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AVANT-PROPOS

Cet ouvrage est divisé en deux tomes. Le présent
premier tome, rédigé par moi-méme, comprend un
exposé de l'interprétation de la Mécanique ondula-
toire par la Théorie de la double solution et par la
Thermodynamique cachée des particules ainsi qu’un
grand nombre d’applications de ces conceptions
générales.

Le second tome, qui parailtra ultérieurement, sera
rédigé par M. Andrade e Silva et comprendra ’examen
détaillé de questions qui n’ont pas été étudiées ou qui
n’ont été qu’effleurées dans le présent volume.

Louis de BrocLIE.



CHAPITRE I

LES DEBUTS
DE LA MECANIQUE ONDULATOIRE

1. Naissance de la Mécanique ondulatoire.. — Je crois
nécessaire de rappeler quelles sont les idées qui m’ont
guidé a ’époque ol j’ai posé les premiers principes de
la Mécanique ondulatoire en 1923-1924 [1]. Je le crois
nécessaire parce que ces idées ne sont jamais rappe-
lées dans les exposés actuels de la Mécanique quantique.

Dans ma premiére jeunesse, entre 1911 et 19Ig,
Javais étudié avec un grand enthousiasme tous les
récents résultats de la Physique théorique de cette
époque. Les travaux de Poincaré, de Lorentz, de
Langevin, ... sur la théorie électromagnétique m’étaient
familiers ainst que ceux de Boltzmann et de Gibbs sur
la Mécanique statistique. Mais mon attention avait été
particulierement retenue par les travaux de Planck,
d’Einstein et de Bohr sur les quanta et je voyais dans
la coexistence des ondes et des particules dans les
rayonnements découverte par Einstein en 1905 dans
sa théorie des quanta de lumiére un fait fondamental
dont 1l i1mportait de préciser la véritable nature.
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Ayant suivi les travaux que mon frére Maurice pour-
suivait sur les spectres de rayons X, je voyais toute
Pimportance dans ce domaine du double aspect des
radiations électromagnétiques et, ayant étudié en
Mécanique la théorie d’Hamilton-Jacobi, )’y voyais
une sorte de préfiguration d’une théorie synthétique
de I'union des ondes et des particules. Enfin, j’avais
aussi beaucoup étudié la théorie de la Relativité et
j’étais persuadé qu’elle devait étre a la base de toutes
les tentatives théoriques nouvelles.

Tel était mon état d’esprit quand en 191g, libéré
des obligations militaires que m’avait imposées la
guerre de 1914-1918, jJe me suis remis a faire des
recherches personnelles. Ayant une conception trés
« réaliste » de la nature du monde physique et peu
porté aux considérations purement abstraites, je voulais
me représenter 'union des ondes et des particules d'une
facon concréte, la particule étant un petit objet loca-
lisé incorporé dans la structure d’une onde en propa-
gation. Naturellement j’avais commencé par étudier
le cas de la lumiére et des autres rayonnements électro-
magnétiques ot je cherchais & me représenter la par-
ticule que I'on appelle aujourd’hui « photon » comme
transportée par 'onde électromagnétique. Puis soudain
me vint, en 1923, 'idée que la coexistence des ondes et
des particules n’existait pas seulement dans le cas
étudié par Einstein et qu’elle devait étre généralisée
pour toutes les particules. Appliquée a I’électron, elle
me paraissait devoir expliquer les propriétés étranges
des mouvements d’un électron dans un atome décou-
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vertes par Bohr dans sa théorie des états stationnaires
des atomes. Dans la théorie atomique de Bohr, on voit
en effet apparaitre des nombres entiers, ce qui est
courant dans la théorie des ondes quand on étudie les
phénomeénes de résonance ou d’interférences.

Mais je dois insister tout particuliérement ici sur
une idée qui m’a constamment guidé a cette époque
et qui n’est jamais rappelée aujourd’hui. Comme je
Pai dit, j’étais convaincu qu’il fallait prendre constam-
ment comme base des développements théoriques les
1dées de la théorie de la Relativité. Guidé par les beaux
exposés de Paul Langevin au College de France, j’ai
donc bien étudié les propriétés de la représentation
relativiste d’une onde en propagation. D’autre part,
m’inspirant d’une des 1dées fondamentales de la théorie
des quanta, j’al été amené a définir une fréquence
propre interne v, de la particule reliée a I’énergie de
masse propre m,c’> par la relation hv,= m,c*. Cela
m’amenait donc a considérer la particule comme une
petite horloge en mouvement. Je fus alors trés frappé
du fait que la formule de transformation d’une onde

. v
lors d’une transformation de Lorentz est v = ——

Vi— 32
alors que la formule de transformation de la fréquence
d’une horloge, traduisant le célebre « ralentissement »

des horloges en mouvement, est v = v, \/I—B”.
Intrigué par cette différence, je me suis demandé
comment une particule assimilée 4 une petite horloge
devait se déplacer dans son onde de fagon a rester
en quelque sorte incorporée a Ponde, c’est-a-dire de
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facon que sa phase interne reste constamment égale
a celle de 'onde. Appliquant cette image au cas
simple, bien qu’un peu trop schématique, d’'une onde
plane monochromatique se propageant le long de I’axe
des z, )’étais amené a écrire pour la variation do de la
phase de cette onde

(1) d@:2”<”d[—d%7>:2ﬂ<ﬁdl—?>

am [ M dx
=7 ()

et pour la variation dans l'intervalle de temps dt de
la phase interne de la particule se déplagant le long
de I'axe des x avec la vitesse ¢

(2) dcpizznvo\/rg’:dtzg-lz—rmoc?\/;«—ﬁfdt.

En écrivant que d¢ = dg; avec dx = ¢ di, on obtient

myc? L — mys? J/1%
3 — 2y — 82 — -
(3) Vs moc i —3 E
d’ou pour la quantité de mouvement p de la particule
p q p p
, __me _h,
(4) P \/1 . Bz 7\

On a ainsi trouvé les deux relations fondamentales

de la Mécanique ondulatoire W = hv, p = %en leur
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associant 'image d’un corpuscule localisé qui se déplace
dans londe le long d’un de ses rayons en restant
constamment en phase avec elle. Telle était 'image
concréte que j’avais dans Pesprit quand j’ai eu la
premiére 1dée de la Mécanique ondulatoire. Peut-étre
ne P’ai-je pas assez explicitée dans ma These, mais je
puis affirmer que c’est elle qui me guidait.

Dans mes Notes de 'automne 1923 et dans ma Theése
de 1924, J’al pu donner une premiére interprétation
des conditions de quanta utilisées dans la théorie de
l’atome de Bohr en admettant que la propagation de
Yonde dans latome se fait & Vapproximation de
I’Optique géométrique, ce qui n’est pas exact, mais
qui fournit cependant une premiére et trés frappante
interprétation de ces conditions de quanta.

Beaucoup d’autres considérations intéressantes se
trouvaient esquissées dans ma thése, notamment en ce
qui concerne l'tdentité résultant de mes conceptions
entre le principe de Fermat et le principe de moindre
action de Maupertuis. J'y donnais aussi une premiére
esquisse de ce qu'on nomme aujourd’hui la statis-
tique de Bose-Linstein et j’introduisais, pour faire
rentrer la théorie du photon dans le cadre de la Méca-
nique ondulatoire générale des particules, 'hypothése
que la masse propre du photon, bien que certainement
extraordinairement petite, n’est pas rigoureusement
nulle. C’est 13 une hypothése que j’ai constamment
introduite ensuite dans tous mes travaux sur la théorie
quantique de la lumieére.
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2. Les travaux de Schrédinger. La découverte de la
diffraction des électrons. — Je réfléchissais a la maniére de
préciser et de généraliser mes conceptions quand j’ai
eu connaissance, au début de 1926, des beaux mémoires
publiés par Erwin Schridinger dans les Annalen der
Phystk. Schrodinger, s’inspirant des résultats de ma
these et de la théorie d’Hamilton-Jacobi, écrivait sous
une forme correcte, mais non relativiste (newtonienne),
Péquation des ondes de la Mécanique ondulatoire qu’il
désignait par le symbole U qui a fait fortune. Repre-
nant d’une fagon rigoureuse, c’est-a-dire sans supposer
valable P'approximation de loptique géométrique, le
calcul de la propagation de 'onde dans I'atome de
Bohr, 1l retrouvait en les rectifiant les résultats de ma
thése. Puis, grace & une transposition vraiment remar-
quable, il montrait que la détermination des énergies
quantifiées par sa méthode de calcul des valeurs
propres de Péquation d’ondes donnait exactement les
mémes résultats numériques que la méthode beaucoup
plus abstraite développée un an auparavant par Werner
Heisenberg dans sa Mécanique des Matrices.

Enfin Schriodinger abordait le probléme de la Méca-
nique ondulatoire des ensembles de particules en inter-
action en écrivant une équation d’ondes dans ’espace
de configuration formée par les coordonnées de toutes
les particules du systéme. Le caractére abstrait de cette
méthode de calcul est évident car 'onde W de I’espace
de configuration ne peut pas étre considérée comme
une onde réelle se propageant dans I’espace physique.
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Et cependant cette méthode abstraite se montrait
rapidement trés puissante et donnait bientot des résul-
tats trés exacts et d’un trés haut intérét.

J’ai lu a cette époque les mémoires de Schrodinger
avec la plus vive admiration en réfléchissant beaucoup
sur leur contenu. Sur trois points cependant, je ne me
sentais pas d’accord avec I’éminent physicien autri-
chien. D’abord I’équation d’ondes qu’il attribuait
a londe U n’était pas relativiste et j’étais trop
convaincu de la liaison étroite existant entre la théorie
de la Relativité et la Mécanique ondulatoire pour
pouvoir me contenter d’une équation d’ondes non rela-
tiviste; mais cette difficulté fut vite levée car, deés
juillet 1920, plusieurs auteurs, dont moi-méme, ont
trouvé une forme de 1'équation d’ondes, connue
aujourd’hui sous le nom d’équation de Klein-Gordon,
dont ’équation de Schriodinger est la forme dégénérée
a lapproximation newtonienne. Un autre point ou
mes vues ne s’accordalent pas avec celles de Schrodinger
était que celui-ci, tout en conservant 'idée que 'onde W
dans I’espace physique est une onde réelle, semblait
abandonner complétement I'idée de la localisation de la
particule dans 'onde, ce qui ne concordait pas avec mes
conceptions primitives. Enfin, tout en reconnaissant
que la considération d’une onde ¥ dans ’espace de confi-
guration constituait un formalisme trés utile pour la
prévision des propriétés d’un ensemble de particules en
interaction, je considérais comme certain que le mouve-
ment des diverses particules etla propagation deleurs on-
des s’opéraient dans ’espace physique au cours du temps.
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Tandis que je réfléchissais & la maniére de déve-
lopper mes propres conceptions en tenant compte de
ce quil y avait d’indiscutable dans les résultats de
Schrodinger, J’eus connaissance au printemps de 1927
de la sensationnelle découverte des phénomenes de
diffraction des électrons faite aux Ktats-Unis par
Davisson et Germer. Bientdt répétées sous des formes
diverses par G. P. Thomson en Angleterre, par Maurice
Ponte en France, par d’autres encore dans divers
pays, ces expériences ont permis de vérifier la formule
que J’avais donnée pour relier la longueur d’onde de
Ponde d’un électron a la valeur de sa quantité de
mouvement et ont ainsi apporté aux idées de base de
la Mécanique ondulatoire une compléte confirmation.
L’on a pu ensuite observer la diffraction d’autres
particules telles que neutrons et protons, puis répéter
avec des électrons toutes les expériences depuis long-
temps classiques pour la lumiére.

3. La théorie de la double solution et le Conseil Solvay
de 1927. — Au printemps de 1927, les travaux de
Schrodinger et la découverte de la diflraction des
électrons paraissaient donc avoir apporté une confir-
mation compléte des idées contenues dans ma theése
et cependant la plupart des théoriciens commengaient
a s’orienter vers des conceptions tout a fait différentes
de celles qui m’avaient dirigé. Schrodinger abandonnait
Pidée de corpuscule localisé et ne maintenait que partiel-
lement le caractére de réalité physique de 'onde. Allant
plus loin, Max Born dans un important mémoire ou 1l
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traitait le probléme des collisions dans la nouvelle
Mécanique ne considérait plus 'onde W' que comme
une représentation de probabilités et admettait qu’elle
pouvait étre arbitrairement « normée » : cela enlevait
a onde W le caractére essentiel d’une onde physique
qui est d’avoir une amplitude bien déterminée.
Inquiet de voir ainsi disparaitre entiérement l'image
physique claire et concréte qui avait guidé mes pre-
miéres recherches, j’ai fait alors un effort pour préciser
mon point de vue et J’al publié en mai 1927 un article
dans le Journal de Physique sous le titre : La Méca-
nique ondulatoire et la structure atomique de la matiére
et du rayonnement [2]. Dans cet article, intéressant
a relire aujourd’hui, je commengais par définir tres
clairement le but que je poursuivais, puis j’introduisais,
sous le nom de « théorie de la double solution », I’'idée
qu’il fallait distinguer deux solutions distinctes, mais
intimement reliées de ’équation des ondes, I'une que
Jappelais 'onde u étant une onde physique réelle et
non normable comportant un accident local définissant
la particule et représenté par une singularité, I'autre,
londe W de Schrédinger, normable et dépourvue de
singularité, qui ne serait qu'une représentation de
probabilités. Cela m’amenait & généraliser les formules
que j’avais données dans ma thése pour I'onde plane
monochromatique au cas d’une solution quelconque
de I’équation des ondes et a exprimer le mouvement de
la particule dans son onde a 'aide d’une « formule
du guidage » précisant la facon dont ce mouvement
est guidé par la propagation de l'onde. Jétais ainsi
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amené a envisager que le mouvement de la particule
dans son onde s’effectue sous l'action d’une force
dérivant d’un « potentiel quantique » proportionnel
au carré de la constante de Planck, potentiel quantique
qui dépend des dérivées secondes de I'amplitude de
Ponde et qui est nul dans le cas de 'onde plane mono-
chromatique. Je remarquais que le potentiel quantique
peut s’exprimer par les variations de la masse propre
de la particule, résultat dont j’al mieux compris récem-
ment toute I'importance, et qu’il apparaissait notam-
ment dans ce que J'appelais les « états contraints »
ou la libre propagation de ’onde se trouve entravée
par Pexistence de conditions aux limites. J’esquissais
aussi, d’ailleurs d’une fagon trés incompléte, la maniére
dont on pouvait chercher a justifier I'emploi par
Schrédinger d’une onde statistique W définie dans
Pespace de configuration d’un ensemble de particules.

J’étais tres satisfait des résultats que j’avails ainsi
obtenus car 1ils me paraissaient ouvrir la voie qui
devait conduire a la véritable interprétation de la
Mécanique ondulatoire, compte tenu des résultats de
Schréodinger et du succés de Dinterprétation statis-
tique de 'onde W. Et aujourd’hui je crois & nouveau
que )’avais raison. Je me rendais bien compte d’ailleurs
que mon article ne constituait qu’une premiére esquisse
destinée a subir bien des modifications et des amélio-
rations, mais J’espérais qu’'on m’aiderait dans cette
tache.

Au début de I'été 1927, je fus invité par Lorentz
a prendre part au Conseil de Physique Solvay qui se
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tint & Bruxelles en octobre 1927. J’y a1 fait un exposé
de ma théorie de la double solution, malheureusement
sous la forme un peu trop simplifiée de « ’onde pilote ».
Elle ne retint guére ’attention. Les physiciens habitués
aux anciennes méthodes comme Planck, Lorentz,
Langevin souhaitaient une interprétation de la Méca-
nique ondulatoire voisine des conceptions classiques,
mais ne se pronongalent par sur sa nature. Schrédinger
restait fidéle 4 une interprétation purement ondu-
latoire. Seul Einstein m’encourageait un peu dans la
vole ou jJe voulais m’engager [3]. Mais je trouvais
en face de moi des adversaires redoutables. C’était
Niels Bohr et Max Born, savants déja illustres, ¢’était
aussi le groupe de jeunes chercheurs qui formaient
I'Fcole de Copenhague parmi lesquels se trouvaient
notamment Pauli, Heisenberg et Dirac, déja auteurs
de travaux remarquables. Ils interprétaient la dualité
des apparences corpusculaires et ondulatoires par la
théorie de la complémentarité récemment proposée
par Bohr et, n’attribuant plus & 'onde W arbitrai-
rement normée de Schrodinger que le role d’une repré-
sentation de probabilité permettant de prévoir le
résultat de certaines observations, ils en arrivaient a
abandonner toute image claire de 'onde et de la par-
ticule. J’étais assez décontenancé. Je trouvais la
complémentarité de Bohr assez obscure et je ne pouvais
me résoudre a abandonner les 1mages physiques qui
m’avaient guidé depuis plusieurs années. Mais, déve-
loppée par de nombreux chercheurs jeunes et ardents
qui possédalent une grande habileté dans les calculs
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mathématiques, Dinterprétation probabiliste de la
« Mécanique quantique » prit rapidement la forme de
formalismes mathématiques élégants et rigoureux.

Revenu a Paris aprés le Consell Solvay, je suis resté
plusieurs mois hésitant entre la poursuite de mes idées
primitives et le ralliement aux conceptions de I’'Ecole
de Copenhague. Mais nommé a la fin de 1928 Professeur
de Physique théorique a la Faculté des Sciences de
Paris, poste que j’ai ensuite occupé pendant 34 ans,
et ne pouvant enseigner une interprétation théorique
qui n’avait pas encore pris une forme vraiment satis-
faisante, je me décidais 4 exposer 4 mes éléves ce qui
commencait a &tre enseigné partout ailleurs et je
renoncgals i progresser davantage dans la voie difficile
ou j’avais voulu m’engager. Cela m’a permis de faire
pendant plus de vingt ans des exposés tres étendus
et des travaux approfondis sur Densemble de la
Physique quantique comme on ’exposait alors. Je n’ai
cependant jamais perdu entiérement de vue mes
conceptions primitives et Pon en retrouve toujours des
traces dans la fagon dont j’introduisais les bases de la
Mécanique ondulatoire en évitant de leur donner une
forme trop abstraite et axiomatique.

4. Retour a des idées primitives depuis 1951. — A
partir de 1951, un revirement complet s’est opéré
dans mon esprit en ce qui concerne Yinterprétation de
la Mécanique ondulatoire et je suis revenu aux idées
qui avalent orienté mes travaux a I’époque ou j’avais
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cherché a obtenir une image claire de la coexistence des
ondes et des particules.

Ce revirement 1mprévu a eu certainement pour
origine des études que j’ai poursuivies dans la
période 1948-1952. Javais d’abord fait des cours sur
Pinterprétation statistique de la Thermodynamique
en insistant sur l'introduction dans cette théorie des
conceptions relativistes. Je me suis alors aper¢cu qu’il
existait une curieuse analogie entre la formule de trans-
formation relativiste de la chaleur et la formule de
transformation relativiste de la fréquence d’une horloge
qui avait joué un si grand role dans mes réflexions au
moment de ma Thése de Doctorat. Et je fus aussi tres
frappé par 'analogie, déja vaguement pressentie autre-
fois par Eddington, entre les deux invariants relati-
vistes que sont l'action et l’entropie. J’étais ainsi
ramené aux 1dées qui m’avaient guidé lors de la décou-
verte de la Mécanique ondulatoire et ’on verra plus
loin le role important qu’ont joué ces analogies thermo-
dynamiques dans mes récents travaux.

Dans les années suivantes, j’a1 consacré deux cours
a exposer l'interprétation de la Mécanique quantique
par I'Ecole de Copenhague et les controverses qui
avaient eu lieu 4 ce sujet, une quinzaine d’années aupa-
ravant, entre Niels Bohr d’une part, Einstein et
Schrodinger d’autre part. Au fur et a mesure que
javancais dans la rédaction de ces cours, je sentais
mes 1dées se modifier. Ma confiance dans l'interpré-
tation généralement adoptée était ébranlée et je me
demandais si je ne devais pas reprendre mon ancienne
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tentative d'interprétation de la Mécanique ondulatoire
par la théorie de la double solution. C’est alors que j’ai
eu connaissance d’un article de M. David Bohm dans
la Phystcal Reviesy ou 1l reprenait la plupart des idées
contenues dans mon article du Journal de Physique
de 1927. Je me décidal alors 4 reprendre le dévelop-
pement de mon ancienne tentative.

Ayant a cette époque beaucoup d’obligations univer-
sitaires ou autres et n’ayant pu trouver qu’un trés
petit nombre de jeunes chercheurs pour m’aider, j’ai
d’abord progressé trés lentement dans I'ceuvre de
critique et de réinterprétation dans laquelle je m’en-
gageais. Mais depuis quelques années, il m’a été possible
de donner a la théorie de la double solution une forme
plus élaborée et de la compléter par une Thermo-
dynamique cachée des particules qui m’apparait
aujourd’hui comme ouvrant de vastes perspectives
nouvelles.

Apreés ce premier chapitre qui constitue une sorte
d’introduction, je vais dans les chapitres suivants de
cette premiére partie du livre exposer les principes
généraux de ma théorie dans son état actuel. La
seconde partie de I’ouvrage, rédigée par mon principal
collaborateur, M. Andrade e Silva, sera consacrée
a 'examen d’un certain nombre de problémes parti-
culiers qui ont une grande importance dans le cadre
de la tentative que nous poursuivons.



CHAPITRE 11

EXPOSE DE LA THEORIE
DE LA DOUBLE SOLUTION (')

1. Hypothéses et équations de base. — Dans la théorie
de la double solution, nous admettrons qu’il existe
une onde physique w qu’il faut bien distinguer de
Ponde statistique W fictive et arbitrairement normée.
Pour exprimer la coexistence de 'onde et de la parti-
cule par une image claire, nous supposerons que
Ponde u comporte une trés petite région en général
mobile de trés forte concentration de l'énergie qui
constitue la particule ainsi intimement incorporée a
londe. Nous écrirons donc u = ¢ 4 u,, ol u, repré-
sente la trés forte concentration d’énergie trés loca-
lisée et ol ¢ représente tout le reste de I'onde. Nous
supposerons que 'onde ¢ a une trés faible amplitude
de sorte que I'on puisse considérer la totalité, ou du
moins la presque totalité, de I’énergie comme étant
localisée dans la trés petite région occupée par u,.

(') On trouvera des développements plus complets sur certains
points dans la bibliographie [4].
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Pour l'instant, nous admettrons que nous avons
affaire & une particule de spin nul, nous réservant de

. . . . h
revenir plus loin sur le cas des particules de spin —

4T

. . h
comme I’électron ou de spin _— comme le photon.

Nous appliquerons donc a Vonde ¢ l'équation non
relativiste de Schrédinger ou I’équation relativiste
de Klein-Gordon dont ’équation de Schriodinger est la
dégénérescence a I'approximation newtonienne (pour
¢ > 00). On sait d’ailleurs que ’on obtient ainsi une
représentation approximative des propriétés ondula-
toires de I’électron.

b e 4 h
En employant I'abréviation courante % = .~ nous

écrirons d’abord 1’équation de Schrédinger pour
Ponde ¢ sous la forme (ot U est le potentiel qui s’exerce
sur la particule)

o Rk
at T aim

(1)

i
Av 4+ —Up.
¢+ 5 Us

L’équation complexe (1) implique que l'onde ¢ est
représentée par deux fonctions réelles liées I'une a
Pautre par deux équations réelles. Nous sommes donc
amenés a écrire

=9
(2) v=—aet

avec a et 9 réels. a est 'amplitude de 'onde ¢ et ¢ sa
phase. En substituant (2) dans (1), nous obtenons,
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apres quelques calculs simples, les deux équations

Jdo T . Y
(5 DZ—‘U*?—‘E(gradCP) =
2 —
(C) (i)cz — ;lidi\'(u? gradcp):o.

Pour des raisons qui apparaitront mieux plus loin,
nous appellerons ’'équation (J) « I’équation de Jacobi
généralisée » et I'équation (C) « I’équation de conti-
nuité ».

51, pour obtenir une forme relativiste de la théorie,
nous appliquons a l'onde ¢ non pas l'équation de
Schriodinger, mais 1’équation de Klein-Gordon, nous
obtenons a la place de (1)

a2t =V de 20w & dv I
(3) R R R DL ra

xYE

équation dans laquelle nous avons supposé que la
particule porte une charge électrique ¢ et est soumise
a laction d’un champ électromagnétique extérieur
dérivant d’un potentiel scalaire V (z,y, z,t) et d’un

'} .
potentiel vecteur A (z, y, z, t). En introduisant dans (3)
la forme (2) de ¢, nous obtenons aprés quelques cal-
culs une équation de Jacobi généralisée J' et une

M. DE BROGLIE. 2
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équation de continuité C’ dont voici les expressions

d r 2 d 2 a9 C 2
(¥ %(£_5V> —Z<£+ %Ax> :macl+hzga—a:M;,cQ;

XYz

N 1/09 da do 3 da a .
() §<57—5V>57—2 (a;ﬁ’*r)%*;m—"‘

xYs

ou nous avons introduit au dernier membre de (J')
ce que nous appellerons la masse propre variable M,
définie par

I* Oa
([I) Mo:\/m%+c%%a
grandeur dont nous verrons plus tard la trés grande
importance.

Pour vérifier qu’a I’approximation newtonienne les
équations (3), (J') et (C’) se réduisent aux équations (1),

—
(J) et (C) il suffit de poser A=0,eV="U, ODa~—Aa
et de remplacer (())—c; par m,c® - % Nous n’insisterons

pas sur ce calcul.

2. Formule du guidage et potentiel quantique. —
Nous allons maintenant étudier les équations (J) et
(J') qui correspondent a I’équation non relativiste
de Schrédinger et a4 ’équation relativiste de Klein-
Gordon.

Occupons-nous d’abord de I'équation de Schrédinger
et de la formule (J). Si dans (J) on néglige le terme
du second membre ou figure la constante h de Planck,
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ce qui revient a faire abstraction des quanta, et si
Pon pose ¢ = S, ’équation (J) devient

(5) ‘(—;; —U:ﬁ(gradS)?

Nous retrouvons ainsi pour la fonction S de Jacobi
P’équation de Jacobi de la Mécanique classique. C’est
donc uniquement le terme en %* qui fait que le mou-
vement de la particule différe du mouvement classique.
Quel est la signification de ce terme? Il peut s’inter-
préter en admettant qu'en dehors du potentiel clas-
sique U intervient un autre potentiel 2, le potentiel
quantique donné par la formule

i Aa
(6) 2=

Par analogie avec les formules classiques %? =E et

> —> > , . .,
p= —grad S, o E et p sont I’énergie et la quantité
de mouvement classiques, nous poserons ici

7 —> >
(7 ;)%P:E, —grade —=p

et comme en Mécanique non relativiste la quantité de
> . . . >
mouvement p s’exprime en fonction de la vitesse ¢

> >
par la formule p = m¢, nous obtenons

1 —>

>
(8) v = ___—Rgradq).

3 ey

Cest 1a ce que nous appellerons « la formule du gui-
dage » qui nous donne la vitesse de la particule quand
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elle occupe la position z, y, z & 'instant ¢ en fonction
de la variation locale de la phase a cet instant.

Il importe de préciser que a et ¢ sont amplitude
et la phase de Ponde ¢ telles qu’elles existeraient si
la région w, d’amplitude trés élevée qui constitue la
particule n’existait pas. Si lon préfére, I'on peut
dire que a et ¢ sont 'amplitude et la phase de onde ¢
au voisinage de la région presque ponctuelle occupée
par la partie u, de onde u = w, + ¢. J’al pu donner
des justifications de la formule du guidage basée sur
cette derniere idée (vour [4], a, p. 102 et 287). Nous
reviendrons plus loin sur cette question.

La force quantique F=— graa 2 qui s’exerce sur
la particule courbe la trajectoire de cette particule.
Cependant dans le cas important, mais schématique,
de 'onde plane monochromatique, 2 est constamment
nul et il n’y a pas de force quantique : la particule
déerit alors avec une vitesse constante une trajec-
toire rectiligne qui constitue U'un des rayons de 'onde
plane monochromatique et I'on retrouve ainsi 'image
que J’avais eue dans I'esprit a I'époque de ma theése.

Mais quand la propagation de I’onde est soumise a
des conditions aux limites, 1l peut y avoir apparition
de phénoménes d’interférences ou de diffraction et,
sous l'influence de la force quantique, le mouvement
défini par la formule du guidage cesse d’étre recti-
ligne et uniforme. Tout se passe comme si les obstacles
qui entravent la propagation de I'onde exercaient a
distance sur la particule par I'intermédiaire du potentiel
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quantique une action déviante. Les partisans de 1’an-
cienne théorie de ’émission pensaient que la lumiére
est uniquement formée de corpuscules et, comme ils
savalent que la lumiére peut contourner le bord d’un
écran, ils disaient que le bord d’un écran exerce une
force sur les corpuscules de lumiére qui passent a son
voisinage. Sous une forme beaucoup plus élaborée,
nous retrouvons ici une idée analogue.

Nous passerons maintenant & ’étude de 1’équation
relativiste de Klein-Gordon et de la formule (J).
Remarquons d’abord que si dans la formule (J')
nous négligeons le terme %*, nous obtenons en posant

?ZS,

1/0S  \? O/ 9SS P
(9) ;;;(07“”) —Z<%+°Ax>—’"°"

xys

Or cette équation est en Mécanique relativiste
sans quanta 1’équation de Jacobi pour une particule
de masse propre m, et de charge électrique ¢ soumise

a un champ électromagnétique dérivant du potentiel
-
scalaire V et du potentiel vecteur A, comme nous

devions nous y attendre.

S1 nous conservons les termes en 72 et si nous utilisons
la masse propre variable M, définie par (4), nous

\

sommes naturellement amenés a poser

2 ). > — >
(10) J&i::gf eV, _ﬂof.}_:—(grad(p—i—sA),

V12 a [ — 37
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avec B = g, ce qui conduit a la formule du guidage

relativiste
— >
(11) > ,grad @ -+ cA
=
Jde .
o

—
A Tlapproximation newtonienne avec A =o0 et

99

= —&V2myc®, nous retrouvons bien la formule (8).

La force quantique va ici résulter des variations
de la quantité M,c* quand la particule se déplace
dans son onde. Pour avoir toujours un potentiel
quantique nul pour l'onde plane monocromatique,
nous poserons

(12) L=M,c?*— m,c>.

A lYapproximation newtonienne ou c->o0 et ou
Oa~~ — Aa, nous retrouvons la valeur

... Ou . nt Aa
Q= ‘/m3c2+c2ﬁ2—~ — Myt~ — —
[71

comme cela devait étre.

