M, =

(44) W, =

formule qui exprime ici 'inertie de I’énergie.
De plus, dans le systéme de référence 1, la quantité de mouvement
global g des particules a pour composante x :

(46) fu= D — = =0
\/ 1—- 1——
et, de méme, ¢,, = 0. Pour g¢,,, on aura :

(47)

VN v v e

Le premier terme étant nul d’apres la définition du systéme propre,
on a :

_ Mp

W,
(48) 9u=\/1~522\/1_* 11)—3* ¢ VI

et cette formule montre encore I'inertie de I’énergie.
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On peut remarquer que le principe de l'inertie de I’énergie déter-
mine entiérement la valeur de la constante de l'énergie laissée
arbitraire par la Mécanique classique : on ne pourrait pas, en effet,
introduire une constante additive dans l’expression de 1’énergie
sans troubler complétement la variance.

6. Extensions diverses du principe de l'inertie de I’énergie.
— Les raisonnements que nous venons de développer nous montrent
que le principe de l'inertie de I’énergie est valable pour un ensemble
de particules sans interaction (absence d’énergie potentielle).
Elles prouvent, en particulier que, si I'on apporte de la chaleur
a4 un gaz supposé parfait, sa masse se trouve augmentée. Nous
allons maintenant montrer qu'un rayonnement d’énergie W doit

: . . . W . .
aussi posséder une masse égale a = et que, par suite, un corps qui

rayonne perd de la masse et qu'un corps qui absorbe un rayonne-
ment acquiert un supplément de masse.

Donnons-en une démonstration due 4 Einstein lui-méme. On
sait qu’'en théorie électromagnétique, on démontre qu’'un rayon-
nement d’énergie W posséde une quantité de mouvement égale

a . Donc, quand un corps émet un rayonnement d’énergie
globale W, il prend un mouvement de recul avec la quantité de
W . . . .
mouvement—c— . Considérons avec Einstein un cylindre creux

tel que celui de la figure 1.
Imaginons que le fond de gauche du cylindre émette parallele-
ment a4 l'axe un petit train d’ondes de rayonnement total W.

N

Lz i

%

z ;
<—’£§ —°—>

. %

%

)

Fig. 1.
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Par suite de cette émission, le cylindre va reculer vers la gauche
avec une quantité de mouvement V?V . Si M est la masse du cylindre,
sa vitesse de recul v étant petite devant ¢, sa quantité de mouve-
ment sera Mv et I'on aura My = \ch Lorsque le train d’ondes

sera arrivé sur le fond de droite du cylindre que nous supposerons
absorbant, il sera absorbé et, le cylindre acquérant alors la quantité

de mouvement - vers la droite, son mouvement s’arrétera. Mais,

entre I’émission et I'absorption du train d’ondes, le théoréme du
centre de gravité ne serait pas vérifié si le rayonnement n’avait
pas de masse. Soit x le déplacement global du cylindre vers la

gauche pendant le temps { = g = 1\% Pendant ce temps, le petit
Mc2x

train d’ondes se sera déplacé vers la droite de X = cf = ~w

Pour que le théoréme du centre de gravité soit satisfait, il faut
que le petit train d’ondes ait une masse y telle que :

(49) Mz — pX = Mz — 9% o,
W
d’oll :
W

Cest bien l'expression du principe de linertie de 1’énergie et
l'on pourrait d’ailleurs facilement reprendre cette démonstration
en se servant de la notion de photon.

Une autre généralisation du principe étudié consistera a ’étendre
4 des corps ayant a la fois une énergie cinétique et une énergie
potentielle et & montrer qu'on a encore W = M2 Nous allons
examiner comment les choses se passent en étudiant deux cas
particuliers simples.

Considérons d’abord un corps macroscopique de masse M, qui
vient heurter avec une vitesse B,c un autre corps de masse M,
primitivement au repos. Supposons qu’a la suite du choc, les
deux corps restent collés et soient finalement animés de la vitesse
commune B,¢ dans la méme direction que B,c. Si nous écrivions
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la conservation de la quantité de mouvement et de 1'énergie sous
la forme :

M,c? _ (M, + My)er Mg _ M+ M,)Bec
Vi-g V1-8 Vi-g Vi-§
qui paraitrait naturelle, nous nous heurterions 4 une impossibilité,
les deux équations & une seule inconnue B, étant incompatibles.
Mais le choc étant inélastique dégage de la chaleur et, le corps
_unique formé par l'accolement des deux corps primitifs étant le

" siége d’un échauffement, sa masse M’ est supérieure a M, + M,
de sorte qu’il faut écrire au lieu des équations (51) :

M, c? 1Mt = M'et Migic M
V11— g V1-—g V1i—pg  4/1-g

et ces deux équations 4 deux inconnues B, et M’ sont solubles.
La premiére peut s’écrire :

(1) + Mye?

(52)

M,;c? 1
(53) ~—L—+MM=MW+MWPﬁW——q
V1-—¢g Vi—g:

1

et ceci nous montre que l'énergie initiale totale des deux corps
se retrouve finalement sous la forme de 1’énergie M'c? des deux
corps une fois collés et de I'énergie cinétique de leur ensemble.
On peut encore écrire :

(54) Mlcz<7%— — 1) = [M’— (M, + My)]er + M’c2(

.. P2
1

1
Vi-g

ce qui montre que ’énergie cinétique initiale du corps I a servi,
d’une part & communiquer & 'ensemble des deux corps la quantité
de chaleur :

(55) Q= [M"— M, + My)]e*

qui a porté I'énergie interne de I’ensemble de la valeur (M, + M,)c?
4 la valeur M'c? et, d’autre part, & fournir ’énergie cinétique du
corps unique final. Tout ceci est trés clair.

Comme autre exemple simple, considérons un corps qui absorbe
du rayonnement. Ce peut étre un corps macroscopique absorbant
un train d’ondes ou un systeme de 1’échelle atomique absorbant
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un photon. Soit M, la masse propre initiale du corps supposé
d’abord au repos, W I’énergie du rayonnement (ou du photon)
absorbé, 8c la vitesse de recul pris par le corps aprés absorption.

- Om

Fia. 2.

ol

De nouveau, ici, si I’on écrivait :

M,c? Moe W

(56) Me? + W =

Vi—g'  Al1—-p o’
on se heurterait 4 une impossibilité. Il faut donc écrire :

Mc® M w
67) Myt W= ¢ o P W

Vi—g' 41— p ¢
en admettant que I'absorption du rayonnement fait augmenter
la masse propre du corps.
La premiere équation (57) peut s’écrire :

(58) W = (M, — M,)e 4+ Me2 [l:g — 1].

Elle montre ainsi que I’énergie apportée au corps par le rayonne-
ment sert : 10 & augmenter 1'énergie interne du corps de la quantité
(M, — M,)c® (chaleur dans le cas d’un corps macroscopique, aug-
mentation de 1'énergie interne dans le cas d’une unité micro-
physique) ; 2° & donner au corps, dont la masse a ainsi augmentg,
son énergie finale.

Le probléme inverse de I'émission d'un rayonnement (ou d'un
photon) par un corps macroscopique ou microphysique se traite
de méme et aboutit 4 des conclusions analogues.

Ainsi le principe de linertie de 1'énergie parait bien avoir une
portée tout a fait générale. On sait que I'exactitude de ce principe
est entiérement confirmée par le role essentiel qu’il joue en Physique
nucléaire pour établir les bilans d’énergie dans les réactions
nucléaires.
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7. Remarque importante. — Une des idées fondamentales qui
résultent des considérations que nous venons d’exposer est la
suivante : Si un corps recoit de I'énergie qui ne se transforme pas
en énergie cinélique, sa masse augmente et s’il perd de I'énergie
qui ne provient pas de son énergie cinétique, sa masse diminue.
En d’autres termes, et c’est 1a le point essentiel, une variation de la
masse propre d’un corps correspond & de 1’énergie, recue ou perdue,
qui siége a l'intérieur du corps sous forme d’énergie cachée et qui,
parce qu’elle ne se manifeste pas a I'extérieur, peut étre considérée
comme de la chaleur interne. Nous retrouverons cette idée dévelop-
pée d’une fagon plus précise quand nous étudierons la Thermo-
dynamique relativiste et c’est en l’appliquant aux particules
que nous parviendrons ensuite a4 esquisser une Thermodynamique
de la particule isolée.
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NOTIONS
DE THERMODYNAMIQUE STATISTIQUE

1. Introduction. — Nous avons vu l'importance essentielle de
la grandeur Action en Mécanique classique et relativiste. Cette
importance a été encore soulignée par le développement de la
théorie des quanta qui, dés ses débuts, a été amenée, pour quantifier
les mouvements périodiques d’un corpuscule a 1’échelle atomique,

4 écrire que I'intégrale de 'action maupertuisienne fﬁ di pour toute

une période du mouvement doit étre égale a un multiple entier
de la constante de Planck.

La théorie de la Relativité rattache I'importance de l'action
hamiltonienne au fait que cette grandeur est invariante. C’est
I'invariant fondamental de la Mécanique comme !’entropie est,
nous le verrons, I'invariant fondamental de la Thermodynamique.
Cette remarque nous prépare a découvrir de curieuses analogies
entre 'Action et I’Entropie.

Mais, avant de préciser ces analyses, il nous faut maintenant,
apres avoir rappelé les principes de la Mécanique, étudier aussi
certains aspects de la Thermodynamique. Dans ce qui suit, je
supposerai connue la Thermodynamique classique « des principes »
et je m’attacherai seulement a souligner les grandes lignes de I'in-
terprétation statistique de la Thermodynamique.

2. Bases de l'interprétation statistique de la Thermodynamique.
— La Mécanique statistique, développée d’abord par Clausius
et Maxwell, puis plus complétement par Boltzmann et par Gibbs,
a permis d’étudier les propriétés statistiques moyennes des
systemes trés complexes définis par un nombre extrémement
grand de parametres. Son grand succes a été d’étre parvenue
a interpréter les lois de la Thermodynamique de telle facon que
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ces lois apparaissent comme dérivant du fait que la Thermodyna-
mique envisage toujours les propriétés globales moyennes de sys-
témes trés complexes dont la description détaillée ne saurait
s’effectuer qu’a 'aide d’un nombre énorme de parameétres. Par
exemple, la Thermodynamique traite des propriétés globales
des gaz et, aux yeux de la Physique atomique, un gaz est formé
par un nombre immense de molécules ou d’atomes, 1'état de chacun
de ces éléments étant décrit 4 1'aide de plusieurs parameétres :
les lois thermodynamiques des gaz sont alors considérées par la
Mécanique statistique comme le résultat global observable des
mouvements incoordonnés des molécules.

Précisons un peu les conceptions qui sont a la base des théories
de Boltzmann et de Gibbs. En Mécanique statistique classique, on
admet que les éléments en nombre immense dont sont formés
les corps matériels obéissent aux lois de la Mécanique classique
de sorte que, si a un moment donné on connaissait exactement
la position et la vitesse de tous ces éléments, on pourrait en principe
calculer rigoureusement toute leur histoire ultérieure. Mais, en
pratique, on ne peut pas observer I’évolution de toutes les molécules
et I'on n’observe que des effets statistiques moyens dont la Méca-
nique statistique se propose de déterminer les lois. Ainsi, dans cette
théorie classique, on admet, du moins en principe, I'existence d’un
déterminisme sous-jacent, le caractére « probabiliste » des effets
obtenus provenant uniquement de 'impossibilité d’observer autre
chose que des effets globaux. L’introduction de la Dynamique
relativiste a la place de celle de Newton ne change rien d’essentiel
a ce qui précede, puisque cette Dynamique garde les conceptions
fondamentales de la Dynamique classique.

3. Extension-en-phase et théoréme de Liouville. — Pour déve-
lopper la Mécanique statistique classique, nous envisagerons un
systéme trés complexe dont la configuration est définie par des
coordonnées ¢y, ¢s, ..., gx dont le nombre sera en général considéré
comme trés grand.

Nous supposerons que notre systéme obéit aux lois de la Méca-
nique classique exprimées sous la forme des équations de Hamilton.
Si I’énergie du systéme est donnée par la fonction H(qy, ..., qx;
Pi .., Px, 1), on peut écrire les équations canoniques :

- oH . oH

R T

(i=1,2 ..., N),
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N étant le nombre des coordonnées ¢; (nombre des degrés de liberté).
Dans le cas ol le systéme est isolé ou soumis a des actions exté-
rieures indépendantes du temps, H est constant.

L’état du systéme étant enticrement défini par la connaissance
des ¢; et des p;, on peut représenter cet état par un point dans un
espace 4 2N dimensions formé a l'aide des ¢; et des p;. Cet espace
arecu de Gibbs le nom « d’extension-en-phase ». Au cours du temps,
le point figuratif du systéme décrit une trajectoire dans ’extension-
en-phase.

Envisageons de trés petites variations dq,, ..., dgx; dp,, ..., dpx
des coordonnées et des moments a partir de valeurs données.
A ces variations, correspond dans l’extension-en-phase un petit
élément de volume dr. Cet élément de volume possede deux pro-
priétés qui lui conférent une trés grande importance. La premiere
de ces propriétés est la suivante : Si U'on opére un changement de
variables canoniques faisant passer des variables ¢, ..., qx ; Py - - -5 Px
pour lesquelles les équations (1) de Hamilton sont vérifiées a de
nouvelles variables Q,, ..., Qx; Py, ..., Py pour lesquelles les équa-
tions de Hamilfon sont encore vérifiées (changement de variables
canoniques ), la valeur de U'élément d~ reste la méme. Je ne donne
pas ici la démonstration de ce théoréme qui résulte de la fagon
dont sont définies les variables conjuguées p; et ¢; : il montre
que I'élément de volume d+ posséde une signification intrinséque,
indépendante du choix des variables canoniques servant a définir
le systéme.

Plus importante pour ce qui suit est la seconde propriété de
I’élément d+ exprimée par le « théoreme de Liouville ». Pour énoncer
ce théoréme, nous allons considérer non plus un seul exemplaire
de notre systéme, mais un tres grand nombre d’exemplaires
différents de ce méme systéme. A un instant { chacun de ces
exemplaires sera représenté dans I’extension-en-phase par un certain
point et, a I'intérieur de I'élément d+ qui nous intéresse, il y aura
un certain nombre de points représentatifs. Fixons notre attention
sur les points représentatifs qui se trouvent ainsi 4 I'intant ¢ dans
I’élément dt. Au cours du temps, ces points vont se déplacer et,
4 un instant ultérieur ¢, on retrouvera par continuité ces mémes
points représentatifs dans un autre élément d<’ de I'extension-
en-phase, élément qui contiendra tous ces points représentatifs
et ceux-la seulement. Le théoreme de Liouville nous dit alors
que dr’ est égal a dv. Naturellement, d+' peut avoir une forme trés
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différente de d, étre par exemple un long ruban replié sur lui-méme,
alors que d= était un petit cube, mais les volumes des deux éléments
sont les mémes.

On peut démontrer le théoréme de Liouville en comparant le
mouvement des points représentatifs dans l’extension-en-phase
au mouvement des molécules d’un fluide dans un espace a 2N dimen-
sions. Le théoreme exprime, en effet, a ce point de vue qu’un nombre
donné de molécules du fluide occupe toujours le méme volume
dans l'espace a 2N dimensions c’est-a-dire que le fluide se comporte
comme un fluide incompressible. Or la condition d’incompressi-
bilité d’un fluide, c’est que la divergence de sa vitesse soit nulle
en tout point. Ici la vitesse du fluide dans 1’espace a 2N dimensions

a 2N composantes qui sont ql, ey qN ; pl, ..., P~ €t la condition
d’incompressibilité s’écrit :

@ 2(5% i+ o) =0

1

Or, cette équation est visiblement satisfaite en vertu des équa-
tions (1) de Hamilton. Le théoréme de Liouville en résulte.

Le théoreme de Liouville montre qu’'une répartition uniforme
des points représentatifs des exemplaires du systéme considéré
dans l’extension-en-phase se maintient indéfiniment. Il est facile
de comprendre que cela incite & prendre I'élément d’extension-
en-phase d+ comme mesure de la probabilité pour que le systéme
se trouve a un instant donné { représenté par un point représentatif
situé dans dr. Néanmoins, cette hypothése appelle quelques
remarques.

Une premiere remarque, c’est qu’il arrive souvent que I’évo-
lution d’un systéme mécanique admette des intégrales premiéres,
c’est-a-dire qu’au cours de cette évolution certaines fonctions
des g et des p restent constantes. Ainsi dans le cas usuel d’un
systéme isolé, I'énergie H(q, p) reste constante. Quand il y a des
intégrales premiéres, le point représentatif est assujetti a4 se mou-
voir sur certaines multiplicités 4 moins de 2N dimensions de
I'extension-en-phase (par exemple sur une multiplicité a
2N — 1 dimensions s’il y a une seule intégrale premiere). Ainsi,
pour un systéme isolé, le point représentatif devra se déplacer
sur I’hypersurface H = E = Cte ou, plus exactement, comme
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Pénergie n’est jamais connue qu’avec une incertitude dE, il est
toujours contenu dans une couche trés mince comprise entre les
surfaces H = E et H = E + dE : ce sont seulement les éléments
de volume de cette couche qu’il est naturel de considérer comme
mesures de probabilités.

Une autre remarque essentielle est que le théoréme de Liouville
ne permet pas & lui seul de démontrer rigoureusement qu’on peut
prendre I'élément dr de 'extension-en-phase comme mesure de
la probabilité de la présence du point représentatif dans cet élé-
ment, bien qu’assurément cette hypothése soit suggérée par le
théoréme. Pour obtenir une justification satisfaisante, il faut
adjoindre un postulat qui est connu sous le nom « d’hypothese
ergodique ». En voici I'énoncé : Soit un systéme admettant Uénergie
comme seule intégrale premiére uniforme et ayant un état initial
d’énergie comprise entre E et E - dE : le point représentatif du
systéme se déplace dans Uextension-en-phase en restant dans la couche
comprise enfre les hypersurfaces H=FE ef H = E + dE. Nous
« admettons » alors qu’au bout d’un temps suffisamment long, le point
représentatif aura « balayé uniformément » toute la couche en question.
On peut énoncer ce postulat sous une forme un peu moins stricte
nommée « hypothése quasi ergodique » qui se contente d’affirmer
qu'au cours de son déplacement, le point représentatif passe
aussi prés qu'on veut de tout point de la couche en question.
Si 'une ou 'autre de ces deux hypothéses est exacte, la probabilité
de la présence du point représentatif dans un élément d’extension-
en-phase est proportionnelle a la fraction d’'un temps trés long T
que le systeme passe dans cet élément : on peut donc alors con-
fondre les moyennes prises dans l’extension-en-phase avec les
moyennes prises dans le temps.

Malheureusement, les hypothéses ergodiques ou quasi ergodiques
ne sont certainement pas toujours exactes : il existe des cas simples,
comme celui des mouvements périodiques, ou elles sont en défaut,
On peut cependant admettre que ces cas exceptionnels ont une
probabilité évanouissante. Néanmoins les hypothéses ergodiques
ou quasi ergodiques sont trés difficiles a justifier rigoureusement
dans la théorie classique et il semble bien que des difficultés ana-
logues subsistent dans les théories quantiques. Boltzmann a intro-
duit une hypothese du « chaos moléculaire » qui invoque le caractére
aléatoire des perturbations subies par le mouvement des molécules
par suite de leurs chocs continuels. Cette hypothése sur laquelle
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nous reviendrons joue un réle analogue aux hypotheses ergodiques.
Nous aurons a revenir sur toute cette question.

Sans nous arréter aux difficultés qui viennent d’étre signalées,
nous admettrons qu’'on peut adopter comme mesure de la proba-
bilité relative des états d’un systéeme représentés par 'élément d«
de son extension-en-phase la grandeur méme de cet élément.

4. Entropie et probabilité. Relation de Boltzmann. — La gran-
deur la plus caractéristique et la plus mystérieuse quant a sa
signification physique introduite par le développement de la
Thermodynamique classique était certainement l'entropie, cette
grandeur qui a toujours une tendance a augmenter dans toutes
les transformations physiques spontanées. Le grand succeés de la
Thermodynamique statistique a été de parvenir a interpréter
I'entropie comme une grandeur mesurant le degré de probabilité
de I'état du corps considéré. Il est d’ailleurs aisé de déterminer la
nature de la relation fonctionnelle entre 'entropie d’'un corps et
la probabilité de son état. En effet, si 'on considére deux systémes
sans interactions mutuelles dont les entropies sont S, et S,, la
Thermodynamique nous apprend que 'entropie du systéme global
formé par I'ensemble des deux systemes est S, 4+ S, ; d’autre part,
si P, est la probabilité de I’état du premier systéme et P, celle de
I’état du second systéme, la probabilité de I'état global du sys-
téme 1 4 2 est égal a P,P, d’aprés le théoreme des probabilités
composées. Si donc la relation entre l'entropie et la probabilité
est de la forme S = f(P), on devra avoir :

3) [P A [(P2) = [(P,Py).
En différentiant (3) par rapport a P, on a :
['(Py) = Pf'(P.Py),
puis en différentiant par rapport a P,, on a :
f’(P1P2) + Plpzf’(PIPz) = 0,
relation de la forme :
'@ +zf'(x) =0,

d’out I’on tire par double intégration f(x) = C log x -+ D. Larelation
fonctionnelle entre ’entropie et la probabilité est donc :

‘@ S =klog P + Cte
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qu’on peut écrire en normalisant convenablement la probabilité :

(5) S = klog P.

C’est la fameuse formule de Boltzmann et, comme nous le verrons,
pour établir 'accord avec la Thermodynamique classique, il faut
adopter pour la constante k, appelée « constante de Boltzmann »,
la valeur numérique :

k = 1,37.10-% erg/°K = 1,37.10-% J /oK.

Comment doit-on dans la formule de Boltzmann évaluer la
probabilité P ? La définition la plus naturelle consisterait a dire
que P est égale au nombre des complexions élémentaires qui
réalisent 1’état considéré du corps divisé par le nombre total de
toutes les complexions possibles. Mais ce dernier nombre est diffi-
cile a évaluer et son intervention n’ajouterait qu’une constante
dans l'expression de I'entropie. On a donc convenu de prendre
pour P le nombre des complexions qui réalisent 1’état considéré
sans diviser par le nombre total des complexions possibles, ce
qui revient & fixer d’une certaine maniére, qui s’est montrée
adéquate, la constante arbitraire de I’entropie.

Comme valeur de P, on prendra donc, en accord avec le théoréme
de Liouville une valeur proportionnelle au volume d’extension-
en-phase correspondant a I'état du systeme. Ici encore, on peut
hésiter entre diverses possibilités. Considérons un systéme dans un
état d’énergie E. L’hypersurface E = Cte est fermée et limite
dans 'extension-en-phase un certain volume ®(E). On peut prendre
®(E) comme probabilité de I'état E. Une seconde définition qui
peut paraitre plus naturclle consiste a regarder I’énergie comme
n’étant définie qu'a dE prés et a remarquer que le point repré-
sentatif du systeme se déplace alors dans une couche comprise
entre les hypersurfaces E et E 4 dE dont le volume est évidemment
%%) dE, ce qui conduit & poser P = %];I—:)
nition possible part du fait que, pour une énergie totale donnée,
la répartition des énergies individuelles entre les divers constituants
du systéme peut varier et que I'une de ces répartitions est la plus
probable, correspondant a un plus grand domaine de I’extension-
en-phase que les autres : on peut alors définir P en ne tenant compte

. Enfin, une troisieme défi-
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que des complexions d’énergie totale E qui correspondent a cette
répartition la plus probable.

