Collection
« Discours de la Méthode »

Tout acte de ’'Homme, donc toute ceuvre — créations et
inventions — est autobiographique. C’est pourquoi le Discours
de la méthode a inauguré non seulement un mode de pensée
mais un genre qui donne a la gravure écrite toute I'allure d’une
confession publique et pour lequel on peut généraliser ce qu'écri-
vait Paul Valéry a propos des Méditalions, quand il évoquait
Descartes « s’efforcant de nous communiquer le détail de sa
discussion et de ses manceuvres intérieures, de le rendre notre...
jusqu’'a ce Moi le plus pur, le moins personnel, qui doit étre le
meéme en tous, et l'universel en chacun ».

Certes il se peut que la véritable méthode soit le génie comme
il se peut que ce soit I'inverse aux différents niveaux de la
conscience, mais il appartient a4 I'avenir d’en décider sur piéces.

Cette Collection, faite autant qu’il est possible d’ouvrages
courts pour un temps court, présente des ceuvres milliaires
— ne serait-ce que dans l'instant aux durées variables — ot il
est demandé aux auteurs d’écrire leur « Discours de la méthode »
de telle sorte qu’en toute simplicité V'objectivité de 1’exposé
rejoint la subjectivité méme de P'exposant. Elle fait aussi
connaitre les grands inédits en langue francaise, les ouvrages
méconnus ou ignorés, elle se met en somme au service de tous
ceux qui sont en quéte de repéres et qui, pour des raisons seule-
ment matérielles, n’ont pas accés en premiére main a ces réfé-
rences indispensables & une meilleure représentation du temps
humain.

Boris RyBak
Directeur de la Collection



JALONS POUR UNE
NOUVELLE MICROPHYSIQUE



OUVRAGES DE LA COLLECTION

« DISCOURS DE LA METHODE »

A. EINSTEIN. — Réflexions sur ['électrodynamique, l'éther, la
géométrie et la relativité, nouveau tirage, 1972.

W. HEISENBERG. — Les principes physiques de la théorie des quanta,
nouveau tirage, 1972.

N. BoHr. — Physique atomique et connaissance humaine, nouveau
tirage, 1972.

C. P. BRUTER. — Sur la nature des mathématiques, 1973.
E. ScHOFFENIELS. — L'anti-hasard, 1973 (épuisé).

Th. VoGeL. — Pour une théorie mécaniste renouvelée, 1973.
B. RyBak. — Explorations circulatoires, 1973.

F. KLEIN. — Le programme d’Erlangen, 1974,

E. CARTAN. — Notice sur les travaux scientifiques, 1974.

ZM. Bacq. — Les transmissions chimiques de l'influx nerveux,
1974.

J. HADAMARD. — Essai sur la psychologie de l'invention dans le
domaine mathématique, 1975.

A. EINSTEIN. — Quatre conférences sur la théorie de la relativité,
1976.

A. EINSTEIN. — La théorie de la relativité restreinte et générale,
1976.

A. REINBERG. — Des rythmes biologiques a la chrono biologie,
2° édition. 1977.

L. de BROGLIE. — La réinterprétation de la mécanique ondulatoire,
1977.

P. H. KLoprFer. — Habitats et territoires des animaux, 1977.

F. Fer. — L'irréversibilité, fondement de la stabilite du monde
physique, 1977.

J. DieuDONNE. — Panorama des mathématiques pures. Le choix
bourbachique, 19717.

L. de BrocLie. -— Jalons pour une nouvelle microphysique, 1978.



Collection « DISCOURS DE LA METHODE »
dirigée par Boris RYBAK

JALONS POUR UNE
NOUVELLE MICROPHYSIQUE

Exposé d’ensemble sur l'interprétation
de la mécanique ondulatoire

Louis de BROGLIE

OUVRAGE PUBLIE AVEC LE CONCOURS DU C.N.R.S.

eyl



(©) BORDAS, Paris, 1978 - 012 378 0205
ISBN : 2-04-010147-0

" Toute représentation ou reproduction. intégrale ou partielle, taite sans le consentement
de i'auteur. ou de ses ayants-droit. ou ayants-cause. est iiicite (lov du 11 mars 1957
alinéa 1 de {‘article 40} Cette représentation ou reproduction, par quelque procede
que ce soit, constituerait une contrefacon sanctionnée par les aruicles 425 et suvants
du Code pénal La lor du 11 mars 1957 n'autonse, aux termes des alinéas 2 et 3 de
Farticle 41. que les copies ou reproductions strictement réservées a |'usage pnvé du
copiste et non destinées 3 une utilisation collective d'une part, et. dautre part. que
les analyses et les courtes citations dans un but d'exemple et dillustration



Avant-propos

Introduction

Chap. I
Chap. 1II
Chap. III
Chap. IV
Chap. v
Chap. VI
Chap. VII
Chap.VIII
Chap. 1IX
Chap. X
Chap. XI
Chap. XII

Table des matiéres

. . . . . . . . . . . . . . . .

. . - . . . . . . . . . . . « o .

Remarques préliminaires sur 1'in-
terprétation de la Mécanique ondu-
latoire. . « v v o « 4 v e 4 e e

Idées générales sur l'interpréta-
tion de la Mécanique ondulatoire .

La Thermodynamique cachée des par-
ticules . . . + . . 0 v e e e .

Sur l'interprétation de 1'expérien-
ce de Pfleegor et Mandel , .,

Sur les relations d'incertitude. .

Mouvement d'un photon dans un mi-
lieu réfringent ou absorbant . . .

L'invariance adiabatique et 1la
thermodynamique cachée des parti-
cules . . . . . . . 0 0 . ...

Exposé sur la masse propre du pho-
13

Sur l'incorporation des potentiels
dans la masse propre des particu-
les et application . . . . . . . .

Processus forts et états transi-
toires « v 4 v 4 e 4 e e e e e e

Onde active et onde réactive . . .

Sur la largeur des raies spectra-
les et 1'effet Dupouy . . . . . .

21

36

51

62
67

75

91

104

118
137

142



Chap.
Chap.

Chap.

Chap.

XIII

X1V

Xv

XVI

Réfutation du théoréme de Bell

Le mouvement brownien d'une par
ticule dans son onde

. . .

Sur la théorie des particules
"échantillons"

. . . . . . . .

Probabilités présentes, probabi

lités prévues, probabilités ca-
chées . .

147
. 154
. 160



Avant-propos

C'est dans les années 1923 et 1924 que j'ai &noncé
et développé dans des Notes aux Comptes Rendus de
1'Académie des Sciences et ensuite dans ma Thése de
Doctorat l'affirmation qu'il fallait étendre & toutes
les particules, et notamment aux &lectrons, 1'idée
que tout mouvement d'une particule doit €tre associé
4 une propagation d'ondes. En faisant cette hypothése,
je ne faisais que généraliser 1'idée qu'avait eue
Einstein en 1905 quand il avait apergu que l'énergie
d'une onde lumineuse est concentrée dans des particu-
les qu'il avait appelées '"quanta de lumiére" (licht
quanten) et que nous nommons maintenant "photons".
Quand j'ai développé cette idée, elle s'est montrée
vite trés fructueuse car elle a été d l'origine de
remarquables vérifications expérimentales et appli-
cations pratiques telles que la diffraction des élec-
trons, l'optique et la microscopie électroniques et
elle a méme permis, chose bien inattendue, 1'étude
des virus faite 3 l'aide du microscope électronique
notamment par le regretté Levaditi qui m'avait dé&dié
le livre qu'il avait consacr@ a cette technique.

Or, pendant cette période d'environ dix ans ol mes
idées ont ainsi regu des vérifications expérimentales
nombreuses et frappantes, ce qui m'a valu d'étre en
1929 lauréat du prix Nobel, je n'ai pas un instant
douté que mes conceptions nouvelles étaient compati-
bles avec les idées traditionnelles affirmant 1la
causalité de tous les phénomé&nes physiques.

Mais, pendant ce temps, Niels Bohr, que ses trés
belles et fécondes idées sur la structure des atomes



avaient rendu trés justement célé&bre, développait i
Copenhague avec de brillants éléves (Pauli, Heisen-
berg, Dirac ...) des idées tout 3 fait différentes
des miennes oli le rdle et la signification qu'ils
attribuaient aux incertitudes quantiques, telles
qu'ils les définissaient, les conduisaient & aban-
donner le déterminisme, et par suite la causalité,
dans le déroulement des phénoménes physiques.

Les idées de 1'Ecole de Copenhague, si éloignées
de celles de la Physique classique, qui furent bril-
lamment développées par de jeunes savants dont 1'in-
telligence, la compétence et le talent étaient in-
contestables, obtinrent un si grand succés que,
chargé a3 ce moment d'enseignement en Physique théo-
rique, j'estimais impossible de ne pas me rallier 2
leurs opinions et j'ai cru devoir les exposer dans
mes cours et dans mes livres, tout en leur donnant
souvent une allure assez personnelle comme cela se
voit, par exemple, dans mon essai d'une nouvelle
théorie de la Lumiére. J'aimais d'ailleurs revenir
souvent 3 des études telles que la théorie des gui-
des d'ondes ou 1l'exposé détaillé de 1'Optique élec-
tronique ol les incertitudes quantiques n'intervien-
nent pratiquement pas.

Mais, & partir de 1948, plusieurs de mes cours ou
de mes publications indiquaient déja une certaine
tendance 3 m'éloigner des conceptions de 1'Ecole de
Copenhague et 4 revenir 3 des idées plus classiques.
C'est en 1952-53 que mes idées se modifieront complé-
tement et que je me suis décidé A abandonner les
idées alors regues et les incertitudes quantiques
pour revenir aux conceptions claires et rationnelles
de l'ancienne Physique causale.

C'est dans ce sens que j'ai travaillé depuis prés
de 25 ans en &largissant et en approfondissant cons-
tamment sous des formes nouvelles mes conceptions :
relatives 3 la Microphysique causale. Les idées trés
nouvelles que j'ai développées dans cette derniére
partie de ma vie doivent certainement &tre approfon-
dies et sur certains points peut-&tre modifiées. Mais
je pense que les efforts théoriques que j'ai accom-
plis depuis 25 ans se montreront féconds et que les
tentatives que j'ai poursuivies au déclin de ma vie
contribueront 3 orienter la Physique théorique quan-
tique dans des voies plus fécondes que celles oi,




sous l1'influence des conceptions indéterministes de
1'"Ecole de Copenhague, elle risquait de s'enliser.

Cet ouvrage n'est pas un exposé didactique d'en-
semble des recherches que j'ai poursuivies dans ces
derniéres années. C'est un recueil d'études sur des
questions assez diverses sur lesquelles il m'a paru
intéressant d'insister. Certaines de ces &tudes ont
déja été publiées, notamment dans les Comptes Rendus
de 1'Académie des Sciences, mais d'autres sont iné-
dites. Elles donnent ainsi un tableau d'ensemble de
l1'orientation actuelle de ma pensée.



Introduction

Discours prononcé le 23 avril 1974
a la premiére séance du Séminaire
de la Fondation Louis de Broglie

Je voudrais commencer par 1'exposé de ma maniére
de concevoir la nature de la Physique théorique.

La Physique est une science portant sur certains
phénoménes observables dans la ‘nature. Elle repose
donc essentiellement sur l'observation et sur 1'ex-
périence et son rdle est de rendre compte de la véri-
table nature des phénom&nes observés. Il peut paral-
tre étrange d'€tre obligé d'insister sur un point
aussi évident, mais il semble que certains physiciens
théoriciens 1'ont aujourd'hui un peu oublié.

Je crois donc que, quand on étudie une certaine
classe de phénoménes physiques, il est nécessaire de
prendre comme point de départ une image concréte de
ces phénoménes. C'est ce que voulait dire Max Planck
quand il affirmait que toute théorie physique doit
correspondre 3 une certaine "image du monde", en
allemand "Weltbild". C'est ce qu'a Eégalement trés
clairement affirmé H.A. Lorentz dans le remarquable
discours qu'il avait prononcé 3 la fin du Conseil
Solvay d'octobre 1927,

Sans doute, le physicien théoricien doit-il, pour
préciser ces démonstrations, faire appel aux Mathé-
matiques (aux Mathématiques anciennes plus sans doute
qu'aux Mathématiques dites modernes). Mais les repré-
sentations mathématiques qu'il utilise ne doivent
étre qu'une maniére de représenter avec précision
la nature des phénoménes physiques &tudié&s et ne doi-
vent pas se réduire 3 une simple gymnastique intel-
lectuelle.




Une idée que je crois essentiel de conserver
dans 1'étude des phénoménes physiques est celle de
causalité. Je n'ai pas la prétention de trancher la
question philosophique de savoir si tous les phéno-
ménes sont reliés par des liens de causalité, mais
je crois que tous les phénoménes dont 1'&tude peut
étre abordée par la Science sont soumis 3 la causa-
lité.

S'il en est bien ainsi, on peut en déduire que
toute théorie statistique, en particulier en Physi-
que, est une théorie incompléte, car elle ne four-
nit que des prévisions moyennes et ne donne aucune
image des processus qui en assurent la réalisation.
Or, & 1'heure actuelle, il me parait certain que la
Physique quantique, telle qu'on 1'enseigne aujour-
d'hui, n'est qu'une théorie statistique trés sou-
vent exacte, mais qui ne fournit pas une véritable
image des phénoménes microphysiques.

Je veux maintenant dire quelques mots de la fagon
dont j'avais orienté mes recherches lorsque, peu de
temps aprés la fin de la guerre de 1914, j'ai en-
trepris les réflexions qui m'ont conduit 3 la dé-
couverte de la Mécanique Ondulatoire. Déji vaguement
esquissées dans des travaux antérieurs, je les ai
exposées d'abord briévement dans mes Notes aux Comp-
Comptes Rendus de Septembre~Octobre 1923, puis déve-
loppées dans ma Thése de Doctorat soutenue le 25 No-
vembre 1924,

J'avais depuis plusieurs années beaucoup réfléchi
a2 1'introduction par Einstein en 1905 de la notion
de photon dans la théorie de la lumidre et 3 1'ex-
plication qu'elle fournissait de l'effet photoélec-
trique de la lumiére, confirmée plus tard par la dé-
couverte de l'effet photoélectrique des Rayons X
effectuée par mon frére. Peu 3 peu, s'est alors in-
troduite dans ma pensée l1'idée que les électrons,
eux aussi, pouvaient &tre transportés par une onde.
Une chose m'avait particuliérement frappé, c'était
que, dans 1'atome de Bohr, les électrons étaient
animés de mouvements quantifiés ol intervenaient
des nombres entiers. Or, c'est surtout dans les phé-
noménes ondulatoires, telles que cordes vibrantes,
interférences etc, que l'on voit en Physique appa-



raitre des nombres entiers. Et cela me suggérait
que quelque chose d'ondulatoire devait intervenir
dans le mouvement des électrons.

Mais il fallait traduire cette intuition sous une
forme plus précise et c'est ici qu'est intervenu le
fait que j'avais beaucoup étudié la théorie de la
Relativité, principalement sous sa forme restreinte.
J'avais remarqué que, 1'énergie d'une particule pou-
vant s'écrire W = hv ot # est la constante de Planck,
la fréquence v doit &tre une caractéristique interne
de la particule et que, par suite, celle-ci peut &tre
assimilée 3 une horloge. Mais la théorie des photons
d'Einstein nous apprend que cette fréquence V est
aussi celle de 1'onde qui transporte la particule.

On se heurte alors 3 la difficulté suivante : 1'éga-
1ité des deux fréquences de l'onde et de la particule
doit €tre vraie dans tous les systémes galiléens et
cependant la fréquence d'une onde et celle d'une hor-
loge ne se transforment pas de la méme fagon quand

on change de systéme galiléen. En réfléchissant i
cette difficulté, je suis arrivé & la conclusion
essentielle suivante : pour que la particule en mou-
vement reste en phase avec l'onde qui la porte, il
est nécessaire qu'elle glisse dans l1'onde avec une
vitesse v différente de la vitesse de phase V de
1'onde et telle que vV = c?. Cela m'amenait, en
considérant toujours le cas d'une onde pratiquement
monochromatique plane, aux deux formules W = hv et

p = %, p étant la quantité de mouvement de la parti-

cule et X la longueur d'onde de 1l'onde. La premiére
de ces formules était déja bien connue, mais la se-
conde &tait entid&rement nouvelle. De plus, je démon-
trais que la vitesse v de la particule était égale &
la vitesse de groupe ou vitesse de l'énergie, ce qui
était trés satisfaisant.

A 1'approximation de l'optique géométrique ou il
est classique d'assimiler les rayons & des trajec-—
toires, on est conduit & identifier le principe de
Fermat et le principe de Maupertuis et & retrouver

ainsi les formules W = hv et p = %. Mais cette nou-

velle maniére d'obtenir ces formules, seule encore
mentionnée aujourd'hui, est moins profonde et moins
susceptible de généralisations que la premiére.




Au printemps de 1926, Erwin Schrodinger publiait
ses remarquables travaux qui lui permettaient d'ob-
tenir des résultats sensationnels en partant de
1'équation d'ondes non relativiste qui porte son
nom. Mais l'onde ¥ qu'il introduisait était une onde
du type classique sans concentration locale d'éner-
gie correspondant 3 l'existence des particules. Mal-
gré le succés mérité de la théorie de Schrodinger
et des trés belles applications qu'on en avait fai-
tes, la disparition de toute particule localisée
me troublait d'autant plus que Schrodinger, pour
étudier les ensembles de particules, utilisait un
espace de configuration formé, comme en Mécanique
classique, par les coordonnées des particules. Or,
que peuvent signifier les coordonnées de particu-
les qui ne sont pas localisées ?

Peu satisfait de l'orientation que prenait ainsi
la nouvelle Mécanique quantique, j'ai tenté, dans
un article paru en juin 1927 dans le Journal de
Physique, de rappeler 1l'attention sur mes idées pri-
mitives et de les préciser sous la forme d'une "théo-
rie de la double solution" en distinguant 1'onde V¥
continue et i caractdre statistique de Schrodinger
et une véritable onde physique v de trés faible am-
plitude dont la particule constituerait une sorte de
région singuliére trés localisée. J'étais ainsi amené
4 introduire la notion toute nouvelle de potentiel
quantique dans le cas d'une onde v a amplitude varia-
ble.

J'ai plus d'une fois exposé& ce qui s'était passé
au Conseil Solvay d'octobre 1927 oi les jeunes théo-
riciens de 1'Ecole de Copenhague groupés autour de
Niels Bohr et de Max Born finirent par 1'emporter
malgré 1'opposition d'Einstein et de Lorentz,

C'est peu aprés, en octobre 1928, que je fus char-
gé d'enseignement & la Faculté des Sciences de Paris
et, en octobre 1929, je recevais le prix Nobel de
Physique. D&s lors, ayant 3 assurer les nombreuses
obligations d'une haute situation universitaire et
1'assez lourd fardeau d'une réputation internationa-
le, je me suis peu 3 peu résigné i enseigner la
Mécanique quantique telle qu'elle résultait des tra-
vaux de ses fondateurs et des conceptions de 1'Ecole
de Copenhague. Je crois cependant pouvoir dire que




mes enseignements et mes travaux ont toujours conser-
vé des aspects assez concrets et assez proches des
réalités expérimentales.

A partir de 1947, et ngtamment dans un article
que j'ai publié a cette &poque dans les Cahiers de
Physique sur la Thermodynamique relativiste, on
peut apercevoir chez moi une tendance 3 revenir 3
mes idées primitives et 3 soumettre dans mes cours
34 une nouvelle critique les idées de Bohr et de son
école. A partir de 1952-53, aprés la publication
d'articles o M. David Bohm se rapprochait de mes
idées anciennes, je reprends 1'étude de la théorie
de la double solution.

Mais, trés vite, je m'apergois alors que, pour
rétablir 1'accord entre ma théorie et les prévisions
statistiques certainement exactes de la Mé&canique
quantique, il était nécessaire d'introduire dans la
théorie de la double solution un élément aléatoire
qui n'existait pas dans sa forme primitive. C'est
pourquoi, m'inspirant alors d'un travail récent de
MM. Bohm et Vigier, j'ai admis 1'existence d'un mi-
lieu caché, le milieu subquantique, jouant le rdle
d'un "thermostat caché&"., J'ai été ainsi amené a dé-
velopper une théorie plus compléte ol pour la particule,
au mouvement de guidage que lui impose la propaga-
tion de son onde, se superpose un mouvement aléa-
toire di & des changements brusques de son énergie
interne de masse par suite d'échanges de chaleur
avec le thermostat caché. En d'autres termes, 1'éner-
gie interne mOCZVI—BZ que ma théorie attribue 3 la
particule en mouvement serait en réalité de la cha-
leur contenue dans cette particule et variant cons-
tamment d'une fagon aléatoire par suite des échanges
de chaleur entre la particule et le thermostat caché.
Cette hypothése entraine nécessairement la consé-
quence que la transformation relativiste de la cha-
leur doit 8tre Q = QoV1-B2. Or, cette formule de
transformation est bien celle que 1'on admet depuis
longtemps 3 la suite des travaux de Planck et de
Laue (1907). Ceci paraissait donc trés satisfaisant.

Aussi ai-je &té trés ému quand j'ai appris que
des Physiciens théoriciens qualifiés .avaient mis en
doute la formule de Planck-Laue et affirmaient que




la véritable formule relativiste de transformation
Qo

/1-82
temps 3 examiner cette question difficile un peu
extérieure 3 mon plan de travail. Je suis arrivé &
la conclusion que la formule de Planck-Laue est bien
exacte et j'aili consacré en 1968 un article dans les
Annales de 1'Institut Henri Poincaré i cette ques-
tion. Elle a d'ailleurs &té examinée d'une fagon
approfondie par MM. Guessous et Brotas dans leurs
théses de Doctorat et M. Georges Lochak en a fait
un exposé d'ensemble dans le livre consacré & mon
808 anniversaire. Cette question me parait aujour-
d'hui réglée.

de la chaleur &tait Q = J'ai perdu un peu de

En résumé, mes recherches de ces dix derniéres
années m'ont conduit 3 attribuer aux particules de
la Microphysique une Dynamique d masse propre varia-
ble qui est différente de l'ancienne Dynamique rela-
tiviste et dont 1'étude approfondie est d'un trés
grand intérét, Indépendamment des perturbations sub-
quantiques, elle résulte de 1'incorporation dans la
masse propre, non seulement du potentiel quantique
comme cela résulte de la théorie du guidage, mais
aussi sans doute de la répartition entre toutes les
particules d'un systéme de toutes les interactions
comme Léon Brillouin 1l'avait suggéré dans son der-
nier livre "Relativity reexamined". J'ai repris et
précisé cette idée dans une Note aux Comptes Rendus
du 18 Décembre 1972.

Le développement de cette Dynamique relativiste
4 masse propre variable et de ses diverses extensions

me parailt €tre un sujet d'études tr&s important sur
lequel il y aurait beaucoup de travaux a effectuer.

Un sujet dont 1'&tude est extr@mement importante
pour le développement de la Mécanique ondulatoire
telle que je la congois, c'est l'approfondissement
des idées qui sont & la base de ma Thermodynamique
cachée des particules. Sans doute, il serait intéres~-
sant de chercher 3 préciser la nature de ce thermos-
tat caché que constitue le milieu subquantique. Mais
c'est 13 une question trés difficile et je crois
qu'il vaut mieux pour l'instant ne pas 1'aborder.




Plus aisée et sans doute pour l'instant plus
fructueuse est 1'étude approfondie de la Thermody-
namique cachée des particules dont j'ai esquissé
les grandes lignes. Ne voulant pas aujourd'hui dé-
velopper les formules de cette théorie que vous
trouverez dans plusieurs de mes travaux récents,
je me contenterai d'en donner une vue d'ensemble.

En Thermodynamique classique, on introduit
pour énoncer le second principe de cette science
la grandeur "Entropie" dont la signification phy-
sique restait si obscure que Henri Poincaré 1la
qualifiait de "prodigieusement abstraite". C'est
Boltzmann qui, en développant les idées de la Ther-
modynamique statistique, nous a donné le véritable
sens de cette grandeur en montrant que l'entropie
S de 1'8tat d'un corps est reliée 3 la probabilité
P de cet état par la célébre formule :

S =k log P

Dans son ancien livre sur la théorie cinétique des
gaz, le physicien anglais Jeans a écrit que l'inter-
prétation de l'entropie par la formule de Boltzmann
jette un flot de lumié&re (a flow of light) sur la
véritable nature de cette grandeur jusque-1lid si
mystérieuse.

Or, en Mécanique analytique, il existe un princi-
pe qui est en quelque sorte le clef de volite de cette
science. C'est le principe de moindre Action de
Hamilton qui généralise celui de Maupertuis. Mais ce
principe a, comme la notion d'entropie en Thermodyna-
mique classique, une signification assez mystérieuse,
Or, mes travaux sur la Thermodynamique cachée des
particules m'ont conduit & affirmer que la vérita-
ble signification du principe de Hamilton est la sui=-
vante : '"Le mouvement classique d'un corps est celui
qui posséde la plus grande probabilité thermodynami-
que dans les conditions auxquelles il est soumis".

Je pense que cette conception de la nature profonde
du principe de Hamilton jette un flot de lumiére sur
son véritable sens, analogue & celui que jette la
formule de Boltzmann sur la signification de 1l'entro-
pie.



On pourrait peut-8tre aller jusqu'a dire :
"Quand Boltzmann et ses continuateurs ont développé
leur interprétation statistique de la Thermodynami-
que, on a pu considérer la Thermodynamique comme
une branche compliquée de la Mécanique. Mais, avec
mes idées actuelles, c'est plutdt la Dynamique qui
apparait comme une branche particuliére de la Ther-
modynamique".

Ajoutons encore une intéressante remarque. A un
certain moment du développement des théories quanti-
ques, entre 1910 et 1925 environ, divers auteurs ont
remarqué que, quand un systéme quantifié évolue trés
lentement, une certaine intégrale d'action reste
constante. Reprenant une expression employée long-
temps auparavant par Boltzmann dans un probléme de
thermodynamique, ils ont dit qu'il y avait alors
"invariance adiabatique". Mais 1'on a pu appliquer
cette idée 3 des systémes mécaniques trés simples.
Vers 1922, Léon Brillouin en avait donné un exemple
particuliérement frappant en considérant un pendule
simple dont le fil de suspension a une longueur trés
lentement variable. Mais 1l'introduction du terme
"adiabatique", qui désigne 1'absence d'échange de
chaleur, parait fort surprenant quand on l'applique
4 des systémes mécaniques aussi simples qui ne pa-
raissent comporter aucun aspect thermodynamique. Il
en est autrement si l'on admet que dans tout phéno-
méne mécanique il y a un aspect thermodynamique ca-
ché. Dans un travail récent non encore publié, j'ai
montré que ma Thermodynamique cachée permet de jus-
tifier 1'emploi du terme "adiabatique'" dans le cas
de tous les mouvements trés lents auxquels on 1'a
appliqué.

Passons maintenant 3 des problémes concernant la
lumiére. Je rappellerai d'abord que dans ma Thése de
Doctorat, afin d'incorporer le cas des photons dans
la théorie générale des particules, j'avais admis,
contrairement 3 l'opinion courante, que la masse
propre du photon n'est pas rigoureusement nulle,
mais qu'elle est seulement extr@mement petite, cer-
tainement inférieure & 107%° gramme. J'ai toujours
ensuite maintenu cette hypothése dans tous les nom-
breux travaux que j'ai faits sur les ondes &lectro-
magnétiques. Tous ceux qui ont &tudié ces problémes




avec moi, comme récemment M. Vassalo-Pereira, savent
que 1l'on peut compléter ainsi d'une fagon trés in-
téressante les équations classiques de Maxwell. Cela
permet notamment d'attribuer un sens physique aux
potentiels &lectromagnétiques, contrairement & 1'hy-
pothése que 1'on admet arbitrairement sous le nom
d'invariance de jauge. Des expériences récentes sem-
blent bien prouver la valeur non nulle de la masse
du photon et la réalité physique des potentiels
électromagnétiques. Mais je ne puis pas insister sur
ces questions et je veux maintenant parler des pro-
blémes relatifs au passage de la lumié&re dans les
milieux réfringents et absorbants.

Le passage de la lumiére & travers un milieu ré-
fringent est un probléme qui avait attiré mon atten-
tion il y a bien longtemps puisque je 1'avais abordé
en 1925 dans une Note aux Comptes Rendus intitulée
"Sur la Dynamique du point matériel et 1'Optique géo-
métrique". Je m'étais alors apergu que le mouvement
d'un photon dans un milieu réfringent d'indice n > 1
soulevait des difficultés parce qu'alors la formule

h ~ ' '
p = 3 ne peut plus 8tre exacte et que l'on n'a plus

la relation vV = ¢? entre la vitesse v du photon et
la vitesse de phase V de 1'onde. A la fin de ma Note,
j'avais signalé que, pour éviter ces difficultés, il
fallait admettre que le milieu réfringent exerce

sur le photon une action représentée par un poten-
tiel dont je donnais 1l'expression et que 1l'on pourrait
appeler le "potentiel d'environnement",

J'ai entrepris une étude plus approfondie de cette
question dans un article du Journal de Physique en
1967 et dans un exposé paru dans les Annales de
1'Institut Henri Poincar@ en automne 1973. Cette théo-
rie entraine que le potentiel exercé par le milieu
réfringent sur le photon s'ajoute & sa masse propre
dans 1'expression de 1l'énergie, mais pas de celle de
la quantité de mouvement. Cette différence s'expli-
que par le fait que le milieu réfringent supposé
immobile dans son ensemble ne participe pas au trans-
port de 1l'énergie par le photon et par suite ne peut
pas intervenir dans 1l'expression de la quantité de
mouvement qui représente le flux de l'énergie. Dans
les deux articles que j'al consacrés a cette question,
j'ai indiqué que des idées analogues pourraient
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peut-étre étre introduites dans la théorie des semi-
conducteurs. I1 est &galement possible que 1'on
puisse comprendre la véritable nature de ce que 1l'on
nomme les "phonons" en les considérant comme des
photons transportés par des ondes €lectromagnéti-
ques de fréquence acoustique se propageant dans des
conditions particuliéres. Les objections que 1l'on
fait souvent a une telle interprétation ne me pa-
raissent pas trés probantes. Il y a 13 une série de
problémes d'un grand intérét.

I1 y aurait lieu d'étendre 1'étude des milieux ré-
fringents 3 des cas plus généraux que ceux dont je
viens de parler, par exemple en examinant le cas des
milieux & indice variable dans 1l'espace ou méme au
cours du temps. D'une fagon tout a fait générale, il
faudrait reprendre 1'étude de tous les phénoménes si
nombreux et si bien &tudiés de l'optique classique
en introduisant systématiquement en théorie ondula-
toire la notion de photon. Il y aurait 13 la matiére
d'un grand nombre de travaux.

Je tiens aussi 3 souligner qu'il faudrait alors
renoncer 4 certaines simplifications un peu trom-
peuses couramment introduites en Optique classique.
Je pense notamment & celle qui consiste & considérer
l'entrée de la lumiére dans un corps matériel comme
s'effectuant 3 travers une surface géométrique d'é-
paisseur nulle sur laquelle on raccorde les champs
intérieurs et extérieurs. En réalité, le passage des
champs extérieurs aux champs intérieurs s'opére pro-
gressivement dans une couche superficielle trés mince
et 1'analyse exacte de ce qui se passe dans cette
couche pourrait avoir dans certains cas une trés gran-
de importance.

Passons maintenant au cas du passage de la lumiére
4 travers un milieu absorbant et adoptons d'abord 1le
point de vue de l'optique classique en considérant
un train d'ondes presque monochromatique traversant
un écran absorbant d'épaisseur £. L'intensité de

1'onde, initialement égale au carré aﬁ de son ampli-

5 . - s 5 -Y2
tude, est a la sortie de 1'é&cran réduite a a%e Y

oli Y est le coefficient d'absorption de 1'écran.




Passons au point de vue de la théorie de la dou-
ble solution. L'onde v est alors enti&rement assimi-
lable 3 une onde lumineuse classique de tré&s faible
amplitude a, et son intensité apré&s son passage 3

~ -v2 .
travers l'écran sera aje Y*. Je nommerai cette absorp-

tion de l'onde v la "micioabsorption". Elle est la
méme quel que soit le nombre des photons qu'elle

transporte, du moins nous 1'admettrons. Si initia-
lement 1'onde v transportait un grand nombre N, de

photons, le nombre de ceux-ci qui sortent de 1'é&cran
. 5 =YL
est en moyenne égal a Noe car ces photons peuvent

étre considérés comme des échanttllons d'une onde

d'amplitude A, >> a. J'appellerai cette absorption

des photons, c'est-d-dire de l'énergie, la "macro-
absorption".

Mais, et ceci est essentiel, cette correspondance
ne se maintient pas si 1'onde v ne porte que quelques
photons et, 3 plus forte raison, si elle n'en porte
qu'un seul. On voit alors que chaque photon, &tant
ou n'étant pas absorbé&, la macroabsorption devient un
phénoméne de tout ou rien qui n'est aucunement repré-

. . s -Y4L .
sentable par la loi statistique en e Y tandis que la
microabsorption est toujours représentée par cette
exponentielle.

Cette remarque est extr@mement importante car elle
montre que, si dans le cas d'un trds grand nombre de
photons, la représentation de 1'absorption de 1'éner-
gie par la théorie €lectromagnétique classique est
globalement exacte, elle ne 1l'est plus du tout pour
des trains d'ondes portant un seul photon. I1 doit
donc &tre possible de trouver des phénoménes compor-
tant 1'absorption de photons, apportés isolément par
des trains d'ondes électromagnétiques, qui ne soient
aucunement représentables par 1'image fournie par
l'onde maxwellienne.

C'est ce qui m'"a amen& A penser qu'il y aurait lieu
de répéter les expériences d'apodisation bien connues
de tous les spécialistes de 1'Optique eun employant
une lumiére de tré&s faible intensité de fagon que les
photons arrivent dans une lame apodisante apportés
successivement un par un sur des trains d'ondes iso-



1és. Si chaque photon qui traverse 1'&cran vient
former 1'image apodisée, c'est que la microabsorp-
tion de 1'onde aura modifié son mouvement de guida-
ge. Ainsi serait prouvée, par un expérience qui n'a
pas, je crois, €té jusqu'ici tentée, que le mouve-
ment du photon est déterminé par la propagation d'une
onde &lectromagnétique trés faible.

Un sujet particuliérement intéressant 3 examiner
est celui de 1'application de mes idées 3 1'@tude
des processus dont les systémes atomiques sont le
siége.

Un premier probléme que 1'on pourrait &tudier est
celui des trajectoires de guidage ccrrespondant aux
gtats stationnaires d'un &tat quantifié. Dans mon
livre de 1956 ol je reprenais 1'étude de la théorie
de la double solution, j'avais étudi@ le cas simple
des trajectoires d'un électron dans un atome d'hydro-
géne. Ces trajectoires ne coincident pas avec celles
prévues par Bohr dans sa théorie primitive qui
étaient des cercles ou des ellispes du type képlérien
décrits autour du noyau. En effet, les trajectoires
de guidage sont alors l'ensemble des cercles de
rayons différents ayant leurs centres sur un méme
axe passant par le noyau. L'équilibre de 1'électron
sur sa trajectoire circulaire résulte alors de 1'ac-
tion simultanée du potentiel coulombien &manant du
noyau et du potentiel quantique introduit par la
théorie du guidage. On pourrait é€tudier des problé-
mes de guidage plus compliqués relatifs aux mouve-
ments des électrons dans diverses sortes d'atomes ou
molécules, mais ce travail serait difficile et proba-
blement sans grand intérét.

Beaucoup plus importante est 1'étude des transi-
tions quantiques en général et spécialement de 1'émis-
sion et de 1'absorption des rayonnements par les
atomes ou molécules. Certains de ces problémes font
1'objet de belles recherches de M. Lochak et de ses
collaborateurs. Je me bornerai ici 3 résumer quel-
ques unes des idées générales que j'ai développées
dans un article récent, non encore publié, intitulé
"Processus forts et @tats stationnaires".




Mon point de départ a été une idée trés profonde
énoncée par Einstein dans l'article qu'il avait
écrit comme introduction pour le 11vre de mon 608
anniversaire. Il avait remarqué qu'en Mécanique
quantique usuelle 1l'on envisage des processus con-
tinus obé&issant aux équations d'onde de Schrodinger
ou 3 ses généralisations, mais qu'on y introduit
aussi de brusques discontinuités correspondant &
des échanges d'énergie entre particules. Einstein
en déduisait qu'il se produit alors quelque chose
de trés important, impossible & décrire par le for-
malisme usuel et cela parce que ce formalisme,
ignorant la localisation des particules, ne peut
pas tenir compte de leur structure et de la possi-
bilité de "chocs" qui auraient lieu entre elles.

En théorie de la double solution, cette diffi-
culté me semble levée car, si une particule locali-
sée se trouve 3 un certain moment entrer en contact
avec une autre particule localis@e, un processus
trés rapide, que les équations de propagation ne
permettent pas de décrire, va se produire qui dé-
tachera chaque particule de son onde v primitive
pour l'attacher & 1l'une des composantes de cette
onde avec rupture des relations de phase et conser-
vation globale de 1'énergie et de la quantité de
mouvement. C'est 13 ce que j'ai appelé un "proces-
sus fort" par opposition au '"processus faible" dé-
crit par la propagation des ondes.

Naturellement 1'émission ou 1'absorption d'un
photon par un atome doit rentrer dans ce schéma.
Mais il faut alors admettre que, dans le processus
de 1'émission, un &lectron atomique, qui se trouve
initialement en contact avec un photon annihilé
d'énergie nulle (sans doute caché dans le milieu
subquantique), lui céde par un processus brusque
une certaine quantité d'énergie tandis que le pro-
cessus de 1l'absorption est exactement 1'inverse.

J'ai développé de diverses fagons les idées pré-
cédentes et je les ai appliquées & la théorie de la
largeur naturelle des raies spectrales. Dans la
fagon dont on présente généralement cette théorie,
la largeur d'une raie spectrale dépendrait non seu-
lement de la transition qui 1'a engendrée, mais
aussi de toutes les transitions qui étaient possibles




mais qui ne se sont pas produites. Une telle inter-
prétation me paralt impossible a admettre car un
phénoméne ne peut pas dépendre d'autres phénoménes
qui étaient possibles, mais qui ne se sont pas pro-
duits. Je crois avoir pu montrer qu'en réalité la
largeur spectrale d'une raie &mise lors d'une tran-
sition quantique n'est pas due & la possibilité de
transitions qui ne se sont pas produites, mais
qu'elle résulte de processus faibles du type v qui
ont précédé la transition quantique.

Dans l'article que j'ai cité, j'ai étudié aussi
d'autres questions dont je ne parlerai pas ici. Je
pense que les divers problémes que j'ai effleurés
dans cet article pourraient faire 1'objet de re-
cherches assez difficiles, mais tré&s intéressantes.

Une autre question importante est celle des en-
sembles de particules en interaction. Dans ses
travaux de 1926, Schrodinger avait introduit, pour
traiter ce probléme, l'espace de configuration cor-
respondant & l'ensemble des particules envisagées
et il avait ainsi obtenu des prévisions précises
qui ont été ensuite &tendues et bien vérifiées.
Mais, dés l'apparition des travaux de Schrodinger,
j'avais remarqué qu'avec les conceptions de cet
auteur, l'emploi de 1'espace de configuration, tout
i fait normal en Mécanique classique ol les points
matériels sont localisés, devient paradoxal.
Comment, en effet, construire un espace de configu-
ration avec les coordonnées de particules qui ne
sont pas localisées ?

Au contraire, en théorie de la double solution
odi 1'on admet la localisation des particules dans
l'espace, l'introduction d'un espace de configu-
ration pour un ensemble de particules ne souléve
pas de difficulté, mais i1 faut alors retrouver i
l'aide de cet espace fictif, 1'ensemble des conclu-
sions exactes de la Mécanique quantique et, en par-
ticulier, justifier dans cet espace la symétrisa-
tion de la fonction d'onde pour un ensemble de bo-
sons et l'antisymétrisation de la fonction d'onde
pour un ensemble de fermions. M. Andrade e Silva,
qui commengait alors 3 travailler avec moi, a étu-
dié cette question avec beaucoup de soin et en a
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tiré le sujet de sa belle Thése de Doctorat soute-
nue en 1960.