Les formules relativistes que nous venons d’étudier
sont extrémement importantes pour tout ce qui suit
car la Mécanique ondulatoire est, comme je l'avais
pressenti dés ses débuts, une théorie essentiellement
relativiste dont I’équation de Schrédinger qui n’est
pas relativiste ne suffit pas & révéler la véritable
nature.
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3. Interprétation du mouvement de guidage. — Il
importe maintenant de mettre en évidence deux
caractéristiques essentielles du mouvement de gui-
dage.

La premiére d’entre elles, c’est qu’elle exprime
que la particule en se déplacant dans son onde reste
constamment en phase avec cette onde. Pour le
démontrer, supposons d’abord que la particule n’est
soumise 4 aucune force classique, ce qui revient &

poser V=A—o dans I’équation de Klein-Gordon.

Si alors nous nous déplacons le long de la trajectoire

de guidage d’une longueur dl dans le temps dt, la

variation correspondante de la phase de 'onde sera
(13)  do= %m + %dl:(% +3.gTa§cp> dt

- M, 2 M, 2

(vi—@‘l Vi—p

. , . 1
Or, la particule ayant une fréquence interne v, = ~ M,c?,

> dt = M,c*\/1 — [ dL.

sa phase interne ¢,, quand elle se déplace de dl dans
le temps dt, varie de

(14) doy=M,c2\/1 — 3 dt = do.
Nous voyons donc bien que la particule se déplace

dans son onde de fagon que sa vibration interne (*)
reste constamment en phase avec celle de I'onde.

i
o

. . - 71
() Définie par I'expression a: " avec a; et ¢ réels.



24 PRINCIPES GENERAUX.

On peut interpréter ce résultat en remarquant
que la particule est définie dans cette théorie comme
une trés petite région de I'onde ou I'amplitude est
trés grande et qu’il est par suite naturel que le rythme
interne de la particule soit le méme que celui de ’onde
au point ou elle se trouve. Nous ferons a ce sujet
la remarque trés importante suivante. Pour que cette
interprétation du guidage soit acceptable, il faut que
les dimensions de la trés petite région singuliére
définie par u, soient trés petites par rapport a la
longueur d’onde de 'onde ¢. On peut donc dire que
toute la théorie que nous développons aurait une
limite de validité pour les trés courtes longueurs
d’onde, c’est-a-dire pour les énergies trés élevées.
(C’est 13 une remarque qui est sans importance dans
les cas usuellement considérés, mais qui pourrait
devenir capitale dans I’étude des particules de treés
hautes énergies.

Etendons maintenant la démonstration qui précéde
au cas oi, dans I'équation de Klein-Gordon, V et A

ne sont pas nuls. L’accord de phase entre I'onde et
la particule s’exprime toujours par I’équation

do > —> _ dy,
(15) (5)7 4+ . ;:,radcp)a’l_“ i dt.

Nous poserons ici

hvy,= -gt—(z =M+ eV,= M]3

avec
M,c*=M,c*+ ¢V,
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dans le systéme propre de la particule ou celle-ci est
momentanément au repos.

D’autre part, on a

do oy — Ay, . M ¢? )
(16) o0 T TV T ViR
de,

7 =hve=hvoy1—B=M,c* /1 —*

et la relation (15) se trouve encore bien vérifiée.
Nous remarquerons que cette démonstration revient
a admettre que la masse propre variable de la parti-
cule contient, en plus du terme quantique M, défini
par (4), un terme dépendant du potentiel classique V,
variable auquel la particule se trouve soumise dans
son systéme propre. C’est 1a une circonstance dont il
conviendrait d’approfondir la signification.

Il existe une autre caractéristique essentielle du
mouvement de guidage. C’est que le mouvement de la
particule s’effectue suivant une Dynamique relativiste a
masse propre variable. Pour le voir, nous prendrons
tout naturellement comme fonction de Lagrange £ de
la particule libre

(17) L= 1\10(;2 \/I_SZ.

Le principe de moindre action Sfﬁdt:o nous

conduit alors aux équations de Lagrange

(18) d <df;’> ar

2i\ 07, ) = og7
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c’est-a-dire ici A

dp
(19) 11— gradMo,

ce qui montre bien que la Dynamique de la particule
est une Dynamique relativiste 4 masse propre variable.
La symétrie relativiste entre ’espace et le temps nous
conduit & compléter I’équation (1g) par la suivante :

IdW ()M
(20) o = EVI—F Jt
M > , .
Comme % = % + g.gradMO, les équations (1g)

et (20) nous donnent

dW e dp ., — dMy
(>1) T Al T VI —f dt

Or, on a

dv  d 5 M, b
dt dtV[' /“““@zdt

dM d —_— M,¢  db
2/ 32 L g— M. o2 2 0
ZC\’I ° dt~dt(M°(/\/I &) \/1————@26&’

(23) %(\VH(%.;—MO(;QV/I—@>:0
et, comme nous supposons que, si la particule est
au repos on a 3=o0 et W= M,¢? il en résulte que

M, 2

P

(2) W=MT=F +0.p=Meyi—F +

9
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relation qui est, en effet, bien vérifiée puisque
W M, c?

Vi

La relation (24) que nous venons d’obtenir & partir

de la Dynamique du guidage & masse propre variable
posséde, nous le verrons, une signification thermo-

dynamique trés remarquable.

On obtiendrait la généralisation du raisonnement qui
précede au cas de Dl'existence d’un champ électro-
magnétique extérieur en partant de la fonction de
Lagrange

T >
A.v

(25) £=—M,¢? \/1@‘3"—&—3<\'— T>:M'Oc‘-’\/1—§2,

compte tenu de la formule de transformation rela-

tire

V»——(_—A

tiviste V, = ——2_-
Vi 2

4. Interprétation des équations de continuité (C) et (C').
— Cherchons maintenant la signification des équa-
tions (C) et (C’) qui correspondent respectivement a
I’équation non relativiste de Schrodinger et a 1’équa-
tion relativiste de Klein-Gordon.

Commencons par I’équation (C)

da? 1o TN
(G) o m div <a2 gladcp) —=o.
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En vertu de I’équation (8) du guidage et en posant

o =Ka®, ou K est une constante, elle prend la forme
J .

(26) d_i —+ dnv(p?’) =o.

(’est ce qu’on nomme en Hydrodynamique I’équation

de continuité ou pdrt est le nombre des molécules

du fluide dans I’élément de volume dt et ¢ leur vitesse.
sr o+ D . , ., D
Elle peut s’écrire ﬁi(pdw) =o0, ou la dérivée 5 est

prise en suivant le mouvement des molécules et elle
exprime la conservation du fluide. Mais 1ici nous
n’avons qu’une particule et il semble alors naturel de
considérer la grandeur ¢ dt comme proportionnelle 4 la
probabilité de la présence de la particule dans I’élément
de volume dt. Cependant, cette interprétation souléve
une difficulté si Pon suppose que la particule suit
réguliérement sa trajectoire de guidage comme nous
Pavons admis jusqu’ici. Nous reviendrons sur cette
difficulté et cela nous conduira 4 compléter la théorie
du guidage, telle que nous 'avons développée jusqu’ici,
par un élément aléatoire, ce qui nous ouvrira des
horizons nouveaux.

Sans 1insister pour Pinstant sur ce point, nous
admettrons que la quantité o =a’(2,y, z,t) donne,
& un facteur multiplicatif constant pres, la probabilité
de la présence de la particule a Uinstant ¢t dans I'élément
de volume dt de coordonnées z,y, z. Comme nous
serons amenés au chapitre suivant a définir la fonction
statistique W en fonction de l'onde réelle ¢ par la
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relation ¥ = C¢, ou C est une constante de normali-
sation telle que fl‘[f

a dire que |W|*d~ représente en valeur absolue la
probabilité de présence en question.

*dt =1, nous serons conduits

Examinons maintenant la relation (C’) relative a
Péquation d’onde relativiste de Klein-Gordon. Apres
multiplication par 2a, elle peut s’écrire

1 [09 da? > e\ T
[ Yy i S = ZA z 2 —o.
(G e <()t V> 0 <grad<p+ p ) grada®+ a*[Jo =o

Ici nous définirons ¢ par la formule
. Jdo ,
(27) p:I&a‘Z(a—;—sV)-

Avec cette définition de 2 et en tenant compte de la
définition (11) de la vitesse de guidage et de la rela-

. . IV e
tion de Lorentz entre les potentiels LAl +divA=o0
c dt ’

on retrouve 1’équation de continuité (26).

On peut donc admettre, avec les mémes réserves que
précédemment, que la quantité p dt = Ka* <Q§E — EV> N
représente la probabilité de la présence de la parti-
cule dans I’élément dt 4 'instant ¢. Nous avons ainsi
généralisé les résultats obtenus ci-dessus avec I’équa-
tion d’ondes de Schridinger au cas de I’équation d’ondes
des particules de spin nul et il est facile de vérifier
qu'a l'approximation newtonienne la définition (27)
peut se ramener a la définition p = Ka’.



CHAPITRE III

COMPLEMENTS SUR LA THEORIE
DE LA DOUBLE SOLUTION

1. Introduction de l'onde statistique W. — Jusqu’a
présent nous avons seulement étudié l'onde ¢ qui
contient une petite région singuliére, en général mobile,
constituant la particule. Cette onde ¢ qui aurait une
trés faible amplitude occuperait la presque totalité
du domaine occupé par une onde u = u,+ ¢, ou u,
représenterait 'onde dans la région extrémement
petite ou l'amplitude est trés grande. La structure
de 'onde dans la région u, peut étre trés complexe;
c’est elle qui définirait la structure de la particule.
Nous n’insisterons pas 1ici sur ce probléme. I parait
trés naturel que la propagation de I'onde ¢, onde
physique réelle se propageant dans I'espace au cours
du temps, puisse déterminer, comme nous l’avons
admis dans la théorie du guidage, le déplacement de
la particule qui lui est intégrée et aussi que les états
stationnaires de cette onde ¢ dans des systémes tels
que P’atome d’hydrogéne puisse déterminer I’état
quantique de ce systéme.
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Mais, depuis les travaux de Schrédinger, on s’est
habitué & considérer uniquement Ponde Y dont
Pamplitude est arbitrairement normée. Or, cette onde
ne peut pas étre considérée comme une onde physique
d’abord parce que l'amplitude d’une onde physique
a une valeur déterminée et ne peut pas étre arbitrai-
rement normée et aussi parce que, si ¥, et W, sont
deux solutions normées de [’équation linéaire des
ondes ¥, la somme W,+ W, n’est pas une solution
normée de sorte que l'onde W normée ne posséde pas
la propriété de superposition qui caractérise les ondes
physiques solutions d’une équation de propagation
linéaire. Aussi a-t-on été amené A regarder 'onde W
comme une représentation de probabilités, un instru-
ment de prévision, permettant de prévoir la probabilité
des résultats possibles de la mesure des grandeurs
attachées a une particule ou a un ensemble de par-
ticules. Or, il est impossible qu’une simple représen-
tation de probabilités puisse provoquer des phéno-
meénes physiques tels que manifestation localisée
d’une particule, phénoménes d’interférences ou de
diffraction, etc., ou imposer des valeurs aux énergies
des états stationnaires des atomes. Seule une réalité
objective peut provoquer de pareils effets et une
représentation de probabilité n’a pas ce caractére.

Cependant il est certain que 'utilisation de 'onde W
et de ses généralisations a conduit & un trés grand
nombre de prévisions exactes et de théories fructueuses.
Cest la un fait gu’il ne saurait étre question de
contester. La situation s’éclaire si ’on fait intervenir
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a coté de 'onde W statistique 'onde ¢ qui, elle, peut
provoquer les phénomeénes dont l'onde W donne
Paspect statistique. 1l importe donc d’établir une rela-
tion entre 'onde W et 'onde ¢.

En introduisant une constante C qui peut étre
complexe, nous établirons cette relation en écrivant

. S
(1) Y—=Coe==Cae",

C est un facteur de normalisation tel que

f]\lf}ﬁdfzx,
)

ou V est le volume occupé par 'onde ¢. Comme nous
Pavons déja remarqué au chapitre précédent, en
théorie de Schridinger ou |W{*dt donne la proba-
bilité de présence de la particule dans I’élément de
volume dt, la grandeur |W|*d: nous donne cette
probabilité en valeur absolue et c’est la la raison de
I'introduction de la fonction statistique W' a partir
de 'onde réelle ¢ par la relation (1).

Une premiére remarque a faire au sujet de la rela-
tion (1) est la suivante. Comme |W|=|C|a et que
la phase de W ne peut différer de celle de ¢ que par
une constante additive, nous voyons que les formules
de guidage et les expressions du potentiel quantique

() Dans le cas d’'une onde » portant N bosons (par exemple

N photons), il faut normer le ¥ en posant fl Y 2d=N.
@

M. DE BROGLIE. 3
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données au dernier chapitre sont insensibles & la
substitution de W & ¢.

Une autre remarque est la suivante : [C]| doit étre
trés supérieur & 1. En effet, considérons une grandeur
attachée & une particule et dont on connait la valeur g.
La théorie usuelle, qu1 utilise la fonction W', admet que
cette grandeur est répandue dans toute 'onde avec

une densité |[W|*g de sorte que f[‘l’”{‘"’gd'rzg.
k%

Mais dans la théorie de la double solution, la gran-
deur g est certainement concentrée presque entierement
dans la particule, c’est-a-dire dans la tres petite région
occupée par u,. On doit donc avoir

(2) fazgdf<f|‘l’"\2gdr,
@ v

d’ou, d’apres (1),
(3) [C|>1.

On peut illustrer ce résultat par une image un peu
simpliste, mais trés suggestive. SiI nous assimilons
la grandeur g a une quantité de sable, la théorie de
la double solution se représente 'onde u comme
formée d’une couche trés mince de sable (partie ¢
de 'onde wu) portant un tas de sable trés localisé
et trés élevé. La quantité totale de sable dans toute
Ponde u équivaut alors & la quantité totale de la
grandeur g dans l'onde u. Mais la théorie usuelle,
qui 1gnore P'existence du tas de sable, cherche a nous
donner une image statistique de la répartition de la
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grandeur g en imaginant une couche de sable épaisse
et continiment répartie qui contiendrait la méme
quantité totale de sable. Cette couche homogéne doit
avoir évidemment une épaisseur beaucoup plus grande
que la mince couche qui, pour nous, représente la
répartition de la grandeur g dans la partie v de 'onde u.
Et 'on voit aisément que cela entraine que, dans la
relation (1), |C| soit beaucoup plus grand que 1.

(’est parce que D'interprétation précédente m’avait
amené a considérer simultanément deux solutions
distinctes, mais reliées par la relation (1), de I’équation
des ondes, 'une ¢ a caractére physique et non normée,
Pautre W normée et a signification statistique,
que j’avais été amené a désigner cet ensemble théo-
rique sous le nom de « Théorie de la double solution ».

Par la distinction des deux ondes ¢ et W le mystére
du double caractére a la fois subjectif et objectif
de I'onde dans la théorie usuelle disparait et 'on peut
ne plus attribuer & une simple représentation de
probabilité 1’étrange possibilité de provoquer des
phénomeénes physiques observables. De plus, il semble
bien que du méme coup 'on puisse comprendre ce
que l'on appelle dans la théorie usuelle « la réduction
du paquet d’ondes » par I’observation, expression qui,
s1 on la prenait au pied de la lettre, correspondrait
4 un véritable miracle. En effet, lorsqu’un processus
physique, tel que I'action d’un processus de mesure,
dissocie 'onde ¢ du corpuscule en portions défini-
tivement séparées avec rupture des relations de phase
et qu’ensuite une constatation nous apprend que le
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corpuscule est présent dans l'une de ces portions,
nous devons pour traduire le nouvel état de nos
connaissances poser C = o pour toutes les régions
autres que celle ou le corpuscule se trouve et renor-
maliser I’onde W' dans cette région-la. Ainsi les possi-
bilités de valeurs différentes et éventuellement nulles
de la constante C pour les différentes portions en
lesquelles 'onde ¢ initiale s’est {fragmentée nous per-
mettent d’interpréter la réduction du paquet d’ondes
sans porter atteinte au caractére objectif de 1'onde ¢.
Cette brusque et incompréhensible réduction de
I’étendue occupée par I'onde porte sur la représen-
tation ¥ de la probabilité de présence de la particule
et non sur 'onde physique réelle.

2. La localisation de la particule dans l'onde et la
loi du guidage. — Jusqu’ici nous avons représenté
I'insertion de la particule dans son onde en disant que
londe w comporte, en dehors de sa partie réguliére ¢
de trés faible amplitude, une trés petite région singu-
liere de trés grande amplitude et que la connaissance
de la forme u, de 'onde u dans la région singuliére
pourrait donner une description de ’état interne de
la particule. On peut penser qu’en raison de la tres
grande amplitude de 'onde dans la région singuliére,
elle cesserait d’obéir & une équation d’ondes linéaire
et que la non-linéarité pourrait un jour jouer un réle
essentiel dans la théorie de la constitution interne de
la particule. Des tentatives ont été faites, notamment
par M. Jean-Pierre Vigier, pour obtenir a ’aide d’hypo-
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theéses sur la structure interne de la particule une inter-
prétation des grandeurs (charge, spin, 1sospin, nombre
baryonique, étrangeté, masse) qui caractérisent les
diverses sortes de particules et permettent de tenter
d’en établir une classification. Nous n’insisterons pas
sur ces tentatives dont les bases sont encore assez
incertaines.

Une question qui peut &tre abordée avec plus de
sécurité est celle de la justification de la loi du guidage
par I'examen de la facon dont la région singuliére u,
doit se déplacer dans onde réguliére ¢ qui I’entoure.
J’al donné, il y a quelques années, des raisonnements
permettant de justifier la loi du guadage (*). Ils reposent
essentiellement sur I’étude de la maniére dont doivent
se raccorder a la périphérie de la région singuliére
les grandeurs qui caractérisent respectivement ’onde
réguliere ¢ et l'onde u,, celle-ci devant se mettre
a croitre tres rapidement dans la région singuliére.

Ces raisonnements présentent une grande analogie
avec ceux qu Einstein et ses continuateurs avaient
utilisés en Relativité générale pour justifier 'affirmation
qu’une particule matérielle a un mouvement représenté
par une géodésique de I’espace-temps. Cette question
qui avait préoccupé Linstein a été traitée d’une
fagon approfondie par Georges Darmois et André
Lichnerowicz [5]. Le principe de leur méthode de
démonstration est de considérer le tube d’univers
trées délié qui représente dans I’espace-temps le mou-

(1) Voir bibliographie, [1], a, p. 102 et 287.
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vement de la particule et d’écrire qu’ill y a raccorde-
ment continu, a la périphérie de ce tube de géodé-
siques, du champ intérieur au tube avec les géodésiques
du champ extérieur. Transposée en théorie de la double
solution, la méthode consiste a écrire que la particule
se déplace dans I’espace & l'intérieur d’un tube tres
étroit dont les parois sont formées par un ensemble
de lignes de courant de 'onde ¢ considérée comme un
écoulement hydrodynamique. Comme ces lignes de
courant sont définies par la vitesse ¢ de la théorie du
guidage, la particule reste enfermée dans le tube
au cours de son mouvement et la loi du guidage de la
particule par 'onde ¢ en résulte. Bien que la nature
physique du probléeme en Relativité générale et en
Théorie de la double solution soit différente, la méthode
de démonstration est trés analogue.

Mais il existe une autre maniére plus schématique
d’aborder le probléme. Il consiste a représenter la
particule par une singularité (au sens mathématique
du mot) au sein de I'onde et & chercher des solutions
a singularité mobile des équations d’ondes. J’avais
déja esquissé cette méthode dans mon article du
Journal de Physique de 1g27. Javais, en effet, montré
que I’on peut trouver avec I’équation de Klein-Gordon
des solutions ayant la phase d’une onde plane mono-
chromatique et possédant une singularité mobile et
Javais introduit la notion d’états « contraints » en
remarquant que la forme de la solution & singularité
peut dépendre des conditions aux limites auxquelles
Vonde est soumise. Mais il était important de généra-
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liser ces résultats au-dela du cas trés particulier que
yavais étudié. Ce probléme a été abordé par M. Francis
Fer dans sa thése de doctorat, puis repris d’une fagon
plus étendue par M. Thiounn dans une série de tra-
vaux [6]. M. Thiounn a démontré qu’aussi bien dans le
cas de I'équation de Klein-Gordon applicable aux
particules de spin o que dans le cas des équations
d’ondes de Dirac applicables a I’électron et aux par-

. . , .
ticules de spin EI et dans le cas des équations de Maxwell

avec terme de masse applicables aux particules de
spin /% (en particulier aux photons), il existe des solu-
tions comportant une singularité ponctuelle se déplagant
sutvant la lot du guidage. Assurément la représentation
de la particule par une simple singularité de I'onde
n’est pas une véritable représentation de la structure
de la particule et n’en constitue qu’une image trés
schématique. Néanmoins je considére les travaux
de M. Thiounn sur ce sujet comme trés importants et
comme fournissant une remarquable confirmation de
la théorie du guidage.

3. Extension de la Dynamique du guidage aux particules
de sping et 2. — Nous sommes maintenant amenés
a parler de la Dynamique du guidage pour les particules
de spin %L comme ’électron ou de spin % comme le

photon. Pour le faire, nous utiliserons le formalisme
tensoriel d’Univers avec la convention de sommation
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des indices en posant

xr, =, Ty Y, ZTy= 5, &, = ict,
) ds*—= — dz, dav = ¢* di* — dI?,
__dwzy T
Up= =5 Uy utz=—1,

Les composantes du quadrivecteur impulsion-énergie
ont pour expressions
(5) P1= Puxy Pe==Py, Ps=pP: pPi= I'V\f,

ol p., py, p- sont les composantes de la quantité de

> . s, .
mouvement p et ou W est I’énergie. Nous exposerons

d’abord avec ce formalisme le cas déja étudié de la
. . . . .
particule de spin o, puis ceux de la particule de spin ELa

puis de la particule de spin 7.

a. Particule de spin o (équation de Klein-Gordon). —
Nous définirons I'impulsion-énergie par la formule
(6) Pu=Mycuy=—4d,9,

l‘;f
avec W' = a €%, a et ¢ réels ('), ou

# '
(7) M‘,c'l:‘ / m,ct+ (‘: %

La Dynamique de la particule qui est une dynamique
a masse propre variable est définie par les équations

d, d
(8) % = —c(l—s (Mycuy) = uwdy (Mycuy)

= w dy (Mycu,) + w [0, Mycuy — dy, Mycu, .

(") En vertu de la relation ¥ = Cp, on peut écrire ici ¥ ou v.
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Mais le dernier terme entre crochet est nul en vertu

de (6) et u'd,(M,cu,) =— d,Myc, d’ou finalement
d d
(9) js(l’p): ('TS(MOCI/I}L):_()(.L(MOC),

ce qui donne bien les équations (19g) et (20) du chapitre
précédent définissant la Dynamique 4 masse propre
variable de la particule.

Naturellement a l'approximation newtonienne en
posant 2 = M,¢* — m,c¢®, nous trouvons

d — >
(10) E(M()mz—grad(i\loc‘z) — —grad 2,
2 étant le potentiel quantique.

b. Particule de spin “ (équations de Dirac). — La
2

théorie de Dirac définit 'onde W par quatre compo-
santes W, avec k = 1, 2, 3, 4 qui obéissent & quatre
équations aux dérivées partielles simultanées du
1eT ordre, mais ne sont pas les composantes. d’un
quadrivecteur. Ces équations sont bien connues et
nous ne les transcrirons pas ici. Pour nous, 'onde
réelle ¢ a les quatre composantes ¢, obéissant aux
équations de Dirac avec W= Cy,.

En théorie de Dirac, on définit un courant d’Univers
Ju=Pou, OU p, est une densité invariante et on

décompose ce courant en deux parties par la « décompo-

i
sition de Gordon » qui, en écrivant W = a,e™™
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avec a; et @, réels, s’écrit

. 1 _—
g 251*0 Lap = — aka
Ji P % Ou k- Ak Pl >_‘ ka,
k x
(11) 7
(2 Y
= Oy (aF LYy, Yy ak
Ju QmOCZI ST
[

ou m, est la masse propre usuelle de la particule et
ou les y, sont les matrices bien connues de Dirac.
De plus, dans (11) on a posé

_— B
(12)  af = apv., duo = — == )
}-‘azak £

k

Eazdg(?kak Eafducpkak
k —

Q, étant le premier des deux invariants introduits
par la théorie de Dirac qui sont

~ Wl
(13) Dlz}da“;ak, 92:2‘61?{5@,
k £

avee Ys=— YiYV2Y37Vs-

Dans la décomposition (r1) de Gordon, j*) est le
vecteur courant lié au mouvement de la particule
tandis que j* traduit I'existence du spin. Les formules
bien connues de Pauli-Kofink donnent

(14) po== V2 + QL.



COMPLEMENTS SUR LA THEORIE. 43

On est alors conduit (') a définir la masse propre
variable M, de la particule par
m, Q2

(15) Mo:vsrp“:mu\/lﬁu—g%
et, comme £, est nul pour 'onde plane monochro-
matique, on en conclut que, dans ce cas comme dans
celui de la particule sans spin, M, a alors sa valeur
minimale M, == m,, résultat dont nous verrons bientot
I'importance dans la Thermodynamique cachée des
particules.

Pour PI'impulsion-énergie dans le mouvement de
guidage, on trouve

(16) pu==Mycuy=—0dy9 -+ Py,
avec
Z()\,(aﬁ.L"YHTV‘Zk)
(17) P= 2 A
7 BT amy, Q,

Si la particule a une charge électrique et est soumise
a un champ électromagnétique, 11 y a lieu d’ajouter
a Pexpression précédente des termes dépendant des
potentiels électromagnétiques.

Comme dans le cas de la particule de spin o, on
trouve facilement I’équation

= s Mocwy) =— 0y (Mye) + w’[0ypu—dyupi],

mais 1ci le terme entre crochets n’est pas nul.

() Voir [4], a, p. 198 et ss.
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En résumé, nous voyons que, pour la particule de
Dirac, la théorie du guidage prend un aspect plus
compliqué que pour la particule de spin o. Il serait
trés intéressant d’en faire une étude plus approfondie
généralisant celle que nous avons faite pour la particule
de spin o.

c. Cas du photon et des particules de spin /. (équations
mazwelliennes). — On sait que les équations d’ondes
de la particule de spin % sont les équations de Maxwell
complétées par des termes de masse (Louis de Broglie,
Proca). J’ai toujours pensé que, méme pour le photon,
on doit introduire ces termes de masse, mais alors
la masse propre qui y figure et que je désigne géné-
ralement par ., est extrémement petite, mais non
nulle. J’ai exposé souvent les raisons pour lesquelles
cela me paraissait nécessaire de facon a faire rentrer
le cas du photon dans le cadre général de la Mécanique
ondulatoire de la particule de spin % ('). L’introduction
de ces termes extrémement petits oblige & considérer
les potentiels électromagnétiques comme des grandeurs
physiques a valeur bien déterminée contrairement au
trés arbitraire « principe de l'invariance de jauge » et,
tout en faisant résulter des équations maxwelliennes du

photon la relation de Lorentz entre les potentiels

1 dV . P
- g T divA =o0, permet de définir le mouvement

du photon, comme celui des autres particules de spin %,

() Voir [4], d.
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a l'aide d’un quadrivecteur courant, ce qui me parait
essentiel.

Nous introduirons donc pour les particules de spin 7
et notamment pour le photon, un quadrivecteur
complexe « potentiel » de composantes A, et un tenseur
antisymétrique complexe de rang 2 F,, qui, pour le
photon, sera le « champ électromagnétique complexe »,
et les équations de Maxwell complétées par les termes
de masse propre nous fournissent les relations

(19) Foo=0d,Ay, —d,A,, J,A,—o.

)
Nous poserons A, = a, ¢"™* avec a, et p, réels.

On admet alors pour le quadrivecteur courant-
densité la définition

(20) Jv=0o1ty=10 K (A¥F, — conj.)
={K[A¥ (dyAp— duAy) — conj.],

ol K est une constante dépendant des unités choisies
pour A, et F,, et ol u, est toujours le quadrivecteur
« vitesse d’Univers » de la particule et p, la densité
propre.

Posons encore, la seconde définition étant analogue
a la seconde définition (12),

-
2‘(/1'.*()\,@@(1u
(21) ]a[‘lzza"av:|A[2—[V|“, dyo = -t

Dans I’expression (20) de j,, le terme ¢ K{A*0,A,— conj.)
Kial ,
nous donne — % d,9. D’autre part, on peut
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remplacer A%d,A, par J,(A,A,) d’aprés la seconde
équation (1g) et I'on obtient finalement pour définir
le mouvement de guidage la relation

(22) \oou‘,:—"l—K—;iﬁI—-()

2 K , Py — @
V(P+ZI\0H,:“HQVE']1 Vﬁ u]-

Par analogie avec la relation (11), on est conduit
a définir la masse propre variable de la particule par
la formule

Pk
(23) M0w2|a]2cK
et I'on trouvera alors pour les composantes Mycu,
de I'impulsion-énergie

I3 . —

(24) pv:Mocuv:—().,go—f—T—CLL—]E()ul:aHavsmCP—v—ﬁ&]-
Avec les définitions précédentes, la Dynamique du
guidage de la particule est régie par I’équation

(25) % (Mycuy) = — dy (Mye) + w9y (Mycu,) — 0, (Myewy)].

. . . SL
Pour la particule de spin -, nous avions trouvé 'expres-

sion (14) de p, en fonction des deux invariants €,
et Q, de la théorie de Dirac. Pour trouver une expres-
sion de la méme forme, nous poserons

(26) po=\ L] + L3,
avec

2KeMglal|?
—_— G !

(27) Q= 7
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Pinvariant Q, pouvant é&tre calculé a partir de (20)
et de (27) par la formule Q= —j,j»—Q..

Or, pour une onde plane monochromatique, on
trouve

2Kemylal?

(28) po== \/—j"jv: =

m, étant la masse propre normale. La masse propre
variable M, a donc alors, comme dans le cas de 1’élec-
tron, sa valeur minimale m, qui, pour le photon, est
égale a extrémement petite masse propre .

Un cas important en Optique est celulr ou les a,
peuvent étre considérées comme des constantes et
ou les ¢, ne différent que par une constante de sorte
que ¢,=9+«, ou o, est une constante. L’équa-
tion (24) se réduit alors a

(29) Prv=Mtu,—— dy9.

Elle a la méme forme que I’équation (6) de la particule
de spin o.