Les trois définitions de P (et, par suite, de S) que nous venons
de rappeler ne sont pas équivalentes et, dans le cas des systémes
a un petit nombre de degrés de liberté (*), elles peuvent donner
des résultats trés différents. Or, il se trouve, et ¢’est 14 une circons-
tance remarquable que, pour les systemes 4 un trés grand nombre
de degrés de liberté usuellement envisagés par la thermodynamique,
les trois définitions sont pratiquement équivalentes pour l’appli-
cation de la formule de Boltzmann, ce qui dispense en ce cas de
justifier un choix plutéot qu'un autre. Nous n’insisterons pas sur
la démonstration de cette « insensibilité de la formule de Boltz-
mann » qu’on trouvera dans beaucoup d’ouvrages classiques.

5. Température et équilibre thermique. — En Thermodyna-
mique classique, on définit la variation de l'entropie par la
formule : 40 dE+ d8

_|_
©) dS = B U
ot T est la température absolue, dQ} la quantité de chaleur regue
par le corps, dE la variation de son énergie interne, d G le travail

qu’il fournit 4 T'extérieur. Si le corps ne fournit pas de travail,

on a dS == d{? . Les formules précédentes ne sont valables que si

la transformation est « réversible ».

Comme I'entropie dépend généralement non seulement de 1’éner-
gie E, mais aussi d’autres parametres (tels que le volume V occupé
par le corps), on conclut de la relation précédente qu’on peut définir
la température absolue d’un corps par la formule :

1 oS
@) T=3E"
Si deux corps I et 2 sont en contact et peuvent échanger de la
chaleur (mais pas de travail mécanique macroscopique), les tempé-
ratures des deux corps tendent a s’égaliser et, quand 1'équilibre
thermique est atteint, on a :

® (52), = ().

() Mais, en ce cas, il est douteux qu’on puisse vraiment parler de I’entropie
du corps.
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Considérons cette question de l'équilibre thermique du point
de vue de la Mécanique statistique. Le systéme global 7 2 étant
supposé isolé, son énergie totale est constante, mais elle peut se
répartir d’'une facon variable entre les deux systémes I et 2.
La probabilité de I’état global 1 4 2 ou le corps 1 a 'énergie E,
et le corps 2 I’énergie E, est :

9) P = P,(E,).Py(E;) = P(E,).P,E — E,).

L’état le plus probable du systéme global 7 + 2 correspond au
maximum de P défini par la relation :

dlogP dlogP,  dlogP,
g, =0 ou 3B, T oE, O
Comme dE, = — dE,, on a donc :

dlog P, 2logP,
COE, T JE,

(10)

En multipliant par k et en introduisant la relation de Boltzmann,
il vient :

S, 2S5,
(th 2E, ~ O,
et cette équation traduit I'égalité des températures des deux corps
au moment de I’équilibre. On peut donc dire que la température
d’un corps est reliée a la probabilité P,, de son état le plus probable
par la relation :

1 2logP,

(12) KT= R

ce qui correspond a la troisieme définition de l’entropie par la
formule de Boltzmann qui a été discutée plus haut.

On peut remarquer que la Mécanique statistique, allant plus
loin que la Thermodynamique classique, peut définir ’entropie
d’un état quelconque par la relation S = k log P, méme si cet état
n’est pas un état d’équilibre de probabilité maximale. Cette définition
générale de I’entropie coincide avec celle de l’entropie thermo-
dynamique pour les états de probabilité maximale : elle fournit
alors la valeur de I'entropie thermodynamique classique qui peut,
pour les systémes & un nombre énorme de paramétres envisagés
par la Thermodynamique classique, étre exprimée a l'aide de
Pune quelconque des trois définitions de P précédemment signalées.

DE BROGLIE 3
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Mais la formule de Boltzmann permet aussi d’étudier les fluc-
tuations de I'état d’un corps autour de son état le plus probable.
Nous aurons 4 revenir ultérieurement sur la théorie des fluctuations
ainsi obtenue.

6. La répartition canonique de Boltzmann-Gibbs. — Consi-
dérons a4 nouveau un systéme formé par la réunion de deux corps 1
et 2 : nous les supposerons trés faiblement couplés et ne pouvant
échanger entre eux que de la chaleur. Le corps I pourra avoir
un nombre quelconque (petit ou grand) de degrés de liberté, mais
nous supposerons essentiellement que le corps 2 est un « thermo-
stat », c¢’est-a-dire un énorme réservoir de chaleur (énergie molé-
culaire incoordonnée) de telle facon que le corps I n’ait qu'une
chance tout a fait négligeable de lui prendre une fraction appré-
ciable de son énergie. En d’autres termes, si E{™ est I’énergie du
thermostat quand il est dans l'état d’équilibre de probabilité
maximale avec le corps 1, on peut admettre que, pour tous les
états pratiquement réalisables, la différence E, — E{™ est toujours
extrémement petite devant E{™. La probabilité de I’é¢tat du corps 2
étant P,, on peut toujours écrire :

{m)
(13) log P, = log P{™ 4 ﬂ.g_Pm

(E:s—E™)+ ...

Les hypothéses faites sur la nature du thermostat nous permettent
alors de négliger les termes non écrits qui sont d’ordre supérieur
en E, — E{™ et, en appelant T la température absolue du ther-
mostat, on aura :

(14) log Py = log P{™ + T (E2 E™),
d’ou :

E,~E™
(15) P, = Pl ¢

Mais, si E{™ désigne I'énergie du corps I quand il est dans son état
d’équilibre le plus probable avec le thermostat, on a :

Eg had E£m) - E:(lm) - El

par la conservation de I’énergie. Comme nous avons supposé
faible I'interaction du corps I avec le thermostat, la probabilité
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de I'état ou le thermostat a ’énergie E, et le corps I I'énergie E,

est :
E(™_g,

(16) P - Pl(El) . Pg(Ez) = Pl(El) . P(zm) e kT
La formule précédente peut encore s’écrire sous la forme :

F-E,

(17) P=P(E,)e T ,

ou P(E,) est le nombre total des configurations du corps I ayant
I'énergie E, quand on ne lui impose aucune liaison avec le thermo-
stat (probabilité a priori).

Nous avons ainsi obtenu la « loi de distribution canonique »
de Gibbs qui apparait comme valable dans un systéme en contact
thermique avec un thermostat qui fixe la température T.

La constante I figurant cette loi de distribution canonique
se calculera en écrivant :

F-E;
(18) ZP(Ei)eW —1,

la sommation étant étendue a tous les états possibles du corps
formant par hypothése une suite discontinue (si la suite étant

continue, on remplacerait la sommation Z par une intégrale sur E).

13

De I'équation précédente, on tire :

E

F i
(19) P - ZP(Ei)e_ﬁz Z,
d’ou : '
(20) F = — KT log Z.

La somme (ou intégrale) Z définie par le second membre de (19)
a été nommée par Planck « la somme d’états ». Elle joue un role
essentiel dans les calculs de la Thermodynamique statistique.

Remarquons que le corps I peut étre constitué par une seule
molécule : il en résulte que, pour une seule molécule, 1a notion de
température a un sens quand cette molécule se trouve en contact
énergétique avec un thermostat a température T qui lui impose
sa température.
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7. Remarques importantes au sujet de la loi de distribution
canonique. — Dans le chapitre IV de son fameux Ouvrage Ele-
mentary principles of statistical Mechanics, Willard Gibbs a écrit
la loi de distribution canonique sous la forme :

¢—E
@1 P=e¢?,

F ¢
ce qui revient & poser, dans la formule (17), kT = 6 et P(E,)e® = e®.
11 a ensuite introduit ce qu’il nomme « I’exposant de probabilité »
en posant :

(22) n=1log P, P = e,

puis il a montré que » a, & une constante additive prés, les propriétés
de P’entropie thermodynamique du corps I changée de signe ().
On peut alors écrire :

&

(23) ﬂx—%—i—cte; P:eﬂ:Ctee_-i\:_

Or le signe — dans l'exposant de la derniere formule pourrait
surprendre, car il pourrait paraitre en opposition avec la formule

8,
de Boltzmann (car on aurait tendance & écrire P = Cte e+’7).
Ceci a donné lieu 4 quelques confusions qui ont parfois été commises
dans des ouvrages trés sérieux. C’est ce changement de signe
qui explique d’apparentes anomalies dont je parlerai plus loin.

Le changement de signe que nous venons de constater est
cependant facile 4 expliquer, car la formule P(E) = P(E,).P(E,)

dont nous sommes partis nous donne P = Cte e" , d’aprés la
formule de Boltzmann appliquée au thermostat. Mais le corps I
et le thermostat formant par hypothése un systeme isolé de toute
action extérieure ou les échanges d’énergie entre les deux consti-
tuants sont des processus supposés réversibles, il doit y avoir
conservation de Ventropie totale, ce qui donne :

S; + Sg = S(lm) + S(zm) _ Cte

5
et, par suite, P = Cte e ¥, ce qui est bien en accord avec la for-
mule (23) de Gibbs.

() On suppose que le corps I a un nombre de degrés de liberté assez
grand pour qu’on puisse lui attribuer une entropie.
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La remarque qui précéde jouera un rdle important dans les
considérations que nous développerons ultérieurement sur l’ana-
logie entre 1’Action et I'Entropie. Nous allons y ajouter d’autres
remarques.

Pour le systéme formé du corps I et du thermostat en contact
énergétique faible, nous avons trouvé P = P, x P,, avec :

el™ g,
(29) P, ~P™e T
P, devant étre égal a ek, d’aprés la formule de Boltzmann. La
formule (24) ne donne qu’une valeur approchée parce que, pour
I’obtenir, nous avons négligé les termes d’ordres supérieurs en
E, — E™. Nous pouvons poser :

!

F-E, F-E,

(25) P, ~e T P~P,e T

et nous retrouvons la loi de distribution canonique.
Sile corps 1 est complexe et posséde un grand nombre de degrés
de liberté, on a par la définition de la somme d’états Z :

E

“i F
(26) Z=ZP,-(E,-)eTT:e‘k‘T,

d’ou, puisque la probabilité de l'état le plus probable de 1 est
en ce cas infiniment plus grande que celle de tous les autres états
possibles :

Elml
(27) Pimle KT ~e KT,

Et lon en tire, puisque alors on peut introduire sans difficultés
s(m)
1
la notion d’entropie du corps I, la relation P{™ = e % d’apreés
la formule de Boltzmann de sorte que la formule (27) nous donne :

(28) F ~ Elm — TS!™,

Donc, pour un corps ayant un trés grand nombre de degrés de liberté
maintenu a la température T, F est I’énergie libre de la Thermo-

dynamique classique. Mais, si 'on porte la valeur F = E, — TS,
8,

dans la deuxiéme formule (25), on trouve P ~e *, ce qui semble
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en contradiction avec la formule de Boltzmann. C’est la difficulté

que nous avions déja rencontrée plus haut et que nous avons levée

en remarquant S, + S, = Cte de sorte qu'on retrouve pour P, la
S

formule de Boltzmann P, ~ ek, ce qui est satisfaisant.

La proportionnalité de I’exposant de I’exponentielle dans la loi
canonique a S, et & — S, est valable, quel que soit le corps 1. Mais,
dans le cas ou le corps I posséde un grand nombre de degrés de
liberté, nous avons :

s, ses,  Sas Sm
29) P~P,ek=e¢ k¥ =e * =ek
Sy
puisque alors P, est égal a e¥ d’aprés la formule de Boltzmann.
S,. étant ici entropie de I'état de probabilité maximale du sys-
teme 1 -+ 2, nous avons :

(30) P ~ Pim),

Ceci veut dire que, pour le systéme I 4 2, I’état de probabilité
maximale est pratiquement le seul réalisé, ce qui est satisfaisant
étant donné I'hypothése que le corps 1 est trées complexe.

8. Applications de la loi de distribution canonique. — Consi-
dérons d’abord le cas ou le corps I est un corps trés complexe
défini par un trés grand nombre de paramétres (par exemple,
Pensemble des molécules d’un gaz). Nous avons montré ci-dessus
qu'en ce cas F est égal & E — TS et coincide avec le potentiel
thermodynamique ou énergie libre du corps. Mais envisageons
ensuite le cas opposé ou le corps 1 est défini par un petit nombre
de parameétres. La loi de distribution canonique est toujours
valable, mais F ne représente plus I’énergie libre.

Considérons, par exemple, une molécule d’un gaz : elle est définie
par un petit nombre de paramétres ; mais, comme on peut la consi-
dérer comme se trouvant en contact énergétique avec un thermostat
formé par I’ensemble de toutes les autres molécules du gaz supposé
en équilibre thermique, on peut lui appliquer la loi de distribution
canonique. Or la probabilité a priori pour que les coordonnées
et les moments de cette molécule aient des valeurs comprises dans
les intervalles x —>x + dx, ..., p, —> p. + dp. est, d’aprés le
théoréme de Liouville, égale a I’élément :

dv = dxdydzdp,dp,dp,
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de I'extension-en-phase de la molécule. D’apres la loi de distri-
bution canonique, la probabilité pour que la molécule considérée
comme en contact avec le reste du gaz formant thermostat a
température T ait son point re}F)résentatif dans I'élément dr de

son extension-en-phase est C e *Tdx. Il en résulte que le nombre
des molécules du gaz ayant leurs coordonnées comprises entre x
et z + dx, ..., et leurs moments de Lagrange compris entre
Pz —> Dz + dps, ..., est:

E E

(31) dn=Ce **dxdydzdp,dp,dp,= Cm®e Tdxdydzdv,dv,dv,,
avec :
1 ’
E =g (p:+ P, + Pl)-
La constante C se détermine en écrivant que fdn = N, N étant le

nombre total des molécules du gaz. La formule (31) constitue la
célebre loi de distribution des vitesses entre les molécules d’un gaz
due a Maxwell.

Comme on peut dans I'extension-en-moment réunir les éléments
dp. dp, dp, qui forment une couche sphérique entre les sphéres :

Pt _ (p+dpy* _
2m—E et 5 =E 4 dE,
couche dont le volume est égal a :
4nprdp = 2x(2m)y*2*/E dE,

on trouve pour le nombre des molécules d’'un gaz dont I’énergie
est comprise entre E et E + dE par unité de volume :

E —_—
(32) dn, = Ce T4/EdE.

Si le gaz se trouve placé dans un champ de force qui agit sur
les molécules, il faut tenir compte de I’énergie potentielle dans
Iexpression de E. Par exemple, si le gaz est placé dans le champ
de la pesanteur, on aura :

=P
E-—zm—[—mgz

(z étant altitude de la molécule) et, si I'on integre sur dp.dp,dp;,
I’expression de dn, on trouvera que la densité du gaz varie avec

mgz

laltitude z comme e *T. C’est la fameuse « loi barométrique »
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de Laplace qui est applicable aux molécules d’un gaz et également
aux grains d’une émulsion en suspension dans un liquide. C’est
en I'appliquant dans ce dernier cas que Jean Perrin a pu, dans
ses céleébres expériences, il y a un demi-siecle, déterminer la valeur
du nombre d’Avogadro (N = 6,06.10%),

Pour montrer a nouveau l'importance d’une remarque faite
au paragraphe précédent, considérons la i*m* molécule d’un gaz.
En contact avec I’ensemble du gaz formant thermostat a la tempé-

E

rature T, elle a une probabilit¢ P = C e *T dr d'avoir son point
représentatif dans I'élément d~ de son extension-en-phase. S’il était
permis de lui attribuer une entropie S;, celle-ci serait donnée d’aprés
la formule (23) par S; = — klog P. Méme si l'introduction de
I'entropie S; d’une molécule semble discutable, on admettra sans
doute plus aisément que I’entropie thermodynamique de I'ensemble
des molécules du gaz est donnée par la valeur moyenne de S;,
c’est-a-dire que :

(33) S =%, =— kZP log P.

Comme ici P est une fonction continue des variables canoniques
Z, ..., Pz, on peut écrire :

(34) S=~kf/logfdr.

C’est une formule classique depuis Boltzmann en théorie cinétique
des gaz. Mais si, entrainés par la relation de Boltzmann, nous avions

posé S; = k log P, nous aurions trouvé S == kff log f dv avec
une faute de signe.

A T'aide des formules précédentes, nous pourrions trouver faci-
lement I’expression de toutes les grandeurs qui caractérisent les

gaz parfaits. Nous nous contenterons de noter qu'on pourra ainsi
retrouver la loi de Mariotte-Gay-Lussac sous la forme :

(35) pV = NKT,

ou N est le nombre des molécules d’un gaz qui occupe le volume V
4 la température T sous la pression p. En appliquant cette formule
a la molécule-gramme du gaz parfait pour laquelle le nombre N

des molécules est égal au nombre d’Avogadro N, on peut écrire
en posant R = kN,

(36) pV = RT,
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ou R est la « constante des gaz » rapportée a la molécule-gramme
dont la valeur expérimentale bien connue est R = 8,3.107 ergs/°K.
On en tire :

_ 83.10
-

=1,37.10-1

==

(37) k= 6.10%

et c’est bien la valeur de la constante de Boltzmann que nous avions
annoncée précédemment.

9. Théoreme de I’équipartition de I’énergie. — Dans l'expres-
sion de I’énergie d’'une molécule ponctuelle, les moments de Lagrange
figurent en Mécanique classique par leurs carrés. Si un point matériel
est rappelé vers une position d’équilibre prise comme origine des
coordonnées par une force proportionnelle & 1'élongation, les
coordonnées et les moments figurent par leurs carrés dans ’expres-
sion de I'énergie :

1 2 2 2 K 2 2 2
E =g (pz+p+ )+ 5 @+ y*+ 2

D’une fagon générale, on dit qu'une variable canonique est un
« momentoide » si elle figure par son carré dans I'expression de
I’énergie. L’exemple le plus simple de momentoide est un moment
de Lagrange pour une particule libre et de la vient le nom de
momentoide.

Le théoréme de 1’équipartition de 1’énergie peut alors s’énoncer
en disant : Si 'une des variables canoniques d’un systéme est un
momentoide, quand le systéme est en équilibre thermique a la tempé-
rature T, le terme correspondant dans Uexpression de Uénergie a pour
valeur moyenne% KkT. Ainsi Uénergie se partage en moyenne également
entre tous les momentoides et, si toutes les variables sont des momen-
toides, elle se partage également en moyenne entre tous les degrés de
liberté. D’ou le nom du théoréme.

Supposons par exemple que la variable ¢, soit un momentoide
et démontrons le théoréme pour cette variable. L’énergie du sys-
téme est de la forme :

E=agt+ /(91 .. Qr—1s Q41 ++- P1 <<+ Pn)e
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La valeur moyenne du terme ¢; dans I’équilibre thermique a la
température T sera :
Mg
Cf ...Jaqﬁe kKT ¢ kT dq, ... dpy
2N
WI?‘ f ’

CLN... fe—ﬁe_ﬁ‘dq, ... dpy

En divisant en haut et en bas par le facteur :

(38) gt =

-t
szn—l' : .fe deql e qu—l, qu c e de

et en posant u = ’\/—I;T ¢x, ON trouve :

L fo uze—¥du 1
39 aq; = kT e T3 kT.
f e~vdu
0

C. Q. F. b.

Naturellement, la méme démonstration s’applique 4 un momen-
toide du type ps.

En Mécanique statistique classique, il arrive souvent que toutes
les variables canoniques soient des momentoides et il y a alors
équipartition de I'énergie entre tous les degrés de liberté. Le théo-
réme de ’équipartition de I’énergie a donné en Mécanique sta-
tistique classique un grand nombre de résultats exacts, mais il a
conduit aussi & des échecs treés significatifs qui ont rendu nécessaire
Yintroduction des quanta en Physique. Nous n’insisterons pas ici
sur ces points bien connus.

10. La Mécanique statistique relativiste. — La Mécanique rela-
tiviste peut, nous ’avons vu, se développer a partir d’'un principe
d’action stationnaire et elle aboutit a des équations canoniques
de Hamilton du type habituel : ’

- oH . oH
40 = -, =,
(40) % =3 P 0
Elle permet donc d’introduire I’extension-en-phase et de démontrer
le théoréme de Liouville qui est une conséquence des équations
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de Hamilton. On peut aussi introduire la relation de Boltzmann
entre I'entropie et la probabilité et choisir I'une ou l'autre des
trois définitions envisagées précédemment pour le nombre P des
complexions correspondant & un état d’énergie donnée.

Rien ne sera changé non plus dans la définition de la température,
ni dans la distribution canonique qui donne la probabilité des états
d’un systéme en contact avec un thermostat, ni dans I'identification
de la grandeur F avec I'énergie libre, quand ce systéme a un grand
nombre de degrés de liberté.

Toutes les conclusions précédemment obtenues restent donc
valables tant qu’on ne fait pas intervenir 'expression explicite
de la fonction de Lagrange £, des moments p, qui s’en déduisent et de
la fonction hamiltonienne donnant l’énergie en fonction des g
et des p,. Mais dans les applications ou1 'on a & faire intervenir
I'expression des moments p, ou la fonction hamiltonienne, il en est
différemment. Nous en donnerons un exemple en reprenant le
cas de la loi de Maxwell.

En considérant une molécule d’'un gaz comme en contact avec
un thermostat formé par le reste du gaz, la loi de distribution
canonique nous a conduit pour le nombre des molécules dont le
point figuratif est dans I'élément d+ de I’extension-en-phase de la

molécule I'expression :
E

dn = Ce *Tdx.

Cette formule reste valable, mais comme ici nous n’avons plus :

L= P
E=omr=omn

nous ne pouvons plus en tirer la formule de distribution en éner-
gie (32).

Ici, en effet, nous avons pour I'énergie et la quantité de mouve-
ment les relations :

myc? - m gc

41) W=_""__ — et
Y ARV T
Nous pourrons donc remplacer, dans ’expression de dn, E par W,
puisque W = E + myc? et que remplacer E par W revient seule-
ment a4 modifier la constante C. De plus, a une variation dW de W
correspond une variation dp de p telle que :

W dW = pczdp.

W2 = p2c? + mct.
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Une couche sphérique de l'extension-en-moment a donc pour
volume : N
2
4 YY \—Nz— — mict dW.

¢ c
Par suite, le nombre des molécules par unité de volume dont
I’énergie totale W est comprise entre W et W - dW sera :

w 7
(42) dny, = Ce—’TTW\/-\g — mict dW.