Dans le dernier chapitre de mon récent livre "
"La réinterprétation de la Mécanique ondulatoire"
paru en 1971, j'ai résumé d'une fagon qui me parait
en donner une vue générale trés claire, 1'ensemble
de cette question. Mais il y a certainement bien
des points de détail & étudier en ce qui concerne
ce difficile probléme.

Disons maintenant quelques mots des relations
d'incertitude. Soit un train d'ondes formé par 1la
superposition d'ondes monochromatiques dont la i€
se propage dans la direction d'un vecteur n. avec

la longueur d'onde Xi . Dans un systéme d'axes rec-

tangulaires, ce train d'ondes a de: dimensions
5x,5y,52. Comme je l'ai bien souvent fait remar-

quer, c'est le train d'ondes, et non pas chacune
de ses composantes monochromatiques qui a une réa-
lité physique. Les composantes n'existent que dans
l'esprit du théoricien.

Dans ma théorie qui localise la particule, §_,
6y,62 sont les incertitudes sur la position de

la particule, position qui existe, mais que nous
ignorons. De plus, quand la particule occupe 1la
position x, y, 2z, sa quantité de mouvement est

> -> - ] -

p = - grad ¥, ol ¥ est au facteur p pres la phase
de 1'onde en ce point. Position et quantité de
mouvement sont donc supposées avoir des valeurs
bien définies, mais que nous ignorons.

Pour nos adversaires au contraire, SX, Gy, s,
sont les incertitudes sur la position de la parti-
cule, position qui n'a pas 3 chaque instant une
valeur bien déterminée tandis que la quantité de

> . > h
mouvement p a l'une quelconque des valeurs Loy
qui correspondent aux différentes composantes
monochromatiques. On démontre alors les relations
d'incertitude :



§X.8p 2 h 5y.5py2>h §z.8P, > h

Mais pour moi,comme je l'ai dit, les composantes mo-
nochromatiques de 1'onde n'ont pas d'existence réelle
et i1l n'est pas permis d'appliquer aux diverses com-
posantes de l'onde la formule p = % qui n'a &été dé-
montrée que pour une onde plane monochromatique. Les
incertitudes qui figurent dans les relations d'incer-
titude ne se rapportent donc pas & un méme &tat de
mouvement de la particule et on ne peut nullement

en conclure qu'il est impossible de lui attribuer 3
chaque instant une position et une quantité de mou-
vement inconnues, mais bien définies.

Dans des recherches que je n'ai pas publiées, j'ai
vérifié les idées précédentes dans un certain nombre
de cas particuliers. Je ne parlerai ici que du fa-
meux argument connu sous le nom de "microscope
d'Heisenberg" dont je veux montrer le caractére fal-
lacieux.

Heisenberg considérait un &électron qui, en tra-
versant le porte~objet d'un microscope dans le sens
de son axe, subit un choc Compton avec un photon. Ce
photon, ainsi mis en mouvement, entrera dans le mi-
croscope si son angle de déviation est inférieur &
la demi-ouverture du microscope. Heisenberg suppose
alors que ce photon, parvenu 4 l'endroit ol le mi-
croscope donne une image du porte-objet, fournit
ainsi une image de 1'électron qu'il a rencontré. Puis
il applique a cette image la formule bien connue qui
donne le pouvoir séparateur du microscope et, par
des calculs que je ne reproduis pas, il en déduit la
formule 5x.5px 2 h, x étant une variable comptée dans

le plan du porte-objet.

J'ai reproduit ce raisonnement dans mes cours d'au-
trefois, mais je pense maintenant qu'il repose sur
des idées contradictoires. En effet, le choc Compton
ne fait intervenir qu'un seul photon, tandis que la
théorie du pouvoir séparateur d'un microscope se dé-
duit de 1'Optique classique et n'est par suite appli-
cable qu'd une onde transportant de nombreux photons.
Elle n'est donc pas valable dans le cas d'un seul
photon et le raisonnement d'Heisenberg apparait comme
résultant d'un mélange d'images inconciliables.
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En résumé, l'interprétation de la Mécanique ondu-
latoire que je propose repose essentiellement sur
une comparaison entre la dynamique des particules et
la propagation des ondes. Pour la développer, il est
donc essentiel de bien connaitre d'une part les
principes généraux de la Dynamique du point maté-~
riel sous sa forme classique et sous sa forme rela-
tiviste comportant une connaissance approfondie du
principe de moindre Action et d'autre part les prin-
cipes généraux de la propagation des ondes 3 1'appro-
ximation de l'optique géométrique et dans les cas
plus généraux. Toute étude sérieuse de la coexis-
tence des ondes et des particules doit reposer sur
ces idées de base que j'ai résumées dans plusieurs
de mes livres, mé&me quand je n'avais pas repris mes
idées primitives.

Mais il est temps de conclure. Apartir de 1950,
de nouvelles réflexions m'ont conduit & revenir &
mes idées primitives et & chercher & les perfection-
ner. Je n'ai pu d'abord que progresser assez lente-
ment et c'est seulement en 1962 que ma retraite
universitaire m'a permis de me consacrer plus com-
plétement aux idées auxquelles j'étais revenu. Mais,
déja 8gé et ayant conservé@ quelques obligations, je
n'ai pu que projeter quelques jets de lumiére a tra-
vers l'obscurité qui plane sur la Physique quanti-
que. C'est 3 ceux qui, aux cotés de M. Lochak, vont
travailler dans la Fondation dont nous inaugurons
aujourd'hui l'activité qu'il appartiendra d'étudier,
de perfectionner et probablement sur certains points
de rectifier les idées nouvelles que j'ai tenté de
semer. Mais, bien entendu, tant que cela me sera
possible, je suis prét & aider dans leur travail
ceux qui voudront me consulter.
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Remarques préliminaires
sur I'interprétation
de la Mécanique ondulatoire

Dans 1'introduction, j'ai exposé& mon idée fonda-
mentale qui consiste & distinguer 1'onde statistique
Y usuellement utilisée en Mécanique quantique de
1'onde réelle v qui, selon moi, transporte les par-
ticules. D'autre part, dans mon livre "Etude critique
des bases de 1'interprétation actuelle de la Mécani-
que ondulatoire" Paris, Gauthier-Villars 1963, j'avais
analysé et critiqué les idées qui, depuis 1927, ser-
vaient de bases 4 l'interprétation de ce que l'on
nomme généralement la Mécanique quantique. Je vou-
drais résumer, avec quelques modifications, l'essen-
tiel de mes remarques.

1. COMPARAISON DE L'ONDE ¢y ET DE L'ONDE v.

L'onde ) usuellement utilisée en M&canique quanti-
que peut paraltre avoir les propriétés d'une onde
physique réelle puisque 1'équation qui sert a la
définir est 1'équation de propagation d'une onde qui
se propage, peut se réfléchir et interférer, etc ...
Ceci est essentiel pour que l'onde V¥ puisse jouer le
role qu'on lui attribue. Cependant, elle différe sur
des points importants d'une onde physique réelle.
D'abord quand elle porte une particule, on doit la

normer par la relation |¢|2dT =1 ou V est le volu-
v

me occupé par 1l'onde. On lui attribue ainsi une am-

plitude qui permet & IwIZdT de représenter en valeur

absolue la probabilité pour que la particule manifes-

te sa présence dans l1'élément de volume dT. Or, il

y a une amplitude indépendante du théoricien qui
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l1'emploie et pour cette raison la normalisation de
l'onde Y enlé&ve & cette prétendue onde le caractére
d'une véritable grandeur physique. Mais il y a plus.
Dirac a montré depuis longtemps que la fonction V¥,
bien que solution d'une &quation de propagation li-
néaire, ne possédde pas la propriété d'additivité qui
caractérise les solutions d'une &quation aux déri-
vées partielles linéaires. Il est facile de le voir
par des raisonnements tels que celui-ci:soit P une

fonction solution normée de 1'équation de propaga-
tion. Pour que deux fonctions Y] = a;¥y et Yo, = ar¥

soient aussi solutions de 1'équation de propagation,
il faudrait avoir |a;|2 = |ay|2 = 1. Or la superpo-

sition de ¢; et de Y, doit pouvoir s'écrire y = ay

avec Ial = 1 et, en général, on ne peut avoir
a = a; + ap; comme on le voit, par exemple, quand

al=az=letw1+w2=2¢.

L'onde Y a donc un caract@re hybride et paradoxal
puisque, d'une part, elle est formée en partant d'une
équation de propagation lin8aire et que, d'autre part
étant normée par une formule qui a un caractére qua-
dratique, elle ne posséde pas la propriété d'additi-
vité qui caractérise les solutions d'une équation
aux dérivées partielles linéaire. C'est peut-&tre
pour cette raisonm que ceux qui utilisent uniquement
la fonction ¥ ne 1l'appellent souvent plus "fonction
d'onde", mais lui donnent le nom assez vague de
"fonction d'é&tat". Mais alors pourquoi faut-il que
la fonction ¥ soit solution d'une &quation qui physi-
quement représente la propagation d'une onde ?

C'est ce caractére de la fonction ¥ qui fait que
son usage exclusif conduit a4 des conclusions parado-
xales. En effet, si un dispositif expérimental pro-
voque la division d'un train d'ondes ¥ en deux trains
d'ondes ¥, et Y, occupant deux régions séparées de
1'espace, comme c'est le cas dans les dispositifs
d'interférences, on sait que, si Y, et Y, viennent
se superposer dans une certaine région de l'espace,
on observe des interférences dans cette région. Mais,
supposons que l'onde initiale porte une seule parti-
cule et qu'aprés la séparation des trains d'ondes
Y, et P, la particule se trouve par exemple dans wl.

Alors Y, devrait étre normée 3 1, mais Y, devrait



23

eétre normée a zéro, puisqu'il n'y a pas de particu-
les dans Wz. 0r, écrire |¢2|2dT = 0 oblige 3 poser
wz = 0 et alors il n'y a plus de possibilités d'in-
terférences dans la région R. D'ol l'obligation

pour ceux qui utilisent uniquement la fonction ¥ de
dire qu'aprés la séparation des trains d'ondes Y, et
V,, la particule est & la fois présente dans les
deux trains d'ondes et, pour eux, c'est 13 ce qui
permet l'observation des interférences quand les
deux trains d'ondes finalement se superposent. C'est
cette étrange conception qui conduit aux conclusions
paradoxales suivantes : "1°) Dans 1l'expérience des
trous d'Young, la particule passe & la fois par les
deux trous d'Young; 2°) Dans l'expérience du miroir
semi-transparent d'Heisenberg, la particule serait
présente a3 la fois dans l1'onde transmise et dans
1'onde réfléchie; 3°) Si une onde se propage dans un
tuyau qui ensuite se divise en deux branches finale-
ment réunies, la particule passerait a la fois par
les deux branches. C'est, au fond, dans tous ces
cas, la méme conception paradoxale.

Dirac a dit autrefois qu'une particule ne pouvait
jamais interférer qu'avec elle-méme. A son point de
vue, cela paralt logique. En effet, pour qu'il y ait
interférences, il faut qu'une méme onde Y se divise
en deux ondes distinctes qui viennent ensuite se re-
joindre et interférer. Si alors on admet la théorie
orthodoxe, quand les deux ondes sont séparées, la
particule est présente dans chacune d'elles et c'est
ce qui permettrait les interférences quand les deux
ondes se réunissent. Mais, comme M. Andrade e Silva
et moi, nous l'avons signalé dans une Note dans 1la
Physical Review (*), l'expérience réalisée avec des
lasers par MM. Pfleegor et Mandel semble bien prou-
ver, contrairement a4 1'affirmation de Dirac, que deux
ondes qui ont pris naissance dans des cavités sépa-
rées et dont une seule porte un photon, sont capa-
bles d'interférer.

Tout devient beaucoup plus clair si, avec la théo-
rie de la double solution, on distingue 1'onde v et
1'onde P. L'onde v est alors une véritable onde phy-
sique dont l'amplitude tré&s faible est indépendante

(x) Voir page 62.
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de notre volonté et qui posséde la propriété d'addi-
tivité des solutions d'une équation de propagation
linéaire. Quant & l'onde ¢, elle n'est qu'une cons-

truction de notre esprit formée a partir de 1'onde v
par la relation ¥ = Cv ol C est un facteur de norma-

lisation tel que |w|2dT soit égal a | si 1l'onde v

ne porte qu'une particule. Il en résulte que 1'onde
Y n'est plus qu'une représentation de probabilité
et ne posséde plus la propriété d'additivité des
solutions d'une équation linéaire.

I1 convient cependant de faire l'intéressante re-
marque suivante. Si la relation Yy = Cv conduit a mo-
difier arbitrairement l1'amplitude de 1l'onde, elle
ne modifie pas sa phase (du moins 3 une constante
prés) de sorte que le guidage de la particule par
l'onde,qui dépend des dérivées de la phase, peut senm
bler di 34 1'onde ¥ bien qu'il soit dd 3 1l'onde v.
C'est 13 ce qui explique pourquoi le carré de 1'am-
plitude de 1'onde Y représente exactement la probabi
lité de localisation de la particule dans l'espace
comme cela résulte de 1'équation de continuité dans
la théorie de la double solution.

2. EXPOSE DE LA THEORIE DES TRANSFORMATIONS.

Dans mon livre "Etude critique des bases de 1'in-
terprétation actuelle de la Mécanique ondulatoire"
déja cité au début du paragraphe précédent, livre
qui avait été écrit avant l'introduction dans mes
conceptions actuelles d'idées thermodynamiques, j'ai
analysé et critiqué la théorie connue en Mécanique
quantique usuelle sous le nom de "théorie des trans-
formations"., Je crois utile de résumer, avec quel-
ques modifications, certains passages du chapitre IV
de cet ouvrage.

Je me propose d'analyser et de critiquer certains
aspects du formalisme qui constitue cette théorie
des transformations.

On part de la remarque qu'en Mécanique quantique,
1'on considére toute grandeur physique comme repré-
sentée par un opérateur linéaire et hermitien A au-
quel correspond une série de fonctions propres P

formant un systéme complet de fonctions de base nor-
mées et orthogonales.
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Alors la fonction ¥ peut toujours &tre développée
sous la forme
=% C.p.
@D (1 : C.e.

1

les C; étant des coefficients complexes dits "coeffi-

cients de Fourier généralisés'" que 1'on peut calculer
par la formule

(2) c, = Jwiw dt (*)

Les Ci définis par (2) sont les coordonnées de la
fonction ¥ dans 1'espace de Hilbert par rapport au
systéme des fonctions de base wi. La connaissance de
l'ensemble des wi et des coefficients Ci est équiva-
lente a la connaissance du Y. Si 1'on passe de l'en-
semble des fonctions de base wi 4 un autre systéme
de fonctions de base w; , les Ci subissent une trans-
formation linéaire. En effet, comme on a

wi =% d, . ¢v', on a :

K ki "k
= = ' '
(3) U] ; Ci wi z Ck ¢k
i k
avec
o=
(4) Cp = 2 dy;

1
Mais on admet, de plus, que les fonctions propres

>

wi correspondant 3 la position Ry, de la particule sont
> >

les fonctions de Dirac S8(R - Ry). Si 1l'on admet,

comme on le fait habituellement, ce postulat qui nous

semble inexact, on est amené & écrire

(5) V(R = JWEO) §(R - R, dR

(x) S7 le spectre des wi est continu, on peut encore
écrire la formule (1), les e étant alors les

"différentielles propres” du spectre, mais je ne
veux pas insister ici sur ce point.
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>
et 1'on considére alors les w(Ro) pour les différen-

>

tes valeurs de R, comme étant les coefficients Ci du

0
développement du ¥ suivant les valeurs propres de la

position.

Puis, entrainé par cet élégant formalisme, on en
a conclu que toutes les "représentations" de la fonc
tion ¥ 34 1'aide de tous les systémes complets et or-
thonormés de fonctions propres correspondant a toute
les grandeurs physiques seraient &quivalentes. En
particulier, la "représentation q" correspondant aux
coordonnées et 34 la formule (5) serait exactement de
la méme nature que la "représentation p" correspon-
dant 3 la quantité de mouvement et donnée par les
coefficients c(F) du développement de la fonction ¥

suivant les ondes planes monochromatiques.

La théorie des transformations admet donc comme
générale la loi de probabilité suivante : "La proba-
bilité pour qu'une grandeur A attachée au corpuscule
ait pour valeur la valeur propre o de 1'opérateur

correspondant est donnée par |Ci|2"'

Appliquant cette loi générale au cas de la posi-
tion avec intervention de la formule (5), elle consi
dére qu'elle a retrouvé pour la probabilité de la

>
présence du corpuscule au point R0 la valeur

]w(ﬁo)!z, valeur qui est certainement exacte.
3. CRITIQUE DE LA THEORIE DES TRANSFORMATIONS.

On peut adresser diverses critiques a la théorie
des transformations. La plus importante nous paralt
€étre qu'il est certainement inexact de faire corres-
pondre 3 la localisation d'un corpuscule au point

> . =d > . .
Ri la fonction S§(R = Ri)' En effet, 1la localisation

observable d'un corpuscule résulte d'une action
exercée par lui sur d'autres éléments microphysiques
action qui déclenche par un processus en chalne un
phénoméne observalbe. C'est 13 un processus complexe
qui n'est nullement représenté par la simple réduc-
tion de la fonction d'onde 3 une fonction § de Dirac
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Si 1l'on se place au point de vue physique, le ca-
ractére fallacieux de la théorie des transformations
me semble apparaltre d'une mani&re beaucoup plus &vi-
dente. Pour nous en rendre compte, souvenons-nous
que toute la théorie ici utilisée provient de la
Physique classique et plus précisément de la théorie
des cordes vibrantes de d'Alembert.

Considérons une corde vibrante dont les deux ex-
trémités sont fixées. Si 1'on observe son mouvement
par une méthode photographique, on observera 3 cha-
que instant une forme en général trés compliquée de
la corde. Assurément la connaissance de la fonction
f(x,t) qui représente le mouvement de la corde per-
mettra & un théoricien de calculer les harmoniques
dont la superposition forme f(x,t), mais cette décom-
position en une série d'harmoriques n'existe que dans
1'esprit du théoricien, elle n'existe pas dans le
mouvement observable. On pourra, il est vrai, isoler
physiquement ces harmoniques, mais il faudra pour
cela employer des dispositifs qui, en les isolant,
rompront les relations de phase qui existaient entre
eux dans le mouvement de la corde.

Un exemple plus proche de la Mécanique ondulatoire
s'obtient en considérant un train d'ondes formé par
une superposition d'ondes planes monochromatiques
arrivant sur un dispositif du genre prisme ou ré-
seau. L'onde incidente correspond i un mouvement
complexe et, si la connaissance de ce mouvement
permet 3 un théoricien de calculer les composan-
tes monochromatiques dont elle est la superposicion,
ces composantes n'existent pas isolément dans la
réalité physique, mais seulement dans la pensée du
théoricien. L'action d'un dispositif du genre pris-
me ou réseau a pour effet de séparer les composan-
tes monochromatiques en les concentrant dans des
directions différentes de 1'espace. L'onde sera
donc finalement subdivisée en portions d'ondes sen-
siblement monochromatiques, mais les relations de
phase qui existaient entre elles et déterminaient 1la
forme de 1l'onde initiale ne se manifesteront plus par
suite de la séparation spatiale.

Si 1l'on réfléchit aux exemples précédents et 3
d'autres qu'on pourrait imaginer, on arrive néces-
sairement 3 1'idée que c'est la représentation dans
l'espace au cours du temps qui est objective et non
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la décomposition de Fourier qui n'existe que dans
l'esprit du théoricien. Les diverses composantes de
Fourier ne peuvent &étre observées qu'a 1'aide de dis-
positifs qui changent entiérement 1'état de choses
initial et rompent les relations de phase.

Dans le langage de la théorie des transformations,
on doit exprimer ceci en disant que la représentatior
q est la seule représentation objective tandis que
la représentation p, représentation abstraite dans
l'espace des quantités de mouvement, n'existe que
dans 1'esprit du théoricien. Cela montre bien, con-
trairement a4 ce qu'affirme la théorie usuelle des
transformations que les deux représentations q et p
ne sont nullement &quivalentes. C'est la fonction
d'ondes qui décrit la réalité physique et non l'en-
semble des coefficients de Fourier considérés iso-
lément. Cette conclusion est d'ailleurs la consé-
quence du fait évident que l'espace 2 trois dimen-
sions est une réalité physique,cadre normal de notre
expérience, tandis que l'espace des moments (quanti-
tés de mouvement) n'est qu'une représentation mathé-
matique abstraite.

4. PRIMAUTE DE LA PROBABILITE DE PRESENCE. PROBABI-
LITES ACTUELLES ET PROBABILITES PREVUES.

L'ensemble des considérations que nous avons
développées ci~dessus nous conduit & affirmer que
la probabilité de présence p, égale a lez dans le
cas de 1'8quation de Schrdodinger, posséde une sorte
de primauté sur les autres probabilités envisagées
par la théorie usuelle parce qu'elle correspond a
la présence du corpuscule en un point de 1l'onde
avant toute action d'un dispositif séparant les
composantes de Fourier avec rupture des relations
de phase. Pour les grandeurs autres que la locali-
sation et celles qui se déduisent de la localisa-
tion (c'est-3i-dire en langage abstrait pour les
grandeurs qui ne commutent pas avec la position),
les probabilités |Ci|2 correspondent 3 la situation

qui existerait aprés 1l'action d'un dispositif qui
isole, avec rupture des relations de phase, les
composantes Ci relatives aux diverses valeurs possi-

bles ai de la grandeur A envisagée quand on ne

connait pas encore la valeur qui en résulte pour A,
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c'est-d3-dire quand on ne connait pas le résultat de
la mesure. L'action du dispositif de mesure doit,
en effet, détacher le corpuscule de son onde initia-
le pour l'attacher sur l'une des composantes spec=
trales : dans le langage de la théorie de la double
solution, on doit dire qu'au cours de la perturba-
tion de l'onde provoquée par l'action du processus
de mesure, le corpuscule est guidé de telle fagon
que ce résultat soit finalement obtenu. L'accrocha-
ge du corpuscule sur l'une des composantes spec—
trales de 1l'onde initiale peut s'opérer soit par
séparation spatiale des composantes spectrales

(cas des dispositifs genre prisme ou réseau), soit
par un processus d'aiguillage qui attache le cor-
puscule sur l'une des ces composantes.

Bref, la densité de probabilité de présence p me
parait exister dans 1'état initial avant toute ac-—
tion d'un dispositif de mesure tandis que les pro-
babilités ‘CiTz n'entrent en jeu qu'aprés l'action

d'un dispositif de mesure de la grandeur A i laquelle
se rapportent les [Cilz. Les ICi 2 ne peuvent donc

avoir le sens de probabilités existant objective-
ment dans 1'état initial. Ce qui aché&ve de prouver
qu'il en est bien ainsi, c'est que dans l'état ini-
tial, la mesure de n'importe quelle grandeur est

a priori possible et que, suivant la nature de la
mesure que l'on effectuera, 1l'ensemble des ICi

qu'on aura ensuite 3 envisager ne sera pas, en gé-
néral le méme. Cette circonstance me paralit rendre
impossible de considérer tous les ensembles de ICiI2

comme représentant des probabilités existant simul-
tanément dans 1'état initial. Il est méme étomnnant
que, dans le cadre d'une théorie reposant sur
1'idée que tout processus de mesure perturbe néces-
sairement 1'état qui existait antérieurement, la
théorie des transformations en mettant sur le méme
ied la probabilité de présence et les probabilités
Tcil2 ait en somme méconnu ce principe fondamental.

Ce que nous venons de dire montre bien la diffé-
rence fondamentale qui existe entre une probabilité
actuelle valable 3 1'instant ol 1'on 1'é&value et une
probabilité prévue pouvant correspondre a des situa-

tions futures.
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5. LE SCHEMA STATISTIQUE DE LA MECANIQUE ONDULATOIRE

Les conceptions que nous venons de développer,
bien différentes de celles usuellement admises, con-
duisent 3 réviser tout le schéma statistique qui ré-
sulte des idées actuelles. En effet,ce schéma sta-
tistique s'écarte complétement de celui qui est
classique en Calcul des Probabilités.

En Calcul des Probabilités, on définit pour toute
variable aléatoire continue X une densité de proba-
bilité px(x) telle que px(x)dx soit la probabilité

pour que X ait une valeur comprise entre X et x +dx.
Pour une autre variable aléatoire continue Y, on dé-
finit de méme une densité de probabilité pY(y). Puis

on peut définir une probabilité p(x, y) telle que
p(x, y) dx dy soit la probabilité d'obtenir par une
méme opération de mesure (une méme "épreuve” comme
disent les statisticiens) des valeurs de X et de Y
comprises respectivement dans les intervalles
x > x + dx et y >y + dy. Enfin, on introduit la
(X)
°y

densité de probabilité de Y liée par X, (x, v),

qui correspond 3 la probabilité d'obtenir la valeur
y de Y quand on sait que X a la valeur x et 1l'on dé-

Mye x 1ice

finit de la méme fagon la probabilité p X

par Y.

Ces définitions &tant posées, il est facile de
voir que 1'on doit avoir entre les cinq densités de
probabilité que nous venons de définir les relations
suivantes que l1'on peut considérer comme évidentes :

Py (x) I P(x, y) dy Pyly) = I P(x, y) dx

(6)

(Y) _ p(x, y) (X) . P(x, ¥)
Py T (%, y) = pY(y) Py (x, y) _5;T§7—

d'ol 1'on tire :

o, () f oS Gy vy eytn) ay

(7)

Py (¥) f 0 (e, ) Py () dx

Tout ce schéma classique des statisticiens résul-
te clairement de 1l'image de la probabilité quand on
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se figure des "individus" pour lesquels les gran-
deurs X et Y ont des valeurs déterminées, la statis-
tique s'introduisant par la considération simultanée
d'individus pour lesquels X et Y ont des valeurs
différentes.

Or, ce schéma classique des statisticiens n'est
pas applicable aux probabilités définies par 1'in-
terprétation usuelle de la Mécanique quantique.
D'une part, la probabilité p(x, y) n'existe généra-
lement pas et, d'autre part, les probabilités
p(ﬁ)(x, y) pY(y)et p(i)(x, y) px(x),qui devraient
étre égales ne le sont pas. Cet é&chec du schéma sta-
tistique classique dans l'interprétation usuelle
s'explique, 34 mon avis, par le fait que les probabi-
lités qu'elle envisage ne se rapportent pas a un
méme état du corpuscule, c'est-id-dire qu'elles ne
sont pas simultanément "actuelles" et ceci fait tom-
ber la base méme du schéma statistique classique qui
n'est plus applicable & ces probabilités.

Mais si, conformément aux conceptions de la théo-
rie de la double solution, on attribue au corpuscule,
quand il occupe une certaine position, la quantité
de mouvement définie par la formule du guidage, on
peut rétablir le schéma statistique classique aussi
bien dans 1'état initial avant 1'action sur 1l'onde
du dispositif de mesure de la quantité de mouvement
que dans 1'&tat qui suit 1l'action de ce dispositif.
C'est ce que j'ai montré en détail notamment dans
les pages 88 et suivantes de mon livre sur la Théo-
rie de la Mesure (Paris, Gauthier-Villars, 1957).

Et ceci m'amé&ne i parler du célébre théoréme de
Von Neumann suivant lequel il serait impossible de
donner une interprétation de lois de probabilités
de la Mécanique quantique a 1'aide d'une image qui,
en introduisant des variables cachées, permettrait
d'attribuer au corpuscule une position et une quan-
tité de mouvement bien déterminées.

Von Neumann a cru démontrer ce théoréme, il y a
une quarantaine d'années, en partant d'un formalis-
me tré&s élégant, celui des matrices statistiques.

I1 en avait conclu, en apparence trés rigoureusement,

que 1l'introduction de variables cachées ne pouvait
aucunement permettre de ramener les distributions
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de probabilités admises en Mécanique quantique
usuelle 3 un schéma statistique du type classique.

Mais le seul fait qu'on puisse, comme nous 1'avons
dit, rétablir des schémas statistiques en utilisant
les variables cachées introduites par la théorie de
la double solution montre que le théoréme de Von Neu- }
mann ne peut pas &tre exact, et cela méme si 1'image §
proposée par la théorie de la double solution n'était
pas conforme 34 la réalité physique. Il suffit, en
effet, d'un seul contre-exemple, méme sans réalité
physique, permettant de rétablir une image classique,
pour montrer la fausseté de l'interdiction qui sem-
blait résulter du théoréme de Von Neumann.

Voici quelle me parait étre l'erreur du raisonne-
ment de Von Neumann. Ce raisonnement me paralt repo-
ser essentiellement sur le postulat que les distri-
butions de probabilités pour deux variables canoni-
quement conjuguées sont, dans l1'état représenté par
une certaine forme de 1'onde Y, toutes deux simulta-
nément actuelles. Or, ce postulat suggéré par la
théorie des transformations et couramment admis nous
apparait, pour les raisons exposées plus haut, cer-
tainement inexact. Par exemple, en négligeant la
perturbation inévitable qu'exerce sur 1'état initial
tout processus de mesure de la quantité de mouvement,
on méconnait le fait que la probabilité de présence
l¢|? et 1a probabilité ng[z des valeurs de la quan-

tité de mouvement ne peuvent €tre simultanément ac-
tuelles dans 1'état initial. Cette remarque, qui ne
peut guére étre contestée par les partisans de 1'in-
terprétation usuelle puisqu'elle revient 3 tenir
compte de l'action inévitable du processus de mesure
constamment invoquée par eux, fait tomber le théoré-
me de Von Neumann qui semble bien n'€tre qu'un pseu-
do-théoréme.

6. LOI DE PROBABILITE ET FLUCTUATIONS.

Partons de 1'idée générale que toute loi de pro-
babilité résulte d'une causalité compliquée et sou-
vent cachée. En particulier, il en est ainsi quand
la probabilité résulte du comportement d'individus
plus ou moins indépendants. Or, c'est 1ld ce que
suppose la théorie de la double solution dans son
interprétation de la Mécanique quantique.
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Mais une loi de probabilité permet toujours de
définir des "écarts" par rapport aux valeurs moyennes.
Ces écarts sont contenus dans la loi de probabilité
et calculables par elle. Néanmoins il faut bien dis-
tinguer ces écarts des "fluctuations" qui résultent
des mouvements compliqués et souvent cachés dont 1la
loi de probabilité ne donne que le résultat statis-
tique. Contrairement 3 ce qui arrive pour les écarts,
les fluctuations ne sont pas contenues dans la loi
statistique et ne sont pas calculables par elle.

Toutefois il existe une relation générale entre
les fluctuations et la loi de probabilité comme je
1'ai rappelé a la fin de l'article que j'ai écrit
pour le livre de mon 80° anniversaire (Paris, Gau-
thier-Villars, 1973, p. 355). Voici l'essentiel du
texte en question.

Nous partirons d'un fait bien connu. Au cours de
ses mémorables travaux, Laplace en utilisant les lois
physiques connues de son temps avait pu démontrer que
la répartition en altitude dans le champ de la pesan-
teur d'un gaz formé de molécules de masse m est
donnée par une lol qui s'écrit avec les notations
actuelles sous la forme

_ mgz
(8) P=p, e kT
oii p est la densité du gaz a l'altitude z, T sa tem-—
pérature et kX la constante de Boltzmann. On peut au-
jourd'hui retrouver la loi de Laplace a l'aide des
formules de la Thermodynamique statistique. Par un
raisonnement tout & fait analogue, on peut aussi dé-
montrer que la probabilité pour qu'un granule de
masse m immergé dans un fluide & la température T
soit 38 la hauteur z dans le champ de la pesanteur

est
II]EZ

(9) P =P, e kT

formule qui, en tenant compte d'une petite correction
expérimentale, a été vérifiée par Jean Perrin dans
ses célébres expériences.

Dans son livre de Thermodynamique (Paris, Hermann,
1924, p. 309), Jean Becquerel commentant ces résul-
tats constate que la répartition en hauteur d'un




34

seul granule est exprimée par la méme loi que la ré-
partition en hauteur d'un grand nombre de granules.
Résumant alors trés clairement une remarque certaine-
ment trés connue des statisticiens et apparentée 3
la notion d'ergodicité, il ajoute : "Ce résultat est
d'ailleurs général : un méme probldme peut &tre en-
visagé soit comme un problé&me d'un systéme unique,
soit comme un probléme de distribution la plus pro-
bable d'un grand nombre de systémes identiques".

La remarque ainsi trés clairement énoncée par
Jean Becquerel me paralt trés importante. Il en ré-
sulte, en effet, que, si 1'on considére la loi sta-
tistique relative 3 la position d'une particule
d'une certaine nature, il est, a priori, impossible
de savoir s'il s'agit des fluctuations de position
d'une particule localisée ou de la répartition sta-
tistique d'un ensemble de particules de cette nature.
Et il me semble que cela permet de mieux comprendre
pourquoi la Mécanique quantique usuelle a pu inter-
préter, d'une fagon qui est 3 mon avis erronée, les
énoncés statistiques qu'elle utilise.

En relation avec les idées précédentes, je cite-
rali un texte écrit par Einstein pour le livre consa-
cré 3 mon 60° anniversaire sous le titre "Louis de
Broglie, physicien et penseur" (Paris, Albin Michel,
1962). Voici ce texte : "La théorie statistique
(c'est-a-dire la Mécanique quantique usuelle) est
aussi peu capable de pouvoir fournir une base pour
la construction d'une théorie compléte que l'aurait
été la connaissance du mouvement brownien pour la
construction de la Mécanique statistique".

7. SUR UNE ERREUR COMMISE PAR LA THEORIE DES CHAMPS.

On enseigne couramment aujourd'hui la Mécanique
quantique sous la forme tr&s abstraite de la "théorie
quantique des champs". Or il me semble que cette
théorie repose sur une trés importante erreur. En
effet, elle s'appuie sur le travail concernant les

émissions spontanées et provoquées publié par Einstein

en 1917, Einstein avait démontré que, si un phénomé-
ne d'émission de la lumi&re s'accompagne de l'appa-
rition de n photons de fréquence v, il est nécessai-
re, pour retrouver la loi du rayonnement noir de
Planck, d'admettre qu'un phénoméne d'absorption de
photons de fréquence V fait intervenir n + | photons.
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La théorie quantique des champs s'appuie sur ce ré-
sultat pour admettre que les n + 1 photons suscepti-
bles d'8tre absorbés sont cohérents, c'est-a-dire sont
portés par des ondes de méme constante de phase 6.

Or, si 1'on examine en détails le raisonnement
d'Einstein, comme je 1'ai fait notamment dans les
pages 91 et suivantes de mon livre publié& par Albin
Michel "Certitudes et incertitudes de la Science",

on voit que sur les n + 1 photons susceptibles

d'étre absorbé&s dans un processus d'absorption in-
verse du processus d'émission, 11 y en a n qui ont

la méme constante de phase 8 que les n photons sus-
ceptibles d'@tre émis, mais que le (n + 1)€ photon
absorbé dans ce processus appartient au spectre conti-
nu et, par suite, qu'il a une phase §8' indépendante

de §.

La théorie quantique des champs, en bloquant en-
semble les n + 1 photons susceptibles d'étre absor-
bés et en leur attribuant la m@me constante de phase
§ que les n photons susceptiblesd'@tre émis, me pa-
rait donc commettre une erreur fondamentale.
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Idées générales
sur I'interprétation
de la Mécanique ondulatoire

Je veux résumer les idées générales qui sont &
la base de l'interprétation de la Mécanique ondula-
toire que je propose.

J'admets que toutes les particules sont toujours
localisées dans l'espace au cours du temps et
qu'elles sont incorporées dans une onde de trés fai-
ble intensité. Cette onde, que je nomme l'onde v,
échappe 3 notre perception, mais elle a la proprié-
té essentielle de guider le mouvement de la parti-
cule.

Comme je 1l'explique dans l'introduction qui pré-
céde, l'onde v et la particule doivent avoir une
méme fréquence vV et cela dans tous les systémes de
référence galiléenset bien que la fréquence d'ume
onde et la fréquence de l'horloge & laquelle la par-
ticule peut €tre assimilée ne se transforment pas
de méme lors d'un changement de systéme de réiéren-
ce. Il en résulte que la particule doit glisser dans
l'onde de telle fagen que l'acccrd des phases se
maintienne. Remettant au paragraphe suivant un ex-
posé plus précis de ces conceptions, je veux seule-
ment ici en indiquer quelques aspects généraux.

Je veux d'abord rappeler une trés ancienne expé-
rience effectuée dés 1909 par G.T. Taylor (1) et en
citer le clair exposé qu'en ont donné Ruark et
Uhrey dans leur trés beau livre "Atoms, molecules
and quanta", Mac Graw Hill, 1930, page 82.

(}) Preoe. Cambridge Phil. Sceciety 15, 114, 1909.
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"Le rayonnement d'une
trés faible source de lu- A
midre passe a travers des // //
écrans absorbants A et B P
tombe sur une fente §S.

. S
Derriére cette fente se % <::::::§E:

trouvent en B deux au-

tres fentes disposées l

comme les fentes de 7 YA
l'expérience d'interfé-

rences d'Young.

Une plaque photographique P est placée de fagon
4 déceler les franges d'interférence. Connaissant
les constantes des &€crans absorbants et l'intensité
incidente, le nombre des écrans fut choisi de fagon
que quelques photons passent par seconde & travers
la premiére fente S. Si chacun d'eux passait (iso-
lément) par l'une des fentes B, on voit difficile-
ment comment des interférences pourraient se pro-
duire. En fait, les franges d'interférences furent
identiques 3 celles que produit une lumiére forte.
Cette expérience nous permet de conclure que ou bien
la théorie des ondes sphériques est exacte ou bien
que la théorie du rayonnement en "aiguille'" des pho-
tons doit etre complétée par un postulat statistique
fixant la répartition des photons sur les trajec-
toires dans l'espace. D'aprés cette image, le fac-

teur déterminant dans la production des franges d'in-

terférences doit €tre la structure d'un champ élec-
tromagnétique fantdme (ghost) qui résulte de la dis-
position et des propriétés des atomes émetteurs",

Le résultat de Tayler a été confirmé par plusieurs

autres chercheurs. Par exemple, Dempster et Batho
(Phy. Rev. 30, 644, 1927) ont trouvé que les franges
d'interférences obtenues avec un réseau & échelouns
ne présentent aucune anomalie quand on les obtient
en lumiére trés faible.

En lisant ce bel exposé, il est impossible de ne
pas remarquer combien 1'onde “fantdme’ envisagée par
les auteurs est voisine de notre onde v de trés fai-
ble amplitude qui transporterait les photons. Nous
verrons plus loin comment 1'étude du phénoméne de
1'apodisation pourrait apporter une preuve directe
de l'existence de l'onde v.
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Voici maintenant une autre idée importante. Quand
une onde v transporte de trés nombreuses particules,
ce qui ne peut arriver que pour les bosons et en par-
ticulier dans le cas si important de la lumiére et
des photons, les particules constituent ce qu'on
peut appeler des "é&chantillons" d'une onde de beaucoup
plus grande intensité que celle de 1l'onde v porteuse.
Cette onde est une onde fictive dont le carré de 1'am~
plitude mesure la probabilité de présence des parti-
cules aux différents points de l'espace, sa signifi-
cation est purement statistique. C'est le cas des
photons pour les ondes électromagnétiques et plus
généralement pour tous les bosons des ondes Y de la
Mécanique quantique. L'onde réelle v et l'onde ficti-
ve V¥ ont la méme phase, mais des amplitudes trés
différentes, trés faibles pour 1'onde v, beaucoup
plus &levées pour l'onde ¥. C'est l'intervention de
ces deux solutions des équations d'ondes, qui sont
de nature si différente, qui m'avait amené, il y a
bien longtemps, 3 qualifier ma théorie de "théorie
de la double solution". Il est évident que l'on peut
écrire ¥ = Cv, C étant une constante trés grande.

Aprés ces remarques générales préliminaires, nous
allons préciser dans ses grandes lignes le dé&veloppe-
ment mathématique des conceptions que nous venons
d'esquisser.

LA THEORIE DE LA DOUBLE SOLUTION ET LA LOI DU
GUIDAGE.

