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AVANT-PROPOS

Cet ouvrage est divisé en deux tomes. Le présent 
premier tome, rédigé par moi-même, comprend un 
exposé de l’interprétation de la Mécanique ondula 
toire par la Théorie de la double solution et par la 
Thermodynamique cachée des particules ainsi qu’un 
grand nombre d’applications de ces conceptions 
générales.

Le second tome, qui paraîtra ultérieurement, sera 
rédigé par M. Andrade e Silva et comprendra l’examen 
détaillé de questions qui n’ont pas été étudiées ou qui 
n’ont été qu’effleurées dans le présent volume.

Louis de Br o g l ie .



CHAPITRE I

LES DÉBUTS
DE LA MÉCANIQUE ONDULATOIRE

1. Naissance de la Mécanique ondulatoire.. — Je crois 
nécessaire de rappeler quelles sont les idées qui m’ont 
guidé à l’époque où j’ai posé les premiers principes de 
la Mécanique ondulatoire en 1923-1924 [1]. Je le crois 
nécessaire parce que ces idées ne sont jamais rappe 
lées dans les exposés actuels de la Mécanique quantique.

Dans ma première jeunesse, entre 1911 et 1919, 
j’avais étudié avec un grand enthousiasme tous les 
récents résultats de la Physique théorique de cette 
époque. Les travaux de Poincaré, de Lorentz, de 
Langevin, ... sur la théorie électromagnétique m’étaient 
familiers ainsi que ceux de Boltzmann et de Gibbs sur 
la Mécanique statistique. Mais mon attention avait été 
particulièrement retenue par les travaux de Planck, 
d’Einstein et de Bohr sur les quanta et je voyais dans 
la coexistence des ondes et des particules dans les 
rayonnements découverte par Einstein en igo5 dans 
sa théorie des quanta de lumière un fait fondamental 
dont il importait de préciser la véritable nature.
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Ayant suivi les travaux que mon frère Maurice pour 
suivait sur les spectres de rayons X, je voyais toute 
l’importance dans ce domaine du double aspect des 
radiations électromagnétiques et, ayant étudié en 
Mécanique la théorie d’Hamilton-Jacobi, j’y voyais 
une sorte de préfiguration d’une théorie synthétique 
de l’union des ondes et des particules. Enfin, j’avais 
aussi beaucoup étudié la théorie de la Relativité et 
j’étais persuadé qu’elle devait être à la base de toutes 
les tentatives théoriques nouvelles.

Tel était mon état d’esprit quand en 1919, libéré 
des obligations militaires que m’avait imposées la 
guerre de 1914-1918, je me suis remis à faire des 
recherches personnelles. Ayant une conception très 
« réaliste » de la nature du monde physique et peu 
porté aux considérations purement abstraites, je voulais 
me représenter l’union des ondes et des particules d’une 
façon concrète, la particule étant un petit objet loca 
lisé incorporé dans la structure d’une onde en propa 
gation. Naturellement j’avais commencé par étudier 
le cas de la lumière et des autres rayonnements électro 
magnétiques où je cherchais à me représenter la par 
ticule que l’on appelle aujourd’hui « photon » comme 
transportée par l’onde électromagnétique. Puis soudain 
me vint, en 1923, l’idée que la coexistence des ondes et 
des particules n’existait pas seulement dans le cas 
étudié par Einstein et qu’elle devait être généralisée 
pour toutes les particules. Appliquée à l’électron, elle 
me paraissait devoir expliquer les propriétés étranges 
des mouvements d’un électron dans un atome décou 
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vertes par Bohr dans sa théorie des états stationnaires 
des atomes. Dans la théorie atomique de Bohr, on voit 
en effet apparaître des nombres entiers, ce qui est 
courant dans la théorie des ondes quand on étudie les 
phénomènes de résonance ou d’interférences.

Mais je dois insister tout particulièrement ici sur 
une idée qui m’a constamment guidé à cette époque 
et qui n’est jamais rappelée aujourd’hui. Comme je 
l’ai dit, j’étais convaincu qu’il fallait prendre constam 
ment comme base des développements théoriques les 
idées de la théorie de la Relativité. Guidé par les beaux 
exposés de Paul Langevin au Collège de France, j’ai 
donc bien étudié les propriétés de la représentation 
relativiste d’une onde en propagation. D’autre part, 
m’inspirant d’une des idées fondamentales de la théorie 
des quanta, j’ai été amené à définir une fréquence 
propre interne v„ de la particule reliée à l’énergie de 
masse propre m()c'2 par la relation hv0 = m0c2. Cela 
m’amenait donc à considérer la particule comme une 
petite horloge en mouvement. Je fus alors très frappé 
du fait que la formule de transformation d’une onde
lors d’une transformation de Lorentz est v = , V°

alors que la formule de transformation de la fréquence 
d’une horloge, traduisant le célèbre « ralentissement » 
des horloges en mouvement, est v = v„ y/i — (32. 
Intrigué par cette différence, je me suis demandé 
comment une particule assimilée à une petite horloge 
devait se déplacer dans son onde de façon à rester 
en quelque sorte incorporée à l’onde, c’est-à-dire de
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façon que sa phase interne reste constamment égale 
à celle de l’onde. Appliquant cette image au cas 
simple, bien qu’un peu trop schématique, d’une onde 
plane monochromatique se propageant le long de l’axe 
des x, j’étais amené à écrire pour la variation d© de la 
phase de cette onde

(0 efcp = 2 7r ( v dt — dx dl dx
T

2 7t / moc'~ , , dx
~h \sjT^^dt~h T

et pour la variation dans l’intervalle de temps dt de 
la phase interne de la particule se déplaçant le long 
de l’axe des x avec la vitesse v

(2) d(fi = 2 TT v0 \/i — (32 dt — 2 n 
h m0c- \f i — j3- dt.

En écrivant que d<p = dç* avec dx = v dt, on obtient

(3) io c- 1 — :...... v~ '' “ v^-P'2 À

d’où pour la quantité de mouvement p de la particule 

(4) p
m 0c

s/i - ,6* *

On a ainsi trouvé les deux relations fondamentales 

de la Mécanique ondulatoire W = ht, p = j en leur
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associant l’image d’un corpuscule localisé qui se déplace 
dans l’onde le long d’un de ses rayons en restant 
constamment en phase avec elle. Telle était l’image 
concrète que j’avais dans l’esprit quand j’ai eu la 
première idée de la Mécanique ondulatoire. Peut-être 
ne l’ai-je pas assez explicitée dans ma Thèse, mais je 
puis affirmer que c’est elle qui me guidait.

Dans mes Notes de l’automne 1923 et dans ma Thèse 
de 1924, j’ai pu donner une première interprétation 
des conditions de quanta utilisées dans la théorie de 
l’atome de Bohr en admettant que la propagation de 
l’onde dans l’atome se fait à l’approximation de 
l’Optique géométrique, ce qui n’est pas exact, mais 
qui fournit cependant une première et très frappante 
interprétation de ces conditions de quanta.

Beaucoup d’autres considérations intéressantes se 
trouvaient esquissées dans ma thèse, notamment en ce 
qui concerne l’identité résultant de mes conceptions 
entre le principe de Fermât et le principe de moindre 
action de Maupertuis. J’y donnais aussi une première 
esquisse de ce qu’on nomme aujourd’hui la statis 
tique de Bose-Einstein et j’introduisais, pour faire 
rentrer la théorie du photon dans le cadre de la Méca 
nique ondulatoire générale des particules, l’hypothèse 
que la masse propre du photon, bien que certainement 
extraordinairement petite, n’est pas rigoureusement 
nulle. C’est là une hypothèse que j’ai constamment 
introduite ensuite dans tous mes travaux sur la théorie 
quantique de la lumière.
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2. Les travaux de Schrodinger. La découverte de la 
diffraction des électrons. — Je réfléchissais à la manière de 
préciser et de généraliser mes conceptions quand j’ai 
eu connaissance, au début de 1926, des beaux mémoires 
publiés par Erwin Schrodinger dans les Annalen der 
Physik. Schrôdinger, s’inspirant des résultats de ma 
thèse et de la théorie d’Hamilton-Jacobi, écrivait sous 
une forme correcte, mais non relativiste (newtonienne), 
l’équation des ondes de la Mécanique ondulatoire qu’il 
désignait par le symbole fi’ qui a fait fortune. Repre 
nant d’une façon rigoureuse, c’est-à-dire sans supposer 
valable l’approximation de l’optique géométrique, le 
calcul de la propagation de Fonde dans l’atome de 
Bohr, il retrouvait en les rectifiant les résultats de ma 
thèse. Puis, grâce à une transposition vraiment remar 
quable, il montrait que la détermination des énergies 
quantifiées par sa méthode de calcul des valeurs 
propres de l’équation d’ondes donnait exactement les 
mêmes résultats numériques que la méthode beaucoup 
plus abstraite développée un an auparavant par Werner 
Heisenberg dans sa Mécanique des Matrices.

Enfin Schrôdinger abordait le problème de la Méca 
nique ondulatoire des ensembles de particules en inter 
action en écrivant une équation d’ondes dans l’espace 
de configuration formée par les coordonnées de toutes 
les particules du système. Le caractère abstrait de cette 
méthode de calcul est évident car Fonde FF de l’espace 
de configuration ne peut pas être considérée comme 
une onde réelle se propageant dans l’espace physique.
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Et cependant cette méthode abstraite se montrait 
rapidement très puissante et donnait bientôt des résul 
tats très exacts et d’un très haut intérêt.

J’ai lu à cette époque les mémoires de Schrôdinger 
avec la plus vive admiration en réfléchissant beaucoup 
sur leur contenu. Sur trois points cependant, je ne me 
sentais pas d’accord avec l’éminent physicien autri 
chien. D’abord l’équation d’ondes qu’il attribuait 
à l’onde n’était pas relativiste et j’étais trop 
convaincu de la liaison étroite existant entre la théorie 
de la Relativité et la Mécanique ondulatoire pour 
pouvoir me contenter d’une équation d’ondes non rela 
tiviste; mais cette difficulté fut vite levée car, dès 
juillet 192G, plusieurs auteurs, dont moi-même, ont 
trouvé une forme de l’équation d’ondes, connue 
aujourd’hui sous le nom d’équation de Klein-Gordon, 
dont l’équation de Schrôdinger est la forme dégénérée 
à l’approximation newtonienne. Un autre point où 
mes vues ne s’accordaient pas avec celles de Schrôdinger 
était que celui-ci, tout en conservant l’idée que l’onde 
dans l’espace physique est une onde réelle, semblait 
abandonner complètement l’idée de la localisation de la 
particule dans l’onde, ce qui ne concordait pas avec mes 
conceptions primitives. Enfin, tout en reconnaissant 
que la considération d’une onde V dans l’espace de confi 
guration constituait un formalisme très utile pour la 
prévision des propriétés d’un ensemble de particules en 
interaction, je considérais comme certain que le mouve 
ment des diverses particules et la propagation de leurs on 
des s’opéraient dans l’espace physique au cours du temps.
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Tandis que je réfléchissais à la manière de déve 
lopper mes propres conceptions en tenant compte de 
ce qu’il y avait d’indiscutable dans les résultats de 
Schrodinger, j’eus connaissance au printemps de 1927 
de la sensationnelle découverte des phénomènes de 
diffraction des électrons faite aux Etats-Unis par 
Davisson et Germer. Bientôt répétées sous des formes 
diverses par G. P. Thomson en Angleterre, par Maurice 
Ponte en France, par d’autres encore dans divers 
pays, ces expériences ont permis de vérifier la formule 
que j’avais donnée pour relier la longueur d’onde de 
l’onde d’un électron à la valeur de sa quantité de 
mouvement et ont ainsi apporté aux idées de base de 
la Mécanique ondulatoire une complète confirmation. 
L’on a pu ensuite observer la diffraction d’autres 
particules telles que neutrons et protons, puis répéter 
avec des électrons toutes les expériences depuis long 
temps classiques pour la lumière.

3. La théorie de la double solution et le Conseil Solvay
de 1927. — Au printemps de 1927, les travaux de 
Schrôdinger et la découverte de la diffraction des 
électrons paraissaient donc avoir apporté une confir 
mation complète des idées contenues dans ma thèse 
et cependant la plupart des théoriciens commençaient 
à s’orienter vers des conceptions tout à fait différentes 
de celles qui m’avaient dirigé. Schrôdinger abandonnait 
l’idée de corpuscule localisé et ne maintenait que partiel 
lement le caractère de réalité physique de l’onde. Allant 
plus loin, Max Born dans un important mémoire où il
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traitait le problème des collisions dans la nouvelle 
Mécanique ne considérait plus l’onde "*F que comme 
une représentation de probabilités et admettait qu’elle 
pouvait être arbitrairement « normée » : cela enlevait 
à l’onde 1F le caractère essentiel d’une onde physique 
qui est d’avoir une amplitude bien déterminée.

Inquiet de voir ainsi disparaître entièrement l’image 
physique claire et concrète qui avait guidé mes pre 
mières recherches, j’ai fait alors un effort pour préciser 
mon point de vue et j’ai publié en mai 1927 un article 
dans le Journal de Physique sous le titre : La Méca 
nique ondulatoire et la structure atomique de la matière 
et du rayonnement [2], Dans cet article, intéressant 
à relire aujourd’hui, je commençais par définir très 
clairement le but que je poursuivais, puis j’introduisais, 
sous le nom de « théorie de la double solution », l’idée 
qu’il fallait distinguer deux solutions distinctes, mais 
intimement reliées de l’équation des ondes, l’une que 
j’appelais l’onde u étant une onde physique réelle et 
non normable comportant un accident local définissant 
la particule et représenté par une singularité, l’autre, 
l’onde fi' de Schrôdinger, normable et dépourvue de 
singularité, qui ne serait qu’une représentation de 
probabilités. Cela m’amenait à généraliser les formules 
que j’avais données dans ma thèse pour l’onde plane 
monochromatique au cas d’une solution quelconque 
de l’équation des ondes et à exprimer le mouvement de 
la particule dans son onde à l’aide d’une « formule 
du guidage » précisant la façon dont ce mouvement 
est guidé par la propagation de l’onde. J’étais ainsi
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amené à envisager que le mouvement de la particule 
dans son onde s’effectue sous l’action d’une force 
dérivant d’un « potentiel quantique » proportionnel 
au carré de la constante de Planck, potentiel quantique 
qui dépend des dérivées secondes de l’amplitude de 
l’onde et qui est nul dans le cas de l’onde plane mono 
chromatique. Je remarquais que le potentiel quantique 
peut s’exprimer par les variations de la masse propre 
de la particule, résultat dont j’ai mieux compris récem 
ment toute l’importance, et qu’il apparaissait notam 
ment dans ce que j’appelais les « états contraints » 
où la libre propagation de l’onde se trouve entravée 
par l’existence de conditions aux limites. J’esquissais 
aussi, d’ailleurs d’une façon très incomplète, la manière 
dont on pouvait chercher à justifier l’emploi par 
Schrôdinger d’une onde statistique ff" définie dans 
l’espace de configuration d’un ensemble de particules.

J’étais très satisfait des résultats que j’avais ainsi 
obtenus car ils me paraissaient ouvrir la voie qui 
devait conduire à la véritable interprétation de la 
Mécanique ondulatoire, compte tenu des résultats de 
Schrôdinger et du succès de l’interprétation statis 
tique de l’onde ff\ Et aujourd’hui je crois à nouveau 
que j’avais raison. Je me rendais bien compte d’ailleurs 
que mon article ne constituait qu’une première esquisse 
destinée à subir bien des modifications et des amélio 
rations, mais j’espérais qu’on m’aiderait dans cette 
tâche.

Au début de l’été 1927, je fus invité par Lorentz 
à prendre part au Conseil de Physique Solvay qui se
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tint à Bruxelles en octobre 1927. J’y ai fait un exposé 
de ma théorie de la double solution, malheureusement 
sous la forme un peu trop simplifiée de « l’onde pilote ». 
Elle ne retint guère l’attention. Les physiciens habitués 
aux anciennes méthodes comme Planck, Lorentz, 
Langevin souhaitaient une interprétation de la Méca 
nique ondulatoire voisine des conceptions classiques, 
mais ne se prononçaient par sur sa nature. Schrôdinger 
restait fidèle à une interprétation purement ondu 
latoire. Seul Einstein m’encourageait un peu dans la 
voie où je voulais m’engager [3]. Mais je trouvais 
en face de moi des adversaires redoutables. C’était 
Niels Bohr et Max Born, savants déjà illustres, c’était 
aussi le groupe de jeunes chercheurs qui formaient 
l’Ecole de Copenhague parmi lesquels se trouvaient 
notamment Pauli, Heisenberg et Dirac, déjà auteurs 
de travaux remarquables. Ils interprétaient la dualité 
des apparences corpusculaires et ondulatoires par la 
théorie de la complémentarité récemment proposée 
par Bohr et, n’attribuant plus à l’onde V arbitrai 
rement normée de Schrôdinger que le rôle d’une repré 
sentation de probabilité permettant de prévoir le 
résultat de certaines observations, ils en arrivaient à 
abandonner toute image claire de l’onde et de la par 
ticule. J’étais assez décontenancé. Je trouvais la 
complémentarité de Bohr assez obscure et je ne pouvais 
me résoudre à abandonner les images physiques qui 
m’avaient guidé depuis plusieurs années. Mais, déve 
loppée par de nombreux chercheurs jeunes et ardents 
qui possédaient une grande habileté dans les calculs
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mathématiques, l’interprétation probabiliste de la 
« Mécanique quantique » prit rapidement la forme de 
formalismes mathématiques élégants et rigoureux.

Revenu à Paris après le Conseil Solvay, je suis resté 
plusieurs mois hésitant entre la poursuite de mes idées 
primitives et le ralliement aux conceptions de l’Ecole 
de Copenhague. Mais nommé à la fin de 1928 Professeur 
de Physique théorique à la Faculté des Sciences de 
Paris, poste que j’ai ensuite occupé pendant 34 ans, 
et ne pouvant enseigner une interprétation théorique 
qui n’avait pas encore pris une forme vraiment satis 
faisante, je me décidais à exposer à mes élèves ce qui 
commençait à être enseigné partout ailleurs et je 
renonçais à progresser davantage dans la voie difficile 
où j’avais voulu m’engager. Cela m’a permis de faire 
pendant plus de vingt ans des exposés très étendus 
et des travaux approfondis sur l’ensemble de la 
Physique quantique comme on l’exposait alors. Je n’ai 
cependant jamais perdu entièrement de vue mes 
conceptions primitives et l’on en retrouve toujours des 
traces dans la façon dont j’introduisais les bases de la 
Mécanique ondulatoire en évitant de leur donner une 
forme trop abstraite et axiomatique.

4. Retour à des idées primitives depuis 1951. — A
partir de ig5i, un revirement complet s’est opéré 
dans mon esprit en ce qui concerne l’interprétation de 
la Mécanique ondulatoire et je suis revenu aux idées 
qui avaient orienté mes travaux à l’époque où j’avais
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cherché à obtenir une image claire de la coexistence des 
ondes et des particules.

Ce revirement imprévu a eu certainement pour 
origine des études que j’ai poursuivies dans la 
période ig48-ig52. J’avais d’abord fait des cours sur 
l’interprétation statistique de la Thermodynamique 
en insistant sur l’introduction dans cette théorie des 
conceptions relativistes. Je me suis alors aperçu qu’il 
existait une curieuse analogie entre la formule de trans 
formation relativiste de la chaleur et la formule de 
transformation relativiste de la fréquence d’une horloge 
qui avait joué un si grand rôle dans mes réflexions au 
moment de ma Thèse de Doctorat. Et je fus aussi très 
frappé par l’analogie, déjà vaguement pressentie autre 
fois par Eddington, entre les deux invariants relati 
vistes que sont l’action et l’entropie. J’étais ainsi 
ramené aux idées qui m’avaient guidé lors de la décou 
verte de la Mécanique ondulatoire et l’on verra plus 
loin le rôle important qu’ont joué ces analogies thermo 
dynamiques dans mes récents travaux.

Dans les années suivantes, j’ai consacré deux cours 
à exposer l’interprétation de la Mécanique quantique 
par l’École de Copenhague et les controverses qui 
avaient eu lieu à ce sujet, une quinzaine d’années aupa 
ravant, entre Niels Bohr d’une part, Einstein et 
Schrôdinger d’autre part. Au fur et à mesure que 
j’avançais dans la rédaction de ces cours, je sentais 
mes idées se modifier. Ma confiance dans l’interpré 
tation généralement adoptée était ébranlée et je me 
demandais si je ne devais pas reprendre mon ancienne
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tentative d’interprétation de la Mécanique ondulatoire 
par la théorie de la double solution. C’est alors que j’ai 
eu connaissance d’un article de M. David Bohm dans 
la Physical Review où il reprenait la plupart des idées 
contenues dans mon article du Journal de Physique 
de 1927. Je me décidai alors à reprendre le dévelop 
pement de mon ancienne tentative.

Ayant à cette époque beaucoup d’obligations univer 
sitaires ou autres et n’ayant pu trouver qu’un très 
petit nombre de jeunes chercheurs pour m’aider, j’ai 
d’abord progressé très lentement dans l’œuvre de 
critique et de réinterprétation dans laquelle je m’en 
gageais. Mais depuis quelques années, il m’a été possible 
de donner à la théorie de la double solution une forme 
plus élaborée et de la compléter par une Thermo 
dynamique cachée des particules qui m’apparaît 
aujourd’hui comme ouvrant de vastes perspectives 
nouvelles.

Après ce premier chapitre qui constitue une sorte 
d’introduction, je vais dans les chapitres suivants de 
cette première partie du livre exposer les principes 
généraux de ma théorie dans son état actuel. La 
seconde partie de l’ouvrage, rédigée par mon principal 
collaborateur, M. Andrade e Silva, sera consacrée 
à l’examen d’un certain nombre de problèmes parti 
culiers qui ont une grande importance dans le cadre 
de la tentative que nous poursuivons.



CHAPITRE II

EXPOSÉ DE LA THÉORIE 
DE LA DOUBLE SOLUTION (’)

1. Hypothèses et équations de base. — Dans la théorie 
de la double solution, nous admettrons qu’il existe 
une onde physique u qu’il faut bien distinguer de 
l’onde statistique fictive et arbitrairement normée. 
Pour exprimer la coexistence de l’onde et de la parti 
cule par une image claire, nous supposerons que 
l’onde u comporte une très petite région en général 
mobile de très forte concentration de l’énergie qui 
constitue la particule ainsi intimement incorporée à 
l’onde. Nous écrirons donc u = v -\- u0, où u0 repré 
sente la très forte concentration d’énergie très loca 
lisée et où v représente tout le reste de l’onde. Nous 
supposerons que l’onde v a une très faible amplitude 
de sorte que l’on puisse considérer la totalité, ou du 
moins la presque totalité, de l’énergie comme étant 
localisée dans la très petite région occupée par u0.

(') On trouvera des développements plus complets sur certains 
points dans la bibliographie [4].
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Pour l’instant, nous admettrons que nous avons 
affaire à une particule de spin nul, nous réservant de
revenir plus loin sur le cas des particules de spin ^

comme l’électron ou de spin ~ comme le photon.

Nous appliquerons donc à l’onde v l’équation non 
relativiste de Schrodinger ou l’équation relativiste 
de Klein-Gordon dont l’équation de Schrôdinger est la 
dégénérescence à l’approximation newtonienne (pour 
e^oo). On sait d’ailleurs que l’on obtient ainsi une 
représentation approximative des propriétés ondula 
toires de l’électron.

En employant l’abréviation courante h = —, nousl j  2 TC
écrirons d’abord l’équation de Schrôdinger pour 
l’onde v sous la forme (où U est le potentiel qui s’exerce 
sur la particule)

(0
dv -4-Au + -1LV.iim h

L’équation complexe (i) implique que l’onde v est 
représentée par deux fonctions réelles liées l’une à 
l’autre par deux équations réelles. Nous sommes donc 
amenés à écrire

avec a et <p réels, a est l’amplitude de l’onde c et ç sa 
phase. En substituant (2) dans (1), nous obtenons,
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après quelques calculs simples, les deux équations

(J)
<)o
7)1 ~U-- —1— ( grad cp )2 =-----

2 m 2 ni

(C)
<)a2 
àl

----- div(«2 gradcp) — 0.

Pour des raisons qui apparaîtront mieux plus loin, 
nous appellerons l’équation (J) « l’équation de Jacobi 
généralisée » et l’équation (C) « l’équation de conti 
nuité ».

Si, pour obtenir une forme relativiste de la théorie, 
nous appliquons à l’onde v non pas l’équation de 
Schrôdinger, mais l’équation de Klein-Gordon, nous 
obtenons à la place de (i)

(3)   <’
9. i z V ôv 
h c'1 <)l

îi'v £ . dv i

X m 2 c1 — ~ ( V2 — A2 )

équation dans laquelle nous avons supposé que la 
particule porte une charge électrique s et est soumise 
à l’action d’un champ électromagnétique extérieur 
dérivant d’un potentiel scalaire V (x, y, z, t) et d’un

potentiel vecteur A (x, y, z, t). En introduisant dans (3) 
la forme (2) de c, nous obtenons après quelques cal 
culs une équation de Jacobi généralisée J' et une

U. DE BROGLIE. 2
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équation de continuité C7 dont voici les expressions

(J':
i / dcp „VY V (d? . £ a Y __2   «v -2 àx c

m\c- + S2 * c2 ;

<p>
<?cp e . \ da a _^ + cA-)^4-ïDCp = °’

où nous avons introduit au dernier membre de (J7) 
ce que nous appellerons la masse propre variable M0 
définie par

(4) M, = \J ml- n2  «
c•* a ’

grandeur dont nous verrons plus tard la très grande 
importance.

Pour vérifier qu’à l’approximation newtonienne les 
équations (3), (J7) et (C7) se réduisent aux équations (i),

(J) et (C) il suffit de poser A = o, sY = U,   a ~— A a

et de remplacer ~ par t o „c 2+ Nous n’insisterons

pas sur ce calcul.

2. Formule du guidage et potentiel quantique. —
Nous allons maintenant étudier les équations (J) et 
(J7) qui correspondent à l’équation non relativiste 
de Schrodinger et à l’équation relativiste de Klein- 
Gordon.

Occupons-nous d’abord de l’équation de Schrôdinger 
et de la formule (J). Si dans (J) on néglige le terme 
du second membre où figure la constante h de Planck,
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ce qui revient à faire abstraction des quanta, et si 
l’on pose 9 = S, l’équation (J) devient

(5)
dS
dt U: (gradS)2.

Nous retrouvons ainsi pour la fonction S de Jacobi 
l’équation de Jacobi de la Mécanique classique. C’est 
donc uniquement le terme en Ti2 qui fait que le mou 
vement de la particule diffère du mouvement classique. 
Quel est la signification de ce terme? Il peut s’inter 
préter en admettant qu’en dehors du potentiel clas 
sique U intervient un autre potentiel 2>, le potentiel 
quantique donné par la formule

(6)
hï A a 
im a ’

àSPar analogie avec les formules classiques = E et

p = — grad S, où E et p sont l’énergie et la quantité 
de mouvement classiques, nous poserons ici

dcp
Ut

---
— gradcp : -P

et comme en Mécanique non relativiste la quantité de 
mouvement p s’exprime en fonction de la vitesse v 
par la formule p = mv, nous obtenons

(8)
> p v =. —m

C’est là ce que nous appellerons « la formule du gui 
dage » qui nous donne la vitesse de la particule quand
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elle occupe la position x, y, z à l’instant t en fonction 
de la variation locale de la phase à cet instant.

Il importe de préciser que a et <p sont l’amplitude 
et la phase de l’onde v telles qu’elles existeraient si 
la région u0 d’amplitude très élevée qui constitue la 
particule n’existait pas. Si l’on préfère, l’on peut 
dire que a et <p sont l’amplitude et la phase de l’onde v 
au voisinage de la région presque ponctuelle occupée 
par la partie u„ de l’onde u = u0 -f- v. J’ai pu donner 
des justifications de la formule du guidage basée sur 
cette dernière idée (voir [4], a, p. 102 et 287). Nous
reviendrons plus loin sur cette question.

---- -y
La force quantique F = — grad & qui s’exerce sur 

la particule courbe la trajectoire de cette particule. 
Cependant dans le cas important, mais schématique, 
de l’onde plane monochromatique, est constamment 
nul et il n’y a pas de force quantique : la particule 
décrit alors avec une vitesse constante une trajec 
toire rectiligne qui constitue l’un des rayons de l’onde 
plane monochromatique et l’on retrouve ainsi l’image 
que j’avais eue dans l’esprit à l’époque de ma thèse.

Mais quand la propagation de l’onde est soumise à 
des conditions aux limites, il peut y avoir apparition 
de phénomènes d’interférences ou de diffraction et, 
sous l’influence de la force quantique, le mouvement 
défini par la formule du guidage cesse d’être recti 
ligne et uniforme. Tout se passe comme si les obstacles 
qui entravent la propagation de l’onde exerçaient à 
distance sur la particule par l’intermédiaire du potentiel
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quantique une action déviante. Les partisans de l’an 
cienne théorie de l’émission pensaient que la lumière 
est uniquement formée de corpuscules et, comme ils 
savaient que la lumière peut contourner le bord d’un 
écran, ils disaient que le bord d’un écran exerce une 
force sur les corpuscules de lumière qui passent à son 
voisinage. Sous une forme beaucoup plus élaborée, 
nous retrouvons ici une idée analogue.

Nous passerons maintenant à l’étude de l’équation 
relativiste de Klein-Gordon et de la formule (J'). 
Remarquons d’abord que si dans la formule (J') 
nous négligeons le terme Ti2, nous obtenons en posant
? = s,

xyz

Or cette équation est en Mécanique relativiste 
sans quanta l’équation de Jacobi pour une particule 
de masse propre m0 et de charge électrique t soumise 
à un champ électromagnétique dérivant du potentiel

• . —A-
scalaire Y et du potentiel vecteur A, comme nous 
devions nous y attendre.

Si nous conservons les termes en fl2 et si nous utilisons 
la masse propre variable M0 définie par (4), nous 
sommes naturellement amenés à poser

Mo c* _ rJcp
\/'i — fi- di

m„u (—4 , t)-—== = - Igradcp + £à ;, 
V 1 — P

(10)
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avec (3 = ^) ce qui conduit à la formule du guidage 

relativiste
---

(n) v _ 2 grad cp H- s A
$-eV ‘
ôt

A l’approximation newtonienne avec A = o et

~ —£V~m0c‘2, nous retrouvons bien la formule (8).

