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PREFACE

Pour faire comprendre le but que j’ai poursuivi en rédigeant ce petit 
Ouvrage, je ne puis mieux faire que de reproduire ici en guise de préface 
la Note que j’ai lue à l’Académie des Sciences le 22 juin 1964. En voici 
le texte (') :

La théorie des masers et des lasers attire de nouveau très vivement 
l’attention sur la nature des ondes électromagnétiques. Il est certain 
que toutes les ondes électromagnétiques transportent des photons. 
La chose est depuis longtemps bien établie pour la lumière et le fonc 
tionnement des masers ne permet plus d’en douter en ce qui concerne 
les ondes hertziennes. Un problème difficile et capital se pose alors. 
Quand une onde hertzienne vient agir sur le système oscillant d’un 
récepteur (circuit oscillant, antenne, cavité résonnante, etc.), la descrip 
tion de l’interaction de l’onde avec le récepteur peut se faire d’une façon 
parfaite à l’aide des équations de Maxwell, même pour les ondes milli 
métriques, et l’on peut dire que, jusqu’à ces dernières années, les radio- 
électriciens pouvaient ignorer complètement la structure « photonique » 
des rayonnements qu’ils utilisaient. Cependant, il est bien certain que 
l’énergie recueillie par le récepteur lui est délivrée d’une façon discon 
tinue, ce qui n’est aucunement contenu dans les équations de Maxwell. 
C’est à mes yeux le devoir des théoriciens de la Physique d’arriver 
à donner une image claire et précise de la façon dont peuvent se concilier 
la validité des équations de Maxwell et l’existence des photons.

Je me crois aujourd’hui en mesure d’aborder la solution de ce problème 
en utilisant la tentative de réinterprétation de la Mécanique ondu 
latoire que, partant des idées qui m’avaient guidé à l’époque de ma 
thèse de doctorat (1924), j’ai repris depuis une douzaine d’années sous

(l) C. R. Acad. Sc., t. 258, 1964, p. 6345.
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le nom de théorie de la double solution. Je ne ferai ici que rappeler le 
principe de cette théorie sans entrer dans tous les développements que 
j’ai pu lui donner. L’image que j’adopte, d’une façon générale, pour 
représenter la liaison d’un corpuscule et de son onde associée est la 
suivante : l’onde serait un phénomène physique d’une extrêmement 
petite amplitude qui se propagerait suivant les équations d’ondes de 
la Mécanique ondulatoire, mais cette onde de base comporterait une 
très petite région où son amplitude atteindrait une valeur très élevée, 
région qui constituerait le corpuscule. Le corpuscule se trouvant ainsi 
incorporé à l’onde serait guidé par la propagation de celle-ci et, point 
essentiel qui se trouvait déjà dans ma thèse, son mouvement serait tel 
que sa vibration interne resterait constamment en phase avec l’onde.

Si l’on applique cette conception générale au cas particulier de l’onde 
électromagnétique, on est amené, je l’ai montré dans un travail récent, 
à assimiler l’onde de base à une onde électromagnétique classique, mais 
de très faible amplitude, obéissant aux équations de Maxwell. Les 
photons étant des bosons qui peuvent se grouper sur une même onde, 
cette très faible onde électromagnétique de base peut comporter à titre 
d’accidents locaux de sa structure un grand nombre de photons dont 
les vibrations internes sont en phase avec elle.

Revenons maintenant au problème de l’action d’une onde hertzienne 
sur un récepteur. L’onde porteuse de photons a une amplitude si faible 
qu’elle ne peut mettre en oscillation un récepteur d’une façon sensible. 
Mais chaque photon qui agit sur le récepteur lui communique une 
impulsion brusque et, comme la vibration des photons est en phase 
avec l’onde qui les transporte, les impulsions rythmées qu’ils apportent 
au récepteur suffisent à le mettre en état d’oscillation régulière. 
En somme, l’action de photons sur un circuit oscillant serait la même 
que si celui-ci recevait une onde hertzienne de même phase que la très 
faible onde de base, mais ayant une amplitude beaucoup plus grande, 
et l’on voit bien ici la très grande importance de l’hypothèse que la 
vibration interne des corpuscules est toujours en phase avec l’onde qui 
les porte. Si cette conception est exacte, l’excitation d’un récepteur par 
une onde hertzienne présenterait une grande analogie avec la technique 
des transmissions par impulsions : dans cette technique, en effet, 
on envoie sur le récepteur non pas la totalité de la sinusoïde corres 
pondant à l’oscillation qu’on veut lui imposer, mais seulement de petits 
morceaux de cette sinusoïde et, si ces « échantillons » arrivent en nombre 
suffisant par période, le récepteur se met à osciller comme s’il recevait 
la sinusoïde tout entière. Concevoir de cette façon la mise en oscillation
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d’un récepteur par une onde hertzienne me paraît la seule manière de 
résoudre le problème difficile et capital dont j’ai parlé au début de 
cette Note.

Dans le cas de la lumière, les photons fournis par les sources lumi 
neuses usuelles sont émis indépendamment par les atomes de la source 
sur des trains d’ondes incohérents. Mais si la source est assez intense 
et de dimensions très petites, la théorie classique des ondes a conduit 
les spécialistes de l’optique à définir une quasi-cohérence due à la super 
position, pendant un temps très court par rapport à leur durée d’émis 
sion, des trains d’ondes émis par les différents points de la source. 
Comme l’ont fait remarquer MM. Maréchal et Françon dans un livre 
récent, les expériences de Brown et Twiss sur ce qu’on peut appeler les 
« interférences du quatrième ordre » ont montré que ces raisonnements, 
bien que purement classiques, sont entièrement valables malgré la struc 
ture quantique de la lumière. Cela se comprend aisément avec notre 
conception car les ondes de base, ayant un comportement classique, 
se superposent classiquement et c’est l’onde résultant de leur super 
position qui guide les photons qu’elle transporte et qui détermine, par 
son intensité, leur répartition dans l’espace.

D’autre part, la réalisation des lasers a eu une grande importance 
théorique car les lasers fournissent, par émission stimulée, de très 
nombreux photons qui sont cohérents, ce qui signifie pour nous qu’ils 
sont en phase avec une même onde électromagnétique de base. L’onde 
fournie par un laser a donc en principe la même structure qu’une onde 
hertzienne et peut, par suite, exciter une cavité résonnante. Mais l’étude 
des lasers a mis en évidence un fait fondamental : tandis que les photons 
émis dans un laser par émission stimulée sont cohérents, les photons 
qu’il émet par émission spontanée sont incohérents et ont, par suite, 
le caractère d’un « bruit » parasite. Or, dans le célèbre raisonnement par 
lequel Albert Einstein, dès 1917, avait introduit les notions capitales 
d’émission stimulée et d’émission spontanée, rien n’indiquait cette 
différence. La raison me paraît en être qu’Einstein envisageait le cas 
du rayonnement noir où toutes les ondes sont incohérentes et où l’idée 
de cohérence ne peut donc pas entrer en jeu. Il est donc certain que 
le raisonnement d’Einstein, dans son application aux lasers, doit être 
complété par des considérations de cohérence.

Finalement, les conceptions que nous préconisons nous paraissent 
apporter les éléments nécessaires à une représentation claire et ration 
nelle de phénomènes dont la coexistence posent depuis longtemps aux 
physiciens des problèmes en apparence insolubles.



VIII PRÉFACE

Tel est le texte de la Note que j’avais lue devant l’Académie des 
Sciences. Le but du présent Ouvrage est de reprendre les idées qui y sont 
développées en les précisant et en les développant car il nous paraît 
de plus en plus certain que seules des idées de ce genre permettront de 
remettre un peu de clarté dans les théories de la Physique quantique.

En terminant, je veux remercier M. Joaô Luis Andrade e Silva de la 
précieuse collaboration qu’il m’apporte depuis plusieurs années et, 
en particulier, du bel exposé sur la théorie de l’effet Brown et Twiss 
qu’il a écrit à ma demande et qui forme le dernier chapitre du présent 
Ouvrage.



ONDES ÉLECTROMAGNÉTIQUES 
ET PHOTONS

INTRODUCTION.

LE GUIDAGE DU CORPUSCULE 
PAR L’ONDE ET LA THÉORIE SYNTHÉTIQUE 

DE LA DOURLE SOLUTION.

1. But de l’Introduction.

Dans ces dernières années, j’ai écrit un assez grand nombre d’ouvrages 
et d’articles sur l’interprétation de la Mécanique ondulatoire que j’avais 
envisagée au moment de ma Thèse de Doctorat et que j’ai reprise 
depuis ig52. Je renvoie à ces écrits les lecteurs qui voudraient approfondir 
cette interprétation que j’ai pu récemment étendre et préciser de 
diverses façons (').

Je n’en veux donner ici qu’une vue sommaire en insistant sur les 
idées plus que sur les calculs et sans m’arrêter aux questions de détail 
que j’ai étudiées dans mes livres.

2. Origine de la Mécanique ondulatoire.

Quand j’ai fait mes premières recherches sur la Mécanique ondulatoire, 
mon but était d’étendre à tous les corpuscules la coexistence des ondes 
et des corpuscules qu’Einstein avait mise en évidence en 1905 dans sa 
fameuse Théorie des quanta de lumière. Je voulais obtenir en fin de compte 
une image physique claire de la coexistence du corpuscule et de l’onde, 
mais mon premier travail fut d’associer au mouvement d’un corpuscule 
le mouvement d’une « onde associée ». J’envisageai donc le cas le plus 
simple : celui d’un corpuscule en mouvement rectiligne uniforme en

(*) Bibliographie [1] à [6].
L. DE BROGLIE.
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l’absence de champ. Prenant la direction du mouvement comme axe 
des x, je parvins par des raisonnements qu’on trouve dans ma Thèse (') 
à lui associer une onde qui, sous forme complexe, s’écrit

2 7tiYvi— -
( i ) ? = a e ' 1

la fréquence v et la longueur d’onde A de l’onde étant reliées à l’énergie W 
et à la quantité de mouvement p du corpuscule par les formules bien 
connues

/l
(?.) W = hv, À = — •

P
Mais je pensais qu’il fallait finalement localiser le corpuscule dans 

fonde, sans quoi l’idée même de corpuscule disparaîtrait. Aussi avais-je 
l’idée que l’amplitude constante a attribuée à la fonction d’onde n’était
que provisoire et que seule la phase cp = vf— ™ était bien exacte. C’est
la raison pour laquelle je nommais alors l’onde que j’introduisais, 
« fonde de phase ». J’ai eu très vite à cette époque l’intuition que 
l’amplitude de fonde, bien que presque partout constante, devait 
comporter une sorte de singularité avec valeur locale très élevée de 
l’amplitude et que cette très forte inhomogénéité, très étroitement 
localisée dans fonde, devait constituer le corpuscule. Ceci me paraissait 
la seule manière d’obtenir une véritable image synthétique de la coexis 
tence de fonde et du corpuscule. Mais j’ai eu, dès le début, le tort de 
ne pas oser exprimer clairement l’idée que j’avais en tête et c’est là 
peut-être une des causes qui ont fait donner ensuite à la Mécanique 
ondulatoire une interprétation très différente qui, aujourd’hui, me paraît 
être inexacte et avoir pendant des années empêché les théoriciens de 
rechercher la véritable solution du problème.

Après le cas du mouvement rectiligne uniforme, j’avais étudié celui 
du mouvement d’un corpuscule dans un champ de force. Il en résultait 
que, du moins à l’approximation de l’optique géométrique, on peut 
écrire

i .
( 3 ) 'F = a ( Ji = ~ ^ )

l’amplitude a étant lentement variable, et qu’on avait

(4j IV = -7.1 p = — gradç.

On était ainsi amené à identifier le principe de Fermât appliqué 
à fonde ou au principe de moindre action de Maupertuis appliqué au 
corpuscule.

(■) Bibliographie [7].
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3. Premiers développements de la Mécanique ondulatoire.

Sans insister davantage sur les premières conséquences qu’on pouvait 
tirer de ma thèse, je rappellerai qu’au printemps de 1926, Schrôdinger, 
dans de mémorables travaux, écrivait le premier l’équation des ondes 
de la Mécanique ondulatoire et en tirait de remarquables conséquences, 
notamment en ce qui concerne le calcul des états quantifiés des atomes. 
Je me bornerai à rappeler que l’équation d’ondes de Schrôdinger pour 
une particule de masse m soumise à une force dérivant d’un poten 
tiel V s’écrit
(7> AM' - '"-VT = —"

Ti- U ât

et que, peu de temps après les travaux de Schrôdinger, divers théoriciens 
parvinrent à généraliser l’équation (5) en lui donnant la forme rela 
tiviste connue sous le nom d’équation de Klein-Gordon :

(6)   -
•>. i e <yr 
~h v 77 1 2fE (W

77
^ [ml e2 — s2 (V2 — A2) ] <T = o.

où mt, est la masse propre de la particule, e sa charge électrique, c la
vitesse de la lumière dans le vide, V et A le potentiel scalaire et le poten 
tiel vecteur du champ électromagnétique auquel la particule est soumise. 
L’équation (5) peut être considérée comme la dégénérescence non rela 
tiviste de l’équation (6) et l’on sait aujourd’hui que l’équation (6) n’est 
valable que pour les particules de spin o.

C’est alors que, primitivement sous l’influence de Max Born, on s’orienta 
vers une interprétation probabiliste de la Mécanique ondulatoire qui 
devait aboutir peu après à la théorie de la « complémentarité » déve 
loppée par Niels Bohr et ses élèves. Une des conséquences de ce mouve 
ment d’idées fut de donner à l’onde T le caractère d’une simple repré 
sentation de probabilités. En particulier, la quantité | lF |2 = | a(x, y, z, t) 2 
apparaissait dans ce formalisme comme la probabilité pour que le 
corpuscule manifeste sa présence par une action observable au point x, y, z 
au temps t sans que pour cela on maintienne l’idée d’une localisation 
constante du corpuscule dans l’espace. Mais, au fur et à mesure que cette 
interprétation se développait, je la voyais s’écarter de plus en plus des 
intuitions qui m’avaient primitivement guidé. Le corpuscule prenait un 
aspect fantomatique car l’on disait qu’avant de se manifester par une 
action locale, il était répandu « à l’état potentiel » dans toute l’étendue 
de son onde; quant à l’onde, elle n’était plus une véritable onde physique 
se propageant dans l’espace, mais un simple moyen mathématique de 
calculer des probabilités. Je voyais ainsi s’évanouir, dans le brouillard 
d’un formalisme correct mais obscur, les images concrètes et précises 
que j’avais espéré obtenir de la coexistence des ondes et des corpuscules.
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4. Le guidage des corpuscules par l’onde.

Alarmé de voir ainsi disparaître la synthèse précise que je souhaitais, 
j’ai essayé, notamment pendant les années 1926-1927, d’opposer à 
l’interprétation de la Mécanique ondulatoire qui se développait alors 
une interprétation en accord avec mes intuitions primitives (l). Pour 
atteindre ce but, j’avais utilisé les idées de M. Madelung qui venait de 
donner une représentation hydrodynamique de la propagation des ondes 
de la Mécanique ondulatoire. Cette représentation part de l’idée que, 
pour toutes les équations d’ondes utilisées en Mécanique ondulatoire et 
valables pour les différentes sortes de particules, il doit être possible de
définir, à partir de la fonction d’ondes, une densité p et un flux ov 
(formant les quatre composantes d’un quadrivecteur d’espace-temps) 
tels que l’équation de continuité exprimant la conservation du fluide

z . <)? ,. >
(7) -7---- h d I V p = O■' J dt r

soit satisfaite en vertu des équations d’ondes. Bien entendu, on en déduit
la valeur de v, vitesse locale du fluide dont on fait correspondre l’écou 
lement à la propagation de l’onde. Pour l’équation de Schrôdinger,

i- <p
on trouve avec fl’ — aen , où a et 9 sont des fonctions réelles de x, y, z, l :

> I ~~~(8) p = |fl’|2=a-, e=— —grado

et, pour l’équation de Klein-Gordon, on trouve dans le cas de l’absence 
de champ,

(9)
>p

<)t

qui se ramène à (8) à l’approximation newtonienne.
La représentation de Madelung faisait ainsi correspondre à la propa 

gation de l’onde flr l’infinité des lignes de courant d’un écoulement hydro 
dynamique. Comme je tenais à rétablir la localisation du corpuscule 
dans l’espace sans laquelle aucune image précise du corpuscule ne peut 
être obtenue, j’étais naturellement amené à astreindre le corpuscule 
à suivre l’une des lignes de courant de l’écoulement hydrodynamique. 
J’imposais ainsi au corpuscule un mouvement entièrement déterminé.

Ayant admis ce postulat du guidage du corpuscule par l’onde, je pouvais 
voir que cela obligeait à admettre que le corpuscule est soumis, en dehors

(') Bibliographie [8],
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de l’action des potentiels du type classique traduisant éventuellement 
l’action d’un champ extérieur, à un potentiel Q d’un type nouveau,
« le potentiel quantique ». La force quantique — grad Q dérivant de ce 
potentiel traduirait l’existence d’une action que l’onde environnante 
exercerait sur le corpuscule, comme cela paraît nécessaire pour inter 
préter les phénomènes d’interférences et de diffraction dans une théorie 
qui admet la localisation constante du photon dans l’espace.

Dans le cas de l’équation d’ondes non relativiste de Schrôdinger, 
le potentiel quantique a pour expression

Dans le cas d’une particule sans spin obéissant à l’équation relativiste 
de Klein-Gordon, on trouve que le corpuscule a une masse propre M„ 
variable suivant la position du corpuscule dans l’onde qui est donnée par

(ii)

et, dans le système propre, c’est la grandeur M0c'- dont le gradient changé 
de signe donne la force quantique. On peut donc alors poser

Qo= M0C2— 77J0C-, Q = Qo \/l — |32.

A l’approximation newtonienne où ,3 < i et ma~—Aa, ce potentiel 
se réduit à l’expression (io) comme on le vérifie aisément et l’on peut se 
contenter d’écrire

Q = 1VI y c "“ —-

5. Intervention du milieu subquantique.

L’une des conséquences intéressantes de l’hypothèse qui exprime le 
guidage du corpuscule par l’onde est la suivante : l’équation de conti 
nuité (7) suggère de considérer p comme la densité de probabilité de 
présence du corpuscule quand on ignore laquelle des lignes de courant 
il décrit. On retrouve ainsi la signification statistique attribuée à l'F J2 
par Born et la physique quantique actuelle. Cependant cette conséquence 
ne peut pas se déduire rigoureusement de l’équation (7) : il y a là une 
difficulté analogue à celle qu’on rencontre en Mécanique statistique 
quand on cherche à faire découler du théorème de Liouville l’affir 
mation que la probabilité de présence du point représentatif d’un système 
dans un élément dr de l’extension-en-phase est proportionnelle à d~. 
Devenu très conscient de cette difficulté, j’ai vu dans ces dernières 
années qu’on ne pouvait la lever qu’en introduisant dans la théorie du
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guidage un élément aléatoire. Or cet élément aléatoire est fourni par 
une très intéressante hypothèse développée, il y a quinze ans, par 
MM. Bohm et Vigier (J) : ils ont, en effet, supposé que ce que nous 
nommons le « vide » est en réalité le siège d’un milieu caché « le milieu 
subquantique » qui serait en continuelle interaction aléatoire avec les 
particules du niveau microphysique. Si l’on admet cette hypothèse, 
on est amené à considérer les particules comme subissant constamment 
des perturbations aléatoires à caractère de fluctuations et ceci a permis 
à Bohm et Vigier de rendre compte de la réalisation très rapide de la 
répartition en | ’B |2 de la probabilité de présence. En approfondissant 
cette idée, j’ai été conduit à développer une Thermodynamique de la 
particule isolée, théorie entièrement nouvelle à laquelle j’ai consacré le 
plus récent de mes livres (2), mais c’est là un sujet assez compliqué qui 
sort du cadre du présent Ouvrage.

Je dois cependant remarquer que les perturbations dues au milieu 
subquantique faisant constamment sauter la particule d’une des trajec 
toires prévues par la théorie du guidage sur une autre, ces trajectoires 
ne donnent plus qu’une sorte de vue statistique moyenne du véritable 
mouvement de la particule. Dans ce qui suit, je ferai abstraction de 
cette circonstance et, pour simplifier le langage, je continuerai à consi 
dérer les trajectoires prévues par la théorie du guidage comme repré 
sentant le mouvement de la particule.

6. La vibration interne du corpuscule est toujours en phase avec 
celle de l’onde qui le porte.

Nous arrivons maintenant à un point de la théorie du guidage dont 
nous verrons plus loin l’importance dans le cas des photons.

Dès l’époque de ma thèse, j’avais été conduit à assimiler l’ensemble des 
valeurs locales d’une onde en propagation à l’ensemble de petites horloges 
entraînées par le mouvement de l’onde. Si, au sein de l’onde, le corpuscule 
reste constamment localisé, nous sommes amenés à nous le représenter 
comme une sorte de grosse horloge se déplaçant au milieu des petites 
horloges. Mais, comme la formule du guidage exprime que cette horloge 
est incorporée à l’onde et solidaire de sa progression, l’idée vient alors 
d’admettre que son indication doit rester constamment égale à celle des 
petites horloges qui l’entourent immédiatement. En d’autres termes, 
le corpuscule doit se déplacer de façon que son oscillation interne reste 
constamment en phase avec l’onde à laquelle il est incorporé.

Il est facile de voir que c’est bien là ce qu’exprime la formule du 
guidage. En effet, si le corpuscule se déplace de ds dans l’espace physique

(') Bibliographie [9], 
(s) Bibliographie [6].



pendant le temps dt, la persistance de l’accord de phase entre la vibration 
interne et l’onde environnante exige évidemment que
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(i4) i ( fh
h V âi

—* grad cp df
dt dt = vc dt .

v,.. étant la fréquence cyclique interne du corpuscule telle qu’elle appa 
raît à un observateur lié au système où nous nous sommes placés. 
Si v0 est la fréquence interne du corpuscule dans son système propre.

la fréquence de l’onde v = i dcp 
h dt est égale à

Vo
v/i-pv tandis que la

fréquence v,. est donnée par la formule de ralentissement des horloges
vt=v0y'i — (32 et, comme ùv = la formule (i/j) peut s’écrire

(*})
grad $ 

ào 
~ôt.

= - = i-32

et cette formule est précisément vérifiée si l’on y introduit l’expres 
sion (9) de la formule du guidage dont l’expression (8) se déduit à 
l’approximation newtonienne.

On peut d’ailleurs démontrer qu’on retrouve le même résultat quand 
le corpuscule se déplace dans un champ (').

Le résultat obtenu apparaît comme tout naturel si l’on admet que le 
corpuscule n’est en réalité qu’une très petite région de l’onde où l’ampli 
tude locale de cette, onde prend une très grande valeur. Nous retrou 
verons ce point de vue au paragraphe suivant en introduisant la théorie 
de la double solution. On peut d’ailleurs se rendre compte que l’accord 
de phase entre le corpuscule et son onde doit subsister même si le 
corpuscule subit des perturbations aléatoires provenant du milieu 
subquantique de Bohm-Vigier. En effet, une telle perturbation aléatoire 
doit pouvoir être représentée en introduisant dans l’équation d’ondes 
un potentiel perturbateur de très courte durée et l’apparition de ce 
potentiel n’empêche pas le corpuscule de rester en phase avec l’onde 
localement perturbée : il en résulte que, lorsque le corpuscule passe très 
rapidement par suite d’une perturbation Bohm-Vigier d’une des trajec 
toires sur une autre, il se retrouve en accord de phase avec son onde 
sur la nouvelle trajectoire de guidage. On peut donc considérer la cohé 
rence de phase entre le photon et son onde comme générale et perma 
nente.

(‘) Voir [6], p. 7(1.
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7. La théorie de la double solution.

Des idées que nous venons de rappeler conduisent immédiatement 
à penser que l’onde W usuellement envisagée en Mécanique ondulatoire 
avec son amplitude constante, ou du moins continûment variable, n’est 
pas la véritable onde physique à laquelle le corpuscule est incorporé. 
Celle-ci apparaît comme devant être plutôt une onde de très faible 
amplitude comportant une région de très petites dimensions où l’ampli 
tude prend une très haute valeur. Pour distinguer cette onde de l’onde *F, 
appelons-la « l’onde u ». On peut la représenter schématiquement par la 
formule
(16) u = m0-i- c,

où u„ est un terme présentant une très grande valeur dans la région 
singulière qui constitue le corpuscule, mais qui s’évanouit très rapi 
dement en dehors. Quant à v qu’on peut nommer « l’onde de base », elle 
représente l’onde très faible, mais relativement très étendue, qui porte 
le corpuscule. Il n’est pas certain que l’onde u obéisse aux équations 
linéaires usuelles de la Mécanique ondulatoire car des processus non 
linéaires importants peuvent s’introduire dans la région de très grande 
amplitude; mais pour la partie v de l’onde u dont l’amplitude est très 
faible, il est naturel d’admettre qu’elle obéit à une équation linéaire 
et, pour faire le raccord avec la théorie usuelle, il est nécessaire de supposer 
que l’onde de base v est sensiblement solution des équations usuelles 
de la Mécanique ondulatoire. Cependant l’onde v diffère profondément 
de l’onde ^ à utilisation statistique; en effet, à mes yeux, c’est une onde 
physique concrète (représentée d’ailleurs par une fonction complexe, 
c’est-à-dire par l’ensemble de deux grandeurs réelles non indépendantes, 
nous reviendrons sur ce point dans le cas du photon); elle a donc une 
amplitude parfaitement déterminée et non pas arbitrairement normable 
comme celle de l’onde 'F. Nous apercevons alors que nous sommes en 
présence de deux solutions très différentes d’une même équation d’ondes 
de la Mécanique ondulatoire : l’une, l’onde de base v, ayant les carac 
tères d’une onde physique à propriétés classiques et l’autre, l’onde V 
usuelle, qui est une onde fictive à amplitude normable à volonté et à usage 
statistique. Et c’est pourquoi j’avais donné naguère à cette conception 
nouvelle le nom de « théorie de la double solution ».

Remarquons alors qu’avec les conceptions de la théorie de la double 
solution, le corpuscule n’apparaissant plus que comme un accident très 
localisé dans la structure de l’onde u, l’accord de phase entre le corpuscule 
et fonde devient, pour ainsi dire, nécessaire et évident.

Dans d’autres exposés, j’ai longuement expliqué la relation étroite 
qui existe entre les conceptions qui viennent d’être exposées et les idées 
d’Einstein sur la représentation des corpuscules par des « champs
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à bosse » (l’onde u est, en effet, un champ à bosse) et sur le caractère 
statistiquement exact, mais foncièrement incomplet, que les théories 
physiques actuellement admises nous offrent de la réalité physique. 
Je ne veux pas revenir ici sur ces questions, mais je voudrais préciser 
davantage la relation qui existe entre l’onde v à caractère physique et 
l’onde *F usuelle à caractère statistique.

8. La relation entre l’onde T et l’onde v.

La formule du guidage, complétée par l’intervention des pertur 
bations aléatoires d’origine subquantique, conduit à affirmer que la proba 
bilité de présence du corpuscule dans un élément de volume dz de l’espace 
physique est proportionnelle à \v\- dz, du moins à l’approximation de 
l’équation de Schrôdinger. Mais, comme l’amplitude de v est dans notre 
conception une amplitude physique qui a une valeur bien déterminée, 
nous n’avons ainsi obtenu qu’une probabilité en valeur relative et non 
en valeur absolue, car la probabilité totale de toutes les hypothèses
possibles j \ v |‘- dz n’a aucune raison d’être égale à i. C’est pour obtenir
une probabilité en valeur absolue qu’on a été amené à introduire la 
fonction 'F normée qui, à mon point de vue, doit donc être définie par

(17) U' = 0,

où C est un coefficient de normalisation choisi de façon à avoir

J I 'r I3 dz = i.