Si toutes les molécules (sauf quelques-unes en tres petit nombre)
ont une vitesse trés inférieure a4 ¢ (ce qui est usuellement le cas
pour tous les gaz matériels), on peut retrouver la formule (32) de
la facon suivante. Posons :

E

\R’=E—{_Ingc2 et m

="

nous aurons W = mg? (1 4 n) et nous pourrons écrire :

E —
(43) dn,, = Ctee *T(1 4 )2/ (2 + )0 dn,

forme de (42) qui montre qu’a l'approximation newtonienne
ou 'on a n <« 1, on retrouve bien la formule (32).

11. Application a un gaz de photons. — Considérons le cas
opposé a celui de I’approximation newtonienne ot presque toutes
les molécules d’'un gaz auraient une vitesse trés voisine de c. C’est
ce qui arriverait a toute température si la masse propre desmolécules
tendait vers zéro. Ce cas peut étre comparé a celui du rayonnement
noir, car le rayonnement noir peut étre considéré comme un gaz
de photons, les photons ayant une masse propre nulle ou peut-étre
seulement extraordinairement petite. Comme alors pour presque
toutes les molécules on aura W >» myc?, on trouve d’aprés (42) :

w

(44) dn, = Ce *TWW.

Pour les photons, on posera W = hv et I'on trouvera pour la
densité de I'énergie d’'un gaz de photons correspondant a l'inter-
valle de fréquence v — v 4 dv :

hv

(45) pydv = hvdn, = Ctee *Ty3dy,



NOTIONS DE THERMODYNAMIQUE STATISTIQUE 45

Or cette forme de densité spectrale est celle que Wien avait jadis
proposée et qui, en fait, est seulement valable pour les grandes
v
rj«
que prend la loi de Maxwell pour un gaz de molécules dont la masse
propre est évanouissante comme je 'avais signalé dans un article
du Journal de Physique en 1922.

Mais, en fait, la densité spectrale du rayonnement noir est
donnée par la loi de Planck :

valeurs du quotient ~ . La loi spectrale de Wien est donc la forme

. 8xh v
(45 bis) p(v)de% = dv.

eFt — 1

C’est l'introduction des quanta et les transformations qu’il faut
faire subir 4 la Mécanique statistique pour en tenir compte qui
expliquent la différence entre la loi réelle de Planck et la loi de
Wien. Nous n’insisterons pas sur cette question bien connue.

Il est curieux de noter ce qui se passe pour la distribution des
vitesses dans le cas des molécules de masse propre évanouissante.
Comme W = \/—Iln(% , pour qu'une telle molécule ait une énergie
appréciable, il faut que sa vitesse soit extrémement voisine de c.
Donc, quand la vitesse croit de 0 a ¢ — ¢, W reste sensiblement
nulle ; puis, v croissant de ¢ — ¢ a4 ¢, W croit d’'une valeur extréme-
ment petite 4 I'infini. Ainsi la loi de distribution des énergies (44)
conserve une forme en cloche analogue a celle de la loi classique
de Maxwell tandis que la loi de distribution des vitesses est repré-
sentée par une courbe en aiguille au voisinage immédiat de v = c.
C’est ce qu'illustre la figure 3.

Fic. 3.
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Lorsque m, tend vers zéro, toute la courbe de distribution des
vitesses vient en quelque sorte s’écraser contre la droite verti-
cale v = c.

12. Valeur moyenne de p,q, en Mécanique statistique relativiste.
— En Mécanique statistique relativiste, on ne peut plus démontrer
Péquipartition de 1’énergie cinétique entre les degrés de liberté
comme en Mécanique classique parce qu’ici I'énergie cinétique
d’un point matériel :

2 1 2
E;, =my (vl — [5”_ 1) =C\/p2+m§c — myc?

n’est plus une forme quadratique des p,. Mais nous allons montrer
qu'en Mécanique statistique relativiste, on a :

(46) prgx = KT.

En effet, on peut écrire :

- — fm"'fpkék e_z_‘"i“dql d_lji ~ sz...J‘pk %Ze_%dql ver dpy
P LN...fe_zv_qul ... dpy Ll‘...fe_"%dq1 oo dpy

d’aprés les équations de Hamilton et, comme W tend toujours
vers l'infini en méme temps que p,, une intégration par parties
fournit aisément la formule (46).

Cette formule, valable d’une fagon générale en Mécanique sta-
tistique relativiste, donne a l'approximation newtonienne ol

2E, = pk(}k la formule (?) :
=

(48) E.=N % kT,

ce qui nous ramene a l'expression classique de I’équipartition de
I’énergie, mais en Dynamique relativiste :

2E, # zpkék.
k

(1) Pour éviter toute confusion avec la température, nous désignons ici
I’énergie cinétique par E..
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On doit remarquer que la formule (46) n’est valable que dans le
systéme propre du corps considéré de sorte qu’il est préférable de
I’écrire sous la forme :

(49) pigh = kT,

les indices O rappelant que les quantités sont évaluées dans le
systéme propre.

Pour une molécule, on peut toujours, méme en théorie relati-
viste, écrire :

3
- 1 . 3
(50) 9 kaokqok = QkTo
1
et, comme :
Y 3
Do, = —1oflox =, avec = hésk,
/\/1 - c—g' 1
il vient :
(51) e T,

Vg
En Dynamique relativiste, la grandeur sous le signe de moyenne
dans (51), que nous nommerons la « pseudo-énergie cinétique »,
n’est pas égale a I'énergie cinétique : elle ne se confond avec elle
qu’a l'approximation newtonienne et alors la formule (51) nous
redonne l'expression classique de l'équipartition de I'énergie.

Nous verrons que la pseudo-énergie cinétique joue un role important
en Thermodynamique relativiste.




CHAPITRE IV

NOTIONS
DE THERMODYNAMIQUE RELATIVISTE

1. Invariance relativiste de I’Entropie. — L’Action hamilto-
nienne est I'invariant fondamental de la Mécanique : nous allons
maintenant voir que I’Entropie est I'invariant fondamental de la
Thermodynamique. Pour apercevoir le caractére invariant de
I'entropie, il suffit de se rappeler que, selon Boltzmann, 'entropie
d’un état macroscopique est proportionnelle au logarithme du
nombre de complexions qui réalisent cet état : Pentropie s’exprime
donc par un nombre dont 'invariance parait évidente. Pour confir-
mer cette intuition, nous remarquerons que, d'une part, la définition
de I'entropie par la formule de Boltzmann fait intervenir un nombre
entier de complexions et que, d’autre part, la transformation de
I’entropie lors d’un changement de systeme de référence galiléen
doit s’exprimer par une fonction confinue de la vitesse relative des
systémes de référence : il en résulte nécessairement que cette
fonction continue est constante et égale a P'unité (puisqu’elle est
égale & I quand les systemes de référence coincident) et il en découle
que 'entropie est un invariant.

On peut aussi raisonner autrement. Considérons un corps qui,
dans un systéme de référence 1, passe d’un état de repos dans un état
de mouvement de vitesse v en étant accéléré adiabatiquement
et & pression constante par un corps immobile dans le systeme
considéré. L’ensemble des deux corps évoluant adiabatiquement,
son entropie est constante et, comme le corps qui produit I'accé-
lération garde une entropie constante, il en est de méme du corps
accéléré. Donc S, = S,, les indices 1 et 2 se rapportant a I'état
initial et & I’état final du corps accéléré. Soit maintenant un sys-
téme primé lié au corps accéléré une fois mis en mouvement
uniforme. L’état 2 rapporté a ce systéme est identique a I'état 1



NOTIONS DE THERMODYNAMIQUE RELATIVISTE 49

rapporté au systéme primitif. On a donc S, = S, et, par suite,
S, = S,, formule qui exprime l'invariance de l’entropie.

2. Variance relativiste de la température. — La déduction de la
variance relativiste de la température exige des raisonnements
assez délicats. Nous donnerons celui qui nous parait le plus instruc-
tif.

Considérons un corps C qui, envisagé dans un systéme de réfé-
rence galiléen R, qui lui est lié, se trouve dans un état d’équilibre
thermodynamique 4 la température absolue T, et posséde un volume
invariable V,. Ce pourra étre, par exemple, un gaz enfermé dans une
enceinte rigide de volume V, a la température T,. Soit M, la masse
propre totale du corps C.

Plagons-nous maintenant dans un systéme de référence galiléen R
ou le corps C posséde une vitesse v = B¢ de translation uniforme
et supposons que, dans ce systéme de référence, une source de
chaleur fournisse & C la quantité de chaleur Q. Nous allons montrer,
point essentiel, que, pour que le corps C puisse conserver la vitesse c,
il faut lui fournir, en méme temps que la quantité de chaleur Q,
un certain travail A,

En effet, le corps conservant par hypothese la vitesse B¢, son
, . .. M,c?
énergie qui étalt ———

V1 —
réception d’'une quantité de chaleur et d’un travail A, que si la
masse propre varie et passe de sa valeur initiale M, & une valeur
finale M, + AM,. En d’autres termes, la chaleur et le travail
absorbés par le corps C en mouvement auront accru son énergie
interne, ce qui d’apres le principe de I'inertie de I’énergie doit faire
croitre sa masse propre.

Le principe de la conservation de I'énergie nous permet d’écrire :

o = QA

ne peut augmenter, par suite de la

Si F désigne la force qu'on a di exercer sur le corps C pour lui
communiquer dans le systéme de référence R le travail A, la dérivée
de la quantité de mouvement par rapport au temps doit 4 chaque
instant étre égale a F, ce qui donne :

Mo+ AMp My o 1 _A
2) Vi Vl*ﬁz_J.th_vavdt =,

DE BROGLIE 4
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puisque v est constant par hypothese et que A = fdet. Onadonc:

AM,
3 e l)2 = A_
et I’on voit que le travail fourni au corps dans le processus envisagé

2
est égal a4 'augmentation de la pseudo-force vive \/—IE/IOEE
de la pseudo-énergie cinétique). Finalement, en comparant (3)
et (1), nous obtenons :

“) A= 1 - B’ Q,
d’ou :
) Q =AM, c24/1 — B2= — Af,

AL étant la variation de la fonction de Lagrange du corps dans le
processus envisagé due a la variation de la masse propre. Donc,
ainsi que nous I’avions annoncé, pour que le corps puisse conserver
dans le systéeme de référence R, la vitesse constante v = gc quand
il recoit la quantité de chaleur Q, il faut que cet apport de chaleur
soit complété par un apport de travail A donné par (4). De cette
relation, nous tirons d’ailleurs aisément :

\/ 1
(©) AM, = ParQ= \/1
On voit que toutes ces considérations dérivent ﬁnalement du prin-
cipe de l'inertie de I’énergie qui permet d’envisager des variations
de la masse propre d’un corps résultant de la variation de son énergie
interne.

Revenons maintenant au systeme de référence R,. Puisque le
corps y garde une forme invariable, aucun travail n’est effectué
dans ce systéme pendant le processus envisagé. Vue dans ce systeme,
I'opération effectuée doit donc consister uniquement dans I'apport
au corps C d’une quantité de chaleur (), telle que :

Qo gy, 1 Q
Q) w= M= LS

Lors du passage de R, a R, la quantité de chaleur va se trans-
former suivant la loi :

@®) Q=QV1—p
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et, comme ’entropie S = JdTQ est invariante, il en résulte que la
température absolue du corps doit se transformer suivant la loi :
9) T ="T,\/1— p.

C’est la formule fondamentale donnant la transformation de la
température quand on passe de R, a4 R.

Remarquons encore que I'importante formule (5) peut s’obtenir
de la fagon suivante. Nous partons de la définition de I'énergie

3
W= Zipiq',- — £ appliquée au corps C dans son mouvement de

1 .
translation. Puisque les ¢; sont constants, nous avons :

(10) AW = Z};idpi —dt.
Or : '
3 3
(1) Ziqidpi = Zipidqi = dA,
1 1

car f),- = f;, d’ot dW = dA — df et, en intégrant sur tout le pro-
cessus envisage :

(12) AW = A — Af,

Comme AW = A 4- Q, d’apres la conservation de I’énergie, on a :

(13) Q = — AL
On en tire :
_Q At 1 28
3. Extension au cas ou le volume du corps C varie. — Nous

allons reprendre le raisonnement précédent en supposant que le
volume du corps C varie. Nous nous appuierons sur le fait que, dans
la théorie relativiste de I'Elasticité, la pression dans un corps iso-
trope est un invariant de sorte que nous pourrons poser p = p,.
Placons-nous dans le systéeme de référence R. La vitesse du
corps C restant constante, on lui fournira une quantité de chaleur Q
et un travail A pendant que son volume varie de AV. Le corps C
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est supposé isotrope et sa pression interne égale a p. La conserva-
tion de I’énergie nous permet d’écrire :

(15) AW=%=Q+A—pAV

et, comme on a toujours la relation (3) qui se démontre comme
précédemment, on trouve aisément :

Q—pav
(16) A_—ifgrg.

On déduit de (15) et de (16) :
Q—pav 1
c? ,\/1 —pe :

D’autre part, dans le systéme de référence R,, ot A =0, on a :

(17) AM, =

(18) AZNo = AM, = Qo Cl:o AVo

et la comparaison avec (17) donne :
(19) Q — pAV = (Qy — p.AV)4/1 — 2.
De plus, en portant (16) dans (15), il vient :

_Q—pAV TAS— pAV
(20) AW = 1 — 62 - 1 — pz ’
tandis que, dans le systéme R, :
21 AW, = T, AS, — p,AV,.
Nous trouvons dongc :
oWy T | A
(22) (K) T 1= (a—so )v, =T

dW,

A1 — pe

mule (9) pour la transformation de la température.

et comme dS = dS, et dW = , on retombe sur la for-

4. Le quadrivecteur « Inverse de la température ». — Divers
auteurs, notamment Tolman et Eckart, von Dantzig et Bergmann,
ont proposé de donner une variance tensorielle & la température
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en considérant l'inverse de la température comme la composante
de temps d’un quadrivecteur dont les composantes d’espace seraient
nulles dans le systéme propre du corps. On aurait bien alors :

11
T To'\/1 - Bz
en accord avec la formule (9).

On pourrait, par exemple, définir un quadrivecteur_é d’espace-
temps par :

(24) o

(23)

Ui
=T
ot Ui est la « vitesse d’univers » du systéme propre du corps C

Ay 1

car alors on aurait bien 64 = T

A mon avis, malgré I’élégance de cette représentation, son
exactitude reste assez douteuse, car on ne voit guere quel est le

. -

sens physique des composantes d’espace du quadrivecteur 6.
On pourrait faire la méme représentation pour le volume d’un corps
qui, d’apreés la contraction de Lorentz, se transforme suivant la
formule :

V =V,4/1—p2
comme la température. On poserait :
iU ol Bt L
Ei= v, d’out B4 = v

Mais le sens physique des composantes !, 2 et £ n’apparaitrait
pas et il est douteux qu’une telle représentation de la contraction
de Lorentz ait un sens. Ceci peut conduire a se méfier de la repré-
sentation (24) et 4 se contenter de la loi de transformation (9).

5. Précision et extension de la formule Q = — Af. — Nous
avions démontré la formule (13) en supposant que la vitesse du
corps C reste constante. Nous allons nous affranchir de cette hypo-
thése et montrer qu’on peut toujours écrire comme expression de la
quantité de chaleur fournie & un corps dont la masse propre varie :

(25) 3Q = — 8L,

ou §,£ représente la variation subie par la fonction de Lagrange
du corps quand sa masse propre varie, foutes les aulres variables
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dont dépend £ restant constantes. Cette extension de la formule (13)
jouera un roéle important dans la suite de notre exposé.
Prenons d’abord le cas du mouvement d'un corps en I'ab-
sence de champ extérieur pour lequel nous pouvons poser
£ = — My24/1 — g® et reprenons la démonstration du para-
graphe 2, mais sans supposer la vitesse constante. On a :

M,c? SM, 2 M,c2p3p
SW:—SV = e
) Viep Viog a-e)
et
@7) Fost — 88 — 5 — %,

31— p

M, v Mo dv Movzﬁb‘g
_\/1_32—*—\/1_@2"{_(1_52)%'

On en tire :

M, (c* — v?) M,yvdv M,B3p(c* — v?)
Vi—p A 1—p ' (=)

= 3M, ¢4/ 1—:EE

(28) W —3A =

On a donc bien, méme quand la vitesse varie :

(29) 5Q = 5W — 3A = 8M, cz4/1 — B2 = — 3, L.

Nous passerons maintenant au cas plus général encore d’un corps
(une particule, par exemple) qui posséde une charge électrique ¢
et qui se déplace dans un champ électromagnétique défini par les
potentiels V et A. Nous avons alors :

M,c?
— -} V.
V1—g

(30) W=
Introduisons la grandeur :
M,p? e > M,v e\ > - -

? — —-~‘)—— - . — (-—4—— — ] .

D Viepg et \\/l—ﬁ“’+CA)U b

Cette grandeur qui se réduit a la pseudo-force vive pour A=0,

- . =2
en est la généralisation naturelle pour A # 0. Enfin, nous avons
ici :

(32) £=—M,,c=\/1—-pz—av+%f&.$.
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Nous voyons donc que :
(33) W=F —¢
et nous en déduisons, les termes en A se compensant, que :

(34)
dW =3F — 8L = S—M
Vi—g
On vérifie aisément qu’il est équivalent d’écrire :

ViTE T
Au second nombre de (35), les deux premiers termes représentent
le travail que recevrait le corps st sa masse propre restait constante
tandis que le troisieme terme représente le travail recu corres-
pondant a 'augmentation de sa masse propre. Au total, les trois
premiers termes en question représentent donc I’ensemble du tra-

vail re¢u par le corps dans un intervalle de temps 8f{. Comme nous
devons avoir toujours :

1— @+ &5V -+ 3M, c2y/1 — g

(35) W = M,c2s - - - 3M, /1 — g

SW = 5A -+ 5Q,

il faut que le dernier terme du second membre de (35) soit égal
a 3Q, ce qui nous redonne bien la formule (25).




CHAPITRE V

ANALOGIES
ENTRE GRANDEURS MECANIQUES
ET GRANDEURS THERMODYNAMIQUES

(Théories de Helmholtz et formule de Boltzmann

pour les systémes périodiques).

1. Généralités. — Dans ce qui précéde, nous avons résumé
Pinterprétation bien connue des grandeurs thermodynamiques,
a l'aide de la Mécanique statistique, interprétation oul interviennent
a la fois les lois de la Mécanique et les conceptions du Calcul des
probabilités. Le succés de cette interprétation, dia surtout aux
magnifiques travaux de Boltzmann et de Gibbs, a fait quelque
peu oublier d’autres tentatives faites vers la méme époque par
Helmholtz et par Boltzmann lui-méme, tentatives out I’on essayait
de retrouver certaines conceptions et certaines lois de la Thermo-
dynamique a I’aide seulement de considérations mécaniques sans
faire aucunement intervenir l'idée de probabilité. Comme le
premier principe de la Thermodynamique, dés qu'on admet que
la chaleur est une énergie d’agitation moléculaire, se rameéne
immédiatement au théoréme mécanique de la conservation de
I'énergie, c’est essentiellement l'interprétation du second principe
de la Thermodynamique et de la notion d’entropie qui lui est liée
qui a fait I'objet des théories de Helmholtz et de Boltzmann sur
ce sujet.

Ces tentatives d’explications mécaniques, mais non statistiques,
du second principe de la Thermodynamique sont restées incompletes
et n’ont conduit qu’a des résultats trés fragmentaires ne s’appli-
quant qu’a des modéles particuliers. Le succes de I'interprétation
statistique de la Thermodynamique a eu pour résultat de les faire
délaisser et, mis 4 part les travaux d’Ehrenfest sur I'invariance
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adiabatique, il ne semble pas qu’elles aient fait I'objet de recherches
nouvelles depuis une soixantaine d’années. Elles sont cependant
tres intéressantes et il se peut qu’il y ait quelque chose de trés pro-
fond caché derriere les analogies qu’elles révélent.

2. La théorie de Helmholtz. — Helmbholtz était parti de consi-
dérations trés générales sur un systéme mécanique défini par des
variables ¢; de Lagrange. Il supposait ce systéme soumis a des
forces internes dérivant d’un potentiel U et a des forces externes
dont le travail sur la coordonnée ¢; était désigné par #dg;. On
désignera toujours ici par T la température absolue et par Egp
I'énergie cinétique.

Les équations de Lagrange pour le systéme s’écrivent :

d (oL of
M dt (aéi) RUE

et Helmholtz, qui écrivait bien avant la naissance de la théorie de
la Relativité, utilisait la définition classique de la fonction de
Lagrange :

(2) ﬁ == Ecin e U,

E.. étant fonction des ¢; et des g: et étant quadratique homogéne
en les q,

Helmholtz introduisait ensuite I’hypothése fondamentale que
les paramétres ¢; se divisent en deux catégories, les uns ¢, variant
tres lentement et les autres ¢, trés rapidement. Cette hypothése
lui était certainement suggérée par la conception moléculaire de la
matiére, les ¢, étant par exemple les coordonnées des molécules
d’'un gaz et les ¢, étant les paramétres infiniment plus lentement
variables qui déterminent la configuration extérieure du systeme.

De plus, Helmholtz admettait encore que I'énergie potentielle U
ne dépend que des ¢, et que les coordonnées ¢, n’entraient que
par leurs dérivées (}b dans l'expression de Eg, et donc de £. Ceci
permet d’éerire pour tout ¢, :

ok d /oL .
3 *_o;, & (—) .
( ) aqb dt aqb Do b

Par définition, le travail élémentaire sur la coordonnée g, sera :

@) dQ, = #Aydg, = Pogsdt = qudps.
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Quant aux parameétres ¢,, comme ils sont par hypothése a variation

I d e aoligd

lente, leur contribution aux termes en -; pourra étre négligée
.

dt
et I'on aura :

d /3L L
5 - — ; — = A,
©) di (3(]“) s

Helmholtz considérait alors, pour commencer, des systemes
qu’'il nommait « monocycliques » pour lesquels il y a seulement un
seul paramétre a4 variation rapide ¢, et il démontrait le curieux
résultat suivant : Pour un systéme monocyclique, pour lequel on
dQ
Ecin

Soit, en effet, ¢ 'unique parameétre a variation rapide du systéme.
Nous avons Q = (}dp et, par suite :

peut poser Q, = Q, le quotient

est une différentielle exacte.

d 2d
(6) Q_2dp_,, (log p).
g P
Or, en Mécanique classique, on a :
aE:cin N
(7) 2Ecin - Z — i

aq,;

i

parce que E, est une fonction quadratique homogéne des g;.
Or, seule la coordonnée ¢ est a variation rapide de sorte que :

aE‘cin ° *
®) 2Ean = —=—q = pq
oq
et, par suite :
&) I%— = 2d (log p) = diff. exacte.

C’est le théoréme de Helmbholtz.