La force quantique va ici résulter des variations 
de la quantité M„c2 quand la particule se déplace 
dans son onde. Pour avoir toujours un potentiel 
quantique nul pour l’onde plane monocromatique, 
nous poserons

(12) S = M0C2— «J0c2.

A l’approximation newtonienne où c -> co et où 
  a~ — A a, nous retrouvons la valeur

Vr c2 K-   « Wi„c- ~ — A a 
a

comme cela devait être.
Les formules relativistes que nous venons d’étudier 

sont extrêmement importantes pour tout ce qui suit 
car la Mécanique ondulatoire est, comme je l’avais 
pressenti dès ses débuts, une théorie essentiellement 
relativiste dont l’équation de Schrodinger qui n’est 
pas relativiste ne suffit pas à révéler la véritable 
nature.
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3. Interprétation du mouvement de guidage. — Il
importe maintenant de mettre en évidence deux 
caractéristiques essentielles du mouvement de gui 
dage.

La première d’entre elles, c’est qu’elle exprime 
que la particule en se déplaçant dans son onde reste 
constamment en phase avec cette onde. Pour le 
démontrer, supposons d’abord que la particule n’est 
soumise à aucune force classique, ce qui revient à

—y
poser Y = A = o dans l’équation de Klein-Gordon. 
Si alors nous nous déplaçons le long de la trajectoire 
de guidage d’une longueur dl dans le temps dt, la 
variation correspondante de la phase de l’onde sera

03) dt=Tidl + 

M„c2

dcp dl: Y d? 
I dt v . gradep ) dt

M0(’2

Y-Y v^-P2
dt — jYT0c 2 \ji — (32 dt.

Or, la particule ayant une fréquence interne v0 — jt M0c2,

sa phase interne o,, quand elle se déplace de dl dans 
le temps dt, varie de

(14) df,= M„c2 y/i — (32 dt = c/9.

Nous voyons donc bien que la particule se déplace 
dans son onde de façon que sa vibration interne (*) 
reste constamment en phase avec celle de l’onde.

(’) Définie par l’expression ai eh avec ai et 1 réels.
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On peut interpréter ce résultat en remarquant 
que la particule est définie dans cette théorie comme 
une très petite région de l’onde où l’amplitude est 
très grande et qu’il est par suite naturel que le rythme 
interne de la particule soit le même que celui de l’onde 
au point où elle se trouve. Nous ferons à ce sujet 
la remarque très importante suivante. Pour que cette 
interprétation du guidage soit acceptable, il faut que 
les dimensions de la très petite région singulière 
définie par u0 soient très petites par rapport à la 
longueur d’onde de l’onde v. On peut donc dire que 
toute la théorie que nous développons aurait une 
limite de validité pour les très courtes longueurs 
d’onde, c’est-à-dire pour les énergies très élevées. 
C’est là une remarque qui est sans importance dans 
les cas usuellement considérés, mais qui pourrait 
devenir capitale dans l’étude des particules de très 
hautes énergies.

Étendons maintenant la démonstration qui précède

au cas où, dans l’équation de Klein-Gordon, V et A 
ne sont pas nuis. L’accord de phase entre l’onde et 
la particule s’exprime toujours par l’équation

(■5) ^l+^.Srâ9y( = ^dL

Nous poserons ici
h v0 = ^ = M0 c* + £ V0 = M'o c2,

avec
M q  C2 zzi M o C~ -j- £ Vq
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dans le système propre de la particule où celle-ci est 
momentanément au repos.

D’autre part, on a

hito M'o c2
hv = =

hvc=kv0 y/1 — (32 = M'0c2 y/1 — (32

et la relation (i5) se trouve encore bien vérifiée. 
Nous remarquerons que cette démonstration revient 
à admettre que la masse propre variable de la parti 
cule contient, en plus du terme quantique M0 défini 
par (4)) un terme dépendant du potentiel classique V„ 
variable auquel la particule se trouve soumise dans 
son système propre. C’est là une circonstance dont il 
conviendrait d’approfondir la signification.

Il existe une autre caractéristique essentielle du 
mouvement de guidage. C’est que le mouvement de la 
particule s’effectue suivant une Dynamique relativiste à 
masse propre variable. Pour le voir, nous prendrons 
tout naturellement comme fonction de Lagrange G de 
la particule libre

(17) h' = — M0 c- y/i — (3*.

Le principe de moindre action Bj'cdt = o nous 

conduit alors aux équations de Lagrange

d dJS
dt \ ôqt ) ~ dqt ’

(«6)

rfcp
dt

dt

(.8)
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c’est-à-dire ici à

09) % = ~ c% 't1 — P2 8radM0,

ce qui montre bien que la Dynamique de la particule 
est une Dynamique relativiste à masse propre variable. 
La symétrie relativiste entre l’espace et le temps nous 
conduit à compléter l’équation (ig) par la suivante :

(20)
dW
dt

àM0

dt

n rfM0 <M„ . t,, , . , .Lomme + v . gradM0, les équations (19)

et (20) nous donnent 

a \\ ^
(21)

Or, on a

dW f dp_ 2 ^ T, <3?Mo, 1 v -y = c- \/1 — S2 —=—dt dt v ^ dt

(22)

d’où

(23)

>■ dp dit.p) > dt d /> >\ M0c dt
" “ “---------------- -P 777 ~ ~Ttiy ‘P!dt dt 1 dt dt 

■ c?M0 d

2 dt

c’ vr = a + 7=^ a ’

dt
(\V -t.p- Mo c2 v/i - P2) =2 O

et, comme nous supposons que, si la particule est 
au repos on a [3 = o et W== M0c2, il en résulte que

(24) W = M0c2 y/i —132 -+- t.p = M0c2 y/1 — (32 -+-
V1 — P2
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relation qui est, en effet, bien vérifiée puisque

La relation (24) que nous venons d’obtenir à partir 
de la Dynamique du guidage à masse propre variable 
possède, nous le verrons, une signification thermo 
dynamique très remarquable.

On obtiendrait la généralisation du raisonnement qui 
précède au cas de l’existence d’un champ électro 
magnétique extérieur en partant de la fonction de 
Lagrange

M0 \j 1 — fS2 —1— s

compte tenu de la formule de transformation rela-

V - A c
tiviste V0 = ,

vfi-P2

4. Interprétation des équations de continuité (C) et (C').
— Cherchons maintenant la signification des équa 
tions (C) et (C') qui correspondent respectivement à 
l’équation non relativiste de Schrôdinger et à l’équa 
tion relativiste de Klein-Gordon.

Commençons par l’équation (C)

(C) dt m
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En vertu de l’équation (8) du guidage et en posant 
p = K a2, où K est une constante, elle prend la forme

(26) ^ 4-div(pr) = o.

C’est ce qu’on nomme en Hydrodynamique l’équation 
de continuité où p dx est le nombre des molécules
du fluide dans l’élément de volume d'i et v leur vitesse.
Elle peut s’écrire (p tfa) = o, où la dérivée ^ est

prise en suivant le mouvement des molécules et elle 
exprime la conservation du fluide. Mais ici nous 
n’avons qu’une particule et il semble alors naturel de 
considérer la grandeur p d'i comme proportionnelle à la 
probabilité de la présence de la particule dans l’élément 
de volume d'i. Cependant, cette interprétation soulève 
une difficulté si l’on suppose que la particule suit 
régulièrement sa trajectoire de guidage comme nous 
l’avons admis jusqu’ici. Nous reviendrons sur cette 
difficulté et cela nous conduira à compléter la théorie 
du guidage, telle que nous l’avons développée jusqu’ici, 
par un élément aléatoire, ce qui nous ouvrira des 
horizons nouveaux.

Sans insister pour l’instant sur ce point, nous 
admettrons que la quantité p = a2 (x, y, z, t) donne, 
à un facteur multiplicatif constant près, la probabilité 
de la présence de la particule à l’instant t dans l’élément 
de volume d% de coordonnées x, y, z. Comme nous 
serons amenés au chapitre suivant à définir la fonction 
statistique "*F en fonction de l’onde réelle v par la
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relation = Ce, où C est une constante de normali 
sation telle que J"[1F|‘idT = i, nous serons conduits

à dire que \W\2d~ représente en valeur absolue la 
probabilité de présence en question.

Examinons maintenant la relation (C') relative à 
l’équation d’onde relativiste de Klein-Gordon. Après 
multiplication par 2 a, elle peut s’écrire

(G')
<9cp
ùt

---S ~tgradcpH—A
---
grad a-4- a-   œ = 0.

Ici nous définirons p par la formule

(27)
: K«2( ^-EV 

dt

Avec cette définition de p et en tenant compte de la 
définition (11) de la vitesse de guidage et de la rela-

1 ()Y ->
tion de Lorentz entre les potentiels - -j j  -f- div A = o, 

on retrouve l’équation de continuité (26).
On peut donc admettre, avec les mêmes réserves que 

précédemment, que la quantité p dx = Ka2^ — e dx

représente la probabilité de la présence de la parti 
cule dans l’élément dx à l’instant t. Nous avons ainsi 
généralisé les résultats obtenus ci-dessus avec l’équa 
tion d’ondes de Schrôdinger au cas de l’équation d’ondes 
des particules de spin nul et il est facile de vérifier 
qu’à l’approximation newtonienne la définition (27) 
peut se ramener à la définition p = Ka2.



CHAPITRE III

COMPLÉMENTS SUR LA THÉORIE 
DE LA DOUBLE SOLUTION

1. Introduction de l’onde statistique — Jusqu’à 
présent nous avons seulement étudié l’onde o qui 
contient une petite région singulière, en général mobile, 
constituant la particule. Cette onde v qui aurait une 
très faible amplitude occuperait la presque totalité 
du domaine occupé par une onde u — u0-(- o, où u0 

représenterait l’onde dans la région extrêmement 
petite où l’amplitude est très grande. La structure 
de l’onde dans la région u0 peut être très complexe; 
c’est elle qui définirait la structure de la particule. 
Nous n’insisterons pas ici sur ce problème. Il paraît 
très naturel que la propagation de l’onde o, onde 
physique réelle se propageant dans l’espace au cours 
du temps, puisse déterminer, comme nous l’avons 
admis dans la théorie du guidage, le déplacement de 
la particule qui lui est intégrée et aussi que les états 
stationnaires de cette onde o dans des systèmes tels 
que l’atome d’hydrogène puisse déterminer l’état 
quantique de ce système.
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Mais, depuis les travaux de Schrodinger, on s’est 
habitué à considérer uniquement l’onde ^F dont 
l’amplitude est arbitrairement normée. Or, cette onde 
ne peut pas être considérée comme une onde physique 
d’abord parce que l’amplitude d’une onde physique 
a une valeur déterminée et ne peut pas être arbitrai 
rement normée et aussi parce que, si ^F, et 'Fa sont 
deux solutions normées de l’équation linéaire des 
ondes ”*F, la somme ^Fi+ ^F.» n’est pas une solution 
normée de sorte que l’onde \F normée ne possède pas 
la propriété de superposition qui caractérise les ondes 
physiques solutions d’une équation de propagation 
linéaire. Aussi a-t-on été amené à regarder l’onde *F 
comme une représentation de probabilités, un instru 
ment de prévision, permettant de prévoir la probabilité 
des résultats possibles de la mesure des grandeurs 
attachées à une particule ou à un ensemble de par 
ticules. Or, il est impossible qu’une simple représen 
tation de probabilités puisse provoquer des phéno 
mènes physiques tels que manifestation localisée 
d’une particule, phénomènes d’interférences ou de 
diffraction, etc., ou imposer des valeurs aux énergies 
des états stationnaires des atomes. Seule une réalité 
objective peut provoquer de pareils effets et une 
représentation de probabilité n’a pas ce caractère.

Cependant il est certain que l’utilisation de l’onde TF 
et de ses généralisations a conduit à un très grand 
nombre de prévisions exactes et de théories fructueuses. 
C’est là un fait qu’il ne saurait être question de 
contester. La situation s’éclaire si l’on fait intervenir
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à côté de l’onde 'F statistique l’onde v qui, elle, peut 
provoquer les phénomènes dont l’onde *F donne 
l’aspect statistique. Il importe donc d’établir une rela 
tion entre l’onde V et l’onde v.

En introduisant une constante C qui peut être 
complexe, nous établirons cette relation en écrivant

i ^
(i) W =Ci’ = Cae*‘,

C est un facteur de normalisation tel que

f \V\'dz = i,
Jv

où V est le volume occupé par l’onde c. Comme nous 
l’avons déjà remarqué au chapitre précédent, en 
théorie de Schrôdinger où |*F|2cfT donne la proba 
bilité de présence de la particule dans l’élément de 
volume d~, la grandeur ] ]2 cZ~ nous donne cette
probabilité en valeur absolue et c’est là la raison de 
l’introduction de la fonction statistique IF à partir 
de l’onde réelle v par la relation (i).

Une première remarque à faire au sujet de la rela 
tion (1) est la suivante. Comme | W [ = | C | a et que 
la phase de XF ne peut différer de celle de v que par 
une constante additive, nous voyons que les formules 
de guidage et les expressions du potentiel quantique

(*) Dans le cas d’une onde v portant N bosons (par exemple 
N photons), il faut normer le W en posant / l'F |2 d~ = N.

M. DE BROGLIE. 3
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données au dernier chapitre sont insensibles à la 
substitution de fF à v.

Une autre remarque est la suivante : | G | doit être 
très supérieur à i. En effet, considérons une grandeur 
attachée à une particule et dont on connaît la valeur g. 
La théorie usuelle, qui utilise la fonction ffr, admet que 
cette grandeur est répandue dans toute l’onde avec

une densité jff’pg de sorte que / |’lF {'gd'i = g.
Jv

Mais dans la théorie de la double solution, la gran 
deur g est certainement concentrée presque entièrement 
dans la particule, c’est-à-dire dans la très petite région 
occupée par u0. On doit donc avoir

d’où, d’après (i),

(3) |C|>i.

On peut illustrer ce résultat par une image un peu 
simpliste, mais très suggestive. Si nous assimilons 
la grandeur g à une quantité de sable, la théorie de 
la double solution se représente l’onde u comme 
formée d’une couche très mince de sable (partie c 
de l’onde u) portant un tas de sable très localisé 
et très élevé. La quantité totale de sable dans toute 
l’onde u équivaut alors à la quantité totale de la 
grandeur g dans l’onde u. Mais la théorie usuelle, 
qui ignore l’existence du tas de sable, cherche à nous 
donner une image statistique de la répartition de la
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grandeur g en imaginant une couche de sable épaisse 
et continûment répartie qui contiendrait la même 
quantité totale de sable. Cette couche homogène doit 
avoir évidemment une épaisseur beaucoup plus grande 
que la mince couche qui, pour nous, représente la 
répartition de la grandeur g dans la partie v de l’onde u. 
Et l’on voit aisément que cela entraîne que, dans la 
relation (i), |Cj soit beaucoup plus grand que i.

C’est parce que l’interprétation précédente m’avait 
amené à considérer simultanément deux solutions 
distinctes, mais reliées par la relation (i), de l’équation 
des ondes, l’une c à caractère physique et non normée, 
l’autre TF normée et à signification statistique, 
que j’avais été amené à désigner cet ensemble théo 
rique sous le nom de « Théorie de la double solution ».

Par la distinction des deux ondes c et ^F le mystère 
du double caractère à la fois subjectif et objectif 
de l’onde dans la théorie usuelle disparaît et l’on peut 
ne plus attribuer à une simple représentation de 
probabilité l’étrange possibilité de provoquer des 
phénomènes physiques observables. De plus, il semble 
bien que du même coup l’on puisse comprendre ce 
que l’on appelle dans la théorie usuelle « la réduction 
du paquet d’ondes » par l’observation, expression qui, 
si on la prenait au pied de la lettre, correspondrait 
à un véritable miracle. En effet, lorsqu’un processus 
physique, tel que l’action d’un processus de mesure, 
dissocie l’onde v du corpuscule en portions défini 
tivement séparées avec rupture des relations de phase 
et qu’ensuite une constatation nous apprend que le
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corpuscule est présent dans l’une de ces portions, 
nous devons pour traduire le nouvel état de nos 
connaissances poser C = o pour toutes les régions 
autres que celle où le corpuscule se trouve et renor 
maliser l’onde *F dans cette région-là. Ainsi les possi 
bilités de valeurs différentes et éventuellement nulles 
de la constante C pour les différentes portions en 
lesquelles Fonde v initiale s’est fragmentée nous per 
mettent d’interpréter la réduction du paquet d’ondes 
sans porter atteinte au caractère objectif de l’onde c. 
Cette brusque et incompréhensible réduction de 
l’étendue occupée par l’onde porte sur la représen 
tation de la probabilité de présence de la particule 
et non sur l’onde physique réelle.

2. La localisation de la particule dans l’onde et la 
loi du guidage. — Jusqu’ici nous avons représenté 
l’insertion de la particule dans son onde en disant que 
l’onde u comporte, en dehors de sa partie régulière c 
de très faible amplitude, une très petite région singu 
lière de très grande amplitude et que la connaissance 
de la forme u0 de l’onde u dans la région singulière 
pourrait donner une description de l’état interne de 
la particule. On peut penser qu’en raison de la très 
grande amplitude de l’onde dans la région singulière, 
elle cesserait d’obéir à une équation d’ondes linéaire 
et que la non-linéarité pourrait un jour jouer un rôle 
essentiel dans la théorie de la constitution interne de 
la particule. Des tentatives ont été faites, notamment 
par M. Jean-Pierre Yigier, pour obtenir à l’aide d’hypo 



COMPLÉMENTS SUR LA THÉORIE. 37

thèses sur la structure interne de la particule une inter 
prétation des grandeurs (charge, spin, isospin, nombre 
baryonique, étrangeté, masse) qui caractérisent les 
diverses sortes de particules et permettent de tenter 
d’en établir une classification. Nous n’insisterons pas 
sur ces tentatives dont les bases sont encore assez 
incertaines.

Une question qui peut être abordée avec plus de 
sécurité est celle de la justification de la loi du guidage 
par l’examen de la façon dont la région singulière u„ 
doit se déplacer dans l’onde régulière v qui l’entoure. 
J’ai donné, il y a quelques années, des raisonnements 
permettant de justifier la loi du guidage (4). Ils reposent 
essentiellement sur l’étude de la manière dont doivent 
se raccorder à la périphérie de la région singulière 
les grandeurs qui caractérisent respectivement l’onde 
régulière v et l’onde u„, celle-ci devant se mettre 
à croître très rapidement dans la région singulière.

Ces raisonnements présentent une grande analogie 
avec ceux qu’Einstein et ses continuateurs avaient 
utilisés en Relativité générale pour justifier l’affirmation 
qu’une particule matérielle a un mouvement représenté 
par une géodésique de l’espace-temps. Cette question 
qui avait préoccupé Einstein a été traitée d’une 
façon approfondie par Georges Darmois et André 
Lichnerowicz [5]. Le principe de leur méthode de 
démonstration est de considérer le tube d’univers 
très délié qui représente dans l’espace-temps le mou-

(’) Voir bibliographie, [1], a, p. 102 et 287.
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veinent de la particule et d’écrire qu’il y a raccorde 
ment continu, à la périphérie de ce tube de géodé- 
siques, du champ intérieur au tube avec les géodésiques 
du champ extérieur. Transposée en théorie de la double 
solution, la méthode consiste à écrire que la particule 
se déplace dans l’espace à l’intérieur d’un tube très 
étroit dont les parois sont formées par un ensemble 
de lignes de courant de l’onde p considérée comme un 
écoulement hydrodynamique. Comme ces lignes de 
courant sont définies par la vitesse p de la théorie du 
guidage, la particule reste enfermée dans le tube 
au cours de son mouvement et la loi du guidage de la 
particule par l’onde p en résulte. Bien que la nature 
physique du problème en Relativité générale et en 
Théorie de la double solution soit différente, la méthode 
de démonstration est très analogue.

Mais il existe une autre manière plus schématique 
d’aborder le problème. Il consiste à représenter la 
particule par une singularité (au sens mathématique 
du mot) au sein de l’onde et à chercher des solutions 
à singularité mobile des équations d’ondes. J’avais 
déjà esquissé cette méthode dans mon article du 
Journal de Physique de 1927. J’avais, en effet, montré 
que l’on peut trouver avec l’équation de Klein-Gordon 
des solutions ayant la phase d’une onde plane mono 
chromatique et possédant une singularité mobile et 
j’avais introduit la notion d’états « contraints » en 
remarquant que la forme de la solution à singularité 
peut dépendre des conditions aux limites auxquelles 
l’onde est soumise. Mais il était important de généra 
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liser ces résultats au-delà du cas très particulier que 
j’avais étudié. Ce problème a été abordé par M. Francis 
Fer dans sa thèse de doctorat, puis repris d’une façon 
plus étendue par M. Thiounn dans une série de tra 
vaux [6]. M. Thiounn a démontré qu’aussi bien dans le 
cas de l’équation de Klein-Gordon applicable aux 
particules de spin o que dans le cas des équations 
d’ondes de Dirac applicables à l’électron et aux par 
ticules de spin ^ et dans le cas des équations de Maxwell

avec terme de masse applicables aux particules de 
spin fi (en particulier aux pilotons), il existe des solu 
tions comportant une singularité ponctuelle se déplaçant 
suivant la loi du guidage. Assurément la représentation 
de la particule par une simple singularité de l’onde 
n’est pas une véritable représentation de la structure 
de la particule et n’en constitue qu’une image très 
schématique. Néanmoins je considère les travaux 
de M. Thiounn sur ce sujet comme très importants et 
comme fournissant une remarquable confirmation de 
la théorie du guidage.

3. Extension de la Dynamique du guidage aux particules 
de spin 5 et fi. — Nous sommes maintenant amenés

à parler de la Dynamique du guidage pour les particules
îide spin - comme l’électron ou de spin f comme le

photon. Pour le faire, nous utiliserons le formalisme 
tensoriel d’Univers avec la convention de sommation
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des indices en posant

I
x i — x, x% = y, x3 = z, x\ = ict,

ds1 = — dx,± dxV- = c2 dtl — dl2,

Les composantes du quadrivecteur impulsion-énergie 
ont pour expressions

(5) Pi = Px, Pi—Py, P* = P=, p,, = iW,

où px, pr, p- sont les composantes de la quantité de
-i*.

mouvement p et où W est l’énergie. Nous exposerons 
d’abord avec ce formalisme le cas déjà étudié de la

particule de spin o, puis ceux de la particule de spin 
puis de la particule de spin Ti.

a. Particule de spin o (équation de Klein-Gordon). — 
Nous définirons l’impulsion-énergie par la formule

(6) p^~ MoCWp.nz:—
i ^

avec 'F = a , a et o réels (*), où(7)

La Dynamique de la particule qui est une dynamique 
à masse propre variable est définie par les équations

= iCdy. (M0c mv) -h  — ù^Mofw.v].

(') En vertu de la relation lF = Ce, on peut écrire ici ’i" ou v.
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Mais le dernier terme entre crochet est nul en vertu 
de (6) et uv<^ (M0 cuv) =—^M0c, d’où finalement

(9) ^ (/V) = ^ =— <V(M„c),

ce qui donne bien les équations (19) et (20) du chapitre 
précédent définissant la Dynamique à masse propre 
variable de la particule.

Naturellement à l’approximation newtonienne en 
posant & = MoC2— m0c'\ nous trouvons

(10) ^ (m„c ) — grad (M0c2) = — grad2,

â étant le potentiel quantique.

%
b. Particule de spin ~ (équations de Dirac). — La

théorie de Dirac définit l’onde *F par quatre compo 
santes 'F* avec k = 1, 2, 3, 4 qui obéissent à quatre 
équations aux dérivées partielles simultanées du 
Ier ordre, mais ne sont pas les composantes d’un 
quadrivecteur. Ces équations sont bien connues et 
nous ne les transcrirons pas ici. Pour nous, l’onde 
réelle a a les quatre composantes vk obéissant aux 
équations de Dirac avec = Cvk.

En théorie de Dirac, on définit un courant d’Univers 
po Ujj. où p„ est une densité invariante et l’on 

décompose ce courant en deux parties par la « décompo-
i

sition de Gordon » qui, en écrivant ^F* = ake^k
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avec ak et ok réels, s’écrit

k k

^^2<>v(«înVYv«*),
k

où m0 est la masse propre usuelle de la particule et 
où les Yji sont les matrices bien connues de Dirac. 
De plus, dans (n) on a posé

2a*'<VcP*(2*

(12) aî—atVi, ------------
'Sjatak

k

étant le premier des deux invariants introduits 
par la théorie de Dirac qui sont

(13) Q.l=^j?ia+kak, i22=^ aty6«i,
k k

avec y 8= YtY3Y3T4.

Dans la décomposition (11) de Gordon, j{i) est le 
vecteur courant lié au mouvement de la particule 
tandis que jm traduit l’existence du spin. Les formules 
bien connues de Pauli-Kofink donnent

Po — s/1 ^2 2 •

T atd.cqo^kdk

£2,

/(D — . J[J- --

("0
/( 2 ) -

Jv- ~

(*4)
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On est alors conduit (*) à définir la masse propre 
variable M0 de la particule par

(15) Mo= = m()V/I +§f

et, comme Q_> est nul pour l’onde plane monochro 
matique, on en conclut que, dans ce cas comme dans 
celui de la particule sans spin, M0 a alors sa valeur 
minimale M0 = m0, résultat dont nous verrons bientôt 
l’importance dans la Thermodynamique cachée des 
particules.

Pour l’impulsion-énergie dans le mouvement de 
guidage, on trouve

(16) p[L= M„eu(x = — dy.cp -I- Pp., 

avec

Si la particule a une charge électrique et est soumise 
à un champ électromagnétique, il y a lieu d’ajouter 
à l’expression précédente des termes dépendant des 
potentiels électromagnétiques.

Comme dans le cas de la particule de spin o, on 
trouve facilement l’équation

(18) ^ ^ (M0c m.p) =— d,,.(M„c) -+- Mv[dv/>u.— dp.pv],

mais ici le terme entre crochets n’est pas nul.

(*) Voir [4], a, p. 198 et ss.
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En résumé, nous voyons que, pour la particule de 
Dirac, la théorie du guidage prend un aspect plus 
compliqué que pour la particule de spin o. Il serait 
très intéressant d’en faire une étude plus approfondie 
généralisant celle que nous avons faite pour la particule 
de spin o.

c. Cas du photon et des particules de spin h. (équations 
maxwelliennes). — On sait que les équations d’ondes 
de la particule de spin h sont les équations de Maxwell 
complétées par des termes de masse (Louis de Broglie, 
Proca). J’ai toujours pensé que, même pour le photon, 
on doit introduire ces termes de masse, mais alors 
la masse propre qui y figure et que je désigne géné 
ralement par y,, est extrêmement petite, mais non 
nulle. J’ai exposé souvent les raisons pour lesquelles 
cela me paraissait nécessaire de façon à faire rentrer 
le cas du photon dans le cadre général de la Mécanique 
ondulatoire de la particule de spin h (l). L’introduction 
de ces termes extrêmement petits oblige à considérer 
les potentiels électromagnétiques comme des grandeurs 
physiques à valeur bien déterminée contrairement au 
très arbitraire « principe de l’invariance de jauge » et, 
tout en faisant résulter des équations maxwelliennes du 
photon la relation de Lorentz entre les potentiels 
i d\ ■ -+- -j- div A = o, permet de définir le mouvement

du photon, comme celui des autres particules de spin h,

(>) Voir [4], d.
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à l’aide d’un quadrivecteur courant, ce qui me paraît 
essentiel.

Nous introduirons donc pour les particules de spin % 
et notamment pour le photon, un quadrivecteur 
complexe « potentiel » de composantes A* et un tenseur 
antisymétrique complexe de rang 2 Fp.v qui, pour le 
photon, sera le « champ électromagnétique complexe », 
et les équations de Maxwell complétées par les termes 
de masse propre nous fournissent les relations

(19) F1J.v=<îvAii — <AAV, Av= o.

i
Nous poserons Ap.= avec et 9^ réels.

On admet alors pour le quadrivecteur courant- 
densité la définition

( 20) ,/v = Po Uv = i K ( A!J *— conj. )

= i K [Al1* (cfiA^—dp.Av) —conj.],

où K est une constante dépendant des unités choisies 
pour A^ et et où uv est toujours le quadrivecteur 
« vitesse d’Univers » de la particule et p0 la densité 
propre.

Posons encore, la seconde définition étant analogue 
à la seconde définition (12),

(21) M2=2«vav=|A|2-|V|*, p--------

Dans l’expression (20) dejv, le terme i K(A'J,*dvA(1.— conj.) 
, aKlal* , -r.,nous donne--------7—- ovo. U autre part, on peut
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remplacer A^’d^Av par ^(A^AV) d’après la seconde 
équation (19) et l’on obtient finalement pour définir 
le mouvement de guidage la relation

(22) OoMv 2Kl a |2 ày cp 2 K d|, sm -

Par analogie avec la relation (11), on est conduit 
à définir la masse propre variable de la particule par 
la formule

(23) M0 = pofi
2 | a |2c K

et l’on trouvera alors pour les composantes M0cuv 
de l’impulsion-énergie

(a4) Pv = M0C«V dydf ■ av- ciy sin Tv—
Ti

Avec les définitions précédentes, la Dynamique du 
guidage de la particule est régie par l’équation

(25) ~ (M0c mv) = — dv(M0c) -h «^[^(Mo CMv ) — â., (Mo Cm^)].

Pour la particule de spin nous avions trouvé l’expres 

sion (i/j.) de p0 en fonction des deux invariants 
et iî2 de la théorie de Dirac. Pour trouver une expres 
sion de la même forme, nous poserons

(26) Po — V'-A- --ï-

avec

S21 = 2 KcM01 a 2

(27) h
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l’invariant pouvant être calculé à partir de (20) 
et de (27) par la formule 0^=—jvjv—üj.

Or, pour une onde plane monochromatique, on 
trouve

(28) Po=V/-/Vv
2 Kc t h q  | a |2 

Ti »

m0 étant la masse propre normale. La masse propre 
variable M„ a donc alors, comme dans le cas de l’élec 
tron, sa valeur minimale m0 qui, pour le photon, est 
égale à l’extrêmement petite masse propre [a 0.

Un cas important en Optique est celui où les a^ 
peuvent être considérées comme des constantes et 
où les ne diffèrent que par une constante de sorte 
que cp(t= ç j ocj,. où oc^ est une constante. L’équa 
tion (24) se réduit alors à

(29) Pm= M0c 3mv=—(7vcp.

Elle a la même forme que l’équation (6) de la particule 
de spin o.