Le point important à noter est que l’introduction du facteur de norma 
lisation C dans (17) enlève en partie à l’onde 'F le caractère d’onde 
physique que possède l’onde v. Sans doute, l’onde 'F, étant d’après la 
définition (17) solution comme v de l’équation linéaire de propagation, 
se propage comme une onde physique et paraît susceptible de se réfléchir, 
de se diffracter et d’interférer. Mais elle ne possède plus les caractères 
d’additivité et de superposition que possèdent les ondes physiques 
solutions d’une équation linéaire telles que v.

Considérons, en effet, deux ondes et v± et introduisons les fonc 
tions >F, = Ciih et 'F, = C2m qui leur correspondent. Cl et C-, seront
définies respectivement par j C\\vl\;dz = i et par j C l j v-, [2 dz = 1.

La superposition des ondes physiques v, et v-, donne naissance à une 
onde v = vt-\~ v, d’après les propriétés des ondes physiques solutions 
des équations de propagation linéaires. Or à Fonde de superposition 
u  = Dl -|-U2, nous devons faire correspondre la fonction ff7 donnée
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par avec J'C'2 \ v \'2 dz = J C'2 j v, + v-, |'2 dr = i et il est facile

de voir que cette onde *1" n’est pas égale à la somme Cin, + C2î>2 de Ti 
et de Wa.

Ainsi, en raison de l’introduction d’un coefficient de normalisation 
dans le passage de l’onde v à l’onde ff", l’onde ne possède plus la 
propriété d’additivité qui caractérise les ondes physiques solutions 
d’équations de propagation linéaires. Ce fait signalé depuis bien longtemps 
par M. Dirac ne permet pas de considérer l’onde ff' comme une onde 
physique. C’est parce que l’onde W possède toutes les propriétés de propa 
gation des ondes physiques, mais ne possède pas leur propriété d’addi 
tivité, qu’on a continuellement oscillé entre deux hypothèses : consi 
dérer l’onde tF comme une véritable onde physique pouvant déterminer 
des phénomènes observables comme la valeur des niveaux d’énergie 
quantifiée des atomes, l’apparition des franges d’interférences, etc., 
ou bien considérer l’onde W comme un simple instrument mathématique 
servant à évaluer des probabilités. Mais dans cette seconde hypothèse 
qui paraît être celle qu’adopte la Mécanique quantique actuelle, il est 
impossible de comprendre comment une simple représentation de proba 
bilités peut « provoquer » des phénomènes physiques observables. 
Ce mystère auquel on se heurte constamment dans l’interprétation 
purement probabiliste, actuellement admise, de la Mécanique ondu 
latoire, est entièrement éclairci si l’on distingue, comme nous l’avons fait, 
l’onde v réelle de l’onde fi1- fictive.

9. Remarque importante au sujet de la définition de la phase.

Il nous paraît important pour éviter toute confusion de bien préciser 
le point suivant. Nous sommes amenés à définir la phase cp de l’onde réelle v

i- 9
en posant v = a en où a et cp sont des fonctions réelles de x, y, z, t. 
Cette phase est aussi, à une constante près, celle de l’onde W = Cu 
et le corpuscule se déplace dans l’onde de telle façon que la phase de 
sa vibration interne soit cp(x, y, z, t) quand il se trouve au point x, y, z 
à l’instant t. Or, et c’est le point sur lequel je veux attirer l’attention, 
cette définition est absolument générale, et ne suppose nullement qu’on ait 
affaire à une onde monochromatique plane.



CHAPITRE I.
LA MÉCANIQUE ONDULATOIRE DU PHOTON.

1. Idées et équations de base de la Mécanique ondulatoire du 
photon.

A partir de 19.14, j’ai développé, sous le nom de Mécanique ondu 
latoire du photon, une théorie qui est, en somme, la théorie générale des 
particules de spin 1, mais qui est applicable au photon (cas particulier 
des particules de spin 1) si l’on attribue au terme de masse qui figure 
dans les équations une valeur extraordinairement petite.

La raison pour laquelle j’avais entrepris ce travail était non seulement 
de construire une théorie générale des particules fondée sur la méthode 
de « fusion » dont le principe paraît aujourd’hui se confirmer, mais aussi 
d’obtenir une forme de la théorie de Maxwell qui permette de définir 
pour le photon un quadrivecteur densité-flux et un tenseur énergie- 
impulsion analogues à ceux qu’on peut définir pour les autres particules 
dans les diverses formes de la Mécanique ondulatoire. Ainsi le photon 
serait tiré de son isolement et réintégré dans un cadre général de Méca 
nique ondulatoire applicable à toutes les particules. En effet, ayant conçu 
autrefois la Mécanique ondulatoire comme une généralisation natu 
relle de l’idée, introduite par Einstein dans sa théorie des quanta de 
lumière, d’une coexistence des ondes et des corpuscules dans la struc 
ture de la lumière, je n’ai jamais douté du fait que le photon ne doive 
rentrer comme cas particulier dans le cadre d’une représentation géné 
rale des particules par la Mécanique ondulatoire.

J’ai développé la Mécanique ondulatoire du photon à une époque 
où je ne cherchais pas à reprendre la théorie de la double solution, mais 
où je voulais montrer qu’en appliquant à la Mécanique ondulatoire 
du photon la méthode de seconde quantification, on retrouvait les prin 
cipaux résultats de la théorie quantique des champs dont la vogue, 
à mon avis devenue ensuite très exagérée, commençait alors à s’affirmer. 
Les lecteurs désireux d’approfondir les résultats que j’ai alors obtenus 
dans cette direction pourront les trouver dans les deux volumes que j’ai 
publiés chez Hermann en ig4o et 1942 sous le titre, Une nouvelle théorie
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de la lumière et, sous une forme plus condensée, dans l’Ouvrage Méca 
nique ondulatoire du photon et théorie quantique des champs publié chez 
Gauthier-Villars en igjg et réédité en 1957 ('). Mais aujourd’hui mes 
préoccupations sont très différentes car je cherche surtout à introduire 
dans la Mécanique ondulatoire du photon les conceptions de la théorie 
de la double solution en laissant de côté les lourds formalismes de la 
méthode de seconde quantification et de la théorie quantique des champs. 
C’est dans cette intention que je vais maintenant donner une vue 
sommaire des idées et des équations qui sont à la base de la Méca 
nique ondulatoire du photon.

En 1934, j’ai écrit les équations d’ondes de la particule « photon » 
sous la forme suivante :

(0

1 <m
c <)t

rot K,

1 <m
c àt

rot H -i- /tji Â,

div H = o,

div K = — kl V.

Les équations (1) ne diffèrent des équations classiques de Maxwel 
que par l’adjonction aux équations de la seconde ligne des termes en kl.
La constante /c0 est définie par la relation k„ = j c en fonction de la
masse propre p0 du photon que, tout en reconnaissant qu’elle doit avoir 
une valeur extraordinairement petite (certainement inférieure à 1 o-45 g), 
je n’ai pas voulu considérer comme rigoureusement nulle.

Des équations (1), on déduit immédiatement la relation de Lorentz 
entre les potentiels

O) L
c àt

div A = o

et, si l’on admet que toutes les composantes F de champ ou de potentiel 
obéissent à l’équation de Klein-Gordon :

CL C]F + ^F = o

comme cela paraît naturel, on constate que les équations (1) entraînent 
aussi la définition classique des champs à partir des potentiels

-> 1 ()A --- > ->
(4) E = “ C ~Jt ~~ gradV’ 11 = rot A'

On voit qu’ici l’onde du photon est définie par l’ensemble des compo 
santes de potentiel et de champ. Il n’y a rien là qui doive nous étonner

(‘) Voir Bibliographie [10] et [11],
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puisque déjà dans la théorie de la particule de spin ~ (électron de
Dirac), la fonction d’onde est définie par quatre composantes obéis 
sant à quatre équations aux dérivées partielles simultanées. Ici les 
dix grandeurs A.,., ..., H,; obéissent aux i5 équations (i), (2) et (4). 
D’ailleurs, si l’on considère, comme nous allons être amenés à le faire, 
les potentiels comme étant des grandeurs physiques, on peut consi 
dérer l’onde du photon comme entièrement définie par les quatre gran- 
aeurs A.,., Ar, A_- et V soumis seulement à quatre équations indépen 
dantes, celles de la seconde ligne de (1).

Nous remarquerons maintenant qu’il suffit de donner à la masse 
propre des équations (1) une valeur qui ne soit pas extraordinairement 
petite pour obtenir les équations générales de la particule de spin 1 
telles qu’elles furent proposées en 1906 par Alexandre Proca. Je n’insis 
terai pas ici sur la façon dont j’avais primitivement obtenu les équations 
« maxwelliennes » (i)-(4) par la méthode de fusion : on la trouvera 
exposée dans les Ouvrages que j’ai cités plus haut.

Les champs et les potentiels qui figurent dans les équations (1), (2) 
et (4) sont des composantes de fonction d’onde et doivent par suite, 
nous reviendrons sur ce point, être considérées comme des grandeurs 
complexes. Comme elles doivent avoir les mêmes variances relativistes 
que les champs et les potentiels réels de la théorie électromagnétique 
classique, on peut les écrire sous la forme bien connue en théorie de 
la Relativité :

(5)

JF [iv JF vf) JF

àxr, dx^ àxv
(jj l , v, p, permutation paire des nombres 1, 2, 3, 4),

ÔXy — L Aj,,

JÀy
i)xv

F|XV =
à
àx,,

JAy
àXn.

Remarquons que l’équation (3) applicable aux 10 composantes de 
potentiel et de champs montre que ces grandeurs peuvent se propager 
en ondes planes monochromatiques de la forme

les amplitudes a étant reliées entre elles par les équations (1) et les 

grandeurs k et k étant reliées par la relation

(ti) [î| +£5.
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Comme on doit poser

(7)

on voit que la relation (6) n’est pas autre chose que la relation rela 
tiviste bien connue

(8) = p- -+- ml c-

entre l’énergie, la quantité de mouvement et la masse propre d’une 
particule libre.

Si ij -1 était nulle ou négligeable, on aurait   F = o, k = \ k \ et la 
propagation des ondes s’effectuerait toujours exactement avec la 
vitesse c : on voit ainsi que ce cas limite correspond bien à la théorie 
électromagnétique classique.

2. Réalité physique des potentiels.

Les termes en kl dans les équations du paragraphe 1 étant par hypo 
thèse presque négligeables, on peut sensiblement confondre ces équations 
avec celles de Maxwell, du moins quand il n’est pas question d’ondes 
longitudinales, et c’est ce que nous ferons souvent dans ce qui suit. 
Quel intérêt y a-t-il alors à attribuer à la masse propre y(l une valeur 
extraordinairement petite plutôt qu’une valeur rigoureusement nulle ? 
L’intérêt de cette hypothèse vient non seulement de ce qu’elle permet 
de définir pour le photon, comme cela a lieu pour toutes les autres 
particules, un courant densité-flux, mais aussi de ce qu’elle oblige à attri 
buer aux potentiels électromagnétiques le caractère de réalités physiques 
contrairement à une sorte de dogme qui s’est introduit dans la Physique 
théorique contemporaine sous le nom d’invariance de jauge.

On a prétendu justifier l’hypothèse de l’invariance de jauge en affir 
mant que seuls les champs électromagnétiques produisent des effets 
observables et peuvent être considérés comme des réalités physiques. 
Les potentiels ne seraient alors que des intermédiaires de calcul servant 
à calculer les champs et l’on remarque que les formules (4) ne permettent 
de déterminer les potentiels qu’au gradient près d’une fonction arbi 
traire d’espace-temps. Mais, dès l’instant où l’on remplace les équations 
de Maxwell par les équations (i) où figure un terme de masse propre 
aussi petit qu'on veut, on est forcé de considérer les potentiels comme 
des grandeurs physiques ayant une valeur bien déterminée et, par suite, 
d’abandonner l’invariance de jauge.

Or, à l’heure actuelle, non seulement il commence à y avoir d’assez 
nettes indications en faveur d’une masse propre non nulle du photon,



LA MÉCANIQUE ONDULATOIRE DU PHOTON. 15

mais en plus il semble que nous possédions une preuve expérimentale 
du fait que les potentiels ont le caractère d’une grandeur physique. 
Cette preuve me paraît avoir été apportée par les expériences de 
M. Boersch et de ses collaborateurs faisant suite à un important travail 
théorique de MM. Aharonov et Bohm (')• Sans vouloir discuter ici cette 
question d’une façon très approfondie, je voudrais en donner un rapide 
résumé.

L’expérience suggérée par Aharonov et Bohm et réalisée ensuite par 
Boersch et ses collaborateurs peut être schématisée comme il suit. Une 
onde électronique arrive au point A où elle se partage en deux pinceaux 
qui, après avoir suivi des trajets distincts 1 et 2, viennent se croiser 
en B et y interférer.

*C >
Fig. i.

Si sur les trajets 1 et 2 il n’y a ni potentiels, ni champs, les inter 
férences en B seront déterminées par la différence de phase

= fpi dft — fp2 dt>.
Jl J2

Mais si sur les trajets 1 et 2 il existe des potentiels vecteurs Ai et Âa, 
mais pas de champs, les interférences en B dépendent de la différence
de phase <3cpI-F<Scp2 avec ôœ2 =— jfAidSi—jf A2 ds^. Or Boersch a

constaté que les interférences sont bien modifiées de cette façon, ce qui
montre que les potentiels A, et A2, même en l’absence de champs, influent 
sur les interférences et produisent ainsi un effet physique expérimen 
talement observable.

Certains partisans de l’invariance de jauge, ont fait remarquer que
si l’on ajoute aux potentiels Ai et A2 le gradient d’une fonction arbi 
traire F(rr, y, z), rien n’est changé aux interférences. En effet, la diffé 
rence de phase supplémentaire <5cp3 =y'gradFdSi—fgradFds2 est 

nulle puisque
^"grad F rffj = jTgrad F dt*. = F (B) — F(Â).

(*) Bibliographie [12] et [13].



On en conclut, ce qui est exact, que l’observation des interférences ne
permet de déterminer A, et Aa qu’à un gradient arbitraire près et ceci 
paraît sauvegarder l’invariance de jauge. Mais, si j’admets très bien 
cette conclusion, je ne puis pas croire qu’une grandeur qui influe sur 
un phénomène physique observable n’ait pas une valeur bien déter 
minée et cela même si le phénomène en question ne permet pas de 
déduire exactement cette valeur.

On peut d’ailleurs remarquer que, dans tout phénomène d’interférences, 
on pourrait ajouter aux phases des ondes qui interfèrent le gradient 
d’une fonction arbitraire sans que la prévision du phénomène en soit 
modifiée. Or je ne pense pas qu’il soit jamais venu à l’idée d’un physi 
cien que la phase d’une onde lumineuse soit ainsi indéterminée et d’ailleurs 
dans le cas des ondes hertziennes dont la nature est identique à celle de 
la lumière et avec lesquelles on peut aussi obtenir des phénomènes d’inter 
férences, il paraît certain que la phase de l’onde, déterminée par celle 
d’un courant alternatif dans une antenne d’émission, a une valeur bien 
déterminée.

Je pense donc que l’expérience de Boersch est, quoiqu’on en dise, 
très démonstrative et qu’elle justifie l’afïirmation que les potentiels 
électromagnétiques soient de véritables grandeurs physiques à valeur 
définie. S’il en est bien ainsi, il en résulte, à l’opposé de ce qu’affirment 
les partisans de l’invariance de jauge, que les potentiels sont les gran 
deurs fondamentales dont tout le champ électromagnétique dérive et 
qu’on pourrait développer la théorie électromagnétique en n’introduisant 
que les potentiels comme nous l’avions indiqué plus haut.

En ce qui concerne certaines objections qu’on pourrait faire à l’hypo 
thèse [x„^z£o, je renvoie à mes Ouvrages antérieurs (').

3. Les grandeurs corpusculaires attachées au photon.

Pour les particules de spin o dont l’équation d’ondes est celle de
Klein-Gordon et pour les particules de spin 1 dont les équations d’onde
sont celles de Dirac, on sait qu’il est possible de former un quadrivecteur 
densité-flux (avec p4 = p, p, = pu.,-, ...). Ce quadrivecteur correspond 
à l’aspect corpusculaire de la particule et nous avons vu comment, 
en utilisant l’image hydrodynamique de Madelung, on pouvait se servir 
de ce quadrivecteur pour définir le « guidage » de la particule et préciser 
ainsi son aspect de corpuscule en mouvement.

Or, dans-la théorie électromagnétique, si l’on veut n’accorder aucune 
réalité physique aux potentiels, on ne peut pas définir de quadrivecteur

16 CHAPITRE I.

(‘) Voir [11], chapitre V.
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densité-flux et cela semble interdire de préciser l’aspect corpusculaire 
du photon. En effet, on ne dispose alors comme grandeurs ayant un sens 
physique que des six composantes du tenseur de champ Fp.v, qui est 
antisymétrique de rang 2 et dont les six composantes distinctes sont 
celles du champ électrique et du champ magnétique, et à l’aide d’un 
tenseur de rang 2 on ne peut former par contraction et multiplication 
que des tenseurs de rang pair : il est donc impossible de faire apparaître 
ainsi un quadrivecteur de rang 1. Il en est, différemment si l’on admet 
que les potentiels ont un sens physique car on dispose alors non seule 
ment du tenseur F;,.., de rang 2 mais du quadrivecteur potentiel Au. 

de rang 1, et il devient facile, par exemple par la simple opération de 
contraction A:j.F;j..;, de former un quadrivecteur densité-flux qui permettra 
de préciser l’aspect corpusculaire du photon et de définir son guidage 
par l’onde électromagnétique.

Pour obtenir des champs et des potentiels complexes de mes équations 
maxwelliennes un quadrivecteur densité-flux ju. réel, j’ai été amené 
à définir celui-ci par la formule

(9) Jv = p,v Au),

ce qui permet d’écrire les composantes de ce quadrivecteur sous la forme

On vérifie d’ailleurs aisément à l’aide des équations (1) et de formules 
bien connues du calçul vectoriel qu’on a

. dp ,. -y
( 1 IJ -y -+- dlVOP = O.

La densité p (x, y, z, t) définit la probabilité de présence du photon
au point x, y, z à l’instant t, tandis que la formule Vk=^~ définit à l’aide
des grandeurs électromagnétiques le guidage du photon par le champ 
électromagnétique. On peut donc ainsi arriver à retrouver pour le photon 
une théorie du guidage analogue à celle qui est valable pour les autres 
corpuscules et à bien voir que la coexistence des photons et des ondes 
électromagnétiques n’est pas d’une nature différente de celle qui existe 
pour les autres particules, par exemple pour les électrons. J’ai déjà dit 
que j’en ai toujours été persuadé parce que la Mécanique ondulatoire 
est la fille de la théorie des quanta de lumière d’Einstein.

L. DE BROGLIE. 2
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On peut également définir pour le photon un tenseur réel jouant le 
rôle de tenseur énergie-quantité de mouvement Tuv en employant la 
formule tensorielle

(12)
àkr, i)F

iVf' ~J2-?] • conj. (p.v =1 3, /[)•

Le tenseur ainsi défini n’est pas symétrique, ce qui correspond au fait 
que, dans la théorie d’une particule douée de spin comme le photon, 
la vitesse n’est pas colinéaire de la quantité de mouvement : ce fait 
est bien connu et a été bien étudié en théorie de Dirac, notamment 
par M. Costa de Beauregard.

Pour une onde monochromatique où toutes les grandeurs dépendent 
du temps par l’exponentielle e-TU'H, on a

(i3) T4V=^[E‘.A-A*.El=iwfÈ*.A-A‘.E'|,
c 1 1 Tic 1

d’où pour la densité d’énergie w = — Ttv :
04) w=— Tu=p\V

comme cela devait être.
On peut vérifier que les équations de conservation de l’énergie et de 

la quantité de mouvement

05) (v = ,-2>3>/i)

sont bien vérifiées. Elles résultent d’ailleurs facilement du schéma 
lagrangien général dans lequel on peut faire rentrer la théorie (').

J’avais aussi introduit en Mécanique ondulatoire du photon un 
deuxième tenseur énergie-quantité de mouvement Oltp.v qui, lui, est 
symétrique. Les expressions des composantes de ce deuxième tenseur 
sont données dans mes Ouvrages précédemment cités. Je me contenterai 
d’écrire la suivante :
(16) OltlU = I h [--h  ! H |2-i- kl ( | A |2-t- | \ |2).

Pour une onde plane monochromatique, les deux tenseurs T et Oit 
coïncident et l’on a Tav= 011^,,. Pour une superposition d’ondes planes 
monochromatiques (ce qui exclut le cas des champs électromagnétiques 
qui entourent une charge électrique et, en particulier, celui du champ 
coulombien), les tenseurs T et Oit sont seulement intégralement équi 
valents, ce qui veut dire qu’on a

(17) J™ Olt^ d\.

(■) Voir Bibliographie [11].
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La formule (16) montre (surtout quand on néglige le terme en /c() 
la parenté du tenseur 311^ avec le tenseur classique de Maxwell 
Cependant ils ne sont pas identiques car les dit a-, sont formés avec les 
grandeurs réelles de la théorie de Maxwell tandis que les Mp.v sont 
formées à l’aide des grandeurs complexes de la Mécanique ondulatoire 
du photon. L’étude des relations entre les trois tenseurs Tp.v, dlt^ et M^v 
est très intéressante, mais nous ne l’aborderons pas ici. Mais seul le 
tenseur T;J.V traduit, d’une façon générale, l’aspect corpusculaire du 
photon.

Pour être complet, je mentionnerai encore qu’on peut en Mécanique 
ondulatoire du photon, comme dans la théorie de l’électron de Dirac, 
définir un pseudo-quadrivecteur dont les trois composantes d’espace
forment un vecteur % définissant la densité de spin. L’expression de ce 
vecteur est
(18) t = - [E* A A — A* A E -4- Y*H VH*J.

4. Étude des ondes planes monochromatiques.

Dans toutes les formes de la Mécanique ondulatoire l’étude des ondes 
planes monochromatiques est particulièrement importante parce que 
ces ondes (qui en toute rigueur ne sont jamais réalisées) correspondent 
aux mouvements rectilignes et uniformes.

Nous allons poser par abréviation :

(19) P = ei(to—

où k, k et k„ sont définies par les formules (7) et satisfont à la rela 
tion (6). Pour une valeur donnée de k et de k, nous trouvons trois solu 
tions indépendantes des équations (1), tO, <§. et JS qui sont :

I > IA.r i A-,— Ci P, F,x— iEv= — i/rCi P. H r — i H y■ = — i 1k 1 Cl P;
Ax l A y (). Ej; H— iEy   0 J Hx h - i Hr = 0,

oII

>

oII1H
** E.x- iEr - 0, 1 Hr — 0,

Ax H- l A y = Go P ; Eæ-t- i E, = — ikC2 P, H nç —f— l H y == -- l li^! c.2p,
V = 0 ;

> II P II

1 > 1 „ U-| P P 1 |cjP,
k

Toutes les autres grandeurs nulles,

Ci, C’2 et G:, étant des constantes indépendantes.
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Le sens de ces ondes électromagnétiques est le suivant :

i° <X> est une onde transversale circulaire droite;
2° (§- est une onde transversale circulaire gauche;
3° £ est une onde longitudinale.

k0 étant extrêmement petit, l’onde £ comporte un champ électrique 
longitudinal E. extrêmement petit tandis que les potentiels et V 
sont presque égaux. Si k„ était nul, E- serait nulle et l’onde se réduirait 
aux deux potentiels égaux A; et V : cette onde de potentiel est bien 
connue dans la théorie classique de Maxwell, mais quand on admet 
l’invariance de jauge, elle doit être considérée comme inexistante puisque 
les potentiels n’ont pas alors de réalité physique.

Il est facile de voir que les ondes <®, # et £ correspondent aux trois 
valeurs possibles du spin dans la direction de propagation. Le photon
étant une particule de spinal la composante du spin le long de Oz 

peut avoir l’une des trois valeurs ± ~ et o. D’après la formule (i8), 
la composante <7* de la densité de spin a pour valeur

(20 ) <sz = 1 [ E*. A v — E * Ax -H V* Hz ] -+- conj.c ' J

— f ( Ex H- i Ey)* ( Ax i A y) — (l'x— 1 Ej)* ( Ax — i A y) j

car II- est toujours nul. Cette expression de c- montre immédiatement ; 
i° que est nul pour les ondes £; 2° que <rz est négatif pour les ondes û3 
et positif pour les ondes <§. Nous en concluons que l’onde longitudinale £ 
correspond à une composante z du spin qui est nulle tandis que l’onde
circulaire gauche <§. a une composante z de spin égale à + ^ et que 

l’onde circulaire droite Æ a une composante z de spin égale à — •
Ces résultats établissent une relation très satisfaisante entre l’état de 
polarisation et la valeur du spin.

Nous pouvons aussi calculer à partir des formules (g) et (io) l’expression
de la densité p et du flux pn pour les ondes Æ>, <§■ et £. L’expression (g) 
de p peut s’écrire

P = J- { ( A-æ-+- i A,-)* (E.r+ l Er)

-h ( Aæ— t Ar)* (Ex— fEr) } -t- AJ Ea -+- conj.,

(ai)
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ce qui nous donne :

(22)

2 kpour l’onde <X) : p = — | Ci |'2,

» g. : p

e :

— ir ilie 1 |2’

Tic k Gsl*.

De même, on trouve d’après l’expression générale (10) des jt pour les 
trois types d’ondes cD, g et c’ :

I > I, . . . • ht pc2
( D) y.r = J.v=l>, Jz= ?c±-jg- = P %- = ïv

car, en Mécanique ondulatoire relativiste, la vitesse v d’un corpuscule
porté par une onde plane monochromatique est v = ■ Le vecteur
flux de composantes jx, j Y, j- correspond donc bien au flux d’un fluide 
fictif de densité 0 s’écoulant avec la vitesse v dans la direction z comme 
on devait s’y attendre.

Naturellement, par une superposition convenable des ondes circu 
laire droite et circulaire gauche CD et g, on peut obtenir les ondes recti- 
lignement polarisées à angle droit :

( A = (Ci -+- G.,) P, V.v=— C,ï !>. Hv=-i|/t|(C,-t-CV>P;
^ ) ' ' i^i

où les constantes C1+C2 et C, — C2 sont indépendantes et l’on pourrait 
reprendre pour ces ondes des'calculs analogues à ceux qui viennent d’être 
faits pour les ondes circulaires.

Il est important de remarquer que les formules obtenues sont infi 
niment voisines de celles que fournirait la théorie de Maxwell classique 
en raison de la petitesse de k„ et coïncideraient avec elles si A'„ était nul. 
Notre théorie, tout en permettant d’introduire des idées nouvelles, reste 
infiniment voisine de celle de Maxwell.

5. Définition des champs classiques et des champs complémen 
taires.

Les dix grandeurs électromagnétiques, composantes des potentiels et 
des champs, qui figurent dans nos équations (1), doivent être consi 
dérées comme essentiellement complexes comme le sont toutes les 
fonctions d’onde de la Mécanique ondulatoire. Nous verrons au chapitré 
suivant qu’elles doivent être considérées comme définissant l’onde de 
base v des photons.
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Comme toute grandeur complexe, l’une quelconque F des dix gran 
deurs complexes électromagnétiques peut être décomposée en deux 
grandeurs réelles a et cp ou Fi et F-, par les formules

(25) F = b c '?, F = Fi-t-t’F2.