Je ne puis exposer ici dans tous ses détails 1'é-
tat actuel de la théorie de la double solution et
de la "Réinterprétation de la Mécanique ondulatoire"
a4 laquelle elle aboutit. Je 1'ai exposée récemment
dans un ouvrage portant ce titre publié& chez Gauthier-
Villars en 1971,

Je me contenterai donc de partir de 1'idée sui-
vante : la solution de 1'équation des ondes sous sa
forme complexe peut €tre écrite

i
= Y (xyzt) h
f 7 >

1) v = a(x, y, z, t) e (h =

N

>
Alors l'énergie W et la quantité de mouvement p
de la particule quand elle occupe la position x, y,z

a4 1l'instant t sont données par les formules
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3 - >
(2) W = 5% p = - grad ¥

Dans le cas idéal de 1'onde plane monochromatique
N . ox + +
oli @ est constant et o ¢ = hv (t - —i——J%%__li),
on trouve les formules classiques :

- - h
(3) W = hv p—>\

Si dags les formules (2) on introduit les valeurs

moc > m()v ]
W = 7‘_—_—2' et p = ppe— on obtient : |
1-8 J1-p
> 27 3 ")
- cp - - 2 gra
(4) v 7 o B

3t
J'ai nommé cette formule, qui détermine le mouve-
ment de la particule, la "formule du guidage". Elle

se généralise facilement quand la particule est sou-
mise 3 un champ extérieur.

Introduisons maintenant 1'idée, qui remonte aux
origines de la Mécanique ondulatoire, suivant laquelle
la particule peut etre considérée copme une petite

mgy ¢
0

h
lui la vitesse définie par la formule (4). Pour un
observateur qui voit passer la particule avec la vi-

horloge de fréquence propre Vg = et attribuons-

tesse v = f¢, la fréquence interne de la particule
2 .
en mouvement est V = V43 Y1-fB" d'aprés la formule de

ralentissement des horloges en mouvement. Cela per-
met de démontrer facilement, comme nous le ferons
plus loin dans le cas général d'une onde qui n'est
pas plane monochromatique, que la vibration interne
de la particule reste constamment en phase avec 1l'on- ]
de qui la porte. Ce résultat, que j'avais obtenu ]
dans mes premiers travaux dans le cas simple d'umne !
onde plane monochromatique, peut &tre considéré comme
le contenu essentiel de la loi du guidage.

ETUDE PLUS DETAILLEE DE LA THEORIE DE LA DOUBLE
SOLUTION.

Nous allons maintenant développer les &quatious
sur lesquelles repose la théorie de la double solu-
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tion en partant de l1'équation d'ondes non relativiste
de Schrodinger et de sa généralisation relativiste,
1'équation de Klein-Gordon.

Nous écrivons d'abord 1'équation de Schrodinger
pour l'onde v dans la forme suivante ou V est le po-
tentiel dont dérive la force qui s'exerce sur 1'élec-
tron :

3 h i
6 = = 57— Av + =V
(6) at 2im RV

Pour tirer de cette équation complexe deux équa-
tions réelles portant sur deux fonctions réelles,
nous sommes naturellement amenés 3 écrire.

(7) v = ae h
avec g et ¢ réels, g étant l'amplitude de 1l'onde et

¢ sa phase. En substituant (7) dans (6), nous obte-
nons :

Wyl oy o o pa
(3 5c - VT 7m (srad w)" = - 5o =
da? 1 . 2 Trad
c) - m div (a® grad ¢) = 0

Nous appelons l1'équation (J) "équation de Jacobi
généralisée'" et 1'équation (C) "équation de continui-
té".

Si, pour obtenir une forme relativiste de la théo-
rie, nous appliquons & l'onde v non pas 1'Equation de
Schrodinger, mais sa généralisation relativiste

1'équation de Klein~-Gordon, nous obtenons & la place
de (6) :

21 €V 3v 21 € v
(8) Bv TCZT+Tx;zEAx$¢'+
s 2.2 _ e? V2o A2 = 0
72 (moc Z? ( ))v =

€ étant la charge électrique de la particule soumise
au potentiel scalaire V(x, y, z, t) et au potentiel
vecteur A(x, y, 2, t). Nous obtenons alors une équa-
tion de Jacobi généralisée (J') et une équation de
continuité (C') dont voici les expressions

' 1 3
ICAp T (%% - en? - Ez(gg +€AX)2=m§c2+h2 Q% = Mgc2
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ny L (3o da _ 3 (%, E 0
€ 5 Gg - ew (52 + Sa)

5]

+ Oy= 0

N

<1

t t Xyz 9dx c

ol nous avons introduit dans le second membre de (J')
ce que nous nommerons la masse propre variable défi-
nie par :

2
V2 h° Oa
(9) Mo=%+c—2—a

grandeur dont nous verrons la tré&s grande importance.
. L3 . -
Si, dans 1'équation (8) nous supposons €, V et A
nuls et m0 extrémement petit, nous obtenons 1l'équa-

tion

(9") Ov +

qui est 1'équation de propagation des ondes électro-
magnétiques quand on suppose, comme j'ai &té amené i
le faire depuis bien longtemps, que la masse propre

du photon est extraordinairement petite, mais non tout
a4 fait nulle.

FORMULE DU GUIDAGE ET POTENTIEL QUANTIQUE.

Nous allons maintenant étudier les formules (J) et

J3").

Occupons-nous d'abord de (J). Si dans (J) on négli-
ge les termes du second membre ol figure la constante

h de Planck, ce qui revient i faire abstraction des

quanta, et si 1l'on pose ¥ = S, 1'équation (3) devient
3
(10) 3—5 -V - o= (grad $)2 = 0

Nous retrouvons ainsi pour la fonction 8 qui est 1la
fonction de Jacobi 1'équation de Jacobi de la Mécani-
que classique. C'est donc uniquement la présence de
h? dans (J) qui fait que le mouvement de la particule
différe du mouvement classique. Quelle est la signifi-
cation de ce terme ? On peut l'interpréter en admet-
tant qu'en dehors du potentiel classique U intervient
un autre potentiel Q donné par la formule

(an Q= - 5= —
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Par analogie avec les formules classiques éﬁ = E
- - N -> ot
et p = - grad S ol E et p sont l'énergie et la quan-
tité de mouvement classiques, nous pouvons écrire :
) >
(12) §%~= E; - grad ¢ = ;

et, comme en Mécanique non relativiste la quantité de
mouvement P s'exprime en fonction de la vitesse par

> >
la formule p = mv, nous obtenons :
>
> >
=k - _1
(13) v o - grad ¢

C'est 13 ce qu'on peut appeler "la formule du
guidage" qui donne la vitesse de la particule quand
elle occupe la position x, y, z a 1'instant t en fonc-
tion de la variation locale de la phase a cet ins-
tant.

I1 importe de préciser que a et ¥ sont l'amplitude
et la phase de 1'onde v telles qu'elles existeraient
si la région trés petite d'amplitude trés élevée qui
constitue la particule n'existait pas. Si l'on pré-
fére, on peut dire que a et ¥ sont 1'amplitude et la
phase de l'onde v au voisinage immédiat de la région
presque ponctuelle qui constitue la particule. J'ai
pu donner une justification de la formule du guidage
qui est basée sur cette idée.

-+ >

La force quantique E = - grad Q qui s'exerce sur
la particule courbe la trajectoire de cette particu-
le. Mais dans le cas important, un peu schématique,
de 1'onde monochromatique plane, Q est constamment
nul et il n'y a pas de force quantique : la particule
décrit alors asavec une vitesse constante la trajectoire
rectiligne qui constitue 1'un des rayons de 1'onde
plane monochromatique et 1'on retrouve ainsi 1'image
que j'avais dans l'esprit au moment de ma Thése.

Mais, quand la propagation de 1'onde est soumise
i des conditions aux limites, il peut y avoir appa-
rition de phénoménes d'interférences ou de diffrac-
tion et alors, sous l'influence de la force quanti-
que, le mouvement défini par la formule du guidage
cesse d'@tre rectiligne et uniforme. Tout se passe
alors comme si les obstacles qui entravent la propa-
gation de 1'onde exergaient sur la particule, par
1'intermédiaire du potentiel quantique, une action
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déviante. Les partisans de l'ancienne "théorie de !
1'émission” savaient que la lumiére peut contour- !
ner le bord d'un écran et ils disaient que le bord ’
de 1'écran exerce une force sur les particules de

lumiére qui passent 3 son voisinage. Sous une forme
beaucoup plus élaborée, nous retrouvons ici la méme

idée.

Passons maintenant 3 la formule (J'). Remarquons
d'abord que, si dans cette formule, nous négligeons

les termes en h“, nous obtenons en posant ¢ = S ;
3s 2 35S 2 2 2
—_— - £ - z — =

(14) (at V) x5z (Bx GAx) myc

Or, cette équation est en Mécanique relativiste
sans quanta 1'équation de Jacobi pour une particule
de masse propre myet de charge électrique € soumise

4 un champ électromagnétique dérivant du potentiel
. . e
scalaire V et du potentiel vecteur A comme nous de-

vions nous y attendre.

Si nous conservons les termes en h2 et si nous

utilisons la masse propre variable M, définie par
(9), nous so?mes amenés 3 poser
Moc @ MO-‘; > >
(15) =37 ~ €V ——— = - (grad ¥ + EA)
/1- B2 /1-82
avec B = %, ce qui conduit 3 la formule du guidage
relativiste :
d €A
>
(16) v = - ¢2 E%E__f_I__A_
¥ _ v ;
ot i
. 3 . > ;
A l'approximation newtonnienne avec A = 0 et

3
5% - €V = mocz, nous retombons sur la formule (13).

La force quantique va ici résulter des varia-
tions de la quantité Myc® quand la particule se dé-
place dans son onde. Pour avoir toujours un poten-
tiel quantique nul dans le cas de l'onde monochroma-
tique plane, nous poserons :

(17) Q = Mo°2 - moC2

A l'approximation non relativiste ol ¢ -+ ® et oi

Da = -Aa, nous retrouvons la“valeur :
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2
n a h Aa
Q = /; ¢ + c2h? ta _ moc2 n = pe— ——
0 a 2mo a

INTERPRETATION DU MOUVEMENT DE GUIDAGE.

Nous allons maintenant préciser deux caractéristi-
ques essentielles du mouvement de guidage.

La premié&re, c'est que la particule se déplace dans
son onde en restant constamment en phase avec elle.
Supposons d'abord que la particule n'est soumise a
aucune force autre que la force quantique définie pré-
cédemment. Si alors nous nous déplagons le long de la
trajectoire d'une longueur df dans le temps dt, la va-
riation de la phase sera

e

(18) de¢ = %% dt + %% de= (%% + _\;.grag\P)dt
Moc2 Mov2
= ('_“'_—' - -—_-_—_'—)dt = MOC2 /1—_-—82 dt
T-g2 V1-82
Or, la particule ayant une fréquence interne
Myc
Vo T TojT o, sa phase interne ¥, quand elle se déplace de

df% pendant le temps dt varie de
(19) o, = M0c2 V1 = B dt = de

Nous voyons donc que la particule se déplace dans
son onde de fagon que sa vibration interne définie par
iwi
a;e —p~ avec a. et ¢i réels reste constamment en pha-

se avec celle de 1'onde.

On peut interpréter ce résultat en remarquant que
la particule est définie dans cette théorie comme
étant une trés petite ré@gion de l'onde ol l'amplitude
est trés grande et qu'il est par suite maturel que le
rythme interne de la particule soit le méme que celui
de l'onde & 1'endroit ol elle se trouve.

Nous ferons 3 ce sujet la seconde remarque trés
importante suivante. Pour que cette fagon d'interpré-
ter le guidage soit acceptable, il faut que lecs dimen-
sions de la petite région constituant la particule
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soient trés petites par rapport a la longueur d'onde de
l'onde v. On peut dire que notre théorie doit avoir
une limite de validité pour les trés courtes lon-
gueurs d'onde, c'est-d-dire pour les Eénergies trés
élevées. C'est 13 une remarque qui pourrait devenir
trés importante dans le cas des énergies trés éle-
vées.

Il existe une autre caractéristique essentielle
du mouvement de guidage. C'est que le mouvement de
la particule s'effectue suivant une Dynamique rela-
tiviste 4 masse propre variable. Pour le voir, nous
prendrons comme fonction de Lagrange en l1l'absence de
chanp
(20) L= - Me? /T - @
oi M, est la masse propre dé&finie par (9). Le prin-
cipe de moindre action nous conduit alors aux &qua-
tions de Lagrange.

¢ L
1) 4 @ -2
94. i
1
c'est-da-dire ici
2 Y
(22) gg = - 2 VT = B grad y,

Ce gui montre bien ¢gue la dynamique de la parti-
cule est une dynamique relativiste & masse propre
variable. Mais la symétrie relativiste entre l'espace
et le temps nous conduit 3 compléter 1'équation (22)
par la suivante

oM
dw 2 ez 0
(23) it c” Vi g T
. dM0 ) DMO N 3 3 ) o
omme Fr— = 3T + v.grad M;, les équations précéden~
tes donnent
aw dp M,
a¥ _Z 4R - 2 ST R
(24) Fr A TR dt
Or, on a N
> dp _ d(¥p) +dv d o Mov o 4%
(25) v EE s R TP g g P C o gy
dM M é_g- >
c? /T:?ZEYE = %F (M _c? /JT=R2)+ -2 d¥
/l-ﬁz dt




d'ot
> >
(26) % (W - v.p - Mgc? VT - g%) =0
et, comme nous supposons que, si la particule est au
repos, nous avons B = 0 et W = Mocz, il en résulte
que :
M, v?
> > 0
(27) W= Myc? VT - B> + v.p = Mc? /1 - g% +
M, c? -8

0

relation qui est bien vérifiée puisque W = —

V1-g2

La relation (27) que nous venons d'obtenir 3 par-
tir de la dynamique du guidage 3 masse propre varia-
ble posséde, nous le verrons, une signification ther-

modynamique trés remarquable.

On obtiendrait la généralisation du raisonnement
précédent au cas de l'existence d'un champ électroma-
gnétique extérieur en partant de la fonction de
Lagrange :

> >
(28) £ = - Mye? VT = B2 + e(v - A2Yy o o mie? /IR

c 0

y 2 _ 2
avec Myc® = Mjc € V0

de la formule de transformation relativis-

te : X

N
V - v.—
(29) v, = .t
/T = g2

INTERPRETATION DE L'FQUATION DE CONTINUITE (C).

L'équation (C) précédemment démontrée est la sui-
vante :
dal 1 . 2 >
(c) Fra p div (a“grad ¢) = 0
En vertu de la formule du guidage (4) et en posant
p = Ka?® ou K est une constante, 1'équation (C) prend
la forme

op
(30) — + div (pv) = 0
ot
C'est ce qu'on nomme en Hydrodynamique 1'é&quation de

continuité ol P dT est le nombre de molécules
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N
du fluide dans 1'élément dT et ou v est leur vitesse.

>
D(pv)
Dt
prise en suivant le mouvement des molécules, et ex-
prime la conservation du fluide. Mais ici nous n'a-
vons qu'une particule et il semble alors naturel de
considérer pdT comme correspondant & la probabilité
de présence de la particule dans 1'élément de volume
dT. Cependant, comme nous le montrerons plus loin,
cette interprétation souldve une difficulté si 1'on
admet que la particule suit réguliérement sa tra-
jectoire de guidage. Dans le chapitre suivant, nous
reviendrons sur cette difficulté et cela nous con-
duira a cowmpléter la théorie du guidage telle que
nous l1'avons développée jusqu'ici en y introduisant
un élément aléatoire, ce qui nous ouvrira des hori-
Z0ns nouveaux.

Elle peut s'écrire 0, la dérivée %? étant

Sans insister pour l'instant sur ce point, nous
admettrons que la quantité p = az(x, y, 2, t) multi-
pliée par dT nous donne, a un facteur de normalisa-
tion prés, la probabilité de la présence de la par-
ticule 3 1'instant t dans 1'élément de volume dT de
coordonnées x, y, z. Comme nous serons amenés 3 défi-
nir la fonction statistique ¥ en fonction de 1'onde
v par la relation ¥ = Cv ol C est une constante de

normalisation telle que |¢|2dT = 1, nous sommes con-

conduits a dire que |y|2at représente en valeur abso-
lue la probabilité de présence en question.

Ajoutons qu'une interprétation analogue 3 celle
que nous venons de donner pour la relation (C)
pourrait &tre donnée pour la relation (C') qui cor-
respond 3 1'équation de Klein-Gordon.

INTRODUCTION PAR SCHRODINGER DE L'ONDE STATISTI-
QUE ¥.

Depuis 1'introduction par Schrodinger en 1926 de
1'onde ¥, on s'est habitué 3 considérer uniquement
cette onde Y et ses généralisations dont on norme
arbitrairement 1'amplitude. Or, une telle onde ne
peut pas &tre considérée comme une onde ayant le ca-
ractére d'une réalité physique d'abord parce que
1'amplitude d'une onde physique a une valeur bien dé-
terminée et ne peut pas 8tre arbitrairement normée et
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aussi parce que, si wl et Y, sont deux solutions par-

ticuliéres normées de 1'équation linéaire des ondes ¥,
la somme wl + wz n'est pas une solution normée de

sorte que 1'onde Y normée ne posséde pas la proprié-
té de superposition qui caractérise les ondes physi-
ques solutions d'une &quation de propagation linéaire.
Aussi a-t-on été amené 3 considerer l'onde Yy comme
une simple représentation de probabilité, un simple
instrument de prévision, permettant de prévoir 1la
probabilité des résultats possibles de la mesure des
grandeurs attachées 3 une particule ou & un ensemble
de particules. Or, i1 est impossible qu'une simple
représentation de probabilités puisse provoquer des
phénoménes physiques tels que manifestation locali-
sée d'une particule, phénoménes d'interférence ou de
diffraction, etc, ou imposer des valeurs aux énergies
des états stationnaires des atomes. Seule une réalité
objective peut provoquer de tels effets et une repré-
sentation de probabilités n'a pas ce caractére.

Néanmoins, il est certain que l'utilisation de
1'onde ¢ et de ses généralisations a conduit & un
trés grand nombre de prévisions exactes et de théo-
ries fructueuses. C'est 1a un fait qu'il ne saurait
étre question de contester. La situation s'@claire
si 1'on fait intervenir a& c8té de l'onde ¥ statisti-
que l'onde v, réalité physique objective, qui, elle,
peut provoquer les phénoménes dont 1'onde Y fournit
1'aspect statistique.

Mais cela rend nécessaire d'établir une relation
entre l'onde § et 1'onde v. En introduisant une cons-
tante ¢ qui peut €tre complexe, nous sommes conduits
a écrire :

i
(31) Y = Cv = Ca e b

C étant un facteur de normalisation tel que

}WIZdT = 1ol V est le volume occupé par 1l'onde v.
v
C'est ce que nous avons expliqué dans le paragraphe
précédent.

Une premidre remarque 4 faire au sujet de la re-
lation (31) est la suivante : comme |y| = |Cla et que
la phase de { ne peut différer de celle de v que par
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une constante additive, nous voyons que la formule
du guidage et l'expression du potentiel quantique

données précédemment sont insensibles & la substi-
tution de ¥ & v.

Une autre remarque est la suivante : [C| doit
étre trés supérieur 3 1. En effet, considérons une
grandeur attachée a la particule dont on connait
la valeur g. La théorie actuelle, qui utilise uni-
quement la fonction ¥, admet que cette grandeur est
répandue dans toute 1'onde avec une densité [¢]?

de sorte que !|w!2ng = g. Mais, en théorie de la

double solution, la grandeur g est trés fortement
concentrée dans la trés petite région occupée par la
particule et 1'intégrale de a’g dT étendue 3 1'onde
v dans tout le volume V doit &tre beaucoup plus pe-
tite que g, d'old 1'on tire

(32) J a’g dt << f lv?g dt
v \
d'ol d'aprés (31) :

(33) [c] >> 1

On peut interpréter ce résultat en disant que 1la
théorie statistique actuelle considére comme répan-
due dans toute l'onde ce qui est en réalité presque
entiérement concentré dans la particule.

REMARQUE SUR L'EMPLOI DE L'ESPACE DE CONFIGURATION
EN THEORIE DE SCHRUODINGER.

Dés la publication des mémoires de Schrodinger en
1926, j'avais remarqué que l'introduction de 1'espace
de configuration dans une théorie qui ne localise pas
les particules dans 1'onde &tait paradoxale puisque
l'espace de configuration est formé avec les coor-
données des particules, coordonnées dont on n'admet
pas l'existence.

Dans un ancien travail publié en 1929 par C.G.
Darwin, travail que j'ai analysé dans un de mes 1i-
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vres ('), 1'auteur avait montré, en &tudiant un cer-
tain probléme de choc entre deux particules, que ce
probléme ne pouvait &tre résolu qu'en se servant de
1'espace de configuration. Ainsi, paradoxalement,

cet espace visiblement fictif se montre une repré-
sentation de la réalité plus exacte que la repré-
sentation des particules dans l'espace physique par
une onde sans localisation. De plus, si 1'on étudie
les théories qui ont fait le succés de la Mécanique
quantique usuelle, telles que celles de la molécule
d'hydrogéne, de 1l'ortho et du parahydrogéne, de 1la
molécule d'Hélium, etc, on constate qu'elles impli-
quent toutes l'emploi de 1'espace de configuration.
I1 ne saurait en €tre autrement puisque 1l'interaction
entre deux ou plusieurs particules s'exprime en fonc-
tion des distances mutuelles de ces particules, no-
tion qui a un sens précis dans 1'espace de configu-
ration, mais n'en a pas dans l'espace physique si

les particules n'y sont pas localisées.

Je crois donc pouvoir en conclure que 1'emploi
par Schrddinger d'ondes étendues sans particules lo-
calisées n'a pu conduire 3 de grands succés que parce
qu'il avait ensuite introduit subrepticement dans sa
théorie la localisation des particules par l'emploi,
dans le cas des ensembles de particules, de 1'espace
de configuration car cet espace implique nécessaire-
ment la localisation des particules dans 1l'espace
physique.

() Etude critique des bases de l'interprétation ac-
tuelle de la Mécanique ondulatoire, Paris, 1963,
p. 77-80.
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La Thermodynamique
cachée des particules

Reprenons les principales 1idées que j'ai
développées comme prolongement de la théorie de la
double solution depuis 1960.

L'idée de considérer une particule comme une pe-
tite horloge conduit assez naturellement & penser
que 1'énergie de masse propre Mgc? d'une particule
peut 8tre considérée comme une chaleur cachée. En
effet, une petite horloge contient dans son systéme
propre une énergie d'agitation périodique interne
qui ne s'accompagne d'aucune quantité de mouvement
d'ensemble. Cette &nergie est donc assimilable 2
celle d'un corps contenant de la chaleur en état
d'équilibre interne.

Nous introduirons ici la formule de transforma-
tion relativiste de la chaleur connue depuis les
travaux anciens de Planck et de Laue vers 1908. Si,
dans le systéme propre d'un corps en équilibre in-
térieur homogéne, la chaleur contenue dans ce corps
est Qo’ dans un systéme de référence ol le corps a
la vitesse d'ensemble Bc, la chaleur Q qu'il contient
est

(1) Q=0 /T -8°

Bien que cette formule longtemps incontestée ait
été récemment mise en doute, je suis arrivé dans ces
derni®res années a la conviction qu'elle est bien
exacte et qu'elle est certainement applicable & un
corps trés petit comme une particule. Si donc une
particule contient dans son systéme propre une quan-
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tité de chaleur Q4 = Mocz, la quantité de chaleur
qu'elle transporte dans un systéme de référence ol
elle a la vitesse Bc est

(2) Q =9Qq, /YT = 8% = Myc® VT = B> = hv

La particule nous apparait alors comme étant a
la fois une petite horloge de fréquence Vv =

et comme un petit réservoir de chaleur de contenu
calorifique Q = Qg /T_:néz en mouvement avec la vi-
tesse Bc. C'est 1'identité de forme des formules de
transformation relativiste pour la fréquence d'une
horloge et pour la chaleur qui rend possible ce dou-
ble aspect.

Quand la particule se déplace suivant la loi du
guidage, si 1'onde n'est pas plane monochromatique,
la masse propre M; varie suivant la formule

M. = /m? + Ei Ja

0 0 2
e a

donnée au chapitre précédent, formule (9). Nous avons
vu que le mouvement de la particule est alors réglé
par une Dynamique relativiste 3 masse propre variable
et nous sommes ainsi conduits & penser qu'il existe
un lien &troit entre la formule fondamentale de la
Thermodynamique relativiste et la formule du guidage.
C'est ce que va nous montrer le raisonnement suivant.

Rappelons d'abord que, si ¢ est la phase de 1'onde
i
écrite sous la forme ae f ¢ avec a et ¢ réels, la
théorie du guidage nous dit que 1l'on a
>
M,c? M, v
0 > 0
(3) %% = ———; - grad ¢ =
/i-g2 VT1-g2
D'autre part, la formule (2) de Planck-Laue peut
s'écrire :
M. c?
. 0
(4) Q = Myc2 YT = g2 = —— - V.p

/T

En portant (3) dans (4), nous obtenons :
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Mais, si la particule est assimilable & une hor-

M, c?
0
loge de fréquence propre T s la phase de sa vibra-
i,.
tion interne écrite sous la forme a e h 'l avec a
et Y réels est
(6) v, = by /1= £ =M /T - gt

et 1'on aura
(7) d(y - ¢i) =0

ce qui est en accord avec notre hypothése fondamen-
tale suivant laquelle la particule se déplace dans
son onde en restant constamment en phase avec elle.
Il existe donc un lien &troit entre la théorie du
guidage et la thermodynamique relativiste., Ce fait
est d'autant plus remarquable que la formule (1)
résulte des travaux de Planck et de Laue qui sont
trés antérieurs 3 l'apparition de la Mécanique ondu-
latoire et de la théorie de la double solution.

LA RELATION ENTRE L'ACTION ET L'ENTROPIE.

Aprés tout ce qui vient d'@tre dit, il parait
naturel de raisonner comme il suit. La dynamique
relativiste nous apprend que la fonction de Lagrange
d'une particule libre de masse propre M en mouve-

ment avec la vitesse Rc est £ = - M0c2 Y1 - B2 et
que
(8) J Lat = - J Myc? /T = B dt

est 1'intégrale d'action, invariante puisque
M,e? /T = B% dt = Myc? dt, ol dt, est l'élément de

temps propre de la particule. En accord avec une
idée déja apergue par Eddington, il y a une gquaran-
taine d'années, il est alors tentant de chercher 3
établir une relation entre les deux grands inva-
riants de la Physique qui sont 1'Action et 1'Entro-
pie. Mais, pour pouvoir le faire, i1l faut donner i
l'intégrale d'Action (8) une valeur bien définie en
choisissant convenablement 1'intervalle d'intégra-
tion. Avec nos idées, il parait naturel de choisir
comme intervalle d'intégration la période Ti de 1la
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vibration interne de la particule de masse propre m,
dans le systéme de référence ol elle est en mouve-
ment avec la vitesse Bc. Comme l'on a :
1 moc2 —
(9) TR

i
on définit ainsi une intégrale "cyclique" d'action
en remarquant que, la période Ti étant toujours trés

petite, on peut considérer que My, et B sont sensi-
blement constants dans 1'intervalle d'intégration

et en posant comme définition de 1'Action A ol M,

est la masse propre variable de la particule en

mouvement
JTi Myc? /T - B? Myc?
dt = - -

2
0 m,c

L'on est alors amené 3 définir l'entropie de 1'é-
tat de la particule par la forme suivante si le signe
- traduit le fait que le minimum de 1'Action corres-
pond au maximum de 1'entropie :

S A

an "k R

(10)

o>
[

ol k et h sont respectivement la constante de Bolt-
zmann et celle de Planck. On a alors, puisque

§Q, = 6Moc2, la relation
8Q,

(12) §s = - k -
m,c?

0

Nous sommes ainsi parvenus 3 attribuer au mouve-
ment de la particule une certaine entropie et par
suite une certaine probabilité P donnée par la for-

S
mule de Boltzmann écrite sous la forme P = e k.

Des conceptions précédentes, j'ai pu tirer un
certain nombre de résultats que 1'on trouvera expo-
sés dans mes publications sur ce sujet, en parti-
culier dans mon livre déjid cité "La Réinterpréta-
tion de la Mécanique Ondulatoire”. Les deux résul-
tats les plus importants, que je me contenterai de
citer, sont les suivants :

1°) Le principe de moindre Action n'est qu'un cas
particulier du second principe de la Thermody-
namique.
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2°) Le privilége, dont Schrodinger avait souligné le
caractére paradoxal, que la Mécanique quantique
actuelle attribue aux ondes planes monochromati-
ques et aux états stationnaires des systémes
quantifiés, s'explique par le fait qu'ils corres-
pondent a8 des maximums de l'entropie, les autres
états étant non pas inexistants, mais d'une bien
moindre probabilité.

NECESSITE D'INTRODUIRE DANS LA THEORIE DE LA DOU-
BLE SOLUTION UN ELEMENT ALEATOIRE.

Nous avons jusqu'ici raisonné en admettant que le
mouvement de la particule dans son onde est enti&re-
ment déterminé par la loi du guidage. Nous allons pou-
voir maintenant montrer pourquoi ce point de vue ne
peut pas étre entiérement conservé.

Nous raisonnerons en partant de l1'équation de
Schrodinger qui fournit toujours une premiére appro-
ximation pour les vitesses petites par rapport 3 c.
Nous avons vu dans le chapitre précédent que 1'Equa-
tion de continuité (C) conduit 3 admettre que la pro-
babilité de présence de la particule dans 1'élément
de volume dT est proportionnelle & a’dT, a étant
1'amplitude de 1'onde v, ce qui conduit, en intro-
duisant 1'onde statistique Y normée par la relation
Y = Cv, 3 dire que la probabilité en question est
&gale en valeur absolue 3 |[¥]|°, résultat bien connu.
Cependant cette idée parait avec nos conceptions
conduire 3 des difficultés. On le voit, par exemple,
en considérant un atome d’'hydrogéne dans un de ses
états stationnaires du type 8. La formule du guidage

> gra

>
v = - nous donne alors v = 0. L'électron se-

rait donc immobile dans 1'atome et l'on ne voit pas
comment la relation de continuité (C) pourrait nous
conduire 3 justifier la probabilité en |w|2dT. On
peut donc conclure qu'il faut compléter cette rela-
tion par un élément aléatoire.

Cette difficulté est tout 3 fait analogue a celle
qui est bien connue en Mécanique statistique classi-
que ol le théoréme de Liocuville, qui fournit une
formule de continuité dans 1l'espace des phases ne
suffit pas & établir que la probabilité pour que le
point qui représente 1'état d'un ensemble de molé-
cules soit présent dans un &lément de volume de son
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extension en phase soit proportionnelle 3 cet é1lé-
ment de volume. Pour justifier cette affirmation,

il est nécessaire d'introduire dans le mouvement

des molécules un é€lément aléatoire qui perturbe cons-
tamment ce mouvement., Boltzmann, considérant cet élé-
ment aléatoire comme résultant des chocs continuels
entre molécules, 1'avait appelé "le chaos moléculaire"

Par analogie, il semble bien que le fait univer-
sellement admis qu'une particule a une probabilité
|w]%dt de manifester sa présence dans un élément de
volume dT entraine nécessairement, quand on adopte
les idées de la théorie de la double solution, 1'in-
tervention d'un élément aléatoire d'origine cachée.
Or, cela implique que le mouvement régulier de la
particule, tel qu'il est prévu par la loi du guidage,
doit subir continuellement des perturbations aléatoi-
res dont 1'effet est de la faire constamment passer
d'une trajectoire de guidage sur une autre. Alors,
grdce a 1'introduction de ces perturbations aléa-
toires, 1'équation de continuité %% + divp<3 = 0
ol p = a2 et od D est la vitesse de guidage per-
mettra de justifier la loi de probabilité de fré-
quence en |w|2.

On aboutit ainsi 3 1'idée que le mouvement d'une
particule est la combinaison d'un mouvement régulier
défini par la formule du guidage et d'un mouvement
aléatoire ayant le caractére d'une agitation brow-
nienne. Une comparaison simple fera mieux comprendre
la possibilité d'une telle superposition de mouve-
ments. Considérons 1'écoulement d'un fluide. Un gra-
nule placé a la surface du fluide sera entrainé par
le mouvement de celui-ci. Si le granule est assez
lourd pour ne pas subir sensiblement 1'action des
chocs individuels qu'il regoit des molécules invi-
sibles du fluide, il décrira l'une des lignes de
courant de l1'é€coulement hydrodynamique qui pourront
€tre comparées aux trajectoires de guidage. Mais,
si le granule est suffisamment léger, son mouvement
sera constamment perturbé par ses chocs individuels
avec les molécules du fluide. Il sera donc animé,
en plus du mouvement régulier qui tend & lui faire
suivre le long d'une ligne de courant 1'écoulement
général du fluide, d'un mouvement brownien qui le
fera constamment passer d'une ligne de courant sur
une autre. Nous obtenons ainsi une image de la super-
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position d'un mouvement aléatoire & un mouvement ré-
gulier analogue 3 celle que nous proposons pour la
particule.

Dans 1'image hydrodynamique que nous venons d'ex-
poser, c'est l'ensemble des molécules invisibles du
fluide qui joue le rdole d'un thermostat caché, ther-
mostat qui par son interaction constante avec le
granule, lui impose un mouvement brownien suivant
une conception bien connue de la Thermodynamique
statistique. Mais, dans le cas d'une particule qui
nous semble soustraite & toute action perturbatrice
comme un électron dans un atome d'hydrogéne, quelle
peut &tre l'origine de ces perturbations aléatoires
dont il nous parait nécessaire d'admettre 1'exis-
tence ? La question étant ainsi posée, on est évi-
demment amené a penser que toute particule, méme
quand elle nous parailt isolée, est constamment en
contact énergétique avec un milieu caché qui cons-
tituerait une sorte d'invisible thermostat. Cette
hypothése avait été envisagée, il y a une vingtaine
d'années, par Bohm et Vigier qui ont donné 3 cet in-
visible thermostat le nom de "milieu subquantique".
Nous pensons qu'il y a lieu d'admettre que la par-
ticule échange continuellement de 1'énergie et de
la quantité de mouvement avec un tel thermostat ca-
ché. Ces échanges auraient lieu régulidérement d'une
facon bien définie si le mouvement de guidage exis-
tait seul, mais il s'y superpose des échanges éner-
gétiques aléatoires ayant le caractére de fluctua-
tions d'un type bien connu en thermodynamique sta-
tistique.

D&s qu'on a admis 1'existence d'un milieu subquan-
tique caché, on est amené a se demander quelle est la
nature de ce milieu. Il est certainement assez com-
plexe. En effet, il doit d'abord ne pas pouvoir ser-
vir de milieu de référence universel, ce qui serait
en opposition avec la théorie de la Relativité. De
plus, i1 se comporte non comme un thermostat unique,
mais plutdt comme un ensemble de thermostats dont
les températures seraient reliées aux énergies pro-
pres moc2 des diverses sortes de particules. Bien
que des tentatives intéressantes aient déja été
faites pour préciser la nature du milieu subquanti-
que, il me paralt prématuré de discuter ici ce pro-
bléme.
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Dans le précédent chapitre et dans celui-ci, j'ai
exposé dans ses grandes lignes 1'état actuel de 1'in-
terprétation de la Mécanique par la théorie de 1la
double solution avec ses prolongements thermodynami-
ques récents. Je crois que cette interprétation,
quand elle aura été approfondie, étendue et peut-
étre sur certains points modifiée, permettra de
mieux comprendre la véritable nature de la coexis-
tence des ondes et des particules sur laquelle les
formalismes de la Mécanique quantique actuelle ne
nous fournissent que des renseignements statistiques,
souvent exacts, mais 3 mon avis incomplets.

REMARQUE FINALE.

La transformation de Lorentz permet d'écrire

- >
(13) ____EXZ = W,
-8 Moc2
d'oli 1'on tire aisément si 1'on pose W = ——— et
Myv /1—32
p = —_—
Y1-32
Moc2 Mov2
(14) —— = M c? VT - g7 4 ——
/g2 /g2

ce qui est la formule fondamentale de ma théorie du
mouvement d'une particule, formule qui implique que
1'énergie Moc2 est une chaleur se transformant sui-

vant 1'équation Q = Q, VI—BZ.

Il y a lieu alors de comparer la formule (14)
avec la formule usuelle

M0c2 1
(15) — = Myc? + Mc? (—— - 1)
/—]_'82 /—‘—]_82

qui implique 1'invariance de Myc®. C'est en admettant
que l'énergie Moc2 est une énergie de chaleur et, par
suite, n'est pas invariante que l1'on obtient la for-
mule (14) au lieu de la formule (15).

Et, si 1'on doit incorporer les potentiels dans la
masse propre, on peut se demander si ces potentiels
n'ont pas aussi une nature calorifique.




59

Remarquons encore que si le mouvement de la parti-
cule se ralentit, puis s'annule, on peut écrire :

0 M0c2 0 0 Mov2
(16) J § —— = j 8§ Myc? V1 - g% + I § ———
R T-g* B g /1-g*

on peut alors interpréter cette formule de la fagon
suivante :

"Au moment de 1'arrét de la particule, 1'énergie
récupérable, faussement nommée &nergie cinétique par
la Mécanique relativiste usuelle est égale a la véri-
table énergie qui disparait diminuée de 1'augmenta-
tion de 1'énergie calorifique interne de la particule
quand elle passe du mouvement 3 l'arrét".

Pour un photon se propageant librement, la masse
M, est extrémement petite et la vitesse extraordinai-
rement voisine de ¢ (B & 1). Alors la formule (14)
donne

uocz uov2
(17) =
/1-g82 1-82

et 1'énergie récupérable au moment de l'arrét du pho-
ton est, a4 trés peu prés, égale a l'énergie cinétique.

LA THERMODYNAMIQUE CACHEE DES PARTICULES ET L'OEU-
VRE DE BOLTZMANN.

René Dugas, grand historien des sciences d'une trés
vaste érudition, venait d'achever sous le titre "La
théorie physique au sens de Boltzmann" un ouvrage d'un
grand intéré@t sur l'oeuvre scientifique du fondateur
de la Thermodynamique statistique quand il mourut pré-
maturément en 1957. Sa famille réalisa en 1959 la pu-
blication posthume de ce livre précédée d'une préface
dont j'étais 1'auteur (Editions du Griffon, Neuchdtel,
Suisse).

En relisant cette magnifique analyse de la pensée
de Boltzmann, j'ai trouvé a la page 116 une remarque
dont je n'avais pas jusque 13 apergu la portée. Dans
un travail publié dés 1866, Boltzmann &tait parvenu a
la remarquable conclusion suivante : "Pour un ensemble
de particules en équilibre thermodynamique, le maximum
de l'entropie S qui est relié 3 la probabilité P de
1'état par la formule S = k log P correspond au mini-
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mum de 1'Action définie 3 partir du mouvement des
molécules”™. En relisant ce texte, j'ai été frappé

par la ressemblance entre cette remarque de Boltz-
mann et l'une des idées de base les plus importantes de
ma Thermodynamique cachée des particules. Je n'ai,

en somme, fait que transposer au niveau de cette
thermodynamique cachée une idée qui &tait déjia exacte
en Thermodynamique statistique ancienne.

Nous parvenons ainsi 3 une intéressante conclu-
sion. Quand Boltzmann et ses continuateurs ont déve-
loppé leur interprétation statistique de la Thermo-
dynamique, on a pu considérer la Thermodynamique
comme une branche compliquée de la Dynamique. Mais,
avec mes idées actuelles, c'est la Dynamique qui
apparalt comme une branche simplifiée de la Thermo-
dynamique. Je pense que, de toutes les idées que
j'ai introduites en théorie quantique dans ces der-
niéres années, c'est cette idée-13 qui est, de beau-
coup, la plus importante et la plus profonde.

DEMONSTRATION SIMPLE DE LA RELATION ENTRE L'ACTION
ET L'ENTROPIE.

Considérons le mouvement normal d'une particule M
le long de sa trajectoire T.