Sans entreprendre ici une étude détaillée de la 
Dynamique de la particule de spin Æ, nous ferons 
à son sujet une remarque importante. Nos idées 
générales nous conduisent à admettre que les gran 
deurs A[A et Fp.v internes à la particule doivent se 
raccorder à sa périphérie avec les grandeurs corres 
pondantes de l’onde environnante. Le long de la ligne 
d’univers de la particule, le quadrivecteur potentiel 
interne doit donc rester parallèle à celui de l’onde v 
et en phase avec lui. Non seulement le mouvement
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de la particule doit être tel qu’elle décrive la trajectoire 
de guidage avec constante égalité de la phase interne 
et de la phase externe, mais il faut aussi que sa structure 
interne tourne de façon à maintenir le parallélisme du 
quadrivecteur potentiel interne et du quadrivecteur 
potentiel externe. Cette remarque est particulièrement 
intéressante à appliquer au photon pour lequel le 
quadrivecteur potentiel détermine l’état de polarisation 
( Voir à ce sujet [4], d.)



CHAPITRE IV

LA THERMODYNAMIQUE CACHÉE 
DES PARTICULES

1. Nécessité d’introduire en théorie de la double solution 
un élément aléatoire. — Nous allons d’abord nous 
borner à l’équation de Schrodinger qui fournit toujours 
une première approximation pour les vitesses petites 
par rapport à c.

Nous avons vu au chapitre II paragraphe 4, que 
l’équation de continuité (C) conduit à penser que la 
probabilité de la présence de la particule dans un 
élément de volume di est proportionnelle à a3efo, 
a étant l’amplitude de l’onde ç, ce qui conduit en 
introduisant l’onde statistique fiT parla relation*F = Ce 
à dire que la probabilité en question est égale en valeur 
absolue à | TF [2 cfc, résultat bien connu. Cependant cette 
idée paraît avec nos conceptions conduire à des diffi 
cultés. On le voit, par exemple, en considérant un 
atome d’hydrogène dans un de ses états stationnaires.
On a alors W — ae*1'1', où E/c est l’une des énergies 
quantifiées. La formule du guidage % = — ^ grado

M. DE BROGLIE. 4
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nous donne t — o. L’électron serait donc immobile 
en un point de l’atome et l’on ne voit pas du tout 
comment la relation de continuité pourrait conduire 
à justifier la probabilité en |1F|2.

Il y a là une difficulté analogue à celle qui est bien 
connue en Mécanique statistique où le théorème de 
Liouville ne suffit pas à établir que la probabilité 
pour le point représentatif d’une molécule d’un gaz 
d’être présent dans un élément de volume de son exten- 
sion-en-phase est proportionnelle à cet élément de 
volume. 11 faut pour justifier cette affirmation intro 
duire dans le mouvement des molécules un élément 
aléatoire qui perturbe constamment le mouvement 
régulier de la molécule. Boltzmann, considérant cet 
élément aléatoire comme résultant des chocs continuels 
de la molécule avec les autres molécules du gaz, 
l’avait appelé le « chaos moléculaire ».

En d’autres termes, il semble bien que le fait uni 
versellement admis qu’une particule a une proba 
bilité |’lF|2dT de manifester sa présence dans un 
élément de volume (t: suffit à rendre nécessaire l’inter 
vention d’un élément aléatoire caché. En effet, l’exis 
tence d’une loi de probabilité qui ne peut aucunement 
déterminer individuellement les phénomènes auxquels 
elle s’applique me paraît toujours résulter de causes 
aléatoires. On peut s’en rendre compte sur des exemples 
très simples tels que celui-ci. Quand un tireur tire 
sur une cible en cherchant à en atteindre le centre, 
les arrivées des balles sur la cible se répartissent autour



THERMODYNAMIQUE CACHEE DES PARTICULES. 51

du centre visé suivant une loi de probabilité qui 
dépend de l’habileté du tireur : cette loi de proba 
bilité a pour origine les variations aléatoires conti 
nuelles de l’état physique du tireur, variations qui 
modifient légèrement la façon dont il tire.

Il me paraît donc impossible de justifier la loi 
statistique en | |2 sans introduire un élément aléatoire
et, dans la théorie de la double solution, cela implique 
que le mouvement régulier de la particule prévue par 
la loi du guidage doit subir continuellement des 
perturbations aléatoires qui le font passer constamment 
d’une trajectoire de guidage sur une autre par une 
sorte de mouvement brownien qui se superpose au 
mouvement de guidage. Alors, grâce à l’introduction 
de ces perturbations aléatoires, l’équation de conti-

• > . -i . ' o , ^ .nuite ^ + divpc = o, ou o = a- et ou v est la vitesse

de guidage permettra de justifier la loi de probabilité 
de présence en |^Fj2.

Mais, pour une particule qui nous semble isolée de 
toute action perturbatrice comme un électron dans 
l’atome H, quelle peut être l’origine de ces pertur 
bations aléatoires indépendantes de l’entourage? On 
est évidemment amené à penser que toute particule, 
même quand elle nous paraît isolée, est en contact 
avec un milieu subquantique caché qui constitue une 
sorte d’invisible thermostat. Cette intéressante hypo 
thèse a été envisagée, il y a une quinzaine d’années, 
dans un très intéressant travail de MM. David Bohm 
et Jean-Pierre Vigier [7] et nous pensons qu’on doit
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l’adopter. La particule échangerait ainsi continuel 
lement de l’énergie et de la quantité de mouvement 
avec ce milieu subquantique comme un granule très 
léger entraîné par un écoulement fluide dont le mou 
vement non perturbé serait défini par une ligne de 
courant du fluide est en plus animé d’un mouvement 
brownien dû à ses continuelles interactions avec les 
molécules cachées du fluide. De même qu’en l’absence 
de son mouvement brownien le granule suivrait l’une 
des lignes de courant de l’onde qui l’entraîne, la 
particule aurait, sans les perturbations que lui inflige 
constamment son contact avec le milieu subquantique, 
le mouvement régulier défini par la théorie du guidage 
à partir de la propagation de l’onde. Donc, dans un 
cas comme dans l’autre, au mouvement régulier se 
superpose un mouvement brownien qui fait cons 
tamment passer la particule d’une de ses trajectoires 
régulières sur une autre. Nous reviendrons au para 
graphe 4 sur ce mouvement brownien de la particule 
dans son onde.

Dès qu’on a admis l’existence d’un « milieu sub 
quantique » caché, on est amené à se demander quelle 
est la nature de ce milieu. Il a certainement une 
nature très complexe. En effet, il doit d’abord ne 
pas pouvoir servir de milieu de référence universel, 
ce qui serait en opposition avec la théorie de la Rela 
tivité. De plus, nous verrons qu’il se comporte non 
pas comme un thermostat unique, mais plutôt comme 
un ensemble de thermostats dont les températures 
seraient reliées aux énergies propres m„c- des diverses
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sortes de particules. Bien que des tentatives intéres 
santes aient déjà été faites au sujet de la nature du 
milieu subquantique, il nous paraît prématuré à 
l’heure actuelle de discuter ce problème et nous ne 
l’aborderons pas ici.

Les conceptions que nous venons d’introduire dans 
ce paragraphe conduisent à penser que le compor 
tement des particules en Physique quantique ne 
peut être vraiment compris qu’en introduisant une 
Thermodynamique d’un type très nouveau. Cette 
Thermodynamique peut être appelée la « Thermody 
namique de la particule isolée » parce qu’elle inter 
vient même pour une particule qui nous paraît entiè 
rement isolée. On peut aussi la nommer « Thermo 
dynamique cachée des particules ». J’ai commencé à 
la développer pendant l’été de i960 dans des Notes 
aux Comptes rendus de VAcadémie des Sciences. Elle 
m’apparaît aujourd’hui comme le couronnement néces 
saire de la théorie de la double solution et je vais 
en exposer les grandes lignes dans les paragraphes 
qui suivent.

2. Introduction de la Thermodynamique cachée des 
particules [8]. — Nous rappellerons d’abord un résultat 
obtenu autrefois par Einstein dans sa théorie de 
l’inertie de l’énergie.

Considérons un corps formé de molécules de masse 
propre m0 animées d’agitation calorifique et en équi 
libre thermodynamique. Par définition, on appelle 
système de référence propre du corps le système de
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référence dans lequel la quantité de mouvement 
totale du corps est nulle. L’énergie totale du corps 
dans son système propre est alors

(0 w„=y m0r

la somme ^ étant prise sur toutes les molécules.

Le raisonnement d’Einstein montre alors (*) que dans 
un système de référence où l’ensemble du corps a la 
vitesse [3c, on a pour l’énergie l’expression

(2)
W„  M„c2

Ce résultat est fondamental. Il signifie que l’on 
peut attribuer à un corps chaud en équilibre thermo 
dynamique une masse propre globale M0 telle que 
l’énergie M0c2 représente dans le système propre 
l’ensemble des énergies de masse des particules et 
de leur énergie d’agitation calorifique. Il conduit 
donc à considérer l’énergie d’agitation calorifique 
comme faisant partie de la masse propre totale du 
corps. Ainsi énergie de masse propre et énergie d’agi 
tation calorifique seraient des grandeurs de même 
nature et cela suggère l’idée très importante et très 
nouvelle que l’énergie de masse propre d’une parti 
cule pourrait être une énergie de chaleur contenue 
dans la particule. Et cette idée se trouve en accord

(*) Voir [8], c, p. 2-3.
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avec l’image que nous nous sommes faite de la parti 
cule qui, étant une sorte de petite horloge de fréquence 
propre v0, serait animée d’un mouvement d’agitation 
interne.

Comme nous avons vu que la particule doit posséder 
une masse propre variable M0, nous arrivons à penser 
que l’énergie interne M„c2= ùv0 représente une chaleur 
interne variable Q0 contenue dans la particule, énergie 
de chaleur qui se réduit à m0c2 quand le potentiel 
quantique est nul d’après la formule = M0c2 — m0c2 
trouvée précédemment.

Mais si Q„ = M0c2 est la chaleur interne contenue 
dans la particule dans son système propre, quelle est 
l’expression de cette chaleur dans un système de 
référence où la particule a la vitesse v = fi c? Planck 
et Laue ont démontré vers 1908 que la formule de 
transformation relativiste de la chaleur est

(3) Q = QBS/T=p.

Bien que cette formule ait été récemment contestée 
par divers auteurs, je suis personnellement convaincu 
à la suite de longues réflexions qu’elle est exacte (1). 
L’invariance de l’entropie, grandeur définie par la

formule dS = montre alors que l’on doit avoir

aussi pour la température la formule de transformation

(4) T = ToV/r=^. (*)

(*) Voir à ce sujet [8], c, d, e.
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Ces formules étant admises, nous pouvons écrire

(5)
Q0= M0c2 = /iv0,

Q = QoV/l — (32= M„c2 CI — (32 = hv0 s/\ — (32,

ce qui est bien en accord avec la formule de trans 
formation v = v0 y/1 — p2 de la fréquence d’une horloge.

L’accord entre la Thermodynamique relativiste et 
la conception de la particule comme étant une petite 
horloge et un petit réservoir de chaleur est donc 
complet. On peut d’ailleurs le voir en démontrant 
que la formule (3) est en accord avec la formule du 
guidage. Pour le voir, nous commencerons par remar 
quer que, dans le système de référence où la parti 

cule a la vitesse Pc, son
. M,c* , .

energie Jrirfi doit être

la somme de l’énergie interne de chaleur qu’elle trans 
porte et d’une énergie E, due à son mouvement de 
translation, ce qui nous donne

(6)
M„ a2

- P2
E, : M0c2 v/i - (32 - M0C2

s/T^f2

formule dont l’exactitude se vérifie immédiatement.
M0 c2L’énergie de translation E( égale à

s/i — P2
est

différente de l’énergie cinétique M0c2 j —ij

habituellement considérée en Dynamique relativiste. 
J’ai étudié (1) la relation qui existe entre ces deux

(’) Voir [8], c et e.
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définitions de l’énergie de mouvement qui ont chacune 
leur signification, l’énergie de translation d’ensemble E( 
devant être considérée comme la véritable énergie 
due au mouvement.

Nous allons maintenant montrer que la relation (6) 
exprime, conformément à la théorie du guidage, le 
fait que la particule se déplace dans son onde de façon 
à maintenir constamment égale la phase de son 
mouvement interne et celle de l’onde. En effet, d’après 
la théorie du guidage, on a

(7) ày _w__ --- >
gradcp = M0r ,

\J 1 — fi

9 étant la phase de l’onde a en" et, d’autre part, 
le mouvement interne de la particule étant repré-

i
senté par aiéhr‘, la phase varie pendant le temps dt 
de

(8) dyt = M0c2 \J 1 — |32 dt = h v0 \J 1 — fi* dt.

Or, quand la particule se déplace de dl dans le temps dt, 
la variation de la phase <p de l’onde à l’endroit où elle 
se trouve est

(9) dtr- dtp
dt

v. grad cp ) dt

M0c2 M0r2
\j 1 — fi1 y^i — fi

dt =. M0c2 y/1 — fi dt.

On a donc d<p = ce qui exprime bien que la parti 
cule se déplace dans son onde en restant constamment
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en phase avec elle. Il existe donc une très remar 
quable concordance entre les formules de la Thermo 
dynamique relativiste de Planck-Laue et celles de la 
théorie du guidage de la particule par son onde. 
La comparaison des formules données ci-dessus avec 
celles du chapitre II, paragraphe 3, confirme entiè 
rement ce fait.

Si l’on fait pour l’instant abstraction des rapides 
perturbations aléatoires de M0 par interaction avec 
le milieu subquantique sur lesquelles nous reviendrons 
plus loin, la particule doit suivre sa trajectoire de 
guidage et le long de cette trajectoire, sa chaleur 
interne varie en général constamment car on a 
8Qo= o&o= o(M0c2 — m0c2). Dans le système propre, 
les variations de la chaleur interne sont donc égales 
aux variations du potentiel quantique et dans le 
système où la particule a la vitesse o = [3c, on a

<5Q = 8Q0 \/i — j3'2 ~ yT — (32 ô (M„cs — m0c2).

Au chapitre II, paragraphe 3, nous avions introduit 
pour une particule qui n’est soumise à aucun champ 
extérieur, mais uniquement à la force quantique, la 
fonction de Lagrange £ — —M0c2^i — (32 et nous 
en avions tiré les équations de la Dynamique relati 
viste de la particule à masse propre variable. L’Action 
étant définie par

t /-» t s* t
I jî dt = j — M0 c2 y/1 — [31 dt = j — M0 c‘l ds 
0 *^0 J 0

est visiblement un invariant.
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Conformément à une idée qu’Eddington avait déjà 
entrevue autrefois, dans son célèbre ouvrage Espace- 
temps et gravitation (1), il est tentant d’établir une 
relation entre les deux invariants relativistes fonda 
mentaux que sont l’Action et l’Entropie. Mais l’inté 
grale d’Action (io) dépend d’un intervalle de temps 
indéterminé tandis que l’Entropie est une grandeur 
ayant une valeur déterminée. Pour pouvoir établir 
une relation entre les deux grandeurs, il est donc 
nécessaire de choisir convenablement l’intervalle de 
temps qui figure dans l’expression de l’Action. Avec 
nos conceptions, il paraît naturel de choisir comme 
intervalle d’intégration la période interne T de la 
particule dans le système de référence où elle a la

vitesse (3c, et comme on a = v = v0 y/1 — (32, l’on

définira l’Action comme égale à (2)

rT _____ rï
(II) A= / - M0c2 s/l — pdt = — AlA

et l’on est amené à définir l’Entropie de l’état de mou 
vement de la particule par la relation

(12)

d’où l’on tire 
(13)

S _ A 
k ~ h ’

ÔS: 3M0
hvc

k^k
m0c-

(') p. 219 de l’édition française, Hermann, Paris, 1921.
(2) La période T étant très petite, nous supposons M0 et P 

sensiblement constants pendant la durée de l’intégration.
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puisque nous avons oQ0 = S©0= o(M0c2— /n0c2). Dans 
les formules (12) et (i3), k et h sont respectivement 
les constantes de Boltzmann et de Planck. Nous 
sommes ainsi parvenus à attribuer au mouvement 
de la particule dans son onde une certaine entropie et,
par suite, une certaine probabilité définie par la formule

s
de Boltzmann écrite sous la forme P = ek.

Avec l’hypothèse de l’existence du milieu subquan- 
tique assimilable à un thermostat caché que nous 
avons développée au paragraphe précédent, nous 
devons interpréter les relations thermodynamiques 
obtenues ci-dessus de la façon suivante. Au cours du 
mouvement de guidage de la particule, sa masse 
propre M0 varie en général constamment, ce que 
nous pouvons interpréter en disant qu’elle échange 
continuellement de la chaleur avec le thermostat 
caché. Ces échanges de chaleur sont liés aux variations 
du potentiel quantique, c’est-à-dire aux variations 
de l’amplitude de l’onde au point où se trouve la 
particule et l’on voit ainsi que c’est l’onde qui sert 
d’intermédiaire entre la particule et le milieu subquan- 
tique.

L’équation (i3) peut, en effet, s’écrire en posant

(i4) WpC8 T^T.v/i-?*

sous la forme
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Mais que signifie le signe — qui figure au second 
membre? On peut le comprendre en admettant 
que la particule est un système trop simple pour 
qu’on puisse lui attribuer une température et une 
entropie. Il est alors naturel de considérer la tempé 
rature et l’entropie définies ci-dessus comme se rappor 
tant au thermostat caché. L’entropie S ainsi inter 
prétée diminue quand le thermostat caché cède de 
la chaleur à la particule, ce qui explique la présence 
du signe — dans la formule (i5).

Il peut paraître étrange que la température T 
dépende de la masse propre normale m0 de la parti 
cule. Mais il ne faut pas oublier que c’est par l’inter 
médiaire de l’onde que la particule est en contact 
thermique avec le thermostat caché. L’onde physique v 
avec laquelle la particule est constamment en réso 
nance en raison de l’accord de leurs phases constitue 
pour elle en quelque sorte une « surface de contact » 
avec le milieu subquantique. Cette remarque nous 
paraît rendre plus facile à comprendre le fait que 
pour la particule en chaque point de sa trajectoire 
la température apparente du thermostat caché dépende 
de la fréquence locale de l’onde, donc de m0. C’est 
pourquoi nous avons dit dans le précédent paragraphe 
que le milieu subquantique se comporte comme un 
ensemble de thermostats dont les températures sont 
reliées aux masses propres des diverses espèces de 
particules. Une description plus détaillée du milieu 
subquantique permettrait peut-être de mieux éclairer 
cette question.
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Pour terminer cet exposé de la Thermodynamique 
de la particule isolée, nous ajouterons encore une 
remarque intéressante.

Soit un corps C en contact avec un thermostat de 
température T. La loi de distribution canonique de 
Boltzmann-Gibbs donne pour la probabilité de l’état 
d’énergie E du corps C

_ E
(16) P = P0e *T.

Mais qu’est-ce que P0 ? On dit généralement que P0, 
appelée « probabilité a priori », est la probabilité de 
l’état du corps C s’il était complètement isolé. D’après 
nos idées, cela semble bien signifier que P0 est la 
probabilité définie par la Thermodynamique cachée 
des particules. Or, on admet en théorie quantique 
que les probabilités a priori des divers états quan 
tiques sont égales. On ne donne d’ailleurs aucune 
démonstration de cette affirmation.

Pour voir ce que cette affirmation peut signifier, 
considérons le cas simple de l’atome d’hydrogène 
dans un état complètement stationnaire, c’est-à-dire 
où <p = Et. Dans cet état le théorème du Viriel de 
la théorie de la double solution (*) donne

(17) îd + V = o,

où V est le potentiel coulombien auquel est soumis 
l’électron et le potentiel quantique, les moyennes 
étant prises en [Tr|2. Or, R étant la constante de

(*) Voir [4], b, p. j5.
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Rydberg et n le nombre entier qui caractérise l’état 
stationnaire, on a pour l’énergie de cet état

(18) E„ = — ™ = £2 4- V = — Ï2.nl

La probabilité P du nlèmo état quantique quand l’atome 
se trouve en contact avec un thermostat de tempé 
rature T est, d’après (16) et (18),

4-^-
(19) P — P0 e kT-

Si P0 est la probabilité définie par la Thermodyna 
mique cachée des particules, on a

S <-2
(20) P0 = ek = Cte e

m0 étant la masse propre de l’électron. Quand l’atome
passe d’un état quantique à un autre, â varie de o2-.

+ 3 . ., +S -Ü;
Alors e kT est multiplié par e kT et P0 par e m°c’.
Même pour des valeurs élevées de T, par exemple 
T = 104 degrés Kelvin, /cT ne dépasse pas l’ordre 
de grandeur de 10-12 erg (car k = 1,37. io~16 C.G.S.), 
tandis que m0 c2 est de l’ordre de io-6 erg, donc 
beaucoup plus grand. On voit donc que, quand on 
passe d’un état quantique à un autre, la variation

_
de P0 est beaucoup plus petite que celle de e kI de 
sorte que dans l’expression (16) on peut considérer P0 
comme sensiblement constant. Ainsi se trouve approxi 
mativement légitimée l’hypothèse usuelle que P0 a 
la même valeur pour tous les états quantiques.
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3. Introduction des perturbations aléatoires d’origine 
subquantique. — Dans le paragraphe précédent, nous 
avons développé la Thermodynamique cachée des 
particules en tenant seulement compte du mouvement 
de guidage et sans faire intervenir les perturbations 
aléatoires qui se superposent à ce mouvement comme 
nous l’avons expliqué dans le premier paragraphe. 
Les échanges entre le milieu subquantique et la 
particule sont alors réglés d’une façon continue par 
les variations du potentiel quantique le long de la 
trajectoire de guidage, mais il faut y ajouter ceux 
qui proviennent des échanges de chaleur aléatoires 
dont résulte une sorte de mouvement brownien 
superposé au mouvement de guidage comme nous 
l’avons expliqué plus haut. De là provient la nécessité 
de prendre toujours des moyennes sur les diverses 
positions possibles de la particule comme nous l’avons 
fait à la fin du paragraphe précédent.

Dans l’application usuelle du principe de Hamilton 
en Mécanique analytique, on part d’un mouvement 
« naturel », c’est-à-dire d’un mouvement conforme 
aux lois de la Mécanique. On suppose qu’au cours 
de ce mouvement la particule partant d’un point A 
de l’espace au temps t0 parvient en un point B au 
temps tt, puis on imagine un mouvement « varié » 
fictif et infiniment voisin du mouvement naturel en 
imposant à ce mouvement varié que les points A et B 
et les instants t0 et t± soient les mêmes. Le principe 
de Hamilton nous dit alors que le mouvement naturel
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est caractérisé par l’équation

(21) dt — o,

où est la variation de quand on maintient
la masse propre M0 constante et égale à sa valeur 
normale m0, ce qui va en quelque sorte de soi en 
Mécanique classique. De plus, comme le principe de 
Hamilton est un principe de moindre action, nous 
pouvons écrire
(22) f [ô 2j?]j i0 dt > o.

Mais nous allons maintenant introduire l’idée que, 
même quand on peut négliger le potentiel quantique, 
la masse propre puisse subir d’incessantes petites 
fluctuations autour de sa valeur moyenne m0. Il 
devient alors possible de donner un sens physique 
aux mouvements variés en les considérant non plus 
comme des mouvements fictifs purement imaginés, 
mais comme des mouvements pouvant avoir lieu 
réellement sous l’action de certaines petites fluctua 
tions momentanées de la masse propre pendant 
l’intervalle de temps tn~^ h.

Si l’on admet cette hypothèse, le mouvement varié 
doit, en lui appliquant le principe de Hamilton, être 
déterminé par l’équation

(23) f 0 (JS -+- ÔJS) dt — f (âi? -H ci2J?) dt — o.

M. DE BROGLEE. 5
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Mais ici, la masse propre n’étant plus supposée 
constante, nous devons écrire

(24) àJS = H- ô2J? =[o2Xr'J}|0H-

en désignant par les termes qui dans o2 iS pro 
viennent de la variation de la masse propre. Nous 
montrerons plus loin que le terme en est négli 
geable par rapport aux autres, ce qui permet d’écrire(23) 
sous la forme

(25) f { -+- ôj j 5 -C + [â2 J?]m0 î dt = o.
J le

Mais la première intégrale est nulle en vertu de (21) 
et nous obtenons, d’après (22),

(26) — f $>hjedt=z-(t,-i0) f [ ô'2 £ |j i„ dt > o,

oMoi? étant une moyenne temporelle prise entre £0 
et ti. Alors, comme £t— tn est positif et que —o mJS 
est la quantité de chaleur cédée par le thermostat 
caché à la particule, on voit qu’en moyenne temporelle 
cette quantité de chaleur, qui est constamment nulle 
sur la trajectoire naturelle, est positive sur la trajec 
toire fluctuée. Il en résulte que l’entropie diminue en 
moyenne quand on passe du mouvement naturel au 
mouvement varié. L’entropie de la Thermodynamique 
cachée est donc maximale dans le mouvement naturel 
par rapport aux fluctuations soumises aux conditions 
de la variation hamiltonienne, ce qui permet de dire
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que le mouvement naturel est plus probable que les 
mouvements variés. En termes imagés, on peut dire 
que la trajectoire naturelle suit une ligne de talweg 
d’une vallée de néguentropie (*). On fait ainsi appa 
raître une très remarquable relation entre le principe 
de moindre action et le second principe de la Thermo 
dynamique.

Il nous reste cependant à démontrer que nous 
avons eu raison de négliger dans (25) les termes en 
On le voit en remarquant que, d’après l’équation (26), 

,o G est du même ordre que [oaX?]Mo, c’est-à-dire du 
second ordre par rapport aux variations hamiltoniennes 
de sorte que est du troisième ordre et peut être 
négligé.

Le principe de moindre action comporte une restric 
tion étudiée en Mécanique analytique classique sous 
le nom de théorie des foyers cinétiques. En ce qui 
concerne l’action hamiltonienne, on peut l’énoncer de 
la façon suivante. Supposons qu’il existe deux mou 
vements naturels 1 et 2 extrêmement voisins qui 
amènent une particule du point A à l’instant t0 à 
un point G à l’instant t>. On peut alors dire que le 
point C est le foyer cinétique hamiltonien du point A. 
Si l’on elîectue la variation hamiltonienne sur la 
trajectoire 1 entre le point A et un point B, corres 
pondant à un instant G, qui est situé entre A et C 
(G<G<G), l’action est minimale pour l’intervalle 
de temps G— t„. Mais si B est situé sur la trajectoire

(') Néguentropie = entropie changée de signe.
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au-delà du point C (t0<.t2<tl), il n’y a plus de 
minimum de l’action pour l’intervalle de temps t± — t0.

L’aspect thermodynamique que nous avons donné 
au principe de moindre action nous permet de trouver 
une interprétation intuitive du rôle joué par le foyer 
cinétique. En effet, si nous appliquons le principe de 
Hamilton aux mouvements 1 et 2 entre A et C, chacun 
d’eux pouvant être considéré comme un mouvement 
varié par rapport à l’autre, nous devons écrire

/
ti 12
[ô ?s -£]m0 dt^o, J [ô21

ce qui n’est possible que si

(28) clt = o.

Donc, quand on passe de la trajectoire 1 à la trajec 
toire 2 ou inversement, la variation seconde de l’action 
hamiltonienne est nulle. Mais la relation (26) nous 
donne
(29) 812 S r= Ô21 S = O.

L’entropie moyenne reste donc la même quand on 
passe du mouvement 1 au mouvement 2 entre A et C.

Avec notre point de vue thermodynamique, nous 
pouvons dire maintenant que les deux trajectoires 1 
et 2 suivent les lignes de talweg de deux vallées de 
néguentropie très voisines et de même profondeur 
moyenne qui sont séparées l’une de l’autre par une 
colline de néguentropie, mais qui viennent se rejoindre
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en C. Si le point B se trouve sur la trajectoire 1 entre A 
et C, toute trajectoire variée devra grimper sur le 
flanc des collines de néguentropie qui bordent la 
trajectoire 1 : on a donc SS^o, c’est-à-dire qu’il y 
aura pour A 1 B un minimum de l’action hamiltonienne. 
Si, au contraire, le point B est situé sur la trajectoire 1 
au-delà du point C, on pourra prendre comme mou 
vement varié le mouvement 2 de A à B, puis le mou 
vement 1 de B à C et, comme alors la trajectoire variée 
reste au fond d’une vallée de néguentropie de même 
niveau moyen que la vallée ACB du mouvement 1, 
on aura pour cette variation 2S = o ou [52i?]Mo=:o 
et l’action hamiltonienne ne sera pas minimale pour 
toutes les variations possibles.

Pour terminer ce paragraphe, nous dirons encore 
quelques mots au sujet du mouvement brownien de 
la particule dans son onde. A l’approximation newton- 
nienne (qui correspond à l’équation de Schrodinger), 
le mouvement brownien d’une particule peut toujours 
être représenté par une équation de diffusion de la 
forme
O) § = D4i>,

où p est la probabilité de présence de la particule à 
une distance r de son point de départ, D étant le 
coefficient de diffusion.

Divers auteurs, notamment M. Nelson ('), ont cherché 
à déduire de l’équation de Schrôdinger un mouvement

(') Voir [9], a.
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brownien de la particule. Cela m’a amené à faire un 
calcul analogue dans une Note récente dans le cadre 
de la théorie de la double solution et en partant de 
l’idée suivante : Les perturbations subquantiques se 
traduisent par de petites fluctuations aléatoires de la 
masse propre produisant de petites variations dans la 
forme de l’onde et dans le mouvement de guidage de la 
particule, mais j’ai admis que, même pendant la durée 
des perturbations, il y a toujours accord de phase entre 
le mouvement interne de la particule et la vibration de 
l’onde au point où elle se trouve. Si alors on considère 
les positions de la particule à l’instant où une pertur 
bation aléatoire va commencer et à l’instant où cette 
perturbation vient de se terminer, un calcul que je ne 
reproduis pas ici (*) me conduit à la valeur suivante 
du coefficient D du mouvement brownien :

12 \ 2TC K l h
( 3 I ) l > = -5------- =2  !' 3 m0 3 m0

valeur qui ne diffère que par un coefficient numérique 
de la valeur trouvée par Nelson.

L’hypothèse que la particule est animée dans son 
onde d’un mouvement brownien me paraît impliquer 
nécessairement la localisation constante de la parti 
cule dans l’onde. Nous savons d’ailleurs qu’à ce mou 
vement brownien doit se superposer un mouvement 
régulier défini par la formule du guidage comme cela 
résulte du reste d’une des équations de M. Nelson.