Mais dQ, qui est le travail recu par le parameétre a variation
rapide, est analogue a I’énergie fournie 4 une molécule d’un gaz
et peut donc étre assimilé a une quantité de chaleur élémentaire.
En définissant la température absolue T comme proportionnelle
a I’énergie cinétique, on pourra poser :

(10) dTQ = dS
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et cette relation rejoint la définition de I’entropie par la Thermo-
dynamique. Du reste, la théorie de Helmholtz reste vraie en théorie

relativiste puisque alors c’est é p(} qu’il faut considérer comme pro-

portionnel & la température de sorte que la relation (6) conduit
encore a la formule (10).

Mais le cas des systémes monocycliques est trop particulier
et il y a lieu de considérer le cas des systémes polycycliques compor-
tant plusieurs variables ¢, a wvariation rapide. Que le systéme
soit monocyclique ou polycyclique, on doit d’ailleurs distinguer
avec Helmholtz les « systemes complets » et les « systémes incom-
plets », ces derniers étant ceux pour lesquels le travail #,dq, cor-
respondant 4 la variation de l'un au moins des paramétres a
variation lente ¢, est nul. Soit ¢, les paramétres & variation lente
qui jouissent de cette propriété. On a pour tout g¢. :

oL
(1) 50, ="

Comme, par hypothése, £ ne dépend pas des ¢, et que les 1'1., sont
négligeables, les relations (11) lient les g,, les q',, et les q,. Puisqu’elles
sont en méme nombre que les ¢, elles fournissent 'expression de
ceux-ci en fonction des g, et des (}b. On peut donc éliminer les ¢,
et définir la situation du systéme en fonction des o et des (}b.

Soit alors £’ ’expression de £ quand on I'exprime a I'aide des ¢,
et des (i,, seulement. On a, d’apres (11) :

o e oL 2. L
\ 3¢, ¢, 9. 0qa  0qa’

(12) o ot oL 0g 2L

o g  400:dg, g

Il vient donc pour les parameétres & variation lente ¢, :

oL
(13) - ‘a’q_a == Aa

et pour les g, :
d jor d (oL .
(14) A"bzm(ﬁ)=gt(—.)—pb
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et I'on retrouve apres élimination des ¢, :

(15) dQy = l}bdpb-

Toutes les équations gardent la méme forme pour les systemes
incomplets que pour les systémes complets. En particulier, on a
toujours pour les systémes monocycliques, méme incomplets,
dQ
Ecin

Néanmoins, Helmholtz a insisté sur le fait que les systémes
incomplets difféerent sur un point important des systémes complets.
I’énergie cinétique est, a 'approximation newtonienne, une fonc-
tion quadratique homogéne des 21,- dont les coefficients peuvent
dépendre des ¢;, mais, quand on remplace les ¢, en fonction des ¢,
et des (}b, I’énergie cinétique peut cesser d’étre quadratique en
les (}b et peut méme étre de degré impair en les q.,,, donc de degré
impair par rapport au temps, circonstance importante car la
réversibilité par rapport au temps disparait alors. Ce cas se pré-
sente, par exemple, pour un volant muni d’un régulateur 4 boules :
I’énergie du volant n’est pas proportionnelle au carré de sa vitesse
angulaire parce que son moment d’inertie varie avec cette
vitesse. Helmholtz a cherché & tirer de ce fait une interprétation
de I'irréversibilité thermodynamique, mais Henri Poincaré, qui a
exposé autrefois la théorie de Helmholtz dans le dernier chapitre
de son traité de Thermodynamique, a donné un raisonnement pour
démontrer qu'on ne parvient pas réellement ainsi a expliquer
I’existence de lirréversibilité.

que est une différentielle exacte.

Pour Helmholtz, les ¢, correspondent aux mouvements molé-
culaires, les ¢, aux mouvements macroscopiques visibles. Quand
les ¢ varient, I’énergie du systéme varie de :

dE = Za‘&adqa + Zﬁbdqb.
a b

Or le premier terme est le travail fourni au systéme correspondant
aux mouvements visibles tandis que :

Zﬁbdqb — Zde — dQ
b
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est 1’énergie totale fournie au mouvement des molécules, donc
la chaleur regue par le systéme. On a donc :

(16) dQ =dE + dT,

dT étant le travail fourni par le systéme a I'extérieur et ceci est
I'expression du premier principe de la Thermodynamique tra-
duisant I’équivalence de la chaleur et du travail. De plus, comme
dQ
Ecin
systemes monocycliques, nous avons, du moins en ce cas, retrouvé
les deux principes fondamentaux de la Thermodynamique valables
pour les transformations réversibles.

Il est évident que les résultats de Helmholtz, tout en étant
intéressants, sont bien restreints puisqu’ils ne s’appliquent qu’aux
systemes monocycliques. De plus, nous avons admis avec Helm-
holtz, que I'énergie potentielle ne dépend pas des parameétres ¢ a
variation rapide : cette hypothése est exacte pour les gaz parfaits
dont les molécules sont sans actions mutuelles, mais elle ne I'est
déja plus pour les gaz réels et, a plus forte raison, pour les liquides
et les solides. Nous verrons plus loin que Boltzmann, s’inspirant de
la théorie de Helmhotz I’a généralisée pour les systemes polycycli-
ques dont I’énergie potentielle dépend des parametres ¢, a variation
rapide, mais il a été obligé de supposer que ces systémes sont pério-
diques et d’introduire des moyennes prises par rapport au temps
pendant une période du mouvement. Notons pour terminer, que
dans la théorie de Helmholtz, la notion de probabilité n’intervient
nulle part.

nous avons trouvé que

est une différentielle exacte pour les

3. Le schéma canonique de la Thermodynamique d’aprés
Helmholtz. — Indépendamment des considérations intéressantes,
mais insuffisantes, que nous venons de rappeler, Helmholtz a
proposé un curieux « schéma canonique » de la Thermodynamique.

Partons de la relation classique :

(17)  dE =dQ — pdV = TdS — pdV = TdS + Z.ftidqi

et introduisons avec Helmholtz une variable ¢ telle que, par défi-
nition, la température soit la « vitesse » ¢ correspondant a cette
variable. Nous posons donc :

I
(18) £ = az = T.
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Si & désigne la force généralisée correspondant a ¢, on aura :
(19) dE = §de — pdV = &cdt — p dV,

dE +pdV.,

d’otl, par identification avec dS = i

(20) gedt = T dS

et, compte tenu de (18),

(21) & =S.

Nous supposerons que ¢ est une variable du type dit «cyclique »,

c’est-a-dire telle que £ ne dépende pas de E(gg = O).
Envisageons alors un processus réversible extrémement lent

. oL .
pour lequel V ~ 0 ; nous aurons —- = 0 et les équations de Lagrange

PAY
pour les variables ¢ et V sont :
oL d (oL
(22) =" al) ="
ce qui nous donne :
of oL .

(23) P=gvs g =pe=[edt=[Sa=s,
d’ott :
(24) pe=S.
L’énergie sera alors donnée, d’aprés sa définition générale, par :
(25) E—eX v ¢ _T15_¢

e oV

et 'on en tire :
(26) £ =TS —E = —F,

F=E — TS étant V'énergie libre.

La correspondance (26) entre la fonction de Lagrange et I’énergie
libre changée de signe est trés intéressante : elle a joué un grand
role dans les anciens travaux de Planck sur le rayonnement noir
et dans divers travaux sur I'Electrostatique et I'Electromagnétisme.
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Pour T = Cte, on aura :
(27) dG =pdV = —d(E —TS) = — dF

et nous retrouvons ainsi une propriété bien connue de l’énergie
libre.

Le schéma canonique de la Thermodynamique de Helmholtz
part essentiellement de l'introduction d’une variable ¢ dont la
température est la dérivée par rapport au temps, mais la signifi-
cation de la variable ¢ reste mystérieuse. Dans la Thermodyna-
mique de la particule isolée, nous retrouverons la relation (18)
en donnant un sens précis a la variable «.

4. La théorie de Boltzmann pour les systémes périodiques.
Formule préliminaire. — Plus précise que les théories précédentes
est la théorie de Boltzmann établissant une analogie entre grandeurs
mécaniques et grandeurs thermodynamiques dans le cas des
systémes périodiques. Pour développer cette théorie, il est néces-
saire d’examiner d’abord ce que devient le principe d’action
stationnaire quand on I'applique a certains systémes périodiques.

Nous supposerons d’abord que le systéme envisagé est défini
par N coordonnées ¢; de Lagrange. Comme Helmholtz dans la
théorie analysée précédemment, nous admettrons que les ¢; se
divisent en deux catégories. Les uns, ce sont les ¢, de Helmholtz,
sont & variations rapides et correspondent aux mouvements
moléculaires : soient ¢,, ..., ¢- ces coordonnées. Les autres ¢:
sont du type ¢, de Helmholtz et varient lentement; ils corres-
pondent aux liaisons auxquelles le systéme est soumis : nous les
NOMIMETONS Griy, «. .y ne

Nous désignerons par U* I'énergie potentielle correspondant aux
liaisons. La fonction de Lagrange sera :

(28) £ =f —U— U*,

U étant D'énergie potentielle correspondant aux mouvements
moléculaires et £, étant le terme cinétique qui, & I'approximation
newtonienne, est pris égal a l’énergie cinétique des molécules
puisque I’énergie cinétique correspondant aux coordonnées du
type ¢, est négligeable, du moins dans les processus assez
lents.

Soit A& l'intégrale d’action maupertuisienne correspondant au
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mouvement des molécules, c’est-a-dire aux parameétres du type gs.
On a:

(29) #=| }:p dg.

L’intégrale d’action maupertuisienne totale, compte tenu des
variations des liaisons, c¢’est-a-dire de la variation des ¢, est :

(30) ar=s+ | ipkqu.

r+1

La théorie de I’action maupertuisienne exposée au chapitre premier
fournit la formule :

@31) 3k = [BE*dt 4 l > peda

1
’
0

ou E* est I’énergie totale du systéme, somme de I’énergie E des
mouvements moléculaires et de I'énergie potentielle U* (on a donc
E* = énergie cinétique des molécules 4 U 4 U* = E + U*).

Or la formule de Vaction variée, ott I'on fait varier les limites
des ¢, nous donne :

r+it

(32) A* =34+ Sfikpkqu =3A + fsikpkqu +
+1

r+i r

1
o
Portons cette valeur de 34* dans I'équation précédente en tenant
compte de la relation :

SE* = 3E + 8U*,

il vient :

(33) 3 = J-[SE + 3U* — Sikpk(}k]dt + l ikPkSQk

r+1

1
’
0

Or il existe des cas importants ol les termes en pxdq; disparaissent.
C’est ce qui a lieu, par exemple, quand dans le mouvement varié
les valeurs des coordonnées ¢,y ..., ¢x du type g, restent cons-
tantes et quand, de plus, le mouvement actuel et le mouvement
varié sont tous deux périodiques. La premiere hypothese entraine
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que les (}a sont nuls a la fois dans le mouvement naturel et dans le
mouvement varié de sorte que :

Sikpkl}k =0;

r+1
la seconde hypothése entraine que Zpkqu a la méme valeur
1

aux deux extrémités de la trajectoire non variée puisque ces deux
extrémités coincident comme l'illustre la figure 4.

QI 4 P|
Trajectoire varide
0 B de période t+dt

P Trajectoire naturelle
de période T
Fic. 4.

11 reste alors :
(34) 54 — j "(SE + 5U*ydt,
0

avec :

(35) 4= @ pudas
1

= étant la période du mouvement naturel. C’est la formule dont
nous avions besoin.

5. La formule de Boltzmann pour les systémes périodiques.
— En 1897, Boltzmann reprenant des travaux antérieurs de Clau-
sius et Szily (1872) a utilisé Ia formule (34) pour obtenir une trés
intéressante formule qui a été employée plus tard par Ehrenfest
dans sa théorie des invariants adiabatiques.

Pour démontrer cette formule de Boltzmann (qu’il ne faut pas
confondre avec la relation S = k log P), nous allons reprendre des
hypothéses faites plus haut : systeme défini par r coordonnées
« moléculaires » 4 variation rapide du type ¢, de Helmholtz et
N — r coordonnées de liaison & variation lente du type ¢, de

DE BROGLIE 5
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Helmholtz ; variation effectuée avec valeur constante des gq,;
périodicité du mouvement naturel et du mouvement varié.

Considérons d’une facon générale une trajectoire AB corres-
pondant &4 un état du systéme et une trajectoire CD correspondant
a un état voisin (fig. 5).

Fi1a. 5.

Pour passer de P en Q, il faut agir sur toutes les molécules en
leur donnant de I’énergie, c’est-a-dire en fournissant de la chaleur.
Cette chaleur sert 4 augmenter ’énergie interne et & accomplir
un travail extérieur 8G = 3U*. Donc :

(36) 35Q = SE + sU*.

Supposons maintenant qu’on passe trés lentement par une
transformation réversible de P en () et remarquons que sur les trajec-
toires AB et CD, les coordonnées ¢,, ..., ¢ ont des valeurs diffé-
rentes, mais constantes et voisines, de sorte que la premiere hypo-
these admise au paragraphe précédent se trouve bien vérifiée.
Soit AB la courbe qui représente le passage lent d’une trajectoire
a l'autre en un temps {, — £,

On a approximativement :

-1
A(Ik-—-E__—tOSQk

B,

\ 8 ‘ EQ‘-: qu
P(t+dt) \ 7 PM=4q,

P&)

F1c. 6.
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et, en un temps df, Agq, varie de :
dt
dAq = — 3.
tl - to

Pendant le méme temps df, la chaleur fournie au systéme est :

dt

et le travail accompli est :
d3U* = dt SU*,
L — 1

Ainsi pour la transformation totale AMD, on a :

(37) AQ = fdaQ_ —tof 5Qdt —

Introduisons maintenant I’hypothése que le systéme est périodique
de période = et choisissons I'intervalle de temps égal a =. En compa-
rant avec la formule (34) obtenue plus haut, il vient :

(38) angfz-Tl-sggzkpkqu:vm, avec  v=
1

T

Cette formule est générale, c’est-a-dire valable aussi bien en Méca-
nique relativiste qu'en Mécanique classique. Si nous nous bornons

a lapproximation newtonienne, nous avons 2Eg, = Z Prgr et,
&

1
par suite :

1. [~ 9 _
(39) 3Q = - Sfozkpkqu == 3(E¢int),

E.. étant la valeur moyenne de I'énergie cinétique pour un cycle
du mouvement (3).

Nous avons ainsi obtenu cette curieuse formule de Boltzmann
qui a eu, dans le cadre de I'ancienne théorie des quanta vers 1920-
1925, d’assez nombreuses applications. C’est en partant de cette

() M. Francis Fer m’a communiqué récemment une nouvelle démons-
tration de la formule (39) de Boltzmann qui parait plus rigoureuse que celle
donnée ci-dessus. Voir bibliographie, [12].
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formule qu’Ehrenfest a développé sa belle théorie des invariants
adiabatiques qui a pu ensuite étre transposée en Mécanique ondu-
latoire. M. Léon Brillouin a consacré naguére de trés beaux exposés
4 la théorie des invariants adiabatiques et a donné de nombreux
exemples d’application & des phénoménes divers de la formule (39)
de Boltzmann : il en a notamment tiré une déduction trés simple
de la formule que Wien avait démontrée par des raisonnements
de thermodynamique pour la répartition spectrale du rayonne-
ment noir (%).

(1) Voir, en particulier, bibliographie, [1], chapitre VII et note annexe 2.




CHAPITRE VI

ORIGINE
DE LA MECANIQUE ONDULATOIRE
ET SON INTERPRETATION PAR
LA THEORIE DE LA DOUBLE SOLUTION

1. Fréquence cyclique et fréquence ondulatoire. — L’auteur est
arrivé naguere aux premieres idées de la Mécanique ondulatoire
en réfléchissant a la différence des transformations relativistes
de la fréquence d’une horloge et de la fréquence d’une onde. Cette
question présentant pour nous un grand intérét et étant générale-
ment passée sous silence dans les traités de Mécanique quantique,
nous allons nous y arréter un peu.

Nous savons que les formules de transformation pour I'énergie
et pour la température quand on passe du systéme propre d’'un
corps & un autre systéme galiléen animé de la vitesse gc par rapport
au premier sont :

) W= T = T,/1 — p.

Nous voyons que, tandis que I'énergie est plus petite dans le systeme
propre que dans l'autre systéme, 'inverse se produit pour la tem-
pérature. La différence entre les deux genres de transformations
est la méme que celle qui existe pour la fréquence d’une onde et la
fréquence d’une horloge (fréquence ondulatoire et [réquence
cyclique).

Considérons dans un référentiel R, un processus périodique
variant sinusoidalement au cours du temps. Il sera représenté
par une variable de repérage ayant pour expression :

) Qo = @, SiN 2w vl

avec un choix convenable de 'origine du temps #. Le processus
en question pourra étre, par exemple, le mouvement d’une horloge
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fixe dans R, et alors la variable ¢, pourra étre la projection de
Iextrémité de l’aiguille de I’horloge sur un des diamétres de son
cadran.

La théorie de la Relativité nous apprend que, pour un obser-
vateur galiléen qui voit I'horloge se déplacer avec la vitesse Bc,
le mouvement cyclique de cette horloge parait ralenti dans le rap-
port /1 — g% de sorte que la variable de repérage aura une expres-
sion de la forme :

6)) q = Qo Sin 27mv.l,

ol v, est la « fréquence cyclique » de I’horloge pour cet observateur.
D’apres la formule relativiste du ralentissement des horloges, on a:

“) ve = v/ 1 — B2.

Imaginons maintenant qu’en tout point du référentiel R, soit
placée une horloge immobile de fréquence v,. Ainsi se trouvera
définie en chaque point de R, un phénoméne périodique de fré-
quence v, et I'ensemble des variables g, correspondantes, supposées
toutes en phase, définira dans R, une onde stationnaire dont
Pexpression sera :

(5) lP‘u = Sin 2Tf Voto

en tout point de R,.

Passons 4 un autre systeme de référence galiléen R animé par
rapport & R, de la vitesse gc et prenons pour axe des z dans R la
direction de la vitesse relative de R par rapport 4 R,. La trans-
formation de Lorentz montre que dans le systéme de référence R,
Ponde stationnaire définie par I’ensemble des ¥, prend la forme
d’une onde progressive d’expression :

(6) ‘{f =l Sin 27""VO _*—TB*; = Sin 27C(Vt - ;)’

avec :

Vo

NV

L’expression de ¥ donne la répartition des phases des horloges
telle qu’elle est observée par I'observateur R : cette répartition est
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celle d’'une onde en propagation le long de Oz avec la fréquence v
et la vitesse de phase V.
La formule :

Vo

o TViow

montre comment se transforme la « fréquence ondulatoire » quand
on passe du systéme galiléen R, ou I’onde est stationnaire au sys-
tétme R ou elle est progressive. Cette formule fondamentale est
bien connue et joue un grand role dans beaucoup de problémes
importants de la théorie de la Relativité, par exemple dans la
théorie de l'effet Doppler.

Maintenant la comparaison des formules (1), (4) et (8) fait appa-
raitre que I’énergie et la fréquence ondulatoire d’une part, la tempé-
rature et la fréquence cyclique d’autre part, se transforment de
méme. Le premier de ces deux faits nous permet de supposer que
la relation entre I'énergie du corpuscule et la fréquence de ’onde
que la Mécanique ondulatoire lui associe par la relation W = hv
est valable dans tous les systémes galiléens si toutefois elle est réa-
lisée dans le systéeme propre R, sous la forme :

9) W, = hv, = myc?

qui fait correspondre & la masse propre m, la fréquence propre v
C’est 14 le point de départ de la Mécanique ondulatoire.

On pourrait au premier abord étre surpris de voir que la quantité
de chaleur et la température qui se transforment comme une fré-
quence cyclique suivant les formules :

Q=QV1—p et T=Te/1—p

ne se transforment pas comme I’énergie. On sait, en effet, que la
chaleur est une forme de I’énergie (énergie des mouvements molé-
culaires incoordonnés) et, de plus, la Thermodynamique statis-
tique nous a habitués 4 considérer la température d’un corps comme
proportionnelle a I'énergie cinétique moyenne de ses molécules.
Mais, si 'on se reporte au raisonnement qui nous a permis au
chapitre IV d’établir la variance relativiste de la température,
on voit que I’énergie globale fournie 4 un corps se répartit en chaleur
et travail et que la répartition est imposée par le fait, inconnu

3\

des théories antérieures a celle de la Relativité, qu’'un apport
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d’énergie est susceptible de faire varier la masse propre du corps.
C’est la liaison ainsi établie, comme conséquence du principe de
Iinertie de 'énergie, entre ’énergie interne du corps et la quantité
de chaleur qu’il regoit qui permet d’expliquer pourquoi la formule
de transformation n’est pas la méme pour ’énergie et la quantité
de chaleur. De plus, en ce qui concerne la proportionnalité de la
température a I’énergie cinétique moyenne des molécules, on doit
remarquer qu’elle n’est valable que dans le systéme propre du
corps et que, méme dans ce systéme, elle n’est valable qu’a I’approxi-
mation newtonienne : ceci résulte des formules données au para-
graphe 12 du chapitre III, Rien n’impose donc 4 la température
d’avoir 1a méme formule de transformation relativiste que 1’énergie.

2. La Mécanique ondulatoire 3 Papproximation de I’Optique
géométrique. — Le point de départ de la Mécanique ondulatoire
a été d’associer au mouvement rectiligne et uniforme d’un cor-
puscule libre la propagation d’une onde plane monochromatique
quon peut représenter par la fonction complexe :

(10) LI) —a ezni(vt— ;T)

I'axe des z étant pris dans la direction de propagation qui est la
direction du mouvement du corpuscule. Si, dans le systéme propre
du corpuscule, on définit la fréquence v, de I'onde stationnaire
associée au corpuscule par la formule (9), les formules de transfor-
mation données au paragraphe précédent permettent d’écrire :

T (We—pz)

(11) y=aeh ,
avec :

myC? myb
W= et 2

Vi—@ PV

W et p étant reliés a v et & A par les formules :

(12) W - hV, p = i;. .
On voit que, si I'on pose :

; h
(13) p=aer’, avec h=2§,

a et ¢ réels, la phase ¢ coincide avec l'action hamiltonienne A
changée de signe qui est égale 4 Wt — pz.
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Si le corpuscule est soumis 4 un champ de force, sa trajectoire
est en général courbe, mais on peut toujours écrire son onde
associée sous la forme :

(14) \b(xr y, Z, t) = a(x’ y’ z, t) ei‘P(I.y,l,t) .

Dans le cas particulier ol le champ est permanent et out la propa-

gation de 'onde peut étre décrite par’approximation de I’'Optique

géométrique, on a :

(15) § = a(z, y, 2) e“iA(z,y,z,t) — a(z, y, 2) ei(Wt—-J‘P.ds) ,

ds étant I'élément de trajectoire du corpuscule et 'on a encore
h e .

