
Collection

« Discours de la Méthode »

Tout acte de l’Homme, donc toute œuvre — créations et 
inventions — est autobiographique. C’est pourquoi le Discours 
de la méthode a inauguré non seulement un mode de pensée 
mais un genre qui donne à la gravure écrite toute l’allure d’une 
confession publique et pour lequel on peut généraliser ce qu’écri 
vait Paul Valéry à propos des Méditations, quand il évoquait 
Descartes « s’efforçant de nous communiquer le détail de sa 
discussion et de ses manœuvres intérieures, de le rendre nôtre... 
jusqu’à ce Moi le plus pur, le moins personnel, qui doit être le 
même en tous, et l’universel en chacun ».

Certes il se peut que la véritable méthode soit le génie comme 
il se peut que ce soit l’inverse aux différents niveaux de la 
conscience, mais il appartient à l’avenir d’en décider sur pièces.

Cette Collection, faite autant qu’il est possible d’ouvrages 
courts pour un temps court, présente des œuvres milliaires 
— ne serait-ce que dans l’instant aux durées variables — où il 
est demandé aux auteurs d’écrire leur « Discours de la méthode » 
de telle sorte qu’en toute simplicité l’objectivité de l’exposé 
rejoint la subjectivité même de l’exposant. Elle fait aussi 
connaître les grands inédits en langue française, les ouvrages 
méconnus ou ignorés, elle se met en somme au service de tous 
ceux qui sont en quête de repères et qui, pour des raisons seule 
ment matérielles, n’ont pas accès en première main à ces réfé 
rences indispensables à une meilleure représentation du temps 
humain.

Boris Rybak 
Directeur de la Collection



JALONS POUR UNE 
NOUVELLE MICROPHYSIQUE



OUVRAGES DE LA COLLECTION

« DISCOURS DE LA MÉTHODE »

A. Ein s t e in . — Réflexions sur l’électrodynamique, l’éther, la 
géométrie et la relativité, nouveau tirage, 1972.

W. H e is e n b e r g . — Les principes physiques de la théorie des quanta, 
nouveau tirage, 1972.

N. Bo h r . — Physique atomique et connaissance humaine, nouveau 
tirage, 1972.

C. P. Br u t e r . — Sur la nature des mathématiques, 1973.

E. Sc h o f f e n ie l s .— L'anti-hasard, 1973 (épuisé).

Th. Vo g e l .— Pour une théorie mécaniste renouvelée, 1973.

B. Ry b a k .— Explorations circulatoires, 1973.

F. Kl e in . — Le programme d’Erlangen, 1974.

E. Ca r t a n .— Notice sur les travaux scientifiques, 1974.

Z.M. Ba c q . — Les transmissions chimiques de l’influx nerveux, 
1974.

J. Ha d a ma r d . — Essai sur la psychologie de l'invention dans le 
domaine mathématique, 1975.

A. Ein s t e in . — Quatre conférences sur la théorie de la relativité, 
1976.

A. Ein s t e in . — La théorie de la relativité restreinte et générale,
1976.

A. Re in b e r g . — Des rythmes biologiques à la chronobiologie,
2e édition, 1977.

L. de Br o g l ie . — La réinterprétation de la mécanique ondulatoire,
1977.

P. H. Kl o pf e r .— Habitats et territoires des animaux, 1977.

F. Fer. — L'irréversibilité, fondement de la stabilité du monde 
physique, 1977.

J. Die u d o n n é — Panorama des mathématiques pures. Le choix 
bourbachique, 1977.

L. de Broglie — Jalons pour une nouvelle microphysique, 1978.



Collection «DISCOURS DE LA METHODE 
dirigée par Boris RYBAK

JALONS POUR UNE 
NOUVELLE MICROPHYSIQUE

Exposé d’ensemble sur l’interprétation 
de la mécanique ondulatoire

Louis de BROGLIE

OUVRAGE PUBLIE AVEC LE CONCOURS DU C.N.R.S.

gaulhiervillars



© BORDAS, Paris, 1978 - 012 378 0205 
ISBN : 2-04-010147-0

Toute représentation ou reproduction, intégrale ou partielle, faite sans le consentement 
de l auteur, ou de ses ayants droit, ou ayants cause est illicite (loi du 11 mars 1957 
alinéa T de ( article 40) Cette représentation ou reproduction, par quelque procédé 
que ce soit, constituerait une contrefaçon sanctionnée par les articles 425 et suivants 
du Code pénal La loi du 11 mars 1957 n'autorise, aux termes des alinéas 2 et 3 de 
( article 41. que les copies ou reproductions strictement réservées à I usage privé du 
copiste et non destinées a une utilisation collective d une part et, d autre part, que 
les analyses et les courtes citations dans un but d exemple et d illustration



Table des matières

Avant-propos ...................................... 1

Introduction ...................................... 4

Chap. I - Remarques préliminaires sur l'in 
terprétation de la Mécanique ondu 
latoire ............................... 2 1

Chap. II - Idées générales sur l'interpréta 
tion de la Mécanique ondulatoire . 36

Chap. III - La Thermodynamique cachée des par 
ticules ............................ 51

Chap. IV - Sur l'interprétation de l'expérien 
ce de Pfleegor et Mandel........... 62

Chap. V - Sur les relations d'incertitude. . 67

Chap. VI - Mouvement d'un photon dans un mi 
lieu réfringent ou absorbant ... 75

Chap. VII - L'invariance adiabatique et la
thermodynamique cachée des parti 
cules ............................... 91

Chap.VIII - Exposé sur la masse propre du pho 
ton .....................................104

Chap. IX - Sur l'incorporation des potentiels
dans la masse propre des particu 
les et application....................110

Chap. X - Processus forts et états transi 
toires .................................. 118

Chap. XI - Onde active et onde réactive . . . 137

Chap. XII - Sur la largeur des raies spectra 
les et l'effet Dupouy...........   142



Chap. XXXI - Réfutation du théorème de Bell 147

Chap. XIV - Le mouvement brownien d'une par 
ticule dans son onde............ 154

Chap. XV - Sur la théorie des particules
"échantillons" .................. 160

Chap. XVI - Probabilités présentes, probabi 
lités prévues, probabilités ca 
chée s............................  164



Avant-propos

C'est dans les années 1923 et 1924 que j'ai énoncé 
et développé dans des Notes aux Comptes Rendus de 
l'Académie des Sciences et ensuite dans ma Thèse de 
Doctorat l'affirmation qu'il fallait étendre à toutes 
les particules, et notamment aux électrons, l'idée 
que tout mouvement d'une particule doit être associé 
à une propagation d'ondes. En faisant cette hypothèse, 
je ne faisais que généraliser l'idée qu'avait eue 
Einstein en 1905 quand il avait aperçu que l'énergie 
d'une onde lumineuse est concentrée dans des particu 
les qu'il avait appelées "quanta de lumière" (licht 
quanten) et que nous nommons maintenant "photons". 
Quand j'ai développé cette idée, elle s'est montrée 
vite très fructueuse car elle a été à l'origine de 
remarquables vérifications expérimentales et appli 
cations pratiques telles que la diffraction des élec 
trons, l'optique et la microscopie électroniques et 
elle a même permis, chose bien inattendue, l'étude 
des virus faite à l'aide du microscope électronique 
notamment par le regretté Levaditi qui m'avait dédié 
le livre qu'il avait consacré à cette technique.

Or, pendant cette période d'environ dix ans où mes 
idées ont ainsi reçu des vérifications expérimentales 
nombreuses et frappantes, ce qui m'a valu d'être en 
1929 lauréat du prix Nobel, je n'ai pas un instant 
douté que mes conceptions nouvelles étaient compati 
bles avec les idées traditionnelles affirmant la 
causalité de tous les phénomènes physiques.

Mais, pendant ce temps, Niels Bohr, que ses très 
belles et fécondes idées sur la structure des atomes
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avaient rendu très justement célèbre, développait à 
Copenhague avec de brillants élèves (Pauli, Heisen- 
berg, Dirac ...) des idées tout à fait différentes 
des miennes où le rôle et la signification qu'ils 
attribuaient aux incertitudes quantiques, telles 
qu'ils les définissaient, les conduisaient à aban 
donner le déterminisme, et par suite la causalité, 
dans le déroulement des phénomènes physiques.

Les idées de l'Ecole de Copenhague, si éloignées 
de celles de la Physique classique, qui furent bril 
lamment développées par de jeunes savants dont l'in 
telligence, la compétence et le talent étaient in 
contestables, obtinrent un si grand succès que, 
chargé à ce moment d'enseignement en Physique théo 
rique, j'estimais impossible de ne pas me rallier à 
leurs opinions et j'ai cru devoir les exposer dans 
mes cours et dans mes livres, tout en leur donnant 
souvent une allure assez personnelle comme cela se 
voit, par exemple, dans mon essai d'une nouvelle 
théorie de la Lumière. J'aimais d'ailleurs revenir 
souvent à des études telles que la théorie des gui 
des d'ondes ou l'exposé détaillé de l'Optique élec 
tronique où les incertitudes quantiques n'intervien 
nent pratiquement pas.

Mais, à partir de 1948, plusieurs de mes cours ou 
de mes publications indiquaient déjà une certaine 
tendance à m'éloigner des conceptions de l'Ecole de 
Copenhague et â revenir à des idées plus classiques. 
C'est en 1952-53 que mes idées se modifieront complè 
tement et que je me suis décidé à abandonner les 
idées alors reçues et les incertitudes quantiques 
pour revenir aux conceptions claires et rationnelles 
de l'ancienne Physique causale.

C'est dans ce sens que j'ai travaillé depuis près 
de 25 ans en élargissant et en approfondissant cons 
tamment sous des formes nouvelles mes conceptions 
relatives à la Microphysique causale. Les idées très 
nouvelles que j'ai développées dans cette dernière 
partie de ma vie doivent certainement être approfon 
dies et sur certains points peut-être modifiées. Mais 
je pense que les efforts théoriques que j'ai accom 
plis depuis 25 ans se montreront féconds et que les 
tentatives que j'ai poursuivies au déclin de ma vie 
contribueront à orienter la Physique théorique quan 
tique dans des voies plus fécondes que celles où.
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sous l'influence des conceptions indéterministes de 
l'Ecole de Copenhague, elle risquait de s'enliser.

Cet ouvrage n'est pas un exposé didactique d'en 
semble des recherches que j'ai poursuivies dans ces 
dernières années. C'est un recueil d'études sur des 
questions assez diverses sur lesquelles il m'a paru 
intéressant d'insister. Certaines de ces études ont 
déjà été publiées, notamment dans les Comptes Rendus 
de l'Académie des Sciences, mais d'autres sont iné 
dites. Elles donnent ainsi un tableau d'ensemble de 
l'orientation actuelle de ma pensée.



Introduction
Discours prononcé le 23 avril 1974 
à la première séance du Séminaire 
de la Fondation Louis de Broglie

Je voudrais commencer par l'exposé de ma manière 
de concevoir la nature de la Physique théorique.

La Physique est une science portant sur certains 
phénomènes observables dans la nature. Elle repose 
donc essentiellement sur l'observation et sur l'ex 
périence et son rôle est de rendre compte de la véri 
table nature des phénomènes observés. Il peut paraî 
tre étrange d'être obligé d'insister sur un point 
aussi évident, mais il semble que certains physiciens 
théoriciens l'ont aujourd'hui un peu oublié.

Je crois donc que, quand on étudie une certaine 
classe de phénomènes physiques, il est nécessaire de 
prendre comme point de départ une image concrète de 
ces phénomènes. C'est ce que voulait dire Max Planck 
quand il affirmait que toute théorie physique doit 
correspondre à une certaine "image du monde", en 
allemand "Weltbild". C'est ce qu'a également très 
clairement affirmé H.A. Lorentz dans le remarquable 
discours qu'il avait prononcé à la fin du Conseil 
Solvay d'octobre 1927.

Sans doute, le physicien théoricien doit-il, pour 
préciser ces démonstrations, faire appel aux Mathé 
matiques (aux Mathématiques anciennes plus sans doute 
qu'aux Mathématiques dites modernes). Mais les repré 
sentations mathématiques qu'il utilise ne doivent 
être qu'une manière de représenter avec précision 
la nature des phénomènes physiques étudiés et ne doi 
vent pas se réduire à une simple gymnastique intel 
lectuelle.
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Une idée que je crois essentiel de conserver 
dans l'étude des phénomènes physiques est celle de 
causalité. Je n'ai pas la prétention de trancher la 
question philosophique de savoir si tous les phéno 
mènes sont reliés par des liens de causalité, mais 
je crois que tous les phénomènes dont l'étude peut 
être abordée par la Science sont soumis à la causa 
lité.

S'il en est bien ainsi, on peut en déduire que 
toute théorie statistique, en particulier en Physi 
que, est une théorie incomplète, car elle ne four 
nit que des prévisions moyennes et ne donne aucune 
image des processus qui en assurent la réalisation. 
Or, à l'heure actuelle, il me paraît certain que la 
Physique quantique, telle qu'on l'enseigne aujour 
d'hui, n'est qu'une théorie statistique très sou 
vent exacte, mais qui ne fournit pas une véritable 
image des phénomènes microphysiques.

Je veux maintenant dire quelques mots de la façon 
dont j'avais orienté mes recherches lorsque, peu de 
temps après la fin de la guerre de 1914, j'ai en 
trepris les réflexions qui m'ont conduit à la dé 
couverte de la Mécanique Ondulatoire. Déjà vaguement 
esquissées dans des travaux antérieurs, je les ai 
exposées d'abord brièvement dans mes Notes aux Comp- 
Comptes Rendus de Septembre-Octobre 1923, puis déve 
loppées dans ma Thèse de Doctorat soutenue le 25 No 
vembre 1 924 .

J'avais depuis plusieurs années beaucoup réfléchi 
à l'introduction par Einstein en 1905 de la notion 
de photon dans la théorie de la lumière et à l'ex 
plication qu'elle fournissait de l'effet photoélec 
trique de la lumière, confirmée plus tard par la dé 
couverte de l'effet photoélectrique des Rayons X 
effectuée par mon frère. Peu à peu, s'est alors in 
troduite dans ma pensée l'idée que les électrons, 
eux aussi, pouvaient être transportés par une onde. 
Une chose m'avait particulièrement frappé, c'était 
que, dans l'atome de Bohr, les électrons étaient 
animés de mouvements quantifiés où intervenaient 
des nombres entiers. Or, c'est surtout dans les phé 
nomènes ondulatoires, telles que cordes vibrantes, 
interférences etc, que l'on voit en Physique appa-
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raître des nombres entiers. Et cela me suggérait 
que quelque chose d'ondulatoire devait intervenir 
dans le mouvement des électrons.

Mais il fallait traduire cette intuition sous une 
forme plus précise et c’est ici qu'est intervenu le 
fait que j'avais beaucoup étudié la théorie de la 
Relativité, principalement sous sa forme restreinte. 
J'avais remarqué que, l’énergie d'une particule pou 
vant s'écrire W = hv où h est la constante de Planck, 
la fréquence v doit être une caractéristique interne 
de la particule et que, par suite, celle-ci peut être 
assimilée à une horloge. Mais la théorie des photons 
d'Einstein nous apprend que cette fréquence V est 
aussi celle de l'onde qui transporte la particule.
On se heurte alors à la difficulté suivante : l'éga 
lité des deux fréquences de l'onde et de la particule 
doit être vraie dans tous les systèmes galiléens et 
cependant la fréquence d'une onde et celle d'une hor 
loge ne se transforment pas de la même façon quand 
on change de système galilêen. En réfléchissant à 
cette difficulté, je suis arrivé à la conclusion 
essentielle suivante : pour que la particule en mou 
vement reste en phase avec l'onde qui la porte, il 
est nécessaire qu'elle glisse dans l'onde avec une 
vitesse V différente de la vitesse de phase V de 
l'onde et telle que vV = c2. Cela m'amenait, en 
considérant toujours le cas d'une onde pratiquement 
monochromatique plane, aux deux formules W = hv et

p = y, p étant la quantité de mouvement de la parti 

cule et X la longueur d'onde de l'onde. La première 
de ces formules était déjà bien connue, mais la se 
conde était entièrement nouvelle. De plus, je démon 
trais que la vitesse V de la particule était égale à 
la vitesse de groupe ou vitesse de l'énergie, ce qui 
était très satisfaisant.

A l'approximation de l'optique géométrique où il 
est classique d'assimiler les rayons à des trajec 
toires, on est conduit à identifier le principe de 
Fermât et le principe de Maupertuis et à retrouver

ainsi les formules K = hv et p = y. Mais cette nou 

velle manière d'obtenir ces formules, seule encore 
mentionnée aujourd'hui, est moins profonde et moins 
susceptible de généralisations que la première.
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Au printemps de 1926, Erwin Schrodinger publiait 
ses remarquables travaux qui lui permettaient d'ob 
tenir des résultats sensationnels en partant de 
l'équation d'ondes non relativiste qui porte son 
nom. Mais l'onde ÿ qu'il introduisait était une onde 
du type classique sans concentration locale d'éner 
gie correspondant à l'existence des particules. Mal 
gré le succès mérité de la théorie de Schrodinger 
et des très belles applications qu'on en avait fai 
tes, la disparition de toute particule localisée 
me troublait d'autant plus que Schrodinger, pour 
étudier les ensembles de particules, utilisait un 
espace de configuration formé, comme en Mécanique 
classique, par les coordonnées des particules. Or, 
que peuvent signifier les coordonnées de particu 
les qui ne sont pas localisées ?

Peu satisfait de l'orientation que prenait ainsi 
la nouvelle Mécanique quantique, j'ai tenté, dans 
un article paru en juin 1927 dans le Journal de 
Physique, de rappeler l'attention sur mes idées pri 
mitives et de les préciser sous la forme d'une "théo 
rie de la double solution" en distinguant l'onde 
continue et à caractère statistique de Schrodinger 
et une véritable onde physique V de très faible am 
plitude dont la particule constituerait une sorte de 
région singulière très localisée. J'étais ainsi amené 
à introduire la notion toute nouvelle de potentiel 
quantique dans le cas d'une onde V à amplitude varia 
ble.

J'ai plus d'une fois exposé ce qui s'était passé 
au Conseil Solvay d'octobre 1927 où les jeunes théo 
riciens de l'Ecole de Copenhague groupés autour de 
Niels Bohr et de Max Born finirent par l'emporter 
malgré l'opposition d'Einstein et de Lorentz.

C'est peu après, en octobre 1928, que je fus char 
gé d’enseignement à la Faculté des Sciences de Paris 
et, en octobre 1929, je recevais le prix Nobel de 
Physique. Dès lors, ayant à assurer les nombreuses 
obligations d'une haute situation universitaire et 
l'assez lourd fardeau d'une réputation internationa 
le, je me suis peu à peu résigné à enseigner la 
Mécanique quantique telle qu'elle résultait des tra 
vaux de ses fondateurs et des conceptions de l'Ecole 
de Copenhague. Je crois cependant pouvoir dire que
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mes enseignements et mes travaux ont toujours conser 
vé des aspects assez concrets et assez proches des 
réalités expérimentales.

A partir de 1947, et notamment dans un article 
que j'ai publié à cette époque dans les Cahiers de 
Physique sur la Thermodynamique relativiste, on 
peut apercevoir chez moi une tendance à revenir à 
mes idées primitives et à soumettre dans mes cours 
à une nouvelle critique les idées de Bohr et de son 
école. A partir de 1952-53, après la publication 
d'articles où M. David Bohm se rapprochait de mes 
idées anciennes, je reprends l'étude de la théorie 
de la double solution.