(') Voir [9], b.
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4. La prérogative des ondes planes monochromatiques 
et des états stationnaires et l’existence des états tran 
sitoires. — Une des idées les plus caractéristiques 
introduites par Bohr dans sa célèbre théorie de l’atome 
en igi3 a été celle des transitions brusques entre 
états stationnaires dans les systèmes quantifiés. Ces 
transitions brusques ne seraient, pensait-il, suscep 
tibles d’aucune description en termes d’espace et de 
temps. La continuité des processus physiques dispa 
raîtrait donc d’une manière bien contraire à toutes 
les idées antérieures des physiciens. Engagée dans 
cette voie, la Physique quantique « orthodoxe » en 
est arrivée, notamment en théorie quantique des 
champs, à attribuer aux ondes planes monochroma 
tiques (qui, cependant, nous le dirons dans le pro 
chain chapitre, n’existent jamais réellement) un carac 
tère privilégié et à admettre que les interactions 
entre matière et rayonnement s’opèrent toujours par 
des transitions brusques et indescriptibles entre ondes 
planes monochromatiques pour le rayonnement.

En réfléchissant sur cette question avec mes colla 
borateurs (MM. Fer, Andrade e Silva, Lochak et 
Thiounn), j’en suis arrivé à des conceptions nouvelles 
que je vais résumer brièvement. Pour faire comprendre 
l’orientation de ma pensée, je partirai de la remarque 
que dans la théorie usuelle on accorde une sorte de 
« prérogative » aux états que l’on peut qualifier de 
« monochromatiques ». Ces états privilégiés com 
prennent, d’une part les états stationnaires des sys 
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tèmes quantifiés associés à une onde stationnaire 
représentée par une fonction propre de l’hamiltonien, 
d’autre part les états des particules associées à une 
onde progressive monochromatique plane (ou du 
moins à un train d’ondes assimilable à une telle onde). 
Cette prérogative, dont Schrôdinger avait souligné le 
caractère étrange, conduit à regarder ces états privi 
légiés comme ayant une existence plus réelle que les 
états représentés par des superpositions de fonctions 
propres ou d’ondes planes monochromatiques. Et 
cependant, malgré l’hypothèse bohrienne du caractère 
absolument discontinu des états quantifiés qui devrait 
conduire à ne considérer que ces états, on fait souvent 
intervenir des états de superposition, notamment dans 
les calculs de perturbations. Mais on se refuse ordi 
nairement, semble-t-il, à attribuer à ces états de 
superposition une existence physique et on se borne 
à les considérer comme servant uniquement à calculer 
des probabilités. Nous insisterons plus loin sur les 
conséquences paradoxales d’une telle conception dans 
le cas où l’on déduit d’un tel calcul la largeur spec 
trale des raies émises par un atome dans une transition 
quantique.

Mais avec nos conceptions nous devons admettre 
qu’à chaque onde statistique "*F doit correspondre une 
onde physique réelle e. Nous devons considérer les 
états de superposition non pas comme de simples 
représentations de probabilités, mais comme décrivant 
des états physiques réels. Pour nous, ce sont des états 
physiques qu’on peut nommer « transitoires » ou
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« précurseurs » qui servent de transition continue de 
très brève durée entre deux états privilégiés. En d’autres 
termes, les états « monochromatiques » seraient des 
états très stables de grande probabilité tandis que les 
états de superposition seraient non pas inexistants, 
mais seulement de faible probabilité. Transposé dans 
notre langage thermodynamique, cela signifie que les 
états de superposition ont une entropie plus petite que 
les états « monochromatiques » et que des processus très 
rapides, à caractère peut-être irréversible, ramènent 
toujours particules ou systèmes vers des états à 
entropie plus élevée chaque fois que les conditions 
imposées à la particule ou au système permettent les 
échanges d’énergie nécessaires. Des circonstances de 
ce genre se rencontrent fréquemment en Thermodyna 
mique chimique où le passage d’un état chimique à 
un autre état chimique stable s’opère par l’intermé 
diaire d’états de moindre entropie.

Dans le cas d’un système isolé qui n’échange aucune 
énergie avec l’extérieur (ce qui n’est pas le cas d’un 
atome qui émet ou qui absorbe un photon), j’ai pu 
démontrer que l’entropie d’une onde plane monochro 
matique est supérieure à celle d’un état de superpo 
sition. Cola résulte du fait que M» a sa valeur maximale 
égale à m„ pour l’onde plane monochromatique.
Pour les particules de spin ^ et h, on le voit facilement

en se reportant à la formule (i5) et aux formules (27) 
et (28) du chapitre III. Pour une particule de spin o 
à l’approximation newtonienne, les formules (6) et
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(12) du chapitre II permettent d’écrire, D étant le 
volume occupé par l’onde,

M0= m0 — 2 m0 c-
„ A a ,a2 — dt  = m„ -+- u

h1
1 m0 c2

<r/T^ m„.

Pour l’onde plane monochromatique où grado est 
partout nul, on a bien M0 = mn.

Dans le cas d’une transition quantique, la question 
se présente sous un aspect un peu différent puisqu’il 
y a alors échange d’énergie de l’atome avec l’extérieur 
par émission ou absorption d’un photon. Ce qui inter 
vient alors, ce n’est plus le maximum de l’entropie, 
mais le minimum de l’énergie libre. J’ai étudié le 
problème avec quelques détails dans mon livre sur 
la Thermodynamique cachée des particules f[8], a, 
p. 114 et ss.) et je me borne à y renvoyer le lecteur.

Pour montrer l’intérêt de considérer les états pré 
curseurs comme nous venons de le faire, nous allons 
envisager l’émission d’un photon par un atome dans 
une transition quantique. L’atome se trouve initia 
lement dans un état quantique d’énergie E0 et peut 
passer dans un des états quantiques d’énergie E/, < E0

avec émission d’un photon de fréquence vA= •

Mais pour nous l’émission du photon est précédée 
d’un état transitoire précurseur au cours duquel 
l’atome entre en interaction avec un photon qui est 
encore caché dans le milieu subquantique. Dans la 
méthode usuelle en Mécanique quantique, on repré 
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sente ce processus par un calcul de perturbations où 
l’on envisage une onde V de l’atome formée par la 
superposition des diverses fréquences qui peuvent 
être émises. L’on montre alors qu’il s’introduit un 
amortissement de l’onde XF0 initiale correspondant à 
la « largeur spectrale » ov de l’onde qui sera émise 
au moment où, par une transition de Bohr, un photon 
sera émis. Dans l’interprétation orthodoxe de ce 
calcul, on considère l’onde \F perturbée comme une 
simple représentation de probabilités, chaque terme 
dans l’expression du XF correspondant isolément à 
l’une des transitions possibles, On arrive ainsi pour 
la prévision des largeurs spectrales à des formules qui 
sont confirmées par l’expérience (‘). Mais dans l’inter 
prétation probabiliste usuelle, le résultat obtenu doit 
s’interpréter en disant : « La largeur spectrale de l’onde 
qui est finalement émise par la transition E0 EA 
dépend de la probabilité de toutes les transitions qui 
ne sont pas produites ». Sous cette forme, cette conclu 
sion me paraît inadmissible et je pense qu’il faut 
chercher une autre interprétation du succès obtenu par 
le calcul usuel de perturbations.

Cette interprétation me paraît devoir être cherchée 
dans la direction suivante. Si l’on admet que l’onde 
statistique dérive toujours par la relation TF = Ce 
d’une onde v réelle, on doit considérer le calcul usuel 
de perturbations comme nous donnant la variation

(') W. He it l e r , The quantum theorg of radiations, 3e éd., p. 126.
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objective de Fonde a au cours de Fétat précurseur 
qui précède la transition quantique. La largeur spec 
trale que l’on calcule apparaît alors comme résultant 
de l’évolution des composantes cohérentes de Fonde v 
pendant Fétat précurseur. Elle est déterminée non 
pas par les probabilités des diverses transitions quan 
tiques qui ne se produiront pas, mais par la structure 
de Fonde p réellement réalisée pendant l’état précurseur. 
Il n’y a plus ainsi aucun paradoxe.

Des considérations analogues peuvent évidemment 
être développées pour l’absorption d’un photon par 
un atome qui, recevant une onde électromagnétique 
de fréquence v/;, peut passer d’un état initial d’énergie 
E0 à un état d’énergie E/, = E0+ /ry, avec disparition 
d’un photon sans doute alors résorbé dans le milieu 
subquantique. Là encore le calcul de perturbations que 
l’on peut faire dans la théorie usuelle doit selon nous 
être interprété comme décrivant l’évolution objective 
d’un état précurseur précédant la transition quantique 
d’absorption. Dans des ti'avaux récents, MM. Georges 
Lochak et Mumin Thiounn ont étudié, uniquement 
à l’aide d’équations classiques, Fétat précurseur créé 
dans un atome par une onde électromagnétique inci 
dente très intense, c’est-à-dire partant de très 
nombreux photons, produisant des effets non linéaires. 
Ils ont ainsi obtenu des résultats nouveaux qui 
paraissent très intéressants [10].

Les problèmes étudiés dans ce paragraphe 4 n’ont 
été qu’effleurés et devraient faire l’objet d’études plus 
approfondies. Aussi ne croyons-nous pouvoir y insister
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davantage. J’ajouterai cependant que MM. Andrade e 
Silva et Yassalo Pereira ont présenté récemment ma 
Thermodynamique cachée des particules sous une 
forme un peu différente qui n’en modifie pas les 
résultats essentiels (*).

(‘) J. An d r a d e e Sil v a  et J. Va s s a l o  Pe r e ir a , Int. J. of 
Theoretical Physics, vol. 3, 1970, p. G7-76.



CHAPITRE V

INEXISTENCE DES ONDES PLANES 
MONOCHROMATIQUES. 

ANALYSE DE DIVERSES EXPÉRIENCES 
ET PROBLÈMES NON RÉSOLUS

1. Inexistence physique des ondes planes monochro 
matiques. — Une remarque qui me paraît essentielle 
parce qu’elle permet d’expliquer les paradoxes que 
l’on a pu signaler dans la façon dont on envisage 
actuellement la Mécanique quantique est la suivante : 
l’onde plane monochromatique n’a aucune existence 
physique. En effet, Fonde plane monochromatique 
remplirait l’espace tout entier et durerait éternel 
lement : il est évident qu’elle ne peut représenter aucun 
phénomène physique réel. Toute onde réelle est toujours 
limitée par un front d’ondes avant et par un front 
d’ondes arrière : s’il n’en était pas ainsi, il serait impos 
sible d’allumer ou d’éteindre une lampe, il serait impos 
sible d’envoyer un signal lumineux avec une vitesse 
finie. Assurément, si une onde a une extension suffi 
sante dans le sens de sa propagation, on peut la repré 
senter très approximativement par une onde plane
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monochromatique dans la région comprise entre les 
fronts d’ondes et ce procédé est couramment employé 
avec succès dans l’étude des phénomènes optiques, 
mais on doit se méfier de tous les raisonnements où 
l’on emploie systématiquement la notion d’ondes planes 
monochromatiques.

En admettant pour la propagation des ondes des 
équations linéaires, on sait depuis longtemps que les 
trains d’ondes limités, qui ont seuls une existence 
physique, doivent être représentés par des intégrales 
de Fourier portant généralement sur un petit intervalle 
de fréquences et définissant une « largeur spectrale » ov. 
Un tel train d’ondes très sensiblement monochroma 
tique dans toute sa partie centrale est souvent appelé 
un « groupe d’ondes ». Il peut être considéré comme 
animé d’un mouvement d’ensemble avec une « vitesse 
de groupe » qui est la vitesse des fronts avant et 
arrière du train d’ondes. Si V est la vitesse de phase 
de la propagation des ondes qui est définie à partir
de la fréquence v et de la longueur d’ondes X par A = '

et qui, en général, dépend de la fréquence v, la vitesse 
de groupe v est définie par la formule de Rayleigh

(i)

fi

àv

0 V
dv"

Le train d’ondes ayant une longueur L, distance des 
fronts avant et arrière, est une grandeur mesurable 
par des procédés bien connus en théorie des inter 
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férences, notamment par la disparition des inter 
férences quand on emploie des lames minces suffi 
samment épaisses ou un interféromètre de Michelson 
à miroirs sullisamment écartés. On peut donc définir
un « temps de cohérence » ~ = j/ du train d’ondes en

remarquant qu’en un point M, il se comporte comme 
une onde plane monochromatique pendant un temps 
de l’ordre de la durée qui s’écoule entre le passage 
au point M du front avant et du front arrière du train 
d’ondes.

On possède des données numériques sur la valeur de 
la longueur L des trains d’ondes et, par suite, sur celle 
de la durée de cohérence Pour la lumière visible 
dont la longueur d’onde moyenne est de o,5 y, on sait 
depuis longtemps que la longueur L est de l’ordre de 
quelques centaines de milliers de longueurs d’onde, 
c’est-à-dire de l’ordre du mètre, du moins pour les 
sources de lumière usuelles. La durée de cohérence t  
est donc de l’ordre de io"s s pour Pour les
électrons, on a pu également mesurer la longueur des 
trains d’ondes (Mœllenstedt, Faget) et l’on a pu 
trouver pour L des valeurs de l’ordre du micron pour 
des électrons dont la vitesse est de l’ordre de io!’ cm/s, 
de sorte que t  est de l’ordre de io~13 s.

Quand on étudie en Mécanique quantique la déter 
mination des fonctions propres correspondant à un 
problème donné, on s’aperçoit que, dans le cas des 
spectres continus, l’emploi de fonctions propres qui 
ne sont pas nulles à l’infini soulève des difficultés et

M. Dli BROGUE. 6
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que pour obtenir une représentation satisfaisante, il est 
necessaire d’introduire la notion de différentielle 
propre (1). Or, comme Sommerfeld l’avait remarqué 
il y a longtemps, cela revient à remplacer les ondes 
planes monochromatiques qui ne sont pas nulles 
à l’infini par des trains d’ondes limités à petite largeur 
spectrale dont les différentielles propres sont préci 
sément la représentation mathématique. On démontre 
d’ailleurs que les différentielles propres sont ortho 
gonales et qu’elles peuvent être normées.

La théorie des différentielles propres mériterait, 
me semble-t-il, d’être étudiée plus qu’elle ne l’a été 
parce que c’est elle qui peut donner, en théorie ondu 
latoire linéaire, la représentation des trains d’ondes 
à petite largeur spectrale. Elle devrait permettre de 
définir non seulement la longueur L des trains d’ondes 
dans le sens de la propagation, mais aussi son extension 
latérale, sa largeur, qui est sans doute beaucoup plus 
grande que L. A l’heure actuelle, il n’existe à ma 
connaissance aucune vérification expérimentale de la 
largeur finie d’un train d’ondes, mais il ne serait 
peut-être pas impossible d’obtenir une évaluation au 
moins approximative de cette largeur par des expé 
riences appropriées. Il n’est d’ailleurs pas certain 
qu’en admettant le caractère linéaire des équations 
de propagation, on puisse obtenir une représentation 
entièrement exacte de la structure des trains d’ondes.

(') Voir mon livre Quantification dans la nouvelle Mécanique, 
Hermann, Paris, 1968, p. 139 et ss.
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C’est un point sur lequel nous reviendrons au para 
graphe 4 du présent chapitre.

Nous ne tenterons pas de développer ici une théorie 
complète des différentielles propres, mais nous indi 
querons un résultat important qu’elle nous semble 
devoir fournir. Dans les exposés usuels, on considère 
la fonction statistique normée d’une particule ou 
d’un ensemble de particules comme développée en une
somme de fonctions propres de la forme W =Vc/,dF,>

t
normées et orthogonales où les c/; sont des coefficients 
complexes et l’on affirme que, si un processus de mesure 
permet d’attribuer à la particule ou au système l’état 
correspondant à l’indice k, la probabilité de ce 
résultat est donnée par |c/.-|". Or, nous savons que, 
du moins dans le cas des spectres continus, nous devons 
remplacer les fonctions propres 'F/, par les différen 
tielles propres [*F,;]. Le symbole [**F/;] que nous intro 
duisons représente la différentielle propre qui, si sa 
largeur spectrale était nulle, se réduirait à la fonction 
propre W/,-. Dans le cas d’une onde progressive libre, 
[*F*] représente non pas l’onde plane monochroma 
tique *F/; qui n’existe jamais, mais un train d’ondes de 
largeur spectrale finie ov assimilable dans toute sa 
partie centrale à l’onde plane monochromatique *F*.

Si l’état initial d’une particule est constitué par une 
superposition de trains d’ondes, sa fonction TF sera 
de la forme

k
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les différentielles propres [ff^] étant normées et ortho 
gonales. Supposons qu’une expérience ait pour résultat 
de séparer dans l’espace les trains d’ondes pF*]. 
On pourra alors, si l’on peut déceler la présence de la 
particule dans l’un de ces trains d’ondes, connaître 
l’état de mouvement final. Comme l’on sait que la 
probabilité de présence de la particule dans un élément 
de volume dh de l’espace est donnée par )ffJ'|3dr:, 
la probabilité pour que la mesure en question permette 
d’attribuer à la particule l’état de mouvement d’in 
dice k sera, R/, étant la région de l’espace occupée par 
le kl™e train d’ondes,

(3) f | W |* (h = f le, |*| pifiJI* (h= | p,
■'II* •U4

avec^l c* |2 = i, puisque les pF/J sont normées et
k

orthogonales. La probabilité pour que l’opération de 
mesure conduise à attribuer à la particule l’état de 
mouvement correspondant au train d’ondes pF/(] est 
donc bien j c* ["-

2. Difficultés que l’on rencontre si l’on oublie la 
limitation des trains d’ondes. — Nous allons main 
tenant montrer sur quelques exemples que le fait de 
toujours considérer des trains d’ondes limités et jamais 
les irréalisables ondes planes monochromatiques permet 
d’éviter certains paradoxes que l’on rencontre si l’on 
oublie de tenir compte de cette limitation des trains 
d’ondes.



INEXISTENCE DES ONDES PLANES MONOCHROMATIQUES. 85

a. Problèmes de choc et objection de Schrôdinger. — 
Einstein avait attiré l’attention, notamment dans son 
article avec Rosen et Podolsky (l), sur certaines objec 
tions que soulève l’interprétation actuellement admise 
de la Mécanique ondulatoire. De son côté et sous une 
forme plus nette, Schrodinger a insisté sur le fait que 
la collision entre des particules n’est pas compatible 
avec l’image des ondes planes monochromatiques et 
il en a tiré une forme d’objection contre l’interprétation 
usuelle du résultat d’une collision qui me paraît avoir 
une grande force

Schrôdinger a remarqué qu’une collision entre par 
ticules impliquait que ces particules sont d’abord 
distantes l’une de l’autre, puis se rapprochent et entrent 
en interaction, puis s’éloignent de nouveau après un 
échange d’énergie et de quantité de mouvement. Mais, 
si l’on associe aux particules des ondes planes mono 
chromatiques, aucune représentation de ce genre n’est 
possible : les ondes des particules ayant une extension 
infinie se recouvrent constamment et l’état de choc 
n’a ni commencement ni fin, ce qui est inadmissible. 
Pour obtenir en Mécanique ondulatoire une repré 
sentation satisfaisante d’une collision entre particules, 
il faut leur associer des trains d’ondes limités qui, 
d’abord distants, se rapprochent les uns des autres et 
viennent se recouvrir pour enfin se séparer de nouveau 
quand la collision est terminée. C’est en utilisant cette

p) Phys. Rev., t. 47, nj35, p. 777.
(-) Naiurwissenschaften, t. 23, 1935, p. 727, 823 et 844-
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image que Schrodinger a pu mettre sous une forme 
particulièrement frappante le caractère paradoxal de 
l’interprétation actuellement admise des phénomènes 
de collision.

Considérons deux trains d’ondes presque mono 
chromatiques associés à deux particules 1 et 2 et suppo 
sons qu’ils viennent à la rencontre l’un de l’autre.

Fig. i.

Quand ils sont parvenus à proximité, les deux par 
ticules entrent en interaction et la théorie usuelle, 
pour prévoir les résultats possibles de cette interaction, 
envisage la propagation d’une onde "'■F dans l’espace de 
configuration du système des deux particules. La Méca 
nique ondulatoire dans l’espace de configuration nous 
apprend alors que le choc peut donner lieu à toute 
une série de mouvements compatibles avec la conser 
vation globale de l’énergie et de la quantité de mou 
vement. Après la fin de la collision, ou bien le train 
d’ondes de la particule 1 décrira finalement la trajec 
toire 1', le train d’ondes de la particule 2 décrivant la 
trajectoire 2'; ou bien le train d’ondes de la par 
ticule 1 décrira la trajectoire 1", le train d’ondes de
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la particule 2 décrivant la trajectoire 2", etc. Dans 
l’état final, les trains d’ondes forment donc des couples 
corrélés Ï'- T, l"-2", etc.

Supposons maintenant que nous observions une 
localisation de la particule 1 dans le train d’ondes 1'; 
nous saurons par cela même que la particule 2 se trouve 
dans le train d’ondes 2'. Or, l’interprétation actuel 
lement orthodoxe qui admet que la particule n’est pas 
localisée dans son onde interprète ce qui précède de 
la façon suivante. Api’ès le choc, la particule 1 serait 
potentiellement présente dans l’ensemble des trains 
d’ondes 1/, 1", ... tandis que la particule 2 serait 
potentiellement présente dans l’ensemble des trains 
d’ondes 2r, 2", .... Lorsque se produit la localisation 
observable de la particule l dans le train d’ondes 1', 
la particule 2 se trouverait brusquement localisée par 
cette seule observation dans le train d’ondes 2' et 
cela bien qu’on n’ait exercé aucune action sur elle et 
que le train d’ondes 2' puisse à ce moment se trouver 
extrêmement éloigné de L. Comme l’a dit très juste 
ment Schrôdinger, « ce serait de la magie ».

Mais, si nous admettons la localisation permanente 
de chaque particule dans son train d’ondes, nous 
parvenons à une interprétation plus raisonnable. Pour 
nous, après le choc, les particules seront localisées dans 
l’un des couples corrélés de trains d’ondes 1/-1", 
2'~2”, . . ., mais nous ignorons dans lequel de ces 
couples corrélés elles se trouvent tant que nous n’au 
rons observé aucune localisation des particules. Mais, 
si nous observons une localisation de la particule 1
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dans le train d’ondes 1', c’est qu’elle s’y trouvait déjà 
avant cette observation et alors nous apprenons par là 
même que la particule 2 est dans le train d’ondes 2'. 
Ce n’est pas l’observation de la particule 1 dans 1' 
qui met la particule 2 dans 2' où elle se trouvait déjà. 
Tout devient très clair et il n’y a plus de magie.

Nous apercevons comment l’hypothèse de la loca 
lisation des particules dans leur onde jointe à l’idée 
que l’on a toujours affaire à des trains d’ondes limités 
nous permet d’éviter toute interprétation paradoxale.

b. Sur les corrélations dans la mesure des spins. — 
Plusieurs auteurs ont cru pouvoir déduire de l’étude 
de la mesure des spins la preuve de l’existence de 
corrélations entre les états de spin de deux particules 
se trouvant à une grande distance l’une de l’autre et 
ils en ont tiré la conclusion qu’il était impossible 
d’admettre une interprétation causale de la Méca 
nique quantique. Nous pensons que cette conclusion 
ne peut pas être maintenue si l’on tient compte du 
fait que les particules à spin, atomes ou électrons, 
sont toujours liées à des trains d’ondes limités de 
petites dimensions.

Pour étudier cette question, rappelons d’abord 
comment s’effectue la mesure d’une composante de 
spin d’une particule. On emploie pour cela un électro 
aimant du type Stern-Gerlach dans lequel existe un 
champ magnétique non homogène, par exemple entre 
des pôles de forme prismatique.
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Si un très petit train d’ondes portant une particule
de spin ^ s’engage dans l’appareil en balayant un très

petit cylindre, l’action du champ magnétique non uni 
forme va séparer les deux composantes du train d’ondes
qui correspondent aux valeurs g z=Jz  ^ de la compo 

sante n. du spin en agissant sur les moments magné-

A
TT

A

Fig. 2.

tiques qui correspondent aux deux valeurs de g z. C’est 
ce que l’on peut voir facilement sur les équations de 
Dirac. Mais en même temps le champ magnétique 
dévie les deux composantes de g z l’une vers le haut, 
l’autre vers le bas de sorte qu’à la sortie de l’appareil, 
il y a deux trains d’ondes correspondant aux valeurs

h h -ii
g . = -- et g z = — - qui, en raison de leur petitesse,

se séparent et cessent (V interférer, ainsi que cela est 
représenté schématiquement sur la figure 2.

Mais comme nous ne considérons encore qu’une 
seule particule qui, pour nous, est portée au début 
par le train d’ondes initial où elle est localisée à chaque 
instant, cette particule se trouvera finalement dans
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l’un des deux trains d’onde séparés et aura sa compo 
sante de spin g z égale à ou à — ^ suivant le train

d’ondes où elle se trouve. C’est pourquoi l’on peut dire 
que l’appareil utilisé permet une mesure de nz. Remar 
quons que dans l’état final, l’un des trains d’ondes 
est « vide » alors que l’autre porte la particule.

Considérons maintenant un état initial où deux

particules de même nature et de spin sont portées

par un même petit train d’ondes. D’après le principe 
de Pauli, les spins de ces deux fermions doivent être 
opposés. Le train d’ondes étant soumis à l’action d’un 
champ magnétique non homogène, il y aura encore, 
comme dans le cas d’une seule particule, séparation 
dans l’espace de deux trains d’ondes correspondant

à <7- = - et à a. = — - se dirigeant dans des directions

différentes. Mais, comme pendant tout le processus de 
séparation des trains d’ondes, les deux particules 
doivent suivant le principe de Pauli garder des spins 
opposés, dans l’état final l’un des trains d’onde de

spin ~ portera l’une des particules tandis que l’autre 

train d’ondes de spin — ~ portera l’autre particule.

Et comme les directions du mouvement des deux 
particules sont différentes, elles s’éloigneront rapi 
dement l’une de l’autre.

Les états des deux particules sont dès lors complè 
tement indépendants. Cependant une corrélation sub 
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siste entre les états de spin des deux particules tant 
qu’aucune action extérieure ne modifie la valeur de 
leur spin. Donc si, ignorant la valeur des spins indi 
viduels, nous mesurons la valeur de u- sur l’une des 
particules à l’aide du dispositif étudié plus haut et

si nous trouvons la valeur g - = ~i nous sommes alorsa
sûrs qu’une mesure identique faite sur la particule 2 

donnera g - =— Le genre de corrélation qui existe 

ici est très naturel et ne soulève aucun paradoxe.
Là où le paradoxe apparaît, c’est quand on prétend 

démontrer qu’après la séparation des deux trains 
d’ondes une mesure qui change l’état de spin de la 
particule 1 change également le résultat de la mesure 
du spin sur la particule 2 qui peut être très éloignée 
de la particule 1. Supposons qu’après la mesure 
décrite plus haut des composantes g z des deux par 
ticules, on mesure la composante g x de la particule 1 
en employant un dispositif à champ magnétique non 
homogène analogue à celui qui a été utilisé pour la

mesure de g ., mais en le faisant tourner de -• Plusieurs

auteurs ont cru pouvoir démontrer que, si la mesure 
de g .x sur la particule 1 donne alors l’une des valeurs

= ^7*’ une mesure analogue faite sur la par 

ticule 2 donnera toujours une valeur égale et opposée 
de g x de façon que la somme des deux g x soit égale 
à zéro comme l’était celle des deux g z après la première 
mesure. Il en résulterait une corrélation des mesures
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faites sur deux particules très éloignées l’une de l’autre 
qui me paraît tout à fait inacceptable. En effet, après 
la mesure initiale de g z sur les deux particules, les 
deux trains d’ondes portant chacun l’une des par 
ticules se sont éloignés l’un de l’autre avec des valeurs 
égales et opposées de a.. Alors la mesure de ix sur 
l’une des particules ne peut plus avoir aucune influence 
sur l’état de l’autre particule qui, tant qu’on n’agira 
pas sur elle, conservera la valeur de cr_ que la première 
mesure lui avait imposée. Si donc on mesure alors la 
composante crx de la particule 2, on se trouvera dans 
le cas de la mesure du spin sur un train d’ondes portant 
une seule particule et, comme nous l’avons vu, l’on 
pourra alors trouver avec une égale probabilité l’une

ou l’autre des valeurs cra. = + - sans aucune corré-

lation avec la valeur de ax trouvée pour la particule 1 
par une mesure effectuée en un point très éloigné. 
S’il n’en était pas ainsi, on retrouverait la « magie » 
dont a parlé Schrodinger. Remarquons d’ailleurs que, 
si des corrélations instantanées à distance existaient 
réellement, elles seraient équivalentes à la probabilité 
de signaux se propageant instantanément et toute 
la théorie de la Relativité qui repose sur l’impossibilité 
des tels signaux serait à abandonner.

On peut aussi confirmer le raisonnement précédent 
par la remarque suivante. Lorsqu’on effectue succes 
sivement en des points éloignés la mesure de sur 
la particule 1 avec un électroaimant A, et sur la 
particule 2 avec un électroaimant A-., les appareils A,
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et A2 fourniront aux particules le moment de quantité 
de mouvement nécessaire pour changer la direction 
de leur spin sans que cela, bien entendu, s’accompagne 
d’aucune mise en état de rotation appréciable des 
deux électroaimants. Or, les appareils A4 et A3 sont 
des appareils macroscopiques très éloignés l’un de 
l’autre dont le comportement peut sans aucun doute 
être entièrement décrit par la Physique classique. 
Il ne peut donc pas exister entre le fonctionnement 
de ces deux appareils une corrélation qui serait tout 
à fait étrangère à la Physique classique.

Des raisonnements analogues pourraient être appli 
qués à la détermination des états de polarisation des 
photons, les photons étant des particules de spin ti dont 
l’état de spin est intimement relié à l’état de polarisa 
tion ('). Il me paraît impossible que, quand deux pho 
tons et leurs trains d’ondes se sont séparés et éloignés 
l’un de l’autre, un changement provoqué par un appa 
reil macroscopique (nicol, par exemple) de la pola 
risation de l’un des trains d’ondes entraîne un chan 
gement corrélé de la polarisation de l’autre train 
d’ondes par un autre appareil macroscopique (2).

c. Sur une objection cVEinstein à la formule du 
guidage. — Dans une contribution au livre jubilaire 
consacré à Max Born, Einstein, tout en se pronon 
çant toujours pour le rétablissement d’une conception

(') Voir [4], d.
(-) Voir la Note à la fin du chapitre.
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réaliste de la Mécanique ondulatoire, a élevé une 
objection contre la formule du guidage (').