9 ==— A. On trouve encore p = 3+ mais ici p et A sont des fonctions

de z, y, z. On voit alors que le principe de moindre action de Mau-
pertuis, qui s’exprime par :

B>

3| p.ds=0,

coincide avec le principe de Fermat appliqué au rayon de I'onde
qui s’exprime par :
B ds
8 AT = 0.
I en résulte que les rayons de I’onde coincident avec les trajectoires
possibles du corpuscule et I'on peut conserver I'idée fondamentale
de la localisation du corpuscule dans 'espace en admettant qu’il
se déplace en suivant I'un des rayons de l'onde. L’énergie et la
quantité de mouvement du corpuscule sont alors définies par les
formules :
O - ——
(16) W= 57 = — grad o,
ce qui montre 'identité de la phase ¢ et de la fonction S de Jacobi.
De plus, on démontre alors aisément que, si I'on suppose également
probables toutes les positions initiales possibles du corpuscule
avant I'entrée dans le champ de force, la probabilité de trouver le
corpuscule dans I'élément dv = dx dy dz de I'espace physique est
égale a :
a¥(x, y, 2)dv = | ¥(z, y, z, 1) |* d~.

Malheureusement, cette image si claire de 1’association de I'onde

et du corpuscule ne subsiste plus en dehors de I’approximation
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de I'Optique géométrique. On peut bien toujours trouver pour
Yonde une expression de la forme (14), mais ¢ n’est plus reliée
simplement a l’action hamiltonienne définie par la Mécanique
ponctuelle (classique ou relativiste). On ne peut plus définir des
rayons au sens de I'Optique géométrique et la notion de rayon
semble perdue. Ces circonstances ont conduit la plupart des
théoriciens & admettre que le corpuscule n’a pas a chaque instant
une position bien déterminée, qu’il est répandu a «}’état potentiel »
dans toute I'étendue de 1'onde tandis que 1'onde elle-méme n’est
plus qu’une représentation abstraite de probabilités. On ne conserve
de I'image obtenue a V'approximation de I’Optique géométrique
que le postulat suivant : La probabilité pour que le corpuscule
manifeste sa présence a Uinstant t dans Uélément de volume d~ est
donnée par | {(x, y, z, 1) |* dr, mais ce postulat devient alors tout
a fait arbitraire.

3. La conception de l'onde pilote. — A I'époque ou, en 1927-
1928, se développait cette interprétation tres abstraite, j’ai cherché
4 en trouver une autre qui s’accordat mieux avec les conceptions
assez concrétes qui m’avaient guidé dans mes premiers travaux.

Je partais des trois postulats suivants :

1o Le corpuscule doit étre & chaque instant localisé dans I’espace
et décrire une trajectoire continue au cours du temps;

20 I’onde de la Mécanique ondulatoire doit étre une réalité
physique et se propager dans I’espace au cours du temps ;

3° Pour interpréter les phénoménes de 'optique de la Iumicre et
de 'optique des électrons, il est nécessaire de supposer que le cor-
puscule est intimement lié¢ 4 son onde de sorte que le mouvement du
corpuscule soit, en quelque sorte, guidé par la propagation de
I'onde (?).

Guidé en partie par une représentation hydrodynamique de la
propagation de 'onde ¥ qui venait d’é¢tre développée par Madelung
et que j’avais reprise, je supposais que le corpuscule, toujours
localisé dans son onde, suivait I'une des lignes de courant de
I'image hydrodynamique en question. Ceci me conduisait immédia-

() Dans un remarquable article paru en 1953, M. Renninger a montré
que, dans le cas des photons, il existe des raisons expérimentales absolument
convaincantes d’admettre ces trois postulats (bibliographie, [2]). Voir
aussi [4], troisiéme référence.
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tement 4 supposer quc le corpuscule, s’il occupe a l'instant { la
position z, y, z, y posséde une énergie W et une quantité de mou-

vement ; données par les formules (16) :
o9
ot’

méme en dehors de I'approximation de I'Optique géomélrique.

W= E = - ﬁ_d) P
Comme la Dynamique relativiste établit entre W et_ﬁ la relation :

N
-  Wp

CZ

N
_— -+ pc

, d’ou V= W
pour le corpuscule libre, on en tire en ce cas :

17) 3= Brad e

RE

o
Cette formule fondamentale, que j’ai nommée « la formule du
guidage », impose en quelque sorte un mouvement déterminé
au corpuscule dans son onde. A l'approximation newtonienne
ot W ~ myc?, elle prend la forme simple :

e 1 _—>

18 _——

(18) b=——grad ¢

et elle apparait comme une extrapolation de la formule de Jacobi :
- 1 —_—
v=— grad S

valable & l'approximation de 1'Optique géométrique qui rejoint
la Dynamique classique.

De ces formules, j’apercevais une bien intéressante interprétation.
Nous avons été précédemment conduits 4 assimiler 'ensemble des
valeurs locales d’une onde en propagation a 'ensemble de petites
horloges entrainées par le mouvement de I'onde. Si, au sein de
I'onde, le corpuscule est constamment localisé, nous sommes amenés
4 nous le représenter comme une plus grosse horloge se déplagant
au milieu de petites horloges. L’idée vient alors d’admettre que
cette grosse horloge doit se déplacer de telle facon que son indication
reste constamment égale a celle des petites horloges qui ’entourent
immeédiatement. En d’autres termes, le corpuscule doit se déplacer
de telle facon que son oscillation interne reste constamment en phase
avec 'onde progressive a laquelle il est incorporé.
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11 est facile de vérifier qu’on retrouve ainsi la formule du guidage.
En effet, si le corpuscule se déplace de ds dans I'espace physique
pendant le temps df, la persistance de I'accord de phase entre la
vibration interne et 'onde environnante exige évidemment que :

1/0¢g —

(19) E(ﬁ—{‘grad dt)dt_vcdt
Comme on a :
20 lg?_— —_ — \/1_{32
( ) th—v’ _\/my Ye = Vo ’
il vient :

grad P. P Ve 1
@1) S Rt ikl

o

et cette équation est précisément vérifiée si 1’on attribue a vla
valeur (17), c’est-a-dire si 'on admet la formule du guidage.

Les formules précédentes ont été écrites en supposant le cor-
puscule non soumis & un champ extérieur. Dans le cas plus général
d’un corpuscule soumis a un champ, on obtiendra une théorie rela-
tiviste en supposant qu’'on a affaire & un corpuscule de charge
électrique ¢ soumis a un champ électromagnétique dérivant d’un
potentiel scalaire V et d’un potentiel vecteur X et en adoptant
I’équation d’ondes de Klein-Gordon dont on déduit que :

©22) clz (32 —ev) - — (grad o+ £ &)’ = mien.
On trouve comme formule du guidage :
N grad ¢ + %
(23) V= — ct P
ﬁ — €

qui naturellement pour X = V = 0 nous redonne la formule (17).

Il est facile de montrer que cette formule exprime bien encore
que la vibration interne du corpuscule reste constamment en
phase avec l'onde environnante. Il suffit de poser :

? = myc® + eV,

o
hVo =Z}_to

(24)

—hv.,\/1—£32=moc”\/1“BUFS(V“—;S)

A
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L’accord des phases exige toujours que la relation (19) soit vérifiée,
ce qui donne ici :

—

2 —— Ay ——
(25) (%——eV)—l—(grad q:—l—e—c)v=moc“\/1—(3=.
En remplacant au second membre \/ 1 — g2 par Enlﬁ_ , on vérifie
< — eV
YA

aisément que la formule (25) est vérifiée si 'on adopte la loi du
guidage (23), compte tenu de I'équation (22).

4. Le potentiel quantique. — L’interprétation de la Mécanique
ondulatoire que nous venons d’esquisser a été présentée d’abord
sous la forme de la théorie de 'onde pilote. On y considérait,
en somme, 'onde homogéne de la Mécanique ondulatoire comme
ayant une existence physique réelle et I'on imposait (arbitrairement)
au corpuscule considéré comme ayant toujours une position bien
définie dans 'onde, 'obligation de suivre, en accord avec la formule
du guidage, 'une des lignes de courant de la propagation de 'onde.

On pouvait alors voir que cela obligeait 4 admettre que le cor-
puscule est soumis, en dehors de I'action des potentiels du type
classique qui traduisent la présence d’un champ de force extérieur,
a 'action d’un potentiel d’'un type nouveau, « le potentiel quanti-
que » La « force quantique » dérivant de ce potentiel traduirait
Pexistence d’une action que I'onde environnante exercerait sur le
corpuscule comme cela parait nécessaire pour interpréter les phé-
noménes de diffraction et d’interférences dans une théorie qui admet
la localisation du corpuscule dans l’espace.

Dans le cas de I’équation d’ondes non relativiste de Schrodinger,
le potentiel quantique a pour expression :

(26) = — =0,

Dans le cas d’un corpuscule sans spin obéissant a I'équation rela-
tiviste de Klein-Gordon, on peut développer toute la dynamique
du corpuscule sous forme lagrangienne et hamiltonienne comme je
I'ai fait dans d’autres exposés (voir [3], chap. X). On est alors
amené a attribuer au corpuscule une masse propre variable suivant
sa position dans I'onde qui est donnée par la formule :

., P2 0a

e
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et, dans le systéme propre, c’est la grandeur Myc? dont le gradient
changé de signe donne la force quantique. On peut alors définir
le potentiel quantique en posant :

(27 bis) Qo =Mc* — moc?,  Q=Qu\1— g

A Tapproximation newtonienne oit B <« 1 et ol da~ — Ag,
ce potentiel quantique se réduit bien a I’expression (26) comme on
le vérifie aisément et ’on peut alors définir le potentiel quantique
par :

Q = Myc? — myc2.

Je n’insisterai pas davantage ici sur cette « dynamique du gui-
dage », ni sur la forme plus complexe qu’elle prend dans le cadre
des équations de I’électron & spin de Dirac.

5. La théorie de la double solution. — Quand j’ai étudié
en 1926-1927 cette interprétation de la Mécanique ondulatoire,
il m’était apparu que la théorie véritable, dépassant le point de
vue provisoire de I'onde pilote, devait établir un lien bien plus
intime entre le corpuscule et 'onde. Développant cette idée sous
le nom de « théorie de la double solution », j’affirmais que ’onde ¥
homogéne, déja usuelle a cette époque en Mécanique ondulatoire,
ne fournissait qu’'une représentation des probabilités et que la
véritable onde physique du corpuscule devait étre une onde u
comportant une trés haute concentration de 'amplitude qui serait
le corpuscule au sens étroit du mot. En dehors de cette région,
I'onde u se réduirait a une onde homogéne coincidant sensiblement
(2 une constante de normalisation prés) avec 'onde ¥ homogéne
de la Mécanique ondulatoire usuelle. Le corpuscule serait incorporé
4 londe u, celle-ci constituant un champ a bosse (bunched field)
du type qu’Einstein avait imaginé pour représenter le corpuscule
comme un accident local du champ.

Apres avoir pendant longtemps abandonné cette difficile tenta-
tive, je I'ai reprise depuis une douzaine d’années avec I'aide d’un
trés petit nombre de collaborateurs et d’assez grands progrés
ont été accomplis dans cette voie. Comment l'onde ¥ usuelle,
bien que subjective et pure représentation de probabilités, est
cependant reliée & 'onde u de telle fagon que le corpuscule semble
décrire une des lignes définies par la formule du guidage & partir
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de la propagation de 'onde ¥, comment ce mouvement pourrait
peut-étre s’interpréter en supposant que I’équation de propagation
véritable de V'onde u est non linéaire, cette non-linéarité ne se
manifestant usuellement que dans la trés petite région singuliére
de trés haute concentration du champ, c’est ce que j’ai exposé
ailleurs et je n’y reviens pas ici (*). Mais je voudrais cependant
insister sur deux points particuliers.

Le premier de ces points est relatif a la démonstration de la
formule du guidage. J’ai pu en donner deux démonstrations en
partant des équations linéaires usuelles, mais en y adjoignant
une hypothese assez arbitraire de concordance de phase. On peut
remplacer cette hypothese par celle d’un raccordement entre les
lignes de courant de I'onde extéricure avec les lignes de courant
intérieures a la tres petite région de hautes valeurs du champ :
celle-ci, c’est-a-dire le corpuscule, se trouve ainsi emprisonnée
dans un tube trés délié de lignes de courant du champ extérieur
et la formule du guidage en résulte immédiatement. La démonstra-
tion prend alors une forme trés voisine de celle qu’avait donnée
autrefois Georges Darmois pour montrer que, dans un champ de
gravitation, le mouvement d’une particule est représenté par une
géodésique de I’espace-temps. Comme Einstein I'avait montré
dans le cas de la Gravitation, le succés de cette démonstration
est certainement li¢ au caractére non linéaire des équations du
champ (ici des équations de propagation de 'onde u).

Un second point sur lequel je voudrais insister est le suivant.
En théorie quantique usuelle, il existe des phénomeénes tels que les
transilions quantiques de Bohr qu’on déclare échapper enticrement
a toute descriplion en termes d’espace et de temps et cela parait
vrai dans le cadre des équations linéaires qu’on utilise. Mais si
Pon admet qu’il peut s’introduire de la non-linéarité dans les
équations d’ondes, la question change d’aspect : on peut, en effet,
se demander si ces phénomenes déclarés impossibles & décrire
ne correspondent pas en réalité 4 des états transitoires trés rapides
a4 caractére non linéaire. MM. Andrade e Silva, Fer, Leruste et
Lochak ont entrepris dans cette direction de trés intéressantes
recherches en s’appuyant sur les propriétés des équations non
linéaires et en particulier sur la théorie des cycles limites (3).

(1Y) Voir bibliographie, [4].
(3) Bibliographie, [5].
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6. Remarques au sujet de I’aspect hydrodynamique des concep-
tions précédentes. — Nous sommes parvenus a une sorte d’image
i

hydrodynamique de la propagation de l'onde a er® en Mécanique
ondulatoire. On 'obtient en considérant un fluide qui aurait en
chaque point et a chaque instant la densité ¢ donnée, dans le cas
de I’équation de Schrédinger par :

(28) p=a¥x, Y,z 8) =| ¥y zt)]

et dont la vitesse locale D serait définie a chaque instant par la
formule du guidage précédemment étudiée. Il résulte alors de
Téquation de propagation que ce fluide fictif se conserve de sorte
que I’équation de continuité hydrodynamique :

(29) %+ div pb = 0

soit constamment satisfaite.

Sans qu’on puisse prendre au pied de la lettre une pareille image,
on peut cependant se représenter le corpuscule comme une sorte
de granule qui serait entrainé par I’écoulement fluide et décrirait
I'une des lignes de courant comme ces grains de lycopode que les
hydrauliciens sément a la surface d’un liquide en écoulement
pour que la trajectoire de chacun de ces grains matérialise la forme
d’une ligne de courant.

11 est utile de faire ici une petite remarque au sujet de ’expres-
sion : le corpuscule suit une des lignes de courant de 'écoulement
hydrodynamique correspondant a la propagation de son onde.
La formule du guidage impose au corpuscule d’avoir sa vitesse
tangente a la ligne de courant sur laquelle il se trouve a I'instant
considéré. Si I’écoulement est permanent, c’est-a-dire ne varie pas
au cours du temps, les lignes de courant ne se déforment pas
et la trajectoire coincide avec une des lignes de courant. Si, au
contraire, I’écoulement n’a pas un caractére permanent, les lignes
de courant se déforment au cours du temps et la trajectoire du
corpuscule, bien que tangente a chaque instant 4 une ligne de
courant, ne coincide plus avec I'une des lignes de courant. Cette
circonstance est si connue en Hydrodynamique qu’il est inutile
d’y insister davantage.

Si 'on étudie le mouvement du corpuscule défini par la formule
du guidage, on s’apercoit que, par suite de 'action de la force
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quantique et méme quand les forces extérieures sont nulles, I’énergie
et la quantité de mouvement du corpuscule ne restent pas cons-
tantes. Dans I'image hydrodynamique, la force quantique peut
donc étre considérée comme une pression que le fluide exercerait
sur le corpuscule (%).

Cependant, on peut démontrer qu'en moyenne, c’est-a-dire
pour une infinité de corpuscules répartis dans I'espace avec la
densité p, I'énergie et la quantité de mouvement se conservent.
Nous nous bornerons 4 donner ici une démonstration simple
en ce qui concerne I'énergie dans le cadre de la théorie non relati-
viste.

On peut exprimer la conservation de I'énergie globale W = f w pdr,
soit en écrivant :

(30) atf"w‘l’"f(atw*"’at)d’—o

soit en remarquant que I'énergie moyenne d’une particule varie
de I%’dt dans le temps df et en écrivant que la valeur moyenne
des variations de I’énergie pendant ce temps est nulle, ce qui conduit
a écrire :

@31) f%%’&:ﬁ(%’%#?.ﬁ& w)ds =0,

En supposant p nulle 4 l'infini, ce qui physiquement est toujours
réalisé parce que les trains d’onde sont toujours limités, on peut
démontrer que les formules (30) et (31) sont équivalentes. En effet,
en tenant compte de I'’équation de continuité, 1'équation (30)
peut s’écrire :
(32) [(s57 —wdiv o ) ds =0
et, ¢ étant nulle 4 I'infini, une intégration par partie montre que (32)
est équivalente a (31).

Utilisant alors la formule (31), nous allons I'appliquer a la forme
non relativiste de la théorie du guidage en posant :

do -

(33) p == a?, W= =, v:-%gTchp

(1) Cette analogic a été précisée par M. Jean-Louis Destouches dans les
travaux qu’il a poursuivis dans ces derniéres années. Voir notamment
bibliographie, [6}].

DE BROGLIE 6
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et nous tiendrons compte de I’équation (équation de Jacobi géné-
ralisée) qui se déduit de I’équation de Schrodinger :

dp _ 1
(34) 51 =5 8rad e+ Q,

) n? Aa ., .
ol Q = — 5 d L’équation (31) nous donne alors :

(35) Ja%% — grad ®. grad <P)dr =0,

mais, en dérivant (34) par rapport au temps, on voit que la paren-

these de ’équation (35) est égale 4 — Q de sorte qu’il vient :

n oa da
(36) fa Dt( )d—r j( Aa~Aa ﬁ)dr—()
Les fonctions a et %Etl étant nulles a I'infini, une double intégration

par parties montre que I'équation (36) est bien vérifiée et, par suite,
que V'énergie moyenne reste bien constante.

J’ai donné ailleurs (*) une démonstration plus générale de la
conservation en moyenne de I'énergie et de la quantité de mouve-
ment d’'un corpuscule dans le cadre de la théorie relativiste de
Klein-Gordon.

Nous reviendrons sur la signification de la conservation en
moyenne de I'énergie et de la quantité de mouvement dans le
chapitre suivant quand nous aurons introduit I’hypothése du
milieu subquantique de Bohm-Vigier.

() Voir bibliographie, [3], p. 270-273.




CHAPITRE VIl

INTRODUCTION
DE CONCEPTIONS THERMODYNAMIQUES
EN MECANIQUE ONDULATOIRE

1. Le milieu subquantique de Bohm-Vigier. — Nous avons
obtenu au chapitre précédent une image hydrodynamique de I'in-
terprétation de la Mécanique ondulatoire par la théorie de la double
solution. Cette image correspond exactement aux idées que j’avais
développées en 1926-1927 et que j’ai reprises depuis 1951. Mais
dans ces dernieres années, j’ai de plus en plus reconnu qu’elles
ne constituaient qu’une premiére approximation et qu’elles devaient
étre complétées par l'introduction d’hypothéses nouvelles faisant
intervenir la thermodynamique statistique.

Le premier pas dans cette voie a été fait en 1954 par MM. Bohm
et Vigier (*) quand ils ont introduit ’hypothése del’existence d’'un
« milieu subquantique », milieu caché en quelque sorte plus profond
que le niveau microphysique avec lequel toutes les particules du
niveau microphysique seraient en contact permanent et pourraient
constamment échanger de I’énergie et de la quantité de mouvement.

Qu’est-ce qui a amené MM. Bohm et Vigier 4 adopter cette
hypothése ? En dehors de quelques considérations générales,
c’est le désir de donner une justification satisfaisante du role
de probabilité de présence du corpuscule en un point 4 un instant
donné que la Mécanique ondulatoire attribue & la quantité | ¥ |2

Nous avons vu que la formule du guidage, en établissant 1’obli-
gation pour le corpuscule de suivre I'une des lignes de courant
de I’écoulement hydrodynamique correspondant a la propagation
de I'onde, avait conduit & admettre que, si toutes les probabilités
des positions initiales du corpuscule dans 'onde sont considérées
comme proportionnelles a | ¥(z, y, z, {,) |2, la probabilité pour que le

() Bibliographie, [7].
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corpuscule se trouve a linstant { dans un élément dr de
Iespace est, du moins & 'approximation non relativiste, égale a
| ¥(x, y, z, f)|% Cette conclusion se déduisait de I'équation de
continuité ol » est la vitesse définie par la formule du guidage.
Mais, si 'on examine bien cette démonstration, on s’apercoit
qu'elle souléve une difficulté tout a fait analogue a celle qui se
présente, nous I’avons vu, en Mécanique statistique quand, apres
avoir démontré le théoréme de Liouville, on cherche a en déduire
que la probabilité de la présence du point représentatif d’un systeme
dans l’élément dv de Dextension-en-phase est proportionnelle
a cet élément dr (*). Nous avons vu que, pour parvenir a justifier
cette conclusion, il fallait ajouter au théoreme de Liouville, soit
une hypothése ergodique, soit ’hypothése & caractere plus physique
du chaos moléculaire.

Plagons-nous a ce dernier point de vue. Si I’évolution mécanique
d’un systéme se poursuit réguli¢rement sans aucune perturbation,
il ne serait pas justifié, en général, d’admettre qu’'un méme tube
de trajectoires non perturbées dans I'extention-en-phase remplisse
toute cette extension. Mais on peut supposer que le mouvement du
systéme soit soumis 4 de constantes perturbations aléatoires
qu’on peut regarder, par exemple, comme traduisant la continuelle
interaction du systéme avec un systeme extérieur (Si le systéme
considéré se réduit & une molécule d’un gaz, il s’agira de la constante
interaction de cette molécule avec I'ensemble des autres molécules
du gaz.) Alors le point représentatif du systéme passera constam-
ment d’un tube de trajectoires non perturbées dans un autre et,
au bout d’un temps suffisamment long (qui peut ¢tre extrémement
court 4 notre échelle), on pourra considérer le point représentatif
(et, par suite, I’élément dr qui le contient) comme ayant parcouru
successivement tous les troncons de trajectoires non perturbées
et ayant ainsi balayé l'ensemble de I'extension-en-phase, ce qui
justifiera le principe servant de base & la Mécanique statistique.

C’est une hypothese analogue que MM. Bohm et Vigier ont intro-
duite dans la nouvelle interprétation de la Mécanique ondula-

(1) La difficulté qui se présente ici est trés clairement illustrée par le fait
que, dans un atome d’hydrogéne a 1’état s, I’électron d’apreés la formule
du guidage doit rester immobile en un point de ’atome de sorte que, sans
I’hypothese de Bohm-Vigier, on ne voit pas du tout comment peut se réa-
liser la probabilité de présence en | ¥ |2
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toire pour justifier le role de probabilité de présence joué par la
probabilité | ¥ |2 Ici, c’est le produit p dv qui se conserve dans
Pespace physique le long d’une ligne de courant en vertu de I’équa-
tion de continuité, c’est-a-dire, si 1’on admet la formule du guidage,
le long d’un tube de trajectoires non perturbées des particules.
Pour qu’on puisse en déduire que p d~ donne la probabilité de pré-
sence du corpuscule dans I’élément dx, il faudrait que le méme tube
de trajectoires s’enroule indéfiniment dans la portion del’espace
physique qui est accessible au corpuscule de maniére a la remplir
complétement. Or, il n’y a aucune raison pour qu’il en soit ainsi
en général ().