Ce mouvement s'effectue en
obéissant au principe de moindre

c Action. Mais si, au point A, la

AlLlB particule s'@carte un instant de

sa trajectoire normale en décri-

M T vant la boucle A B C, son mouve-

ment le long de cette boucle
correspond 3 une Action plus gran-
de que celle qui correspond 3 la portion A B de 1la
trajectoire normale. Il est évident que la portion
A B C de la trajectoire est moins probable que la
portion normale A C. Elle doit donc correspondre, en
vertu de la relation de Boltzmann :

(18) S = k log P

a4 une entropie plus faible. Nous voyons ainsi que
1'augmentation de 1'Action sur A B C par rapport a
1'Action qui correspond au trajet normal A C doit &tre
l1iée & une diminution de la probabilité P et, par
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suite 3 une diminution de 1'Entropie S. Sur le trajet
A B C, SA et 83 sont donc de signes contraires. Or,
la constante de Planck % peut €tre considérée comme
une unité d'Action et la constante de Boltzmann k
comme une unité d'entropie, bien que 1'Action et
1'Entropie ne soient pas en général des multiples
entiers de 7 et de k. I1 parait donc naturel d'éta-
blir entre les variations 8A et 8S de 1'Action et de
1'Entropie la relation générale

A S
(19) T %

Comment se justifie le signe - figurant dans la
formule (19) ? On peut le voir en admettant que la
particule est un systdme trop simple pour qu'on
puisse lui attribuer une entropie. Il est alors natu-
rel de considérer l'entropie S définie ci-dessus
comme se rapportant au thermostat caché. L'entropie
S ainsi définie diminue quand le thermostat caché
céde de la chaleur 3 la particule, ce qui explique
la présence du signe - dans la formule (19).

Je me contente de signaler que 1'on peut dévelop-
per la théorie en attribuant &8 la particule une tem-
pérature T qui dépend de sa masse propre m,.
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Sur P'interprétation
de I'expérience
de Pfleegor et Mandel

Une belle expérience due 3 MM. Pfleegor et Mandel
(') a démontré que 1'on peut déceler 1'existence de
franges d'interférences dues 3 la superposition des on
des émises par deux lasers indépendants dans des condi-
tions telles qu'il n'y ait pratiquement jamais deux
photons arrivant a4 la fois dans l'appareil d'interfé-

rences., L'interprétation de ce résultat avec les idées

actuellement admises en Physique quantique est diffi-
cile comme on le voit en lisant la conclusion de 1'ar-
ticle de Pfleegor et Mandel. Au contraire, elle nous
semble trés simple et trés claire avec les idées que
1'un de nous (L.B.) a reprises depuis quelques années
sur la nature de la coexistence des ondes et des par-
ticules. Nous allons le montrer, mais, comme nos idées
sur ce sujet sont peu connues, Nous commencerons par
en donner un trés rapide résumé. Pour plus de détails,
on pourra se reporter aux publications indiquées dans
la bibliographie (2).

Pour nous, conformément aux images classiques, la
particule est un trés petit objet constamment locali-
s& dans 1'espace et l'onde est un processus physique
qui se propage dans l'espace au cours du temps suivant
une certaine équation de propagation. L'onde, que nous
nommons l'onde v, doit &tre bien distinguée de 1'onde
statistique Y arbitrairement normée de la Mécanique
quantique usuelle 3 laquelle elle est reliée d'une
fagon qui est précisée dars nos publications anté-

(x) En collaboration avec Andrade e Silva, publié en
anglais dans Physical Review, 172 {(voir page 24).
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rieures. Cette onde vV est d'une trés faible amplitu-
de et ne transporte pas d'énergie, du moins d'une
facon sensible. La particule est une trés petite ré-
gion de haute concentration d'énergie incorporée i
1'onde dans laquelle elle constitue une sorte de sin-
gularité en général mobile. En raison de cette incor-
poration de la particule 3 1'onde, la particule possé-
de une vibration interne telle qu'au cours de son dé-
placement, elle reste constamment en phase avec la
vibration de son onde. Nous avons montré, dans nos
exposés antérieurs, que la trajectoire '"moyenne" de

la particule est déterminée en fonction de la forme

de 1'onde par une certaine "loi du guidage", mais 3

ce mouvement moyen se superposent de continuelles
fluctuations correspondant & une Thermodynamique ca-
chée des particules (). On peut en déduire 1'expres-
sion de la probabilité pour que la particule se trouve
a 1'instant t dans 1'élément de volume dT de l'espace,
expression qui dans le cas ot 1'on peut adopter pour
l'onde v 1'équation de Schrodinger a la forme bien
connue |¢}2.

Si 1'on applique les idées générales précédentes
au cas particulier des ondes &lectromagnétiques et
des photons ("), on est amenéd i considérer 1'onde v
des photons comme une trés faible onde &lectromagné-
tique ob&issant trés sensiblement aux équations de
Maxwell. C'est cette circonstance qui explique, pen-
sons-nous, le fait en premier abord paradoxal que la
théorie &lectromagnétique de Maxwell suffise & inter-
préter un trés grand nombre de phénom&nes bien qu'elle
ignore 1'existence cependant certaine des photons. En
effet, suivant la loi du guidage, la répartition des
photons dans l'espace et la phase de leur vibration
interne se trouvent &tre enti@rement en accord avec
les prévisions de la théorie électromagnétique. Dans
un champ d'interférences, la probabilité de la pré-
sence d'un photon en un point est donc proportionnelle
au carré de l'amplitude (intensité) de l'onde ¥ en ce
point de sorte que la répartition statistique dans 1la
région d'interférences d'un grand nombre de photons
est bien celle que prévoit la théorie ondulatoire
électromagnétique.

En utilisant les conceptions qui viennent d'@tre
résumées, nous allons maintenant développer notre in-
terprétation du résultat de l'expérience de Pfleegor
et Mandel. Pour nous, dans la cavité d'um laser, il
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s'établit une onde électromagnétique v stationnaire
sur laquelle des photons sont émis par certains
atomes dans un processus quantique d'émission sti-
mulée. La cavité a une partie de sa paroi qui est
en partie transparente. L'onde v intérieure fil-
tre donc légérement & 1'extérieur pendant toute

la durée de 1'émission laser. S'il y a deux lasers
indépendants disposés de facon que les ondes v
qu'ils émettent aillent se superposer dans un appa-
reil d'interférences, comme c'est le cas dans 1'ex-
périence étudiée, les franges d'interférences exis-
tent dans l'appareil méme quand aucun photon ne
vient permettre de les détecter. I1 est d'ailleurs
physiquement tout 3 fait &vident que chaque photon
arrivant dans la région d'interférences provient

de 1'un des lasers, celui oii se trouve 1'atome qui
1'a émis par une transition stimulée.

Si les lasers émettent trés peu de photons 3
l'extérieur, un photon sortira de temps en temps
de 1'un des lasers et arrivera isolément dans la ré-
gion d'interférences. S'il y manifeste sa présence
par une localisation observable, ce sera le plus
souvent dans une région de grande amplitude de la
superposition des ondes v émises par les deux la-
sers. En effet, dans la région d'interférences, le
mouvement du photon est guidé par cette superposi-
tion et non pas par l'onde simple qui le portait 2
la sortie du laser ot il est né.

Si, au bout d'un temps suffisamment long (& 1'é-
chelle de la durée trés courte d'une impulsion la-
ser), il arrive dans la région d'interférences un
nombre suffisant de photons, provenant de 1'un ou
de 1'autre laser, pour que l'on puisse détecter les
franges d'interférences, ces photons se répartiront
statistiquement dans cette région proportionnelle-
ment aux intensités locales des ondes électromagné-
tiques v. Bien que les photons arrivent isolément
les uns aprés les autres, on pourra donc finalement
observer les franges d'interférences exactement pour
la méme raison qu'on peut les observer dans les ex-
périences d'interférences ordinaires 3 trés faible
intensité du type Taylor. L'interprétation du résul-
tat expérimental de Pfleegor et Mandel nous parait
ainsi obtenue d'une fagon qui nous semble trés claire
et trés intéressante.
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Mais nous voulons insister encore sur certains
points importants de notre interprétation.

Un photon provenant de 1'un ou de l'autre laser
et arrivé dans la région d'interférences est guidé,
cela nous paralt physiquement certain, par la super-
position des ondes émises par les deux lasers et
. est pour cette raison qu'il est impossible de sa-
voir dans lequel des deux lasers il a pris naissance.
Notre interprétation de cette impossibilité ne fait
intervenir ni les relations d'incertitude d'Heisenberg,
ni 1'indiscernabilité des bosons qui, pour nous, n'est
qu'une apparence résultant des perturbations aléatoi-
res subies par les photons et n'implique pas une per-
te de personnalité.

L'erreur commise dans les interprétations que 1'on
cherche actuellement 3 donner de ce genre de phéno-
ménes est, croyons-nous, de parler d'interférences
entre photons comme si les interférences étaient dues
aux photons. On sait, en effet, depuis Fresnel que
les interférences sont un phénoméne d'origine ondula-
toire. Les interférences d'une onde €lectromagnétique
v se produisent, selon nous, d'une fagon classique,
mais en raison de la trés faible intensité de 1'onde,
elles ne sont pas par elles-mémes observables. Néan-
moins, en raison du guidage du photon par la superpo-
sition des ondes qui interférent, l'arrivée d'un pho-
ton en un point d'une région d'interférences sera
d'autant plus probable que 1'amplitude de 1'onde v
résultante en ce point sera plus grande. C'est donc
dans les régions de plus grande intensité de 1l'onde
que les photons auront le plus de chance de produire
des phénoménes locaux observables tels qu'effet photo-
électrique, noircissement local d'une plaque photo-
graphique, etc. En résumé, ce ne sont pas les photons,
mais les ondes électromagnétiques v qui produisent les
interférences : le rdle des photons, qui est essentiel,
est seulement de permettre de détecter les interfé-
rences par la manidre dont ils se répartissent statis-—
tiquement dans la région oli existent ces interférences.
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Sur les relations d’incertitude

En ce qui concerne les relations d'incertitude,
il est essentiel de commencer par remarquer que, si
1’on considére un train d'ondes mathématiquement re-
présenté par une superposition de composantes de
Fourier, c'est le train d'ondes qui est la réalité
physique. Les composantes de Fourier n'existent que
dans 1'esprit du théoricien. Il en résulte que, pour
nous comme en M&canique quantique usuelle, les gran-
deurs 8x, 8y, 8z mesurant les dimensions du train
d'ondes représentent les incertitudes sur la posi-
tion de la particule dans ce train d'ondes. Pour
nous, cette position existe a4 chaque instant, mais,
comme cette position est déterminée par la loi du
guidage et par les perturbations aléatoires d'ori-
gine subquantique, on voit aisément qu'elle nous
reste inconnue.

La situation est, au contraire, tout a fait diffé-

rente en ce qui concerne les incertitudes dpx, Sp
y
6pz. Pour nous, ces incertitudes n'ont aucune exis-

tence réelle dans 1'état unitial puisque les Pys> Py»

y

p_ du développement de Fourier n'ont pas de sens phy-

z
sique. Ces incertitudes ne prennent un sens physique
que, quand 1'état initial ayant &té détruit par une
intervention expérimentale, la particule se trouve
animée d'un mouvement qui appartient & une suite de
mouvements ol la quantité de mouvement de guidage
peut &tre considérée comme ayant une valeur bien dé-
finie.

o o
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Les incertitudes 8x, 8y, 6z et les incertitudes
pr, 6py, sz étant définies comme nous venons de le

faire sont bien reliées par les relations
(1) Gx.ﬁpx Zh Gy.épy Zh Gz.épz 2 h

Mais les incertitudes 6px, ﬁpy, sz ne se rappor-

tent pas au méme état que les incertitudes §x, 8y,
8§z et cela fait tomber 1l'interprétation que 1'on
donne habituellement aux relations d'incertitude et
les conclusions qu'on prétend en tirer.

J'ai déja parlé dans 1'introduction du fameux
argument connu sous le nom de "microscope d'Heisen-
berg". Il consiste essentiellement a appliquer & un
seul photon qui, aprés avoir subi un choc Compton
avec un électron, pénétre dans un microscope la théo-
rie du pouvoir séparateur bien connue en optique clas-
sique. Mais la formule du pouvoir séparateur n'est
valable que pour une onde lumineuse transportant un
grand nombre de photons et n'est aucunement applica-
ble & un seul photon.

Je veux maintenant illustrer par un exemple con-
cret les considérations développées dans le présent
paragraphe.

2. LIBERATION D'UNE ONDE STATIONNAIRE.

Considérons une onde stationnaire emprisonnée en-
tre deux miroirs paralléles de distance L.

} »x AB=1L
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Cette onde stationnaire est représentée en nota-
tion complexe par 1'expression :

(2) 2a sin 2;3 ez'nl\)t
avec :
(3) L=n?

ol n est un nombre entier au moins égal a 1.

Si 1'on calcule la quantité de mouvement de la
particule dans son onde par la formule de guidage,

on trouve p_ = - LI 0 et 6x = L. On a donc :
X 9x
8 =
(4) x.5pX 0

La relation d'incertitude n'est donc pas satis-—
faite dans cet état initial, mais nous avons calculé
p,, nous ne 1'avons pas mesuré. Pour le mesurer, nous

pouvons enlever brusquement les miroirs A et B. Les
ondes monochromatiques qui interféraient et qui n'é-
taient qu'une représentation math&matique de 1'état
d'interférence vont alors se séparer et former deux
trains distincts se dirigeant 1'un vers la droite,
1'autre vers la gauche. I1 y aura alors une probabi-

PR .| .
1lité égale & 3 Qque la particule se trouve dans 1'un

de ces trains d'ondes, mais nous ignorons dans le-
quel des deux elle est localisée. Si la particule
manifeste sa présence, nous connaltrons sa quantité

de mouvement qui sera P = + h si elle est dans 1le
train d'ondes de droite et P, = ~ % si elle est dans
le train d'ondes de gauche. L'incertitude sur p, a

donc la valeur 6px = 2 ; . Quant & l'incertitude sur
x, elle est égale a L, §x = n % d'aprés (3). On trou-
ve donc finalement :

; . n L. nh 2 h

2
puisque n est un nombre entier supérieur ou égal a
I. La relation d'incertitude se trouve donc vérifiée
en ce qui concerne le P mesuré, mais c'est a 1'aide

(5) §x.6p, = 2
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d'une opération qui a modifié 1'état ondulatoire
initial pour lequel 1'&quation (4) était valable.

3. AUTRE EXEMPLE DE RELATION D'INCERTITUDE.

Dans le cas que nous venons d'étudier, il y avait
une séparation dans l'espace de deux trains d'ondes
dont la superposition constituait 1'état initial.
Nous voulons maintenant &tudier un cas oi il n'y a
pas 3 proprement parler de séparation de trains d'on-
des.

Considérons le passage d'un train d'ondes approxi-
mativement monochromatique 3 travers un trou de lar-
geur 8x percé dans un écran et suffisamment petit
pour qu'un phénoméne de diffraction se produise 3
sa sortie,

Quand un photon
traverse ce trou, sa
quantité de mouvement
se réduit 4 sa compo-

P sante normale au

trou et 1'on a dpx= 0.

" _ Par suite 5x.5px =0
Tp . et la relation d'in-
Sx certitude n'est pas

satisfaite. Mais, un
instant plus tard,
1'onde,qui a franchi
le trou et subi un
effet de diffraction,
a des surfaces d'onde dont la forme est analogue 3
C. Si alors le photon est parvenu au point M, sa quan-
tité de mouvement p a une composante p, non nulle que

d'ailleurs nous ignorons puisque la position du pho-
ton nous est inconnue et nous avons la relation :

(6) 5x.6px Z h

Mais ici encore les incertitudes §x et pr ne se

rapportent plus a4 un méme &tat puisque, quand le
photon se trouve en M, il n'est plus dans le trou de
largeur 8x. Et ceci fait encore tomber la maniére
dont on interpréte habituellement les relations d'in-
certitude et les conséquences qu'on en tire.
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Ici la situation n'est plus la méme que celle que
nous avions envisagée dans le précédent paragraphe.
Ici, en effet, le pr ne résulte plus de la sépara-

tion compléte dans l'espace de deux trains d'ondes.
Elle résulte d'une relative séparation des composan-—
tes de Fourier de 1'onde incidente due 3 un effet de
diffraction.

4. SUR LA RELATION D'INCERTITUDE &n.8¢ = 2w,

La théorie de la seconde quantification et la théo-
rie quantique des champs qui en dérive ont conduit 3
admettre la validité d'une relation d'incertitude en-
tre le nombre des photons portés par une onde élec-
tromagnétique et sa phase qui est

7) §n.8¢ =2 2w

On a cherché a donmer & cette relation une inter-
prétation la rattachant i la 4° relation d'incertitu-
de de Heisenberg dont la véritable interprétation a
é6té, elle aussi, assez discutée. Le raisonnement qu'on
a proposé pour rattacher cette 4° relation d'incerti-
tude

(8) SW.t 2 h

a2 la relation (7) est le suivant. Soit un train d'on-
des de fréquence V transportant n photons. Si 1'incer-
titude sur n est Sn, 1'incertitude sur l'énergie est
8W = 8n.hv. D'autre part, l'on peut écrire 8¢ = 2TVit
oi 6t est une incertitude sur le temps. On a alors

2T sw.6t et de (8), on déduit (7).

Sn.8p = N

Cette démonstration ne me parait pas satisfaisante.
D'abord la 4° relation d'incertitude (8) se déduit de
la relation non quantique Sv.06t > 1 qui est classique
en théorie des ondes et c'est simplement en multipliant
par & que 1'on obtient (8). Or, on n'a pas le droit de
poser SW = 6n.hv et d'introduire ce SW dans (8) puis-
que l'incertitude 8W de (8) provient en réalité de la
largeur spectrale 8V et non d'une incertitude sur le
nombre des photons sans intervention de la largeur
spectrale. D'autre part, dans la relation 6v.8t = |
dont dérive (8), 6t n'est pas une incertitude sur la
coordonnée temps, c'est la durée de passage du train
d'ondes en un point de 1'espace ou, si l'on préfére,
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c'est la durée d'émission T du train d'ondes par la
source, Il semble donc bien que la démonstration
rappelée ci-dessus repose sur les confusions.

Pour trouver la vérification de la relation (7),
il nous semble que 1'on doit partir de 1'idée sui-
vante : dans toutes les relations d'incertitude de
la théorie quantique portant sur des produits de la
forme 8a.8b, les incertitudes sont des incertitudes
sur le résultat d'une mesure correspondante, les
deux grandeurs a et b n'étant pas simultanément me-
surables dans un méme processus de mesure.

Nous pouvons appliquer cette idée 3 la relation
(7) car n et ¥ ne sont pas simultanément mesurables.
En effet, pour mesurer n il faudrait pouvoir faire
produire par les n photons portés par l'onde des
effets photoélectriques séparés et dénombrables. Au
contraire, pour enregistrer la phase, nous devons
faire coopérer les photons du train d'ondes a la pro-
duction d'une oscillation dans un systéme du genre
circuit oscillant, cavité résonnante, etc, comme je
1'ai expliqué dans une Note aux Comptes Rendus de
1'Académie des Sciences (258, 1964, p. 6345). Or,
cette opération n'est pas compatible avec un dénom-
brement des photons. Les conditions sont donc remplies
pour qu'il y ait une relation d'incertitude entre n
et ¥.

Pour préciser notre point de vue, nous allons cher~-
cher 3 imaginer un procédé de mesure tel que les in-
certitudes 0n et 8¢ puissent avoir toutes les deux
une valeur finie. Soit un train d'ondes portant un
nombre Znconnu n de photons et ayant une largeur spec-
trale 6V reliée 3 la durée d'émission T par la rela-
tion classique :

(9) Sv.T = 1

Si nous voulons chercher a déterminer 3 la fois,
avec la plus grande précision possible, le nombre des
photons et la phase de l'onde, nous devons faire tra-
verser par le train d'ondes un dispositif ol se pro-
duisent des effets photoniques de nature quantique et
en principe dénombrables, puis la faire arriver sur
un dispositif susceptibles d'osciller en enregistrant
la phase.
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Si alors, dans le dispositif de comptage des pho-
tons par effet photoélectrique, nous observons m
effets, 11 arrivera seulement 6n = n-m photons sur
le circuit oscillant, 6n étant inconnu puisque 7 est
inconnu. Si les 0n photons en question agissent sur
le circuit oscillant par impulsions successives
rythmées sur la phase de l'onde, ainsi que je l'ai
expliqué dans la Note citée plus haut, il est rai-
sonnable de supposer que le systéme oscillant ne
pourra se mettre 3 osciller réguli&rement que s'il
regoit au moins une impulsion par période. Cela nous

conduit 3 écrire 5n.$-> 1 ou d'aprés (9) :

\
>
(10) (Sn/a—\y
Mais il nous faut maintenant définir ce que nous
appelons 1'incertitude 6¢. Nous proposons de le faire
de la fagon suivante. Si l'onde était strictement mo-
nochromatique, la variation de la phase pendant une

P 1 L, < . . 5
période T = , serait égale a 2T, ce qui revient a

dire qu'elle ne varierait pas puisqu'elle n'est défi-
nie qu'a 27 prés. Mais, en réalité, le train d'ondes
a toujours une largeur spectrale 6V et la variation
de la phase pour la fréquence V + 6V pendant le temps
T sera, & 2T prés :

(11) S¢ = 2mwdvT = 27 6—:

Si nous admettons que le Sy défini par (11) peut
8tre considéré comme 1l'incertitude sur la valeur de
la phase, la comparaison des formules (10) et (11)
nous fournit immédiatement la relation (7) qui corres-—
pond donc bien ainsi & une expérience oG l'on a cher-
ché 3 déterminer a4 la fois, mais nécessairement avec
une certaine imprécision, le nombre des photons porté
par le train d'ondes et la valeur de sa phase.

Le raisonnement qui vient d'&tre exposé& nous a per-
mis de retrouver la relation (7) sans avoir recours
a2 la 4° relation d'incertitude d'Heisenberg. La rela-
tion (7) nous apparait ici comme résultant unique-
ment de 1'hypoth&se qu'un circuit oscillant subit des
impulsions discontinues dues aux arrivées successives
des photons qui sont incorporés dans le train d'ondes
incident et ont une vibration interne rythmée par la
vibration de 1'onde. Notre démonstration de la for-




74

mule (7) se trouve ainsi découler de nos idées géné-
rales sur la coexistence, avec accord des phases,
des photons et des ondes dans les radiations.

Nous devons ajouter l'importante remarque suivante
relative 3 la définition (11) que nous avons adoptée
pour 8¢ : la grandeur O¢ ne doit pas étre définie i
1'aide de la phase d'une onde plane monochromatique,
cas idéal qui n'est jamais réalisé physiquement, mais
toujours en considérant un train d'ondes de longueur
finie ayant une largeur spectrale 6v., La grandeur &y
définie par (11) mesure en quelque sorte "le défaut
de monochromaticité"™ du train d'ondes considéré et
c'est 1a son véritable sens. En d'autres termes, la
véritable signification du 8¢ de la relatiom (7) ne
doit pas €tre cherchée dans l'existence d'une incer-
titude sur la phase d'une onde plane monocchromatigque,
mais dans le fait que 1'on a toujours affaire & un
train d'ondes ayant une largeur spectrale non nulle.
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Mouvement d’un photon
dans un milieu
réfringent ou absorbant

MOUVEMENT DANS UN MILIEU REFRINGENT.

Je voudrais d'abord mettre en évidence la diffi-
culté qui se présente quand on étudie le mouvement
des photons dans un milieu réfringent peu disper-
sif et d'indice n > 1 comme c'est le cas du verre.

Le photon se déplagant alors avec une vitesse v

. < N : c
sen31b1egent égale 38 la vitesse de phase V = a° °on
~ C . .
a vV = Y <c?, Or, si 1'on se représente le photon
n

comme une particule de masse Mp se déplagant & la vi-

tesse vV, on est amené A4 écrire :
2

(1) W = hY = E&i__ p = h _hy Eﬂi__

f—]_BZ A v /'—"1_82
Mo étant la masse propre du photon en mouvement ralen-
ti (*). Il en résulterait la relation Vv = ¢ , or

cette relation n'est pas satisfaite.

On peut retrouver cette difficulté en partant de
deux équations fondamentales. La premiére est la for-
mule relativiste de 1'effet Doppler

(*) Mo est une masse beaucoup plus grande que la masse
propre U, du pho%on dans le vide puisque
Moc? H,e
hV = —— = —

VTR

avee € ewxtraordinairement petit.
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1
<)<

(2) V) =V ——
/T=g?

ol Vy est la fréquence de l'onde dans un systéme de
référence attaché a3 la particule et ol V et V sont
la fréquence et la vitesse de phase dans le systéme
de référence ol la particule a la vitesse v.

La seconde équation fondamentale est celle qui,
dans les conceptions de la théorie de la double solu-
tion, exprime que la particule se déplace dans son onde
de telle fagon que sa vibration interne reste constam-
ment en phase avec celle de l'onde.

Cette équation est la suivante

oY % dn 3‘pi

(3) 5t * %m ac - 3t

N . 1 N
ol ¢ et ¢, sont respectivement, au facteur T Pres, la

phase de 1'onde et la phase interne de la particule.
La variable n est comptée suivant la normale 3 la

surface d'égale phase et dn est la vitesse de la par-

dt
ticule le long de cette normale. Nous admettrons la
relation W = hv entre l'énergie de la particule et la
fréquence v de 1'onde. On a alors d'aprés (2)
w, V1-g*
(4) W= ——
1 - ¥
\Y
Cette formule ne coincide avec la formule usuelle-
Wo
ment admise W = ——— que si l'on a 1 - - - g?,
/1-32 v
c'est-a-dire si vV = c? et nous venons de voir que

cette formule n'est pas exacte dans un milieu réfrin-
gent.

Dans un trés ancien article sur la réfraction atmos-
phérique (%), j'avais apergu cette difficulté,et, dans
une remarque finale, j'avais montré qu'il fallait
alors introduire une action du milieu réfringent sur

(*) J. Phys. Rad. série VI et VII, Janvier 1926,p.1-6.
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le photon se traduisant par l'introduction d'un po-
tentiel P que 1l'on pourrait appeler "potentiel d'en-
vironnement". On est alors amené 3 écrire :

M, c? MV

0 C oV -

(5) W=-——=+P P = — = W-k 3
/1-B2 /1-B% c?

de sorte que 1'équation (3) nous donne, puisque, compte
dy .

i _, /ST Rz v
gt “VorimE=vi-g)

o

tenu de (2), nous avons maintenant

Ll A

l
~

(6)

[od

Nous en tirons l'expression suivante de P :
c? c?
P = - =) = hv - =
(7 W= S = hv (- 5
Cette relation nous montre que P est nul, comme
cela doit etre, quand le milieu traversé par 1'onde
n'influe pas sur sa propagation puisqu'alors la rela-
tion vV = ¢® est valable.

MovV
En posant m, = ;—» on trouve d'aprés (5) et (7)
¢ -
m°c2 N Mov
(8) W= —— P = ——
/1-g% V1 -8°

On voit alors que, dans le milieu réfringent, il y
a lieu de distinguer deux masses propres m; et M,
pour représenter le mouvement de la particule. On
peut appeler my, la "masse énergétique" correspondant
3 l'énergie totale, compte tenu du potentiel P, et M,
la masse de translation, c'est-d-dire celle qui cor-
respond au mouvement de la particule.

Résumons ce qui précéde. Les formules (2) et (5)
usuellement admises en Mécanique ondulatoire sont ob-
tenues en supposant que la particule se déplace dans
le vide ou dans un milieu qui n'influe pas sur sa
propagation. Alors au point de vue de la Relativité
restreinte, tous les systémes de référence galiléens
sont équivalents et les formules (2) et (5) en décou-
lent. Mais si 1'onde portant la particule traverse
un milieu immobile qui influe sur sa propagation, le
systéme de référence attaché 3 ce milieu a un rdle
privilégié et c'est 13 ce qui oblige, pour conserver
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les formules W = hv et p =
tiel P.

, 4 introduire le poten-

T

La théorie de la double solution, en incorporant
dans la masse propre le potentiel quantique Q qui
peut varier suivant la position de la particule,
conduit & considérer le mouvement de la particule
comme correspondant 3 une Dynamique A masse propre
variable. Dans le cas du mouvement de la particule
dans un milieu réfringent, nous pouvons aussi déve-

lopper une Dynamique 3 masse propre variable en
partant du principe de moindre Action

ta
(9) 8 f L de =0
t
oi £ est la fonction de Lagrange que nous défini-

rons 4 l'aide de la masse propre m, en écrivant
(10) L = -mc? /1T - g2

Le principe de moindre Action conduit alors i
écrire :

d 3L, _3C .
(11) ar (—T—) < 3 (qk = E?—)
ady k
ce qui nous donne ici
dm
d Ly _ _ 2 g2 0
(12) dt Gv) =« ! B Ex

la variable x &tant comptée sur la trajectoire dans
le sens du mouvement. Comme l'on a

m,v

0
(13) i &y
VET
on trouve
d m,v dm,
(14) 'a—t(——) = - ¢2 mZ EX_
V132
d'oli, en multipliant par m, J1 - g2,
mc?
(15) d( ) =0

1-32
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2

moc

ce qui est bien vérifié si ——— = hV,.
/1-p2
Deux remarques sont ici trés intéressantes a fai-
re. La premiére est la suivante, quand une particule
se déplace dans le vide ou dans un milieu qui n'in-
flue pas sur son mouvement, on peut définir sa quan-

tité de mouvement par EX, c'est-d-dire comme le flux

c
- . . . - 2 . .
de 1'énergie divisée par c”. Og, on pourrait croire
. > m,C > .
que l'on devrait poser p = —_ valeur qui
Vi-g° ¢

différe de (8). Mais c'est hien l'expression (8)

e .
de p qui est exacte. En effet, 1'énergie W est 1la

m, c? m,c?
0 0 vV
somme des deux termes —— et P = —— (— - 1)
Y1-p2 1g? c?

dont le premier est égal a4 l'énergie transportée
par la particule en mouvement et dont le second
terme traduit l'action du milieu sur la particule.
Seul le premier terme correspond & un flux d'énergie

2 Mov
qui, divisé par ¢ est bien égal & ——.
Vl"-B‘
Voici la seconde remarque trés importante que je
myc
veux faire. La formule ———— = hV montre que m, ne
/1-B2
dépend pas de v, que c'est une constante. Au contraire
moc2
la relation My, = ————— montre que M, est variable
RAE N
avec v et V. Si N désigne un vecteur unité ayant la
direction de la vitesse et tel que 1l'on ait ; = Ev,

. on pourra écrire la quantité de mouvement sous la

E‘Q’/forme Mvante :
2

2

> M€ v Mo € N _hv > > h

(re) P =y P v oy NENY
Y18 V1-R

ce qui est satisfaisant.

Bien entendu, tous les calculs précédents se rap-
portent uniquement au mouvement de guidage de la
particule, abstraction faite des perturbations
d'origine subquantique qui font passer continuelle~
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ment la particule d'une trajectoire de guidage sur
une autre.

Etudions encore rapidement le cas de la propa-
gation d'une onde sensiblement plane monochromati-
que dans un milieu réfingent. Représentons deux
surfaces d'égale phase :

ON est la direction
de la normale & 1'onde,

R N OR celle du rayon passant
A = VA
« par O, N et VN v N
la longueur d'onde et
0 la vitesse de phase le

long de la normale i
1'onde, tandis que AR

et Vo = vAR sont la longueur d'onde et la vitesse

de phase le long du rayon. Ve est la vitesse de la

particule le long du rayon qui est sa trajectoire de

guidage. Enfin je pose Ve = Be et je définis toutes

-

les vibrations par ae R ol ¢ est la phase.

D'aprés la formule de ralentissement des horloges
en mouvement, la phase interne wi de la particule

varie pendant le temps dt de :
de .

(17) — = v, /T - B° dt

Quant 3 la phase ¥ de 1'onde au point ol se trou-
ve la particule de vitesse Ve elle varie de

ay dR _ VR ~ VR
(18) = vdt = = = (V - ) dt = V(1 V_)dt
R R R
Si nous admettons le principe fondamental que
d¥ = d¢i, nous obtenons
, - R
VR
(19) V, =V

e e R ey e
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ce qui est précisément la formule de Doopler pour
un observateur animé du mouvement de la particule.
Comme précédemment, nous définirons la masse propre
totale m, par :

m,c
(20) —— = hV

-

/]_FL

et la masse propre M, correspondant au mouvement de
la particule par

2
h MOVR ~ myc

(21)

1
p b v

R R 1‘82 1_Bz VR
ce qui nous donne entre les deux masses propres la
relation :

M v V
_ 9 RR
(22) m, = 2
c

De nombreuses extensions des idées générales
contenues dans le présent paragraphe seraient cer-
tainement possibles. Je ne citerai que le cas du
mouvement d'un photon dans un milieu réfringent qui
varie d'un point 3 un autre ou méme au cours du
temps, mais je pense que beaucoup d'autres problé-

mes pourralient €tre &tudiés.

ETUDE DU CAS DU MOUVEMENT "RETROGRADE" 0OU v EST
DE SIGNE CONTRAIRE A V.

Dans ce qui précé&de, nous avons supposées connues
la vitesse de la phase V donnée en fonction de 1'in-
. ~ . c .
dice de réfraction n par la formule V = o et la vi-

tesse v de la particule qui doit €tre assimilée 3
la vitesse de 1'&nergie et qui est donnée par la
formule de Rayleigh

3 1

L _°%X_ 13w
(23) v 3y c  av

Si nous prenons la direction de propagation de 1la
phase comme direction positive et si v se trouve
ainsi avoir une valeur positive, les vitesses v et V
se trouvent avoir une valeur positive, les vitesses
de la phase et de l'énergie ont la méme direction
et toutes les formules précédentes sont valables
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Mais il est bien connu que pour certaines formes
de la fonction n(V) 1la formule (23) peut donner une
valeur négative de v..Dans ce cas remarquable, bien
connu en théorie ondulatoire classique, la particule
telle que nous la concevons est animée d'un mouve-
ment "rétrograde", c'est-d-dire qu'elle remonte le
cours de 1'onde qui la transporte. Nous devons alors
voir comment doivent &étre modifiées les formules des
précédents paragraphes.

>
Désignons par N le vecteur unité dirigé dans le

sens supposé positif de la propagation de la phase
> > >
de l'onde et définissons le vecteur k par k = N ;.

La formule (23) appliquée au mouvement rétrograde
de la particule donne :

(24) v <0

Les variations d¢ et dWi de la phase de 1'onde et

de la phase interne de la particule quand on suit le
mouvement de celle-ci sont toujours,en tenant
compte de (2) :

(25) dp = wae(l - ) de; = W, Y1-8" dt + wde(1-7)
avec maintenant v < 0. On a donc toujours dy = dWi et

le principe de 1l'accord des phases est toujours sa-
tisfait.

Ecrivons de nouveau les équations :

2
Moc > > h > > Mov
(26) W=h=——+P k=Njyx p=N——
/1-g* /1-g*
avec P = W(l - %V)' Nous savons qu'elles sont vala-
> -
bles pour v > 0 avec p = k. Mais si on les conservait
2
pour v < 0, W - P = - serait négatif. M0 devrait

étre positif et p serait positif. Comme ces consé-
quences ne sont pas satisfaisantes, je propose de
définir M0 dans le cas v < 0 par l'expression posi-
tive

- - ¥
(27) My = - o5
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2

M c
au lieu de M0 = EV V1 - Bz. Puisque W - P = L ,
v /782
ceci entraine que :
o2
2 = -
(28) Po= W (1 + )
o2
au lieu de P = W (1 =~ ;6)' On trouve alors, puisque
W = hv,
My vV
(29) W=hv=~- ————>0
/TR2
> _ﬁw + h > >
P =g =" N = k = + grad ¢

avec ces nouvelles définitions, la masse propre M,
est toujours positive, méme quand la particule est
animée d'un mouvement rétrograde. Si alors la parti-
cule se trouve soumise 3 un champ qui, dans le vide,
1'accélérerait, l'action de ce champ s'exerce en réa-
lité sur la propagation de l'onde puisque c'est dans
1'équation d'ondes que figure le potentiel dont elle
dérive. Dans le vide ou dans un milieu réfringent oi
v > 0, cette action augmenterait la vitesse v, mais
dans le cas d'un milieu dispersif avec mouvement ré-
trograde de la particule, elle fera croitre la quan-

tité de mouvement ; = - ; dans le sens opposé a 1la
propagation de 1'onde. Tout se passera donc alors
comme si la particule de masse propre positive défi-
nie par (27) était soumise & un champ électrique in-
verse de celui qui lui est réellement appliqué. Si

la particule posséde une charge électrique € et si
elle est soumise 3 un champ électrique, elle se com—
portera comme une particule de masse propre positive,
mais de charge électrique - €.

C'est de cette fagon, me semble-t-il, que 1'on doit
interpréter ce qui se passe dans un semi-conducteur
quand 1'onde associée 3 un électron se propageant
dans la structure interne du solide a une fréquence
qui correspond 3 la partie supérieure d'une bande de
conduction, cas ol la formule (24) de Rayleigh montre
que la vitesse de groupe est en sens inverse de la vi-
tesse de phase. La plupart des auteurs qui exposent
la théorie des semi-conducteurs attribuent alors 3 la
masse de 1'&lectron une valeur négative et j'ai 1'im-
pression que cela provient de ce qu'ils &crivent
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- > A i . > >

P = k alors qu'il faudrait écrire p = - k. Remarquons
> >

pour terminer que, quand on a v < 0 et p = - k, on

doit remplacer la formule usuelle du guidage
>

> > >
p = - grad ¥ par la formule p = + grad ¥ avec chan-
gement de signe au second membre. Mais, comme nous
1'avions dit plus haut, la définition du guidage par
la coincidence constante de la phase interne de 1la
particule avec la phase de 1'onde est plus générale
et toujours valable.

SUR LA THEORIE DES ANTIPARTICULES.

La théorie exposée ci-dessus qui repose essen-—
tiellement sur la formule de Rayleigh présente une
grande analogie avec la théorie des antiparticules.

La théorie des antiparticules est apparue d'abord
en Physique théorique pour l'interprétation de la
production des paires électron-positon sous la forme
de la théorie des "trous" de Dirac. Dans cette théorie,
on admet qu'il existe dans le vide un océan d'élec-
trons cachéde charge &lectrique ~ e et d'énergie né-
gative - mocz. L'apport par un agent extérieur d'une
énergie 2m°c2 entrainerait 1'arrachement d'un de ces
€lectrons du milieu caché old il se trouvait (milieu
qu’'il est évidemment tentant d'assimiler & notre mi-
lieu subquantique) et son apparition au niveau micros-
copique cbservable sous la forme d'un €lectron normal
d'énergie mocz. I1 en résulterait un "trou" dans |
1'océan caché des électrons a4 énergie négative et
c'est ce trou qui se manifesterait a nous & 1'échelle
microscopique observable sous la forme d'une antipar-
ticule de masse propre positive my et d'une charge
positive + e qui constitue le positon.

J'ai proposé, il y a quelques années, une théorie
différente de la création des couples particule-anti-
particule (*). Je vais 1'exposer sous une forme un
peu différente de sa forme primitive en partant tou-
jours de 1'idée que l'antiparticule est une particule
qui se déplace dans son onde en sens inverse de 1la
propagation de celle-ci. J'admets que, lors de l'appa-
rition au niveau observable d'un couple particule-
antiparticule, 1'un des constituants du couple est

(x) Journal de Physique,tome 28. Mai-Juin 1967, p.481.
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une particule normale dont 1l'onde se ropage avec umn
myc

indice de réfraction n =B = /1 - ——- tandis que
h2v?

1'autre constituant, l'antiparticule, serait portée

par une onde dont la propagation serait réglée par

un indice de réfraction n(v) tel que, d'aprés la

formule de Rayleigh (23), cette antiparticule se

déplace en sens inverse de la propagation de son
onde.

Pour développer cette idée, supposons que l'océan
d'électrons cachés de Dirac, contenu dans le milieu
subquantique, soit formé par des couples d'électrons
unis par un potentiel interne P tel que P ~ 2 m°c2=0.
Ces couples d'électrons cachés auraient donc une
énergie nulle. Si 1'on apporte a un tel couple
d'électrons cachés 1'énergie 2 myc®, il en résulte
au niveau observable 1'apparition d'un électron libre
normal d'énergie de masse moc2 qui, s'il est mouve-

mgc?
ment avec la vitesse Bc aura l'égergie W= —— et

m,v /1-82

. - > o .
la quantité de mouvement p = ————, la vitesse de son

onde &€tant V et p = X"
Mais il y aura aussi apparition au niveau observa-

ble d'une "antiparticule'" d'énergie P - moc2 = mocz,

telle par conséquent que P = 2 mgc”. Si 1'on admet

que le potentiel P obéit 3 1'équation (3), on trouve

dnV . . dnVv . 1o .