Mais, très vite, je m'aperçois alors que, pour 
rétablir l'accord entre ma théorie et les prévisions 
statistiques certainement exactes de la Mécanique 
quantique, il était nécessaire d'introduire dans la 
théorie de la double solution un élément aléatoire 
qui n'existait pas dans sa forme primitive. C'est 
pourquoi, m'inspirant alors d'un travail récent de 
MM. Bohm et Vigier, j'ai admis l'existence d'un mi 
lieu caché, le milieu subquantique, jouant le rôle 
d'un "thermostat caché". J'ai été ainsi amené à dé 
velopper une théorie plus complète où pour la particule, 
au mouvement de guidage que lui impose la propaga 
tion de son onde, se superpose un mouvement aléa 
toire dû à des changements brusques de son énergie 
interne de masse par suite d'échanges de chaleur 
avec le thermostat caché. En d'autres termes, l'éner 
gie interne m0 c2 /1 -f?2 que ma théorie attribue à la 
particule en mouvement serait en réalité de la cha 
leur contenue dans cette particule et variant cons 
tamment d'une façon aléatoire par suite des échanges 
de chaleur entre la particule et le thermostat caché. 
Cette hypothèse entraîne nécessairement la consé 
quence que la transformation relativiste de la cha 
leur doit être Q = Q o/1 - 62. Or, cette formule de 
transformation est bien celle que l'on admet depuis 
longtemps à la suite des travaux de Planck et de 
Laue (1907). Ceci paraissait donc très satisfaisant.

Aussi ai-je été très ému quand j'ai appris que 
des Physiciens théoriciens qualifiés .avaient mis en 
doute la formule de Planck-Laue et affirmaient que
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la véritable formule relativiste de transformation
Qo

de la chaleur était Q = ----- . J'ai perdu un peu de
/ï^ë2

temps à examiner cette question difficile un peu 
extérieure à mon plan de travail. Je suis arrivé à 
la conclusion que la formule de Planck-Laue est bien 
exacte et j'ai consacré en 1968 un article dans les 
Annales de l'Institut Henri Poincaré à cette ques 
tion. Elle a d'ailleurs été examinée d'une façon 
approfondie par MM. Guessous et Brotas dans leurs 
thèses de Doctorat et M. Georges Lochak en a fait 
un exposé d'ensemble dans le livre consacré à mon 
80e anniversaire. Cette question me paraît aujour 
d'hui réglée.

En résumé, mes recherches de ces dix dernières 
années m'ont conduit à attribuer aux particules de 
la Microphysique une Dynamique à masse propre varia 
ble qui est différente de l'ancienne Dynamique rela 
tiviste et dont l'étude approfondie est d'un très 
grand intérêt. Indépendamment des perturbations sub- 
quantiques, elle résulte de l'incorporation dans la 
masse propre, non seulement du potentiel quantique 
comme cela résulte de la théorie du guidage, mais 
aussi sans doute de la répartition entre toutes les 
particules d'un système de toutes les interactions 
comme Léon Brillouin l'avait suggéré dans son der 
nier livre "Relativity reexamined". J'ai repris et 
précisé cette idée dans une Note aux Comptes Rendus 
du 18 Décembre 1972.

Le développement de cette Dynamique relativiste 
à masse propre variable et de ses diverses extensions 
me paraît être un sujet d'études très important sur 
lequel il y aurait beaucoup de travaux à effectuer.

Un sujet dont l'étude est extrêmement importante 
pour le développement de la Mécanique ondulatoire 
telle que je la conçois, c'est l'approfondissement 
des idées qui sont à la base de ma Thermodynamique 
cachée des particules. Sans doute, il serait intéres 
sant de chercher à préciser la nature de ce thermos 
tat caché que constitue le milieu subquantique. Mais 
c'est là une question très difficile et je crois 
qu'il vaut mieux pour l'instant ne pas l'aborder.



Plus aisée et sans doute pour l'instant plus 
fructueuse est l'étude approfondie de la Thermody 
namique cachée des particules dont j'ai esquissé 
les grandes lignes. Ne voulant pas aujourd'hui dé 
velopper les formules de cette théorie que vous 
trouverez dans plusieurs de mes travaux récents, 
je me contenterai d'en donner une vue d'ensemble.

En Thermodynamique classique, on introduit 
pour énoncer le second principe de cette science 
la grandeur "Entropie" dont la signification phy 
sique restait si obscure que Henri Poincaré la 
qualifiait de "prodigieusement abstraite". C'est 
Boltzmann qui, en développant les idées de la Ther 
modynamique statistique, nous a donné le véritable 
sens de cette grandeur en montrant que l'entropie 
S de l'état d'un corps est reliée à la probabilité 
P de cet état par la célèbre formule :

S = k log P

Dans son ancien livre sur la théorie cinétique des 
gaz, le physicien anglais Jeans a écrit que l'inter 
prétation de l'entropie par la formule de Boltzmann 
jette un flot de lumière (a flow of light) sur la 
véritable nature de cette grandeur jusque-là si 
mys térieuse.

Or, en Mécanique analytique, il existe un princi 
pe qui est en quelque sorte le clef de voûte de cette 
science. C'est le principe de moindre Action de 
Hamilton qui généralise celui de Maupertuis. Mais ce 
principe a, comme la notion d'entropie en Thermodyna 
mique classique, une signification assez mystérieuse. 
Or, mes travaux sur la Thermodynamique cachée des 
particules m'ont conduit à affirmer que la vérita 
ble signification du principe de Hamilton est la sui 
vante : "Le mouvement classique d'un corps est celui 
qui possède la plus grande probabilité thermodynami 
que dans les conditions auxquelles il est soumis".
Je pense que cette conception de la nature profonde 
du principe de Hamilton jette un flot de lumière sur 
son véritable sens, analogue à celui que jette la 
formule de Boltzmann sur la signification de l'entro 
pie.



On pourrait peut-être aller jusqu'à dire :
"Quand Boltzmann et ses continuateurs ont développé 
leur interprétation statistique de la Thermodynami 
que, on a pu considérer la Thermodynamique comme 
une branche compliquée de la Mécanique. Mais, avec 
mes idées actuelles, c'est plutôt la Dynamique qui 
apparaît comme une branche particulière de la Ther 
modynamique" .

Ajoutons encore une intéressante remarque. A un 
certain moment du développement des théories quanti 
ques, entre 1910 et 1925 environ, divers auteurs ont 
remarqué que, quand un système quantifié évolue très 
lentement, une certaine intégrale d'action reste 
constante. Reprenant une expression employée long 
temps auparavant par Boltzmann dans un problème de 
thermodynamique, ils ont dit qu'il y avait alors 
"invariance adiabatique". Mais l'on a pu appliquer 
cette idée à des systèmes mécaniques très simples. 
Vers 1922, Léon Brillouin en avait donné un exemple 
particulièrement frappant en considérant un pendule 
simple dont le fil de suspension a une longueur très 
lentement variable. Mais l'introduction du terme 
"adiabatique", qui désigne l'absence d'échange de 
chaleur, paraît fort surprenant quand on l'applique 
à des systèmes mécaniques aussi simples qui ne pa 
raissent comporter aucun aspect thermodynamique. Il 
en est autrement si l'on admet que dans tout phéno 
mène mécanique il y a un aspect thermodynamique ca 
ché. Dans un travail récent non encore publié, j'ai 
montré que ma Thermodynamique cachée permet de jus 
tifier l'emploi du terme "adiabatique" dans le cas 
de tous les mouvements très lents auxquels on l'a 
appliqué.

Passons maintenant à des problèmes concernant la 
lumière. Je rappellerai d'abord que dans ma Thèse de 
Doctorat, afin d'incorporer le cas des photons dans 
la théorie générale des particules, j'avais admis, 
contrairement à l'opinion courante, que la masse 
propre du photon n'est pas rigoureusement nulle, 
mais qu'elle est seulement extrêmement petite, cer 
tainement inférieure à 10-45 gramme. J'ai toujours 
ensuite maintenu cette hypothèse dans tous les nom 
breux travaux que j'ai faits sur les ondes électro 
magnétiques. Tous ceux qui ont étudié ces problèmes



avec moi, comme récemment M. Vas s alo-Pereira, savent 
que l'on peut compléter ainsi d'une façon très in 
téressante les équations classiques de Maxwell. Cela 
permet notamment d'attribuer un sens physique aux 
potentiels électromagnétiques, contrairement à l'hy 
pothèse que l’on admet arbitrairement sous le nom 
d'invariance de jauge. Des expériences récentes sem 
blent bien prouver la valeur non nulle de la masse 
du photon et la réalité physique des potentiels 
électromagnétiques. Mais je ne puis pas insister sur 
ces questions et je veux maintenant parler des pro 
blèmes relatifs au passage de la lumière dans les 
milieux réfringents et absorbants.

Le passage de la lumière à travers un milieu ré 
fringent est un problème qui avait attiré mon atten 
tion il y a bien longtemps puisque je l'avais abordé 
en 1925 dans une Note aux Comptes Rendus intitulée 
"Sur la Dynamique du point matériel et l'Optique géo 
métrique". Je m'étais alors aperçu que le mouvement 
d'un photon dans un milieu réfringent d'indice n > 1 
soulevait des difficultés parce qu'alors la formule
p = ^ ne peut plus être exacte et que l'on n'a plus

la relation vV = c2 entre la vitesse U du photon et 
la vitesse de phase V de l'onde. A la fin de ma Note, 
j'avais signalé que, pour éviter ces difficultés, il 
fallait admettre que le milieu réfringent exerce 
sur le photon une action représentée par un poten 
tiel dont je donnais l'expression et que l'on pourrait 
appeler le "potentiel d'environnement".

J'ai entrepris une étude plus approfondie de cette 
question dans un article du Journal de Physique en 
1967 et dans un exposé paru dans les Annales de 
l'Institut Henri Poincaré en automne 1973. Cette théo 
rie entraîne que le potentiel exercé par le milieu 
réfringent sur le photon s'ajoute à sa masse propre 
dans l'expression de l'énergie, mais pas de celle de 
la quantité de mouvement. Cette différence s'expli 
que par le fait que le milieu réfringent supposé 
immobile dans son ensemble ne participe pas au trans 
port de l'énergie par le photon et par suite ne peut 
pas intervenir dans l'expression de la quantité de 
mouvement qui représente le flux de l'énergie. Dans 
les deux articles que j'ai consacrés à cette question, 
j'ai indiqué que des idées analogues pourraient



peut-être être introduites dans la théorie des semi 
conducteurs. Il est également possible que l'on 
puisse comprendre la véritable nature de ce que l'on 
nomme les "phonons" en les considérant comme des 
photons transportés par des ondes électromagnéti 
ques de fréquence acoustique se propageant dans des 
conditions particulières. Les objections que l'on 
fait souvent à une telle interprétation ne me pa 
raissent pas très probantes. Il y a là une série de 
problèmes d'un grand intérêt.

Il y aurait lieu d'étendre l'étude des milieux ré 
fringents à des cas plus généraux que ceux dont je 
viens de parler, par exemple en examinant le cas des 
milieux à indice variable dans l'espace ou même au 
cours du temps. D'une façon tout à fait générale, il 
faudrait reprendre l'étude de tous les phénomènes si 
nombreux et si bien étudiés de l'optique classique 
en introduisant systématiquement en théorie ondula 
toire la notion de photon. Il y aurait là la matière 
d'un grand nombre de travaux.

Je tiens aussi à souligner qu'il faudrait alors 
renoncer à certaines simplifications un peu trom 
peuses couramment introduites en Optique classique.
Je pense notamment à celle qui consiste à considérer 
l'entrée de la lumière dans un corps matériel comme 
s'effectuant à travers une surface géométrique d'é 
paisseur nulle sur laquelle on raccorde les champs 
intérieurs et extérieurs. En réalité, le passage des 
champs extérieurs aux champs intérieurs s'opère pro 
gressivement dans une couche superficielle très mince 
et l'analyse exacte de ce qui se passe dans cette 
couche pourrait avoir dans certains cas une très gran 
de importance.

Passons maintenant au cas du passage de la lumière 
à travers un milieu absorbant et adoptons d'abord le 
point de vue de l'optique classique en considérant 
un train d'ondes presque monochromatique traversant 
un écran absorbant d'épaisseur l. L'intensité de 
l'onde, initialement égale au carré a2 de son ampli-

2 _y 8,
tude, est à la sortie de l'écran réduite à a^e 
où y est le coefficient d'absorption de l'écran.



Passons au point de vue de la théorie de la dou 
ble solution. L'onde V est alors entièrement assimi 
lable à une onde lumineuse classique de très faible 
amplitude a0 et son intensité après son passage à

2 —v S,travers l'écran sera a^e ' . Je nommerai cette absorp 

tion de l'onde V la "micioabsorption". Elle est la 
même quel que soit le nombre des photons qu'elle 
transporte, du moins nous l'admettrons. Si initia 
lement l'onde V transportait un grand nombre N0 de

photons, le nombre de ceux-ci qui sortent de l'écran

est en moyenne égal à N0e car ces photons peuvent

être considérés comme des échantillons d'une onde 
d'amplitude Ao >> aQ. J'appellerai cette absorption

des photons, c'est-à-dire de l'énergie, la "macro 
absorption".

Mais, et ceci est essentiel, cette correspondance 
ne se maintient pas si l'onde v ne porte que quelques 
photons et, à plus forte raison, si elle n'en porte 
qu'un seul. On voit alors que chaque photon, étant 
ou n'étant pas absorbé, la macroabsorption devient un 
phénomène de tout ou rien qui n'est aucunement repré-

• -y Z
sentable par la loi statistique en e ' tandis que la 
microabsorption est toujours représentée par cette 
exponentielle. à

j
Cette remarque est extrêmement importante car elle i 

montre que, si dans le cas d'un très grand nombre de 
photons, la représentation de l'absorption de l'éner 
gie par la théorie électromagnétique classique est 
globalement exacte, elle ne l'est plus du tout pour 
des trains d'ondes portant un seul photon. Il doit 
donc être possible de trouver des phénomènes compor 
tant l'absorption de photons, apportés isolément par 
des trains d'ondes électromagnétiques, qui ne soient 
aucunement représentables par l'image fournie par 
l'onde maxwe11ienne.

C'est ce qui m'a amené à penser qu'il y aurait lieu 
de répéter les expériences d'apodisation bien connues 
de tous les spécialistes de l'Optique en employant 
une lumière de très faible intensité de façon que les 
photons arrivent dans une lame apodisante apportés 
successivement un par un sur des trains d'ondes iso 



lés. Si chaque photon qui traverse l'écran vient 
former l'image apodisée, c'est que la microabsorp 
tion de l'onde aura modifié son mouvement de guida 
ge. Ainsi serait prouvée, par un expérience qui n'a 
pas, je crois, été jusqu'ici tentée, que le mouve 
ment du photon est déterminé par la propagation d'une 
onde électromagnétique très faible.

Un sujet particulièrement intéressant à examiner 
est celui de l'application de mes idées à l'étude 
des processus dont les systèmes atomiques sont le 
siège.

Un premier problème que l'on pourrait étudier est 
celui des trajectoires de guidage correspondant aux 
états stationnaires d'un état quantifié. Dans mon 
livre de 1956 où je reprenais l'étude de la théorie 
de la double solution, j'avais étudié le cas simple 
des trajectoires d'un électron dans un atome d'hydro 
gène. Ces trajectoires ne coïncident pas avec celles 
prévues par Bohr dans sa théorie primitive qui 
étaient des cercles ou des ellispes du type képlérien 
décrits autour du noyau. En effet, les trajectoires 
de guidage sont alors l'ensemble des cercles de 
rayons différents ayant leurs centres sur un même 
axe passant par le noyau. L'équilibre de l'électron 
sur sa trajectoire circulaire résulte alors de l'ac 
tion simultanée du potentiel coulombien émanant du 
noyau et du potentiel quantique introduit par la 
théorie du guidage. On pourrait étudier des problè 
mes de guidage plus compliqués relatifs aux mouve 
ments des électrons dans diverses sortes d'atomes ou 
molécules, mais ce travail serait difficile et proba 
blement sans grand intérêt.

Beaucoup plus importante est l'étude des transi 
tions quantiques en général et spécialement de l'émis 
sion et de l'absorption des rayonnements par les 
atomes ou molécules. Certains de ces problèmes font 
l'objet de belles recherches de M. Lochak et de ses 
collaborateurs. Je me bornerai ici à résumer quel 
ques unes des idées générales que j'ai développées 
dans un article récent, non encore publié, intitulé 
"Processus forts et états stationnaires".



Mon point de départ a été une idée très profonde 
énoncée par Einstein dans l'article qu'il avait 
écrit comme introduction pour le livre <le mon 60e 
anniversaire. Il avait remarqué qu'en Mécanique 
quantique usuelle l'on envisage des processus con 
tinus obéissant aux équations d'onde de Schrodinger 
ou à ses généralisations, mais qu'on y introduit 
aussi de brusques discontinuités correspondant à 
des échanges d'énergie entre particules. Einstein 
en déduisait qu'il se produit alors quelque chose 
de très important, impossible à décrire par le for 
malisme usuel et cela parce que ce formalisme, 
ignorant la localisation des particules, ne peut 
pas tenir compte de leur structure et de la possi 
bilité de "chocs" qui auraient lieu entre elles.

En théorie de la double solution, cette diffi 
culté me semble levée car, si une particule locali 
sée se trouve à un certain moment entrer en contact 
avec une autre particule localisée, un processus 
très rapide, que les équations de propagation ne 
permettent pas de décrire, va se produire qui dé 
tachera chaque particule de son onde V primitive 
pour l'attacher à l'une des composantes de cette 
onde avec rupture des relations de phase et conser 
vation globale de l'énergie et de la quantité de 
mouvement. C'est là ce que j'ai appelé un "proces 
sus fort" par opposition au "processus faible" dé 
crit par la propagation des ondes.

Naturellement l'émission ou l'absorption d'un 
photon par un atome doit rentrer dans ce schéma.
Mais il faut alors admettre que, dans le processus 
de l'émission, un électron atomique, qui se trouve 
initialement en contact avec un photon annihilé 
d'énergie nulle (sans doute caché dans le milieu 
subquantique), lui cède par un processus brusque 
une certaine quantité d'énergie tandis que le pro 
cessus de l'absorption est exactement l'inverse.

J'ai développé de diverses façons les idées pré 
cédentes et je les ai appliquées à la théorie de la 
largeur naturelle des raies spectrales. Dans la 
façon dont on présente généralement cette théorie, 
la largeur d'une raie spectrale dépendrait non seu 
lement de la transition qui l'a engendrée, mais 
aussi de toutes les transitions qui étaient possibles



mais qui ne se sont pas produites. Une telle inter 
prétation me paraît impossible à admettre car un 
phénomène ne peut pas dépendre d'autres phénomènes 
qui étaient possibles, mais qui ne se sont pas pro 
duits. Je crois avoir pu montrer qu'en réalité la 
largeur spectrale d'une raie émise lors d'une tran 
sition quantique n'est pas due à la possibilité de 
transitions qui ne se sont pas produites, mais 
qu'elle résulte de processus faibles du type V qui 
ont précédé la transition quantique.

Dans l'article que j'ai cité, j'ai étudié aussi 
d'autres questions dont je ne parlerai pas ici. Je 
pense que les divers problèmes que j'ai effleurés 
dans cet article pourraient faire l'objet de re 
cherches assez difficiles, mais très intéressantes.

Une autre question importante est celle des en 
sembles de particules en interaction. Dans ses 
travaux de 1926, Schrodinger avait introduit, pour 
traiter ce problème, l'espace de configuration cor 
respondant à l'ensemble des particules envisagées 
et il avait ainsi obtenu des prévisions précises 
qui ont été ensuite étendues et bien vérifiées. 
Mais, dès l'apparition des travaux de Schrodinger, 
j'avais remarqué qu'avec les conceptions de cet 
auteur, l'emploi de l'espace de configuration, tout 
à fait normal en Mécanique classique où les points 
matériels sont localisés, devient paradoxal. 
Comment, en effet, construire un espace de configu 
ration avec les coordonnées de particules qui ne 
sont pas localisées ?

Au contraire, en théorie de la double solution 
où l'on admet la localisation des particules dans 
l'espace, l'introduction d'un espace de configu 
ration pour un ensemble de particules ne soulève 
pas de difficulté, mais il faut alors retrouver à 
l'aide de cet espace fictif, l'ensemble des conclu 
sions exactes de la Mécanique quantique et, en par 
ticulier, justifier dans cet espace la symétrisa 
tion de la fonction d'onde pour un ensemble de bo- 
sons et l'antisymétrisation de la fonction d'onde 
pour un ensemble de fermions. M. Andrade e Silva, 
qui commençait alors à travailler avec moi, a étu 
dié cette question avec beaucoup de soin et en a



tiré le sujet de sa belle Thèse de Doctorat soute 
nue en 1960.