Le principe dont part Einstein est que, chaque fois 
que l’on a affaire à un corps macroscopique, on doit 
retrouver les images de la Mécanique classique qui 
donne sans aucun doute une image très approchée de 
la réalité physique. Ceci posé, il envisage le problème 
suivant. Considérons une particule qui se déplace sui 
vant une droite Oa; en venant rebondir sur deux miroirs 
placés perpendiculairement à Oa; aux points d’abscisses 
x — o et x = l. La Mécanique ondulatoire usuelle 
associe à ce mouvement, s’il a une énergie bien déter 
minée, une onde statistique nulle en x — o et en 
x — l et de la forme

Oi) = an sin
nT.x
~T~ avec

/(- /;- 
8 ml2 ’

n étant entier. Dans l’interprétation orthodoxe, cette 
onde représente la possibilité de deux mouvements

de même quantité de mouvement p = ~ s’effectuant,

l’un de gauche à droite, l’autre de droite à gauche, 
ces deux mouvements ayant la même probabilité. Au 
point de vue de la Physique macroscopique, si la par 
ticule est macroscopique, elle a à chaque instant l’un 
des deux mouvements à l’exclusion de l’autre. L’inter 
prétation usuelle, dit alors Einstein, représente donc

(’) Scienliflc papers presented lo Max Born, Oliver and Boyd, 
Edinburg, ig53, p. 33 et ss.

Voir aussi dans le même volume l’article de D. Bohm, p. i3.
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exactement la situation statistique au cours du temps, 
mais non pas l’état réel instantané de la particule 
macroscopique. C’est donc une description statis 
tiquement exacte, mais incomplète comme description 
de la réalité physique.

Mais voici maintenant l’objection qu’il tire du cas
étudié contre la formule du guidage. Dans la formule (4),

?
la phase 9 de l’onde W = aeh' se réduit à E,,t et est, 
par suite, indépendante de x. La foi’mule du guidage 
nous donne donc

(5) v = — ^ grade? — o.

La particule serait immobile et, si cette particule 
constitue une petite bille au sens usuel du mot, nous 
nous trouvons en contradiction avec la Mécanique 
classique qui nous affirme, certainement avec raison, 
que la bille doit avoir un mouvement de va-et-vient 
le long de 0.r avec rebondissement alternatif sur chacun 
des deux miroirs. Einstein en a conclu que la formule 
du guidage ne peut pas, elle non plus, représenter la 
réalité physique.

L’analyse d’Einstein est dans son ensemble très 
intéressante, mais elle appelle d’abord une réserve. 
On peut, en effet, remarquer que, si la particule 
considérée est macroscopique, elle est nécessairement 
formée par un ensemble de particules élémentaires et 
que l’onde est alors associée au centre de gravité 
du système, ce qui rend l’interprétation plus difficile. 
Mais, en dehors de cette réserve, on peut trouver une
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réponse à l’objection d’Einstein contre la formule 
du guidage.

Pour développer cette réponse, nous partirons encore 
de la remarque qu’un train d’ondes a toujours des 
dimensions limitées ne pouvant dépasser, nous l’avons 
vu, un certain nombre, d’ailleurs très élevé, de lon 
gueurs d’onde. Comme pour une énergie donnée E,

la longueur d’onde A = _^ est d’autant plus
\! 9. rn E

petite que m est plus grand, nous voyons que le train 
d’ondes associé à une particule d’énergie donnée aura, 
quand la masse augmente, une longueur très inférieure 
à la distance l des deux miroirs dans l’exemple d’Eins 
tein. Pour une masse suffisamment grande, il ne sera 
plus possible d’imaginer qu’il y ait entre les deux 
miroirs une onde stationnaire du type (4) due à la 
superposition de deux trains d’ondes se propageant 
en sens inverses. On devra, au contraire, se représenter 
un train d’ondes de petites dimensions venant se 
réfléchir alternativement sur chacun des miroirs et 
cette image correspond exactement à l’image macros 
copique classique d’une bille qui oscille le long d’une 
droite en venant se réfléchir alternativement sur les 
deux miroirs parallèles. Cette réponse à l’objection 
d’Einstein me paraît satisfaisante et montre une fois 
de plus qu’il ne faut jamais oublier que tout train 
d’ondes a une longueur limitée.

Une autre objection contre la formule du guidage 
avait été faite par Pauli au Conseil Solvay d’oc 
tobre 1927 en envisageant le problème antérieurement
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traité par Fermi du choc d’une particule avec un 
rotateur quantifié. J’ai étudié cette objection dans 
un de mes livres (1) et je pense y avoir répondu en 
introduisant encore l’idée que l’onde de la particule 
est toujours limitée. Je n’y reviens donc pas ici.

3. Analyse de diverses expériences. — Nous allons 
maintenant analyser diverses expériences réalisables 
ou imaginables dont nous tirerons certaines consé 
quences intéressantes.

a. Trous d’Young et interférence des probabilités. 
— M. Heisenberg a introduit, il y a longtemps, l’idée 
de « l’interférence des probabilités » s’appuyant sur 
l’expérience bien connue des trous d’Young et son 
raisonnement est souvent considéré comme excluant 
la possibilité d’une localisation permanente de la 
particule dans son onde. Nous voulons montrer qu’avec 
nos idées cette conclusion ne s’impose aucunement.

Considérons avec Heisenberg un écran d’Young 
percé de deux trous A et B sur lequel tombe un train 
d’ondes assimilable à une onde plane monochro 
matique et calculons la probabilité pour que la par 
ticule manifeste sa présence en un point M situé au- 
delà de l’écran dans la région où l’on peut observer 
les interférences. Heisenberg raisonne comme il suit. 
Si la particule était constamment localisée, elle devrait 
passer par l’un des trous d’Young, mettons A, pour (*)

(*) Voir [4], a, p. 174 et ss.
M. DE BROGLIE. 7
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participer aux interférences. Le calcul des probabilités 
nous dit que la probabilité P(M) que la particule 
parvienne en M est le produit de la probabilité Pt(A) 
de son passage par le trou A par la probabilité 
P2(A, M) pour qu’elle se rende ensuite de A en M. 
On a donc

(6) P (M) = Pt (A) .P, (A, M) = F, (A, M).

Mais, dit Heisenberg, l’expérience prouve qu’il y a 
« interférence des probabilités » [nous dirions plutôt 
qu’il y a une probabilité P (M) déterminée par les 
interférences], c’est-à-dire que P(M) doit être une 
fonction de A, B et M. En effet, la probabilité de la 
présence de la particule en M est donnée par le carré 
de l’amplitude de l’onde qui a passé par les trous A 
et B et qui interfère derrière l’écran. On a donc

(7) P (M) = à2 (M) z= F2 (A, B, M ).

Or, cette formule est incompatible avec la précédente 
parce que Ft ne dépend que de la position du trou A 
et du point M tandis que FL> dépend en outre de la 
position du trou B. Et l’on en conclut qu’il est impos 
sible d’admettre que la particule ait passé par l’un 
des trous d’Young : elle ne peut donc être localisée 
en permanence et doit avoir passé potentiellement 
par les deux trous à la fois.

Mais ce raisonnement, où l’on admet implicitement 
la Dynamique corpusculaire classique, repose sur 
l’hypothèse que, quand la particule a passé par le 
trou A, son mouvement ne peut aucunement être
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ensuite influencé par l’existence du trou B. Or, dans la 
théorie de la double solution, on doit remarquer que, 
dès que la particule a passé par le trou A, elle se trouve 
dans la région où les portions de l’onde v qui ont passé 
par A et B interfèrent. Il en résulte que le mouvement 
de la particule défini par la formule du guidage est dès 
lors influencé par l’existence du trou B de sorte que 
l’on doit écrire, au lieu de (6),

(8) P(M)=P1(A).P,(A, B, M),

ce qui est en accord avec (7). Il n’y a plus aucune diffi 
culté à admettre que la particule ait passé par l’un 
des trous d’Young et que cependant la probabilité de 
sa présence en M dépende à la fois de la position du 
point M et de celle des deux trous d’Young A et B.

Il semble d’ailleurs qu’il serait possible de faire une 
expérience macroscopique où une conclusion analogue 
s’imposerait. Supposons qu’une onde sinusoïdale pro 
gressive se propage à la surface d’un liquide et 
s’écoule le long d’un canal rectiligne. Plaçons un écran 
percé de deux trous perpendiculairement à la direction 
de la propagation de l’onde. Derrière l’écran, il doit y 
avoir une région où, par suite des interférences, la 
répartition des amplitudes de l’onde doit être celle 
que l’on calcule dans la théorie usuelle des trous 
d’Young. L’expérience paraît réalisable.

Mais supposons maintenant que l’on ait semé à la 
surface de l’onde liquide une poudre formée de très 
petits grains de poussière encore visibles à l’œil nu. 
Ces grains seront entraînés par l’onde et certains
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d’entre eux passeront par les trous de l’écran. Il me 
paraît probable que derrière l’écran les grains de pous 
sière se concentreront dans les régions de haute ampli 
tude de l’onde et se raréfieront dans les régions de 
faible amplitude. Comme chaque grain qui est visible 
a certainement passé par l’un des deux trous d’Young, 
si l’expérience donnait un résultat conforme à mes 
prévisions, on pourrait en conclure ce qui suit : chaque 
grain de poussière, après avoir passé par l’un des trous 
d’Young, a dans la région derrière l’écran un mouve 
ment qui est influencé par l’existence du trou d’Young 
par lequel il n’a pas passé. On aurait ainsi une preuve 
expérimentale du fait que le guidage d’une particule 
par une onde peut provoquer un groupement de ces 
particules dans l’espace conforme à la théorie des 
franges d’interférences et cela parce que la particule 
est guidée dans son mouvement par la propagation 
d’une onde qui, elle, a passé par les deux trous d’Young.

b. Le miroir semi-transparent (THeisenberg. — Au 
Conseil Solvay d’octobre 1927, Heisenberg avait donné 
un autre exemple qui, selon lui, prouvait aussi l’impos 
sibilité de localiser la particule dans son onde. Il 
considérait une onde tombant sur un miroir semi- 
transparent M. Une partie de cette onde passe à travers 
le miroir et continue son chemin en ligne droite tandis 
qu’une autre partie est réfléchie.

Si l’on peut détecter la présence d’une particule 
portée par l’onde dans l’un des deux faisceaux, l’autre, 
selon Heisenberg, cesse immédiatement d’exister car
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il n’est qu’une représentation de la probabilité de 
présence de la particule. Mais plaçons en M' un miroir 
parfaitement réfléchissant qui renvoie l’onde transmise 
sur l’onde réfléchie de façon qu’elles se superposent 
dans la région ABCD. Alors nous pourrons observer des 
interférences dans cette région ABCD. Cela prouve,

disait Heisenberg, que l’onde transmise et l’onde 
réfléchie existent tant que la particule n’est pas localisée 
et cela conduit à penser que jusqu’à l’instant de la 
localisation, la particule est présente à l’état potentiel 
dans les deux ondes à la fois.

Avec notre point de vue, l’interprétation de cette 
expérience est tout à fait différente. La particule res 
tant constamment localisée dans l’onde v se trouve 
après son arrivée sur le miroir M, soit dans l’onde trans 
mise, soit dans l’onde réfléchie. Si elle manifeste sa
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présence dans l’une de ces deux ondes, c’est qu’elle 
y était déjà. Mais l’onde o étant une onde physique 
réelle, l’autre onde n’en disparaîtra pas pour cela. 
C’est seulement l’onde statistique fictive XF qui dispa 
raîtra dans la région de l’onde c où ne se trouve pas la 
particule. Si l’on interpose le miroir M', on pourra 
obtenir des interférences dans la région ABCD parce que 
la particule, qu’elle ait traversé le miroir semi-trans 
parent ou qu’elle ait été réfléchie, se trouve guidée 
quand elle arrive dans la région ABCD par la super 
position des ondes o que la réflexion sur le miroir M' 
a provoquée. On obtient ainsi une interprétation des 
interférences en ABCD qui est tout à fait la même 
que celle que nous avions obtenue plus haut pour les 
trous d’Young.

Il faut cependant remarquer que notre point de vue 
nous amène nécessairement à nous poser les deux 
questions suivantes : i° Si le miroir M' n’est pas inter 
posé, le train d’ondes incident portant la particule se 
trouve divisé après son passage sur le miroir semi- 
transparent M en deux trains d’ondes dont l’un seule 
ment porte la particule. Que devient ensuite l’autre 
train d’ondes qui est « vide »? 2° Après la séparation des 
trains d’ondes v, la particule se trouve dans un train 
d’ondes d’amplitude plus faible que le train d’ondes 
initial. Donc, après avoir rencontré un nombre croissant 
de miroirs semi-transparents, une particule se trouverait 
finalement portée par une onde de plus en plus affaiblie. 
Peut-on imaginer qu’une onde o de plus en plus affaiblie 
continue à guider une particule?
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Nous nous contentons de poser ces deux questions. 
Nous y reviendrons dans le dernier paragraphe de 
ce chapitre.

c. Projet d'une expérience mettant en défaut les idées 
actuellement admises. — Considérons un dispositif 
d’interférences comportant deux miroirs sur lesquels 
se réfléchissent deux faisceaux de lumière cohérents 
qui viennent ensuite se superposer dans une région 
d’interférences. Si les deux miroirs sont fixes, les auteurs 
qui soutiennent les idées actuellement admises en 
Physique quantique disent que les photons portés 
par l’onde cohérente sont présents potentiellement 
dans chacun des deux faisceaux, ce qui permet à ces 
faisceaux d’être cohérents et explique l’apparition 
des interférences. Mais, pour ces auteurs, si l’un des 
deux miroirs peut reculer sous l’impact des photons, 
la cohérence des deux faisceaux est rompue par ce 
recul et il ne peut plus y avoir d’interférences. Allant 
plus loin, ils disent même, d’accord avec les conceptions 
de Niels Bohr sur la complémentarité, que, si le miroir 
qui peut reculer ne recule pas, la cohérence est égale 
ment détruite par le seul fait qu’il aurait pu reculer 
et alors il n’y a pas d’interférences (4). Cela est bien 
paradoxal.

Divers auteurs, dont Einstein et plus récemment 
M. Renninger, ont insisté sur les difficultés soulevées (*)

(*) Voir l’article c I’Eps t e in , Amer. J. Phys., vol. 13, 1945, p.129.
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par une telle conception. On trouvera un exposé de ces 
difficultés dans un de mes livres récents (*).

Il est à remarquer que, dans les exposés de Bohr 
et de ses disciples, on raisonne généralement comme 
si l’on pouvait obtenir des diagrammes d’interférences 
avec un seul photon. Or, il est évident qu’on ne peut 
observer les franges d’interférences que si de très 
nombreux photons arrivant successivement ou simul 
tanément se répartissent statistiquement dans la 
région d’interférences proportionnellement à l’intensité 
locale de l’onde résultant de la superposition des 
faisceaux qui s’y croisent.

Si l’on envoie de très nombreux photons sur un 
dispositif comportant deux miroirs et si l’un au moins 
de ces miroirs recule sous l’impact des photons, c’est-à- 
dire sous l’action de la pression de radiation, on peut 
admettre que les franges d’interférence ne seront pas 
visibles parce que le recul continu du miroir fera 
constamment varier la différence de marche des deux 
faisceaux qui se croisent dans la région d’interférences. 
Mais cela résulte uniquement de la théorie classique des 
interférences sans aucune intervention des concep 
tions de la complémentarité bohrienne.

Guidés par les remarques qui précèdent, nous allons 
imaginer un dispositif expérimental qui pourrait 
mettre en défaut les prévisions de la théorie « ortho 
doxe ».

(') Voir [4], c, chap. III.
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Considérons une source de lumière S qui envoie une 
onde cohérente sur un écran percé de deux trous A et B 
symétriques par rapport à l’axe de symétrie SO et 
suffisamment grands pour qu’on puisse négliger les 
phénomènes de diffraction. A droite de l’écran il y a

Fig. 4.

donc deux faisceaux de lumière séparés qui viennent 
frapper deux miroirs parfaitement réfléchissants Mt 
et Ma placés symétriquement par rapport à SO. Les 
faisceaux réfléchis par Mt et M2 viennent se superposer 
dans la région d’interférences I.

Si les miroirs Mt et M2 sont fixés rigidement, tout 
le monde sera d’accord pour dire que l’on devra observer 
des franges d’interférences en I. Mais les auteurs 
orthodoxes énonceront les deux affirmations suivantes :

A. Les interférences se manifesteront en I parce que 
les photons qui s’y localisent n’ont auparavant mani 
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festé nulle part leur nature corpusculaire. S’ils l’avaient 
fait, leur nature ondulatoire aurait disparu et il n’y 
aurait plus d’interférences.

B. Les photons avant leur localisation en I étaient 
répandus potentiellement dans toute l’onde cohérente 
et chacun passe à la fois par les deux trous A et B. 
Il est absolument impossible d’admettre que certains 
photons aient passé par le trou A et d’autres par le 
trou B.

Maintenant, au lieu de supposer les miroirs M, et M2 
fixes, nous allons supposer qu’ils puissent reculer sous 
l’action de la pression de radiation due à l’impact des 
photons, mais que leur recul est limité par l’action 
antagoniste de ressorts R4 et R2 (ou par un dispositif 
équivalent). Si l’onde incidente est assez intense, 
par exemple si elle est émise par un laser, les miroirs 
reculeront un peu sous l’action de la pression de radia 
tion, puis se stabiliseront lorsque la réaction des ressorts 
équilibrera cette pression. Quand les miroirs se seront 
stabilisés et seront devenus fixes, il paraît évident que 
l’on pourra observer les franges d’interférence en I. 
Mais alors nous pourrons énoncer les deux affirmations 
suivantes :

A'. Les photons qui se localisent en I dans les franges 
d’interférences auront tous cédé de la quantité de 
mouvement à l’un des miroirs en se réfléchissant sur 
lui. Ils auront donc ainsi manifesté leur nature cor 
pusculaire d’une manière observable par le recul des
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miroirs et cependant ils pourront ensuite donner lieu 
à un phénomène d’interférences en manifestant leur 
nature ondulatoire.

B'. Les photons qui se réfléchissent sur M4 ont évi 
demment passé par le trou A tandis que les photons 
qui se réfléchissent sur M2 ont évidemment passé par 
le trou B.

Les affirmations A' et B' sont en complète contra 
diction avec les affirmations A et B énoncées plus haut. 
Il semble donc que l’expérience que nous venons 
d’imaginer, si elle pouvait être réalisée et si elle réussis 
sait, pourrait conduire à rejeter les conceptions sur la 
constitution de la lumière admises en Physique quan 
tique depuis la théorie de la complémentarité de Bohr. 
Elle s’interpréterait, au contraire, facilement avec 
nos idées sur la coexistence des ondes et des particules 
qui impliquent dans le cas de la lumière, le transport 
de photons localisés par une très faible onde v électro 
magnétique (*).

Dans l’expérience que nous proposons, le point essen 
tiel consiste en ceci que, pendant le phénomène d’inter 
férences, les miroirs resteraient immobiles tandis que 
leur recul initial, mesuré par la compression des 
ressorts, pourrait permettre d’affirmer que les photons 
en se réfléchissant sur les miroirs leur apportent 
constamment de la quantité de mouvement.

(') Voir [4], d.
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On pourrait objecter à l’expérience proposée que 
la pression de radiation due à l’arrivée des photons sur 
un miroir est sujette à des fluctuations de sorte que 
les miroirs après leur recul garderaient un petit mouve 
ment d’agitation susceptible de brouiller les inter 
férences. Mais avec une onde transportant de très 
nombreux photons, les fluctuations pourraient être 
très faibles en valeur relative et l’inertie des miroirs et 
de leurs ressorts pourrait être assez grande pour 
qu’après leur recul initial, les miroirs restent sensi 
blement immobiles.

d. Sur le dispositif d’apodisation. — Les physiciens 
qui cherchent à obtenir de bonnes images lumineuses 
des objets qu’ils étudient sont gênés par les effets 
de diffraction qui interviennent dans tous les instru 
ments d’optique car ces effets ont pour conséquence de 
disperser la lumière autour de l’image prévue par 
l’optique géométrique. Pour cette raison, ils ont cherché 
à éliminer ou du moins à diminuer cette sorte de « pied » 
que présente la courbe de répartition des intensités 
autour de l’image de façon à obtenir, par un procédé 
dit « d’apodisation », une répartition plus concentrée 
des intensités lumineuses et, par suite, une image 
plus nette.

Sans entrer dans les détails de la théorie dont on 
trouvera un résumé très clair dans le traité d’Optique 
de Bruhat réédité par M. Kastler (’), nous voulons

p) Masson, Paris, 1954, p. 242 et ss.
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rappeler le principe de la méthode d’apodisation. 
Considérons un instrument d’optique comportant une 
ouverture, par exemple de forme circulaire. Sans apodi 
sation, la lumière incidente aura la même intensité 
sur toute l’ouverture et le principe d’Huyghens joint 
à la formule d’inversion de Fourier permet de calculer 
la forme de l’image avec son pied gênant. Mais plaçons 
sur l’ouverture du côté de l’onde incidente une lame

Lumière incidente--------- >-

Fig. 5.

absorbante d’épaisseur variable, par exemple plus 
épaisse sur les bords qu’au milieu. Alors sur l’ouverture, 
l’intensité lumineuse ne sera plus uniforme : elle sera 
plus grande au centre que sur les bords. Dans ces 
conditions, la théorie prévoit et l’expérience vérifie que 
la figure de diffraction peut se trouver resserrée et qu’on 
peut ainsi obtenir une image améliorée par apodisation.

Or, il me paraît certain (et l’expérience serait sans 
doute facile à faire) que l’image apodisée serait obtenue 
sans modification si, au lieu d’utiliser une source de 
lumière intense, on utilisait une source très faible, si 
faible que les photons avec leurs trains d’ondes indi 
viduels n’arriveraient que un par un sur l’ouverture 
de l’appareil. Réfléchissons un peu sur ce qui se passe 
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rait. Tous les photons qui passeraient par l’ouverture 
et qui iraient contribuer à former l’image auraient 
traversé la lame absorbante (ceux qui seraient absorbés 
dans cette lame ne nous intéressent pas) et cependant 
ces photons qui n’ont pas subi l’absorption photo 
nique discontinue dans la lame ne se répartiraient 
plus de la même manière dans le plan image qu’en 
l’absence d’apodisation. Cela paraît bien nous imposer 
d’admettre que « quelque chose » qui accompagne le 
photon et qui influe sur son mouvement a été absorbé 
dans la lame par un processus continu et non pas 
par Vabsorption photonique discontinue seule prise en 
considération dans les théories actuelles. Or ce « quelque 
chose » ne peut être que le train d’ondes v qui porte 
et guide le photon et l’absorption non photonique 
de ce train d’ondes dans la lame absorbante a le carac 
tère continu de l’absorption classique des ondes élec 
tromagnétiques. Il y a là, me semble-t-il, un très 
fort argument en faveur de l’idée qu’en théorie de la 
double solution, l’onde v qui porte le photon doit être 
une onde électromagnétique du type classique, mais 
de très faible amplitude.

Cette conception de l’onde porteuse d’un photon 
conduit à penser que, si la presque totalité de l’énergie 
du train d’ondes électromagnétique est certainement 
concentrée à l’intérieur du photon, il est néanmoins 
possible qu’une très petite fraction de cette énergie 
soit répartie dans toute l’étendue du train d’ondes v. 
On peut alors se demander si une diminution suffisam 
ment importante de l’énergie de l’onde c n’obligerait



INEXISTENCE DES ONDES PLANES MONOCHROMATIQUES. 111

pas le photon à céder au train d’ondes qui lui sert de 
support une petite fraction de son énergie interne avec 
naturellement une diminution de sa fréquence comme 
l’exige la relation W = /iv. Il serait donc très intéressant 
d’examiner expérimentalement si des photons qui ont 
réussi à traverser un milieu très absorbant ou une série 
de milieux assez absorbants ne subissent pas une petite 
diminution de fréquence. Si cet effet existait réellement, 
peut-être permettrait-il d’expliquer le déplacement 
vers le rouge de la fréquence de la lumière qui nous 
parvient de nébuleuses très lointaines sans avoir recours 
à l’hypothèse de l’expansion de l’Univers.

4. Problèmes non résolus. — Les remarques que 
nous venons de faire dans les précédents paragraphes 
nous conduisent à nous demander si la représentation 
de la propagation des ondes par des équations linéaires, 
bien que très utile et très suffisante dans un grand 
nombre de problèmes, nous donne bien une image 
complète de la réalité physique. Si un train d’ondes 
« vide », c’est-à-dire ne transportant aucune particule, 
a peut-être, comme le suggère la théorie linéaire, une 
tendance à s’étaler et à s’évanouir, en est-il de même 
d’un train d’ondes qui porte une particule? N’y aurait-il 
pas dans ce cas quelque chose qui empêcherait le train 
d’ondes de s’étaler et lui maintiendrait une forme 
constante? Pour que cela soit possible, ne faudrait-il 
pas introduire dans les équations de propagation de 
l’onde c des termes non linéaires qui seraient négli 
geables dans presque toute l’étendue du train d’ondes,
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mais qui interviendraient d’une façon importante 
sur les bords du train d’ondes et dans la très petite 
région de haute amplitude qui constitue la particule, 
donnant ainsi à l’ensemble formé par la particule et 
l’onde une cohésion dont une théorie linéaire ne peut 
pas rendre compte?

Il est facile de comprendre que des termes non 
linéaires insensibles dans le corps du train d’ondes 
deviennent essentiels dans la région de haute ampli 
tude qu’est la particule. Ces termes assureraient la 
liaison entre la particule et son onde et pourraient 
peut-être expliquer comment la particule peut céder 
de l’énergie à l’onde quand l’amplitude de celle-ci 
devient trop faible. Si les termes non linéaires dépen 
daient des dérivées de la fonction d’onde, on pourrait 
comprendre qu’ils disparaissent dans le corps du 
train d’ondes, mais reparaissent sur ses bords supposés 
suffisamment abrupts.

On peut donner un argument assez fort en faveur de 
l’idée que l’extension des trains d’onde au cours de leur 
propagation telle qu’elle résulte des équations de 
propagation linéaires ne doit pas être exacte. Cet 
argument, c’est le caractère paradoxal du résultat 
que l’on obtient en calculant l’extension progressive 
d’un train d’ondes en Mécanique ondulatoire. Tandis 
que pour des particules de vitesse égale ou presque 
égale à c (photons) les trains d’ondes calculées par la 
théorie linéaire usuelle n’ont pas tendance à s’allonger, 
il n’en est pas du tout de même pour des particules de 
vitesse plus faible. Un calcul fait par M. Bohm montre
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que, si le train d’ondes d’une particule de masse m a 
à l’instant o une longueur Ax0, il aura à l’instant t 
une longueur Ax donnée, à l’approximation non rela 
tiviste par

(9)
Ti11-_______ 5

m% (Aæ0) '-

ce qui, au bout d’un temps t très court, peut s’écrire (1)
h

(io) A,z lAX:- t.

Cette formule traduit un éparpillement des compo 
santes du train d’ondes qui se propagent avec des 
vitesses différentes, ce qui entraîne une désorganisation 
du train d’ondes.

Appliquons cette formule à un électron de 
masse m^io“27g. Comme nous l’avons déjà dit, 
la longueur du train d’ondes d’un électron émis dans 
un laboratoire par un canon à électrons est de l’ordre 
du micron. Or, considérons un électron qui, émis à la 
surface du Soleil, arriverait sur la Terre. La distance 
Soleil-Terre étant de l’ordre de 8 minutes de lumière, 
si la vitesse de l’électron est environ égale à i/io de la 
vitesse c, soit environ 3.io9 cm/s, l’électron mettra 
environ 8o mn = 4 8oo s pour aller du Soleil à la Terre.

Comme — est pour un électron de l’ordre de i, on

(‘) D. Bo h m, Quantum Theory, Prentice Hall, New York, 1951, 
p. 73.

Voir aussi So mme r f e l d , Wellenmechanik, éd. 1961, chap. III, 
§ 1-

M. DE.BROGLIE. 8
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trouve avec Aæ0~io  4 cm,

A 4 800 K Kl(il) Ax ~-------~5.io(cm=:5okm.' 10"*

Le train d’ondes à son arrivée sur la Terre aurait donc une 
longueur de l’ordre de 5o km, c’est-à-dire serait devenu 
pendant le trajet environ 5o milliards de fois plus grand !

Ce résultat est surprenant. Les partisans des inter 
prétations actuelles diront que cela signifie simplement 
que l’incertitude sur la position de l’électron qui était 
de io^4 cm au départ a augmenté énormément pendant 
la durée du trajet. En effet, pour eux, le train d’ondes 
n’est que la représentation d’une probabilité de pré 
sence. Mais je crois que la question est plus grave. En 
réalité, la longueur du train d’ondes est une grandeur 
mesurable qui correspond à des possibilités d’inter 
férences dans des conditions données : elle constitue 
une propriété physique de l’électron. Je pense que, 
si l’on pouvait mesurer cette grandeur physique pour un 
électron ayant accompli un très long traj et, on lui trouve 
rait sensiblement la même valeur, de l’ordre du micron, 
qu’on lui aurait trouvé au moment de son émission.

Bien que quelques tentatives intéressantes aient été 
faites pour étudier des équations d’ondes non linéaires 
assurant la conservation des trains d’ondes, notamment 
par M. Georges Lochak (’), peu de résultats ont encore 
été obtenus dans cette direction. Il y a dans le domaine 
que nous venons seulement d’effleurer tout un ensemble

p) C. R. Acad. Sc., t. 250, i960, p. 1986 et 2140.
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de problèmes très difficiles dont la solution ne pourra 
progresser que lentement. J’ai cru cependant devoir 
les indiquer parce que je pense que, pour développer 
notre conception de la coexistence des ondes et des 
particules, on sera très probablement amené à les. 
envisager.