2 W=WJ{(l -n 53—) d'old n PV 1 et, si 1l'anti-

particule est en mouvement, sa vitesse v' sera donnée

par 1

X v_

oy L2373 1
;T v h 2 v

Pour cette antiparticule en mouvement, on aura

alors : >
2 2 ’ >
m,c m.c m, V m,V
0 0 . 0 0
(3’) W = = > p = = -
12 2 12 2
v v v v
A - \[- \/1-—-
c? c? c? c2

> . . - . .
Alors, n étant le vecteur unité dans la direction
de propagation de 1'onde et le vecteur k &tant défini
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-> -+ h -> ->
par k = n 3 on a p = - k.

L'antiparticule apparait donc au niveau microphy-
sique observable comme ayant une masse propre mos

>
une vitesse v' en sens inverse de la propagation de
1'onde et, par suite, une charge égale et opposée

i celle de la particule. C'est bien 13 ce qu'il
fallait obtenir.

Si 1'on introduit dans la théorie précédente les
conceptions de la thermodynamique cachée des parti-
cules, on peut voir que la production d'une paire
particule-antiparticule entraine une diminution du
contenu énergétique du thermostat caché, ce qui ex-
plique le caracté@re instable de la paire en question,
Nous n'insisterons pas ici sur ce point.

MICROABSORPTION ET MACROABSORPTION D'UNE ONDE
LUMINEUSE.

Prenons d'abord le point de vue de 1'Optique
classique et considérons un train d'ondes presque
monochromatique qui traverse un &cran absorbant
d'épaisseur 2. L'intensité de 1'onde, initialement
é€gale au carré a;, de son amplitude, est 3 la sortie
de 1'écran réduite & aze—YQ
d'absorption de 1'écran.

ol Y est le coefficient

Passons maintenant au point de vue de la théorie
de la double solution. L'onde v y est absolument
assimilable 3 une onde lumineuse classique de trés
faible intensité et son intensité@ aprés le passage

- . 2 2 =YL& o
d travers 1'écran est a” = aje ol a, est tres

faible. Cette absorption de l1'onde v, je 1'appelle-
rai la "microabsorption". Nous admettrons qu'elle
est la mEme quel que soit le nombre des photons

que l'onde transporte. Si initialement 1'onde v
porte un nombre trés grand N, de photons, le nom-
bre de ceux-ci qui sortent de l'écran est en

moyenne N'De—Y car ces photons peuvent €tre consi-
dérés comme des "échantillons" d'une onde qui aurait
une amplitude A = Ka, K étant trés grand. J'appelle-
rai cette absorption des photons, c'est-a-dire de
l1'énergie, la "macroabsorption”. Il y a donec alors
une correspondance exacte entre la microabsorption
et la macroabsorption.
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Mais cette correspondance ne se maintient pas si
1'onde v porte seulement quelques photons et, en par-
ticulier, si elle n'en porte qu'un. On voit trés
nettement qu'alors chaque photon est ou n'est pas
absorbé. La microabsorption est donc un phénoméne
de "tout ou rien”" qui n'est aucunement représenté

. .. -yYL .
par la loi statistique e Y tandis que la macroab-
sorption est toujours exactement représentée par
cette exponentielle.

Tout ceci joue un grand rdle dans l'interprétation
d'une expérience d'apodisation en lumidre tré&s fai-
ble que j'ai proposée,oli chaque train d'ondes arri-
vant sur 1'écran apodiseur porterait un seul photon.
Si ce photon est absorbé dans 1'écran d'épaisseur
variable convenablement calculée, il ne contribuera
pas 34 former une image, mais s'il traverse 1l'é@cran
et contribue 3 former une image apodisée, c'est que
la microabsorption de l'onde v dans 1'écran a modi-
fié le guidage du photon. Et ainsi serait prouvé que
le mouvement du photon est déterminé par une onde
€lectromagnétique trés faible. C'est pourquoi la réa-
lisation d'une telle expérience me parait trés impor-
tante.

Naturellement 1'expérience ci-dessus envisagée
exigerait qu'un trés grand nombre N de photons par-
viennent un par un sur la plaque photographique
aprés avoir traversé l'écran. On peut admettre que
ce nombre N serait relié au nombre N_ des photons
qui arriveraient un par un sur 1'écran par la rela-

. . . -ve . .
tion statistique N = N_ e Y , mais cela ne changerait
rien 3 ce qui a été dit plus haut.

REMARQUES FINALES.

Les idées contenues dans ce chapitre auraient cer-
tainement besoin d'@tre précisées et étendues. Ce se-
rait un travail trés intéressant et sans doute impor-
tant.

J'ai parfois envisagé la possibilité d'interpréter
la notion de "phonons'" en les assimilant 3 des pho-
tons se déplagant dans un milieu matériel animé de
mouvements de fréquences acoustiques. On a souvent
opposé & 1'idée que les phonons soient des particu-
les le fait qu'ils sont susceptibles de subir certai-
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nes réflexions a3 1'intérieur du corps qui les con-
tient.

Or, ces réflexions obéiraient 3 la loi de réfle-
xion de Bragg qui est classique dans la Physique
des Rayons X. Mais, comme les particules transportés
par les Rayons X sont certainement des photons, 1'ob-
jection faite 3 1'identification des phonons et des
photons me parait douteuse. Mais la question serait
3 examiner d'une fagon plus approfondie.

APPENDICE - NOUVELLE INTERPRETATION DE LA GRAN-
DEUR P.

Je viens d'exposer ma théorie de la propagation
d'une onde lumineuse dans un milieu réfringent homo-
géne telle que je 1'avais congue initialement en
interprétant la grandeur P comme un potentiel résul-
tant de l'action sur l'onde progressive du milieu
qu'elle traverse. Cela m'avait amené a distinguer
les deux masses propres m, et M,. Mais je me suis
récemment apergu que l'on pouvalit envisager le pro-
bléme d'une fagon trés différente en ne considérant
pas la grandeur P comme un potentiel incorporé 3 la
masse propre énergétique, mais en lui donnant une si-
gnification tout & fait différente.

Le point départ de cette nouvelle interprétation
consiste & &crire la phase ¢ de 1l'onde progressive

sous la forme ¢ = ¢ + wz avec
1
2
Moc Myv
(32) $, = —-—= - ——— X
=g /TR
¢, = Pt = - hv(n2- 1)t = - hv't
avec V' = (n?- 1)v. Il est alors évident que ¥, est
la phase d'une onde progressive monochromatique plane
M, c?
dont la fréquence V est donnée par hv = --—- et la
g
L hv Mov 1
quantité de mouvement par p=;=--= - -— —. On peut
Voo/iepe

donc dire qu'il existe dans le milieu réfringent une
onde progressive de phase ¢, qui transporte le photon
de masse propre M, et 1'on voit alors, en appliquant




89

un raisonnement bien connu de mon interprétation de
la Mécanique ondulatoire, que la particule se dépla-
ce dans son onde de facgon a rester en phase avec elle.

Mais que signifie la formule ¢, = Pt ? Comme elle ne
dépend que de t et non de x, elle représente évi-
demment la phase d'une onde stationnaire qui serait
engendrée dans le milieu réfringent par le passage
de 1'onde progressive de phase y;. Mais il faut exa-
miner comment cela peut se produire.

Dans son livre "Theory of Electrons”, Lorentz
avait étudié le passage dans un milieu réfringent ho-
mogéne d'indice 7 d'une onde progressive sensiblement
plane monochromatique. Désignant par E le champ élec-
trique de 1'onde et par P la polarisation qu'elle
produit dans les molécules du milieu traversé&, il
avait &tabli, 3 la page 142, la formule suivante :

(33) == % -
Pour que cette formule soit d'accord avec notre
formule (3), % = - v(n?2 - 1), il faut que 1l'on ait :
P P
(3A) E = v E

si alors nous définissons une fréquence vy' par

P
(35) v'=\)E=v(n2—l)>v

nous trouvons @

(36) P = - hy'

La phase wz = Pt de la deuxiéme formule (32) est
alors
(37) ¢ = - hy't

2

Telle est la phase de 1'onde stationnaire de fré-
quence y' excitée dans le milieu réfringent par le
passage de l'onde progressive de fréquence y.

On peut se demander d'ol provient le signe - dans
la formule (37). Il semble indiquer que la phase v,
de 1'onde stationnaire présente une différence de

phase égale 2 W par rapport a8 la phase de 1'onde pro-
gressive.

1
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Pour rendre compte de cette différence de phase,
j'ai envisagé le raisonnement suivant. Le mouvement,
sous l'action du champ électrique de 1'onde progres-
sive, d'un élément matériel du milieu réfringent de
masse M et de charge électrique €, positive ou né-
gative, obéit a 1'équation

2
(38) m é—f = ¢ E, cos 2TVt
dt

y étant la direction du champ E qui est perpendicu-
laire 3 x. Si 1'on pose x = x, cos 2Tvt, on trouve
aisément aprés multiplication par e

2
(39) - € x, cos 2TVt = -—- E, cos 2TVt

mw?

€2 &étant toujours positif, la formule (39), indique

que la polarisation de 1'&lément du milieu réfringent
est bien déphasée de T par rapport au champ électri-
que de l'onde progressive.

;
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[’invariance adiabatique
et la thermodynamique
cachée des particules

1. INTRODUCTION DE L'INVARIANCE ADIABATIQUE PAR
BOLTZMANN.

L'idée d'invariance adiabatique a €té introduite
par Boltzmann en 1897 dans son livre "Prinzipien
der Mechanik" (!). Il s'était inspiré des travaux
antérieurs de Clausius et de Szily et d'idées
d'Helmholtz résumés par Henri Poincaré dans le
dernier chapitre de son livre de Thermodynamique.
J'ai exposé l'essentiel de leurs idées dans mon
livre "La Thermodynamique de la particule isolée"
(2). Dans ce livre, on trouvera développé le cal-
cul de Boltzmann aux pages 63 d 68.

Boltzmann considérait un nombre énorme de parti-
cules animées d'une agitation thermique comme un
gaz dans la théorie cinétique des gaz et contenues
dans un récipient i parols trés lentement mobiles.
Cela 1'amenait & distinguer dans un tel systé&me,
comme 1'avait fait Helmholtz, de trés nombreuses
variables qa; 34 variations trés rapides qui sont les

coordonnées des molécules et des variables beaucoup
moins nombreuses et 3 variations beaucoup plus len-
tes définissant les conditions aux limites de 1'en-
semble des molécules, c'est-a~dire la forme du ré-
cipient qui les contient.

Il envisageait alors une variation trés lente de
la durée de variation T de ces derniéres variables
et, 2 1'aide des raisonnements reproduits a 1'en-
droit indiqué plus haut de mon livre, il étudiait
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la variation trés lente qu'éprouve alors le systéme
considéré. Il aboutissait ainsi 4 1'équation suivan-
te

t
1
(1) §Q = T 5J z P dqi
0 i

oldl 8Q représente la variation, pendant la durée T de
cette variation extrémement lente des conditions aux
limites, de la chaleur contenue dans le systéme et
ol p; est la composante de la quantité de mouvement

correspondant 3 la coordonnée a; trés rapidement
variable.

En Mécanique classique non relativiste, on a pour
1'énergie cinétique totale de 1'ensemble des molécu-
d

dqj q;
= = q 3 = ek
les 2 Ecin % P; Tt § p; 4; avec qy I et la
formule (1) devient :
2 —_—
@) e =7 8(E, T

ol Ecin est la valeur moyenne de l'énergie cinétique
de 1'ensemble des molécules pendant le temps T de la

variation envisagée. Puisque 6Q est nul quand
T

P dqi = 0, i1 est naturel de nommer cette inté-

0 i
grale un "invariant adiabatique”.

Nous ferons ici la remarque essentielle que le
raisonnement de Boltzmann ne soul&ve aucune diffi-
culté d'interprétation. En effet, puisque Boltzmann
considérait un ensemble de molécules en agitation
thermique, l'introduction de 1'idée de chaleur était
tout 3 fait naturelle et 1l'emploi de 1'adjectif
"adiabatique"” qui, par définition, signifie "sans
échange de chaleur'" é&tait tout a fait compréhensible
et justifié. Mais nous allons voir qu'il n'en est
pas de m&me pour les extensions qui ont été faites
ensuite de la formule de Boltzmann.

2. INTRODUCTION PAR EHRENFEST DE LA NOTION D'INVARIAN-
CE ADIABATIQUE DANS L'ANCIENNE THEORIE DES QUANTA.

Dés 1911, Ehrenfest avait appliqué la théorie de
Boltzmann au rayonnement noir quand on s'en tient 3
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1'approximation de Wien et cela ne soulevait encore
aucune difficulté puisqu'a cette approximation, on
peut considérer le rayonnement noir comme un gaz de
photons. Mais en 1916, Ehrenfest (}) a montré le rdle
important que joue la notion d'invariance adiabati-
que quand on 1'introduit dans la théorie quantique

de 1'atome telle que Bohr 1'avait développée en 1913.
Or cette extension du r8le des invariants adiabati-
ques présentait un aspect paradoxal sur lequel je
veux insister.

A 1'8poque ol Ehrenfest introduisait les inva-
riants adiabatiques dans la théorie de 1'atome,
celle-ci avait encore la forme primitive que 1lui
avait donnée Bohr, c'est-i-dire qu'on se représen-
tait les électrons tournant dans 1'atome autour
d'un noyau central chargé positivement. Ils décri-
vaient donc des trajectoires dont la forme pouvait
€tre assez compliquée quand il y avait plusieurs
électrons et quand on devait tenir compte des correc-
tions de relativité. Mais dans le cas simple de 1'a-
tome d'hydrogéne ot il n'y a qu'un seul électron
tournant autour d'un proton et ol 1'on négligeait
les petites corrections de relativité, les trajec-
toires étaient des courbes fermées circulaires ou
elliptiques et 1'on constatait que les conditions de
quantification déterminant les trajectoires stables
au sens de Bohr se réduisaient a &crire que 1'inté-

> > . .
grale $pdq = fz P dq; prise le long de la trajec-
i

toire fermée était égale & un multiple entier de 1la
constante # de Planck. L'importance des invariants
adiabatiques dans la détermination des états quanti-
fiéds de 1'atome de Bohr apparaissait ainsi nettement.

I1 est vrai qu'en dehors du cas trés particulier
de 1'atome d'hydrogéne quand on néglige les petites
corrections de relativité, les trajectoires électro-
niques dans la théorie primitive de l'atome de Bohr
étaient plus compliquées et que 1'introduction des
invariants adiabatiques exigeait alors des développe-
ments supplémentaires que Léon Brillouin avait étu-
diées dans ses livres ("). Mais comme ces questions
ne présentent plus aujourd'hui d'intérét, je n'y
insisterai pas.
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L'introduction des invariants adiabatiques pour

désigner les intégrales du Type §) p; dq; danms
i

1'atome de Bohr que 1'on dérivait de la formule de
Boltzmann présentent un caractére assez surprenant
car il s'agit ici d'un systéme mécanique simple
contenant un petit nombre de particules décrivant
des trajectoires réguliéres. On ne voit donc pas

du tout comment peut s'introduire 1'idée de chaleur
essentiellement liée 34 celle d'une agitation aléa-
toire d'origine thermique.

Ehrenfest et Brillouin avaient bien apergu cette
difficulté. Ils ont essayé de la lever en disant
que, quand un atome &met un rayonnement, celui-ci
peut &tre considéré comme de la chaleur et que, par
suite, quand 1'atome n'émet pas, il n'y a pas de
variation de chaleur. C'est ainsi que s'introduirait
la notion d'adiabatisme dans la spécification des
états stationnaires ol 1'atome n'émet pas. Il me
paralt certain que cette manidre de voir n'est pas
exacte car, lorsque l'atome émet, il projette au
dehors un seul photon et cette &mission d'@nergie
n'a aucunement le caractére d'ume perte de chaleur.
L'emploi du terme "adiabatique" dans la théorie de
1'atome parait doac injustifié. Cette comstatation
crée un certain malaise qui se confirme quand on
définit des invariants adiabatiques pour des systé-
mes mécaniques extrémement simples ol il semble évi-
dent qu'aucun phénoméne thermique n'intervient.
C'est la question que nous allons maintenant &tu-
dier.

3. APPLICATION PARADOXALE DE LA NOTION D'INVARIANCE
ADIABATIQUE A DES SYSTEMES MECANIQUES TRES SIM-
PLES.

On a été amené 3 appliquer la notion d'invariance
adiabatique 3 des systémes trés simples ou trés gé-
néraux. C'est ainsi, par exemple, que dans leur beau
traité de Mécanique, Landau et Lifchitz (%) dé&finis-
sent les invariants adiabatiques, en considérant un
systéme mécanique quelconque, de la fagon suivante :
"Considérons un systé&me mécanique animé d'un mouve-
ment linéaire fini et caracté@risé par un paramétre
» définissant les propriétés du systéme lui-méme ou
du champ extérieur dans lequel il se trouve. Suppo-
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sons que sous l'influence de certaines causes exté-
rieures le paramétre ) varie lentement, c'est—-a-dire
adiabatiquement, avec le temps. Nous appelons "lente"
une transformation dans laquelle ) varie trés peu
au cours d'une période T du mouvement du systéme de

d F. . -
sorte que T &% << A". On peut 3@ juste titre s'étonner
de voir apparaitre le mot "adiabatique" dans la dé-
finition d'une évolution purement mécanique ol n'in-
tervient aucun €lément thermodynamique.

Cet étonnement ne peut qu'augmenter si 1'on &étu-
die les exemples de systémes extrémement simples que
Léon Brillouin a donnés dans ses livres cités plus
haut, exemples dont je n'exposerai qu'un seul.

Considérons un pendule constitué par une corde
traversant un anneau fixe O & laquelle est suspen-
due une masse m.

La position de 1'anneau, dit
Brillouin, constjtue une liai-
son. Nous la ferons varier en
déplagant trés lentement cet

T anneau, ce qui modifiera la lon-
gueur du pendule. La période du

'3
pendule T = 27 . La force

agissant sur 1'anneau peut se
calculer aisément. En effet, la
tension de la corde est

T = mg cos®. En composant les
deux tensions égales, mais de
directions opposées qui agis-
sent sur l1'anneau, on voit qu'il
reste une composante verticale :

N--=-+==c==--1.

%g Z =T (1 - cos 9)
et une composante latérale :
X =T sin ©
Nous supposons 1'anneau maintenu par une glissiére
verticale dont les composantes équilibrent la force

X. Cette derniére est d'ailleurs nulle en moyenne
pour de petits angles §. Au contraire, la force ver-




96

ticale a pour valeur moyenne :
- e Iy ryl
Z = T(1l - cosB) =T 7 = mg cosH. 7=
Nos oscillations étant supposées de petite ampli-
tude,_gous prendrons donc pour cos O la valeur !, et
2

pour o> la valeur %—, 0 représentant l'angle maximum

du pendule avec la verticale.

Mais on a, d'autre part, pour l'énergie de vibra-
2

tion l'expression E = mgl %-, ce qul nous permet
d'écrire :
= 1 E
7 = - —
2 2

Quand nous déplagons trés lentement 1'anneau de bas

en haut, nous recueillons un travail
1 E

dT =7 dg = 77 d2. Ce travail sera emprunté a 1'é-
3

nergie du pendule et l'on aura - dE _dr _ 142

g P E E 2 9"
La variation simultanée de la période d'oscillation
est E% = % Q% et comme on vérifie aisément la rela-
tion Q% + Q% = 0, on obtient finalement
(3) ET = Cte

d'od 1'on conclut en se reportant 34 la formule (2)
de Boltzmann que 1'évolution lente de ce systéme
simple est adiabatique.

J'ai tenu 3 reproduire le raisonnement d'une admi-
rable clarté donné par Léon Brillouin. Les autres
exemples qu'il a développés sont tout aussi clairs
et remarquables.

Mais, ici encore, il est impossible de ne pas
remarquer la différence si importante qui existe
entre le systéme envisagé par Boltzmann qui conte-
nait un trés grand nombre de particules en agitation
thermique et le cas si simple d'un pendule dont le
fil de suspension a une longueur trés lentement va-
riable.
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En résumé, on est forcément amené 3 se demander
comment on peut appliquer & des problémes mécaniques
trés simples ol, en apparence du moins, aucun pro-
cessus de nature thermodynamique n'intervient, la
notion d'adiabatisme essentiellement 1liée a 1'ab-
sence d'échanges de chaleur. En y réfléchissant,
on ne peut pas ne pas avoir l'impression que quel-
que chose se cache derriére cet étrange probléme.

4. INTRODUCTION DE LA DYNAMIQUE DU GUIDAGE ET DE LA
THERMODYNAMIQUE RELATIVISTE.

La difficulté que nous venons de signaler nous
paralt imposer 1'idée que derri&re le mouvement de
tout systéme mécanique se dissimule une Thermodynami-
que cachée. Or, c'est 13 précisément une des idées
fondamentales que mes réflexions de ces derniéres
années sur la réinterprétation nécessaire de la Méca-
nique ondulatoire dans le sens de mes conceptions

primitives de 1924-1928 m'ont amené i introduire

®).

Mon hypothése fondamentale sur la liaison du mou-
vement de la particule et la propagation de 1l'onde
est que la particule est le si&ge d'une vibration
périodique interne et qu'elle se déplace dans son
onde, 34 laquelle elle est en quelque sorte incor-
porée, de fagon 3 rester constamment en phase avec
elle. C'est la théorie du guidage de la particule
par son onde. Si alors on écrit 1'expression de
1'onde qui transporte la particule sous la forme

o
complexe ae h ol h = g}, la variation de la phase yp
au point M ol se trouve la particule est
dyp = %% dt - %% dg, df étant 1'élément de longueur

de la trajectoire de la particule qui, d'aprés la
théorie du guidage, est dirigé suivant la normale 3
la surface d'égale phase au point M. Si la particule

est animée de la vitesse v = %%, on a donc :
3y ap
(4 dp = (g= - =%
) ¥ (5% Ag V)dt ,
m c
Mais l1'énergie de la particule est W = hv= —
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o 30 m,v

et sa quantité de mouvement est p = 3¢ - T, avec
/1-82

B = %. Dans ces formules, m, est la masse propre de

la particule en mouvement qui, dans ma théorie, est
la somme de sa masse propre normale et des contribu-~
tions qu'apporte 3 la masse propre l'intervention du
potentiel quantique et éventuellement des potentiels
extérieurs (’). L'équation (4) devient alors
myc m v
dp = ( - )dt. Si, dans le systéme de réfé-
/1-B2 1-B?
rence oi l'onde est stationnaire et la particule
immobile, la fréquence interne de la particule est
\Y dans le systéme ou elle est en mouvement avec la

0>
vitesse v sa fréquence sera Vv, Y1-B% d'aprés la for-
mule de transformation relativiste de la fréquence

d'une horloge et 1'on a pour la phase interne de la

particule d¢i = moc2 1-g%2. Le principe de 1'accord
des phases qui conduit ad poser dy = dwi nous donne
moc2 o v
(5) _— = moc2 YT-g2 + ——
V1-82 V1-g2

Cette formule n'est pas autre chose que la formule
fondamentale de la Thermodynamique relativiste d'aprés
laquelle 1'énergie totale de la particule en mouvement
myc
——— est égale 3 la somme de la chaleur qu'elle con-
Vl-B2 mov2
tient m c? /1-g% et de 1'énergie de mouvement ———.

0 qtgz
Cette derniére grandeur me parait &@tre la véritable
énergie cinétique de la particule : elle différe de

1'énergie mocz(T%ET ~ 1) qui est "récupérable" quand
on arréte la particule et qu'en théorie usuelle de 1la

Relativité, on nomme, 3 tort pensons-nous, l'énergie
cinétique (8).

Les considérations qui précédent ont 1'avantage de
montrer clairement le lien étroit qui existe entre la
formule (4) exprimant le guidage de la particule par
son onde et la formule fondamentale (5) de la thermo-
dynamique relativiste.
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Avant d'introduire la Thermodynamique cachée des
particules, il me parait utile de rappeler encore
quelques points de 1'histoire des théories quanti-
ques de 1'atome. Nous avons déja rappelé que Bohr,
dans sa théorie primitive de 1'atome d'hydrogéne,
admettait que 1'électron décrivait des trajectoires
circulaires ou elliptiques autour du noyau. Cela
conduisait & admettre que seules étaient stables
les trajectoires électroniques pour lesquelles 1'in-

tégrale §; da prise le long de la trajectoire était
égale a3 nh avec n = 1, 2, 3, ... L'intervention

dans cette formule des nombres entiers avait dés

mes premiers travaux sur ce sujet en 1923-24 attiré
mon attention. J'avais, en effet, remarqué que les
nombres entiers interviennent fréquemment en théorie
des ondes, notamment dans les phénoménes d'interfé-
rences, et ceci m'avait amené A penser qu'il fallait
associer au mouvement de la particule la propagation
d'une onde. Mais, en 1926, Schrodinger avait déve-
loppé sa belle théorie de 1l'onde ¥ en excluant toute
localisation de la particule dans 1'onde et il avait
exprimé la quantification des états atomiques sta-
tionnaires sans aucune intervention des invariants
adiabatiques qui, d'ailleurs, dans sa théorie
n'avaient plus de sens.

Or, ma théorie du guidage de la particule par
1'onde, esquissée dans mes premiers travaux de 1923
4 1927 et reprise par moi depuis une vingtaine
d'années, me permet de faire 3 nouveau intervenir
les invariants adiabatiques. En effet, elle montre
que dans le cas de 1'atome d'hydrogéne, 1'électron
atomique peut soit rester immobile, soit se déplacer
sur une trajectoire circulaire centrée sur un axe
passant par le noyau. Nous retrouvons ainsi la con-

dition §; da = nh parce qu'elle exprime l'uniformité
de la phase le long de la trajectoire fermée, mais
maintenant le nombre 7n peut prendre non seulement

les valeurs entidres 1, 2, ..., mais aussi la valeur
n = 0 dans le cas ol la trajectoire se réduit & un
point. Ainsi les &tats se trouvent, dans cette inter-
prétation, de nouveau caractérisés par des valeurs

> >
égales 3 nh d'invariants adiabatiques du Type $p dq
comme 1l'ancienne théorie des quanta.
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5. RESUME DE LA THERMODYNAMIQUE CACHEE DES PARTICU-
LES.

La théorie du guidage de la particule par son
onde implique qu'en dehors du cas limite et jamais
strictement réalisé de 1'onde monochromatique plane,
la trajectoire de la particule est une ligne courbe
le long de laquelle le potentiel quantique et par
suite la masse propre varient de sorte que l'on a
affaire & une Dynamique d masse propre vartable.

Mais une telle image est encore certainement
trop simple et il est nécessaire de la compléter en
admettant que ce mouvement régulier est constamment
perturbé par de brusques variations de la masse
propre m,, ce qui impose & la particule une sorte
d'agitation brownienne superposée au mouvement ré-
gulier. En effet, s'il n'en était pas ainsi, on ne
pourrait comprendre comment la probabilité de 1la
présence de la particule dans un élément de volume
dT est donnée 3 chaque instant par la quantité
[$]2dT, c'est-a-dire par le carré de 1'amplitude de
1'onde, conformément au principe de Born qui est
certainement exact. De plus, nous avons vu plus
haut que, dans le cas de l'atome d'hydrogéne, la
théorie du guidage prévoit des états stationnaires
od 1'électron est immobile et 13 encore on ne voit
pas comment la probabilité en a? pourrait se réali-
ser.

Puisque l'énergie moc2 peut &tre assimilée & une
chaleur interne contenue dans la particule, les va-
riations continues ou aléatoires de la masse propre
doivent correspondre & des variations de la chaleur
interne. Ceci améne a 1'idée que la particule, méme
quand elle nous apparalt comme isolée, doit &@tre en
contact permanent avec un grand réservoir de chaleur
constituant un thermostat caché.

En appliquant aux échanges continuels d'énergie
calorifique entre la particule et le thermostat
caché les conceptions de la Thermodynamique statis-
tique, on peut attribuer 3 1'état de la particule
une certaine entropie correspondant par la formule
de Boltzmann S = k log P & la probabilité de cet
état. L'on est ainsi amené a4 établir entre l'entro-
pie et la grandeur mécanique action qui figure dans
le principe de moindre action une relation du plus
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grand intérét et 3 démontrer que le principe de moin-
dre action de la Mécanique n'est qu'un aspect du
principe thermodynamique général de 1'augmentation de
l'entropie.

Je me contente de donner ce résumé succinct de
la Thermodynamique cachée des particules que j'ai
développée depuis une dizaine d'années en renvoyant
pour une étude plus compléte 3 l1'endroit indique de
la bibliographie (*%).

6. INTERPRETATION DE L'INVARIANCE ADIABATIQUE PAR
LA THERMODYNAMIQUE CACHEE DES PARTICULES.

Je veux maintenant montrer comment l'introduction
de la Thermodynamique cachée des particules permet
de comprendre pourquoi la notion thermodynamique
d'adiabatisme peut s'introduire dans 1'étude de sys-
témes mécaniques trés simples.

Considérons un systéme mécanique animé d'un mou-
vement périodique de période T et d'énergie W, T et
W étant trés lentement variables & 1l'échelle du
temps de fagon que le produit WT reste constant. Ce
sont 13 les conditions imposées aux systémes aux-—
quels la notion d'invariance adiabatique est appli-
cable.

Si 6 désigne la variation trés lente de 1'évolu-
tion du systéme, la formule (5) nous permet d'écri-
re

T T T_)_)
6[ wdt SJ Qdt + GJ p.vdt
0 0 0

To "[‘z
6J Qdt + GJ p. dq.
0 oi * 1

Comme par hypothése WT est constant, on a

1]
]

T
GI wdt S (WT) 0. Si, de plus, Q est constant,
0

T
6[ Qdt = 8QT = 0 et nous aurons alors

8 ] p, dq, =0
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Mais quand Q est constant, 1'évolution du systéme
est, par définition, adiabatique et, la grandeur

§ X P dqi ne variant pas, elle peut €tre qualifiée
i

d'invariant adiabatique. L'explication cherchée est
ainsi obtenue.

Nous pouvons en tirer la conclusion suivante.
Puisque le mouvement adiabatique peut &tre consi- h
déré d la fois comme un mouvement pendant lequel ‘
1'Action ne varie pas et comme un mouvement pendant
lequel 1'Entropie reste constante, nous pouvons
énoncer la conclusion suivante : "Puisque les deux
définitions du mouvement, 1'une dynamique et 1'au-
tre thermodynamique, peuvent coincider, il est né-
cessaire que 1'Entropie et 1'Action soient intime-
ment reliées l'une & 1'autre". Et nous retrouvons
ainsi 1'une des idées les plus importantes de 1la
Thermodynamique cachée des particules résumées dans
le précédent paragraphe.

Nous préciserons cette derniére idée de la fagon
suivante. Conformément 3 ce qui est exposé& dans mon
livre récent (6), on doit écrire la relation entre
1'entropie S et 1'action A de la facon suivante :

S A

S x=98y%

T T, 5 T

avec A J - moc2 VI—BZ dt = J p dq - J W dt
0 0 0

d'aprés la relation (5), d'oli pour la variation pen-

dant un cycle de durée

§s 1 t = 1 !
% [5J Lop; dag - 6(‘”)] * % ‘SJ I py dag
0 1 0 1

T
puisque 8(WT) = 0. Donc si 6J )y p; dq; = 0, on a
01

88 = 0. La variation tré&s lente du mouvement s'opére
donc 3 entropie constante, c'est-d-dire sans échange
de chaleur. Elle est donc adiabatique.

Plusieurs points de 1'exposé fait dans le pré-
sent travail demanderaient sans doute 3 &tre appro-
fondis, mais les conclusions que j'en tire me sem-

blent bien &tablies.
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Exposé
sur la masse propre du photon

Dans ma thése de Doctorat, j'ai introduit pour la
premiére fois 1'idée que la masse propre du Photon,
bien qu'extrémement petite, n'&tait pas rigoureuse-
ment nulle. Pourquoi l'ai~je fait ? C'est parce que
je cherchais 3 étendre 3 toutes les particules maté-
rielles 1'idée de la coexistence des ondes et des
particules introduite en 1905 par Einstein dans sa
théorie des '"quanta de lumidre" ou "photons'. Attri-
buer aux photons une masse rigoureusement nulle,
c'était créer une différence capitale entre la théo-
rie des photons et celle des autres particules, ce
qui &tait inconciliable avec la tentative que je dé-
veloppais. Dés cette époque, je m'@tais rendu compte
que, pour n'@tre pas en contradiction avec des faits
physiques indéniables, la masse propre du photon de-

A p - -u45 . .
valt étre au plus égale a 10 gramme, mais pouvalt

étre beaucoup plus petite. J'avais ensuite montré en
détail qu'une série de ph&noménes optiques bien
connus, tels que les diverses sortes d'effets Doppler
ou la pression de radiation, pouvait se retrouver
sans modifications perceptibles en appliquant aux
photons de masse non tout 3 fait nulle des calculs

de mécanique trés classiques.

On peut donner un argument trés sérieux en faveur
de 1'existence d'une masse non nulle du photon. Si

2
M ¢
. - . 0
1'on écrit 1'équation ——— = hv, la valeur du pre-
/1-82
mier membre quand W = 0 et B = 1 est indéterminée

alors que le second membre a une valeur parfaitement
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précise pour une onde de fréquence V. On ne peut pas
H,c

attribuer au quotient ———— une valeur déterminée
/1-B2

par la régle de L'HGpital parce que U, est une cons-

tante tandis que B tend vers 1. Il faut aussi remar-

quer que, si € est une grandeur extr&mement petite,

mais non nulle, la différence €-0 est extrémement pe-

. . . € . e s

tite tandis que le quotient Il est infini.
Ce qui achéve de rendre acceptable que, pour le

photon libre, la masse propre peut ne pas €tre rigou- |
reusement nulle, c'est que, dans beaucoup de cas, 1la
masse propre du photon peut prendre des valeurs rela-
tivement élevées. Je m'en était bien apergu en &cri-
vant mon livre "Problémes de propagation guidée des
ondes électromagnétiques" (pages 34 et 35). Quand la
fréquence de 1'onde &lectromagnétique qui se propage
dans le guide est trés voisine d'une des fréquences de

coupure, 1'énergie se déplace dans le guide avec une
vitesse extrémement petite ou nulle. On doit alors
P . h
écrire pour la masse propre W, du photon Ho = —3, ce
2
c

qui donne pour une onde centimétrique de fréquence

1019 hertz :

u, = hv _ 107" 10t cgs = 107%7 gramme ?

ce qui, pour le photon, est une masse énorme.

De méme, dans un milieu réfringent tel que le verre
ol 1'indice de réfraction n est de 1'ordre % et ol, la
dispersion étant sensiblement nulle, la vitesse v de

1'énergie peut &tre prige égale a la vitesse V de phase

c 2 HoC 1

a -3¢ On a alors Ry
-4 7 _u7VI_F5 ~32

Hy = 10 v = 10 .10 = 10 gramme, masse énorme

pour le photon. L'idée que la masse propre i, du pho-

ton n'est jamais tout A& fait nulle n'a donc rien de

paradoxal puisque cette masse propre peut prendre dans

certains cas une valeur relativement élevée.

hv, ce qui donne
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REPONSE A DES OBJECTIONS.

Nous allons maintenant examiner certaines objec-
tions qui ont été faites 3 l'hypothése d'une masse
propre non nulle du photon libre.

On a dit que ¢ &tant par définition la vitesse
de la lumiére, le photon doit nécessairement avoir
la vitesse ¢. Cette objection ne tient pas. Il
suffit, pour 1'écarter, de définir ¢ comme la vi-
tesse limite de l'émergie. Les photons ont une vi-
tesse trés voisine de cette limite, d'autant plus
voisine que leur fréquence est plus élevée.

Une autre objection, d'apparence plus sérieuse,
est la suivante. La formule du rayonnement noir de
Planck résulte d'un raisonnement ol 1'on admet que
les ondes électromagnétiques sont rigoureusement
transversales. Or, on peut facilement voir, a 1'aide
d'é&quations que nous &étudierons plus loin, que, si
1'on admet l'existence d'une masse non nulle du pho-
ton, les ondes électromagnétiques ont une composante
longitudinale. Ceci ne va-t-il pas conduire a une
loi du rayonnement noir qui, s'écartant de celle de
Planck, ne serait plus en accord avec 1'expérience ?
La réponse, c'est que, la masse propre du photon li-
bre étant extr@mement petite, 1'onde longitudinale
qui en résulte est si faible que la démonstration de
Planck n'en est pas réellement affectée. On trouvera
cette démonstration dans mon livre "Mécanique ondula-
toire du photon et théorie quantique des champs" pp.
54 et 55. Schrodinger a d'ailleurs donné ensuite une
démonstration équivalente sans avoir connaissance de
la mienne.

Les formules que nous étudierons tout 3 1'heure
montrent que le potentiel créé A une distance r par

- . e .
une charge électrique de va%?ur e est non pas s> mais
e -k r h 107 .

-e o avec k = —— ~ —7 —- c.g.s. L'influence de
r 0 U,C 8l
0 ]

' . -k _r . . s
1'exponentielle e 0 ne pourrait se manifester qu'a
des distances si grandes de la charge électrique
qu'une semblable vérification est sans doute impossi-

. . e .
ble. L'adjonction au terme - dans 1l'expression du po-

r

. . -k
tentiel de 1'exponentielle e 0¥ he semble donc pas
constituer une difficulté.



107

A la page 60 du livre "Mécanique ondulatoire ..."

cité plus haut, on trouvera une étude de la trans-
formation relativiste de la vitesse qui permet de
lever d'autres objections.

ETUDE MATHEMATIQUE DE LA THEORIE DU PHOTON A
MASSE PROPRE NON NULLE.

Je commencerai par rappeler comment s'est intro-
duit en Physique théorique, il y a une cinquantaine
d'années, le "dogme" de 1'invariance de jauge qui
conduit 3 refuser toute existence physique réelle
aux potentiels électromagnétiques.

Les équations classiques de 1'Electromagnétisme
dans le vide s'écrivent

_1 ol 7 aiv @ =
(1) c 3t rot E div H = 0
1 JE
> Lo
PO rot H div E = 0

ce qui s'é@crit dans le formalisme relativiste sous la
forme

oF aF
gV UV _
(2) @ ax =0 9x 0
p V)
avec F,, =E_, F, = Ey, F,, =E, et F,, =H , F,, = Hy,
F12 = HZ

Mais il était d'usage d'introduire aussi les poten-

>
tiels électromagnétiques A et V (potentiel-vecteur et

potentiel scalaire) et de poser A, = Ax’ A, = Ay, A, =Az,
A, = V. Pour des raisons de symétrie relativiste, Lorentz
a imposé aux potentiels la relation :
oA
>
(3) L3V, 4ivi=0o0uxt=-o0
c dt Bxu

mais cette relation &tait postulée indépendamment des
équations de Maxwell (1) ou (2). Or, si nous considé-
rons une fonction d'espace-temps F(xv) telle que

2
OF = (l 3 - A)F = 0 ou 5%_ (éﬁ_)
c2at?

= 0, on a

-— [Au + gi ] = 0. On peut en conclure que 1'équation
u
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(3) de Lorentz ne définit les potentiels qu'au gra-
dient prés d'une fonction d'espace-temps de Dalember-
tien nul. Donc 1'Electromagnétisme classique ne per-
met pas de définir les potentiels d'ume fagon univo-
que. C'est de 13 que 1'on tirait le "principe de 1'in-
variance de Jauge" qui enlevait aux potentiels le
caractére de grandeurs physiques bien définies.

La seule maniére de leur rendre ce caractére pa-
rait 8tre d'introduire les potentiels dans les équa-
tions de base de 1'Electromagnétisme (1) ou (2). Les
potentiels A, étant des grandeurs 3 un seul indice,
on ne peut pas les introduire d'une fagon linéaire

oF

dans les équations @ 3xuv = 0, mais on peut le faire en
paF\) apv
écrivant a la place de L 0, MY - x A o@ k doit
va va u

€tre une grandeur trés petite sans quoi on s'écarte-
rait notablement des équations de Maxwell, ce qui ne
peut pas étre exact. Les €quations de 1'Electromagné-
tisme ainsi complétées s'écrivent

§ BFuv aFuV
(4) =0 = - k2A
Bxp axv u
ou, en notations classiques
>
' - L 3H ; -

(4") c 3¢ rot E div H =0
13{3’ -+ > >
— +— = rot H - k2A div E = - k?v
c 9t 0 0

et 1'on peut voir facilement que k, s'exprime en fone-
tion de y par la relation

1

(5) k, = T MoC

Alors 1'invariance de jauge disparait et les poten-
tiels deviennent des grandeurs physiques réelles au
méme titre que les champs, bien que dans la plupart
des cas leur intervention dans les équations soit
pratiquement négligeable en raison de la trés faible
valeur de la masse du photon libre p,.