Dans le dernier chapitre de mon récent livre " 
"La réinterprétation de la Mécanique ondulatoire" 
paru en 1971, j'ai résumé d'une façon qui me paraît 
en donner une vue générale très claire, l'ensemble 
de cette question. Mais il y a certainement bien 
des points de détail à étudier en ce qui concerne 
ce difficile problème.

Disons maintenant quelques mots des relations 
d'incertitude. Soit un train d'ondes formé par la 
superposition d'ondes monochromatiques dont la ie 
se propage dans la direction d'un vecteur n^ avec

la longueur d'onde X^ . Dans un système d'axes rec 

tangulaires, ce train d'ondes a det dimensions 
6X,6y,6Z- Comme je l'ai bien souvent fait remar 

quer, c'est le train d'ondes, et non pas chacune 
de ses composantes monochromatiques qui a une réa 
lité physique. Les composantes n'existent que dans 
l'esprit du théoricien.

Dans ma théorie qui localise la particule, 5x> 
ôy,Sz sont les incertitudes sur la position de

la particule, position qui existe, mais que nous
ignorons. De plus, quand la particule occupe la
position x, y, z, sa quantité de mouvement est
•> | 
p = - grad , où P est au facteur près la phase

de l'onde en ce point. Position et quantité de 
mouvement sont donc supposées avoir des valeurs 
bien définies, mais que nous ignorons.

Pour nos adversaires au contraire, 5,5,6x y z
sont les incertitudes sur la position de la parti 
cule, position qui n'a pas à chaque instant une 
valeur bien déterminée tandis que la quantité de

->■ Il
mouvement p a l'une quelconque des valeurs n^ y—

qui correspondent aux différentes composantes 1 

monochromatiques. On démontre alors les relations 
d'incertitude :



> h

1 9

S x .($ px > h 6Y-6Py > h 6 z -6 P.

Mais pour moi,comme je l'ai dit, les composantes mo 
nochromatiques de l'onde n'ont pas d'existence réelle 
et il n'est pas permis d'appliquer aux diverses com 

posantes de l'onde la formule p = j- qui n'a été dé 

montrée que pour une onde plane monochromatique. Les 
incertitudes qui figurent dans les relations d'incer 
titude ne se rapportent donc pas à un même état de 
mouvement de la particule et on ne peut nullement 
en conclure qu'il est impossible de lui attribuer à 
chaque instant une position et une quantité de mou 
vement inconnues, mais bien définies.

Dans des recherches que je n'ai pas publiées, j'ai 
vérifié les idées précédentes dans un certain nombre 
de cas particuliers. Je ne parlerai ici que du fa 
meux argument connu sous le nom de "microscope 
d ' Heisenberg" dont je veux montrer le caractère fal 
lacieux.

Heisenberg considérait un électron qui, en tra 
versant le porte-objet d'un microscope dans le sens 
de son axe, subit un choc Compton avec un photon. Ce 
photon, ainsi mis en mouvement, entrera dans le mi 
croscope si son angle de déviation est inférieur à 
la demi-ouverture du microscope. Heisenberg suppose 
alors que ce photon, parvenu à l'endroit où le mi 
croscope donne une image du porte-objet, fournit 
ainsi une image de l'électron qu'il a rencontré. Puis 
il applique à cette image la formule bien connue qui 
donne le pouvoir séparateur du microscope et, par 
des calculs que je ne reproduis pas, il en déduit la 
formule ôx.ép^ > h, x étant une variable comptée dans

le plan du porte-objet.

J'ai reproduit ce raisonnement dans mes cours d'au 
trefois, mais je pense maintenant qu'il repose sur 
des idées contradictoires. En effet, le choc Compton 
ne fait intervenir qu'un seul photon, tandis que la 
théorie du pouvoir séparateur d'un microscope se dé 
duit de l'Optique classique et n'est par suite appli 
cable qu'à une onde transportant de nombreux photons. 
Elle n'est donc pas valable dans le cas d'un seul 
photon et le raisonnement d'Heisenberg apparaît comme 
résultant d'un mélange d'images inconciliables.
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En résumé, l'interprétation de la Mécanique ondu 
latoire que je propose repose essentiellement sur 
une comparaison entre la dynamique des particules et 
la propagation des ondes. Pour la développer, il est 
donc essentiel de bien connaître d'une part les 
principes généraux de la Dynamique du point maté 
riel sous sa forme classique et sous sa forme rela 
tiviste comportant une connaissance approfondie du 
principe de moindre Action et d'autre part les prin 
cipes généraux de la propagation des ondes à l'appro 
ximation de l'optique géométrique et dans les cas 
plus généraux. Toute étude sérieuse de la coexis 
tence des ondes et des particules doit reposer sur 
ces idées de base que j'ai résumées dans plusieurs 
de mes livres, même quand je n'avais pas repris mes 
idées primitives.

Mais il est temps de conclure. A partir de 1950, 
de nouvelles réflexions m'ont conduit à revenir à 
mes idées primitives et à chercher à les perfection 
ner. Je n'ai pu d'abord que progresser assez lente 
ment et c'est seulement en 1962 que ma retraite 
universitaire m'a permis de me consacrer plus com 
plètement aux idées auxquelles j'étais revenu. Mais, 
déjà âgé et ayant conservé quelques obligations, je 
n'ai pu que projeter quelques jets de lumière à tra 
vers l'obscurité qui plane sur la Physique quanti 
que. C'est à ceux qui, aux côtés de M. Lochak, vont 
travailler dans la Fondation dont nous inaugurons 
aujourd'hui l'activité qu'il appartiendra d'étudier, 
de perfectionner et probablement sur certains points 
de rectifier les idées nouvelles que j'ai tenté de 
semer. Mais, bien entendu, tant que cela me sera 
possible, je suis prêt à aider dans leur travail 
ceux qui voudront me consulter.
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Remarques préliminaires 
sur l’interprétation 

de la Mécanique ondulatoire

Dans l'introduction, j'ai exposé mon idée fonda 
mentale qui consiste à distinguer l'onde statistique 
ÿ usuellement utilisée en Mécanique quantique de 
l'onde réelle v qui, selon moi, transporte les par 
ticules. D'autre part, dans mon livre "Etude critique 
des bases de l'interprétation actuelle de la Mécani 
que ondulatoire" Paris, Gauthier-Vi11ars 1963, j'avais 
analysé et critiqué les idées qui, depuis 1927, ser 
vaient de bases à l'interprétation de ce que l'on 
nomme généralement la Mécanique quantique. Je vou 
drais résumer, avec quelques modifications, l'essen 
tiel de mes remarques.

1. COMPARAISON DE L'ONDE ip ET DE L'ONDE V.

L'onde iJj usuellement utilisée en Mécanique quanti 
que peut paraître avoir les propriétés d'une onde 
physique réelle puisque l’équation qui sert à la 
définir est l'équation de propagation d'une onde qui 
se propage, peut se réfléchir et interférer, etc ... 
Ceci est essentiel pour que l'onde 'J* puisse jouer le 
rôle qu'on lui attribue. Cependant, elle diffère sur 
des points importants d'une onde physique réelle. 
D'abord quand elle porte une particule, on doit la

2
normer par la relation di 1 ou V est le volu 

me occupé par l’onde. On lui attribue ainsi une am 
plitude qui permet à |ip|2dx de représenter en valeur 
absolue la probabilité pour que la particule manifes 
te sa présence dans l'élément de volume dT. Or, il 
y a une amplitude indépendante du théoricien qui
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l'emploie et pour cette raison la normalisation de 
l'onde i|> enlève à cette prétendue onde le caractère 
d'une véritable grandeur physique. Mais il y a plus. 
Dirac a montré depuis longtemps que la fonction , 
bien que solution d'une équation de propagation li 
néaire, ne possède pas la propriété d'additivité qui 
caractérise les solutions d'une équation aux déri 
vées partielles linéaires. Il est facile de le voir 
par des raisonnements tels que celui-ci: soit <p une 

fonction solution normée de l'équation de propaga 
tion. Pour que deux fonctions i|i j = aji)) et ÿ2 = a2^

soient aussi solutions de l'équation de propagation, 
il faudrait avoir |aj|2 = |a2|2 = 1. Or la superpo 

sition de <1/ j et de i)j2 doit pouvoir s'écrire iJj = ai);

avec |a| = 1 et, en général, on ne peut avoir
a = aj + a2 comme on le voit, par exemple, quand

al = a2 = ' et i|< i + ^2 = 2i|).

L'onde ip a donc un caractère hybride et paradoxal 
puisque, d'une part, elle est formée en partant d'une 
équation de propagation linéaire et que, d'autre part 
étant normée par une formule qui a un caractère qua 
dratique, elle ne possède pas la propriété d'additi 
vité qui caractérise les solutions d'une équation 
aux dérivées partielles linéaire. C'est peut-être 
pour cette raison que ceux qui utilisent uniquement 
la fonction ip ne l'appellent souvent plus "fonction 
d'onde", mais lui donnent le nom assez vague de 
"fonction d'état". Mais alors pourquoi faut-il que 
la fonction i(J soit solution d'une équation qui physi 
quement représente la propagation d'une onde ?

C'est ce caractère de la fonction 'P qui fait que 
son usage exclusif conduit à des conclusions parado 
xales. En effet, si un dispositif expérimental pro 
voque la division d'un train d'ondes 41 en deux trains 
d'ondes j et occupant deux régions séparées de 
l'espace, comme c'est le cas dans les dispositifs 
d'interférences, on sait que, si ip ! et ip2 viennent 
se superposer dans une certaine région de l'espace, 
on observe des interférences dans cette région. Mais, 
supposons que l'onde initiale porte une seule parti 
cule et qu'après la séparation des trains d'ondes 
4>l et <J>2 la particule se trouve par exemple dans l|» .

Alors ip j devrait être normée à 1, mais ip2 devrait
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être normée à zéro, puisqu'il n'y a pas de particu 

les dans 4* . Or, écrire ] |2dT = 0 oblige à poser 
2 J 2

ÿ = 0 et alors il n'y a plus de possibilités d'in 

terférences dans la région R. D'où l'obligation 
pour ceux qui utilisent uniquement la fonction 41 de 
dire qu'après la séparation des trains d'ondes et 
il2 , la particule est à la fois présente dans les 
deux trains d'ondes et, pour eux, c'est là ce qui 
permet l'observation des interférences quand les 
deux trains d'ondes finalement se superposent. C'est 
cette étrange conception qui conduit aux conclusions 
paradoxales suivantes : "1°) Dans l'expérience des 
trous d'Young, la particule passe à la fois par les 
deux trous d'Young; 2°) Dans l'expérience du miroir 
semi-transparent d'Heisenberg, la particule serait 
présente à la fois dans l'onde transmise et dans 
l'onde réfléchie; 3°) Si une onde se propage dans un 
tuyau qui ensuite se divise en deux branches finale 
ment réunies, la particule passerait à la fois par 
les deux branches. C'est, au fond, dans tous ces 
cas, la même conception paradoxale.

Dirac a dit autrefois qu'une particule ne pouvait 
jamais interférer qu'avec elle-même. A son point de 
vue, cela paraît logique. En effet, pour qu'il y ait 
interférences, il faut qu'une même onde ^ se divise 
en deux ondes distinctes qui viennent ensuite se re 
joindre et interférer. Si alors on admet la théorie 
orthodoxe, quand les deux ondes sont séparées, la 
particule est présente dans chacune d'elles et c'est 
ce qui permettrait les interférences quand les deux 
ondes se réunissent. Mais, comme M. Andrade e Silva 
et moi, nous l'avons signalé dans une Note dans la 
Physical Review (*), l'expérience réalisée avec des 
lasers par MM. Pfleegor et Mandel semble bien prou 
ver, contrairement à l'affirmation de Dirac, que deux 
ondes qui ont pris naissance dans des cavités sépa 
rées et dont une seule porte un photon, sont capa 
bles d'interférer.

Tout devient beaucoup plus clair si, avec la théo 
rie de la double solution, on distingue l'onde v et 
l'onde i>. L'onde V est alors une véritable onde phy 
sique dont l'amplitude très faible est indépendante

(*) Voir page 62 .



de notre volonté et qui possède la propriété d'addi 
tivité des solutions d'une équation de propagation 
linéaire. Quant à l'onde i(j, elle n'est qu'une cons 
truction de notre esprit formée à partir de l'onde v 
par la relation i|> = Cv où C est un facteur de norma 

lisation tel que |lp|2dT soit égal à 1 si l'onde V

ne porte qu'une particule. Il en résulte que l'onde 
t|j n'est plus qu'une représentation de probabilité 
et ne possède plus la propriété d'additivité des 
solutions d'une équation linéaire.

Il convient cependant de faire l'intéressante re 
marque suivante. Si la relation <|) = Cv conduit à mo 
difier arbitrairement l'amplitude de l'onde, elle 
ne modifie pas sa phase (du moins à une constante 
près) de sorte que le guidage de la particule par 
l'onde,qui dépend des dérivées de la phase, peut sem 
hier dû à l'onde <jj bien qu'il soit dû à l'onde V. 
C'est là ce qui explique pourquoi le carré de l'am 
plitude de l'onde ip représente exactement la probabi 
lité de localisation de la particule dans l'espace 
comme cela résulte de l'équation de continuité dans 
la théorie de la double solution.

2. EXPOSE DE LA THEORIE DES TRANSFORMATIONS.

Dans mon livre "Etude critique des bases de l'in 
terprétation actuelle de la Mécanique ondulatoire" 
déjà cité au début du paragraphe précédent, livre 
qui avait été écrit avant l'introduction dans mes 
conceptions actuelles d'idées thermodynamiques, j'ai 
analysé et critiqué la théorie connue en Mécanique 
quantique usuelle sous le nom de "théorie des trans 
formations". Je crois utile de résumer, avec quel 
ques modifications, certains passages du chapitre IV 
de cet ouvrage .

Je me propose d'analyser et de critiquer certains 
aspects du formalisme qui constitue cette théorie 
des transformations.

On part de la remarque qu'en Mécanique quantique, 
l'on considère toute grandeur physique comme repré 
sentée par un opérateur linéaire et hermitien A au 
quel correspond une série de fonctions propres 'P ^

formant un système complet de fonctions de base nor 
mées et orthogonales.
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Alors la fonction ^ peut toujours être développée 
sous la forme :

( 1 ) ÿ = Z C .P .
i

les étant des coefficients complexes dits "coeffi 

cients de Fourier généralisés" que l'on peut calculer 
par la formule :

(2) C . =
i

P .4» dT (* )

Les définis par (2) sont les coordonnées de la 

fonction i|) dans l'espace de Hilbert par rapport au 

système des fonctions de base <p La connaissance de

l'ensemble des P. et des coefficients est équiva 

lente à la connaissance du . Si l'on passe de l'en 

semble des fonctions de base p . à un autre système 

de fonctions de base p !
i

formation linéaire. En effet, comme on a

iP . = Z d, . P' , on a :
i , ki k k

les C. subissent une trans-
î

O) \i> = ic.<p.=ic:p'• il , k ki k

(4) £ d, . C. 
ki i

Mais on admet, de plus, que les fonctions propres 

P . correspondant à la position R0 de la particule sont
_ —y

les fonctions de Dirac o(R - R0). Si l'on admet, 

comme on le fait habituellement, ce postulat qui nous 

semble inexact, on est amené à écrire :

(5) tMR) = U(R0) «(R - R o ) dR

(*) Si le spectre des p. est continu, on peut encore

écrire la formule (1), les p^ étant alors les

"différentielles propres" du spectre, mais je ne 
veux pas insister ici sur ce point.

2
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et l’on considère alors les ip ( R Q ) pour les différen-

tes valeurs de R. comme étant les coefficients C. du 
0 1

développement du ip suivant les valeurs propres de la 

position.

Puis, entraîné par cet élégant formalisme, on en 
a conclu que toutes les "représentations" de la fonc 
tion tp à l'aide de tous les systèmes complets et or 
thonormés de fonctions propres correspondant à toute 
les grandeurs physiques seraient équivalentes. En 
particulier, la "représentation q" correspondant aux 
coordonnées et à la formule (5) serait exactement de 
la même nature que la "représentation p" correspon 
dant à la quantité de mouvement et donnée par les 
coefficients c (^) du développement de la fonction tp 
suivant les ondes planes monochromatiques.

La théorie des transformations admet donc comme 
générale la loi de probabilité suivante : "La proba 
bilité pour qu'une grandeur A attachée au corpuscule 
ait pour valeur la valeur propre de l'opérateur

correspondant est donnée par |C^|2”.

Appliquant cette loi générale au cas de la posi 
tion avec intervention de la formule (5), elle consi' 
dêre qu'elle a retrouvé pour la probabilité de la

presence du corpuscule au point R^ la valeur

|<MR0)|2, valeur qui est certainement exacte.

3. CRITIQUE DE LA THEORIE DES TRANSFORMATIONS.

On peut adresser diverses critiques à la théorie 
des transformations. La plus importante nous paraît 
être qu'il est certainement inexact de faire corres 
pondre à la localisation d'un corpuscule au point
—y —>•
R. la fonction o(R - R.). En effet, la localisation

observable d'un corpuscule résulte d'une action 
exercée par lui sur d'autres éléments microphysiques, 
action qui déclenche par un processus en chaîne un 
phénomène observalbe. C'est là un processus complexe 
qui n'est nullement représenté par la simple réduc 
tion de la fonction d'onde à une fonction 6 de Dirac



27

Si l'on se place au point de vue physique, le ca 
ractère fallacieux de la théorie des transformations 
me semble apparaître d'une manière beaucoup plus évi 
dente. Pour nous en rendre compte, souvenons-nous 
que toute la théorie ici utilisée provient de la 
Physique classique et plus précisément de la théorie 
des cordes vibrantes de d'Alembert.

Considérons une corde vibrante dont les deux ex 
trémités sont fixées. Si l'on observe son mouvement 
par une méthode photographique, on observera à cha 
que instant une forme en général très compliquée de 
la corde. Assurément la connaissance de la fonction 
f(x,t) qui représente le mouvement de la corde per 
mettra à un théoricien de calculer les harmoniques 
dont la superposition forme f(x,t), mais cette décom 
position en une série d'harmoniques n'existe que dans 
l'esprit du théoricien, elle n'existe pas dans le 
mouvement observable. On pourra, il est vrai, isoler 
physiquement ces harmoniques, mais il faudra pour 
cela employer des dispositifs qui, en les isolant, 
rompront les relations de phase qui existaient entre 
eux dans le mouvement de la corde.

Un exemple plus proche de la Mécanique ondulatoire 
s'obtient en considérant un train d'ondes formé par 
une superposition d'ondes planes monochromatiques 
arrivant sur un dispositif du genre prisme ou ré 
seau. L'onde incidente correspond à un mouvement 
complexe et, si la connaissance de ce mouvement 
permet à un théoricien de calculer les composan 
tes monochromatiques dont elle est la superposicion, 
ces composantes n'existent pas isolément dans la 
réalité physique, mais seulement dans la pensée du 
théoricien. L'action d'un dispositif du genre pris 
me ou réseau a pour effet de séparer les composan 
tes monochromatiques en les concentrant dans des 
directions différentes de l'espace. L'onde sera 
donc finalement subdivisée en portions d'ondes sen 
siblement monochromatiques, mais les relations de 
phase qui existaient entre elles et déterminaient la 
forme de l'onde initiale ne se manifesteront plus par 
suite de la séparation spatiale.

Si l'on réfléchit aux exemples précédents et à 
d'autres qu'on pourrait imaginer, on arrive néces 
sairement à l'idée que c'est la représentation dans 
l'espace au cours du temps qui est objective et non
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la décomposition de Fourier qui n'existe que dans 
l'esprit du théoricien. Les diverses composantes de 
Fourier ne peuvent être observées qu'à l'aide de dis 
positifs qui changent entièrement l'état de choses 
initial et rompent les relations de phase.

Dans le langage de la théorie des transformations, 
on doit exprimer ceci en disant que la repré s entatiot 
q est la seule représentation objective tandis que 
la représentation p, représentation abstraite dans 
l'espace des quantités de mouvement, n'existe que 
dans l'esprit du théoricien. Cela montre bien, con 
trairement à ce qu'affirme la théorie usuelle des 
transformations que les deux représentations q et p 
ne sont nullement équivalentes. C'est la fonction 
d'ondes qui décrit la réalité physique et non l'en 
semble des coefficients de Fourier considérés iso 
lément. Cette conclusion est d'ailleurs la consé 
quence du fait évident que l'espace à trois dimen 
sions est une réalité physique, cadre normal de notre 
expêrience,tandis que l'espace des moments (quanti 
tés de mouvement) n'est qu'une représentation mathé 
matique abstraite.

