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PREFACE

Pour faire comprendre le but que j’ai poursuivi en rédigeant ce petit
Ouvrage, je ne puis mieux faire que de reproduire ici en guise de préface
la Note que j’ai lue a ’Académie des Sciences le 22 juin 1964. En voici
le texte (') :

La théorie des masers et des lasers attire de nouveau trés vivement
Pattention sur la nature des ondes électromagnétiques. Il est certain
que toutes les ondes électromagnétiques transportent des photons.
La chose est depuis longtemps bien établie pour la lumiére et le fonc-
tionnement des masers ne permet plus d’en douter en ce qui concerne
les ondes hertziennes. Un probléme difficile et capital se pose alors.
Quand une onde hertzienne vient agir sur le systeme oscillant d’un
récepteur (circuit oscillant, antenne, cavité résonnante, etc.), la descrip-
tion de l'interaction de I’'onde avec le récepteur peut se faire d’une facon
parfaite a I'aide des équations de Maxwell, méme pour les ondes milli-
métriques, et 'on peut dire que, jusqu’a ces derniéres années, les radio-
électriciens pouvaient ignorer complétement la structure « photonique »
des rayonnements qu’ils utilisaient. Cependant, il est bien certain que
I'énergie recueillie par le récepteur lui est délivrée d’une fagon discon-
tinue, ce qui n’est aucunement contenu dans les équations de Maxwell.
Cest 4 mes yeux le devoir des théoriciens de la Physique d’arriver
a donner une image claire et précise de la fagcon dont peuvent se concilier
la validité des équations de Maxwell et l'existence des photons.

Je me crois aujourd’hui en mesure d’aborder la solution de ce probléme
en utilisant la tentative de réinterprétation de la Mécanique ondu-
latoire que, partant des idées qui m’avaient guidé a I’époque de ma
thése de doctorat (1924), j’ai repris depuis une douzaine d’années sous

() C. R. Acad. Sc., t. 258, 1964, p. 6345.
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le nom de théorie de la double solution. Je ne ferai ici que rappeler le
principe de cette théorie sans entrer dans tous les développements que
j’ai pu lui donner. L’image que j'adopte, d’une fagon générale, pour
représenter la liaison d’un corpuscule et de son onde associée est la
suivante : 'onde serait un phénomeéne physique d’'une extrémement
petite amplitude qui se propagerait suivant les équations d’ondes de
la Mécanique ondulatoire, mais cette onde de base comporterait une
trés petite région ou son amplitude atteindrait une valeur trés élevée,
région qui constituerait le corpuscule. Le corpuscule se trouvant ainsi
incorporé 4 'onde serait guidé par la propagation de celle-ci et, point
essentiel qui se trouvait déja dans ma thése, son mouvement serait tel
que sa vibration interne resterait constamment en phase avec l'onde.

Si I'on applique cette conception générale au cas particulier de I'onde
électromagnétique, on est amené, je I'ai montré dans un travail récent,
a assimiler Ponde de base 4 une onde électromagnétique classique, mais
de trés faible amplitude, obéissant aux équations de Maxwell. Les
photons étant des bosons qui peuvent se grouper sur une méme onde,
cette trés faible onde électromagnétique de base peut comporter a titre
d’accidents locaux de sa structure un grand nombre de photons dont
les vibrations internes sont en phase avec elle.

Revenons maintenant au probléme de I'action d’une onde hertzienne
sur un récepteur. L’onde porteuse de photons a une amplitude si faible
qu’elle ne peut mettre en oscillation un récepteur d’une fagon sensible.
Mais chaque photon qui agit sur le récepteur lui communique une
impulsion brusque et, comme la vibration des photons est en phase
avec l'onde qui les transporte, les impulsions rythmées qu’ils apportent
au récepteur suffisent & le mettre en état d’oscillation réguliére.
En somme, I'action de photons sur un circuit oscillant serait la méme
que si celui-ci recevait une onde hertzienne de méme phase que la trés
faible onde de base, mais ayant une amplitude beaucoup plus grande,
et 'on voit bien ici la trés grande importance de ’hypothése que la
vibration interne des corpuscules est toujours en phase avec 'onde qui
les porte. Si cette conception est exacte, I'excitation d’un récepteur par
une onde hertzienne présenterait une grande analogie avec la technique -
des transmissions par impulsions : dans cette technique, en effet,
on envoie sur le récepteur non pasla totalité de la sinusoide corres-
pondant a loscillation qu’on veut lui imposer, mais seulement de petits
morceaux de cette sinusoide et, si ces « échantillons » arrivent en nombre
suffisant par période, le récepteur se met a osciller comme s’il recevait
la sinusoide tout entiére. Concevoir de cette facon la mise en oscillation
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d’un récepteur par une onde hertzienne me parait la seule maniére de
résoudre le probléme difficile et capital dont j’ai parlé an début de
cette Note.

Dans le cas de la lumiére, les photons fournis par les sources lumi-
neuses usuelles sont émis indépendamment par les atomes de la source
sur des trains d’ondes incohérents. Mais si la source est assez intense
et de dimensions trés petites, la théorie classique des ondes a conduit
les spécialistes de I'optique 4 définir une quasi-cohérence due a la super-
position, pendant un temps trés court par rapport a leur durée d’émis-
sion, des trains d’ondes émis par les différents points de la source.
Comme l'ont fait remarquer MM. Maréchal et Fran¢on dans un livre
récent, les expériences de Brown et Twiss sur ce qu’'on peut appeler les
« interférences du quatriéme ordre » ont montré que ces raisonnements,
bien que purement classiques, sont entiérement valables malgré la struc-
ture quantique de la lumiére. Cela se comprend aisément avec notre
conception car les ondes de base, ayant un comportement classique,
se superposent classiquement et c’est 1’onde résultant de leur super-
position qui guide les photons qu’elle transporte et qui détermine, par
son intensité, leur répartition dans I'espace.

D’autre part, la réalisation des lasers a eu une grande importance
théorique car les lasers fournissent, par émission stimulée, de trés
nombreux photons qui sont cohérents, ce qui signifie pour nous qu’ils
sont en phase avec une méme onde électromagnétique de base. L’onde
fournie par un laser a donc en principe la méme structure qu’'une onde
hertzienne et peut, par suite, exciter une cavité résonnante. Mais I'étude
des lasers a mis en évidence un fait fondamental : tandis que les photons
émis dans un laser par émission stimulée sont cohérents, les photons
qu'il émet par émission spontanée sont incohérents et ont, par suite,
le caractére d’un « bruit » parasite. Or, dans le célébre raisonnement par
lequel Albert Einstein, deés 1gr7, avait introduit les notions capitales
d’émission stimulée et d’émission spontanée, rien n’indiquait cette
différence. La raison me parait en étre qu'Einstein envisageait le cas
du rayonnement noir ol toutes les ondes sont incohérentes et ou l'idée
de cohérence ne peut donc pas entrer en jeu. Il est donc certain que
le raisonnement d’Einstein, dans son application aux lasers, doit étre
complété par des considérations de cohérence.

Finalement, les conceptions que nous préconisons nous paraissent
apporter les éléments nécessaires & une représentation claire et ration-
nelle de phénoménes dont la coexistence posent depuis longtemps aux

physiciens des problémes en apparence insolubles.
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Tel est le texte de la Note que j’avais lue devant ’Académie des
Sciences. Le but du présent Ouvrage est de reprendre les idées qui y sont
développées en les précisant et en les développant car il nous parait
de plus en plus certain que seules des idées de ce genre permettront de
remettre un peu de clarté dans les théories de la Physique quantique.

En terminant, je veux remercier M. Joad Luis Andrade e Silva de la
précieuse collaboration qu’il m’apporte depuis plusieurs années et,
en particulier, du bel exposé sur la théorie de l’effet Brown et Twiss
quil a écrit & ma demande et qui forme le dernier chapitre du présent
Ouvrage.



ONDES ELECTROMAGNETIQUES
ET PHOTONS

INTRODUCTION.

LE GUIDAGE DU CORPUSCULE
PAR L'ONDE ET LA THEORIE SYNTHETIQUE
DE LA DOUBLE SOLUTION.

1. But de I'Introduction.

Dans ces dernieres années, j’ai écrit un assez grand nombre d’ouvrages
et d’articles sur l'interprétation de la Mécanique ondulatoire que j'avais
envisagée au moment de ma These de Doctorat et que j’ai reprise
depuis 1952. Je renvoie a ces écrits les lecteurs qui voudraient approfondir
cette interprétation que j’ai pu récemment étendre et préciser de
diverses fagons (').

Je n’en veux donner ici qu'une vue sommaire en insistant sur les
idées plus que sur les calculs et sans m’arréter aux questions de détail
que j’ai étudiées dans mes livres.

2. Origine de la Mécanique ondulatoire.

Quand j’ai fait mes premiéres recherches sur la Mécanique ondulatoire,
- mon but était d’étendre a tous les corpuscules la coexistence des ondes
et des corpuscules qu’Einstein avait mise en évidence en 1905 dans sa
fameuse Théorie des quanta de lumiére. Je voulais obtenir en fin de compte
une image physique claire de la coexistence du corpuscule et de I'onde,
mais mon premier travail fut d’associer au mouvement d’un corpuscule
le mouvement d’'une « onde associée ». J’envisageai donc le cas le plus
simple : celui d’un corpuscule en mouvement rectiligne uniforme en

(") Bibliographie [1] a [6].

L. DE BROGLIE,
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I'absence de champ. Prenant la direction du mouvement comme axe
des z, je parvins par des raisonnements qu’on trouve dans ma Thése (')
a lui associer une onde qui, sous forme complexe, s’écrit

(I) lpm=ae‘lﬂi(vl—;—f>7

la fréquence v et la longueur d’onde 2 de 'onde étant reliées a I’énergie W
et a la quantité de mouvement p du corpuscule par les formules bien
connues

(2) W = hv, A= —-

Mais je pensais qu’il fallait finalement localiser le corpuscule dans
l'onde, sans quoi 'idée méme de corpuscule disparaitrait. Aussi avais-je
I'idée que 'amplitude constante a attribuée a la fonction d’onde n’était

que provisoire et que seule la phase ¢ = vi— % était bien exacte. C’est

la raison pour laquelle je nommais alors l'onde que jintroduisais,
« 'onde de phase ». J'ai eu trés vite a cette époque l'intuition que
I'amplitude de l’onde, bien que presque partout constante, devait
comporter une sorte de singularité avec valeur locale trés élevée de
Pamplitude et que cette trés forte inhomogénéité, trés étroitement
localisée dans 1’'onde, devait constituer le corpuscule. Ceci me paraissait
la seule maniére d’obtenir une véritable image synthétique de la coexis-
tence de 'onde et du corpuscule. Mais j’ai eu, dés le début, le tort de
ne pas oser exprimer clairement I'idée que j’avais en téte et c’est Ia
peut-étre une des causes qui ont fait donner ensuite a la Mécanique
ondulatoire une interprétation trés différente qui, aujourd’hui, me parait
étre inexacte et avoir pendant des années empéché les théoriciens de
rechercher la véritable solution du probléme.

Aprés le cas du mouvement rectiligne uniforme, j'avais étudié celui
du mouvement d’un corpuscule dans un champ de force. Il en résultait
que, du moins a lapproximation de optique géométrique, on peut
écrire

i,
(3) V=g et <n= h),
2%
I'amplitude a étant lentement variable, et qu’on avait
. ():P > >
4 = -1 —_——
(4) W=  p=—grade.

On était ainsi amené a identifier le principe de Fermat appliqué
a P'onde ou au principe de moindre action de Maupertuis appliqué au
corpuscule,

(*) Bibliographie [7].
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3. Premiers développements de la Mécanique ondulatoire.

Sans insister davantage sur les premiéres conséquences qu'on pouvait
tirer de ma these, je rappellerai qu’au printemps de 1926, Schrodinger,
dans de mémorables travaux, écrivait le premier ’équation des ondes
de la Mécanique ondulatoire et en tirait de remarquables conséquences,
notamment en ce qui concerne le calcul des états quantifiés des atomes.
Je me bornerai a rappeler que 1’équation d’ondes de Schrodinger pour
une particule de masse m soumise a une force dérivant d’un poten-
tiel V s’écrit

. .oo2m.. 2itm W
(5) AV — VY = =2

et que, peu de temps apres les travaux de Schrodinger, divers théoriciens
parvinrent 4 généraliser I’équation (5) en lui donnant la forme rela-
tiviste connue sous le nom d’équation de Klein-Gordon :

O ey N i, ¥
6 O% ==V fic M O

¥z

1 2 .9 2 3 9 .
-+ ﬁ[mgc-— 2 (V2— A2) ¥ =0,

ou m, est la masse propre de la particule, ¢ sa charge électrique, ¢ la

vitesse de la lumiére dans le vide, V et Ale potentiel scalaire et le poten-
tiel vecteur du champ électromagnétique auquel la particule est soumise,
L’équation (5) peut étre considérée comme la dégénérescence non rela-
tiviste de I’équation (6) et 'on sait aujourd’hui que T'équation (6) n’est
valable que pour les particules de spin o.

C’est alors que, primitivement sous I'influence de Max Born, on s’orienta
vers une interprétation probabiliste de la Mécanique ondulatoire qui
devait aboutir peu aprés a la théorie de la « complémentarité » déve-
loppée par Niels Bohr et ses éléves. Une des conséquences de ce mouve-
ment d’'idées fut de donner a4 I'onde W le caractére d’une simple repré-
sentation de probabilités. En particulier, la quantité | W > = | a(z, y, z, {) |2
apparaissait dans ce formalisme comme la probabilité pour que le
corpuscule manifeste sa présence par une action observable au point z, y, z
au temps { sans que pour cela on maintienne I'idée d’une localisation
constante du corpuscule dans I’espace. Mais, au fur et 4 mesure que cette
interprétation se développait, je la voyais s’écarter de plus en plus des
intuitions qui m’avaient primitivement guidé. Le corpuscule prenait un
aspect fantomatique car 'on disait qu’avant de se manifester par une
action locale, il était répandu « a4 I’état potentiel » dans toute I'étendue
de son onde; quant & ’onde, elle n’était plus une véritable onde physique
se propageant dans I’espace, mais un simple moyen mathématique de
calculer des probabilités. Je voyais ainsi s’évanouir, dans le brouillard
d’un formalisme correct mais obscur, les images concrétes et précises
que j'avais espéré obtenir de la coexistence des ondes et des corpuscules.
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4. Le guidage des corpuscules par l'onde.

Alarmé de voir ainsi disparaitre la synthése précise que je souhaitais,
jai. essayé, notamment pendant les années 1926-1927, d’opposer a
Pinterprétation de la Mécanique ondulatoire qui se développait alors
une interprétation en accord avec mes intuitions primitives (). Pour
atteindre ce but, j’avais utilisé les idées de M. Madelung qui venait de
donner une représentation hydrodynamique de la propagation des ondes
de la Mécanique ondulatoire. Cette représentation part de l'idée que,
pour toutes les équations d’ondes utilisées en Mécanique ondulatoire et
valables pour les différentes sortes de particules, il doit étre possible de

définir, 4 partir de la fonction d’ondes, une densité p et un flux sv
(formant les quatre composantes d’un quadrivecteur d’espace-temps)
tels que I’équation de continuité exprimant la conservation du fluide

o Lo
(7) W%—dnpv_u

soit satisfaite en vertu des équations d’ondes. Bien entendu, on en déduit
la valeur de 3, vitesse locale du fluide dont on fait correspondre 1'écou-
lement a la propagation de I'onde. Pour I'équation de Schrodinger,
on trouve avee U’ = q e” (P, ol a et ¢ sont des fonctions réelles de x, y, z, { :

1 >
=— —grado
m

(8) p=|Wp=a, ¢

et, pour I’équation de Klein-Gordon, on trouve dans le cas de I’absence
de champ,

(9) e

qui se raméne a (8) a approximation newtonienne.

La représentation de Madelung faisait ainsi correspondre a la propa-
gation de I'onde W I'infinité des lignes de courant d’un écoulement hydro-
dynamique. Comme je tenais a rétablir la localisation du corpuscule
dans I’espace sans laquelle aucune image précise du corpuscule ne peut
étre obtenue, j’étais naturellement amené a astreindre le corpuscule
a suivre l'une des lignes de courant de I’écoulement hydrodynamique.
Jimposais ainsi au corpuscule un mouvement entierement déterminé.

Ayant admis ce postulat du guidage du corpuscule par I'onde, je pouvais
voir que cela obligeait 4 admettre que le corpuscule est soumis, en dehors

() Bibliographie [8].
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de l'action des potentiels du type classique traduisant éventuellement

Paction d’'un champ extérieur, & un potentiel Q d'un type nouveau,

« le potentiel quantique ». La force quantique — graéQ dérivant de ce
potentiel traduirait lexistence d’une action que l'onde environnante
exercerait sur le corpuscule, comme cela parait nécessaire pour inter-
préter les phénoménes d’interférences et de diffraction dans une théorie
qui admet la localisation constante du.photon dans I'espace.

Dans le cas de I'équation d’ondes non relativiste de Schrodinger,
le potentiel quantique a pour expression

12 Aa

(10) Q=—

2m «a

Dans le cas d’une particule sans spin obéissant 4 I’équation relativiste
de Klein-Gordon, on trouve que le corpuscule a une masse propre M,
variable suivant la position du corpuscule dans 'onde qui est donnée par

; , 2 da
(11) )L):\/m;’,—é——ﬂg—
¢ a

et, dans le systeéme propre, c’est la grandeur M,¢* dont le gradient changé
de signe donne la force quantique. On peut donc alors poser

(12) Qo= Moc2— mocz, Q= Q,y/1— p2

A Tapproximation newtonienne o 3 -1 et Ja ~—- Ag, ce potentiel
se réduit 4 I'expression (10) comme on le vérifie aisément et 'on peut se
‘contenter d’écrire

(13) Q == Mye2— myc?.

5. Intervention du milieu subquantique.

L’une des conséquences intéressantes de I'hypothése qui exprime le
guidage du corpuscule par I'onde est la suivante : I'équation de conti-
nuité (7) suggére de considérer p comme la densité de probabilité de
présence du corpuscule quand on ignore laquelle des lignes de courant
il décrit. On retrouve ainsi la signification statistique attribuée a |\’ |2
par Born et la physique quantique actuelle. Cependant cette conséquence
ne peut pas se déduire rigoureusement de I'équation (7) : il y a 14 une
difficulté analogue a celle qu'on rencontre en Mécanique statistique
quand on cherche & faire découler du théoréme de Liouville D'affir-
mation que la probabilité de présence du point représentatif d’un systéme
dans un élément dr de I’extension-en-phase -est proportionnelle a dr.
Devenu trés conscient de cette difficulté, j’ai vu dans ces derniéres
années qu’'on ne pouvait la lever qu’en introduisant dans la théorie du
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guidage un élément aléatoire. Or cet élément aléatoire est fourni par
une tres intéressante hypothése développée, il y a quinze ans, par
MM. Bohm et Vigier (?) : ils ont, en effet, supposé que ce que nous
nommons le « vide » est en réalité le siége d’un milieu caché « le milieu
subquantique » qui serait en continuelle interaction aléatoire avec les
particules du niveau microphysique. Si l'on admet cette hypothése,
on est amené & considérer les particules comme subissant constamment
des perturbations aléatoires a caractére de fluctuations et ceci a permis
a4 Bohm et Vigier de rendre compte de la réalisation trés rapide de la
répartition en | W |2 de la probabilité de présence. En approfondissant
cette idée, j’ai été conduit a développer une Thermodynamique de la
particule isolée, théorie entiérement nouvelle & laquelle j’ai consacré le
plus récent de mes livres (?), mais c’est 14 un sujet assez compliqué qui
sort du cadre du présent Ouvrage.

Je dois cependant remarquer que les perturbations dues au milieu
subquantique faisant constamment sauter la particule d’'une des trajec-
toires prévues par la théorie du guidage sur une autre, ces trajectoires
ne donnent plus qu’une sorte de vue statistique moyenne du véritable
mouvement de la particule. Dans ce qui suit, je ferai abstraction de
cette circonstance et, pour simplifier le langage, je continuerai a consi-
dérer les trajectoires prévues par la théorie du guidage comme repré-
sentant le mouvement de la particule.

6. La vibration interne du corpuscule est toujours en phase avec
celle de l'onde qui le porte.

Nous arrivons maintenant & un point de la théorie du guidage dont
nous verrons plus loin I'importance dans le cas des photons.

Dés I'époque de ma thése, j’avais été conduit a assimiler I'ensemble des
valeurs locales d’une onde en propagation a ’ensemble de petites horloges
entrainées par le mouvement de I'onde. Si, au sein de I’onde, le corpuscule
reste constamment localisé, nous sommes amenés a nous le représenter
comme une sorte de grosse horloge se déplacant au milieu des petites
horloges. Mais, comme la formule du guidage exprime que cette horloge
est incorporée 4 l'onde et solidaire de sa progression, I'idée vient alors
d’admettre que son indication doit rester constamment égale a celle des
petites horloges qui l'entourent immédiatement. En d’autres termes,
le corpuscule doit se déplacer de facon que son oscillation interne reste
constamment en phase avec 'onde a laquelle il est incorporé. '

Il est facile de voir que c’est bien 14 ce qu'exprime la formule du

guidage. En effet, si le corpuscule se déplace de d § dans I’espace physique

() Bibliographie [9].
(®) Bibliographie [6].
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pendant le temps df, la persistance de ’accord de phase entre la vibration
_ interne et I'onde environnante exige évidemment que

1 de > ds

ds
(14) 7;<’—)l— +gradq>72>dt:vcdt7

v, étant la fréquence cyclique interne du corpuscule telle qu’elle appa-
rait & un observateur lié au systéme ol nous nous sommes placés.
Si v, est la fréquence interne du corpuscule dans son systéme propre,

- v
Y

. , 14 . . 0 .
la fréquence de l'onde v = W T est égale a Vi tandis que la

fréquence v, est donnée par la formule de ralentissement des horloges
s )o -

ve=v,y1—(3* et, comme hv = (v:, la formule (14) peut s’écrire

[’

J
,,,7} +
. grado.¢ v
[§ ) 2 - = L =1—32
(13) o . ;

at

et cette formule est précisément vérifiée si 'on y introduit I'expres-
sion (g) de la formule du guidage dont l'’expression (8) se déduit a
I'approximation newtonienne.

On peut d’ailleurs démontrer qu'on retrouve le méme résultat quand
le corpuscule se déplace dans un champ (*).

Le résultat obtenu apparait comme tout naturel si 'on admet que le
corpuscule n’est en réalité qu'une tres petite région de 'onde ot 'ampli-
tude locale de cette onde prend une trés grande valeur. Nous retrou-
verons ce point de vue au paragraphe suivant en introduisant la théorie
de la double solution. On peut d’ailleurs se rendre compte que ’accord
de phase entre le corpuscule et son onde doit subsister méme si le
corpuscule subit des perturbations aléatoires provenant du milieu
subquantique de Bohm-Vigier. En effet, une telle perturbation aléatoire
doit pouvoir étre représentée en introduisant dans ’équation d’ondes
un potentiel perturbateur de trés courte durée et l'apparition de ce
potentiel n’empéche pas le corpuscule de rester en phase avec P'onde
localement perturbée : il en résulte que, lorsque le corpuscule passe trés
rapidement par suite d’une perturbation Bohm-Vigier d’une des trajec-
toires sur une autre, il se retrouve en accord de phase avec son onde
sur la nouvelle trajectoire de guidage. On peut donc considérer la cohé-
rence de phase entre le photon et son onde comme générale et perma-
nente.

(*) Voir [6], p. 76.



8 INTRODUCTION,

7. La théorie de la double solution.

Les idées que nous venons de rappeler conduisent immédiatement
a penser que I'onde W' usuellement envisagée en Mécanique ondulatoire
avec son amplitude constante, ou du moins continiment variable, n’est
pas la véritable onde physique & laquelle le corpuscule est incorporé.
Celle-ci apparait comme devant étre plutdt une onde de trés faible
amplitude comportant une région de trés petites dimensions ou I'ampli-
tude prend une trés haute valeur. Pour distinguer cette onde de I'onde W,
appelons-la « ’'onde u ». On peut la représenter schématiquement par la
formule

(16) U= uy—+ ¢,

ol u, est un terme présentant une trés grande valeur dans la région
singuliére qui constitue le corpuscule, mais qui s’évanouit trés rapi-
dement en dehors. Quant a » qu’on peut nommer « l'onde de base », elle
représente I'onde tres faible, mais relativement trés étendue, qui porte
le corpuscule. Il n’est pas certain que l'onde u obéisse aux équations
linéaires usuelles de la Mécanique ondulatoire car des processus non
linéaires importants peuvent s’introduire dans la région de tres grande
amplitude; mais pour la partie v de 'onde u dont I'amplitude est tres
faible, il est naturel d’admettre qu’elle obéit a une équation linéaire
et, pour faire le raccord avec la théorie usuelle, il est nécessaire de supposer
que I'onde de base v est sensiblement solution des équations usuelles
de la Mécanique ondulatoire. Cependant I'onde v différe profondément
de 'onde W a utilisation statistique; en effet, & mes yeux, c¢’est une onde
physique concréte (représentée d’ailleurs par une fonction complexe,
c’est-a-dire par ’ensemble de deux grandeurs réelles non indépendantes,
nous reviendrons sur ce point dans le cas du photon); elle a donc une
amplitude parfaitement déterminée et non pas arbitrairement normable
comme celle de I'onde W, Nous apercevons alors que nous sommes en
présence de deux solutions trés différentes d’'une méme équation d’ondes
de la Mécanique ondulatoire : 'une, I’onde de base », ayant les carac-
téres d'une onde physique a propriétés classiques et l'autre, 'onde W
usuelle, qui est une onde fictive a amplitude normable & volonté et & usage
statistique. Et c’est pourquoi j’avais donné naguére a cette conception
nouvelle le nom de « théorie de la double solution ».

Remarquons alors qu’'avec les conceptions de la théorie de la double
solution, le corpuscule n’apparaissant plus que comme un accident tres
localisé dans la structure de 'onde u, ’accord de phase entre le corpuscule
et 'onde devient, pour ainsi dire, nécessaire et évident.

Dans d’autres exposés, j’ai longuement expliqué la relation étroite
qui existe entre les conceptions qui viennent d’étre exposées et les idées
d’Einstein sur la représentation des corpuscules par des « champs
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a bosse » (l'onde u est, en effet, un champ 4 bosse) et sur le caractére
statistiquement exact, mais fonciérement incomplet, que les théories
physiques actuellement admises nous offrent de la réalité physique.
Je ne veux pas revenir ici sur ces questions, mais je voudrais préciser
davantage la relation qui existe entre I'onde » a4 caractére physique et
londe W usuelle a caractére statistique.

8. La relation entre 'onde W et l'onde ».

La formule du guidage, complétée par P'intervention des pertur-
bations aléatoires d’origine subquantique, conduit a affirmer que la proba-
bilité de présence du corpuscule dans un élément de volume dz de I’espace
physique est proportionnelle 4 |v|? dz, du moins 4 I'approximation de
I'équation de Schrodinger. Mais, comme I'amplitude de » est dans notre
conception une amplitude physique qui a une valeur bien déterminée,
nous n’avons ainsi obtenu qu’une probabilité en valeur relative et non
en valeur absolue, car la probabilité totale de toutes les hypotheéses

possibles ] lv |*dr n’a aucune raison d’étre égale a 1. C’est pour obtenir

une probabilité en valeur absolue qu’on a été amené a introduire la
fonction W' normée qui, 3 mon point de vue, doit donc étre définie par

(17) = Gy,

ou C est un coefficient de normalisation choisi de facon a avoir

/‘\‘l'i‘l(ltzl.