La réalité physique des potentiels parait aujour-
d'hui bien établie par les expériences récentes de



MM. Imbert et Ricard. Je n'exposerai pas ici
expériences, mais je ferai remarquer que, si
potentiels ont des valeurs bien dé&finies, il
impossible de ne pas les introduire dans les
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ces
les
est
équa-

tions de Maxwell. En effet, sans cela, les valeurs
physiques des potentiels ne seraient pas reliées

aux valeurs physiques des champs, ce qui est
sible.

impos-—
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Sur I'incorporation des potentiels
dans la masse propre
des particules et application

Autrefois, en étudiant la Mécanique classique,
j'avais été intrigué par le fait suivant. Considé-
rons deux particules qui interagissent et soit
Vy, = V,; leur potentiel d'interaction. Si T; et T,

sont les énergies cinétiques des deux particules, il
est naturel de définir leurs énergies individuelles

en posant E; =T, + V,, et E, =T, + V . I1 semble-

rait donc que 1’'énergie du systéme des deux particu-

les devrait €tre E = E, + E, = T, + T, + 2V,,. Or,
cette formule est inexacte et l'on doit poser
E=T, + T, + V;,. Naturellement, pour un systéme de
N particules, on retrouve la méme difficulté car1'é-
N
nergie de ce systéme est E = z Ti + z Vi' et non
N [ iy M
pas E = Z T. + 2 Z V...
i >, i)
1 (ii)
A la fin de sa vie, Léon Brillouin a publié un 1li-
vre intitulé "Relativity reexamined" (1) qui est

plein d'idées intéressantes, mais souvent seulement
esquissées. Dans cet ouvrage, il a proposé de répartir
1'énergie d'interaction entre les constituants d'un
systéme, ce qui l&verait la difficulté signalée plus
haut. Mais il n'a précisé cette idée que dans le cas
particulier de deux corps de méme masse.

Dans une Note aux Comptes Rendus (2), j'ai envisagé
la solution générale suivante de ce probléme. Consi-
dérons d'abord deux particules de masses M, et M



soumises 3 un potentiel d'interaction V;, = V,,. Les
forces qu'elles subissent étant &gales et opposées, on
a
> >
(1) - grad, Vi, = grad2 2
Si nous voulons répartir 1'énergie potentielle
entre les deux particules, je propose d'attribuer 2

M
2
. . . . v «
la premiére partlculeMl énergie ﬁj—:—ﬁ: s et a la
1
seconde 1'énergie ——— V Alors, si M, >> M,, la

M + M 12°
1 2 -

presque totalité du potentiel est a attribuer 3 la

premiére particule et, si M, >> M, elle est 3 attri-

buer 3 la seconde particule. Dans le cas particulier

ol M, = M, 1'énergie potentielle est partagée égale-

ment entre les deux particules comme l'avait bien vu
Léon Brillouin.

Si Bl = M131 et 32 = M2¢2 sont les quantités de

mouvement des deux particules, on a :
>

o i v, e o) d v dv
) dr M1+Mz Bracita, M1+M2 gra 1124 gra 1 12

dp M M

2 1 2
g | erad Vit g erad vy, |- eradyyy,

En vertu de (1), on peut en déduire que %E(31+32)=0,
c'est-a-dire que :

(3) M v +Mv = Cte
1 22
On retrouve ainsi la propriété essentielle du cen-
tre de gravité d'un systéme, dont le mouvement n'est
pas influencé par les forces internes, d'avoir une
vitesse constante ou nulle.

Les mémes considérations s'étendent aisément 3 un
systéme de N particules dont les énergies d'interac-

tion Vij = Vji sont réparties entre les particules en
N M,
attribuant a la i© particule 1'énergie ——d__ vy, et
M Mi + Mj 1]

1

Mo+ Mj Vij' Les calculs sont indi-

i la je 1'énergie




qués dans la Note aux Comptes Rendus citée ci-dessus
et je ne les reproduis pas.

Nous sommes ainsi parvenus 3 1'idée qu'en Mécani-
que classique 1'on doit toujours incorporer dans la
masse de toute particule une partie des potentiels
créés par la présence d'autres particules et, comme
je 1'avais bridvement indiqué a3 la fin de ma Note,

il en est de méme pour la masse propre en Mécanique
relativiste. Au cours du mouvement d'une particule,
sa masse propre sera donc en général variable puisque
le potentiel qui agit sur elle sera variable. Et,
comme le mouvement d'une particule résulte des va-
riations de ce potentiel, il s'ensuit que ce mouve-
ment résulte d'une Dynamique 3 masse propre variable,
idée qui dans mes récents travaux m'est apparue comme
fondamentale.

Dans ce domaine de recherches, bien des questions
restent 3 étudier. L'une des moins difficiles consiste
a étudier le cas oli la particule serait soumise non
seulement a4 un potentiel scalaire, mais aussi a un
potentiel vecteur. On s'attend 3 ce que, tandis que
le potentiel scalaire s'introduit dans la masse pro-
pre figurant dans 1'énergie de la particule, le po-
tentiel vecteur s'introduise dans 1'impulsion de 1la
particule. Il y aurait lieu alors de distinguer deux
masses propres différentes, la masse propre énergéti-
que et la masse propre impulsionnelle. Un calcul ra-
pide me semble indiquer que ces deux masses sont &ga-
les, mais il y aurait lieu de vérifier ce résultat.

Dans ce qui précé&de, nous avons implicitement
supposé que les interactions entre les particules se
propagent instantanément de 1'une 3 1'autre, ce qui
est admissible si les particules se déplacent assez
lentement. Mais, si les particules se déplacent trés
rapidement, les interactions ne peuvent se transmettre
de 1'une 3 1'autre qu'en un temps fini. Léon Brillouin,
qui avait bien vu cela, avait supposé qu'il fallait
alors tenir compte de la durée non nulle de la trans-
mission d'énergie entre particules. I1 lui semblait
que, dans le cas des interactions &lectromagnétiques,
ce transport d'énergie devait se faire par échange de
photons. Comme il ne semble y avoir aucune raison pour
ne pas étendre toutes les considérations précédentes
aux interactions gravifiques, il y aurait alors &
considérer des transports d'énergie potentielle par
gravitons.
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Nous arréterons 13 l'exposé de ces idées généra-
les qui auraient certainement besoin d'€tre bien
approfondies et nous allons maintenant montrer
comment l'incorporation des potentiels de gravita-
tion dans la masse propre permet de prévoir exac-
tement des phénoménes dont l'existence physique
est expérimentalement prouvée.

Les phénoménes dont il s'agit sont 1'effet Moss-
bauer et le déplacement vers le rouge des raies
émises par le Compagnon de Sirius. On les considére
en général comme apportant des preuves en faveur de
la théorie de la Relativité généralisée. Nous allons
montrer qu'on peut les prévoir par la simple incor-
poration des potentiels de gravitation dans la masse
propre du photon.

Considérons d'abord 1'effet Mossbauer. Dans ce
phénoméne, on mesure la fréquence d'une raie émise
par un atome qui est incorporé dans un corps solide,
ce qui évite tout effet de recul. Si V est la fréquen-
ce émise par l'atome & une hauteur H au dessus du sol
et V + 8V sa fréquence quand il est & la hauteur H + 8H
au-dessus du sol, la théorie de la Relativité généra-
lisée nous dit que 1'on doit avoir :
(&) §v _ _ GMSH

Y

c?r?

Dans cette formule, G est la constante de la gravi-
tation, M et R la masse et le rayon de la Terre, OH
la variation de hauteur au-dessus du sol dans les deux

positions, ¢ la vitesse limite de 1'énergie. En unités
c.g.s, on a :

-8
G 6,66.10 3

R ~ 6.10°%,

La formule (4) nous donne alors une valeur de Q%

en bon accord avec le résultat expérimental.

Mais on peut aussi obtenir la formule (4) en incor-
porant le potentiel de gravitation dans la masse pro-
pre du photon. Si nous désignons ici par m la masse
du photon en mouvement quand la fréquence est V et
par m + Om cette masse quand la frequence est Vv + Sy,
nous devons poser :




(5) v _ Sm
Y m
Si nous incorporons dans la masse du photon la
. M . . .
fraction v du potentiel de gravitation, c'est-

d-dire sensiblement la totalité de ce potentiel
puisque M >> m, nous obtenons d'aprés (5)

6 Syl e g,
o2 c2R2
le signe - résultant du fait que le potentiel de gra-

vitation diminue quand H augmente.

Passons maintenant 3 un autre effet prévu égale-
ment, mais d'une manidre moins précise, par la théo-
rie de la Relativité généralisée : le déplacement
vers le rouge des raies émises par le Compagnon de
Sirius. Cette étoile est une "naine blanche" ayant
un volume relativement petit, mais une trés grande
densité. Sa masse est sensiblement &égale 3 celle du

Soleil, soit 2.1033% grammes environ, mais son rayon
est seulement le huitmilliéme de celui du Soleil, le-

quel est égal 3 7.10!° centimétres.

Considérons un atome qui, s'il €tait & une distan-
ce infinie du Compagnon de Sirius, &mettrait une raie
de fréquence spectrale v. Si cet atome se trouve a
la surface de cet astre, il émettra une raie de fré-
quence Vv + 8v. En incorporant dans la masse du pho-
ton le potentiel gravifique qui s'exerce & la sur-
face de 1'astre, on voit que l'on est conduit 3 la

formule
r:oo

(]
=

M 1

r
C2

N
= —

(7)

<&

r = R

o]

oi M et R sont la masse et le rayon du Compagnon de
Sirius. Avec les valeurs numériques indiquées plus
haut, nous trouvons en unités c.g.s.

Sv _ _ 2,22 ~28 2.1033
v 3 8.107°.7.101°0

y

10 =-2,8.10"

(8)

Or, l'observation a prouvé que le déplacement de

- 8v . <
fréquence By correspond sensiblement 3 un effet



s

Doppler de 80 kilométres par seconde, c'est-d-dire
que :

(9) o v g 7007

en bon accord avec (8). Et, ici encore, nous avons
pu retrouver cet accord sans avoir recours aux
conceptions de la Théorie de la Relativité généra-
lisée.

Dans 1'exposé précédent, nous avons rappelé que
1'expérience de Pound conduit 3 la conclusion sui-
vante : la fréquence d'un photon qui s'éléve d'une
hauteur H 3 la surfaceé de la Terre subit un déplace-
ment vers le rouge donné par :

(10) v _ _goH

A 2
C

ol g est l'accélération de la pesanteur. Il est
alors facile de voir que cette formule est exacte-
ment la méme que la formule :

GMSH

2.2
c“R

Sv
v

(4)

que nous avons obtenue plus haut pour interpréter
1'effet Mossbauer. En effet, la formule fondamentale

de la Dynamique nous donne LU my, d'od aprés sup-
2
pression de m : R
(11) @:
R 2

ce qui montre l'identité des formules (4) et (10).

Finalement, la question qui se pose est la suivante:
"Puisque deux des quatre vérifications de la théorie
de l1a Relativité généralisée se trouvent expliquées
par la simple incorporation du potertiel gravifique
dans la masse, n'en serait-il pas de méme des deux au-
tres vérifications de cette théorie, c'est-d-dire la
déviation de la lumiére passant au bord du soleil et
le résidu inexpliqué par la Mécanique céleste classi-
que du déplacement du périhélie de Mercure. Si l'on
parvenait & le démontrer, il ne resterait aucune preu-
ve de la nécessité d'introduire une géométrie non-
euclidienne dans la structure de 1'espace-temps. La
question vaudrait la peine d'@tre étudiée de prés.




Dans mon livre "Optique ondulatoire et corpuscu-
laire ('), j'ai &tudié la propagation d'une onde de
la Mécanique ondulatoire dans le cas oli il existe,
en plus d'un potentiel scalaire V, un potentiel-~

vecteur X qui agit sur la particule en mouvement.
J'ai montré que, dans ce cas, la propagation de
l'onde est anisotrope et que, comme dans le cas de
la propagation de la lumiére dans un milieu
optiquement anisotrope, cette circonstance oblige 2
considérer une vitesse de phase VN dirigée suivant

la normale 3 1'onde et une autre vitesse VR’ vitesse
de phase comptée le long du rayon.

On démontre alors que le point P &tant le point
de départ du rayon, la surface d'onde est un ellip-
soide de révolution autour de la direction 0Z du po-

> . .
tentiel vecteur A tandis que la surface des vitesses
normales est la podaire de cet ellipsoide.

Sur la figure PN est
la normale a3 1'onde émi-

>
se par P et PR est le
rayon correspondant.

L'angle NPR est nommé ¥

et l'angle RPZ sera
Z nommé 0. Sur cette figure,
on lit la relation

VN = VR cos ¥.

L'incorporation des potentiels dans la masse pro-
pre donne

2 2
myc m,e V0
(12) W = ppe— + V= -—— avec m_ = mo o+
/iR /B2 e
v Bv
0 0 ' 2 2
car V = ———~ et A = -————- d'od A° - VO = V® avec
N VT-B% 1-g°
A, = 0.
On en tire
g2 y?
2 _ g2 _ g2 R _"OR
(13) AR = VR 7 Vor * T=R2

(Y)Y page 56.
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(14) AR =

La formule (35) de la page 57 du livre cité plus
haut donne :

oooho o MYR o, MR 1 PR Yor
Bty o R g © TR
(15)
A}
) my Ve . VOR Ve ) m, %
—2 2 fr—>2 —2
/T-B2  c?V1 B% T-82
d'od :
\
(16) ma =m, + OR
2
Cc
ce qui montre m; = mg .

Il est d'ailleurs aisé de démontrer que la formule
(15) est en accord avec le principe que la particule
se déplace dans son onde de fagon que sa vibration in-
terne reste constamment en phase avec celle de 1'onde.
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Processus forts
et états transiwoires

1. SUR LA NATURE DES TRANSITIONS QUANTIQUES.

Dans l'importante contribution qu'il a apportée a
un livre paru en 1953 (1), Albert Einstein a intro-
duit la trés intéressante idé&e que, quand se produit
une transition quantique avec échange d'énergie et de
quantité de mouvement entre deux particules, il inter-
viendrait '"quelque chose ayant une structure atomique
au méme titre que 1'électron lui-méme". Son idée était
qu'il se passait alors quelque chose de trés important
impossible & décrire par le formalisme quantique usuel
parce que ce formalisme, purement ondulatoire et igno-
rant la localisation des particules, ne peut pas tenir
compte de leur structure et de la possibilité des
"chocs" qui pourraient se produire entre elles.

Cherchons 3 préciser le sens du texte, peut=-&tre
un peu imprécis, d'Einstein. Considérons un atome
d'hydrogéne qui se trouve dans un &tat stationnaire
initial représenté par 1'une de ses fonctions propres
wi' Une particule chargée qui passe 3@ proximité de

1'atome perturbera 1'état de 1'atome et cette pertur-
bation sera représentée par le potentiel coulombien

e . L. . .
en - de la particule incidente. Si la perturbation

est faible, elle aura pour effet de transformer le wi

(x) Publié en anglats dans Foundations of Physics, 4,
n® 3, p. 321, 1974.
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initial en V¥ =2Cjwj avec Ci 1 et les Cj trés petits
]

pour j # i. On peut dire que la perturbation diminue
un peu la composante wi et fait apparaltre de trés
faibles composantes wj. Or, la théorie actuelle nous
apprend qu'd la fin de 1'interaction faible, 1'atome a
une probabilité |Ci|2 presque égale 3 1'unité d'@tre
resté dans son état initial et des probabilités trés
faibles ICJ.[2 d'avoir passé dans 1'un des états wj.

Mais les variations wj - W de 1'énergie de 1'atome

qui correspondent 3 des transitions tré&s peu proba-
bles peuvent &tre grandes. Le paradoxe signalé& par
Einstein consiste alors en ceci : comment peut-il se
faire qu'une interaction trés faible puisse dans cer-
tains cas provoquer finalement un important transfert
d'énergie ?

D'ailleurs, ce que nous venons de dire au sujet
de 1'interaction d'une particule et d'un atome peut
se généraliser 3 tous les cas d'interactions entre
particules ou ensembles de particules qui se termi-
nent par un important échange d'énergie et de quanti-
té de mouvement. Dans tous les cas de ce genre, il
faut qu'il y ait d'abord recouvrement des ondes des
particules dans une méme région de l'espace. Les par-
ticules se trouvant alors dans un méme volume, il
peut 3 un moment donné se produire un "contact" en-
tre les trés petites régions qui constituent les par-
ticules. L'idée d'Einstein était certainement que
c'est ce "contact", ce "choc", qui peut permettre un
brusque échange d'énergie et de quantité de mouvement
entre les particules. Mais 1'expression méme de choc
implique que les particules sont localisées dans
l'espace. La Mécanique quantique usuelle, utilisant
uniquement des formalismes ondulatoires qui ne con-
tiennent aucun €lément permettant de définir la posi-
tion d'une particule ne peut évidemment envisager
aucun processus de choc. Le faible potentiel pertur-
bateur qui figure dans les équations d'ondes usuelles
ne peut modifier que le "processus faible" de 1'évo-
lution de l1'onde en y faisant apparaitre des compo-
santes nouvelles. Il ne peut pas provoquer, comme
1'a trds justement remarqué Einstein, le "processus
fort" qui intervient lors du brusque transfert d'une
énergie finie.
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Jusqu'ici nous nous sommes exprimés dans le lan-
gage de la théorie quantique usuelle. Nous allons
maintenant reprendre la question en nous plagant au
point de vue de la théorie de la double solution.
Rappelons les bases de cette théorie. La véritable
onde physique que j'appelle 1'onde v serait une onde
de trés faible énergie qui ne pourrait pas se mani-
fester directement par des phénoménes observables.
Mais cette onde pourrait transporter une ou plusieurs
particules qui constitueraient au sein de 1'onde de
trés petites régions de grande concentration de
1'énergie. Ces particules posséderaient une fréquen-
ce interne qui permettrait de les assimiler & de pe-
tites horloges et elles se déplaceraient dans 1l'onde
v de fagon 3 rester constamment en phase avec elle.
I1 en résulte que les particules possédent un mou-
vement régulier, le mouvement de guidage, qui leur
est imposé par la propagation de 1'onde. A ce mouve-
ment régulier se superpose un mouvement aléatoire de
nature brownienne résultant probablement d'échanges
incessants et aléatoires d'énergie entre la particule
et un milieu caché, le milieu subquantique. L'onde ¥
a4 signification statistique, mais sans réalité phy-
sique, qui est usuellement considérée en Mécanique
quantique,est définie a partir de 1'onde v par la re-
lation Y = Cv ol C est un facteur de normalisation

tel que ||¥]|2dT = N ol N est le nombre de particules

portées par 1l'onde. Je ne m'étendrai pas davantage
sur les conceptions de la théorie de la doubie solu-
tion dont on trouvera ailleurs (2) le développement,
mais je veux insister sur une idée importante. Quand
1'onde v, qui est pour nous une réalité physique,
est formée par une superposition de composantes mo-
nochromatiques, ces composantes n'ont pas une exis~-
tence séparée indépendante : seule la superposition
est une réalité physique. Nous verrons plus loin
1'importance de cette remarque.

Avec les conceptions de la théorie de la double
solution, nous sommes amenés 3 dire que, si une par-
ticule localisée se trouve au cours de son mouvement
entrer en contact avec une autre particule localisée,
un processus trés rapide, que les équations de propa-
gation de 1'onde ne permettent pas de prévoir, va se
produire qui détachera chaque particule de son onde
v primitive pour l'attacher 3 1'une des composantes
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de cette onde avec rupture des relations de phase
et conservation globale de 1'énergie et de la quan-
tité de mouvement.

Naturellement 1'émission ou 1'absorption d'un
photon par un atome doit rentrer dans ce schéma.
Seulement il faut alors imaginer que dans le proces-
sus de 1'émission un &lectron atomique qui se trouve
initialement en contact avec un photon annihilé
d'énerglie nulle (sans doute caché dans le milieu
subquantique) lui céde par un processus brusque une
certaine quantité d'énergie qui en fera un photon
observable d'énergie non nulle, tandis que le pro-
cessus de l'absorption sera exactement inverse.

Nous sommes ainsi amenés a4 faire de nouveau la
distinction entre les "processus faibles" qui sont
décrits par la propagation de l'onde v et qui ont
un caractére continu, et les "processus forts" inté-
ressant les particules oili se trouve concentrée la
presque totalité de l'énergie. Bien entendu, les
transitions quantiques au sens de Bohr sont des cas
particuliers de processus forts. Nous ne dirons pas,
comme le faisait Bohr, que ces transitions quanti-
ques "transcendent toute description dans le cadre
de l'espace~temps". Nous nous contenterons de dire
qu'elles échappent 3 toute description dans le ca-
dre d'une théorie purement ondulatoire qui ignore
la localisation des particules.

Nous allons maintenant reprendre les mémes idées
en nous plagant 34 un autre point de vue.

2. LES DEUX ETAPES D'UNE TRANSITION QUANTIQUE.

Le complexe onde-particule tel que la théorie de
la double solution se le représente peut €tre consi-
déré comme comportant une "superstructure'" et une
"substructure" de la fagon suivante :

a) La substructure est formée par 1'onde v dont
1'évolution est causale et, au moins en premiére
approximation, linéaire. Cette évolution se déduit
des équations classiques de 1'onde § (ou de 1'onde
€électromagnétique dans le cas des photons) puisque
nous admettons la relation ¥ = Cv od C est un fac-
teur de normalisation., Les ondes vV et y obéissent
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aux mémes équations de propagativan et sont soumises
aux mémes conditions aux limites. Mais il y a une
grande différence de nature entre les deux sortes
d'ondes car v est une véritable onde physique de
trés faible amplitude bien déterminée tandis que {,
dont 1'amplitude est arbitrairement normée et qui
ne possédde pas la propriété caractéristique d'addi-
vité des solutions d'une équation linéaire, n'est
pas une véritable onde. La fonction § n'est qu'une
représentation de probabilité.

b) La superstructure est constituée par les par-
ticules qui sont des régions de haute concentration
du champ incorporées 3 l'onde v et se déplagant de
fagon & rester en phase avec elle. Seule cette super-
structure se manifeste dans les phénoménes observa-
bles, mais ceux-ci ne sont vraiment interprétables
que si 1'on tient compte de la substructure cachée.

Comme application des idées développées au para-
graphe précédent, nous allons considérer le cas
simple de deux particules de 1'échelle microphysi-
que observable autres que des photons. Supposons
que, dans 1'état initial, ces particules soient
portées par deux trains d'ondes sensiblement mono-
chromatiques et suffisamment éloignés pour occuper
des régions entidrement séparées de 1l'espace. Si
les trains d'ondes se rapprochent et viennent se
superposer, l'interaction commence dans la théorie
usuelle par une évolution linéaire et causale de 1l'on-
de ¥ du systéme dans 1l'espace de configuration.
L'état initial représenté dans l'espace de configu-
ration par une onde wi formée de deux parties entié-

rement séparées devient ensuite une onde Y = I Ciwg

formée par une superposition de composantes de
Fourier correspondant a un ensemble de propagation
d'ondes dans l'espace physique. Au cours de cette
évolution, se produit brusquement un processus qui
n'est pas représentable par le formalisme ondula-
toire ordinaire et qui a pour effet que finalement
les deux particules se trouvent de nouveau attachées
4 des trains d'ondes enti@rement séparés dans l'es-
pace physique. L'onde Y de 1'espace de configuration
a alors une forme wf constituée de deux parties en-

tiérement séparées dans cet espace de configuration.
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Au total, il y a donc eu passage de 1'é&tat ini-
tial représenté par Y = wi 4 un état final repré-

senté par Y = mais, et ceci est une remarque

f,
trés importante, ce passage s'est opéré en deux
étapes, l'une relativement lente, causale et 1i-
néaire représentée exactement par les équations or-
dinaires de la Mécanique ondulatoire, 1l'autre trés
rapide et actuellement impossible & décrire compor-
tant un échange conservatif important d'énergie et
de quantité de mouvement entre les deux particules
avec rupture des relations de phase. On peut dire
que la premiére &tape est un processus qui est

bien décrit par 1'évolution de la substructure tan-
dis que la seconde étape est essentiellement un
processus qui s'opére au niveau de la superstructure
et qui échappe complétement 3 la théorie actuelle.

Il importe de remarquer que, quand le systéme est
parvenu dans 1'état défini dans 1'espace de configu-
ration par la fonction y = I clwgs plusieurs transi-

tions quantiques sont possibles de 1'état Y vers
chacun des &tats Y,. En accord avec 1'idée d'Einstein

qui voyait dans 1'échange brusque entre particules
de quantités notables d'énergie et de quantité de
mouvement pendant la transition quantique un effet
de nature "granulaire", on peut penser que la possi-
bilité de plusieurs transitions quantiques différen-
tes résulte des diverses fagons dont les particules
peuvent entrer en collision, la collision &tant dé-
finie par le contact des structures intérieures des
particules. Ces contacts correspondent 3 des points

de 1'espace de configuration ol 1'on a X, = X,,

Yy = ¥» 2, = 2,. Le succés des prévisions de la Mé-

canique quantique actuelle indique que la probabilité
de la transition ¥ = I cyby > y,_ est &gale 3 lcklz.

résultat que la théorie de la double solution permet
de retrouver. Notons d'ailleurs que, comme nous
allons le voir, l'existence de la premidre &tape
lente, causale et linéaire du processus de choc

est nécessaire pour que l'on puisse rendre compte

de la largeur des raies spectrales &mises.
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3. LARGEUR SPECTRALE ET ETAT PRECURSEUR.

Dans la théorie ondulatoire classique de la lu-
mi&re, on admet que les atomes peuvent émettre des
trains d'ondes de largeur spectrale &v pendant un
temps T et 1'on démontre que l'om a 6v.T = 1. Ces
trains d'ondes ont généralement dans 1'émission des
sources de lumidre usuelle une longueur de 1l'ordre
du métre. C'est seulement dans le cas des ondes
hertziennes et des ondes lumineuses émises par des
lasers que l'on obtient des trains d'ondes beaucoup
plus longs correspondant 3 une durée de cohérence
beaucoup plus grande. Dans la théorie classique des
radiations, l'interprétation de la largeur spectrale
des raies ne parait pas soulever de grandes difficul-
tés, mais il n'en est pas de méme dans la théorie
quantique actuelle. Quand un atome émet de la lumié-
re par une transition quantique congue d la fagon de
Bohr, il devrait émettre un rayonnement strictement
monochromatique, ce qui n'est pas possible. Pour
cette raison, la Mécanique quantique orthodoxe a
&té amenée 3 développer une théorie de la largeur
naturelle des raies spectrales qui est exposée no-
tamment dans un livre de M. Heitler (3). Mais cette
théorie parait soulever une trés grave difficulté,
comme nous allons le montrer.

Nous allons reprendre cette théorie de la lar-
geur des raies spectrales en nous bornant a un cas
particulier qu'il est facile de généraliser. Nous
considérerons un systéme atomique possédant trois
états stationnaires numérotés 1, 2, 3 par ordre d'é-
nergie décroissante. Nous avons alors le schéma sui-
vant des transitions possibles 4 partir de 1'état
initial 1

Nous supposons que 1'a-

tome se trouvant initiale-

3 ment dans 1'état d'énergie
E, E1 puisse passer par transi-

le- -~

tion quantique soit dans
Es 1'état d'énergie E,, soit

e — — |- — ]

-

dans 1'état d'énergie E,.

Dans 1'état initial, la fonction d'onde y de 1'atome
estwi = ¥,. On suppose que, pendant la pé&riode qui
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précéde 1'émission quantique, l'onde § évolue 3 par-
tir de sa forme initiale Y, et qu'a 1'instant t on
puisse &écrire :

(1) P(E) = € (), + €, ()Y, + C ()Y,

En admettant plus ou moins arbitrairement que 1'on
t
doit poser C,(t) = e 27 de sorte que la probabilité

de 1'état 1 & 1'instant t compté a4 partir du début
t
-

du processus soit IC1 = e 1, T étant alors la vie

moyenne de 1'état d'énergie E on peut calculer

1,
C,(t) et Cz(t) et, bien entendu, on a

IC1 (t)|2 + |Cz(t)l2 + lCa(t)|2 = 1, Or, le terme
t
C,¥, dans 1l'expression (1) &étant e ffwl peut se dé-

velopper en intégrale de Fourier et l'on voit ainsi
que 1'état 1 n'est plus monochromatique de fréquence
E,

T mais présente une petite largeur spectrale. Par

suite de cet élargissement spectral du niveau 1, les
transitions quantiques possibles 1 + 2 et 1 = 3 cor-
respondent 3 1'émission de trains d'ondes &lectro-
magnétiques ayant la largeur spectrale 8v. On ob-
tient bien ainsi la relatiom 6v.T = ! pour le train
d'ondes émis et 1'on a justifié l'affirmation sui-
vant laquelle la durée de passage T de ce train
d'ondes en un point de l'espace peut &tre assimilée

4 la vie moyenne T de 1'état 1 dans l'atome émetteur.

Tout semble donc satisfaisant. Mais en réalité, en
dehors de quelques difficultés mathématiques que 1l'on
constate en examinant ce calcul, il conduit 3 une
conclusion paradoxale. En effet, la largeur natu-
relle de la raie émise lors d'une tramsition quanti-
que, par exemple E; > E,, se trouverait alors dépen-

dre non seulement de la transition qui s'est produi-
te, mais de toutes celles qui étaient possibles, mais
qui ne se sont pas produites (ici E, = E;). Une telle

-

interprétation me parait impossible & admettre car
un phénoméne ne peut pas dépendre de phénoménes qui
étaient possibles, mais qui n'ont pas eu lieu. Et
cependant la prévision théorique est vérifiée par
1'expérience.
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Le paradoxe auquel on se heurte ainsi peut @tre
@carté si l'on introduit les notions de processus
faibles et de processus forts sous la forme qui a
été précédemment exposée. Reprenons le problé&me de
la largeur des raies spectrales dans le cadre de
nos idées. Dans 1'état initial, la fonction d'onde
v de l'atome est v, = % wi. Puis commence une &volu-
tion causale et linéaire de l'onde v en interaction
avec un champ électromagnétique précurseur égale-
ment du type ¥V ne portant encore aucun photon. Le
calcul indiqué ci-dessus pour l1'onde ¥ est valable
pour l'onde v et, en divisant par C, 1'équation
(1) devient :

(2) v(t) = Cl(t)vl + Cz(t)v + C3(t)v3

2
S
oi l'on suppose que C,(t) = e 2T. Mais il faut

bien remarquer que, l'onde v étant pour nous une
onde réelle, les trois termes du second membre de
(2) n'ont pas une existence indépendante : seule
existe physiquement 1'onde v(t) formée par leur su-
perposition. La fonction d'onde (2) définit "1'état
précurseur”" qui précéde une émission quantique et
qui seul alors a une existence physique. Corrélati-
vement, il nait un champ électromagnétique précur-
seur, processus faible du type v ne comportant aucun
photon. Ce champ est formé par la superposition de

. E, - E,
deux composantes de fréquence V,, = — et
L, - E3
Vig = % Chacune de ces composantes a une lar-
1 S - . .
geur spectrale §v = 7 qui dépend a3 la fois des trois

états quantifiés de 1'atome que nous considérons.
Mais ici cette largeur spectrale n'est pas due aux
probabilités des transitions 1 + 2 et | =+ 3 dont
aucune ne g'est encore produite, mais & 1'8volution
causale due 3 l'interaction du champ précurseur v
de l'atome avec le champ v précurseur électromagné-

tique.

Tout & coup se produit une transition quantique
(processus fort, tré&s bref) dont la description
échappe complé&tement 3 la théorie ondulatoire u-
suelle parce qu'elle ferait intervenir le caractére

localisé des particules. Supposons que ce soit la
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transition 1 > 2 qui se produise. Alors, selon nos
conceptions, l1'électron atomique se "décroche" de
1'onde v(t) donnée par (2) pour s'accrocher sur l'on-
1

T Ve
saire pour la conservation de l'énergie, un photon,
sans doute extrait du milieu subquantique, apparait
sur le train d'ondes &lectromagnétique de fréquence
V,, et de largeur spectrale §v. Ainsi il y a finale-
ment émission par 1'atome d'un photon transporté par
une onde électromagnétique v et correspondant a une
raie spectrale de fréquence V;,; et de largeur spec-—
trale 6v. Les conclusions seraient analogues dans le
cas ol ce serait la transition 1 -+ 3 qui se produi-
rait.

de v, = Corrélativement, comme cela est néces-

Le paradoxe qui résulte de la théorie usuelle et
qui a été signalé& plus haut parait ainsi avoir dis-
paru. La largeur spectrale d'une raie émise lors
d'une transition quantique n'est pas due & la proba-
bilité d'une transition qui ne s'est pas produite :
elle résulte de 1'évolution causale des processus
faibles du type v qui ont précédé la transition quan-
tique.

La Thermodynamique cachée des particules, complé-
ment naturel de la théorie de la double solution
sous sa forme actuelle, permet de voir ) que les
états quantifiés qui sont monochromatiques ont une
probabilité thermodynamique plus grande que les états
précurseurs qui sont définis par une superposition
d'ondes monochromatiques. Il en résulte que le retour
d'un état précurseur 3 un état monochromatique sta-
tionnaire s'accompagne d'une augmentation de la pro-
babilité thermodynamique. Les &tats quantifiés sont
donc plus stables que les &tats dont la fonction d'on-

de est de la forme Yy = Z cy wQ, point sur lequel nous
[}
reviendrons plus loin.

Dans ce qui précé&de, nous avons étudié le cas de
1'émission spontanée, au sens d'Einstein, d'un pho-
ton par un atome. Des considérations analogues doi-
vent pouvoir @tre développées dans le cas ol un atome
(ou une molécule) est frappé par une onde transpor-
tant un photon. Il peut alors s'établir un état pré-
curseur transitoire qui se termine par une transition
quantique brusque, avec augmentation de la probabilité
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thermodynamique, pouvant réaliser suivant les cas
une absorption ou une émission stimulée au sens
d'Einstein, un effet Compton ou un effet Raman.

Ce qui parait inexact et trompeur dans la concep-
tion usuellement admise, c'est qu'elle considére
comme des états indépendants les composantes de
Fourier qui figurent dans l'expression de 1'onde au
cours des processus précurseurs alors que la vérita-
ble transition quantique n'a pas encore eu lieu. On
prend ainsi pour des états quantiques indépendants
ce qui n'est en réalité que des termes apparaissant
dans le calcul, par la méthode de variations des
constantes, de 1'évolution de l'onde cohérente (v
ou ¥) pendant le processus précurseur. Et c'est cela
qui conduit 3 considérer la particule ou le systéme
comme étant réparti entre plusieurs états quanti-
ques, alors qu'en réalité il est dans un état uni-
que, mais transitoire, avec fluctuation d'énergie.
Ce qui facilite la confusion qui parait exister
dans 1'interprétation actuelle, c'est que le déve-
loppement de 1'expression de l'onde dans 1'état pré-
curseur préfigure l'ensemble des transitions quanti-
ques qui pourraient se produire, mais dont aucune ne
s'est encore produite.

La chose apparait peut—étre encore plus nettement
dans le cas oli, poussant plus loin les approxima-
tions, on fait intervenir dans le calcul des compo-
santes de l'onde des états intermédiaires wj tels

que, la transition directe wi > wk étant impossible,
elle peut cependant avoir lieu par le double passage
wi > ¢j > wk' On constate alors que les passages

wi > Wj et wj -+ wk ne conservent pas l'énergie alors
que le passage global wi > wj > wk la conserve fina-

lement, ce que l'on interpréte souvent en disant que
la durée 8t du processus global est trop courte, en
raison de la relation d'incertitude SE.St = h, pour
que 1'on puisse appliquer la conservation de 1'éner-
gie aux stades de ce processus. C'est ce qui a con-
duit 3 introduire la notion &trange de particules
virtuelles (par exemple de photonsvirtuels) pour
lesquels il n'y aurait pas conservation de 1'énergie.
On peut penser qu'ici encore on prend pour des réa-
1ités physiques ce qui n'est qu'un stade dans un
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calcul d'approximations, les &tats intermédiaires
E. n'étant pas physiquement réalisés, mais étant
sbulement des termes intervenant dans le calcul de
1'état précurseur indécomposable qui existe avant
la véritable transition quantique.

4. INTRODUCTION DANS LA THEORIE PRECEDENTE DE CERTAI-
NES IDEES DE SCHRODINGER.

Dans un article intituld@ "Are there quantum jumps?",
Schrodinger avait remarqué que le "privilége" atta-
ché aux états stationnaires lui paraissait injusti-
fié (°). Pourquoi, disait-il, suppose-t-on qu'un sys-
téme quantifié se trouve toujours dans un état sta-
tionnaire § = wk alors que la forme générale de 1la

fonction d'onde, solution d'une &quation linéaire est
évidemment § = Z cj wj ? Et i1 concluait que les

]
états stationnaires avaient usurpé leur situation
privilégiée.

Partant de cette idée, Schrodinger avait alors
cherché 3 se représenter le phénoméne de l1'émission
des rayonnements par un atome d'une fagon classique
sans intervention des sauts quantiques de Bohr. Il
pensait que l'on devait partir de la formule

Y o= z cj wj représentant une superposition d'états
]

stationnaires et il définissait le moment électrique
i

0 correspondant de l'atome en posant wj = aje f Ejt,
les a, pouvant &tre complexes, et en &crivant :
*
Oq =~ eIw YqdT = gkck c, (oq)ki

~ *
oi g = x, ¥y, z et (Oq)ki =—erk wida

i
= - % + (E.-E. )t
eJak a; qdT e h i "k
L'atome devrait alors rayonner comme un ensemble
d'oscillateurs de moment &lectrique (Oq)k. et devrait
i k

ainsi émettre toutes les fréquences Vig = 5




de Bohr. Il voyait dans ce résultat une sorte d'in-
terprétation classique du rayonnement par transitions j
quantiques. Mais il est aisé de voir que cette inter- |

prétation se heurte 3 des objections graves : toutes

les fréquences Vi seraient émises simultanément et

rien ne serait analogue aux sauts quantiques de Bohr,
1'état initial ne jouerait aucun rdle particulier,
tous les &tats quantifiés intervenant de la méme
fagon, etc.

Néanmoins, si 1'on adopte les conceptions de la
théorie de la double solution et si l'on admet 1'exis-
tence des états précurseurs tels que nous les avons
précédemment définis, il parait possible de donner &
1'idée de Schrodinger une forme acceptable et trés
intéressante.

Considérons le cas de 1'émission spontanée de Ni
atomes dans l'é@tat quantique initial d'énergie Ei'
L'état précurseur tel que nous 1'avons précédemment
défini est représenté dans le formalisme usuel par

une fonction ¥ de la forme suivante V¥ = c.¥, + ) c. ¥ ,
i'1 K k'k

la somme ) &étant étendue aux états d'énergie E, < E;.
k

Dans cet état précurseur, le moment é€lectrique consi-

déré par Schrodinger a une composante 0 de fréguence

Vi qui est : 1

*
(Gq)lk = - e Ck Ci Iwk (!Ji qdT (q = X, ¥ z)

Pour l'ensemble des Ni atomes, l'énergie rayonnée
sous forme d'une onde de fréguence Vi avec champ

électrique paralléle 3 l'axe des q sera donnée d'a-
prés la théorie classique du rayonnement par la for~
mule :

64n“v;k 64n“v;k
Ny 0 1 = et e 7 17
3e 3c
64mHVY
* 2 _ 2 ik * 2
x ka b, qdT|® = N, e ——;;:——+ka¢iqdr
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~ _ 2 . _
ol Ni*k = NiICk| est le nombre des atomes qui pas

sent de 1'état initial d'énergie E; a 1'état final
d'énergie E, .
k
Nous devons maintenant examiner de plus prés le
sens de l'image ainsi obtenue. Pour nous, pendant
1'état précurseur, il existe dans l'atome une onde
v €lectronique de la forme :

i
2T h
e e

E.t 1
it z h "k
k

Cette onde v contiendra, sous une forme que nous pré-
ciserons plus loin, un moment électrique variable
dont les composantes de Fourier peuvent s'écrire sous
la forme :

t 1

# -7 R By - B
(Oq)ik =-e |a a; qdT.e e

En d'autres termes, il existerait dans 1'onde v de
l1'atome pendant 1'état précurseur une distribution
d'électricité variable dont la composition spectrale
contiendrait toutes les fréquences correspondant aux
transitions quantiques de Bohr susceptibles d'étre
émises. Cette trés faible distribution variable
d'électricité rayonnerait, suivant les lois classi-
ques, autour de l'atome une tré&s faible onde électro-
magnétique du type v ne portant aucun photon et con-
tenant, elle aussi, toutes les fréquences suscepti-
bles d'€tre émises par l'atome. Au trés faible ni-
veau des ondes v, toutes les émissions quantiques
seraient en quelque sorte préfigurdes et tout se pas-
serait a ce niveau d'une manidre classique en accord
avec 1'idée directrice de Schrodinger.