Dans le Mémoire cité plus haut, MM. Bohm et Vigier ont présenté
une justification théorique de I'interprétation statistique du | ¥ |2
en admettant une hypothése de continuelles perturbations aléa-
toires du mouvement des corpuscules analogue a celle que Boltz-
mann avait introduite dans le cadre de la Mécanique statistique
classique. Si I'on admet que ces perturbations sont représentables
par I'apparition momentanée dans I’équation des ondes de petits
potentiels perturbateurs aléatoires, I’équation de continuité restera
valable pendant les périodes de perturbation et la grandeur p d=+
se conservera le long d’un tube de trajectoires méme dansles por-
tions perturbées de ce tube. Alors un méme élément dr passera
constamment d’un tube de trajectoires non perturbées 4 un tube
voisin avec conservation de pdr. On pourra donc considérer un
élément dr du fluide dans la représentation hydrodynamique de la
Mécanique ondulatoire comme parcourant successivement, en un
temps extrémement court a notre échelle tous les troncons de
tubes de courant non perturbés de fagon a balayer uniformément
avec conservation de p d~ tout ’ensemble de la région de I'espace
physique accessible au corpuscule et ceci permettra de considérer
la quantité p = | ¥ |? comme mesurant la probabilité de la présence
locale du corpuscule.

Telle est la marche générale du raisonnement développé par
MM. Bohm et Vigier dans leur Mémoire et ce raisonnement pourrait
étre repris a I'aide de la théorie des chaines de Markov. Les auteurs
ont considéré les continuelles perturbations aléatoires auxquelles
le corpuscule serait soumis comme le résultat des réactions aléa-

(1) Voir 1a note de la page précédente.

e
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toires qu’exercerait sur lui un milieu profond et caché qu’ils ont
appelé « le milieu subquantique ».

2. Comparaison avec le mouvement d’un granule dans I’écou-
lement d’un fluide chaud. — La conception du milieu subquan-
tique, que beaucoup de faits constatés en Microphysique semblent
confirmer et qui s’'introduit sous une forme voilée dans certains
résultats de la théorie quantique des champs (par exemple quand
elle attribue au vide des propriétés physiques telles que « la polari-
sation du vide »), présente une grande importance pour le pro-
bléme de I’établissement d’une relation entre les grandeurs méca-
niques et les grandeurs thermodynamiques. Il serait, en effet,
inconcevable que, dans la dynamique d’un corpuscule isolé,
c’est-a-dire éloigné de tout autre systéme microphysique, s’intro-
duisent des grandeurs ayant une signification thermodynamique,
puisque celles-ci paraissent essentiellement liées aux variations
aléatoires d’'un systéme d’une grande complexité, ce qui ne peut
étre le cas d’un corpuscule isolé. Mais la question apparait sous un
tout autre jour si I'on admet qu'un corpuscule de 1’échelle micro-
physique quand il nous apparait comme isolé est cependant
toujours en contact énergétique avec un milieu profond et caché
possédant une structure complexe et aléatoire. Or I'introduction
de I'hypotheése de l'existence du milieu subquantique conduit a
I'idée que toute particule du niveau microphysique pourrait étre
considérée comme constamment en contact avec une sorte de
thermostat caché et il deviendrait alors possible de lui attribuer
une température ainsi qu'une entropie reliées 4 son mouvement.
Tout un horizon nouveau s’ouvre alors devant nos yeux.

Ceci nous ameéne 4 reprendre, en la modifiant assez profondément,
I'image hydrodynamique du mouvement du corpuscule que nous
avions précédemment envisagée. Nous avions comparé le mou-
vement du corpuscule défini par la formule du guidage avec le
mouvement d’un granule (d’'un grain de lycopode) qui est entrainé
le long d’une ligne de courant par I’écoulement d’un fluide. Mais,
si le fluide est chaud, je veux dire s’il n’est pas au zéro absolu,
le granule ne suivra régulierement la ligne de courant que s'il
est assez lourd pour résister aux chocs aléatoires des molécules
du fluide. S’il est trés léger, il sera comme toutes les molécules
du fluide animé d’une agitation brownienne qui se superposera au
mouvement régulier que lui impose 'écoulement général du fluide.
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A une différence d’échelle pres, le corpuscule serait donc compa-
rable & un granule en suspension dans un fluide chaud quiserait
animé d’un mouvement brownien di & ses interactions avec les
molécules invisibles du fluide, et auquel, pour cette raison, on
pourrait appliquer des conceptions thermodynamiques. Si le fluide
est immobile dans son ensemble, le mouvement brownien du
granule le fait sautiller de-ci, de-1a, sans mouvement continu.
Si, au contraire, le fluide est animé d’un mouvement d’ensemble,
le granule, qui sans le mouvement brownien serait entrainé régun-
liérement le long d’une ligne de courant du fluide, passera constam-
ment par suite de I'agitation brownienne d’une ligne de courant
a une autre. C’est d’ailleurs ce qui doit se produire pour les molé-
cules elles-mémes du fluide : chaque ligne de courant ne représente,
en effet, la trajectoire d’'une molécule qu’abstraction faite de I’agi-
tation brownienne et 'ensemble des lignes de courant ne donne
qu'une image statistique du mouvement global des molécules.
On apercoit maintenant de quelle maniére 'introduction du milieu
subquantique peut nous conduire 4 modifier I'image hydrodyna-
mique que nous nous étions faite du mouvement d’un corpuscule
microphysique.

3. Premicre tentative pour établir une correspondance entre
entropie et action, température et fréquence. — Les idées que
nous venons de développer conduisent naturellement 4 envisager
I'établissement de relations entre les grandeurs dynamiques qui
caractérisent le mouvement d’un corpuscule (cong¢u a la maniére
de la théorie de la double solution) et des grandeurs thermodyna-
miques telles qu’entropie et température. Quelques auteurs avaient
eu autrefois des idées analogues. Eddington dans son célebre
livre Espace, temps, gravitation (p. 219 de l'édition francaise)
avait esquissé, en termes d’ailleurs assez vagues, un rapprochement
entre les deux invariants fondamentaux de la Relativité, I’Entropie
et I'Action.

I’étude des théories anciennes de Helmholtz et de Boltzmann
m’avait amené, il y a une quinzaine d’années, a rechercher I’établis-
sement de correspondances entre I’entropie et I'action et entre la
fréquence cyclique et la température. Je I'avais tenté dans une
Note aux Comptes rendus de I Académie des Sciences (t. 223, 1946,
p- 248) et dans mon cours de ’année scolaire 1948-1949. J’en avais
également parlé dans un article des Cahiers de Physique (n°s 31-32,




88 LA THERMODYNAMIQUE DE LA PARTICULE ISOLEE

janvier 1948, p. 1). J’avais a cette époque envisagé deux manicres
différentes d’établir cette correspondance, mais je ne rappellerai
ici que la seconde, car elle me parait la plus intéressante et celle
qui se raccorde le mieux avec celle que j’exposerai dans le cha-
pitre VIIL

La formule de Boltzmann pour les systémes périodiques que nous
avons écrite au chapitre V sous la forme :

) 3Q = 1 36 = it

n’est valable que dans le systéme propre d’un corps qui est le siége
d’un processus périodique de fréquence v et de période <. La
grandeur # représente alors l'intégrale cyclique d’action mauper-
tuisienne prise sur une période enti¢re du mouvement. Nous devons
donc écrire d’une fagon plus précise :

@) 3Q0 = vo 8@,

avec .

®) = "> ppdgaat,

ou I'indice 0 indique que les quantités sont évaluées dans le sys-
téme propre du corps.

Passons 4 un systéme de référence galiléen ou le corps est animé
de la vitesse pc. En multipliant la formule précédente par4/1 — 82,
nous obtenons :

@) 3Q = v.3%).

Comme dQ = T dS, on est amené & poser :

ve = CT et =%,

ou C est une constante que, pour des raisons évidentes, il est naturel

de prendre égale & Tli . On obtient ainsi les relations :

) hv, = KT, _5S

entre la fréquence cyclique et la température d’une part, entre
I'intégrale cyclique d’action maupertuisienne et ’entropie d’autre
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part. Comme v, et T se transforment de la méme fagon quand on
passe du systéme propre a l'autre systéme galiléen, la premiere
relation (5) est de ce point de vue satisfaisante. Mais il n’en est pas
de méme de la seconde relation (5), car S est un invariant tandis
que A ne lest pas.

On pourrait améliorer la seconde relation (5) en considérant
comme systéme périodique un corpuscule con¢u 4 la maniere de la
Mécanique ondulatoire comme le siege d’un processus périodique
W,
h
On poserait alors, par définition :

©) — f "oty

et, en raison de l'invariance relativiste de I'action hamiltonienne,
on aurait dans tout systéme galiléen :

@) ® = f:wt —~ &,

ce qui conduit naturellement & remplacer la deuxieme relation (5)
par :

® OFs-

\ . h
de fréquence v, = et de période propre 1, = W’ avec W, = myc?.
(1]

et cela est plus satisfaisant.

Ce pas en avant, je ne l'avais pas fait il y a 15 ans. J'avais
cependant entrevu la possibilité d’une Thermodynamique du
corpuscule isolé puisque j’écrivais en 1948 dans mon article des
Cahiers de Physique : « I1 y a 1a 'amorce d’une Thermodynamique
du point matériel qu'on pourrait chercher a4 développer dans le
cadre de la Mécanique ondulatoire : il est assez difficile de dire
ou cette voie pourrait mener et nous nous contenterons d’en avoir
indiqué le point de départ. » Ce qui m’empéchait d’aller plus loin
a cette époque, c’est que je n’avais pas encore repris mes recherches
sur la théorie de la double solution et que je ne pensais pas encore
au milieu subquantique.

Cest seulement en 1961 en réfléchissant sur un travail récent de
M. Terletsky que j’ai apercu la possibilité d’introduire dans la théorie
de la double solution les relations entre fréquence et température,
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entre entropie et action dont j’avais soupgonné I'existence 15 ans
plus tot.

4. Sur un Mémoire de M. Terletsky. — M. le Professeur Ter-
letsky au cours d’un séjour a Paris 4 I'Institut Henri-Poincaré
a publié en 1960 deux treés intéressants articles dans le Journal de
Physique (*). Dans le premier de ces Mémoires et dans la seconde
partie du deuxiéme, il a envisagé I’hypothése qu’il pourrait exister
des particules de masse imaginaire animées de vitesses supérieures
4 la vitesse de la lumiere dans le vide, particules qui constitueraient
une sorte de thermostat caché analogue au milieu subquantique
de Bohm-Vigier. Malgré l'intérét des considérations que M. Ter-
letsky a développées a ce sujet, je préfére ne pas introduire ici
cette hypothese de l'existence de particules a masse imaginaires
et je me contenterai de dire quelques mots de la premiére partie
de son second Mémoire.

M. Terletsky envisage un ensemble de champs ¥y(z, y, z, f) ...
¥« (z, Y, z, {) analogues aux ondes de la Mécanique ondulatoire
et il définit l'action totale de ce champ par l'intégrale d’espace-
temps d’une certaine fonction de Lagrange. Il suppose, de plus,
que ce premier systéme de champs est en faible interaction éner-
gétique avec un second systéme de champs qu'’il considére comme
définissant un thermostat et, par des calculs ou interviennent des
fonctionnelles, il en déduit une formule qu’il considére comme
I’analogue de la loi de distribution canonique de Gibbs, mais qui
me parait plutét devoir étre assimilée 4 la définition boltzmanienne
de I’entropie S = k log P.

Dans tout ce début, M. Terletsky a défini I’action globale de ces
N champs par intégrale d’espace-temps, mais ensuite il a montré
d’une facon trés intéressante comment hypothése que les champs
obéissent & des équations non linéaires permet de ramener cette
définition a la définition usuelle de l'action hamiltonienne d’un
corpuscule par une intégrale prise le long de sa ligne d’univers.
Pour cela, il rappelle d’abord qu’une théorie des champs linéaires
conduit toujours a ce qu’il nomme « la catastrophe ultraviolette »,
c’est-a-dire au fait que I'intégrale donnant I’énergie totale du champ
est divergente du c6té des trés hautes fréquences. On sait que
cette conséquence inadmissible est apparue en Physique dans la

() Bibliographie, [8].
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théorie du rayonnement noir et que c’est afin de I’éviter que Planck
a introduit pour la premiere fois en 1900 la notion de quantum
d’Action. On élimine souvent aujourd’hui cette difficulté en intro-
duisant une coupure arbitraire des intégrales du c6té des hautes
fréquences (cut-off) qui élimine les ondes de trés hautes fré-
quences responsables de la divergence des intégrales : mais ce
procédé n’est pas satisfaisant parce qu’il est entierement arbi-
traire.

Or M. Terletsky remarque qu’il en est tout différemment pour
les champs non linéaires car alors, s’il existe naturellement dans le
cas des faibles amplitudes des solutions ayant trés approximative-
ment le caractére de solutions classiques en théorie linéaire, il
peut aussi exister, les travaux de M. Terletsky et de ses éleves
I'ont montré, des solutions présentant de trés petites régions de
haute concentration du champ qui sont stables et qui ont le carac-
tere des « champs 4 bosse » d’Einstein. Il y a alors dans ’espace-
temps des tubes d’univers extrémement déliés ou le champ prend
de trés hautes valeurs. Par suite, Vintégrale d’Action primitive-
ment considéré par M. Terletsky se réduit frés approximativement
4 une somme d’intégrales prises le long des tubes d’univers en
question et ’on retrouve ainsi la notion classique d’action hamil-
tonienne liée au mouvement des corpuscules.

Il est presque inutile de souligner combien les idées de M. Ter-
letsky sont ici en accord avec les conceptions de la théorie de la
double solution. L’auteur ajoute d’ailleurs la remarque suivante qui
pourrait étre trés utile dans I’étude de certains problemes difficiles
qui se présentent dans la nouvelle interprétation de la Mécanique
ondulatoire : « En dehors des solutions a régions de haute concentra-
tion du champ, les autres solutions ont la forme de paquets d’ondes
quasi linéaires qui s’étalent rapidement dans tout 'espace et dont
Pamplitude tend par conséquent vers zéro. »

Etant ainsi revenu a la notion usuelle d’action hamiltonienne
d’une particule, M. Terletsky a cherché a en tirer la loi de distri-
bution canonique. Mais, comme il n’a pas introduit la notion de
thermostat imposant aux champs une température bien définie,
ses conclusions ne m’ont pas paru trés claires et je pense qu’elles
doivent recevoir une interprétation un peu différente de celle que
leur auteur propose, interprétation qui nous rameénerait aux

formules hv, = kT et ‘%zTS( qui ont été envisagées plus haut.
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Dans I’ensemble, ce trés curieux Mémoire de M. Terletsky m’a
vivement intéressé et il a attiré mon attention sur la possibilité
d’introduire dans la réinterprétation de la Mécanique ondulatoire
par la théorie de la double solution des grandeurs thermodyna-
miques, température et entropie, liées aux caractéristiques du
corpuscule, fréquence cyclique et action hamiltonienne. C’est
ce qui m’a amené & développer une « Thermodynamique de la
particule isolée » que je vais maintenant exposer.




CHAPITRE VIII

LA THERMODYNAMIQUE
DE LA PARTICULE ISOLEE

(ou Thermodynamique cachée des particules)

1. Formules fondamentales. — Les réflexions que m’avait inspi-
rées le travail de M. Terletsky et qui me ramenaient vers les
anciennes idées que j'avais eues a ce sujet vers 1946-1948 m’ont
conduit a tenter d’établir dans des Notes récentes (*) une « Thermo-
dynamique de la particule isolée » qu’on pourrait aussi nommer
« Thermodynamique cachée des particules », puisqu’elle résulterait
de la continuelle interaction des particules avec un thermostat
caché qu’il est naturel d’identifier avec le milieu subquantique
de MM. Bohm et Vigier. J’avais commencé par introduire une
entropie de la particule isolée, mais ensuite j’ai préféré raisonner
en introduisant l'entropie du thermostat caché. La raison en est
qu’il est scabreux de définir une entropie pour la particule parce
que celle-ci est un systéme assez simple ne comportant qu'un petit
nombre de degrés de liberté : au contraire, le thermostat caché
étant certainement un systéme trés complexe, il est légitime de
parler de son entropie et 'emploi de cette entropie va nous per-
mettre de suivre la voie autrefois tracée par Einstein dans sa théorie
des fluctuations.

Pour développer notre nouvelle Thermodynamique, nous admet-
trons d’abord que nous pouvons appliquer & une particule isolée de
I’échelle microphysique la formule :

(1) 3Q = —38,L

de la Thermodynamique relativiste en supposant variable la
masse propre M, de la particule.

(Y) Bibliographie, [9].
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De plus, nous admettrons aussi, en accord avec mes anciennes
idées de 1946-1948, que la particule en contact énergétique perma-
nent avec le thermostat caché peut étre considérée comme ayant une
température T définie par la formule :

) kKT = hv, = hve\/1 — p* = myc2y/1 — g*

qui a la covariance relativiste voulue et oil m, est la masse propre
constante usuellement attribuée a la particule.

Nous allons définir I'entropie S du thermostat caché en contact
énergétique avec la particule. Nous inspirant de la méthodeemployée
jadis par Einstein dans ses célebres travaux sur les fluctuations,
nous écrirons cette entropie sous la forme :

(3) S = So + S(Mo),

ou S, est la partie de cette entropie qui est indépendante de la
valeur fluctuante de la masse propre M, de la particule tandis que
S(M,) est la tres petite partie de cette entropie qui dépend de la
valeur de M,. Nous aurons alors :

_ _ BQ o 8M0£
(@)) 3w, = 85(M,) = — T = 7
Le signe — figurant devant 8Q provient du fait que 8Q est la chaleur

cédée par le thermostat caché a la particule. Or, nous pouvons
écrire la fonction de Lagrange de la particule sous la forme :

() £ = — My2/1—p24 ...,

ou les termes non écrits ne dépendent pas de M,. Nous obtenons
donc par (2) et (5) :

SMO
() BS(M) = — k=,
ce qui nous fournit finalement :
M
) S=8§,—~ F:’

formule fondamentale ou l'invariance du second membre est bien
mise en évidence.
Nous avons ainsi obtenu les deux formules fondamentales de la
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Thermodynamique de la particule isolée qui sont valables dans tous
les systémes de référence galiléens.

M
®) KT = hv, S =So— k!,

Nous pouvons remarquer que la formule (4) nous conduit a la

. 1 23S . ) 1 8S )
relation T =5 au lieu de la relation T= —% trouvée au cha-

pitre IV. Mais nous ne devons pas nous en étonner parce qu’ici
S se rapporte au thermostat et £ & la particule. S’il était 1égitime
d’introduire une entropie S, de la particule comme je le faisais
dans ma Note d’aolit 1961, on aurait :

88, =—3S et %:-%%.

2. Analogies entre la Thermodynamique de la particule isolée
et le schéma canonique de Helmholtz. — Nous voulons com-
parer notre nouvelle Thermodynamique avec le schéma canonique
de Helmholtz que nous avons exposé au paragraphe 3 du chapitre V.

Nous savons que la phase ¢ de 'onde associée a la particule étant
égale a — A, on peut écrire :

9) @:—A:hf'vcdt,
(1]

d’ou :

(10) ¢ =— A = hy,

le point désignant la dérivation par rapport au temps. Si donc

nous posons :

(11) s:}]EqJ:——lA;

la premiere formule (8) nous donne :

hve @ -
(12) T = ? == E = E.
Nous retrouvons ainsi la relation fondamentale admise par Helm-
holtz comme base de son schéma canonique suivant laquelle la
température est la dérivée par rapport au temps d’une certaine

grandeur e.
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D’autre part, quand le thermostat caché céde 4 la particule
une énergie dU qui lui communique un travail dA (avec les notations
employées au chapitre IV), nous écrirons avec Helmholtz :

(13) —dy U =—8de+dA

et la Thermodynamique relativiste nous donnera :

(14) —dy U =dQ + dA,

avec :

(15) dQ = —Td,,S, dA =d, 7,

ouF = Mop* est la pseudo-force vive de la particule. Précisons

VI — g
que, dans les formules (13) et (14), — d,, U représente la diminution
de l'énergie interne du thermostat caché quand M, augmente.
De (13) et de (14), compte tenu de (12), on déduit la deuxieme
formule du schéma canonique de Helmholtz :

(16) & =S.
Comme dans ce schéma, par hypothése, ¢ est une variable cyclique
telle que % = 0, I’équation de Lagrange relative & la variable ¢

donne aussi la troisitme formule de Helmholtz :

qui peut se vérifier directement sur la formule (4), car elle donne,
& une constante pres :

£ =TS =eS.
En revanche, comme on n’a plus ici la relation :
- 0L

U=e¢— —L=TS-¢L
Oe

dont la variance relativiste ne serait pas correcte, on ne peut plus
assimiler I'énergie libre & la fonction de Lagrange. Mais comme
T est constant, on peut écrire (14) sous la forme :

(18) dy (U — TS) = — dy 7,
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ce qui nous conduit a assimiler la partie de I'énergie libre du ther-
mostat caché qui dépend de M, a la pseudo-force vive de la particule
changée de signe.

3. Le second principe de la Thermodynamique et le principe
de moindre action de Hamilton. — Dans l'application usuelle
du principe de Hamilton en Mécanique analytique, on part d’un
mouvement « naturel », c¢’est-a-dire d’'un mouvement conforme
aux lois de la Mécanique. On suppose qu’au cours de ce mouvement,
la particule partant d’un point A de I'espace au temps #, parvient
en un point B au temps &, puis on imagine un mouvement « varié »
qui est fictif et infiniment voisin du mouvement naturel en impo-

/’——\ B,t‘

Fig. 7.

sant & ce mouvement varié¢ que les points A et B et les instants {,
et 1, restent les mémes que dans le mouvement naturel. En d’autres
termes, on fait varier trés légérement la forme de la ligne d’univers
qui dans I’espace-temps représente le mouvement naturel en mainte-
nant fixes les extrémités de cette ligne d’univers.

Le principe de Hamilton nous dit alors que le mouvement
naturel est caractérisé par l’équation :

(19) f : (8] dt = O,

ou [3€],,, est la variation de £ quand on maintient la masse propre M,
constante et égale & sa valeur normale m,. De plus, comme le prin-
cipe de Hamilton est un principe de moindre action, nous pouvons
aussi écrire (!) :

(20) J‘ :’[Szﬁ]mdt > 0.