Sans entreprendre ici une étude détaillée de la
Dynamique de la particule de spin 7%, nous ferons
a son sujet une remarque importante. Nos 1dées
générales nous conduisent a admettre que les gran-
deurs A, et I,, internes a la particule doivent se
raccorder a sa périphérie avec les grandeurs corres-
pondantes de ’onde environnante. Le long de la ligne
d’univers de la particule, le quadrivecteur potentiel
interne doit donc rester paralléele a celut de onde ¢
et en phase avec lui. Non seulement le mouvement



48 PRINCIPES GENERAUX.

de la particule doit étre tel qu’elle décrive la trajectoire
de guidage avec constante égalité de la phase interne
et de la phase externe, mais il faut aussi que sa structure
interne tourne de facon & maintenir le parallélisme du
quadrivecteur potentiel interne et du quadrivecteur
potentiel externe. Cette remarque est particuliérement
intéressante a appliquer au photon pour lequel le
quadrivecteur potentiel détermine ’état de polarisation
(Vour a ce sujet [4], d.)



CHAPITRE 1V

LA THERMODYNAMIQUE CACHEE
DES PARTICULES

1. Nécessité d’introduire en théorie de la double solution
un élément aléatoire. — Nous allons d’abord nous
borner a I’équation de Schrodinger qui fournit toujours
une premiére approximation pour les vitesses petites
par rapport a c.

Nous avons vu au chapitre Il paragraphe 4, que
Péquation de continuité (C) conduit & penser que la
probabilité de la présence de la particule dans un
élément de volume dt est proportionnelle a a*dr,
a étant Pamplitude de I'onde ¢, ce qui conduit en
introduisant 'onde statistique ¥ parla relation W= Co
a dire que la probabilité en question est égale en valeur
absolue a | W |* d=, résultat bien connu. Cependant cette
1dée parait avec nos conceptions conduire a des diffi-
cultés. On le voit, par exemple, en considérant un
atome d’hydrogéne dans un de ses états stationnaires.

S Kyt . , .
On a alors W=aef "', ou E; est 'une des énergies
cn . > I
quantifiées. La formule du guidage ¢ =— — grady
m ‘

M. DE BROGLIE. 4
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nous donne ¢ = o. L’électron serait donc immobile
en un point de ’atome et ’on ne voit pas du tout
comment la relation de continuité pourrait conduire
a justifier la probabilité en | W 2.

Il y a 14 une difficulté analogue a celle qui est bien
connue en Mécanique statistique ou le théoréme de
Liouville ne suffit pas a établir que la probabilité
pour le point représentatif d’une molécule d’un gaz
d’étre présent dans un élément de volume de son exten-
sion-en-phase est proportionnclle a4 cet élément de
volume. 1l faut pour justifier cette aflirmation intro-
duire dans le mouvement des molécules un élément
aléatoire qui perturbe constamment le mouvement
régulier de la molécule. Boltzmann, considérant cet
élément aléatoire comme résultant des chocs continuels
de la molécule avec les autres molécules du gaz,
Pavait appelé le « chaos moléculaire ».

En d’autres termes, il semble bien que le {ait uni-
versellement admis qu’une particule a une proba-
bilité |W [*dtr de manifester sa présence dans un
élément de volume d= suffit & rendre nécessaire 'inter-
vention d’un élément aléatoire caché. En effet, Pexis-
tence d’une loi de probabilité qui ne peut aucunement
déterminer individuellement les phénomeénes auxquels
elle s’applique me parait toujours résulter de causes
aléatoires. On peut s’en rendre compte sur des exemples
trés simples tels que celui-ci. Quand un tireur tire
sur une cible en cherchant 4 en atteindre le centre,
les arrivées des balles sur la cible se répartissent autour
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du centre visé suivant une loi de probabilité qui
dépend de I’habileté du tireur : cette loi de proba-
bilité a pour origine les variations aléatoires conti-
nuelles de I’état physique du tireur, variations qui
modifient légérement la fagon dont 1l tire.

I me parait donc impossible de justifier la loi
statistique en | " |2 sans introduire un élément aléatoire
et, dans la théorie de la double solution, cela implique
que le mouvement régulier de la particule prévue par
la loi du guidage doit subir continuellement des
perturbations aléatoires qui le font passer constamment
d’une trajectoire de guidage sur une autre par une
sorte de mouvement brownien qui se superpose au
mouvement de guidage. Alors, griace a l'introduction
de ces perturbations aléatoires, I’équation de conti-

TtA dp o > . 9 > .
nuité - -+ divpe = 0, ol p = a® et ou ¢ est la vitesse

de guidage permettra de justifier la loi de probabilité
de présence en |W [,

Mais, pour une particule qui nous semble isolée de
toute action perturbatrice comme un électron dans
Patome H, quelle peut étre lorigine de ces pertur-
bations aléatoires indépendantes de l’entourage? On
est évidemment amené a penser que toute particule,
méme quand elle nous parait isolée, est en contact
avec un milieu subquantique caché qui constitue une
sorte d’invisible thermostat. Cette intéressante hypo-
thése a été envisagée, 1l y a une quinzaine d’années,
dans un trés Intéressant travail de MM. David Bohm
et Jean-Pierre Vigier [7] et nous pensons qu’on doit
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Padopter. La particule échangerait ainsi continuel-
lement de I’énergie et de la quantité de mouvement
avec ce milieu subquantique comme un granule trés
léger entrainé par un écoulement fluide dont le mou-
vement non perturbé serait défini par une ligne de
courant du fluide est en plus animé d’un mouvement
brownien dii a4 ses continuelles interactions avec les
molécules cachées du fluide. De méme qu’en I’absence
de son mouvement brownien le granule suivrait 'une
des lignes de courant de l'onde qui D’entraine, la
particule aurait, sans les perturbations que lui inflige
constamment son contact avec le milieu subquantique,
le mouvement régulier défini par la théorie du guidage
a partir de la propagation de I’onde. Donc, dans un
cas comme dans autre, au mouvement régulier se
superpose un mouvement brownien qui fait cons-
tamment passer la particule d’une de ses trajectoires
réguliéres sur une autre. Nous reviendrons au para-
graphe 4 sur ce mouvement brownien de la particule
dans son onde.

Dés qu’'on a admis Pexistence d’un « milieu sub-
quantique » caché, on est amené i se demander quelle
est la nature de ce milieu. Il a certainement une
nature trés complexe. En effet, il doit d’abord ne
pas pouvoir servir de milieu de référence universel,
ce qui serait en opposition avec la théorie de la Rela-
tivité. De plus, nous verrons qu’il se comporte non
pas comme un thermostat unique, mais plutét comme
un ensemble de thermostats dont les températures
seraient reliées aux énergies propres m,c* des diverses
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sortes de particules. Bien que des tentatives intéres-
santes alent déja été faites au sujet de la nature du
milieu subquantique, il nous parait prématuré &
Iheure actuelle de discuter ce probléme et nous ne
I’aborderons pas ici.

Les conceptions que nous venons d’introduire dans
ce paragraphe conduisent a4 penser que le compor-
tement des particules en Physique quantique ne
peut &tre vraiment compris qu’en introduisant une
Thermodynamique d’un type trés nouveau. Cette
Thermodynamique peut étre appelée la « Thermody-
namique de la particule isolée » parce qu’elle inter-
vient méme pour une particule qui nous parait entié-
rement 1solée. On peut aussi la nommer « Thermo-
dynamique cachée des particules ». J’ai commencé a
la développer pendant 1’été de 1gbo dans des Notes
aux Comptes rendus de UAcadémie des Sciences. Elle
m’apparait aujourd’hui comme le couronnement néces-
saire de la théorie de la double solution et je vais
en exposer les grandes lignes dans les paragraphes
qui suivent.

2. Introduction de la Thermodynamique cachée des
particules [8). — Nous rappellerons d’abord un résultat
obtenu autrefois par Einstein dans sa théorie de
Pinertie de I’énergie.

Considérons un corps formé de molécules de masse
propre m, animées d’agitation calorifique et en équi-
hbre thermodynamique. Par définition, on appelle
systeme de référence propre du corps le systéme de
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référence dans lequel la quantité de mouvement
totale du corps est nulle. L’énergie totale du corps
dans son systéme propre est alors

myc?

(1) W= ¥ ————
s V/I__ﬁz

= M, ?,

o i .
la somme Z étant prise sur toutes les molécules.

Le raisonnement d’Einstein montre alors (*) que dans
un systéme de référence ot I’ensemble du corps a la
vitesse f¢, on a pour l’énergie I'expression

W, My

W= — .
) B viog

Ce résultat est fondamental. Il signifie que l'on
peut attribuer & un corps chaud en équilibre thermo-
dynamique une masse propre globale M, telle que
I’énergiec M,c* représente dans le systéme propre
Pensemble des énergies de masse des particules et
de leur énergie d’agitation calorifique. Il conduit
donc a considérer I’énergie d’agitation calorifique
comme faisant partie de la masse propre totale du
corps. Ainsi énergie de masse propre et énergie d’agi-
tation calorifique seraient des grandeurs de méme
nature et cela suggére I'idée trés importante et trés
nouvelle que I’énergie de masse propre d’une parti-
cule pourrait étre une énergie de chaleur contenue
dans la particule. Et cette 1dée se trouve en accord

() Voir [8], ¢, p. 2-3.
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avec I'image que nous nous sommes faite de la parti-
cule qui, étant une sorte de petite horloge de fréquence
propre V,, serait animée d’un mouvement d’agitation
interne.

Comme nous avons vu que la particule doit posséder
une masse propre variable M,, nous arrivons & penser
que I’énergie interne M,c* = hv, représente une chaleur
interne variable Q, contenue dans la particule, énergie
de chaleur qui se réduit & m,c* quand le potentiel
quantique est nul d’aprés la formule 2 = M,¢* — m,c?®
trouvée précédemment.

Mais s1 Q,= M,c? est la chaleur interne contenue
dans la particule dans son systéme propre, quelle est
Pexpression de cette chaleur dans un systéme de
référence ou la particule a la vitesse ¢ = (3 ¢? Planck
et Laue ont démontré vers 19go8 que la formule de
transformation relativiste de la chaleur est

(3) Q:,‘;Qo\/l—-ﬁz.

Bien que cette formule ait été récemment contestée
par divers auteurs, je suis personnellement convaincu
a la suite de longues réflexions qu’elle est exacte (%).
L’invariance de Dentropie, grandeur définie par la

dQ . .
formule dS = = montre alors que I'on doit avoir

aussi pour la température la formule de transformation

(4) T="T,/1— B

(1) Voir a ce sujet [8],¢, d, e.
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Ces formules étant admises, nous pouvons écrire
Qo=Myc?= /v,

Q:QO\/I— 2:1\1002\/1452:1”/0\/1—@'-’,

ce qui est bien en accord avec la formule de trans-

(5)

formation v = v, /1 — 3* de la fréquence d’une horloge.

L’accord entre la Thermodynamique relativiste et
la conception de la particule comme étant une petite
horloge et un petit réservoir de chaleur est donc
complet. On peut d’ailleurs le voir en démontrant
que la formule (3) est en accord avec la formule du
guidage. Pour le voir, nous commencerons par remar-

quer que, dans le systeme de référence ou la parti-
. , . M, ¢? . .
cule a la vitesse @3¢, son énergie == doit é&tre
Vi—p
la somme de I’énergie interne de chaleur qu’elle trans-
porte et d’une énergie E, due & son mouvement de
translation, ce qui nous donne

M, ¢? —_ M, v?

6 =Q+E,=Mc*y1— 3 + —~—>

( ) \/I — ﬁ" Q 14 0 \/ 18 \/I — 52

formule dont l’exactitude se vérifie immédiatement.

e : . . Myt

L’énergie de translation E, égale a 2" est
Vi—g

différente de Dénergie cinétique M,c? [\—/—IE — 1]
—

habituellement considérée en Dynamique relativiste.
Ja1 étudié (') la relation qui existe entre ces deux

(*) Voir [8],cete.
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définitions de I’énergie de mouvement qui ont chacune
leur signification, I’énergie de translation d’ensemble E,
devant é&tre considérée comme la véritable énergie
due au mouvement.

Nous allons maintenant montrer que la relation (6)
exprime, conformément a la théorie du guidage, le
fait que la particule se déplace dans son onde de fagon
a4 maintenir constamment égale la phase de son
mouvement interne et celle de 'onde. En effet, d’apres
la théorie du guidage, on a

N
/ 2 >

0 Gew=-C o=

‘ Vi— e Vi

¢ étant la phase de 'onde ae*’ et, d’autre part,
le mouvement interne de la particule étant repré-

senté par a;e*", la phase ; varie pendant le temps dt
de

(8) dcpi:MocH/x——ﬁ2dt:kv0\/1——ﬁ2dt.

Or, quand la particule se déplace de dl dans le temps dt,
la variation de la phase ¢ de I'onde a I’endroit ou elle
se trouve est

_
(9) dcp:<z~;? +3 gradq}) dt

= <‘/1:4°_°;l — \/11\4:,_9252> dt = M,c*\/1— B dt.

On a donc dp = dy;, ce qui exprime bien que la parti-
cule se déplace dans son onde en restant constamment
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en phase avec elle. Il existe donc une trés remar-
quable concordance entre les formules de la Thermo-
dynamique relativiste de Planck-Laue et celles de la
théorie du guidage de la particule par son onde.
La comparaison des formules données ci-dessus avec
celles du chapitre 1I, paragraphe 3, confirme entié-
rement ce fait.

S1 'on fait pour l'instant abstraction des rapides
perturbations aléatoires de M, par interaction avec
le milieu subquantique sur lesquelles nous reviendrons
plus loin, la particule doit suivre sa trajectoire de
guidage et le long de cette trajectoire, sa chaleur
interne varie en général constamment car on a
8Qo= 82, = ¢(M,c* — moc?). Dans le systéme propre,
les variations de la chaleur interne sont donc égales
aux variations du potentiel quantique et dans le
systéme ou la particule a la vitesse ¢ = f¢c, on a

8Q =38Qoy1— 32 =1 — B (Myc* — myc?).

Au chapitre II, paragraphe 3, nous avions introduit
pour une particule qui n’est soumise a aucun champ
extérieur, mais uniquement a la force quantique, la

fonction de Lagrange £ =— M,c*y1— p* et nous
en avions tiré les équations de la Dynamique relati-
viste de la particule & masse propre variable. L’Action
étant définie par

t t t
(10) f ﬁ’dt:f —Mocz\/l—@""dt:f — M, ds
0 0 0

est visiblement un invariant.
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Conformément & une idée qu’Eddington avait déja
entrevue autrefois, dans son célebre ouvrage Espace-
temps et gravitation ('), il est tentant d’établir une
relation entre les deux invariants relativistes fonda-
mentaux que sont ’Action et I’Entropie. Mais I'inté-
grale d’Action (10) dépend d’un intervalle de temps
indéterminé tandis que I’Entropie est une grandeur
ayant une valeur déterminée. Pour pouvoir établir
une relation entre les deux grandeurs, il est donc
nécessaire de choisir convenablement D'intervalle de
temps qui figure dans Uexpression de I’Action. Avec
nos conceptions, 1l parait naturel de choisir comme
intervalle d’intégration la période interne T de la
particule dans le systéeme de référence ou elle a la

. I R
vitesse {ic, et comme on a g =v=v, y1— B, Ton

2

défimira I’Action comme égale a (?)

W T 9
(1) A:f Myt T B = Y€
0

Vo

et 'on est amené a définir I’Entropie de I’état de mou-
vement de la particule par la relation

S A
(x2) kTR
d’ou l'on tire
22
(13) o5 = — Mo 4 9Qo
hv, m,c?

(1) p. 219 de I'édition francaise, Hermann, Paris, 1921,
(*) La période T étant trés petite, nous supposons M, et 3
sensiblement constants pendant la durée de Vintégration.
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puisque nous avons 6Q, = 6B, = ¢(M,c* — m,c*). Dans
les formules (12) et (13), k& et h sont respectivement
les constantes de Boltzmann et de Planck. Nous
sommes ainsi parvenus a attribuer au mouvement
de la particule dans son onde une certaine entropie et,
par suite, une certaine probabilité définie par la formule

S
de Boltzmann écrite sous la forme P = e*,

Avec I’hypotheése de I'existence du milieu subquan-
tique assimilable & un thermostat caché que nous
avons développée au paragraphe précédent, nous
devons interpréter les relations thermodynamiques
obtenues ci-dessus de la facon suivante. Au cours du
mouvement de guidage de la particule, sa masse
propre M, varie en général constamment, ce que
nous pouvons interpréter en disant qu’elle échange
continuellement de la chaleur avec le thermostat
caché. Ces échanges de chaleur sont liés aux variations
du potentiel quantique, c’est-a-dire aux variations
de lamplitude de I'onde au point ou se trouve la
particule et I’on voit ainsi que c’est 'onde qui sert
d’intermédiaire entre la particule et le milieu subquan-
tique.

L’équation (13) peut, en eflet, s’écrire en posant

hv, m,c?

(14) Ty= — =

7 T T="T,/i—p*

sous la forme

(15) 5= S Q0 ;M
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Mais que signifie le signe — qui figure au second
membre? On peut le comprendre en admettant
que la particule est un systéme trop simple pour
qu’'on puisse lui attribuer une température et une
entropie. Il est alors naturel de considérer la tempé-
rature et I'entropie définies ci-dessus comme se rappor-
tant au thermostat caché. L’entropie S ainsi inter-
prétée diminue quand le thermostat caché céde de
la chaleur a la particule, ce qui explique la présence
du signe — dans la formule (15).

I1 peut paraitre étrange que la température T
dépende de la masse propre normale m, de la parti-
cule. Mais il ne faut pas oublier que c’est par l'inter-
médiaire de l'onde que la particule est en contact
thermique avec le thermostat caché. L.’onde physique ¢
avec laquelle la particule est constamment en réso-
nance en raison de l'accord de leurs phases constitue
pour elle en quelque sorte une « surface de contact »
avec le milieu subquantique. Cette remarque nous
parait rendre plus facile & comprendre le fait que
pour la particule en chaque point de sa trajectoire
la température apparente du thermostat caché dépende
de la fréquence locale de 'onde, donc de m,. Clest
pourquoi nous avons dit dans le précédent paragraphe
que le milieu subquantique se comporte comme un
ensemble de thermostats dont les températures sont
reliées aux masses propres des diverses espéces de
particules. Une description plus détaillée du milieu
subquantique permettrait peut-étre de mieux éclairer
cette question.
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Pour terminer cet exposé de la Thermodynamique
de la particule 1solée, nous ajouterons encore une
remarque intéressante.

Soit un corps C en contact avec un thermostat de
température T. La loi de distribution canonique de
Boltzmann-Gibbs donne pour la probabilité de I’état
d’énergie E du corps C

E

(16) P=Pye 7.

Mais qu’est-ce que P,? On dit généralement que P,
appelée « probabilité a priori », est la probabilité de
I’état du corps C s’il était complétement 1solé. D’apres
nos 1idées, cela semble bien signifier que P, est la
probabilité définie par la Thermodynamique cachée
des particules. Or, on admet en théorie quantique
que les probabilités a priori des divers états quan-
tiques sont égales. On ne donne d’ailleurs aucune
démonstration de cette affirmation.

Pour voir ce que cette affirmation peut signifier,
considérons le cas simple de P'atome d’hydrogéne
dans un état complétement stationnaire, c’est-a-dire
ou ¢ = Ei. Dans cet état le théortme du Viriel de
la théorie de la double solution (') donne

(17) 2El§+V:o,

ot V est le potentiel coulombien auquel est soumis
Iélectron et 2 le potentiel quantique, les moyennes
étant prises en |W[*. Or, R étant la constante de

(M) Voir [4], b, p. 75.
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Rydberg et n le nombre entier qui caractérise 1’état
stationnaire, on a pour I’énergie de cet état

R = —
(18) By=— =2+ V=—2
La probabilité P du n"" état quantique quand I’atome
se trouve en contact avec un thermostat de tempé-
rature T est, d’apres (16) et (18),
2
(19) P="Pye T,
St P, est la probabilité définie par la Thermodyna-
mique cachée des particules, on a

s 5

(20) P,=e¢t =Ctee ™,

m, étant la masse propre de I’électron. Quand I’atome

asse d’un état quantique a un autre, 2 varie de ¢2.
b

.2 L E i3

Alors e *T est multiplié par e ‘T et P, par e ™.

Méme pour des valeurs élevées de T, par exemple

T = 10" degrés Kelvin, kT ne dépasse pas l'ordre
de grandeur de 107'*erg (car k = 1,37.107'° C.G.S.),
tandis que m,c* est de l'ordre de 107°erg, donc
beaucoup plus grand. On voit donc que, quand on

3

passe d’'un état quantique & un autre, la variation

E
de P, est beaucoup plus petite que celle de e T de
sorte que dans I’expression (16) on peut considérer P,
comme sensiblement constant. Ainsi se trouve approxi-
mativement légitimée I’hypothése usuelle que P, a
la méme valeur pour tous les états quantiques.
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3. Introduction des perturbations aléatoires d’origine
subquantique. — Dans le paragraphe précédent, nous
avons développé la Thermodynamique cachée des
particules en tenant seulement compte du mouvement
de guidage et sans faire intervenir les perturbations
aléatoires qui se superposent 4 ce mouvement comme
nous I’avons expliqué dans le premier paragraphe.
Les échanges entre le milieu subquantique et la
particule sont alors réglés d’une fagon continue par
les variations du potentiel quantique le long de la
trajectoire de guidage, mais 1l faut y ajouter ceux
qui proviennent des échanges de chaleur aléatoires
dont résulte une sorte de mouvement brownien
superposé au mouvement de guidage comme nous
Pavons expliqué plus haut. De la provient la nécessité
de prendre toujours des moyennes sur les diverses
positions possibles de la particule comme nous 'avons
fait a la fin du paragraphe précédent.

Dans l'application usuelle du principe de Hamilton
en Mécanique analytique, on part d’un mouvement
« naturel », c’est-a-dire d’'un mouvement conforme
aux lois de la Mécanique. On suppose qu’au cours
de ce mouvement la particule partant d’un point A
de 'espace au temps ¢, parvient en un point B au
temps t,, puis on tmagine un mouvement « varié »
fictif et infiniment voisin du mouvement naturel en
imposant & ce mouvement varié que les points A et B
et les instants ¢, et ¢, soient les mémes. Le principe
de Hamilton nous dit alors que le mouvement naturel
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est caractérisé par 'équation

(21) f 18Ty, dt = o,

o

ou [0£]y, est la variation de £ quand on maintient
la masse propre M, constante et égale a sa valeur
normale m,, ce qui va en quelque sorte de so1 en
Mécanique classique. De plus, comme le principe de
Hamilton est un principe de moindre action, nous
pouvons écrire

121
(22) f [8‘3.@]310 dt>0
{

[

Mais nous allons maintenant introduire 'idée que,
méme quand on peut négliger le potentiel quantique,
la masse propre puisse subir d’incessantes petites
fluctuations autour de sa valeur moyenne m,. Il
devient alors possible de donner un sens physique
aux mouvements variés en les considérant non plus
comme des mouvements fictifs purement imaginés,
mais comme des mouvements pouvant avoir leu
réellement sous Paction de certaines petites fluctua-
tions momentanées de la masse propre pendant
Pintervalle de temps ¢, — ¢,.

S1 Pon admet cette hypothese, le mouvement varié
doit, en lui appliquant le principe de Hamilton, &tre
déterminé par ’équation

N y
(23) f 5 (U2 4 6.47) dt:f (8 = 8.) dt = o.
! I

0

M. DE BROGLIE. B
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Mais ici, la masse propre n’étant plus supposée
constante, nous devons écrire

(24) 8£ :[813];\[04— 6310f, 82£’ :[8‘ ff«'JMu—i— 832[“/3

en désignant par oy £ les termes qui dans 5*£ pro-
viennent de la variation de la masse propre. Nous
montrerons plus loin que le terme en ¢y £ est négli-
geable par rapport aux autres, ce qui permet d’écrire(23)
sous la forme

4

(253) f (18, ~+ By, £ [ £y, | dt = 0.
&

Mais la premiére intégrale est nulle en vertu de (21)

et nous obtenons, d’aprés (22),

N s
(26) —f 0w, £ dt —=—(t;— 1y) Oy, £ :f [02 L]y, dt > o,
& ly

ow £ étant une moyenne temporelle prise entre ¢,
et ;. Alors, comme t,— {, est positif et que -—8MD}3
est la quantité de chaleur cédée par le thermostat
caché a la particule, on voit qu’en moyenne temporelle
cette quantité de chaleur, qui est constamment nulle
sur la trajectoire naturelle, est positive sur la trajec-
toire fluctuée. Il en résulte que l'entropie diminue en
moyenne quand on passe du mouvement naturel au
mouvement varié. L’entropie de la Thermodynamique
cachée est donc maximale dans le mouvement naturel
par rapport aux fluctuations soumises aux conditions
de la variation hamiltonienne, ce qui permet de dire
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que le mouvement naturel est plus probable que les
mouvements variés. En termes imagés, on peut dire
que la trajectoire naturelle suit une ligne de talweg
d’une vallée de néguentropie ('). On fait ainsi appa-
raitre une trés remarquable relation entre le principe
de moindre action et le second principe de la Thermo-
dynamique.

Il nous reste cependant & démontrer que nous
avons eu raison de négliger dans (25) les termes en 0y, £.
On le voit en remarquant que, d’apres I’équation (26),
cy, X est du méme ordre que [3*£]y, c’est-d-dire du
second ordre par rapport aux variations hamiltoniennes
de sorte que s, & est du troisiéme ordre et peut étre
négligé.

Le principe de moindre action comporte une restric-
tion étudiée en Mécanique analytique classique sous
le nom de théorie des foyers cinétiques. En ce qui
concerne 1’action hamiltonienne, on peut ’énoncer de
la facon suivante. Supposons qu’il existe deux mou-
vements naturels 1 et 2 extrémement voisins qui
amenent une particule du point A a l'instant ¢ a
un point C & Pinstant .. On peut alors dire que le
point C est le foyer cinétique hamiltonien du point A.
51 Pon effectue la variation hamiltonienne sur la
trajectorre 1 entre le point A et un point B, corres-
pondant & un instant ¢, qui est situé entre A et G
(to<< t, < t,), Paction est minimale pour Vintervalle
de temps ¢, — ¢,. Mais s1 B est situé sur la trajectoire

(1) Néguentropie = entropie changée de signe.
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au-dela du point C (t,<t,<<t), 11 n’y a plus de
minimum de I’action pour Pintervalle de temps t, — ¢,.

L’aspect thermodynamique que nous avons donné
au principe de moindre action nous permet de trouver
une interprétation intuitive du réle joué par le foyer
cinétique. En effet, s1 nous appliquons le principe de
Hamilton aux mouvements 1 et 2 entre A et C, chacun
d’eux pouvant é&tre considéré comme un mouvement
varié par rapport a ’autre, nous devons écrire

123 123
(27) f (6%, £, dt > 0, f (83, £]u, dt >0,
Z, ¢

o [

ce qui n'est possible que st

4
(28) f (83, £y, dt = o.

A
Donc, quand on passe de la trajectoire 1 a la trajec-
toire 2 ou inversement, la variation seconde de ’action
hamltonienne est nulle. Mais la relation (26) nous
donne

(29) 8,8 =120, S—o.

L’entropie moyenne reste donc la méme quand on
Y q
passe du mouvement 1 au mouvement 2 entre A et C.

Avec notre point de vue thermodynamique, nous
pouvons dire maintenant que les deux trajectoires 1
et 2 suivent les lignes de talweg de deux vallées de
néguentropie trés voisines et de méme profondeur
moyenne qui sont séparées 'une de l'autre par une
colline de néguentropie, mais qui viennent se rejoindre
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en C. 51 le point B se trouve sur la trajectoire 1 entre A
et C, toute trajectoire variée devra grimper sur le
flanc des collines de néguentropie qui bordent la
trajectoire 1 : on a donc 880, c’est-a-dire qu’il y
aura pour A 1 B un minimum de I’action hamiltonienne.
St, au contraire, le point B est situé sur la trajectoire 1
au-dela du poimnt C, on pourra prendre comme mou-
vement varié le mouvement 2 de A a B, puis le mou-
vement 1 de B a C et, comme alors la trajectoire variée
reste au fond d’une vallée de néguentropie de méme
niveau moyen que la vallée ACB du mouvement 1,
on aura pour cette variation ¢S =0 ou [3£]y,= o
et Paction hamiltonienne ne sera pas minimale pour
toutes les variations possibles.

Pour terminer ce paragraphe, nous dirons encore
quelques mots au sujet du mouvement brownien de
la particule dans son onde. A I'approximation newton-
nienne (qui correspond a ’équation de Schrodinger),
le mouvement brownien d’une particule peut toujours
étre représenté par une équation de diffusion de la
forme

(30) Je =DAp

m - ’
ou p est la probabilité de présence de la particule a
une distance r de son point de départ, D étant le
coefficient de diffusion.

Divers auteurs, notamment M. Nelson ('), ont cherché

a déduire de ’équation de Schrédinger un mouvement

1) Voir [9], a.
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brownien de la particule. Cela m’a amené a faire un
calcul analogue dans une Note récente dans le cadre
de la théorie de la double solution et en partant de
I'idée suivante : Les perturbations subquantiques se
traduisent par de petites {luctuations aléatoires de la
masse propre produisant de petites variations dans la
forme de 'onde et dans le mouvement de guidage de la
particule, mais j’ai admis que, méme pendant la durée
des perturbations, il y a toujours accord de phase entre
le mouvement interne de la particule et la vibration de
Ponde au point ou elle se trouve. Si alors on considere
les positions de la particule a I'instant ou une pertur-
bation aléatoire va commencer et a 'instant ou cette
perturbation vient de se terminer, un calcul que je ne
reproduis pas 1ci (') me conduit a la valeur suivante
du coefficient D du mouvement brownien :

(31) D=2f —=3 -

valeur qui ne différe que par un coeflicient numérique
de la valeur trouvée par Nelson.

L’hypothése que la particule est animée dans son
onde d’un mouvement brownien me parait impliquer
nécessairement la localisation constante de la parti-
cule dans 'onde. Nous savons d’ailleurs qu’a ce mou-
vement brownien doit se superposer un mouvement
régulier défini par la formule du guidage comme cela
résulte du reste d’une des équations de M. Nelson.