Mais ce qui n'est pas classique, c'est la fagon
dont se termine par un processus fort d'échange
d'énergie cet état précurseur. Ce processus ne pou-
vait pas €tre représentée par une théorie comme celle
de Schrddinger qui ignorait la localisation des par-
ticules. L'électron atomique s'accrochera alors sur
1'une des composantes de fréquence Vi de l'onde v

électronique de 1'état précurseur, la probabilité de
cet accrochage &tant égale 3 |Ck{2. Ce brusque re-

tour pour l1'électron 3 un état stationnaire d'énergie
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moindre que celle de 1'état initial correspond, d'a-
prés la Thermodynamique cachée des particules, & une
augmentation de l'entropie ou plus exactement en rai-
son de 1'émission d'un photon & une diminution de
l1'énergie libre et c'est 13 ce qui justifie la pré-
rogative des &tats stationnaires que contestait
Schrdodinger.

On voit ainsi que les conceptions de Schrodinger
peuvent é€tre adoptées pour la description de la
substructure pendant les &tats précurseurs sans por-
ter atteinte & la prérogative, pour nous d'origine
thermodynamique, des états stationnaires et cela
doit @tre vrai aussi bien dans les processus d'ab-
sorption que dans les processus d'émission sponta-
née ou stimulée. On peut dire qu'au niveau de la
substructure, c'est-ad-dire des ondes v, tout se
passe comme si la théorie &lectromagnétique classi-
que était exacte. Cette conclusion, qui pourrait
probablement €tre mise en relation avec le principe
de correspondance, est 1'un des aspects de la vali-
dité que conserve dans beaucoup de calculs 1'emploi
de la théorie électromagnétique classique malgré
l1'existence certaine des photons. Mais il nous res-
te 3 examiner un point important.

5. LE ROLE DE LA CHARGE DE L'ELECTRON PENDANT L'ETAT
PRECURSEUR.

Remarquons d'abord qu'il semble certain que 1l'on-
de v d'un électron comporte une tré&s petite charge
lectrique de densité - ea? répandue dans toute son
étendue. En effet, si nous considérons une onde v
électronique qui ne transporte aucun électron et si
nous supposons que cette onde subisse l'action d'un
champ électrique extérieur, la présence dans 1'équa-
tion de propagation d'un terme - eV ol V est le po-
tentiel dont dérive le champ extérieur montre que
cette propagation est influencée en chaque point
par l'action du champ électrique, ce qui parait
imposer 1'idée qu'une trés petite partie de la
charge de 1'électron est répandue dans toute 1'onde
Ve

Cependant, avec nos conceptions ol l1'électron
est localisé dans 1'onde, la presque totalité de la
charge doit &tre localisée dans 1'électron lui-méme.
Dans les états stationnaires de l'atome oi, selon
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nos idées, l1'@lectron peut etre animé d'un mouvement
de guidage et cependant il ne doit pas y avoir de
rayonnement d'énergie vers l'extérieur, La difficul-
té est analogue 3 celle que 1l'on rencontrait dans la
théorie primitive de 1'atome de Bohr oid 1l'on suppo-
sait 1'électron décrivant des trajectoires circu-
laires ou elliptiques et ol cependant, contraire-
ment aux prévisions de la théorie électromagnétique
classique, l'atome dans son &tat stationnaire ne de-
vait pas émettre d'énergie sous forme électromagné-
tique.

En réfléchissant au probléme qui se pose ainsi,
on arrive 3 des conclusions qui paraissent trés
intéressantes. Considérons un atome d'hydrogé&ne ol
1'8lectron est animé d'un mouvement de guidage sur
une trajectoire circulaire autour d'un axe oz. Ce
cas est réalisé quand, en prenant des coordonnées
polaires r, o, O pour repérer les positions, l'onde
v a la forme : .

g- (Ext - mvro)
v, = ak(r, o, 8) e

avec a, réel et wk = Cvk. Le moment de quantité de

mouvement de 1'électron sur une trajectoire circu-
laire de guidage est alors un multiple entier non
nul de h. Alors, avec notre maniére de voir, les
trajectoires de guidage de l'électron sont des

petits cercles de rayon r décrits avec la vitesse
v, r et v étant reliés par la relation vr = n %
avec n entier., Dans la forme primitive de la théo-
rie de la double solution ol les perturbations alé-
atoires d'origine subquantique n'intervenaient pas,
1'électron décrivait une seule de ces trajectoires
circulaires et alors omn ne voyait pas pourquoi il
ne rayonnait pas. Mais, dans la forme actuelle de
la théorie de la double solution, les perturbations
subquantiques font constamment passer l'&lectron
d'une de ses trajectoires circulaires définies plus
haut 3 une autre de ces trajectoires, les grandeurs
v et r variant simultanément de fagon que leur pro-
duit reste constant, C'est 13 la raison pour la-
quelle la probabilité de la présence de 1'électron
dans un élément de volume dt de l'atome est égal a
jv]2dt ol |Pp] = Ca(r, o, 6) ne dépend pas du temps.
C'est cette circonstance qui, en établissant une
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sorte d'incohérence entre les émissions qui corres-
pondraient aux &léments de trajectoires de 1'élec-
tron fait qu'au total 1'état stationnaire de 1'a-
tome ne rayonne pas, ce qu'un calcul développé pour-
rait peut-étre démontrer plus rigoureusement. Il
semble donc que 1'on doit en tirer la conclusion
suivante : "Pour qu'un état de 1l'atome puisse rayon-
ner, il faut que la grandeur lw]? dépende du temps”.

Mais, dans les états précurseurs précédemment
définis, l'onde v de l'électron est formée par une
superposition de composantes ayant des fréquences
de la forme vi - Vk égales aux fréquences qui peu-

vent €tre émises par transitions de Bohr. la gran-
deur 'wlz dans ces états précurseurs est donc fonc-
tion du temps et, conformément aux conceptions clas-
siques et aux idées de Schrodinger, il y a alors
émission d'une onde v électromagnétique qui ne porte
encore aucun photon et qui est la superposition des
composantes correspondant 3 toutes les fréquences

Vi Vo C'est seulement ensuite que cet &tat pré-

curseur cesse brusquement par l'intervention du

processus fort ou "choc d'Einstein" qui s'accompa-

gne de 1'émission de 1l'une des fréquences Vv, - 29
i

avec passage de l'atome dans 1'état stationnaire
d'énergie hvk et conservation de 1'énergie glo-
bale.

I1 semble bien que 1l'on doive en conclure que
1'émission pendant 1'état précurseur d'une trés fai-
ble onde électromagnétique autour de l'atome fait
intervenir non seulement la trés faible charge élec-
trique de l'onde v électronique, mais aussi la to-
talité de la charge électrique concentrée dans la
particule "&lectron'", charge qui se trouve en guel-
que sorte répartie statistiquement pendant 1'état
précurseur par l'effet des perturbations subquanti-
ques dans toute l'étendue de 1'onde v électronique.

6. DERNIERE REMARQUE ET CONCLUSION.

On peut faire encore une remarque importante au
sujet du schéma général proposé ci-dessus en ce qui
concerne les émissions et absorptions stimulées. En
effet, ce schéma n'est valable que si 1'état pré-
curseur de l'atome peut se représenter par une su-
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perposition de fonctions propres correspondant aux
états non perturbés de l'atome. Gr, cette condition
peut cesser d'@tre réalisée si 1'action de 1l'onde
¢lectromagnétique incidente sur l'atome est suffi-
samment forte pour modifier sensiblement 1'état on-
dulatoire de l'atome. Et cela pourrait &tre mis en
relation avec les trés intéressants travaux de

M. Georges Lochak et de ses collaborateurs.

La question des émissions stimulées demande-
rait d'ailleurs 3 étre regardée de plus prés. En
particulier, il faudrait expliquer pourquoi les
émissions ou bsorptions stimulées sont proportion-
nelles au nombre des photons portés par l'onde in-
cidente. Peut-etre cela provient-il du fait que
l1'onde électromagnétique v incidente, bien que trés
faible, agit cependant comme si elle &tait beaucoup
plus intense parce que les photons qu'elle transpor-
te apportent d l1'atome des "&chantillons" d'une onde
électromagnétique beaucoup plus intense, échantil-
lons qui sont répartis statistiquement dans toute
1'onde par les perturbations aléatoires subquanti-
ques (%).

Evidemment les idées exposées dans les paragra-
phes qui précédent ne constituent que des indica-
tions générales qui auraient besoin d'&tre précisées
et développées, mais qui forment probablement la ba-
se sur laquelle il faudra constituer la véritable
théorie des interactions entre la matigre et le
rayonnement.
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Onde active
et onde réactive

1. SUBSTITUTION DE DEUX FONCTIONS D'ONDE REELLES A
LA FONCTION D'ONDE COMPLEXE DE LA THEORIE DE LA
DOUBLE SOLUTION.

Dans l'interprétation de la Mécanique ondulatoire
par la théorie de la double solution, il est usuel de
définir la fonction d'cnde ¥ qui représente statisti-
quement une onde portant un grand nombre de particu-
les par la formule :

i

(1) Y = ae h ¢
a étant l'amplitude et ¥ la phase de l'onde. L'hypo-
thése que la particule est assimilée 3 une petite
horloge qui se déplace dans son onde de fagon 3 res-
ter en phase avec cette onde, hypothése qui a été le
point de départ de mes travaugx en 1923-24, conduit a
prévoir que Ja grandeur P = a° est la densité de pro-
babilité de présence de la particule tandis que le

-+ >
vecteur p = - grad ¥ est la quantité de mouvement de
la particule au point ol elle se trouve. Mais la théo-
rie que nous cherchons 3 développer tendant toujours

i éliminer le plus possible tous les formalismes pu-
rement mathématiques, il est trés naturel de chercher
4 remplacer 1'expression complexe (1) de ¥ par deux
fonctions réelles ¥, et ¥V, telles que ¥ = ¥, + iV¥,,

On est alors conduit 3 relier ¥, et ¥, aux fonctions
a et Y par les relations :
2 2 wZ

(2) a” = Y] + W% ¥ = arc tg —
1
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Si, 4 1'aide de ces deux relations, on introduit
¥, et ¥, dans 1'équation d'onde sous la forme simple

de Schrodinger, on obtient en séparant les termes
réels et imaginair$s, deux équations réelles liant
2

Wf + w: et arc tg T et, compte tenu des relations
1
(1) et (2), on trouve

Y

- 2

(3) p = wi + ¢§ p = - grag arc tg T
1

et 1'on vérifie facilement que ces deux &quations
sont celles que j'ai 1'habitude de nommer "é&quations

de Jacobi généralisée™ et "équation de continuité".
Le passage des fonctions a et ¥ aux fonctions w, et

wz n'introduit donc rien de nouveau dans 1l'interpréta-

tion physique de ces équations en théorie de la dou-
ble solution, mais il est &vident que l'emploi des
fonctions a et ¥ est plus commode que celui des fonc-
tions ¥, et ¥,. Mais, en revanche, comme nous allons

le montrer, 1l'emploi de V¥, et de ¥,, du moins dans le

cas des ondes &lectromagnétiques, est d'un trés grand
intérét physique si l'on introduit les notions de
puissance active et de puissance réactive.

2. RAPPEL DES NOTIONS DE PUISSANCE ACTIVE ET DE PUIS-
SANCE REACTIVE.

Soit un circuit électrique contenant une résis-
tance R, une self L et une capacité C sur lequel
agit une tension alternative de fréquence v, donc de
pulsation w = 27V. Nous pouvons écrire cette tension
sous la forme :

(4) U = Uy cos wt = U Y2 cos wt
Uq
ol Ue = — est la tension efficace. Le courant in-
2
duit dans le circuit est :
(5) I =1, cos(wt - ¥) = Ie Y2 cos(it - ¢)
I,
oi I = — est 1'intensité efficace et ol, ici,¥ dé-
¢ /2

signe le décalage du courant par rapport 3 la tension.



Les grandeurs I et U sont reliées par l'équation :

dl 1 _
(6) L ot RI + 3 IIdt = U
U, Ue
1 - —_— T e— M
et 1'on a I0 =3 et Ie 7 avec : |
L w - =—
2
= Rr2 L w - - Cw
Z R + (L w Cw) tgy R
(7 ‘
w L - =
sin ¢ = - _Cu cosy = R
Z Z

Z étant l'impédance du circuit. Quand la condition de
résonance L (W2 = 1 est réalisé, Z = R et le courant
est maximal. Tout ceci est bien connu.

En notations complexes, nous écrirons :

(8) U = U, /2 et I =1, V2 et 7
et nous aurons :
(9) U =21 avec Z = R + i (w £ - %J

Z étant l'impédance complexe. On retrouve aisément les
formules sous la forme réelle.
L'énergie débitée par la source pendant une pério-
de T = % est
T
(10) J Ue V2 Ie V2 cos wt.cos(wt - ¢) dt
0

et la puissance moyenne P; fournie au circuit et con-
sommée dans la résistance R pendant la durée T d'une
période est :

(11) P, =

Al—

T
J 2 UI cos Wt.cos(wt - ¢)dt
e’ e
0
= U
eIe cos ¢

formule bien connue.

Mais nous allons maintenant introduire une notion
importante, moins couramment employée que les précé-

dentes. En effet, il y a plus de 60 ans, M. Boucherot
a introduit 1'idée nouvelle de "puissance réactive'
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définie par la formule symétrique de (11) :
(12) P, = Uele sin ¢

Tandis que la puissance active P; s'exprime naturelle-
ment en watts, la puissance réactive P, s'exprime en
vars ou voltampéres réactifs.

Pour montrer l'intérét de la notion de puissance
réactive, M. Boucherot a considéré la propagation des
puissances actives et réactives dans deux cas impor-
tants : celui d'un branchement et celui d'une self
suivie d'un condensateur.

— | | —

I1 a montré que dans ces deux cas, non seulement
la puissance active, mais aussi la puissance réactive
se conservent depuis 1'entrée jusqu'id la sortie du
dispositif. On trouvera ces démonstrations avec quel~
ques remarques complémentaires dans mon livre "Ondes

électromagnétiques et Photons" p. 53 & 55.

3. RELATIONS ENTRE LA PUISSANCE ACTIVE ET LA PUISSANCE
REACTIVE ET LES FONCTIONS REELLES Y, ET ¥, DANS LE
CAS D'UNE ONDE ELECTROMAGNETIQUE.

Dans le premier paragraphe de cette é&tude, nous
avons montré que, dans la Mécanique ondulatoire telle
que nous la concevons, on peut remplacer la fonction
d'onde complexe par deux fonctions d'onde réelles.

Dans le cas que nous considérons d'une onde électroma-

gnétique, cela nous améne naturellement a penser que,
en suivant les conceptions de Boucherot, l'onde ¥,

doit &tre considérée comme une onde active et la fonc-

tion wz comme une onde réactive.
Alors, la fonction ¥, correspondra 4 la tension
active U = Ue V2 cos Wt définie par (4) et c'est cette

tension active qui, en cédant de 1l'énergie au circuit
oscillant, y entretiendra le courant
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I = Ie Y2 cos(wt - ¢). L'énergie cédée par l'onde

au circuit pendant un temps trés court dt sera donc:
(13) dw = UeIe.Z cos wt. cos(wt - ¢)dt

et pendant une période T cette énergie cédée sera en
moyenne par période

T
(14) W = L J 2 UI cos ¢ cos? wt dt
T g e’ e
1 IT 2 UI sin ¢.sin wt.cos wt dt
+ = e e
T JO
T
Comme J sin Wt.cos wt.dt est visiblement nulle,
0

on retrouve pour l'énergie cé&dée au circuit par unité
de temps l'expression classique UeIe cos ¢.

Mais, cela ne veut pas dire que l'onde réactive
n'échange pas d'énergie avec le circuit oscillant
car, pendant le premier et le troisiéme quart de la

période T, l'intégrale |[sin wt cos wt dt est positi-

ve tandis que pendant le deuxiéme et le guatrié&me
quart de la période T cette intégrale est négative.
Il y a donc une certaine &nergie qui oscille cons-
tamment entre l'onde et le circuit en se conservant
et cette oscillation d'énergie est due 3 l'action sur
le circuit du champ réactif. Ceci montre bien que
1'onde réactive existe bien réellement.

4. CONCLUSION.

Assurément la théorie précédente est un peu schéma~-
tique. Elle n'est valable pour un champ électromagné-
tique que si le transfert d'énergie de 1l'onde & un
circuit oscillant peut s'exprimer & l'aide d'une seu-
le grandeur U. On pourrait peut &tre chercher 3 la
généraliser.

Aucune théorie analogue ne semble pouvoir Etre dé-
veloppée pour les ondes portant les &lectrons dont
les composantes n'ont pas le caractére de grandeurs
électromagnétiques, mais on pourrait, en partant des
équations de Pauli et de Dirac, remplacer les fonc-
tions d'ondes par des fonctions réelles et examiner
ce qui pourrait en résulter.
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Sur la largeur
des raies spectrales
et I'effet Dupouy

La propagation d'une onde monochromatique plane
dans une direction ox peut &tre définie par un vec-

. s 1 . . .
teur égal a b dans la direction ox, A &tant la lon-
gueur d'onde. Si A est affectd d'une petite varia-
. 1 - ~ .
tion GX = 6%, V et V étant la fréquence et la vi-

tesse de phase, la superposition des ondes planes
monochromatiques donne naissance 3 un train d'ondes
limité se déplacant suivant ox avec une vitesse de
1
p . 1 %%
groupe donnée par la formule de Rayleigh 7 3vr La
représentation d'une onde par un train d'ondes est
beaucoup plus proche de la réalité physique que
1'image d'une onde monochromatique plane indéfinie.

Pour analyser la propagation d'un train d'ondes

limité, faisons la figure suivante «

Si toutes les composantes spectra-
les sont en accord de phase en 0, 1la 8

>|=

longueur L du train d'ondes sera donnée %
par la formule : ¢
] 1 _ 1y L,
(1) 2ﬂ(X + GX >\) 7 =T
o
d'ot
(2) 51 e L = EEB ~ ]




143

L . . , -
5 étant le temps T que met le train d'ondes 3 passer
en un point M et l'on a :

(3) Sv.Tt = |

relation bien connue entre la largeur spectrale &v
et le temps de cohérence T.

Mais il est naturel de supposer qu'un train d'on-
des n'est pas seulement défini par un ensemble de
vecteurs de longueurs comprises entre % et % + 6%
dirigés suivant ox, mais par un ensemble de tels
vecteurs compris 4 1'intérieur d'un cdne d'axe ox
et de trés petit angle au sommet €. Alors, si au
point O toutes les composantes spectrales sont en
phase, on peut définir la "largeur" L' du train d'on-
des par la formule analogue a (1) :

11, L'

) L -
(4) 2n£(A + 6% A) 5 =
car sin € * €. On en tire :

1 [
(5) SA. e L' ~ 1

d'oli en comparant (5) avec (2) :

v . L
(6) L' v 2 >> L

La largeur d'un train d'ondes doit donc &tre
beaucoup plus grande que sa longueur.

Je n'insisterai pas ici sur l1'application de ces
formules 3 !la lumiére et je me bornerai a étudier
le cas des électrons.

Dans son trés intéressant "Cours de diffraction
électronique" autographié, M. Zouckermann donne
dans le paragraphe 3, page 18, pour des électrons

de vitesse v = les valeurs suivantes :

c
2’
-1 -

Tx 107 s., L= ovr 2 boeato”MY s 1y,

Ce résultat est en accord avec celui qu'avait
publié Mollenstedt en Allemagne en Mars 1956 ol il
avait trouvé, pour des électrons de 25 k.e.V. dont
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-9

la longueur d'onde est A = 10 cm, que la longueur
des trains d'onde était de 1,5 p, soit environ

150 000 ).

Un résultat analogue avait aussi été publié par
Fert et Faget dans les Comptes Rendus de 1'Académie
des Sciences de Décembre 1956. Ils avaient trouvé
qu'un train d'ondes &lectroniques a une longueur
égale a environ un million de fois la longueur d'on-
des.

La concordance de ces résultats permet d'admettre
que, pour des Eélectrons ayant une énergie de quel-
ques dizaines de milliers d'@lectron~volts, la lon-
gueur des trains d'ondes est de l'ordre du Y. Mais
M. Zouckermann a été plus loin. Il a pu évaluer la
largeur d'un train d'ondes électroniques pour des
électrons de 60 000 e.V. Il a trouvé que cette lar-
geur est supérieure 3 80 y, soit environ 100 fois
la longueur du train d'ondes.

J'en arrive maintenant 3 ce que j'appellerai
"l'effet Dupouy”". M. Dupouy, qui emploie dans son
laboratoire de Toulouse, des &lectrons d'une éner-
gie de trois millions d'électron-volts, a annoncé,
il y a quelques années, qu'il constatait la dispari-
tion totale de 1'aberration de sphéricité. Cette
aberration prévue par les calculs usuels d'optique
électronique est bien vérifiée par 1'expérience pour
les électrons de quelques dizaines de milliers d'é-
lectron-volts usuellement utilisés en optique élec-
tronique. Le fait important et inattendu signalé par
M. Dupouy me parait susceptible d'@tre interprété,
dans le cadre de mes idées sur le transport des
particules par leur onde, & 1'aide des résultats
expérimentaux que je viens de rappeler.

Comme je 1'ai rappelé dans mon livre d'optique
électronique et corpusculaire p. 128, 1l'aberration
de sphéricité est due au fait suivant : les rayons
émis par une source ponctuelle ne vont converger
vers un méme point de 1'image que s'ils sont peu
inclinés sur 1'axe de 1'appareil employé& pour obte-
nir cette image. On peut donc penser que l'effet
Dupouy est dii au fait que, pour les Electrons de
trés haute énergie, les trains d'ondes passent par
le centre des pupilles de 1l'appareil sans en tou-
cher les bords.
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Or, comme je l'ai rappelé plus haut, M. Zoucker-
mann employant des électrons de 60 000 e.v. a trouvé
une largeur des trains de l'ordre de 100 1. Mais
M. Dupouy emploie des électrons de 3 millions d'é-
lectron-volts dont 1'énergie est donc 50 fois plus
grande que celle des électrons de M. Zouckermann. La
formule W = hv montre alors que la fréquence v des
électrons de M. Dupouy est 50 fois plus grande que
celle des électrons de 60 000 e.V. La vitesse des
électrons de 3 millions de volts étant extrémement
voisi?e de ¢, la longueur d'onde correspondante est

%; = % et ceci montre qu'elle est environ 50 fois
plus petite que celle des électrons de 60 000 e.v.
Si 1'on admet alors, ce qui parait naturel, que la
largeur des trains d'ondes est proportionnelle & la
longueur d'onde, cette largeur est 50 fois plus
petite pour les &lectronsde 3 millions d'électron-
volts que pour des électron de 60 000 é€lectron-
volts.

D'aprés les schémas d'appareils donnés par
M. Magnan au début de son traité de Microscopie
électronique, les pupilles contenues dans ces appa-
reils ont des diamétres de l'ordre de 70 p. Si 1'on
envoie sur ces pupilles des trains d'ondes électro-
niques portant des électrons de 60 000 e.v., ces
trains d'ondes couvrent les pupilles et 1'aberra-
tion de sphéricité intervient. Mais pour des &lec-
trons de 3 millions d'électron-volts, la largeur
des trains d'ondes sera 50 fois plus petite. Elle
sera donc de l'ordre de 2 y de sorte que ces trains
d'ondes passeront par le centre des pupilles sans
en toucher les bords. Et ceci explique la dispari-
tion de 1'aberration de sphéricité.

M. Dupouy a bien vu la chose quand il a écrit
(C.R. 27 Mars 1972) que l'aberration de sphéricité
disparait parce que les faisceaux d'électrons qu'il
emploie sont si fins qu'ils passent par le centre
des pupilles. Cependant cette explication ne me pa-
rait pas tout 3 fait exacte parce que c'est la pro-
pagation de l'onde qui détermine la forme de 1'ima-
ge et la répartition statistique de 1'apport de
1'énergie par les électrons dans cette image. Il
est d'ailleurs probable que chaque train d'ondes
incident ne porte qu'un seul électron. C'est donc la
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trés petite largeur des trains d'ondes qui doit &tre
invoquée pour expliquer exactement la disparition de
1'aberration de sphéricité dans les expériences de
M. Dupouy.
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Réfutation du théoréme de Bell

Le but de cette Note est d'exposer pourquoi le
raisonnement par lequel M. Bell a cru pouvoir dé-
montrer 1'impossibilité d'interpréter la Mécanique
ondulatoire par une théorie 3 variables cachées
est inexact.

Dans un article publié dans la Revue Physics en
1964 ('), M. Bell a cru pouvoir démontrer 1'impossi-
bilité d'interpréter la Mécanique ondulatoire &
l1'aide d'une "théorie d variables cachées'". Pour
nous, cette expression désigne une théorie qui admet
la localisation permanente des particules dans leur
onde, les variables cachées étant les coordonnées
des particules.

Dans le paragraphe 3 de son article, M. Bell
considérant la mesure des spins de deux électrons
trés éloignés l'un de 1'autre calcule les probabi-
lités que doivent avoir les résultats de telles me-
sures si l'on admet l'existence de variables ca-
chées et 1'indépendance de ces mesures. Les évalua-
tions qu'il obtient ainsi sont en accord avec celles
que 1'on obtient dans notre théorie qui localise les
particules dans l'onde.

Mais M. Bell veut ensuite démontrer, et c'est ce
qui constitue son théoréme, qu'il existe une contra-
diction entre l'hypoth&se de 1'indépendance des me-
sures du spin et les lois générales, qui lui parais-
sent toujours exactes, de la Mécanique quantique
usuelle. Pour faire cette démonstration, il repré-
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sente par la lettre A l'ensemble des variables sup-

posées cachées et il désigne par a et b deux vec-
teurs unités situés aux endroits ol s'effectue la
mesure du spin des deux électrons supposés éloignés
et localisés, vecteurs qui définissent l'orienta-
tion des deux appareils de mesure.

Prenant alors comme unité de spin la grandeur
3, M. Bell écrit que le résultat de la mesure des

spins sur les électrons éloignés doit &tre exprimée
par les formules :

() AGa, A) = ¢ 1 B(b, A) = + 1

Elles signifient que le résultat des mesures du spin
est *+ ] suivant la position des particules et 1'o-

rientation des vecteurs a et b. Le résultat de la
mesure faite sur l1'un des électrons ne dépend donc
pas de l'orientation de l'appareil agissant sur
1'autre €lectron. On en déduit que, dans une théorie
d variables cachées, si p(A) est la probabilité des

A, la valeur moyenne des composants 313 et 323 est
(2) P(a, B) = fpm AGa, 2. B(B, D)dx
et nous sommes d'accord sur cette formule (*).

Mais, dit ensuite M. Bell, cette valeur moyenne,
conséquence nécessaire d'une théorie i variables ca-
chées, doit &tre compatible avec celle qui est pré-
vue par la Mécanique quantique pour un état singulet,
qui s'écrit, avec les notations employées, sous la
forme que nous avons vérifiée

> > > > > > > > > > > > > >
(3) < 0J,a, 0,b > = 0,a.0,b + 0,b.0,a = - a.b
les indices 1 et 2 numérotant les particules. C'est

sur cette formule que M. Bell s'appuie pour déclarer

(*) Enoncée comme je le fais, cette affirmation
n'est exacte qu'd condition de l'appliquer en
prenant pour p(A) la distribution de probabi-
lités créée par la derniére mesure effectuée.
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inacceptable toute théorie 3 variables cachées.

Mais nous contestons la validité générale de la
formule (3). En effet, que signifie cette formule ?
Si 1'on permute la position des particules dans
1'espace, cela a pour effet de permuter les spins
de ces électrons, car les spins sont définis par
la structure locale de 1'onde et non par la position
des particules. Il résulte de cette permutation que

> > . > > > > . +> >
0,a devient 0,b et que 0,b devient 0,a. La formule

(3) exprime donc 1'antisymétrisation de la fonction
d'onde de deux électrons dans 1'espace de configura-
tion, compte tenu du spin. Mais, ainsi que je 1'ai
signalé il y a bien longtemps (2), cette antisymé-
trisation n'est justifiée que si les trains d'ondes
portant les deux électrons se superposent, au moins
partiellement, dans 1l'espace.

Il est facile de comprendre le sens de cette der-
niére affirmation. Quand deux particules sont sur un
méme train d'ondes, leurs mouvements, qui dans notre
théorie résulte de la loi du guidage et des pertur-
bations subquantiques, sont correlés et c'est cette
corrélation qui est exprimée par la formule d'antisy-
métrisation pour les fermions et de symétrisation
pour les bosons (®). Mais, d&s que les trains d'ondes
se sont séparés, le mouvement de chaque particule
dans son train d'ondes devient entiérement indépen-
dant du mouvement que peut avoir 1'autre particule
dans son train d'ondes éloigné.

La plupart des auteurs qui exposent la Mécanique
quantique semblent toujours raisonner comme si les
trains d'ondes associés aux particules avaient une
longueur infinie. D&ja pour la lumiére, si l'on excep-
te celle qui est émise par les lasers, la longueur
des trains d'ondes ne parailt pas dépasser l'ordre du
métre. Mais, pour les &lectrons, la longueur des
trains d'ondes est de 1l'ordre du | ou millionniéme
de métre. La plupart des théoriciens quantistes pa-
raissent ne pas tenir compte de ce fait bien connu
des spécialistes de 1l'optique &lectronique, 3 la
suite des travaux de Mollenstedt, Fert et Faget,
Zouckermann.




De la trés petite longueur des trains d'ondes
€lectroniques, il résulte que, quand deux électrons
initialement portés par un méme train d'ondes ont
été envoyés dans des directions différentes par
l'action d'un appareil du type Stern-Gerlach, leurs
trains d'ondes se séparent en un temps qui ne peut

guére dépasser 10—12 seconde et qu'ensuite la for-
mule (3), qui correspond & 1'existence d'un état
singulet, n'est plus valable tandis que la formule
(2) est alors vérifiée, ce qui fait tomber le théo-
réme de Bell.

En résumé, M. Bell considére deux électrons qui
sont éloignés et portés par un méme train d'ondes,
mais ces deux hypoth@ses sont inconciliables.

Ajoutons encore une remarque. Si, 3 un méme ins-
tant, on mesure les spins de deux électrons éloi-
gnés et si ces mesures sont corrélées, cela impli-
que un échange d'information Znstantané entre les
deux appareils de mesure, ce qui est contraire a la
théorie de la Relativité. Cette objection est vala-
ble que les particules soient ou ne soient pas lo-
calisées et n'est nullement opposable 3 une théorie
& variables cachées. Mais nous &chappons compléte-
ment 3 cette objection puisque, pour nous, les
mesures du spin sur des électrons &loignés ne sont

pas corrélées.
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DEMONSTRATION DES FORMULES (2) et (3).

Nous allons montrer que les formules (2) et (3)
de Bell sont exactes si 1'on adopte nos hypothéses.

Commencons par la formule (2) en supposant 1'exac-
titude des variables cachées. Pour nous, ces varia-
bles cachées sont les coordonnées Xys Yy Z1s X,

Y, 2, des deux électrons. Quand leurs spins sont

> >
mesurés par les appareils 1iés aux vecteurs a et b,
ils ont des coordonnées que Bell schématise par la

seule lettre A et le résultat de ces mesures peut

. ... h .
s'exprimer, en unité 7» Ppar la formule (1). Mais,
si nous ignorons la position des appareils au mo-
ment de la mesure, donc la valeur des coordonnées

des électrons x,,..., z, & ce moment, nous pouvons

introduire la probabilité P(Xyyen- zz) de ces va-
> > > >
leurs et la valeur moyenne de 0,a et de 0O,b pour
l'ensemble des valeurs possibles des coordonnées
sera
> > > > >
P(0,a,0,b)= D(xl,yl,zl,xz,yz,zz)A(a,xl,yl,zl,xz,yz,zﬁ

>
B(b,xl,yl,zl,xz,yz,zz)dxldyldzldxzdyzdz2

C'est cette valeur moyenne que Bell écrit sovs la
forme condensée de la formule (2)

P(a, b) = me Aa, A) B(b, A)dA
et nous avons bien retrouvé cette formule.

Nous allons maintenant retrouver la formule de
Bell (3) si l'on admet, ce que nous n'admettons pas,
que lors de la mesure de deux électrons éloignés,
ces &tats sont dans un état singulet.

Nous pouvons supposer que l'on mesure le spin des
électrons dans une direction que nous prenons comme
verticale sur notre figure. Les vecteurs unités

> > .
a et b qui définissent l'orientation des appareils

de mesure sont arbitraires et nous avons le schéma
suivant :
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On a évidemment o et B cons-
tants avec :

a G, -
0,a = cos Q
> >
- g,b = cos 8
2
b
—>—>+—g 8
.ag = s c
g, 0,a.0, cos o cos
> > > >
o,b.0,a = cos(m-a).cos(m.-R)
= cos a.cos B
d'oid :
> > > > > > > > 1
X Ola.Ozb + 0,b.0,a = 3 2 cos 0.cos B= cos a.cos B
Mais on a aussi :
> >
- a.b = - cos(m +a - B) = cos(a - B)
= cos 0 cos B + sin o sin R
Comme B = o + Cte, on a sin a.sin B = cos a. cos B
->

>
et, puisque a.b est constant :

1
XX - a.b = 5 2 cos 0.cos B = cos a.cos B
D'aprés x et xx, l'on a donc bien :
> > > > > > > > > >
OIa.OZb + 0,b.0,a = - a.b

ce qui est la formule (2) de Bell pour la moyenne
prévue par la Mécanique quantique pour un état sin-
gulrt. Mais, pour nous, quand on mesure les spins
sur des électrons éloignés, ils ne sont plus dans
un état singulet.

!
1
i
\
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Le mouvement brownien
d’une particule dans son onde

Dans un article paru dans la Physical Review (1),
M. Edward Nelson a eu la trés intéressante idée de
rechercher si 1'é&quation de Schrodinger ne pouvait
pas 8tre considérée comme correspondant au mouvement
brownien d'une particule et il a trouvé que le coef-
ficient de diffusion D de ce mouvement serait égal i
C(h/m), ol C est une constante numérique qui, d'aprés
son calcul, a la valeur 1/2. Une expression de cette
forme pouvait @tre prévue pour des raisons de dimen-
sions dans une théorie non relativiste ol 1'on ne dis-
pose que des deux constantes physiques m et h.

Mes idées actuelles sur l'interprétation de la Mé-
canique ondulatoire me font penser que la tentative
de M. Nelson est orientée dans une bonne direction.
Je crois, en effet, qu'il faut rétablir la localisa-
tion de la particule dans son onde, admettre qu'elle
posséde un mouvement "moyen" qui, en 1'absence de
perturbations, lui ferait décrire une des courbes or-
thogonales aux surfaces d'égale phase de 1'onde, mais
que ce "mouvement de guidage" est constamment pertur-
bé par des interactions provenant d'un milieu caché
"le milieu subquantique". Il en résulte que la parti-
cule, partant d'une certaine position initiale, est
constamment diffusée autour de cette position initiale
et posséde donc une sorte de mouvement brownien,
approximativement représentable par une &quation de
diffusion, qui se superpose au mouvement de guidage.

Mais, bien que je sois d'accord sur le sens de la
tentative de M. Nelson elle ne me donne pas entiére
satisfaction, en particulier parce qu'elle conduit
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4 une équation de diffusion de la forme 3¥/dt = DAY
oti la fonction d'onde ¥ de Schrodinger joue le réle
d'une densité alors que c'est la quantité |[¥]|? qui
devrait jouer ce role. J'ai ainsi 8té amené 3 re-
prendre une tentative analogue, mais sur des bases
différentes. Depuis longtemps, je suis convaincu
qu'on ne peut pas déduire 1'équation de Schrdodinger
d'une équation de diffusion parce qu'une équation

de diffusion, qui a la forme de 1'&quation de 1la
chaleur, est du type parabolique tandis que 1'é&qua-
tion de Schrodinger, dégénérescence non relativiste
de celle de Klein-Gordon, est en réalité, malgré les
apparences, du type hyperbolique. Inversement je ne
crois pas non plus qu'on puisse faire dériver une
véritable &quation de diffusion de la seule équation
de Schrdodinger. Pour dé&duire de la propagation d'une
onde un phénoméne de diffusion, il me parait néces-
saire d'introduire une hypoth&se supplémentaire qui
se présente tout naturellement dans ma théorie de la
double solution.

Dans celle-ci, en effet, on admet comme principe
essentiel que la particule est toujours localisée et
qu'elle se déplace dans son onde de telle fagon que
sa vibration interne reste constamment en phase avec
l'onde qui la porte (onde v de ma théorie i laquelle
1'onde Y est proportionnelle). Quand le milieu sub-
quantique n'exerce aucune perturbation sur 1l'onde,
le mouvement de la particule est défini par la "for-
mule du guidage" suivant laquelle la quantité de mou-
vement est égale au gradient de la phase de 1'onde.
Nous pouvons dire alors que la trajectoire non pertur-
bée est l'une des lignes de courant de 1l'onde. Mais,
si une perturbation provenant du milieu subquantique
se produit, 1'onde devient v' = v + w, ol w traduit
1'existence de la perturbation et alors la particule
se déplace a4 chaque instant en suivant 1'une des 1li-
gnes de courant de v' et en restant ainst constamment
en phase avec v'. Quand la perturbation est terminée,
on a de nouveau w = 0 et v' = v de sorte que la par-
ticule se met finalement 3 suivre la ligne de courant
de v sur laquelle elle est parvenue. Nous nous pro-
posons de montrer qu'en admettant cette hypoth&se
supplémentaire, nous allons pouvoir attribuer i la
particule un mouvement brownien représenté par une
équation de diffusion.
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Nous désignerons par ¢ la phase de 1'onde non per-
turbée v et par ¢' la phase "interne'" du corpuscule
pendant le mouvement brownien. Représentons les sur-
faces d'égale phase de 1'onde non perturbée aux ins-
tants 0, t, t + dt et T en supposant que la pertur-
bation commence au temps O et se termine au temps T.

La particule dans son
mouvement brownien zigzaguant
qui va de M, en M suit

pendant 1'intervalle de
temps {t, t + dt} le petit
segment PP' qui est dif-
férent du segment PP" qui
correspondrait au mouve-
ment de guidage en P en
1'absence de perturbation
subquantique. Nous pou-
vons représenter la vites-
N se de la particule sur PP'
, ol vg est la vitesse de guidage non per-
>

>
v

par v_ +

8
turbée en P et v est la vitesse due 3 la perturbation
d'origine subquantique.

La variation d¥ de la phase non perturbée le long
du segment PP' est, pendant la durée dt du parcours
de ce segment, égale 2

2
m_cC m, Vv

0 1 2 078 ==
1 = — + o - PP
(1) dy T dt 7 movg dt ;
2
YO B T
n MoV
puisque PP" = vgdt. D'ol :
m_ c T my
(2) 0 (1) - ¢(0) = — T = v< dt
h 0 2h
moc2 movz
= ® T - % T.

Puisque nous admettons que la vitesse de la par-
> >
ticule pendant son mouvement brownien est vg + v,

nous trouvons pour la variation d¢' de la phase in-
terne de la particule de P en P' :
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mC2

m
0 > > 2
3 do' = dt- + dt
(3) " -5 75 (v vg)

2 2 2 > 2>
m c m v m,v 2mov.v
= dt - 5w dt - __Eg dt - __“E——& dt

puisque, d'aprés la formule relativiste du ralentis-
sement des horloges, la fréquence interne de la par-
ticule en mouvement est :

m,c?

h

2 e 2
(1- L g2y. me® 1 M)
7 BY)= —x 2 h

v = v, /T-gZ =

Si nous intégrons d¢' le long de la trajectoire
brownienne de la particule en remarquant qu'on a par
hypothése ¢'(0) = ¢(0), on trouve :
m c? mOVér m,v?2
1 - = - -

car le dernier terme de (3) est nul en moyenne le
long de la trajectoire brownienne puisque la projec-—

. > - . g .
tion de v sur v_ varie alé&atoirement le long de cette
trajectoire.