4. PRIMAUTE DE LA PROBABILITE DE PRESENCE. PROBABI 
LITES ACTUELLES ET PROBABILITES PREVUES.

L'ensemble des considérations que nous avons 
développées ci-dessus nous conduit à affirmer que 
la probabilité de présence p, égale à | iJj | 2 dans le 
cas de l'équation de Schrôdinger, possède une sorte 
de primauté sur les autres probabilités envisagées 
par la théorie usuelle parce qu'elle correspond à 
la présence du corpuscule en un point de l'onde 
avant toute action d'un dispositif séparant les 
composantes de Fourier avec rupture des relations 
de phase. Pour les grandeurs autres que la locali 
sation et celles qui se déduisent de la localisa 
tion (c'est-à-dire en langage abstrait pour les 
grandeurs qui ne commutent pas avec la position), 
les probabilités j C^ | 2 correspondent à la situation

qui existerait après l'action d'un dispositif qui 
isole, avec rupture des relations de phase, les 
composantes C^ relatives aux diverses valeurs possi 

bles et. de la grandeur A envisagée quand on ne 

connait pas encore la valeur qui en résulte pour A,
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c'est-à-dire quand on ne connait pas le résultat de 
la mesure. L'action du dispositif de mesure doit, 
en effet, détacher le corpuscule de son onde initia 
le pour l'attacher sur l'une des composantes spec 
trales : dans le langage de la théorie de la double 
solution, on doit dire qu'au cours de la perturba 
tion de l'onde provoquée par l'action du processus 
de mesure, le corpuscule est guidé de telle façon 
que ce résultat soit finalement obtenu. L'accrocha 
ge du corpuscule sur l'une des composantes spec 
trales de l'onde initiale peut s'opérer soit par 
séparation spatiale des composantes spectrales 
(cas des dispositifs genre prisme ou réseau), soit 
par un processus d'aiguillage qui attache le cor 
puscule sur l'une des ces composantes.

Bref, la densité de probabilité de présence p me 
paraît exister dans l'état initial avant toute ac 
tion d'un dispositif de mesure tandis que les pro 
babilités |C^|2 n'entrent en jeu qu'après l'action

d'un dispositif de mesure de la grandeur A à laquelle 
se rapportent les |C^|2. Les |C^]2 ne peuvent donc

avoir le sens de probabilités existant objective 
ment dans l'état initial. Ce qui achève de prouver 
qu'il en est bien ainsi, c'est que dans l'état ini 
tial, la mesure de n'importe quelle grandeur est 
a priori possible et que, suivant la nature de la 
mesure que l'on effectuera, l'ensemble des |c^|2

qu'on aura ensuite à envisager ne sera pas, en gé 
néral le même. Cette circonstance me paraît rendre 
impossible de considérer tous les ensembles de |c^|2

comme représentant des probabilités existant simul 
tanément dans l'état initial. Il est même étonnant 
que, dans le cadre d'une théorie reposant sur 
l'idée que tout processus de mesure perturbe néces 
sairement l'état qui existait antérieurement, la 
théorie des transformations en mettant sur le même 
pied la probabilité de présence et les probabilités 
J C^]2 ait en somme méconnu ce principe fondamental.

Ce que nous venons de dire montre bien la diffé 
rence fondamentale qui existe entre une probabilité 
actuelle valable à l'instant où l'on l'évalue et une 
probabilité prévue pouvant correspondre à des situa- 
tions futures.
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5. LE SCHEMA STATISTIQUE DE LA MECANIQUE ONDULATOIRE

Les conceptions que nous venons de développer, 
bien différentes de celles usuellement admises, con 
duisent à réviser tout le schéma statistique qui ré 
sulte des idées actuelles. En effet,ce schéma sta 
tistique s'écarte complètement de celui qui est 
classique en Calcul des Probabilités.

En Calcul des Probabilités, on définit pour toute 
variable aléatoire continue X une densité de proba 
bilité p (x) telle que p (x)dx soit la probabilité 

X X
pour que X ait une valeur comprise entre x et x +dx. 
Pour une autre variable aléatoire continue Y, on dé 
finit de même une densité de probabilité p^(y)• Puis

on peut définir une probabilité P(x, y) telle que 
p(x, y) dx dy soit la probabilité d'obtenir par une 
même opération de mesure (une même "épreuve" comme 
disent les statisticiens) des valeurs de X et de Y 
comprises respectivement dans les intervalles 
x x + dx et y + y + dy. Enfin, on introduit la

densité de probabilité de Y liée par X, p Y'(x, y)>

qui correspond à la probabilité d'obtenir la valeur 
y de Y quand on sait que X a la valeur x et l'on dé 

finit de la même façon la probabilité p 
par Y .

x de X liée

Ces définitions étant posées, il est facile de 
voir que l’on doit avoir entre les cinq densités de 
probabilité que nous venons de définir les relations 
suivantes que l'on peut considérer comme évidentes :

P(x, y) dy PY(y) P(x, y) dx

d'où l'on tire :

(7) •

f

PY(y)

px(x)
pf>(X, y) PY(y) dy

PYX^(x, y) Px(x) dx

Tout ce schéma classique des statisticiens résul 
te clairement de l'image de la probabilité quand on
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se figure des "individus" pour lesquels les gran 
deurs X et Y ont des valeurs déterminées, la statis 
tique s'introduisant par la considération simultanée 
d'individus pour lesquels X et Y ont des valeurs 
différentes.

Or, ce schéma classique des statisticiens n'est 
pas applicable aux probabilités définies par l'in 
terprétation usuelle de la Mécanique quantique.
D'une part, la probabilité p(x, y) n'existe généra 
lement pas et, d'autre part, les probabilités 

/ Yl ( xl
P x (x, y) py(y) et P Y (x, y) px(x),qui devraient

être égales ne le sont pas. Cet échec du schéma sta 
tistique classique dans l'interprétation usuelle 
s'explique, à mon avis, par le fait que les probabi 
lités qu'elle envisage ne se rapportent pas à un 
même état du corpuscule, c'est-à-dire qu'elles ne 
sont pas simultanément "actuelles" et ceci fait tom 
ber la base même du schéma statistique classique qui 
n'est plus applicable à ces probabilités.

Mais si, conformément aux conceptions de la théo 
rie de la double solution, on attribue au corpuscule, 
quand il occupe une certaine position, la quantité 
de mouvement définie par la formule du guidage, on 
peut rétablir le schéma statistique classique aussi 
bien dans l'état initial avant l'action sur l'onde 
du dispositif de mesure de la quantité de mouvement 
que dans l'état qui suit l'action de ce dispositif. 
C'est ce que j'ai montré en détail notamment dans 
les pages 88 et suivantes de mon livre sur la Théo 
rie de la Mesure (Paris, Gauthier-Vi11ars , 1 957).

Et ceci m'amène à parler du célèbre théorème de 
Von Neumann suivant lequel il serait impossible de 
donner une interprétation de lois de probabilités 
de la Mécanique quantique à l'aide d'une image qui, 
en introduisant des variables cachées, permettrait 
d'attribuer au corpuscule une position et une quan 
tité de mouvement bien déterminées.

Von Neumann a cru démontrer ce théorème, il y a 
une quarantaine d'années, en partant d'un formalis 
me très élégant, celui des matrices statistiques.
Il en avait conclu, en apparence très rigoureusement, 
que l'introduction de variables cachées ne pouvait 
aucunement permettre de ramener les distributions
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de probabilités admises en Mécanique quantique 
usuelle â un schéma statistique du type classique.

Mais le seul fait qu'on puisse, comme nous l'avons 
dit, rétablir des schémas statistiques en utilisant 
les variables cachées introduites par la théorie de 
la double solution montre que le théorème de Von Neu 
mann ne peut pas être exact, et cela même si l'image 
proposée par la théorie de la double solution n'était 
pas conforme à la réalité physique. Il suffit, en 
effet, d'un seul contre-exemp1e, même sans réalité 
physique, permettant de rétablir une image classique, 
pour montrer la fausseté de l'interdiction qui sem 
blait résulter du théorème de Von Neumann.

Voici quelle me paraît être l'erreur du raisonne 
ment de Von Neumann. Ce raisonnement me paraît repo 
ser essentiellement sur le postulat que les distri 
butions de probabilités pour deux variables canoni 
quement conjuguées sont, dans l'état représenté par 
une certaine forme de l'onde tp, toutes deux simulta 
nément actuelles. Or, ce postulat suggéré par la 
théorie des transformations et couramment admis nous 
apparaît, pour les raisons exposées plus haut, cer 
tainement inexact. Par exemple, en négligeant la 
perturbation inévitable qu'exerce sur l'état initial 
tout processus de mesure de la quantité de mouvement, 
on méconnait le fait que la probabilité de présence 
| | 2 et la probabilité |c+|2 des valeurs de la quan 

tité de mouvement ne peuvent être simultanément ac 
tuelles dans l'état initial. Cette remarque, qui ne 
peut guère être contestée par les partisans de l'in 
terprétation usuelle puisqu'elle revient à tenir 
compte de l'action inévitable du processus de mesure 
constamment invoquée par eux, fait tomber le théorè 
me de Von Neumann qui semble bien n'être qu'un pseu- 
dorthéorème.

6. LOI DE PROBABILITE ET FLUCTUATIONS.

Partons de l'idée générale que toute loi de pro 
babilité résulte d'une causalité compliquée et sou 
vent cachée. En particulier, il en est ainsi quand 
la probabilité résulte du comportement d'individus 
plus ou moins indépendants. Or, c'est là ce que 
suppose la théorie de la double solution dans son 
interprétation de la Mécanique quantique.
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Mais une loi de probabilité permet toujours de 
définir des "écarts" par rapport aux valeurs moyennes. 
Ces écarts sont contenus dans la loi de probabilité 
et calculables par elle. Néanmoins il faut bien dis 
tinguer ces écarts des "fluctuations" qui résultent 
des mouvements compliqués et souvent cachés dont la 
loi de probabilité ne donne que le résultat statis 
tique. Contrairement à ce qui arrive pour les écarts, 
les fluctuations ne sont pas contenues dans la loi 
statistique et ne sont pas calculables par elle.

Toutefois il existe une relation générale entre 
les fluctuations et la loi de probabilité comme je 
l'ai rappelé à la fin de l'article que j'ai écrit 
pour le livre de mon 80° anniversaire (Paris, Gau 
thier-Vil 1 ar s , 1973, p. 355). Voici l'essentiel du 
texte en question.

Nous partirons d'un fait bien connu. Au cours de 
ses mémorables travaux, Laplace en utilisant les lois 
physiques connues de son temps avait pu démontrer que 
la répartition en altitude dans le champ de la pesan 
teur d'un gaz formé de molécules de masse m est 
donnée par une loi qui s'écrit avec les notations 
actuelles sous la forme :

mgz
(8) P = P Q e kT

où p est la densité du gaz à l'altitude z, T sa tem 
pérature et k la constante de Boltzmann. On peut au 
jourd'hui retrouver la loi de Laplace à l'aide des 
formules de la Thermodynamique statistique. Par un 
raisonnement tout à fait analogue, on peut aussi dé 
montrer que la probabilité pour qu'un granule de 
masse m immergé dans un fluide à la température T 
soit à la hauteur z dans le champ de la pesanteur 
est :

mgz 
kT

(9) P = P o e

formule qui, en tenant compte d'une petite correction 
expérimentale, a été vérifiée par Jean Perrin dans 
ses célèbres expériences.

Dans son livre de Thermodynamique (Paris, Hermann, 
1924, p. 309), Jean Becquerel commentant ces résul 
tats constate que la répartition en hauteur d'un



34

seul granule est exprimée par la même loi que la ré 
partition en hauteur d'un grand nombre de granules. 
Résumant alors très clairement une remarque certaine 
ment très connue des statisticiens et apparentée à 
la notion d'ergodicité , il ajoute : "Ce résultat est 
d'ailleurs général : un même problème peut être en 
visagé soit comme un problème d'un système unique, 
soit comme un problème de distribution la plus pro 
bable d'un grand nombre de systèmes identiques".

La remarque ainsi très clairement énoncée par 
Jean Becquerel me paraît très importante. Il en ré 
sulte, en effet, que, si l'on considère la loi sta 
tistique relative à la position d'une particule 
d'une certaine nature, il est, a priori, impossible 
de savoir s'il s'agit des fluctuations de position 
d'une particule localisée ou de la répartition sta 
tistique d'un ensemble de particules de cette nature. 
Et il me semble que cela permet de mieux comprendre 
pourquoi la Mécanique quantique usuelle a pu inter 
préter, d'une façon qui est à mon avis erronée, les 
énoncés statistiques qu'elle utilise.

En relation avec les idées précédentes, je cite 
rai un texte écrit par Einstein pour le livre consa 
cré à mon 60° anniversaire sous le titre "Louis de 
Broglie, physicien et penseur" (Paris, Albin Michel, 
1962). Voici ce texte : "La théorie statistique 
(c'est-à-dire la Mécanique quantique usuelle) est 
aussi peu capable de pouvoir fournir une base pour 
la construction d'une théorie complète que l'aurait 
été la connaissance du mouvement brownien pour la 
construction de la Mécanique statistique".

7. SUR UNE ERREUR COMMISE PAR LA THEORIE DES CHAMPS.

On enseigne couramment aujourd'hui la Mécanique 
quantique sous la forme très abstraite de la "théorie 
quantique des champs". Or il me semble que cette 
théorie repose sur une très importante erreur. En 
effet, elle s'appuie sur le travail concernant les 
émissions spontanées et provoquées publié par Einstein 
en 1917. Einstein avait démontré que, si un phénomè 
ne d'émission de la lumière s'accompagne de l'appa 
rition de n photons de fréquence v, il est nécessai 
re, pour retrouver la loi du rayonnement noir de 
Planck, d'admettre qu'un phénomène d'absorption de 
photons de fréquence V fait intervenir n + 1 photons.
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La théorie quantique des champs s'appuie sur ce ré 
sultat pour admettre que les n + 1 photons suscepti 
bles d'être absorbés sont cohérents, c'est-à-dire sont 
portés par des ondes de même constante de phase 6.
Or, si l'on examine en détails le raisonnement 
d'Einstein, comme je l'ai fait notamment dans les 
pages 91 et suivantes de mon livre publié par Albin 
Michel "Certitudes et incertitudes de la Science", 
on voit que sur les n + 1 photons susceptibles 
d'être absorbés dans un processus d'absorption in 
verse du processus d'émission, il y en a n qui ont 
la même constante de phase 6 que les n photons sus 
ceptibles d'être émis, mais que le (n + l)e photon 
absorbé dans ce processus appartient au spectre conti 
nu et, par suite, qu'il a une phase <5 ' indépendante 
de ô .

La théorie quantique des champs, en bloquant en 
semble les n + 1 photons susceptibles d'être absor 
bés et en leur attribuant la même constante de phase 
5 que les n photons susceptiblesd'être émis, me pa 
raît donc commettre une erreur fondamentale.
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Idées générales 
sur l’interprétation 

de la Mécanique ondulatoire

Je veux résumer les idées générales qui sont à 
la base de l'interprétation de la Mécanique ondula 
toire que je propose.

J'admets que toutes les particules sont toujours 
localisées dans l'espace au cours du temps et 
qu'elles sont incorporées dans une onde de très fai 
ble intensité. Cette onde, que je nomme l'onde V, 
échappe à notre perception, mais elle a la proprié 
té essentielle de guider le mouvement de la parti 
cule.

Comme je l'explique dans l'introduction qui pré 
cède, l'onde V et la particule doivent avoir une 
même fréquence V et cela dans tous les systèmes de 
référence galiléenset bien que la fréquence d'une 
onde et la fréquence de l'horloge à laquelle la par 
ticule peut être assimilée ne se transforment pas 
de même lors d'un changement de système de référen 
ce. Il en résulte que la particule doit glisser dan 
l'onde de telle façon que l'acccrd des phases se 
maintienne. Remettant au paragraphe suivant un ex 
posé plus précis de ces conceptions, je veux seule 
ment ici en indiquer quelques aspects généraux.

Je veux d'abord rappeler une très ancienne expé 
rience effectuée dès 1909 par G.T. Taylor (*) et en 

citer le clair exposé qu'en ont donné Ruark et 
Uhrey dans leur très beau livre "Atoms, molécules 
and quanta". Mac Graw Hill, 1930, page 82.

(1) Proa. Cambridge Phil. Soaiety 15, 114, 19C9.
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"Le rayonnement d'une 
très faible source de lu 
mière passe à travers des 
écrans absorbants A et 
tombe sur une fente S.
Derrière cette fente se 
trouvent en B deux au 
tres fentes disposées 
comme les fentes de 
l'expérience d'interfé 
rences d'Young.

Une plaque photographique P est placée de façon 
à déceler les franges d'interférence. Connaissant 
les constantes des écrans absorbants et l'intensité 
incidente, le nombre des écrans fut choisi de façon 
que quelques photons passent par seconde à travers 
la première fente S. Si chacun d'eux passait (iso 
lément) par l'une des fentes B, on voit difficile 
ment comment des interférences pourraient se pro 
duire. En fait, les franges d'interférences furent 
identiques à celles que produit une lumière forte. 
Cette expérience nous permet de conclure que ou bien 
la théorie des ondes sphériques est exacte ou bien 
que la théorie du rayonnement en "aiguille" des pho 
tons doit être complétée par un postulat statistique 
fixant la répartition des photons sur les trajec 
toires dans l'espace. D'après cette image, le fac 
teur déterminant dans la production des franges d'in 
terférences doit être la structure d'un champ élec 
tromagnétique fantôme (ghost) qui résulte de la dis 
position et des propriétés des atomes émetteurs".

Le résultat de Taylor a été confirmé par plusieurs 
autres chercheurs. Par exemple, Dempster et Batho 
(Phy. Rev. 30, 644, 1927) ont trouvé que les franges
d'interférences obtenues avec un réseau à échelons 
ne présentent aucune anomalie quand on les obtient 
en lumière très faible-

En lisant ce bel exposé, il est impossible de ne 
pas remarquer combien l'onde "fantôme' envisagée par 
les auteurs est voisine de notre onde V de très fai 
ble amplitude qui transporterait les photons. Nous 
verrons plus loin comment l'étude du phénomène de 
l'apodisation pourrait apporter une preuve directe 
de l'existence de l'onde V.
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Voici maintenant une autre idée importante. Quand 
une onde V transporte de très nombreuses particules, 
ce qui ne peut arriver que pour les bosons et en par 
ticulier dans le cas si important de la lumière et 
des photons, les particules constituent ce qu'on 
peut appeler des "échantillons" d'une onde de beaucoup 
plus grande intensité que celle de l'onde V porteuse. 
Cette onde est une onde fictive dont le carré de l'am 
plitude mesure la probabilité de présence des parti 
cules aux différents points de l'espace, sa signifi 
cation est purement statistique. C'est le cas des 
photons pour les ondes électromagnétiques et plus 
généralement pour tous les bosons des ondes i|i de la 
Mécanique quantique. L'onde réelle V et l'onde ficti 
ve ^ ont la même phase, mais des amplitudes très 
différentes, très faibles pour l'onde V, beaucoup 
plus élevées pour l'onde 4’. C’est l'intervention de 
ces deux solutions des équations d'ondes, qui sont 
de nature si différente, qui m'avait amené, il y a 
bien longtemps, à qualifier ma théorie de "théorie 
de la double solution". Il est évident que l'on peut 
écrire = Cv, C étant une constante très grande.

Après ces remarques générales préliminaires, nous 
allons préciser dans ses grandes lignes le développe 
ment mathématique des conceptions que nous venons 
d'esquisser.

LA THEORIE DE LA DOUBLE SOLUTION ET LA LOI DU 
GUIDAGE.