() Voir [9], b.
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4. La prérogative des ondes planes monochromatiques
et des états stationnaires et l'existence des états tran-
sitoires. — Une des i1dées les plus caractéristiques
introduites par Bohr dans sa célébre théorie de I'atome
en 1913 a été celle des transitions brusques entre
états stationnaires dans les systémes quantifiés. Ces
transitions brusques ne seraient, pensait-il, suscep-
tibles d’aucune description en termes d’espace et de
temps. La continuité des processus physiques dispa-
raitrait donc d’une maniére bien contraire a toutes
les 1dées antérieures des physiciens. Engagée dans
cette voie, la Physique quantique « orthodoxe » en
est arrivée, notamment en théorie quantique des
champs, & attribuer aux ondes planes monochroma-
tiques (qui, cependant, nous le dirons dans le pro-
chain chapitre, n’existent jamais réellement) un carac-
téere privilégié et a admettre que les interactions
entre matiére et rayonnement s’opérent toujours par
des transitions brusques et indescriptibles entre ondes
planes monochromatiques pour le rayonnement.

En rétléchissant sur cette question avec mes colla-
borateurs (MM. Fer, Andrade e Silva, Lochak et
Thiounn), j’en suis arrivé a des conceptions nouvelles
que je vais résumer briévement. Pour faire comprendre
Iorientation de ma pensée, je partirai de la remarque
que dans la théorie usuelle on accorde une sorte de
« prérogative » aux états que P'on peut qualifier de
« monochromatiques » Ces états privilégiés com-
prennent, d’une part les états stationnaires des sys-
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témes quantifiés associés 4 une onde stationnaire
représentée par une fonction propre de I’hamiltonien,
d’autre part les états des particules associées &4 une
onde progressive monochromatique plane (ou du
moins a un train d’ondes assimilable a une telle onde).
Cette prérogative, dont Schridinger avait souligné le
caractére étrange, conduit a regarder ces états privi-
légiés comme ayant une existence plus réelle que les
états représentés par des superpositions de fonctions
propres ou d’ondes planes monochromatiques. Et
cependant, malgré ’hypothése bohrienne du caractére
absolument discontinu des états quantifiés qui devrait
conduire & ne considérer que ces états, on fait souvent
mntervenir des états de superposition, notamment dans
les calculs de perturbations. Mais on se refuse ordi-
nairement, semble-t-il, a attribuer a ces états de
superposition une existence physique et on se borne
a les considérer comme servant uniquement a calculer
des probabilités. Nous insisterons plus loin sur les
conséquences paradoxales d’une telle conception dans
le cas ou I'on déduit d’un tel calcul la largeur spec-
trale des raies émises par un atome dans une transition
quantique.

Mais avec nos conceptions nous devons admettre
qu’a chaque onde statistique ¥ doit correspondre une
onde physique réelle ¢. Nous devons considérer les
états de superposition non pas comme de simples
représentations de probabilités, mais comme décrivant
des états physiques réels. Pour nous, ce sont des états
physiques qu’on peut nommer « transitoires » ou



THERMODYNAMIQUE CACHEE DES PARTICULES. 73

« précurseurs » qui servent de transition continue de
trés bréve durée entre deux états privilégiés. En d’autres
termes, les états « monochromatiques » seralent des
états tres stables de grande probabilité tandis que les
états de superposition seralent non pas inexistants,
mais seulement de faible probabilité. Transposé dans
notre langage thermodynamique, cela signifie que les
états de superposition ont une entropie plus petite que
les états « monochromatiques » et que des processus trés
rapides, a caractére peut-&tre irréversible, raménent
toujours particules ou systémes vers des états a
entropie plus élevée chaque fois que les conditions
mmposées a la particule ou au systéme permettent les
échanges d’énergie nécessaires. Des circonstances de
ce genre se rencontrent fréquemment en Thermodyna-
mique chimique ou le passage d’un état chimique a
un autre état chimique stable s’opére par lintermé-
diaire d’états de moindre entropie.

Dans le cas d’un systéme isolé qui n’échange aucune
énergie avec I’extérieur (ce qui n’est pas le cas d’un
atome qui émet ou qui absorbe un photon), j’ai pu
démontrer que I’entropie d’une onde plane monochro-
matique est supérieure & celle d’un état de superpo-

sition. Cela résulte du fait que M, a sa valeur maximale

égale & m, pour londe plane monochromatique.
. .l . .

Pour les particules de spin ;’ et 7/, on le voit facilement

en se reportant a la formule (15) et aux formules (27)
et (28) du chapitre III. Pour une particule de spin o
a approximation newtonienne, les formules (6) et
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(12) du chapitre Il permettent d’écrire, D étant le
volume occupé par I'onde,

i Aa 7 >y
My=m,— a? — dt—=my -+ —— grad @) dr>m,.
b 7 amoct J "

2m, ¢* 0

—_
Pour Ponde plane monochromatique ou grada est

partout nul, on a bien M,= m,.

Dans le cas d’une transition quantique, la question
se présente sous un aspect un peu différent puisqu’il
y a alors échange d’énergie de Patome avec 'extérieur
par émission ou absorption d’un photon. Ce qui inter-
vient alors, ce n’est plus le maximum de Pentropie,
mais le minimum de Dénergie libre. J’ai étudié le
probléeme avee quelques détails dans mon livre sur
la Thermodynamique cachée des particules ([8], a,
p. 114 et ss.) et Je me borne & y renvoyer le lecteur.

Pour montrer Pintérét de considérer les états pré-
curseurs comme nous venons de le faire, nous allons
envisager I’émission d’un photon par un atome dans
une transition quantique. L’atome se trouve 1initia-
lement dans un état quantique d’énergie K, ct peut
passer dans un des états quantiques d’énergie E, << E,
I, — E;
TR
Mais pour nous l’émission du photon est précédée

avec ¢émission d’un photon de fréquence v, =

d’un état transitoire précurseur au cours duquel
Patome entre en interaction avec un photon qui est
encore caché dans le milieu subquantique. Dans la
méthode usuelle en Mécanique quantique, on repré-
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sente ce processus par un calcul de perturbations ou
Pon envisage une onde W de P’atome formée par la
superposition des diverses fréquences qui peuvent
étre émises. L’on montre alors qu’il s’introduit un
amortissement de I'onde W, imitiale correspondant a
la « largeur spectrale » c¢v de 1’onde qui sera émise
au moment ol, par une transition de Bohr, un photon
sera émis. Dans Dinterprétation orthodoxe de ce
calcul, on considére 'onde W perturbée comme une
simple représentation de probabilités, chaque terme
dans Dexpression du W correspondant isolément a
Pune des transitions possibles, On arrive ainsi pour
la prévision des largeurs spectrales & des formules qui
sont confirmées par 'expérience ('). Mais dans P'inter-
prétation probabiliste usuelle, le résultat obtenu doit
s’interpréter en disant : « La largeur spectrale de 'onde
qui est finalement émise par la transition E,—E,
dépend de la probabilité de toutes les transitions qui
ne sont pas produites ». Sous cette forme, cette conclu-
sion me parait inadmissible et je pense qu’il faut
chercher une autre interprétation du succés obtenu par
le calcul usuel de perturbations.

Cette interprétation me parait devoir étre cherchée
dans la direction suivante. Si 'on admet que 'onde W
statistique dérive toujours par la relation W = Cy
d’une onde ¢ réelle, on doit considérer le calcul usuel
de perturbations comme nous donnant la variation

('Y W. HE1TLER, The quantum theory of radiations, 3¢ éd., p. 126.
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objective de l'onde ¢ au cours de I’état précurseur
qui précéde la transition quantique. La largeur spec-
trale que 'on calcule apparait alors comme résultant
de I’évolution des composantes cohérentes de I'onde ¢
pendant 'état précurseur. Elle est déterminée non
pas par les probabilités des diverses transitions quan-
tiques qui ne se produiront pas, mais par la structure
de Vonde ¢ réellement réalisée pendant Uétat précurseur.
Il n’y a plus ainsi aucun paradoxe.

Des considérations analogues peuvent évidemment
étre développées pour 'absorption d’un photon par
un atome qui, recevant une onde électromagnétique
de fréquence v;, peut passer d’un état initial d’énergie
E, & un état d’énergie E,= E,-+ hv, avec disparition
d’un photon sans doute alors résorbé dans le milieu
subquantique. La encore le calcul de perturbations que
Pon peut faire dans la théorie usuelle doit selon nous
étre interprété comme décrivant I’évolution objective
d’un état précurseur précédant la transition quantique
d’absorption. Dans des travaux récents, MM. Georges
Lochak et Mumm Thiounn ont étudié, uniquement
a Paide d’équations classiques, I’état précurseur créé
dans un atome par une onde électromagnétique inci-
dente trés intense, c’est-a-dire partant de trés
nombreux photons, produisant des effets non linéaires.
s ont ainsi obtenu des résultats nouveaux qu
paraissent trés intéressants [10].

Les problemes étudiés dans ce paragraphe 4 n’ont
été qu’effleurés et devraient faire I'objet d’études plus
approfondies. Aussi ne croyons-nous pouvoir y insister
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davantage. J’ajouterair cependant que MM. Andrade e
Silva et Vassalo Pereira ont présenté récemment ma
Thermodynamique cachée des particules sous une
forme un peu différente qui n’en modifie pas les
résultats essentiels (').

(1) J. ANDRADE E SiLva et J. VassarLo PEREIRA, Int. J. of
Theoretical Physics, vol. 3, 1970, p. 67-76.



CHAPITRE V

INEXISTENCE DES ONDES PLANES
MONOCHROMATIQUES.
ANALYSE DE DIVERSES EXPERIENCES
ET PROBLEMES NON RESOLUS

{. Inexistence physique des ondes planes monochro~
matiques. — Une remarque qui me parait essentielle
parce qu’elle permet d’expliquer les paradoxes que
Pon a pu signaler dans la facon dont on envisage
actuellement la Mécanique quantique est la suivante :
londe plane monochromatique n’a aucune existence
physique. En effet, Ponde plane monochromatique
remplirait P'espace tout entier et durerait éternel-
lement : 1l est évident qu’elle ne peut représenter aucun
phénomene physique réel. Toute onde réelle est toujours
limitée par un front d’ondes avant et par un front
d’ondes arriere : 8’1l n’en était pas ainsi, il serait impos-
sible d’allumer ou d’éteindre une lampe, 1l serait impos-
sible d’envoyer un signal lumineux avec une vitesse
finte. Assurément, si une onde a une extension sufh-
sante dans le sens de sa propagation, on peut la repré-
senter trés approximativement par une onde plane
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monochromatique dans la région comprise entre les
fronts d’ondes et ce procédé est couramment employé
avec succes dans I'étude des phénomeénes optiques,
mais on doit se méfier de tous les raisonnements ou
I’on emploie systématiquement la notion d’ondes planes
monochromatiques.

En admettant pour la propagation des ondes des
équations linéaires, on sait depuis longtemps que les
trains d’ondes limités, qui ont seuls une existence
physique, doivent étre représentés par des intégrales
de Fourier portant généralement sur un petit intervalle
de fréquences et définissant une « largeur spectrale » cv.
Un tel train d’ondes trés sensiblement monochroma-
tique dans toute sa partie centrale est souvent appelé
un « groupe d’ondes ». Il peut &tre considéré comme
animé d’un mouvement d’ensemble avec une « vitesse
de groupe » qui est la vitesse des fronts avant et
arriére du train d’ondes. Si V est la vitesse de phase
de la propagation des ondes qui est définie a partir

r ’ y v
de la fréquence v et de la longueur d’ondes 2 par 4 = S
et qui, en général, dépend de la fréquence v, la vitesse

de groupe ¢ est définie par la formule de Rayleigh

1 v
) v %7 9%
( T T

Le train d’ondes ayant une longueur L, distance des
fronts avant et arriére, est une grandeur mesurable
par des procédés bien connus en théorie des inter-
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férences, notamment par la disparition des inter-
férences quand on emploie des lames minces suffi-
samment épaisses ou un interféromeétre de Michelson
4 miroirs sullisamment écartés. On peut donc définir

, L .
un « temps de cohérence » == - du train d’ondes cn

remarquant qu’en un point M, 1l se¢ comporte comme
une onde plane monochromatique pendant un temps
de Vordre de la durée qui s’écoule entre le passage
au point M du front avant et du front arriére du train
d’ondes.

On possede des données numériques sur la valeur de
la longueur L des trains d’ondes et, par suite, sur celle
de la durée de cohérence <. Pour la lumiere wvisible
dont la longueur d’onde moyenne cst de 0,5 ., on sait
depus longtemps que la longueur L est de 'ordre de
quclques centaines de milliers de longueurs d’onde,
c’est-a-dire de l'ordre du métre, du moins pour les
sources de lumicre usuclles. La durée de cohérence =
est donc de lordre de 107*s pour ¢~~c. Pour les
électrons, on a pu également mesurcr la longueur des
trains d’ondes (Mcellenstedt, I'aget) et l'on a pu
trouver pour Li des valeurs de 'ordre du micron pour
des électrons dont la vitesse est de ’ordre de 10" cm/s,
de sorte que < est de l'ordre de 107" s.

Quand on étudie en Mécanique quantique la déter-
nunation des fonctions propres correspondant a un
probléme donné, on s’apercoit que, dans le cas des
spectres continus, 'emplol de fonctions propres qui
ne sont pas nulles a 'infini souléve des difficultés et

M. DE BROGLIE. 6
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que pour obtenir une représentation satisfaisante, il est
nécessaire d’introduire la notion de différentielle
propre ('). Or, comme Sommerfeld I'avait remarqué
il y a longtemps, cela revient & remplacer les ondes
planes monochromatiques qui ne sont pas nulles
a 'infini par des trains d’ondes limités a petite largeur
spectrale dont les différentielles propres sont préci-
sément la représentation mathématique. On démontre
d’ailleurs que les différentielles propres sont ortho-
gonales et qu’elles peuvent étre normées.

La théorie des différentielles propres mériterait,
me semble-t-il, d’étre étudiée plus qu’elle ne I'a été
parce que c’est elle qui peut donner, en théorie ondu-
latoire linéaire, la représentation des trains d’ondes
a petite largeur spectrale. Elle devrait permettre de
définir non seulement la longueur L des trains d’ondes
dans le sens de la propagation, mais aussi son extension
latérale, sa largeur, qui est sans doute beaucoup plus
grande que L. A T’heure actuelle, 1l n’existe & ma
connaissance aucune vérification expérimentale de la
largeur finie d’un train d’ondes, mais il ne serait
peut-étre pas impossible d’obtenir une évaluation au
moins approximative de cette largeur par des expé-
riences appropriées. Il n’est d’ailleurs pas certain
qu'en admettant le caractére linéaire des équations
de propagation, on puisse obtenir une représentation
entiérement exacte de la structure des trains d’ondes.

(') Voir mon livre Quantification dans la nouvelle Mécanique,
Hermann, Paris, 1968, p. 139 et ss.
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(C’est un point sur lequel nous reviendrons au para-
graphe 4 du présent chapitre.

Nous ne tenterons pas de développer 1ci une théorie
compléte des différentielles propres, mais nous indi-
querens un résultat important qu’elle nous semble
devoir fournir. Dans les exposés usuels, on considére
la Tonction statistique normée U° d’une particule ou
d’un ensemble de particules comme développée en une

somme de fonctions propres de la forme W:Zc/,lF,;
k

normées et orthogonales ol les ¢, sont des coeflicients
complexes et 'on aflirme que, si un processus de mesure
permet d’attribuer & la particule ou au systéme D'état
correspondant a lindice %, la probabilité de ce
résuitat est donnée par |c¢.|*. Or, nous savons que,
du moins dans le cas des spectres continus, nous devons
remplacer les fonctions propres W, par les différen-
tielles propres [W,]. Le symbole [W,] que nous intro-
duisons représente la différentielle propre qui, si sa
largeur spectrale était nulle, se réduirait a la fonction
propre W,. Dans le cas d’une onde progressive libre,
[W,] représente non pas l'onde plane monochroma-
tique W', qui n’existe jamais, mais un train d’ondes de
largeur spectrale finie ¢v assimilable dans toute sa
partie centrale a4 'onde plane monochromatique W,.

Si I’état initial d’une particule est constitué par une
superposition de trains d’ondes, sa fonction W sera
de la forme

(2) )Y :Z x|l
%
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les différentielles propres [W;] étant normées et ortho-
gonales. Supposons qu’une expérience ait pour résultat
de séparer dans D'espace les trains d’ondes [¥].
On pourra alors, si on peut déceler la présence de la
particule dans P'un de ces trains d’ondes, connaitre
‘état de mouvement final. Comme lon sait que la
probabilité de présence de la particule dans un élément
de volume dr de Despace est donnée par |W|* dr,
la probabilité pour que la mesure en question permette
d’attribuer a la particule ’état de mouvement d’in-
dice k sera, R, étant la région de I’espace occupée par
le /®° train d’ondes,

f]‘l’“]'z(k: 4\q.i'—‘l[‘lrk}|'—’(/7:|ckL'l.

Ry Ry
avecZ’c,‘.[‘-’:I, puisque les [W,] sont normées et
k

orthogonales. La probabilité pour que I'opération de
mesure conduise a attribuer a la particule 'état de
mouvement correspondant au train d’ondes [W;] est
donc bien |¢.|*.

2. Difficultés gue Yon rencontre si Ton oublie la
limitation des trains d'ondes. — Nous allons main-
tenant montrer sur quelques exemples que le fait de
toujours considérer des trains d’ondes limités et jamais
les irréalisables ondes planes monochromatiques permet
d’éviter certains paradoxes que I’on rencontre si ’on
oublie de tenir compte de cette limitation des trains
d’ondes.
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a. Problémes de choc et objection de Schrédinger. —
Einstein avait attiré I'attention, notamment dans son
article avec Rosen et Podolsky ('), sur certaines objec-
tions que souléve I'interprétation actuellement admise
de la Mécanique ondulatoire. De son c6té et sous une
forme plus nette, Schrodinger a insisté sur le fait que
la collision entre des particules n’est pas compatible
avec I'tmage des ondes planes monochromatiques et
1l en a tiré une forme d’objection contre Pinterprétation
usuelle du résultat d’une collision qui me parait avoir
une grande force (*).

Schrédinger a remarqué qu’une collision entre par-
ticules 1mpliquait que ces particules sont d’abord
distantes 'une de autre, puis se rapprochent et entrent
en interaction, puis s’éloignent de nouveau aprés un
échange d’énergie et de quantité de mouvement. Mais,
s1 on associe aux particules des ondes planes mono-
chromatiques, aucune représentation de ce genre n’est
possible : les ondes des particules ayant une extension
infinie se recouvrent constamment et I'état de choc
n’a ni commencement ni fin, ce qui est inadmissible.
Pour obtenir en Mécanique ondulatoire une repré-
sentation satisfaisante d’une collision entre particules,
il faut leur associer des trains d’ondes limités qui,
d’abord distants, se rapprochent les uns des autres et
viennent se recouvrir pour enfin se séparer de nouveau
quand la collision est terminée. C’est en utilisant cette

(') Phys. Rev., t. 47, 1935, p. 777.
(*) Naturwissenschaften, t. 23, 1935, p. 727, 823 et 844.



86 PRINCIPES GENERAUX.

image que Schrédinger a pu mettre sous une forme
particuliérement frappante le caractére paradoxal de
Pinterprétation actuellement admise des phénoménes
de collision.

Considérons deux trains d’ondes presque mono-
chromatiques associés a deux particules 1 et 2 et suppo-

<

sons qu’ils viennent a la rencontre I'un de Pautre.

Quand ils sont parvenus & proximité, les deux par-
ticules entrent en interaction et la théorie usuelle,
pour prévoir les résultats possibles de cette interaction,
envisage la propagation d’une onde " dans ’espace de
configuration du systéme des deux particules. La Méca-
nique ondulatoire dans ’espace de configuration nous
apprend alors que le choc peut donner lieu a toute
une série de mouvements compatibles avee la conser-
vation globale de I'énergie et de la quantité de mou-
vement. Aprés la fin de la collision, ou bien le train
d’ondes de la particule 1 décrira finalement la trajec-
toire 1’, le train d’ondes de la particule 2 décrivant la
trajectoire 2’; ou bien le train d’ondes de la par-
ticule 1 décrira Ja trajectoire 1”, le train d’ondes de
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la particule 2 décrivant la trajectoire 2”, etec. Dans
I’état final, les trains d’ondes forment donc des couples
corrélés 12/, 17-2" 1"-2", etc.

Supposons maintenant que nous observions une
localisation de la particule 1 dans le train d’ondes 1’;
nous saurons par cela méme que la particule 2 se trouve
dans le train d’ondes 2’. Or, Pinterprétation actuel-
lement orthodoxe qui admet que la particule n’est pas
localisée dans son onde interpréte ce qui précede de
la fagon suivante. Apres le choc, la particule 1 serait
potentiellement présente dans ’ensemble des trains

d’ondes 1,17, ... tandis que la particule 2 serait
potentiellement présente dans I’ensemble des trains
d’ondes 2, 27, .... Lorsque se produit la localisation

observable de la particule 1 dans le train d’ondes 1/,
la particule 2 se trouverait brusquement localisée par
cette seule observation dans le train d’ondes 2’ et
cela bien qu'on n’ait exercé aucune action sur elle et
que le train d’ondes 2’ puisse & ce moment se trouver
extrémement éloigné de 1’. Comme l’a dit trés juste-
ment Schriodinger, « ce serait de la magie ».

Mais, si nous admettons la localisation permanente
de chaque particule dans son train d’ondes, nous
parvenons a une interprétation plus raisonnable. Pour
nous, apres le choc, les particules seront localisées dans
Pun des couples corrélés de trains d’ondes 1'-1”,
2'-27) ..., mais nous ignorons dans lequel de ces
couples corrélés elles se trouvent tant que nous n’au-
rons observé aucune localisation des particules. Mais,
st nous observons une localisation de la particule 1
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dans le train d’ondes 1/, ¢’est qu’elle s’y trouvait déja
avant cette observation et alors nous apprenons par la
méme que la particule 2 est dans le train d’ondes 2.
Ce n’est pas l'observation de la particule 1 dans 1’
qui met la particule 2 dans 2’ ou elle se trouvait déja.
Tout devient trés clair et 1l n’y a plus de magie.

Nous apercevons comment I'hypothése de la loca-
lisation des particules dans leur onde jointe a l'idée
que 'on a toujours affaire a des trains d’ondes limités
nous permet d’éviter toute interprétation paradoxale.

b. Sur les corrélations dans la mesure des spins. —
Plusieurs auteurs ont cru pouvoir déduire de ’étude
de la mesure des spins la preuve de Dexistence de
corrélations entre les états de spin de deux particules
se trouvant & une grande distance 'unc de Vautre et
ils en ont tiré la conclusion qu’il était impossible
d’admettre une interprétation causale de la Méca-
nique quantique. Nous pensons que cette conclusion
ne peut pas étre maintenue si 'on tient compte du
fait que les particules a spin, atomes ou électrons,
sont toujours liées & des trains d’ondes hmités de
petites dimensions.

Pour étudier cette question, rappelons d’abord
comment s’effectue la mesure d’une composante de
spin d’une particule. On emploie pour cela un électro-
aimant du type Stern-Gerlach dans lequel existe un
champ magnétique non homogéne, par exemple entre
des poles de forme prismatique.
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St un tres petit train d’ondes portant une particule
. . \
de spln;l s’engage dans 'apparell en balayant un trés

petit cylindre, Paction du champ magnétique non uni-
forme va séparer les deux composantes du train d’ondes

. 7t
qui correspondent aux valeurs 5.=+  de la compo-

sante 7. du spin en agissant sur les moments magné-

JA VAN
(@]
AN A
0 x
Fig. 2.

tiques qut correspondent aux deux valeurs de .. Cest
ce que 'on peut voir facilement sur les équations de
Dirac. Mais en méme temps le champ magnétique
dévie les deux composantes de o. 'une vers le haut,
Pautre vers le bas de sorte qu’a la sortie de I’appareil,
il y a deux trains d’ondes correspondant aux valeurs
h h . . .

G.= et 0. =— 5 qui, en raison de leur petitesse,
se séparenl el cessenl d’interférer, ainsi que cela est
représenté schématiquement sur la figure 2.

Mais comme nous ne considérons encore qu’une
seule particule qui, pour nous, est portée au début
par le train d’ondes initial ol elle est localisée a chaque

instant, cette particule se trouvera finalement dans
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Pun des deux trains d’onde séparés et aura sa compo-

- , Nz R 7 . .
sante de spin 5. égale a , oua — - suivant le train

d’ondes ou elle se trouve. C’est pourquot Pon peut dire
que Pappareil utilisé permet une mesure de 7.. Remar-
quons que dans P’état final, 'un des trains d’ondes
est « vide » alors que 'autre porte la particule.

Considérons maintenant un état initial ou deux
. R . N ,
particules de méme nature et de spin _ sont portées
par un méme petit train d’ondes. D’aprés le principe
de Pauli, les spins de ces deux fermions doivent é&tre
b
opposés. Le train d’ondes étant soumis a 'action d’un
champ magnétique non homogeéne, il y aura encore,
comme dans le cas d’une seule particule, séparation

dans D'espace de deux trains d’ondes correspondant

7 \ h .. . .
= - et & g,= — - se dirigeant dans des directions

3

a g

différentes. Mais, comme pendant tout le processus de
séparation des trains d’ondes, les deux particules
dotvent suivant le principe de Pauli garder des spins
opposés, dans l’état final Pun des trains d’onde de

L% , ) . ,
spin - portera 'unc des particules tandis que Pautre
2
: . li .
train d’ondes de spin — - portera 'autre particule.

Et comme les directions du mouvement des deux
particules sont différentes, elles s’éloigneront rapi-
dement 'une de ’autre.

Les états des deux particules sont deés lors comple-
tement indépendants. Cependant une corrélation sub-
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siste entre les états de spin des deux particules tant
gu’aucune action extérieure ne modifie la valeur de
leur spin. Donc si, ignorant la valeur des spins indi-
viduels, nous mesurons la valeur de . sur 'une des
particules & I'aide du dispositif étudié plus haut et

. 7

s1 nous trouvons la valeur g.= s nous sommes alors

( ’ identi fai 1 rticule 2

surs qu une mesure 1dentique taite sur la particule 2
I , . . .

donnera .= — S Le genre de corrélation qui existe

1c1 est trés naturel et ne souléve aucun paradoxe.

La ou le paradoxe apparait, c’est quand on prétend
démontrer qu’aprés la séparation des deux trains
d’ondes une mesure qui change I’état de spin de la
particule 1 change également le résultat de la mesure
du spin sur la particule 2 qui peut étre tres éloignée
de la particule 1. Supposons qu’apres la mesure
décrite plus haut des composantes o. des deux par-
ticules, on mesure la composante 5, de la particule 1
en employant un dispositif & champ magnétique non
homogene analogue a celui qui a été utilisé pour la

. . ™ .
mesure de g., mais en le faisant tourner de = Plusieurs

auteurs ont cru pouvoir démontrer que, si la mesure
de o, sur la particule 1 donne alors I'une des valeurs

D .
7,== 5> une mesure analogue faite sur la par-

ticule 2 donnera toujours une valeur égale et opposée
de g, de facon que la somme des deux o, soit égale
a zéro comme D’était celle des deux o, apres la premiére
mesure. Il en résulterait une corrélation des mesures
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faites sur deux particules trés éloignées I'une de 'autre
qui me parait tout a fait inacceptable. En effet, apres
la mesure initiale de 5. sur les deux particules, les
deux trains d’ondes portant chacun l'une des par-
ticules se sont éloignés 'un de Pautre avec des valeurs
égales et opposées de 5.. Alors la mesure de o, sur
I’'une des particules ne peut plus avoir aucune influence
sur ’état de 'autre particule qui, tant qu’on n’agira
pas sur elle, conservera la valeur de 5. que la premiére
mesure lui avait imposée. Si done on mesure alors la
composante g, de la particule 2, on se trouvera dans
le cas de la mesure du spin sur un train d’ondes portant

une seule particule et, comme nous 'avons vu, l'on
pourra alors trouver avec une égale probabilité I'une

2 ,
ou l'autre des wvaleurs Ga,zjzg sans aucune corré-

lation avec la valeur de 7, trouvée pour la particule 1
par une mesure effectuée en un point trés éloigné.
5’1l n’en était pas ainsi, on retrouverait la « magie »
dont a parlé Schriodinger. Remarquons d’ailleurs que,
st des corrélations instantanées & distance existalent
réellement, elles seraient équivalentes a la probabilité
de signaux se propageant instantanément et toute
la théorie de la Relativité qui repose sur 'impossibilité
des tels signaux serait & abandonner.

On peut aussi confirmer le raisonnement précédent
par la remarque suivante. Lorsqu’on effectue succes-
sivement en des points éloignés la mesure de o, sur
la particule 1 avec un électroaimant A, et sur la
particule 2 avec un électroaimant A., les appareils A,
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et A, fourniront aux particules le moment de quantité
de mouvement nécessaire pour changer la direction
de leur spin sans que cela, bien entendu, s’accompagne
d’aucune mise en état de rotation appréciable des
deux électroaimants. Or, les appareils A, et A, sont
des appareils macroscopiques trés éloignés l'un de
Pautre dont le comportement peut sans aucun doute
étre entierement déerit par la Physique classique.
Il ne peut donc pas exister entre le fonctionnement
de ces deux appareils une corrélation qui serait tout
a fait étrangeére a la Physique classique.

Des raisonnements analogues pourraient étre appli-
qués a la détermination des états de polarisation des
photons, les photons étant des particules de spin 7 dont
Pétat de spin est intimement relié a 1’état de polarisa-
tion ('). Il me parait impossible que, quand deux pho-
tons et leurs trains d’ondes se sont séparés ct éloignés
P'un de 'autre, un changement provoqué par un appa-
reil macroscopique (nicol, par exemple) de la pola-
risation de I'un des trains d’ondes entraine un chan-
gement corrélé de la polarisation de l'autre train

d’ondes par un autre appareil macroscopique (*).

c. Sur une objection d’Einstetn a la formule du
guidage. — Dans une contribution au livre jubilaire
consacré & Max Born, Einstein, tout en se pronon-
cant toujours pour le rétablissement d’une conception

(") Voir [4], d.
(*) Voir la Note a la fin du chapitre.
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réaliste de la Mécanique ondulatoire, a élevé une
objection contre la formule du guidage (').