La comparaison de (2) et de (4) fournit alors :
m, v?2

(5) (D) - (1) = T

et pour que les phases (1) et ¢'(7) coincident, il
faut que :

(6) v21 = 4qn ﬁ— (n entier).
0
Pour trouver maintenant 1'&quation de diffusion
représentant ce mouvement brownien, nous compterons
la variable x le long de la droite, M M, c'est-a-

dire que nous poserons ﬁﬁo = x, Comme pendant 1l'in-
tervalle de temps dt la diffusion brownienne est
dx = vxdt on aurait, si v était constant, x = VT
Mais v varie aléatoirement de sorte que Vx est

nul et nous devons nous contenter de poser :

(7) X2 = ¥212,
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En désignant alors par ¢ l'angle constamment
variable que fait la vitesse brownienne instantanée
avec HOH, on aura :

—2

ve = Y cos )2 =L
(8) v (v cos @) 3
d'oli d'aprés (7) et (6)

=2

X _g2r - Loz 4T B
(9) T = vxT =3 veT = 3 omy

Or la théorie du mouvement brownien repose sur
1'équation de diffusion :

9
(10) 5% = DA,
od P est la probabilité de la présence de la parti-
cule & une distance x de son point de départ. La
solution bien connue de 1'équation (10) est pour
t =T :
2

x
(11) p(x, 1) = —— e DT
v4TDT
qui donne aisément :
-2
-2 _ = X
(12) x° = 2DT ou D 21"

Compte tenu de (9), on obtient finalement comme
coefficient de diffusion pour le mouvement brownien
de la particule dans son onde

27 h
(]3) D = 3 n—m—o—,
ce qui, pour n = 1, ne différe que par le facteur

numérique 4m/3 de la valeur h/2 m trouvée par
M. Nelson.

La théorie qui précdde n'est valable qu'a 1'ap-
proximation newtonienne et l'on sait qu'un phénoméne
de diffusion n'est qu'approximativement représentable
par une équation du type (10). De plus, le mouvement
brownien de la particule dans son onde représenté
par les équations (10) & (13) est défini abstraction
faite du mouvement de guidage.

Le calcul effectué dans cette Note nest qu'appro-
ximatif, mais il indique une direction de recherches.

T T

g
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Sur la théorie
des particules “échantillons”

1. IDEES GENERALES.

Dans un article de "1'0Onde &lectrique" de Sep-
tembre 1970, j'ai précisé la fagon dont je congois
la mise en oscillation d'un circuit oscillant dans
un récepteur de Radio par l'action d'une onde élec-
tromagnétique incidente. D'aprés moi, les photons
portés par une trés faible onde électromagnétique v
sont assimilables 3 des "échantillons" d'une onde
de méme phase que l'onde incidente, mais d'une am-
plitude beaucoup plus grande.

Une idée analogue peut &tre introduite pour in- EH
terpréter toutes les actions de photons sur la ma- i
tiére. Par exemple, quand on obtient l'inscription,

sur une plaque photographique soit d'une image four-

nie par un appareil d'optique, soit des franges
d'interférences ou de diffraction dues a 1'arrivée

de photons, on peut prévoir trés exactement les phé-
noménes observables en utilisant une onde &lectro-
magnétique v de Maxwell associée aux photons. Plus
généralement, on obtiendra une prévision exacte de

la localisation de particules quelconques en les
considérant comme guidées par des ondes v solutions

des équations correspondantes de la Mécanique ondu-
latoire et en les considérant comme des "échantillons"
d'une onde de méme phase que 1l'onde incidente, mais
d'une amplitude beaucoup plus grande.
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2. APPROFONDISSEMENT DE CETTE IDEE.

On doit cependant noter qu'il y a une différence
importante entre les cas que nous venons d'envisager
et la mise en oscillation d'un circuit oscillant dans
un appareil de Radio. En effet, dans un circuit oscil-
lant, et c'est 13 ce qui fait 1'intérét de ce cas
particulier, l'oscillation du courant dans le cir-
cuit met directement en &vidence la phase de 1'onde
incidente qui peut méme &tre enregistrée par un dis-
positif sans inertie comme un tube cathodique. Mais
on ne réalise alors aucun comptage des photons hert-
ziens agissant sur le circuit oscillant. Au contraire,
dans 1'enregistrement d'une image photographique ou
par un dispositif analogue, il y a seulement enregis-
trement du nombre des particules, des photons dans
le cas de la lumiére, qui arrivent en moyenne en di-
vers points du dispositif. Le radioélectricien met
en évidence la phase de l1'onde hertzienne incidente
sans pouvoir opérer un comptage des photons, tandis
que l'opticien constate le nombre et la répartition
des photons sans mettre en évidence directe 1l'exis-
tence de la phase. C'est ce qu'a trés bien vu M.
Michel Yves Bernard dans son livre "Masers et Lasers"
publié en 1964 par les Presses Universitaires de
France,.

Comme nous admettons que l'onde réelle v qui trans-—
porte les particules est trop faible pour agir direc-
tement sur 1'appareil d'enregistrement et que, seules,
les arrivées successives des particules peuvent le
faire, nous sommes de nouveau amenés a admettre que
les particules apportent des &chantillons d'une onde
de méme phase que l'onde v, mais d'une amplitude beau-
coup plus grande. Comme le nombre des particules qui
viennent agir en divers points du dispositif est, en
moyenne, proportionnel au carré de l'amplitude de
1'onde, c'est finalement le nombre des &chantillons
de 1'onde de grande amplitude, et non sa phase, qui
est enregistré. Cependant, comme 1'équation de propa-
gation lie étroitement les variationsde 1'amplitude
d celle de la phase, on peut dire que, s'il n'y a
pas alors enregistrement de la phase comme dans le
circuit oscillant, il y a cependant encore ici une
influence décisive de la phase sur le phénoméne ob-
servable.
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I1 me parait donc probable que le succés de 1'em-
ploi exclusif de la théorie classique des ondes lu-
mineuses pour expliquer dans tous leurs détails les
phénoménes les plus fins de 1'optique expérimentale
doit 8tre interprété par l'idée des particules "é-
chantillons™. Et c'est évidemment de la mé&me fagon
que 1'on doit expliquer comment l'emploi des é&qua-
tions d'ondes de la Mécanique ondulatoire, qui ne
contiennent pas 1'idée de particules localisées,
peut conduire & prévoir trés exactement les phéno-
ménes de localisation, de diffraction et d'interfé-
rences de toutes les particules microphysiques.

3. REPONSE A UNE CRITIQUE ADRESSEE A LA THEORIE DES
PARTICULES "ECHANTILLONS".

La théorie que nous venons d'exposer a été criti-
quée par des radio@lectriciens. Je pense que cette
critique n'est pas valable parce que les échantil-
lons dont il a &té question dans les paragraphes
précédents ne sont pas assimilables 3 ceux dont par-
lent les radioélectriciens.

Précisons d'abord ce qu'est un é€chantillon dans
le langage des radioélectriciens. Considérons d'abord
un tr&s long train d'ondes électromagnétiques d'am-
plitude A, de fréquence v et de longueur d'onde A
tel que le congoivent souvent les radioélectriciens.

AVA

1Yy

Au lieu d'é&mettre un tel train d'ondes, on peut
émettre une série de trains d'ondes plus courts avec
les mémes valeurs de A, A et v.

AU N AV, AV

Les radioélectriciens disent alors que 1'on émet
des échantillons de 1'onde de la figure 1.
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Mais ces échantillons sont trés différents de
ceux auxquels j'assimile les particules matérielles.
En effet, dans ma conception des particules échan-
tillons, une onde v de trés petite amplitude a, de
frédquence v et de longueur d'onde X transporte des
particules localisées qui restent constamment en
accord de phase interne avec elle. On a alors le
schéma suivant :

AVA AVA  AVA

a,A, v

Les particules constituant alors des "€chantil-
lons" d'une onde qui aurait mé&me phase que celle de
l1'onde v, mais avec une amplitude A beaucoup plus
grande. Mais ces &chantillons ne sont pas du tout
des morceaux importants d'une onde de grande ampli-
tude comme les échantillons des radioélectriciens.
Ce sont des échantillons trés étroits et trés loca-
lisés d'une onde de grande amplitude qui sont trans-
portés par une onde v d'amplitude extraordinairement
faible en restant constamment en phase avec elle. Ils
différent donc entiérement des échantillons considé-
rés par les radioélectriciens.
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Probabilités présentes,
probabilités prévues,
probabilités cachées

INTRODUCTION.

Le regain d'actualité que connaissent depuis une
dizaine d'années les discussions sur le probléme gé-
néral du caractére complet, ou non, des théories
quantiques, ainsi que sur l'existence, ou la non
existence, de paramétres cachés derriére le schéma
statistique actuellement en vigueur, appellent de
notre part un certain nombre de remarques que nous
allons développer dans cet article.

Tout d'abord, nous ferons observer qu'il nous pa-
rait dangereux et peu prometteur de discuter d'une
maniére abstraite et générale du probléme des para-
métres cachés. Il suffit, pour expliquer notre scep-
ticisme, de se demander 3 quoi auraient abouti les
théoriciens du 19&me siécle s'ils avaient essayé de
répondre 3 la question générale : "Existe-t-il des
8tres innombrables en agitation désordonnée, qui se-
raient responsables des lois de la thermodynamique ?".

Ils n'auraient probablement abouti & aucun résul-
tat et on sait qu'en réalité les théories statistiques
modernes sont nées de 1'é&tude de modéles trés con-
crets d'atomes qui, pourtant, ne ressemblaient que
fort peu & l1'image que nous nous en faisons aujourd'
hui.

De méme, nous pensons qu'en Mécanique ondulatoire,
on doit introduire des paramétres cachés bien précis
qui sont les positions et les vitesses des corpuscu-
les et les grandeurs qui s'en déduisent.
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Nous tenons & souligner que nous n'avons pas fait
ce choix en nous fondant sur des considérations méta-
physiques ou dans le seul but de rétablir les prin-
cipes du déterminisme. Nous l'avons fait sur la base
d'un examen détaillé d'un certain nombre de phénomé-
nes physiques et de questions concré&tes qui nous pa-
raissent demeurer sans réponse si on n'accepte pas
1'idée de 1la localisation permanente des corpuscules.

En procédant ainsi, nous ne faisons que dévelop-
per les idées m@mes qui se sont trouvées a4 l'origine
de la découverte de la Mécanique ondulatoire et qui
furent élaborées par son auteur entre 1922 et 1927.
Celui-ci écrivait déji en 1922, 3 propos des inter-
férences et de la théorie des quanta de lumiére H
"... 11 faudra sans doute faire un compromis entre
1'ancienne théorie et 1a nouvelle [celle des quantal
en introduisant dans celle-ci la notion de périodi-
cité. Quand cette synthése aura été faite, les équa-
tions de Maxwell apparaitront sans doute comme une
approximation continue (valable dans beaucoup de cas
mais non dans tous) de la structure discontinue de
1'énergie radiante...” et il poursuivait deux ans
plus tard (%) : "Mais la théorie ne deviendra vrai-
ment claire que si on parvient 3 définir la structure
de 1'onde lumineuse et la nature de la singularité
constituée par le quantum, dont le mouvement devrait
pouvoir &tre prévu en se plagant uniquement au point
de vue ondulatoire".

C'est une telle th&orie que 1'auteur tentait d'é-
difier en 1927 (3) sous le nom de "Théorie de la dou-
ble solution", mais qu'il abandonna pendant une lon-
gue période. Le mérite essentiel de David Bohm dans
ce domaine fut, en 1952 (") de remettre & l'ordre du
jour ces idées longtemps oubliées et qui furent, de-
puis lors, longuement développées, notamment sur la
base de la Thermodynamique cachée des particules,
dans de nombreux travaux {(que nous citons en référen-
ce) de Louis de Broglie et de quelques uns de ses
éléves. I1 est d'ailleurs curieux de remarquer com-
bien ces travaux restent peu lus par ceux qui les
critiquent ou par d'autres encore qui tentent des
approches de problémes qui s'y trouvent depuis long-
temps étudiés : les uns et les autres gagneraient i
s'y référer.
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L'IMPORTANCE DES PHENOMENES DE LOCALISATION EN
MICROPHYSIQUE (%) (%).

Avant de nous pencher sur le schéma statistique
de la Mécanique ondulatoire, sur lequel nous revien-
drons plus loin, et qui suscite 3 juste titre tant
de travaux chez les théoriciens qui s'intéressent
aux fondements des théories quantiques, il nous pa-
rait essentiel de réfléchir sur la manidre dont la
Mécanique ondulatoire peut contrdler expérimentale-
ment ses prévisions et donc, en général, sur ce
qu'est 1'observation en microphysique.

On s'apergoit ainsi de la prééminence des mesures
de position auxquelles se raménent en fait, directe-
ment ou indirectement, les autres mesures quantiques
(x). En effet, tout ce que nous pouvons apercevoir
d'une particule microphysique est un phénoméne local
causé par sa présence dans une région plus ou moins
bien délimitée de 1'espace; nous décelons en général
cette présence par l'effet macroscopique d'une réac-
tion en chaine déclenchée par la particule et qui
peut impressionner nos sens ou mettre en marche un
appareil : tache sur une émulsion photographique ou
sur un &cran sensible, trajectoire dans une chambre
4 bulles, "top" ou scintillation d'un compteur ...etc.

M8me s'il se trouve que le but de 1'observation
n'est pas la localisation du corpuscule, c'est néan-
moins par 1'intermédiaire d'un tel enregistrement
qu'on atteindra d'autres grandeurs concernant soit
ce corpuscule lui-méme, soit un autre corpuscule qui
aura interagi avec lui auparavant. Ainsi, la fréquence
d'un photon se détermine dans un spectroscope en en-
registrant sa sortie dans un certain angle solide
aprés la traversée de l'appareil; c'est par le méme
procédé qu'on trouve le rapport m/e d'un ion dans un
spectrographe de masse; dans un appareil 3 jet molé-
culaire, on décéle une résonance en détectant le si-
gnal de sortie du jet, donc en constatant la présence
ou l'absence d'une molécule dans une certaine direc-

(*) Nous n'envisageons ici que des mesures effec-—
tuées sur des systémes individuels et non pas
celles qui interviennent sur les phénoménes
quantiques collectifs qui se manifestent dans
les grands ensembles de tels systémes.
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tion de 1'espace; le dispositif de Sternm et Gerlach
n'est lui-méme qu'un polariseur qui fournit la valeur
d'une composante de spin en déviant différemment les
particules selon les différentes valeurs que prend
cette composante.

I1 est tout aussi facile de citer des mesures in-
directes dans lesquelles une localisation ou une sui-
te de localisations d'une particule fournit des ren-
seignements sur une autre particule avec laquelle
elle a interagi. C'est le procé&dé couramment utilisé
par la physique des particules fondamentales : 1'&tu-
de des traces des particules connues dans les produits
d'une réaction donnant des renseignements sur les
particules nouvelles, y compris sur les particules
neutres qui ne laissent pas de trace. D'une maniére
plus générale, ce procédé d'observation est, sous di-
verses formes, celui de toute la physique des colli-
sions.

Observons maintenant que, dans les mesures que
nous venons de citer, et, nous semble-t-il, dans
toute autre, la particule observée n'interagit jamais
avec un appareil de mesure macroscopique, comme on le
prétend parfois : toutes les interactions sont & 1'é-
chelle microphysique. En particulier, on ne saurait
mesurer la position d'ume particule en la faisant
passer au travers d'un trou percé dans un écran,
comme on le dit souvent : un tel trou ne constitue
qu'une condition aux limites qui modifie 1'évolu-
tion ultérieure de 1'onde, et donc le mouvement de
la particule; il nous permet d'affirmer que si la
particule a passé d'un cdté i l1'autre de 1'écran,
elle 1'a fait 3 travers ce trou, mais seule une in-
teraction microscopique suivie d'un processus en cas-
cade peut éventuellement marquer son passage et per-
mettre de mesurer sa position & un instant donmné.

De méme, on ne mesure certainement pas 1'impul-
sion d'une particule en la communiquant 3 un "appa-
reil" macroscopique dont on mesurerait le recul (ce
qui, pourtant, a été dit), mais en préparant cette
particule de fagon telle que la valeur de son impul-
sion se déduise univoquement de sa localisation dans
une certaine région de 1'espace ou de la localisation
d'une particule avec laquelle elle a interagi.
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Mais ceci nous améne 3 faire une remarque essen-
tielle sur laquelle on ne saurait trop insister :
pour qu'une correspondance bijective s'établisse en-
tre la localisation d'un corpuscule et la valeur
d'une grandeur mesurée, il est nécessaire que 1l'on-
de associée 3 ce corpuscule soit séparée en trains
d'ondes limités et disjoints dans l'espace. Il est
d'ailleurs évident que c'est cela qu'on cherche a
obtenir lorsqu'on s'efforce d'améliorer le pouvoir
séparateur en spectrographie optique ou en specto-
graphie de masse. En ce sens, toute opération de
mesure (sauf la mesure de position elle-méme) peut
étre regardée comme une analyse spectrale. Par
exemple si 1'on mesure une grandeur A sur une parti-
cule sans faire intervenir d'autres particules, nous
pouvons développer la fonction d'onde initiale sui-
vant les fonctions propres de A :

(1) Yy o= C, 9,.
; K 7K

Le dispositif de mesure comprend alors un analy-
seur spectral (prisme ou ré&seau pour une fréquence
optique, champ magnétique inhomogé&ne pour une compo-
sante de spin etc.) qui sépare dans 1'espace les dif-
férentes composantes 2% de 1'onde ¢, si bien que si

1'on enregistre la présence de la particule dans 1l'un
des trains d'ondes, disons $gs» On saura que la gran-

deur A a la valeur propre correspondante o, (fig. 1).

K
Déja, dans cet exemple simple, apparalt une diffi-

culté lorsqu'on refuse d'admettre une localisation

permanente des corpuscules. En effet, la théorie ha-

bituelle nous dit, qu'ad la sortie de 1'appareil, nous

devons attendre le corpuscule incident dans 1'une

des régions Rl, R . RK"' occupées par les trains

... mais qu'il n'est loca-

2

d'ondes Prs P, s Py

lisé dans aucune d'elles avant que ne se produise un
phénoméne observable. D'aprés certains auteurs comme
Von Neumann (!?), London et Bauer (!1), ce serait
méme la prise de conscience, par l'observateur, de ce
phénoméne observable qui localiserait brusquement la
particule dans 1'une des régions RK. Ce qui est le

plus étrange dans cette conception, c'est que la ma-
nifestation de la particule dans l'une de ces régions




{69

RK nous assure évidemment tout aussitdt qu'elle ne

peut pas apparaitre dans une autre région et il
faudrait donc admettre que c'est l'apparition d'un
phénoméne dans RK (ou, mieux encore, la conscience

que nous en prenons !) qui fait instantanément se
propager cette interdiction.

La question se pose encore plus clairement dans
les mesures de seconde espéce oi, aprés l'interaction
entre deux particules, on mesure une grandeur affé-
rente & l'une d'elles en effectuant une observation
sur 1'autre. On sait que le paradoxe le plus célébre
dans ce_domaine est celui d'Einstein, Podolsky et
Rosen (’) mais nous le trouvons, quant & nous, peu
probant parce qu'entaché de 1'erreur fondamentale
de négliger l'extension finie des trains d'ondes (%).
Il est intéressant, par contre d'é&voquer un problé-
me beaucoup Elus simple et plus clair posé par Schro-
dinger (5) ) (9) vers la méme époque et qui ne
tombe pas sous le coup de cette critique. Considérons
avec lui deux paquets d'ondes ¢, et X, associés a

des corpuscules 1 et 2 qui, aprés s'€tre propagés

(1) (2)
0 0

dans des régions disjointes R et R de l'espace,

entrent en collision, puis se séparent. En général,
une série de mouvements possibles en résultera, tous
compatibles avec les lois de conservation de la Méca-
nique ondulatoire des systémes de particules. Nous
aurons donc, aprés l'interception, un ensemble de
couples de trains d'ondes corrélés :

(wls Xl)’ (¢2: Xz)a teey (¢K’ XK)’ L

qui se propageront, comme l'indique la figure, dans
des régions disjointes :

(1) (2) (1) (2) (n (2)
(R] sR] )s (R2 ’R2 )’ ey (RK QRK )""

La théorie actuelle ne nous permet pas de prévoir
, exactement, nous pourrons observer les particules
et 2, mais les lois de conservation nous disent que
(1)
l b
, S1 nous ob-

ol
1

si nous enregistrons 1 dans la région R alors 2

(2)
1

sera nécessairement dans la région R

P 1
servons | dans la région Ré )’ alors 2 se trouvera



dans R , etc.

(2)
2
Mais si nous n'admettons pas la localisation per-
manente des corpuscules, si nous disons, comme le
disait Bohr, qu'avant la mesure le corpuscule |
était "potentiellement présent" dans tous les trains
d'ondes Pis Pus veey ¢K’ ... et le corpuscule 2

dans tous les trains d'ondes ¥X,, Xps woes Xgs =v-

comment devrons-nous interpréter ce phénoméne ? Nous
devrons dire, si nous suivons von Neumann, London et
Bauer, que c'est la prise de conscience par l'obser-
vateur du phénoméne macroscopique observable déclen-
ché par la particule 1 sur une plaque ou dans un comp-

(1)
K

teur situé en R ,» par exemple, qui localise instan-

tanément la particule 2 dans le sous-espace corrélé
2 ~ . .
Ré ) et empéche cette localisation dans les autres
2 . P
sous—espaces R( ) entre lesquels la particule 2 était
jusqu'alors statistiquement répartie.

Il est vraiment difficile d'admettre cette explica-
tion télépathique, d'autant que la particule 1 pour-
rait €tre guettée par deux observateurs, l'un les yeux
ouverts et l'autre les yeux fermés : alors, la parti-
cule 2 doit-elle se localiser par la seule prise de
conscience de l'observateur qui a vu le phénoméne ob-
servable, ou bien faudra-t-il attendre qu'il en in-
forme son collégue : la non-prise de conscience de
celui-ci risquant d'empé@cher la localisation ? ques-
tion absurde.

A moins de renoncer & toute description ration-
nelle du monde physique, il faut admettre que la loca-
lisation de la particule 2 est 1liée 3 celle de la par-
ticule | et au phénomé&ne observable que celle-ci a
déclenché, et non 3 la conscience que nous pouvons en
prendre. Mais nous ne pouvons méme pas admettre que
c'est le phénoméne macroscopique déclenché par ! qui
provoque la brusque localisation de la particule 2
dans le train d'ondes corré&lé, car il faudrait suppo-
ser pour cela un phénomé@ne de propagation instantanée,
alors que les particules peuvent se trouver arbitrai-
rement &loignées l'une de 1'autre au moment ol s'ef-
fectue l'observation : "Ce serait de la magie !"
écrivait Schrodinger & propos de cette hypothése.
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C'est pour répondre 3 un certain nombre de pro-
blémes de ce type que la théorie de la double solu-
tion se propose de rétablir dans les théories quan-
tiques la notion de localisation permanente des
corpuscules, grdce 3 laquelle les problémes que nous
venons d'esquisser regoivent des interprétations
évidentes. En effet, dans une telle théorie, on doit
admettre dans le dernier probléme cité, qu'a la suite
de 1'interaction entre les deux corpuscules et aprés
leur séparation, le corpuscule 1 se retrouve dans un

train d'onde bien déterminé, par exemple Rﬁ‘), et le
corpuscule 2 dans le train d'onde corrélé Réz); alors

l'enregistrement du corpuscule | n'est plus que la
constatation d'un fait d&ji existant et la déduction
que nous en tirons sur le corpuscule 2, notamment sur

(2)
k

sa localisation dans la région R , n'est qu'un ren-

seignement que nous obtenons sur un &tat de choses
qui existait, lui aussi, avant la mesure. Ce n'est
plus la mesure qui précipite le corpuscule 2 dans 1la

(2) .,
k

région R : s'il s'y trouve, c'est a4 la suite de

sa collision avec le corpuscule ! et la mesure ne
fait que nous en informer.

Mais une telle conception pose un subtil probléme
de statistique qui a &té longuement analysé dans les
références (%) (%) ('®) (7)) ('®) ('°) mais qui
échappe complétement aux auteurs qui raisonnent d'une

maniére trop générale sur les théories 3 paramdtres
cachés. Nous allons maintenant en dire quelques mots.

PROBABILITES ACTUELLES, PROBABILITES PREVUES, PRO-
BABILITES CACHEES.

Nous avons vu que la position d'une particule nous
parait avoir une prééminence parmi toutes les gran-
deurs observables car c'est toujours par l'intermé-
diaire d'une mesure de position que les autres mesu~
res s'effectuent. Mais en outre, et c'est 13 en quel-
que sorte un corollaire de cette constatation, la
densité de probabilité de présence YyY* jouit d'un
privilége par rapport aux autres probabilités cal-
culées en Mécanique ondulatoire. En effet, pour
effectuer une mesure de position, il n'est pas né-

cessaire de préparer la particule dans un &état spé-
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cial, et donc de modifier préalablement son &tat (x).

Il en résulte que, pourvu qu'un montage expéri-
mental soit réalisable pour la mesure de la position
d'une particule dans un certain état y c'est direc-
tement dans cet état~13 que nous pourrons contrdler
la densité de probabilité Yy* grice & une série de
mesures effectuées sur un ensemble de particules se
trouvant dans le méme &tat; que 1'on songe, par
exemple, que dans un champ d'interférences, la den-
sité YY* nous est donnée directement par des mesures
de densimétrie effectuées sur un enregistrement pho-
tographique de la figure d'interférence. Donc, lors-
qu'on dit que, dans un &tat Y, la densité de présence
est YYx il s'agit d'une affirmation directement véri-
fiable (quelles que soient par ailleurs les difficul-
tés techniques d'une telle vérification). En parti-
culier, lorsque nous supposons la localisation perma-
nente de la particule dans son onde, la densité Yy=*
correspond 3 la présence de la particule en un point
de 1'onde avant 1'action de tout appareil de mesure.

Nous dirons qu'il s'agit 13 d'une probabilité
actuelle, en ce sens qu'elle correspond & une situa-
tion qui existe & 1'instant m@me ol cette probabili-
té est définie. Mais tel n'est pas le cas des autres
grandeurs physiques.

Reprenons en effet le développement de Fourier (1)
d'une fonction d'onde suivant les &tats propres ¢K

d'une grandeur physique A, correspondant aux valeurs
propres oy de cette grandeur. L'interprétation proba-

biliste de la Mécanique ondulatoire nous enseigne
(principe de Born), et l'expé&rience a jusqu'iceti tou-
jours confirmé, que si une particule est dans cet
état ¥ et si nous effectuons sur elle une mesure de
la grandeur A, nous trouverons la valeur Oy avec une
]2 ou CK est le coefficient de wK
dans le développement (1). Mais que cela signifiet-il
exactement ? En général, les différentes composantes

probabilité ch

(%) Bien entendu, cet état sera modifié ensuite par
la perturbation causée par la mesure, mats cect
n'a rien & voir avec la préparation d'un systéme.
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wK
ment, dans l'espace et interféreront entre elles,

faisant jouer notamment aux phases des nombres CK

un rdle déterminant. Il est clair que 1'onde Y ne
se réduit aucunement 3 l'ensemble des composantes
YK considérées isolément : seule la superposition de

de 1'onde ¢ se recouvriront, du moins partielle-

ces composantes avec les effets d'interférence
qu'elle implique représentera y et donc l1'état de la
particule. Imaginons alors une mesure de premiére
espéce de la grandeur A, c'est-d-dire une mesure qui
ne fasse pas intervenir d'autre particule. Pour que
nous puissions affirmer : "la grandeur A a la valeur

oa,", 11 faut, ainsi que nous l'avons déji dit, et
K q J

schématisé sur la fig. I, qu'un analyseur spectral
convenablement choisi sépare dans 1'espace, des
trains d'ondes limités correspondant aux différents

états wl, P, s Prs o> puis qu'une mesure de

localisation nous montre que la particule se trouve
dans le train d'ondes Px- Autrement dit, avant que la

mesure proprement dite n'intervienne, il nous a fallu
modifier 1'état ondulatoire du systéme en séparant
les composantes P et, de ce fait, rompre leurs rela-

tions de phase qui jouaient un rdle fondamental dans
1'8tat initial y.

KIZ ? C'est
évidemment la probabilité de trouver la particule
dans le train d'ondes Py mais cette réponse prend

Alors qu'est-ce que la probabilité | €

un sens tout différent suivant que nous nous trouvons
avant ou aprés l'analyseur. Si nous nous plagons
aprés 1l'analyseur, mais avant d'avoir enregistré la
présence du corpuscule dans l'un des trains d'ondes
(*), nous avons un collectif (qui est l'ensemble de
ces trains d'ondes) qui réalise objectivement la loi

de probabilité en |C1|2’ |C2|2, v ]CKl2 ... I1 g'a~-

git, dans ce cas, de probabilités actuelles, comme
1'était la probabilité de présence, en ce sens

qu'elles correspondent i 1'information maximale que
nous possédons sur une situation effectivement réa-

(x) En fait, la mesure peut avoir été réalisée, 11
suffit que nous n'en ayons pas encore eu
connaissance.



lisée et que nous pouvons contrdler en prenant con-
naissance du résultat de la mesure.

Mais plagons-nous maintenant avant 1'analyseur.
Bien entendu, nous pouvons, grace au développement
(1) calculer ces mémes nombres leI2 mais nous ne

pouvons pas vérifier directement leur valeur prévi-
sionnelle tant que le syst@me se trouve dans l'état
de superposition Y. Ces probabilités ne prendront un
sens actuel et ne correspondront & un collectif réel
qu'aprés le passage dans 1'analyseur : ce sont des
probabilités prévues et il en sera ainsi pour toutes
les probabilités calculées en Mécanique ondulatoire,
sauf pour la position ou, éventuellement, pour les
grandeurs dont 1'état ¥ (dans lequel on considére la
particule) serait un état propre ou se trouverait
constitué d'un ensemble d'états propres morcelés
dans l1l'espace.

On comprend alors pourquoi les probabilités calcu-
lées habituellement en Mécanique ondulatoire n'obéis-
sent pas au schéma probabiliste classique et pour-
quoi, en particulier, deux grandeurs A et B &tant
choisies au hasard, il n'est généralement pas possi-
ble de définir dans un état donné du systéme la pro-
babilité "jointe" P (A, B) qu'une mesure de la gran-
deur A donne la valeur Oy et qu'une mesure de la

grandeur B donne la valeur Bk. C'est simplement parce

que les probabilités afférentes aux mesures de A et
de B ne sont pas actuelles mais prévues. Chacune
d'elles ne deviendra actuelle que si on prépare le
systéme dans un nouvel état, grd3ce 3 la séparation
des trains d'ondes correspondant aux différents états
propres. Or si les grandeurs A et B ne commutent pas,
il n'existera pas de dispositif capable d'effectuer
cette séparation pour les deux grandeurs & la fois,
donc il n'existera pas d'état du systéme dans lequel
on puisse rendre simultanément actuelles les probabi-
lités afférentes aux mesures de A et de B et oii 1'on’
pourrait, par conséquent, définir la probabilité
“"jointe" P (A, B).

Que se passera-t-il, alors, si nous cherchons a
rendre compte des lois de la Mécanique ondulatoire
en admettant l'existence d'un déterminisme sous-
jacent, chaque particule se trouvant, avant toute
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observation, dans un &tat oli toutes les grandeurs
physiques qui le caractérisent sont simultanément dé-
finies ? En particulier, nous supposons, pour notre
part, que la particule est constamment localisée
dans son onde et on sait que la théorie de la double
solution lui attribue & chaque instant une impulsion
d'aprés la formule du guidage (%) (!2).

La position est évidemment, pour la Mécanique on-
dulatoire actuelle, un paramétre caché mais nous
avons vu que sa densité de répartition dans 1'onde,
YY*, est actuelle car on peut effectuer des mesures
de position sans modifier préalablement 1'état du
systéme et révéler ainsi directement la valeur jus-
que 13 cachée des paramétres de position. Quant &
1'impulsion, non seulement sa valeur 3 chaque ins-
tant est cachée, mais cette valeur est, en général,
différente de celles que fournirait la mesure parce
que celle-ci exige une préparation du systéme (donc
un changement d'état) pour obtenir la séparation des
composantes spectrales de l'onde : plus précisément,
on montre en théorie de la double solution que ce
n'est qu'une fois séparées les composantes spectra-
les que, dans chacune d'elles, la valeur cachée de
1'impulsion sera égale 3 celle que fournirait 1la
mesure.

Mais revenons a4 l1'état initial, avant séparation
des trains d'ondes. Une densité de probabilité pP(p)

y sera définie pour la répartition des valeurs ca-
ghées de 1'impulsion. Cette densité n'est évidemment
pds actuelle, puisqu'il n'est pas possible de mesurer
directement l'impulsion dans cet &tat de la particu-
le. Mais ce n'est pas non plus la densité de proba-
bilité prévue par les lois habituelles de la M&cani-
que ondulatoire, en raison m&me du fait que les va-
leurs cachées de l'impulsion ne sont pas celles qu'on
trouve par la mesure : ce point est établi en théorie
de la double solution. Autrement dit, la densité de
probabilité des valeurs cachées de 1'impulsion est
une densité cachée et il en est de méme pour les den-
sités attachées aux valeurs cachées des autres gran-
deurs physiques, sauf la position. Mais si on mesure
1'une de ces grandeurs en séparant dans l'espace les
trains d'ondes correspondant aux différents états
propres, les probabilités "cachées" calculées pour

ce nouvel état deviennent actuelles et cofncident
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avee celles que l'on caleule habituellement (°) (°);
évidemment, ce résultat sera vrai pour toutes les
grandeurs qui commutent avec celle qu'on a choisi de
mesurer, puisqu'elles ont les m&mes états propres et
c'est pour cette raison qu'elles sont simultanément
mesurables; au contraire, pour les grandeurs qui ne
commutent pas avec la grandeur choisie, il n'y aura
pas de séparation des &tats propres dans ce disposi-
tif et les probabilités correspondant aux valeurs
cachées de ces grandeurs, resteront elles-mémes ca-
chées.

C'est sur la base des principes exposés ici brié-
vement, que la théorie de la double solution par-
vient & interpréter les lois probabilistes de 1la
Mécanique ondulatoire en termes de variables cachées
obéissant au schéma statistique classique : remar-
quons en particulier que la position et 1'impulsion
étant simultanément définies, la théorie sait définir
la probabilité p(x,p) dx dp que la particule soit
dans 1'intervalle (x, x + dx) avec une impulsion dans
l'intervalle (p, p + dp). Mais les probabilités que
nous introduisons ne sont pas celles que 1'on calcule
habituellement; ce sont des probabilités cachées et
c'est pourquoi nous sommes d'accord avec la théorie
habituelle pour ce qui est des résultats des mesures
et des statistiques correspondantes, tout au moins
lorsque les prévisions sont correctement faites en
tenant compte de l'extension finie des trains d'ondes
et de leur séparation dans l'espace.

La distinction que nous faisons entre probabilités
actuelles, probabilités prévues et probabilités ca-
chées, qui a été longuement analysée dans les réfé-
rences citées de Louis de Broglie, nous paralt capi-
tale car elle seule permet 1'accord entre une théorie
4 variables cachées et les résultats statistiques
exacts de la Mécanique ondulatoire dans la prévision
des résultats des mesures. L'erreur essentielle qui
invalide le cé&lébre théoréme de von Neumann sur la
prétendue impossibilité des théories 3 paramétres
cachés est de croire que les paramétres cachés intro-
duits dans la théorie doivent obéir aux lois statis-
tiques habituellement définies en Mécanique ondulatoi-
re : hypothése absurde, puisque la statistique sur
les paramétres cachés doit obéir au schéma classique,
alors qu'il est notoire que la statistique habituelle
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construite en Mécanique ondulatoire ne s'y conforme
pas. Cette seule remarque suffit & montrer que s'il
existe des paramétres cachés, leur statistique doit
également étre cachée.

Des auteurs plus récents, souvent partisans des
théories & paramétres cach&s, commettent eux aussi
l'erreur de confondre les trois sortes de probabili-
tés que nous distinguons. Ils sont ainsi conduits 2
considérer un systéme dans un certain état initial
qu'ils décrivent par un ensemble de paramétres cachés
(complétement abstraits, en général), sur lesquels
ils définissent un schéma probabiliste classique et
c'est a 1'aide de ces probabilités classiques défi-
nies dans 1'&tat initial du syst&me, qu'ils calcu-
lent les moyennes des résultats de toutes les mesures
qu'on réalisera par la suite. C'est notamment cette
hygothese qui est & la base de 1' 1nega11te de Bell

GRS (15). Or il est évident qu'une telle démar-
che conduit forcément & un schéma statistique clas~-
sique sur les résultats des mesures, donc & une con-
tradiction avec les prévisions de la Mécanique ondu-
latoire, et il ne saurait &tre question d'admettre
un tel point de vue qui revient 3 nier l'action du
dispositif de mesure sur l'objet observé.

LES RELATIONS D'INCERTITUDE.

Une conséquence importante de 1'analyse dont nous
venons de tracer les grandes lignes est qu'elle impli-
que une nouvelle interprétation des relations d'incer-
titude. Nous nous limiterons ici aux relations habi-
tuelles

(2) 6x.6px Z h, 6y.6py Z h, 62.6pz Z h.

Tout le mystére dont on a entouré ces relations et
les conclusions qu'on en a tirées au sujet d'un indé-
terminisme des lois de la Mécanique ondulatoire pro-
viennent essentiellement de ce que les incertitudes
sur la position et 1'impulsion sont considérées comme
simultanément actuelles et se rapportant au méme état
du systéme. Mais considérons, en prenant pour simpli-
fier le cas d'un spectre discret, une particule dans
un état  représentable par le développement :

3 (B top, x-p )
= " - - y—-p, 2z
(3 1] chakeh KETPR, R TP VTP
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ol les a, sont les amplitudes normées des composan-

tes de Fourier.

Pour nous, la particule est & chaque instant loca-
lisée dans le train d'ondes représenté par la fonc-
tion Y, mais sa position exacte nous est inconnue
et elle est entachée d'incertitudes 8x, 8y, 8z sur
les trois coordonnées : ces incertitudes sont pour
nous actuelles, elles sont définies pour cet état Y
et mesurent les dimensions du train d'ondes.

Mais la situation est tout & fait différente en
ce qui concerne pr, pr, sz. En effet, dans 1'état

Y, les différentes composantes du développement in-
terférent, seule leur somme Yy a un sens physique et
elles n'ont encore aucune signification individuelle:
pas plus que les nombres Py qui ne sont pas les va-

leurs actuelles de 1l'impulsion ou les nombres Cy qui

ne sont que des amplitudes de probabilités prévues;
donc les incertitudes pr, 6py, 6pz n'ont pas, elles

non plus, de signification actuelle, elles ne sont
que des incertitudes prévues et ne prendront un sens
physique que quand, 1'état initial ayant &té détruit
par un analyseur qui séparera dans l'espace les dif-
férentes composantes du développement (3), la parti-
cule pourra €tre animée d'un mouvement ayant 1'une
des valeurs Py de 1'impulsion. En somme, pour nous,
les incertitudes 8x, 8y, 8z d'une part et pr, pr,
sz de 1'autre, sont bien reliées par les inégalités

(2), mais ne se rapportent pas au méme état du systé-
me.

Ces inégalités expriment donc le fait que la posi-
tion et 1'impulsion ne peuvent pas &tre simultanément
mesurées avec une précision infinie, elles n'expri-
ment aucunement 1'impossibilité que la position et
1'impulsion puissent 8tre simultanément définies
comme variables cachées.

La théorie de la double solution fournit précisé-
ment 1l'exemple d'une théorie dans laquelle ces deux
grandeurs sont simultanément définies et qui, pour-
tant, s'accorde avec les résultats et la statistique



179

des mesures, prévus par la théorie habituelle. M&me
si 1'on n'admet pas la valeur physique de 1a théorie
de la double solution, et méme si les faits venaient
8 1'infirmer, elle n'en constituerait pas moins un
contre exemple qui montre la fausseté des interdits
du théoréme de von Neumann et l'inconsistance des
développements philosophiques de 1'Ecole de Copen-
hague sur la prétendue démonstration d'un indétermi-
nisme fondamental des phénomé@nes naturels.
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