La première formule (25) définit l’amplitude a et la phase œ de F, 
la seconde définit la partie réelle R (F) = Fi et la partie imagi 
naire O (F) = F-, de la grandeur F.

Des raisons qu’on trouvera exposées dans mes anciens livres sur la 
théorie du photon m’avaient conduit à penser qu’à la grandeur complexe F, 
on devait faire correspondre la grandeur F + F* pour représenter l’action 
des photons sur la matière électrisée. En m’inspirant de cette idée, 
mais en adoptant une définition légèrement différente qui me paraît 
préférable, j’admettrai ici que les grandeurs électromagnétiques clas 
siques, solutions réelles des équations (i), qui correspondent à l’onde 
de base v des photons doivent être assimilées aux grandeurs R (F) = F,. 
Cette hypothèse jette un pont entre la théorie classique qui utilise 
toujours des grandeurs réelles et la Mécanique ondulatoire du photon 
qui utilise des fonctions d’onde complexes.

Mais, si les véritables grandeurs fondamentales définissant l’onde v 
du photon sont les grandeurs F complexes, on doit penser que leur partie 
imaginaire O (F) = F. doit aussi avoir une signification et un rôle à jouer. 
Nous nommerons cette grandeur, qui n’intervient pas dans la théorie 
classique, le champ (ou le potentiel) « complémentaire ». Nous tenterons 
au chapitre IV de préciser la signification du champ complémentaire.

En Électrotechnique et en Optique classique, on effectue très souvent 
les calculs en remplaçant les grandeurs électromagnétiques réelles par les 
quantités complexes dont elles sont la partie réelle. Mais il semble que, 
dans l’esprit de ceux qui emploient ce mode de calcul, il ne soit qu’un 
artifice commode et que seule la partie réelle des grandeurs complexes 
utilisées ait une existence physique. Néanmoins certains auteurs semblent 
attribuer un certain caractère de réalité physique aux grandeurs complexes 
qu’ils emploient, ce qui implique l’intervention du champ complémentaire 
défini ci-dessus ('). Il semble donc que l’emploi et la signification physique 
des grandeurs électromagnétiques complexes soient déjà suggérées par 
certaines méthodes usuelles en Physique classique. Mais, dans notre 
théorie qui identifie le champ électromagnétique à l’onde v de la théorie 
de la double solution pour les photons, les potentiels et les champs sont 
essentiellement complexes et la signification du champ complémentaire 
devient importante à préciser.

(■) Voir par exemple dans le livre de MM. Maréchal et Françon [14] l’emploi de 
la notion d’hélicité.
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6. La décomposition de Gordon et la Dynamique du guidage.

Nous allons maintenant donner un exposé d’ensemble de la Dynamique
du guidage pour les particules de spin o, i et i en unité ~ ■

i° Particule de spin o (équation de Klein-Gordon). — La quantité de 
mouvement est alors définie par

Ofi) P\L = —0\J.?,

i
- ?

avec T’ = a en et l’on peut aussi écrire

(27) pÿ.= M0c m(1 = —

avec Mo C2 = ^La Dynamique du corpuscule est alors 

définie par l’équation

(28) ~ (Mq CKjj,) = «■'(?„( Mo CKjO

= <^(j l (Moc b ,) -+- «v[dv(Moc«ii) — dji(M0cMv)].

Le dernier terme est nul car le crochet est égal,

dvPu. — àap., = — dv ây. 9 -+- dv ? = o.

Or, on a uvuv= — 1 et par suite uv^(Mocuv) == — <V(M0c) et l’équa 
tion (28) devient
(29) -^(Mociqf) = ^Pix = ~dp.(M0c)

qui, à l’approximation newtonienne, donne avec Q =M0c2—m0c2 :

(30) J^(m0p ) =— grad (M0c2) = — gradQ,

Q étant le potentiel quantique. En Thermodynamique cachée des 
particules, un état du corpuscule où la masse propre variable est M0
correspond à l’entropie S = S0—k (voir [61, p. g4). Or pour une

772-q C-
onde plane monochromatique on vérifie que M„ = m0 et que, par suite, 
l’onde plane monochromatique (ou les trains d’ondes qui lui sont assi 
milables) est un état d’entropie maximale.
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2° Particule de spin - (équations de Dirac) ('). — Nous poserons
- ©*

d-1'/ = ak cl' '
donne

avec k = 1, 2, 3, 4*

(3i) y u. = ?o u

avec
U,)=- J-

(3a) ; *
I

k

avec

^làu,skat =------- 'Ai?!*, ;‘ ' inÿc 1

ak=ak't'^ "p.<)* ? = -, --I = 2^ a k Uk‘
k

Les deux invariants de ia théorie de Dirac sont

(33) Ûs=^ajTf*a* a\ec f»= T, Ya 7s Ti

* *

et les formules de Pauli-Kofink donnent

(34 ) po = — y P-y a = 1 ^•

On est ainsi amené à définir la masse propre variable M0 par la formule

,, /«Opo . / ^2(3:>) Mo“ “üT" -m«\/ I+

de sorte que M„ a sa valeur minimale M„ = m„ pour fonde plane mono 
chromatique et que celle-ci correspond encore à un maximum de 
l’entropie.

Pour la quantité de mouvement de guidage, on trouve alors

(36) Pu.= M 0 — dn, 9 t_> ' j.,pu
en posant

(‘) Voir [1], p. 198 et suiv.
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Si la particule est soumise à un champ électromagnétique extérieur, 
il faut ajouter à l’expression un terme dépendant des potentiels électro 
magnétiques. On retrouve aisément l’équation (28) où, pour la même 
raison que précédemment, le premier terme du dernier membre est 
égal à — <2[j.(M„c), mais ici le terme entre crochets n’est pas nul et il reste

(38) ^./>u.= = — <V(M0c) -(- u-'ldvpy.— djxpv]-

3° Cas du photon et des particules de spin 1 (équations maxwelliennes). — 
En Mécanique ondulatoire de photon, on utilise le quadrivecteur complexe 
« potentiel électromagnétique » Au. et le tenseur antisymétrique complexe 
de rang 2 « champ électromagnétique » qui satisfont aux équations

(89) f^.v—dvAu—Av ; duA^.= o

i
et il est naturel de poser A^. = a<x en avec a[t. et 9^ réels. On admet 
alors pour le quadrivecteur courant-densité la définition

(/,<>) yv= f„Mv= jj- ( A y-* F jtv — conj. ) = Yc f ^ ('A Aji— Av) — conj.],

où uv est le quadrivecteur « vitesse d’univers » de la particule et où o„ 
est la densité propre.

Posons

d" I " !2=2i°'7"'7= ! A i2— I ' l2; ——r^-r,--------
<7

Nous voyons que <).,y est la valeur moyenne de cp^. prises sur les 
quatre composantes du potentiel avec les poids a’‘■a-,. alors que le i)[Lo 
de la formule (36) était la valeur moyenne de prise sur les quatre 
composantes du *1' de Dirac avec les poids aJ a*.

Dans la formule (4o), les termes ^ [A^^Ajj.—conj.] nous donnent

— D’autre part, en vertu de la seconde équation (3g),
/ Cpj\

on peut remplacer A^V^A-, par ^(A^A,,) = r2[1'va,J.av en ) et l’on 
obtient finalement
// • 2 i a - ■>. r . Ç;j.— Çv~|(/,,) yv=po„v=___+ __^la[iavs„1_r_j.

Le premier terme de (42) correspond au premier terme de la décom 
position de Gordon (32) pour l’électron avec substitution de l’inva 
riant | a |2 à l’invariant Le sec0nd terme de (42) est un terme
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de spin qui correspond au second terme de la décomposition (32) de 
Gordon pour l’électron. La vitesse uv définit dans le cas du photon le 
guidage de celui-ci par l’onde électromagnétique.

En adoptant l’expression (4o) de jv, on est conduit à définir la masse 
propre variable du photon par la formule

qui, pour une onde plane monochromatique, se réduit à la très petite 
masse propre M„ que j’attribue au photon. On trouve alors pour la compo 
sante M0cuv de quadrivecteur impulsion-énergie :

pv= M0c m v  = — ày ? -+- 'V «j j . «v si 11 - - ^ J •

Ici encore nous pouvons écrire l’équation (28) qui nous fournira comme 
équation de la Dynamique du guidage pour le photon :

(4'>) -7; (M0c mv ) = — ày ( M0c) -I- ( M0cnv) — ày (Mocw^) J,

équation dans laquelle les valeurs de M0 et de pv = M0cuv sont définies par 
les équations (43) et (44) en fonction des grandeurs électromagnétiques.

Dans le cas de la particule de spin ~, nous avions obtenu la formule (35)
qui montrait immédiatement que l’entropie de l’onde plane mono 
chromatique est maximale. Cherchons à établir pour le photon une 
formule analogue à (35). Pour cela, posons

(46) ?o = V'iî'ï -I- U;,

avec

£22 étant un autre invariant que nous expliciterons plus loin. Il vient 
alors, d’après (43) et (46) :

(47) M„ = Tia-
V'Qî Q; 2 [J.Q 

Ti- = I-1» 1

formule semblable à la formule (35) pour l’électron, mais avec des valeurs 
différentes de £2, et il,.

L’invariant est défini à l’aide de £2, et de la valeur (42) de j,, par

(48) Q? = — yvyv— of = Pg — Q?.
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Or, pour une onde plane monochromatique, on trouve

(49)
?. [i0 I a |-- 
ha-

:>- ,■ , , ,,
= -^llA| — V 1*1

et, par suite, i>2 = o. Dans ce cas, d’après (47), M0 prend la valeur mini 
male et la définition de l’entropie dans la Thermodynamique cachée 
des particules montre que les ondes planes monochromatiques (ou plutôt 
les groupes d’ondes qui leur sont assimilables) correspondent à un 
maximum de l’entropie.

La Dynamique du guidage du photon mériterait certainement d’être 
davantage développée (').

(‘) La théorie que nous venons de développer dans ce chapitre s’applique unique 
ment aux photons dans le vide ou dans les milieux matériels de propriétés optiques 
assimilables à celles du vide. Pour des milieux matériels réfringents ou dispersifs, 
la théorie devrait être reprise et généralisée. Voir à ce sujet [261.



CHAPITRE II.
INTERPRÉTATION DU CHAMP ÉLECTROMAGNÉTIQUE 

EN THÉORIE DE LA DOUBLE SOLUTION.

1. L’onde de base v qui porte les photons est une très faible onde 
électromagnétique du type classique.

Dans ce chapitre, nous allons exposer des questions que nous consi 
dérons comme très importantes pour la théorie que nous développons.

Quand on veut appliquer les conceptions de la théorie de la double 
solution au problème des photons, il est tout naturel de supposer que 
les équations maxwelliennes du chapitre précédent, qui même en suppo 
sant p0 /i o différent infiniment peu des équations de Maxwell, défi 
nissent les ondes de base du type v qui portent les photons. C’est là 
une idée dont nous allons voir s’affirmer progressivement l’importance 
dans tout ce qui suit.

Comme l’onde v est, nous l’avons dit, une onde à caractère physique 
d’une très faible amplitude, nous en arrivons à la conception que le 
photon est une très petite région de très haute concentration du champ 
incorporée à une très faible onde électromagnétique du type classique, 
qui est guidée dans son mouvement par la propagation de cette onde. 
Présentée de cette façon, cette conception paraît très analogue à celle 
qu’Einstein lui-même avait envisagée à l’époque où, en igo5, il avait 
introduit le premier l’idée d’une coexistence des ondes et des corpuscules 
dans les rayonnements. Il disait, en effet, que l’onde lumineuse est une 
sorte d’onde « fantôme » qui ne peut pas agir sensiblement sur la matière, 
mais qui transporte et qui guide les quanta de lumière (c’est-à-dire les 
photons) qui, eux, peuvent agir sur la matière. Bien sûr, pour nous, 
l’onde électromagnétique de base n’est pas un fantôme, mais une onde 
physique réelle de très faible amplitude, mais l’analogie des deux 
conceptions est évidente.

Chose curieuse, ce sont des réflexions sur l’emploi des procédés d’apo 
disation pour améliorer la qualité des images optiques qui m’ont amené 
récemment à penser que l’onde v du photon doit bien être assimilée 
à une très faible onde électromagnétique. Je vais exposer mon raison 
nement qui me paraît d’une grande portée.
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Les physiciens qui cherchent à obtenir de bonnes images lumineuses 
des objets qu’ils étudient sont gênés par les effets de diffraction qui 
interviennent dans tous les instruments d’optique car ces effets ont 
pour conséquence de disperser la lumière autour de l’image prévue par 
l’optique géométrique. Pour cette raison, ils ont cherché à éliminer 
ou du moins à diminuer cette sorte de « pied » que présente la courbe 
de répartition des intensités autour de l’image de façon à obtenir, par un 
procédé dit d’apodisation, une répartition plus concentrée des inten 
sités lumineuses et, par suite, une image plus nette.

Sans entrer dans la théorie générale dont on trouvera un résumé 
très clair dans le Traité d’Optique de Bruhat réédité par M. Kastler ('),

Lumière incidente

Fig. 2.

nous voulons rappeler le principe de la méthode d’apodisation. Consi 
dérons un instrument d’optique comportant une ouverture, par exemple 
de forme circulaire. Sans apodisation, la lumière incidente aura la même 
intensité sur toute l’ouverture et le principe d’Huygens joint à la formule 
d’inversion de Fourier permet de calculer la forme de l’image avec son 
pied gênant. Mais plaçons sur l’ouverture du côté de l’onde incidente 
une lame absorbante d’épaisseur variable, par exemple plus épaisse 
sur les bords qu’au milieu.

Alors, sur l’ouverture, l’intensité lumineuse ne sera plus uniforme : 
elle sera plus grande au centre que sur les bords. Dans ces conditions, 
la théorie indique et l’expérience vérifie que la figure de diffraction 
peut se trouver resserrée et qu’on peut ainsi obtenir une image améliorée 
par apodisation.

Or, il paraît certain (l’expérience serait sans doute facile à faire) que 
l’image apodisée serait obtenue sans modification si, au lieu d’utiliser 
une source de lumière intense, on employait, comme dans les célèbres

(‘) Masson, Paris, 1954, p. 242 et suiv.
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expériences d’interférences de Taylor dont nous reparlerons au chapitre V, 
une source très faible, si faible que les photons avec leurs trains d’ondes 
individuels n’arriveraient que un par un sur l’ouverture de l’appareil. 
Réfléchissons alors sur ce qui se passerait. Tous les photons qui passe 
raient dans l’ouverture et iraient contribuer à former l’image auraient 
traversé la lame absorbante (ceux qui ont été absorbés dans cette lame 
ne nous intéressent pas) et cependant ces photons qui n’ont pas subi 
l’absorption « photonique » discontinue dans la lame ne se répartissent 
plus de la même façon dans le plan image qu’en l’absence d’apodi 
sation. Cela paraît bien nous imposer d’admettre que « quelque chose » 
qui accompagne le photon et qui influe sur son mouvement a été absorbée 
dans la lame par un processus continu et non pas par l’absorption photo 
nique seule prise en considération dans les théories actuelles. Or ce « quelque 
chose » ne peut guère être que le train d’ondes v qui porte et guide le 
photon et l’absorption non photonique de ce train d’ondes dans la lame 
absorbante a le caractère continu de l’absorption classique des ondes 
électromagnétiques. Il y a là, me semble-t-il, un très fort argument 
en faveur de l’idée qu’en théorie de la double solution, l’onde v qui porte 
et guide le photon doit être une onde électromagnétique du type clas 
sique, mais d’une très faible amplitude.

On pourrait trouver d’autres preuves du même genre. J’ai, en parti 
culier, étudié récemment à ce point de vue la théorie de la largeur des 
raies spectrales. Avec les idées actuellement admises, cette théorie se 
présente sous une forme très paradoxale car elle aboutit à affirmer que 
la largeur d’une raie spectrale résultant d’une certaine transition quan 
tique, largeur spectrale expérimentalement observable, est déterminée 
par la probabilité des autres transitions quantiques qui auraient aussi pu 
se produire, mais qui ne se sont pas produites. A mon avis, une telle 
conclusion n’est pas admissible. Pour cette raison, j’ai esquissé une 
théorie de la largeur des raies spectrales qui, en admettant les idées 
de MM. Lochak et Andrade e Silva sur le caractère de processus brusque 
et non linéaire des transitions quantiques, suppose qu’il existe un état 
de l’atome précurseur de l’émission qui déterminerait la largeur spectrale 
des raies pouvant ensuite être émises et donnerait une explication de 
cette largeur échappant au paradoxe indiqué ci-dessus. Comme cette 
théorie, qui n’est qu’esquissée, serait assez longue à développer, je ne 
l’exposerai pas ici et je me contenterai de dire qu’elle m’a semblé 
fournir de nouvelles raisons pour assimiler l’onde v des photons à une 
très faible onde électromagnétique. Je crois d’ailleurs que le raison 
nement sur l’apodisation suffit à lui seul à rendre cette hypothèse très 
vraisemblable. Aussi l’admettrai-je désormais.

Cette conception de l’onde porteuse d’un photon conduit à penser 
que, si la presque totalité de l’énergie du train d’ondes électromagnétiques 
est certainement concentrée à l’intérieur du photon, il est néanmoins
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possible qu’une très petite fraction de cette énergie soit répartie dans 
toute l’étendue de l’onde de base. L’absorption de l’onde de base par 
passage à travers un corps absorbant pourrait se traduire par une dimi 
nution de la fréquence du photon qui a traversé l’absorbant : ce phéno 
mène pourrait se produire, soit parle processus discontinu que j’ai envi 
sagé ailleurs ('), soit parce qu’un effet de non-linéarité créerait une relation 
entre l’amplitude de l’onde u et sa fréquence. Il serait bien intéressant 
d’examiner expérimentalement si des photons qui ont réussi à traverser 
un milieu très absorbant n’ont pas subi une très légère diminution de 
fréquence. Il y aurait là un effet entièrement nouveau, tout à fait inconnu 
des théories actuelles. Si cet effet existe vraiment, peut-être permet 
trait-il d’expliquer le déplacement vers le rouge de la fréquence des 
photons nous parvenant des nébuleuses très lointaines sans avoir recours 
à l’hypothèse de l’expansion de l’univers.

2. Le transport des photons par les ondes électromagnétiques 
du type v.

L’idée essentielle qui s’est dégagée des considérations exposées au 
paragraphe précédent, c’est que le photon doit, si l’on adopte le point 
de vue de la théorie de la double solution, être considéré comme une 
région de haute concentration du champ qui est implantée sur une 
onde électromagnétique de base de très faible amplitude, très approxi 
mativement solution des équations de Maxwell. D’autre part, l’intro 
duction des potentiels comme grandeurs physiques au même titre que 
les champs nous a permis, au chapitre précédent, de définir un quadri-
vecteur densité-flux donné par les expressions (9) et (10) de p et de pv. 
La trajectoire suivie par le photon au sein de l’onde est déterminée
par la loi du guidage à partir de p et de ov conformément à nos conceptions 
générales. Le photon reste en accord de phase, en « cohérence » avec son 
onde, idée qu’on peut préciser en disant que la structure interne du 
photon doit faire intervenir des grandeurs électromagnétiques F qui 
sont proportionnelles aux grandeurs F de l’onde de base à l’endroit 
où il se trouve, mais qui ont une amplitude beaucoup plus grande.

Considérons, par exemple, le champ électrique complexe E de l’onde 
de base. Nous avons vu qu’à ce champ électrique complexe, nous devons 
faire correspondre le champ classique défini par la partie réelle Ei de E. 
Le champ électrique interne réel du photon devra être de la forme CEi 
avec C très grand. Si l’onde est plane monochromatique (ce qui n’est

jamais rigoureusement exact), E, est représenté par une fonction sinu-

(l) Bibliographie [4],
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soïdale a cos 2 n (v t — yj et le photon peut être assimilé à une sorte

d’impulsion électromagnétique d’amplitude C fois plus grande, C ayant 
une valeur très élevée. Pour employer une expression assez répandue 
parmi les spécialistes des Télécommunications, le champ électrique du 
photon serait, en quelque sorte, un « échantillon » d’une sinusoïde C fois 
plus grande que celle qui représente le champ électrique de l’onde 
de base.

Mais les photons étant des bosons ont la propriété de pouvoir se grouper 
sur une même onde. Le cas d’une onde électromagnétique de base partant 
de très nombreux photons est très important car il correspond au cas 
des ondes hertziennes et à celui des ondes lumineuses émises par un 
laser. Nous étudierons plus loin ces deux cas en détail. Pour l’instant, 
nous nous contenterons de faire une remarque qui nous sera utile dans 
un moment.

Considérons un train d’ondes assimilable à une onde plane mono 
chromatique et portant de nombreux photons. Dans cette onde, la densité 
moyenne de l’énergie est donnée en théorie de Maxwell par la valeur 
moyenne de la composante 44 du tenseur énergie-impulsion, soit ('),
avec E = H = a cosm^vt—■y'j :

(T) M .- ~(E2-t- H‘-0 =

Si nous désignons sous le nom d’onde « échantillonnée » l’onde qui 
correspond à la sinusoïde Cacoszn (vt—y'j dont les photons trans 

portent des échantillons, nous aurons pour cette onde,

Maintenant, si n est le nombre total des photons transportés par le 
train d’ondes et si V est le volume occupé par celui-ci, on devra poser

G-a- nhv
(i> — = ^r

puisque l’énergie représentée par l’ensemble des photons qui occupent
en moyenne une unité de volume est^hv. En se souvenant que nous

1 W 1 h'tavons défini [chap. I, formule (7)] la grandeur k par k = ^ ^ ,

(l) Avec les équations maxwelliennes (i) du chapitre précédent, il faudrait ajouter 
les termes kl ( A +_V2), mais ils sont entièrement négligeables.

L. DE BROGLJE. 8
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il vient pour l’amplitude A de l’onde échantillonnée telle que A = Ca, 
c’est-à-dire de l’onde classique qui transporterait l’énergie par 
unité de volume

<s> * = =
avec n très grand.

Telle est l’amplitude que nous devons attribuer à l’onde dont les 
photons transportent des échantillons pour que cette « onde échan 
tillonnée » représente correctement les échanges d’énergie entre les 
photons et la matière. Nous retrouverons cette formule (4) dans un 
chapitre ultérieur.

3. Généralisation de la relation W — Cv dans le cas de l’absorption 
de l’onde v.

En liaison avec ce que nous avons dit précédemment sur l’apodi 
sation, nous allons d’abord examiner le cas d’un train d’ondes portant 
un seul corpuscule. La relation W = Cv permet de substituer à l’onde 
physique v une onde de probabilité T- par l’intermédiaire d’un facteur de
normalisation C défini par C2 = ——1------Elle sert à exprimer que la

J M1*

probabilité de présence du corpuscule dans l’élément de volume dz est 
proportionnelle à | W |2 dz.

Examinons alors comment doit se généraliser et s’interpréter la rela 
tion T' = Cv quand l’onde v traverse un corps qui l’absorbe. Supposons 
que l’onde v traverse un écran d’épaisseur Z et de coefficient d’absorption y. 
Avant d’entrer dans l’absorbant, l’onde n a la valeur v0 et l’on doit lui
associer une onde de probabilité T-,, = C0n0 avec C0= —— ------ A laJ | |2 dz
sortie de l’écran, l’onde est devenue v = va er'!1. Pour construire l’onde 
correspondant à cette nouvelle situation, il faut que nous tenions compte 
des informations que nous avons sur ce qui est arrivé au corpuscule 
pendant la traversée de l’écran, ce qui est naturel puisque l’onde T’ 
est une simple représentation de probabilités. Si nous savons que le 
corpuscule n’a pas été absorbé dans l’écran, nous devrons prendre comme
fonction T’ après l’écran lF = Ci> avec C = —:—------> ce qui nous

donne C = C0 et1. Si nous savons que le corpuscule a été absorbé dans 
l’écran, nous devons prendre T1- = o, donc C = o. Mais, si nous ignorons 
ce qui est arrivé au corpuscule en traversant l’écran, nous devons prendre
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après l’écran 'F = C0i> = C0i>o e~^1, d’où J" 'F [ - d~ = e~'2il, et considérer

alors que la probabilité pour que le corpuscule ait traversé l’écran sans 
être absorbé est e_-'C.

Passons maintenant au cas d’une onde portant n corpuscules ou plus 
précisément au cas d’une onde électromagnétique portant n photons et 
posons-nous le même problème que ci-dessus. Avant l’écran V = C„v0 avec
C- = ————---- i soit C„ = — \/n (je faç0n à avoir Ç| V |2 dz = n.

j Klîrft y f | ro |2d~
Après l’écran, on a v = p0 e'ï'. Si nous savons que m ^ n photons n’ont 
pas été absorbés par l’écran, nous poserons

'G = G,,, c eV

de façon à avoir J | *F j2 d-r = m. Mais, si nous ignorons combien de 
photons ont été absorbés dans l’écran, nous poserons

']’ = C„ v = C„ v0 e—t1 d’où d~ =

et nous devons alors considérer que le nombre moyen des photons après 
l’écran est_ n e~2ïz.

Nous avons ainsi obtenu une correspondance statistique entre l’affai 
blissement de la très faible onde de base, affaiblissement qui est un 
processus non aléatoire et continu, et la diminution du nombre des 
photons, diminution qui est au contraire un processus aléatoire et 
discontinu. Cette conclusion paraît être en relation avec le fait que dans 
la théorie quantique des champs, on calcule les probabilités d’absorption 
(ou d’émission) des photons en utilisant un terme d’interaction entre le 
rayonnement et la matière qui est empruntée à la théorie électro 
magnétique classique.

4. Champs électromagnétiques libres et champs électromagné 
tiques liés.

Ce que nous avons dit jusqu’à présent dans ce chapitre s’applique 
seulement aux ondes électromagnétiques de base pouvant transporter 
un ou plusieurs photons. Ces ondes représentent donc ce qu’on peut 
appeler un champ électromagnétique « libre », c’est-à-dire un champ 
correspondant à la propagation d’un rayonnement à grande distance 
de toute charge électrique immobile ou en mouvement.
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Or, dans la théorie électromagnétique classique, il est bien connu 
que le champ électromagnétique existant autour d’une charge électrique 
immobile ou en mouvement est représenté par deux sortes de termes :
i° des termes en ' correspondant à un flux centrifuge d’énergie qui reste 

constant à toute distance; 20 des termes en — avec n 2 qui ne corres 
pondent à aucun flux d’énergie vers l’extérieur. Il est dès lors naturel 
de considérer les termes du premier type comme des champs électro 
magnétiques « libres » correspondant à l’émission d’un rayonnement 
tandis que les termes du second type représentent des champs « liés » 
à la source qui restent principalement confinés au voisinage immédiat 
de celle-ci.

Comme nous avons identifié les champs libres, du moins à grande 
distance des charges, avec un faible champ électromagnétique du type v 
susceptible de transporter des photons, il nous reste à voir comment nous 
allons interpréter les champs liés. Il semble naturel d’admettre que les 
champs liés sont en principe des champs électromagnétiques complexes 
du type v, étant bien entendu que cela signifie que les champs liés clas 
siques sont définis par la partie réelle des champs complexes corres 
pondants. Mais si l’on admet ce point de vue, il en résulte que les champs 
liés, bien qu’étant du type v de la double solution, ne sont plus à ampli 
tude infiniment petite puisque leur amplitude devient très grande quand 
on s’approche de la charge ou du courant auquel ils sont liés. C’est donc 
seulement pour les champs en propagation libre susceptibles de transporter 
des photons et de constituer un rayonnement qu’on doit attribuer 
à l’amplitude de l’onde de base une valeur extrêmement petite. Cette 
restriction ne s’applique pas aux ondes de base qui constituent les 
champs liés.