Note au sujet du paragraphe 2. b. — Dans un mémoire célèbre, 
Einstein, Rosen et Podolsky ont contesté certaines affirmations 
usuelles en Mécanique quantique en partant du postulat suivant 
(postulat E. R. P.) dont l’exactitude paraît évidente : « Si l’on 
peut, sans troubler en aucune façon l’état d’un système, prédire 
avec certitude le résultat de la mesure d’une grandeur sur ce 
système, alors il existe un élément de réalité correspondant à cette 
grandeur ». Divers auteurs ont cru pouvoir mettre en défaut ce 
postulat en s’appuyant sur la mesure du spin. En effet, pour eux, 
dans le problème examiné au paragraphe 2.6, si l’on mesure la
composante <sx du spin sur celui des deux trains d’ondes où oz = + — , 

le fait de trouver ax = ~ impliquerait que pour l’autre train d’ondes

une mesure de ax donnerait nécessairement <sx =—-■ Ils en
2

concluent que cela contredit le postulat E. R. P. car dans le 
deuxième train d’ondes où az= — ~ i ax n’a pas avant la mesure
de valeur définie et n’est donc pas un élément de réalité. L’argu 
ment ainsi opposé au postulat E. R. P. ne nous paraît pas valable
parce que les mesures de a7. sur les trains d’ondes <sz— — et = — —

2 2

sont totalement indépendantes après la séparation très rapide des 
trains d’ondes. La mesure de <sx sur l’un des trains d’ondes ne nous 
donne, après leur séparation, aucune indication sur la valeur que 
fournirait une mesure de <sx sur l’autre train d’ondes. Le pos 
tulat E. R. P. n’est donc pas applicable et ne se trouve aucu 
nement contredit. C’est toujours en considérant des ondes planes 
monochromatiques au lieu de considérer des trains d’ondes limités 
que l’on arrive à des conclusions inexactes.



CHAPITRE VI

LA DYNAMIQUE DU GUIDAGE 
DANS UN MILIEU 

RÉFRINGENT ET DISPERSIF 
ET LA THÉORIE DES ANTIPARTICULES (')

1. Théorie générale. — Dans les chapitres précédents 
nous avions toujours supposé que la propagation de 
l’onde s’opère dans un milieu qui ne possède pas les 
propriétés d’un milieu réfringent et dispersif. Je me 
propose maintenant d’étudier le mouvement d’une par 
ticule dans son onde quand la propagation de celle-ci 
s’opère dans un milieu réfringent et dispersif en insistant 
sur le cas particulièrement intéressant où la vitesse 
de groupe est en sens inverse de la vitesse de phase.

Soit un train d’ondes sensiblement monochromatique 
de fréquence centrale v et de longueur d’ondes corres 
pondante À. V étant la vitesse de phase et n l’indice

c Vde réfraction, on a les relations n = ÿ et v = j- Avec

0) Voir [4], f.
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les notations précédemment utilisées, nous écrirons 

l’onde sous la forme ae^9, avec

0) cp = /; v t - k.r et A : h >
I"’

où n est le vecteur unité définissant la direction de 
propagation. Quand au mouvement de la particule, il est
défini par sa vitesse t>, son énergie W et sa quantité

de mouvement p. Quand la vitesse v est dirigée dans 
le sens de la propagation de l’onde, nous savons que

h -yl’on peut poser p = k = jn. Mais dans le cas où la

vitesse t, par suite de la dispersion, se trouve dirigée 
en sens de la propagation de l’onde, nous serons amenés 
à écrire
(2)

D’où la conclusion remarquable qu’alors la formule 

classique p = y doit être remplacée par p = — j- 

Cela s’explique aisément en remarquant que le vecteur 

de propagation k étant toujours dirigé dans le sens de 
la propagation de l’onde, la vitesse î> et la quantité

de mouvement p de la particule sont alors dirigées 
dans le sens contraire. On doit alors également écrire la 
formule du guidage sous la forme
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Remarquons maintenant que la vitesse v de la 
particule, donc de l’énergie, doit coïncider avec la 
vitesse de groupe définie par la formule de Rayleigh

(4)
i _ À _ i à (nv)
u dv c àv

qui peut s’écrire v = ce qui, quand on a v > o,
-> ->

et p — k, se confond avec la formule v = bien 

connue dans la théorie des équations de Hamilton.
Je vais maintenant introduire une hypothèse que 

j’avais déjà introduite en 1926 dans la note finale de 
mon article intitulé Parallélisme entre la Dynamique du 
point matériel et Voptique géométrique (*). Elle consiste 
à admettre que, dans un milieu réfringent dispersif, 
le mouvement de la particule s’effectue comme si 
elle était soumise à un potentiel traduisant la réaction 
que le milieu exerce sur elle, potentiel défini par

(5) P = W(.-»^1) = W(,-^).

On a alors pour la phase <p de l’onde, la direction de 
propagation étant prise pour axe de x,

(6) dy = Wdt — k dx,

avec

(7)
h

(') J. Physique, séries VI et VII, 1926, p. 1-6.
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Or, nous l’avons vu, dans la théorie du guidage de la 
particule par son onde, le principe fondamental est 
que la phase interne de la particule doit toujours 
coïncider avec la phase ç de l’onde qui la porte, c’est-à- 
dire que l’on doit avoir = (<p).c=l.,. Donc

(8) dyt = (rfcp),(W /, <-) dl ~ W-
W — P e2 dt,

ce qui, compte tenu de (5), nous donne 

(9) Jid<?l= T (I— = Ç)dl-

Remarquons en passant que, dans le cas du vide 

où v = v0, on a P = o et n — ^ ^ = (3, formule

bien connue depuis longtemps. Alors

! w ,___
(io) - d®i= — (i — P2) dt = 27îv 0 v'i — (32 dt,

formule qui exprime, comme nous le savions, que la 
vibration interne de la particule subit le ralentissement 
des horloges relativistes. Nous retrouvons donc les 
résultats que nous avions trouvés précédemment, mais 
nous devons remarquer qu’avec les définitions adoptées, 
l’absence de réfraction dans la propagation de l’onde 
s’exprime par la formule

(")

et non par n = i.
/P'/2
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Revenons maintenant à la formule (9). Elle peut 
s’interpréter en faisant intervenir l’effet Doppler. 
Comme nous comptons la vitesse v de la particule dans 
le sens de la propagation de l’onde dans le système de 
référence où la particule a la vitesse v, la théorie rela 
tiviste de l’effet Doppler nous apprend que, dans le 
système de référence où la particule est immobile, la 
fréquence de l’onde est

V

ce qui nous permet d’écrire

(l3) ^ rfcp,-= 2TTV0 dt„= 2 7TV^I — dt,

car dta = dt\J 1— (32. Or, la formule (i3) est identique 
à la formule (9) et cela nous explique pourquoi la 
coïncidence des phases 9 et 9; nous a conduit à la 
formule (9).

D’ailleurs, inversement, en admettant la coïncidence 
des phases de l’onde et de la particule et en tenant 
compte de l’effet Doppler, on peut partir de la for 
mule (12) et remonter à la formule (5), ce qui justifie 
la forme adoptée pour P.

2. La masse propre modifiée. — Dans la Dynamique 
du guidage d’une particule dans un milieu réfringent 
dispersif, on peut introduire une masse propre modi 
fiée m* différente de la masse propre habituelle m„.
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Nous le ferons de la façon suivante. Nous partons des 
formules valables pour v > o.

(>4) W =
m\ c-

p=
* >-m0v m

v/rrpi’
> w — P>k =----- -—v.c-

Puis, en admettant que la masse propre modifiée 
doit être positive même si v < o, nous poserons

(i5) si v > o ; i >Y n si e < o.
A

La seconde formule (i5) se justifie aisément car k est un 
vecteur dirigé suivant la propagation de l’onde tandis

que p est dirigé suivant le mouvement du corpuscule,

c’est-à-dire en sens inverse de k.

De (15), nous tirons aisément

(16) ml _ W-P

et de là, d’après (5),

Dans les formules (16) et (17), on doit prendre le 
signe + ou le signe — suivant que la vitesse est supé 
rieure ou inférieure à o.

Dans le vide où v = v0= % et où W = ■ m°c ^ 

on a par (17) m*= m0 comme on devait s’y attendre.
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En posant m* on peut écrire la for-

mule (17) sous les formes suivantes. Dans le cas où 
o>oetp = ^> on a

* h h v
m = 7 = 77 > o

et, dans le cas où ç < o et p = —

h
7k

/iV
7k

> on a

> o,

ce qui permet d’écrire la formule générale

(17 bis) m k | dk 
h dv

D’après nos définitions, la masse propre modifiée 
est donc toujours positive. Il faut faire ici une remarque 
essentielle. Si la particule est soumise à un champ 
extérieur qui dans le vide aurait pour effet de l’accé 
lérer, l’action de ce champ s’exerce en réalité sur la propa 
gation de l’onde puisque le potentiel dont il dérive 
figure dans l’équation de propagation de l’onde. Le 
mouvement de la particule n’est pas directement déter 
miné par l’action du champ, mais par le fait qu’elle 
doit se déplacer de façon que sa vibration interne reste 
en phase avec celle de l’onde. Si l’action du champ

extérieur fait croître le vecteur k, il en résultera dans 
le cas v < o qu’elle fera croître la quantité de mouve-

ment p = — k dans le sens opposé à la propagation
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de l’onde. Tout se passera donc comme si la particule 
de masse propre m* était soumise à l’action d’un 
champ inverse de celui qui s’exerce réellement. Si le 
champ appliqué est un champ électrique et si la parti 
cule a une charge électrique e, cette particule se compor 
tera donc comme une particule de masse positive m*, 
mais de charge électrique — e .

3. Comparaison avec la théorie des antiparticules. —
Ce que nous venons de dire rend évident que la théorie 
exposée ci-dessus qui repose essentiellement sur la 
formule (4) de Rayleigh présente une grande analogie 
avec la théorie des antiparticules et c’est là un point 
important qui mérite d’être précisé (*).

La théorie des antiparticules est apparue d’abord en 
Physique théorique pour l’interprétation de la produc 
tion des paires électron-positon sous la forme de la 
théorie des « trous » de Dirac. Dans cette théorie, on 
admet qu’il existe dans le vide un océan d’électrons 
cachés de charge électrique — e et d’énergie néga 
tive — m0c'2. L’apport par un agent extérieur d’une 
énergie 2m0c! entraînerait l’arrachement d’un de ces 
électrons au milieu caché où il se trouvait, milieu qu’il 
est évidemment tentant d’assimiler au milieu subquan- 
tique dont nous avons parlé précédemment, et son 
apparition au niveau microphysique observable sous 
forme d’un électron « normal » d’énergie m0c2. Il en

P) Nous n’insisterons pas ici sur les applications possibles des 
mêmes idées à la théorie des semi-conducteurs.
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résulterait un « trou » dans l’océan des électrons caché à 
énergie négative et c’est ce trou qui se manifesterait 
à nous à l’échelle microphysique observable sous la 
forme d’une antiparticule de masse propre positive m0 
et de charge positive + e qui serait le positon.

Bien que cette théorie des trous ait rendu de grands 
services, elle ne paraît pas bien claire et n’est peut-être 
pas bien en accord avec la conservation de l’énergie; 
en effet, dans l’état initial nous avons une particule 
d’énergie — m0c2 et dans l’état final deux particules 
d’énergie propre totale 2 m0c2, ce qui correspond à une 
augmentation d’énergie de 3m0c2, alors qu’il n’y a eu 
qu’un apport extérieur d’énergie égal à 2m0c2.

Nous allons maintenant proposer une théorie diffé 
rente de la création des couples particule-antiparticule 
reposant sur l’idée que l’antiparticule est une particule 
qui se déplace dans son onde en sens inverse de la 
propagation de celle-ci. En d’autres termes, nous admet 
trons que, lors de l’apparition au niveau observable 
d’un couple particule-antiparticule, l’un des consti 
tuants du couple est une particule normale qui se 
déplace dans son onde en sens inverse de la propaga 
tion de celle-ci. En d’autres termes, nous admettons 
que, lors de l’apparition au niveau observable d’un 
couple particule-antiparticule, l’un des constituants du 
couple est une particule normale dont l’onde se propage 
avec un indice de réfraction
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tandis que l’autre constituant, l’antiparticule, serait 
porté par une onde dont l’indice de réfraction re(v) 
serait tel que, d’après la formule (4) de Rayleigh, 
cette antiparticule se déplace en sens inverse de la 
propagation de son onde. La particule normale, pour 
laquelle le potentiel P serait nul, serait en quelque sorte 
détachée du milieu subquantique (aux perturbations 
d’origine subquantique près), tandis que l’antiparticule, 
bien que décelable au niveau microphysique obser 
vable, resterait plus intimement reliée au milieu sub 
quantique par un potentiel P.

Pour développer cette théorie, nous remarquerons 
d’abord, comme on le fait dans toutes les théories 
reposant sur des équations d’ondes relativistes, que la 
relation

(W-P)2
= p2 + m\ c1

conduit à écrire

(19) W — P = -h ml c'\

où le double signe qui figure au second membre consti 
tue une difficulté bien connue.

Or, il nous paraît nécessaire d’admettre d’abord, 
en accord avec la théorie des trous, que l’énergie propre 
d’une particule est négative dans le milieu caché. 
Pour cette raison, en admettant que le milieu caché 
contient une infinité de particules de masse propre 
ml = — TO0, nous envisageons les deux solutions sui 
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vantes de l’équation (19) correspondant respective 
ment à une particule et à une antiparticule :

a. La solution normale P = o avec m* = mü et 
v =

b. La solution anormale P = 2 W qui correspond, 
d’après (5), aux relations

, 1
^d(nv) _ 1 1 _ 1_ V _ 1

àv ~~ ’ u— dv “ c2 — (’o

et l’on a alors

L’antiparticule apparaît donc au niveau microphy 
sique observable comme ayant une masse propre

positive m0, une vitesse o0 en sens inverse de la propa 
gation de l’onde et, d’après ce qui a été dit au para 
graphe précédent, une charge électrique égale et 
opposée à celle de la particule. C’est bien là ce qu’il 
fallait obtenir.
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4. Introduction de la Thermodynamique cachée des 
particules. — Nous rappellerons quelques points de la 
Thermodynamique cachée des particules qui a été étu 
diée au chapitre IY. Si une particule de masse propre m0 

est portée par un train d’ondes assimilable à une onde 
plane monochromatique, l’entropie définie par la 
Thermodynamique cachée est égale à — k. Mais, si 
le thermostat caché fournit à la particule une quantité 
d’énergie Q (sous forme de chaleur cachée) qui porte 
son énergie propre à la valeur M0c2 = m0c3-f- Q,

l’entropie devient S = — k m„ nL k étant toujours la

constante de Boltzmann. Dans la théorie de la double 
solution, Q apparaît sous la forme d’un « potentiel 
quantique » inconnu des théories anciennes. La varia 
tion de l’entropie est donc fournie par la formule

(21) âS = — k Q
TÏIq  cl

Ceci rappelé, admettons comme plus haut que dans 
le milieu subquantique, les particules ont des énergies 
au repos — m0c2. Lorsque des particules du milieu 
microphysique observable avec une énergie imuc2 
en s’annihilant, une particule du milieu subquan 
tique pourra émerger au niveau microphysique 
observable avec une énergie au repos égale à 
— m0 c2 + 2 t o 0 c2 = m0 c2. Mais, comme l’exige d’ail 
leurs la conservation de la charge, il devra aussi émerger 
une antiparticule d’énergie au repos m„c2, ce qui
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oblige le milieu subquantique à fournir l’énergie 2 m0c2 
à une particule jusqu’alors cachée avec l’énergie 
— rrioc'2. La conservation de l’énergie se trouve alors 
correctement satisfaite, mais d’après la formule (21), 
ce processus entraîne une baisse de l’entropie égale 
à 2 k. C’est la fourniture d’énergie par le milieu sub 
quantique à l’antiparticule qui se traduit par l’inter 
vention du potentiel P qui figure dans les équa 
tions (20). On comprend alors que l’antiparticule soit 
instable parce que son apparition correspond à une 
baisse 2 S = — ik de l’entropie. Il en résulte que si 
une particule et une antiparticule se rencontrent, elles 
auront une tendance à s’annihiler en donnant nais 
sance à deux particules normales d’énergie propre totale 
2m0c2 avec une augmentation d’entropie égale à ik.

Précisons que le potentiel P défini dans le premier 
paragraphe de ce chapitre n’est pas un potentiel 
quantique parce qu’il ne fait pas intervenir le milieu 
subquantique, mais qu’il résulte seulement de l’action 
sur la propagation de l’onde du milieu traversé. 
C’est par exemple ce qui a lieu dans les cas suivants : 
propagation de la lumière dans un milieu dispersif, 
propagation d’une onde électromagnétique hertzienne 
d’hyperfréquence dans un tube à onde progressive le 
long d’une ligne à retard (appareils à ondes directes 
ou à ondes inverses, carcinotrons, etc.), propagation 
de l’onde d’un électron dans un solide (théorie des 
semi-conducteurs), etc.

Mais le potentiel P = Q envisagé dans les deux der 
niers paragraphes peut, lui, être assimilé à un potentiel

M. DE BROGLIE. 9
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quantique parce qu’il traduit une interaction avec 
le milieu subquantique. On doit donc pouvoir le 
définir par la formule générale de définition du poten 
tiel quantique

(22) Q = M0 c- — /h 0 c1

qui donne, puisque m\ = — m„ et que Q = 2m0c‘J, 
M0— m„. On a donc pour l’énergie et la quantité 
de mouvement de l’antiparticule

La valeur obtenue pour p correspond bien à un mou 
vement de corpuscule avec la vitesse r = —• en 
sens inverse de la propagation de l’onde, ce qui est 
satisfaisant.

Il serait assurément prématuré de vouloir dès main 
tenant préciser la nature du milieu subquantique. 
Cependant, en relation avec le problème que nous 
venons d’étudier, on pourrait essayer de se représenter 
le milieu subquantique comme renfermant un nombre 
énorme de particules à énergie négative entre les 
quelles existerait une énergie potentielle si grande 
que l’énergie totale du milieu subquantique
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W„= %—^moir soit positive. L’émission simul-
/

tanée d’une particule et d’une antiparticule augmen 
terait alors W„ de im0c-, mais simultanément ® 
devrait diminuer de odü = —4m0c2 de façon qu’il 
y ait fourniture de l’énergie 2 m0C' par le milieu 
subquantique à l’antiparticule.

Sans insister davantage sur la théorie des antipar 
ticules, nous croyons pouvoir dire que l’ensemble 
des idées exposées dans ce chapitre ouvre des perspec 
tives nouvelles qu’il serait intéressant d’approfondir 
davantage (’).

(') Voir à ce sujet C. R. Acad. Sc. Paris, t. 271, série B, 1970, 
p. 549-



CHAPITRE VII

AUTRES APPLICATIONS 
DES IDÉES

PRÉCÉDEMMENT DÉVELOPPÉES

1. Sur la relation (j) pds = nh de l’ancienne théorie

des quanta et la théorie de la double solution ('). — Consi 
dérons, par exemple dans un atome d’hydrogène, un 
état stationnaire dont la fonction d’onde a la forme

(0 — = a (;r. y, z) en
=)]

Ce qui caractérise une onde stationnaire, c’est que son 
amplitude ne dépend pas du temps et que sa phase 
est linéaire en t.

La connaissance de la fonction o, nous permet de
----- -7*~

tracer en chaque point de l’atome le vecteur grad<p4 et, 
par suite, si nous partons d’une position initiale P 
supposée donnée de l’électron, nous pourrons en

(') Nous faisons ici abstraction des perturbations subquantiques.
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principe tracer de proche en proche toute la trajectoire 
de guidage qui part de P.

Supposons maintenant que la trajectoire de guidage 
en question soit fermée, c’est-à-dire que partie de P, 
elle revienne en P. Comme la fonction d’onde doit 
être uniforme, donc avoir une valeur bien déterminée 
en chaque point, on doit avoir

avec n entier positif ou négatif, ds étant un élément de 
la trajectoire de guidage. Mais la théorie du guidage 
nous dit que la quantité de mouvement en chaque

point de sa trajectoire p est égale à — grad?i. La 
formule (2) peut donc s’écrire

(3)

ce qui est la formule définissant les trajectoires fermées 
stables de l’ancienne théorie des quanta.

Mais il serait tout à fait faux d’en conclure que 
l’ancienne théorie des quanta de Bohr-Sommerfeld 
est exacte. En effet, les mouvements et les trajectoires 
considérés dans cette ancienne théorie des quanta 
étaient calculés à l’aide de la Mécanique corpusculaire 
classique (newtonienne chez Bohr, relativiste einstei- 
nienne chez Sommerfeld). Or, ici les mouvements et 
les trajectoires doivent être calculés à l’aide de la 
Mécanique ondulatoire et de la théorie du guidage.
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Diverses remarques permettent de préciser ce fait. 
Par exemple, dans la théorie primitive de l’atome 
d’hydrogène de Bohr, les trajectoires circulaires sont 
des grands cercles de la sphère centrés sur le noyau de 
l’atome tandis que dans la théorie de la double solution, 
on obtient comme trajectoires de guidage des petits 
cercles de cette sphère centrés sur un axe Oz avec

~7T?i — dz où a est l’azimut autour de l’axe de

symétrie Oz et la formule (3) est exacte pour ces trajec 
toires de guidage. On doit aussi noter que pour les 
états complètement stationnaires, c’est-à-dire ceux 
pour lesquels ot se réduit à une constante, la trajectoire 
de guidage se réduit à un point et que, dans ce cas, 
la formule (3) reste exacte en prenant n = o, valeur de n 
qui était exclue dans l’ancienne théorie des quanta où n 
devait être un nombre entier supérieur à o. Pourquoi 
pouvons-nous trouver ici des trajectoires réduites à 
un point ? C’est parce que dans l’ancienne théorie des 
quanta, l’électron dans l’atome d’hydrogène était 
seulement soumis à la force coulombienne dirigée 
vers le noyau et que cette force ne pouvait être équi 
librée que par la force centrifuge résultant du mouve 
ment de l’électron, ce qui excluait que l’électron pût 
rester immobile. Mais il n’en est pas de même dans la 
théorie du guidage où l’électron est soumis à l’action 
du potentiel quantique et où, comme je l’ai montré 
il y a longtemps ('), l’électron peut rester immobile

(') Voir [4], a, p. 119 et ss.
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quand la force quantique équilibre la force coulom 
bienne, ce qui a lieu précisément dans les états complè 
tement stationnaires.

Le grand intérêt de ce qui précède me paraît être 
de faire voir que la théorie du guidage permet de 
retrouver, avec les modifications nécessaires indiquées 
plus haut, des formules analogues à celles qui servaient 
de bases à l’ancienne théorie des quanta et de retrouver 
aussi, convenablement transposé, le raisonnement 
qui m’avait permis dans ma Thèse d’interpréter ces 
formules.

2. Sur une expérience récente de MM. Pfleegor et 
Mandel [11]. — Une belle expérience récente de Pfleegor 
et Mandel (x) a démontré que l’on peut déceler l’exis 
tence des franges d’interférences dues à la superposition 
des ondes émises par deux lasers indépendants dans des 
conditions telles qu’il n’y ait pratiquement jamais 
deux photons arrivant à la fois dans l’appareil d’inter 
férences. L’interprétation de ce résultat avec les idées 
actuellement admises en Physique quantique est 
difficile comme on le voit en lisant les conclusions de 
l’article de Pfleegor et Mandel. Au contraire, elle nous 
semble très simple et très claire avec nos idées sur la 
coexistence des ondes et des particules.

En effet, quand on applique ces idées au cas parti 
culier des ondes électromagnétiques et des photons, 
on est amené à considérer l’onde v des photons comme

(') Phys. Rev., vol. 159, n° 5, 1967, p. 1084.
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une très faible onde électromagnétique obéissant 
très sensiblement aux équations de Maxwell comme 
nous l’avons expliqué dans notre livre Ondes électro 
magnétiques et Pholons ([4], d). C’est cette circonstance 
qui explique, pensons-nous, que la théorie électro 
magnétique de Maxwell suffise à interpréter un très 
grand nombre de phénomènes bien qu’elle ignore 
l’existence, cependant certaine, des photons. En effet, 
suivant la loi du guidage, la répartition des photons 
dans l’espace et la phase de leur vibration interne se 
trouvent être entièrement en accord avec les prévisions 
de la théorie électromagnétique. Dans un champ d’in 
terférences, la probabilité de la présence d’un photon 
en un point est donc proportionnelle au carré de 
l’amplitude (intensité) de l’onde e en ce point de sorte 
que la répartition statistique dans la région d’inter 
férences d’un grand nombre de photons est bien celle 
que prévoit la théorie électromagnétique classique.

En utilisant ces conceptions, nous allons maintenant 
développer notre interprétation du résultat de l’expé 
rience de Plleegor et Mandel. Pour nous, dans la 
cavité d’un laser, il s’établit par un processus quan 
tique d’émission stimulée une onde électromagné 
tique v stationnaire sur laquelle des photons sont 
émis par certains atomes. La cavité a une partie de 
sa paroi qui est un peu semi-transparente. L’onde v 
intérieure filtre donc légèrement à l’extérieur pendant 
toute la durée de l’émission laser. S’il y a deux lasers 
indépendants disposés de façon que les ondes v qu’ils 
émettent aillent se superposer dans un appareil d’inter 
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férences comme c’est le cas dans l’expérience étudiée, 
les franges d’interférences existent dans l’appareil 
même quand aucun photon ne vient permettre de les 
détecter. 11 est d’ailleurs physiquement tout à fait 
évident que chaque photon arrivant dans la région 
d’interférences provient de l’un des lasers, celui où se 
trouve l’atome qui l’a émis par une transition stimulée.

Si les lasers émettent très peu de photons à l’exté 
rieur, un photon sortira de temps en temps de l’un des 
lasers et arrivera isolément dans la région d’inter 
férences. S’il y manifeste sa présence par une localisa 
tion observable, ce sera le plus souvent dans une région 
de grande amplitude de la superposition des ondes e 
émises par les deux lasers. En effet, dans la région d’in 
terférences, le mouvement des photons est guidé par 
cette superposition et non pas par l’onde simple qui 
le portait à la sortie du laser où il est né.

Si, au bout d’un temps sullisammcnt long (à l’échelle 
de la durée très courte d’une impulsion laser), il arrive 
dans la région d’interférences un nombre suliisant de 
photons, provenant de l’un ou de l’autre laser, pour que 
l’on puisse détecter les franges d’interférences, ces 
photons se répartiront statistiquement dans cette 
région d’interférences proportionnellement aux inten 
sités locales des ondes électromagnétiques v. Bien que 
les photons arrivent isolément les uns après les autres, 
on pourra donc finalement observer les franges d’inter 
férences exactement pour la même raison qu’on peut 
les observer dans les expériences d’interférences ordi 
naires à très faible intensité du type Taylor. L’interpré 



AUTRES APPLICATIONS. 139

tation du résultat expérimental de Pfleegor et Mandel 
nous paraît ainsi obtenue d’une façon qui nous semble 
très claire et très satisfaisante.

Il paraît important d’insister sur certains points de 
cette interprétation. Un photon provenant de l’un ou 
de l’autre laser et arrivé dans la région d’interférences 
est guidé, cela nous paraît physiquement certain, par 
la superposition des ondes émises par les deux lasers 
et c’est pour cette raison qu’il est impossible de savoir 
dans lequel des deux lasers il a pris naissance. Mais 
notre interprétation de cette impossibilité ne fait inter 
venir ni les relations d’incertitude d’Heisenberg, ni 
l’indiscernabilité des bosons qui, pour nous, n’est 
qu’une apparence résultant des perturbations aléatoires 
subies par les photons et n’implique pas une perte de 
personnalité (').

Une des erreurs commises dans les interprétations 
que l’on cherche actuellement à donner de ce genre de 
phénomènes nous paraît de parler d’interférences 
entre photons comme si les interférences étaient dues 
aux photons. On sait, en effet, depuis Fresnel, que les 
interférences sont un phénomène d’origine ondulatoire. 
Les interférences d’une onde électromagnétique v 
se produisent, selon nous, d’une façon classique, mais 
en raison de la très faible intensité de l’onde e, elles ne 
sont pas par elles-mêmes observables. Néanmoins, 
en raison du guidage du photon par la superposition 
des ondes o dans la région d’interférences, l’arrivée

(') Voir à ce sujet le chapitre VIII.
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d’un photon en un point de cette région est d’autant 
plus probable que l’amplitude de l’onde v est plus 
grande en ce point. C’est donc dans les régions de plus 
grande intensité de l’onde que les photons auront le 
plus de chance de produire des effets locaux observables 
tels qu’effet photoélectrique, noircissement local d’une 
plaque photographique, etc. En résumé, ce ne sont pas 
les photons, mais les ondes électromagnétiques v qui 
produisent les interférences; le rôle des photons, qui 
est essentiel, est seulement de permettre de détecter 
les interférences par la manière dont ils se répartissent 
statistiquement dans la région où ces interférences se 
produisent.

3. Sur l’interprétation des relations d’incertitude. —
Nous allons étudier le sens que prennent les relations 
d’incertitude dans notre réinterprétation de la Méca 
nique ondulatoire qui admet la réalité physique de 
l’onde et la localisation permanente de la particule 
dans son onde.

Considérons d’abord une seule particule et son équa 
tion d’ondes. Si l’on admet que l’onde est une réalité 
physique, les variables x, y, z, l qui figurent dans son 
équation de propagation sont les variables d’espace et 
de temps qui n’ont aucun caractère aléatoire. Mais, si 
l’on admet aussi que la particule est constamment 
localisée dans son onde comme le suppose la théorie 
de la double solution, la particule a à chaque instant 
des coordonnées X, Y et Z et ces coordonnées ont au 
cours du temps un caractère aléatoire car elles résultent
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à chaque instant de la superposition d’un mouvement 
régulier de guidage et de perturbations aléatoires 
provenant d’un milieu subquantique. Nous pouvons 
écrire la première relation d’incertitude sous la forme

(i) [ÔX]!.^,..]^/,,

les deux autres ayant des formes analogues. Dans (4), 
[SX],- est l’incertitude sur la valeur de la coordonnée X 
de la particule à l’instant initial avant toute mesure et 
[opx]f est l’incertitude sur la valeur de la composante x 
de la quantité de mouvement dans l’état final quand 
on a elfectué une mesure de px sans en connaître encore 
le résultat. Et naturellement, si ox désigne la longueur 
du train d’ondes initial dans le sens des x, on a dans 
cet état initial

(5) oX = ox,

mais, dans cette formule, oXet ox ont des significations 
tout à fait différentes puisque ox est une longueur au 
sens usuel du mot tandis que SX est une incertitude 
sur la position de la particule.

Passons maintenant à la quatrième relation d’incer 
titude. Par analogie avec (4), nos conceptions nous 
amènent à écrire
(6) [ÔT]i.[ÔEj/^/i,

où [ST],- est l’incertitude sur l’époque où la particule 
dans son mouvement aléatoire occuperait une position 
donnée dans le train d’ondes initial et où [SE]/ est 
l’incertitude sur la valeur de l’énergie de la particule
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après une mesure de cette énergie dont on ne connaît 
pas encore le résultat. On aura dans l’état initial la 
relation analogue à (5)

(7) o T = cïq

mais ici encore oT et ot ont des significations tout à fait 
différentes, car et est un intervalle de temps au sens 
ordinaire du mot tandis que oT est l’incertitude sur 
l’époque où la particule est présente en un point donné 
de l’espace.