Je ne puis exposer ici dans tous ses détails l'é 
tat actuel de la théorie de la double solution et 
de la "Ré interpré tation de la Mécanique ondulatoire" 
à laquelle elle aboutit. Je l'ai exposée récemment 
dans un ouvrage portant ce titre publié chez Gauthier- 
Villars en 1971.

Je me contenterai donc de partir de l'idée sui 
vante : la solution de l'équation des ondes sous sa 
forme complexe peut être écrite :

O) v = a (x, y, z, t) e ~^(xyzt) (h = |_)

Alors l'énergie W et la quantité de mouvement p 
de la particule quand elle occupe la position x, y,z 
à l'instant t sont données par les formules :
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9*0 -► -*•
(2) W = P = “ grad <P

Dans le cas idéal de l'onde plane monochromatique
_ „ , , ctx + By + Y z.

ou a est constant et ou ^ = hv (t - ----- —*------ ),

on trouve les formules classiques :

(3) W = hv P = T

Si dans les formules (2) on introduit les valeurs 
m0c2 m0v

W = -----  et p = , on obtient :
/Ï^B2 /RP

(A)
o ->

c_£ _ 2 grad l
W C

91

J'ai nommé cette formule, qui détermine le mouve 
ment de la particule, la "formule du guidage". Elle 
se généralise facilement quand la particule est sou 
mise à un champ extérieur.

Introduisons maintenant l'idée, qui remonte aux 
origines de la Mécanique ondulatoire, suivant laquelle 
la particule peut être considérée cojpme une petite

m0 c
horloge de fréquence propre vo = —jj  et attribuons-

lui la vitesse définie par la formule (4). Pour un 
observateur qui voit passer la particule avec la vi 
tesse v = Bc , la fréquence interne de la particule
en mouvement est v = vo B2 d'après la formule de

ralentissement des horloges en mouvement. Cela per 
met de démontrer facilement, comme nous le ferons 
plus loin dans le cas général d'une onde qui n'est 
pas plane monochromatique, que la vibration interne 
de la particule reste constamment en phase avec l'on 
de qui la porte. Ce résultat, que j'avais obtenu 
dans mes premiers travaux dans le cas simple d'une 
onde plane monochromatique, peut être considéré comme 
le contenu essentiel de la loi du guidage.

ETUDE PLUS DETAILLEE DE LA THEORIE DE LA DOUBLE 
SOLUTION.

Nous allons maintenant développer les équations 
sur lesquelles repose la théorie de la double solu 
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tion en partant de l'équation d'ondes non relativiste 
de Schrôdinger et de sa généralisation relativiste, 
l'équation de Klein-Gordon.

Nous écrivons d'abord l'équation de Schrôdinger 
pour l'onde y dans la forme suivante ou V est le po 
tentiel dont dérive la force qui s'exerce sur l'élec 
tron :

(6) 3 v 
3 t

h
2 im

Av i
h Vv

Pour tirer de cette équation complexe deux équa 
tions réelles portant sur deux fonctions réelles, 
nous s o mm es naturellement amenés à écrire.

(7) v = ae n

avec a et <p réels, a étant l'amplitude de l'onde et 
<P sa phase. En substituant (7) dans (6), nous obte-
nons :

(j) ST - ' - k (grad *)2 = h 2 Aa
2m a

(C)
3a2 J_
31 m

div (a2 grai ip) = 0

Nous appelons l'équation (J) "équation de Jacobi
généralisée" et l'équation (C) "équation de continui
té" .

Si, pour obtenir une forme relativiste de la théo 
rie, nous appliquons à l'onde y non pas l'équation de 
Schrodinger, mais sa généralisation relativiste 
l'équation de Klein-Gordon, nous obtenons à la place 
de ( 6 ) :

(8) □ v 2 i eV 3v + 2_i_ £ £ jlv
t 3t hxyzc x3x

+ F (moc2 “ ~ (y2- a2))v = 0 
c

£ étant la charge électrique de la particule soumise 
au potentiel scalaire V(x, y, z, t) et au potentiel 
vecteur Â(x, y, z, t). Nous obtenons alors une équa 

tion de Jacobi généralisée (J') et une équation de 
continuité (C') dont voici les expressions :

f ) L_ _
c2 (3T eV): - I

xy z 3x
+ £A )2 =m? c 2 +b 2

y « a
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(C' ) /3  ̂ 8a y ^ e A N(TT - CV) TT— - ^ (*5— + — A )
o t o t xyz dx ex ^ + 2t t  n<p = o

où nous avons introduit dans le second membre de (JT) 
ce que nous nommerons la masse propre variable défi 
nie par : __________ _

m t/2 h2 Oa
Mo = + — —(9)

grandeur dont nous verrons la très grande importance.

Si, dans l'équation (8) nous supposons £, V et A 
nuis et m extrêmement petit, nous obtenons l'équa 
tion :

(9') □ v + = 0

qui est l'équation de propagation des ondes électro 
magnétiques quand on suppose, comme j'ai été amené à 
le faire depuis bien longtemps, que la masse propre 
du photon est extraordinairement petite, mais non tout 
à fait nulle.

FORMULE DU GUIDAGE ET POTENTIEL QUANTIQUE.

Nous allons maintenant étudier les formules (J) et 
(-!')•

Occupons-nous d'abord de (J). Si dans (J) on négli 
ge les termes du second membre où figure la constante 
h de Planck, ce qui revient à faire abstraction des 
quanta, et si l'on pose 'P = S, l'équation (3) devient

(10) yf “ v “ (grad S)2 = 0

Nous retrouvons ainsi pour la fonction S qui est la 
fonction de Jacobi l'équation de Jacobi de la Mécani 
que classique. C'est donc uniquement la présence de 
h dans (J) qui fait que le mouvement de la particule 
diffère du mouvement classique. Quelle est la signifi 
cation de ce terme ? On peut l'interpréter en admet 
tant qu'en dehors du potentiel classique U intervient 
un autre potentiel Q donné par la formule :

— —

2m a(11) Q
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Par analogie avec les formules classiques -5— = E

et p = - grad S où E et p sont l'énergie et la quan 
tité de mouvement classiques, nous pouvons écrire :

-»■ -+
(12) r- = E ; - grad ^ = p

et, comme en Mécanique non relativiste la quantité de 
mouvement jï s'exprime en fonction de la vitesse par

la formule p - mv, nous obtenons :
->

-¥■ n 1 -y
(13) v = ■*- = - — grad 1fim m &

C'est là ce qu'on peut appeler "la formule 
guidage" qui donne la vitesse de la particule 
elle occupe la position x, y, z à l'instant t 
tion de la variation locale de la phase à cet 
tant.

du
quand 
en fonc- 
ins-

II importe de préciser que a et 'fi sont l'amplitude 
et la phase de l'onde v telles qu'elles existeraient 
si la région très petite d'amplitude très élevée qui 
constitue la particule n'existait pas. Si l'on pré 
fère, on peut dire que a et 'fi sont l'amplitude et la 
phase de l'onde V au voisinage immédiat de la région 
presque ponctuelle qui constitue la particule. J'ai 
pu donner une justification de la formule du guidage 
qui est basée sur cette idée.

La force quantique E = - grad Q qui s'exerce sur 
la particule courbe la trajectoire de cette particu 
le. Mais dans le cas important, un peu schématique, 
de l'onde monochromatique plane, Q est constamment 
nul et il n'y a pas de force quantique : la particule 
décrit alors avec une vitesse constante la trajectoire 
rectiligne qui constitue l'un des rayons de l'onde 
plane monochromatique et l'on retrouve ainsi l'image 
que j'avais dans l'esprit au moment de ma Thèse.

Mais, quand la propagation de l'onde est soumise 
à des conditions aux limites, il peut y avoir appa 
rition de phénomènes d'interférences ou de diffrac 
tion et alors, sous l'influence de la force quanti 
que, le mouvement défini par la formule du guidage 
cesse d'être rectiligne et uniforme. Tout se passe 
alors comme si les obstacles qui entravent la propa 
gation de l'onde exerçaient sur la particule, par 
l'intermédiaire du potentiel quantique, une action
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déviante. Les partisans de l'ancienne "théorie de 
l'émission" savaient que la lumière peut contour 
ner le bord d'un écran et ils disaient que le bord 
de l'écran exerce une force sur les particules de 
lumière qui passent à son voisinage. Sous une forme 
beaucoup plus élaborée, nous retrouvons ici la même 
idée .

Passons maintenant à la formule (J'). Remarquons 
d'abord que, si dans cette formule, nous négligeons 
les termes en h2, nous obtenons en posant = S ;

(U) (—^3t ev) ' - I 
xy z

(j£ + eA )2
dx x

2 2 
m0c

Or, cette équation est en Mécanique relativiste 
sans quanta l'équation de Jacobi pour une particule 
de masse propre m, et de charge électrique £ soumise 
à un champ électromagnétique dérivant du potentiel

scalaire V et du potentiel vecteur A comme nous de 
vions nous y attendre.

Si nous conservons les termes en h2 et si nous 
utilisons la masse propre variable MQ définie par 
(9), nous sommes amenés à poser :

Moc2 M„v + ->
(15) -- = T7 - ev —— = - (grad <P + £A)

/T^T2 3 C /T^ë2

avec 3 = -, ce qui conduit à la formule du guidage 

relativis te :

(16)
2 grad <P + £A

c 3*
— - ev
3 t

A l'approximation newtonnienne avec A = 0 et 
2

ST - ev “ m°c nous retombons sur la formule (13).

La force quantique va ici résulter des varia 
tions de la quantité M0c2 quand la particule se dé 
place dans son onde. Pour avoir toujours un poten 
tiel quantique nul dans le cas de l'onde monochroma 
tique plane, nous poserons :

(17) Q = M0c2 - m0c2

A l'approximation non relativiste où c + “ et où 
□a - -Aa, nous retrouvons la"valeur :
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y/m + C 2 h 2
□a
a 5mo

Aa
a

INTERPRETATION DU MOUVEMENT DE GUIDAGE.

Nous allons maintenant préciser deux caractéristi 
ques essentielles du mouvement de guidage.

La première, c'est que la particule se déplace dans 
son onde en restant constamment en phase avec elle. 
Supposons d'abord que la particule n'est soumise à 
aucune force autre que la force quantique définie pré 
cédemment. Si alors nous nous déplaçons le long de la 
trajectoire d'une longueur d& dans le temps dt, la va 
riation de la phase sera :

3e> ■+ ->■
(18) dç> = dt + g-g dl- (y- + v.grad>P)dt

M„c2 M v2
= (----- --------- ) d t = M „ c 2 /1 - B dt

/T^ë2 /T^ê2

Or, la particule ayant une fréquence interne 
M o c 2

Vo = — y— , sa phase interne 'P , quand elle se déplace 

d Je. pendant le temps dt varie de :

(19) d<p . = M c2 /I - 32 d t = d'P
1 o

Nous voyons donc que la particule se déplace dans 
son onde de façon que sa vibration interne définie par 

iSP .
a.e —j-— avec a. et fi. réels reste constamment en pha- 
t h i r 1

se avec celle de l'onde.

On peut interpréter ce résultat en remarquant que 
la particule est définie dans cette théorie comme 
étant une très petite région de l'onde où l'amplitude 
est très grande et qu'il est par suite naturel que le 
rythme interne de la particule soit le même que celui 
de l'onde à l'endroit où elle se trouve.

Nous ferons à ce sujet la seconde remarque très 
importante suivante. Pour que cette façon d'interpré 
ter le guidage soit acceptable, il faut que les dimen 
sions de la petite région constituant la particule
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l'onde v. On peut dire que notre théorie doit avoir 
une limite de validité pour les très courtes lon 
gueurs d'onde, c'est-à-dire pour les énergies très 
élevées. C'est là une remarque qui pourrait devenir 
très importante dans le cas des énergies très éle 
vées.

11 existe une autre caractéristique essentielle 
du mouvement de guidage. C'est que le mouvement de 
la particule s'effectue suivant une Dynamique rela 
tiviste à masse propre Variable. Pour le voir, nous 
prendrons comme fonction de Lagrange en l'absence de 
champ

(20) £ = - M0c2 /l - B2

où M„ est la masse propre définie par (9). Le prin 
cipe de moindre action nous conduit alors aux équa 
tions de Lagrange.

(21 ) d
d“t

9 £
9qT

c'est-à-dire ici :

(22) = - c2 /I - B2 grad M0

Ce qui montre bien que la dynamique de la parti 
cule est une dynamique relativiste à masse propre 
variable. Mais la symétrie relativiste entre l'espace 
et le temps nous conduit à compléter l'équation (22) 
par la suivante :

(23)
dW
dt

2
C y'i B

9M
o

9 t
dM 9M„0 0 “>■ ^

Comme t-— = + v.grad M0 , les équations preceden-

dW
dt

tes donnent

(24)

Or, on a

(25)

dp
dt

/T T2

dM 0
JT

d p _ d ( vp ) -> ■ d v _ d
dt â;

dM,

d t d t
( vp) -

d v 
2 d t

= ST (Moc2 >/'rr^2)+ -----  ■“
dt dt o dt
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d'où :

(26) (W - v.p - M0c2 /l - B2) = 0

et, comme nous supposons que, si la particule est au

repos, nous avons 3 = 0 et W = M0c2, il en résulte 
que :

(27) W = M0c2 /l - B2 + v.p = M0c2 /I - B2 +

M0c2

relation qui est bien vérifiée puisque W = — .
/Th32

La relation (27) que nous venons d'obtenir à par 
tir de la dynamique du guidage à masse propre varia 
ble possède, nous le verrons, une signification ther 
modynamique très remarquable.

/Ï^B2

On obtiendrait la généralisation du raisonnement 
précédent au cas de l'existence d'un champ électroma 
gnétique extérieur en partant de la fonction de 
Lagrange :

(28) £ = - M0 c2 /I - B2 + e (V - = - M^c2 /l-B2

avec Mjc2 = M0c2 - e VQ 

de la formule de transformation relativis 
te

V
- t

(29) V0 = ---- -
/I - B2

INTERPRETATION DE L'FQUATION DE CONTINUITE (C).

L'équation (C) précédemment démontrée est la sui 
vante :

(C) ~ m ( ^ ^ 81 a d V?) = 0

En vertu de la formule du guidage (4) et en posant 
p = Ka2 ou K est une constante, l'équation (C) prend 

la forme :
3 p ->

(30) g— + div (pv) = 0

C'est ce qu'on nomme en Hydrodynamique l'équation de 
continuité où p dx est le nombre de molécules
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Elle peut s'écrire = 0, la dérivée ~ étant

prise en suivant le mouvement des molécules, et ex 
prime la conservation du fluide. Mais ici nous n'a 
vons qu'une particule et il semble alors naturel de 
considérer pdT comme correspondant à la probabilité 
de présence de la particule dans l'élément de volume 
dl . Cependant, comme nous le montrerons plus loin, 
cette interprétation soulève une difficulté si l'on 
admet que la particule suit régulièrement sa tra 
jectoire de guidage. Dans le chapitre suivant, nous 
reviendrons sur cette difficulté et cela nous con 
duira à compléter la théorie du guidage telle que 
nous l'avons développée jusqu’ici en y introduisant 
un élément aléatoire, ce qui nous ouvrira des hori 
zons nouveaux.

Sans insister pour l'instant sur ce point, nous 
admettrons que la quantité p = a (x, y, z, t) multi 
pliée par dt nous donne, à un facteur de normalisa 
tion près, la probabilité de la présence de la par 
ticule à l'instant t dans l'élément de volume dT de 
coordonnées x, y, z. Comme nous serons amenés à défi 
nir la fonction statistique en fonction de l'onde 
v par la relation ip = Cv où C est une constante de

normalisation telle que M2dT nous sommes con-

conduits à dire que |ijj|2dT représente en valeur abso 
lue la probabilité de présence en question.

Ajoutons qu'une interprétation analogue à celle 
que nous venons de donner pour la relation (C) 
pourrait être donnée pour la relation (C') qui cor 
respond à l'équation de Klein-Gordon.

INTRODUCTION PAR SCHRODINGER DE L'ONDE STATISTI 
QUE iK

Depuis l'introduction par Schrodinger en 1926 de 
l'onde >p , on s'est habitué à considérer uniquement 
cette onde P et ses généralisations dont on norme 
arbitrairement l'amplitude. Or, une telle onde ne 
peut pas être considérée comme une onde ayant le ca 
ractère d'une réalité physique d'abord parce que 
l'amplitude d'une onde physique a une valeur bien dé 
terminée et ne peut pas être arbitrairement normée et
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aussi parce que, si i|> et ip 2 sont deux solutions par 

ticulières normées de l'équation linéaire des ondes iJ), 
la somme + 4>2 n'est pas une solution normée de

sorte que l'onde iJj normée ne possède pas la proprié 
té de superposition qui caractérise les ondes physi 
ques solutions d'une équation de propagation linéaire. 
Aussi a-t-on été amené à considérer l'onde ip comme 
une simple représentation de probabilité, un simple 
instrument de prévision, permettant de prévoir la 
probabilité des résultats possibles de la mesure des 
grandeurs attachées à une particule ou à un ensemble 
de particules. Or, il est impossible qu'une simple 
représentation de probabilités puisse provoquer des 
phénomènes physiques tels que manifestation locali 
sée d'une particule, phénomènes d'interférence ou de 
diffraction, etc, ou imposer des valeurs aux énergies 
des états stationnaires des atomes. Seule une réalité 
objective peut provoquer de tels effets et une repré 
sentation de probabilités n'a pas ce caractère.

Néanmoins, il est certain que l'utilisation de 
l'onde tp et de ses généralisations a conduit à un 
très grand nombre de prévisions exactes et de théo 
ries fructueuses. C'est là un fait qu'il ne saurait 
être question de contester. La situation s'éclaire 
si l'on fait intervenir à côté de l'onde 41 statisti 
que l'onde V, réalité physique objective, qui, elle, 
peut provoquer les phénomènes dont l'onde ip fournit 
l'aspect statistique.

Mais cela rend nécessaire d'établir une relation 
entre l'onde ip et l'onde V. En introduisant une cons 
tante C qui peut être complexe, nous sommes conduits 
à écrire :

— 'P
(31) P = Cv = Ca e h

C étant un facteur de normalisation tel que

I 2dX = où V est le volume occupé par l'onde v.
V
C'est ce que nous avons expliqué dans le paragraphe 
précédent.

Une première remarque à faire au sujet de la re 
lation (31) est la suivante : comme | ijj | = |C|a et que
la phase de ijj ne peut différer de celle de V que par
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une constante additive, nous voyons que la formule 
du guidage et l'expression du potentiel quantique 
données précédemment sont insensibles à la substi 
tution de ip à V .

Une autre remarque est la suivante : |c| doit
être très supérieur à 1. En effet, considérons une 
grandeur attachée à la particule dont on connait 
la valeur g. La théorie actuelle, qui utilise uni 
quement la fonction ip, admet que cette grandeur est 
répandue dans toute l'onde avec une densité | ip | 2

de sorte que | |ifj|2gdx = g. Mais, en théorie de la

double solution, la grandeur g est très fortement 
concentrée dans la très petite région occupée par la 
particule et l'intégrale de a2g dx étendue à l'onde 
V dans tout le volume V doit être beaucoup plus pe 
tite que g, d'où l'on tire :

(32) a2 g dx << 

V V
2g dL

d'où d'après (31) :

(33) |c| >> 1

On peut interpréter ce résultat en disant que la 
théorie statistique actuelle considère comme répan 
due dans toute l'onde ce qui est en réalité presque 
entièrement concentré dans la particule.

REMARQUE SUR L'EMPLOI DE L'ESPACE DE CONFIGURATION 
EN THEORIE DE SCHRODINGER.

Dès la publication des mémoires de Schrodinger en 
1926, j'avais remarqué que l'introduction de l'espace 
de configuration dans une théorie qui ne localise pas 
les particules dans l'onde était paradoxale puisque 
l'espace de configuration est formé avec les coor 
données des particules, coordonnées dont on n'admet 
pas l'existence.