Les calculs qui vont être effectués au chapitre suivant ont pour but 
de montrer la signification et la portée de l’ensemble des hypothèses 
que nous avons faites sur les champs libres et les champs liés (').

(') Il est important de signaler ici que M. Thiounn Mumm, dans des travaux récents 
prolongements de sa thèse de Doctorat, a montré que, pour les photons comme pour 
les électrons, les équations d’ondes admettent des solutions à singularité mobile, 
le mouvement de la singularité obéissant à la formule du guidage exprimée par le 
vecteur flux. (Voir bibliographie [25].)



CHAPITRE III.
ÉTUDE DE CERTAINS CHAMPS ÉLECTROMAGNÉTIQUES 

LIBRES OU LIÉS.

1. But du chapitre.

Avant de faire des applications de nos idées générales au cas des ondes 
hertziennes et de la lumière, nous nous proposons dans ce chapitre de 
donner quelques exemples de calculs exacts de certains champs électro 
magnétiques libres ou liés et de déterminer les lignes de courant qui 
constituent les trajectoires possibles du photon dans son onde quand 
on fait abstraction des perturbations provenant du milieu subquantique.

Dans le cas des champs libres, c’est-à-dire de la propagation du rayon 
nement en l’absence de charges électriques, nous constaterons sur les 
exemples étudiés qu’en dehors du cas de l’onde plane monochromatique 
où la masse propre variable M„ se réduit à la très petite masse propre y,, 
que nous attribuons au photon, la masse propre M0 a une valeur beau 
coup plus grande correspondant à un mouvement ralenti, comme nous 
l’avions déjà pressenti autrefois, nous le rappellerons plus loin, dans des 
études sur la propagation des ondes électromagnétiques dans les guides 
d’ondes. Nous serons ainsi amené à proposer une expression de M0 en 
fonction des grandeurs électromagnétiques qui se vérifie dans les divers 
cas que nous avons pu traiter.

Il y aurait évidemment lieu d’établir pour le photon une Dynamique 
du guidage analogue à celle que, dans un Ouvrage antérieur ('), j’avais 
pu développer pour la particule de spin o obéissant à l’équation de
Klein-Gordon et pour la particule de spin î obéissant aux équations de

l’électron de Dirac. En particulier, on peut chercher à trouver pour le 
vecteur densité-flux du photon une décomposition analogue à celle qu’a 
réalisée Gordon dans le cas de l’électron. Nous réservant de revenir sur 
ce sujet, je me contenterai de la remarque suivante. D’après les idées ' 
exposées dans le chapitre précédent, on doit admettre que, dans la j 
région occupée à un instant donné par le photon, les grandeurs électro-

(') Bibliographie [1], chap. X et p. 198 et suiv.
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magnétiques doivent avoir une valeur proportionnelle à celles des gran 
deurs correspondantes de l’onde de base, mais beaucoup plus grande. 
Comme dans notre théorie, qui admet la nature physique des potentiels, 
tout le champ électromagnétique dérive de ces potentiels, nous pouvons 
dire que le mouvement du photon dans son onde doit être tel que le 
quadrivecteur potentiel interne reste parallèle à celui de l’onde de base, 
mais avec une amplitude beaucoup plus grande. Il en résulte que le 
mouvement du photon doit être tel que non seulement il décrive la 
trajectoire prescrite par la théorie du guidage à l’aide du quadrivecteur 
densité-flux du champ électromagnétique de base, mais que pendant sa 
progression sa structure interne doit tourner de façon à maintenir le 
parallélisme de son vecteur potentiel avec celui du champ de base.

Après avoir étudié quelques exemples de champs libres, nous étudierons 
les champs liés dans le cas du rayonnement d’un dipôle et dans le cas 
d’une charge immobile éventuellement puisante. Dans ce dernier cas, 
nous serons amené à établir un très intéressant passage continu entre 
les ondes longitudinales et le potentiel de Coulomb.

2. Étude de deux cas de champs libres.

En Mécanique ondulatoire du photon, le quadrivecteur densité-flux 
du champ électromagnétique, qui, d’après le principe du guidage, déter 
mine le mouvement non perturbé du photon, est donné par la formule

(0 yV= ft\ conj.],

ce qui donne pour la densité :

U) P = i[(ï..t)-(lî*)],

où A est le potentiel-vecteur et E le champ électrique (complexes), 
et pour le trivecteur jk avec k = i, 2, 3 :

(3) jt=PVi= j[(A*AH)i+V%—(Îa H —VE*],

—

où V est le potentiel scalaire et H le champ magnétique.
On peut déjà faire sur la formule (2) une remarque importante : elle 

montre qu’il n’y a pas de photons là où le champ électrique est nul, même 
s’il y a un champ magnétique. La lumière ne peut donc produire un 
effet photoélectrique que là où le champ électrique est différent de zéro 
et, dans un phénomène d’interférences ou de diffraction, les franges 
brillantes correspondent à un maximum du champ électrique. C’est,
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nous le rappellerons, ce qui a été vérifié depuis bien longtemps dans 
les expériences de Wiener et cela a permis de dire que, dans une onde 
électromagnétique, c’est le champ électrique qui impressionne une 
plaque photographique. Ce résultat est bien en accord avec la formule (2).

Nous allons maintenant appliquer les formules (2) et (3) au cas des 
ondes planes monochromatiques et au cas des franges de Wiener.

a. Onde plane monochromatique. — Elle est définie, si l’onde est rectili- 
gnement polarisée et se propage suivant oz, par le potentiel-vecteur

(4) A.r= A y = A*. = o,

V I I 'l-TZ I
où k = 2 7t -, \k\ = -y ) k„ — j p0 c, la masse propre p.„ du photon étant
supposée extraordinarement petite, mais non rigoureusement nulle. 
On trouve alors
(f>) K, = —J*A0P, H,= — i\k I A0P,

P étant le facteur de phase. On a donc | E |2— | H |2 = kl | A ]2. 
On trouve ensuite

(6)
I * I2 Æ

d’où pour la densité propre p„ :

(7)
2 k„
Tic 5

et

Or nous devons avoir

(9) Moc*
v/T^

= /iv = kUc,

d’où encore
(10) Mo =—VI — p-= -------- = fi».

Donc, dans le cas de l’onde plane monochromatique, la masse propre M0 
se réduit à la très petite masse propre p0, ce qui est satisfaisant (').

(') On pourrait traiter d’une façon analogue les autres cas d’ondes planes mono 
chromatiques.
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b. Franges de Wiener. — Nous ne traiterons ici que le cas simple 
d’une onde rectilignement polarisée qui tombe sous incidence normale 
sur un miroir parfaitement réfléchissant.

X

o 3

Fig. 3.

L’onde incidente pouvant encore être définie par la formule (4), nous
poserons a — \ k | z et nous vérifierons aisément que, dans les franges 
de Wiener, le champ électrique devant s’annuler sur le miroir, nous 
avons

(ii)
A.r= iiAo sina eil;ct\

= 2 k A<) sic a eikct ; 11 r = 2 i ! k J A0 cos a etlccl.

A l’aide des définitions (2) et (3), nous en tirons

(12)
8 k . , .

— A-c sm2a; pi'r=o; c-= o ; 
Tic

fo= ? V/l — Ps= P-

Le photon est donc immobile dans la région d’interférences (si l’on 
fait abstraction des perturbations provenant du milieu subquantique) 
et sa masse propre M„ est

( 13 )
, , k /iMo = — \fi- 

c
kl, h', ■ ,'2.(1 •

Il est intéressant de rappeler ici ce qui suit. Vers 1890 {voir 
H. Po in c a r é , Théorie de la lumière), on se demanderait si, en adoptant 
pour la nature de la lumière la conception électromagnétique de Maxwell, 
on devait considérer l’action photographique, qui permet d’enregistrer 
les franges d’interférences, comme due au champ électrique ou au champ



magnétique. Wiener, qui a fait à cette époque l’expérience d’inter 
férences qui porte son nom, a montré que les franges brillantes corres 
pondent aux maximums du champ électrique et cela, dans le langage 
des photons, signifie que c’est l’intensité du champ électrique qui déter 
mine la probabilité de présence des photons dans la région d’inter 
férences. Il est très intéressant de remarquer, comme nous l’avions déjà 
fait plus haut, que ce résultat est en complet accord avec l’expression
adoptée pour p. Au contraire, 1 expression ^—, que nous
fournirait la théorie classique de Maxwell, nous dirait que les photons 
peuvent se trouver dans les régions où le champ électrique est nul si le 
champ magnétique n’y est pas nul. On voit ici apparaître une diffé 
rence entre les deux théories, non pas en ce qui concerne l’onde de base, 
mais en ce qui concerne la localisation des photons sur cette onde (').
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3. Définition de la masse propre M0 en fonction des grandeurs 
électromagnétiques.

La théorie de la double solution indique, nous l’avons vu dans l’Intro 
duction, que tout corpuscule guidé par son onde de base possède à chaque 
instant une masse propre variable M0, différente en général de la masse 
propre usuelle m0, dont les variations engendrent la force quantique. 
Cette masse propre variable doit pouvoir s’exprimer à l’aide des gran 
deurs qui caractérisent l’onde de base et nous avons vu que dans le cas 
d’une particule de spin o obéissant à l’équation de Klein-Gordon, cette
expression est M„ = ^/mi;-)- a étant l’amplitude de l’onde de

Klein-Gordon.

(') Pour montrer comment on peut essayer de lever certaines difficultés qui se 
présentent dans le développement de cette théorie, nous ajouterons les deux remarques 
suivantes.

D’abord, s’il arrive que p soit négatif dans une région de l’espace, il semble qu’on
->■

puisse admettre que, pu étant nul sur la surface p = o, les photons ne puissent pas 
pénétrer dans la région où p est négatif, ce qui permettrait de regarder comme sans 
importance la difficulté présentée par l’existence possible de valeurs négatives de p.

Ensuite il peut arriver dans certains cas (voir [1], p. 125 et suiv.) que, p étant 
partout positif, les photons puissent pénétrer dans une région où leur vitesse v soit 
supérieure à c, la masse propre M0 étant alors purement imaginaire. Mais je pense 
que le déplacement des photons avec une vitesse supérieure à c dans une région d’inter 
férences très limitée ne peut servir à transmettre un signal de sorte qu’on n’est pas 
en contradiction avec la théorie de la Relativité. Cette idée me paraît en accord avec 
l’opinion émise récemment par M. Terletsky suivant laquelle il pourrait exister des 
déplacements corpusculaires de vitesse supérieure à c lorsque ces déplacements ne 
peuvent pas constituer des signaux observables.
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Pour les particules de spin ^ obéissant aux équations de Dirac (c’est 

le cas de l’électron), j’ai trouvé précédemment ('), compte tenu de la 
relation de Pauli-Kofink, p0 = y/£2j + £2|,

04) VI "*opoMo = —~ = m„ ï-----
û!

ü,
4 4

où = 'V ’t';' 'Iq et 12-i = 'V, sont les deux invariants classiques
1 1

en théorie de Dirac. Récemment, j’ai pu démontrer que, pour le photon 
obéissant aux équations maxwelliennes précédemment étudiées, on a la 
formule analogue à (i4) :

05) U 0 ,0 ,

Q;

où ici l’invariant 42, est égal à

a, = -
2 / ii
~Uc i Av = (lie

A I2 I M |2)

et où est un second invariant facile à calculer (puisqu’il est égal 
à y/pü — 12;). Dans les cas où le potentiel scalaire V est nul, la formule (i5) 
se réduit à

(XopoÆc /(-p0(IG) M0 = 2 kr, I A I A I2

La formule (16) se vérifie aisément dans les deux cas particuliers étudiés 
au paragraphe précédent. Dans le cas de l’onde plane monochromatique,

2/tnnous avions trouvé |A|2= A2 et p0= -^A2, d’où par (16) :

(17)
_ zTi-koA'l ktjl
~ 2 ne ai ~ ~ _ (J'°

en accord avec (10). Dans le cas des franges de Wiener, nous avions 
trouvé

8 k
| A |2 = 4 A'I s i n - oc et po = p = A 5 sinso,

d’où par (16)
(iS)

Skîi- Aj sinaoc kli Av 
8 Tic A 2 sin2a c c' 

en accord avec (i3).

C) Voir [1], p. 200 et plus haut, chap. I, éq. (35).
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Les expressions ( 14) et (i5) de M„ sont très importantes en ce qui 
concerne la Dynamique du guidage des particules et la Thermodynamique 
cachée que j’ai récemment développée (‘).

4. Remarques sur les états de superposition. Cas des guides 
d’ondes.

Dans les cas simples que nous venons de traiter et dans quelques 
autres que j’ai pu examiner, on constate que, quand l’onde de base est 
formée par une superposition d’ondes planes monochromatiques, la masse 
propre variable M„ du photon est très supérieure à l’extraordinairement 
petite masse propre y(l qui, suivant nos conceptions, doit figurer dans 
nos équations maxwelliennes et à laquelle se réduit M0 dans le cas de 
l’onde plane monochromatique.

Or, j’avais déjà signalé ce fait, il y a 25 ans, dans l’étude d’un problème 
particulier, à l’époque où j’ai consacré un exposé à la propagation des 
ondes électromagnétiques dans les guides d’ondes ('-).

J’avais remarqué que les ondes qui se propagent dans un guide d’ondes 
rectiligne sont caractérisées par des grandeurs électromagnétiques dont 
le facteur de phase est de la forme e‘ikct~kz~)} l’axe des z étant pris suivant 
l’axe du guide et les grandeurs k et k- étant reliées par la relation

(]()) *2=A'l-1-

où c l est une constante qui dépend de la forme du guide et du type d’ondes
kqui s’y propage. Après avoir remarqué que la vitesse de phase V = c y-k~

est supérieure à c, j’avais calculé la vitesse de groupe v donnée par la 
célèbre formule de Rayleigh :

il dkz(:><>; - = rp)v c àk
ce qui me donnait

k
(21) V=C~<C.

Remarquant alors que v étant la vitesse de propagation de l’énergie 
le long du guide et introduisant les conceptions de la Mécanique ondu 
latoire, j’en concluais que tout se passait comme si le photon possédait
une masse propre M0 = ^ déterminée par la constante a et pouvant

prendre une valeur importante.
J’ai repris récemment ce genre de calculs pour certaines ondes se 

propageant dans un guide dans le cas simple d’un guide à section rectan-

(‘) Bibliographie [6],
(-) Voir Bibliographie [15], p. 34 et 35.
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gulaire : j’ai constaté qu’en calculant p et ou à l’aide des formules (2) 
et (3) on retrouve pour v la valeur (21) et qu’on peut aussi vérifier la
valeur ^ de M0 en appliquant la formule (16). Il me paraît très probable

qu’on parviendrait aux mêmes conclusions en étudiant des cas plus 
généraux de propagation dans les guides.

Ainsi le fait que, pour toute onde formée par une superposition d’ondes 
planes monochromatiques, la masse propre variable M0 soit supérieure 
à la masse propre figurant dans les équations d’ondes apparaît comme 
général. Dans le livre que j’ai récemment consacré à la Thermodynamique 
de la particule isolée, j’avais déjà signalé ce fait et j’en avais montré 
toute l’importance (l).

5. Étude de certains cas de champs liés.

a. Cas du dipôle. — Considérons un petit dipôle oscillant placé à 
l’origine des coordonnées et assimilable à un petit élément de courant 
alternatif. L’axe du dipôle était pris pour axe Oz, nous avons

(22) A vj— Av 1 AnA-— —

I 1 I I -
avec cp = /r<—| k | r et k2 = | k | +fco. d’où en coordonnées polaires :

(23)

Comme

. A0 cos 0 . A,.= ----------- e'r;
, A0 siu 0 
Aq = ----------- e'r A* = o.

1 à A- d\- B . J 1
(24)-----— = — div A =------ :— =------- — cos 0 = A0 cosu 1 —c dt dz dr \r-

I > I 
i Æ

on trouve en intégrant sur le temps :

(25) Y = — ~ A cos 0 ( ~ 
k \r-

I > I i\k\

En calculant les composantes non nulles des champs, nous obtenons

E;. =-

(26) < Eq =-

1 dA,. àX ikt A0cosO i 2A0COSÜ /i . I > [
--------- Tr^JTc dt

I dAo I dX ?/:Aosin0 l’ÆAosinB/i • 13" I \
7----------------- ^

„ 1 à( rA.fi) i d A,- . l'HAosinO A0 . , .Ha =--------1-------/=—*/: —-----e‘<f -+■ “ *in « e'ï.r d 0 r dn r r1

Le premier terme de Er représente une onde longitudinale caracté 
ristique de notre théorie du photon et l’on voit dans les formules (26)

(‘) Bibliographie [6].
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apparaître les termes en i et en ^ avec n l a qui représentent respecti 
vement les champs libres et les champs liés.

Si l’on se place assez loin de O pour pouvoir ne conserver que les
termes en -- et si l’on néglige les termes en kl (c’est-à-dire l’onde longi 
tudinale divergente), on a

et l’on retrouve l’onde transversale divergente classique en théorie du dipôle.

z

M

X

m

Y
Fig. 4.

Calculons maintenant p et pv à grande distance :

7 AjS sin20 
r-

pr0= j ( — A* Ha-+- V*Ee— conj.) = o,(28)

On en tire
(■'•9)

C’est bien ce que nous devions obtenir pour l’onde transversale à grande 
distance puisque nous avons négligé les termes en kl.

Il est intéressant de faire la remarque suivante : Si dans l’expres 
sion (26) de Ha, nous faisons tendre k vers zéro, c’est-à-dire la fréquence 
vers zéro, en négligeant k0, nous obtenons

(3o)



et cette expression peut être identifiée avec la loi classique de Laplace,
H _ '  ̂J*1116 f qUj donne le champ magnétique créé par un élément de

courant continu i ds. Cela est satisfaisant puisqu’à la limite pour une 
fréquence nulle, notre dipôle est devenu un petit élément de courant 
continu.

b. Les ondes sphériques longitudinales divergentes et le potentiel de 
Coulomb. — Nous savons qu’avec nos équations maxwelliennes conte 
nant un très petit terme de masse, il existe des ondes longitudinales 
comportant un champ électrique non nul. Nous pouvons donc imaginer 
une charge électrique sphérique et puisante qui pourrait émettre une 
telle onde longitudinale divergente. Nous allons calculer cette onde et, 
en faisant tendre sa fréquence vers zéro, nous la verrons se transformer 
d’une façon continue et à la limite coïncider avec le champ électro 
statique coulombien de la charge qui a cessé d’être puisante. Nous souli 
gnerons l’intérêt de ce résultat.

Nous considérons donc une charge électrique sphérique placée à 
l’origine des coordonnées et puisante avec une fréquence v et nous 
emploierons des coordonnées sphériques autour de l’origine. En employant 
les mêmes notations que précédemment, nous caractériserons une onde 
sphérique longitudinale divergente par des grandeurs de la forme

f (r) e <(*<•( —Mr) avec A2=|a | -î- Ag.

Nous poserons alors
(3l) V = — J-^j- l ei(kcl-Vk\,)

*5 r

le coefficient---- ayant été choisi pour la commodité des calculs,
ce qui, à une constante multiplicative près, ne restreint pas la géné-

1 d\T ->ralité. La relation - — -f div A = o nous impose alors de poser

A 'o \r - r J
Ao = Aç = o.

Avec les définitions (3i) et (32), on peut vérifier que toutes les équa 
tions (1) du chapitre I sont satisfaites et l’on trouve
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ik f)\
Jf



Les équations (3i), (32) et (33) définissent les grandeurs électromagné 
tiques qui caractérisent l’onde sphérique longitudinale divergente.

Si k tend vers zéro, k tend vers k„ et à la limite nous avons
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(34) V = o, A,.= ~ -4ei*ocq E,.= 4eU»c'-

I ^ ISi, ensuite, k devient inférieure à k0, \ k devient purement imaginaire
I ^ I

et l’on peut poser y = i j k j. On aura k- + y2 — kl et les exponen 
tielles deviendront e~v. Donc l’onde longitudinale divergente,
qui était progressive pour k > ko et stationnaire pour k — ko, est devenue 
exponentiellement amortie. Tout ceci est tout à fait analogue à ce qu’on 
rencontre dans la théorie des guides d’ondes en technique des hyper 
fréquences radioélectriques, quand on étudie les « atténuateurs ». En effet, 
l’atténuateur est un guide d’ondes possédant une fréquence minimale 
de coupure v„, ce qui en fait un filtre passe-haut : si l’on envoie dans ce 
guide une onde de fréquence inférieure à v0, elle s’amortira en se propa 
geant et les champs qui la caractérisent s’affaibliront exponentiellement 
le long du guide.

I ^ IAvec y = i I k | et k’2 + y2 = kl, les expressions de V, A,, et E,. deviennent
, . ik / i

Er~ -+-];) e~1r e‘kct-

Enfin, si k tend vers zéro, y tend vers k0 et à la limite pour k = o, 
on trouve
(36) A,.= o, V = -e—Er = f- H—— 'je-

Les formules (36) définissent un champ électrostatique du type de 
Yukawa qui, en raison de l’extrême petitesse de ke, se réduit sensiblement 
au champ électrostatique coulombien.

En résumé, si nous faisons décroître k de + oo à o, nous obtenons un 
passage continu entre fonde sphérique longitudinale divergente des 
formules (3i), (32) et (33) pour k > k„ au champ presque coulom 
bien (36) en passant par le champ stationnaire (34) et le champ 
« atténué » (35). Ainsi le champ coulombien se trouve rentrer, pour ainsi 
dire, dans le cadre général des propagations d’ondes sphériques longi 
tudinales divergentes puisqu’il apparaît comme le cas limite des ondes 
longitudinales atténuées quand la fréquence tend vers zéro. Et cela 
paraît très satisfaisant.

Il est bien intéressant de remarquer que ce résultat ne peut pas être 
retrouvé si l’on pose d’emblée k0 = ;a 0 = o. En effet, si l’on admet que



l’onde longitudinale doit avoir des grandeurs électromagnétiques de la 
forme f(r) e‘^kct~I* l'\ on écrira (puisqu’ici j k j = k) :
(37) E,. = /(r) Eo =Ej,= o

pour toute valeur non nulle de la fréquence, donc de k. L’équa-
—^ ^ _^

tion —rotE donne H = o, mais comme l’on doit avoirc àt
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1 dE 
c àt

-> ->
= ik E = rot H

sans terme en kl À. au second membre, le fait que rot H est nul nous
impose d’avoir E = o. Les deux champs E et H étant nuis, il n’y a pas 
d’onde divergente longitudinale de champs et nous retrouvons le fait 
que, si l’on admet l’invariance de jauge et le caractère non physique des 
potentiels, les ondes longitudinales n’existent pas. Mais alors le champ
coulombien E = ~ dérivant du potentiel V — ' se trouve être une
solution statique des équations usuelles de Maxwell qui est complètement 
isolée des solutions à caractère ondulatoire. C’est pourquoi la théorie quan 
tique des champs, qui cherche à tout ramener à des champs ondulatoires, 
est obligée, parce qu’elle admet l’invariance de jauge, de nier pour ainsi 
dire la véritable existence des champs coulombiens et à les interpréter 
par le procédé très artificiel des « échanges de photons virtuels », et cela 
en se servant des ondes longitudinales dont elle nie l’existence !

En abandonnant l’invariance de jauge et en attribuant au photon 
une masse propre extrêmement petite, on rétablit l’existence des ondes 
longitudinales et, en passant au cas limite k f o, on retrouve sous la 
forme (36), l’idée classique qu’une charge électrique est entourée d’un 
champ électrostatique coulombien. Cela montre bien l’intérêt qu’il y a 
à substituer aux équations classiques de Maxwell sans termes de masse 
les équations maxwelliennes avec termes de masse très petits.

Les résultats obtenus dans ce paragraphe montrent d’ailleurs que le 
champ électromagnétique « lié » à une charge électrique doit, en théorie 
de la double solution, être considérée comme une onde du type v et cela 
malgré les très grandes valeurs qu’il prend au voisinage de la charge. 
Nous retrouvons ainsi l’idée développée dans le dernier paragraphe du 
chapitre précédent : l’onde v est une onde électromagnétique du type 
classique, mais elle n’est de très faible amplitude que dans le cas des 
champs « libres » qui sont susceptibles de transporter des photons dans 
les rayonnements.



CHAPITRE IY.
LES ONDES HERTZIENNES.

1. Généralités sur les ondes électromagnétiques portant de 
nombreux photons.

Nous allons maintenant reprendre les idées précédemment exposées 
au paragraphe 2 du chapitre II. L’onde de base v correspondant à un 
rayonnement libre est un très faible champ électromagnétique du type 
classique obéissant aux équations de Maxwell (ou du moins très sensi 
blement à ces équations si l’on admet l’existence d’une très petite masse 
propre du photon). Cette onde agit sur la matière comme une onde 
électromagnétique ainsi que le montre l’absorption qu’elle subit dans 
la lame absorbante d’un dispositif d’apodisation quand le photon qu’elle 
porte n’est pas absorbé dans la lame. Une telle onde v peut porter de 
très nombreux photons : c’est le cas si important des ondes hertziennes 
entretenues utilisées en Radio, en Télévision, etc. Ces ondes hertziennes, 
dont les longueurs d’ondes s’échelonnent depuis plusieurs kilomètres 
jusqu’à une fraction de millimètre, forment d’immenses trains d’ondes 
transportant un nombre énorme de photons.

Il résulte de ce qui a été dit précédemment que, dans le cas des ondes 
hertziennes, l’action des photons sur la matière est la même que celle 
d’une onde électromagnétique qui serait « semblable » à l’onde de base, 
mais d’une intensité beaucoup plus grande. Rappelons que cela veut dire 
que, si les grandeurs caractérisant l’onde de base sont de la forme a e!?, 
les ondes transportant des « échantillons » d’une onde dont les gran 
deurs seraient Cae'î où C donnée par la formule (4) du chapitre III 
est proportionnelle à la racine carrée du nombre des photons portés 
par l’onde. Les photons apportés par une onde hertzienne exerceront 
donc sur un récepteur des impulsions successives et discontinues, mais 
qui, point essentiel, seront toutes en phase avec l’onde de base à laquelle 
ils sont incorporés. Tout se passera donc (du moins à de petites fluc 
tuations près dues à la distribution aléatoire des photons dans l’onde) 
comme si le récepteur était soumis à l’action d’une onde continue définie 
par les grandeurs Cae'?. Ainsi s’explique le fait paradoxal que les 
équations de Maxwell représentent très exactement les phénomènes

L. DE BROGUE. 4
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dans tout le domaine radioélectrique jusqu’aux ondes millimétriques bien 
que l’énergie radiante soit apportée au récepteur par le processus essen 
tiellement discontinu de l’arrivée successive des photons. Aucune autre 
conception claire ne me paraît susceptible d’expliquer ce fait resté si 
mystérieux et l’on doit souligner que cette interprétation repose essen 
tiellement sur l’idée d’un accord de phase entre les photons et leur onde 
de base.