Le point important & noter est que I'introduction du facteur de norma-
lisation C dans (17) enléve en partie a I'onde Y le caractére d’onde
physique que possé¢de I'onde v. Sans doute, I'onde W, étant d’aprés la
définition (17) solution comme v de I'équation linéaire de propagation,
se propage comme une onde physique et parait susceptible de se réfléchir,
de se diffracter et d’interférer. Mais elle ne posséde plus les caractéres
d’additivité et de superposition que possedent les ondes physiques
solutions d’une équation linéaire telles que v.

Considérons, en effet, deux ondes v, et v, et introduisons les fonc-
tions U= Cyv, et W,=C,v. qui leur correspondent. C, et C, seront

définies respectivement par /'C',*’ |v,2dc =1 et par ‘/4C.';’ (v, Pdr =1.

La superposition des ondes physiques v, et v, donne naissance a une
onde v =, v, d’aprés les propriétés des ondes physiques solutions
des équations de propagation linéaires. Or a Ponde de superposition
v=0,+0, nous devons fairc correspondre la fonction W donnée
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par W =Cv avec f(?lv[‘ldf:J‘C‘l]vj—kvmdr:l et il est facile

de voir que cette onde W' n’est pas égale a la somme C,v,+ Cy0, de ¥,
et de W,.

Ainsi, en raison de l'introduction d’un coefficient de normalisation
dans le passage de 'onde v a4 I'onde W, I'onde W ne posséde plus la
propriété d’additivité qui caractérise les ondes physiques solutions
d’équations de propagation linéaires. Ce fait signalé depuis bien longtemps
par M. Dirac ne permet pas de considérer l'onde W' comme une onde
physique. C’est parce que I'onde W possede toutes les propriétés de propa-
gation des ondes physiques, mais ne posséde pas leur propriété d’addi-
tivité, qu'on a continuellement oscillé entre deux hypothéses : consi-
dérer 'onde W comme une véritable onde physique pouvant déterminer
des phénomeénes observables comme la valeur des niveaux d’énergie
quantifiée des atomes, l'apparition des franges d’interférences, etc.,
ou bien considérer I'onde W' comme un simple instrument mathématique
servant & évaluer des probabilités. Mais dans cette seconde hypothése
qui parait étre celle qu’adopte la Mécanique quantique actuelle, il est
impossible de comprendre comment une simple représentation de proba-
bilités peut « provoquer » des phénomenes physiques observables.
Ce mystére auquel on se heurte constamment dans I'interprétation
purement probabiliste, actuellement admise, de la Mécanique ondu-
latoire, est entierement éclairci si ’on distingue, comme nous I’avons fait,
I'onde v réelle de I'onde ¥ fictive.

9. Remarque importante au sujet de la définition de la phase.

Il nous parait important pour éviter toute confusion de bien préciser
le point suivant. Nous sommes amenés 4 définir la phase ¢ de I'onde réelle v

en posant v = aé’ ou a et ¢ sonl des fonctions réelles de z, y, z, L.
Cette phase est aussi, & une constante prés, celle de 'onde ¥ = Cv
et le corpuscule se déplace dans 'onde de telle facon que la phase de
sa vibration interne soit ¢(z, y, z, {) quand il se trouve au point «, y, z
a Yinstant £. Or, et c’est le point sur lequel je veux attirer I'attention,
cette définition est absolument générale, et ne suppose nullement qu’on ait
affaire a une onde monochromalique plane.
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LA MECANIQUE ONDULATOIRE DU PHOTON.

1. Idées et équations de base de la Mécanique ondulatoire du
photon.

A partir de 1934, j’ai développé, sous le nom de Mécanique ondu-
latoire du photon, une théorie qui est, en somme, la théorie générale des
particules de spin 1, mais qui est applicable au photon (cas particulier
des particules de spin 1) si I'on attribue au terme de masse qui figure
dans les équations une valeur extraordinairement petite.

La raison pour laquelle j’avais entrepris ce travail était non seulement
de construire une théorie générale des particules fondée sur la méthode
de « fusion » dont le principe parait aujourd’hui se confirmer, mais aussi
d’obtenir une forme de la théorie de Maxwell qui permette de définir
pour le photon un quadrivecteur densité-flux et un tenseur énergie-
impulsion analogues a4 ceux qu’on peut définir pour les autres particules
dans les diverses formes de la Mécanique ondulatoire. Ainsi le photon
serait tiré de son isolement et réintégré dans un cadre général de Méca-
nique ondulatoire applicable & toutes les particules. En effet, ayant concu
autrefois la Mécanique ondulatoire comme une généralisation natu-
relle de l'idée, introduite par Einstein dans sa théorie des quanta de
lumiére, d’une coexistence des ondes et des corpuscules dans la struc-
ture de la lumiere, je n’ai jamais douté du fait que le photon ne doive
rentrer comme cas particulier dans le cadre d’une représentation géné-
rale des particules par la Mécanique ondulatoire.

J’ai développé la Mécanique ondulatoire du photon & une époque
ou je ne cherchais pas a reprendre la théorie de la double solution, mais
ot je voulais montrer qu'en appliquant a4 la Mécanique ondulatoire
du photon la méthode de seconde quantification, on retrouvait les prin-
cipaux résultats de la théorie quantique des champs dont la vogue,
4 mon avis devenue ensuite trés exagérée, commencait alors a s’affirmer.
Les lecteurs désireux d’approfondir les résultats que j’ai alors obtenus
dans cette direction pourront les trouver dans les deux volumes que j’ai
publiés chez Hermann en rg4o et 1942 sous le titre, Une nouvelle théorie
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de la lumiére et, sous une forme plus condensée, dans 'Ouvrage Méca-
nique ondulaloire du photon et théorie quantique des champs publié chez
Gauthier-Villars en 1949 et réédité en 1957 ('). Mais aujourd’hui mes
préoccupations sont tres différentes car je cherche surtout a introduire
dans la Mécanique ondulatoire du photon les conceptions de la théorie
de la double solution en laissant de coté les lourds formalismes de la
méthode de seconde quantification et de la théorie quantique des champs.
C’est dans cette intention que je vais maintenant donner une vue
sommaire des idées et des équations qui sont a la base de la Méca-
nique ondulatoire du photon.

En 1934, j’ai écrit les équations d’ondes de la particule « photon »
sous la forme suivante : -

— N R
g —_ .I_ {)j = rot ]4:‘ divH = o,
c Jdt )
(1) / "
1 Nk = e o> o
( Z d{ = rOtH -+ /l(-’ A7 dl\']ﬁ :_/‘(_i\’

Les équations (1) ne différent des équations classiques de Maxwel
que par I'adjonction aux équations de la seconde ligne des termes en k:.

La constante k, est définie par la relation k,= %‘uoc en fonction de la

masse propre (4, du photon que, tout en reconnaissant qu’elle doit avoir
une valeur extraordinairement petite (certainement inférieure a 10— g),
je n’ai pas voulu considérer comme rigoureusement nulle.

Des équations (1), on déduit immédiatement la relation de Lorentz
entre les potentiels

()

1 dV e
ZW—O—dl\A:O

et, si 'on admet que toutes les composantes F de champ ou de potentiel
obéissent 4 I'équation de Klein-Gordon :

(3) OF +4&3F =0

comme cela parait naturel, on constate que les équations (1) entrainent
aussi la définition classique des champs a4 partir des potentiels

-
. = 1 JA — = re
(4) E—-——E T — gradV, H =rotA. .

On voit qu’ici 'onde du photon est définie par ’ensemble des compo-
santes de potentiel et de champ. Il n’y a rien 1a qui doive nous étonner

(1) Voir Bibliographie [10] et [11].
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puisque déja dans la théorie de la particule de spin% (électron de

Dirac), la fonction d’onde est définie par quatre composantes W; obéis-
sant a quatre équations aux dérivées partielles simultanées. Ici les
dix grandeurs A, ..., H, obéissent aux 15 équations (1), (2) et (4).
D’ailleurs, si I'on considére, comme nous allons étre amenés a le faire,
les potentiels comme étant des grandeurs physiques, on peut consi-
dérer I'onde du photon comme entierement définie par les quatre gran-
aeurs A,, Ay, A; et V soumis seulement 4 quatre équations indépen-
dantes, celles de la seconde ligne de (1).

Nous remarquerons maintenant qu’il suffit de donner 4 la masse
propre des équations (1) une valeur qui ne soit pas extraordinairement
petite pour obtenir les équations générales de la particule de spin 1
telles qu’elles furent proposées en 1936 par Alexandre Proca. Je n’insis-
terai pas ici sur la facon dont j’avais primitivement obtenu les équations
« maxwelliennes » (1)-(4) par la méthode de fusion : on la trouvera
exposée dans les Ouvrages que j’ai cités plus haut.

Les champs et les potentiels qui figurent dans les équations (1), (2)
et (4) sont des composantes de fonction d’onde et doivent par suite,
nous reviendrons sur ce point, étre considérées comme des grandeurs
complexes. Comme elles doivent avoir les mémes variances relativistes
que les champs et les potentiels réels de la théorie électromagnétique
classique, on peut les écrire sous la forme bien connue en théorie de
la Relativité :

IFy,  dF., JIF
(}wr, -+ Jdxy, + Jdax,

=0

(&, v, g, permutation pairc des nombres 1, 2, 3, §4),

() oF,
W e
dr, K Au,
JA, dAn  JA,
dey =0 W 0n T oy

Remarquons que I’équation (3) applicable aux 10 composantes de
potentiel et de champs montre que ces grandeurs peuvent se propager
en ondes planes monochromatiques de la forme

(o,
a el(kl.[—-—k.r),

les amplitudes a étant reliées entre elles par les équations (1) et les

> . .
grandeurs k et k étant reliées par la relation

>
(6) k= ’ k
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Comme on doit poser

> I
(H) k= —~ —, k =

/

> I
P kO:ﬁHOQ

S
)
St

on voit que la relation (6) n’est pas autre chose que la relation rela-
tiviste bien connue
W2

— 2 2 a2
& =P mic

(8)

entre I’énergie, la quantité de mouvement et la masse propre d’une
particule libre.

Si uj était nulle ou négligeable, on aurait OF = o, k= |I<> l et la
propagation des ondes s’effectuerait toujours exactement avec la
vitesse ¢ : on voit ainsi que ce cas limite correspond bien & la théorie
électromagnétique classique.

2. Réalité physique des potentiels.

Les termes en k; dans les équations du paragraphe 1 étant par hypo-
thése presque négligeables, on peut sensiblement confondre ces équations
avec celles de Maxwell, du moins quand il n’est pas question d’ondes
longitudinales, et c’est ce que nous ferons souvent dans ce qui suit.
Quel intérét y a-t-il alors a attribuer a la masse propre p, une valeur
extraordinairement petite plutét qu'une valeur rigoureusement nulle ?
L’intérét de cette hypothése vient non seulement de ce qu’elle permet
de définir pour le photon, comme cela a lieu pour toutes les autres
particules, un courant densité-flux, mais aussi de ce qu’elle oblige a attri-
buer aux potentiels électromagnétiques le caractére de réalités physiques
contrairement a une sorte de dogme qui s’est introduit dans la Physique
théorique contemporaine sous le nom d’invariance de jauge.

On a prétendu justifier 'hypothése de I'invariance de jauge en affir-
mant que seuls les champs électromagnétiques produisent des effets
observables et peuvent étre considérés comme des réalités physiques.
Les potentiels ne seraient alors que des intermédiaires de calcul servant
a calculer les champs et ’on remarque que les formules (4) ne permettent
de déterminer les potentiels qu'au gradient prés d’une fonction arbi-
traire d’espace-temps. Mais, dés I'instant olt I’on remplace les équations
de Maxwell par les équations (1) ou figure un terme de masse propre
aussi pelit qu'on veuf, on est forcé de considérer les potentiels comme
des grandeurs physiques ayant une valeur bien déterminée et, par suite,
d’abandonner l'invariance de jauge.

Or, a I'heure actuelle, non seulement il commence a y avoir d’assez
nettes indications en faveur d’'une masse propre non nulle du photon,
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mais en plus il semble que nous possédions une preuve expérimentale
du fait que les potentiels ont le caractéere d’'une grandeur physique,
Cette preuve me parait avoir été apportée par les expériences de
M. Boersch et de ses collaborateurs faisant suite & un important travail
théorique de MM. Aharonov et Bohm (*). Sans vouloir discuter ici cette
question d’une fagon trés approfondie, je voudrais en donner un rapide
résumé.

L’expérience suggérée par Aharonov et Bohm et réalisée ensuite par
Boersch et ses collaborateurs peut étre schématisée comme il suit. Une
onde électronique arrive au point A ol elle se partage en deux pinceaux
qui, aprés avoir suivi des trajets distincts 1 et 2, viennent se croiser
en B et y interférer.

)
—_—
7
Fig. 1.

Si sur les trajets 1 et 2 il n’y a ni potentiels, ni champs, les inter-
férences en B seront déterminées par la différence de phase

5?1=f;1 d;—f;zd?z
1 2

> >
Mais si sur les trajets 1 et 2 il existe des potentiels vecteurs A, et A,,
mais pas de champs, les interférences en B dépendent de la différence

N N N rer N o
de phase d¢,-+ 39, avec ocpg=—~s< fA1ds,—~fA2dsg>. Or Boerscha
"N 2
constaté que les interférences sont bien modifiées de cette facon, ce qui

I
montre que les potentiels A, et A,, méme en I'absence de champs, influent
sur les interférences et produisent ainsi un effet physique expérimen-
talement observable.

Certains partisans de l'invariance de jauge, ont fait remarquer que

- -
si 'on ajoute aux potentiels A; et A, le gradient d’une fonction arbi-
traire F(z, y, z), rien n’est changé aux interférences. En effet, la diffé-

. . T — >
rence de phase supplémentaire Jdg¢;= f gradFds,— f gradFds, est
1 i
nulle puisque

— > o >
fgradF ds1=fgradFds2=F(B)—F(A).
1 2

(*) Bibliographie [12] et [13].
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On en conclut, ce qui est exact, que I'observation des interférences ne

permet de déterminer K1 et K qu’'a un gradient arbitraire prés et ceci
parait sauvegarder l'invariance de jauge. Mais, si j’admets trés bien
cette conclusion, je ne puis pas croire qu'une grandeur qui influe sur
un phénoméne physique observable n’ait pas une valeur bien déter-
minée et cela méme si le phénomene en question ne permet pas de
déduire exactement cette valeur.

On peut d’ailleurs remarquer que, dans fout phénoméne d’interférences,
on pourrait ajouter aux phases des ondes qui interférent le gradient
d’'une fonction arbitraire sans que la prévision du phénoméne en soit
modifiée. Or je ne pense pas qu'il soit jamais venu & 'idée d'un physi-
cien que la phase d’une onde lumineuse soit ainsi indéterminée et d’ailleurs
dans le cas des ondes hertziennes dont la nature est identique a celle de
la lumiere et avec lesquelles on peut aussi obtenir des phénomeénes d’inter-
férences, il parait certain que la phase de 'onde, déterminée par celle
d’un courant alternatif dans une antenne d’émission, a une valeur bien
déterminée.

Je pense donc que l'expérience de Boersch est, quoiqu’on en dise,
trés démonstrative et qu’elle justifie Paffirmation que les potentiels
électromagnétiques solent de véritables grandeurs physiques a valeur
définie. S’il en est bien ainsi, il en résulte, a I'opposé de ce qu’affirment
les partisans de I'invariance de jauge, que les potentiels sont les gran-
deurs fondamentales dont tout le champ électromagnétique dérive et
qu’on pourrait développer la théorie électromagnétique en n’introduisant
que les potentiels comme nous 'avions indiqué plus haut.

En ce qui concerne certaines objections qu’on pourrait faire a I'hypo-
thése u,= o, je renvoie & mes Ouvrages antérieurs (').

3. Les grandeurs corpusculaires attachées au photon.

Pour les particules de spin o dont I'équation d’ondes est celle de
Klein-Gordon et pour les particules de spin I) dont les équations d’onde

sont celles de Dirac, on sait qu’il est possible de former un quadrivecteur
densité-flux (avec o,=p, 0,=0v,, ...). Ce quadrivecteur correspond
a l'aspect corpusculaire de la particule et nous avons vu comment,
en utilisant I'image hydrodynamique de Madelung, on pouvait se servir
de ce quadrivecteur pour définir le « guidage » de la particule et préciser
ainsi son aspect de corpuscule en mouvement.

Or, dans-la théorie électromagnétique, si 'on veut n’accorder aucune
réalité physique aux potentiels, on ne peut pas définir de quadrivecteur

(1) Voir [11], chapitre V.
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densité-flux et cela semble interdire de préciser 1’aspect corpusculaire
du photon. En effet, on ne dispose alors comme grandeurs ayant un sens
physique que des six composantes du tenseur de champ Fu,, qui est
antisymétrique de rang 2 et dont les six composantes distinctes sont
celles du champ électrique et du champ magnétique, et a P'aide d’un
tenseur de rang 2 on ne peut former par contraction et multiplication
que des tenseurs de rang pair : il est donc impossible de faire apparaitre
ainsi un quadrivecteur de rang 1. Il en est, différemment si I'on admet
que les potentiels ont un sens physique car on dispose alors non seule-
ment du tenseur F,, de rang 2 mais du quadrivecteur potentiel A,
de rang 1, et il devient facile, par exemple par la simple opération de
contraction Ay F,,, de former un quadrivecteur densité-flux qui permettra
de préciser I'aspect corpusculaire du photon et de définir son guidage
par I'onde électromagnétique.

Pour obtenir des champs et des potentiels complexes de mes équations
maxwelliennes un quadrivecteur densité-flux j, réel, j’ai été amené
a définir celui-ci par la formule

. 2 . «
(9) Jv= g (ApFu—Fo, A,

ce qui permet d’écrire les composantes de ce quadrivecteur sous la forme

hm o= LG @R

(10) .
Jk=pvi= iL ’_(:(*Aﬁ»(—f— <ﬁ*/\b§>k+ VE;— VE;] (k=1, 2, 3).

On vérifie d’ailleurs aisément 4 'aide des équations (1) et de formules
bien connues du cal¢ul vectoriel qu'on a

. ago .
(11) == 4+ divg

La densité p(x, y, z, {) définit la probabilité de présence du photon

au point x, y, z a instant {, tandis que la formule v; = €7 Jéfinit A Paide

des grandeurs électromagnétiques le guidage du photon par le champ
électromagnétique. On peut donc ainsi arriver a retrouver pour le photon
une théorie du guidage analogue a celle qui est valable pour les autres
corpuscules et a4 bien voir que la coexistence des photons et des ondes
électromagnétiques n’est pas d’une nature différente de celle qui existe
pour les autres particules, par exemple pour les électrons. J’ai déja dit
que jen ai toujours été persuadé parce que la Mécanique ondulatoire
est la fille de la théorie des quanta de lumiére d’Einstein.

L. DE BROGLIE. 2
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On peut également définir pour le photon un tenseur réel jouant le
role de tenseur énergie-quantité de mouvement Ty, en employant la
formule tensorielle

) I . . — % 7
(12) w= 5| Fue gz, A Ta —+ conj. (wy, v=1, 2, 3, 4).

5

Le tenseur ainsi défini n’est pas symétrique, ce qui correspond au fait
que, dans la théorie d'une particule douée de spin comme le photon,
la vitesse n’est pas colinéaire de la quantité de mouvement : ce fait
est bien connu et a été bien étudié en théorie de Dirac, notamment
par M. Costa de Beauregard. )

Pour une onde monochromatique ot toutes les grandeurs dépendent
du temps par 'exponentielle 27/, on a

. amivli > Zor o et e
(13) Ti= == [h.A—A.L]._ﬂ\\[L.A—A X,
d’ott pour la densité d’énergie w =—T,, :

(14) w=—T,=pW

comme cela devait étre.
On peut vérifier que les équations de conservation de I'énergie et de
la quantité de mouvement

Iy _

().I}p‘

(15) 0 (v=1,2,3,4)
sont bien vérifiées. Elles résultent d’ailleurs facilement du schéma
lagrangien général dans lequel on peut faire rentrer la théorie (').
J'avais aussi introduit en Mécanique ondulatoire du photon un
deuxiéme tenseur énergie-quantité de mouvement 0Ny, qui, lui, est
symétrique. Les expressions des composantes de ce deuxiéme tenseur
sont données dans mes Ouvrages précédemment cités. Je me contenterai
d’écrire la suivante :

(16) My B [H k3 ([ AR+ |V

Pour une onde plane monochromatique, les deux tenseurs T et on
coincident et 'on a T,,= 91,.. Pour une superposition d’ondes planes
monochromatiques (ce qui exclut le cas des champs électromagnétiques
qui entourent une charge électrique et, en particulier, celui du champ
coulombien), les tenseurs T et OT sont seulement intégralement équi-
valents, ce qui veut dire qu'on a

(17) fT},, d= =j My ds.

(!) Voir Bibliographie [11].
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La formule (16) montre (surtout quand on néglige le terme en k3)
la parenté du tenseur OWly, avec le tenseur classique de Maxwell My..
Cependant ils ne sont pas identiques car les 01y, sont formés avec les
grandeurs réelles de la théorie de Maxwell tandis que les My, sont
formées a V'aide des grandeurs complexes de la Mécanique ondulatoire
du photon. L’étude des relations entre les trois tenseurs Ty, o1, et M,
est trés intéressante, mais nous ne l’aborderons pas ici. Mais seul le
tenseur T,, traduit, d’une fagon générale, V'aspect corpusculaire du
photon,

Pour étre complet, je mentionnerai encore qu'on peut en Mécanique
ondulatoire du photon, comme dans la théorie de l'électron de Dirac,
définir un pseudo-quadrivecteur dont les trois composantes d’espace

forment un vecteur ¢ définissant la densité de spin. L’expression de ce
vecteur est

O o > >
(18) a:E[E*/\A—A*/\Eq—\'*H—L\H*].

4. Etude des ondes planes monochromatiques.

Dans toutes les formes de la Mécanique ondulatoire 'étude des ondes
planes monochromatiques est particuliérement importante parce que
ces ondes (qui en toute rigueur ne sont jamais réalisées) correspondent
aux mouvements rectilignes et uniformes.

Nous allons poser par abréviation :
ket — B0
{(19) P = ez(luz—k./ >’

ou k, ket k, sont définies par les formules (7) et satisfont & la rela-

tion (6). Pour une valeur donnée de k et de k, nous trouvons trois solu-
tions indépendantes des équations (1), @, ¢ et £ qui sont :

>
Ao— idy= P, Bae iEy=— kP, Ho— i, =—i|}|C,P,
@R Ap+iAy=o. E,+iEy=o, H,+ (Hy=o,
V=o,
Ap—(Ay=o0, Ey—iEy=o, Hy—iHy=o,
cl %
G4 Ap+iAy=CsP, E,+(Ey=—ikCP, Hp+ L'H}-=——l'l/( l Ca P,
V=o;
>
|7

. . k2
el A=GP, V=0, P, E.=—iCP,

k

Toutes les autres grandeurs nulles,

Ci, Gy et C; étant des constantes indépendantes.
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Le sens de ces ondes électromagnétiques est le suivant :

1°© @ est une onde transversale circulaire droite;
20 ¢ est une onde transversale circulaire gauche;
30 £ est une onde longitudinale.

k, étant extrémement petit, 'onde £ comporte un champ électrique
longitudinal E, extrémement petit tandis que les potentiels A. et V
sont presque égaux. Si k, était nul, E; serait nulle et I'onde se réduirait
aux deux potentiels égaux A. et V : cette onde de potentiel est bien
connue dans la théorie classique de Maxwell, mais quand on admet
Iinvariance de jauge, elle doit étre considérée comme inexistante puisque
les potentiels n’ont pas alors de réalité physique.

Il est facile de voir que les ondes @, ¢ et £ correspondent aux trois
valeurs possibles du spin dans la direction de propagation. Le photon

étant une particule de spin ;/L: » la composante du spin le long de Oz

peut avoir I'une des trois valeurs -+ »!i_ et o. D’aprés la formule (18),

la composante o, de la densité de spin a pour valeur

(20) ;= g[E;A,_ Ef A, ~+ V*H,] + conj.

I . . ) ok N
= 57’0”Ex+ TE)" (Ag+dA)) — (Ex—tEp)* (A —1A,)]

car H, est toujours nul. Cette expression de o, montre immédiatement :
1° que o, est nul pour les ondes £°; 2° que o, est négatif pour les ondes @
et positif pour les ondes §. Nous en concluons que 1'onde longitudinale £
correspond 4 une composante z du spin qui est nulle tandis que I'onde

. . - o, . h
circulaire gauche ¢ a une composante z de spin égale a - .~ et que

l'onde circulaire droite @ a une composante z de spin égale a —ilir
Ces résultats établissent une relation trés satisfaisante entre 1’état de
polarisation et la valeur du spin.

Nous pouvons aussi calculer a partir des formules (g) et (10) I'expression

de la densité p et du flux 93 pour les ondes @, G et £. L’expression (g)
de p peut s’écrire

2

(21) 6= %c[‘g (Ager i Ay)* (Bt 71y)

+ (Ap— iAy)* (BEp—iEy) | + A Ez} -+ conj.,
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ce qui nous donne :

[ , 2k s
pour Ponde @ : ¢ = H[ 112,
2k
(r)')) » » 9 Iop= 7[7 G 127
» » 2 o= %C k;flc}sz

De méme, on trouve d’aprés ’expression générale (10) des j; pour les
trois types d’ondes @, ¢ et £ :

(23) Jr=Jy=0, Ji=pc k =5y =¢v

car, en Mécanique ondulatoire relativiste, la vitesse v d’un corpuscule

porté par une onde plane monochromatique est v = {)\i, Le vecteur

flux de composantes j., j,, j- correspond donc bien au flux d’un fluide
fictif de densité » s’écoulant avec la vitesse v dans la direction z comme
on devait s’y attendre

Naturellement, par une superposition convenable des ondes circu-
laire droite et circulaire gauche @ et ¢, on peut obtenir les ondes recti-
lignement polarisées a angle droit :

1 >
o A= (G G P, Eam— iR(Cy G P, Hym— | £ (Gt G Py
(21 ¢ :

| A =GPy By m— k(G G P, I=— | 7] (C— Gy P,

ou les constantes C;+4 C. et C,— C, sont indépendantes et I'on pourrait
reprendre pour ces ondes des’calculs analogues a ceux qui viennent d’étre
faits pour les ondes circulaires.

Il est important de remarquer que les formules obtenues sont infi-
niment voisines de celles que fournirait la théorie de Maxwell classique
en raison de la petitesse de k, et coincideraient avec elles si k, était nul.
Notre théorie, tout en permettant d’introduire des idées nouvelles, reste
infiniment voisine de celle de Maxwell.

5. Définition des champs classiques et des champs complémen-
taires.

Les dix grandeurs électromagnétiques, composantes des potentiels et
des champs, qui figurent dans nos équations (1), doivent étre consi-
dérées comme essentiellement complexes comme le sont toutes les
fonctions d’onde de la Mécanique ondulatoire. Nous verrons au chapitre
suivant qu’elles doivent étre considérées comme définissant 1’onde de
base v des photons.
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Comme toute grandeur complexe, 'une quelconque F des dix gran-
deurs complexes électromagnétiques peut étre décomposée en deux
grandeurs réelles a et ¢ ou F, et F, par les formules

(25) F=ae?® F=F +iF,.

La premiére formule (25) définit 'amplitude a et la phase ¢ de F,
la seconde définit la partie réelle R(F)=1F, et la partie imagi-
naire J (F) = F, de la grandeur F.