Dans un ancien travail publié en 1929 par C.G. 
Darwin, travail que j'ai analysé dans un de mes li 
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vres ('), l'auteur avait montré, en étudiant un cer 
tain problème de choc entre deux particules, que ce 
problème ne pouvait être résolu qu'en se servant de 
l'espace de configuration. Ainsi, paradoxalement, 
cet espace visiblement fictif se montre une repré 
sentation de la réalité plus exacte que la repré 
sentation des particules dans l'espace physique par 
une onde sans localisation. De plus, si l'on étudie 
les théories qui ont fait le succès de la Mécanique 
quantique usuelle, telles que celles de la molécule 
d'hydrogène, de l'ortho et du parahydrogène, de la 
molécule d'Hêlium, etc, on constate qu'elles impli 
quent toutes l'emploi de l'espace de configuration.
11 ne saurait en être autrement puisque l'interaction 
entre deux ou plusieurs particules s'exprime en fonc 
tion des distances mutuelles de ces particules, no 
tion qui a un sens précis dans l'espace de configu 
ration, mais n'en a pas dans l'espace physique si 
les particules n'y sont pas localisées.

Je crois donc pouvoir en conclure que l'emploi 
par Schrodinger d'ondes étendues sans particules lo 
calisées n'a pu conduire à de grands succès que parce 
qu'il avait ensuite introduit subrepticement dans sa 
théorie la localisation des particules par l'emploi, 
dans le cas des ensembles de particules, de l'espace 
de configuration car cet espace implique nécessaire 
ment la localisation des particules dans l'espace 
physique.

C1) Etude critique des bases de l'interprétation ac 
tuelle de la Mécanique ondulatoire, Paris, 1965,
p. 77-80.
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La Thermodynamique 
cachée des particules

Reprenons les principales idées que j'ai 
développées comme prolongement de la théorie de la 
double solution depuis 1960.

L'idée de considérer une particule comme une pe 
tite horloge conduit assez naturellement à penser 
que l'énergie de masse propre M0c2 d'une particule 
peut être considérée comme une chaleur cachée. En 
effet, une petite horloge contient dans son système 
propre une énergie d'agitation périodique interne 
qui ne s'accompagne d'aucune quantité de mouvement 
d'ensemble. Cette énergie est donc assimilable à 
celle d'un corps contenant de la chaleur en état 
d'équilibre interne.

Nous introduirons ici la formule de transforma 
tion relativiste de la chaleur connue depuis les 
travaux anciens de Planck et de Laue vers 1908. Si, 
dans le système propre d'un corps en équilibre in 
térieur homogène, la chaleur contenue dans ce corps 
est Q , dans un système de référence où le corps a 
la vitesse d'ensemble 6c, la chaleur Q qu'il contient 
est :

(1) Q = Qo /I - B2

Bien que cette formule longtemps incontestée ait 
été récemment mise en doute, je suis arrivé dans ces 
dernières années à la conviction qu'elle est bien 
exacte et qu'elle est certainement applicable à un 
corps très petit comme une particule. Si donc une 
particule contient dans son système propre une quan 
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tité de chaleur Q0 = M0c2, la quantité de chaleur 
qu'elle transporte dans un système de référence où 
elle a la vitesse (3c est :

(2) Q = Q0 /T-1-B2 = M0c2 = hv0 /l - B2

La particule nous apparaît alors comme étant à 
la fois une petite horloge de fréquence v = v 0 /] - g2 
et comme un petit réservoir de chaleur de contenu 
calorifique Q = Q0 /T - g2 en mouvement avec la vi 
tesse gc . C'est l'identité de forme des formules de 
transformation relativiste pour la fréquence d'une 
horloge et pour la chaleur qui rend possible ce dou 
ble aspect.

Quand la particule se déplace suivant la loi du 
guidage, si l'onde n'est pas plane monochromatique, 
la masse propre M0 varie suivant la formule :

donnée au chapitre précédent, formule (9). Nous avons 
vu que le mouvement de la particule est alors réglé 
par une Dynamique relativiste à masse propre variable 
et nous sommes ainsi conduits à penser qu'il existe 
un lien étroit entre la formule fondamentale de la 
Thermodynamique relativiste et la formule du guidage. 
C'est ce que va nous montrer le raisonnement suivant.

Rappelons d'abord que, si P est la phase de

— p
écrite sous la forme ae h avec a et P réels, 
théorie du guidage nous dit que l'on a :

dp
31

(3)
/Fg:

- grad ip =

1'onde 

1 a

D'autre part, la formule (2) de Planck-Laue peut 
s'écrire :

M. c 2
9 y.....- q 0 ~y -v

( 4 ) Q = M0cz /] ~g 2 = ------ - v . p
/r-B2

En portant (3) dans (4), nous obtenons :

(5) Q =M0 c2 /I - g2 = ^ + v.grad p = dp
dt



Mais, si la particule

loge de fréquence propre

tion interne écrite sous 

et ip réels est :

(6) ^i = hv0 /i - g2 t = MQc2 /I - g2 t 

et l'on aura :

(7) d («P -¥>.) = 0

ce qui est en accord avec notre hypothèse fondamen 
tale suivant laquelle la particule se déplace dans 
son onde en restant constamment en phase avec elle. 
Il existe donc un lien étroit entre la théorie du 
guidage et la thermodynamique relativiste. Ce fait 
est d'autant plus remarquable que la formule (1) 
résulte des travaux de Planck et de Laue qui sont 
très antérieurs à l'apparition de la Mécanique ondu 
latoire et de la théorie de la double solution.

est assimilable a une hor- 
M0c2
----  , la phase de sa vibra-

1 a forme a.e h
i

* i avec a

LA RELATION ENTRE L'ACTION ET L'ENTROPIE.

Après tout ce qui vient d'être dit, il parait 
naturel de raisonner comme il suit. La dynamique 
relativiste nous apprend que la fonction de Lagrange 
d'une particule libre de masse propre M en mouve 

ment avec la vitesse gc est X = - M0c2 /I - g2 et 
que :

(8) X d t M0c2 /I - g2 dt

est l’intégrale d'action, invariante puisque 

Mqc2 /T - g2 dt = M0c2 dtQ où dtQ est l'élément de

temps propre de la particule. En accord avec une 
idée déjà aperçue par Eddington, il y a une quaran 
taine d'années, il est alors tentant de chercher à 
établir une relation entre les deux grands inva 
riants de la Physique qui sont l'Action et l'Entro 
pie. Mais, pour pouvoir le faire, il faut donner à 
l'intégrale d'Action (8) une valeur bien définie en 
choisissant convenablement l'intervalle d'intégra 
tion. Avec nos idées, il paraît naturel de choisir 
comme intervalle d'intégration la période T^ de la
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vibration interne de la particule de masse propre m0 
dans le système de référence où elle est en mouve 
ment avec la vitesse 8c. Comme l'on a :

2

(9)
T .

m0 c 

h
/T - B1

î
on définit ainsi une intégrale "cyclique" d'action 
en remarquant que, la période T\ étant toujours très

petite, on peut considérer que M0 et B sont sensi 
blement constants dans l'intervalle d'intégration 
et en posant comme définition de l'Action A où M0 
est la masse propre variable de la particule en 
mouvement :

(10) A
h

T. M0c2 /I - 82 M„c'
d t = -

L'on est alors amené à définir l'entropie de l'é 
tat de la particule par la forme suivante si le signe 
- traduit le fait que le minimum de l'Action corres 
pond au maximum de l'entropie :

(11) S = A 
k h

où k et h sont respectivement la constante de Bolt 
zmann et celle de Planck. On a alors, puisque

ÔQ0 = êM„c2, la relation :
«Qo

(12) éS = - k ----
2m0c

Nous sommes ainsi parvenus à attribuer au mouve 
ment de la particule une certaine entropie et par 
suite une certaine probabilité P donnée par la for-

£
mule de Boltzmann écrite sous la forme P = e k.

Des conceptions précédentes, j'ai pu tirer un 
certain nombre de résultats que l'on trouvera expo 
sés dans mes publications sur ce sujet, en parti 
culier dans mon livre déjà cité "La Ré interpréta- 
tion de la Mécanique Ondulatoire". Les deux résul 
tats les plus importants, que je me contenterai de 
citer, sont les suivants :

1°) Le principe de moindre Action n'est qu'un cas 
particulier du second principe de la Thermody 
namique .



2°) Le privilège, dont Schrodinger avait souligné le 
caractère paradoxal, que la Mécanique quantique 
actuelle attribue aux ondes planes monochromati 
ques et aux états stationnaires des systèmes 
quantifiés, s'explique par le fait qu'ils corres 
pondent à des maximums de l'entropie, les autres 
états étant non pas inexistants, mais d'une bien 
moindre probabilité.

NECESSITE D'INTRODUIRE DANS LA THEORIE DE LA DOU 
BLE SOLUTION UN ELEMENT ALEATOIRE.

Nous avons jusqu'ici raisonné en admettant que le 
mouvement de la particule dans son onde est entière 
ment déterminé par la loi du guidage. Nous allons pou 
voir maintenant montrer pourquoi ce point de vue ne 
peut pas être entièrement conservé.

Nous raisonnerons en partant de l'équation de 
Schrodinger qui fournit toujours une première appro 
ximation pour les vitesses petites par rapport à a. 
Nous avons vu dans le chapitre précédent que l'équa 
tion de continuité (C) conduit à admettre que la pro 
babilité de présence de la particule dans l'élément 
de volume dt est proportionnelle à a2dt, a étant 
l'amplitude de l'onde v, ce qui conduit, en intro 
duisant l'onde statistique normée par la relation 
^ = Cv, à dire que la probabilité en question est 
égale en valeur absolue à I^I2, résultat bien connu. 

Cependant cette idée parait avec nos conceptions 
conduire à des difficultés. On le voit, par exemple, 
en considérant un atome d'hydrogêne dans un de ses 
états stationnaires du type s. La formule du guidage 

gra3 'P
v = - —------nous donne alors v = 0. L électron se ra
rait donc immobile dans l'atome et l'on ne voit pas 
comment la relation de continuité (C) pourrait nous 
conduire à justifier la probabilité en | ijj | 2 d x . On 
peut donc conclure qu'il faut compléter cette rela 
tion par un élément aléatoire.

Cette difficulté est tout à fait analogue à celle 
qui est bien connue en Mécanique statistique classi 
que où le théorème de Liouville, qui fournit une 
formule de continuité dans l'espace des phases ne 
suffit pas à établir que la probabilité pour que le 
point qui représente l'état d'un ensemble de molé 
cules soit présent dans un élément de volume de son
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extension en phase soit proportionnelle à cet élé- { 
ment de volume. Pour justifier cette affirmation, 
il est nécessaire d'introduire dans le mouvement 
des molécules un élément aléatoire qui perturbe cons 
tamment ce mouvement. Boltzmann, considérant cet élé 
ment aléatoire co mm e résultant des chocs continuels 
entre molécules, l'avait appelé "le chaos moléculaire",

Par analogie, il semble bien que le fait univer 
sellement admis qu'une particule a une probabilité 
|<jj|2dT de manifester sa présence dans un élément de 
volume dt entraîne nécessairement, quand on adopte 
les idées de la théorie de la double solution, l'in 
tervention d'un élément aléatoire d'origine cachée.
Or, cela implique que le mouvement régulier de la 
particule, tel qu'il est prévu par la loi du guidage, 
doit subir continuellement des perturbations aléatoi 
res dont l'effet est de la faire constamment passer 
d'une trajectoire de guidage sur une autre. Alors, 
grâce à l'introduction de ces perturbations aléa-

toires, l'équation de continuité —■ + divp v = 0
, - d 1 

ou p = a et où V est la vitesse de guidage per 
mettra de justifier la loi de probabilité de fré 
quence en | ip | 2 .

On aboutit ainsi à l'idée que le mouvement d'une 
particule est la combinaison d'un mouvement régulier 
défini par la formule du guidage et d'un mouvement 
aléatoire ayant le caractère d'une agitation brow- 
nienne. Une comparaison simple fera mieux comprendre 
la possibilité d'une telle superposition de mouve 
ments. Considérons l'écoulement d'un fluide. Un gra 
nule placé à la surface du fluide sera entraîné par 
le mouvement de celui-ci. Si le granule est assez 
lourd pour ne pas subir sensiblement l'action des 
chocs individuels qu'il reçoit des molécules invi 
sibles du fluide, il décrira l'une des lignes de 
courant de l'écoulement hydrodynamique qui pourront 
être comparées aux trajectoires de guidage. Mais, 
si le granule est suffisamment léger, son mouvement 
sera constamment perturbé par ses chocs individuels 
avec les molécules du fluide. Il sera donc animé, 
en plus du mouvement régulier qui tend à lui faire 
suivre le long d'une ligne de courant l'écoulement 
général du fluide, d'un mouvement brownien qui le 
fera constamment passer d'une ligne de courant sur 
une autre. Nous obtenons ainsi une image de la super 
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position d'un mouvement aléatoire à un mouvement ré 
gulier analogue à celle que nous proposons pour la 
particule.

Dans l'image hydrodynamique que nous venons d'ex 
poser, c'est l'ensemble des molécules invisibles du 
fluide qui joue le rôle d'un thermostat caché, ther 
mostat qui par son interaction constante avec le 
granule, lui impose un mouvement brownien suivant 
une conception bien connue de la Thermodynamique 
statistique. Mais, dans le cas d'une particule qui 
nous semble soustraite à toute action perturbatrice 
comme un électron dans un atome d'hydrogène, quelle 
peut être l'origine de ces perturbations aléatoires 
dont il nous paraît nécessaire d'admettre l'exis 
tence ? La question étant ainsi posée, on est évi 
demment amené à penser que toute particule, même 
quand elle nous paraît isolée, est constamment en 
contact énergétique avec un milieu caché qui cons 
tituerait une sorte d'invisible thermostat. Cette 
hypothèse avait été envisagée, il y a une vingtaine 
d'années, par Bohm et Vigier qui ont donné à cet in 
visible thermostat le nom de "milieu subquantique". 
Nous pensons qu'il y a lieu d'admettre que la par 
ticule échange continuellement de l'énergie et de 
la quantité de mouvement avec un tel thermostat ca 
ché. Ces échanges auraient lieu régulièrement d'une 
façon bien définie si le mouvement de guidage exis 
tait seul, mais il s'y superpose des échanges éner 
gétiques aléatoires ayant le caractère de fluctua 
tions d'un type bien connu en thermodynamique sta 
tistique.

Dès qu'on a admis l'existence d'un milieu subquan- 
tique caché, on est amené à se demander quelle est la 
nature de ce milieu. Il est certainement assez com 
plexe. En effet, il doit d'abord ne pas pouvoir ser 
vir de milieu de référence universel, ce qui serait 
en opposition avec la théorie de la Relativité. De 
plus, il se comporte non comme un thermostat unique, 
mais plutôt comme un ensemble de thermostats dont 
les températures seraient reliées aux énergies pro 
pres m0c2 des diverses sortes de particules. Bien 
que des tentatives intéressantes aient déjà été 
faites pour préciser la nature du milieu subquanti- 
que, il me paraît prématuré de discuter ici ce pro- 
b1ème.

.!
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Dans le précédent chapitre et dans celui-ci, j'ai 
exposé dans ses grandes lignes l'état actuel de l'in 
terprétation de la Mécanique par la théorie de la 
double solution avec ses prolongements thermodynami 
ques récents. Je crois que cette interprétation, 
quand elle aura été approfondie, étendue et peut- 
être sur certains points modifiée, permettra de 
mieux comprendre la véritable nature de la coexis 
tence des ondes et des particules sur laquelle les 
formalismes de la Mécanique quantique actuelle ne 
nous fournissent que des renseignements statistiques, 
souvent exacts, mais à mon avis incomplets.

REMARQUE FINALE.

La transformation de Lorentz permet d'écrire :

(13) = Wo
/I “ R2

d'où l'on tire aisément si l'on pose W 
M0 v

P =

M c" 0

/TB2
e t

/t b 2
04)

Mq c '
= Mcc2 O - B2

M0v2

/B2
ce qui est la formule fondamentale de ma théorie du 
mouvement d'une particule, formule qui implique que 
l'énergie MQc2 est une chaleur se transformant sui 

vant l'équation Q = Q0 /1-g2.

Il y a lieu alors de comparer la formule (14) 
avec la formule usuelle :

M0 c 2
(15) ------ = M„ c 2 + M „ c 2 ( !-----1)

/TB2 0 /TB2

qui implique l'invariance de M0c2. C'est en admettant 
que l'énergie M0c2 est une énergie de chaleur et, par 
suite, n'est pas invariante que l'on obtient la for 
mule (14) au lieu de la formule (15).

Et, si l'on doit incorporer les potentiels dans la 
masse propre, on peut se demander si ces potentiels 
n'ont pas aussi une nature calorifique.
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Remarquons encore que si le mouvement de la parti 
cule se ralentit, puis s'annule, on peut écrire :

(16)
0 Mc2

6 —---
B /T^2

0
6 MQc2 /l - B2 +

B

0

B

6
M0v2

/t^b2

on peut alors interpréter cette formule de la façon 
suivante :

"Au moment de l'arrêt de la particule, l'énergie 
récupérable, faussement nommée énergie cinétique par 
la Mécanique relativiste usuelle est égale à la véri 
table énergie qui disparaît diminuée de l'augmenta 
tion de l'énergie calorifique interne de la particule 
quand elle passe du mouvement à l'arrêt".

Pour un photon se propageant librement, la masse 
y0 est extrêmement petite et la vitesse extraordinai 
rement voisine de c (B à 1). Alors la formule (14) 
donne :

2 2
h„c tJov

(17) ------ - ------
/t^b2 /i-B2

et l'énergie récupérable au moment de l'arrêt du pho 
ton est, à très peu près, égale à l'énergie cinétique.

LA THERMODYNAMIQUE CACHEE DES PARTICULES ET L'OEU 
VRE DE BOLTZMANN.

René Dugas, grand historien des sciences d'une très 
vaste érudition, venait d'achever sous le titre "La 
théorie physique au sens de Boltzmann" un ouvrage d'un 
grand intérêt sur l'oeuvre scientifique du fondateur 
de la Thermodynamique statistique quand il mourut pré 
maturément en 1957. Sa famille réalisa en 1959 la pu 
blication posthume de ce livre précédée d'une préface 
dont j'étais l'auteur (Editions du Griffon, Neuchâtel, 
Suisse).

En relisant cette magnifique analyse de la pensée 
de Boltzmann, j'ai trouvé à la page 116 une remarque 
dont je n'avais pas jusque là aperçu la portée. Dans 
un travail publié dès 1866, Boltzmann était parvenu à 
la remarquable conclusion suivante : "Pour un ensemble 
de particules en équilibre thermodynamique, le maximum 
de l'entropie S qui est relié à la probabilité P de 
l'état par la formule S = k log P correspond au mini 
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mum de l'Action définie à partir du mouvement des 
molécules". En relisant ce texte, j'ai été frappé 
par la ressemblance entre cette remarque de Boltz 
mann et l'une des idées de base les plus importantes de 
ma Thermodynamique cachée des particules. Je n'ai, 
en somme, fait que transposer au niveau de cette 
thermodynamique cachée une idée qui était déjà exacte 
en Thermodynamique statistique ancienne.

Nous parvenons ainsi à une intéressante conclu 
sion. Quand Boltzmann et ses continuateurs ont déve 
loppé leur interprétation statistique de la Thermo 
dynamique, on a pu considérer la Thermodynamique 
comme une branche compliquée de la Dynamique. Mais, 
avec mes idées actuelles, c'est la Dynamique qui 
apparaît comme une branche simplifiée de la Thermo 
dynamique. Je pense que, de toutes les idées que 
j'ai introduites en théorie quantique dans ces der 
nières années, c'est cette idée-là qui est, de beau 
coup, la plus importante et la plus profonde.

DEMONSTRATION SIMPLE DE LA RELATION ENTRE L'ACTION 
ET L’ENTROPIE.

Considérons le mouvement normal d'une particule M 
le long de sa trajectoire T.