Nous allons exposer un petit calcul qui nous semble confirmer que la 
conception que nous proposons est bien acceptable. Soit Wm la puis 
sance minimale que doit capter un récepteur de Radio pour pouvoir 
fonctionner. Le nombre de photons de fréquence v que ce récepteur 
capte par période étant ri, on devra avoir s’il fonctionne

«/tv.v = W,„.

Supposons que nous prenions le cas (défavorable) d’une onde de très 
courte longueur d’onde, mettons 3 cm. Nous aurons v = io‘ MHz. 
En évaluant toutes les grandeurs dans le système M. K. S., on trouve

n ^ W„t W. _
n 6,6. io~34. ioa° io~13

Pour que le récepteur puisse osciller régulièrement par impulsion 
photonique, il faut que n soit au moins de l’ordre de l’unité, ce qui donne

\V,„^ IO-° (J.W.

Comme il semble raisonnable d’admettre qu’un récepteur ne doit pas 
pouvoir fonctionner s’il ne reçoit pas une puissance au moins égale 
à i pW, on voit qu’un récepteur ne pourra osciller que s’il reçoit quelques 
photons par période, résultat qui est satisfaisant.

Pour employer une formule imagée, nous pouvons dire que nous tenons 
maintenant les deux bouts de la chaîne. En effet, une onde électro 
magnétique du type v ne portant pas de photons (ou du moins consi 
dérée dans une région où elle ne porte pas de photons) est assimilable 
à une onde électromagnétique classique et, fait plus surprenant, il en 
est de même d’une onde électromagnétique de ce type transportant de 
très nombreux photons. Bien que le second cas soit entièrement l’opposé 
du premier, la même image du champ électromagnétique classique 
(faible dans le premier cas, intense dans le second) lui est cependant 
applicable. Cette conclusion peut paraître surprenante, mais elle est 
bien en accord avec le principe de correspondance : celui-ci, en effet, 
nous apprend que dans le phénomène où interviennent un grand nombre 
de quanta (ici de photons), les conceptions continues de l’électro- 
magnétisme classique redeviennent valables. Dans les phénomènes de
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la Radio, l’onde hertzienne porte un très grand nombre de photons par 
rapport à l’énergie finalement échangée avec les récepteurs de sorte 
que cette onde apparaît, du point de vue énergétique, comme analogue 
à un fluide formé d’un nombre immense de petites molécules et l’on sait 
qu’un tel fluide peut, avec une grande approximation, être assimilé 
à un fluide continu.

Nous tenons les deux bouts de la chaîne, mais nous ne tenons pas le 
milieu. Ce milieu, c’est le cas d’une onde électromagnétique portant un 
petit nombre de photons et, en particulier, c’est le cas limite, très impor 
tant en Optique, d’une source très faible qui émet séparément des trains 
d’ondes successifs portant chacun un seul photon. Les effets produits 
par une lumière très faible de ce genre sont tous isolés et d’une nature 
purement quantique (effet photoélectrique sur un électron, transition 
quantique dans un atome ou une molécule, etc.).

Nous aurons à étudier ce cas intermédiaire dans le prochain chapitre, 
mais pour l’instant nous voulons analyser de plus près l’entretien de 
l’oscillation d’un récepteur par l’action d’une onde hertzienne. En vue 
de chercher à comprendre le rôle que joue le champ complémentaire dans 
cette affaire, nous allons commencer dans le prochain paragraphe par 
rappeler la théorie tout à fait classique en Électrotechnique de la puis 
sance active et de la puissance réactive.

2. Théorie de la puissance active et de la puissance réactive.

Soit un circuit électrique contenant une résistance R, une self J? 
et une capacité C sur lequel agit une tension alternative de fréquence v 
de la forme

U = Uo cos (o t — Ue \Ji cos <*> t,

où uc= ~ est la tension efficace et où w = 2 7rv. Le courant dans le 
V»

circuit est
I = I0 cos (oit — cp) = Iey/2 cos (oit — 9),

où I,.= -ÏL est l’intensité efficace et où co est le décalage du courant 

par rapport à la tension. Les grandeurs I et U sont reliées par l’équation

c, +

et l’on a

Io =
Uo 
Z ’

I _!L« 
e z ’(2)



52 CHAPITRE IV.

avec

(3)
Z ==\/RÏ- to £ - Cio / ’

(0 £ —

Cm

£ o) ■

K

Z est l’impédance du circuit. Lorsque la condition de résonance £Cv- = i 
est réalisée, Z = R et le courant est maximal.

Nous écrirons en notation complexe,

(4) U — Ue \/2 e”»', I = Ie \/'>. eiMl e—'?

et nous aurons
(5) U = Z, I, avec Lc = R -t- i (£ o> — t t —))

Zc étant l’impédance complexe. On retrouve aisément les formules sous 
forme réelle.

L’énergie débitée par la source pendant une période est

rT ~ -(6) / tWabVa cos o j < cos ((o Z — ç) dt
*M>

et la puissance moyenne Pj fournie au circuit et consommée dans la 
résistance est

(-) P, = i / 2 U„Ie cos o) t cos (t» t—9) dt = Uc Ie cos ç = RI;.

Or, M. Boucherot a introduit, il y a une soixantaine d’années, l’idée 
très importante de « puissance réactive » définie par

(8) P-. = Uele sinç.

Tandis que P, s’exprime en watts, P2 s’exprime en vars (voltampères 
réactifs).

Posons par définition

(9) P = P| -h  t P2 = - I* U = UeI6, e'î = U,;L (cos9 -+- i sin 9),

P est la « puissance complexe » dont la puissance active P, est la partie 
réelle et la puissance réactive P2 la partie imaginaire. Remarquons que,

if pouvant varier de —à + Jj? P2 est toujours positif tandis que P2

peut être positif ou négatif.
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Le long d’un réseau, les deux puissances P, et P2 ont une remar 
quable propriété de conservation comme nous allons le montrer en 
étudiant deux exemples.

Considérons d’abord un branchement du type de la figure 5.

Les points A, B et B' sont supposés infiniment voisins de O. En A, 
la puissance complexe est P (A) = i P (A) U (A) et en B et B' elle a 
des expressions analogues. Or, on a

U(A) = U(B)-*=U(B') et I ( A) = I (B) -+- I (B'), 

d’où l’on tire P (A) = P (B) -f P (B') et en séparant le réel de l’imaginaire,

(10) P, (A) = P, (B) -+- P, (B'), Pî(A) = P2(B)-f-P»(B').

Il y a donc conservation des deux puissances active et réactive quand 
on traverse le point de branchement.

Comme second exemple, considérons un circuit simple et sur ce circuit 
une portion AB comportant résistance, self et capacité.

---------------1—OR»----jC|------- 1------
A B

Fig. 6.

Le courant I étant ici le même en A et en B, on a

P (A) = j I*U (A) et P(B) = l- I* U (B).

Mais on a aussi UA—UB=ZCI, Z, étant l’impédance complexe de la 
portion AB du circuit. On en tire

P(A) = P(B) + iz,[I|*=P(B)+ZcI2
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et, en séparant le réel et l’imaginaire,
(n) P, (A) = P, (B) + RI*, P, (A) = P, (B)+ («0 4?-^)!».

Ces deux formules expriment la conservation de la puissance active 
et de la puissance réactive le long de AB.

Les formules (10) et (n) en P,, qui expriment la conservation de la 
puissance active, résultent immédiatement de la conservation de l’énergie. 
Mais il nous faut préciser le sens des formules (io) et (n) en P>.

Dans le cas de l’action de la tension U sur un circuit contenant résis 
tance, self et capacité, la seconde formule (n) nous donne

Or l’énergie magnétique emmagasinée dans la self à l’instant t est

(12) \V,„ = ~ £1- = £\% cos- (to l — 9),

tandis que l’énergie électrique du condensateur au même instant est

<■»> "'-jÎ-îW’''*-

TLes énergies We et W,„ varient avec la période - : l’une est maximale 
quand l’autre est nulle. Les maximums ont pour valeurs

(i/o w^> = i?iî,
U)-

S’il y a résonance £Cw 2= i, W)"1^ W^"1 et l’on voit qu’alors l’énergie 
emmagasinée dans le circuit oscille entre la self et la capacité tandis 
que la résistance consomme l’énergie de Joule fournie par la source. 
Mais dans le cas général où £Cu’/^i, on a W)"' ..A W,'"; : alors, quand 
le condensateur se décharge dans la self, une certaine quantité d’énergie 
est empruntée ou restituée à la source et l’inverse a lieu quand la self cède
de l’énergie au condensateur. Au total une énergie égale à ^£— ^
oscille entre la source et le circuit. Or nous avons trouvé

(15) =

P2 étant positif ou négatif suivant le signe de la parenthèse. Ainsi, tandis 
que P, correspond à la fourniture par la source de l’énergie constamment
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Piconsommée par effet Joule dans la résistance, est la quantité d’énergie
qui oscille entre le circuit et la source. Cela précise bien la signification 
de la puissance réactive.

Il est dès lors facile de voir ce que signifie la conservation de la puis 
sance réactive. Reprenons d’abord le cas du branchement (fig. 5). 
L’énergie qui oscille entre la source S et les points qui sont au-delà du 
point de branchement O doit être égale à la somme de celle qui oscille 
entre la source et la branche B et de celle qui oscille entre la so»BÏe et 
la branche B', d’où

P,(B) + P,(B')
O) Q) CO

et, en supprimant —, on retrouve bien la seconde formule (io). De même.
dans le cas de l’élément de circuit AB de la figure 6, l’énergie qui oscille 
entre la source S et les points situés au-delà de A doit être égale à celle 
qui oscille entre la source et les points situés au-delà de B augmentée 
de celle qui oscille entre la source et le segment AB, cette dernière étant

C <o2 Il : on a donc

P2(A) P*(B) (Æ-cb),!'

et, en multipliant par «, on retrouve la seconde des relations (n). 
La conservation de la puissance réactive se trouve ainsi entièrement 
ramenée à la conservation de l’énergie.

Les considérations précédentes s’appliquent à un circuit où les tensions 
et les courants ont la même pulsation w. Il en est différemment dans 
d’autres cas, par exemple dans celui des moteurs asynchrones. Si le 
stator d’un tel moteur est alimenté par un courant de pulsation co, 
le rotor est parcouru par un courant de pulsation &/ < w par suite du 
« glissement », c’est-à-dire du fait que le rotor tourne un peu moins vite 
que le stator. Le calcul montre que ce qui se conserve alors, quand on

P-,passe du stator au rotor, c’est le quotient ~ où les deux termes varient
dans le passage : il est naturel que ce soit ce quotient qui se conserve 
puisque c’est lui qui représente une énergie.

Signalons pour terminer que la théorie de la puissance réactive a été 
généralisée autrefois, notamment par H. Budeanu, au cas de circuits 
parcourus par des courants comprenant plusieurs composantes de pulsa 
tions différentes.
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3. Action d’une onde hertzienne sensiblement monochromatique 
sur un circuit oscillant.

Nous venons d’exposer une théorie tout à fait classique en Électro 
technique parce qu’elle va nous servir dans ce qui suit, notamment pour 
l’interprétation de ce que nous avons appelé au chapitre I le champ 
complémentaire. Nous allons maintenant examiner l’entretien d’une 
oscillation dans un récepteur par l’action d’une onde hertzienne portant 
de très nombreux photons.

Pour simplifier, nous supposerons que l’onde hertzienne, ayant une 
très petite largeur spectrale, peut être considérée comme sensiblement 
monochromatique et qu’elle agit sur un circuit oscillant comportant 
résistance, self et capacité.

D’après nos conceptions générales, l’onde hertzienne comporte une onde 
électromagnétique de base décrite par des grandeurs complexes. Le champ
électrique de cette onde de base est E = E0 eis = Ei + i E.> dont la partie

. ^
-V £*

réelle Ei = -—-— peut être assimilée au champ électrique classique,

-> K — K*mais qui comporte aussi une partie imaginaire E2 = —— constituant
le champ électrique complémentaire. L’onde hertzienne de base porte 
de très nombreux photons qui transportent des « échantillons » d’une 
onde semblable à l’onde de base, mais de beaucoup plus grande ampli 
tude. Le champ électrique de cette onde « échantillonnée » est de la 
forme CE où C-, qui a la forme donnée par la formule (4) du chapitre II, 
est proportionnel à la densité en photons de Fonde. La force électro 
motrice que les photons exercent en moyenne sur le circuit oscillant 
est le produit de CE, par un coefficient qui dépend de la forme du circuit 
oscillant et de son orientation par rapport à l’onde incidente. Fina 
lement cette force électromotrice est de la forme KE, où K est une 
constante. On peut donc l’écrire sous la forme
(16) Uj = KE0 cos to t = Uo cos to l = Ue \h. cos toi,

où LL est la tension efficace.
Le courant électrique dans le circuit oscillant est

(17) I = lo COS (10 t — 9) = Ic cos (t»t — 9),

avec tgcp =------------La puissance fournie par l’onde au circuit est
en moyenne
(18) Ui I = 2 UeIe cos to t cos (to t — 9)

= UeIecos9 = Pj.
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L’onde fournit donc au circuit la puissance active qui est consommée 
d’une façon continue sous forme de chaleur de Joule dans la résistance 
de ce circuit. Nous retrouvons donc ici exactement la théorie classique 
de l’entretien d’une oscillation dans un circuit oscillant par une onde 
hertzienne incidente.

Nous voyons bien ainsi que Ei, partie réelle du champ complexe E, 
joue le rôle du champ électrique classique. Mais quel rôle joue le champ

complémentaire E, que la forme complexe de E dans notre théorie doit 
nécessairement faire intervenir ? Il est naturel d’admettre que ce champ 
complémentaire agit sur le circuit oscillant par l’intermédiaire d’une 
tension

lii)) U» = KE2 == Ue sin (o t

déphasée de ^ par rapport à U,. On trouve alors pour le travail moyen 
effectué par U2 :

(20) Us I = 2 Uele shi (1) t cos ( to t — 9) 
= Ut.Ie sin 9 = P2.

Ce résultat nous indique qu’il doit exister une relation entre le champ 
complémentaire E2 et la puissance réactive P2.

On peut cependant se poser la question suivante. La puissance active 
représente de l’énergie constamment cédée par l’onde au circuit tandis 
que l’énergie réactive fournie en moyenne au circuit par l’onde est nulle 
puisqu’elle oscille entre le circuit et la source qui est ici l’onde hertzienne : 
comment se fait-il alors que le travail U2I fourni par le champ complé 
mentaire soit différent de zéro ?

Pour examiner ce point, nous remarquerons d’abord qu’il résulte de 
considérations développées autrefois dans ma Mécanique ondulatoire du

E _|- E*photon (') que dans l’expression du champ réel E, = —----> le terme
en E correspond à des cessions de photons par l’onde à la matière tandis 
que le terme en E* correspond à des cessions d’énergie, sous forme de 
photons, par la matière à l’onde. Or il est facile de voir que pendant 
le deuxième et le quatrième quarts de la période du courant I, le circuit
oscillant cède à l’onde l’énergie —c^i) tandis que pendant le
premier et le troisième quarts de cette période, l’onde cède au circuit 
cette même énergie : au total, l’énergie réactive ainsi échangée par période 
est nulle et c’est pourquoi Uil donne seulement la puissance active.

(‘) Voir par exemple Bibliographie [11], p. 127.
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Mais, lorsque nous passons de E, à E2, nous changeons le signe de E* 
et par suite le signe de l’énergie cédée par la matière à l’onde. Il en 
résulte que U2I correspond à l’énergie cédée par l’onde au circuit 
augmentée de l’énergie cédée par le circuit à l’onde, mais cette dernière 
quantité étant changée de signe. On s’explique bien alors pourquoi U2I 
nous donne la puissance réactive P2.

On peut vérifier l’explication qui vient d’être donnée par le calcul 
qui suit. Si l’on tient compte de la formule (i5), on voit que la quantité 
d’énergie oscillant par période entre l’onde et le circuit est

(21)

Or, d’après la remarque faite plus haut, l’action sur le circuit de la 
tension complémentaire U-, doit, en ce qui concerne l’énergie réactive, 
être égale à celle qu’exercerait la tension U, si le courant I était redressé. 
Un calcul facile montre que l’énergie fournie par l’onde au circuit dans 
ces conditions serait

rT 4P,
2U(IeJ cos w t J cos (wl — a)\dt= P, T -h-------- = P, T -t- WT,

ce qui est bien le résultat qu’on pouvait attendre.
En résumé, les considérations qui précèdent semblent bien établir la

parenté étroite qui existe entre le champ Éi et la puissance active Pj
—V

d’une part, le champ complémentaire E2 et la puissance réactive P2 
d’autre part. Au point de vue de la terminologie, il paraîtrait donc naturel

de désigner É,, qui est le champ classique, sous le nom de « champ actif »
le champ complémentaire É2 sous le nom de « champ réactif ». Et il 
semble que cette décomposition des grandeurs électromagnétiques était 
depuis longtemps virtuellement contenue dans l’emploi qu’on faisait 
constamment en Électrotechnique, en Électronique et en Optique de la 
représentation complexe des grandeurs électromagnétiques. Il serait 
certainement intéressant de faire une étude du rôle du champ complé 
mentaire plus approfondie que celle qui vient d’être esquissée.

Dans ce paragraphe, nous avons jusqui’ici envisagé le cas idéal de 
l’action sur un récepteur d’une onde strictement monochromatique. 
En réalité une onde hertzienne a toujours une certaine largeur spec 
trale et les grandeurs qui la caractérisent sont toujours de la forme
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Les grandeurs de l’onde dont les photons apportent des échantillons 
sur le récepteur sera encore de la forme CF et l’action de l’onde sur un 
circuit oscillant sera encore exprimée par une tension U, proportionnelle 
à CEj. L’analyse de l’entretien de l’oscillation se fera donc toujours par 
les calculs classiques où CE, représente le champ électrique, ici non 
strictement monochromatique, de l’onde hertzienne échantillonnée. 
La réussite assez surprenante de l’emploi des équations de Maxwell 
dans l’étude de tous les phénomènes qui interviennent en Radioélectricité 
se trouve ainsi entièrement expliquée. En particulier, l’interférence entre 
deux ondes hertziennes, même provenant d’émetteurs différents, peut 
être ainsi prévue puisque les ondes de base des deux émetteurs se super 
posent classiquement et que les photons qu’elles portent sont guidés 
par l’onde résultant de leur superposition.

Signalons enfin que, les photons étant répartis aléatoirement dans l’onde 
de base qui les portent, l’arrivée des photons sur le récepteur doit en 
principe subir des fluctuations qui, dans le cas d’une émission très faible, 
pourrait faire fluctuer d’une manière appréciable l’oscillation induite 
dans le récepteur et produire une perturbation ayant le caractère d’un 
bruit. Une perturbation de même nature pourrait d’ailleurs se produire 
dans le fonctionnement des lasers.

4. Sur la relation d’incertitude on oo —■ o.r..

La théorie de la seconde quantification et la théorie quantique des 
champs qui en dérive ont conduit à admettre la validité de la relation 
d’incertitude entre le nombre de photons portés par une onde et la valeur 
de sa phase

(22) 8n Sep ^ 2i.

La véritable signification de cette relation est restée un peu mysté 
rieuse et ne me paraît pas avoir été entièrement précisée.

On a cherché à rattacher la relation (22) à la quatrième relation d’incer 
titude de Heisenberg :

(a3) SW St ^ h

dont la véritable signification a été, elle aussi, discutée. Le raisonnement 
qu’on a proposé pour rattacher la relation (22) à la relation (23) et que 
j’ai moi-même exposé autrefois dans mes cours ne me paraît plus 
aujourd’hui satisfaisant. Je vais cependant en faire l’exposé pour pouvoir 
le critiquer.

Soit un train d’ondes de fréquence v transportant n photons. Si l’incer 
titude sur n est Sn, l’incertitude sur l’énergie est 3W =Sn.hv. D’autre
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part, on peut écrire ôcp = 2 nv St, où St est considéré comme une incer 
titude sur le temps. On a alors SnS9 =-£ ôW St et de (23), on déduit (22).

Comme je l’ai dit, cette démonstration ne me paraît pas satisfaisante. 
D’abord la quatrième relation de Heisenberg (23) se déduit de la relation 
non quantique Sv St ^1 qui est classique en théorie des ondes et provient 
des propriétés de l’intégrale de Fourier et c’est en multipliant cette 
inégalité par h qu’on obtient (23). On n’a donc pas le droit de 
poser oW = Sn.hv et d’introduire ce ôW dans (23) puisque l’incer 
titude ôW de (23) provient de la largeur spectrale Sv et non d’une 
incertitude sur le nombre des photons (sans intervention de la largeur 
spectrale). D’autre part, dans la relation ôvôf^i dont dérive (23), 
St n’est pas une incertitude sur la coordonnée temps, c’est la durée de 
passage du train d’ondes en un point de l’espace ou, si l’on préfère, 
c’est la durée t  de l’émission du train d’ondes par la source. Il me semble 
donc que la démonstration rappelée ci-dessus repose sur des confusions.

Pour trouver la véritable signification de la relation (22), il me paraît 
préférable de partir de l’idée suivante : dans toutes les relations d’incer 
titude de la théorie quantique portant sur un produit de la forme Sa ob, 
les incertitudes sont les incertitudes sur le résultat d’une mesure de la 
grandeur correspondante, les deux grandeurs a et b n’étant pas simul 
tanément mesurables avec précision par un même processus de mesure.

Nous pouvons appliquer cette idée à la relation (22) car n et o ne sont 
pas simultanément mesurables. En effet, pour mesurer n, il faudrait 
pouvoir faire produire par les n photons portés par le train d’ondes des 
effets photoélectriques séparés et dénombrables. Au contraire, pour 
enregistrer la phase es, nous devons faire coopérer les photons du train 
d’ondes à la production d’une oscillation dans un système du genre 
circuit oscillant, cavité résonnante, etc., suivant le mode expliqué dans 
le premier paragraphe du présent chapitre : or cette dernière opération 
n’est pas compatible avec un dénombrement des photons. Les conditions 
sont donc remplies pour qu’il existe une relation d’incertitude entre n 
et 9 sans que cela implique nullement, à mon avis, que les grandeurs n 
et es n’aient pas une valeur bien déterminée dans le train d’ondes, 
la phase es étant définie comme nous l’avons précisé précédemment.

Pour préciser notre point de vue, nous allons chercher à imaginer un 
procédé de mesure tel que les incertitudes Sn et ôcp puissent avoir toutes 
les deux une valeur finie. Soit un train d’ondes portant un nombre inconnu n 
de photons et ayant une largeur spectrale Sv reliée à sa durée d’émission 7 
par la relation
(24) Sv.T~I.

Si nous voulons chercher à déterminer à la fois, avec la plus grande 
précision possible, le nombre de photons et la phase de l’onde, nous
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devons faire traverser par le train d’ondes un dispositif où se produisent 
des effets photoniques de nature quantique et en principe dénombrables, 
puis le faire arriver sur un système susceptible d’osciller en enregistrant 
la phase.

Si alors, dans le dispositif de comptage des photons par effet photo 
électrique, nous observons m effets, il arrivera seulement sur le système 
oscillant on = n — m photons, on étant inconnu puisque n est inconnu. 
Si les Sn photons en question agissent sur le système oscillant par impul 
sions successives rythmées sur la phase de l’onde de base, il est raison 
nable d’admettre que le système oscillant ne pourra se mettre à osciller 
régulièrement que s’il reçoit au moins une impulsion par période. Cela

Tnous conduit à écrire ên - ^ i ou, d’après (24) :

^ V
(9. ) ) on ^ — •

7 ov

Mais il nous faut maintenant définir ce que nous appelons l’incer 
titude <5cp sur la phase. Nous proposons de le faire de la façon suivante. 
Si l’onde était strictement monochromatique, la variation pendant une 
période T de la phase 2 7rvf-|-0 serait égale à 271, ce qui reviendrai 
à dire qu’elle ne varierait pas puisqu’elle n’est définie qu’à 277 près. 
Mais en réalité le train d’ondes a toujours une largeur spectrale ôv et la 
variation de la phase pour la fréquence v + <5v pendant une période T 
sera (à 271 près) :

(2Ü ) Ss  = 27t 3v T = 2" — •' ‘ >j

Si nous admettons que le ôcp défini par (26) peut être considéré comme 
l’incertitude sur la valeur de la phase, la comparaison des formules (26) 
et (26) nous fournit immédiatement la relation d’incertitude (22) qui 
correspond ainsi à une expérience où l’on a cherché à déterminer à la fois, 
mais nécessairement avec une certaine imprécision, le nombre n des 
photons portés par le train d’ondes et la valeur de sa phase.

Il est intéressant d’examiner les deux cas limites 8n-+o et on » 00. 
Le cas limite on -> o est celui où presque tous les photons restent dans 
le dispositif de comptage : alors, v étant donné, il faut d’après (20), 
pour que les photons en très petit nombre qui arrivent sur le système 
oscillant puissent agir sur lui, que ôv ->-00, mais alors la phase de l’onde 
n’est plus définie et <5cp->oo. Le cas limite on - *■ ce ne peut avoir lieu 
que si n est infiniment grand, ce qui correspond à un train d’ondes 
infiniment long, donc à une onde sensiblement monochromatique : 
alors ôv ~ o et ôcp ~ o.

Le raisonnement qui vient d’être exposé nous a permis de retrouver 
la relation d’incertitude (22) sans la déduire de la quatrième relation
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d’incertitude de Heisenberg. La relation (22) nous apparaît ici comme 
résultant uniquement de l’hypothèse que le circuit oscillant subit des 
impulsions discontinues dues aux arrivées successives de photons portés 
par le train d’ondes v d’amplitude infinitésimale, photons qui sont incor 
porés à ce train d’ondes et vibrent en accord avec lui. Notre démons 
tration, qui, du moins en principe et abstraction des difficultés de mesure, 
est aussi bien applicable aux ondes lumineuses cohérentes qu’aux ondes 
hertziennes, se trouve ainsi découler des conceptions générales auxquelles 
nous a conduit la théorie de la double solution.

Nous devons ajouter l’importante remarque suivante relative à la 
définition (26) que nous avons adoptée pour ôcp : la grandeur 00 ne doit 
pas être définie à l’aide de la phase d’une onde plane monochromatique, 
cas idéal qui n’est jamais physiquement réalisé, mais en considérant 
un train d’ondes de longueur finie ayant une largeur spectrale Sv. 
La grandeur ôcp définie par (26) mesure donc en quelque sorte « le défaut 
de monochromaticité » du train d’ondes et ce serait là son véritable 
sens physique. En d’autres termes, la véritable signification physique 
de ôcp dans la relation (22) ne devrait pas être cherchée dans l’existence 
d’une incertitude sur la phase d’une onde plane monochromatique, mais 
dans le fait qu’on a toujours affaire à un train d’ondes ayant une largeur 
spectrale Sv non nulle.

Une dernière remarque pourrait contribuer à justifier l’adoption de 
la définition (26) : en employant le langage des radioélectriciens, on peut 
dire que, pour enregistrer exactement la composition spectrale de l’onde 
incidente, le système oscillant utilisé doit avoir une « qualité » Q telle
que sa « bande passante » Av donnée par la relation —- = ^ (où a est
un coefficient de l’ordre de l’unité) soit au moins égale à la largeur spec 
trale ôv du train d’ondes.



CHAPITRE Y.
LA LUMIÈRE DES SOURCES USUELLES.