Des raisons qu’'on trouvera exposées dans mes anciens livres sur la
théorie du photon m’avaient conduit a penser qu’a la grandeur complexe F,
on devait faire correspondre la grandeur F - F* pour représenter 'action
des photons sur la matiére électrisée. En m’inspirant de cette idée,
mais en adoptant une définition légérement différente qui me parait
préférable, j’admettrai ici que les grandeurs électromagnétiques clas-
siques, solutions réelles des équations (1), qui correspondent a I'onde
de base v des photons doivent étre assimilées aux grandeurs R(F) = F,.
Cette hypothése jette un pont entre la théorie classique qui utilise
toujours des grandeurs réelles et la Mécanique ondulatoire du photon
qui utilise des fonctions d’onde complexes.

Mais, si les véritables grandeurs fondamentales définissant l'onde »
du photon sont les grandeurs F complexes, on doit penser que leur partie
imaginaire J (F) = F, doit aussi avoir une signification et un role a jouer.
Nous nommerons cette grandeur, qui n’intervient pas dans la théorie
classique, le champ (ou le potentiel) « complémentaire ». Nous tenterons
au chapitre IV de préciser la signification du champ complémentaire.

En Electrotechnique et en Optique classique, on effectue trés souvent
les calculs en remplacant les grandeurs électromagnétiques réelles par les
quantités complexes dont elles sont la partie réelle. Mais il semble que,
dans V’esprit de ceux qui emploient ce mode de calcul, il ne soit qu'un
artifice commode et que seule la partie réelle des grandeurs complexes
utilisées ait une existence physique. Néanmoins certains auteurs semblent
attribuer un certain caractére de réalité physique aux grandeurs complexes
qu’ils emploient, ce qui implique I'intervention du champ complémentaire
défini ci-dessus ('). Il semble donc que 'emploi et la signification physique
des grandeurs électromagnétiques complexes soient déja suggérées par
certaines méthodes usuelles en Physique classique. Mais. dans notre
théorie qui identifie le champ électromagnétique a I'onde » de la théorie
de la double solution pour les photons, les potentiels et les champs sont
essentiellement complexes et la signification du champ complémentaire
devient importante a préciser.

() Voir par exemple dans le livre de MM. Maréchal et Frangon [14] emploi de
la notion d’hélicité.
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6. La décomposition de Gordon et la Dynamique du guidage.

Nous allons maintenant donner un exposé d’ensemble de la Dynamique

du guidage pour les particules de spin o, ; et 1 en unité ZI:_
19 Particule de spin o (équation de Klein-Gordon). — La quantité de

mouvement est alors définie par

(2()) ])EL=—~()9,’~?,

i
. i -
avec W =aqae" et I'on peut aussi écrire

(27) pp= Mycuy=—d,9,

5 - a .
avec Mc*= \/ m; ¢t ﬁ-c-g’r- La Dynamique du corpuscule est alors

définie par 1’équation

1 /
(28) (_(1% = % (Mocuy) = wdy (Mg euy)

= wdy (Mycuy) +uv[dy, (Mycuy) — dy (Mycuy) |
Le dernier terme est nul car le crochet est égal,
Oy pu—dypyv=—200p9 +dydy,9 = o.

Or, on a wu,=—1 et par suite wdu.(M,cu,) =— du(M,c) et I'équa-
tion (28) devient

d da
(29) 7 (Mycwy) = - pp=— dyu(Moc)
qui, 4 Papproximation newtonienne, donne avec Q = M,¢c>*—m,¢? :
— —
(30) %(Moﬁ)z—grad(Mocﬂ) = — grad Q,

Q étant le potentiel quantique. En Thermodynamique cachée des
particules, un état du corpuscule oi la masse propre variable est M,
M‘i (voir [6], p. 94). Or pour une
myc?

onde plane monochromatique on vérifie que M,=m, et que, par suite,
I'onde plane monochromatique (ou les trains d’ondes qui lui sont assi-
milables) est un état d’entropie maximale.

correspond 4 lentropie S=S,—k
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20 Particule de spin ; (équations de Dirac) (). — Nous poserons

i
. = Tk . -
Wi=are" avec k=1, 2,3, 4. La décomposition de Gordon nous
donne :

(31) Jo=poup =il ji’,
avec
4 1) I Z 2 1 950
' _e— ——— @; Tpl) — — oLl
\/” mye KPR T ETTD
k
(32) y
) AN .
//{IJZ m}_")v(“LLYpY‘/akN
| k

avec

N
Z Ay Ay Prdg
-
y Q)= Z.a,‘\_ak.

k
3
Y aja 4
-
*

T — * ) " —
ap= a;y, A5 =

Les deux invariants de la théorie de Dirac sont

Y &l
(33) Q, :}d aga, Q, =Zaz Y avec Y;= " Y2 s Yo
k k

et les formules de Pauli-Kofink donnent
(34) so=—J¥ju= Qi+ Q5.

On est ainsi amené a définir la masse propre variable M, par la formule
- m Q3
(3f)> My= “;:p" :Illo\/l—Q— —5

=1

de sorte que M, a sa valeur minimale M, = m, pour I'onde plane mono-
chromatique et que celle-ci correspond encore & un maximum de
Ientropie.

Pour la quantité de mouvement de guidage, on trouve alors

(36) Pu= Mycuy, = Mye pr =—dyo -+ Iy,
en posant

D ACLRY
(37) P, = %,ﬁnu 2 o

(1) Voir |1], p. 198 et suiv.
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Si la particule est soumise 4 un champ électromagnétique extérieur,
il faut ajouter a 'expression un terme dépendant des potentiels électro-
magnétiques. On retrouve aisément 'équation (28) oi, pour la méme
raison que précédemment, le premier terme du dernier membre est
égal & — Ju(M,c), mais ici le terme entre crochets n’est pas nul et il reste

; 1 {
(38) imz % (Mycuy) =— dy (Moc) + w?[dypy— dupy].

30 Cas du photon et des particules de spin 1 (équations maxwelliennes). —
En Mécanique ondulatoire de photon, on utilise le quadrivecteur complexe
« potentiel électromagnétique » Ay et le tenseur antisymétrique complexe
de rang 2 « champ électromagnétique » qui satisfont aux équations

(39) Fuv=0yAy—duAy;  duAp=o0

. X ,
et il est naturel de poser Ay=aye’ = avec ay et ¢, réels. On admet
alors pour le quadrivecteur courant-densité la définition

(40) Jv=rpou,= 7;7: (Aw Fuv— conj.) = é [Aw (‘)VA&L’_ ‘)H Ay) —conj. ],

ol u, est le quadrivecteur « vitesse d’univers » de la particule et ol p,
est-la densité propre.

Posons

—
2 atd,onay

ua

(fn) [ar=Yatas=| A=V} A S

|z

[

Nous voyons que d.¢ est la valeur moyenne de o, ¢, prises sur les

quatre composantes du potentiel avec les poids a*a. alors que le J, ¢
de la formule (36) était la valeur moyenne de J,9; prise sur les quatre
composantes du " de Dirac avec les poids aj a;.

Dans la formule (40), les termes ﬁi.c[A&’-*dvA.r,,——conj.] nous donnent
2 [ e |2

e J,o. D’autre part, en vertu de la seconde équation (3g),

(@v— W)

on peut remplacer A**0d A, par dyu(A¥A,) = ()El<apL a, e et I'on

obtient finalement

2] al?

2 ) L S — %y
— —+ s—=dy [a, ay sin ———— |+
lize Tie %7 7

Le premier terme de (42) correspond au premier terme de la décom-
position de Gordon (32) pour I’électron avec substitution de l'inva-
riant |a|* a l'invariant =W, Le second terme de (42) est un terme

(/|'!) Jv= oty = —
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de spin qui correspond au second terme de la décomposition (32) de
Gordon pour I'électron. La vitesse u, définit dans le cas du photon le
guidage de celui-ci par I'onde électromagnétique.
En adoptant I'expression (40) de j,, on est conduit 4 définir la masse
propre variable du photon par la formule
% oy Ti2gy

(43) Mo = alall  7AVA,

qui, pour une onde plane monochromatique, se réduit a la trés petite
masse propre M, que j’attribue au photon. On trouve alors pour la compo-
sante M,cu, de quadrivecteur impulsion-énergie :

—_— 7i L Fu— Py
(44) pv=Mycu,=—d, o+ W n [a,ua\, sin ——— J .

Ici encore nous pouvons écrire I’équation (28) qui nous fournira comme
équation de la Dynamique du guidage pour le photon :

)] ((i—i (Mocuy) =—d, (Moc) + ur{dy (Mycw,) — oy (Mycwy) |,

équation dans laquelle les valeurs de M, et de p, = M, cu, sont définies par
les équations (43) et (44) en fonction des grandeurs électromagnétiques.

Dans le cas de la particule de spin é, nous avions obtenu la formule (35)

qui montrait immédiatement que I'entropie de l'onde plane mono-
chromatique est maximale. Cherchons a établir pour le photon une
formule analogue a (35). Pour cela, posons

(46) po= v/ Qi+ 03,

avec

2 2 X .
9 =— LA, v =R (A p— V],

£, étant un autre invariant que nous expliciterons plus loin. Il vient
alors, d’aprés (43) et (46) :

-

)
)

21y 1
e —:110\/14—

2 Q,

bl

L

/L J—
(47) M, = LT V07 + 03

Py

formule semblable & la formule (35) pour I’électron, mais avec des valeurs
différentes de 2, et £,.
L’invariant £, est défini a I'aide de @, et de la valeur (42) de j, par

(48) Q=—jvjy— Qi =pf— Qi

s
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Or, pour une onde plane monochromatique, on trouve

2| @ 2ue

(49) po=——— = o | A= V]

et, par suite, 2, = o. Dans ce cas, d’aprés (47), M, prend la valeur mini-
male 4, et la définition de I'entropie dans la Thermodynamique cachée
des particules montre que les ondes planes monochromatiques (ou plutot
les groupes d'ondes qui leur sont assimilables) correspondent a4 un
maximum de I'entropie.

La Dynamique du guidage du photon mériterait certainement d’étre
davantage développée (').

(*) La théorie que nous venons de développer dans ce chapitre s’applique unique-
ment aux photons dans le vide ou dans les milienx matériels de propriétés optiques
assimilables a celles du vide. Pour des milieux matériels réfringents ou dispersifs,
1a théorie devrait étre reprise et généralisée. Voir a ce sujet [26].



CHAPITRE 1I.

INTERPRETATION DU CHAMP ELECTROMAGNETIQUE
EN THEORIE DE LA DOUBLE SOLUTION.

1. L’onde de base v qui porte les photons est une trés faible onde
électromagnétique du type classique.

Dans ce chapitre, nous allons exposer des questions que nous consi-
dérons comme trés importantes pour la théorie que nous développons.

Quand on veut appliquer les conceptions de la théorie de la double

-solution au probleme des photons, il est tout naturel de supposer que

les équations maxwelliennes du chapitre précédent, qui méme en suppo-
sant w,72 o différent infiniment peu des équations de Maxwell, défi-
nissent les ondes de base du type v qui portent les photons. Cest 1a
unc idée dont nous allons voir s’aflirmer progressivement I'importance
dans tout ce qui suit.

Comme I'onde v est, nous I’avons dit, une onde & caractére physique
d’'une trés faible amplitude, nous en arrivons & la conception que le
photon est une trés petite région de tres haute concentration du champ
incorporée a une trés faible onde électromagnétique du type classique,
qui est guidée dans son mouvement par la propagation de cette onde.
Présentée de cette facon, cette conception parait trés analogue a celle
qu’Einstein lui-méme avait envisagée a ’époque oi1, en 1905, il avait
introduit le premier I'idée d’une coexistence des ondes et des corpuscules
dans les rayonnements. Il disait, en effet, que I'onde lumineuse est une
sorte d’onde « fantdme » qui ne peut pas agir sensiblement sur la matiere,
mais qui transporte et qui guide les quanta de lumiere (c’est-a-dire les
photons) qui, eux, peuvent agir sur la matiére. Bien slir, pour nous,
londe électromagnétique de base n’est pas un fantéme, mais une onde
physique réelle de trés faible amplitude, mais I'analogie des deux
conceptions est évidente.

Chose curieuse, ce sont des réflexions sur I'emploi des procédés d’apo-
disation pour améliorer la qualité des images optiques qui m’ont amené
récemment & penser que l'onde v du photon doit bien étre assimilée
a une trés faible onde électromagnétique. Je vais exposer mon raison-
nement qui me parait d’une grande portée.
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Les physiciens qui cherchent a obtenir de bonnes images lumineuses
des objets qu’ils étudient sont génés par les effets de diffraction qui
interviennent dans tous les instruments d’optique car ces effets ont
pour conséquence de disperser la lumiére autour de I'image prévue par
Loptique géométrique. Pour cette raison, ils ont cherché a éliminer
ou du moins 4 diminuer cette sorte de « pied » que présente la courbe
de répartition des intensités autour de I'image de fagon a obtenir, par un
procédé dit d’apodisation, une répartition plus concentrée des inten-
sités lumineuses et, par suite, une image plus nette.

Sans entrer dans la théorie générale dont on trouvera un résumé
trés clair dans le Traité d’Optique de Bruhat réédité par M. Kastler (%),

Lumiere incidenfe -

Fig. .

nous voulons rappeler le principe de la méthode d’apodisation. Consi-
dérons un instrument d’optique comportant une ouverture, par exemple
de forme circulaire. Sans apodisation, la lumiére incidente aura la méme
intensité sur toute ’ouverture et le principe d’Huygens joint a la formule
d’inversion de Fourier permet de calculer la forme de I'image avec son
pied génant. Mais placons sur 'ouverture du coté de P'onde incidente
une lame absorbante d’épaisseur variable, par exemple plus épaisse
sur les bords qu’au milieu.

Alors, sur l'ouverture, 'intensité lumineuse ne sera plus uniforme :
elle sera plus grande au centre que sur les bords. Dans ces conditions,
la théorie indique et V'expérience vérifie que la figure de diffraction
peut se trouver resserrée et qu'on peut ainsi obtenir une image améliorée
par apodisation.

Or, il parait certain (I'expérience serait sans doute facile a faire) que
I'image apodisée serait obtenue sans modification si, au lieu d’utiliser
une source de lumiére intense, on employait, comme dans les célebres

(*) Masson, Paris, 1954, p. 242 et suiv.
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expériences d’interférences de Taylor dont nous reparlerons au chapitre V,
une source trés faible, si faible que les photons avec leurs trains d’ondes
individuels n’arriveraient que un par un sur 'ouverture de l'appareil.
Réfléchissons alors sur ce qui se passerait. Tous les photons qui passe-
raient dans 'ouverture et iraient contribuer a former I'image auraient
traversé la lame absorbante (ceux qui ont été absorbés dans cette lame
ne nous intéressent pas) et cependant ces photons qui n’ont pas subi
Iabsorption « photonique » discontinue dans la lame ne se répartissent
plus de la méme facon dans le plan image qu’en l'absence d’apodi-
sation. Cela parait bien nous imposer d’admettre que « quelque chose »
qui accompagne le photon et qui influe sur son mouvement a été absorbée
dans la lame par un processus continu ef non pas par Uabsorption phoio-
nique seule prise en considération dans les théories actuelles. Or ce « quelque
chose » ne peut guére étre que le train d’ondes v qui porte et guide le
photon et I'absorption non photonique de ce train d’ondes dans la lame
absorbante a le caractére continu de I'absorption classique des ondes
électromagnétiques. I1 y a la, me semble-t-il, un trés fort argument
en faveur de I'idée qu’en théorie de la double solution, I'onde v qui porte
et guide le photon doit étre une onde électromagnétique du type clas-
sique, mais d'une trés faible amplitude.

On pourrait trouver d’autres preuves du méme genre. J'ai, en parti-
culier, étudié récemment a ce point de vue la théorie de la largeur des
raies spectrales. Avec les idées actuellement admises, cette théorie se
présente sous une forme trés paradoxale car elle aboutit a affirmer que
la largeur d’une raie spectrale résultant d’une certaine transition quan-
tique, largeur spectrale expérimentalement observable, est déterminée
par la probabilité des autres transitions quantiques qui auraient aussi pu
se produire, mais qui ne se sont pas produites. A mon avis, une telle
conclusion n’est pas admissible. Pour cette raison, j’ai esquissé une
théorie de la largeur des raies spectrales qui, en admettant les idées
de MM. Lochak et Andrade e Silva sur le caractere de processus brusque
et non linéaire des transitions quantiques, suppose qu’il existe un état
de I'atome précurseur de I’émission qui déterminerait la largeur spectrale
des raies pouvant ensuite étre émises et donnerait une explication de
cette largeur échappant au paradoxe indiqué ci-dessus. Comme cette
théorie, qui n’est qu’esquissée, serait assez longue a développer, je ne
Iexposerai pas ici et je me contenterai de dire quelle m’a semblé
fournir de nouvelles raisons pour assimiler l'onde v des photons & une
trés faible onde électromagnétique. Je crois d’ailleurs que le raison-
nement sur I'apodisation suffit a lui seul a rendre cette hypothése trés
vraisemblable. Aussi I’admettrai-je désormais.

Cette conception de 'onde porteuse d’'un photon conduit a penser
que, sila presque totalité de I’énergie du train d’ondes électromagnétiques
est certainement concentrée a Yintérieur du photon, il est néanmoins
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possible qu’une tres petite fraction de cette énergie soit répartie dans
toute I’étendue de I'onde de base. L’absorption de I'onde de base par
passage a travers un corps absorbant pourrait se traduire par une dimi-
nution de la fréquence du photon qui a traversé ’absorbant : ce phéno-
mene pourrait se produire, soit par le processus discontinu que j’ai envi-
sagé ailleurs ('), soit parce qu’un effet de non-linéarité créerait une relation
entre 'amplitude de 'onde u et sa fréquence. Il serait bien intéressant
d’examiner expérimentalement si des photons qui ont réussi a traverser
un milieu trés absorbant n’ont pas subi une trés légére diminution de
fréquence. Il y auraif la un effet entiérement nouveau, tout & fait inconnu
des théories actuelles. Si cet effet existe vraiment, peut-étre permet-
trait-il d’expliquer le déplacement vers le rouge de la fréquence des
photons nous parvenant des nébuleuses trés lointaines sans avoir recours
a ’hypothése de I'expansion de l'univers.

2. Le transport des photons par les ondes électromagnétiques
du type v.

L’idée essentielle qui s’est dégagée des considérations exposées au
paragraphe précédent, c’est que le photon doit, si 'on adopte le point
de vue de la théorie de la double solution, étre considéré comme une
région de haute concentration du champ qui est implantée sur une
onde électromagnétique de base de trés faible amplitude, trés approxi-
mativement solution des équations de Maxwell. D’autre part, I'intro-
duction des potentiels comme grandeurs physiques au méme titre que
les champs nous a permis, au chapitre précédent, de définir un quadri-

vecteur densité-flux donné par les expressions (g) et (10) de o et de 917.
La trajectoire suivie par le photon au sein de l'onde est déterminée

par la loi du guidage & partir de ¢ et de 917 conformément 4 nos conceptions
générales. Le photon reste en accord de phase, en « cohérence » avec son
onde, idée qu’'on peut préciser en disant que la structure interne du
photon doit faire intervenir des grandeurs électromagnétiques F qui
sont proportionnelles aux grandeurs F de I'onde de base a I'endroit
ou il se trouve, mais qui ont une amplitude beaucoup plus grande.

Considérons, par exemple, le champ électrique complexe E de I'onde
de base. Nous avons vu qu’a ce champ électrique complexe, nous devons
faire correspondre le champ classique défini par la partie réelle E, de E.
Le champ électrique interne réel du photon devra étre de la forme CE,
avec C tres grand. Si l'onde est plane monochromatique (ce qui n’est

>
Jamais rigoureusement exact), E, est représenté par une fonction sinu-

(\) Bibliographie [4].
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soidale acoszn(ui—';) et le photon peut étre assimilé a une sorte
d’impulsion électromagnétique d’amplitude C fois plus grande, C ayant
une valeur trés élevée. Pour employer une expression assez répandue
parmi les spécialistes des Télécommunications, le champ électrique du
photon serait, en quelque sorte, un « échantillon » d’une sinusoide C fois
plus grande que celle qui représente le champ électrique de l'onde
de base.

Mais les photons étant des bosons ont la propriété de pouvoir se grouper
sur une méme onde. Le cas d’'une onde électromagnétique de base partant
de trés nombreux photons est trés important car il correspond au cas
des ondes hertziennes et a celui des ondes lumineuses émises par un
laser. Nous étudierons plus loin ces deux cas en détail. Pour linstant,
nous nous contenterons de faire une remarque qui nous sera utile dans
un moment,

Considérons un train d’ondes assimilable a une onde plane mono-
chromatique et portant de nombreux photons. Dans cette onde, la densité
moyenne de 1’énergie est donnée en théorie de Maxwell par la valeur
moyenne de la composante 44 du tenseur énergie-impulsion, soit ('),

avec E=H = acosmz(vt——?) :

X3

l(E‘l-«— H?) = .
2

2

() M=

Si nous désignons sous le nom d’onde « échantillonnée » Yonde qui

correspond & la sinusoide Ca coszn(vl —")E> dont les photons trans-

portent des échantillons, nous aurons pour cette onde,

(2) M, = CLaL.
: 2

Maintenant, si n est le nombre total des photons transportés par le
train d’ondes et si V est le volume occupé par celui-ci, on devra poser

Cra? nhv

(3) -, CY)

puisque I’énergie représentée par 1’ensemble des photons qui occupent

en moyenne une unité de volume est %hv. En se souvenant que nous
fps W
avons défini [chap. I, formule (7)] la grandeur k par k = I—L - = % }—Lg,

() Avec les équations maxwelliennes (1) du chapitre précédent, il faudrait ajouter
les termes k3 (A2 4 V2), mais ils sont entiérement négligeables.

L. DE BROGLIE. 3
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il vient pour I'amplitude A de 1'onde échantillonnée telle que A = Ca,
c’est-a-dire de l'onde classique qui transporterait 1'énergie "Tliv par

unité de volume

(4) A-_—ca:\/’;k{‘f,

avec n trés grand.

Telle est I'amplitude que nous devons attribuer a l'onde dont les
photons transportent des échantillons pour que cette « onde échan-
tillonnée » représente correctement les échanges d’énergie entre les
photons et la matiére. Nous retrouverons cette formule (4) dans un
chapitre ultérieur.

3. Généralisation de la relation ¥ = Cv dans le cas de 'absorption
de l'onde v.

En liaison avec ce que nous avons dit précédemment sur 'apodi-
sation, nous allons d’abord examiner le cas d’un train d’ondes portant
un seul corpuscule. La relation W = Cv permet de substituer & 'onde
physique v une onde de probabilité W par I'intermédiaire d’un facteur de

f|v|‘ld-.

probabilité de présence du corpuscule dans 1'élément de volume dr est
proportionnelle & | W |2 dx.

Examinons alors comment doit se généraliser et s’interpréter la rela-
tion W' = C» quand I'onde v traverse un corps qui I’absorbe. Supposons
que 'onde v traverse un écran d’épaisseur [ et de coefficient d’absorption 7.

Avant d’entrer dans ’absorbant, I’onde v a la valeur v, et I'on doit lui

2.
associer une onde de probabilité W, = C,v, avec C,= —n—L——— A la

J | vo |2

sortie de I’écran, 1’onde est devenue v = v, e—7%. Pour construire 'onde ¥
correspondant a cette nouvelle situation, il faut que nous tenions compte
des informations que nous avons sur ce qui est arrivé au corpuscule
pendant la traversée de l’écran, ce qui est naturel puisque I'onde W
est une simple représentation de probabilités. Si nous savons que le
corpuscule n’a pas été absorbé dans I’écran, nous devrons prendre comme

S
f|upd—.

donne C = C,e’. Si nous savons que le corpuscule a été absorbé dans
I’écran, nous devons prendre ¥ = o, donc C = o. Mais, si nous ignorons
ce qui est arrivé au corpuscule en traversant I’écran, nous devons prendre

normalisation C défini par C:= - Elle sert & exprimer que la

. . \ . 1 .
fonction W aprés I'écran W= Cv avec C = » ce qui nous
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aprés 'écran W = C,v = C,pv, €77, d’oill f | W | dt = eY, et considérer

alors que la probabilité pour que le corpuscule ait traversé I'écran sans
étre absorbé est e—*7%,

Passons maintenant au cas d’'une onde portant n corpuscules ou plus
précisément au cas d’une onde électromagnétique portant n photons et
posons-nous le méme probléme que ci-dessus. Avant 'écran W = C,v, avec

y soit C, = —L—, de facon a avoir f] Witdr =n.

Jrepas \/f|v0|zd—.

Aprés I'écran, on a v = v, e, Si nous savons que m < n photons n’ont
pas été absorbés par I’écran, nous poserons

Ch=

Vm ev!

Vm
\/fluw: \/f[c)o]?d'z

de facon a avoir j |W|2dr = m. Mais, si nous ignorons combien de

U =G, avee G, =

photons ont été absorbés dans I’écran, nous poserons
Y = Cpo=Cuope—t!  dod f |0 [2 ds = et

et nous devons alors considérer que le nombre moyen des photons aprés
I'écran est ne—*.

Nous avons ainsi obtenu une correspondance statistique entre 1’affai-
blissement de la trés faible onde de base, affaiblissement qui est un
processus non aléatoire et continu, et la diminution du nombre des
photons, diminution qui est au contraire un processus aléatoire et
discontinu. Cette conclusion parait étre en relation avec le fait que dans
la théorie quantique des champs, on calcule les probabilités d’absorption
(ou d’émission) des photons en utilisant un terme d’interaction entre le
rayonnement et la matiére qui est empruntée a la théorie électro-
magnétique classique.

4. Champs électromagnétiques libres et champs électromagné-
tiques liés.

Ce que nous avons dit jusqu'a présent dans ce chapitre s’applique
seulement aux ondes électromagnétiques de base pouvant transporter
un ou plusieurs photons. Ces ondes représentent donc ce qu’on peut
appeler un champ électromagnétique « libre », c¢’est-d-dire un champ
correspondant a la propagation d’'un rayonnement & grande distance
de toute charge électrique immobile ou en mouvement.
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Or, dans la théorie électromagnétique classique, il est bien connu
que le champ électromagnétique existant autour d’une charge électrique
immobile ou en mouvement est représenté par deux sortes de termes :

1 3 . . . .
19 des termes en = correspondant a un flux centrifuge d’énergie qui reste

. . 1 . }
constant a toute distance; 20 des termes en - avecn > 2 qui ne corres-

pondent & aucun flux d’énergie vers I'extérieur. Il est deés lors naturel
de considérer les termes du premier type comme des champs électro-
magnétiques « libres » correspondant a 1’émission d’un rayonnement
tandis que les termes du second type représentent des champs « liés »
a la source qui restent principalement confinés au voisinage immédiat
de celle-ci.

Comme nous avons identifié les champs libres, du moins & grande
distance des charges, avec un faible champ électromagnétique du type v
susceptible de transporter des photons, il nous reste a voir comment nous
allons interpréter les champs liés. Il semble naturel d’admettre que les
champs liés sont en principe des champs électromagnétiques complexes
du type v, étant bien entendu que cela signifie que les champs liés clas-
siques sont définis par la partie réelle des champs complexes corres-
pondants. Mais si I’on admet ce point de vue, il en résulte que les champs
liés, bien qu’étant du type v de la double solution, ne sont plus a ampli-
tude infiniment petite puisque leur amplitude devient trés grande quand
on s’approche de la charge ou du courant auquel ils sont liés. C’est donc
seulement pour les champs en propagation libre susceptibles de transporter
des photons et de constituer un rayonnement qu’on doit attribuer
a l'amplitude de 'onde de base une valeur extrémement petite. Cette
restriction ne s’applique pas aux ondes de base qui constituent les
champs liés.