Comme ot est le temps que met le train d’ondes à 
passer en un point donné de l’espace, nous avons ainsi 
obtenu des interprétations précises et symétriques de 
quatre relations d’incertitude et nous avons donné 
à la quatrième relation d’incertitude un sens tout à fait 
analogue à celui de la relation classique en Optique 
ov.^^i, où ov est la largeur spectrale d’un train 
d’ondes et t  la durée de son passage en un point de 
l’espace.

Il paraît intéressant de souligner que, dans les rela 
tions d’incertitude écrites sous les formes (4) et (6), 
les grandeurs portant l’indice /, qui sont des incertitudes 
sur le résultat encore inconnu d’une mesure qui a été 
effectuée, peuvent être regardées comme des incer 
titudes prévues par le théoricien dans l’état initial 
avant toute mesure. Mais ce second point de vue, qui est 
conforme aux conceptions usuellement adoptées, ne 
doit pas conduire à rejeter l’idée que, dans l’état initial, 
les grandeurs non encore mesurées ont à chaque
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instant une valeur bien déterminée, valeur qui peut 
n’avoir aucun rapport simple avec celle que va leur 
imposer le processus de mesure si on l’effectue.

Jusqu’ici nous avons envisagé le cas d’une seule 
particule. Pour un ensemble de particules, on introduit, 
depuis les travaux de Schrodinger en 1926, la propa 
gation d’une onde associée au système dans son espace 
de configuration. Cette onde, évidemment fictive, obéit 
dans l’espace de configuration à une équation de propa 
gation où figurent les coordonnées X*, Y/., Z* des 
particules du système et le temps t. Ici donc on substi 
tue dans l’équation de propagation aux variables x, y, z 
à caractère non aléatoire les coordonnées des particules 
du système qui, elles, ont un caractère aléatoire. On est 
ainsi amené par une pente naturelle, mais à tort nous 
semble-t-il, à considérer les coordonnées x, y, z de 
l’équation d’ondes d’une particule comme des grandeurs 
aléatoires et je crois que le succès de la méthode de 
l’espace de configuration a ainsi beaucoup contribué à 
fausser l’interprétation de la Mécanique ondulatoire. 
D’ailleurs, comme Aharonov et Bohm l’ont montré (’), 
le temps t qui figure dans l’équation de propagation 
dans l’espace de configuration est toujours la variable 
ordinaire de temps et n’a pas de caractère aléatoire, ce 
qui introduit une curieuse dissymétrie entre les variables 
d’espace et de temps dans l’espace de configuration. 
Nous pensons que cette dissymétrie provient de la 
nature à la fois appauvrie et statistique de la repré-

(') Phys. Rev., vol. 122, 1961, p. 1649.
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sentation, que nous donne la méthode de l’espace de 
configuration, de la propagation réelle des ondes dans 
l’espace physique. Sans insister sur cette question qui 
sera étudiée dans le dernier chapitre du présent volume, 
nous allons donner une forme précise et symétrique 
des relations d’incertitude de l’espace de configuration.

Numérotant les particules à l’aide d’un indice k, 
nous écrirons les trois premières relations d'incer 
titude pour le kiime particule dans l’espace de confi 
guration sous la forme

(8) [dX*j(.|'ô/>.r(']/^/i,

les [SX*]; et les [SpæJ/ étant définies comme les [SX]; 
et les [SpJ/ dans (4).

Pour la quatrième relation d’incertitude, nous écri 
rons par analogie avec (6)

(9) [dTvrôjq^/,,

avec, dans l’état initial,

(10) ôT = â/,

où ST est l’incertitude sur l’époque où le point figuratif 
du système se trouve en un point donné de l’espace de 
configuration tandis que ot est la durée du passage 
de l’onde fictive en ce point. Ainsi l’interprétation 
précise et symétrique des relations d’incertitude que 
nous avions obtenue dans l’espace ordinaire se trouve 
étendue au cas de l’espace de configuration pour un 
ensemble de particules.
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Bohr a donné de la relation oE,ot^.h pour une 
particule une interprétation tout à fait différente de 
la nôtre. Pour lui, si l’on effectue une mesure de 
l’énergie E d’une particule qui dure un temps St, 
cette mesure ne pourrait faire connaître la valeur de E
qu’avec une incertitude oEA^,^-- Avec Aharonov et

Bohm, je pense que cette interprétation qui brise la 
symétrie entre les quatre relations d’incertitude est 
inexacte. Si Bohr l’a adoptée, c’est parce qu’il admet 
tait que dans la relation SE .St^. h, t est le temps au 
sens usuel du mot, variable non aléatoire, tandis qu’il 
reconnaissait le caractère aléatoire des grandeurs Sx, 
r->y, oz qu’on fait habituellement figurer dans les trois 
premières relations d’incertitude. L’erreur commise 
nous paraît provenir de la confusion entre les variables 
d’espace et de temps x, y, z, l non aléatoires et les 
grandeurs aléatoires X, Y, Z, T définies plus haut. Mais 
seule, nous semble-t-il, une théorie qui admet la loca 
lisation de la particule dans son onde peut permettre 
de bien distinguer les deux sortes de grandeur et, en 
rétablissant la symétrie en toutes les relations d’incer 
titude, d’en bien comprendre la véritable signification.

4. Sur le paradoxe de Gibbs. — 11 existe en Thermo 
dynamique classique une difficulté bien connue sous 
le nom de « paradoxe de Gibbs ». Rappelons-la sous 
une forme simple en considérant une enceinte de 
volume 2 Y divisée en deux compartiments égaux par 
une cloison C. Dans l’un des compartiments se trouve

M. DE BROGLIË. 10
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un gaz A formé de N molécules et dans l’autre un gaz B 
comprenant également N molécules, l’ensemble étant 
maintenu à une température uniforme T. Chacun des 
gaz occupant un volume Y, la thermodynamique clas 
sique nous apprend que son entropie est de la forme 
S = k N logV -f- . . ., les termes non écrits ne dépen 
dant pas du volume. Si l’on retire la cloison C, l’entropie 
de chacun des deux gaz va croître de k N logV à 
k N log 2 V, soit de /cNlog2. L’entropie totale du 
système croîtra donc de 2/cN log2. Cette augmenta 
tion de l’entropie est toute naturelle puisque la diffusion 
des deux gaz l’un dans l’autre est un phénomène irré 
versible provoquant une augmentation de l’entropie. 
Le paradoxe apparaît quand on suppose que les deux 
gaz A et B sont identiques car alors, quand on enlève 
la cloison C, il n’y a aucun phénomène de diffusion 
augmentant l’entropie. Si l’on suppose que les para 
mètres caractérisant la nature d’un gaz peuvent varier 
d’une façon continue, il y aurait une augmentation 
de l’entropie égale à 2/cN log2 si les deux gaz sont 
infiniment peu différents et une variation nulle s’ils 
sont identiques. Bien que la nature d’un gaz ne puisse 
pas varier d’une façon continue, cette variation brusque 
ne semble pas naturelle : c’est le paradoxe de Gibbs.

Un paradoxe analogue existe dans la symétrisation 
des fonctions d’ondes des bosons. Soient deux bosons 
se déplaçant dans l’espace de façon que leurs ondes 
se superposent dans une même région. Alors, si les 
bosons sont de nature différente, il n’y a pas lieu de 
symétriser la fonction d’ondes dans l’espace de confi 
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guration du système qu’ils forment. Mais, si les bosons 
sont de même nature, il faut symétriser. Ainsi, si l’on 
suppose que les paramètres (par exemple, les masses) 
caractérisant les particules varient d’une façon continue, 
il n’y a pas lieu de symétriser pour deux particules 
différant infiniment peu tandis qu’il faut symétriser 
pour deux particules de même nature. Il s’introduit 
là une discontinuité assez paradoxale tout à fait ana 
logue à celle qui fut jadis signalée par Gibbs.

La parenté des deux problèmes est encore mieux 
montrée par le fait que, si l’on admet les statistiques 
quantiques liées à l’indiscernabilité des particules, le 
paradoxe de Gibbs disparaît. On sait, en effet, que, 
quand on introduit pour un ensemble de N bosons 
de même nature les statistiques quantiques, on est 
amené à diviser par N ! le nombre des complexions 
admises par la statistique classique. Or, en introduisant 
cette division par N ! dans le calcul de la partie de 
l’entropie d’un gaz de N molécules qui dépend du 
volume V, on trouve
(ii) S = /»log^p) avec N!'~NNe_°'.

i\ !
Si alors St désigne l’entropie totale de deux gaz de N 
molécules remplissant des volumes V séparés et si S2 
désigne l’entropie de deux gaz de nature différente 
ayant chacun N molécules et occupant ensemble un 
même volume 2 Y, on trouve

('■0 Si-S.zraA-log (2 V )N 
N!

2 f, lOK
N!

: 2 k N log2,

résultat conforme à la Thermodynamique classique.
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Mais pour un seul gaz de 2 N molécules remplissant 
le volume 2 V, la formule (11) donne

(i3) S5 k lo« (aV)aN
2N!

et la différence S3-S.1 est égale à

(i4) Al°g
(2 V)-N 

aN!
1 k lot

V>'
N!

Le paradoxe de Gibbs a donc en apparence disparu, 
mais c’est seulement parce que nous avons reporté 
la discontinuité gênante sur l’introduction brusque

du facteur ^ lié à l’indiscernabilité des particules. Ainsi 

la difficulté n’est pas réellement éliminée.
Nous voulons maintenant examiner cette difficulté 

en nous plaçant au point de vue de la théorie de la 
double solution.

Je ne développerai pas ici la manière dont la théorie 
de la double solution interprète la symétrisation de la 
fonction d’ondes des bosons de même nature dans l’es 
pace de configuration. Je dirai seulement que le point 
essentiel de cette interprétation est le suivant. Si deux 
particules de même nature suivent dans l’espace phy 
sique sur leurs ondes v respectives des trajectoires de 
guidage corrélées, une perturbation provenant du 
milieu subquantique peut avoir pour effet de leur faire 
échanger leurs positions dans l’espace de telle sorte 
qu’ensuite chacune des particules suive la trajectoire 
qui était celle de l’autre avant la perturbation. Cette
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conception qui respecte l’individualité des particules, 
tout en expliquant leur équivalence statistique, per 
met d’ailleurs d’expliquer immédiatement l’apparition

du facteur ^ dans les évaluations de la statistique de

Bose-Einstein pour les bosons.
Sans insister ici sur cette interprétation des statis 

tiques qui sera développée dans le dernier chapitre 
de ce volume, je rappellerai que le mouvement d’une 
particule est défini dans notre théorie par le principe 
fondamental que la vibration interne de la particule 
doit rester constamment en phase avec celle de l’onde 
à l’endroit où elle se trouve. Pour deux particules de 
même nature ayant la même masse propre, les ondes p 
des deux particules obéissent à la même équation 
d’ondes et toute trajectoire de guidage de l’une des 
particules peut aussi être une trajectoire de guidage de 
l’autre particule. C’est là ce qui rend possible la permu 
tation des particules et ce qui justifie l’introduction 
de la statistique de Bose-Einstein pour les bosons.

Mais supposons maintenant que les particules aient 
des masses propres différentes. Alors aucune des deux 
particules ne pourra suivre une trajectoire de guidage 
de l’autre particule parce que l’accord de sa phase 
interne avec la phase de l’onde p de l’autre particule 
ne peut pas se maintenir.

La question mérite cependant d’être examinée de 
plus près. Pour cela, considérons ce qui se passerait 
si une particule de masse m0 suivait une des lignes de 
guidage d’une onde p correspondant à une masse propre
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différente m0 + Sm0. La variation pendant un temps dt 
de la phase <p de cette onde en un point qui se déplace 
sur la trajectoire de guidage avec la vitesse v = fie est

(15 ) do = (m0 -t- ô m(l) c2 y/1 — |32 dt,

alors que la variation de la phase interne de la 
particule de masse propre m0 animée le long de cette 
ligne de guidage de la vitesse v = 3c est

(16) r/cpi= m0 c2 i — fildt.

Nous voyons qu’alors

(17) 0 0 — oor— om„ r2 y 1 — 32 dt = h ov„\ i — |32 dt,

où v0 est la fréquence propre interne de la particule 
de masse propre m„. Donc si om#^o, c’est-à-dire 
si la masse propre figurant dans l’équation de propa 
gation de Fonde est différente de la masse propre de 
la particule, l’accord de phase entre la particule et 
l’onde ne peut pas se maintenir et le guidage de la 
particule par Fonde ne peut pas avoir lieu.

Cependant nous voyons que l’accord de phase entre 
la particule et Fonde peut se maintenir approxima 
tivement pendant un temps t  défini par

(18) ~ (0® — ôy) = u 0 v„ y/i — 32 t  = îü  Tl,

z étant très petit. Comme l’emploi de l’espace de confi 
guration est non relativiste, nous pouvons négliger 3-
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devant l’unité et écrire (18) sous la forme

(18 bis) t  = £T0^Î-,om0

où T0= —= ——v est la période interne de la par- v0 m0c-
0771ticule. Tant que —- n’ est pas beaucoup plus petit /«()

que s, aucun accord durable de phase ne pourra s’établir 
entre l’onde et la particule. Mais, si par la pensée nous 
faisons tendre om0 vers zéro, le temps t  de quasi- 
cohérence deviendra d’autant plus long que ôm„ sera 
plus petit.

On arrive ainsi à concevoir comment peut s’établir 
d’une façon continue la symétrisation pour les molécules 
de deux gaz dont les molécules ont des masses diffé 
rentes quand la différence de ces masses tend vers zéro. 
Ainsi disparaît la discontinuité paradoxale que l’on 
rencontrait à la fois dans le paradoxe de Gibbs et 
dans l’établissement des statistiques quantiques pour 
les bosons. La théorie de la double solution, en intro 
duisant l’idée de l’accord de phase entre la particule 
et son onde dans le mouvement de guidage, parvient 
ainsi à lever une difficulté qui était restée insoluble.

5. Spin et moment de quantité de mouvement. — Dans
l’étude des systèmes atomiques contenant des électrons, 
on est amené à considérer le spin comme une grandeur 
ayant la même nature physique qu’un moment de 
quantité de mouvement parce que c’est la somme
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de ces deux grandeurs qui obéit à un théorème de 
conservation.

Cependant, cette conclusion se heurte à une difficulté 
car le spin défini par la théorie de Dirac n’a pas les 
mêmes propriétés de variance relativiste qu’un moment 
de quantité de mouvement. Les composantes S.r, Sr, 
S3 d’un moment de quantité de mouvement S se trans 
forment, en effet, comme les composantes d’espace M,-, 
M„, Mxr d’un tenseur antisymétrique du second ordre. 
Au contraire, le vecteur spin c défini par la théorie 
de Dirac est formé par les trois composantes d’espace 
d’un quadrivecteur d’espace-temps dont la compo 
sante de temps est nulle dans le système propre de la 
particule. Cette différence de variance relativiste entre
les vecteurs S et a ne paraît pas permettre de les 
considérer comme des grandeurs de même nature 
physique. L’examen de cette difficulté va nous conduire 
à une conclusion qui est très intéressante.

Pour aborder l’étude de cette question, rappelons 
d’abord comment on peut relier dans le cas des compo 
santes de la quantité de mouvement la valeur moyenne 
fournie par la Mécanique quantique avec les concep 
tions de la théorie de la double solution. En Méca 
nique quantique, on fait correspondre aux compo 
santes px, py, p- de la quantité de mouvement les

, T) () îï <) h () T !
operateurs-----r -r—*---- : -r-•>----- . La valeur moyenner i O.r l a y t <)z J
de pæ est définie en Mécanique quantique par la formule

(19) o\,W dz.
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Posons TF = aes?, avec a et o réels, il vient

t -- r ^ ' r <>a,/(io Ois) «,.= — / a-dx------ / a-r-dz.
J ()x h J dx

Comme a est toujours nul aux limites de l’onde, le 
second terme de l’expression de px est nul et il reste

On trouve des formules pour p, et p:, d’où

Or, en théorie de la double solution, la probabilité de la 
présence de la particule dans l’élément de volume dx est 
donnée par p dx — a'2 dx = j U' |2 dx et l’on doit poser

On voit ainsi que la valeur (21) prévue par la Méca 
nique quantique et la valeur (22) donnée par la théorie 
de la double solution sont égales. Mais, tandis que la 
Mécanique quantique répartit la quantité de mouve 
ment dans toute l’onde, la théorie de la double solution 
la considère comme attachée à la particule dont la 
probabilité de présence en un point est |Tfr|'=a‘2.

Passons maintenant au cas du moment de quantité

de mouvement S. Si nous considérons un système 
contenant une particule en mouvement autour d’un



154 PRINCIPES GÉNÉRAUX.

point central (comme c’est le cas pour l’atome de 
Bohr dans la théorie primitive), le moment de quantité 
de mouvement a pour composantes

(23) s x = ypz— zpy, Sv= zpr — .rp-, Sx py — y p,,.

La Mécanique quantique utilise ces expressions en y 
remplaçant px, p}, p- par les opérateurs définis plus 
haut. Elle pose donc

Remplaçons encore TF par a eh avec a et ç réels. 
Nous obtenons, en tenant compte du fait que a s’annule 
aux limites de l’onde,

La théorie de la double solution, posant p = — grad o, 
écrit
( 26) S* = J {y P Z - zPy) aP-dr.—-^ u-(y^ - z -jÇj dz.

Des formules analogues sont obtenues pour S, et S-. 
Nous voyons de nouveau ici que les valeurs moyennes 
sont les mêmes en Mécanique quantique et eu théorie 
de la double solution, mais dans cette théorie le moment 
de quantité de mouvement, au lieu d’être réparti 
dans toute l’onde, est attaché à la particule dont la 
position dans l’onde est aléatoire.
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Nous sommes maintenant en mesure d’étudier le 
cas du spin. Avec les conceptions de la théorie de la 
double solution, le spin de l’électron ne doit pas être 
regardé comme attaché à un système physique où 
une particule est en mouvement; nous devons le consi 
dérer comme une grandeur interne attachée à une 
particule dont nous ignorons la structure, mais que 
nous pouvons en première approximation considérer 
comme ponctuelle. Nous devons donc nous contenter 
d’attacher à l’électron toujours localisé dans l’onde

un vecteur ü dont la valeur moyenne devra nous 
donner un vecteur ayant les propriétés de variance 
d’un moment de quantité de mouvement. Nous allons 
voir que ce vecteur nest pas le vecteur u de la théorie 
de Dirac.

Dans mon livre intitulé Théorie générale des particules 
à spin publié par Gauthier-Villars en 1942 et réédité 
en 1954 ('), j’ai développé des calculs concernant la

-V
relation du moment de quantité de mouvement S et
du vecteur spin n de la théorie de Dirac. J’ai d’abord 
démontré que, si l’on considère le mouvement d’une
particule dans un système matériel, le moment de

->
quantité de mouvement S se transforme suivant les 
formules

{'■>-) S.,.= S,,,, y 1 ■—j3-, Sy= S„v \ 1 — ,3-, S5= Sos

(•) p. 5o-53.
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quand on passe du système de référence où le système 
est au repos au système de référence où il est en mou 
vement suivant Oz avec la vitesse [i c. J’ai montré aussi
que le vecteur spin <j de Dirac se transforme lors d’un 
changement de système de référence analogue par les 
formules

(28) ---O'o.r. ---°0 v.
Oq s

de sorte, qu’en vertu de la contraction de Lorentz 
(di = d~n\j 1 — [Ü-), ce sont les intégrales j' Gxd-,j'ayd~, 

fv-.ch qui se transforment comme Sæ, Sr, S-.

Le vecteur cr de Dirac n’est donc qu’une « densité de 
spin » et, avec les conceptions de notre théorie, nous 
devons chercher à attacher à l’électron un vecteur

spin 2 diffèrent de 1 tel que, S étant la valeur moyenne 
de la quantité de mouvement interne de l’électron,

(29) S==f
avec p =2 |1lr/.|'. Ceci est bien facile à faire car, 

1
puisque nous avons S= J"ad"., il suffit de poser
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C’est le vecteur 2 ainsi défini, et non le vecteur g  de 
Dirac, que nous devons en théorie de la double solution 
considérer comme le spin attaché à l’électron pendant 
son mouvement aléatoire dans l’onde.

D’ailleurs comme o dz est un invariant ( car p =
V 1

et dt  = d^n v'i — d’où p dG — p0<iTo^, la formule (2g)

nous montre que les vecteurs S et 2 ont la même
->

variance. C’est donc bien le vecteur 2, et non le

vecteur g de Dirac, qui a la nature physique d’un 
moment de quantité de mouvement.

De plus, il paraît certain que les grandeurs attachées 
à une particule doivent pouvoir se définir à l’aide de 
la seule onde physique v et, par suite, être indépen 
dantes de la normalisation de l’onde statistique "*F. 
C’est bien le cas pour la quantité de mouvement
_y ----->
p — — grad 9 puisque la phase 9 est la même, à une 
constante additive près, pour les ondes v et 9, la 
normalisation ne portant que sur l’amplitude a. Or, le
vecteur g de la théorie de Dirac dépend des compo 
santes ^F* de l’onde statistique *F de Dirac et donc de

la normalisation par la formule J" I "^a-|2 ^ = 1.
1

-V J

Au contraire, le vecteur 2 = - est une fonction homo-
P

gène des amplitudes a/; qui ne dépend pas de la valeur
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absolue de ces ak : elle est donc indépendante de la 
normalisation. C’est une raison de plus pour admettre

que c’est le vecteur Z qui est le spin attaché à l’élec 
tron.

Remarquons enfin que les expressions ypz — zpr, . . . 
des composantes du moment de quantité de mouve 
ment se justifient tout naturellement dans une théorie 
où l’on considère la particule comme constamment 
localisée, comme c’est le cas en Mécanique ancienne, 
classique ou relativiste, et en théorie de la double 
solution. Mais partir de ces expressions pour construire 
les opérateurs y{p=)op— z(px)tll„ . . . dans une théorie où 
la particule n’est pas considérée comme localisée est 
tout à fait poradoxal. En le faisant, la Mécanique 
quantique usuelle construit ces opérateurs en partant 
de formules qu’elle considère comme ne pouvant avoir 
aucun sens physique. Si elle parvient cependant à 
en tirer des conclusions exactes, c’est parce qu’elle 
ne constitue qu’une théorie à caractère statistique qui 
ne donne pas une véritable représentation de la réalité 
physique. Mais le fait qu’elle est obligée de partir de 
formules qui impliquent la localisation des particules 
me semble prouver que derrière son formalisme statis 
tique est dissimulée une localisation cachée des parti 
cules. Une véritable description de la réalité physique 
doit pouvoir se faire en utilisant uniquement des 
fonctions définies en chaque point de l’espace au 
cours du temps sans jamais être obligé (Tintroduire des 
opérateurs.
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G. Sur l’impossibilité de mesurer simultanément les 
composantes d’un moment de rotation et d’un spin. — Nous 
savons que, pour mesurer les composantes de la quan 

tité de mouvement p d’une particule, il faut amener 
cette particule sur un train d’ondes assimilable à une 
onde plane monochromatique de longueur d’onde /.. 
Comme l’on sait que le vecteur p a alors pour longueur 

p = et qu’il est dirigé dans le sens de la propagation 

de l’onde, l’on connaît la longueur et la direction du
vecteur p. On connaît ses trois composantes px, py, p- 
sur trois axes de coordonnées rectangulaires préala 
blement choisis. On voit ainsi que ces trois compo 
santes sont simultanément mesurables, ce qui est en 
accord avec le fait que les opérateurs (px)op, (p,)0|„ 
(p-)l)p de la Mécanique quantique commutent.

Mais quand il s’agit d’un moment de quantité de 
mouvement (moment de rotation) ou d’un spin, on se 
trouve en présence d’une difficulté. Pqur le voir, nous 
remarquerons d’abord que ces grandeurs sont définies 
par rapport à un point choisi comme origine des 
coordonnées. Dans le cas d’un moment de rotation 
dans l’atome de Bohr, ce point est naturellement le 
centre de l’atome. Dans le cas du spin considéré comme 
un moment de rotation interne d’une particule, le 
point en question est un point central de cette particule. 
De plus, dans un cas comme dans l’autre, le vecteur 
considéré est quantifié car il est égal à mh, avec m
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entier (*), dans le cas du mouvement d’un électron 

dans l’atome ou dans le cas d’un spin à un électron à -•

Voici maintenant la difficulté qui se présente alors. 
Si nous parvenons dans le cas d’un atome ou d’un 
électron à orienter le moment de rotation ou le spin 
dans une certaine direction à l’aide d’un appareil de 
Stern-Gerlach, nous connaîtrons sa grandeur et sa 
direction. Il semblerait donc, par analogie avec le cas 
du vecteur p, que nous connaissions alors les trois 
composantes du moment de rotation ou du spin. Mais, 
et là est la difficulté, cela est en contradiction avec le 
fait que les opérateurs de la Mécanique quantique qui 
correspondent aux trois composantes d’un moment de 
rotation ou d’un spin ne commutent pas.

Pour lever cette difficulté, il est important de préciser 
la différence de nature qui existe entre une grandeur 
comme la quantité de mouvement et une grandeur 
comme un moment de rotation ou un spin. La quantité 
de mouvement est représentée par un vecteur « polaire » 
qui ne change pas de sens quand on passe d’un système 
d’axes à droite à un système d’axes à gauche. Les 
composantes d’un tel vecteur ont un sens physique bien 
net. En particulier, la théorie de l'effet Compton qui 
utilise la conservation de la quantité de mouvement 
dans le choc photon-électron permet de vérifier expé-

(’) Nous excluons le cas particulier où m = o, car alors il n’y a 
pas de moment de rotation.
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rimentalement l’existence des composantes de la 
quantité de mouvement d’un photon.

Au contraire, un moment de rotation ou un spin 
est représenté par un vecteur « axial » qui est une sorte 
de faux vecteur car il change de sens quand on passe 
d’un système d’axes à droite à un système d’axes à 
gauche. Ce faux vecteur n’est en réalité qu’une repré 
sentation conventionnelle d’un mouvement circulaire 
quantifié s’opérant dans un plan perpendiculaire à 
sa direction et c’est ce mouvement qui est la véritable 
représentation de la réalité physique. C’est ce que repré 
sente la figure suivante.

M
A

Fig. 6.

Evidemment, si l’on prend trois axes de coordonnées 
rectangulaires d’origine O et de directions quelconques,

l’on peut projeter le vecteur M sur ces axes, mais les 
composantes du vecteur ainsi obtenues n’ont pas de 
sens physique. En effet, elles ne sont pas quantifiées

puisqu’elles sont égales à la longueur du vecteur M 
multipliée par des cosinus définis arbitrairement par 
l’orientation des axes choisis. On pourrait même dire

que les composantes du vecteur M n’existent pas.
M. DE BROGLIE. 11
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Pour préciser maintenant pourquoi il est impossible 
de connaître simultanément les trois composantes 
d’un moment de rotation ou d’un spin, rappelons qu’en 
Physique quantique la connaissance d’une grandeur 
doit toujours résulter d’une mesure. Considérons donc, 
par exemple dans le cas où il s’agit d’un spin, la mesure 
d’une composante à l’aide d’un électroaimant du type 
Stern-Gerlach. Nous supposerons qu’à l’aide d’un 
premier Stern-Gerlach, on ait orienté le spin dans une

direction Oz et que l’on ait ainsi obtenu la valeur <j z  =

Puis, supposons qu’à l’aide d’un second Stern-Gerlach, 
on oriente le spin de l’électron ainsi préparé dans la 
direction Ox normale à Oz et que l’on ait ainsi finale 

ment Le résultat des deux opérations successives

est représenté par le schéma suivant :

Fig- 7-

Comme je l’ai remarqué précédemment à propos de 
la mesure du spin (chap. Y, 2.6), pour passer de la 
première situation à la seconde, il faut que le deuxième 
Stern-Gerlach fournisse à l’électron le moment de rota 
tion nécessaire pour faire basculer de go° le plan du
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mouvement circulaire correspondant au spin. Il est 
donc absolument évident que le spin final <sx nest pas 
la composante x du spin a. initial. On ne peut donc pas 
dire que l’on a obtenu les composantes ax et a. d’un 
même vecteur. Je pense que c’est pour cette raison 
que l’on doit considérer comme impossible la mesure 
simultanée de deux composantes d’un spin ou d’un 
moment de rotation. Cette différence essentielle avec 
le cas d’un vrai vecteur comme la quantité de mouve 
ment apparaît ainsi comme liée à la fois à la différence 
de nature vecteur polaire et vecteur axial et au carac 
tère quantifié d’un moment de rotation et du spin.



CHAPITRE VIII

L'INTERPRÉTATION 
DE LA MÉCANIQUE ONDULATOIRE 

DANS L'ESPACE 
DE CONFIGURATION

1. La Mécanique ondulatoire dans l’espace de configu 
ration pour des particules de nature différente. — Nous 
commencerons par rappeler l’interprétation que nous 
avons donnée, M. Andrade e Silva et moi, de la 
Mécanique ondulatoire dans l’espace de configuration 
par des particules de nature différente. Nous renvoyons 
à la Thèse de Doctorat de M. Andrade e Silva [12] 
pour une étude plus approfondie de cette question. 
Naturellement nous supposerons toujours dans ce qui 
suit que les particules ont des vitesses petites par 
rapport à c parce que la Mécanique ondulatoire dans 
l’espace de configuration n’est pas relativiste.

Considérons d’abord une seule particule dans l’espace 
physique. L’équation de son onde v s’exprime à l’aide 
des variables usuelles d’espace et de temps à caractère 
non aléatoire. La position de la particule dans son onde
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est donnée par des coordonnées X, Y, Z qui, elles, sont 
aléatoires en raison des perturbations subquantiques. 
L’ensemble des trajectoires de guidage de la particule 
dans son onde forme un ensemble statistique parce que 
les perturbations d’origine subquantique répartissent 
aléatoirement les positions successives des particules sur 
les trajectoires de guidage. Cependant, si une grandeur 
attachée à la particule a une valeur indépendante de la 
position delà particule dans son onde, on peut attribuer 
une valeur bien définie à cette grandeur malgré le carac 
tère statistique de cette représentation. C’est ce qui 
permet d’attribuer une énergie et une quantité de 
mouvement bien définies à une particule portée par un 
train d’ondes assimilable à une onde plane monochro 
matique et c’est ce qui permet aussi d’attribuer une 
énergie bien définie à un électron porté par une onde 
stationnaire monochromatique dans l’un des états 
quantifiés d’un atome.