(*) A condition qu’'entre A et B, il n’y ait pas de foyer cinétique relatif
au point A. Voir C. R. Acad. Sc., t. 257, 1963, p. 1430.

DE BROGLIE 7
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Nous allons maintenant introduire une idée nouvelle qui parait
intéressante. Si I'on admet, comme nous le faisons que la masse
propre de la particule puisse subir des fluctuations, il devient
possible de considérer les mouvements variés non plus comme des
mouvements fictifs purement imaginés, mais comme des mouve-
ments pouvant avoir lieu réellement sous l'action de certaines
fluctuations momentanées de la masse propre pendant I'intervalle
de temps {, - t,.

Cette hypothése admise, le mouvement fluctué AC'B doit,
en lui appliquant le principe de Hamilton, pouvoir étre déterminé
par I'équation :

t t
(21) f: 3 + S0ydl = f (0 + §0ydt = 0.

Mais ici la masse propre n’étant plus supposée constante, nous
devons écrire :

(22) 5= [y 4 Sy = [, - 8L

en désignant par 8, £ I’ensemble des termes qui, dans 3¢, dépendent
de la variation de la masse propre. Nous supposerons, ce que nous
justifierons plus loin, que dans (21) le terme en &), £ est négligeable
par rapport aux autres et il nous restera :

(23) f: { [38]w, + 8L + [3C]u, } df = 0.
La premiére intégrale étant nulle en vertu de (19), nous obtenons :
24) — f “Suldl = — (f — L) Bl = f : (3] dt = 0,

t X

8w.L étant une moyenne temporelle prise entre f, et {,. Alors, comme
L, — t, est positif et que — 3,,L est la quantité de chaleur cédée
par le thermostat caché a la particule, on voit qu’en moyenne
temporelle cette quantité de chaleur, qui est constamment nulle
sur la trajectoire naturelle, est positive sur la trajectoire fluctuée.
Il en résulte que I'entropie S diminue en moyenne quand on passe
du mouvement ACB au mouvement AC'B. L’entropie est donc
maximale sur la trajectoire naturelle par rapport aux fluctuations
soumises aux conditions de la variation hamiltonienne et I’on peut
dire que le mouvement naturel est plus probable que les mouvements
variés. On fait ainsi apparaitre une trés remarquable relation entre
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le principe de moindre action et le second principe de la Thermo-
dynamique (%).

I nous reste & montrer que nous avons eu raison de négliger dans
(23)1e termeen &, £. Or on voit sur Péquation (24) que 3,,£ est de
l'ordre de [52L],, c’est-a-dire du second ordre par rapport aux
variations hamiltoniennes de sorte que §,f est du troisidme
ordre et peut étre négligé.

La Mécanique ondulatoire, des ses débuts, avait pu établir
une relation entre I’Action d’un corpuscule et la phase de son onde
associée, ce qui lui avait permis d’identifier le principe de Mau-
pertuis avec le principe de Fermat. Poursuivant le méme genre
d’identification, la théorie précédente rattache le principe de moin-
dre action au second principe de la Thermodynamique et 4 I'aug-
mentation de l’entropie.

4. Remarques sur la relation hv, = kT. — Nous voulons main-
tenant faire quelques remarques sur la premiére des formules
fondamentales (8) de notre nouvelle Thermodynamique.

Notons d’abord qu’elle souléve la difficulté suivante : Comme la
fréquence v, est caractéristique de la particule, la température T
doit en dépendre aussi. Or il semblerait naturel d’attribuer au
milieu subquantique une température T unique, indépendante
de la nature des diverses sortes de particules qui sont en contact
énergétique avec lui. On pourrait chercher a lever cette difficulté
en imaginant que le thermostat caché soit formé par des ensembles
de particules (c’est-a-dire probablement de champs a bosse),
chaque ensemble contenant des particules « cachées » de méme
nature et ayant sa température propre. La particule considérée
du niveau microphysique serait, peut-étre par suite d’'un phéno-
méne du genre résonance, uniquement en interaction avec les
particules cachées de méme nature qu’elle et c’est pourquoi 'on
pourrait avoir dans le systéme propre de la particule :

hvy  m,c?
To=T="%

Cette hypothése peut assurément paraitre assez artificielle, mais
il est curieux de constater que j’'avais déja été amené a 'admettre
quand, dans une recherche de nature tout a fait différente, j’avais

(1) En termes imagés, on peut dire que la trajectoire naturelle suit la
ligne de talweg d’une vallée de néguentropie.
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cherché a déduire I'équation des ondes avec terme de masse d’une
équation d’ondes universelle sans terme de masse du type de celle
envisagée par M. Heisenberg (3).

Nous devons encore souligner un autre point délicat, Si 'on
consideére les températures T et T, comme se rapportant a la parti-
cule elle-méme, la relation :

T=T,4/1— g
qui résulte antomatiquement de la premiére formule (8) est satis-
faisante parce qu’elle correspond a la transformation relativiste

de la température. Mais si 'on veut rapporter les températures
au thermostat caché, la relation :

rI’locz = kTo

montre que, dans le systéme propre de toute particule de masse m,,
le thermostat caché doit posséder la méme température T,. 1l en
résulte que, dans tout systéme galiléen, on doit, du moins en ce
qui concerne les particules de masse propre m,, attribuer au thermo-
stat caché la méme température T,. Cette propriété étrange montre
que le milieu subquantique n’est pas assimilable 4 un thermostat
macroscopique ordinaire dont le systéme propre définirait un
systéme de référence privilégié, ce qui serait d’ailleurs contraire au
principe de Relativité. Il semble qu’on devrait plutot I'assimiler
a un « éther de Dirac », dont les propriétés apparaitraient identiques
pour tous les observateurs galiléens (%), ou & un « éther de Ter-
letsky » [8].

Les remarques qui précédent montrent qu’il faudrait arriver
4 préciser la structure, certainement trés particuliére, du milieu
subquantique de Bohm et Vigier de facon que I’ existence de ce milieu
ne soit pas en contradiction avec le principe de Relativité. La
conception de M. Terletsky suivant laquelle on pourrait admettre
que ce milieu serait formé par des particules de masse imaginaire
se déplacant avec une vitesse supérieure a Ia vitesse de la lumiére
pourrait peut-étre étre utile pour résoudre ce probléme, mais je
pense qu’il serait prématuré d’aborder ici 'étude de cette difficile
question (voir [18]).

Il nous parait intéressant de noter que la formule myc? = kT,

(1) Voir bibliographie, [10], p. 99-103.
(?) Sur V’éther de Dirac, voir mon article du Journal de Physique, [4),
p. 975.
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conduit pour les particules matérielles a4 attribuer a la tempé-
rature T, une valeur trés élevée. En employant les unités C. G. S.
et les degrés Kelvin, elle donne en effet T, ~ 103 m,. Pour I’électron,
on trouve donc que T, est de I'ordre de dix milliards de degrés
absolus et pour les particules plus lourdes on trouverait des tem-
pératures encore plus élevées. Ainsi toute particule matérielle
se trouverait en constant contact énergétique avec une « chaudiére
cachée » qui serait le siége de températures extrémement élevées
et qui serait partout présente dans ce que nous appelons le « vide ».
D’auntres considérations ont déja amené certains auteurs (Lanczos,
Bohm) a une conclusion analogue.

5. Les relations M, = m, et S(M,) = — k. — Nous allons main-
tenant tirer de la seconde formule (8) définissant Pentropie S
de tres intéressantes conséquences.

Considérons d’abord une particule qui n’est soumise a aucun
champ extérieur. D’apres la formule de Boltzmann S = & log P,
la probabilité de I'état d’une particule dont Iasmasse propre fluc-

tuante a la valeur M, est proportionnelle 4 e*, donc d’aprés la

Mo
seconde formule (8) 4 ¢ ™. On en conclut que :

o [re M,

(25) My="——p—— =m,.
fwe_'h‘odMo
0
Ainsi la masse propre constante m, usuellement attribuée a la
particule nous apparait comme étant la valeur moyenne de sa
véritable masse propre instantanée qui est fluctuante.

Nous pouvons préciser cette idée de la fagon suivante. Quand
on fait abstraction des interactions entre la particule et le milieu
subguantique, la théorie du guidage conduit & définir la masse
propre variable de la particule dans son systéme propre par la

formule :
T R a
I\/L)C2 = /\/m§c4 + E{%_a == Inoc2 + Qoa

olt Q, = Myc2 — myc? est le potentiel quantique précédemment
défini dont on vérifie qu’a 'approximation newtonienne il a la
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2
valeur connue — Qf;n_o%l . Le potentiel Q traduit linteraction
du corpuscule avec son onde : ¢’est donc une grandeur du niveau
microphysique qui ne fait pas explicitement intervenir le milieu
subquantique. Si ’on veut tenir compte des interactions du milieu
subquantique avec la particule, il est naturel d’ajouter au dernier
membre de 'équation précédente un potentiel quantique « fluc-

tuant » Q; pour représenter cette interaction. On écrira donc :

Moc® = myc® + Q, + Qf-

Comme M. Terletsky I'a suggéré par d’'intéressantes considérations
dans ses importants Mémoires, il y a des raisons de penser que les
échanges énergétiques entre le milieu subquantique et les particules
doivent se réduire & des fluctuations de moyenne nulle, ce qui
conduit & poser Q; = 0. La derniére équation donne alors :

(25 bis) Moc? = moc* + Qo

et, si le potentiel quantique Q, est nul, on retrouve la relation
M, = m,. La masse propre usuelle m, résulterait donc des échanges
énergétiques continuels entre la particule et le thermostat caché.
Si nous introduisons la formule (25) dans I’évaluation de la
M,
0’

valeur moyenne de I'entropie qui, d’aprés (8), est S =S, — k

nous trouvons :
(26) S=S—k ou SMy=—*

Les formules (26) peuvent d’ailleurs se retrouver par le raisonne-
ment suivant. Placons-nous dans le systeme propre de la particule
et supposons qu’initialement elle ait une masse propre M, nulle
de sorte qualors W, et S(M,) soient nuls. Si le thermostat caché
fournit & la particule la quantité de chaleur dQ,, sa masse propre

augmentera de dM, = dg". Quand le thermostat aura fourni la
quantité de chaleur 3Q, telle que la masse propre M, ait atteint
sa valeur moyenne m,, on aura :

27) 3Q, = myc® = kT,.

L’entropie aura alors diminué de :

(28) ssz.-sc_%":—k.
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Le terme S(M,) dans 'expression de S aura donc passé de la valeur 0
initiale a4 la valeur — k et nous retrouvons le résultat (26).

Ajoutons que, pendant les fluctuations de la masse propre,
M, peut varier de 0 a - oo, c’est-a-dire que 3M, = M, — m,
peut varier de — m, a + oo, les valeurs trés grandes de 3M, étant
naturellement extrémement peu probables.

6. Comparaison avec la méthode d’Einstein pour I’étude des
fluctuations. — Rappelons le principe général de la méthode
employée autrefois par Einstein pour P'étude des fluctuations.

Considérons un systeme complexe dont 1’état dépend, a coté
d’un trés grand nombre d’autres parametres, d’un certain para-
meétre . Pour trouver la probabilité d’une fluctuation de I'état du
systéme complexe due a4 une variation du parameétre s, on peut
suivant Einstein procéder de la maniére suivante.

Soit Sy I'entropie maximale du systéme dans son état le plus
probable et S(¢) son entropie pour une certaine valeur du para-
metre . On peut écrire la relation de Boltzmann sous la forme :

(29) S(c) = k log P_;f) + S,

ou P, et S, sont deux constantes. Si nous posons S, = S,, nous
devons poser P, = P,, car S = S,, doit correspondre a I'état de
probabilité maximale P,. Nous aurons donc :

S Sl

(30) P(e)=Pye *

Naturellement, plus S(e) est petit et s’éloigne de Sy, plus la proba-
bilité de 'état fluctué P(e) est petite. Il résulte de (30) que la valeur
moyenne de S, — S(e) est :

31 § =S = k.

Nous pouvons appliquer le formalisme précédent a la particule
en contact avec le thermostat caché, systéme trés complexe,
en prenant pour parametre ¢ la masse propre variable M, de la

particule et en posant :
M
(32) S(e) = So— k-2,

0
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S sera maximale pour M, = 0, d’ot S, = S, et nous retrouvons
M,

la proportionnalité de P(M,) 4 e ™ et la formule S(M,) = — k.

En vue d’une comparaison qui sera faite au paragraphe suivant,
nous rappellerons qu’a I'époque (vers 1910), ou Jean Perrin venait
de faire ses célebres mesures de la constante d’Avogadro par I'étude
de la répartition en hauteur de granules en suspension dans une
émulsion sous 'action du champ de la pesanteur, Smoluchovsky
avait fait la théorie du phénomeéne par la méthode d’Einstein.
La probabilité pour qu'un granule de masse m ait une altitude z
comptée a partir du fond du récipient contenant I'émulsion est
donnée par la loi barométrique de Laplace sous la forme :

mgz

(33) P(z) =Cte e .
En prenant S(0) = 0, I’entropie correspondante est :

myz

Co) S(2) = klog P(z) = — "7

On trouve aisément :
(35) P .

d’ou :
(36) S=—Sd " =_FL

I’entropie du granule, normée comme on ’a fait, fluctue de sa
valeur maximale égale a O quand le granule est au fond du récipient

a I'altitude z = 0 jusqu’a (théoriquement) S = — oo pour z = <,
avec comme valeur moyenne S = — k.
7. Vue d’ensemble sur les résultats obtenus jusqu’ici. — Nous

voudrions maintenant résumer en quelques mots 'image a laquelle
la théorie de la double solution, maintenant complétée par I’hypo-
these de l’existence du milieu subquantique jouant le réle de
thermostat caché, nous a finalement conduit.

Le corpuscule est congu comme une inhomogénéité trés localisée
(petite région de trés hautes valeurs du champ ondulatoire) au
sein d’une onde dont I’équation de propagation contient la masse
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propre du corpuscule. En 'absence de perturbations, la masse
propre ayant la valeur constante m,, le corpuscule décrirait régu-
lierement I'une des lignes de courant de la propagation d’ondes
conformément a la formule du guidage. Mais 'onde et son cor-
puscule se propagent, si I'on peut dire, « a la surface » du milieu
subquantique jouant le role de thermostat caché et, par suite des
échanges énergétiques qui s’opeérent entre le thermostat caché
et le corpuscule, la masse propre de celui-ci subit de continuelles
fluctuations qui lui font parcourir toute une série de troncons
de lignes de courant de I'image hydrodynamique de l'onde en
propagation. Le corpuscule est ainsi animé au sein de ’onde, dont
il constitue une trés petite région singuliere, d’une sorte d’agitation
brownienne et c¢’est 1a ce qui introduit la probabilité dans les pré-
visions de la Mécanique ondulatoire et de la Physique quantique.

I’image de la particule suivant bien sagement une ligne de cou-
rant conformément a la formule du guidage a exactement la méme
valeur que celle qu’on utilise en Hydrodynamique quand on consi-
dére une molécule du fluide comme suivant dans son mouvement
une trajectoire constamment tangente a I'une des lignes de courant
de 'écoulement hydrodynamique. Mais, dans un cas comme dans
I’autre, il se superpose en réalité a ce mouvement théorique une
agitation thermique désordonnée qui fait que 'unité, corpuscule
ou molécule du fluide, saute constamment d’une ligne de courant
sur une autre : finalement, c’est seulement ’ensemble des lignes
de courant qui donne une image statistique du mouvement d’une
infinité d’exemplaires de I'unité, mais ceci n’implique pas du tout
que chaque unité n’ait pas a chaque instant une position et un
mouvement bien délinis.

Si nous revenons maintenant aux expériences de Jean Perrin,
nous pouvons dire qu'un granule soumis dans une émulsion a la
force de la pesanteur a comme trajectoire naturelle la trajectoire
verticale qui I'ameénerait sur le fond du récipient ou il resterait
immobile, mais I'agitation thermique des molécules cachées du
fluide ou il est en suspension le rejette constamment a droite,
a gauche, vers le haut ou vers le bas de sorte qu’il a toujours une
probabilité non nulle, donnée par la loi de Laplace, de se trouver
4 une hauteur z au-dessus du fond du récipient. De méme, dans notre
conception actuelle de la Mécanique ondulatoire, la particule a
pour trajectoire naturelle celle qui lui est attribuée par la formule
du guidage, mais elle se trouve constamment projetée de-ci, de-la,
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par V'agitation provenant de son contact avec le milieu subquan-
tique et c’est 14 ce qui lui donne finalement une probabilité non
nulle, égale & | ¢ |2, de se trouver en n’importe quel point de ’onde.

Si ces idées se montraient étre bien exactes, un remarquable
pressentiment d’Einstein se trouverait alors réalisé. Lui, qui,
en 1905, 'année méme ot il jetait les bases de la théorie de la Rela-
tivité et ot il découvrait I’aspect corpusculaire de la lumiére, avait
aussi étudié avec profondeur la théorie du mouvement brownien,
il semble avoir toujours pressenti que 'intervention des probabilités
en Mécanique ondulatoire indiquait I'existence d’une sorte de
continuel mouvement brownien des particules microphysiques.
Or qui dit mouvement brownien dit aussi fluctuations et thermo-
dynamique ().

(}) Je signale que, dans ma Note aux Comples rendus de I’ Académie des
Sciences du 30 juillet 1962, j’avais défini ’entropie S du thermostat caché
4 Vaide de l'intégrale d’action hamiltonienne de la particule prise sur une

période interne 1c = ——de celle-ci, en posant :

myc? \/

8S = = 8w, | CL
(a) =4 Mofo .
Dans le cas de particules matérielles (inais non pas dans celui des photons,
méme si ’on considére leur masse propre comme trés légérement différente
de zéro), la période propre 1, = Fnh_c2 est extrémement petite de sorte qu’il

parait légitime de considérer la masse M, comme constante pendant cette
trés courte durée. La formule (a) est alors pratiquement équivalentea la
définition (8) :

M,
adoptée plus haut. Pour les particules matérielles, 1a formule (b) plus simple

que (a) parait donc équivalente a (a). Mais le cas des photons, qui souléve
des difficultés particuliéres devra faire ’objet d’un examen spécial.



CHAPITRE IX

STABILITE DES ETATS,
ENTROPIE ET ENERGIE LIBRE

1. Les transitions quantiques et la « prérogative » des états
monochromatiques. — Depuis 'apparition en 1913 de la théorie
de 'atome de Bohr, on a attribué aux transitions quantiques,
qui font passer un systéeme quantifié d’'un état stationnaire a4 un
autre, un caractére qu'on pourrait qualifier de mystique. On
renonce, en effet, a s’en faire une image quelconque et Bohr n’a
pas hésité a affirmer qu’elles « transcendaient » toute description
en termes d’espace et de temps. C’est ce qui a amené Schrédinger
4 dire ironiquement que, dans la théorie quantique actuelle, on
décrivait minutieusement les états stationnaires ou il ne se passe
rien, mais qu’on se refusait & décrire les transitions ou il se passe
quelque chose.

L’idée introduite par la théorie de la double solution que la
Mécanique ondulatoire doit en derniére analyse reposer sur des
équations non linéaires permet de penser que, si les transitions
quantiques échappent a toute description dans la théorie actuelle,
c’est qu’elles constituent des processus essentiellement non linéaires.
Elles seraient des processus transitoires de trés courte durée ana-
logues 4 ceux qu’on a déja rencontrés dans plusieurs théories
non linéaires en Mécanique et en Physique quand il y a passage
brusque d’un cycle limite 4 un autre. Cette idée tres attrayante
avait déja été envisagée, il y a quelques années, par MM. Cap
et Destouches et elle a été reprise récemment par MM. Fer, Lochak,
Andrade e Silva et Leruste qui ont publié 4 ce sujet des travaux
d’un grand intérét (Y).

Or, quand MM. Lochak et Andrade e Silva ont eu connaissance
de ma premiére Note d’aot 1961 sur la Thermodynamique de
la particule isolée, aprés m’avoir fait justement remarquer que mes

(1) Voir bibliographie, [5] et [11].
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formules déduites de la relation dS = EiTQ ne s’appliquaient qu’aux

processus réversibles, ils m’ont suggéré que les états transitoires
trés brusques qu’ils avaient envisagés pourraient avoir un carac-
tére irréversible et s’accompagner d’une brusque variation de
I'entropie (ou de I’énergie libre) et que le passage d’un état sta-
tionnaire 4 un autre pourrait comporter le franchissement d’'une
vallée d’entropie (ou d’une montagne d’énergie libre).

J’ai été ainsi amené a réfléchir plus profondément a ces intéres-
santes questions. Pour faire comprendre I'orientation de ma pensée
a ce sujet, je partirai de la remarque que, dans la théorie usuelle,
on accorde une sorte de prérogative aux états qu'on peut qualifier
de « monochromatiques ». Je dois préciser que j’entends par « états
monochromatiques » d’une part, les états stationnaires des sys-
témes quantifiés qui sont représentés par une fonction propre de
I’hamiltonien et sont associés & une onde stationnaire de fréquence
déterminée, mais aussi d’autre part, dans le cas des particules
en mouvement progressif, aux états associés & des groupes d’ondes
assimilables dans presque toute leur extension a une onde plane
monochromatique. La prérogative accordée a ces états consiste
en ceci qu’on les regarde comme plus normalement réalisés que les
états représentés par une superposition de fonctions propres ou
d’ondes planes monochromatiques. Dés les débuts de la théorie de
Iatome de Bohr, on a considéré I'atome comme devant nécessaire-
ment se trouver toujours dans un état stationnaire et quand,
plus tard, on a traduit la théorie de Bohr dans le langage de la
Mécanique ondulatoire, on a admis que les états représentés par
une superposition de fonctions propres n’avaient qu'une existence
trés fugitive et que Patome était toujours saisi par I'observation
dans un état stationnaire représenté par l'une de ses fonctions
propres. En théorie quantique des champs, la méme préoccupation
se manifeste par le fait que les « nombres d’occupation » sont en
général rapportés aux ondes planes monochromatiques.

Dans un des articles trés pénétrants qu’il avait consacrés a la
critique des conceptions quantiques actuelles, Schrodinger s’était
étonné avec raison de cette prérogative accordée aux états mono-
chromatiques. Il pensait qu’elle était injustifiée parce qu’a priori
un ¢état de superposition a un caractere plus général qu'un état
monochromatique (la fonction ¥ = Zc,-‘l’i est plus générale que

i
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la fonction ¥ = ¥)). Et cependant le succés de I’hypothése que
les états monochromatiques ont effectivement une prérogative
ne permet guére de douter, contrairement 4 ’opinion de Schrédinger
que cette prérogative ne soit justifiée. Comment expliquer
cela ?