Les calculs qui vont étre effectués au chapitre suivant ont pour but
de montrer la signification et la portée de I’ensemble des hypothéses
que nous avons faites sur les champs libres et les champs liés (').

() Ilestimportant de signaler ici que M. Thiounn Mumm, dans des travaux récents
prolongements de sa thése de Doctorat, a montré que, pour les photons comme pour
les électrons, les équations d’ondes admettent des solutions & singularité mobile,
le mouvement de la singularité obéissant 4 la formule du guidage exprimée par le
vecteur flux. (Voir bibliographie [25].)



CHAPITRE II1.

ETUDE DE CERTAINS CHAMPS ELECTROMAGNETIQUES
LIBRES OU LIES.

1. But du chapitre.

Avant de faire des applications de nos idées générales au cas des ondes
hertziennes et de la lumiere, nous nous proposons dans ce chapitre de
donner quelqués exemples de calculs exacts de certains champs électro-
magnétiques libres ou liés et de déterminer les lignes de courant qui
constituent les trajectoires possibles du photon dans son onde quand
on fait abstraction des perturbations provenant du milieu subquantique,

Dans le cas des champs libres, c’est-a-dire de la propagation du rayon-
nement en l'absence de charges électriques, nous constaterons sur les
exemples étudiés qu'en dehors du cas de ’onde plane monochromatique
ou la masse propre variable M, se réduit a la trés petite masse propre p,
que nous attribuons au photon, la masse propre M, a une valeur beau-
coup plus grande correspondant & un mouvement ralenti, comme nous
Pavions déja pressenti autrefois, nous le rappellerons plus loin, dans des
études sur la propagation des ondes électromagnétiques dans les guides
d’ondes. Nous serons ainsi amené a proposer une expression de M, en
fonction des grandeurs électromagnétiques qui se vérifie dans les divers
cas que nous avons pu traiter.

Il y aurait évidemment lieu d’établir pour le photon une Dynamique
du guidage analogue a celle que, dans un Ouvrage antérieur (), j’avais
pu développer pour la particule de spin o obéissant 4 I'équation de

Klein-Gordon et pour la particule de spin ? obéissant aux équations de

I'électron de Dirac. En particulier, on peut chercher a trouver pour le
vecteur densité-flux du photon une décomposition analogue a celle qu’a
réalisée Gordon dans le cas de I'électron. Nous réservant de revenir sur
ce sujet, je me contenterai de la remarque suivante. D’apreés les idées
exposées dans le chapitre précédent, on doit admettre que, dans la |
région occupée A un instant donné par le photon, les grandeurs électro- -

(') Bibliographie [1], chap. X et p. 198 et suiv.
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magnétiques doivent avoir une valeur proportionnelle 4 celles des gran-
deurs correspondantes de ’onde de base, mais beaucoup plus grande.
Comme dans notre théorie, qui admet la nature physique des potentiels,
tout le champ ¢électromagnétique dérive de ces potentiels, nous pouvons
dire que le mouvement du photon dans son onde doit étre tel que le
quadrivecteur potentiel interne reste paralléle & celui de I'onde de base,
mais avec une amplitude beaucoup plus grande. Il en résulte que le
mouvement du photon doit étre tel que non seulement il décrive la
trajectoire prescrite par la théorie du guidage a l'aide du quadrivecteur
densité-flux du champ électromagnétique de base, mais que pendant sa
progression sa structure interne doit fourner de facon 4 maintenir le
parallélisme de son vecteur potentiel avec celui du champ de base.

Aprés avoir étudié quelques exemples de champs libres, nous étudierons
les champs liés dans le cas du rayonnement d’un dipéle et dans le cas
d’une charge immobile éventuellement pulsante. Dans ce dernier cas,
nous serons amené & établir un trés intéressant passage continu entre
les ondes longitudinales et le potentiel de Coulomb.

2. Etude de deux cas de champs libres.

En Mécanique ondulatoire du photon, le quadrivecteur densité-flux
du champ électromagnétique, qui, d’aprés le principe du guidage, déter-
mine le mouvement non perturbé du photon, est donné par la formule

(1) Ju= %‘ AQF}W—— conj. ],
ce qui donne pour la densité :

) e= (X8 (X)),

= >
o A est le potentiel-vecteur et E le champ électrique (complexes),
et pour le trivecteur j; avec k=1, 2, 3 :

)

(3) Jr=pvr= [(K*/\ﬁ)k-FV*Ek— (X/\ﬁ*)k—VEk],

S

(]

—>
olt V est le potentiel scalaire et H le champ magnétique.

On peut déja faire sur la formule (2) une remarque importante : elle
montre qu’il n’y a pas de photons la ou le champ électrique est nul, méme
§’il y a un champ magnétique. La lumiére ne peut donc produire un
effet photoélectrique que 14 ol le champ électrique est différent de zéro
et, dans un phénoméne d’interférences ou de diffraction, les franges
brillantes correspondent 4 un maximum du champ électrique. C’est,
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nous le rappellerons, ce qui a été vérifié depuis bien longtemps dans
les expériences de Wiener et cela a permis de dire que, dans une onde
électromagnétique, c’est le champ électrique qui impressionne une
plaque photographique. Ce résultat est bien en accord avec la formule (2).
Nous allons maintenant appliquer les formules (2) et (3) au cas des
ondes planes monochromatiques et au cas des franges de Wiener,

a. Onde plane monochromatique. — Elle est définie, si 'onde est rectili-
gnement polarisée et se propage suivant oz, par le potentiel-vecteur

R ,
) Ap= Ageilea=lils) A=A =0

2T

\ >
ou k= zwé, lk} =" k,= %po ¢, la masse propre p, du photon étant

supposée extraordinarement petite, mais non rigoureusement nulle.
On trouve alors

>
(5) E,.=—ikA,P, 11).=_i]k | AP,

P étant le facteur de phase. On a donc |E P— |H*=k} |A %
On trouve ensuite

. 2L, 2 ‘ ; * R
(6) P:T(;A(); PV:.: 7; AGJ
d’olt pour la densité propre o, :
. e T 2K s
) po= gy 1—ft= - AJ
et
(8) V:w-—‘p\z’ 3=§= I—-k—;l)
# 0 k i c k2
Or nous devons avoir
(9) Mo = hv = khic,
Vi—p
d’ou encore
(10) M= g Vim= k“f = .

Donc, dans le cas de I’onde plane monochromatique, la masse propre M,
se réduit a la trés petite masse propre p,, ce qui est satisfaisant (*).

() On pourrait traiter d’une fagon analogue les autres cas d’ondes planes mono-
chromatiques.
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b. Franges de Wiener. — Nous ne traiterons ici que le cas simple
d’une onde rectilignement polarisée qui tombe sous incidence normale
sur un miroir parfaitement réfléchissant.

7

[o)
N
Miroir

VY

Fig. 3.

L’onde incidente pouvant encore étre définie par la formule (4), nous
% s . ’
poserons o =|k‘z et nous vérifierons aisément que, dans les franges
de Wiener, le champ électrique devant s’annuler sur le miroir, nous
avons

Ap=127 Ay sina eiket;
(1)

. A )
Er=2kA, sina eiket; H, =21 k| Ay cosaeihcl,
? R

A Yaide des définitions (2) et (3), nous en tirons

Y
(12) A

Al sin?a; GPz=0; Ps=0;
w=p1—F=p
Le photon est donc immobile dans la région d’interférences (si Ion

fait abstraction des perturbations provenant du milieu subquantique)
et sa masse propre M, est

. N0 A A
(13) M, = —-;vx—B‘-’: (_l :g};‘u,.

c?

Il est intéressant de rappeler ici ce qui suit. Vers 18go (voir
H. Poincarg, Théorie de la lumiére), on se demanderait si, en adoptant
pour la nature de la lumiére la conception électromagnétique de Maxwell,
on devait considérer I'action photographique, qui permet d’enregistrer
les franges d’interférences, comme due au champ électrique ou au champ
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magnétique. Wiener, qui a fait a cette époque I'expérience d’inter-
férences qui porte son nom, a montré que les franges brillantes corres-
pondent aux maximums du champ électrique et cela, dans le langage
des photons, signifie que c’est I'intensité du champ électrique qui déter-
mine la probabilité de présence des photons dans la région d’inter-
férences. Il est tres intéressant de remarquer, comme nous I’avions déja
fait plus haut, que ce résultat est en complet accord avec I'expression
adoptée pour p. Au contraire, I'expression %f—‘lf = E?;,”Hﬂ
fournirait la théorie classique de Maxwell, nous dirait que les photons
peuvent se trouver dans les régions ol le champ électrique est nul si le
champ magnétique n’y est pas nul. On voit ici apparaitre une difté-
rence entre les deux théories, non pas en ce qui concerne ’onde de base,
mais en ce qui concerne la localisation des photons sur cette onde (V).

que nous

3. Définition de la masse propre M, en fonction des grandeurs
électromagnétiques,

La théorie de la double solution indique, nous 'avons vu dans I'Intro-
duction, que tout corpuscule guidé par son onde de base possede a chaque
instant une masse propre variable M,, différente en général de la masse
propre usuelle m,, dont les variations engendrent la force quantique.
Cette masse propre variable doit pouvoir s’exprimer a l'aide des gran-
deurs qui caractérisent I’onde de base et nous avons vu que dans le cas
d’une particule de spin o obéissant a4 I’équation de Klein-Gordon, cette

expression est Mf,=\/m'f, fi 0 ¢ étant Pamplitude de 'onde de

(2]
Klein-Gordon.

(') Pour montrer comment on peut essayer de lever certaines difficultés qui se
présentent dans le développement de cette théorie, nous ajouterons les deux remarques
suivantes.

D’abord, s’il arrive que p soit négatif dans une région de 1’espace, il semble qu’on

puisse admettre que, TJ étant nul sur la surface g = o, les photons ne puissent pas
pénétrer dans la région ou g est négatif, ce qui permettrait de regarder comme sans
importance la difficulté présentée par I’existence possible de valeurs négatives de o.

Ensuite il peut arriver dans certains cas (voir [1], p. 125 et suiv.) que, g étant
partout positif, les photons puissent pénétrer dans une région ot leur vitesse v soit
supérieure a ¢, la masse propre M, étant alors purement imaginaire. Mais je pense
que le déplacement des photons avec une vitesse supérieure a ¢ dans une région d’inter-
férences trés limitée ne peut servir a transmettre un signal de sorte qu’on n’est pas
en contradiction avec la théorie de la Relativité. Cette idée me parait en accord avec
Popinion émise récemment par M. Terletsky suivant laquelle il pourrait exister des
déplacements corpusculaires de vitesse supérieure a ¢ lorsque ces déplacements ne
peuvent pas constituer des signaux observables.
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Pour les particules de spin ; obéissant aux équations de Dirac (c’est

le cas de I'électron), j’ai trouvé précédemment ('), compte tenu de la
relation de Pauli-Kofink, p, = 2} + 3,
mypo \/(2%—0—93

14 M,= =m - =
( 4) [ Q, [ Q, 9

A &
, O . . . .
ot &, _—_ZK‘F;‘IJ,\. et Q, =2k‘Fﬁs W, sont les deux invariants classiques
1 1

en théorie de Dirac. Récemment, j’ai pu démontrer que, pour le photon
obéissant aux équations maxwelliennes précédemment étudiées, on a la
formule analogue a (14) :

- _ Mopo _ \/Q%—f— Q3
(13) Mo = o, Mo
ou ici I'invariant €2, est égal a
_ 2/1'0 v__ 2/{0 ” N
Qy=— Tic AVAY= 71()(|A|—|V|)

et ol Q, est un second invariant facile a calculer (puisqu’il est égal
4 /pi— Q1). Dans les cas o le potentiel scalaire V est nul, la formule (15)
se réduit a

o _ wogofic _ Rtey .
(16) M=k AF ~2[AT

La formule (16) se vérifie aisément dans les deux cas particuliers étudiés
au paragraphe précédent. Dans le cas de I’onde plane monochromatique,

nous avions trouvé |A 2= A} et p,= %Aﬁ, d’ol par (16) :

2n2koA% . /107[ _
ahicA: ¢

(17) My=

en accord avec (10). Dans le cas des franges de Wiener, nous avions

trouvé
| A]r=4A} sin?a et po= 7= %Aj sinZa,
d’ol1 par (i6) :
8 A7z Ad sin?a k7 hv
(18) Mo= 87cAZ sinta ¢ ¢t

en accord avec (13).

(') Voir [1], p. 200 et plus haut, chap. I, éq. (35).
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Les expressions (14) et (15) de M, sont trés importantes en ce qui
concerne la Dynamique du guidage des particules et la Thermodynamique
cachée que j’ai récemment développée ().

4. Remarques sur les états de superposition. Cas des guides
d’ondes.

Dans les cas simples que nous venons de traiter et dans quelques
autres que j’ai pu examiner, on constate que, quand I'onde de base est
formée par une superposition d’ondes planes monochromatiques, la masse
propre variable M, du photon est trés supérieure a I'extraordinairement
petite masse propre 2, qui, suivant nos conceptions, doit figurer dans
nos équations maxwelliennes et a4 laquelle se réduit M, dans le cas de
I’onde plane monochromatique.

Or, j’avais déja signalé ce fait, il y a 25 ans, dans I'étude d’un probléme
particulier, 4 I’époque oi j’ai consacré un exposé a la propagation des
ondes électromagnétiques dans les guides d’ondes (?).

J’avais remarqué que les ondes qui se propagent dans un guide d’ondes
rectiligne sont caractérisées par des grandeurs électromagnétiques dont
le facteur de phase est de la forme e!*!— k<), ’axe des z étant pris suivant
I’axe du guide et les grandeurs k et k. étant reliées par la relation

(19) k2= ki ot

ou « est une constante qui dépend de la forme du guide et du type d’ondes

qui s’y propage. Aprés avoir remarqué que la vitesse de phase V = c/f%

est supérieure a ¢, j’avais calculé la vitesse de groupe v donnée par la
célébre formule de Rayleigh :

. 1 1 0k,
(20) Pty k)
ce qui me donnait
(21) p = céﬁ <e.

k

Remarquant alors que v étant la vitesse de propagation de I'énergie
le long du guide et introduisant les conceptions de la Mécanique ondu-
latoire, j’en concluais que tout se passait comme si le photon possédait

la o, o
une masse propre M,= - déterminée par la constante « et pouvant

prendre une valeur importante.
J’ai repris récemment ce genre de calculs pour certaines ondes se
propageant dans un guide dans le cas simple d’un guide a section rectan-

1

() Bibliographie [6].
(%) Voir Bibliographie [15], p. 34 et 35.
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gulaire : j’ai constaté qu’en calculant p et p17 a l'aide des formules (2)
et (3) on retrouve pour v la valeur (21) et qu’on peut aussi vérifier la

valeur ? de M, en appliquant la formule (16). Il me parait trés probable

qu'on parviendrait aux mémes conclusions en étudiant des cas plus
généraux de propagation dans les guides.

Ainsi le fait que, pour toute onde formée par une superposition d’ondes
planes monochromatiques, la masse propre variable M, soit supérieure
a la masse propre figurant dans les équations d’ondes apparait comme
général. Dans le livre que j’ai récemment consacré a la Thermodynamique
de la particule isolée, j’avais déja signalé ce fait et j’en avais montré
toute I'importance (*).

5. Etude de certains cas de champs liés.

a. Cas du dipéle. — Considérons un petit dipdle oscillant placé a
Vorigine des coordonnées et assimilable & un petit élément de courant
alternatif. L’axe du dipdle était pris pour axe Oz, nous avons

(22) Ax=Ay=o0, A= %’ei?,

> |2
avec ¢ = ki —;er et k*= Ik{ + k3, d’oit en coordonnées polaires :

(23) A, = Mei?; Ay= Ao Smoel?; Ay=o.
’ r r
Comme
/ >
LoV > gA. 0A. ‘ ilk|> .
24 - —_— = —_—— 2= = = rosl — . iy
(24) o U divA PP o cos 0 AOH)SJ(,___,+ py ey,

on trouve en intégrant sur le femps :

. NS
(25) V=—%Acosﬁ<%+f_lk_\> ei%.

r

En calculant les composantes non nulles des champs, nous obtenons

. LJdA,. 9V ikj Agcosl T 2A4co80 /1 s .
br==Ccu " w=% ,—-e’*’*z“?“<;+lm>e’*7
1M\ 1 dV _ dhkAgsin® dhkAgsinb /1 Ny .
GO b =— W T T = (7-""]/‘ )e'*’
. 1 d(rAyp) 1JA, |7 Apsinh Ay . .
Ha_——;——dﬂ——-;rde—_——zjﬂl—;—e'?+,—_1;>ln()e'v.

Le premier terme de E, représente une onde longitudinale caracté-
ristique de notre théorie du photon et I'on voit dans les formules (26)

(') Bibliographie [6].
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A 1 1 . . .
apparaitre les termes en = et en % avec n > 2 qul représentent respecti-

vement les champs libres et les champs liés.
Si I'on se place assez loin de O pour pouvoir ne conserver que les
1 . 19 SR T 2 5 s : H :
termes en - et si I'on néglige les termes en k; (c’est-a-dire I'onde longi-
tudinale divergente), on a
., Agsinh
S —— iy

(27) y=Hy=—1k

etonretrouvel’onde transversale divergente classique en théorie du dipole,

4

AN

@
\
\

(o)
\
/L
/
/

/
/

>

/

Fig. 4.

Calculons maintenant o et 93 & grande distance :

_ 1 . .-_zkA;l,sin?O
e = };,;[Ae LO——con_].J_— o
[ . .
(28) onzﬁ(_ Al Hy+ V*Eg— conj.) = o,
1) * . 2k A} sin20
o= ﬁ(AOHa—conJ.)— =
On en tire
(29) 0= 0, v,.=C.

C’est bien ce que nous devions obtenir pour I'onde transversale 4 grande
distance puisque nous avons négligé les termes en kj.

Il est intéressant de faire la remarque suivante : Si dans P'expres-
sion (26) de H,, nous faisons tendre k vers zéro, c’est-a-dire la fréquence

vers zéro, en négligeant k,, nous obtenons

(30) Ha=:‘% sin
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et cette expression peut étre identifiée avec la loi classique de Laplace,
H = i ds sinf

)

y qui donne le champ magnétique créé par un élément de

courant continu ids. Cela est satisfaisant puisqu’a la limite pour une
fréquence nulle, notre dipdle est devenu un petit élément de courant
continu.

b. Les ondes sphériques longitudinales divergentes ef le potentiel de
Coulomb. — Nous savons qu’avec nos équations maxwelliennes conte-
nant un trés petit terme de masse, il existe des ondes longitudinales
comportant un champ électrique non nul. Nous pouvons donc imaginer
une charge électrique sphérique et pulsante qui pourrait émettre une
telle onde longitudinale divergente. Nous allons calculer cette onde et,
en faisant tendre sa fréquence vers zéro, nous la verrons se transformer
d’'une fagon continue et a la limite coincider avec le champ électro-
statique coulombien de la charge qui a cessé d’étre pulsante. Nous souli-
gnerons l'intérét de ce résultat.

Nous considérons donc une charge électrique sphérique placée a
Porigine des coordonnées et pulsante avec une fréquence v et nous
emploierons des coordonnées sphériques autour de 'origine. En employant
les mémes notations que précédemment, nous caractériserons une onde
sphérique longitudinale divergente par des grandeurs de la forme

F(r) etlkec—|Z10) avec k= IZF—Q—/{";}.
Nous poserons alors
> [2
]

(31) V=—121 1ei(/ccz~|7lr)J
J p

3
¢

e

> (2
le coefficient — —=- ayant été choisi pour la commodité des calculs,
[

ce qui, 4 une constante multiplicative prés, ne restreint pas la géné-

e . av e .
ralité. La relation é - T div A = o nous impose alors de poser

r= r

« . } 0
A= ﬁ(i_}_llk\)ei(kclulZ]r): ik oV

(32) k3 \re ’Zl Jar’

Ag=Ag=o.

Avec les définitions (31) et (32), on peut vérifier que toutes les équa-
tions (1) du chapitre I sont satisfaites et 'on trouve

>
e R N
(33) E,.=[,—f§+ifi]ei(kct—‘k‘r); Eo=ty=0; H=o.
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Les équations (31), (32) et (33) définissent les grandeurs électromagné-
tiques qui caractérisent I'onde sphérique longitudinale divergente.

. } ’ Y . -
Si k tend vers zéro, k tend vers k, et a la limite nous avons

. , [ S I,
(34) V =o, A= T F@”‘O”, E, = ﬁe“o”.

>
Si, ensuite, k devient inférieure a k,, k{ devient purement imaginaire

et l'on peut poser v =i ‘Z‘ On aura k*-+*=kj et les exponen-
tielles e—:/¥l" deviendront e—v". Donc londe longitudinale divergente,
qui était progressive pour k > k, et stationnaire pour k = k,, est devenue
exponentiellement amortie. Tout ceci est tout & fait analogue a ce qu'on
rencontre dans la théorie des guides d’ondes en technique des hyper-
fréquences radioélectriques, quand on étudie les « atténuateurs ». En effet,
I'atténuateur est un guide d’ondes possédant une fréquence minimale
de coupure v,, ce qui en fait un filtre passe-haut : si I'on envoie dans ce
guide une onde de fréquence inférieure a v,, elle s’amortira en se propa-
geant et les champs qui la caractérisent s’affaibliront exponentiellement
le long du guide.

% . .
Avecy =i ‘ k ' et k>+ v*=kj, les expressions de V, A, et E,. deviennent
V= _Y_‘i Le—‘(rei/\'clJ Ar‘= L_.]i (l. <+ I) e—«{;veikct,

T L2 Fl 5
kot k3 ’

72
Er= <i; —+ I) e—yr eiket,
r= r

Enfin, si k tend vers zéro, v tend vers 4, et a la limite pour k = o,
on trouve

(35)

. I 1 1 ko 1
(36) A,=o, V:—’—'e_"o"z I Er=(;5+7>e—kor2 -

Les formules (36) définissent un champ électrostatique du type de
Yukawa qui, en raison de I’extréme petitesse de k;, se réduit sensiblement
au champ électrostatique coulombien.

En résumé, si nous faisons décroitre k de + co 4 o, nous obtenons un
passage continu entre 1'onde sphérique longitudinale divergente des
formules (31), (32) et (33) pour k >k, au champ presque coulom-
bien (36) en passant par le champ stationnaire (34) et le champ
« atténué » (35). Ainsi le champ coulombien se trouve rentrer, pour ainsi
dire, dans le cadre général des propagations d’ondes sphériques longi-
tudinales divergentes puisqu’il apparait comme le cas limite des ondes
longitudinales atténuées quand la fréquence tend vers zéro. Et cela
parait trés satisfaisant.

Il est bien intéressant de remarquer que ce résultat ne peut pas étre
retrouvé si I'on pose d’emblée k, = 14y = o. En effet, si I'on admet que
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I'onde longitudinale doit avoir des grandeurs électromagnétiques de la

> >
forme f(r) ¢ ket % "'), on écrira (puisqu’ici ( k; = k) :

(37) E,= f(r) etklct—n), Ey=Ep=0
pour toute valeur non nulle de la fréquence, donc de k. L’équa-
.
tion ~£ (),TI: = rotE donne ﬁ = 0, mais comme l'on doit avoir
.
2 %I—;: = ikE = rotﬁ

- 5
sans terme en kjA au second membre, le fait que rotH est nul nous

>
impose d’avoir E = 0. Les deux champs E et H étant nuls, il n’y a pas
d’onde divergente longitudinale de champs et nous retrouvons le fait
que, si I'on admet 'invariance de jauge et le caractére non physique des
potentiels, les ondes longitudinales n’existent pas. Mais alors le champ

. I ] . 1 A
coulombien E = 5 dérivant du potentiel V = ~. se trouve étre une

solution statique des équations usuelles de Maxwell qui est compléfement
isolée des solutions a caractére ondulatoire. C’est pourquoi la théorie quan-
tique des champs, qui cherche a tout ramener a4 des champs ondulatoires,
est obligée, parce qu’elle admet I'invariance de jauge, de nier pour ainsi
dire la véritable existence des champs coulombiens et a les interpréter
par le procédé tres artificiel des « échanges de photons virtuels », et cela
en se servant des ondes longitudinales dont elle nie I'existence !

En abandonnant l'invariance de jauge et en attribuant au photon
une masse propre extrémement petite, on rétablit I'existence des ondes
longitudinales et, en passant au cas limite k— o, on retrouve sous la
forme (36), 'idée classique qu’une charge électrique est entourée d’un
champ électrostatique coulombien. Cela montre bien l'intérét qu’il y a
& substituer aux équations classiques de Maxwell sans termes de masse
les équations maxwelliennes avec termes de masse trés petits.

Les résultats obtenus dans ce paragraphe montrent d’ailleurs que le
champ ¢lectromagnétique « lié » & une charge électrique doit, en théorie
de la double solution, étre considérée comme une onde du type v et cela
malgré les trés grandes valeurs qu’il prend au voisinage de la charge.
Nous retrouvons ainsi I'idée développée dans le dernier paragraphe du
chapitre précédent : I'onde v est une onde électromagnétique du type
classique, mais elle n’est de trés faible amplitude que dans le cas des
champs « libres » qui sont susceptibles de transporter des photons dans
les rayonnements.



CHAPITRE IV.

LES ONDES HERTZIENNES,

1. Généralités sur les ondes électromagnétiques portant de
nombreux photons.

Nous allons maintenant reprendre les idées précédemment exposées
au paragraphe 2 du chapitre 1I. L’onde de base v correspondant & un
rayonnement libre est un trés faible champ électromagnétique du type
classique obéissant aux équations de Maxwell (ou du moins trés sensi-
blement a ces équations si I'on admet 'existence d’une trés petite masse
propre du photon). Cette onde agit sur la matiére comme une onde
électromagnétique ainsi que le montre 'absorption qu’elle subit dans
la lame absorbante d’un dispositif d’apodisation quand le photon qu’elle
porte n’est pas absorbé dans la lame. Une telle onde v peut porter de
trés nombreux photons : c’est le cas si important des ondes hertziennes
entretenues utilisées en Radio, en Télévision, etc. Ces ondes hertziennes,
dont les longueurs d’ondes s’échelonnent depuis plusieurs kilometres
jusqu'a une fraction de millimétre, forment d’immenses trains d’ondes
transportant un nombre énorme de photons.

Il résulte de ce qui a été dit précédemment que, dans le cas des ondes
hertziennes, 'action des photons sur la matiére est la méme que celle
d’une onde électromagnétique qui serait « semblable » & 'onde de base,
~ mais d’une intensité beaucoup plus grande. Rappelons que cela veut dire
que, siles grandeurs caractérisant ’onde de base sont de la forme a e,
les ondes transportant des « échantillons » d’'une onde dont les gran-
deurs seraient Cae® ou C donnée par la formule (4) du chapitre III
est proportionnelle & la racine carrée du nombre des photons portés
par l'onde. Les photons apportés par une onde hertzienne exerceront
donc sur un récepteur des impulsions successives et discontinues, mais
qui, point essentiel, seront toutes en phase avec I'onde de base & laquelle
ils sont incorporés. Tout se passera donc (du moins & de petites fluc-
tuations prés dues & la distribution aléatoire des photons dans 1'onde)
comme si le récepteur était soumis a ’action d’une onde continue définie
par les grandeurs Cae'®. Ainsi s’explique le fait paradoxal que les
équations de Maxwell représentent frés exactement les phénomeénes

L. DE BROGLIE, 4
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dans tout le domaine radioélectrique jusqu’aux ondes millimétriques bien
que I'énergie radiante soit apportée au récepteur par le processus essen-
tiellement discontinu de l'arrivée successive des photons, Aucune autre
conception claire ne me parait susceptible d’expliquer ce fait resté si
mystérieux et 'on doit souligner que cette interprétation repose essen-
tiellement sur I'idée d’un accord de phase entre les photons et leur onde
de base.