Le principe dont part Einstein est que, chaque fois
que Pon a affaire & un corps macroscopique, on doit
retrouver les images de la Mécanique classique qui
donne sans aucun doute une image trés approchée de
la réalité physique. Ceci posé, il envisage le probléme
suivant. Considérons une particule qui se déplace sui-
vant une droite Oz en venant rebondir sur deux miroirs
placés perpendiculairement 4 Oz aux points d’abscisses
x=o0 et x=1[ La Mécanique ondulatoire usuelle
associe a ce mouvement, s’il a une énergie bien déter-
minée, une onde statistique ¥ nulle en z=o0 et en
x =1 et de la forme

i

nmTx

{

7 Ent . nh
e" avec LK, —  —

(4) Y = q, sin

n étant entier. Dans l'interprétation orthodoxe, cette

onde représente la possibilité de deux mouvements

nl

A L 1243
de méme quantité de mouvement p = - s’effectuant,

VYun de gauche a droite, 'autre de droite a gauche,
ces deux mouvements ayant la méme probabilité. Au
point de vue de la Physique macroscopique, si la par-
ticule est macroscopique, elle a & chaque instant 'un
des deux mouvements & I'exclusion de I'autre. L’inter-
prétation usuelle, dit alors Einstein, représente donc

() Scientific papers presented fo Max Born, Oliver and Boyd,
Edinburg, 1953, p. 33 et ss.
Voir aussi dans le méme volume I’article de D. Bohm, p. 13.
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exactement la situation statistique au cours du temps,
mais non pas I’état réel instantané de la particule
macroscopique. (C’est donc une description statis-
tiquement cxacte, mais incompléte comme description
de la réalit¢ physique.

Mais voici maintenant Pobjection qu’il tire du cas
étudié contre la formule du guidage. Dans la formule (4),

LI

la phase 3 de 'onde W =ae" se réduit a E,t et est,
par suite, indépendante de x. La formule du guidage
nous donne done

1
B —— —gradg == o.
(7) ¢ mgla( Y=o

La particule serait immobile et, si cette particule
constituc une petite bille au sens usuel du mot, nous
nous trouvons en contradiction avec la Mécanique
classique qui nous aflirme, certainement avec raison,
que la bille doit avoir un mouvement de va-et-vient
le long de Ox avec rebondissement alternatif sur chacun
des deux miroirs. Einstein en a conclu que la formule
du guidage ne peut pas, elle non plus, représenter la
réalité physique.

[’analyse d’Einstein est dans son ensemble trés
intéressante, mais elle appelle d’abord une réserve.
On peut, en effet, remarquer que, si la particule
considérée est macroscopique, elle est nécessairement
formée par un ensemble de particules élémentaires et
que onde W est alors associée au centre de gravité
du systéme, ce qui rend l'interprétation plus difficile.
Mais, en dehors de cette réserve, on peut trouver une
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réponse a l'objection d’Einstein contre la formule
du guidage.

Pour développer cette réponse, nous partirons encore
de la remarque qu’un train d’ondes a toujours des
dimensions limitées ne pouvant dépasser, nous I'avons
vu, un certain nombre, d’ailleurs trés élevé, de lon-
gueurs d’onde. Comme pour une énecrgie donnée [

ht
\/"’;;LTJ
petite que m est plus grand, nous voyons que le train
d’ondes associé & une particule d’énergie donnée aura,

la longueur d’onde »=

est d’autant plus

quand la masse augmente, une Jongueur trés inféreure
a la distance [ des deux miroirs dans ’exemple d’Eins-
tein. Pour une masse suflisamment grande, il ne sera
plus possible d’imaginer qu’il y ait entre les deux
miroirs une onde stationnaire du type (4) due &t la
superposition de deux trains d’ondes se propageant
en sens inverses. On devra, au contraire, sc représenter
un train d’ondes de petites dimensions venant se
réfléchir alternativement sur chacun des miroirs et
cette image correspond exactement a 'image macros-
copique classique d’une bille qui oscille le long d’une
droite en venant se réfléchir alternativement sur les
deux miroirs paralleles. Cette réponse a Pobjection
d’Einstein me parait satisfaisante et montre une fois
de plus qu’il ne faut jamais oublier que tout train
d’ondes a une longueur limitée.

Une autre objection contre la formule du guidage
avait été faite par Pauli au Conseill Solvay d’oc-
tobre 1927 en envisageant le probléme antérieurement
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traité par Fermi du choc d’une particule avec un
rotateur quantifié. J’a1 étudié cette objection dans
un de mes livres (') et je pense y avoir répondu en
introduisant encore I'idée que ’onde de la particule
est toujours limitée. Je n’y reviens donc pas ici.

3. Analyse de diverses expériences. — Nous allons
maintenant analyser diverses expériences réalisables
ou 1maginables dont nous tirerons certaines consé-
quences intéressantes.

a. Trous d’Young et interférence des probabilités.
— M. Heisenberg a introduit, il y a longtemps, 'idée
de « Pinterférence des probabilités » s’appuyant sur
Pexpérience bien connue des trous d’Young et son
raisonnement est souvent considéré comme excluant
la possibilité d’une localisation permanente de la
particule dans son onde. Nous voulons montrer qu’avec
nos 1dées cette conclusion ne s’impose aucunement.

Considérons avec Heisenberg un écran d’Young
percé de deux trous A et B sur lequel tombe un train
d’ondes assimilable 4 une onde plane monochro-
matique et calculons la probabilité pour que la par-
ticule manifeste sa présence en un point M situé au-
dela de I'écran dans la région ou I'on peut observer
les interférences. Heisenberg raisonne comme il suit.
Si la particule était constamment localisée, elle devrait
passer par 'un des trous d’Young, mettons A, pour

(*) Voir [4]), a, p. 174 et ss.

M. DE BROGLIE. 7
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participer aux interférences. Le calcul des probabilités
nous dit que la probabilité P(M) que la particule
parvienne en M est le produit de la probabilité P, (A)
de son passage par le trou A par la probabilité
P.(A, M) pour qu’elle se rende ensuite de A en M.
On a donc

(6) P (M) =P, (A).P, (A, M) = I, (A, M).

Mais, dit Heisenberg, l’expérience prouve qu’il y a
« interférence des probabilités » [nous dirions plutot
qu'il y a une probabilité P(M) déterminée par les
interférences], c’est-a-dire que P (M) doit étre une
fonction de A, B et M. En effet, la probabilité de la
présence de la particule en M est donnée par le carré
de 'amplitude de 'onde qui a passé par les trous A
et B et qui interfére derriére I’écran. On a done

() P(M) =« (M) =T, (A, B, M).

Or, cette formule est incompatible avec la précédente
parce que F, ne dépend que de la position du trou A
et du point M tandis que F. dépend en outre de la
position du trou B. Et l'on en conclut qu’il est impos-
sible d’admettre que la particule ait passé par 'un
des trous d’Young : elle ne peut donc étre localisée
en permancnce et doit avoir passé potentiellement
par les deux trous a la fois.

Mais ce raisonnement, ot ’on admet implicitement
la Dynamique corpusculaire classique, repose sur
Ihypothése que, quand la particule a passé par le
trou A, son mouvement ne peut aucunement étre
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ensuite influencé par Pexistence du trou B. Or, dans la
théorie de la double solution, on doit remarquer que,
dés que la particule a passé par le trou A, elle se trouve
dans la région ou les portions de 'onde ¢ qui ont passé
par A et B interférent. Il en résulte que le mouvement
de la particule défini par la formule du guidage est dés
lors influencé par 'existence du trou B de sorte que
Ion doit écrire, au lieu de (6),

(8) P(M) =P, (A).P,(A, B, M),

ce qui est en accord avec (7). Il n’y a plus aucune diffi-
culté a admettre que la particule ait passé par 'un
des trous d’Young et que cependant la probabilité de
sa présence en M dépende a la fois de la position du
point M et de celle des deux trous d’Young A et B.

Il semble d’ailleurs qu’il serait possible de faire une
expérience macroscopique ol une conclusion analogue
s’imposerait. Supposons qu’une onde sinusoidale pro-
gressive se propage & la surface d’'un liquide et
s’écoule le long d’un canal rectiligne. Plagons un écran
percé de deux trous perpendiculairement a la direction
de la propagation de 'onde. Derriére I’écran, il doit y
avoir une région ou, par suite des interférences, la
répartition des amplitudes de Vonde doit étre celle
que lon calcule dans la théorie usuelle des trous
d’Young. L’expérience parait réalisable.

Mais supposons maintenant que I'on ait semé a la
surface de l’onde liquide une poudre formée de trés
petits grains de poussiére encore visibles a I'eeil nu.
Ces grains seront entrainés par l'onde et certains
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d’entre eux passeront par les trous de I’écran. Il me
parait probable que derriére U'écran les grains de pous-
siére se concentreront dans les régions de haute ampli-
tude de P'onde et se raréfieront dans les régions de
faible amplitude. Comme chaque grain qui est visible
a certainement passé par I'un des deux trous d’Young,
s1 Pexpérience donnait un résultat conforme a mes
prévisions, on pourrait en conclure ce qui suit : chaque
grain de poussiére, aprés avoir passé par 'un des trous
d’Young, a dans la région derriére I'écran un mouve-
‘ment qui est influencé par ’existence du trou d’Young
par lequel 1l n’a pas passé. On aurait ainsi une preuve
expérimentale du fait que le guidage d’une particule
par une onde peut provoquer un groupement de ces
particules dans lespace conforme a la théorie des
franges d’interférences et cela parce que la particule
est guidée dans son mouvement par la propagation
d’une onde qui, elle, a passé par les deux trous d’Young.

b. Le miroir semi-transparent d’Heisenberg. — Au
Conseil Solvay d’octobre 1927, Heisenberg avait donné
un autre exemple qui, selon lui, prouvait aussi Pimpos-
sibilité de localiser la particule dans son onde. Il
considérait une onde tombant sur un miroir semi-
transparent M. Une partie de cette onde passe a travers
le miroir et continue son chemin en ligne droite tandis
qu’'une autre partie est réfléchie.

St 'on peut détecter la présence d’une particule
portée par 'onde dans 'un des deux faisceaux, I'autre,
selon Heisenberg, cesse immédiatement d’exister car
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il n’est qu’une représentation de la probabilité de
présence de la particule. Mais plagons en M’ un miroir
parfaitement réfléchissant qui renvoie I’onde transmise
sur P'onde réfléchie de fagon qu’elles se superposent
dans la région ABCD. Alors nous pourrons observer des
interférences dans cette région ABCD. Cela prouve,

Fig. 3.

disait Heisenberg, que l’onde transmise et l'onde
réfléchie existent tant que la particule n’est pas localisée
et cela conduit a penser que jusqu’a l'instant de la
localisation, la particule est présente a I’état potentiel
dans les deux ondes a la fois.

Avec notre point de vue, 'interprétation de cette
expérience est tout a fait différente. La particule res-
tant constamment localisée dans ’onde ¢ se trouve
apres son arrivée sur le miroir M, soit dans onde trans-
mise, soit dans l'onde réfléchie. Si elle manifeste sa
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présence dans l'une de ces deux ondes, c’est qu’elle
y était déja. Mais 'onde ¢ étant une onde physique
réelle, ’autre onde n’en disparaitra pas pour cela.
C’est seulement 'onde statistique fictive W qui dispa-
raitra dans la région de 'onde ¢ ol ne se trouve pas la
particule. Si l'on interpose le miroir M’, on pourra
obtenir des interférences dans la région ABCD parce que
la particule, qu’elle ait traversé le miroir semi-trans-
parent ou qu’elle ait été réfléchie, se trouve guidée
_quand elle arrive dans la région ABCD par la super-
position des ondes ¢ que la réflexion sur le miroir M’
a provoquée. On obtient ainsi une interprétation des
interférences en ABCD qui est tout a fait la méme
que celle que nous avions obtenue plus haut pour les
trous d’Young.

Il faut cependant remarquer que notre point de vue
nous ameéne nécessairement & nous poser les deux
questions suivantes : 1° Si le miroir M’ n’est pas inter-
posé, le train d’ondes incident portant la particule se
trouve divisé aprés son passage sur le miroir semi-
transparent M en deux trains d’ondes dont 'un seule-
ment porte la particule. Que devient ensuite I'autre
train d’ondes qui est « vide »? 20 Apres la séparation des
trains d’ondes ¢, la particule se trouve dans un train
d’ondes d’amplitude plus faible que le train d’ondes
initial. Donc, aprés avoir rencontré un nombre croissant
de miroirs semi-transparents, une particule se trouverait
finalement portée par une onde de plus en plus affaiblie.
Peut-on imaginer qu'une onde ¢ de plus en plus affaiblie

\

continue a4 guider une particule?
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Nous nous contentons de poser ces deux questions.
Nous y reviendrons dans le dernier paragraphe de
ce chapitre.

c. Projet d’une expérience mettant en défaut les idées
actuellement admises. — Considérons un dispositif
d’interférences comportant deux miroirs sur lesquels
se réfléchissent deux faisceaux de lumiére cohérents
qul viennent ensuite se superposer dans une région
d’interférences. Siles deux miroirs sont fixes, les auteurs
qui soutiennent les idées actuellement admises en
Physique quantique disent que les photons portés
par Ponde cohérente sont présents potentiellement
dans chacun des deux faisceaux, ce qui permet & ces
faisceaux d’étre cohérents et explique I’apparition
des interférences. Mais, pour ces auteurs, si 'un des
deux miroirs peut reculer sous I'impact des photons,
la cohérence des deux faisceaux est rompue par ce
recul et il ne peut plus y avoir d’interférences. Allant
plus loin, 1ls disent méme, d’accord avec les conceptions
de Niels Bohr sur la complémentarité, que, si le miroir
qui peut reculer ne recule pas, la cohérence est égale-
ment détruite par le seul fait qu’il aurait pu reculer
et alors il n’y a pas d’interférences (*). Cela est bien
paradoxal.

Divers auteurs, dont Einstein et plus récemment
M. Renninger, ont insisté sur les difficultés soulevées

(1) Voir Particle ’EpsTEIN, Amer. J. Phys., vol. 13, 1945, p.129.
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par une telle conception. On trouvera un exposé de ces
difficultés dans un de mes livres récents ().

Il est & remarquer que, dans les exposés de Bohr
et de ses disciples, on raisonne généralement comme
s1 'on pouvait obtenir des diagrammes d’interférences
avec un seul photon. Or, il est évident qu'on ne peut
observer les franges d’interférences que si de trés
nombreux photons arrivant successivement ou simul-
tanément se répartissent statistiquement dans la
région d’interférences proportionnellement a I'intensité
locale de l'onde résultant de la superposition des
faisceaux qui s’y croisent.

Si 'on envoie de trés nombreux photons sur un
dispositif comportant deux miroirs et si ’'un au moins
de ces miroirs recule sous 'impact des photons, c’est-a-
dire sous I’action de la pression de radiation, on peut
admettre que les franges d’interférence ne seront pas
visibles parce que le recul continu du miroir fera
constamment varier la différence de marche des deux
faisceaux qui se croisent dans la région d’'interférences.
Mais cela résulte uniquement de la théorie classique des
interférences sans aucune intervention des concep-
tions de la complémentarité bohrienne.

Guidés par les remarques qui précédent, nous allons
immaginer un dispositif expérimental qui pourrait
mettre en défaut les prévisions de la théorie « ortho-
doxe ».

(1) Voir [4], ¢, chap. III.



INEXISTENCE DES ONDES PLANES MONOCHROMATIQUES. 105

Considérons une source de lumiére S qui envoie une
onde cohérente sur un écran percé de deux trous A et B
symétriques par rapport a 'axe de symétrie SO et
suffisamment grands pour qu’on puisse négliger les
phénomeénes de diffraction. A droite de I'écran il y a

Fig. 4.

donc deux faisceaux de lumiére séparés qui viennent
frapper deux miroirs parfaitement réfléchissants M,
et M, placés symétriquement par rapport a SO. Les
faisceaux réfléchis par M, et M, viennent se superposer
dans la région d’interférences I.

Si les miroirs M, et M, sont fixés rigidement, tout
le monde sera d’accord pour dire que I’on devra observer
des franges d’interférences en I. Mais les auteurs
orthodoxes énonceront les deux affirmations suivantes :

A. Les interférences se manifesteront en I parce que
les photons qui s’y localisent n’ont auparavant mani-



106 PRINCIPES GENERAUX.

festé nulle part leur nature corpusculaire. S’1ls ’avaient
fait, leur nature ondulatoire aurait disparu et 1l n’y
aurait plus d’interférences.

B. Les photons avant leur localisation en I étatent
répandus potentiellement dans toute 'onde cohérente
et chacun passe a la fois par les deux trous A et B.
Il est absolument impossible d’admettre que certains
photons atent passé par le trou A et d’autres par le
trou B.

Maintenant, au lieu de supposer les miroirs M, et M,
fixes, nous allons supposer qu’ils puissent reculer sous
Paction de la pression de radiation due & 'impact des
photons, mais que leur recul est limité par l'action
antagoniste de ressorts R, et R, (ou par un dispositif
équivalent). S1 l'onde incidente est assez intense,
par exemple si elle est émise par un laser, les miroirs
reculeront un peu sous I'action de la pression de radia-
tion, puis se stabiliseront lorsque la réaction des ressorts
équilibrera cette pression. Quand les miroirs se seront
stabilisés et seront devenus fixes, 1l parait évident que
Pon pourra observer les franges d’interférence en I.
Mais alors nous pourrons énoncer les deux aflirmations
sulvantes :

A’. Les photons qui se localisent en I dans les franges
d’interférences auront tous cédé de la quantité de
mouvement a4 'un des miroirs en se réfléchissant sur
lui. Ils auront donc ainsi manifesté leur nature cor-
pusculaire d’une maniére observable par le recul des
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miroirs et cependant ils pourront ensuite donner lieu
a un phénoméne d’interférences en manifestant leur
nature ondulatoire.

B’. Les photons qui se réfléchissent sur M, ont évi-
demment passé par le trou A tandis que les photons
qui se réfléchissent sur M., ont évidemment passé par
le trou B.

Les affirmations A’ et B’ sont en compléte contra-
diction avec les affirmations A et B énoncées plus haut.
Il semble donc que Vexpérience que nous venons
d’imaginer, si elle pouvait &tre réalisée et si elle réussis-
sait, pourrait conduire & rejeter les conceptions sur la
constitution de la lumiére admises en Physique quan-
tique depuis la théorie de la complémentarité de Bohr.
Elle s’interpréterait, au contraire, facilement avec
nos idées sur la coexistence des ondes et des particules
qui impliquent dans le cas de la lumiére, le transport
de photons localisés par une tres faible onde ¢ électro-
magnétique (').

Dans I’expérience que nous proposons, le point essen-
tiel consiste en ceci que, pendant le phénoméne d’inter-
férences, les miroirs resteraient immobiles tandis que
leur recul initial, mesuré par la compression des
ressorts, pourrait permettre d’affirmer que les photons
en se réfléchissant sur les miroirs leur apportent
constamment de la quantité de mouvement.

(") Voir [4], d.
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On pourrait objecter & I'expérience proposée que
la pression de radiation due & 'arrivée des photons sur
un miroir est sujette a des fluctuations de sorte que
les miroirs apres leur recul garderaient un petit mouve-
ment d’agitation susceptible de brouiller les inter-
férences. Mais avec une onde transportant de trés
nombreux photons, les fluctuations pourralent étre
trés faibles en valeur relative et I'inertie des miroirs et
de leurs ressorts pourrait étre assez grande pour
qu’apres leur recul initial, les miroirs restent sensi-
blement immobiles.

d. Sur le dispositif d’apodisation. — Les physiciens
qui cherchent a obtenir de bonnes images lumineuses
des objets qu’ils étudient sont génés par les effets
de diffraction qui interviennent dans tous les instru-
ments d’optique car ces effets ont pour conséquence de
disperser la lumiére autour de I'image prévue par
Poptique géométrique. Pour cette raison, ils ont cherché
a éliminer ou du moins & diminuer cette sorte de « pied »
que présente la courbe de répartition des intensités
autour de I'tmage de fagon a obtenir, par un procédé
dit « d’apodisation », une répartition plus concentrée
des intensités lumineuses et, par suite, une image
plus nette.

Sans entrer dans les détails de la théorie dont on
trouvera un résumé tres clair dans le traité d’Optique
de Bruhat réédité par M. Kastler ('), nous voulons

(!) Masson, Paris, 1954, p. 242 et ss.
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rappeler le principe de la méthode d’apodisation.
Considérons un instrument d’optique comportant une
ouverture, par exemple de forme circulaire. Sans apodi-
sation, la lumiére incidente aura la méme intensité
sur toute I'ouverture et le principe d’Huyghens joint
a la formule d’inversion de Fourier permet de calculer
la forme de I'image avec son pied génant. Mais placons
sur 'ouverture du c6té de ’onde incidente une lame

Lumiere incidente ————>~ i]

absorbante d’épaisseur variable, par exemple plus

Fig. 5.

épaisse sur les bords qu’au milieu. Alors sur ’ouverture,
P'intensité lumineuse ne sera plus uniforme : elle sera
plus grande au centre que sur les bords. Dans ces
conditions, la théorie prévoit et ’expérience vérifie que
la figure de diffraction peut se trouver resserrée et qu’on
peut ainsi obtenir une image améliorée par apodisation.

Or, 1l me parait certain (et I’expérience serait sans
doute facile a faire) que I'image apodisée serait obtenue
sans modification si, au lieu d’utiliser une source de
lumiére intense, on utilisait une source trés faible, si
faible que les photons avec leurs trains d’ondes indi-
viduels n’arriveraient que un par un sur l'ouverture
de I'appareil. Réfléchissons un peu sur ce qui se passe-
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rait. Tous les photons qui passeraient par 'ouverture
et qui iraient contribuer & former 'image auraient
traversé la lame absorbante (ceux qui seraient absorbés
dans cette lame ne nous intéressent pas) et cependant
ces photons qui n’ont pas subi l’absorption photo-
nique discontinue dans la lame ne se répartiraient
plus de la méme maniére dans le plan image qu’en
I’absence d’apodisation. Cela parait bien nous imposer
d’admettre que « quelque chose » qui accompagne le
photon et qui influe sur son mouvement a été absorbé
dans la lame par un processus continu et non pas
par Uabsorption photonique discontinue seule prise en
considération dans les théories actuelles. Or ce « quelque
chose » ne peut étre que le train d’ondes ¢ qui porte
et guide le photon et ’absorption non photonique
de ce train d’ondes dans la lame absorbante a le carac-
tére continu de I’absorption classique des ondes élec-
tromagnétiques. Il y a 1la, me semble-t-il, un tres
fort argument en faveur de I'idée qu’en théorie de la
double solution, 'onde ¢ qui porte le photon doit étre
une onde électromagnétique du type classique, mais
de trés faible amplitude.

Cette conception de l'onde porteuse d’un photon
conduit & penser que, si la presque totalité de I’énergie
du train d’ondes électromagnétique est certainement
concentrée & l'intérieur du photon, il est néanmoins
possible qu’une trés petite fraction de cette énergie
soit répartie dans toute I’étendue du train d’ondes ¢.
On peut alors se demander si une diminution suffisam-
ment importante de I’énergie de 'onde ¢ n’obligerait
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pas le photon & céder au train d’ondes qui lui sert de
support une petite fraction de son énergie interne avec
naturellement une diminution de sa fréquence comme
Iexige la relation W = hv. Il serait donc trés intéressant
d’examiner expérimentalement si des photons qui ont
réussi & traverser un milieu trés absorbant ou une série
de milieux assez absorbants ne subissent pas une petite
diminution de fréquence. Si cet effet existait réellement,
peut-étre permettrait-il d’expliquer le déplacement
vers le rouge de la fréquence de la lumiére qui nous
parvient de nébuleuses trés lointaines sans avoir recours
4 I'hypothése de I'expansion de I’Univers.

4. Probléemes non résolus. — Les remarques que
nous venons de faire dans les précédents paragraphes
nous conduisent 4 nous demander si la représentation
de la propagation des ondes par des équations linéaires,
bien que trés utile et trés suffisante dans un grand
nombre de problémes, nous donne bien une image
compléte de la réalité physique. Si un train d’ondes
« vide », c’est-a-dire ne transportant aucune particule,
a peut-étre, comme le suggére la théorie linéaire, une
tendance a s’étaler et & s’évanouir, en est-1l de méme
d’un train d’ondes qui porte une particule? N’y aurait-il
pas dans ce cas quelque chose qui empécherait le train
d’ondes de s’étaler et lui maintiendrait une forme
constante? Pour que cela soit possible, ne faudrait-il
pas introduire dans les équations de propagation de
Ponde ¢ des termes non linéaires qui seraient négli-
geables dans presque toute I’étendue du train d’ondes,



112 PRINCIPES GENERAUX.

mais qui interviendraient d’une fagon importante
sur les bords du train d’ondes et dans la trés petite
région de haute amplitude qui constitue la particule,
donnant ainsi & Vensemble formé par la particule et
I’onde une cohésion dont une théorie linéaire ne peut
pas rendre compte?

Il est facile de comprendre que des termes non
linéaires insensibles dans le corps du train d’ondes
deviennent essentiels dans la région de haute ampli-
tude qu’est la particule. Ces termes assureraient la
liaison entre la particule et son onde et pourraient
peut-étre expliquer comment la particule peut céder
de DI’énergie & l'onde quand Damplitude de celle-ci
devient trop faible. Si les termes non linéaires dépen-
dailent des dérivées de la fonction d’onde, on pourrait
comprendre qu’ils disparaissent dans le corps du
train d’ondes, mais reparaissent sur ses bords supposés
suffisamment abrupts.

On peut donner un argument assez fort en faveur de
I'1dée que ’extension des trains d’onde au cours de leur
propagation telle qu’elle résulte des équations de
propagation linéaires ne doit pas étre exacte. Cet
argument, c’est le caractére paradoxal du résultat
que 'on obtient en calculant I'extension progressive
d’un train d’ondes en Mécanique ondulatoire. Tandis
que pour des particules de vitesse égale ou presque
égale a ¢ (photons) les trains d’ondes calculées par la
théorie linéaire usuelle n’ont pas tendance & s’allonger,
il n’en est pas du tout de méme pour des particules de
vitesse plus faible. Un calcul fait par M. Bohm montre
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que, si le train d’ondes d’une particule de masse m a
a l'instant o une longueur Az, il aura a l'instant ¢
une longueur Az donnée, a 'approximation non rela-
tiviste par

hr e
(9) Ax:Awo\/Wm’

ce qui, au bout d’un temps ¢ trés court, peut s’écrire (*)

(10) Ar =

Cette formule traduit un éparpillement des compo-
santes du train d’ondes qui se propagent avec des
vitesses différentes, ce qui entraine une désorganisation
du train d’ondes.

Appliquons cette formule 4 wun électron de
masse m~10*"g. Comme nous l’avons déja dit,
la longueur du train d’ondes d’un électron émis dans
un laboratoire par un canon a électrons est de 1’ordre
du micron. Or, considérons un électron qui, émis a la
surface du Soleil, arriverait sur la Terre. La distance
Soleil-Terre étant de 'ordre de 8 minutes de lumiére,
s1la vitesse de I’électron est environ égale & 1/10 dela
vitesse ¢, soit environ 3.10° cm/s, 1’électron mettra
environ 30 mn = 4 800 s pour aller du Soleil a la Terre.

A .
Comme — est pour un électron de 'ordre de 1, on

(") D. Bonm, Quantum Theory, Prentice Hall, New York, 1951,
p. 73.
Voir aussi SOMMERFELD, Wellenmechanik, éd. 1961, chap. III,

§ 1.

M. DE.BROGLIE. 8
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4

trouve avec Ax,~ 107" cm,
8oo
(11) Ax ~ 4104 ~5.10° cm = 50 km.

Le train d’ondes a son arrivée surla Terre aurait donc une
longueur de 'ordre de 50 km, c’est-a-dire serait devenu
pendantle trajet environ 50 milliards de fois plus grand !
Ce résultat est surprenant. Les partisans des inter-
prétations actuelles diront que cela signifie simplement
que l'incertitude sur la position de I’électron qui était
de 107" cm au départ a augmenté énormément pendant
la durée du trajet. En effet, pour eux, le train d’ondes
n’est que la représentation d’une probabilité de pré-
sence. Mais je crois que la question est plus grave. En
réalité, la longueur du train d’ondes est une grandeur
mesurable qui correspond a des possibilités d’inter-
férences dans des conditions données : elle constitue
une propriété physique de l'électron. Je pense que,
st I’on pouvait mesurer cette grandeur physique pour un
électron ayant accompli un tres long trajet, onlui trouve-
rait sensiblement la méme valeur, de 'ordre du micron,
qu’on lut aurait trouvé au moment de son émission.
Bien que quelques tentatives intéressantes alent été
faites pour étudier des équations d’ondes non linéaires
assurant la conservation des trains d’ondes, notamment
par M. Georges Lochak ('), peu de résultats ont encore
été obtenus dans cette direction. Il y a dans le domaine
que nous venons seulement d’effleurer tout un ensemble

) C. R. Acad. Sc., t. 250, 1960, p. 1986 et 2146.
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de problémes trés difficiles dont la solution ne pourra
progresser que lentement. J’ai cru cependant devoir
les indiquer parce que je pense que, pour développer
notre conception de la coexistence des ondes et des
particules, on sera trés probablement amené a les
envisager.

Note au sujet du paragraphe 2.b. — Dans un mémoire célébre,
Einstein, Rosen et Podolsky ont contesté certaines affirmations
usuelles en Mécanique quantique en partant du postulat suivant
(postulat E. R.P.) dont l'exactitude parait évidente : « Si 'on
peut, sans troubler en aucune fagon I'état d’un systéme, prédire
avec certitude le résultat de la mesure d’une grandeur sur ce
systéme, alors il existe un élément de réalité correspondant a cette
grandeur ». Divers auteurs ont cru pouvoir mettre en défaut ce
postulat en s’appuyant sur la mesure du spin. En effet, pour eux,
dans le probléme examiné au paragraphe 2.b, si I’on mesure la

1)

composante s, du spin sur celui des deux trains d’ondes otis, = + 5

7
le fait de trouver o, = ;L impliquerait que pour I’autre train d’ondes

. . I
une mesure de ¢, donnerait nécessairement O = o IlIs en
concluent que cela contredit le postulat E.R.P. car dans le
deuxiéme train d’ondes ol ¢; = — <) Oz n’a pas avant la mesure

de valeur définie et n’est donc pas un élément de réalité. 1.’argu-
ment ainsi opposé au postulat E. R. P. ne nous parait pas valable

. I I
parce que les mesures de s, sur les trains d’ondes o, — 5 eto; =— 5
sont totalement indépendantes aprés la séparation trés rapide des
trains d’ondes. I.a mesure de ¢, sur I’un des trains d’ondes ne nous
donne, apres leur séparation, aucune indication sur la valeur que
fournirait une mesure de s, sur l’autre train d’ondes. Le pos-
tulat E.R.P. n’est donc pas applicable et ne se trouve aucu-
nement contredit. C’est toujours en considérant des ondes planes
monochromatiques au lieu de considérer des trains d’ondes limités
que 'on arrive a des conclusions inexactes.