1. Caractère indépendant et discontinu des émissions de photons 
par les atomes.

On sait depuis la théorie de Bohr (1913) que l’émission des photons 
par les atomes résulte de transitions quantiques ayant un caractère 
brusque et discontinu. Selon les idées actuellement admises, ces tran 
sitions quantiques seraient d’une nature incompréhensible et échap 
peraient à toute description en termes d’espace et de temps. Il nous 
apparaît que ce point de vue, conservé depuis 5o ans, n’est pas définitif 
et qu’on parviendra à décrire les transitions quantiques. On peut penser 
que cela sera réalisé en introduisant dans les équations de la Méca 
nique ondulatoire des termes non linéaires et en assimilant les transitions 
quantiques à des passages brusques d’un cycle limite à un autre analogues 
à ce qu’on rencontre dans de nombreux cas de phénomènes non linéaires. 
Cette intéressante idée avait déjà été envisagée, il y a quelques années, 
par MM. Cap et Destouches : elle a été reprise ensuite par MM. Fer, 
Leruste, Andrade e Silva et Lochak et notamment par les deux derniers.

Mais, quelle que soit la manière dont on parvienne à concevoir d’une 
façon précise la nature des transitions quantiques, il paraît certain que 
les émissions de photons par les atomes d’une source lumineuse usuelle 
sont des phénomènes indépendants et que chaque photon est émis 
isolément sur un train d’ondes, les divers trains d’ondes ainsi émis n’ayant 
entre eux aucune relation de cohérence.

Cela étant admis, il est important de réfléchir sur le résultat des 
expériences fondamentales faites en 1909 par Taylor et répétées en 1927 
par Dempster et Batho ('). Ces physiciens ont effectué des expériences

(‘) Bibliographie [16] et [17], Depuis que ce texte a été écrit, nous avons eu connais 
sance d’un travail de deux savants soviétiques P. Dontsov et A. I. Baz (Soviet Physics, 
J. E. T. P., vol. 25, n° 1, juillet 1967, p. 1) relatant une expérience dans laquelle ils 
n’avaient pas pu obtenir d’interférences avec des photons émis par une source de 
lumière faible arrivant un par un sur un interféromètre du type Pérot-Fabry. Person 
nellement nous ne pensons pas que cette expérience suffise à faire mettre en doute 
les résultats expérimentaux qui ont permis à divers physiciens d’établir, aussi bien 
pour les électrons que pour les photons, l’existence d’interférences obtenues avec 
des particules arrivant isolément les unes après les autres. Sous réserve d’un examen 
plus approfondi, nous pensons que le résultat négatif de l’expérience de Dontsov 
et Baz pourrait être dû au dispositif expérimental employé par ces deux physiciens.
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d’interférences avec des sources de lumière extrêmement faibles et de 
très longs temps de pose. La lumière incidente était si faible qu’elle ne 
pouvait envoyer sur l’appareil d’interférences que des photons arrivant 
un par un à de grands intervalles de temps. Or les interférences finalement 
enregistrées sur une plaque photographique après un long temps de pose 
étaient exactement les mêmes que si l’on avait opéré avec une source 
de lumière intense et une pose courte. Avec le point de vue que nous 
adoptons ici, ce résultat fondamental doit s’interpréter comme il suit. 
Quand un train d’ondes v de base, qui a la nature d’un train d’ondes 
électromagnétique classique, arrive isolément sur l’appareil d’inter 
férences avec le photon qu’il transporte, il interfère avec lui-même de 
la manière classique et, comme le photon guidé par l’onde a une proba 
bilité de se trouver en un point de l’espace qui est proportionnelle 
à l’intensité de l’onde de base en ce point, il aura plus de chance d’arriver 
sur la plaque photographique en un point où la théorie classique prévoit 
une frange brillante qu’en un point où elle prévoit une frange obscure. 
Finalement, au bout d’un temps très long, quand un très grand nombre 
de photons seront arrivés sur la plaque photographique, leur répar 
tition statistique aura dessiné sur la plaque les franges prévues par la 
théorie classique.

Il apparaît donc que, dans ce cas, chaque train d’ondes interfère avec 
lui-même. Si, négligeant leur faible largeur spectrale, nous assimilons les

■iitifvi-? +
trams d’onde à des ondes monochromatiques de la forme «e ' 1

les constantes de phase 0 seront différentes pour chaque train d’ondes, 
de sorte qu’il y aura incohérence totale entre ces trains d’ondes. Mais 
les franges d’interférences correspondant à l’arrivée de chaque train 
d’ondes seront les mêmes car elles ne dépendent pas de la valeur de 0 
comme il est facile de le voir.

2. Un fait essentiel : les trains d’ondes des divers photons sont 
susceptibles d’interférer entre eux.

L’indépendance et l’incohérence des trains d’ondes individuels des 
photons émis par les sources usuelles de lumière a fait longtemps penser 
que chaque train d’ondes ne peut interférer qu’avec lui-même comme cela 
se passe dans les expériences du type Taylor (‘). Or, il paraît aujourd’hui 
bien démontré qu’il n’en est rien et que les trains d’ondes émis initia 
lement avec un seul photon par des atomes différents d’une source usuelle 
de lumière sont susceptibles d’interférer entre eux. La théorie classique 
paraît donc ici beaucoup plus exacte que n’aurait pu le faire croire la

(‘) C’était notamment l’opinion de M. Dirac.



nature « photonique » de la lumière. C’est là, nous allons le voir, un fait 
tout à fait essentiel qui me paraît entièrement prouvé aujourd’hui.

Il est intéressant de remarquer que ce fait très important est en bon 
accord avec la représentation que la théorie de la double solution nous a 
amenés à nous faire des ondes de base transportant les photons. Pour 
nous les ondes de base sont très sensiblement assimilables à des ondes 
électromagnétiques du type classique et de très faible amplitude obéissant 
aux équations linéaires de Maxwell. Il n’y a donc aucune raison de ne pas 
leur appliquer le principe de superposition et de ne pas admettre qu’elles 
puissent interférer entre elles. Les divers trains d’ondes individuels 
émis par les atomes d’une source intense vont donc se superposer et 
interférer. Qu’en résultera-t-il pour les photons qu’ils portent ? La théorie 
de la double solution répond nécessairement à cette question : ces photons 
seront guidés par l’onde v résultant de la superposition des ondes v 
individuelles et la probabilité de la présence d’un de ces photons en un 
point de l’espace est proportionnelle à l’intensité en ce point de l’onde 
résultante.

Le fait capital que les trains d’ondes individuels des photons émis 
indépendamment par les atomes de la source peuvent interférer en se 
superposant est d’ailleurs prouvé depuis longtemps par le succès de la 
théorie de la cohérence telle qu’elle est classique en Optique ('). La mise 
en évidence par Brown et Twiss de l’intéressant phénomène dont nous 
parlerons plus loin en a apporté récemment une très remarquable confir 
mation. Aussi allons-nous consacrer les deux prochains paragraphes 
à étudier la théorie de la cohérence temporelle et l’effet Brown et Twiss.

3. Théorie sommaire de la cohérence temporelle.

Si les atomes d’une source lumineuse émettaient des ondes planes 
monochromatiques, c’est-à-dire des trains d’ondes de longueur infinie, 
la théorie classique des ondes conduirait à dire que l’onde résultant de 
la superposition des ondes individuelles aurait une structure perma 
nente et présenterait une cohérence parfaite. Mais il n’en est pas ainsi 
parce que les trains d’ondes émis par les atomes ont une longueur finie 
correspondant à une durée d’émission t  de l’ordre de io~8s. L’onde 
résultante en un point de l’espace est donc formée par la superposition 
de composantes dont le nombre et les constantes de phase varient conti 
nuellement. Il ne saurait donc être question pour la lumière des sources 
usuelles d’une véritable cohérence de l’onde qui résulte à chaque instant 
de la superposition des ondes individuelles. Néanmoins pendant une 
durée très inférieure à la durée d’émission r~io~8s des trains d’ondes
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(‘) Voir par exemple [14], chap. VII.
L. DE BROGLTE. 5
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individuels, l’onde résultant de leur superposition en un point de l’espace 
pourra être considérée comme momentanément cohérente. Il en résulte 
une sorte de cohérence temporelle momentanée dont la théorie a été 
développée par divers auteurs (Zernicke, Hopkins, Blanc-Lapierre, 
Wolf, etc.) sous une forme qui, souvent, utilisant uniquement des 
relations statistiques de corrélation, ne fait pas explicitement appel 
aux considérations physiques que nous venons d’exposer. Sur la base 
des considérations physiques en question, nous allons reprendre l’étude 
de cette question.

Considérons une source de lumière étendue S contenant de très 
nombreux atomes A, B, C, ... qui, tous, peuvent émettre des trains 
d’ondes de fréquence v. Prenons une origine des coordonnées O vers 
le centre de la source et désignons par P un point d’observation tel que

OP = R, AP = rA, BP = r„,

s

Les trains d’ondes individuels émis par les atomes A, B, ... sont repré 
sentés, quand on fait abstraction de leur largeur spectrale, par des

fonctions de la forme ake ' '• ',.... Les constantes de phase 9
varient aléatoirement d’un atome à l’autre et la durée d’émission de 
chaque train d’ondes est de l’ordre de t ~io ~8 s . A un instant donné /, 
l’onde électromagnétique de base résultante sera donnée au point P par

(0 *2
A, B,..

— 2 TC t —

e A e~ 2 2TU'0a

A, B,

avec
(2) «1 = ’A

— H
X

Les constantes de phase 0A, ... sont différentes parce que les 
atomes A, B, ... commencent à émettre à des époques différentes
pendant un temps limite t . La composition de la somme ^ varie

A,II, ...
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constamment parce que certaines composantes disparaissent et sont 
remplacées par d’autres. Cependant l’onde résultant de la superposition 
des trains d’ondes individuels peut être considérée comme gardant une 
forme constante pendant un temps très petit par rapport à t . Il est 
évident qu’on peut écrire l’équation (i) sous la forme

2 TU' (v l — (A

(3) v — a e ' k ',

où 0 est la constante de phase de la superposition définie par

(4) ae^ = ^ aAe^l<>\
A,B,...

Pendant un intervalle de temps très inférieur à t , la quantité 9 restera 
sensiblement constante et il y aura une cohérence temporaire des ondes 
élémentaires qui se superposent.

Or, la théorie de la double solution est d’accord avec la théorie clas 
sique pour affirmer que la répartition de l’énergie lumineuse est fournie, 
quand de nombreux trains d’ondes se superposent en donnant une onde 
temporairement cohérente du type (i), par l’expression

E
A, B,

qui dépend des différences de phase Où—0b , ••• des diverses compo 
santes. Mais, pour l’enregistrement des franges d’interférences on utilise 
des moyens d’observation (plaque photographique, rétine, écran lumi 
nescent, etc.) qui réagissent lentement à l’action de la lumière et qui, 
en somme, prenne la moyenne des intensités sur des temps longs par 
rapport à t . Comme les différences de phase 0)—0Û, ... varient aléatoi 
rement pendant cette prise de moyenne, on enregistre finalement ainsi
l’intensité a- = ^ | ax |2 qui ne dépend plus des différences des quan-

A,B,...

tités Où, .... On voit donc que l’enregistrement des franges d’inter 
férences ne peut aucunement mettre en évidence les fluctuations rapides 
de l’intensité lumineuse due à la longueur finie des trains d’ondes. 
Néanmoins on sait qu’en écartant progressivement les miroirs d’un 
interféromètre de Michelson, on peut mesurer, en observant la dispa 
rition des franges, la longueur des trains d’ondes et par suite la durée 
de leur émission r ou « temps de cohérence ».

On peut résumer ce qui précède de la façon suivante. On peut faire, 
du moins en première et très bonne approximation, la théorie des phéno 
mènes d’interférences usuels sans introduire la notion de cohérence 
temporaire en considérant les ondes lumineuses comme strictement 
planes monochromatiques de durée de cohérence infinie. C’est ce qu’on fait
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avec un plein succès dans tous les traités classiques d’Optique. Cela 
tient au fait que les franges d’interférences ne peuvent être enregistrées 
qu’au bout d’un temps très long par rapport au temps de cohérence t , 
quand un grand nombre de photons sont arrivés sur le dispositif d’enre 
gistrement. Il en résulte que le phénomène observable ne dépend que 
de la valeur moyenne de l’intensité de l’onde incidente donnée, comme
nous l’avons vu plus haut, par a- = ^ [ aA 2|. On comprend alors

A,B,...

pourquoi l’onde de superposition (3) donne lieu aux mêmes phénomènes 
d’interférences que des trains d’ondes arrivant isolément en apportant 
chacun un seul photon, comme le prouvent les expériences d’inter 
férences du genre Taylor. On obtient donc les mêmes franges d’inter 
férences avec une source de lumière intense ou avec une source faible, 
bien qu’au point de vue de la superposition instantanée des trains d’ondes 
des photons, les deux cas soient tout à fait différents. Les expériences 
d’interférences ne permettent donc d’atteindre que la valeur moyenne 
du nombre des photons arrivant en chaque point, mais ne permettent 
pas de suivre les fluctuations rapides de ce nombre. Nous verrons plus 
loin qu’au contraire les expériences du type Brown et Twiss permettent 
de mettre en évidence ces fluctuations.

Ce qui nous importe le plus ici, c’est que, envisagée du point de vue 
de la coexistence des photons et des ondes dans la lumière, la théorie 
de la cohérence repose essentiellement sur l’idée que la répartition 

' statistique des photons dans l’espace est déterminée par la superposition 
de trains d’ondes lumineuses du type classique. Cette constatation nous 
paraît démontrer l’exactitude des calculs de l’Optique ondulatoire 
classique malgré l’existence indéniable des photons et cela s’explique 
tout naturellement dans la théorie de la double solution puisque les 
ondes lumineuses doivent y être assimilées à des ondes électromagnétiques 
de très faible amplitude dont la progression et les superpositions sont 
données par les équations de la théorie de Maxwell et dont les inten 
sités locales déterminent la répartition statistique des photons dans 
l’espace. Et cette si importante conclusion se trouve encore confirmée 
par la récente découverte du phénomène de Brown et Twiss dont nous 
allons maintenant parler.

4. Le phénomène de Brown et Twiss. (Interférences du quatrième 
ordre.)

L’important phénomène en question consiste dans la mise en évidence 
des fluctuations des intensités lumineuses qui sont réalisées à chaque 
instant en des points différents par la superposition de trains d’ondes 
provenant de sources éloignées. Son existence a fait l’objet d’assez 
nombreuses recherches expérimentales et est bien établie aujourd’hui,
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notamment par d’importants travaux de MM. Handbury Brown et 
Twiss. M. Marcos Moshinsky avait eu le mérite d’en avoir prévu l’exis 
tence dès 1900 et, plus récemment, M. Janossy en a fait des analyses 
analogues. De nombreux autres travaux théoriques lui ont été consacrés 
parmi lesquels nous citerons ceux de MM. Purcell et Wolf (’).

Ce qu’il y a de curieux dans cette affaire, c’est que ces « interférences 
du quatrième ordre » peuvent se prévoir à l’aide de calculs entièrement 
classiques bien que la mise en évidence des fluctuations de l’intensité 
lumineuse se fasse à l’aide de cellules photoélectriques dont le fonc 
tionnement implique nécessairement la nature photonique de la lumière. 
Mais il est naturel et essentiel de remarquer ce qui suit. L’enregistrement 
des franges d’interférences (par exemple sur une plaque photographique) 
exige l’arrivée de très nombreux photons arrivant à chaque point et ne 
dépend finalement que du nombre moyen n des photons arrivant en ce 
point : c’est ce qui permet de calculer la position et l’intensité des franges 
en assimilant l’onde incidente à une onde plane monochromatique à durée 
de cohérence infinie. Au contraire, l’observation de l’effet Brown et Twiss 
exige l’enregistrement du carré moyen de la fluctuation de l’intensité 
lumineuse due à la durée limitée des trains d’ondes émis par les sources 
usuelles et c’est le caractère pratiquement instantané de l’action de la 
lumière sur une photocathode (temps de réponse inférieur à io~10 s) qui 
permet à celle-ci de fournir la valeur du carré moyen des fluctuations 
de l’intensité lumineuse qui la frappe.

Nous allons maintenant donner un calcul des grandeurs qui inter 
viennent dans l’effet Brown et Twiss en nous servant de raisonnements 
très simples.

Considérons une cellule photoélectrique (photocathode) sur laquelle 
arrive une superposition d’un très grand nombre de trains d’ondes de 
même fréquence v et de même amplitude a émis indépendamment par 
les atomes d’une source étendue. Cette superposition est représentée par

N

avec

(B)

L’intensité lumineuse sur la photocathode sera donnée à chaque 
instant par la formule

(7) I = [ v |2 = a- j\ -t~ 2^ cos (0*— 6/)

(•) Voir Bibliographie [18], [19], [20], [21] et [22],
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Les constantes de phase variant aléatoirement au cours du temps, 
on aura en moyenne
(8) l = Na!, I" = N2a4.

Mais nous aurons aussi
N

(9) 12 =
N2 -+- 4^ c°s2 (0* — 0;) termes de moyenne nulle^j.

V . NfN-i) 
2j est —2—’Comme le nombre des termes de la somme

1
on a

donc, puisque cos2(0,f—0/) —

<"» l-«»[ll»-<K^ ";]■

Mais, N étant très grand devant l’unité, nous obtenons très approxi 
mativement
(11) l- = aN!al = 2I ,

d’où
(12) (T —1)’ = Ti_ 72 = T\

Le nombre des photons émis par la photocathode pendant un temps T 
devant évidemment être pris égal en moyenne à ns = a IT, où a est une 
constante. Il nous semble qu’il faut supposer T t . En effet, un dispo 
sitif à réaction lente comme la plaque photographique ne permet d’enre 
gistrer nT que si T : t  et alors nT= n , et nT—hT= o : on ne peut pas 
ainsi déceler les fluctuations. Au contraire un dispositif qui réagit 
instantanément à l’action de la lumière comme une photocathode permet 
d’enregistrer nT pour T <r et, en ce cas, l’équation (12) divisée 
par a'2 T'2 nous donne
(13) — nj — /t j.

M. Purcell dans l’article cité avait donné la formule

(l4) iij — /t-j = nT-(- a n~iy

où a est une constante qui, avec l’hypothèse T doit être égale à 1. 
On voit que le terme quadratique au second membre de (i4) coïncide 
avec le second membre de (i3). Quant au terme en ns de ( 14), on peut 
le justifier du point de vue de la théorie de la double solution de la façon 
suivante. La fluctuation du nombre des photoélectrons éjectés a deux 
causes : i° la probabilité de présence d’un photon sur la photocathode 
est proportionnelle à l’intensité de l’onde incidente, ce qui donne le 
terme en h{- de la formule (i4); 20 les photons incidents, bien qu’étant
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toujours en phase au point où ils se trouvent avec l’onde qui les porte, 
sont cependant répartis aléatoirement au sein de l’onde et leur arrivée 
aléatoire sur la photocathode donne naissance à un effet de « grenaille » 
s’exprimant par une loi de Poisson, ce qui explique la présence du terme 
en Tij dans la formule (i4)-

Dans la formule de Purcell, le second terme du second membre 
est donc d’origine « ondulatoire » et le premier terme d’origine 
« corpusculaire ». D’ailleurs la vieille formule d’Einstein donnant les 
fluctuations de l’énergie dans le rayonnement noir pour l’intervalle de 
fréquence v — v + ôv :

(U>) ( Ev — Kv )- = E? — Ëv = hv Ev - es
8jiv 2V 8v

est aussi de la forme (i4) comme on le voit en posant Ev=n/iv. Or le 
terme en Ev (ou en ni) dans (i5) provient de l’interférence des ondes 
du rayonnement noir tandis que le terme en Ev (donc en h) traduit la 
nature corpusculaire des photons. On retrouve donc bien ainsi dans 
l’interprétation de la formule (i5) des idées analogues à celles qui ont été 
développées plus haut pour la formule (i4).

Supposons maintenant que nous ayons deux photocathodes 1 et 2 
placées en des points distants Pt et P>. Si les intensités lumineuses I4 
et h qui frappent les deux photocathodes tombaient sur une seule photo 
cathode, on aurait
(l(>) ( I 1 —I— f 2 ) “  f ï j —I— ï 2 ) = (Il-t-lo),

d’où
(17) 1 j — 11 -1- IÜ — 12 -+- 2.Ii .!■)— 2 h . ï2 = I, + F, -i- aïj .ï..

et comme d’après (i3), on a

I j — ij = ij
il vient

et. I,,

I, • E— li.Io= h.E.(18)
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En introduisant comme précédemment le nombre des photoélectrons 
émis par chaque photocathode, la formule (18) devient

(19) («!—«,) («2—77,) =«,.«2

OU

(20) A/(j. A«2 = 77,. «2,

où An, et An2 représentent les fluctuations instantanées du nombre des 
photoélectrons émis par 1 et 2. La formule (20) est analogue à une formule 
donnée par Purcell dans son Mémoire et utilisée par lui pour l’inter 
prétation de l’effet Brown et Twiss.

Nous n’insisterons pas davantage sur la théorie de l’effet Brown 
et Twiss. Son existence et la possibilité de l’utiliser pour une mesure 
précise du diamètre apparent d’une étoile paraissent aujourd’hui bien 
établies. On a pu d’ailleurs mettre en évidence le même phénomène en 
utilisant la lumière émise par une source terrestre. Ces résultats dont 
l’interprétation exacte a sans doute encore besoin d’être approfondie 
paraissent avoir une grande importance car la validité des raisonnements 
classiques s’appuyant sur la nature ondulatoire de la lumière est à nouveau 
prouvée dans des expériences où la nature photonique de l’action de la 
lumière se manifeste également puisque les intensités lumineuses son 
mesurées par des effets photoélectriques. Aussi l’effet Brown et Twiss 
nous apparaît-il comme pouvant nous apporter des précisions nouvelles 
sur la coexistence des ondes et des photons dans la lumière et sur la 
validité de l’image qu’en fournit la théorie de la double solution.

5. Résumé et remarques finales.

Nous voudrions terminer ce chapitre en précisant quelques points 
importants.

On peut appeler « Optique classique » celle qui fait uniquement inter 
venir, dans la représentation de la lumière, les ondes planes mono 
chromatiques de longueur et de durée d’émission infinies. C’est l’optique 
des traités classiques qui suffit pour bien prévoir les phénomènes d’inter 
férences et de diffraction usuels. On peut, au contraire, nommer « Optique 
aléatoire » celle qui tient compte du fait que dans les sources usuelles 
de lumière (à l’exclusion des lasers) les atomes émettent d’une façon 
indépendante et aléatoire des trains d’ondes de longueur et de durée 
limitées. Évidemment c’est cette optique aléatoire qui donne la véri 
table représentation de la constitution des ondes lumineuses à chaque 
instant de la manière qui a été esquissée dans les paragraphes précédents. 
L’optique classique n’est donc qu’une approximation, d’ailleurs très 
souvent suffisante.
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La théorie de la cohérence temporelle dont il a été question dans ce 
chapitre fait nécessairement intervenir la durée de cohérence t  : elle 
relève donc de l’Optique aléatoire et, en principe, échappe complè 
tement à l’Optique classique telle que nous l’avons définie plus haut. 
Mais il n’en est pas de même de la notion de « cohérence partielle » que 
certains auteurs (') utilisent pour étudier « le contraste de franges » 
dans le cas des sources étendues. Si l’on emploie une source ponctuelle, 
les trains d’ondes émis par les atomes de la source donnent approxi 
mativement le même système de franges dans un dispositif d’inter 
férences : le contraste des franges, leur visibilité, est alors excellent. 
Si la source est un peu étendue, les franges fournies par les trains d’ondes 
émis par les divers atomes de la source sont légèrement décalées les unes 
par rapport aux autres et la visibilité des franges est moins bonne. 
Enfin, si la source est assez étendue pour que les maximums de l’intensité 
lumineuse correspondant à certains points de la source coïncident avec 
des minimums correspondant à d’autres points, la visibilité des franges 
devient nulle et celles-ci disparaissent.

Or, si l’on examine le calcul du contraste des franges à l’aide de la 
notion de cohérence partielle, on s’aperçoit qu’en fin de compte, il ne 
fait nullement intervenir le temps de cohérence r, mais uniquement 
le déphasage des différentes ondes qui se superposent, déphasage qui 
est dû aux différences de marche. Ce calcul relève donc entièrement de 
l’Optique classique et c’est pourquoi la théorie d’une expérience comme 
la mesure du diamètre apparent d’une étoile par la méthode bien connue 
de Michelson se fait très aisément sans faire intervenir le temps de 
cohérence comme on le montre dans tous les traités classiques d’Optique. 
Il n’en est pas de même pour les expériences du genre Brown et Twiss 
où l’emploi de cellules photoélectriques permet de mettre en évidence 
les fluctuations très rapides de l’intensité lumineuse qui ont pour origine 
le caractère aléatoire de l’émission des trains d’ondes par les atomes 
et qui relèvent essentiellement de la théorie de la cohérence temporelle. 
Les remarques que nous venons de faire me paraissent de nature à éviter 
certaines confusions dans l’emploi de la notion de cohérence.

Une autre remarque qui pourrait être importante est la suivante. 
Dans ce qui précède nous avons admis que les émissions de photons 
par les atomes sont indépendantes et aléatoires. Or cela est bien exact 
pour l’émission de lumière qui accompagne les transitions quantiques 
'spontanées des atomes. Mais nous allons rappeler dans le prochain 
chapitre que, depuis un travail d’Einstein datant d’une quarantaine 
d’années, on sait qu’à côté de ces transitions spontanées il existe un 
processus d’émission stimulée dans lesquels un grand nombre d’atomes

(') Voir par exemple [14], chap. 7.
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peuvent effectuer une même transition quantique, ce qui aboutit à l’émis 
sion de photons tous transportés par un même train d’ondes électro 
magnétique de base dont la longueur et la durée de cohérence sont 
beaucoup plus grandes que celles des trains d’ondes émis par les tran 
sitions spontanées. C’est ce processus d’émission stimulée qui est aujour 
d’hui à la base de la théorie des lasers. Or, dans une source de lumière 
très intense, chaque atome est soumis au rayonnement émis par les autres 
atomes et il est possible que certains d’entre eux subissent des tran 
sitions stimulées. L’émission globale de la source contiendra alors, 
en plus des trains d’ondes de courte durée de cohérence dus au processus 
d’émission spontanée dont nous avons exclusivement tenu compte dans 
ce chapitre, d’autres trains d’ondes de durée de cohérence beaucoup plus 
longue provenant des émissions stimulées. La théorie complète de la 
cohérence, qui serait certainement beaucoup plus compliquée que celle 
qui a été développée dans ce chapitre, devrait en particulier tenir compte 
de cette possibilité.

Notre conclusion sera donc que la théorie de la cohérence de la lumière 
doit être reprise entièrement sur la base physique de l’émission spon 
tanée et stimulée par les sources de lumière de trains d’ondes à durée 
de cohérence finie. Les théories de la cohérence à aspect purement formel 
fondées uniquement sur des lois générales du Calcul des Probabilités 
ou sur les conceptions abstraites et assez obscures de l’actuelle théorie 
quantique des champs ne sont pas, à notre avis, suffisantes pour poser 
la question sur son véritable terrain à l’aide d’images claires des processus 
physiques réels (').

(‘) On trouvera dans le dernier chapitre de ce livre rédigé par M. Joao Luis Andrade 
e Silva une théorie de l’efïet Brown et Twiss beaucoup plus complète que celle qui a 
été esquissée ci-dessus dans le paragraphe 4.



CHAPITRE VI.
LA LUMIÈRE DES LASERS.