Nous allons exposer un petit calcul qui nous semble confirmer que la
conception que nous proposons est bien acceptable. Soit W,, la puis-
sance minimale que doit capter un récepteur de Radio pour pouvoir
fonctionner. Le nombre de photons de fréquence v que ce récepteur
capte par période étant n, on devra avoir s’il fonctionne

nhv.v = nhvi= W,,.

Supposons que nous prenions le cas (défavorable) d’une onde de trés
courte longueur d’onde, mettons 3 cm. Nous aurons v =io* MHz.
En évaluant toutes les grandeurs dans le systéme M. K. S., on trouve

W W
n é . I‘YL = ~ IILA .
6,6.107%4. 10%¢ 10— 1%

Pour que le récepteur puisse osciller réguliérement par impulsion
photonique, il faut que n soit au moins de I’ordre de I'unité, ce qui donne

W 10—8 pW.

Comme il semble raisonnable d’admettre qu’'un récepteur ne doit pas
pouvoir fonctionner s’il ne re¢oit pas une puissance au moins égale
a 1 pW, on voit qu’un récepteur ne pourra osciller que s’il regoit quelques
photons par période, résultat qui est satisfaisant.

Pour employer une formule imagée, nous pouvons dire que nous tenons
maintenant les deux bouts de la chaine. En effet, une onde électro-
magnétique du type v ne portant pas de photons (ou du moins consi-
dérée dans une région ou elle ne porte pas de photons) est assimilable
a une onde électromagnétique classique et, fait plus surprenant, il en
est de méme d’une onde électromagnétique de ce type transportant de
trés nombreux photons. Bien que le second cas soit entiérement I’opposé
du premier, la méme image du champ ¢électromagnétique classique
(faible dans le premier cas, intense dans le second) lui est cependant
applicable. Cette conclusion peut paraitre surprenante, mais elle est
bien en accord avec le principe de correspondance : celui-ci, en effet,
nous apprend que dans le phénoméne ol interviennent un grand nombre
de quanta (ici de photons), les conceptions continues de I'électro-
magnétisme classique redeviennent valables. Dans les phénoménes de
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la Radio, I'onde hertzienne porte un trés grand nombre de photons par
rapport a4 I'énergie finalement échangée avec les récepteurs de sorte
que cette onde apparait, du point de vue énergétique, comme analogue
a un fluide formé d’un nombre immense de petites molécules et I'on sait
qu'un tel fluide peut, avec une grande approximation, étre assimilé
a un fluide continu.

Nous tenons les deux bouts de la chaine, mais nous ne tenons pas le
milieu. Ce milieu, c’est le cas d’une onde électromagnétique portant un
petit nombre de photons et, en particulier, c’est le cas limite, trés impor-
tant en Optique, d’'une source trés faible qui émet séparément des trains
d’ondes successifs portant chacun un seul photon. Les effets produits
par une lumiére trés faible de ce genre sont tous isolés et d’une nature
purement quantique (effet photoélectrique sur un électron, transition
quantique dans un atome ou une molécule, etc.).

Nous aurons a étudier ce cas intermédiaire dans le prochain chapitre,
mais pour l'instant nous voulons analyser de plus prés Ientretien de
loscillation d’un récepteur par I'action d’une onde hertzienne. En vue
de chercher 4 comprendre le role que joue le champ complémentaire dans
cette affaire, nous allons commencer dans le prochain paragraphe par
rappeler la théorie tout a fait classique en Electrotechnique de la puis-
sance active et de la puissance réactive.

2. Théorie de la puissance active et de la puissance réactive.

Soit un circuit électrique contenant une résistance R, une self «
et une capacité C sur lequel agit une tension alternative de fréquence v
de la forme

U="Uscoswt= U, \/icoswt,

. U . ,
ou U,= =2 est la tension efficace et oll w = a7mv. Le courant dans le

V2
circuit est
[=1ycos(wt—9) =1L, y/2c08(wt—3),
ou I.= I
2
par rapport a la tension. Les grandeurs I et U sont reliées par I’équation

est lintensité efficace et ol o est le décalage du courant

(1) E%+Rl+éfldt=U
et 'on a
(2) b= L=,
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avec
JSND) !
4 1 \2 " T Cw
L:\/R'+<(’)£—-C—w>7 tg:?:_T’
(3)
(v)L?_L
o ’ Cw . .w__,R
Sm‘___Z——’ (Uby—-—zy

Z est 'impédance du circuit. Lorsque la condition de résonance £Cw?=1
est réalisée, Z — R et le courant est maximal.

Nous écrirons en notation complexe,
(4) U = U, y/2 elor, [ = I, /2 eiwl ¢—i7
et nous aurons
(5) U=71, ave ZC=R+17<f¢w_CLU>,
a0

Z. étant 'impédance complexe. On retrouve aisément les formules sous
forme réelle.

L’énergie débitée par la source pendant une période est
T — —
(6) f Ue /21 /2 cosmi cos (ot — o) dt
0

et la puissance moyenne P, fournie au circuit et consommée dans la
résistance est

T
(7) P1=%f 2U.l coswicos(wt— ) dt = Ugl;coso = RIZ.
o

Or, M. Boucherot a introduit, il y a une soixantaine d’années, I'idée
tres importante de « puissance réactive » définie par

(8) ; Py=U,l, sing.
Tandis que P, s’exprime en watts, P, s’exprime en vars (voltamperes
réactifs).

Posons par définition

(9) P=P +iP,= PUs=Uleit= Ul (cosg +sing),

P est la « puissance complexe » dont la puissance active P, est la partie
réelle et la puissance réactive P, la partie imaginaire. Remarquons que,
pouvant varier de —; a + ;, P, est toujours positif tandis que P,

peut étre positif ou négatif.
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Le long d’un réseau, les deux puissances P, et P. ont une remar-
quable propriété de conservation comme nous allons le montrer en
étudiant deux exemples.

Considérons d’abord un branchement du type de la figure 5.

B
.0\\5

AN

Les points A, B et B’ sont supposés infiniment voisins de O. En A,

la puissance complexe est P(A) = éI*(A)U(A) et en B et B’ elle a
des expressions analogues. Or, on a

Fig. 5.

UA)=UB+=U®B) et I(A)=1(B)+I1(B),
d’olt I'on tire P (A) = P (B) + P (B’) et en séparant le réel de I'imaginaire,
(10) Pi(A) = Py (B) + Py (B"), P,(A) = P, (B) + Po(B").

Il y a donc conservation des deux puissances active et réactive quand
on traverse le point de branchement.

Comme second exemple, considérons un circuit simple et sur ce circuit
une portion AB comportant résistance, self et capacité.

S- LR c
A B
Fig. 6.

Le courant I étant ici le méme en A et en B, on a
P(A) = %I*U(A) et P(B)= éI*U(B).

Mais on a aussi Uy,—Uz=Z.1, Z, étant I'impédance complexe de la
portion AB du circuit. On en tire

P(A)=P(B) + ~Z[1]2=P(B) +Z.I}
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et, en séparant le réel et 'imaginaire,

(11)  Py(A) =P, (B)+ RIZ, Py(A) =P, (B) + <w £— ~—> I

Ces deux formules expriment la conservation de la puissance active
et de la puissance réactive le long de AB.

Les formules (10) et (11) en P;, qui expriment la conservation de la
puissance active, résultent immédiatement de la conservation de 1'énergie.
Mais il nous faut préciser le sens des formules (10) et (11) en P..

Dans le cas de I'action de la tension U sur un circuit contenant résis-
tance, self et capacité, la seconde formule (r1) nous donne

13

Co’

[)2: w L]

Qx

Or Iénergie magnétique emmagasinée dans la self a linstant { est

(12) W, =-£2P= 21, cosz(wt—9),

I
2

tandis que I’énergie électrique du condensateur au méme instant est

1 Q2 1 ¢ 1z .
(13) W'e_g C _-»z—cf Idt_Cwsm (wt—9).

. . . . T .
Les énergies W, et W, varient avec la période — : 'une est maximale

quand lautre est nulle. Les maximums ont pour valeurs

o) _ g2 2 ; ¥
(14) Wio= 212, Wy = =5
S’il y a résonance £Cw?=1, Wi{'=="W{" et 'on voit qu’alors I’énergie

emmagasinée dans le circuit oscille entre la self et la capacité tandis
que la résistance consomme I'énergie de Joule fournie par la source.
Mais dans le cas général ot £Cw?:%41, on a Wi~ W : alors, quand

le condensateur se décharge dans la self, une certaine quantité d’énergie
est empruntée ou restituée a la source et 'inverse a lieu quand la self cede

de I’énergie au condensateur. Au total une énergie égale a <L’—%> I

oscille entre la source et le circuit. Or nous avons trouvé

2
(15) Pz=w<ﬁ—cl2>l'};=w(ﬁl'§——%ﬁ>,

P, étant positif ou négatif suivant le signe de la parenthése. Ainsi, tandis
que P, correspond a la fourniture par la source de I'énergie constamment
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consommée par effet Joule dans la résistance, % est la quantité d’énergie

qui oscille entre le circuit et la source. Cela précise bien la signification
de la puissance réactive.

11 est dés lors facile de voir ce que signifie la conservation de la puis-
sance réactive. Reprenons d’abord le cas du branchement (fig. 5).
L’énergie qui oscille entre la source S et les points qui sont au-deld du
point de branchement O doit étre égale a la somme de celle qu1 oscﬂle
entre la source et la branche B et de celle qui oscille entre la solidme et
la branche B’, d’ou

Ps(A) ‘___ P, (B) N P-(B")

) w w

. I . A
et, en supprimant —, on retrouve bien la seconde formule (10). De méme,
L)

dans le cas de I’élément de circuit AB de la figure 6, I'énergie qui oscille
entre la source S et les points situés au-dela de A doit étre égale a celle
qui oscille entre la source et les points situés au-dela de B augmentée
de celle qui oscille entre la source et le segment AB, cette derniére étant

égale a (E— CT) I : on a donc

M=PL(E+(£_ ! )13,

w W

et, en multipliant par o, on retrouve la seconde des relations (ir).
La conservation de la puissance réactive se trouve ainsi entierement
ramenée a la conservation de I'énergie.

Les considérations précédentes s’appliquent 4 un circuit olt les tensions
et les courants ont la méme pulsation . Il en est différemment dans
d’autres cas, par exemple dans celui des moteurs asynchrones. Si le
stator d’'un tel moteur est alimenté par un courant de pulsation o,
le rotor est parcouru par un courant de pulsation «'< w par suite du
« glissement », c’est-a-dire du fait que le rotor tourne un peu moins vite
que le stator. Le calcul montre que ce qui se conserve alors, quand on

. P, . .
passe du stator au rotor, c’est le quotient TJ) ol les deux termes varient

dans le passage : il est naturel que ce soit ce quotient qui se conserve
puisque c’est lui qui représente une énergie.

Signalons pour terminer que la théorie de la puissance réactive a été
généralisée autrefois, notamment par H. Budeanu, au cas de circuits
parcourus par des courants comprenant plusieurs composantes de pulsa-
tions différentes.
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3. Action d’une onde hertzienne sensiblement monochromatique
sur un circuit oscillant.

Nous venons d’exposer une théorie tout a fait classique en Electro-
technique parce qu'elle va nous servir dans ce qui suit, notamment pour
Pinterprétation de ce que nous avons appelé au chapitre I le champ
complémentaire. Nous allons maintenant examiner I’entretien d’une
oscillation dans un récepteur par I’action d’une onde hertzienne portant
de trés nombreux photons.

Pour simplifier, nous supposerons que l'onde hertzienne, ayant une
trés petite largeur spectrale, peut étre considérée comme sensiblement
monochromatique et qu’elle agit sur un circuit oscillant comportant
résistance, self et capacité.

D’apres nos conceptions générales, 'onde hertzienne comporte une onde
¢lectromagnétique de base décrite par des grandeurs complexes. Le champ

= > >
¢électrique de cette onde de base est E = E, ¢* = E, + i E, dont la partie

> >
E+ E*

2

-5
réelle E, =

peut étre assimilée au champ électrique classique,
> >

. . . .. LA DI D
mais qui comporte aussi une partie imaginaire E, =

constituant

le champ électrique complémentaire. L’onde hertzienne de- base porte
de trés nombreux photons qui transportent des « échantillons » d’une
onde semblable a I'onde de base, mais de beaucoup plus grande ampli-
tude. Le champ électrique de cette onde « échantillonnée » est de la
forme CE out G2, qui a la forme donnée par la formule (4) du chapitre II,
est proportionnel a la densité en photons de 'onde. La force électro-
motrice que les photons exercent en moyenne sur le circuit oscillant
est le produit de CE, par un coeflicient qui dépend de la forme du circuit
oscillant et de son orientation par rapport a l'onde incidente. Fina-
lement cette force électromotrice est de la forme KE, ou K est une
constante. On peut donc l'écrire sous la forme

(16) Uj=KEjcoswt = Ujecoswi = U, \/5 coswi,

ou U, est la tension efficace.
Le courant électrique dans le circuit oscillant est

(17) I=Tscos(wt—20)=1,y2c08(wt—2),

1

P — ——

-~ Cw

avec tg¢ = ———- La puissance fournie par l'onde au circuit est

€n moyenne

(18) Ul =2Ucl,coswtcos (0t — 9)
= Uelecosg = Py.
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L’onde fournit donc au circuit la puissance active qui est consommée
d’une facon continue sous forme de chaleur de Joule dans la résistance
de ce circuit. Nous retrouvons donc ici exactement la théorie classique

de l'entretien d’une oscillation dans un circuit oscillant par une onde

hertzienne incidente.
= —
Nous voyons bien ainsi que E,, partie réelle du champ complexe E,

joue le role du champ électrique classique. Mais quel réle joue le champ

> >

complémentaire E, que la forme complexe de E dans notre théorie doit
nécessairement faire intervenir ? II est naturel d’admettre que ce champ
complémentaire agit sur le circuit oscillant par l’intermédiaire d’une
tension

(19) Us=KE;= U, sinw¢

déphasée de g par rapport & U,. On trouve alors pour le travail moyen

effectué par U, :

(20) UsI =2U.L sinwiécos(wt— )
= U,I; sing = Ps.

Ce résultat nous indique qu’il doit exister une relation entre le champ
complémentaire E, et la puissance réactive P..

On peut cependant se poser la, question suivante. La puissance active
représente de I’énergie constamment cédée par Ponde au circuit tandis
que I'énergie réactive fournie en moyenne au circuit par I’onde est nulle
puisqu’elle oscille entre le circuit et la source qui est ici ’onde hertzienne :
comment se fait-il alors que le travail U,I fourni par le champ complé-
mentaire soit différent de zéro ?

Pour examiner ce point, nous remarquerons d’abord qu’il résulte de
considérations développées autrefois dans ma Mécanique ondulatoire du
E + E*

2
en E correspond a des cessions de photons par I’onde a la matiere tandis
que le terme en E* correspond a des cessions d’énergie, sous forme de
photons, par la matiére a I'onde. Or il est facile de voir que pendant
le deuxiéme et le quatriéme quarts de la période du courant I, le circuit

photon (') que dans Vexpression du champ réel E, = » le terme

oscillant céde a I'onde 1’énergie <£— G%) I, tandis que pendant le
premier et le troisiéme quarts de cette période, 'onde céde au circuit
cette méme énergie : au total, I'énergie réactive ainsi échangée par période
est nulle et c’est pourquoi U,I donne seulement la puissance active.

(") Voir par exemple Bibliographie [11], p. 127.
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Mais, lorsque nous passons de E; a E., nous changeons le signe de E*
et par suite le signe de P'énergie cédée par la matiere & 'onde. Il en

Y

résulte que U.l correspond & I'énergie cédée par I'onde au circuit
augmentée de I’énergie cédée par le circuit 4 I'onde, mais cette derniére

quantité étant changée de signe. On s’explique bien alors pourquoi U,I
nous donne la puissance réactive P..

On peut vérifier explication qui vient d’éfre donnée par le calcul
qui suit. Si I'on tient compte de la formule (15), on voit que la quantité
d’énergie oscillant par période entre I'onde et le circuit est

(21) WT=4<13—C‘LO2>13={'392.

Or, d’aprés la remarque faite plus haut, I'action sur le circuit de la
tension complémentaire U, doit, en ce qui concerne I’énergie réactive,
étre égale A celle qu’exercerait la tension U, si le courant 1 était redressé.
Un calcul facile montre que I’énergie fournie par ’onde au circuit dans
ces conditions serait

T -
/ 2
ngIef coswi|cos(wt—g)|dt=P T+ i Py =PT+ Wy,
[}

(V]

ce qui est bien le résultat qu’on pouvait attendre.
En résumé, les considérations qui précédent semblent bien établir la

—>
parenté étroite qui existe entre le champ E, et la puissance active P,

.
d’'une part, le champ complémentaire E, et la puissance réactive P,
d’autre part. Au point de vue de la terminologie, il paraitrait donc naturel

>
de désigner E,, qui est le champ classique, sous le nom de « champ actif »

le champ complémentaire E sous le nom de « champ réactif » Et il
semble que cette décomposition des grandeurs électromagnétiques était
depuis longtemps virtuellement contenue dans I'emploi qu’on faisait
constamment en Electrotechnique, en Electronique et en Optique de la
représentation complexe des grandeurs électromagnétiques. Il serait
certainement intéressant de faire une étude du rdle du champ complé-
mentaire plus approfondie que celle qui vient d’étre esquissée.

Dans ce paragraphe, nous avons jusqui’ici envisagé le cas idéal de
laction sur un récepteur d’une onde strictement monochromatique.
En réalité une onde hertzienne a toujours une certaine largeur spec-
trale dv et les grandeurs qui la caractérisent sont toujours de la forme

F =f C(¢) s (8)
—ov
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Les grandeurs de ’onde dont les photons apportent des échantillons
sur le récepteur sera encore de la forme CF et I'action de I'onde sur un
circuit oscillant sera encore exprimée par une tension U, proportionnelle
a CE,. L’analyse de I'entretien de l'oscillation se fera donc toujours par
les calculs classiques ou CE, représente le champ électrique, ici non
strictement monochromatique, de I’onde hertzienne échantillonnée.
La réussite assez surprenante de l'emploi des équations de Maxwell
dans I’étude de tous les phénomeénes qui interviennent en Radioélectricité
se trouve ainsi entiérement expliquée. En particulier, I'interférence entre
deux ondes hertziennes, méme provenant d’émetteurs difiérents, peut
étre ainsi prévue puisque les ondes de base des deux émetteurs se super-
posent classiquement et que les photons qu’elles portent sont guidés
par 'onde résultant de leur superposition.

Signalons enfin que, les photons étant répartis aléatoirement dans ’onde
de base qui les portent, l'arrivée des photons sur le récepteur doit en
principe subir des fluctuations qui, dans le cas d’'une émission treés faible,
pourrait faire fluctuer d’'une maniére appréciable l'oscillation induite
dans le récepteur et produire une perturbation ayant le caractére d'un
bruit. Une perturbation de méme nature pourrait d’ailleurs se produire
dans le fonctionnement des lasers.

4. Sur la relation d’incertitude dnde > om.

La théorie de la seconde quantification et la théorie quantique des
champs qui en dérive ont conduit 4 admettre la validité de la relation
d’incertitude entre le nombre de photons portés par une onde et la valeur
de sa phase

(22) Sndp > om.

La véritable signification de cette relation est restée un peu mysté-
rieuse et ne me parait pas avoir été entiérement précisée.

On a cherché a rattacher la relation (22) 4 la quatriéme relation d’incer-
titude de Heisenberg :

(23) SW ot h

dont la véritable signification a été, elle aussi, discutée. Le raisonnement
qu’on a proposé pour rattacher la relation (22) & la relation (23) et que
j’al moi-méme exposé autrefois dans mes cours ne me parait plus
aujourd’hui satisfaisant. Je vais cependant en faire 1’exposé pour pouvoir
le critiquer.

Soit un train d’ondes de fréquence » transportant n photons. Si I'incer-
titude sur n est dn, 'incertitude sur I'énergie est 6W =0 n.hv. D’autre
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part, on peut écrire d¢ == 27y df, out of est considéré comme une incer-
titude sur le temps. On a alors dn dg = %ﬂ oW of et de (23), on déduit (22).

Comme je I'ai dit, cette démonstration ne me parait pas satisfaisante.
D’abord la quatriéme relation de Heisenberg (23) se déduit de la relation
non quantique v 6l >1 qui est classique en théorie des ondes et provient
des propriétés de I'intégrale de Fourier et c’est en multipliant cette
inégalité par h qu'on obtient (23). On n’a donc pas le droit de
poser oW = on.hv et d’introduire ce ¢W dans (23) puisque I'incer-
titude dW de (23) provient de la largeur spectrale ov et non dune
incertitude sur le nombre des photons (sans intervention de la largeur
spectrale). D’autre part, dans la relation ovdf>.1 dont dérive (23),
dof n’est pas une incertitude sur la coordonnée temps, c’est la durée de
passage du train d’ondes en un point de l’espace ou, si I'on préfere,
c’est la durée = de I’émission du train d’ondes par la source. II me semble
donc que la démonstration rappelée ci-dessus repose sur des confusions.

Pour trouver la véritable signification de la relation (22), il me parait
préférable de partir de I’idée suivante : dans toutes les relations d’incer-
titude de la théorie quantique portant sur un produit de la forme da b,
les incertitudes sont les incertitudes sur le résultat d’une mesure de la
grandeur correspondante, les deux grandeurs a et b n’étant pas simul-
tanément mesurables avec précision par un méme processus de mesure.

Nous pouvons appliquer cette idée a la relation (22) car n et ¢ ne sont
pas simultanément mesurables. En effet, pour mesurer n, il faudrait
pouvoir faire produire par les n photons portés par le train d’ondes des
effets photoélectriques séparés et dénombrables. Au contraire, pour
enregistrer la phase 9, nous devons faire coopérer les photons du train
d’ondes a la production d’une oscillation dans un systeme du genre
circuit oscillant, cavité résonnante, etc., suivant le mode expliqué dans
le premier paragraphe du présent chapitre : or cette derniere opération
n’est pas compatible avec un dénombrement des photons. Les conditions
sont donc remplies pour qu’il existe une relation d’incertitude entre n
et ¢ sans que cela implique nullement, & mon avis, que les grandeurs n
et ¢ n'aient pas une valeur bien déterminée dans le train d’ondes,
la phase ¢ étant définie comme nous I’avons précisé précédemment.

Pour préciser notre point de vue, nous allons chercher a imaginer un
procédé de mesure tel que les incertitudes on et 69 puissent avoir toutes
les deux une valeur finie. Soit un train d’ondes portant un nombre inconnu n
de photons et ayant une largeur spectrale dv reliée 4 sa durée d’émission <
par la relation

(24) 8v.t >~ 1.

Si nous voulons chercher 4 déterminer a la fois, avec la plus grande
précision possible, le nombre de photons et la phase de l'onde, nous
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devons faire traverser par le train d’ondes un dispositif ot se produisent
des effets photoniques de nature quantique et en principe dénombrables,
puis le faire arriver sur un systéme susceptible d’osciller en enregistrant
la phase.

Si alors, dans le dispositif de comptage des photons par effet photo-
électrique, nous observons m effets, il arrivera seulement sur le systéme
oscillant on = n—m photons, én étant inconnu puisque n est inconnu.
Si les on photons en question agissent sur le systéme oscillant par impul-
sions successives rythmées sur la phase de 'onde de base, il est raison-
nable d’admettre que le systéme oscillant ne pourra se mettre a osciller
réguliérement que s’il regoit an moins une impulsion par période. Cela

ceox s T .
nous conduit 4 écrire on — =1 ou, d’aprés (24) :

(23) an (T”

Mais il nous faut maintenant définir ce que nous appelons lincer-
titude d9 sur la phase. Nous proposons de le faire de la fagon suivante.
Si I'onde était strictement monochromatique, la variation pendant une
période T de la phase 27mvf 4 0 serait égale a 2w, ce qui reviendrai
a dire qu’elle ne varierait pas puisqu’elle n’est définie qu'a 27 prés.
Mais en réalité le train d’ondes a toujours une largeur spectrale dv et la
variation de la phase pour la fréquence v + ov pendant une période T
sera (A 27 pres) :

(26) 8y =2névT =2x—-

Si nous admettons que le d¢ défini par (26) peut étre considéré comme
I'incertitude sur la valeur de la phase, la comparaison des formules (25)
et (26) nous fournit immédiatement la relation d’incertitude (22) qui
correspond ainsi & une expérience oit I'on a cherché a déterminer a la fois,
mais nécessairement avec une certaine imprécision, le nombre n des
photons portés par le train d’ondes et la valeur de sa phase.

Il est intéressant d’examiner les deux cas limites on—o et dn —co.
Le cas limite dn— o est celui ou presque tous les photons restent dans
le dispositif de comptage : alors, v étant donné, il faut d’apreés (25),
pour que les photons en trés petit nombre qui arrivent sur le systéme
oscillant puissent agir sur'lui, que dv — co, mais alors la phase de ’onde
n’est plus définie et 99 -»o00. Le cas limite on->oo ne peut avoir lieu
que si n est infiniment grand, ce qui correspond a un train d’ondes
infiniment long, donc a une onde sensiblement monochromatique
alors dv o~ o et do~o.

Le raisonnement qui vient d’étre exposé nous a permis de retrouver
la relation d’incertitude (22) sans la déduire de la quatriéme relation
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d’incertitude de Heisenberg. La relation (22) nous apparait ici comme
résultant uniquement de I'hypothése que le circuit oscillant subit des
impulsions discontinues dues aux arrivées successives de photons portés
par le train d’ondes » d’amplitude infinitésimale, photons qui sont incor-
porés a ce train d’ondes et vibrent en accord avec lui. Notre démons-
tration, qui, du moins en principe et abstraction des difficultés de mesure,
est aussi bien applicable aux ondes lumineuses cohérenfes qu’aux ondes
hertziennes, se trouve ainsi découler des conceptions générales auxquelles
nous a conduit la théorie de la double solution.

Nous devons ajouter I'importante remarque suivante relative a la
définition (26) que nous avons adoptée pour d¢ : la grandeur 39 ne doit
pas étre définie a 'aide de la phase d’une onde plane monochromatique,
cas idéal qui n’est jamais physiquement réalisé, mais en considérant
un train d’ondes de longueur finie ayant une largeur spectrale dv.
La grandeur d¢ définie par (26) mesure donc en quelque sorte « le défaut
de monochromaticité » du train d’ondes et ce serait la son véritable
sens physique. En d’autres termes, la véritable signification physique
de d¢ dans la relation (22) ne devrait pas étre cherchée dans I'existence
d’une incertitude sur la phase d’une onde plane monochromatique, mais
dans le fait qu’on a toujours affaire 4 un train d’ondes ayant une largeur
spectrale dv non nulle.