Ce mouvement s'effectue en 
obéissant au principe de moindre 
Action. Mais si, au point A, la 
particule s'écarte un instant de 
sa trajectoire normale en décri 
vant la boucle ABC, son mouve 
ment le long de cette boucle 
correspond à une Action plus gran 

de que celle qui correspond à la portion A B de la 
trajectoire normale. Il est évident que la portion 
A B C de la trajectoire est moins probable que la 
portion normale A C. Elle doit donc correspondre, en 
vertu de la relation de Boltzmann :

(18) S = k log P

à une entropie plus faible. Nous voyons ainsi que 
l'augmentation de l'Action sur ABC par rapport à 
l'Action qui correspond au trajet normal A C doit être 
liée à une diminution de la probabilité P et, par
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suite à une diminution de l'Entropie S. Sur le trajet 
ABC, ÔA et <5S sont donc de signes contraires. Or, 
la constante de Planck h peut être considérée comme 
une unité d'Action et la constante de Boltzmann k 
comme une unité d'entropie, bien que l'Action et 
l'Entropie ne soient pas en général des multiples 
entiers de h et de k. Il parait donc naturel d'éta 
blir entre les variations 6A et ÔS de l'Action et de 
l'Entropie la relation générale :

Comment se justifie le signe - figurant dans la 
formule (19) ? On peut le voir en admettant que la 
particule est un système trop simple pour qu'on 
puisse lui attribuer une entropie. Il est alors natu 
rel de considérer l'entropie S définie ci-dessus 
comme se rapportant au thermostat caché. L'entropie 
S ainsi définie diminue quand le thermostat caché 
cède de la chaleur à la particule, ce qui explique 
la présence du signe - dans la formule (19).

Je me contente de signaler que l'on peut dévelop 
per la théorie en attribuant à la particule une tem 
pérature T qui dépend de sa masse propre m0 .
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Sur l’interprétation 
de l’expérience 

de Pfleegor et Mandel

Une belle expérience due à MM. Pfleegor et Mandel 
C1) a démontré que l'on peut déceler l'existence de 
franges d'interférences dues à la superposition des on 
des émises par deux lasers indépendants dans des condi 
tions telles qu'il n'y ait pratiquement jamais deux 
photons arrivant à la fois dans l'appareil d'interfé 
rences. L'interprétation de ce résultat avec les idées 
actuellement admises en Physique quantique est diffi 
cile comme on le voit en lisant la conclusion de l'ar 
ticle de Pfleegor et Mandel. Au contraire, elle nous 
semble très simple et très claire avec les idées que 
l'un de nous (L.B.) a reprises depuis quelques années 
sur la nature de la coexistence des ondes et des par 
ticules. Nous allons le montrer, mais, comme nos idées 
sur ce sujet sont peu connues, nous commencerons par 
en donner un très rapide résumé. Pour plus de détails, 
on pourra se reporter aux publications indiquées dans 
la bibliographie (2).

Pour nous, conformément aux images classiques, la 
particule est un très petit objet constamment locali 
sé dans l'espace et l'onde est un processus physique 
qui se propage dans l'espace au cours du temps suivant 
une certaine équation de propagation. L'onde, que nous 
nommons l'onde V, doit être bien distinguée de l'onde 
statistique arbitrairement normée de la Mécanique 
quantique usuelle à laquelle elle est reliée d'une 
façon qui est précisée dans nos publications anté-

(*) En collaboration avec Andrade e Silva, publié en 
anglais dans Physical Review, 172 (voir page 24).
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rieures. Cette onde V est d'une très faible amplitu 
de et ne transporte pas d'énergie, du moins d'une 
façon sensible. La particule est une très petite ré 
gion de haute concentration d'énergie incorporée à 
l'onde dans laquelle elle constitue une sorte de sin 
gularité en général mobile. En raison de cette incor 
poration de la particule à l'onde, la particule possè 
de une vibration interne telle qu'au cours de son dé 
placement, elle reste constamment en phase avec la 
vibration de son onde. Nous avons montré, dans nos 
exposés antérieurs, que la trajectoire "moyenne" de 
la particule est déterminée en fonction de la forme 
de l'onde par une certaine "loi du guidage", mais à 
ce mouvement moyen se superposent de continuelles 
fluctuations correspondant à une Thermodynamique ca 
chée des particules (3). On peut en déduire l'expres 
sion de la probabilité pour que la particule se trouve 
à l'instant t dans l'élément de volume dT de l'espace, 
expression qui dans le cas où l'on peut adopter pour 
l'onde v l'équation de Schrodinger a la forme bien 
connue kl2-

Si l'on applique les idées générales précédentes 
au cas particulier des ondes électromagnétiques et 
des photons (4), on est amené à considérer l'onde V 
des photons comme une très faible onde électromagné 
tique obéissant très sensiblement aux équations de 
Maxwell. C'est cette circonstance qui explique, pen 
sons-nous, le fait en premier abord paradoxal que la 
théorie électromagnétique de Maxwell suffise à inter 
préter un très grand nombre de phénomènes bien qu'elle 
ignore l'existence cependant certaine des photons. En 
effet, suivant la loi du guidage, la répartition des 
photons dans l'espace et la phase de leur vibration 
interne se trouvent être entièrement en accord avec 
les prévisions de la théorie électromagnétique. Dans 
un champ d'interférences, la probabilité de la pré 
sence d'un photon en un point est donc proportionnelle 
au carré de l'amplitude (intensité) de l'onde V en ce 
point de sorte que la répartition statistique dans la 
région d'interférences d'un grand nombre de photons 
est bien celle que prévoit la théorie ondulatoire 
électromagnétique.

En utilisant les conceptions qui viennent d'être 
résumées, nous allons maintenant développer notre in 
terprétation du résultat de l'expérience de Pfleegor 
et Mandel. Pour nous, dans la cavité d'un laser, il
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s'établit une onde électromagnétique v stationnaire 
sur laquelle des photons sont émis par certains 
atomes dans un processus quantique d'émission sti 
mulée. La cavité a une partie de sa paroi qui est 
en partie transparente. L'onde v intérieure fil 
tre donc légèrement à l'extérieur pendant toute 
la durée de l'émission laser. S'il y a deux lasers 
indépendants disposés de façon que les ondes V 
qu'ils émettent aillent se superposer dans un appa 
reil d'interférences, comme c'est le cas dans l'ex 
périence étudiée, les franges d'interférences exis 
tent dans l'appareil même quand aucun photon ne 
vient permettre de les détecter. Il est d'ailleurs 
physiquement tout à fait évident que chaque photon 
arrivant dans la région d'interférences provient 
de l'un des lasers, celui où se trouve l'atome qui 
l'a émis par une transition stimulée.

Si les lasers émettent très peu de photons à 
l'extérieur, un photon sortira de temps en temps 
de l'un des lasers et arrivera isolément dans la ré 
gion d'interférences. S'il y manifeste sa présence 
par une localisation observable, ce sera le plus 
souvent dans une région de grande amplitude de la 
superposition des ondes v émises par les deux la 
sers. En effet, dans la région d'interférences, le 
mouvement du photon est guidé par cette superposi 
tion et non pas par l'onde simple qui le portait à 
la sortie du laser où il est né.

Si, au bout d'un temps suffisamment long (à l'é 
chelle de la durée très courte d'une impulsion la 
ser), il arrive dans la région d'interférences un 
nombre suffisant de photons, provenant de l'un ou 
de l'autre laser, pour que l'on puisse détecter les 
franges d'interférences, ces photons se répartiront 
statistiquement dans cette région proportionnelle 
ment aux intensités locales des ondes électromagné 
tiques V. Bien que les photons arrivent isolément 
les uns après les autres, on pourra donc finalement 
observer les franges d'interférences exactement pour 
la même raison qu'on peut les observer dans les ex 
périences d'interférences ordinaires à très faible 
intensité du type Taylor. L'interprétation du résul 
tat expérimental de Pfleegor et Mandel nous paraît 
ainsi obtenue d'une façon qui nous semble très claire 
et très intéressante.
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Mais nous voulons insister encore sur certains 
points importants de notre interprétation.

Un photon provenant de l'un ou de l'autre laser 
et arrivé dans la région d'interférences est guidé, 
cela nous paraît physiquement certain, par la super 
position des ondes émises par les deux lasers et 

est pour cette raison qu'il est impossible de sa 
voir dans lequel des deux lasers il a pris naissance. 
Notre interprétation de cette impossibilité ne fait 
intervenir ni les relations d'incertitude d'Heisenberg 
ni l'indiscernabilité des bosons qui, pour nous, n'est 
qu'une apparence résultant des perturbations aléatoi 
res subies par les photons et n'implique pas une per 
te de personnalité.

L'erreur commise dans les interprétations que l'on 
cherche actuellement à donner de ce genre de phéno 
mènes est, croyons-nous, de parler d'interférences 
entre photons comme si les interférences étaient dues 
aux photons. On sait, en effet, depuis Fresnel que 
les interférences sont un phénomène d'origine ondula 
toire. Les interférences d'une onde électromagnétique 
V se produisent, selon nous, d'une façon classique, 
mais en raison de la très faible intensité de l'onde, 
elles ne sont pas par elles-mêmes observables. Néan 
moins, en raison du guidage du photon par la superpo 
sition des ondes qui interfèrent, l'arrivée d'un pho 
ton en un point d'une région d'interférences sera 
d'autant plus probable que l'amplitude de l'onde V 
résultante en ce point sera plus grande. C'est donc 
dans les régions de plus grande intensité de l'onde 
que les photons auront le plus de chance de produire 
des phénomènes locaux observables tels qu'effet photo 
électrique, noircissement local d'une plaque photo 
graphique, etc. En résumé, ce ne sont pas les photons, 
mais les ondes électromagnétiques V qui produisent les 
interférences : le rôle des photons, qui est essentiel 
est seulement de permettre de détecter les interfé 
rences par la manière dont ils se répartissent statis 
tiquement dans la région où existent ces interférences



66

BIBLIOGRAPHIE.

(*) Phys. Rev. 159, n° 5, 25 july 1967, p. 1084.

(z) Une interprétation causale et non linéaire de la 
Mécanique ondulatoire : la théorie de la dou 
ble solution - Gauthier-Vi11ars, Paris, 1956. 
Traduction anglaise Elsevier, Amsterdam, 1960 

Etude critique des bases de l'interprétation ac 
tuelle de la Mécanique ondulatoire. Gauthier- 
Villars, Paris 1963. Traduction anglaise, 
Elsevier, Amsterdam, 1964.

Certitudes et incertitudes de la Science - 
Albin Michel, Paris, 1966.

(3) La Thermodynamique de la particule isolée 
Thermodynamique cachée des particules)
Gauthier-Vi11ars, Paris, 1964.

La Thermodynamique cachée des particules, 
les de l'Institut Henri Poincaré, Vol.
1964, p. 1-19.

() La coexistence des photons et des ondes dans les 
rayonnements électromagnétiques et la théorie 
de la double solution.
Energie Nucléaire, Vol. 7 - n° 3 , Mai 1965. 

Ondes électromagnétiques et Photons - Gauthier- 
Villars, Paris, 1968.

( ou

Anna- 
1 , F .



5

Sur les relations d’incertitude

En ce qui concerne les relations d'incertitude, 
il est essentiel de commencer par remarquer que, si 
l’on considère un train d'ondes mathématiquement re 
présenté par une superposition de composantes de 
Fourier, c'est le train d'ondes qui est la réalité 
physique. Les composantes de Fourier n'existent que 
dans l'esprit du théoricien. Il en résulte que, pour 
nous comme en Mécanique quantique usuelle, les gran 
deurs <$x, ô y, ôz mesurant les dimensions du train 
d'ondes représentent les incertitudes sur la posi 
tion de la particule dans ce train d'ondes. Pour 
nous, cette position existe à chaque instant, mais, 
comme cette position est déterminée par la loi du 
guidage et par les perturbations aléatoires d'ori 
gine subquantique, on voit aisément qu'elle nous 
reste inconnue.

La situation est, au contraire, tout à fait diffé
rente en ce qui concerne les incertitudes 5p , ôp ,x . y
6p . Pour nous, ces incertitudes n'ont aucune exis- z
tence réelle dans l'état unitial puisque les p^, p^, 

p^ du développement de Fourier n'ont pas de sens phy

sique. Ces incertitudes ne prennent un sens physique 
que, quand l'état initial ayant été détruit par une 
intervention expérimentale, la particule se trouve 
animée d'un mouvement qui appartient à une suite de 
mouvements où la quantité de mouvement de guidage 
peut être considérée comme ayant une valeur bien dé 
finie.
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Les incertitudes ôx, <5y, <5 z et les incertitudes 
^Px> ‘-’Py» $PZ étant définies comme nous venons de le

faire sont bien reliées par les relations :

6z.6p > hz

tent pas au même état que les incertitudes 6 x, <5 y,
S z et cela fait tomber l'interprétation que l'on 
donne habituellement aux relations d'incertitude et 
les conclusions qu'on prétend en tirer.

J'ai déjà parlé dans l'introduction du fameux 
argument connu sous le nom de "microscope d'Heisen- 
berg". Il consiste essentiellement à appliquer à un 
seul photon qui, après avoir subi un choc Compton 
avec un électron, pénètre dans un microscope la théo 
rie du pouvoir séparateur bien connue en optique clas 
sique. Mais la formule du pouvoir séparateur n'est 
valable que pour une onde lumineuse transportant un 
grand nombre de photons et n'est aucunement applica 
ble à un seul photon.

Je veux maintenant illustrer par un exemple con 
cret les considérations développées dans le présent 
paragraphe.

2. LIBERATION D’UNE ONDE STATIONNAIRE.

Considérons une onde stationnaire emprisonnée en 
tre deux miroirs parallèles de distance L.

A 8

0
x AB = L
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Cette onde stationnaire est représentée en nota 
tion complexe par l'expression :

„ . 2tt x 2 ir ivt(2; 2asm — e

avec :

(3) L = n |

où n est un nombre entier au moins égal à 1 .

Si l'on calcule la quantité de mouvement de la 
particule dans son onde par la formule de guidage,

on trouve p = - = 0 et <5x = L. On a donc :x dx

(4) ôx.6p^ = 0

La relation d'incertitude n'est donc pas satis 
faite dans cet état initial, mais nous avons calculé 
p^, nous ne l'avons pas mesuré. Pour le mesurer, nous

pouvons enlever brusquement les miroirs A et B. Les 
ondes monochromatiques qui interféraient et qui n'é 
taient qu'une représentation mathématique de l'état 
d'interférence vont alors se séparer et former deux 
trains distincts se dirigeant l'un vers la droite, 
l'autre vers la gauche. Il y aura alors une probabi 
lité égale à ÿ que la particule se trouve dans l'un

de ces trains d'ondes, mais nous ignorons dans le 
quel des deux elle est localisée. Si la particule 
manifeste sa présence, nous connaîtrons sa quantité

de mouvement qui sera p = + — si elle est dans le
X X h

train d'ondes de droite et p = - — si elle est dans
x X

le train d'ondes de gauche. L'incertitude sur p a
h ^

donc la valeur <5 p = 2 — . Quant à l'incertitude sur x X ,
x, elle est égale à L, Sx = n ^ d'après (3). On trou 

ve donc finalement :

(5) ôx.ôp = 2 ^ . n y = nh > h
x A Z

puisque n est un nombre entier supérieur ou égal à 
1. La relation d'incertitude se trouve donc vérifiée 
en ce qui concerne le p^ mesuré, mais c'est à l'aide
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d'une opération qui a modifié l'état ondulatoire 
initial pour lequel l'équation (4) était valable.

3. AUTRE EXEMPLE DE RELATION D'INCERTITUDE.

Dans le cas que nous venons d'étudier, il y avait 
une séparation dans l'espace de deux trains d'ondes 
dont la superposition constituait l'état initial.
Nous voulons maintenant étudier un cas où il n'y a 
pas à proprement parler de séparation de trains d'on 
des .

Considérons le passage d'un train d'ondes approxi 
mativement monochromatique à travers un trou de lar 
geur 6x percé dans un écran et suffisamment petit 
pour qu'un phénomène de diffraction se produise à 
sa sortie.

Quand un photon 
traverse ce trou, sa 
quantité de mouvement 
se réduit à sa compo 
sante normale au
trou et l'on a 6p = 0.x
Par suite <$x.<$p = 0

x
et la relation d'in- 

Sx " certitude n'est pas
satisfaite. Mais, un 
instant plus tard, 
l'onde,qui a franchi 
le trou et subi un 
effet de diffraction,

a des surfaces d'onde dont la forme est analogue à 
C. Si alors le photon est parvenu au point M, sa quan 
tité de mouvement p a une composante p non nulle que

d'ailleurs nous ignorons puisque la position du pho 
ton nous est inconnue et nous avons la relation :

(6) ôx.ôp > h
x

Mais ici encore les incertitudes 6x et 6p ne sex
rapportent plus à un même état puisque, quand le 
photon se trouve en M, il n'est plus dans le trou de 
largeur <5x. Et ceci fait encore tomber la manière 
dont on interprète habituellement les relations d'in 
certitude et les conséquences qu'on en tire.



Ici la situation n'est plus la même que celle que 
nous avions envisagée dans le précédent paragraphe.
Ici, en effet, le 6px ne résulte plus de la sépara 

tion complète dans l'espace de deux trains d'ondes.
Elle résulte d'une relative séparation des composan 
tes de Fourier de l'onde incidente due à un effet de 
diffraction.

4. SUR LA RELATION D'INCERTITUDE 6n.<5V> > 2TT.

La théorie de la seconde quantification et la théo 
rie quantique des champs qui en dérive ont conduit à 
admettre la validité d'une relation d'incertitude en 
tre le nombre des photons portés par une onde élec 
tromagnétique et sa phase qui est :

( 7 ) 6 n .6(fi > 2tt

On a cherché à donner à cette relation une inte-r- 
prétation la rattachant à la 4° relation d'incertitu 
de de Heisenberg dont la véritable interprétation a 
été, elle aussi, assez discutée. Le raisonnement qu'on 
a proposé pour rattacher cette 4° relation d'incerti 
tude :

(8) ô W.£ t > h

à la relation (7) est le suivant. Soit un train d'on 
des de fréquence v transportant n photons. Si l'incer 
titude sur n est <5n, l'incertitude sur l'énergie est 
ôw = ôn.hv. D'autre part, l'on peut écrire = 2Fv6t 
où ôt est une incertitude sur le temps. On a alors

0 TT

én.ôv7 = -— 6W.6t et de (8), on déduit (7). h

Cette démonstration ne me parait pas satisfaisante. 
D'abord la 4° relation d'incertitude (8) se déduit de 
la relation non quantique ôv.ôt > 1 qui est classique
en théorie des ondes et c'est simplement en multipliant 
par h que l'on obtient (8). Or, on n'a pas le droit de 
poser 6W = 6n.hv et d'introduire ce <$W dans (8) puis 
que l'incertitude ÔW de (8) provient en réalité de la 
largeur spectrale ôv et non d'une incertitude sur le 
nombre des photons sans intervention de la largeur 
spectrale. D'autre part, dans la relation ôv.ôt ^ 1 
dont dérive (8), £t n'est pas une incertitude sur la 
coordonnée temps, c'est la àurée de passage du train 
d'ondes en un point de l'espace ou, si l'on préfère.
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c'est la durée d'émission T du train d'ondes par la 
source. Il semble donc bien que la démonstration 
rappelée ci-dessus repose sur les confusions.

Pour trouver la vérification de la relation (7), 
il nous semble que l'on doit partir de l'idée sui 
vante : dans toutes les relations d'incertitude de 
la théorie quantique portant sur des produits de la 
forme 5a.6b, les incertitudes sont des incertitudes 
sur le résultat d'une mesure correspondante, les 
deux grandeurs a et b n'étant pas simultanément me 
surables dans un même processus de mesure.

Nous pouvons appliquer cette idée à la relation 
(7) car n et 'P ne sont pas simultanément mesurables.
En effet, pour mesurer n il faudrait pouvoir faire 
produire par les n photons portés par l'onde des 
effets photoélectriques séparés et dénombrables. Au 
contraire, pour enregistrer la phase, nous devons 
faire coopérer les photons du train d'ondes à la pro 
duction d'une oscillation dans un système du genre 
circuit oscillant, cavité résonnante, etc, comme je 
l'ai expliqué dans une Note aux Comptes Rendus de 
l'Académie des Sciences (258, 1964, p. 6345). Or, 
cette opération n'est pas compatible avec un dénom 
brement des photons. Les conditions sont donc remplies 
pour qu'il y ait une relation d'incertitude entre n 
et 'P .