I. Le grand intérêt théorique des lasers.

La réalisation dans les quinze dernières années des Masers (Microwave 
amplifier by stimulated émission of radiation) et des Masers optiques 
ou Lasers (Light amplifier by stimulated émission of radiation) a vive 
ment attiré l’attention des physiciens et donné lieu à de très nombreux 
travaux. L’intérêt que présentent pour les théoriciens ces dispositifs 
nouveaux est considérable. Leur fonctionnement ne peut s’interpréter 
qu’à l’aide des conceptions d’émission « stimulée » et d’émission « spon 
tanée » introduites par Einstein dès 1917 à l’aide d’un raisonnement 
célèbre sur lequel nous reviendrons plus loin.

Dans les masers, un rayonnement hertzien de haute fréquence est 
envoyé dans une cavité résonnante où se trouvent de nombreux atomes 
dans un état excité susceptibles d’émettre par transition quantique des 
photons de cette fréquence. Ces atomes dans un état excité dont la 
présence est nécessaire peuvent être obtenus de diverses manières, 
notamment par les très ingénieux procédés de pompage optique inventés 
par M. Alfred Kastler. Grâce au processus de l’émission stimulée, chaque 
atome excité peut émettre un photon qu’il dépose, pour ainsi dire, sur 
l’onde hertzienne incidente, augmentant ainsi le nombre des photons 
hertziens qui sont transportés par cette onde et qui sont en phase avec 
elle. L’énergie totale transportée par l’onde se trouve ainsi accrue : 
il y a amplification et cette amplification peut être utilisée de diverses 
façons que nous n’étudierons pas ici.

Dans les lasers, de nombreux atomes excités, obtenus par exemple 
par pompage optique et susceptibles d’émettre des photons dont la 
fréquence appartient au domaine lumineux, se trouvent dans une cavité 
du type Pérot-Fabry. Une onde lumineuse ayant cette fréquence se 
forme dans la cavité : en passant un grand nombre de fois sur les atomes 
excités qui lui cèdent des photons par émission stimulée, cette onde 
s’enrichit constamment en photons et finit par s’échapper à l’extérieur 
en traversant une portion semi-transparente de la paroi de la cavité. 
Finalement on obtient ainsi une onde lumineuse transportant de très
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nombreux photons qui sont cohérents, c’est-à-dire en phase, avec l’onde 
qui les porte. Rappelons que, dans les conceptions de la théorie de la 
double solution, l’onde est une onde électromagnétique de base du type v 
et de très faible amplitude.

Ainsi, par la réalisation des lasers, s’est trouvée obtenue pour la première 
fois une « lumière cohérente » d’une structure tout à fait différente de 
celle qu’émet une source usuelle de lumière dont les atomes émettent 
indépendamment de courts trains d’ondes portant chacun au moment 
de leur émission un seul photon. Cette lumière cohérente a donc une 
structure tout à fait analogue à celle d’une onde hertzienne et tout ce 
que nous avons dit au chapitre IV au sujet des ondes hertziennes lui est 
applicable. On notera, en particulier, que les trains d’ondes émis par les 
lasers ont une très grande longueur et, par suite, une largeur spectrale 
beaucoup plus petite que celle de la lumière usuelle : tandis que les 
trains d’ondes de la lumière usuelle ont une longueur qui ne dépasse 
pas quelques mètres, la longueur des trains d’ondes émis par les lasers 
peut atteindre un grand nombre de kilomètres et correspondre à une 
largeur spectrale plusieurs milliers de fois plus petite (').

On voit toutes les importantes perspectives nouvelles que la réali 
sation des masers et des lasers ouvre sur le plan théorique, sans parler 
de leurs applications expérimentales ou techniques. Nous n’avons natu 
rellement pas l’intention d’exposer ici les nombreux aspects de l’utili 
sation des masers et des lasers, mais nous voudrions insister sur un 
point théoriquement très important. Le fonctionnement de ces appareils 
a mis hors de doute que les photons qui y prennent naissance par émission 
stimulée sont cohérents, c’est-à-dire que dans notre conception ils sont 
incorporés à une même onde de base. Au contraire, les photons qui 
peuvent y apparaître par émission spontanée sont incohérents, c’est- 
à-dire émis sur des trains d’ondes indépendants comme dans les sources 
de lumière usuelles et cela est bien naturel puisque c’est précisément 
le processus d’émission spontanée qui entre seul en jeu dans les sources 
usuelles. Il en résulte que les émissions spontanées intervenant dans le 
fonctionnement des lasers et des masers constituent une sorte de « bruit » 
perturbateur qui, heureusement, reste très faible dans le fonctionnement 
usuel de ces appareils (2). Or, dans le raisonnement primitif d’Einstein, 
rien n’indiquait cette importante différence de nature des émissions 
spontanées et des émissions stimulées. La raison en est qu’Einstein 
raisonnait en considérant l’équilibre thermique entre les atomes et le (*)

(*) On en trouvera un très bon résumé d’ensemble dans un petit livre de 
M. Michel-Yves Bernard [23].

(2) A ce bruit perturbateur, doit en principe s’ajouter, comme nous l’avons vu 
précédemment (p. 5g), un autre bruit dû à la répartition aléatoire des photons 
sur l’onde de base.
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rayonnement noir et que, dans ce rayonnement où toutes les ondes sont 
incohérentes, les questions de cohérence n’interviennent pas explici 
tement. Pour nous en rendre mieux compte et pouvoir voir comment 
on pourrait dans le cas des lasers compléter le raisonnement d’Einstein 
par des considérations de cohérence, nous allons reprendre ce raison 
nement et chercher à l’adapter au cas des lasers.

2. Le raisonnement d’Einstein et son application aux lasers.

On sait qu’en 1917, dans un Mémoire resté célèbre, Albert Einstein 
était parvenu à établir un lien entre la loi de distribution spectrale du 
rayonnement noir due à Planck et la loi des fréquences de Bohr par 
l’intermédiaire de la formule de distribution canonique de Boltzmann- 
Gibbs. Son raisonnement était le suivant. Considérons des atomes d’un 
même élément ayant deux états quantifiés d’énergie E, et E>< E, 
et supposons-les plongés dans un rayonnement noir qui remplit une 
enceinte maintenue à la température absolue T. D’après la loi des 
fréquences de Bohr, l’un de ces atomes, s’il subit la transition 1 -> 2 
ou la transition inverse 2-vl, émettra ou absorbera un photon de 
fréquence

où h est la constante de Planck. Einstein suppose alors que, si l’un des 
atomes est dans l’état initial d’énergie E2, la probabilité par unité de 
temps pour qu’il absorbe un photon d’énergie hv empruntée à une compo 
sante de fréquence v du rayonnement noir ambiant est égale à B o(v), 
où 0 (v) est la densité spectrale du rayonnement noir pour la fréquence n 
et où B est une constante. Si, au contraire, l’atome se trouve dans l’état 
initial d’énergie E,, il pourra passer dans l’état final d’énergie inférieure E3 
de deux façons différentes, soit par un processus d’émission « spontanée » 
dont la probabilité par unité de temps aurait une valeur constante A, 
soit par un processus d’émission « stimulée » dont la probabilité par unité 
de temps serait égale à B p(v), B ayant la même valeur que dans le cas 
de l’absorption.

j\j„
Or, dans 1 état d’équilibre thermodynamique, la proportion — des

i\ J

atomes se trouvant dans l’état E2 et dans l’état Ei est donnée, d’après 
la loi de distribution canonique de Boltzmann-Gibbs, par la formule

N, e
^ ~ _

*T h v
Fr

Ei_ 
k T

e
e

d’après (1), où k est la constante de Boltzmann.
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Il est alors évident que l’équilibre thermodynamique implique la 
relation
(3) Ni(A + Bp(v)) = N,Bp(v)

et, de (2) et de (3), on tire aisément

(4) p(v) =
A
h v

Pour retrouver la loi de répartition spectrale de-Planck pour le rayon 
nement noir qui s’écrit
(5) p(v) =

8 j i/z. v3
h V
JT

où c est la vitesse de la lumière dans le vide, il suffit de poser

8 7ïh v3
(6) A =B-

c3

importante relation entre les constantes A et B.
La formule (6) est aujourd’hui couramment appliquée aux masers

et aux lasers. Elle montre, en particulier, que le rapport ^ du coefficient

d’émission spontanée au coefficient d’émission stimulée est beaucoup 
plus grand pour les lasers que pour les masers en raison de la valeur 
beaucoup plus élevée de la fréquence, mais que les perturbations de 
l’émission stimulée par le « bruit » dû à l’émission spontanée restent très 
faibles même pour des fréquences très supérieures à celle du spectre visible.

On peut cependant se demander si la théorie d’Einstein est vraiment 
applicable aux masers et aux lasers. En effet, dans ces dispositifs, les 
atomes émetteurs ne sont nullement soumis à un rayonnement noir, 
mais bien à l’action d’une onde de fréquence et de direction bien déter 
minées. La formule de distribution canonique (2) n’est donc pas appli 
cable avec la notion usuelle de température. Cependant la théorie de la 
quantification du champ électromagnétique a permis de démontrer que 
la formule (6) est valable pour les masers et pour les lasers. Dans une 
Note adressée à l’Académie des Sciences de Lisbonne pendant l’été de 1963, 
j’ai donné à cette démonstration une forme très simple en raisonnant 
sur le cas des lasers. Je vais maintenant reproduire cette démonstration.

Pour éviter de faire appel au formalisme lourd et abstrait de la théorie 
quantique des champs, nous allons transformer l’expression des proba 
bilités obtenue par Einstein d’une façon qui les rendra applicables aux cas 
autres que celui du rayonnement noir.

Une formule bien connue due à Jeans nous apprend que, dans une 
enceinte de volume V, le nombre des ondes stationnaires de fréquence v



correspondant à un intervalle spectral dv qui peuvent s’établir dans 
cette enceinte est égal à

■ ("7N (v) dv = V d'i.
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La densité p(v), qui intervient dans le raisonnement d’Einstein, a donc 
pour valeur

(8)
, . 8r.'A _ 8rJivi __

P ( v ) = ------ n h v = ------ -— n,
&’• c“

où n est le nombre moyen des photons portés par les ondes incohé 
rentes de fréquence v du rayonnement noir. D’après les hypothèses 
d’Einstein, les probabilités Pi2 et P,, des transitions 1 — 2 et 2-1 
sont données par

(9)

i> » „ , , 8sAv3P12 = A -i- B p (v) = B------— (n -4- î),

I\,= B o (m) = B

c-‘

8 h v3. 
c:>

Pour généraliser ce résultat en dehors du cas du rayonnement noir, 
il paraît naturel d’admettre que, d’une façon générale, la probabilité 
du passage de la valeur n à la valeur n +1 du nombre de photons 
portés par une onde électromagnétique de base à la suite d’une transition 
quantique est proportionnelle à n +1, tandis que la probabilité de la 
transition inverse est proportionnelle à n.

Soit alors un laser dont la cavité a un volume V et, dans cette cavité, 
une onde stationnaire de direction déterminée et de fréquence v qui 
porte n photons. D’après ce que nous venons d’admettre, si un atome 
placé dans la cavité est initialement dans l’état d’énergie E,, la proba 
bilité par unité de temps de son passage dans l’état d’énergie supérieure Ei 
avec absorption d’un des photons de l’onde est P2J = Cn. Si, au contraire, 
l’atome est initialement dans l’état E,, il pourra passer dans l’état d’énergie 
inférieure E2 avec l’émission d’un photon supplémentaire sur l’onde qui 
porte déjà n photons et la probabilité par unité de temps de cette tran 
sition sera Pj, = C(n + i). Mais cet atome peut aussi passer dans l’état 
d’énergie E2 avec émission d’un photon sur l’une quelconque des autres 
ondes stationnaires de fréquence qui peuvent s’établir dans la cavité 
de volume V et, compte tenu de la formule (7), la probabilité par unité
de temps d’une telle émission est Pj, = C^^-V — 1 ). La présence du

terme — 1 dans la parenthèse est justifiée par le fait que, par le calcul 
de Pj2, nous avons déjà tenu compte de l’onde qui porte n photons. 
Finalement la probabilité de la transition 1 -> 2 par unité de temps est

(10) p,, = p;2+p;, = c « + c 8-^v .
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Or nous devons évidemment prendre pour expression de la densité 
d’énergie p(v) de l’onde à n photons :

(ni

ce qui nous donne
(12)

PM = n h v

P12 = c8-^v.
Cs

p(U-

Si nous voulons, avec Einstein, écrire cette probabilité sous la 
forme A-)-Bp(v), nous devons poser

(i3)

d’où
ii 4)

A = G ^ V : lî = C

A S -/<v:1
ÏÏ = c3

Nous retrouvons ainsi la formule (6) d’Einstein, mais ici cette formule 
a été obtenue sans avoir fait intervenir ni le rayonnement noir, ni la 
notion de température, ni la formule de Boltzmann-Gibbs.

Un autre avantage de cette démonstration, c’est que la formule (io) 
en séparant nettement le terme C n qui correspond à l’émission d’un
photon cohérent sur l’onde de fréquence v et le terme C qui, lui,
correspond à l’émission de photons incohérents sur l’une quelconque des 
ondes pouvant s’établir dans la cavité, exprime clairement la différence 
de nature des deux sortes d’émission. Il apparaît ainsi qu’en écri 
vant Pi2 =C(n + i), on bloque ensemble, d’une façon qui prête à 
confusion, une émission provoquée cohérente et une émission spontanée 
non cohérente. Cette manière de faire utilisée dans la forme actuelle de 
la théorie des champs électromagnétiques quantifiés sans tenir compte 
de la différence de nature des deux sortes d’émission nous paraît consti 
tuer l’un des points faibles de cette théorie.

3. L’interférence des ondes émises par deux lasers.

Il est aujourd’hui certain que les lumières émises sur la même fréquence 
par deux lasers peuvent interférer. La preuve en a été apportée par 
un beau travail expérimental effectué avec beaucoup d’habileté par 
MM. G. Magyar et L. Mandel (').

Ces auteurs ont utilisé deux lasers à rubis et ils ont eu à surmonter 
la difficulté que je vais exposer. Un dispositif d’excitation permettait 
de déclencher synchroniquement le fonctionnement des deux lasers

(•) Bibliographie [22],
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à rubis, mais pendant chaque période de fonctionnement, chacun des 
deux lasers émettait indépendamment et aléatoirement sur la même 
fréquence des trains d’ondes dont la durée d’émission était d’environ 
une demi-microseconde. Ces trains d’ondes partant de l’un ou de l’autre 
laser arrivaient la plupart du temps isolément sur l’appareil susceptible 
d’enregistrer les interférences de sorte qu’en raison du voile ainsi produit 
aucun enregistrement de frange ne pouvait être obtenu. Tournant cette 
difficulté à l’aide d’un dispositif très ingénieux, Magyar et Mandel sont 
arrivés à ne faire fonctionner l’appareil d’enregistrement des inter 
férences que quand deux trains d’ondes venant de chacun des lasers 
arrivaient presque simultanément à l’entrée de cet appareil : grâce 
à cette synchronisation des trains d’ondes admis dans l’appareil d’inter 
férences et à la condition que la différence des chemins optiques et la 
durée d’enregistrement fussent inférieures à la microseconde, il devait être 
possible, d’après les prévisions de la théorie ondulatoire classique, 
d’obtenir des franges d’interférences. Et c’est bien ce que l’expérience 
a permis de vérifier.

Ainsi il semble bien établi que les trains d’ondes émis par deux lasers 
peuvent interférer quand ils se superposent et les calculs développés 
d’après, la théorie des ondes lumineuses de la manière indiquée au 
chapitre précédent rendent parfaitement compte de ce fait. Du point 
de vue que nous adoptons, ce résultat apparaît comme tout naturel. 
Pour nous, en effet, chaque laser émet de temps en temps une onde 
électromagnétique de faible amplitude sous la forme d’un assez long 
train d’ondes transportant un grand nombre de photons cohérents. 
Si deux de ces trains d’ondes provenant chacun d’un des deux lasers 
arrivent simultanément à l’entrée de l’appareil d’interférences, ils se 
superposent classiquement : les photons qu’ils apportent sont alors guidés 
par l’onde résultant de leur superposition et, par suite, ils se répartissent 
statistiquement proportionnellement aux intensités locales de cette onde, 
ce qui explique immédiatement la possibilité d’enregistrer les interférences.

Divers auteurs sont parvenus à rendre compte du résultat expérimental 
obtenu en restant dans le cadre de la théorie quantique des champs, 
mais c’est seulement en introduisant des modifications assez arbitraires 
dans le formalisme usuel de cette théorie. Il nous paraît certain que la 
conception que nous proposons est beaucoup plus simple et qu’elle a 
l’avantage d’offrir une image claire et probablement beaucoup plus 
exacte de la réalité physique.

La conclusion qui précède nous paraît d’ailleurs confirmée par une 
belle expérience récente de MM. Pfleegor et Mandel (Phys. Rev., 159, 
n° 5, 20 juillet 1967, p. 108/j). Ces deux physiciens ont obtenu les franges 
d’interférences dues à la superposition des ondes émises par deux lasers 
indépendants dans des conditions telles qu’il n’y avait pratiquement 
jamais deux photons arrivant à la fois dans l’appareil d’interférences.

L. DE BROGLIE. 6
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L’interprétation de ce résultat à l’aide des idées actuellement admises en 
Physique quantique paraît difficile. Au contraire, elle nous semble 
résulter très clairement et très naturellement des idées exposées dans 
le présent volume comme nous l’avons montré dans une Note actuel 
lement sous presse dans la Physical Review.

4. Peut-il y avoir des collisions entre photons ?

En théorie classique de la lumière, si deux faisceaux de lumière se 
croisent dans le vide, il ne peut y avoir entre eux aucune interaction 
parce que, les équations de propagation étant linéaires, les faisceaux de

Fig. 9.

lumière se croisent sans s’influencer. Mais, si l’on fait intervenir l’exis 
tence des photons, il semble qu’il pourrait en être autrement. En effet, 
un photon appartenant à l’un des faisceaux pourrait passer très près 
d’un photon de l’autre faisceau et cette « collision » des deux photons 
pourrait s’accompagner d’un échange important d’énergie et de quantité 
de mouvement. J’avais fait autrefois le calcul très simple d’un phéno 
mène de ce genre et je vais le reprendre rapidement.

Supposons, pour simplifier, deux faisceaux de lumière de fréquences 
et v, se propageant respectivement le long de deux axes rectangu 
laires Ox et O y.

Au voisinage du point O, les faisceaux se croisent et une collision 
entre photons serait possible. Si une telle collision a lieu, les photons 
seront déviés dans des directions D, et D2 avec les fréquences u\ et v'.2.
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La conservation de l’énergie et des composantes de la quantité de mouve 
ment nous fournissent alors les trois équations

c C C

Si v, et v2 sont connus, on pourra éliminer a2 entre les équations (i5) 
et calculer v', et v'2 en fonction de y,.

Sans faire le calcul dans le cas général, nous envisagerons le cas parti 
culier où l’on a vi = v.2 = v0 et, en supposant a, = a2 = 45°, nous consta 
terons que les deux dernières équations (i5) sont identiques : on obtient 
donc alors le système de deux équations compatibles

(16) v', +v'j = 2v,, — V; = y'2 v0

qui correspondent au cas de figure suivant :

y

Fig. io.

(17)

En additionnant les deux équations (16), on obtient

, ,2 + 1/27) V, = --------J—v0~ 1,7V„

ou, en longueurs d’onde,
(18)
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Si nous supposons que X0 = 0,67 p, nous trouvons X't~o,4 p. Ainsi la 
collision de deux photons rouges en O, pourrait nous fournir un photon 
violet dans la direction D.

Avec les sources de lumière usuelles même les plus intenses, la densité 
des photons dans les ondes est si faible que la probabilité de rencontre 
de deux photons est négligeable de sorte que le phénomène étudié ci-dessus 
doit de toute façon être inobservable. Mais peut-être pourrait-il en être 
autrement avec des lasers de très grande puissance : l’expérience actuel 
lement irréalisable mériterait certainement alors d’être tentée.



CHAPITRE VII 0).
FLUCTUATIONS DE L’INTENSITÉ LUMINEUSE 

ET INTERFÉRENCES DU QUATRIÈME ORDRE.

1. Introduction.

La lumière émise par les sources habituelles, qu’on peut appeler la 
lumière thermique, correspond essentiellement à un phénomène de 
nature aléatoire. On sait, en effet, que cette émission provient de très 
nombreuses transitions quantiques individuelles (et généralement indé 
pendantes) ayant lieu à chaque instant dans les atomes de la source 
et les ondes lumineuses observées, somme de toutes ces contributions 
élémentaires, ont des phases et des amplitudes qui changent aléatoi 
rement dans le temps.

C’est donc un fait remarquable que l’Optique classique, conçue pour 
l’étude des propriétés d’un tel rayonnement, ait pu se développer en 
utilisant des fonctions « certaines », notamment des ondes planes mono 
chromatiques. La raison en est que la nature aléatoire de la lumière 
n’y est prise en considération que d’une façon en quelque sorte négative, 
parce qu’on limite le domaine d’application de la théorie aux situations 
expérimentales où les fluctuations du rayonnement ont des effets négli 
geables. Prenons l’exemple d’une expérience classique d’interférences 
et nous remarquerons que la théorie élémentaire habituelle n’y est utili 
sable que sous des conditions restrictives sévères : il faut que les sources 
interférentielles soient presque ponctuelles, qu’elles soient des sources 
secondaires, que la région d’observation se borne à un certain voisinage 
de la frange centrale, etc. On vérifie aussitôt que, compte tenu du temps 
de réaction relativement long des plaques photographiques ou de l’œil 
humain, ces restrictions ne font qu’effacer les effets des propriétés aléa 
toires de la lumière, incompatibles d’ailleurs avec l’observation du 
phénomène.

(') Rédigé par M. Andrade e Silva.
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Une Optique aléatoire dont les racines sont anciennes est venue ainsi 
s’ajouter à l’Optique classique et l’intérêt croissant qu’on accorde à juste 
titre à la « théorie de la cohérence partielle » n’est pas sans rapport avec 
certains progrès scientifiques et techniques récents. Il y a eu d’abord 
la découverte de sources non thermiques de lumière, dont l’effet Çerenkov 
était un premier exemple et qui ont acquis une importance exception 
nelle avec la construction du laser; l’étude de la cohérence y a gagné 
de l’importance et de nouvelles possibilités de vérification. Mais, en outre, 
on a construit des détecteurs lumineux de plus en plus rapides si bien 
que les fluctuations du rayonnement, manifestation directe de ses 
propriétés stochastiques, purent être étudiées de plus près.

En ig56, R. Hanbury-Brown et R. Q. Twiss ont apporté la preuve de 
l’existence d’un rapport entre les fluctuations d’intensité d’un rayon 
nement lumineux et les propriétés de cohérence de la source. Ils ont 
mesuré les nombres de photoélectrons émis par deux cellules soumises 
au même rayonnement pendant une longue suite d’intervalles de très 
courte durée et ont trouvé une corrélation, fonction des caractéristiques 
de la source et de la géométrie du système. Autrement dit, malgré le bruit 
de fond représenté par les coïncidences « fortuites » dans les arrivées des 
photons sur les deux systèmes d’enregistrement, Hanbury-Brown et 
Twiss ont détecté des coïncidences « significatives » correspondant à une 
sorte d’interférence des intensités lumineuses. Si l’on appelle interférences 
du second ordre le phénomène classique qui peut résulter de la super 
position de deux amplitudes, l’effet Brown-Twiss correspond effecti 
vement à des interférences du quatrième ordre.

Ces remarquables expériences mettent en évidence un phénomène 
qui par sa propre nature échappe totalement à la vieille Optique clas 
sique et dont l’importance est considérable. Importance théorique, 
d’une part, car nous verrons que ces fluctuations d’intensité concernent 
de près les propriétés à la fois ondulatoires et corpusculaires de la lumière, 
mais aussi importance pratique comme Hanbury-Brown et Twiss surent 
le montrer aussitôt. Un interféromètre stellaire, construit par Hanbury- 
Brown et coll. et basé directement sur cet effet fonctionne actuellement 
en Australie, permettant de mesurer les diamètres apparents des étoiles 
à moins de io_;l secondes d’arc près. Cette précision est déjà des dizaines 
de fois meilleure que celle de la méthode classique de Michelson et les 
possibilités de la nouvelle technique semblent loin d’être épuisées.

Nous voulons analyser ici l’une des chaînes de raisonnements qui 
permettent de comprendre le contenu de l’effet Brown-Twiss et, pour 
ce faire, nous tirerons profit d’une intéressante Note de E. M. Purcell 
(Nature, vol. 178, ig56, p. i449)> reprise et développée par L. Mandel 
(Proc. Phys. Soc., vol. 72, ig58, p. 1037). Mais nous essayerons surtout 
de dégager l’apport du nouveau phénomène à la connaissance des 
propriétés quantiques de la lumière.
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2. Mesure des intensités lumineuses et dualisme onde-corpuscule.

Pour déterminer l’intensité d’un rayonnement lumineux on est forcé 
de procéder de façon indirecte car, en fait, ce qui est mesuré par le détec 
teur, plaque photographique ou cellule photoélectrique, est toujours 
le nombre d'électrons arrachés à la matière par l’arrivée de la lumière. 
L’analyse exacte d’un phénomène mettant en jeu des intensités lumi 
neuses suppose donc la connaissance préalable des rapports entre l’inten 
sité reçue et le nombre des photoélectrons émis.

On peut alors procéder comme l’ont fait notamment Mandel, Sudarsham 
et Wolf (Proc. Phys. Soc., vol. 84, ig65, p. 435), en prenant un hamil 
tonien H(), qui représente les électrons liés d’un atome du détecteur 
et en déterminant la perturbation introduite par l’arrivée de la lumière. 
On applique la méthode de la variation des constantes à l’hamiltonien
perturbé H0-j-Hi où, A étant le potentiel vecteur qui correspond à une 
onde plane presque monochromatique, H, peut simplement s’écrire 
sous la forme

H, = — A .p. me

En effectuant le calcul on trouve en première approximation (') que 
la probabilité élémentaire P (t) dt d’observer un photoélectron pendant 
le temps dt est
(i) P(<) dt = a 1 (t) dt,

1(1) désignant l’intensité du champ lumineux à l’instant t.
Mais, si l’on ne s’intéresse pas à la forme explicite de la constante a, 

on peut obtenir la même expression par le raisonnement plus simple 
et plus intuitif suivant. D’après la Mécanique quantique, la proba 
bilité d’émission d’un photoélectron par un système pendant le temps dt 
est proportionnelle au nombre de photons qui y arrivent pendant cette 
durée. Or nous savons encore que la probabilité d’arrivée d’un photon 
est simplement proportionnelle à l’intensité globale du champ électro 
magnétique, c’est-à-dire dans ce cas à I (t) dt. En combinant ces deux 
lois statistiques indépendantes on retrouve bien la formule (i), dont le 
contenu physique est ainsi plus clair.

On voit, en effet, que dans l’expression de la probabilité élémentaire 
interviennent déjà deux processus stochastiques différents. Il y a, d’une 
part, le processus aléatoire de l’émission des photoélectrons, ce qui 
justifie que la constante a soit souvent appelée 1’ « efficacité de la 
cathode ». Mais il y a, d’autre part, le rapport aléatoire entre l’intensité

(■) Les effets non linéaires correspondants aux approximations d’ordre supérieur 
ne deviennent importants que pour les très grandes intensités.
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globale d’une onde et le nombre des photons qu’elle porte et, dans ce 
sens, la formule (i) traduit surtout le dualisme onde-corpuscule. A l’inten 
sité classique de l’onde ne correspond pas une valeur certaine du nombre 
de photons mais une simple espérance mathématique pour telle ou telle 
énergie et la différence entre les deux conceptions ne devient très souvent 
négligeable qu’à cause de la loi des grands nombres.