Une derniere remarque pourrait contribuer a justifier 'adoption de
la définition (26) : en employant le langage des radioélectriciens, on peut
dire que, pour enregistrer exactement la composition spectrale de I'onde
incidente, le systéme oscillant utilisé doit avoir une « qualité » Q telle

. . A N
que sa « bande passante » Av donnée par la relation TV = % (ot o est

un coefficient de I'ordre de I'unité) soit au moins égale a la largeur spec-
trale dv du train d’ondes.
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LA LUMIERE DES SOURCES USUELLES.

1. Caractére indépendant et discontinu des émissions de photons
par les atomes.

On sait depuis la théorie de Bohr (1913) que I’émission des photons
par les atomes résulte de transitions quantiques ayant un caractére
brusque et discontinu. Selon les idées actuellement admises, ces tran-
sitions quantiques seraient d’une nature incompréhensible et échap-
peraient 4 toute description en termes d’espace et de temps. Il nous
apparait que ce point de vue, conservé depuis 50 ans, n’est pas définitif
et qu'on parviendra a décrire les transitions quantiques. On peut penser
que cela sera réalisé en introduisant dans les équations de la Méca-
nique ondulatoire des termes non linéaires et en assimilant les transitions
quantiques 4 des passages brusques d’un cycle limite 4 un autre analogues
a ce qu’'on rencontre dans de nombreux cas de phénomeénes non linéaires.
Cette intéressante idée avait déja été envisagée, il y a quelques années,
par MM. Cap et Destouches : elle a été reprise ensuite par MM. Fer,
Leruste, Andrade e Silva et Lochak et notamment par les deux derniers.

Mais, quelle que soit la maniére dont on parvienne a concevoir d’une
facon précise la nature des transitions quantiques, il parait certain que
les émissions de photons par les atomes d’une source lumineuse usuelle
sont des phénomeénes indépendants et que chaque photon est émis
isolément sur un train d’ondes, les divers trains d’ondes ainsi émis n’ayant
entre eux aucune relation de cohérence.

Cela étant admis, il est important de réfléchir sur le résultat des
expériences fondamentales faites en 1gog par Taylor et répétées en 1927
par Dempster et Batho (). Ces physiciens ont effectué des expériences

(') Bibliographie [16] et [17]. Depuis que ce texte a été écrit, nous avons eu connais-
sance d’un travail de deux savants soviétiques P. Dontsov et A. 1. Baz (Soviet Physics,
J.E. T. P, vol. 25, n° 1, juillet 1967, p. 1) relatant une expérience dans laquelle ils
n’avaient pas pu obtenir d’interférences avec des photons émis par une source de
lumiére faible arrivant un par un sur un interféromeétre du type Pérot-Fabry. Person-
nellement nous ne pensons pas que cette expérience suffise 4 faire mettre en doute
les résultats expérimentaux -qui ont permis a divers physiciens d’établir, aussi bien
pour les électrons que pour les photons, lexistence d’interférences obtenues avec
des particules arrivant isolément les unes aprés les autres. Sous réserve d’un examen
plus approfondi, nous pensons que le résultat négatif de I'expérience de Dontsov
et Baz pourrait étre dt au dispositif expérimental employé par ces deux physiciens.



64 CHAPITRE V.

d’interférences avec des sources de lumiére extrémement faibles et de
trés longs temps de pose. La lumiére incidente était si faible qu’elle ne
pouvait envoyer sur I'appareil d’interférences que des photons arrivant
un par un a de grands intervalles de temps. Or les interférences finalement
enregistrées sur une plaque photographique aprés un long temps de pose
étaient exactement les mémes que si 'on avait opéré avec une source
de lumiére intense et une pose courte. Avec le point de vue que nous
adoptons ici, ce résultat fondamental doit s’interpréter comme il suit.
Quand un train d’ondes » de base, qui a la nature d’un train d’ondes
électromagnétique classique, arrive isolément sur lappareil d’inter-
férences avec le photon qu’il transporte, il interfére avec lui-méme de
la maniére classique et, comme le photon guidé par I'onde a une proba-
bilité de se trouver en un point de l'espace qui est proportionnelle
a l'intensité de 'onde de base en ce point, il aura plus de chance d’arriver
sur la plaque photographique en un point ol la théorie classique prévoit
une frange brillante qu’en un point ou elle prévoit une frange obscure,
Finalement, au bout d’un temps trés long, quand un trés grand nombre
de photons seront arrivés sur la plaque photographique, leur répar-
tition statistique aura dessiné sur la plaque les franges prévues par la
théorie classique.

Il apparait donc que, dans ce cas, chaque train d’ondes interfére avec
Iui-méme. Si, négligeant leur faible largeur spectrale, nous assimilons les
trains d’onde 4 des ondes monochromatiques de la forme a e ‘LI(VPTLO),
les constantes de phase 0 seront différentes pour chaque train d’ondes,
de sorte qu’il y aura incohérence totale entre ces trains d’ondes. Mais
les franges d’interférences correspondant & I'arrivée de chaque train
d’ondes seront les mémes car elles ne dépendent pas de la valeur de 0
comme il est facile de le voir.

2. Un fait essentiel : les trains d’ondes des divers photons sont
susceptibles d’interférer entre eux.

L’indépendance et l'incohérence des trains d’ondes individuels des
photons émis par les sources usuelles de lumiére a fait longtemps penser
que chaque train d’ondes ne peut interférer qu’avec lui-méme comme cela
se passe dans les expériences du type Taylor (*). Or, il parait aujourd’hui
bien démontré qu’il n’en est rien et que les trains d’ondes émis initia-
lement avec un seul photon par des atomes différents d’une source usuelle
de lumiere sont susceptibles d’interférer entre eux. La théorie classique
parait donec ici beaucoup plus exacte que n’aurait pu le faire croire la

(1) C’était notamment ’opinion de M. Dirac.
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nature « photonique » de la lumiére. C’est 14, nous allons le voir, un fait
tout a fait essentiel qui me parait entierement prouvé aujourd’hui.

11 est intéressant de remarquer que ce fait trés important est en bon
accord avec la représentation que la théorie de la double solution nous a
amenés a nous faire des ondes de base transportant les photons. Pour
nous les ondes de base sont trés sensiblement assimilables & des ondes
électromagnétiques du type classique et de tres faible amplitude obéissant
aux équations linéaires de Maxwell. Il n’y a donc aucune raison de ne pas
leur appliquer le principe de superposition et de ne pas admettre qu’elles
puissent interférer entre elles. Les divers trains d’ondes individuels
émis par les atomes d’une source intense vont donc se superposer et
interférer. Qu’en résultera-t-il pour les photons qu’ils portent ? La théorie
de la double solution répond nécessairement a cette question : ces photons
seront guidés par I'onde » résultant de la superposition des ondes v
individuelles et la probabilité de la présence d’un de ces photons en un
point de ’espace est proportionnelle a 'intensité en ce point de I'onde
résultanle. ’

Le fait capital que les trains d’ondes individuels des photons émis
indépendamment par les atomes de la source peuvent interférer en se
superposant est d’ailleurs prouvé depuis longtemps par le succes de la
théorie de la cohérence telle qu’elle est classique en Optique ('). La mise
en évidence par Brown et Twiss de I'intéressant phénomene dont nous
parlerons plus loin en a apporté récemment une trés remarquable confir-
mation. Aussi allons-nous consacrer les deux prochains paragraphes
a ¢étudier la théorie de la cohérence temporelle et 'effet Brown et Twiss.

3. Théorie sommaire de la cohérence temporelle.

Si les atomes d’une source lumineuse émettaient des ondes planes
monochromatiques, c’est-a-dire des trains d’ondes de longueur infinie,
la théorie classique des ondes conduirait & dire que I'onde résultant de
la superposition des ondes individuelles aurait une structure perma-
nente et présenterait une cohérence parfaite. Mais il n’en est pas ainsi
parce que les trains d’ondes émis par les atomes ont une longueur finie
correspondant 4 une durée d’émission © de l'ordre de 10—*s. L'onde
résultante en un point de ’espace est donc formée par la superposition
de composantes dont le nombre et les constantes de phase varient conti-
nuellement. Il ne saurait donc étre question pour la lumiére des sources
usuelles d’une véritable cohérence de ’onde qui résulte & chaque instant
de la superposition des ondes individuelles. Néanmoins pendant une
durée trés inférieure a la durée d’émission 7 ~10~*s des trains d’ondes

(') Voir par exemple {14], chap. VII.

L. DE BROGLIE. 5
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individuels, I’onde résultant de leur superposition en un point de I’espace
pourra étre considérée comme momentanément cohérente. Il en résulte
une sorte de cohérence temporelle momentanée dont la théorie a été
développée par divers auteurs (Zernicke, Hopkins, Blanc-Lapierre,
Wolf, etc.) sous une forme qui, souvent, utilisant uniquement des
relations statistiques de corrélation, ne fait pas explicitement appel
aux considérations physiques que nous venons d’exposer. Sur la base
des considérations physiques en question, nous allons reprendre I’étude
de cette question.

Considérons une source de lumiére étendue S contenant de treés
nombreux atomes A, B, C, ... qui, tous, peuvent émettre des trains
d’ondes de fréquence v. Prenons une origine des coordonnées O vers
le centre de la source et désignons par P un point d’observation tel que

DT:R: ﬁ:rm P=r,

Fig. 7.

Les trains d’ondes individuels émis par les atomes A, B, ... sont repré-
sentés, quand on fait abstraction de leur largeur spectrale, par des

x

2711<Vl—)\

fonctions de la forme a,e +0A), .... Les constantes de phase 6
varient aléatoirement d’un atome & I'autre et la durée d’émission de
chaque train d’ondes est de 'ordre de r~107*s. A un instant donné {,
I'onde électromagnétique de base résultante sera donnée au point P par

N . R
R N NI i 'nl(v,_‘;:) ~ 270!
(1) v = g2mivt a, e hettta=g 2‘ a, e,
AB, ... AB, ...
avec
(2) b= 0,— 2L

X

Les constantes de phase 0,, ... sont différentes parce que les

atomes A, B, ... commencent & émettre & des époques différentes

pendant un temps limite 7. La composition de la somme Z varie
AR, ...
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constamment parce que certaines composantes disparaissent et sont
remplacées par d’autres. Cependant 1’onde résultant de la superposition
des trains d’ondes individuels peut étre considérée comme gardant une
forme constante pendant un temps trés petit par rapport a <. Il est
évident qu’on peut écrire I'équation (1) sous la forme

2T vl—{‘—{+0 .
(3) p=ae ( A >,
olt 0 est la constante de phase de la superposition définie par
(4) a e il = 2 aAe““e;.

A,B

Pendant un intervalle de temps trés inférieur a =, la quantité 0 restera
sensiblement constante et il y aura une cohérence temporaire des ondes
élémentaires qui se superposent.

Or, la théorie de la double solution est d’accord avec la théorie clas-
sique pour affirmer que la répartition de I’énergie lumineuse est fournie,
quand de nombreux trains d’ondes se superposent en donnant une onde
temporairement cohérente du type (1), par I'expression

O N ’
2710,
: a, e
A,B,...

qui dépend des différences de phase 0y—0y, ... des diverses compo-
santes. Mais, pour I'enregistrement des franges d’interférences on utilise
des moyens d’observation (plaque photographique, rétine, écran lumi-
nescent, etc.) qui réagissent lentement a I'action de la lumiére et qui,
en somme, prenne la moyenne des intensités sur des temps longs par
rapport a 7. Comme les différences de phase Oy — 0y, ... varient aléatoi-
rement pendant cette prise de moyenne, on enregistre -finalement ainsi

2

o=

Pintensité¢ a*= Z |as|* qui ne dépend plus des différences des quan-
AR, L

tités 0, .... On voit donc que l’enregistrement des franges d’inter-
férences ne peut ancunement mettre en évidence les fluctuations rapides
de lintensité lumineuse due a la longueur finie des trains d’ondes.
Néanmoins on sait qu'en écartant progressivement les miroirs d’un
interférométre de Michelson, on peut mesurer, en observant la dispa-
rition des franges, la longueur des trains d’ondes et par suite la durée
de leur émission 7 ou « temps de cohérence ».

On peut résumer ce qui précéde de la facon suivante. On peut faire,
du moins en premiére et trés bonne approximation, la théorie des phéno-
menes d’interférences usuels sans introduire la notion de cohérence
temporaire en considérant les ondes lumineuses comme strictement
planes monochromatiques de durée de cohérence infinie. C’est ce qu’on fait
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avec un plein succeés dans tous les traités classiques d’Optique. Cela
tient au fait que les franges d’interférences ne peuvent étre enregistrées
qu'au bout d’un temps trés long par rapport au temps de cohérence 7,
quand un grand nombre de photons sont arrivés sur le dispositif d’enre-
gistrement. Il en résulte que le phénomene observable ne dépend que
de la valeur moyenne de l'intensité de I’onde incidente donnée, comme

nous l'avons vu plus haut, par a*= Z |as?. On comprend alors
AB, ..

pourquoi I'onde de superposition (3) donne lieu aux mémes phénomeénes
d’interférences que des trains d’ondes arrivant isolément en apportant
chacun un seul photon, comme le prouvent les expériences d’inter-
férences du genre Taylor. On obtient donc les mémes franges d’inter-
férences avec une source de lumiére intense ou avec une source faible,
bien qu’au point de vue de la superposition instantanée des trains d’ondes
des photons, les deux cas soient tout a fait différents. Les expériences
d’interférences ne permettent donc d’atteindre que la valeur moyenne
du nombre des photons arrivant en chaque point, mais ne permettent
pas de suivre les fluctuations rapides de ce nombre. Nous verrons plus
loin qu’au contraire les expériences du type Brown et Twiss permettent
de mettre en évidence ces fluctuations.

Ce qui nous importe le plus ici, c’est que, envisagée du point de vue
de la coexistence des photons et des ondes dans la lumiere, la théorie
de la cohérence repose essentiellement sur 1'idée que la répartition
‘statistique des photons dans I’espace est déterminée par la superposition
de trains d’ondes lumineuses du type classique. Cette constatation nous
parait démontrer l'exactitude des calculs de 1'Optique ondulatoire
classique malgré l'existence indéniable des photons et cela s’explique
tout naturellement dans la théorie de la double solution puisque les
ondes lumineuses doivent y étre assimilées a des ondes électromagnétiques
de trés faible amplitude dont la progression et les superpositions sont
données par les équations de la théorie de Maxwell et dont les inten-
sités locales déterminent la répartition statistique des photons dans
Iespace. Et cette si importante conclusion se trouve encore confirmée
par la récente découverte du phénomene de Brown et Twiss dont nous
allons maintenant parler.

4. Le phénomeéne de Brown et Twiss. (Interférences du quatriéme
ordre.)

L’important phénomeéne en question consiste dans la mise en évidence
des fluctuations des intensités lumineuses qui sont réalisées & chaque
instant en des points différents par la superposition de trains d’ondes
provenant de sources éloignées. Son existence a fait I'objet d’assez
nombreuses recherches expérimentales et est bien établie aujourd’hui,
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notamment par d’importants travaux de MM. Handbury Brown et
Twiss. M. Marcos Moshinsky avait eu le mérite d’en avoir prévu I'exis-
tence dés 1950 et, plus récemment, M. Janossy en a fait des analyses
analogues. De nombreux autres travaux théoriques lui ont été consacrés
parmi lesquels nous citerons ceux de MM. Purcell et Wolf ().

Ce qu’il y a de curieux dans cette affaire, c’est que ces « interférences
du quatriéme ordre » peuvent se prévoir a 'aide de calculs entiérement
classiques bien que la mise en évidence des fluctuations de l'intensité
lumineuse se fasse 4 l'aide de cellules photoélectriques dont le fonc-
tionnement implique nécessairement la nature photonique de la lumiere.
Mais il est naturel et essentiel de remarquer ce qui suit. I.’enregistrement
des franges d’interférences (par exemple sur une plaque photographique)
exige I'arrivée de trés nombreux photons arrivant & chaque point et ne
dépend finalement que du nombre moyen n des photons arrivant en ce
point : ¢’est ce qui permet de calculer la position et I'intensité des franges
en assimilant I’onde incidente &4 une onde plane monochromatique 4 durée
de cohérence infinie. Au contraire, I’observation de ’effet Brown et Twiss
exige 'enregistrement du carré moyen de la fluctuation de lintensité
lumineuse due 4 la durée limitée des trains d’ondes émis par les sources
usuelles et c’est le caractére pratiquement instantané de I'action de la
lumiére sur une photocathode (temps de réponse inférieur a 10~ s) qui
permet a celle-ci de fournir la valeur du carré moyen des fluctuations
de l'intensité lumineuse qui la frappe.

Nous allons maintenant donner un calcul des grandeurs qui inter-
viennent dans leffet Brown et Twiss en nous servant de raisonnements
trés simples.

Considérons une cellule photoélectrique (photocathode) sur laquelle
arrive une superposition d’un trés grand nombre de trains d’ondes de
méme fréquence v et de méme amplitude a émis indépendamment par
les atomes d’une source étendue. Cette superposition est représentée par

N

(5) o = Z a e2wivi ezOA,
k

1

avec
(6) N=1.

L’intensité lumineuse sur la photocathode sera donnée a chaque
instant par la formule

N

(7 l=lvp=a|N+2¥ cos (60— 0

(7) [ | A-‘l;>10<'( 2)
1

(") Voir Bibliographie [18], [19], [20], [21] et [22].
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Les constantes de phase variant aléatoirement au cours du temps,
On aura en moyenne

2

(8) T=Na, [ =N

‘Mais nous aurons aussi

N

I2=a*| N2+ 2 (0. —0;) + termes de moyenne nulle |.

(9) a[ 6y, 05 (B —00) y ]
1

N(N—
Comme le nombre des termes de la somme E est —?—1), on a

donc, puisque cos?(0,— ;) = i’

([0) 2= a’r[N2+M_:.I_). i].

2 2

Mais, N étant trés grand devant 1'unité, nous obtenons trés approxi-
mativement

(11) IF=oNgt=2l ,
d’otl
(12) (T—1)P=T—1 =1.

Le nombre des photons émis par la photocathode pendant un temps T
devant évidemment étre pris égal en moyenne & ny= «IT, ol1 « est une
constante. Il nous semble qu’il faut supposer T <= 7. En effet, un dispo-
sitif 4 réaction lente comme la plaque photographique ne permet d’enre-
gistrer ny que si T> 7 et alors ny= Ty et n;—ny= o0 : on ne peut pas
ainsi déceler les fluctuations. Au contraire un dispositif qui réagit
instantanément a l’action de la lumiére comme une photocathode permet
d’enregistrer n; pour T <<t et, en ce cas, I'équation (12) divisée
par 2*T? nous donne

)

(13) F%—n,}:ﬁ;.
M. Purcell dans I’article cité avait donné la formule
(14) ni—ny = Hy+ any,

ol a est une constante qui, avec I’hypotheése T <<, doit étre égale a 1.
On voit que le terme quadratique au second membre de (14) coincide
avec le second membre de (13). Quant au terme en fiy de (14), on peut
le justifier du point de vue de la théorie de la double solution de la fagon
suivante. La fluctuation du nombre des photoélectrons éjectés a deux
causes : 19 la probabilité de présence d’un photon sur la photocathode
est proportionnelle a lintensité de I'onde incidente, ce qui donne le

terme en ny de la formule (14); 2° les photons incidents, bien qu’étant
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toujours en phase au point oul ils se trouvent avec l'onde qui les porte,
sont cependant répartis aléatoirement au sein de l'onde et leur arrivée
aléatoire sur la photocathode donne naissance a un effet de « grenaille »
s’exprimant par une loi de Poisson, ce qui explique la présence du terme
en nip dans la formule (14).

Dans la formule de Purcell, le second terme du second membre
est donc d’origine « ondulatoire » et le premier terme d’origine
« corpusculaire ». D’ailleurs la vieille formule d’Einstein donnant les
fluctuations de I’énergie dans le rayonnement noir pour l'intervalle de
fréquence v —v 4 dv :

o

N S N2 iy Tl T c? 30
(10) (bn,——— l‘n;) eSS l“\‘, —_ h\/ = Il‘)h\,+ m v
est aussi de la forme (14) comme on le voit en posant E,= nhv. Or le

terme en E, (ou en ny) dans (15) provient de l'interférence des ondes

du rayonnement noir tandis que le terme en E, (donc en R) traduit la
nature corpusculaire des photons. On retrouve donc bien ainsi dans
I'interprétation de la formule (15) des idées analogues & celles qui ont été
développées plus haut pour la formule (14).

A B

T4

Py
Fig. 8.

Supposons maintenant que nous ayons deux photocathodes 1 et 2
placées en des points distants P; et P,. Si les intensités lumineuses I,
et I, qui frappent les deux photocathodes tombaient sur une seule photo-
cathode, on aurait

(16) T+ L) — (L +1,) = ([, + 1),
d’out
(17) _',-'—l;+l_§—1;+2m—zfi.f2=I;+T;+2T1._[._,

et comme d’aprés (13), on a

=
At
L

il vient

(18) I Lo— [y Iy=1,.T,.
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En introduisant comme précédemment le nombre des photoélectrons
émis par chaque photocathode, la formule (18) devient

(19) (n1~ﬁ1) (ng-—-ﬁg) :ﬁl._ﬁg
ou
(20) Ang Any == 7.1,

ot An, et An, représentent les fluctuations instantanées du nombre des
photoélectrons émis par 1 et 2. La formule (20) est analogue 4 une formule
donnée par Purcell dans son Mémoire et utilisée par lui pour T'inter-
prétation de 'effet Brown et Twiss.

Nous n’insisterons pas davantage sur la théorie de l'effet Brown
et Twiss. Son existence et la possibilité de 1'utiliser pour une mesure
précise du diamétre apparent d’une étoile paraissent aujourd’hui bien
établies. On a pu d’ailleurs mettre en évidence le méme phénoméne en
utilisant la lumiére émise par une source terrestre. Ces résultats dont
linterprétation exacte a sans doute encore besoin d’éire approfondie
paraissent avoir une grande importance car la validité des raisonnements
classiques s’appuyant sur la nature ondulatoire de la lumiére est 4 nouveau
prouvée dans des expériences ou la nature photonique de I'action de la
lumiére se manifeste également puisque les intensités lumineuses son
mesurées par des effets photoélectriques. Aussi I'effet Brown et Twiss
nous apparait-il comme pouvant nous apporter des précisions nouvelles
sur la coexistence des ondes et des photons dans la lumiére et sur la
validité de I'image qu’en fournit la théorie de la double solution.

5. Résumé et remarques finales.

Nous voudrions terminer ce chapitre en précisant quelques points
importants.

On peut appeler « Optique classique » celle qui fait uniquement inter-
venir, dans la représentation de la lumiére, les ondes planes mono-
chromatiques de longueur et de durée d’émission infinies. C’est Poptique
des traités classiques qui suffit pour bien prévoir les phénoménes d’inter-
férences et de diffraction usuels. On peut, au contraire, nommer « Optique
aléatoire » celle qui tient compte du fait que dans les sources usuelles
de lumiere (a Iexclusion des lasers) les atomes émettent d’une facon
indépendante et aléatoire des trains d’ondes de longueur et de durée
limitées. Evidemment c’est cette optique aléatoire qui donne la véri-
table représentation de la constitution des ondes lumineuses a4 chaque
instant de la maniére qui a été esquissée dans les paragraphes précédents.
L’optique classique n’est donc qu’une approximation, d’ailleurs trés
souvent suffisante.
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La théorie de la cohérence temporelle dont il a été question dans ce
chapitre fait nécessairement intervenir la durée de cohérence 7 : elle
releve donc de 1'Optique aléatoire et, en principe, échappe complé-
tement a I'Optique classique telle que nous I’avons définie plus haut.
Mais il n’en est pas de méme de la notion de « cohérence partielle » que
certains auteurs (') utilisent pour étudier « le contraste de franges »
dans le cas des sources étendues. Si I’on emploie une source ponctuelle,
les trains d’ondes émis par les atomes de la source donnent approxi-
mativement le méme systéme de franges dans un dispositif d’inter-
férences : le contraste des franges, leur visibilité, est alors excellent.
Si la source est un peu étendue, les franges fournies par les trains d’ondes
émis par les divers atomes de la source sont légérement décalées les unes
par rapport aux autres et la visibilité des franges est moins bonne.
Enfin, si la source est assez étendue pour que les maximums de l'intensité
lumineuse correspondant a certains points de la source coincident avec
des minimums correspondant a d’autres points, la visibilité des franges
devient nulle et celles-ci disparaissent.

Or, si 'on examine le calcul du contraste des franges a 'aide de la
notion de cohérence partielle, on s’apercoit qu’en fin de compte, il ne
fait nullement intervenir le temps de cohérence 7, mais uniquement
le déphasage des différentes ondes qui se superposent, déphasage qui
est dt aux différences de marche. Ce calcul reléve donc entiérement de
I’Optique classique et c’est pourquoi la théorie d’une expérience comme
la mesure du diamétre apparent d’une étoile par la méthode bien connue
de Michelson se fait trés aisément sans faire intervenir le temps de
cohérence comme on le montre dans tous les traités classiques d’Optique.
Il n’en est pas de méme pour les expériences du genre Brown et Twiss
ou I'emploi de cellules photoélectriques permet de mettre en évidence
les fluctuations trés rapides de I'intensité lumineuse qui ont pour origine
le caractére aléatoire de I’émission des trains d’ondes par les atomes
et qui relevent essentiellement de la théorie de la cohérence temporelle.
Les remarques que nous venons de faire me paraissent de nature a éviter
certaines confusions dans ’emploi de la notion de cohérence.

Une autre remarque qui pourrait étre importante est la suivante.
Dans ce qui précéde nous avons admis que les émissions de photons
par les atomes sont indépendantes et aléatoires. Or cela est bien exact
pour I’émission de lumiére qui accompagne les transitions quantiques
‘sponltanées des atomes. Mais nous allons rappeler dans le prochain
chapitre que, depuis un travail d’Einstein datant d’une quarantaine
d’années, on sait qu’a cdté de ces transitions spontanées il existe un
processus d’émission sfimulée dans lesquels un grand nombre d’atomes

(") Voir par exemple [14], chap. 7.
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peuvent effectuer une méme transition quantique, ce qui aboutit a I'émis-
sion de photons tous transportés par un méme train d’ondes électro-
magnétique de base dont la longueur et la durée de cohérence sont
beaucoup plus grandes que celles des trains d’ondes émis par les tran-
sitions spontanées. C’est ce processus d’émission stimulée qui est aujour-

" d’hui 4 la base de la théorie des lasers. Or, dans une source de lumiére

tres intense, chaque atome est soumis au rayonnement émis par les autres
atomes et il est possible que certains d’entre eux subissent des tran-
sitions stimulées. L’émission globale de la source contiendra alors,
en plus des trains d’ondes de courte durée de cohérence dus au processus
d’émission spontanée dont nous avons exclusivement tenu compte dans
ce chapitre, d’autres trains d’ondes de durée de cohérence beaucoup plus
longue provenant des émissions stimulées. La théorie compléte de la
cohérence, qui serait certainement beaucoup plus compliquée que celle
qui a été développée dans ce chapitre, devrait en particulier tenir compte
de cette possibilité.

Notre conclusion sera donc que la théorie de la cohérence de la lumiére
doit étre reprise entiérement sur la base physique de 1’émission spon-
tanée et stimulée par les sources de lumiére de trains d’ondes & durée
de cohérence finie. Les théories de la cohérence 4 aspect purement formel
fondées uniquement sur des lois générales du Calcul des Probabilités
ou sur les conceptions abstraites et assez obscures de I’actuelle théorie
quantique des champs ne sont pas, a notre avis, suffisantes pour poser
la question sur son véritable terrain a I'aide d’images claires des processus
physiques réels (').