CHAPITRE VI

LA DYNAMIQUE DU GUIDAGE
DANS UN MILIEU
REFRINGENT ET DISPERSIF
ET LA THEORIE DES ANTIPARTICULES (')

1. Théorie générale. — Dans les chapitres précédents
nous avions toujours supposé que la propagation de
Ionde s’opére dans un milieu qui ne posséde pas les
propriétés d’un milieu réfringent et dispersif. Je me
propose maintenant d’étudier le mouvement d’une par-
ticule dans son onde quand la propagation de celle-c1
s’opére dans un milieu réfringent et dispersif en insistant
sur le cas particulierement intéressant ou la vitesse
de groupe est en sens inverse de la vitesse de phase.

Soit un train d’ondes sensiblement monochromatique
de fréquence centrale v et de longueur d’ondes corres-
pondante A. V étant la vitesse de phase et n I'indice

, . . : v
de réfraction, on a les relations n = \3, et v= - Avec

() Voir [4], f.
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les notations précédemment utilisées, nous écrirons
i
Ponde sous la forme a e%¥, avec

> >
(1) (.?:/lvt—/i‘.? et A‘:%Z,
> - _ . .
ou n est le vecteur umté définissant la direction de
propagation. Quand au mouvement de la particule, 1l est

défini par sa vitesse ¢, son énergie W et sa quantité

> . > .,

de mouvement p. Quand la vitesse ¢ est dirigée dans
le sens de la propagation de ’onde, nous savons que
, > > h> . .
Von peut poser p =k = 5n. Mais dans le cas ou la
vitesse ¢, par suite de la dispersion, se trouve dirigée
en sens de la propagation de I’onde, nous serons amenés
a écrire

> s

D’ou la conclusion remarquable qu’alors la formule
. / . , h

classique p :71 doit étre remplacée par p = — 3-

Cela s’explique aisément en remarquant que le vecteur

. } ’ . . . r
de propagation k étant toujours dirigé dans le sens de
la propagation de l'onde, la vitesse % et la quantité

> . e,
de mouvement p de la particule sont alors dirigées
dans le sens contraire. On doit alors également écrire la
formule du guidage sous la forme

(3) p=grado

. > i
au lieu de p = — grado.
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Remarquons maintenant que la vitesse ¢ de la
particule, donc de P’énergie, doit coincider avec la
vitesse de groupe définie par la formule de Rayleigh

(4) L= =

. P oW .
qu peut s’écrire ¢ = —5» ce qui, quand on a ¢ > o,
et ;= Z, se confond avec la formule v:%‘g bien
connue dans la théorie des équations de Hamilton.

Je vais maintenant introduire une hypothése que
Javais déja introduite en 1926 dans la note finale de
mon article intitulé Parallélisme enire la Dynamique du
point matériel et Uopiique géométrique (*). Elle consiste
a admettre que, dans un milieu réfringent dispersif,
le mouvement de la particule s’effectue comme si
elle était soumise a un potentiel traduisant la réaction
que le milieu exerce sur elle, potentiel défini par

(5) P:W(I—n()(dnvv)> WKIFW)

On a alors pour la phase ¢ de 'onde, la direction de
propagation étant prise pour axe de z,

(6) do=Wdt — kdz,
avec

w—P h
(7) k= c? V‘_‘j\

(Y) J. Physique, séries VI et VII, 1926, p. 1-6.
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Or, nous 'avons vu, dans la théorie du guidage de la
particule par son onde, le principe fondamental est
que la phase interne ¢, de la particule doit toujours
coincider avec la phase ¢ de 'onde qui la porte, c’est-a-
dire que 'on doit avoir ¢;= (9).... Donc

— > -
(8) doi= (d9)sepi= (W — ko) dl = [w - W(.Q d (ﬂjdt,

ce qui, compte tenu de (5), nous donne

1 \V 4 ¢
(9) ﬁdﬁ?i_?,<l V>dt__21w< V)dl'

Remarquons en passant que, dans le cas du vide

N C 1
ou vy =y¢,, on a P=o0 et nzv:(%':(ﬁ, formule

bien connue depuis longtemps. Alors
1 W
(r0) %dcp,-:f(l~—ﬁ2) dt = amv,\1 — B dt,

formule qui exprime, comme nous le savions, que la
vibration interne de la particule subit le ralentissement
des horloges relativistes. Nous retrouvons donc les
résultats que nous avions trouvés précédemment, mais
nous devons remarquer qu’avec les définitions adoptées,
I’absence de réfraction dans la propagation de I'onde
s’exprime par la formule

T mie
(11) n—=038= \/ /zzv

et non parn = 1.
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Revenons maintenant a la formule (g). Elle peut
s’interpréter en faisant intervenir l’effet Doppler.
Comme nous comptons la vitesse ¢ de la particule dans
le sens de la propagation de 'onde dans le systéme de
référence ou la particule a la vitesse ¢, la théorie rela-
tiviste de ’effet Doppler nous apprend que, dans le
systeme de référence ou la particule est immobile, la
fréquence de 'onde est

(12) VI v,

ce qui nous permet d’écrire

(13) %dcp,»:m:vodtozzﬂv<1—%>dt,

car dt,=dty1— 3*. Or, la formule (13) est identique
a la formule (g) et cela nous explique pourquoi la
coincidence des phases ¢ et ¢; nous a conduit a la
formule (g).

D’ailleurs, inversement, en admettant la coincidence
des phases de I'onde et de la particule et en tenant
compte de l'effet Doppler, on peut partir de la for-
mule (12) et remonter & la formule (5), ce qui justifie
la forme adoptée pour P.

2. La masse propre modifié¢e. — Dans la Dynamique
du guidage d’une particule dans un milieu réfringent
dispersif, on peut introduire une masse propre modi-
fie m, différente de la masse propre habituelle m,.
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Nous le ferons de la fagon suivante. Nous partons des
formules valables pour ¢ > o.

m

Vi—p

Puis, en admettant que la masse propre modifiée
doit étre positive méme si ¢ < 0, nous poserons

* .2 * 7
mgc oV

> —_—
F=W_P>

; pe

(14) W: —|—P

>
> P=

2

1o

] — !

> >
(15) ;):/f: 9 si v >0; ;:—/{:—_% n sl ¢ < 0.

il

1
A

>

La seconde formule (15) se justifie aisément car k est un

vecteur dirigé suivant la propagation de I’onde tandis
> C e

que p est dirigé suivant le mouvement du corpuscule,

>
c’est-a-dire en sens inverse de k.

De (15), nous tirons aisément

m L w—r

(16)

et de 13, d’apres (5),

(x7) my—==* — 1— —-

Dans les formules (16) et (17), on doit prendre le
signe -+ ou le signe — suivant que la vitesse est supé-
rieure ou inférieure a o.

Dans le vide ou v-:‘)o:C—z et ou W= -,
v I — ﬁz
on a par (17) m, = m, comme on devait s’y attendre.
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En posant m*= » on peut écrire la for-

m
=
mule (17) sous les formes suivantes. Dans le cas ou

h
v >o0etp=s5 0na

. R hv k

m:n VV“ >0
\ h
et, dans le cas 0uv<oetp=—7v on a
e o hv Ok -0
Y S A Y ’

ce qui permet d’écrire la formule générale

&\ dk

(17 bis) n'— =7 t N

D’aprés nos définitions, la masse propre modifiée
est donc toujours positive. Il faut faire ici une remarque
essentielle. Si la particule est soumise 4 un champ
extérieur qui dans le vide aurait pour effet de I’accé-
lérer, Uaction de ce champ s’exerce en réalité sur la propa-
gation de londe puisque le potentiel dont il dérive
figure dans I’équation de propagation de l'onde. Le
mouvement de la particule n’est pas directement déter-
miné par I'action du champ, mais par le fait qu’elle
doit se déplacer de facon que sa vibration interne reste
en phase avec celle de I'onde. Si I’action du champ

->
extérieur fait croitre le vecteur k, il en résultera dans
le cas ¢ << o qu’elle fera croltre la quantité de mouve-

>
ment ;: — k dans le sens opposé a la propagation
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de I'onde. Tout se passera donc comme si la particule
de masse propre m, était soumise & Paction d’un
champ inverse de celui qui s’exerce réellement. Si le
champ appliqué est un champ électrique et si la parti-
cule a une charge électrique <, cette particule se compor-
tera donc comme une particule de masse positive m;,
mais de charge électrique — «.

3. Comparaison avec la théorie des antiparticules. —
Ce que nous venons de dire rend évident que la théorie
exposée ci-dessus qui repose essentiellement sur la
formule (4) de Rayleigh présente une grande analogie
avec la théorie des antiparticules et c¢’est la un point
important qui mérite d’étre précisé (*).

La théorie des antiparticules est apparue d’abord en
Physique théorique pour l'interprétation de la produc-
tion des paires électron-positon sous la forme de la
théorie des « trous » de Dirac. Dans cette théorie, on
admet qu’il existe dans le vide un océan d’électrons
cachés de charge électrique — e et d’énergie néga-
tive — m,c’. L’apport par un agent extérieur d’une
énergie 2m,c* entrainerait 1’arrachement d’un de ces
électrons au milieu caché ou 1l se trouvait, milieu qu’il
est évidemment tentant d’assimiler au milieu subquan-
tique dont nous avons parlé précédemment, et son
apparition au niveau microphysique observable sous
forme d’un électron « normal » d’énergie m,c*. Il en

(*) Nous n’insisterons pas ici sur les applications possibles des
mémes idées a la théorie des semi-conducteurs.
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résulterait un « trou » dans ’océan des électrons caché a
énergie négative et c’est ce trou qui se manifesterait
a nous & l’échelle microphysique observable sous la
forme d’une antiparticule de masse propre positive m,
et de charge positive 4 e qui serait le positon.

Bien que cette théorie des trous ait rendu de grands
services, elle ne parait pas bien claire et n’est peut-étre
pas bien en accord avec la conservation de I’énergie;
en effet, dans I’état initial nous avons une particule
d’énergie — m,c* et dans I’état final deux particules
d’énergie propre totale 2m,c*, ce qui correspond a une
augmentation d’énergie de 3m,c’, alors qu’il n’y a eu
qu’un apport extérieur d’énergie égal & 2m,c’.

Nous allons maintenant proposer une théorie diffé-
rente de la création des couples particule-antiparticule
reposant sur I'idée que 'antiparticule est une particule
qui se déplace dans son onde en sens inverse de la
propagation de celle-ci. En d’autres termes, nous admet-
trons que, lors de Papparition au niveau observable
d’un couple particule-antiparticule, I'un des consti-
tuants du couple est une particule normale qui se
déplace dans son onde en sens inverse de la propaga-
tion de celle-ci. En d’autres termes, nous admettons
que, lors de ’apparition au niveau observable d’un
couple particule-antiparticule, 'un des constituants du
couple est une particule normale dont 'onde se propage
avec un indice de réfraction

oy
(18) Iz_ﬁ_\/l YA



126 PRINCIPES GENERAUX.

tandis que l'autre constituant, 'antiparticule, serait
porté par une onde dont l'indice de réfraction n(v)
serait tel que, d’aprés la formule (4) de Rayleigh,
cette antiparticule se déplace en sens inverse de la
propagation de son onde. La particule normale, pour
laquelle le potentiel P serait nul, serait en quelque sorte
détachée du milieu subquantique (aux perturbations
d’origine subquantique prés), tandis que I’antiparticule,
bien que décelable au niveau microphysique obser-
vable, resterait plus intimement reliée au milieu sub-
quantique par un potentiel P.

Pour développer cette théorie, nous remarquerons
d’abord, comme on le fait dans toutes les théories
reposant sur des équations d’ondes relativistes, que la
relation

(W—Pp)*

— 2 2 A2
= = p*+mic

conduit a écrire
(19) W —P=ccyp*+mje,

ou le double signe qui figure au second membre consti-
tue une difficulté bien connue.

Or, 1l nous parait nécessaire d’admettre d’abord,
en accord avec la théorie des trous, que I’énergie propre
d’une particule est négative dans le milieu caché.
Pour cette raison, en admettant que le milieu caché
contient une infinité de particules de masse propre
m,= — m,, nous envisageons les deux solutions sui-
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vantes de I'équation (19) correspondant respective-
ment 4 une particule et a une antiparticule :

a. La solution normale P = o0 avec m,= m, et
¢ == V();

b. La solution anormale P =2 W qui correspond,
d’apres (5), aux relations

1
-
Jd(nv) dou ! A 1
n-—sm-—_——"-—1 ol - —=— "Z— - = — —
dv ! p av c? o
et 'on a alors
* .2 * .2 2
m,c m,c myc
Woe —2 P=— 0 e
% - p? / v"
0 0
Vi VARrERVASE:
» . >
Z WP mj v, my 0y
D —— Yy = — j— b
(20) (,'2 0 p'l (;'-"
0 0
I— s I— —
c c?
;__?*7 moyvy .

L’antiparticule apparait donc au niveau microphy-
sique observable comme ayant une masse propre

. . . > .
positive m,, une vitesse ¢, en sens inverse de la propa-
gation de I'onde et, d’aprés ce qui a été dit au para-
graphe précédent, une charge électrique égale et

opposée a celle de la particule. C’est bien 1a ce qu’il
fallait obtenir.
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4. Introduction de la Thermodynamique cachée des
particules. — Nous rappellerons quelques points de la
Thermodynamique cachée des particules qui a été étu-
diée au chapitre I'V. Si une particule de masse propre m,
est portée par un train d’ondes assimilable & une onde
plane monochromatique, l’entropie définie par la
Thermodynamique cachée est égale a — k. Mais, si
le thermostat caché fournit a la particule une quantité
d’énergie Q (sous forme de chaleur cachée) qui porte
son ¢énergie propre a la valeur M,c*= myc*+ Q,
M2
m?
constante de Boltzmann. Dans la théorie de la double
solution, Q apparait sous la forme d’un « potentiel
quantique » inconnu des théories anciennes. La varia-
tion de 'entropie est donc fournie par la formule

Ientropie devient S = — k ke étant toujours la

Q

my c?

(21) 0S =—#%

Ceci rappelé, admettons comme plus haut que dans
le milieu subquantique, les particules ont des énergies
au repos — myc’. Lorsque des particules du milieu
microphysique observable avec une énergie 2m,c?
en s’annihilant, une particule du milieu subquan-
tique pourra émerger au niveau microphysique
observable avec wune énergie au repos égale a
— myc*-+ 2myc’ = myc*. Mais, comme 'exige d’ail-
leurs la conservation de la charge, il devra aussi émerger
une antiparticule d’énergie au repos m,c’, ce qui
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oblige le milieu subquantique a fournir ’énergie 2 m,c¢*
a une particule jusqu’alors cachée avec D’énergie
— moc’. La conservation de ’énergie se trouve alors
correctement satisfarte, mais d’aprés la formule (21),
ce processus entraine une baisse de V'entropie égale
a 2 k. Cest la fourniture d’énergie par le milieu sub-
quantique a I'antiparticule qui se traduit par P'inter-
vention du potentiel P qui figure dans les équa-
tions (20). On comprend alors que 'antiparticule soit
instable parce que son apparition correspond a une
baisse ¢S = — 2k de 'entropie. Il en résulte que si
une particule et une antiparticule se rencontrent, elles
auront une tendance & s’annihiler en donnant nais-
sance a deux particules normales d’énergie propre totale
2myc* avec une augmentation d’entropie égale a 2k.

Précisons que le potentiel P défini dans le premier
paragraphe de ce chapitre n’est pas un potentiel
quantique parce qu’il ne fait pas intervenir le milieu
subquantique, mais qu’il résulte seulement de l'action
sur la propagation de l'onde du milieu traversé.
(Uest par exemple ce qui a lieu dans les cas suivants :
propagation de la lumiére dans un milieu dispersif,
propagation d’une onde électromagnétique hertzienne
d’hyperfréquence dans un tube a onde progressive le
long d’une ligne a retard (appareils a ondes directes
ou & ondes inverses, carcinotrons, etc.), propagation
de I'onde d’un électron dans un solide (théorie des
semi-conducteurs), ete.

Mais le potentiel P = Q envisagé dans les deux der-
niers paragraphes peut, lui, 8tre assimilé 4 un potentiel

M. DE BROGLIE. 9
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quantique parce qu’il traduit une interaction avec
le milieu subquantique. On doit donc pouvoir le
définir par la formule générale de définition du poten-
tiel quantique

(22) Q=M;c*— m,¢*
qui donne, puisque m,= — m, et que Q = 2m,c?,

My= m,. On a donc pour l’énergie et la quantité
de mouvement de ’antiparticule

M, ¢? myc?
W,=
o2 / o2
I — = I— =
[ohd [k
(23) N N
> M,¢ s, 7
= —-——‘_:Y, — 7 = =N
- %
c” c”

- .
La valeur obtenue pour p correspond bien & un mou-

. > >
vement de corpuscule avec la vitesse ¢ = — ¢, en
sens inverse de la propagation de 'onde, ce qui est
satisfaisant.

Il serait assurément prématuré de vouloir dés main-
tenant préciser la nature du milieu subquantique.
Cependant, en relation avec le probléme que nous
venons d’étudier, on pourrait essayer de se représenter
le milieu subquantique comme renfermant un nombre
énorme de particules a énergie négative entre les-
quelles existerait une énergie potentielle & si grande
que Dénergie totale du milieu subquantique
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W, = ,@.’—Emoic“’ soit positive. L’émission simul-
i

tanée d’une particule et d’une antiparticule augmen-
terait alors W, de 2m,c¢*, mais simultanément <
devrait diminuer de 6% = — 4m,c® de facon qu’il
y ait fourniture de D'énergie 2m,c* par le milieu
subquantique a Pantiparticule.

Sans insister davantage sur la théorie des antipar-
ticules, nous croyons pouvoir dire que l’ensemble
des 1dées exposées dans ce chapitre ouvre des perspec-
tives nouvelles qu’il serait intéressant d’approfondir
davantage (‘).

(1) Voir a ce sujet C. R. Acad. Sc. Paris, t. 271, série B, 1970,
p. 549.



CHAPITRE VII

AUTRES APPLICATIONS
DES IDEES
PRECEDEMMENT DEVELOPPEES

1. Sur la relation (ﬁ pds =nh de lancienne théorie

des quanta et la théorie de la double solution (*). — Consi-
dérons, par exemple dans un atome d’hydrogéne, un
état stationnaire dont la fonction d’onde a la forme

Liw r— oz, v 2]

(1) = l(l —a(r, y,s) et

Ce qui caractérise une onde stationnaire, c’est que son
amplitude ne dépend pas du temps et que sa phase
est linéaire en t.

La connaissance de la fonction 9, nous permet de
- b —_-}
tracer en chaque point de 'atome le vecteur grado, et,

par suite, si nous partons d’une position initiale P
supposée donnée de D'électron, nous pourrons en

(") Nous faisons ici abstraction des perturbations subquantiques.
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principe tracer de proche en proche toute la trajectoire
de guidage qui part de P.

Supposons maintenant que la trajectoire de guidage
en question soit fermée, c’est-a-dire que partie de P,
elle revienne en P. Comme la fonction d’onde doit
étre uniforme, donc avoir une valeur bien déterminée
en chaque point, on doit avoir

—
(2) ?‘;ﬁgradql.diz nom,

avec n entier positif ou négatif, ds étant un élément de
la trajectoire de guidage. Mais la théorie du guidage

nous dit que la quantité de mouvement en chaque
. . . > , . —
point de sa trajectoire p est égale & — gradz,. La

formule (2) peut donc s’écrire
(3) \¢/>).(/;: nh,

ce qui est la formule défimssant les trajectoires fermées
stables de 'ancienne théorie des quanta.

Mais il serait tout a fait faux d’en conclure que
Pancienne théorie des quanta de Bohr-Sommerfcld
est exacte. Ein effet, les mouvements ct les trajectoires
considérés dans cette ancienne théorie des quanta
étalent calculés a I'aide de la Mécanique corpusculaire
classique (newtonienne chez Bohr, relativiste einstei-
nienne chez Sommerfeld). Or, ici les mouvements et
les trajectoires doivent étre calculés a Paide de la
Mécanique ondulatoire et de la théorie du guidage.
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Diverses remarques permettent de préciser ce fait.
Par exemple, dans la théorie primitive de atome
d’hydrogéene de Bohr, les trajectoires circulaires sont
des grands cercles de la sphére centrés sur le noyau de
Patome tandis que dans la théorie de la double solution,
on obtient comme trajectoires de guidage des petits
cercles de cette sphére centrés sur un axe Oz avec

27 \ :
- P1= £ mo, ou « est I’azimut autour de I'axe de

symétrie Oz et la formule (3) est exacte pour ces trajec-
toires de guidage. On doit aussi noter que pour les
états complétement stationnaires, c’est-a-dire ceux
pour lesquels 7, se réduit a une constante, la trajectoire
de guidage se réduit a un point et que, dans ce cas,
la formule (3) reste exacte en prenant n = o, valeur de n
qui était exclue dans ’ancienne théorie des quanta ou n
devait étre un nombre entier supérieur a o. Pourquoi
pouvons-nous trouver ici des trajectoires réduites a
un point ? C’est parce que dans I’ancienne théorie des
quanta, ’électron dans P'atome d’hydrogéne était
seulement soumis a la force coulombienne dirigée
vers le noyau et que cette force ne pouvait étre équi-
librée que par la force centrifuge résultant du mouve-
ment de Pélectron, ce qui excluait que Pélectron pit
rester immobile. Mais il n’en est pas de méme dans la
théorie du guidage ou I’électron est soumis a ’action
du potentiel quantique et ol, comme je I’a1 montré
il y a longtemps ('), I’électron peut rester immobile

(") Voir [4], a, p. 119 et ss.
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quand la force quantique équilibre la force coulom-
bienne, ce qui a lieu précisément dans les états comple-
tement stationnaires.

Le grand mtérét de ce qui précede me parait &tre
de faire voir que la théorie du guidage permet de
retrouver, avec les modifications nécessaires indiquées
plus haut, des formules analogues a celles qui servaient
de bases a Vancienne théorie des quanta et de retrouver
aussi, convenablement transposé, le raisonnement
qui m’avait permis dans ma These d’interpréter ces
formules.

2. Sur une expérience récente de MM. Pfleegor et
Mandel [11]. — Une belle expérience récente de Pfleegor
et Mandel () a démontré que I'on peut déceler I'exis-
tence des franges d’interférences dues & la superposition
des ondes émises par deux lasers indépendants dans des
conditions telles qu’il n’y ait pratiquement jamais
deux photons arrivant & la fois dans Pappareil d'inter-
férences. L’interprétation de ce résultat avec les 1dées
actuellement admises en Physique quantique est
difficile comme on le voit en lisant les conclusions de
Particle de Pileegor et Mandel. Au contraire, elle nous
semble tres simple et trés claive avec nos idées sur la
coexistence des ondes et des particules.

En effet, quand on applique ces idées au cas parti-
culier des ondes électromagnétiques et des photons,
on est amené a considérer 'onde ¢ des photons comme

('Y Phys. Rev., vol. 159, n°® 5, 1967, p. 1084.
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une trés faible onde électromagnétique obéissant
trés sensiblement aux équations de Maxwell comme
nous I’avons expliqué dans notre livre Ondes électro-
magnétiques et Photons ([4], d). C’est cette circonstance
qui explique, pensons-nous, que la théorie électro-
magnétique de Maxwell suffise a interpréter un tres
grand nombre de phénomeénes bien qu’elle ignore
Pexistence, cependant certaine, des photons. En effet,
suivant la loi du guidage, la répartition des photons
dans Pespace et la phase de leur vibration interne se
trouvent &tre entiérement en accord avec les prévisions
de la théorie électromagnétique. Dans un champ d’in-
terférences, la probabilité de la présence d’un photon
en un point est donc proportionnelle au carré de
Pamphtude (intensité) de 'onde ¢ en ce point de sorte
que la répartition statistique dans la région d’inter-
férences d’un grand nombre de photons est bien celle
que prévoit la théorie électromagnétique classique.
En utilisant ces conceptions, nous allons maintenant
développer notre interprétation du résultat de I'expé-
rience de Pllecgor et Mandel. Pour nous, dans la
cavit¢ d’un laser, 1l s’établit par un processus quan-
tique d’émission stimulée une onde électromagné-
tique ¢ stationnaire sur laquelle des photons sont
émis par certains atomes. La cavité a une partie de
sa parot qui est un peu semi-transparente. L’onde ¢
intérieure filtre donc légérement a P’extérieur pendant
toute la durée de I’émission laser. S’il y a deux lasers
indépendants disposés de facon que les ondes ¢ qu’ils
émettent aillent se superposer dans un appareil d’inter-
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férences comme c’est le cas dans 'expérience étudiée,
les franges d’interférences existent dans Dappareil
méme quand aucun photon ne vient permettre de les
détecter. 11 est d’ailleurs physiquement tout a fait
évident que chaque photon arrivant dans la région
d’interférences provient de 'un des lasers, celui ot se
trouve 'atome qui ’a émis par une transition stimulée.

S1 les lasers émettent tres peu de photons a exté-
rieur, un photon sortira de temps en temps de P'un des
lasers et arrivera isolément dans la région d’inter-
férences. S’il y manifeste sa présence par une localisa-
tion observable, ce sera le plus souvent dans une région
de grande amplitude de la superposition des ondes v
émises par les deux lasers. kin cffet, dans la région d’in-
terférences, le mouvement des photons est guidé par
cette superposition et non pas par Ponde simple qui
le portait & la sortie du laser ou il est né.

51, au bout d’un temps sutlisamment long (a I’échelle
de la durée trés courte d’une impulsion laser), il arrive
dans la région d’interférences un nombre sullisant de
photons, provenant de 'un ou de Pautre laser, pour que
Pon puisse détecter les franges d’interférences, ces
photons se répartiront statistiquement dans cette
région d’interférences proportionnellement aux inten-
sités locales des ondes électromagnétiques ¢v. Bien que
les photons arrivent 1solément les uns apres les autres,
on pourra donc finalement observer les franges d’inter-
férences exactement pour la méme raison qu’on peut
les observer dans les expériences d’interférences ordi-
naires a trés faible intensité du type Taylor. L’'interpré-
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tation du résultat expérimental de Pfleegor et Mandel
nous parait ainsi obtenue d’une fagon qui nous semble
trés claire et trés satisfaisante.

Il parait important d’insister sur certains points de
cette interprétation. Un photon provenant de I'un ou
de Pautre laser et arrivé dans la région d’interférences
est guidé, cela nous parait physiquement certain, par
la superposition des ondes émises par les deux lasers
et c’est pour cette raison qu’il est impossible de savoir
dans lequel des deux lasers 1l a pris naissance. Mais
notre imterprétation de cette impossibilité ne fait inter-
venir ni les relations d’incertitude d’Heisenberg, ni
Pindiscernabilité des bosons qui, pour nous, n’est
qu’une apparence résultant des perturbations aléatoires
subies par les photons et n’implique pas une perte de
personnalité (').

Une des erreurs commises dans les interprétations
que 'on cherche actuellement a donner de ce genre de
phénomeénes nous parait de parler d’interférences
entre photons comme si les interférences étaient dues
aux photons. On sait, en effet, depuis Fresnel, que les
interférences sont un phénomeéne d’origine ondulatoire.
Les interférences d’une onde électromagnétique ¢
se produisent, selon nous, d’une fagon classique, mais
en raison de la trés faible intensité de 'onde ¢, elles ne
sont pas par elles-mémes observables. Néanmoins,
en raison du guidage du photon par la superposition
des ondes ¢ dans la région d’interférences, 'arrivée

(") Voir a ce sujet le chapitre VIIIL
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d’un photon en un point de cette région est d’autant
plus probable que l'amplitude de 'onde ¢ est plus
grande en ce point. C’est donc dans les régions de plus
grande intensité de I'onde que les photons auront le
plus de chance de produire des effets locaux observables
tels qu’effet photoélectrique, noircissement local d’une
plaque photographique, etc. En résumé, ce ne sont pas
les photons, mais les ondes électromagnétiques ¢ qui
produisent les interférences; le réle des photons, qui
est essentiel, est seulement de permettre de détecter
les interférences par la maniére dont ils se répartissent
statistiquement dans la région ol ces interférences se
produisent.

3. Sur linterprétation des relations d’incertitude. —
Nous allons étudier le sens que prennent les relations
d’incertitude dans notre réinterprétation de la Méca-
nique ondulatoire qui admet la réalité physique de
Ionde et la localisation permanente de la particule
dans son onde.

Considérons d’abord une seule particule et son équa-
tion d’ondes. S1 'on admet que 'onde est une réalité
physique, les variables x, y, z, ¢ qui {igurent dans son
équation de propagation sont les variables d’espace et
de temps qui n’ont aucun caractére aléatoire. Mais, si
lon admet aussi que la particule est constamment
Jocalisée dans son onde comme le suppose la théorie
de la double solution, la particule a a chaque instant
des coordonnées X, Y et Z et ces coordonnées ont au
cours du temps un caractére aléatoire car clles résultent
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a chaque instant de la superposition d’un mouvement
réguliecr de guidage et de perturbations aléatoires
provenant d’un milieu subquantique. Nous pouvons
écrire la premieére relation d’incertitude sous la forme

" [0XTe. [0pn) e b,

les deux autres ayant des formes analogues. Dans (4),
[5 X]: est 'incertitude sur la valeur de la coordonnée X
de la particule a 'instant initial avant toute mesure et
[p.]; est Pincertitude sur la valeur de la composante x
de la quantité de mouvement dans I’état final quand
on a effectué une mesure de p, sans en connaitre encore
le résultat. Et naturellement, si ¢z désigne la longueur
du train d’ondes initial dans le sens des z, on a dans
cet état initial

(5) 0X=dux,

mais, dans cette formule, X et Sx ont des significations
tout a fait différentes puisque oz est une longueur au
sens usuel du mot tandis que X est une incertitude
sur la position de la particule.

Passons maintenant a la quatriéme relation d’incer-
titude. Par analogie avec (4), nos conceptions nous
ameénent a écrire

(6) (6T} [35] 22 A,

ol [8T]; est P'incertitude sur I'époque ol la particule
dans son mouvement aléatoire occuperait une position
donnée dans le train d’ondes initial et ou [2E], est
I'incertitude sur la valeur de I'énergie de la particule
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aprés une mesure de cette énergie dont on ne connait
pas encore le résultat. On aura dans 'état initial la

5

relation analogue a (5)
() oT =dq¢,

mais ici encore ¢ T et o¢ ont des significations tout a fait
différentes, car ¢t est un intervalle de temps au sens
ordinaire du mot tandis que cT est Uincertitude sur
I’époque ou la particule est présente en un point donné
de Despace.