Connaissant la probabilité d’observer un photoélectron pendant la 
durée dt, on peut aisément calculer la probabilité d’observer k photo 
électrons pendant l’intervalle arbitraire (t, t T). Il suffît pour cela 
de reprendre un raisonnement qui est classique dans la théorie des 
processus stochastiques poissoniens.

Désignons par O (dt) une grandeur infinitésimale par rapport à dt 
et supposons, plus explicitement, que la probabilité d’observer un photo 
électron pendant la durée dt comprise entre les instants t et / — dt 
est a I (t) dt -j- O (dt), la probabilité d’en observer plus étant naturel 
lement O (dt). Introduisons l’intervalle (o, t + dt), qui peut se décom 
poser en deux sous-intervalles disjoints (o, t) et (t, t + dt) et deman 
dons-nous quelle est la probabilité d’y observer un nombre k~,i d’élec 
trons. Il est évident qu’un tel événement peut avoir lieu de trois façons 
différentes qui s’excluent mutuellement :

a. k électrons sont observés pendant l’intervalle (o, t) et aucun pendant 
l’intervalle (t, t -j dt) ; cela aura lieu avec la probabilité

P*(t) [i — % l (t) dt — 2O (dt)),

p*(0 étant, par définition, la probabilité d’observer k électrons jusqu’à 
l’instant t et i — y. I (t) dt —'2 O (dt) étant celle de ne plus en observer 
jusqu’à l’instant t + dt.

b. k — 1 électrons sont observés pendant l’intervalle (o, /) et un 
autre est observé pendant l’intervalle (t, t -j- dt) ; la probabilité corres 
pondante sera

Pi—1 (t) [a T (t) dt -4- <3 (dt)).

c. Enfin, k — m électrons (k)'^m>i) sont observés pendant l’inter 
valle (o, t), les m autres étant observés entre t et t -\- dt; d’après nos 
hypothèses, cet événement aura une probabilité négligeable devant celle 
des événements précédents et nous n’avons pas à la considérer.

La probabilité d’observer k photoélectrons pendant la durée (o, t + dt) 
sera donc

Pi (t -h dt) = P*(0 [1 — x l(t) dt — 2 O (dt)) -t- Pi—j (t)[x\(t) dt -+- O (dt)),

soit encore, en passant à la limite,

p'i(0 = -aI(0 P*(<) +«!(<) Pi-i (t).
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Cette équation différentielle qui définit les probabilités P*(0 peut être 
résolue par récurrence. D’abord il est aisé de voir que pour la proba 
bilité P»(0 de n’observer aucun photon pendant la durée (o, t) on a

P'o(0 =-«I(0 Po(<)

et, puisqu’il est certain que pendant une durée nulle on ne peut pas 
observer aucun électron, on a Po(o) = i et il vient

P„ (t) = exp —aJ' I (t) dt .

On peut alors calculer la probabilité Pi(0 d’après l’équation

P', (t) = — il (t) Pt (i) + i I (t) exp — x / I (l)
L ’-'u

et, vu que Pj (o) = o, on obtient

P] (t) = x Ç I (t) dt exp — y. f I (t) dt
do e0

dt

On déterminerait de même P2(<) :

Po(Z) exp 1(0 dt

et, en passant au cas général, on vérifie que la probabilité P^(T) 
d’observer k photoélectrons pendant la durée T comprise entre les 
instants l et t + T correspond à la distribution de Poisson :

CD Pi (T) = fTe-aî

où, bien entendu,
r^T

(•ï) a = y. 1 1 il) dt.

3. Le cas de la lumière thermique et celui des lasers.

La distribution poissonienne que nous venons de trouver n’est qu’une 
conséquence de l’expression (i) de la probabilité élémentaire d’observer 
un photoélectron pendant le temps dt et, de ce fait, elle exprime encore 
essentiellement le dualisme onde-corpuscule. Le caractère probabi- 
listique des prévisions de l’énergie d’un train d’ondes dont l’intensité 
serait connue apparaît ici de façon explicite.

Le problème qui se pose maintenant est celui de savoir sous quelles 
conditions cette distribution sera observable. Elle le sera, évidem 



90 CHAPITRE VII.

ment, dans la mesure où il sera possible de reproduire un grand nombre 
de fois l’expérience de comptage du nombre des photoélectrons, mais en 
utilisant toujours un rayonnement identique ou, tout au moins, de même 
intensité totale.

Supposons alors qu’on utilise une source de lumière thermique aussi 
« stable » que possible et qu’on mesure le nombre d’électrons émis par 
un détecteur pendant une suite d’intervalles identiques de durée T. 
On ne retrouvera pas pour autant la distribution poissonienne en ques 
tion car, en raison du caractère aléatoire de l’émission lumineuse, le 
détecteur ne reçoit pas le même rayonnement pendant deux mesures 
successives. Pour prendre en considération ces variations d’intensité 
il y a lieu d’introduire une seconde statistique qui, nous le verrons 
bientôt, nous écarte plus ou moins de la distribution de Poisson. On remar 
quera qu’on retrouve ainsi la situation habituelle en Mécanique statis 
tique quantique, deux processus stochastiques de nature différente 
y étant toujours superposés dans la loi de distribution d’un observable : 
le premier traduit le caractère probabiliste de la Mécanique des quanta 
elle-même, le second correspond à l’incertitude classique sur l’état du 
système.

Mais la situation est toute autre si, à la place de la source thermique, 
nous utilisons un laser ou, plus exactement, une onde laser vibrant sur 
un seul mode. Les propriétés de cohérence de la lumière seront alors 
telles qu’il devient naturel d’admettre que le détecteur réagit à des 
échantillons de rayonnement pratiquement identiques et il ne restera 
en jeu que la nature probabiliste des lois quantiques. En d’autres termes, 
la distribution de Poisson deviendra observable et la suite des mesures 
déterminera un nombre moyen de photo électrons rir correspondant à (2), 
c’est-à-dire

a étant toujours défini par (2'). De même, d’après la propriété bien 
connue de la distribution de Poisson, on aura

et donc la variance du nombre de photoélectrons observés doit être
T

Cette prévision semble bien d’accord avec les mesures faites par plusieurs 
équipes (Be l l is io , Fr e e d  et Ha u s , Appl. Phys. Letters, vol. 4, 1964, p. 5; 
Ar ms t r o n g  et Smit h , Ibid., p. 196; Ba il e y  et Sa n d e r s , Phys. Letters,



vol. 10, 1964, p. 295), mesures qui apportent ainsi une nouvelle confir 
mation des postulats statistiques de la Mécanique ondulatoire.

Revenons alors au cas de la lumière thermique et cherchons à calculer 
la valeur correspondante de la variance. Nous supposerons toujours que 
la source est stationnaire et ergodique, de façon à pouvoir confondre les 
moyennes prises dans le temps et celles prises sur un ensemble. Mais, 
selon les remarques précédentes, les nombres moyens déterminés par la 
suite des mesures contiendront tout de même une double statistique et 
nous représenterons donc ces valeurs moyennes par une double barre. 
On aura, d’abord,

C 6 ) riT = à — a Ç I ( t ') dt — a. ï T

et l’on voit que le nombre moyen de photoélectrons émis pendant l’en 
semble des observations reste proportionnel à l’intensité moyenne de la
lumière reçue. Calculons alors ni en écrivant
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«T

c’est-à-dire

(.7 )

a (a -+-1) I ( t) dt 1(0 dt.

I (t) I ( t') dt dt' -t- aï T

et l’on remarque déjà que la valeur de la variance ni — ni ne sera plus, 
en général, proportionnelle à l’intensité moyenne. La raison en est, 
évidemment, que la valeur de I (t) I (t') ne coïncide pas avec celle du 
produit 1(0-1 (t'), sauf si les intensités lumineuses à deux instants t 
et aussi rapprochés soient-ils, sont statistiquement indépendantes. 
En d’autres termes, on n’observera la valeur poissonienne de la variance 
en utilisant de la lumière thermique que si cette lumière est parfai 
tement incohérente ou, plus exactement, que si les effets des propriétés 
de cohérence deviennent négligeables. S’il n’en est pas ainsi on peut 
prévoir un écart d’autant plus important que les propriétés de cohérence 
seront plus sensibles.

Pour exprimer quantitativement cette situation introduisons la cova 
riance de la fonction aléatoire !(/) qui est, par définition,

r (t, f) = i(t) 1 (t’).

La source lumineuse étant supposée stationnaire, la covariance ne sera 
qu’une fonction de t — t' et nous écrirons donc

1 (l) I (f) dt dt' :
«-/n

r (t — t') dt dt'.
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Faisons le changement de variables défini par les relations 

- = t — t', t ' = t -+- t'

et l’on pourra intégrer par rapport à x' pour obtenir

I (t) l(t') dt dt' = / (T — j t [ ) f ) il-..

Mais, comme on sait que la covariance d’une fonction stationnaire est 
nécessairement une fonction paire de t — t', on peut écrire à la place
de (7) :

Pour poursuivre le calcul nous avons besoin de connaître plus expli 
citement la fonction d’autocorrélation P(t ) de l’intensité de la lumière 
thermique. C’est une circonstance heureuse que cela soit possible en 
utilisant simplement des hypothèses physiques très générales sur le 
processus d’émission et un puissant raisonnement de la Théorie des 
Probabilités que nous allons rappeler.

4. Expression de la covariance de l’intensité.

Soit une suite de variables aléatoires x,, x,, ..., x„, ... satisfaisant 
aux deux hypothèses suivantes :

a. Pour tout n donné, les variables xt sont indépendantes dans leur 
ensemble.

b. Les Xi ont tous la même loi de probabilité, loi qui a une moyenne 
finie (nous la prendrons nulle, au besoin par un changement de variables) 
et une variance cr2 elle aussi finie.

On sait alors démontrer (voir, par exemple, J. V. Upe n s k y , Introduction
n

to Mathematical Probability, New York, 1937) que, si X„ = ^a:/, la

vers la loi normale réduite quand n-r 00.

Ce théorème, dont l’idée revient à Laplace mais qui ne fut démontré 
rigoureusement par Markov et Liapounov qu’à la fin du siècle dernier, 
est suggestivement appelé par les auteurs de langue anglaise « the central 
limit theorem ». Sa grande valeur provient de ce qu’il permet de prévoir 
la loi de probabilité de X„ sans connaître celles des x, et cela justifie 
en quelque sorte l’importance pratique de la distribution normale. 
L’application au cas de la lumière thermique est immédiate.
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En effet, on sait que le champ lumineux produit par une source ther 
mique n’est que la somme des contributions élémentaires des atomes ou 
des molécules qui la composent. Si la source est homogène (') le champ 
observable n’est donc que la somme d’un grand nombre de contri 
butions identiques et pratiquement indépendantes, dont les valeurs 
moyennes et les variances sont de toute évidence finies. On peut donc 
dire que la probabilité pour que Yamplitude d’un champ lumineux ther 
mique soit comprise entre les valeurs V et V + dV est donné 
par P (V) dV avec

l>(V)
3 \/nz

exp ( Y — \Y
3*- = ( Y - V)2.

La simple existence de cette distribution de probabilités confirme 
l’idée que les échantillons de lumière thermique reçus par un détecteur 
pendant une suite de mesures de courte durée n’ont pas la même intensité 
globale, l’écart moyen étant plus ou moins grand selon la valeur de la 
variance des rayonnements élémentaires. Il est donc prévisible que c’est 
de la largeur de bande de la source que dépendra finalement l’importance 
pratique de l’introduction d’une seconde statistique pour la lumière 
thermique, c’est-à-dire l’écart par rapport à la distribution de Poisson.

Le théorème précédent peut être généralisé au cas des vecteurs aléa 
toires. Étant données deux suites de variables aléatoires xh x2, ... 
et y,, y,, ..., on introduit une suite de vecteurs aléatoires vt, v..., 
le vecteur v, étant défini par la paire {xt, yî); ces vecteurs sont encore 
supposés indépendants dans leur ensemble. Soit ensuite le vecteur résul-

n
tant V„ = ^ Vi, dont les moments du second ordre s’écrivent 

1
u n

U,I =^|.rr,
i i~i

n

i — i

Il suffit alors d’admettre, par exemple, que les suites xt et g, sont 
telles que

é 9) liin j l  yi IXi l:i = °’ lim j l Iyt l;‘ = °>n > » 11 n ■> w ~
—1 i — i

pour qu’on sache démontrer que la loi de probabilité du vecteur V„ tend 
vers la loi de Gauss à deux variables quand n oo. En d’autres termes, 
quand n est suffisamment grand, la probabilité de trouver à la

(‘) La généralisation au cas d’une source chimiquement hétérogène résulte simple 
ment du fait que la somme de deux variables normales indépendantes est encore 
une variable normale.



94 CHAPITRE VII.

fois Xn=^#i dans l’intervalle (X, X + dX) et Y„ == V yt dans l’inter-
f=i i=i

valle (Y, Y -f- dY) sera pratiquement équivalente à P (X, Y) dX dY, où

i r j j l o »X2-f- ij ij j Y2—2ui.>xv
L 2(fillP22— ,'A U)

P(X, Y) = exp
2îr(|j.n ;x;

Pour calculer aisément les moments X'/ Y'1- la méthode la plus 
simple est d’introduire la fonction caractéristique

<1> (a, P) = exp — i ( ;xua2-f- ^t,22 [32 -t- 2 fi12aj3)

et d’utiliser la relation classique

iPY'i Yp-v  = ô p  <!' (o, o) 
daP

car, de cette façon, on obtient immédiatement

X" V‘ — JX-l 1 JX*>-2 —1— 2 p. j .» — X" . V “ -I— 2 Xt

Quoique le sens physique des conditions (9) ne soit pas évident, 
on remarque sans peine qu’elles devront être satisfaites dans le processus 
de l’émission de la lumière thermique. Et, en assimilant les variables X 
et Y aux valeurs de l’amplitude aux instants t et Z + z, on transcrit 
la relation précédente sous la forme

I {1 ) f i l -1- ~ ) — I -+- 2 \ ( t ) \ (t -f- t  ) ,

C’est l’expression recherchée de la covariance de l’intensité. Nous 
pouvons l’exprimer en fonction de la covariance de l’amplitude parce que 
la distribution de cette amplitude est gaussienne et, dans ce cas, la valeur 
de V (t) V (t -f- t ) définit complètement la continuité des phénomènes 
dans le temps.

On sait par ailleurs qu’il y a des rapports étroits entre la covariance 
de l’amplitude du champ et la densité spectrale d’énergie correspon 
dante : en introduisant, par exemple, le degré de cohérence ou covariance 
normalisée

Y < t) V(( + t )■v i t  i «—  : 1   1____ ___ L .

le théorème de Bochner-Kintchine permet d’écrire sous des hypothèses 
très générales que

(10) -|-(-)= j g'(jf) CX()(2Jt*Ta?) dx,
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Y(t ) étant maintenant défini en tant que fonction complexe et g (y — v0) 
représentant la densité spectrale normalisée de la lumière. La covariance 
de l’intensité peut alors s’écrire sous la forme

(il) J(<) = J (n-( y (t) |2),

Y(t ) étant toujours donné par (io).

5. Fluctuations d’intensité et interférences.

Reprenons la formule (8) de n| pour y introduire l’expression de la 
covariance de l’intensité que nous venons de trouver. On obtient

T
/i2 = >?T + 2a2T f (T —T) (i-t-I y (t ) I*) ûfr,

‘'O
c’est-à-dire

T
= 7ït  -h  a- t T2 -I- 2a- I Ç (T — t ) | y (t ) [2 ch

•A
ou encore, en tenant compte de (6),

(12) «I — 7ïj=«T+2a2I / (T — t ) \ y  (t ) |2 dx.
‘-'a

C’est l’effet qu’on doit observer quand on fait une suite de mesures 
des fluctuations de l’intensité de la lumière thermique. Si on le met en 
parallèle avec l’expression correspondante (5), valable notamment dans 
le cas des sources laser, on note la présence d’un terme supplémentaire, 
caractéristique de la lumière thermique. A moins de connaître la forme 
de la fonction j(r), qui varie d’un cas à un autre, on ne peut pas, 
en général, calculer explicitement ce terme supplémentaire, mais cela 
est néanmoins possible dans deux cas extrêmes très intéressants.

Désignons par t „ le temps de cohérence de la lumière, c’est-à-dire un 
temps qu’on peut rapprocher intuitivement de la durée moyenne des 
trains d’ondes lumineux. On sait alors, d’une part qu’on peut écrire

O'S) To : ■/: 1 Y (T) r d-

et, d’autre part, que y  (t) ^1 n’est appréciable que pour des valeurs 
de t  qui sont, au plus, de l’ordre de t (1.

Supposons d’abord que les conditions expérimentales soient telles que 
la durée de chaque observation est très supérieure au temps de cohé 
rence de la lumière étudiée, T > r0. Puisque y  (7) est nécessairement 
une fonction paire, la formule générale (12) peut maintenant s’écrire 
avec une très bonne approximation

/ij — Tîj = 7ij -h a-1 T j [ y  (x) | ch
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ou encore, grâce à (i3) et à (6),

( I 4 ) nj — —p ^ •

Par contre, si la situation conduit à poser T - ; r0, (12) devient prati 
quement

w| — iîj = 77r-h 2z~I | T (°) 1 - f (T — -) d-
J<s

et l’on voit que cela revient à écrire

Nous retrouvons encore un terme supplémentaire en ri? mais dont 
l’importance numérique est devenue bien plus grande qu’en (i4) du fait
qu’il n’est plus multiplié par le facteur très petit devant l’unité -■
Il est maintenant aisé de comprendre l’origine des coïncidences « signi 
ficatives » observées par Hanbury-Brown et Twiss. En définissant l’écart
type An de la façon habituelle

A/( — ( /iij — ,

(i5), par exemple, donne pour un ensemble de deux détecteurs, comme l’a 
rappelé plus haut M. Louis de Broglie,

( [(>,) A/l-i = . «2,

qui est l’une des expressions possibles de l’effet Brown-Twiss (').

6. Sur la nature des fluctuations.

Les fluctuations des nombres de particules autour de la valeur moyenne 
qui correspondent respectivement aux distributions de Maxwell- 
Boltzmann et de Bose-Einstein s’écrivent

(.7) ('■EY.i,
\ n J n

m) ■ x"-\ 1
\ >> J 11

(■) Nous n’avons considéré ici que le cas de la lumière complètement polarisée. 
Dans le cas contraire, il y aurait lieu d’introduire dans les formules le degré de pola 
risation P, qui peut varier entre 0 et 1 ; l’expression (16) s’écrit alors

2



tandis que les expressions (i4) et (io) que nous venons de déduire 
peuvent se mettre sous la forme
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On vérifie que (i 5') coïncide avec (18) et que (i4 ) est pratiquement 
équivalent à (17) ou, en d’autres termes, que selon que t „ - T ou 
que t „ S ;T les photons se comportent ici comme des véritables bosons 
ou presque comme des particules classiques.

Il est bien connu que la seule différence essentielle entre la statistique 
classique et celle de Bose-Einstein réside dans le nouveau comptage des 
complexions qui résulte de la perte d’individualité attribuée aux bosons, 
ce qu’on appelle leur indiscernabilité. Les formules (i4') et (10') illustrent 
donc les rapports étroits qui existent entre l’indiscernabilité des 
corpuscules et la cohérence des ondes, l’indiscernabilité n’y jouant plei 
nement que si la cohérence est assurée pendant toute la durée de l’obser 
vation et tendant à disparaître dès que les effets dus à la cohérence 
s’amenuisent. Dans le cas limite d’un rayonnement incohérent (-, = o), 
les photons se comportent comme des particules tout à. fait classiques 
et l’on retrouve l’expression des fluctuations qui correspond, soit à la 
distribution de Maxwell-Boltzmann (17), soit à la loi de Poisson (5).

Nous remarquerons à ce propos que des considérations analogues 
pourraient aussi se faire à propos des interférences du second ordre. 
En effet, on sait que l’observation de franges d’interférence n’est assurée 
que dans la mesure où il y a cohérence entre les champs lumineux qui se 
superposent; en particulier, si les deux champs ont la même intensité, 
la visibilité P des franges

fuiix bniiiV = -- - - - j- -
* nwix *+■ J min

coïncide avec le degré de cohérence y (t ). Or l’apparition des franges est 
directement liée à l’indiscernabilité, une figure d’interférences ne pouvant 
pas être produite par des particules classiques. Il s’ensuit que la visi 
bilité des franges est aussi la mesure d’une sorte de « degré d’indiscer 
nabilité » des photons et, notamment, que quand la visibilité est nulle 
le degré d’indiscernabilité est nul lui aussi, les photons récupérant alors 
leur individualité pour se comporter comme des particules classiques.

Sans méconnaître les limites d’une telle explication, on peut rappeler 
à ce propos la remarque suivante. Soit un train d’ondes lumineux dont 
le temps |de cohérence est t 0 et la surface de cohérence S, de façon qu’on

L. DE BROGLIE. 7
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lui attribue un volume de cohérence c-r0S. Il est aisé de déterminer les 
intervalles Ap.r, \py, \p-, dans lesquels sont comprises les quantités de 
mouvement des photons portés par ce train d’ondes et, naturellement, on 
vérifie que

(llj) C~I) S \p.v A/>v ùp- h'K

D’après l’interprétation orthodoxe de la Mécanique des quanta, 
il faut distinguer soigneusement l’incertitude de l’indétermination, 
la frontière entre les deux concepts étant définie par les relations 
d’Heisenberg, interprétées comme des relations d’indétermination; 
l’incertitude est un concept classique et c’est donc à l’indétermination 
que se rapporterait l’indiscernabilité quantique. Si (19) assure ainsi la 
parfaite indiscernabilité des photons d’un même train d’ondes, il n’en 
est plus de même s’il s’agit de deux ou plusieurs trains d’ondes diffé 
rents. On comprend que si le temps T d’une mesure est très inférieur 
au temps de cohérence t 0 des trains d’ondes, tous les photons reçus se 
trouveront dans la même cellule h1 de l’extension-en-phase où ils seront 
indiscernables et l’on doit retrouver les prévisions de la statistique de 
Bose-Einstein. Par contre, si T > t „, la mesure aura lieu sur des photons 
placés dans un « volume » très supérieur à h:l, l’indiscernabilité se trouvera 
affaiblie d’autant et le terme quantique de l’expression des fluctuations
viendra multiplié par le facteur correspondant ~ ■

Il est intéressant de rapprocher encore ces raisonnements d’une 
remarque classique d’Einstein (Physik Z., vol. 10, 1909, p. 185 et 817), 
concernant la nature des fluctuations d’énergie dans le rayonnement 
noir. On sait que selon la Thermodynamique classique la variance Av
d’une densité moyenne d’énergie Aç=[p(v)—-p(v)]' peut s’exprimer 
d’une façon générale sous la forme

et, en appliquant cette formule à loi du rayonnement de Planck, 
on obtient

(20) Aç= +Avp(v),

où Zv est le nombre d’ondes stationnaires par unité de volume et par 
unité de fréquence. Or si l’on fait le même calcul à partir de la loi de 
Rayleigh-Jeans qui, rappelons-le, suppose que la lumière n’est constituée 
que par des ondes classiques, il vient

(21)
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tandis que si l’on part de la loi de distribution de Wien, expression d’un 
rayonnement qui serait purement corpusculaire, le résultat corres 
pondant sera
(22) Av = /iv p (v).

Cela suggère que dans la loi de Planck sont contenues à la fois les 
propriétés corpusculaires et ondulatoires de la lumière et que, pour 
ce qui est des fluctuations de l’intensité, leurs effets sont en quelque sorte
simplement additifs. Le terme en -L de (18), comme celui de (17), serait

n
ainsi de nature purement corpusculaire, le terme unité de (18) de nature 
purement ondulatoire. Cette interprétation d’Einstein est d’ailleurs 
soutenue par un calcul de Lorentz (Les théories statistiques en Thermo 
dynamique, Berlin, 1916, Note IX), qui démontra directement que la 
densité des fluctuations d’intensité d’un ensemble d’ondes stationnaires 
enfermées dans une enceinte a exactement la valeur (21). En outre, 
en raisonnant sur un ensemble de photons d’énergie h v regardés comme 
indépendants et dont la variance a, par conséquent, la valeur poisso- 
nienne n, Einstein a aisément retrouvé l’expression (22). On comprend 
fort bien pourquoi Hanbury-Brown et Twiss ont attribué les coïnci 
dences significatives qu’ils ont enregistrées aux propriétés ondulatoires 
du rayonnement, les propriétés corpusculaires ne se faisant remarquer 
que par l’aggravation du bruit de fond.

En opposition aux interférences classiques, susceptibles d’une inter 
prétation purement ondulatoire, les interférences du quatrième ordre 
exigent clairement la prise en considération du dualisme onde-corpuscule. 
Nous l’avons exprimé ici en introduisant les rapports stochastiques entre 
les intensités des ondes et les nombres des photons qu’elles portent et en 
tenant compte des propriétés de cohérence du rayonnement. On aurait pu 
essayer de prendre un langage uniquement corpusculaire, la plus ou 
moins grande indiscernabilité attribuée aux photons observés pendant 
le temps T traduisant alors l’existence simultanée de champs ondu 
latoires doués d’une certaine cohérence. Mais, de toute façon, on ne 
ferait qu’exprimer cette étrange tendance des photons à se grouper 
(photon bunching), qui est contenue dans la distribution de Bose- 
Einstein et dont l’effet Brown-Twiss n’est qu’une remarquable illustration.



CONCLUSION GÉNÉRALE DE L’OUVRAGE.

Assurément, il reste da,ns la théorie de la double solution bien des 
points encore obscurs et des problèmes difficiles à résoudre, notamment 
en ce qui concerne l’incorporation du corpuscule dans la structure de 
l’onde aboutissant à son guidage, la description des transitions quan 
tiques, les difficultés liées à l’étalement des trains d’ondes, etc. J’ai, 
depuis plusieurs années, l’idée que ces questions ne pourraient être 
élucidées qu’en introduisant dans les équations d’ondes des termes non 
linéaires qui, en raison de la petite amplitude de l’onde v de base 
seraient normalement négligeables dans le corps des trains d’ondes 
en dehors des petites régions constituant les corpuscules, mais qui 
pourraient, dans certaines circonstances, devenir importants même 
en dehors de la région interne des corpuscules. Malheureusement, pour 
l’instant ces très intéressantes idées sont encore très difficiles à déve 
lopper, d’abord parce qu’on ignore la forme des termes non linéaires 
à introduire dans les équations d’ondes et aussi parce que la théorie 
mathématique des équations aux dérivées partielles non linéaires est 
encore peu développée. Mais il me paraît vraisemblable que tout ce qui 
paraît impossible à représenter dans le cadre des théories linéaires 
actuelles trouvera un jour son explication dans le cadre plus vaste des 
théories non linéaires.

Si on laisse de côté ces difficultés qu’on parviendra peut-être à 
surmonter, il est certain que la théorie de la double solution fournit 
une image très claire de la coexistence des ondes électromagnétiques et 
des photons et explique le fait, bien inattendu au premier abord, que la 
théorie classique des ondes est largement utilisable pour la prévision 
et l’interprétation de phénomènes où, pourtant, l’existence des photons 
et de la structure corpusculaire des rayonnements s’affirme sans contes 
tation possible. Le but essentiel de ce petit Ouvrage était de mettre 
ce fait bien en évidence.
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