(') On trouvera dans le dernier chapitre de ce livre rédigé par M. Joao Luis Andrade
e Silva une théorie de I'effet Brown et Twiss beaucoup plus compléte que celle qui a
été esquissée ci-dessus dans le paragraphe 4.
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LA LUMIERE DES LASERS.

1. Le grand intérét théorique des lasers.

La réalisation dans les quinze derniéres années des Masers (Microwave
amplifier by stimulated emission of radiation) et des Masers optiques
ou Lasers (Light amplifier by stimulated emission of radiation) a vive-
ment attiré I'attention des physiciens et donné lieu a de trés nombreux
travaux, L’intérét que présentent pour les théoriciens ces dispositifs
nouveaux est considérable. Leur fonctionnement ne peut s’interpréter
qu'a I'aide des conceptions d’émission « stimulée » et d’émission « spon-~
tanée » introduites par Einstein dés 1917 a l'aide d’un raisonnement
célébre sur lequel nous reviendrons plus loin.

Dans les masers, un rayonnement hertzien de haute iréquence est
envoyé dans une cavité résonnante ou se trouvent de nombreux atomes
dans un état excité susceptibles d’émettre par transition quantique des
photons de cette fréquence. Ces atomes dans un état excité dont la
présence est nécessaire peuvent étre obtenus de diverses maniéres,
notamment par les trés ingénieux procédés de pompage optique inventés
par M. Alfred Kastler. Grace au processus de ’émission stimulée, chaque
atome excité peut émettre un photon qu’il dépose, pour ainsi dire, sur
I'onde hertzienne incidente, augmentant ainsi le nombre des photons
hertziens qui sont transportés par cette onde et qui sont en phase avec
elle. L’énergie totale transportée par l'onde se trouve ainsi accrue :
il y a amplification et cette amplification peut étre utilisée de diverses
facons que nous n’étudierons pas ici.

Dans les lasers, de nombreux atomes excités, obtenus par exemple
par pompage optique et susceptibles d’émettre des photons dont la
fréquence appartient au domaine lumineux, se trouvent dans une cavité
du type Pérot-Fabry. Une onde lumineuse ayant cette fréquence se
forme dans la cavité : en passant un grand nombre de fois sur les atomes
excités qui lui cédent des photons par émission stimulée, cette onde
s’enrichit constamment en photons et finit par s’échapper a I’extérieur
en traversant une portion semi-transparente de la paroi de la cavité.
Finalement on obtient ainsi une onde lumineuse transportant de treés
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nombreux photons qui sont cohérents, c’est-a-dire en phase, avec I'onde
qui les porte. Rappelons que, dans les conceptions de la théorie de la
double solution, I’onde est une onde électromagnétique de base du type v
et de tres faible amplitude.

Ainsi, par la réalisation des lasers, s’est trouvée obtenue pour la premiére
fois une « lumiere cohérente » d’une structure tout a fait différente de
celle qu'émet une source usuelle de lumiére dont les atomes émettent
indépendamment de courts trains d’ondes portant chacun au moment
de leur émission un seul photon. Cette lumiére cohérente a donc une
structure tout a fait analogue & celle d’'une onde hertzienne et tout ce
que nous avons dit au chapitre IV au sujet des ondes hertziennes lui est
applicable. On notera, en particulier, que les trains d’ondes émis par les
lasers ont une trés grande longueur et, par suite, une largeur spectrale
beaucoup plus petite que celle de la lumiere usuelle : tandis que les
trains d’ondes de la lumiére usuelle ont une longueur qui ne dépasse
pas quelques meétres, la longueur des trains d’ondes émis par les lasers
peut atteindre un grand nombre de kilométres et correspondre a une
largeur spectrale plusieurs milliers de fois plus petite (%).

On voit toutes les importantes perspectives nouvelles que la réali-
sation des masers et des lasers ouvre sur le plan théorique, sans parler
de leurs applications expérimentales ou techniques. Nous n’avons natu-
rellement pas l'intention d’exposer ici les nombreux aspects de utili-
sation des masers et des lasers, mais nous vpudrions insister sur un
point théoriquement trés important. Le fonctionnement de ces appareils
a mis hors de doute que les photons qui y prennent naissance par émission
stimulée sont cohérents, c’est-a-dire que dans notre conception ils sont
incorporés a une méme onde de base. Au contraire, les photons qui
peuvent y apparaitre par émission spontanée sont incohérents, c’est-
a-dire émis sur des trains d’ondes indépendants comme dans les sources
de lumiére usuelles et cela est bien naturel puisque c’est précisément
le processus d’émission spontanée qui entre seul en jeu dans les sources
usuelles. II en résulte que les émissions spontanées intervenant dans le
fonctionnement des lasers et des masers constituent une sorte de « bruit »
perturbateur qui, heureusement, reste trés faible dans le fonctionnement
usuel de ces appareils (*). Or, dans le raisonnement primitif d’Einstein,
rien pn’indiquait cette importante différence de nature des émissions
spontanées et des émissions stimulées. La raison en est qu’Einstein
raisonnait en considérant 1’équilibre thermique entre les atomes et le

(1) On en trouvera un trés bon résumé d’ensemble dans un petit livre de
M. Michel-Yves Bernard [23].

(?) A ce bruit perturbateur, doit en principe s’ajouter, comme nous l’avons vu
précédemment (p. 5g), un autre bruit dot 4 la répartition aléatoire des photons
sur ’onde de base.
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rayonnement noir et que, dans ce rayonnement oul toutes les ondes sont
incohérentes, les questions de cohérence n’interviennent pas explici-
tement. Pour nous en rendre mieux compte et pouvoir voir comment
on pourrait dans le cas des lasers compléter le raisonnement d’Einstein
par des considérations de cohérence, nous allons reprendre ce raison-
nement et chercher a I’adapter au cas des lasers.

2. Le raisonnement d’Einstein et son application aux lasers.

On sait qu'en 1917, dans un Mémoire resté célébre, Albert Einstein
était parvenu & établir un lien entre la loi de distribution spectrale du
rayonnement noir due a Planck et la loi des fréquences de Bohr par
lintermédiaire de la formule de distribution canonique de Boltzmann-
Gibbs. Son raisonnement était le suivant. Considérons des atomes d’un
méme élément ayant deux états quantifiés d’énergie E, et E.<<E,
et supposons-les plongés dans un rayonnement noir qui remplit une
enceinte maintenue a la température absolue T. D’aprés la loi des
fréquences de Bohr, I'un de ces atomes, s’il subit la transition 12
ou la transition inverse 2-»1, émettra ou absorbera un photon de
fréquence
_ BB

(1) v 7

ol h est la constante de Planck. Einstein suppose alors que, si I'un des
atomes est dans 1’état initial d’énergie E,, la probabilité par unité de
temps pour qu’il absorbe un photon d’énergie hv empruntée 4 une compo-
sante de fréquence v du rayonnement noir ambiant est égale a B o(v),
olt p(») est la densité spectrale du rayonnement noir pour la fréquence v
et o B est une constante. Si, au contraire, I’atome se trouve dans I’état
initial d’énergie E,, il pourra passer dans I’état final d’énergie inférieure E,
de deux facons différentes, soit par un processus d’émission « spontanée »
dont la probabilité par unité de temps aurait une valeur constante A,
soit par un processus d’émission « stimulée » dont la probabilité par unité
de temps serait égale a B o(v), B ayant la méme valeur que dans le cas
de I'absorption.

Or, dans I’état d’équilibre thermodynamique, la proportion %r: des
atomes se trouvant dans I'état E. et dans I’état E, est donnée, d’aprés
la loi de distribution canonique de Boltzmann-Gibbs, par la formule

E,

T hv
. Ng e kT _ﬁ
(2) o = — =
kT

e

d’aprés (1), ou k est la constante de Boltzmann.



78 CHAPITRE VI

Il est alors évident que I’équilibre thermodynamique implique la
relation

) Ni(A+Bp(v)) =NBp(v)
et, de (2) et de (3), on tire aisément
) o (V) =~y

B <e'<—T—1>

Pour retrouver la loi de répartition spectrale de-Planck pour le rayon-
nement noir qui s’écrit

(5) o (v) = 8xhv3 I

c3 hy
ek T

—1

olt ¢ est la vitesse de la lumiere dans le vide, il suffit de poser

8xhv3

c3

(6) A=B ,
importante relation entre les constantes A et B.
La formule (6) est aujourd’hui couramment appliquée aux masers

et aux lasers. Elle montre, en particulier, que le rapport % du coeflicient

d’émission spontanée au coefficient d’émission stimulée est beaucoup
plus grand pour les lasers que pour les masers en raison de la valeur
beaucoup plus élevée de la fréquence, mais que les perturbations de
I'émission stimulée par le « bruit » dft & I'émission spontanée restent trées
faibles méme pour des fréquences trés supérieures a celle du spectre visible.

On peut cependant se demander si la théorie d’Einstein est vraiment
applicable aux masers et aux lasers. En effet, dans ces dispositifs, les
atomes ¢metteurs ne sont nullement soumis & un rayonnement noir,
mais bien a I’action d’une onde de fréquence et de direction bien déter-
minées. La formule de distribution canonique (2) n’est donc pas appli-
cable avec la notion usuelle de température. Cependant la théorie de la
quantification du champ électromagnétique a permis de démontrer que
la formule (6) est valable pour les masers et pour les lasers. Dans une
Note adressée a I’Académie des Sciences de Lisbonne pendant I’été de 1963,
j'ai donné a cette démonstration une forme trés simple en raisonnant
sur le cas des lasers. Je vais maintenant reproduire cette démonstration,

Pour éviter de faire appel au formalisme lourd et abstrait de la théorie
quantique des champs, nous allons transformer I'’expression des proba-
bilités obtenue par Einstein d’une fagon qui les rendra applicables aux cas
autres que celui du rayonnement noir,

Une formule bien connue due & Jeans nous apprend que, dans une
enceinte de velume V, le nombre des ondes stationnaires de fréquence v
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correspondant 4 un intervalle spectral dv qui peuvent s’établir dans
cette enceinte est égal a

8 7::1~ Y dv.
o7

(5 N(v) dv=

La densité o(v), qui intervient dans le raisonnement d’Einstein, a donc
pour valeur

(%) o (v) = 8z _ 8zhvi_

Ty
—7nhvy= -
3 C.l

ou R est le nombre moyen des photons portés par les ondes incohé-
rentes de fréquence v du rayonnement noir. D’aprés les hypothéses
d’Einstein, les probabilités P;, et P,; des transitions 1 -2 et 2 ~1
sont données par

Snhvi
‘})12=J\+Bp(v)=n (),
(9) .
Sxhvd _
‘1‘21: Bo(v) =B TC:SV 7.

Pour généraliser ce résultat en dehors du cas du rayonnement noir,
il parait naturel d’admettre que, d’une facon générale, la probabilité
du passage de la valeur n a la valeur n4-1 du nombre de photons
portés par une onde électromagnétique de base a la suite d’une transition
quantique est proportionnelle 4 n + 1, tandis que la probabilité de la
fransition inverse est proportionnelle a n.

Soit alors un laser dont la cavité a un volume V et, dans cette cavité,
une onde stationnaire de direction déterminée et de fréquence v qui
porte n photons. D’aprés ce que nous venons d’admettre, si un atome
placé dans la cavité est initialement dans I'état d’énergie E,, la proba-
bilité par unité de temps de son passage dans 'état d’énergie supérieure E,
avec absorption d’un des photons de I'onde est P,; = Cn. Si, au contraire,
I’atome est initialement dans I’état E,, il pourra passer dans I'état d’énergie
inférieure E, avec I’émission d’un photon supplémentaire sur 'onde qui
porte déja n photons et la probabilité par unité de temps de cette tran-
sition sera P}, = C(n - 1). Mais cet atome peut aussi passer dans I'état
d’énergie E, avec émission d’un photon sur I'une quelconque des auires
ondes stationnaires de fréquence qui peuvent s’établir dans la cavité
de volume V et, compte tenu de la formule (7), la probabilité par unité

nv?
803

de temps d’une telle émission est P/, = C< V-—-—I). La présence du

terme —1 dans la parenthése est justifiée par le fait que, par le calcul
de P,, nous avons déja tenu compte de I'onde qui porte n photons,
Finalement la probabilité de la transition 1 — 2 par unité de temps est

o
8xny v
o3 ’

(10) Po=P,+Pls=Cr+0C
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Or nous devons évidemment prendre pour expression de la denSIte
d’énergie ¢ (v) de I'onde a n photons :

(1) (v) = n/Lv
ce qui nous donne
(12) Pp_cg—“—\ +C—p(v)

Si nous voulons, avec Einstein, écrire cette probabilité sous la
forme A 4+ B o(v), nous devons poser

(13) A=cdyv. poct,
: = v
d’ol
) A 8=hvs
4 == .
(14) B ¢t

Nous retrouvons ainsi la formule (6) d’Einstein, mais ici cette formule
a été obtenue sans avoir fait intervenir ni le rayonnement noir, ni la
notion de température, ni la formule de Boltzmann-Gibbs.

Un autre avantage de cette démonstration, c’est que la formule (10)
en séparant nettement le terme Cn qui correspond a I'émission d’un

photon cobérent sur I'onde de fréquence v et le terme C 8%':—'\7 qui, lui,

correspond a I'émission de photons incohérents sur 'une quelconque des
ondes pouvant s’établir dans la cavité, exprime clairement la différence
de nature des deux sortes d’émission. Il apparait ainsi qu’en écri-
vant P,,=C(n-1), on bloque ensemble, d’une fagon qui préte a
confusion, une émission provoquée cohérente et une émission spontanée
non cohérente. Cette maniére de faire utilisée dans la forme actuelle de
la théorie des champs électromagnétiques quantifiés sans tenir compte
de la différence de nature des deux sortes d’émission nous parait consti-
tuer I'un des points faibles de cette théorie.

3. L’interférence des ondes émises par deux lasers.

11 est aujourd’hui certain que les lumiéres émises sur la méme fréquence
par deux lasers peuvent interférer. La preuve en a été apportée par
un beau travail expérimental effectué avec beaucoup d’habileté par
MM. G. Magyar et L. Mandel ().

Ces auteurs ont utilisé deux lasers a rubis et ils ont eu a surmonter
la difficulté que je vais exposer. Un dispositif d’excitation permettait
de déclencher synchroniquement le fonctionnement des deux lasers

(') Bibliographie [22].
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a rubis, mais pendant chaque période de fonctionnement, chacun des
deux lasers émettait indépendamment et aléatoirement sur la méme
fréquence des trains d’ondes dont la durée d’émission était d’cnviron
une demi-microseconde. Ces trains d’ondes partant de 'un ou de I'autre
laser arrivaient la plupart du temps isolément sur I'appareil susceptible
d’enregistrer les interférences de sorte qu’en raison du voile ainsi produit
aucun enregistrement de frange ne pouvait étre obtenu. Tournant cette
difficulté 4 'aide d’un dispositif trés ingénieux, Magyar et Mandel sont
arrivés a ne faire fonctionner l'appareil d’enregistrement des inter-
férences que quand deux trains d’ondes venant de chacun des lasers
arrivaient presque simiultanément a I'entrée de cet appareil : grace
a cette synchronisation des trains d’ondes admis dans l'appareil d’inter-
férences et a la condition que la différence des chemins optiques et la
durée d’enregistrement fussent inférieures a la microseconde, il devait étre
possible, d’aprés les prévisions de la théorie ondulatoire -classique,
d’obtenir des franges d’interférences. Et c’est bien ce que I'expérience
a permis de vérifier.

Ainsi il semble bien établi que les trains d’ondes émis par deux lasers
peuvent interférer quand ils se superposent et les calculs développés
d’aprés. la théorie des ondes lumineuses de la maniére indiquée au
chapitre précédent rendent parfaitement compte de ce fait. Du point
de vue que nous adoptons, ce résultat apparait comme tout naturel.
Pour nous, en effet, chaque laser émet de temps en temps une onde
électromagnétique de faible amplitude sous la forme d’un assez long
train d’ondes transportant un grand nombre de photons cohérents.
Si deux de ces trains d’ondes provenant chacun d’'un des deux lasers
arrivent simultanément a l'entrée de l'appareil d’interférences, ils se
superposent classiquement : les photons qu’ils apportent sont alors guidés
par l'onde résultant de leur superposition et, par suite, ils se répartissent
statistiquement proportionnellement aux intensités locales de cette onde,
ce qui explique immédiatement la possibilité d’enregistrer les interférences.

Divers auteurs sont parvenus a rendre compte du résultat expérimental
obtenu en restant dans le cadre de la théorie quantique des champs,
mais c’est seulement en introduisant des modifications assez arbitraires
dans le formalisme usuel de cette théorie. Il nous parait certain que la
conception que nous proposons est beaucoup plus simple et qu’elle a
T'avantage d’offrir une image claire et probablement beaucoup plus
exacte de la réalité physique.

La conclusion qui précede nous parait d’ailleurs confirmée par une
belle expérience récente de MM. Pfleegor et Mandel (Phys. Rev., 159,
n° 5, 25 juillet 1967, p. 1084). Ces deux physiciens ont obtenu les franges
d’interférences dues a la superposition des ondes émises par deux lasers
indépendants dans des conditions telles qu’il n’y avait pratiquement
jamais deux photons arrivant a la fois dans 'appareil d’interférences.

L. DE BROGLIE. 6
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L’interprétation de ce résultat a I'aide des idées actuellement admises en
Physique quantique parait difficile. Au contraire, elle nous semble
résulter trés clairement et trés naturellement des idées exposées dans
le présent volume comme nous 'avons montré dans une Note actuel-
lement sous presse dans la Physical Review.

4. Peut-il y avoir des collisions entre photons ?

En théorie classique de la lumiére, si deux faisceaux de lumiére se
croisent dans le vide, il ne peut y avoir entre eux aucune interaction
parce que, les équations de propagation étant linéaires, les faisceaux de

Y
Dy
Vi
. Wi ~ 0 o0, «
Xy
Vi
V2
Do
Fig. o.

lumiére se croisent sans s’influencer. Mais, si I’on fait intervenir 1’exis-
tence des photons, il semble qu’il pourrait en étre autrement. En effet,
un photon appartenant & l'un des faisceaux pourrait passer trés prés
d’'un photon de I'autre faisceau et cette « collision » des deux photons
pourrait s’accompagner d’un échange important d’énergie et de quantité
de mouvement. J’avais fait autrefois le calcul trés simple d’un phéno-
meéne de ce genre et je vais le reprendre rapidement.

Supposons, pour simplifier, deux faisceaux de lumiére de fréquences v,
et v, se propageant respectivement le long de deux axes rectangu-
laires Ox et Oy.

Au voisinage du point O, les faisceaux se croisent et une collision
entre photons serait possible. Si une telle collision a lieu, les photons
seront déviés dans des directions D, et D, avec les fréquences v, et v).
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La conservation de I'énergie et des composantes de la quantité de mouve-
ment nous fournissent alors les trois équations

& vy + Ry = hvy—+ hove,

!
(15) e c o c
vy A fovy
s ¢ .
¢

Si v, et v, sont connus, on pourra éliminer a, entre les équations (15)
et calculer v, et v, en fonction de «,.

Sans faire le calcul dans le cas général, nous envisagerons le cas parti-
culier ot I'on a v, = v, = v, et, en supposant o, = a, = 45°, nous consta-
terons que les deux derniéres équations (15) sont identiques : on obtient
donc alors le systéme de deux équations compatibles

(16) V) -F vy = 2y, Vi — vy =29

qui correspondent au cas de figure suivant :

Y
D4
i
V1
V4 0 45° %
L5°
\).2
Y2
D2
Fig. r1o.

En additionnant les deux équations (16), on obtient

(17) =22 o,

ou, en longueurs d’onde,
(18) )\11 =
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Si nous supposons que A, = 0,67 1, nous trouvons i, ~ 0,4 p. Ainsi la
collision de deux photons rouges en O, pourrait nous fournir un photon
violet dans la direction D.

Avec les sources de lumiére usuelles méme les plus intenses, la densité
des photons dans les ondes est si faible que la probabilité de rencontre
de deux photons est négligeable de sorte que le phénomene étudié ci-dessus
doit de toute fagon étre inobservable. Mais peut-étre pourrait-il en étre
autrement avec des lasers de trés grande puissance : I'expérience actuel-
lement irréalisable mériterait certainement alors d’étre tentée.
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FLUCTUATIONS DE L’INTENSITE LUMINEUSE
ET INTERFERENCES DU QUATRIEME ORDRE.

1. Introduction.

La lumiére émise par les sources habituelles, qu'on peut appeler la
lumiére thermique, correspond essentiellement a un phénoméne de
nature aléatoire. On sait, en effet, que cette émission provient de trés
nombreuses transitions quantiques individuelles (et généralement indé-
pendantes) ayant lieu & chaque instant dans les atomes de la source
et les ondes lumineuses observées, somme de toutes ces contributions
élémentaires, ont des phases et des amplitudes qui changent aléatoi-
rement dans le temps.

C’est donc un fait remarquable que I’Optique classique, congue pour
Iétude des propriétés d’un tel rayonnement, ait pu se développer en
utilisant des fonctions « certaines », notamment des ondes planes mono-
chromatiques. La raison en est que la nature aléatoire de la lumicre
n’y est prise en considération que d’une facon en quelque sorte négative,
parce qu’on limite le domaine d’application de la théorie aux situations
expérimentales ou les fluctuations du rayonnement ont des effets négli-
geables. Prenons l'exemple d’une expérience classique d’interférences
et nous remarquerons que la théorie élémentaire habituelle n’y est utili-
sable que sous des conditions restrictives séveéres : il faut que les sources
interférentielles soient presque ponctuelles, qu’elles soient des sources
secondaires, que la région d’observation se borne 4 un certain voisinage
de la frange centrale, etc. On vérifie aussitét que, compte tenu du temps
de réaction relativement long des plaques photographiques ou de I'ceil
humain, ces restrictions ne font qu’effacer les effets des propriétés aléa-
toires de la lumiére, incompatibles d’ailleurs avec l'observation du
phénomene.

() Rédigé par M. Andrade e Silva.
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Une Optique aléatoire dont les racines sont anciennes est venue ainsi
s’ajouter 4 'Optique classique et I'intérét croissant qu’on accorde a juste
titre 4 la « théorie de la cohérence partielle » n’est pas sans rapport avec
certains progres scientifiques et techniques récents. I1 y a eu d’abord
la découverte de sources non thermiques de lumiére, dont 'effet Cerenkov
était un premier exemple et qui ont acquis une importance exception-
nelle avec la construction du laser; 1’étude de la cohérence y a gagné
de I'importance et de nouvelles possibilités de vérification. Mais, en outre,
on a construit des détecteurs lumineux de plus en plus rapides si bien
que les fluctuations du rayonnement, manifestation directe de ses
propriétés stochastiques, purent étre étudiées de plus prés.

En 1956, R. Hanbury-Brown et R. Q. Twiss ont apporté la preuve de
Pexistence d’un rapport entre les fluctuations d’intensité d’un rayon-
nement lumineux et les propriétés de cohérence de la source. Ils ont
mesure les nombres de photoélectrons émis par deux cellules soumises
au méme rayonnement pendant une longue suite d’intervalles de trés
courte durée et ont trouvé une corrélation, fonction des caractéristiques
de la source et de la géométrie du systéme. Autrement dit, malgré le bruit
de fond représenté par les coincidences « fortuites » dans les arrivées des
photons sur les deux systémes d’enregistrement, Hanbury-Brown et
Twiss ont détecté des coincidences « significatives » correspondant a une
sorte d’interférence des intensités lumineuses. Sil’on appelle interférences
du second ordre le phénoméne classique qui peut résulter de la super-
position de deux amplitudes, I'effet Brown-Twiss correspond effecti-
vement & des interférences du quatriéme ordre.

Ces remarquables expériences mettent en évidence un phénomeéne
qui par sa propre nature échappe totalement a la vieille Optique clas-
sique et dont l'importance est considérable. Importance théorique,
d’une part, car nous verrons que ces fluctuations d’intensité concernent
de prés les propriétés a la fois ondulatoires et corpusculaires de la lumiére,
mais aussi importance pratique comme Hanbury-Brown et Twiss surent
le montrer aussitdt. Un interférométre stellaire, construit par Hanbury-
Brown et coll. et basé directement sur cet effet fonctionne actuellement
en Australie, permettant de mesurer les diamétres apparents des étoiles
4 moins de 107 secondes d’arc prés. Cette précision est déja des dizaines
de fois meilleure que celle de la méthode classique de Michelson et les
possibilités de la nouvelle technique semblent loin d’étre épuisées.

Nous voulons analyser ici I'une des chaines de raisonnements qui
permettent de comprendre le contenu de l'effet Brown-Twiss et, pour
ce faire, nous tirerons profit d’une intéressante Note de E. M. Purcell
(Nature, vol. 178, 1956, p. 1449), reprise et développée par L. Mandel
(Proc. Phys. Soc., vol. 72, 1958, p. 1037). Mais nous essayerons surtout
de dégager l'apport du nouveau phénomeéne & la connaissance des
propriétés quantiques de la lumiere.
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2. Mesure des intensités lumineuses et dualisme onde-corpuscule.

Pour déterminer l'intensité d’un rayonnement lumineux on est forcé
de procéder de fagon indirecte car, en fait, ce qui est mesuré par le détec-
teur, plaque photographique ou cellule photoélectrique, est toujours
le nombre d’électrons arrachés 4 la matiére par l'arrivée de la lumiére.
L’analyse exacte d’un phénoméne mettant en jeu des intensités lumi-
neuses suppose donc la connaissance préalable des rapports entre I'inten-
sité recue et le nombre des photoélectrons émis.

On peut alors procéder comme I'ont fait notamment Mandel, Sudarsham
et Wolf (Proc. Phys. Soc., vol. 84, 1965, p. 435), en prenant un hamil-
tonien H,, qui représente les électrons liés d’un atome du détecteur
et en déterminant la perturbation introduite par I'arrivée de la lumiére.
On applique la méthode de la variation des constantes a I’hamiltonien

—
perturbé H,<4 H, o, A étant le potentiel vecteur qui correspond a une
onde plane presque monochromatique, H, peut simplement s’écrire
sous la forme

=
Hi= -2 A.J
mce

En effectuant le calcul on trouve en premiére approximation (') que
la probabilité élémentaire P (f) df d’observer un photoélectron pendant
le temps df est

(1) P(t)dt = al(2) dt,

I(¢) désignant l'intensité du champ lumineux a linstant £

Mais, si I'on ne s’intéresse pas a la forme explicite de la constante «,
on peut obtenir la méme expression par le raisonnement plus simple
et plus intuitif suivant. D’aprés la Mécanique quantique, la proba-
bilité d’émission d’un photoélectron par un systéme pendant le temps dt
est proportionnelle au nombre de photons qui y arrivent pendant cette
durée. Or nous savons encore que la probabilité d’arrivée d’un photon
est simplement proportionnelle 4 Vintensité globale du champ électro-
magnétique, c’est-a-dire dans ce cas & I(f)df. En combinant ces deux
lois statistiques indépendantes on retrouve bien la formule (1), dont le
contenu physique est ainsi plus clair.

On voit, en effet, que dans ’expression de la probabilité élémentaire
interviennent déja deux processus stochastiques différents. Il y a, d’'une
part, le processus aléatoire de ’émission des photoélectrons, ce qui
justifie que la constante « soit souvent appelée I' « efficacité de la
cathode » Mais il y a, d’autre part, le rapport aléatoire entre I'intensité

(*) Les effets non linéaires correspondants aux approximations d’ordre supérieur
ne deviennent importants que pour les trés grandes intensités.
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globale d’une onde et le nombre des photons qu’elle porte et, dans ce
sens, la formule (1) traduit surtout le dualisme onde-corpuscule. A I'inten-
sité classique de I'onde ne correspond pas une valeur certaine du nombre
de photons mais une simple espérance mathématique pour telle ou telle
¢énergie et la différence entre les deux conceptions ne devient frés souvent
négligeable qu’a cause de la loi des grands nombres.