Comme ¢t est le temps que met le train d’ondes &
passer en un point donné de 'espace, nous avons ainsi
obtenu des interprétations précises et symétriques de
quatre relations d’incertitude et nous avons donné
a la quatriéme relation d’incertitude un sens tout a fait
analogue a celui de la relation classique en Optique
¢v.s~1, ol ov est la largeur spectrale d’un train
d’ondes et < la durée de son passage en un point de
Iespace.

Il parait intéressant de souligner que, dans les rela-
tions d’incertitude écrites sous les formes (4) et (6),
les grandeurs portant 'indice f, qui sont des incertitudes
sur le résultat encore inconnu d’une mesure qui a été
effectuée, peuvent étre regardécs comme des incer-
titudes prévues par le théoricien dans Pétat initial
avant toute mesure. Mais ce second point de vue, qui est
conforme aux conceptions usuellement adoptées, ne
doit pas conduire a rejeter I'idée que, dans V’état initial,
les grandeurs non encore mesurées ont a chaque
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instant une valeur bien déterminée, valeur qui peut
n’avoir aucun rapport simple avec celle que va leur
imposer le processus de mesure si on leffectue.
Jusqu’ici nous avons envisagé le cas d’une seule
particule. Pour un ensemble de particules, on introduit,
depuis les travaux de Schrodinger en 1926, la propa-
gation d’une onde associée au systeme dans son espace
de configuration. Cette onde, évidemment fictive, obéit
dans Pespace de configuration a une équation de propa-
gation ou figurent les coordonnées Xi, Y, Z; des
particules du systéeme et le temps ¢. Ici donc on substi-
tue dans ’équation de propagation aux variables z, y, z
a caractére non aléatoire les coordonnées des particules
du systéme qui, elles, ont un caractére aléatoire. On est
ainsi amené par une pente naturelle, mais a tort nous
semble-t-11, & considérer les coordonnées =z, y, z de
Péquation d’ondes d’une particule comme des grandeurs
aléatoires et je crois que le succés de la méthode de
Iespace de configuration a ainsi beaucoup contribué a
fausser l'interprétation de la Mécanique ondulatoire.
D’ailleurs, comme Aharonov et Bohm 'ont montré ('),
le temps ¢ qui figure dans 'équation de propagation
dans P'espace de configuration est toujours la variable
ordinaire de temps et n’a pas de caractére aléatoire, ce
quiintroduit une curieuse dissymétrie entre les variables
d’espace et de temps dans P'espace de configuration.
Nous pensons que cette dissymétrie provient de la
nature a la fois appauvrie et statistique de la repré-

(') Phys. Rev., vol. 122, 1961, p. 1649.
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sentation, que nous donne la méthode de 'espace de
configuration, de la propagation réclle des ondes dans
Pespace physique. Sans insister sur cette question qui
sera étudiée dans le dernier chapitre du présent volume,
nous allons donner une forme précise et symétrique
des relations d’incertitude de ’espace de configuration.

Numérotant les particules a l'aide d’un indice k,
nous écrirons les trois premiéres relations d’incer-
titude pour le k™ particule dans D'espace de confli-
guration sous la forme

(8) [6XkJi'[6P-7'/. ]/\:\ /‘,

les [6X,]; et les [8p,,], étant définies comme les [ X];
et les [Cp,), dans (4).

Pour la quatriéme relation d’incertitude, nous écri-
rons par analogie avec (6)

(9) [0T):. {00 = A,
avec, dans I'état initial,
(10) oT = ar,

ot 8T est I'incertitude sur ’époque ou le point liguratif
du systéme se trouve en un point donné de 'espace de
configuration tandis que 5t est la durée du passage
de T'onde fictive en ce point. Ainsi I'interprétation
précise et symétrique des relations d’incertitude que
nous avions obtenue dans 'espace ordinaire s¢ trouve
étendue au cas de U'espace de configuration pour un
ensemble de particules.
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Bohr a donné de la relation cE.St>> h pour une
particule une interprétation tout & fait différente de
la nétre. Pour lui, si I'on effectue une mesure de
Uénergic Ii d’une particule qui dure un temps 6t
cette mesure ne pourrait faire connaitre la valeur de E

. . ; h
qu’avee une incertitude SEéa—t- Avec Aharonov et

Bohm, je pense que cctte interprétation qui brise la
symétrie entre les quatre relations d’incertitude est
inexacte. Si Bohr 'a adoptée, c’est parce qu’il admet-
tait que dans la relation cE.ct>x h, ¢ est le temps au
sens usuel du mot, variable non aléatoire, tandis qu’il
reconnaissait le caractére aléatoire des grandeurs S,
sy, 6z quon fait habituellement figurer dans les trois
premieres relations d’incertitude. L’erreur commise
nous parait provenir de la confusion entre les variables
d’espace et de temps 2, y, 3, { non aléatoires et les
grandeurs aléatoires X, Y, Z, T définies plus haut. Mais
seule, nous semble-t-1l, une théorie qui admet la loca-
lisation de la particule dans son onde peut permettre
de bien distinguer les deux sortes de grandeur et, en
rétablissant la symétrie en toutes les relations d’incer-
titude, d’cn bien comprendre la véritable signification.

4, Sur le paradoxe de Gibbs. — 1l existe en Thermo-
dynamique classique une difliculté bien connue sous
le nom de « paradoxe de Gibbs ». Rappelons-la sous
une forme simple en considérant une enceinte de
volume 2V divisée en deux compartiments égaux par
une cloison C. Dans 'un des compartiments se trouve

M. DE BROGLIE. 10
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un gaz A formé de N molécules et dans I’autre un gaz B
comprenant également N molécules, I’ensemble étant
maintenu & une température uniforme T. Chacun des
gaz occupant un volume V, la thermodynamique clas-
sique nous apprend que son entropie est de la forme
S=k NlogV - ..., les termes non écrits ne dépen-
dant pas du volume. Si’on retire la cloison C, entropie
de chacun des deux gaz va croitre de kNlogV a
kNlog2V, soit de kNlog2. L’entropic totale du
systéme croitra donc de 2kNlog2. Cette augmenta-
tion de 'entropie est toute naturelle puisque la diffusion
des deux gaz 'un dans Pautre est un phénomeéne irré-
versible provoquant une augmentation de I'entropie.
Le paradoxe apparait quand on supposc que les deux
gaz A et B sont identiques car alors, quand on enléve
la cloison C, 1l n’y a aucun phénomene de diffusion
augmentant 'entropie. St 'on suppose que les para-
métres caractérisant la nature d’un gaz peuvent varier
d’une fagon continue, 1l y aurait une augmentation
de Ventropie égale a 2kNlog2 s1 les deux gaz sont
infiniment peu différents et une variation nulle s’ls
sont identiques. Bien que la nature d’un gaz ne puisse
pas varier d’une facon continue, cette variation brusque
ne semble pas naturelle : ¢’est le paradoxe de Gibbs.
Un paradoxe analogue existe dans la symétrisation
des fonctions d’ondes des bosons. Soient deux bosons
se déplacant dans l'espace de facon que leurs ondes
se superposent dans une méme région. Alors, si les
bosons sont de nature différente, il n’y a pas lieu de
symétriser la fonction d’ondes dans 'espace de confi-
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guration du systeme qu’ils forment. Mais, si les bosons
sont de méme nature, il faut symétriser. Ainsi, si I'on
suppose que les parameétres (par exemple, les masses)
caractérisant les particules varient d’une fagon continue,
il n’y a pas lieu de symétriser pour deux particules
différant infiniment peu tandis qu’il faut symétriser
pour deux particules de méme nature. Il s’introduit
la une discontinuité assez paradoxale tout a fait ana-
logue & celle qui fut jadis signalée par Gibbs.

La parenté des deux problémes est encore mieux
montrée par le fait que, st Pon admet les statistiques
quantiques liées a l'indiscernabilité des particules, le
paradoxe de Gibbs disparait. On sait, en effet, que,
quand on introduit pour un ensemble de N bosons
de méme nature les statistiques quantiques, on est
amené a diviser par N! le nombre des complexions
admuises par la statistique classique. Or, en introduisant
cette division par N! dans le calcul de la partie de
Pentropie d’un gaz de N molécules qui dépend du

volume V, on trouve

(11) S:A‘log;‘,—?, avec NI NNe—S,

S1 alors 5, désigne I’entropie totale de deux gaz de N
molécules remplissant des volumes V séparés et si S,
désigne I'entropie de deux gaz de nature différente
ayant chacun N molécules et occupant ensemble un

méme volume 2V, on trouve

2 V¥ vy
N!) ﬁgA-]ogm:ﬂ;Nlogz,

résultat conforme a la Thermodynamique classique.

(12) SZ—S,:fz/{log(
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Mais pour un seul gaz de 2 N molécules remplissant
le volume 2 V, la formule (11) donne

(2 V)X

(£3) S.= Ak log SN

et la différence 5,-S, est égale a

. (2\/)21\1 . AR N

(14) k log—m—— —aklog Ni =0

Le paradoxe de Gibbs a donc en apparence disparu,
mais c’est seulement parce que nous avons reporté
la discontinuité génante sur l'introduction brusque
i
N!
la difficulté n’est pas réellement éliminée.

du facteur  1ié a 'indiscernabilité des particules. Ainsi

Nous voulons maintenant examiner cette difficulté
en nous placant au point de vue de la théorie de la
double solution.

Je ne développerai pas ic1 la maniére dont la théorie
de la double solution interpréte la symétrisation de la
fonction d’ondes des bosons de méme nature dans Ies-
pace de configuration. Je dirai seulement que le point
essentiel de cette interprétation est le suivant. Si deux
particules de méme nature suivent dans l'espace phy-
sique sur leurs ondes ¢ respectives des trajectoires de
guidage corrélées, une perturbation provenant du
milieu subquantique peut avoir pour effet de leur faire
échanger leurs positions dans Pespace de telle sorte
qu’ensuite chacune des particules suive la trajectoire
qui était celle de P'autre avant la perturbation. Cette
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conception qui respecte 'individualité des particules,
tout en expliquant leur équivalence statistique, per-
met d’ailleurs d’expliquer immédiatement 'apparition

du facteur N:'Y dans les évaluations de la statistique de

Bose-Einstein pour les bosons.

Sans Insister ici sur cette interprétation des statis-
tiques qui sera développée dans le dernier chapitre
de ce volume, je rappellerai que le mouvement d’une
particule est défini dans notre théorie par le principe
fondamental que la vibration interne de la particule
doit rester constamment en phase avec celle de 'onde
a P’endroit out elle se trouve. Pour deux particules de
méme nature ayant la méme masse propre, les ondes ¢
des deux particules obéissent a la méme équation
d’ondes et toute trajectoire de guidage de 'une des
particules peut aussi étre une trajectoire de guidage de
Pautre particule. C’est 1a ce qui rend possible la permu-
tation des particules et ce qui justifie I'introduction
de la statistique de Bose-Einstein pour les bosons.

Mais supposons maintenant que les particules aient
des masses propres différentes. Alors aucune des deux
particules ne pourra suivre une trajectoire de guidage
de lautre particule parce que ’accord de sa phase
interne avec la phase de I'onde ¢ de ’autre particule
ne peut pas se maintenir.

La question mérite cependant d’étre examinée de
plus pres. Pour cela, considérons ce qui se passerait
si une particule de masse m, suivait une des lignes de
guidage d’une onde ¢ correspondant & une masse propre
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différente m, -~ 5m,. La variation pendant un temps dt
de la phase ¢ de cette onde en un point qui se déplace
sur la trajectoire de guidage avec la vitesse ¢ = ¢ est

(15) do = (me—+ omg) ¢ 1 — B de,

alors que la variation de la phase interne p; de la
particule de masse propre m, animée le long de cctte
ligne de guidage de la vitesse ¢ = f¢ est

(16) do;= m, /1T — B dt.

Nous voyons qu’alors

(17) 00 — Ourzz Omye? L — 32 dt =l dv, 1 — B2 dt,

ou v, est la {réquence propre interne de la particule
de masse propre m,. Donc si Sm,5%o0, c’est-a-dire
s1 la masse propre figurant dans I’équation de propa-
gation de l'onde est différente de la masse propre de
la particule, Paccord de phase entre la particule et
Ponde ne peut pas se maintenir et le guidage de la
particule par onde ne peut pas avoir heu.

Cependant nous voyons que I’accord de phase entre
la particule et I'onde peut se maintenir approzvima-
tivement pendant un temps < défini par

YT

(18) A (6w —ou)=oaTm dv,\i— 5

2

TTIZ AT,

¢ étant tres petit. Comme Pemploi de 'espace de confi-

guration est non relativiste, nous pouvons négliger 3*
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devant l'unité et écrire (18) sous la forme

(18 bis) T’“ETUﬂa

-
omy

. I It .. .
ot Ty=—= ; est la période interne de la par-
Vo nmyc?

ticule. Tant que - om n’est pas beaucoup plus petit

7
que g, aucun accord durable de phase ne pourra s’établir
entre 'onde et la particule. Mais, si par la pensée nous
faisons tendre <m, vers zéro, le temps T de quasi-
cohérence deviendra d’autant plus long que sm, sera
plus petit.

On arrive ainsi & concevolr comment peut s’établir
d’une fagon continue la symétrisation pour les molécules
de deux gaz dont les molécules ont des masses diffé-
rentes quand la différence de ces masses tend vers zéro.
Ains1 disparait la discontinuité paradoxale que l'on
rencontrait 4 la fois dans le paradoxe de Gibbs et
dans D’établissement des statistiques quantiques pour
les bosons. La théorie de la double solution, en intro-
duisant I'idée de l'accord de phase entre la particule
et son onde dans le mouvement de guidage, parvient
ainst a lever une difficulté qui était restée insoluble.

D. Spin et moment de quantité de mouvement. — Dans
Pétude des systemes atomiques contenant des électrons,
on est amené a considérer le spin comme une grandeur
ayant la méme nature physique qu’un moment de
quantilté de mouvement parce que c’est la somme
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de ces deux grandeurs qui obéit & un théoréme de
conservation.

Cependant, cette conclusion se heurte 4 une difficulté
car le spin défini par la théorie de Dirac n’a pas les
mémes propriétés de variance relativiste qu'un moment
de quantité de mouvement. Les composantes S,, S,,

S. d’un moment de quantité de mouvement S se trans-
forment, en effet, comme les composantes d’espace M, .,
M.., M, d’un tenseur antisymétrique du second ordre.
Au contraire, le vecteur spin 5 défini par la théorie
de Dirac est formé par les trois composantes d’espace
d’'un quadrivecteur d’espace-temps dont la compo-
sante de temps est nulle dans le systeme propre de la

particule. Cette différence de variance relativiste entre
- 3

les vecteurs S et o ne parait pas permettre de les
considérer comme des grandeurs de méme nature
physique. L’examen de cette difliculté va nous conduire
a une conclusion qui est trés intéressante.

Pour aborder ’étude de cette question, rappelons
d’abord comment on peut relier dans le cas des compo-
santes de la quantité de mouvement la valeur moyenne
fournie par la Mécanique quantique avec les concep-
tions de la théorie de la double solution. lin Méca-
nique quantique, on fait correspondre aux compo-
santes p., p,, p- de la quantité de mouvement les

ipat i d i d i J L l ) nne
operateurs 7 ()'17’ H ().),7 7 0e a valeur moyenn

de p. est définie en Mécanique quantique par la formule

(19) IS [ W (o)W d.



AUTRES APPLICATIONS. 153
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Posons W ==qae"", avec a et ¢ réels, il vient

. - )9 { da
bi: = — [ r2 (_. [r — .
(109 bis) P . @ d a{fd

Comme a est toujours nul aux limites de P'onde, le
second terme de I'expression de p, est nul et il reste

(20) D= ——f o? 3? d

On trouve des formules pour p, et p., d’ou

(21) /»—:—frc omdod"

Or, en théorie de la double solution, la probabilité de la
présence de la particule dans ’élément de volume d~ est
donnée par 2 d= = a*d~ =W |"d= et 'on doit poser

- N - N
(22) = — [['; o olt :—j a* grad o ds.

On voit ainst que la valeur (21) prévue par la Méca-
nique quantique et la valeur (22) donnée par la théorie
de la double solution sont égales. Mais, tandis que la
Mécanique quantique répartit la quantité de mouve-
ment dans toute ’onde, la théorie de la double solution
la considére comme attachée a la particule dont la
probabilité de présence en un point est |W[*= a’.

Passons maintenant au cas du moment de quantité

.
de mouvement 5. S5i nous considérons un systéme
contenant une particule en mouvement autour d’un
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point central (comme c’est le cas pour atome de
Bohr dans la théorie primitive), le moment de quantité
de mouvement a pour composantes

(23) Sy=yp:— spy, Sy==sp,.— rps, S:=xpy-—yp..

La Mécanique quantique utilise ces expressions en y
remplacant p., p,, p- par les opérateurs définis plus
haut. Elle pose donc

= J A
IA — i *l - i
(24) R Ix <V 9: ..())) V.

i
Remplagons encore W par ae'® avec a et ¢ réels.
Nous obtenons, en tenant compte du fait que a s’annule
aux limites de l'onde,

" = _doy
(20) '—mf ( (—‘;_‘ua:;>(l..
_

La théorie de la double solution, posant p = —gradg,
éerit

. o (09 99
(26) Sz—f(}’]’:‘~[))) a d'__fd < ()' ())’>d

Des formules analogues sont obtenues pour S, et S..
Nous voyons de nouveau ici que les valeurs moyennes
sont les mémes en Mécanique quantique et en théorie
de la double solution, mais dans cette théorie le moment
de quantité de mouvement, au lieu d’&tre réparti
dans toute l'onde, est attaché a la particule dont la
position dans 'onde est aléatoire.
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Nous sommes maintenant en mesure d’étudier le
cas du spin. Avec les conceptions de la théorie de la
double solution, le spin de I’électron ne doit pas &tre
regardé comme attaché & un systéme physique ou
une particule est en mouvement; nous devons le consi-
dérer comme une grandeur interne attachée a une
particule dont nous ignorons la structure, mais que
nous pouvons en premiére approximation considérer
comme ponctuelle. Nous devons donc nous contenter
d’attacher a I’¢lectron toujours localisé dans onde

un vecteur X dont la valeur moyenne devra nous

donner un vecteur ayant les propriétés de variance
d’un moment de quantité de mouvement. Nous allons

voir que ce vecteur n’est pas le vecteur o de la théorie

de Dirac.

Dans mon livre intitulé T'héorie générale des particules
@ spin publié par Gauthier-Villars en 1942 et réédité
en 1954 ('), jyar développé des caleuls concernant la

>

relation du moment de quantité de mouvement S et
du vecteur spin & de la théorie de Dirac. J'ai d’abord
démontré que, s1 I'on considére le mouvement d’une
particule dans un systéme matériel, le moment de

>
quantité de mouvement S se transforme suivant les
formules

27 S.=S8uy1— .‘62, Sy=Sy 1t — 327 S:=Se;
(27 y ¥ »y

I

(') p. 50-53.
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quand on passe du systéme de référence ol le systéme
est au repos au systeme de référence out 1l est en mou-

: . . ) , .
vement suivant Oz avec la vitesse 3 ¢. J'al montré aussi

. > .
que le vecteur spin ¢ de Dirac se transforme lors d’un
changement de systéme de référence analogue par les
formules

Goz
8  mma, o=a. o=

de sorte, qu'en vertu de la contraction de Lorentz
(d= = d=,y1 — 3%), ce sont les intégrales f% d'.,fcr, d=,

g.dv qui se transforment comme S,, S,, S..

> . o,
Le vecteur 5 de Dirac n’est done qu’une « densité de
spin » et, avec les conceptions de notre théorie, nous

3

deveons chercher a attacher a 1’électron un vecteur

e T g > Z,
spin X différent de 5 tel que, S étant la valeur moyenne
de la quantité de mouvement interne de I’électron,

> -
(29) S:f)]pa’f.

&
avec p=2/_|1F/;}2. Ceci est bien facile a faire car,
=

>

puisque nous avons S :fg d=, 1l suffit de poser

b4y
t
ay

'
I

(30)
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& e e o - >
C’est le vecteur X ainsi défini, et non le vecteur s de
Dirae, que nous devons en théorie de la double solution
considérer comme le spin attaché a I’électron pendant

son mouvement aléatoire dans 1’onde.

Po

Vi—p
et d==d=,J1— 3%, dot s d= = pndm,>, la formule (29)

D’ailleurs comme ¢ d~ est un invariant <car o=

> >
nous montre que les vecteurs S et ¥ ont la méme

>

variance. (’est donc bien le vecteur X, et non le
> . . .

vecteur ¢ de Dirac, qui a la nature physique d’un

moment de quantité de mouvement.

De plus, 1l parait certain que les grandeurs attachées
a une particule doivent pouvoir se définir & 'aide de
la seule onde physique ¢ et, par suite, étre indépen-
dantes de la normalisation de 1'onde statistique W.
C’est bien le cas pour la quantité de mouvement

_> 7> * A A
p =—grad ¢ puisque la phase ¢ est la méme, & une

constante additive pres, pour les ondes ¢ et 9, la
normalisation ne portant que sur 'amplitude a. Or, le

vecteur 5 de la théorie de Dirac dépend des compo-
santes W; de 'onde statistique ¥ de Dirac et donc de

la normalisation par la formule fZ/‘I‘F/.-]? T = 1.
1

>
Au contraire, le vecteur ¥ =

S5
G

- est une fonction homo-

géne des amplitudes @, qui ne dépend pas de la valeur
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absolue de ces a; : elle est donc indépendante de la

normalisation. C’est une raison de plus pour admettre
>

que c’est le vecteur X qui est le spin attaché a I’élec-

tron.

Remarquons enfin que les expressions yp.— zp,, ...
des composantes du moment de quantité de mouve-
ment se justifient tout naturellement dans une théorie
ou 'on considére la particule comme constamment
localisée, comme c’est le cas en Mécanique ancienne,
classique ou relativiste, et en théorie de la double
solution. Mais partir de ces expressions pour construire
les opérateurs y(p:)s,— 2(Pa)upy - - - dans une théorie ou
la particule n’est pas considérée comme localisée est
tout a fait poradoxal. En le faisant, la Mécanique
quantique usuelle construit ces opérateurs en partant
de formules qu’elle considére comme ne pouvant avoir
aucun sens physique. Si elle parvient cependant a
en tirer des conclusions exactes, c’est parce qu’elle
ne constitue qu’'une théorie 4 caractére statistique qui
ne donne pas une véritable représentation de la réalité
physique. Mais le fait qu’elle est obligée de partir de
formules qui 1mpliquent la localisation des particules
me semble prouver que derriére son formalisme statis-
tique est dissimulée une localisation cachée des parti-
cules. Une véritable description de la réalité physique
doit pouvoir se faire en utilisant uniquement des
fonctions définies en chaque point de l'espace au
cours du temps sans jamats étre obligé d’introduire des
opérateurs.
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6. Sur limpossibilité de mesurer simultanément les
composantes d'un moment de rotation et d’un spin. — Nous
savons que, pour mesurer les composantes de la quan-

tité de mouvement p d’une particule, il faut amener
cette particule sur un train d’ondes assimilable & une
onde plane monochromatique de longueur d’onde 7.

Comme 'on sait que le vecteur p a alors pour longueur
h . e, .

p = ; et qu'il est dirigé dans le sens de la propagation

de londe, on connait la longueur et la direction du

vecteur p. On connait ses trois composantes p., py, p-
sur trois axes de coordonnées rectangulaires préala-
blement choisis. On voit ainsi que ces trois compo-
santes sont simultanément mesurables, ce qui est en
accord avec le fait que les opérateurs (po)ey (Pr)ops
(p:)o, de la Mécanique quantique commutent.

Mais quand il s’agit d’un moment de quantité de
mouvement (moment de rotation) ou d’un spin, on se
trouve en présence d’une difficulté. Pour le voir, nous
remarquerons d’abord que ces grandeurs sont définies
par rapport & un point choist comme origine des
coordonnées. Dans le cas d’un moment de rotation
dans I'atome de Bohr, ce point est naturellement le
centre de I’atome. Dans le cas du spin considéré comme
un moment de rotation interne d’une particule, le
point en question est un point central de cette particule.
De plus, dans un cas comme dans 'autre, le vecteur
considéré est quantifié car 1l est égal & mh, avec m
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entier ('), dans le cas du mouvement d’un électron
- , R
dans ’atome ou dans le cas d’un spin & un électron a - -

Voici maintenant la difficulté qui se présente alors.
S1 nous parvenons dans le cas d’un atome ou d’un
électron a orienter le moment de rotation ou le spin
dans une certaine direction a 'aide d’un appareil de
Stern-Gerlach, nous connaitrons sa grandeur et sa
direction. Il semblerait done, par analogic avec le cas

du vecteur ;, que nous connaissions alors les trois
composantes du moment de rotation ou du spin. Mais,
et 1a est la difficulté, cela est en contradiction avec le
fait que les opérateurs de la Mécanique quantique qui
correspondent aux trois composantes d’'un moment de
rotation ou d’un spin ne commutent pas.

Pour lever cette difliculté, 1l est important de préciser
la différence de nature qui existe entre une grandeur
comme la quantité de mouvement et une grandeur
comme un moment de rotation ou un spin. La quantité
de mouvement est représentée par un vecteur « polaire »
qui ne change pas de sens quand on passc d’un systéme
d’axes & droite a un systéme d’axes a gauche. Les
composantes d’un tel vecteur ont un sens physique bien
net. En particulier, la théorie de I'effet Compton qui
utilise la conservation de la quantité de mouvement
dans le choc photon-électron permet de vérifier expé-

(1) Nous excluons le cas particulier ot m = o, car alors il n’y a
pas de moment de rotation.
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rimentalement 'existence des composantes de la
quantité de mouvement d’un photon.

Au contraire, un moment de rotation ou un spin
est représenté par un vecteur « axial » qui est une sorte
de faux vecteur car il change de sens quand on passe
d’un systéme d’axes a droite a un systéme d’axes a
gauche. Ce faux vecteur n’est en réalité qu’une repré-
sentation conventionnelle d’'un mouvement circulaire
quantifié s’opérant dans un plan perpendiculaire &
sa direction et c’est ce mouvement qui est la véritable
représentation de la réalité physique. C’est ce que repré-
sente la figure suivante.

2

Fig. 6.

Evidemment, si ’on prend trois axes de coordonnées
> P
rectangulaires d’origine O et de directions quelconques,

>

Pon peut projeter le vecteur M sur ces axes, mais les
composantes du vecteur ainsi obtenues n’ont pas de
sens physique. En effet, elles ne sont pas quantifiées

—
puisqu’elles sont égales a la longueur du vecteur M
multipliée par des cosinus définis arbitrairement par
Porientation des axes choisis. On pourrait méme dire

—
que les composantes du vecteur M n’existent pas.

M. DE BROGLIE. 11
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Pour préciser maintenant pourquot il est impossible
p
de connaitre simultanément les trois composantes
d’un moment de rotation ou d’un spin, rappelons qu’en
>
Physique quantique la connaissance d’une grandeur
doit toujours résulter d’'une mesure. Considérons donc,
par exemple dans le cas ou il s’agit d’un spin, la mesure
d’une composante a I’aide d’un électroaimant du type
Stern-Gerlach. Nous supposerons qu’a laide d’un

premier Stern-Gerlach, on ait orienté le spin dans une

. . . .. 7i
direction Oz et que I’on ait ainsi obtenu la valeuro. = f

Puis, supposons qu’a I'aide d’un second Stern-Gerlach,
on oriente le spin de I’électron ainsi préparé dans la
direction Oz normale & Oz et que l'on ait ainsi finale-

7i , , . .
ment o, = - Le résultat des deux opérations successives

est représenté par le schéma suivant

®
O'z:-z—'

9
o

Fig. 7.

Comme je l’al remarqué précédemment a propos de
la mesure du spin (chap. V, 2.b), pour passer de la
premiére situation a la seconde, il faut que le deuxiéme
Stern-Gerlach fournisse & ’électron le moment de rota-
tion nécessaire pour faire basculer de go° le plan du
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mouvement circulaire correspondant au spin. Il est
donc absolument évident que le spin final o, n’est pas
la composante 2 du spin . initial. On ne peut donc pas
dire que 'on a obtenu les composantes g, et ¢, d’'un
méme vecteur. Je pense que c’est pour cette raison
que 'on doit considérer comme impossible la mesure
simultanée de deux composantes d’un spin ou d’un
moment de rotation. Cette différence essentielle avec
le cas d’un vrai vecteur comme la quantité de mouve-
ment apparait ainsi comme liée a la fois a la différence
de nature vecteur polaire et vecteur axial et au carac-
tére quantifié d’'un moment de rotation et du spin.



CHAPITRE VIII

L’INTERPRETATION
DE LA MECANIQUE ONDULATOIRE
DANS L’ESPACE
DE CONFIGURATION

1. La Mécanique ondulatoire dans l'espace de configu-
ration pour des particules de nature différente. — Nous
commencerons par rappeler l'interprétation que nous
avons donnée, M. Andrade e Silva et moi, de la
Mécanique ondulatoire dans l'espace de configuration
par des particules de nature différente. Nous renvoyons
a la These de Doctorat de M. Andrade e Silva [12]
pour une étude plus approfondie de cette question.
Naturellement nous supposerons toujours dans ce qui
suit que les particules ont des vitesses petites par
rapport & ¢ parce que la Mécanique ondulatoire dans
Iespace de configuration n’est pas relativiste.

Considérons d’abord une seule particule dans I’espace
physique. L’équation de son onde ¢ s’exprime & Paide
des variables usuelles d’espace et de temps a caractére
non aléatoire. La position de la particule dans son onde
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est donnée par des coordonnées X, Y, Z qui, elles, sont
aléatoires en raison des perturbations subquantiques.
L’ensemble des trajectoires de guidage de la particule
dans son onde forme un ensemble statistique parce que
les perturbations d’origine subquantique répartissent
aléatoirement les positions successives des particules sur
les trajectoires de guidage. Cependant, si une grandeur
attachée & la particule a une valeur indépendante de la
position dela particule dans son onde, on peut attribuer
une valeur bien définie a cette grandeur malgré le carac-
tére statistique de cette représentation. C’est ce qui
permet d’attribuer une énergie et une quantité de
mouvement bien définies & une particule portée par un
train d’ondes assimilable & une onde plane monochro-
matique et c’est ce qui permet aussi d’attribuer une
énergie bien définie a un électron porté par une onde
stationnaire monochromatique dans I'un des états
quantifiés d’un atome.