Considérons maintenant le cas d’un ensemble de 
particules de nature différente sans interaction clas 
sique et bornons-nous au cas de deux particules, la 
généralisation au cas de N particules devant être 
facile. Chacune des particules a dans l’espace physique 
son onde c et, d’après nos conceptions, elle suivrait 
une trajectoire bien définie par la loi du guidage si 
l’on pouvait faire abstraction des perturbations d’ori 
gine subquantique. Remarquons que la différence de 
nature des deux particules nous permet de les numéroter 
et de les attacher à l’une des deux ondes v d’une façon 
permanente et définitive. Soit alors Ch l’onde de la
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particule 1 qui suit dans cette onde une trajectoire de 
guidage Tt. Soient, de même 02 et T2 l’onde et la 
trajectoire de guidage de la particule 2. Remarquons 
que les ondes Ot et 02 ne peuvent pas interférer quand 
elles occupent une même région de l’espace parce que 
leurs équations d’ondes ne sont pas les mêmes.

Si à un instant donné, les deux particules occupent 
sur T, et T2 les positions M, et Mo, un point M de 
l’espace de configuration correspond univoquement 
aux points Mt et Mo de l’espace physique. L’onde

l
qui porte la particule 1 peut s’écrire a, e~‘ et l’onde c2

i

qui porte la particule 2 peut s’écrire a2é>l’\ où at, a2, 
O], <p2 sont réels. L’onde de l’espace de configuration 
n’est pas une onde physique réelle du type v, c’est 
une onde statistique fictive du type Nous représen 
terons l’ensemble des coordonnées xl,yi,zl par rx et 
l’ensemble des coordonnées x», y2, z2 par r2. Nous 
définirons alors la valeur de au point r„ r, de 
l’espace de configuration à l’instant t en posant
hr(r^, rs, t) = c, (r,, t) . u2 (r2, t) à un facteur de norma 
lisation près, ce qui nous donne :

(<)

Si maintenant pour tous les points simultanés Mi et Mo 
des trajectoires de guidage des ondes CL et 02, nous 
prélevons les amplitudes at et a2 et les phases ç>i et 
nous pouvons à l’aide des formules (i) construire entiè 
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rement dans l’espace de configuration la fonc 
tion ^f (A, r2) t) qui correspond à l’ensemble des tra 
jectoires de guidage des particules 1 et 2. Cette fonc 
tion *F nous permettra de définir la probabilité de la 
présence simultanée à l’instant t des deux particules
en M4 et M2 à l’aide de |''F |3 = a'J(A, r,, <) et leurs 
mouvements simultanés sur les trajectoires de guidage

à l’aide des fonctions grad4<p et grad2<p. Les ondes Ot 
et 02 étant définies par la juxtaposition continue des 
trajectoires T4 et T2, l’onde XF nous donnera une repré 
sentation exacte de ce qui se passe dans l’espace 
physique.

Mais cela n’est vrai que pour des particules sans inter 
actions classiques et le cas de deux particules qui 
interagissent est plus complexe car alors le mouve 
ment de chacune d’elles est influencé par le mouve 
ment de l’autre et il ne suffit plus de considérer une 
onde 04 et une onde 02 portant chacune une infinité 
de trajectoires de guidage correspondant à la particule 
liée à l’onde. Il faut maintenant considérer des couples 
d’ondes correlées O',-Cf, 0”-0“, 0'”-(X, . . . portant 
chacun un couple unique de trajectoires correlées 
T,—T2, T"—1Tj, T"’—T”, .... Les formules (i) prennent 
alors la forme

«i(A, A, i) X «•,(A, A, t);
(A, A, + A, l)-

Elles nous permettent encore de construire dans 
l’espace de configuration une onde qui représentera

«(A, A, t) = 
? (A, A, t) =
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l’ensemble des mouvements corrélés des deux parti 
cules. Mais ici nous obtenons seulement une représen 
tation appauvrie de ce qui se passe dans l’espace 
physique parce qu’elle ne décrit pas l’ensemble de 
chacune des ondes 0',-0’2, ... en ne prenant sur 
chacune d’elles qu’un seul élément, la trajectoire de 
guidage.

Nous allons maintenant introduire dans les deux cas 
qui viennent d’être étudiés les perturbations d’origine 
subquantique qui, d’après nous, permettent seules de 
justifier la signification de probabilité de présence 
attribuée à et certainement exacte. Dans le cas
des particules sans interaction, ces perturbations font 
constamment sautiller chaque particule d’une de ses 
trajectoires de guidage sur une autre et cela indépen 
damment des sautillements analogues subis par l’autre 
particule. Ceci permet de justifier que les expressions
| vt(rt, t) |" d'z et | t) |J d'î donnent, à un facteur
de normalisation près, les probabilités de présence 
indépendantes de la particule 1 dans d^i et de la
particule 2 dans d'X-, de sorte
dz = d^i .dT2, donne la probabilité de la présence à 
l’instant t du point figuratif du système dans l’élément 
de volume à six dimensions d". — d'Xi .d'ii de l’espace de 
configuration.

Mais les choses sont moins simples quand on consi 
dère des particules en interaction. Dans le cas de deux 
particules de nature différente en interaction, les divers 
couples de trajectoires corrélées correspondent à des
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couples d’ondes différents. Il nous faut donc introduire 
ici un principe nouveau qui est le suivant : « Lorsqu’une 
perturbation d’origine subquantique fait passer l’une 
des particules d’une de ses trajectoires de guidage Tt 
à une autre T',, l’autre particule doit simultanément 
passer de la trajectoire T2 corrélée de Td à la trajec 
toire T2 corrélée de T', ». D’une façon plus concise, on 
peut dire que les perturbations subquantiques res 
pectent les corrélations. M. Andrade e Silva a bien 
aperçu ce point essentiel quand il a écrit dans sa Thèse 
(p. 345) : « Enfin il est important de remarquer que, 
de l’hypothèse des fluctuations aléatoires généralisées, 
résulte que, même en présence de potentiels pertur 
bateurs aléatoires, les mouvements des points matériels 
restent toujours corrélés ». Ceci admis, on peut démon 
trer qu’en construisant la fonction ffr de l’espace de 
configuration à l’aide des équations (2) où les élé 
ments ot, a-i, <p4, <p2 sont prélevés à l’instant l aux 
points corrélés sur les trajectoires de guidage corrélées, 
la grandeur a2 (rj, r.,, i) d'z donne la probabilité de la 
présence simultanée à l’instant t des deux particules 
dans les éléments de volume d'Zx et chde l’espace 
physique.

On remarquera que l’interprétation précédente 
conduit à considérer que l’onde U" de l’espace de 
configuration nous donne non seulement une représen 
tation appauvrie de ce qui se passe dans l’espace 
physique, mais aussi une représentation statistique 
des diverses possibilités de mouvement dans cet 
espace physique. Cependant cela n’empêche pas de

J 70
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pouvoir dans certains cas déduire de l’onde de 
l’espace de configuration une valeur certaine d’une 
grandeur physique : cela a lieu quand la grandeur garde 
la même valeur pour tous les mouvements corrélés des 
particules. Par exemple, si le système est conservatif, la
somme des énergies des particules égale ~ ^

d’après (2) reste constante et l’onde de l’espace de 
configuration a une fréquence constante v à laquelle 
correspond une énergie bien déterminée W = Av. On 
s’explique ainsi comment la Mécanique ondulatoire de 
l’espace de configuration permet de calculer les énergies 
des états stationnaires d’un ensemble de particules.

Il semble que depuis la Thèse de M. Andrade e Silva 
(i960) et les travaux que nous avons poursuivis 
ensuite, tout ce qui précède peut être mis sous une 
forme assez satisfaisante. Mais nous devons mainte 
nant aborder la question plus difficile des particules 
de même nature.

2. Mécanique ondulatoire des particules de même 
nature. Cas des bosons de spin zéro. — Nous allons 
d’abord considérer le cas le plus simple : celui de deux 
bosons de spin zéro et de même nature sans interaction 
classique. Nous avons en vue d’expliquer la nécessité 
de symétriser la fonction d’onde de l’espace de 
configuration et nous savons que cette symétrisation 
ne s’introduit que quand les ondes v des deux particules 
se superposent dans l’espace physique. Mais, si les 
deux particules sont sans interaction classique, il
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paraît certain que leurs ondes v doivent alors interférer 
puisqu’elles obéissent à une même équation d’ondes 
(c’est d’ailleurs le cas des photons qui sont sans 
interaction classique). Si nous nous donnons les 
positions initiales des deux particules dans l’onde ^ 
qui résulte de l’interférence des ondes individuelles 
et si nous faisons abstraction des perturbations d’ori 
gine subquantique, la formule du guidage nous permet 
de calculer les trajectoires des deux particules. L’ab 
sence d’interaction entre les particules fait que les 
trajectoires de guidage des deux particules ne sont pas 
corrélées.

Mais, si nous introduisons maintenant les pertur 
bations d’origine subquantique, une circonstance tout 
à fait nouvelle va apparaître. En effet, dans le cas de 
deux particules de nature différente, une perturbation 
d’origine subquantique pouvait faire passer l’une des 
particules d’une de ses trajectoires de guidage sur une 
autre, mais ne pouvait pas la faire passer sur une trajec 
toire de guidage de l’autre particule. La théorie de la 
double solution, qui interprète le guidage de la particule 
par son onde comme résultant du fait que la vibration 
interne de la particule doit rester constamment en 
phase avec celle de son onde, nous indique immédia 
tement qu’une particule ne peut pas « s’accrocher » sur 
une onde correspondant à un autre genre de particule, 
sa vibration interne ne pouvant pas rester en phase 
avec celle de cette onde. Or, dans le cas de deux parti 
cules de même nature, cette raison n’existe plus et 
rien n’empêche une perturbation d’origine subquan-
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tique de faire passer simultanément chaque particule 
d’un point de sa trajectoire de guidage à un point d’une 
trajectoire de guidage de l’autre particule, l’accord 
de phase entre la particule et l’onde pouvant alors 
subsister. Il en résulte la possibilité pour les deux parti 
cules d’échanger leurs positions sans que rien ne soit 
modifié dans la propagation de l’onde qui les porte 
et cela suffit pour expliquer la nécessité de symétriser 
l’onde de l’espace de configuration pour le système 
des deux particules. Sans insister sur la démonstration 
de cette affirmation dans le cas de deux bosons de même 
nature sans interaction classique, nous allons étudier 
le cas général, pratiquement plus intéressant, de deux 
bosons de même nature en interaction.

Pour des raisons qui apparaîtront bientôt, nous allons 
adopter des notations un peu différentes de celles que 
vous avons précédemment utilisées. Nous désignerons 
par 0A et 0B les ondes des deux bosons supposés 
initialement portés par des trains d’ondes séparés 
dans l’espace. Les trajectoires TA et TB des deux 
particules sont corrélées en raison de leur interaction 
et les positions simultanées des deux particules sont 
également corrélées. Comme nous supposons que les 
particules ont une individualité, nous pouvons les 
caractériser par un numérotage qui persistera ensuite 
d’une façon permanente. Par exemple, nous pouvons 
donner le numéro 1 à la particule qui est initiale 
ment sur 0A et le numéro 2 à la particule qui est initia 
lement sur 0B. Les positions des deux particules 
sont alors définies par les formules dont le sens est
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évident
(3) ri = /’A, r2 — rB.

Supposons maintenant que les ondes 0A et 0B 
viennent se superposer dans une même région R de 
l’espace physique. Ces ondes vont-elles interférer ? 
Il semble que non. En effet, pour qu’il y ait interfé 
rences entre deux ondes, il faut : i° que leurs équations 
de propagation soient les mêmes; 2° que la propagation 
de chacune des deux ondes soit indépendante de tout 
élément lié à l’autre onde. Or, si la première condition 
est bien réalisée pour des particules de même nature 
en interaction, la seconde ne l’est pas par suite de 
l’interaction, la propagation de chacune des deux 
ondes étant influencée par la position de l’autre 
particule dans son onde. Les deux ondes conservent 
donc une certaine indépendance pendant qu’elles se 
superposent dans la région R. Il semble donc bien en 
résulter que, comme dans le cas de deux particules 
de nature différente, nous devons en raison de l’inter 
action considérer une infinité de couples d’ondes 
corrélées O^-Oi,, O^-OË, . . . portant une infinité de 
trajectoires corrélées Ti-T»,....

Mais nous devons maintenant tenir compte des 
perturbations subquantiques qui entrent constam 
ment en jeu. Rien n’empêche une de ces perturbations 
de faire passer la particule 1 de la position A sur la 
trajectoire TA à la position B' sur la trajectoire T„,, 
et simultanément la particule 2 de la position B sur 
la trajectoire TB corrélée de TA à la position A' corrélée
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de B7 sur la trajectoire Tv. C’est ce que représente 
la ligure suivante où les lignes sinueuses AB7 et BA7 
représentent schématiquement les mouvements brow 
niens imposés aux deux particules par la perturba 
tion d’origine subquantique.

Si donc les deux particules occupent à un certain 
instant dans 0A et Ou les positions corrélées A7 et B7,

on ne saura pas si c’est la particule 1 qui est en A' 
et la particule 2 en B7 ou bien si c’est la particule 1 qui 
est en B7 et la particule 2 en A7. Les permutations pos 
sibles des deux particules dues aux perturbations d’ori 
gine subquantique ont donc pour effet que les relations

(4) '*i='b , rz = rx

sont finalement aussi probables que les relations (3).
Suivant la méthode précédemment exposée, nous 

devons maintenant construire l’onde de l’espace 
de configuration à partir de certains éléments emprun 
tés à ce qui se passe dans l’espace physique. D’après
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ce que nous avons vu précédemment, si nous posons
i
-

TF = aeh , a et <p étant réels, nous devons prélever les 
grandeurs amplitude et phase des ondes 0A et 0B aux
points corrélés rA et r„ et il semblerait naturel de poser

a (K, K, t) — aA(rA, rÿ, t).aB(rB, rA, t) ;

<ï(K, rB, t) = cpA(rA, rB, t) -+- cpB(rB, K, Z-

Mais, attention!, la fonction W de l’espace de configu 

ration doit s’exprimer à l’aide des coordonnées r, et r, 
correspondant au numérotage des particules qui, 
pour nous, les individualise d’une façon permanente.

Or, la correspondance entre rA et rn d’une part, r, et
Z d’autre part peut se faire, nous venons de le voir, 
avec autant de raison par les formules (3) et par les 
formules (4)- Pour définir le "*F de l’espace de configu 
ration, il paraît donc nécessaire de remplacer les 
formules (5) par les formules

«a (^i, K t)-aB(K, Z, t)

■+■ ru t) <2b (/'i, r2, <),
?A(K, K, t) + cpB(r2, ru t)

■+■ 9a r,, t) + 9n(rii Z

à un facteur de normalisation près. Il en résulte

(7) a(n, Z, t) = a(r2, Z, t)-, 9 (K, K, t) = y(r,, K, t),

«(/■,, ru t) —

(6)
cp(r1; r,, t) =



d’où

(8)
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w(K,K,t) = v(K,Kt).

On aboutit ainsi à la nécessité de symétriser l’onde fF 
de l’espace de configuration pour les bosons de même 
nature. Cette nécessité nous apparaît comme résultant 
du fait qu’il n’y a pas une correspondance univoque

-V

entre les coordonnées r, et r£ des particules et les

coordonnées rA et rB des positions corrélées dans l’espace 
physique sur les trajectoires de guidage.

3. Compléments au sujet des bosons de même nature.
— Les formules (3) et (4) nous donnent deux manières 
différentes, mais également possibles de faire corres 
pondre les coordonnées r, et r.2 des particules et les
positions rv et r„ dans l’espace physique. Ces deux 
possibilités sont représentées dans l’espace de configu 
ration par deux positions M et N du point représentatif 
du système, le point N étant obtenu à partir du point M
par permutation de la valeur des coordonnées r, et r,. 
Dans le cas de deux particules de nature différente, un 
ensemble de deux trajectoires de guidage dans l’espace 
physique correspond à une seule trajectoire du point 
figuratif dans l’espace de configuration. Mais pour deux 
bosons de même nature un ensemble de trajectoires de 
guidage TA et T„ dans l’espace physique correspond à 
deux trajectoires distinctes TM et TN du point figuratif 
dans l’espace de configuration. Cela résulte évidemment

M. DE BROGLIE. 12
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du fait que pour les bosons de même nature il n’y a plus 
correspondance univoque entre les positions corrélées 
des particules dans l’espace physique et les variables 
de l’espace de configuration. C’est pour cette raison que 
la représentation du système dans l’espace de configu 
ration devient fallacieuse et doit être corrigée par une 
symétrisation d’apparence, arbitraire, des solutions 
de l’équation de Schrodinger dans cet espace.

Il est facile de généraliser ce qui précède au cas de N 
bosons de même nature en interaction. Il y a alors N 
lignes de guidage dans l’espace physique, la position 
des N bosons sur ces N lignes de guidage pouvant 
être constamment permutée par les perturbations 
d’origine subquantique. Alors à l’ensemble des N lignes 
de guidage dans l’espace physique correspondent N! 
trajectoires du point représentatif dans l’espace de 
configuration. On retrouve ainsi le résultat valable 
pour deux bosons en remarquant que 2 ! = 2. Cette 
circonstance est évidemment reliée à l’apparition du

facteur dans les évaluations des « complexions »

indépendantes dans la statistique de Bose-Einstein 
dont nous avons déjà parlé à propos du paradoxe de 
Gibbs (voir chap. VII, § 4).

Nous allons regarder cette question de plus près. 
Dans la statistique classique de Boltzmann-Gibbs, 
on considère un ensemble de particules de même nature 
obéissant aux lois de la Dynamique classique. Ces parti 
cules peuvent être soumises à des champs extérieurs et, 
notamment au moment des chocs, à des interactions
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dont l’ensemble est représenté dans les équations du 
mouvement par des potentiels du type classique. 
Les particules conservent toujours leur individualité 
et le calcul de leurs trajectoires est en principe possible 
bien qu’en pratique il soit impossible en raison de sa 
complexité. La Mécanique statistique classique consi 
dère alors l’ensemble des positions et des vitesses des 
particules, chacun de ces ensembles étant représenté 
par un point dans l’extension - en - phase du système 
(espace fictif à 6N dimensions s’il y a N particules) : 
elle en tire par des calculs bien connus les formules de la 
statistique de Boltzmann-Gibbs.

Plaçons-nous maintenant non plus au point de vue 
de la Dynamique classique, mais à celui de la Mécanique 
ondulatoire interprétée par la théorie de la double 
solution en faisant d’abord abstraction des pertur 
bations d’origine subquantique. Dans l’espace physique, 
le mouvement de N particules de même nature formant 
le système que l’on considère est déterminé par la 
propagation des ondes e dans l’espace physique et leurs 
N trajectoires de guidage sont déterminées par des 
équations où figurent des potentiels correspondant aux 
interactions des particules et éventuellement de Faction 
sur elles de champs extérieurs, compte tenu des poten 
tiels quantiques. Si donc il n’y avait pas de perturba 
tions d’origine subquantique, la situation serait ana 
logue à celle qu’on rencontre en Mécanique classique. 
En effet, chaque particule, obéissant à la Dynamique 
du guidage, qui est une dynamique à masse propre 
variable, et conservant son individualité au cours

12.
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du temps, décrirait une trajectoire très compliquée, 
en principe calculable bien qu’en pratique généralement 
impossible à calculer. On devrait donc aboutir à retrou 
ver la statistique de Boltzmann-Gibbs. Or, il est bien 
connu qu’en Mécanique ondulatoire, un ensemble de 
bosons de même nature obéit non pas à la statistique 
de Boltzmann-Gibbs, mais à celle de Bose-Einstein.

Il apparaît ainsi clairement que c’est l’intervention 
des perturbations d’origine subquantique qui modifie 
entièrement la nature du problème statistique. En effet, 
ces perturbations peuvent constamment, tout en 
maintenant les corrélations, permuter les positions des 
bosons sur leurs lignes de guidage. Or, pour ces N 
particules de même nature, l’état ondulatoire dans 
l’espace physique est défini par les ondes v avec N lignes 
de guidage sans qu’il y ait lieu, en raison des permu 
tations possibles, d’individualiser chaque particule 
par un numérotage correspondant à leur position. 
Une permutation quelconque des N bosons sur leurs 
trajectoires de guidage par l’effet des perturbations 
d’origine subquantique ne change donc en rien l’état 
ondulatoire existant dans l’espace physique. Mais, 
quand on fait la représentation du mouvement des 
bosons par la méthode de l’espace de configuration de 
Schrôdinger de la façon indiquée dans ce qui précède, 
on fait correspondre, nous l’avons vu, aux N trajectoires 
de guidage de l’espace physique N ! trajectoires du point 
représentatif dans l’espace de configuration. Ainsi, 
dans cet espace fictif, on représente N ! fois ce qui se 
passe réellement dans l’espace physique. Pour calculer
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statistiquement d’une façon exacte le nombre des 
complexions correspondant à des états ondulatoires 
différents dans l’espace physique, il faut donc diviser 
par N ! le nombre des complexions que l’on distingue 
dans l’espace de configuration, c’est-à-dire le nombre 
des complexions que la statistique de Boltzmann-Gibbs 
conduirait à distinguer. Et l’on sait bien depuis long 
temps que c’est de cette façon que l’on passe de la 
statistique de Boltzmann-Gibbs à celle de Bose-Einstein.

Il est maintenant très important de préciser ce qui 
suit. Dans les exposés usuels de la statistique de 
Bose-Einstein, on interprète l’intervention du fac 

teur en disant que les particules de même nature

sont « indiscernables ». Nous pouvons accepter cette 
manière de parler à condition de préciser qu’elle tra 
duit seulement « l’équivalence statistique » des bosons 
de même nature au sens précisé plus haut. Mais nous 
ne pouvons pas accepter de dire, comme on le fait 
généralement, que les particules de même nature n’ont 
pas d’individualité. En effet, pour nous, l’idée de parti 
cule est liée à l’image d’un très petit objet constamment 
localisé dans l’espace au cours du temps malgré le 
caractère de son mouvement et la conception d’une 
particule dénuée d’individualité nous paraît contra 
dictoire.

Il est intéressant de remarquer, en en donnant un 
exemple simple que l’on peut trouver, même au niveau 
macroscopique, des cas où des objets bien individua 
lisés possèdent pour certaines évaluations de proba 
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bilités une équivalence statistique analogue à celle 
des bosons de même nature. Considérons un damier sur 
lequel sont répartis des pions blancs et des pions noirs. 
Ces pions ont sans aucun doute une individualité 
permanente car chacun d’eux est un petit morceau 
de bois constamment localisé sur le damier et s’y 
déplaçant d’une certaine façon au cours de la partie 
de dames. Mais, si à un instant donné nous per 
mutons les positions de deux pions de même couleur, 
rien ne sera changé en ce qui concerne l’évolution ulté 
rieure possible de la partie de dames. Or, d’après les 
diverses positions qu’ont à un moment donné les pions 
blancs et les pions noirs, l’on devrait pouvoir calculer 
les probabilités pour que l’un ou l’autre des joueurs 
gagne la partie. Comme la permutation sur le da 
mier des positions de deux pions de même couleur 
ne peut évidemment pas changer ces probabilités, 
on a bien là un exemple d’objets macroscopiques, 
les pions, qui ont certainement une individualité, 
mais qui sont néanmoins statistiquement indiscer 
nables.

Pour terminer cette étude des ensembles de bosons 
de même nature, notons qu’il y aurait évidemment 
lieu d’étendre la théorie précédente aux bosons de 
spin nTi avec n^-i, mais cela exigerait une étude 
plus compliquée parce que pour ces bosons, on ne 
peut plus adopter pour la propagation des ondes 
dans l’espace physique l’équation de Schrodinger, 
même si l’on s’en tient à l’approximation non rela 
tiviste.
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4. Esquisse de la Mécanique ondulatoire dans l’espace de 
configuration pour les fermions de même nature. — Nous 
allons maintenant considérer le cas de deux fermions
de même nature ayant le spin ^ (ce qui est le cas des

électrons). Ici encore, quand il y a interaction et que 
les ondes v des deux fermions occupent une même 
région de l’espace, nous avons affaire à une série d’ondes 
corrélées Oi—0-_>, 0,-0,, . . . portant des trajectoires 
corrélées Tt—T2, T',-T',, .... La théorie de Dirac que 
nous devons ici considérer à l’approximation new 
tonienne (théorie de Pauli) définit chaque onde v à l’aide 
de deux composantes e, et n,, où correspond au
spin a, = * et e, au spin cr, =— En chaque point

de l’espace physique, le spin local est défini par les 
formules

|
ffr= - -I- i4ri),

a

°V= \ (Ne, — vie,).

— \ (<;i (,i - (,2 pô  ) •

Quand l’un des fermions se trouve en un point de l’es 
pace, son spin est déterminé par la valeur du vecteur a- 
en ce point. Puisque, pour nous, les particules sont 
constamment localisées dans l’espace, nous devons 
supposer qu’à l’instant t, la particule 1 se trouve 
en un point A de sa trajectoire de guidage TA et la 
particule 2 en un point B de sa trajectoire de guidage T„.
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Prenons alors la droite BA pour axe des x et le milieu 
de BA pour origine des coordonnées, les axes O y 
et Oz devant être définis plus loin. On peut alors poser

rt = OA et r2=OB = — r,. Si nous supposons les 
particules attachées à l’axe Ox et si nous faisons 
tourner cet axe autour d’un axe qui lui est perpendi 
culaire en O, cette rotation aura pour résultat de faire 
passer la particule 1 de A en B et la particule 2 de 
B en A de sorte que l’on aura ainsi passé de la situation

r!=OA, r,= OB, à la situation r2=OA, r,= OB. 
Les particules ont ainsi échangé leurs positions. 
L’état ondulatoire initial en A sera représenté par
Vi(rti r2, i) et par r.,, t) que nous écrirons simple 
ment et e2 tandis que l’état ondulatoire initial
en B sera représenté par c4(r,, r„ t) et e2(r,, r,, t) 
que nous représenterons par e, et ci, le signe indi 
quant la permutation de r, et de r.,. Dans l’état final, 
l’état ondulatoire sera représenté en A par c, et c2 et 
en B par c, et c2.

Mais les particules en échangeant leurs positions 
doivent aussi échanger leurs spins puisque les spins 
sont définis en A et B par l’état ondulatoire local qui 
n’est pas modifié par la permutation des particules. 
Il est alors facile de voir que cela ne peut être réalisé 
que si les spins sont parallèles ou antiparallèles. Nous 
pouvons donc prendre l’axe Oz dans le plan déterminé 
par les deux spins et l’axe O y perpendiculaire à ce plan. 
Dans le cas des spins parallèles, on obtient l’une ou
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l’autre des figures suivantes :

°B °A
Fig- 9-

et l’on voit que pour réaliser à la fois l’échange des 
positions et des spins entre les deux particules, il 
suffit de faire tourner les axes autour de Oz d’un angle 
égal à t .. Si, au contraire, les axes sont antiparallèles, 
on aura l’une ou l’autre des figures suivantes :

Fig. io.

et, pour obtenir l’échange des positions et des spins des 
deux particules, il suffira de faire tourner les axes de ~ 
autour de 0y.

Rappelons qu’en théorie de Dirac non relativiste, les 
composantes e, et o., se transforment lors d’une rotation
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de l’angle 6 autour de Oz de la manière suivante 
symbolisée par une flèche :

.6 0 
(io) (’j—>- r, e -, r.,- > <■., <• 1

tandis que, pour une rotation de r. autour de 0y la 
transformation est

(‘O
9

■ V, cos -
. 0 

Mil ■ ?
9

r, sm

Nous allons étudier d’abord le cas des spins parallèles. 
Comme nous devons alors faire tourner les axes de ri 
autour de Oz, nous aurons à appliquer les formules (io), 
mais en tenant compte du fait qu’il y a simultanément 
permutation des positions des particules, ce qui nous 
conduit à écrire

(12) r,—w7,, ph —ù~,, êi-wV,, îy->—«v

Par analogie avec ce que nous avons fait dans le cas des 
bosons, nous définirons la fonction d’onde du système 
des deux particules dans l’espace de configuration pour 
les deux cas de spins parallèles par les produits c,Ci 
et Coff, qui obéissent d’après (ia) aux formules de 
transformation

(13) Cjê,,

Nous obtenons donc deux fonctions d’onde dans l’espace 
de configuration qui sont antisymétriques pour 
l’échange des positions et des spins. Or, comme elles 
sont évidemment symétriques pour l’échange des
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spins, elles doivent être antisymétriques pour l’échange 
des positions. 11 est important de remarquer que nous 
n’avons pas à considérer dans l’espace de configuration 
les fonctions d’onde de la forme ctôL> et puisque, 
les spins étant parallèles, les indices de v doivent être 
les mêmes.

Passons maintenant au cas des spins antiparallèles. 
Comme nous avons alors à faire tourner les axes de " 
autour de O y, les formules (n), compte tenu de 
l’échange des positions, nous donnent

(■4) -,— ~i, ~-i ->e,.

Nous avons donc

( I 5) ü 1’,“,, t'-j —S 

Ici, nous n’avons pas à considérer les fonctions çlv1 
et puisque, les spins étant supposés antiparallèles, 
les indices des v dans les produits doivent être diffé 
rents. Mais, pour avoir des caractères de symétrie bien 
définis en position et en spin, nous devons remplacer 
les fonctions o,è, et ô, par les combinaisons symé 
triques et antisymétriques dont les formules de trans 
formation sont les suivantes :

([(i) — (<’!~- + ~,r:) ; i',r, — (f’iN — Ne»).

Les deux combinaisons envisagées sont donc antisy 
métriques en position et en spin. La première, 

v-j) étant symétrique en spin (c’est-à-dire par 
l’échange des indices i et 2) doit être antisymétrique
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pour l’échange des positions tandis que la seconde, 
v, ÿ,— F, c2, étant antisymétrique en spin, doit être symé 
trique pour l’échange des positions.

Finalement nous avons obtenu comme fonctions 
d’onde possibles dans l’espace de configuration, d’une 
part les trois fonctions

^l^lî ^'2^25 (’l “h f’i *'2

dont les symboles de spin sont 1t, j 11 + 11 qui 
sont symétriques en spin et antisymétriques en position, 
d’autre part l’unique fonction d’onde

vJ’-z—ïiV.,

dont le symbole de spin est f } — 11 et qui est anti 
symétrique en spin et symétrique en position.

Nous avons ainsi retrouvé les états triplets et singu- 
lets bien connus dans la théorie des systèmes de deux 
électrons.
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