LI’idée qui m’a paru pouvoir apporter 'explication cherchée,
c’est que les états de superposition auraient une probabilité plus
faible que les états monochromatiques, qu’ils seraient donc en
quelque sorte instables et que des transitions quantiques, processus
non linéaires tres rapides, tendraient toujours & ramener particules
ou systémes a un état monochromatique plus stable. 1l est évident
que, du point de vue thermodynamique, la stabilité d’un état
doit étre rattachée 4 un maximum d’entropie ou & un minimum
d’énergie libre. Pour voir plus clair dans cette affaire, nous allons
étudier un certain nombre de cas particuliers. Et, pour commencer,
nous allons d’abord examiner deux cas ouI’on a affaire & un systéme
isolé qui n’échange pas d’énergie avec le milieu extérieur et nous
verrons sur ces exemples que, dans de pareils cas et conformément
a4 la relation de Boltzmann S = k log P, c¢’est le maximum de 1’en-
tropie qui correspond a P’état le plus probable.

2. Cas d’une particule libre 4 ’approximation newtonienne. —
Je rappelle d’abord la définition du potentiel quantique. Dans le
cas relativiste général, c’est la grandeur M,c? donnée par :

1) M@:ax/mw+mw%?

qui, dans le systeme propre de la particule, joue le role de potentiel
quantique dont le gradient changé de signe donne la force quantique.
Comme le potentiel quantique Q doit se transformer comme une
quantité de chaleur dans un changement de systéme de référence
galiléen et qu’il n’est défini qu’a une constante preés, nous pouvons
poser :

(2) Qo = Myc — moe?,  Q = Qon\/1 — B*.

A Tapproximation newtonienne, nous retrouvons aisément I'ex-
pression :

fiz Aa
(3) Q=

T 2ma’
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Considérons alors une particule qui se déplace librement sans
étre soumise a aucune force. Son onde associée peut étre un groupe
d’ondes assimilable 4 une onde plane monochromatique et son
mouvement est alors rectiligne et uniforme ou bien étre formée par
une superposition plus générale d’ondes planes monochromatiques,
comme dans les phénomeénes d’interférences ou de diffraction,
et alors la formule du guidage lui assigne un mouvement compliqué.
Je vais montrer que, dans ces conditions, un état de superposition a
une entropie moyenne inférieure a celle d’'un état monochromatique.

En effet, dans un état monochromatique, 'amplitude a de I'onde
étant constante, le potentiel Q donné par (3) est nul tandis que
dans un état de superposition la valeur moyenne de Q pour toutes
les positions de la particule dans son onde sera :

) Q== a”?d‘r:—Z—hn—l aAadr.

Comme a est toujours nul a linfini, une intégration par parties
donne :

) Q=g [(grad ayra= > o,

c’est-a-dire d’aprés (2), M, > m,. Donc, dans un état de super-
position, la valeur moyenne de la masse propre M, est supérieure &
sa valeur normale moyenne m,. Il suffit alors de se rappeler que nous
avons défini I'entropie S par la relation :

0
(6) S=38,—k e
pour voir que I’entropie S,, d’'un état monochromatique et la valeur
moyenne S, d’'un état de superposition ont pour valeurs :

V)] S =S¢ — k, S, _So—k Sis

ce qui montre bien que I'état monochromathue, ayant une entropie
supérieure a celle de I'état de superposition, doit avoir une proba-
bilité et une stabilité plus grandes (%).

3. Cas du choc de deux particules. — Le cas que nous venons
d’étudier était trés simple parce que nous considérions une particule
isolée. Nous allons maintenant envisager le cas plus compliqué

(*) Pour I'extention de ce raisonnement au cas de I’électron de Dirac,
voir I’Appendice.
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du choc de deux particules en nous en tenant toujours a ’approxi-
mation newtonienne. Le probléme a été traité par la Mécanique
ondulatoire dés 1927 par Max Born et c’est 4 ce moment qu’il a
introduit le premier l'interprétation probabiliste de la nouvelle
Mécanique.

Nous supposerons qu’a 'instant initial les deux particules sont
suffisamment éloignées 1'une de l'autre pour étre pratiquement
sans interaction et que chacune d’elles est alors portée par un train
d’ondes assimilable 4 une onde plane monochromatique. La fonction
d’onde dans I'espace de configuration a alors une forme ¥; qui est
égale au produit des fonctions d’onde individuelles des deux
particules. Quand les particules se rapprochent, l'interaction
commence et le calcul qu'on fait dans la théorie usuelle peut,
a notre avis, s’interpréter de la facon suivante. I y a d’abord
une évolution linéaire et causale de 'onde ¥ de Schrodinger dans
I'espace de configuration : cette fonction ¥ devient une super-

position de composantes de Fourier de la forme ¥ = Zlcl‘P‘,

qui correspond a 'ensemble des propagations d’ondes individuelles
corrélées v, et v, dans I'espace physique. On admet ensuite, dans le
calcul classique développé par Born que tout se passe comme si,
a la fin de la collision, il s’était produit brusquement un processus
qui avait rompu les relations de phase entre les composantes de
Fourier ¥, et qui avait eu finalement pour résultat que chacune
des particules se retrouve attachée a la fin de I'interaction 4 un
train d’ondes assimilable & une onde plane monochromatique,
Iénergie et la quantité de mouvement globales du systéme se
trouvant conservées. La forme ¥, finale de la fonction d’onde ¥
de I’espace de configuration est donc devenue égale 4 'une des
fonctions ¥; produit des fonctions d’onde finales des deux par-
ticules. Au total, il y a eu passage de I’état initial ¥; a I'un des
états finaux ¥y = ¥}, ce passage ayant a priori d’aprés les lois de
probabilités de la Mécanique ondulatoire une probabilité | c |2
de se produire. Le passage s’est donc opéré en deux étapes : la
premiére relativement lente, linéaire et causale est bien décrite
par les équations usuelles de la Mécanique ondulatoire a4 1'aide de
I’évolution de la fonction ¥, la seconde trés breve et, suivant nos
conceptions, sans doute non linéaire qui comporte un échange
brusque et important d’énergie et de quantité de mouvement
entre les deux particules. La description de cette seconde étape
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échappe complétement a la théorie linéaire usuelle et est simple-
ment postulée par elle sans aucune tentative d’interprétation.

Nous voulons maintenant tenter de prouver que I'état initial
et 'état final, qui sont tous deux représentables par des trains
d’ondes assimilables a des ondes planes monochromatiques, ont
une entropie supérieure a celle de I'état de superposition inter-
médiaire. La difficulté de le faire provient de ce que jusqu’a présent
nous n’avions développé la thermodynamique cachée que pour une
particule unique et isolée et qu’il nous faut maintenant généraliser
les formules obtenues au cas d’un systeme de particules. Sous réserve
d’une étude plus approfondie de la question, il nous parait naturel
de le faire en définissant, & I’approximation newtonienne, la tem-
pérature T d’un systeme de deux particules de masses m, et m,
et la masse propre totale du systéme par les formules :

(8) kT = (ml + mz)c’
et :
9 Myc? = (m, + my)c? + Q,

ol Q est le potentiel quantique du systeme défini a partir de I'am-
plitude a de I'onde ¥ dans I’espace de configuration par :

1A
® 0mwS o
1

Or, nous avons pour ’énergie W et la fonction de Lagrange £ du
systéme, compte tenu des termes de masse, les formules :

(11) W = (i + ma)et + Ec + V 4 Q,
Q:—(m1+mz)cz+ E.—V—-Q,

o E, est 'énergie cinétique totale des deux particules et V leur

énergie potentielle d’interaction. Nous éliminerons E, qui dépend

du mouvement des deux particules défini par la formule du guidage
en soustrayant W de £, ce qui donne :

(12) £ = —2(m; + m)cr — 2Q + W — 2V.

Comme W, énergie totale du systéme, est une constante et que V
ne dépend pas de M,, nous pouvons écrire :

13) £ = — 2Myc® + ...,

les termes non écrits ne dépendant pas de M,.
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Or nous savons que 35 = sé‘fg et, en tenant compte des for-

mules (8) et (9), nous trouvons aisément :

UM o o 2k

(14) S=5— ot m ~ (my + my)ct

Pour I’état « monochromatique » initial et pour I'état « mono-
chromatique » final, nous avons, a étant constant, Q = 0, d’out :

(15) Sm = So — 2k.

Le terme — 2k est satisfaisant puisque les deux particules sont
alors indépendantes et apportent chacune a l'entropie une contri-
bution égale & — k. Pour I'état de superposition, nous trouvons
d’apres (14) :

2k

(16) Sa:So‘—2k—m)‘§Qa

ol Q est la valeur moyenne de Q calculée dans I'espace de configu-
ration ou la probabilité de présence du point représentatif du sys-
téme en chaque point est donnée par a® Compte tenu de I'ex-
pression (10) de Q, un calcul tout a fait analogue a celui que nous
avions fait dans I'espace physique pour obtenir la formule (5)

nous montre que Q > 0. La comparaison des formules (15) et (16)
nous montre alors immédiatement que :

(17) S, < S

Nous retrouvons. donc notre conclusion précédente sur l'insta-
bilité des états de superposition et nous voyons que le processus

transitoire brusque qui correspond au passage de I'état ¥ = Zc,‘l’;

a l'état final ¥, s’accompagne d’une brusque augmentati(;n de
Ientropie conformément aux idées de MM. Lochak et Andrade
e Silva. L’état initial et I'état final étant monochromatiques corres-
pondent & la valeur S, — 2k de I'entropie et nous pouvons repré-
senter par le diagramme de la figure 8.

Sur ce diagramme, la courbe AB en trait plein représente sché.
matiquement la premiére étape de la collision correspondant &
I’évolution causale et linéaire de la fonction ¥ usuellement calculée

DE BROGLIE 8
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tandis que la ligne ponctuée BC représente la transition brusque
et sans doute non linéaire qui, aprés franchissement d’une vallée
d’entropie, raméne le systéme de 1’état de superposition B a I’état
monochromatique final C avec augmentation de I’entropie.

S
So-2k A ,9..__—
——_\/ /l
/
B
t
Fia. 8.

4. Introduction de P’énergie libre en Thermodynamique cachée
des particules. — Nous venons d’étudier deux cas ou une particule
ou un systeme est isolé et n’échange aucune énergie avec le milieu
extérieur, ne se trouvant en contact qu'avec le thermostat caché.
Nous avons alors trouvé que la stabilité des états correspond
4 un maximum de I’entropie et il doit sans doute en étre de méme
dans tous les cas de ce genre. Mais le cas des systémes qui peuvent
échanger de ’énergie avec le milieu extérieur doit étre différent.
Dans sa tres intéressante Note d’avril 1963, M. Lochak a insisté
sur le fait que, pour un systéme quantifié pouvant échanger de
I’énergie avec le milieu extérieur, la stabilité des états quantiques
doit correspondre & un minimum d’une fonction « énergie libre »
de la forme F = U — TS, Les états quantifiés du systeme qui,
sauf I’état de moindre énergie, sont seulement métastables cor-
respondraient 4 une série de petites cuvettes d’énergie libre sur
le flanc d’une montagne d’énergie libre. Cette conception nous
parait exacte, mais il y a lieu de bien préciser la définition de cette
énergie libre qui n’est pas tout a fait la méme qu’en Thermody-
namique usuelle.

Désignons par Q la quantité de chaleur cédée 4 une particule
par le thermostat caché et par Q le potentiel quantique de cette
particule. Les formules de notre thermodynamique nous donnent
dans le systéme propre de la particule :

Mo kX 5, 4 2
m, moc

(18) S=S,—k

T ’
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d’ou :
(19) 3@ = — T 8S = 3Q.

Il est essentiel de noter que, malgré leur égalité, les grandeurs
3Q et 3} ont des sens physiques trés différents : en effet, 3Q est
la quantité de chaleur échangée entre le thermostat caché et la
particule tandis que 3Q) est la variation de la masse propre de la
particule qui en résulte. La chaleur @ ne peut circuler qu’entre
le thermostat caché et la particule et ne peut pas intervenir direc-
tement dans la dynamique de la particule et dans ses échanges
d’énergie avec I'extérieur, sans quoi le thermostat caché ne serait
pas caché.

L’énergie de la particule peut s’écrire :

(20) W=m*+E +V+Q,
ou V est I'énergie potentielle classique et E; I’énergie cinétique

Myc? . . . . .
\71_";—5; — Myc? qui, 4 T'approximation newtonienne, se réduit

a 3 myp?, v étant la vitesse définie par la formule du guidage. Soit

T le travail extérieur, c’est-a-dire I'énergie fournie par la particule
au milieu extérieur. Si nous posons, par définition :

(21) U=E,+V,

la conservation de l’énergie nous impose d’écrire :

(22) 83 = — W = — 3(U + Q)

et, si nous adoptons comme définition de I’énergie libre :

(23) F=U-TS,

nous avons :

(24) 36 = — 3U 4+ Q) = — 3(U — TS) = — 3F.

Nous retrouvons donc la formule classique 3G = — 8F : elle

entraine que I'état le plus stable correspond a la valeur minimale
de F.

Mais nous devons remarquer que la définition (23) adoptée pour
I’énergie libre n’est pas identique a celle qui est adoptée par la
Thermodynamique usuelle. Dans celle-ci, en effet, on considére
un corps qui contient une énergie mécanique et thermique fotale U
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et qui peut échanger avec I'extérieur de la chaleur et du travail.
On est alors amené a écrire :

(25) sU = 5@ — 37,

3Q étant ici la chaleur recue de I’extérieur par le corps et 3T le
travail qu’il fournit a I'extérieur. En posant :

(26) F=U-—TS,
on obtient pour une transformation réversible :
(27) 36 = — 3U — TS) = — 3F.

Mais, dans le probléme que nous étudions, les choses sont diffé-
rentes. Nous avons une particule dont I’énergie est donnée par la
formule (20). Cette particule est en contact avec le milieu extérieur,
mais elle ne peut lui emprunter ou lui fournir que du travail,
c’est-a-dire de I’énergie mécanique ordonnée : elle se trouve égale-
ment en contact avec le thermostat caché auquel elle ne peut
emprunter ou fournir que de la chaleur avec variation corres-
pondante de sa masse propre. La conservation de I'énergie doit étre
valable pour les échanges d’énergie entre la particule et le milieu
extérieur, abstraction faite de la présence du thermostat caché.
La présence de celui-ci se manifestera seulement dans nos calculs
par la nécessité de prendre des moyennes sur la position de la
particule.

Ce sont ces circonstances qui nous ont amené a prendre pour U
la définition (21) qui est différente de la définition de la Thermo-
dynamique usuelle que nous venons de rappeler puisque notre
grandeur U ne représente pas la totalité de I'énergie du systeme
considéré. Et quand nous avons posé F = U — TS, nous avons
obtenu une définition de Vénergie libre qui différe de celle de la
Thermodynamique classique d’abord parce que U n’a pas la méme
définition dans les deux théories et aussi parce que S n’est plus
Pentropie du systéme considéré (la particule ne contenant pas
de chaleur sous forme d’énergie calorifique désordonnée), mais
est celle du thermostat caché qui, lui, est un réservoir de chaleur.

Bref, la raison essentielle de la différence qui existe entre les
formules (24) et (27), dont I'aspect est identique, est qu'une par-
ticule n’est pas un corps macroscopique contenant de la chaleur
sous forme d’agitation moléculaire interne.
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5. Exemples d’application des formules précédentes. — Nous
allons maintenant donner quelques applications de notre définition
de I’énergie libre.

a) Electron dans un atome d hydrogéne. — Comme exemple
d’application 4 un systéeme quantifié, nous considérerons le cas
simple d’un électron dans un atome d’hydrogéne en nous bornant
au cas des états completement stationnaires ou la vitesse de gui-
dage v est nulle. On a alors :

V= — =,
r

Or j’ai pu démontrer dans mon livre sur la Théorie de la Mesure [4]
(p. 76-77) que, dans la théorie de la double solution, le théoréme du
viriel prend la forme :

(28) 2B, + Q) — (r.grad V) =0
qui donne ici, avec E, =0 et — (?. glgg V) =1V,
(29) V+2Q =0.

Les moyennes sont prises en | ¥ |3, c’est-a-dire sur les perturba-
tions Bohm-Vigier.

Comme dans les états quantifiés V + Q = Cte quelle que soit
la position fluctuante de la particule dans son onde, nous avons :

(30) S(V + Q):S(V+Q)=;—8V=—SQ=T8§.

On voit aisément que, pour les transitions avec émission d’énergie,
on a 3V < 0 et 3Q > 0. D’oli, pour ces transitions :

(31) 36 = — 3V + Q)=—;8V=BQ.

La diminution de 1’énergie potenticlle compense donc a la fois la
production de travail extérieur et 'augmentation 3Q) de 1'énergie
de masse propre. On voit que la conservation de 1’énergie oblige
ici 'entropie S a4 diminuer. La stabilité des états sera donc déter-
minée par la diminution de ’énergie libre F telle que nous I’avons
définie et non par 'augmentation de I’entropie S, ce qui est en accord
avec les conceptions de M. Lochak.

Bien entendu, s’il y a apport d’énergie extérieure (3G < 0),
V 4 Q augmente, 'augmentation de V provenant a la fois de
I'apport d’énergie extérieure et de la diminution de I’énergie de
masse Q accompagnée d’une augmentation de I’entropie S.
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b) Cas de lUoscillateur linéaire harmonique. — Dans le cas des états
stationnaires de I’oscillateur linéaire harmonique, la phase¢ de ’onde

ne peut dépendreque dutemps etla vitesse deguidage?: —m é?éa P
est toujours nulle. Quant a I’énergie potentielle, elle a la forme
V= -;chz. OnadoncU =V = %K:cz. Or le théoréme du viriel (28)

nous donne ici :

(32) Q=V.

On peut donc écrire :

(33) U+Q=V+Q=V+Q=2V=2Q
et :

(34) 8B=—8(V+Q)=—8U—TS)=— 28V = — 23Q.

Quand l'oscillateur émet de I'énergie vers D'extérieur, les deux
potentiels V et ) diminuent en moyenne de la méme quantité.
Contrairement a ce qui se passe dans le cas de 'atome d’hydrogéne,
la diminution de V s’accompagne d’une augmentation de S, mais
il y a toujours diminution de F = U — TS.

¢) Cas d’une particule qui n’échange pas d’énergie avec Uextérieur.
— Nous allons étudier le cas d’une particule placée en dehors de
tout champ (V = 0) qui n’échange aucune énergie avec 'extérieur.
Ses variations d’énergie ne peuvent alors provenir que de varia-
tions de sa masse propre dues a des emprunts ou des cessions
de chaleur au thermostat caché et ici, nous ’avons vu, nous devons
nous attendre a voir les états stables correspondre aux maximums
de I’entropie S.

Nous allons encore comparer deux états de méme énergie de la
particule, I'un, I’état m, ou 'onde ¥ est assimilable 4 une onde
monochromatique plane, 'autre, I'état s, oit 'onde ¥ est une super-
position d’ondes monochromatiques planes de méme f{réquence.
Dans I’état m, Q est nul et F,, se réduit a I’énergie cinétique.
Dans I'état s, Q n’est pas nul et 'on peut démontrer que Q, > 0.
Comme 1'énergie E, -+ Q reste constante, nous avons dans les
deux cas

F=Ec+Q:Ec+Q>O
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Mais, comme, par hypotheése, le travail extérieur G est nul, nous
avons pour la transition s - m :

(35) ssmF = SsmEc + 8st = 0’
d’ou :
(36) dmQ=—T8pS=—0Q, <0

et, par suite :
(37) SemS >0,  3,uE. > 0.

Ainsi, lors de la transition s —m, il y a a la fois augmentation
de Tentropie S et de I'énergie cinétique. Pour une particule qui
n’échange aucune énergie avec l'extérieur, les « états monochro-
matiques » m sont plus probables que les états de superposition
et correspondent & un maximum de I’entropie ainsi que nous ’avions
déja vu au paragraphe 3.

6. Conclusions. — Nous pouvons résumer ce qui précéde en
disant : « Dans le cas d’une particule ou d’un systeme de particules
n’échangeant pas d’énergie avec l'extérieur, la stabilité d’'un état
correspond & un maximum de I’entropie ; dans le cas d’un systéme
qui peut donner ou emprunter de ’énergie mécanique a Pextérieur
(tel un atome quantifié qui peut émettre ou absorber un photon
et aussi, échanger de 1’énergie avec une particule extérieure dans
une collision) la stabilité d’un état correspond & un minimum d’une
fonction énergie libre convenablement définie. »

On pourrait encore envisager d’autres cas, par exemple celui
d’un systeme quantifié en contact avec un thermostat macrosco-
pique extérieur de température 0. On sait que, dans ces conditions,
I’état d’énergie quantifiée E, a, d’apreés la loi de distribution

canonique de Boltzmann-Gibbs, une probabilité d’étre réalisée
E

n

proportionnelle a e *_ Comme toute particule se trouve, suivant
nos conceptions, en contact énergétique avec le thermostat caché,
on est amené a concevoir deux Thermodynamiques qui entreraient
simultanément en jeu : une Thermodynamique « externe » due aux
échanges de chaleur du systéme avec le thermostat macroscopique
et une Thermodynamique « interne » due aux échanges de chaleur
avec le thermostat caché. M. Lochak dans la Note citée au para-

graphe £ a insisté sur ce point en faisant une intéressante remarque
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4 ce sujet, mais le probléme demanderait évidemment a étre exa-
miné de plus pres.

Nous voulons, en terminant, attirer ’attention sur le lien étroit
qui existe entre, d’'une part, notre Thermodynamique cachée des
particules et les conclusions que nous en avons tirées et, d’autre
part, les notions de potentiel quantique et de masse propre variable
qui sont caractéristiques de la Dynamique du guidage et de la
Théorie de la double solution. Il nous parait probable que la Théorie
de la double solution complétée par la Thermodynamique que nous
avons esquissée dans ce volume soit appelée a jouer un réle impor-
tant dans les développements futurs de la Physique quantique.



APPENDICE

Sur l’instabilité des états de superposition dans le cas
perp
de I’électron de Dirac

A la page 200 de I'Ouvrage cité au numéro [3] de la bibliographie
J’ai donné comme expression de la masse propre variable de I’électron
de Dirac :

m e
(1) M, = ‘F*’L‘Fc \/— Jul%
ou j, est le quadrivecteur « courant-densité » de la théorie de Dirac. Oron a
Ju = po Up avec uyu* = — ¢, ce qui permet d’écrire :
m
(2) M, = iP-T(L’“F Po

Si I'on définit les deux invariants bien connus de la théorie de Dirac par:
3) Q=Y*"T="¥T; Q=Trvrnm?,

une des relations classiques de Pauli-Kofink donne :

4 po = — Jul* = Qi+ Q5.

On a donc d’aprés (2), (3), (4) :

QZ
) M, — mo\/ 1+ 5; .

Mais, en théorie de Dirac, I'invariant Q, est nul pour une onde plane
monochromatique tandis qu’il ne I’est pas pour une superposition. Comme
I'entropie du thermostat cachée a été définie d’une fagon générale par la

M,
formule S=§, — k F" » on voit tout de suite que 'on a:
0
(6) S; < Sp.

Ici encore, on arrive au résultat que I’état de superposition est moins
stable que I'état mochromatique et ’on voit avec quelle simplicité cette
conclusion se déduit de la formule (5).
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