Considérons maintenant le cas d’un ensemble de
particules de nature différente sans interaction clas-
sique et bornons-nous au cas de deux particules, la
généralisation au cas de N particules devant étre
facile. Chacune des particules a dans ’espace physique
son onde ¢ et, d’aprés nos conceptions, elle suivrait
une trajectoire bien définie par la lo1 du guidage si
Pon pouvait faire abstraction des perturbations d’ori-
gine subquantique. Remarquons que la différence de
nature des deux particules nous permet de les numéroter
et de les attacher 4 'une des deux ondes ¢ d’une facon
permanente et définitive. Soit alors O, l'onde de la
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particule 1 qui suit dans cette onde une trajectoire de
guidage T,. Soient, de méme O, et T, Ponde et la
trajectoire de guidage de la particule 2. Remarquons
que les ondes O, et O. ne peuvent pas interférer quand
elles occupent une méme région de I'espace parce que
leurs équations d’ondes ne sont pas les mémes.

Si 4 un instant donné, les deux particules occupent
sur T, et T, les positions M, et M., un point M de
Pespace de configuration correspond univoquement
aux points M, et M, de I'espace physique. L’onde ¢,

:
qui porte la particule 1 peut s’écrire a, ¢ et 'onde v,
i

qui porte la particule 2 peut s’écrire as ek, ol ay, a,
o;, 9. sont réels. L’onde de I’espace de configuration
n’est pas une onde physique réelle du type ¢, c’est
une onde statistique fictive du type W. Nous représen-
terons I’ensemble des coordonnées ., y., z, par r et
Pensemble des coordonnées =z, y., z:» par r> Nous
définirons alors la valeur de W au point Z,Z de
Pespace de configuration a Dinstant ¢ en posant
11‘"(;1, r., t) =y, (Z, t)v(;, t) a un facteur de norma-
lisation prés, ce qui nous donne :

‘ /,,/’,,I)__.a,(/hl) cb(z,,t)

(1) ,
( ({)(;17 [T />:<;3|("1, 1) = 0, <"2» t)-

S1 maintenant pour tous les points simultanés M, et M,
des trajectoires de guidage des ondes O, et O,, nous
prélevons les amplitudes a, et a. et les phases o, et 9.,
nous pouvons a ’aide des formules (1) construire entié-
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rement dans l’espace de configuration la fone-

tion ‘F(Z, Ty t) qui correspond a ’ensemble des tra-
jectoires de guidage des particules 1 et 2. Cette fonec-
tion ¥ nous permettra de définir la probabilité de la
présence simultanée a I'instant t des deux particules
en M, et M, a laide de |W 2:aj"(ri, ;, t) et leurs
mouvements simultanés sur les trajectoires de guidage

a Yaide des fonctions graaiqo et grag.;q). Les ondes O,
et O, étant définies par la juxtaposition continue des
trajectoires T, et T,, Ponde W nous donnera une repré-
sentation exacte de ce qui se passe dans l’espace
physique.

Mais cela n’est vrar que pour des particules sans inter-
actions classiques et le cas de deux particules qui
interagissent est plus complexe car alors le mouve-
ment de chacune d’elles est influencé par le mouve-
ment de 'autre et il ne suffit plus de considérer une
onde O, et une onde O, portant chacune une infinité
de trajectoires de guidage correspondant a la particule
liée a Vonde. Il faut maintenant considérer des couples
d’ondes correlées O'-0,, 0,-0;, O/-0;, ... portant
chacun un couple unique de trajectoires correlées
T,-T,, T'-T,, T,-T’, .... Les formules (1) prennent
alors la forme

- a(?h;z;at>:dl<,%h;?‘7t>xai(;%27 ’ivt)1
Q?(?:1\ ;>.’7 t>:<{>1(’~>17 Y t)+(?3(’>_5, l}lw l)'

Elles nous permettent encore de construire dans
Pespace de configuration une onde ¥ qui représentera

(2)

A
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I’ensemble des mouvements corrélés des deux parti-
cules. Mais 1ci nous obtenons seulement une représen-
tation appausrie de ce qui se passe dans l'espace
physique parce qu’elle ne décrit pas ’ensemble de
chacune des ondes O'-0,, ... en ne prenant sur
chacune d’elles qu’un seul élément, la trajectoire de
guidage.

Nous allons maintenant introduire dans les deux cas
qui viennent d’étre étudiés les perturbations d’origine
subquantique qui, d’aprés nous, permettent seules de
justifier la signification de probabilité de présence
attribuée a |W|* et certainement exacte. Dans le cas
des particules sans interaction, ces perturbations font
constamment sautiller chaque particule d’une de ses
trajectoires de guidage sur une autre et cela indépen-
damment des sautillements analogues subis par ’autre
particule. Cect permet de justifier que les expressions
lvi(f'i, t)}gd*. et ‘v(;, t)‘gdt donnent, & un facteur
de normalisation prés, les probabilités de présence
indépendantes de la particule 1 dans d=, et de la
particule 2 dans dx. de sorte que a2<7?1, Ty t) d=, avec

7 =dr,.dt,, donne la probabilité de la présence a
Uinstant ¢ du point figuratif du systéme dans I’élément
de volume & six dimensions dv = d=,.d7., de I'espace de
configuration.

Mais les choses sont moins simples quand on consi-
dere des particules en interaction. Dans le cas de deux
particules de nature différente en interaction, les divers
couples de trajectoires corrélées correspondent a des
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couples d’ondes différents. Il nous faut donc introduire
icl un principe nouveau qui est le suivant : « Lorsqu’une
perturbation d’origine subquantique fait passer 'une
des particules d’une de ses trajectoires de guidage T,
a une autre T, I'autre particule doit simultanément
passer de la trajectoire T, corrélée de T, & la trajec-
toire T, corrélée de T, ». D’une facon plus concise, on
peut dire que les perturbations subquantiques res-
pectent les corrélations. M. Andrade e Silva a bien
apercu ce point essentiel quand il a écrit dans sa These
(p. 345) : « Enfin 1l est important de remarquer que,
de ’hypotheése des fluctuations aléatoires généralisées,
résulte que, méme en présence de potentiels pertur-
bateurs aléatoires, les mouvements des points matériels
restent toujours corrélés ». Ceci admis, on peut démon-
trer qu’en construisant la fonction ¥ de Pespace de
configuration & laide des équations (2) ou les élé-
ments ai, a., ¢1, ¥ sont prélevés a linstant ¢ aux
points corrélés sur les trajectoires de guidage corrélées,
la grandeur az(z, 7?, t) d= donne la probabilité de la
présence simultanée a I'instant ¢ des deux particules
dans les éléments de volume d=, et d=. de Despace
physique.

On remarquera que Dinterprétation précédente
conduit & considérer que londe W de Despace de
configuration nous donne non seulement une représen-
tation appauvrie de ce qui se passe dans Despace
physique, mais aussi une représentation statistique
des diverses possibilités de mouvement dans cet
espace physique. Cependant cela n’empéche pas de



INTERPRETATION DE LA MECANIQUE ONDULATOIRE. 171

pouvoir dans certains cas déduire de 1’onde W de
Iespace de configuration une valeur certaine d’une
grandeur physique : cela a lieu quand la grandeur garde
la méme valeur pour tous les mouvements corrélés des
particules. Par exemple, si le systéme est conservatif, la
()qa, @
T
d’aprés (2) reste constante et 'onde W de lespace de
configuration a une {réquence constante v a laquelle
correspond une énergie bien déterminée W =hv. On
s’explique ainsi comment la Mécanique ondulatoire de
Pespace de configuration permet de calculer les énergies
des états stationnaires d’un ensemble de particules.
Il semble que depuis la Thése de M. Andrade e Silva
(1g60) et les travaux que nous avons poursuivis
ensuite, tout ce qui précéde peut &tre mis sous une
forme assez satisfaisante. Mais nous devons mainte-
nant aborder la question plus difficile des particules
de méme nature.

somme des énergies des particules égale 3 Rl —|—

2. Mécanique ondulatoire des particules de méme
nature. Cas des bosons de spin zéro. — Nous allons
d’abord considérer le cas le plus simple : celui de deux
bosons de spin zéro et de méme nature sans interaction
classique. Nous avons en vue d’expliquer la nécessité
de symétriser la fonction d’onde W de D'espace de
configuration et nous savons que cette symétrisation
ne s’introduit que quand les ondes ¢ des deux particules
se superposent dans ’espace physique. Mais, s1 les
deux particules sont sans interaction classique, 1l
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parait certain que leurs ondes ¢ doivent alors interférer
puisqu’elles obéissent 4 une méme équation d’ondes
(c’est d’ailleurs le cas des photons qui sont sans
mteraction classique). Si nous nous donnons les
positions initiales des deux particules dans P'onde ¢
qui résulte de D'interférence des ondes individuelles
et s1 nous faisons abstraction des perturbations d’ori-
gine subquantique, la formule du guidage nous permet
de calculer les trajectoires des deux particules. L’ab-
sence d’interaction entre les particules fait que les
trajectoires de guidage des deux particules ne sont pas
corrélées.

Mais, si nous introduisons maintenant les pertur-
bations d’origine subquantique, une circonstance tout
a fait nouvelle va apparaitre. En effet, dans le cas de
deux particules de nature différente, une perturbation
d’origine subquantique pouvait faire passer 'une des
particules d’une de ses trajectoires de guidage sur une
autre, mais ne pouvait pas la faire passer sur une trajec-
toire de guidage de ’autre particule. La théorie de la
double solution, qui interpréte le guidage de la particule
par son onde comme résultant du fait que la vibration
interne de la particule doit rester constamment en
phase avec celle de son onde, nous indique 1mmédia-
tement qu’une particule ne peut pas « s’accrocher » sur
une onde correspondant a un autre genre de particule,
sa vibration interne ne pouvant pas rester en phase
avec celle de cette onde. Or, dans le cas de deux parti-
cules de méme nature, cette raison n’existe plus et
rien n’empéche une perturbation d’origine subquan-
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tique de faire passer simultanément chaque particule
d’un point de sa trajectoire de guidage a un point d’une
trajectoire de guidage de l'autre particule, I'accord
de phase entre la particule et ’onde pouvant alors
subsister. Il en résulte la possibilité pour les deux parti-
cules d’échanger leurs positions sans que rien ne soit
modifié dans la propagation de 'onde qui les porte
et cela suffit pour expliquer la nécessité de symétriser
Ionde ¥ de I’espace de configuration pour le systéeme
des deux particules. Sans insister sur la démonstration
de cette affirmation dans le cas de deux bosons de méme
nature sans interaction classique, nous allons étudier
le cas général, pratiquement plus intéressant, de deux
bosons de méme nature en interaction.

Pour des raisons qui apparaitront bientét, nous allons
adopter des notations un peu différentes de celles que
vous avons précédemment utilisées. Nous désignerons
par O, et Oy les ondes des deux bosons supposés
initialement portés par des trains d’ondes séparés
dans Despace. Les trajectoires T, et T, des deux
particules sont corrélées en raison de leur interaction
et les positions simultanées des deux particules sont
également corrélées. Comme nous supposons que les
particules ont une individualité, nous pouvons les
caractériser par un numérotage qui persistera ensuite
d’une fagon permanente. Par exemple, nous pouvons
donner le numéro 1 a la particule qui est initiale-
ment sur O, et le numéro 2 a la particule qui est initia-
lement sur O Les positions des deux particules
sont alors définies par les formules dont le sens est
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évident
3 ?1:;\, 12:;3.

Supposons maintenant que les ondes O, et O,
viennent se superposer dans une méme région R de
Pespace physique. Ces ondes vont-elles interférer ?
Il semble que non. En effet, pour qu’il y ait interfé-
rences entre deux ondes, il faut : 12 que leurs équations
de propagation soient les mémes; 20 que la propagation
de chacune des deux ondes soit indépendante de tout
élément lié a Pautre onde. Or, si la premiére condition
est bien réalisée pour des particules de méme nature
en interaction, la seconde ne ’est pas par suite de
Pinteraction, la propagation de chacune des deux
ondes étant influencée par la position de Dautre
particule dans son onde. Les deux ondes conservent
donc une certaine indépendance pendant qu’elles se
superposent dans la région R. Il semble donc bien en
résulter que, comme dans le cas de deux particules
de nature différente, nous devons en raison de l'inter-
action considérer une infinité de couples d’ondes
corrélées 0,~0y, O,—Oy, ... portant une infinité de
trajectoires corrélées T, —Ty, T\~Ty, ....

Mais nous devons maintenant tenir compte des
perturbations subquantiques qui entrent constam-
ment en jeu. Rien n’empéche une de ces perturbations
de faire passer la particule 1 de la position A sur la
trajectoire T, a la position B’ sur la trajectoire Ty,
et simultanément la particule 2 de la position B sur
la trajectoire Ty corrélée de T, a la position A’ corrélée
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de B’ sur la trajectoire T,. C’est ce que représente
la figure suivante on les lignes sinueuses AB’ et BA’
représentent schématiquement les mouvements brow-
niens imposés aux deux particules par la perturba-
tion d’origine subquantique.

St donc les deux particules occupent 4 un certain
instant dans O, et O, les positions corrélées A’ et B/,

Fig. 8.

on ne saura pas si c’est la particule 1 qui est en A’
et la particule 2 en B’ ou bien si ¢’est la particule 1 qui
est en B’ et la particule 2 en A’. Les permutations pos-
sibles des deux particules dues aux perturbations d’ori-
gine subquantique ont donc pour effet que lesrelations

P >
(4) F=ry, R=F

sont finalement ausst probables que les relations (3).

Suivant la méthode précédemment exposée, nous
devons maintenant construire 'onde W de Despace
de configuration a partir de certains éléments emprun-
tés a ce qui se passe dans I’espace physique. D’apres
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ce que nous avons vu précédemment, si nous posons

5o . . .
W =uqe", a et ¢ étant réels, nous devons prélever les
grandeurs amplitude et phase des ondes O, et Oy aux

. ’ » > > . .
points corrélés r, et ry et 1l semblerait naturel de poser

> > > > > >
(5) a("m T, t):aA("A, T, t)-“l!("lh Ty, t>;
> > > > > >
q?("m B, t) :‘PA("m T'n, t) +<?n("B, Fas 1)
Mais, attention!, la fonction ¥ de I’espace de configu-

. . . . . , S >
ration doit s’exprimer & ’aide des coordonnées r, et 7,
correspondant au numeérotage des particules qui,
pour nous, les individualise d’une facon permanente.

> > 1y >
Or, la correspondance entre r, et r, d’une part, r, et

r. d’autre part peut se faire, nous venons de le voir,
avec autant de raison par les formules (3) et par les
formules (4). Pour définir le W de l'espace de configu-
ration, il parait donc nécessaire de remplacer les
formules (5) par les formules

a(;)'b 7:2, t) :aA<Z’ ?.‘.7 t)'al](?"h ;17 t)
-+ aA(?:'H ’>11 t) aﬂ(?h ;)‘:Z’ t)*
(P(?lv ;-’7 t) :(PA(;;’ ?27 t) "_(?B(;l‘ Zv t)

+(?,\(Z7 ?'17 t>+cPB(;>h Z? t)

(6)

a un facteur de normalisation prés. Il en résulte

(7) a(Z, 72, t>:a(7‘2, Z, t); cp(?l, 72 t):@(ii, 7,, t),
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(8) W (A, A, ) =W (A, AL e).

On aboutit ainsi 4 la nécessité de symétriser 'onde W
de l'espace de configuration pour les bosons de méme
nature. Cette nécessité nous apparait comme résultant
du fait qu’il n’y a pas une correspondance univoque

, > > .
entre les coordonnées r, et r, des particules et les

. > > e s >
coordonnées r, et r, des positions corrélées dans ’espace
physique sur les trajectoires de guidage.

3. Compléments au sujet des bosons de méme nature.
— Les formules (3) et (4) nous donnent deux maniéres
différentes, mais également possibles de faire corres-

L > .
pondre les coordonnées r, et r, des particules et les

positions r, et 7, dans Pespace physique. Ces deux
possibilités sont représentées dans I'espace de configu-
ration par deux positions M et N du point représentatif
du systéme, le point N étant obtenu a partir du point M

. > >
par permutation de la valeur des coordonnées r, et r,.
Dans le cas de deux particules de nature différente, un
ensemble de deux trajectoires de guidage dans I’espace
physique correspond & une seule trajectoire du point
figuratif dans ’espace de configuration. Mais pour deux
bosons de méme nature un ensemble de trajectoires de
guidage T, et T, dans 'espace physique correspond a
deux trajectoires distinctes T, et Ty du point figuratif
dans I’espace de configuration. Cela résulte évidemment

M. DE BROGLIE. 12
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du fait que pour les bosons de méme nature il n’y a plus
correspondance univoque entre les positions corrélées
des particules dans ’espace physique et les variables
de I’espace de configuration. C’est pour cette raison que
la représentation du systéme dans ’espace de configu-
ration devient fallacieuse et doit étre corrigée par une
symétrisation d’apparence, arbitraire, des solutions
de I’équation de Schrédinger dans cet espace.

Il est facile de généraliser ce qui précéde au cas de N
bosons de méme nature en interaction. Il y a alors N
lignes de guidage dans I’espace physique, la position
des N bosons sur ces N lignes de guidage pouvant
étre constamment permutée par les perturbations
d’origine subquantique. Alors 4 I'ensemble des N lignes
de guidage dans ’espace physique correspondent N!
trajectoires du point représentatif dans ’espace de
configuration. On retrouve ainsi le résultat valable
pour deux bosons en remarquant que 2!=2. Cette

circonstance est évidemment reliée a l'apparition du

1 , . .
facteur 7 dans les évaluations des « complexions »

indépendantes dans la statistique de Bose-Einstein
dont nous avons déja parlé a propos du paradoxe de
Gibbs (votr chap. VII, § 4).

Nous allons regarder cette question de plus preés.
Dans la statistique classique de Boltzmann-Gibbs,
on considére un ensemble de particules de méme nature
obéissant aux lois de la Dynamique classique. Ces parti-
cules peuvent étre soumises a des champs extérieurs et,
notamment au moment des chocs, & des interactions



INTERPRETATION DE LA MECANIQUE ONDULATOIRE. 179

dont lensemble est représenté dans les équations du
mouvement par des potentiels du type classique.
Les particules conservent toujours leur individualité
et le calcul de leurs trajectoires est en principe possible
bien qu’en pratique il soit impossible en raison de sa
complexité. La Mécanique statistique classique consi-
dere alors 'ensemble des positions et des vitesses des
particules, chacun de ces ensembles étant représenté
par un point dans 'extension - en - phase du systéme
(espace fictif 4 6N dimensions s’il y a N particules) :
elle en tire par des calculs bien connus les formules de la
statistique de Boltzmann-Gibbs.

Placons-nous maintenant non plus au point de vue
de la Dynamique classique, mais a celui de la Mécanique
ondulatoire interprétée par la théorie de la double
solution en faisant d’abord abstraction des pertur-
bations d’origine subquantique. Dans I’espace physique,
le mouvement de N particules de méme nature formant
le systéme que 'on considére est déterminé par la
propagation des ondes ¢ dans ’espace physique et leurs
N trajectoires de guidage sont déterminées par des
équations ou figurent des potentiels correspondant aux
mteractions des particules et éventuellement de I’action
sur elles de champs extérieurs, compte tenu des poten-
tiels quantiques. 51 done il n’y avait pas de perturba-
tions d’origine subquantique, la situation serait ana-
logue & celle qu’on rencontre en Mécanique classique.
En elfet, chaque particule, obéissant a la Dynamique
du guidage, qui est une dynamique & masse propre

variable, et conservant son individualité au cours
12.
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du temps, décrirait une trajectoire trés compliquée,
en principe calculable bien qu’en pratique généralement
impossible a calculer. On devrait donc aboutir & retrou-
ver la statistique de Boltzmann-Gibbs. Or, il est bien
connu qu’en Mécanique ondulatoire, un ensemble de
bosons de méme nature obéit non pas a la statistique
de Boltzmann-Gibbs, mais & celle de Bose-Einstein.

Il apparait ainsi clairement que c’est I'intervention
des perturbations d’origine subquantique qui modifie
entierement la nature du probleme statistique. En effet,
ces perturbations peuvent constamment, tout en
maintenant les corrélations, permuter les positions des
bosons sur leurs lignes de guidage. Or, pour ces N
particules de méme nature, 1’état ondulatoire dans
Iespace physique est défini par les ondes ¢ avec N lignes
de guidage sans qu’il y ait lieu, en raison des permu-
tations possibles, d’individualiser chaque particule
par un numérotage correspondant & leur position.
Une permutation quelconque des N bosons sur leurs
trajectoires de guidage par leffet des perturbations
d’origine subquantique ne change donc en rien 1’état
ondulatoire existant dans l'espace physique. Mais,
quand on fait la représentation du mouvement des
bosons par la méthode de I'espace de configuration de
Schrédinger de la facon indiquée dans ce qui précede,
on fait correspondre, nous I’avons vu, aux N trajectoires
de guidage de I’espace physique N! trajectoires du point
représentatif dans 1’espace de configuration. Ainsi,
dans cet espace fictif, on représente N! fois ce qui se
passe réellement dans I’espace physique. Pour calculer



INTERPRETATION DE LA MECANIQUE ONDULATOIRE. 181

statistiquement d’une facon exacte le nombre des
complexions correspondant a des états ondulatoires
différents dans 'espace physique, il faut donc diviser
par N! le nombre des complexions que 'on distingue
dans ’espace de configuration, c’est-a-dire le nombre
des complexions que la statistique de Boltzmann-Gibbs
conduirait & distinguer. Et l'on sait bien depuis long-
temps que c’est de cette facon que 'on passe de la
statistique de Boltzmann-Gibbs & celle de Bose-Einstein.

Il est maintenant trés important de préciser ce qui
suit. Dans les exposés usuels de la statistique de
Bose-Einstein, on interpréte lintervention du fac-

I . . .
teur 7 en disant que les particules de méme nature

sont « indiscernables ». Nous pouvons accepter cette
maniére de parler & condition de préciser qu’elle tra-
duit seulement « ’équivalence statistique » des bosons
de méme nature au sens précisé plus haut. Mais nous
ne pouvons pas accepter de dire, comme on le fait
généralement, que les particules de méme nature n’ont
pas d’individualité. En effet, pour nous, I'idée de parti-
cule est liée 4 'image d’un trés petit objet constamment
localisé dans I’espace au cours du temps malgré le
caractére de son mouvement et la conception d’une
particule dénuée d’individualité nous parait contra-
dictoire.

Il est intéressant de remarquer, en en donnant un
exemple simple que I’on peut trouver, méme au niveau
macroscopique, des cas ou des objets bien individua-
lisés possédent pour certaines évaluations de proba-
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bilités une équivalence statistique analogue a celle
des bosons de méme nature. Considérons un damier sur
lequel sont répartis des pions blancs et des pions noirs.
Ces pilons ont sans aucun doute une individualité
permanente car chacun d’eux est un petit morceau
de bois constamment localisé sur le damier et s’y
déplacant d’une certaine fagon au cours de la partie
de dames. Mais, s1 4 un instant donné nous per-
mutons les positions de deux pions de méme couleur,
rien ne sera changé en ce qui concerne 1’évolution ulté-
rieure possible de la partie de dames. Or, d’aprés les
diverses positions qu’ont & un moment donné les pions
blancs et les pions noirs, I’on devrait pouvoir calculer
les probabilités pour que 'un ou l'autre des joueurs
gagne la partie. Comme la permutation sur le da-
mier des positions de deux pions de méme couleur
ne peut évidemment pas changer ces probabilités,
on a bien 1 un exemple d’objets macroscopiques,
les pions, qui ont certainement une individualité,
mais qui sont néanmolns statistiquement indiscer-
nables.

Pour terminer cette étude des ensembles de bosons
de méme nature, notons qu’il y aurait évidemment
lieu d’étendre la théorie précédente aux bosons de
spin n/Zi avec n>>1, mais cela exigerait une étude
plus compliquée parce que pour ces bosons, on ne
peut plus adopter pour la propagation des ondes
dans l’espace physique I’équation de Schrodinger,
méme s1 l'on s’en tient a approximation non rela-
tiviste.
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4. Esquisse de la Mécanique ondulatoire dans I'espace de
configuration pour les fermions de méme nature. — Nous
allons maintenant considérer le cas de deux fermions

N - R .
de méme nature ayant le spin — (ce qui est le cas des
2

¢lectrons). Ict encore, quand il y a interaction et que
les ondes ¢ des deux fermions occupent une méme
région de 'espace, nous avons affaire a une série d’ondes
corrélées 0,—0,, O-0,, ... portant des trajectoires
corrélées T,—T,, T-T,, .... La théorie de Dirac que
nous devons 1ct considérer & l'approximation new-
tonienne (théorie de Pauli) définit chaque onde ¢ 4 1’aide

de deux composantes ¢, et ¢,, ol ¢, correspond au

. i . 7t .
spin 6= _ et ¢ au spin 7y =— - En chaque point

de I'espace physique, le spin local est défini par les
formules

Tt

or = CHIES NN
7

{9) a):;(vzv._,—v;vl).
0

o= (91 0] — 205).

Quand 'un des fermions se trouve en un point de les-

pace, son spin est déterminé par la valeur du vecteur 5
en ce point. Puisque, pour nous, les particules sont
constamment localisées dans ’espace, nous devons
supposer qu’a Dinstant ¢ la particule 1 se trouve
en un point A de sa trajectoire de guidage T, et la
particule 2 en un point B de sa trajectoire de guidage T,.
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Prenons alors la droite BA pour axe des x et le milieu

de BA pour origine des coordonnées, les axes Oy
et Oz devant étre déﬁnis plus loin. On peut alors poser

ro= 0A et r.= 0B = — 7. Si nous supposons les
particules attachées a l'axe Oz et si nous faisons
tourner cet axe autour d’un axe qui lui est perpendi-
culaire en O, cette rotation aura pour résultat de faire
passer la particule 1 de A en B et la particule 2 de
B en A de sorte que I’on aura ainsi passé de la situation

e -4 . .

r.=0A,r,=0B, a la situation OA = OB
Les particules ont ainsi échangé leurs positions.
L’état ondulatoire initial en A sera représenté par

> > > > .. .
Vs (r,, | t) et par ¢. (r,, r, t) que nous ecrirons sunple-
ment ¢, et ¢, tandis que |’état ondulatoire initial
, , > > > >
en B sera represente par m(r?, r1,t) et Vg(r._,_, ry, t)
que nous représenterons par ¢, et ¢, le signe ~ indi-
) > > ,

quant la permutation de r, et de r,. Dans I’état final,

Pétat ondulatoire sera représenté en A par ¢, et ¢, et
en B par ¢, et ¢..

Mais les particules en échangeant leurs positions
doivent aussi échanger leurs spins puisque les spins
sont définis en A et B par ’état ondulatoire local qui
n’est pas modifié par la permutation des particules.
Il est alors facile de voir que cela ne peut étre réalisé
que s1 les spins sont paralléles ou antiparalléles. Nous
pouvons donc prendre I’axe Oz dans le plan déterminé
par les deux spins et I’axe Oy perpendiculaire a ce plan.
Dans le cas des spins paralléles, on obtient I'une ou
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Pautre des figures suivantes :

Fig. 9.

et Pon voit que pour réaliser a4 la fois I'échange des
positions et des spins entre les deux particules, il
suffit de faire tourner les axes autour de Oz d’un angle
égal & =. Si, au contraire, les axes sont antiparalléles,
on aura l’'une ou 'autre des figures suivantes :

Fig. 10.

et, pour obtenir I’échange des positions et des spins des
deux particules, il sulfira de faire tourner les axes de =
autour de Oy.

Rappelons qu’en théorie de Dirac non relativiste, les
composantes ¢, et ¢, se transforment lors d’une rotation
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de l’angle 6 autour de Oz de la maniére suivante
symbolisée par une fléche :

i6 6
(r0) o> e 2, faor e

tandis que, pour une rotation de = autour de Oy la
transformation est

0 0

(11) ) —> 9y (;05; ——-w._,siu;, e sin;—.

Nous allons étudier d’abord le cas des spins paralléles.
Comme nous devons alors faire tourner les axes de =
autour de Oz, nous aurons a appliquer les formules (10),
mais en tenant compte du fait qu’il y a simultanément
permutation des positions des particules, ce qui nous
conduit a écrire

(12) o, =17, Vo> m 10, =Ly, Ty — v,

Par analogie avec ce que nous avons fait dans le cas des
bosons, nous définirons la fonction d’onde du systéme
des deux particules dans I’espace de configuration pour
les deux cas de spins paralléles par les produits ¢,¢,
et 0,0, qui obéissent d’aprés (12) aux formules de
transformation

(13) P — 0 Ty, 0,0 > — 7y

Nous obtenons donc deux fonctions d’onde dans I’espace
de configuration qui sont antisymétriques pour
Iéchange des positions et des spins. Or, comme elles
sont évidemment symétriques pour I’échange des
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spins, elles doivent étre antisymétriques pour I’échange
des positions. 1l est important de remarquer que nous
n’avons pas a considérer dans ’espace de configuration
les fonctions d’onde de la forme ¢,¢, et 0,9, puisque,
les spins étant paralléles, les indices de ¢ doivent étre
les mémes.

Passons maintenant au cas des spins antiparalléles.
Comme nous avons alors & faire tourner les axes de =
autour de Oy, les formules (11), compte tenu de
I’échange des positions, nous donnent

() ) == T, R T g, [
Nous avons donc

(15) P T — T, Ty os—>— T pa.

Ici, nous n’avons pas a considérer les fonctions ¢,¢,
et ¢,9, puisque, les spins étant supposés antiparalléles,
les indices des ¢ dans les produits doivent étre diffé-
rents. Mais, pour avoir des caractéres de symétrie bien
définis en position et en spin, nous devons remplacer
les fonctions ¢,0, et v,¢, par les combinaisons symé-
triques et antisymétriques dont les formules de trans-
formation sont les suivantes

(16) ¢ Ty -V oy > — (0 5+ T

-

G Ty — (0,7 — Py 0n).

Les deux combinaisons envisagées sont donc antisy-
métriques en position et en spin. La premieére,
0,0, ¢,¢., ¢tant symétrique en spin (c’est-a-dire par
P’échange des indices 1 et 2) doit &tre antisymétrique



188 PRINCIPES GENERAUX.

pour P’échange des positions tandis que la seconde,
9,0, — 9,5, étant antisymétrique en spin, doit étre symeé-
trique pour I’échange des positions.

Finalement nous avons obtenu comme fonctions
d’onde possibles dans ’espace de configuration, d’une
part les trois fonctions

105, eaT, 01T P

dont les symboles de spln sont P4, L1, M0+ 14 et qui
sont symétriques en spin et antisymétriques en position,
d’autre part 'unique fonction d’onde

[y p—
1r2 1V

dont le symbole de spin est 1| — .1 et qui est anti-
symétrique en spin et symétrique en position.

Nous avons ainsi retrouvé les états triplets et singu-
lets bien connus dans la théorie des systémes de deux
électrons.
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