Connaissant la probabilité d’observer un photoélectron pendant la
durée df, on peut aisément calculer la probabilité d’observer k photo-
électrons pendant lintervalle arbitraire (¢, {4 T). I1 suffit pour cela
de reprendre un raisonnement qui est classique dans la théorie des
processus stochastiques poissoniens.

Désignons par O(df) une grandeur infinitésimale par rapport a df
et supposons, plus explicitement, que la probabilité d’observer un photo-
¢lectron pendant la durée df comprise entre les instants { et {4 di
est o I(f)di-+ O(df), la probabilité d’en observer plus étant naturel-
lement O (df). Introduisons l'intervalle (o, {- df), qui peut se décom-
poser en deux sous-intervalles disjoints (o, f) et (¢, t + df) et deman-
dons-nous quelle est la probabilité d’y observer un nombre k>..1 d’élec-
trons. Il est évident qu'un tel événement peut avoir lieu de trois facons
différentes qui s’excluent mutuellement :

a. k électrons sont observés pendant l'intervalle (o, #) et aucun pendant
I'intervalle (¢, { + df); cela aura lieu avec la probabilité

Pr(t) [1— 2 1(2) dt — 20 (dt)],

P.(f) étant, par définition, la probabilité d’observer k électrons jusqu’a
Pinstant ¢ et 1—a I (f)di—20(df) élant celle de ne plus en observer
jusqu’a Vinstant {4 df.

b. k— 1 électrons sont observés pendant lintervalle (o, {) et un
autre est observé pendant lintervalle (i, { - df); la probabilité corres-
pondante sera

Pros () [aT () dt + O (dt)].

c¢. Enfin, k—m électrons (k> m > 1) sont observés pendant l'inter-
valle (o, f), les m autres étant observés entre { et {--dt; d’aprés nos
hypotheses, cet événement aura une probabilité négligeable devant celle
des événements précédents et nous n’avons pas 4 la considérer.

La probabilité d’observer k photoélectrons pendant la durée (o, t 4 df)
sera donc :

Pi(t + dt) = Pi(t) [1— a 1(t) dt — 2.0 (dt)] + Py (¢) [ 1(£) dt + O (d1)],
soit encore, en passant a la limite,

Pi (1) =—aI(2) Pe(2) + o 1(2) Py (2).
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Cette équation diftérentielle qui définit les probabilités P.(f) peut étre
résolue par récurrence. D’abord il est aisé de voir que pour la proba-
bilité P,(f) de n’observer aucun photon pendant la durée (o, f) on a

Py (1) =—a1(2) Py(2)

et, puisqu’il est certain que pendant une durée nulle on ne peut pas
observer aucun électron, on a Py(o) =1 et il vient

Py(t) = exp[——— f

On peut alors calculer la probabilité P, () d’aprés I'équation

4

1(2) dt].

Al
Py () =— 2 [(2) Py(8) + 2 () exp[—xj 1(0) ({t]

et, vu que P, (o) = o, on obtient

¢ :
P, (¢) :azf I(t)dtcxp[-—xf I(¢) dt].

On déterminerait de méme P, (f) :

{ 2 I3
Py(l) = l[af 1(8) r/t\ cxp[~af 1(:)4[]
" 0 | o

et, en passant au cas général, on vérifie que la probabilité¢ Pi(T)
d’observer k photoélectrons pendant la durée T comprise entre les
instants f et { + T correspond a la distribution de Poisson :

. ak
(2) Pp(T) = /{—!6_":

ol, bien entendu,
Al =T

(2") a_—_zj f(e)dt.
{

3. Le cas de la lumiére thermique et celui des lasers.

La distribution poissonienne que nous venons de trouver n’est qu'une
conséquence de 'expression (1) de la probabilité élémentaire d’observer
un photoélectron pendant le temps df et, de ce fait, elle exprime encore
essentiellement le dualisme onde-corpuscule. Le caractére probabi-
listiqgue des prévisions de 1'énergie d’un train d’ondes dont lintensité
serait connue apparait ici de facon explicite.

Le probléme qui se pose maintenant est celui de savoir sous quelles
conditions cette distribution sera observable. Elle le sera, évidem-
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ment, dans la mesure ou il sera possible de reproduire un grand nombre
de fois I'expérience de comptage du nombre des photoélectrons, mais en
utilisant toujours un rayonnement identique ou, tout au moins, de méme
intensité totale.

Supposons alors qu’on utilise une source de lumiere thermique aussi
« stable » que possible et qu’on mesure le nombre d’électrons émis par
un détecteur pendant une suite d’intervalles identiques de durée T,
On ne retrouvera pas pour autant la distribution poissonienne en ques-
tion car, en raison du caractére aléatoire de I’émission lumineuse, le
détecteur ne recoit pas le méme rayonnement pendant deux mesures
successives. Pour prendre en considération ces variations d’intensité
il y a lieu d’introduire une seconde statistique qui, nous le verrons
bientét, nous écarte plus ou moins de la distribution de Poisson. On remar-
quera qu’on retrouve ainsi la situation habituelle en Mécanique statis-
tique quantique, deux processus stochastiques de nature différente
y étant toujours superposés dans la loi de distribution d’un observable :
le premier traduit le caractére probabiliste de la Mécanique des quanta
elle-méme, le second correspond a lincertitude classique sur I'état du
systéme,

Mais la situation est toute autre si, 4 la place de la source thermique,
nous utilisons un laser ou, plus exactement, une onde laser vibrant sur
un seul mode. Les propriétés de cohérence de la lumiére seront alors
telles qu’il devient naturel d’admettre que le détecteur réagit a des
échantillons de rayonnement pratiquement identiques et il ne restera
en jeu que la nature probabiliste des lois quantiques. En d’autres termes,
la distribution de Poisson deviendra observable et la suite des mesures
déterminera un nombre moyen de photoélectrons 7y correspondant a (2),
c’est-a-dire

(3) nT__EAPk_E(/(_I)Y —a=a,

a étant toujours défini par (2'). De méme, d’aprés la propriété bien
connue de la distribution de Poisson, on aura

(4 1_2‘%=Zkgp/¢=¢z(a+1)
et donc la variance du nombre de photoélectrons observés doit étre
J— 4 l‘
(5) mi—m=a [ 1) di=my.
0
Cette prévision semble bien d’accord avec les mesures faites par plusieurs

équipes (BeLLisio, FReeD et Haus, Appl. Phys. Letters, vol. 4, 1964, p. 5;
ARrRMSTRONG et SmitH, Ibid., p. 196; BAILEY et SANDERS, Phys. Lellers,
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vol. 10, 1964, p. 295), mesures qui apportent ainsi une nouvelle confir-
mation des postulats statistiques de la Mécanique ondulatoire.
Revenons alors au cas de la lumiére thermique et cherchons a calculer
la valeur correspondante de la variance. Nous supposerons toujours que
la source est stationnaire et ergodique, de facon a pouvoir confondre les
moyennes prises dans le temps et celles prises sur un ensemble. Mais,
selon les remarques précédentes, les nombres moyens déterminés par la
suite des mesures contiendront tout de méme une double statistique et
nous représenterons donc ces valeurs moyennes par une double barre.

On aura, d’abord,
T

(6) TzT=zz=af T(0) dt = alT
0

et 'on voit que le nombre moyen de photoélectrons émis pendant I'en-
semble des observations reste proportionnel a I'intensité moyenne de la

lumiére regue. Calculons alors ni en écrivant

I N T 2 AT
}ﬁ=,z<a+1)=laf I(t)dt] +aj 1(¢) dt,
0 0

c’est-a-dire

e

_ T T
(7) " =a2f f [0 1(7) dtdd + 1T
¢ L]
et I'on remarque déja que la valeur de la variance ITT’——;zT ne sera plus,
en général, proportionnelle & l'intensité moyenne. La raison en est,

évidemment, que la valeur de I(f) [() ne coincide pas avec celle du

produit I(f).T(#), sauf si les intensités lumineuses & deux instants ¢
et f/, aussi rapprochés soient-ils, sont statistiquement indépendantes.
En d’autres termes, on n’observera la valeur poissonienne de la variance
en utilisant de la lumiére thermique que si cette lumiere est parfai-
tement incohérente ou, plus exactement, que si les effets des propriétés
de cohérence deviennent négligeables. S’il n’en est pas ainsi on peut
prévoir un écart d’autant plus important que les propriétés de cohérence
seront plus sensibles.

Pour exprimer quantitativement cette situation introduisons la cova-
riance de la fonction aléatoire I(f) qui est, par définition,

U, ¢) =1y L),

La source lumineuse étant supposée stationnaire, la covariance ne sera
qu'une fonction de t— 1 et nous écrirons donc

AT T T T
/ f NG dtdt’:f f T(t—1t)dede.
h] )] [ 0
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Faisons le changement de variables défini par les relations

T=t—0, vT=t+1

et I'on pourra intégrer par rapport a 7’ pour obtenir

T T T
) I(t) dtdt = (T —|=<|) ' (7)d=.
VAVARCHG S

Mais, comme on sait que la covariance d’une fonction stationnaire est
nécessairement une fonction paire de {—1#, on peut écrire a la place

de (7) :
— T
(8) ni = np+ 2a'lf (T—r) I'(z) d~.

Pour poursuivre le calcul nous avons besoin de connaitre plus expli-
citement la fonction d’autocorrélation I'(r) de lintensité de la lumiére
thermique. C’est une circonstance heureuse que cela soit possible en
utilisant simplement des hypothéses physiques trés générales sur le
processus d’émission et un puissant raisonnement de la Théorie des
Probabilités que nous allons rappeler.

4. Expression de la covariance de l'intensité.

Soit une suite de variables aléatoires z,, ©., ..., Z,, ... satisfaisant
aux deux hypothéses suivantes :

a. Pour tout n donné, les variables x; sont indépendantes dans leur
ensemble.

b. Les x; ont tous la méme loi de probabilité, loi qui a une moyenne
finie (nous la prendrons nulle, au besoin par un changement de variables)
et une variance o? elle aussi finie.

On sait alors démontrer (voir, par exemple, J. V. UpeNsky, Iniroduclion

n

to Mathematical Probability, New York, 1937) que, si X,= ¥z, la
1

variable réduite correspondante \/’L a une loi de probabilité qui tend
TV

vers la loi normale réduite quand n — co.

Ce théoréme, dont l'idée revient a Laplace mais qui ne fut démontré
rigoureusement par Markov et Liapounov qu’a la fin du siécle dernier,
est suggestivement appelé par les auteurs de langue anglaise « the central
limit theorem ». Sa grande valeur provient de ce qu’il permet de prévoir
la loi de probabilité de X, sans connaitre celles des x; et cela justifie
en quelque sorte l'importance pratique de la distribution normale.
L’application au cas de la lumiére thermique est immédiate.
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En effet, on sait que le champ lumineux produit par une source ther-
mique n’est que la somme des contributions élémentaires des atomes ou
des molécules qui la composent. Si la source est homogéne (') le champ
observable n’est donc que la somme d'un grand nombre de contri-
butions identiques et pratiquement indépendantes, dont les valeurs
moyennes et les variances sont de toute évidence finies. On peut donc
dire que la probabilité pour que I'amplitude d’'un champ lumineux ther-
mique soit comprise entre les valeurs V et V+dV est donné
par P(V)dV avec

292

P(V) = ‘/l__cxp _u—l, 52:(\,*_\7—)2.

gy 27

La simple existence de cette distribution de probabilités confirme
I'idée que les échantillons de lumiére thermique re¢us par un détecteur
pendant une suite de mesures de courte durée n’ont pas la méme intensité
globale, I’écart moyen étant plus ou moins grand selon la valeur de la
variance des rayonnements élémentaires. Il est donc prévisible que ¢’est
de la largeur de bande de la source que dépendra finalement I'importance
pratique de lintroduction d’une seconde statistique pour la lumiére
thermique, c¢’est-a-dire I’écart par rapport a la distribution de Poisson.

Le théoréme précédent peut étre généralisé au cas des vecteurs aléa-
toires. LEtant données deux suites de variables aléatoires z,, ., ...
et ¥, J», ..., on introduit une suite de vecteurs aléatoires vy, v,, ...,
le vecteur »; étant défini par la paire (x;, y;); ces vecteurs sont encore
supposés indépendants dans leur ensemble. Soit ensuite le vecteur résul-

I

N\ r s
tant V,L=>_‘v[, dont les moments du second ordre s’écrivent

Il suffit alors d’admettre, par exemple, que les suites x; et y; sont
telles que

n 7
S\ . L3 .
W CRRoED RS 5 R
i=1 i=—1
pour qu’on sache démontrer que la loi de probabilité du vecteur V, tend
vers la loi de Gauss 4 deux variables quand n — oo, En d’autres termes,
quand n est suffisamment grand, la probabilité de trouver a la

(') La généralisation au cas d’une source chimiquement hétérogéne résulte simple-
ment du fait que la somme de deux variables normales indépendantes est encore
une variable normale.
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n n

fois X,,=in dans lintervalle (X, X 4 dX) et Yn=z y: dans linter-

i=1 =1

valle (Y, Y 4 dY) sera pratiquement équivalente a P (X, Y)dX dY, ou

P(X,Y) =

I [ "H22X2+“,,\’2~2H,2)\'\'J
7 exp|— _, .
2 ({1 2 — (4§ 3)

27 (g Poa — 435 )7

Pour calculer aisément les moments X¢Yr—7, la méthode la plus
simple est d’introduire la fonction caractéristique

P (a, B) = exp [~ I; (11224 oo B2 2 Uga 1}3)]
et d’utiliser la relation classique

ar d (o, 0)

P X7 YP—y = _
dar J3r—1

car, de cette facon, on obtient immédiatement

— -—3
X2Y2= ‘LJ.“}LH—%—‘Z‘U.‘%._?: X2, Y24+ 2XY .

Quoique le sens physique des conditions (g) ne soit pas évident,
on remarque sans peine qu’elles devront é&tre satisfaites dans le processus
de Pémission de la lumiére thermique. Et, en assimilant les variables X
et Y aux valeurs de I'amplitude aux instants ¢ et {4 7, on transcrit
la relation précédente sous la forme

>

T+ =1 2V V(ir) .

C’est Dexpression recherchée de la covariance de l'intensité. Nous
pouvons I'exprimer en fonction de la covariance de 'amplitude parce que
Ia distribution de cette amplitude est gaussienne et, dans ce cas, la valeur
de V(O V({4 7) définit complétement la continuité des phénoménes
dans le temps.

On sait par ailleurs qu’il y a des rapports étroits entre la covariance
de Yamplitude du champ et la densité spectrale d’énergie correspon-
dante : en introduisant, par exemple, le degré de cohérence ou covariance
normalisée
Vi)Y V{t+=x) ,

I

Y (t) =

le théoreme de Bochner-Kintchine permet d’écrire sous des hypothéses
tres générales que

(10) Y (?) :J glxyexp(anite) dz,
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1(7) étant maintenant défini en tant que fonction complexe et g(v — vo)
représentant la densité spectrale normalisée de la lumiére. La covariance
de lintensité peut alors s’écrire sous la forme

(11) ()1 (t—+—-:)__l (1+ v (%)),

v(7) étant toujours donné par (10).

5. Fluctuations d’intensité et interférences.

Reprenons la formule (8) de n pour y introduire I'expression de la
covariance de I'intensité que nous venons de trouver. On obtient

— o AT
ni=rnp+201 f (T —=) (14| v(x) ]?) dr,
0
c’est-a-dire

- = o AT
PR [Ti—f—za‘llf (T—1) |y () P
1]

ou encore, en tenant compte de (6),

(12) ng—

Il

~
R

7 :%[—&—20&1 f (T —=) [v(x) |2 dr.

C’est l'effet qu’'on doit observer quand on fait une suite de mesures
des fluctuations de l'intensité de la lumiére thermique. Si on le met en
paralléle avec I'expression correspondante (5), valable notamment dans
le cas des sources laser, on note la présence d’un terme supplémentaire,
caractéristique de la lumiére thermique. A moins de connaitre la forme
de la fonction y(z), qui varie d’'un cas a un autre, on ne peut pas,
en général, calculer explicitement ce terme supplémentaire, mais cela
est néanmoins possible dans deux cas extrémes trés intéressants.

Désignons par 7, le temps de cohérence de la lumiere, c’est-a-dire un
temps qu’on peut rapprocher intuitivement de la durée moyenne des
trains d’ondes lumineux. On sait alors, d’une part qu'on peut écrire

(13) To_f 1*{(1) 2 d<

et, d’autre part, que y(t) =~1 n’est appréciable que pour des valeurs
de = qui sont, au plus, de l'ordre de 7.

Supposons d’abord que les conditions expérimentales soient {elles que
la durée de chaque observation est trés supérieure au temps de cohé-
rence de la lumiére étudiée, T > 7,. Puisque y(r) est nécessairement
une fonction paire, la formule générale (12) peut maintenant s’écrire
avec une trés bonne approximation

. T
B e IO

i

:w
~n

14

o
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ou encore, grice a (13) et a (6),

= =2 = To =2

4 n}—fp=nyp+ = ng.

(14) T ey Ny T T
Par contre, si la situation conduit & poser T =z ,, (12) devient prati-

quement
= —y - —2 T
ng— iy =ny+ 2221 |y(o) lﬂf (T —=x)d=
0
et I'on voit que cela revient a écrire
(15) ng— ny = rip -+ iy

Nous retrouvons encore un terme supplémentaire en n; mais dont
I'importance numérique est devenue bien plus grande qu’en (14) du fait

quil n’est plus multiplié par le facteur trés petit devant l'unité —:I—?

Il est maintenant aisé de comprendre l'origine des coincidences « signi-
ficatives » observées par Hanbury-Brown et Twiss. En définissant I’écart

type An de la facon habituelle

1
T

2)
i1/ s

(15), par exemple, donne pour un ensemble de deux détecteurs, comme I'a
rappelé plus haut M. Louis de Broglie,

I

-

L

~

(16) Areg Ana = 1. g,

qui est I'une des expressions possibles de Peffet Brown-Twiss ().

6. Sur la nature des fluctuations.

Les fluctuations des nombres de particules autour de la valeur moyenne
qui correspondent respectivement aux distributions de Maxwell-
Boltzmann et de Bose-Einstein s’écrivent

(17) ()

N n

/oD 2
An
(18) " ) !

() Nous n’avons considéré ici que le cas de la lumiére complétement polarisée.
Dans le cas contraire, il y aurait lieu d’introduire dans les formules le degré de pola-
risation P, qui peut varier entre o et 1; I'expression (16) s’écrit alors

1+P= =
n.n,.

An An, ==
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tandis que les expressions (14) et (15) que nous venons de déduire
peuvent se mettre sous la forme

NV , .
(14) ( *5‘) == o (el
. L ;
VAN
» (EYoie e
.7 7

On vérifie que (15") coincide avec (18) et que (14’) est pratiquement
équivalent a4 (17) ou, en d’autres termes, que selon que 7,.»T ou
que 7,==T les photons se comportent ici comme des véritables bosons
ou presque comme des particules classiques.

I1 est bien connu que la seule différence essentielle entre la statistique
classique et celle de Bose-Einstein réside dans le nouveau comptage des
complexions qui résulte de la perte d’individualité attribuée aux bosons,
ce qu'on appelle leur indiscernabilité. Les formules (14’) et (15') illustrent
donc les rapports étroits qui existent entre l'indiscernabilité des
corpuscules et la cohérence des ondes, I'indiscernabilité n’y jouant plei-
nement que si la cohérence est assurée pendant toute la durée de ’obser-
vation et tendant & disparaitre dés que les effets dus a la cohérence
s’amenuisent. Dans le cas limite d’un rayonnement incohérent (=, = o),
les photons se comportent comme des particules tout a_fait classiques
et I'on retrouve I'expression des fluctuations qui correspond, soit & la
distribution de Maxwell-Boltzmann (17), soit a la loi de Poisson (5).

Nous remarquerons a ce propos que des considérations analogues
pourraient aussi se faire & propos des interférences du second ordre.
En effet, on sait que 'observation de franges d’interférence n’est assurée
que dans la mesure ou il y a cohérence entre les champs lumineux qui se
superposent; en particulier, si les deux champs ont la méme intensité,
la visibilité 2> des franges

V= lnmx*’“ Imiu
Fuax =+ Liin

coincide avec le degré de cohérence v (r). Or lapparition des franges est
directement liée a I'indiscernabilité, une figure d’'interférences ne pouvant
pas étre produite par des particules classiques. Il s’ensuit que la visi-
bilité des franges est aussi la mesure d’une sorte de « degré d’indiscer-
nabilité » des photons et, notamment, que quand la visibilité est nulle
le degré d’indiscernabilité est nul lui aussi, les photons récupérant alors
leur individualité pour se comporter comme des particules classiques.

Sans méconnaitre les limites d’une telle explication, on peut rappeler
4 ce propos la remarque suivante. Soit un train d’ondes lumineux dont
le temps 'de cohérence est 7, et la surface de cohérence S, de fagon qu’on

L. DE BROGLIE. 7
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lui attribue un volume de cohérence cz,S. Il est aisé de déterminer les
intervalles Ap., Ap,, Ap., dans lesquels sont comprises les quantités de
mouvement des photons portés par ce train d’ondes et, naturellement, on
vérifie que

(19) ctoS Ap, Ap, Apz e~ A

D’aprés linterprétation orthodoxe de la Mécanique des quanta,
il faut distinguer soigneusement I'incertitude de l'indétermination,
la frontiere entre les deux concepts étant définie par les relations
d’Heisenberg, interprétées comme des relations d’indétermination;
Pincertitude est un concept classique et c’est donc & l'indétermination
que se rapporterait 'indiscernabilité quantique. Si (1g) assure ainsi la
parfaite indiscernabilité des photons d’un méme train d’ondes, il n’en
est plus de méme s’il s’agit de deux ou plusieurs trains d’ondes diffé-
rents. On comprend que si le temps T d’une mesure est trés inférieur
au temps de cohérence t, des trains d’ondes, tous les photons regus se
trouveront dans la méme cellule h* de I’extension-en-phase ol ils seront
indiscernables et I'on doit retrouver les prévisions de la statistique de
Bose-Einstein. Par contre, si T > 7,, la mesure aura lieu sur des photons
placés dans un « volume » trés supérieur a k%, I'indiscernabilité se trouvera
affaiblie d’autant et le terme quantique de I’expression des fluctuations

viendra multiplié par le facteur correspondant jl('

Il est intéressant de rapprocher encore ces raisonnements d’une
remarque classique d’Einstein (Physik Z., vol. 10, 1gog, p. 185 et 817),
concernant la nature des fluctuations d’énergie dans le rayonnement
noir. On sait que selon la Thermodynamique classique la variance A3

d’'une densité moyenne d’énergie Aj=[p(v)— o (v)]° peut sexprimer
d’une fagon générale sous la forme
Jz

A;:kT"d—T

et, en appliquant cette formule & loi du rayonnement de Planck,
on obtient

22 (%)
(20) 3= B0 g,
~

ou Z, est le nombre d’ondes stationnaires par unité de volume et par
unité de fréquence. Or si I'on fait le méme calcul a partir de la loi de
Rayleigh-Jeans qui, rappelons-le, suppose que la lumiére n’est constituée
que par des ondes classiques, il vient

9 \52 v
(21) A‘;: —TEV—)—,
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tandis que si 'on part de la loi de distribution de Wien, expression d’un
rayonnement qui serait purement corpusculaire, le résultat corres-
pondant sera

(22) A3 = hvp(v).

Cela suggére que dans la loi de Planck sont contenues a la fois les
propriétés corpusculaires et ondulatoires de la lumiere et que, pour
ce qui est des fluctuations de I'intensité, leurs effets sont en quelque sorte

simplement additifs. L.e terme en é de (18), comme celui de (17), serait
12

ainsi de nature purement corpusculaire, le terme unité de (18) de nature
purement ondulatoire. Cette interprétation d’Einstein est d’ailleurs
soutenue par un calcul de Lorentz (Les théories statistiques en Thermo-
dynamique, Berlin, 1916, Note IX), qui démontra directement que la
densité des fluctuations d’intensité d’un ensemble d’ondes stationnaires
enfermées dans une enceinte a exactement la valeur (21). En outre,
en raisonnant sur un ensemble de photons d’énergie hv regardés comme
indépendants et dont la variance a, par conséquent, la valeur poisso-
nienne 77, Einstein a aisément retrouvé I'expression (22). On comprend
fort bien pourquoi Hanbury-Brown et Twiss ont attribué les coinci-
dences significatives qu’ils ont enregistrées aux propriétés ondulatoires
du rayonnement, les propriétés corpusculaires ne se faisant remarquer
que par l'aggravation du bruit de fond.

En opposition aux interférences classiques, susceptibles d’une inter-
prétation purement ondulatoire, les interférences du quatriéme ordre
exigent clairement la prise en considération du dualisme onde-corpuscule.
Nous I'avons exprimé ici en introduisant les rapports stochastiques entre
les intensités des ondes et les nombres des photons qu’elles portent et en
tenant compte des propriétés de cohérence du rayonnement. On aurait pu
essayer de prendre un langage uniquement corpusculaire, la plus oun
moins grande indiscernabilité attribuée aux photons observés pendant
le temps T traduisant alors l'existence simultanée de champs ondu-
latoires doués d’une certaine cohérence. Mais, de toute facon, on ne
ferait qu’exprimer cette étrange tendance des photons a se grouper
(photon bunching), qui est contenue dans la distribution de Bose-
Einstein et dont I'effet Brown-Twiss nn’est qu’une remarquable illustration.
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Assurément, il reste dans la théorie de la double solution bien des
points encore obscurs et des problémes difficiles a résoudre, notamment
en ce qui concerne l'incorporation du corpuscule dans la structure de
I'onde aboutissant & son guidage, la description des transitions quan-
tiques, les difficultés liées a I'étalement des trains d’ondes, etc. J’ai,
depuis plusieurs années, 'idée que ces questions ne pourraient étre
¢lucidées qu’en introduisant dans les équations d’ondes des termes non
linéaires qui, en raison de la petite amplitude de Yonde v de base
seraient normalement négligeables dans le corps des trains d’ondes
en dehors des petites régions constituant les corpuscules, mais qui
pourraient, dans certaines circonstances, devenir importants méme
en dehors de la région interne des corpuscules. Malheureusement, pour
Iinstant ces trés intéressantes idées sont encore tres difficiles & déve-
lopper, d’abord parce qu’on ignore la forme des termes non linéaires
4 introduire dans les équations d’ondes et aussi parce que la théorie
mathématique des équations aux dérivées partielles non linéaires est
encore peu développée. Mais il me parait vraisemblable que tout ce qui
parait impossible a représenter dans le cadre des théories linéaires
actuelles trouvera un jour son explication dans le cadre plus vaste des
théories non linéaires.

Si on laisse de coté ces difficultés qu’on parviendra peut-étre a
surmonter, il est certain que la théorie de la double solution fournit
une image trés claire de la coexistence des ondes électromagnétiques et
des photons et explique le fait, bien inattendu au premier abord, que la
théorie classique des ondes est largement utilisable pour la prévision
et linterprétation de phénoménes oti, pourtant, ’existence des photons
et de la structure corpusculaire des rayonnements s’affirme sans contes-
tation possible. Le but essentiel de ce petit Ouvrage était de mettre
ce fait bien en évidence.
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