Pour préciser notre point de vue, nous allons cher 
cher à imaginer un procédé de mesure tel que les in 
certitudes 6n et S'fi puissent avoir toutes les deux 
une valeur finie. Soit un train d'ondes portant un 
nombre inconnu n de photons et ayant une largeur spec 
trale 6\> reliée à la durée d'émission T par la rela 
tion classique :

(9) Sv.T - 1

Si nous voulons chercher à déterminer à la fois, 
avec la plus grande précision possible, le nombre des 
photons et la phase de l'onde, nous devons faire tra 
verser par le train d'ondes un dispositif où se pro 
duisent des effets photoniques de nature quantique et 
en principe dénombrables, puis la faire arriver sur 
un dispositif susceptibles d'osciller en enregistrant 
la phase.
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Si alors, dans le dispositif de comptage des pho 
tons par effet photoélectrique, nous observons m 
effets, il arrivera seulement ôn = n-m photons sur 
le circuit oscillant, ôn étant inconnu puisque n est 
inconnu. Si les ôn photons en question agissent sur 
le circuit oscillant par impulsions successives 
rythmées sur la phase de l'onde, ainsi que je l'ai 
expliqué dans la Note citée plus haut, il est rai 
sonnable de supposer que le système oscillant ne 
pourra se mettre à osciller régulièrement que s'il 
reçoit au moins une impulsion par période. Cela nous

Tconduit à écrire 5n.- ^ 1 ou d'après (9) :

(10) ô n > V
ST

Mais il nous faut maintenant définir ce que nous 
appelons l'incertitude ôç? . Nous proposons de le faire 
de la façon suivante. Si l'onde était strictement mo 
nochromatique, la variation de la phase pendant une

période T = serait égale à 2Tr, ce qui revient à

dire qu'elle ne varierait pas puisqu'elle n'est défi 
nie qu'à 2Tt près. Mais, en réalité, le train d'ondes 
a toujours une largeur spectrale 6v et la variation 
de la phase pour la fréquence V + ôv pendant le temps 
T sera, à 2tr près :

(11) ôip = 2TTÔVT = 2tt

Si nous admettons que le S'P défini par (11) peut 
être considéré comme l'incertitude sur la valeur de 
la phase, la comparaison des formules (10) et (11) 
nous fournit immédiatement la relation (7) qui corres 
pond donc bien ainsi à une expérience où l'on a cher 
ché à déterminer à la fois, mais nécessairement avec 
une certaine imprécision, le nombre des photons porté 
par le train d'ondes et la valeur de sa phase.

Le raisonnement qui vient d'être exposé nous a per 
mis de retrouver la relation (7) sans avoir recours 
à la 4° relation d'incertitude d'Heisenberg. La rela 
tion (7) nous apparait ici comme résultant unique 
ment de l'hypothèse qu'un circuit oscillant subit des 
impulsions discontinues dues aux arrivées successives 
des photons qui sont incorporés dans le train d'ondes 
incident et ont une vibration interne rythmée par la 
vibration de l'onde. Notre démonstration de la for 



mule (7) se trouve ainsi découler de nos idées géné 
rales sur la coexistence, avec accord des phases, 
des photons et des ondes dans les radiations.

Nous devons ajouter l'importante remarque suivante 
relative à la définition (11) que nous avons adoptée 
pour 6‘P : la grandeur S'A ne doit pas être définie à 
l'aide de la phase d'une onde plane monochromatique, 
cas idéal qui n'est jamais réalisé physiquement, mais 
toujours en considérant un train d'ondes de longueur 
finie ayant une largeur spectrale <$V . La grandeur 6 
définie par (11) mesure en quelque sorte "le défaut 
de monochromaticité" du train d'ondes considéré et 
c'est là son véritable sens. En d'autres termes, la 
véritable signification du &<p de la relation (7) ne 
doit pas être cherchée dans l'existence d'une incer 
titude sur la phase d'une onde plane monochromatique, 
mais dans le fait que l'on a toujours affaire à un 
train d'ondes ayant une largeur spectrale non nulle.
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Mouvement d’un photon 
dans un milieu 

réfringent ou absorbant

MOUVEMENT DANS UN MILIEU REFRINGENT.

Je voudrais d'abord mettre en évidence la diffi 
culté qui se présente quand on étudie le mouvement 
des photons dans un milieu réfringent peu disper- 
sif et d'indice n > 1 comme c'est le cas du verre.

Le photon se déplaçant alors avec une vitesse V
• csensiblement égale à la vitesse de phase V = —, on

c2 2 n
a vV - — < c . Or, si l'on se représente le photon

n
comme une particule de masse Mo se déplaçant à la vi 
tesse V, on est amené à écrire :

2
Mn c , , Mn v

( 1 ) W = hv = -— p = à = kv = _i—
J \ -e2 x v J \ -e2

Mo étant la masse propre du photon en mouvement ralen 
ti (*). Il en résulterait la relation Vv = c2 , or 
cette relation n'est pas satisfaite.

On peut retrouver cette difficulté en partant de 
deux équations fondamentales. La première est la for 
mule relativiste de l'effet Doppler :

(*) Mo est une masse beaucoup plus grande que la masse 
propre y0 du photon dans le vide puisque 

Moe1 P0c2
hv = -----  - —-- avec e extraordinairement petit.

rr=ç*
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1 " V
(2) v = v ---- v—

/T^?2

où V q est la fréquence de l'onde dans un système de 
référence attaché à la particule et où V et V sont 
la fréquence et la vitesse de phase dans le système 
de référence où la particule a la vitesse v.

La seconde équation fondamentale est celle qui, 
dans les conceptions de la théorie de la double solu 
tion, exprime que la particule se déplace dans son onde 
de telle façon que sa vibration interne reste constam 
ment en phase avec celle de l'onde.

Cette équation est la suivante :

(3) 5T
d<p dn 

d t

9ç> . 
__1
3 t

où tf et ifi ^ sont respectivement, au facteur — près, la

phase de l'onde et la phase interne de la particule. 
La variable n est comptée suivant la normale à la

surface d'égale phase et est la vitesse de la par 

ticule le long de cette normale. Nous admettrons la 
relation W = hv entre l'énergie de la particule et la 
fréquence V de l'onde. On a alors d'après (2) :

(4) W
w0 /r^ë2

Cette formule ne coïncide avec la formule usuelle- 
W0• U • t V 2ment admise W = -----  que si 1 on a I - — = 1 - R ,
/T^2 V

c'est-à-dire si vV = c2 et nous venons de voir que 
cette formule n'est pas exacte dans un milieu réfrin 
gent .

Dans un très ancien article sur la réfraction atmos 
phérique (*), j'avais aperçu cette diffieu 11é,et, dans 
une remarque finale, j'avais montré qu'il fallait 
alors introduire une action du milieu réfringent sur

(*) J. Phys. Rad. série VI et VII, Janvier 1926,p.1-6.
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le photon se traduisant par l'introduction d'un po 
tentiel P que l'on pourrait appeler "potentiel d'en 
vironnement". On est alors amené à écrire :

W-P 
2

M„c'
(5) W =

/T^2
+ p

M0v

/Th

de sorte que l'équation 

tenu de (2), nous avons

(3) nous donne, puisque, compte 

maintenant — =VQ/]- g2 =v(1 ")

(6) W-P
2

W ( 1 ?>
Nous en tirons l'expression suivante de P 

(7) P - W (1 - = hV (1 - fl)

Cette relation nous montre que P est nul, comme 
cela doit être, quand le milieu traversé par l'onde 
n'influe pas sur sa propagation puisqu'alors la rela 
tion vV = c2 est valable.

Mq vV
En posant m^ = —-—, on trouve d'après (5) et (7) :

2 c
m0c + M0v

(8) W = P = -- -
/1 -g 2 H -f/

On voit alors que, dans le milieu réfringent, il y 
a lieu de distinguer deux masses propres m0 et M0 
pour représenter le mouvement de la particule. On 
peut appeler m0 la "masse énergétique" correspondant 
à l'énergie totale, compte tenu du potentiel P, et M0 
la masse de translation, c'est-à-dire celle qui cor 
respond au mouvement de la particule.

Résumons ce qui précède. Les formules (2) et (5) 
usuellement admises en Mécanique ondulatoire sont ob 
tenues en supposant que la particule se déplace dans 
le vide ou dans un milieu qui n'influe pas sur sa 
propagation. Alors au point de vue de la Relativité 
restreinte, tous les systèmes de référence galiléens 
sont équivalents et les formules (2) et (5) en décou 
lent. Mais si l'onde portant la particule traverse 
un milieu immobile qui influe sur sa propagation, le 
système de référence attaché à ce milieu a un rôle 
privilégié et c'est là ce qui oblige, pour conserver
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les formules W = hv et p = y, à introduire le poten 
tiel P.

La théorie de la double solution, en incorporant 
dans la masse propre le potentiel quantique Q qui 
peut varier suivant la position de la particule, 
conduit à considérer le mouvement de la particule 
comme correspondant à une Dynamique à masse propre 
variable. Dans le cas du mouvement de la particule 
dans un milieu réfringent, nous pouvons aussi déve 
lopper une Dynamique à masse propre variable en 
partant du principe de moindre Action :

(9) 6 d t 0

où £ est la fonction de Lagrange que nous défini 
rons à l'aide de la masse propre m0 en écrivant :

(10) £ = - mQc2 /] - g2

Le principe de moindre Action conduit alors à 
écrire :

n n É_ ,3 J\ _ 3 £ ,■ _(n) dïï (~} - (qk - dT
3qk k

ce qui nous donne ici :

»» h <§^> - - «* ^ £
la variable x étant comptée sur la 
le sens du mouvement. Comme l'on a

dans

(13)

on trouve

(14)

3 £ 
3v

du
dt

d
dt

d(-

/l-B 2

(----- ) = - c2 /I

Æ~£~

) = 0

/r^r2

d'où, en multipliant par m

dm,

dx

B2 ,
2 2 m0c

1 - B2
(15)



79

ce qui est bien vérifié si
/T?

= hV .

Deux remarques sont ici très intéressantes à fai 
re. La première est la suivante, quand une particule 
se déplace dans le vide ou dans un milieu qui n'in 
flue pas sur son mouvement, on peut définir sa quan-

titê de mouvement par —, c'est-à-dire comme le flux
2c

de l'énergie divisée par cz. Or, on pourrait croire

-* moc 3
que l'on devrait poser p = ————-. , valeur qui

y'i-B2 c2
diffère de (8). Mais c'est hien l'expression (8)

de p qui est exacte. En effet, l'énergie W est la
„ „ 2 „ „ 2

somme des deux termes e t P = - 1)
2

C/T1?2 ./T?2
dont le premier est égal à l'énergie transportée 
par la particule en mouvement et dont le second 
terme traduit l'action du milieu sur la particule. 
Seul le premier terme correspond à un flux d'énergie

qui, divisé par c est bien égal à
Mo v

’-b‘

Voici la seconde remarque très importante que je
_ 2

veux faire. La formule = hV montre que m. ne

la relation MQ =

/■RF2

'est t

montre que M0 est variable

dépend pas de v, que c'est une constante. Au contraire
2

^/T¥2
avec V et V. Si N désigne un vecteur unité ayant la

->■ -V
direction de la vitesse et tel que l'on ait v = Nv, 
on pourra écrire la quantité de mouvement sous la 
f orme vante :

(16) P =
vV /T¥2

ce qui est satisfaisant.

N
2 V

hV
N = N X

Bien entendu, tous les calculs précédents se rap 
portent uniquement au mouvement de guidage de la 
particule, abstraction faite des perturbations 
d'origine subquantique qui font passer continuelle-
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ment la particule d'une trajectoire de guidage sur 
une autre.

Etudions encore rapidement le cas de la propa 
gation d'une onde sensiblement plane monochromati 
que dans un milieu réfingent. Représentons deux 
surfaces d'égale phase :

ON est la direction

R N

O

et VR = VÀR sont la longueur 

de phase le long du rayon, v 

particule le long du rayon q

de la normale a 1 onde,
OR celle du rayon passant 
par 0, *N et VR = v*N

la longueur d'onde et 
la vitesse de phase le 
long de la normale à 
l'onde, tandis que X

R
d'onde et la vitesse

est la vitesse de la 
K
ni est sa trajectoire de

guidage. Enfin je pose v = 8c et je définis toutes. K
• —*ples vibrations par ae h où <p est la phase.

D'après la formule de ralentissement des horloges 
en mouvement, la phase interne de la particule

varie pendant le temps dt de 

/I -(17)
d'p . 

1
= V, d t

Quant â la phase V> de l'onde au point où se trou 
ve la particule de vitesse v , elle varie de :

(18) ^ = vdt - p = (V - ^) dt = V(i - -£)dt

RR R

Si nous admettons le principe fondamental que 
d<£ = d'P. , nous obtenons :

(19) V. = v
J 1 -B :



ce qui est précisément la formule de Doopler pour 
un observateur animé du mouvement de la particule. 
Comme précédemment, nous définirons la masse propre 
totale m0 par :

2m0c
(20) -----  = hV

/T^ïï2

et la masse propre M0 correspondant au mouvement de 
la particule par :

(21) h MoVR 

^ 1 "8 2 /T-ë v„

ce qui nous donne entre les deux masses propres la 
relation :

(22)
MovrVR

De nombreuses extensions des idées générales 
contenues dans le présent paragraphe seraient cer 
tainement possibles. Je ne citerai que le cas du 
mouvement d'un photon dans un milieu réfringent qui 
varie d'un point à un autre ou même au cours du 
temps, mais je pense que beaucoup d'autres problè 
mes pourraient être étudiés.

ETUDE DU CAS DU MOUVEMENT "RETROGRADE" OU V EST 
DE SIGNE CONTRAIRE A V.

Dans ce qui précède, nous avons supposées connues 
la vitesse de la phase V donnée en fonction de l'in 

dice de réfraction n par la formule V = — et la vi-
n

tesse v de la particule qui doit être assimilée à 
la vitesse de l'énergie et qui est donnée par la 
formule de Rayleigh :

3 I
1 _ __X _ i 3 (ny)

K v 3v c

Si nous prenons la direction de propagation de la 
phase comme direction positive et si V se trouve 
ainsi avoir une valeur positive, les vitesses v et V 
se trouvent avoir une valeur positive, les vitesses 
de la phase et de l'énergie ont la même direction 
et toutes les formules précédentes sont valables
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Mais il est bien connu que pour certaines formes 
de la fonction n(v) la formule (23) peut donner une 
valeur négative de P..Dans ce cas remarquable, bien 
connu en théorie ondulatoire classique, la particule 
telle que nous la concevons est animée d'un mouve 
ment "rétrograde", c'est-à-dire qu'elle remonte le 
cours de l'onde qui la transporte. Nous devons alors 
voir comment doivent être modifiées les formules des 
précédents paragraphes.

Désignons par N le vecteur unité dirigé dans le 
sens supposé positif de la propagation de la phase

-* -*■ h
de 1 onde et définissons le vecteur k par k = N

La formule (23) appliquée au mouvement rétrograde 
de la particule donne :

(24) v < 0

Les variations d'P et d'P. de la phase de l'onde et
î

de la phase interne de la particule quand on suit le 
mouvement de celle-ci sont toujours,en tenant 
compte de (2) :

(25) à'P = Wd t ( 1 - |-) d^ = W0 v'i-B2 dt + Wdt(l~) 

avec maintenant v < 0. On a donc toujours d'P = d'P. et
î

le principe de l'accord des phases est toujours sa 
tisfait.

Ecrivons de nouveau les équations 

M c2
1 o -*■ h

(26) W = hV =----- + P k = N j
/PP

N
M0v

/PP

W(1 - Tjj) . Nous savons qu'elles sont vala-avec P
vv -> •

blés pour v > 0 avec p = k. Mais si on les conservait

pour v < 0, W - P = Wc
vV

serait négatif. M devrait o
être positif et p serait positif. Comme ces consé 
quences ne sont pas satisfaisantes, je propose de 
définir Mo dans le cas v < 0 par l'expression posi 
tive :

(27) M = “o
W

vV
/I -
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W .----- 2
au lieu de = —— /I - 8 • Puisque W - P =

ceci entraine que :

Moc

ST-S2

(28) P = W (1 + -)

au lieu de P = W (1 - -■-) . On trouve alors, puisque 

W = hV,
M0W

(29) W = hv = - -----  > 0

P =
NW

M0W

/T^B2

H h= - N T* k = + grad 'f

avec ces nouvelles définitions, la masse propre M0 
est toujours positive, même quand la particule est 
animée d'un mouvement rétrograde. Si alors la parti 
cule se trouve soumise à un champ qui, dans le vide, 
l'accélérerait, l’action de ce champ s'exerce en réa 
lité sur la propagation de l’onde puisque c'est dans 
l'équation d'ondes que figure le potentiel dont elle 
dérive. Dans le vide ou dans un milieu réfringent où 
v > 0, cette action augmenterait la vitesse V, mais 
dans le cas d'un milieu dispersif avec mouvement ré 
trograde de la particule, elle fera croître la quan-

tité de mouvement p = - k dans le sens opposé à la 
propagation de l'onde. Tout se passera donc alors 
comme si la particule de masse propre positive défi 
nie par (27) était soumise à un champ électrique in 
verse de celui qui lui est réellement appliqué. Si 
la particule possède une charge électrique £ et si 
elle est soumise à un champ électrique, elle se com 
portera comme une particule de masse propre positive, 
mais de charge électrique - £.

C'est de cette façon, me semble-t-il, que l'on doit 
interpréter ce qui se passe dans un semi-conducteur 
quand l'onde associée à un électron se propageant 
dans la structure interne du solide a une fréquence 
qui correspond à la partie supérieure d'une bande de 
conduction, cas où la formule (24) de Rayleigh montre 
que la vitesse de groupe est en sens inverse de la vi 
tesse de phase. La plupart des auteurs qui exposent 
la théorie des semi-conducteurs attribuent alors à la 
masse de l'électron une valeur négative et j'ai l'im 
pression que cela provient de ce qu'ils écrivent
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p = k alors qu'il faudrait écrire p = - k. Remarquons
—y

pour terminer que, quand on a v < 0 et p = - k, on 

doit remplacer la formule usuelle du guidage
->• -V
p = - grad 'P par la formule p = + grad P avec chan 
gement de signe au second membre. Mais, comme nous 
l'avions dit plus haut, la définition du guidage par 
la coïncidence constante de la phase interne de la 
particule avec la phase de l'onde est plus générale 
et toujours valable.

SUR LA THEORIE DES ANTIPARTICULES.

La théorie exposée ci-dessus qui repose essen 
tiellement sur la formule de Rayleigh présente une 
grande analogie avec la théorie des antiparticules.

La théorie des antiparticules est apparue d'abord 
en Physique théorique pour l'interprétation de la 
production des paires électron-positon sous la forme 
de la théorie des "trous" de Dirac. Dans cette théorie, 
on admet qu'il existe dans le vide un océan d'élec 
trons cachés de charge électrique - e et d'énergie né 
gative - m„c2. L'apport par un agent extérieur d'une 
énergie 2m(c2 entraînerait l'arrachement d'un de ces 
électrons du milieu caché où il se trouvait (milieu 
qu'il est évidemment tentant d'assimiler à notre mi 
lieu subquantique) et son apparition au niveau micros 
copique observable sous la forme d'un électron normal 
d'énergie m0c2. Il en résulterait un "trou" dans 
l'océan caché des électrons à énergie négative et 
c'est ce trou qui se manifesterait à nous à l'échelle 
microscopique observable sous la forme d'une antipar 
ticule de masse propre positive m0 et d'une charge 
positive + e qui constitue le positon.

J'ai proposé, il y a quelques années, une théorie 
différente de la création des couples particule-anti 
particule (*). Je vais l'exposer sous une forme un 
peu différente de sa forme primitive en partant tou 
jours de l'idée que l'antiparticule est une particule 
qui se déplace dans son onde en sens inverse de la 
propagation de celle-ci. J'admets que, lors de l'appa 
rition au niveau observable d'un couple particule- 
antiparticule, l'un des constituants du couple est

(*) Journal de Physique,tome 28. Mai-Juin 1967, p.481.
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une particule normale dont 

indice de réfraction n = 6

l'onde se propage avec un 
' m][c
1 - —-- t and i s que

h2v2
l'autre constituant, l'antiparticule, serait portée 
par une onde dont la propagation serait réglée par 
un indice de réfraction n(v) tel que, d'après la 
formule de Rayleigh (23), cette antiparticule se 
déplace en sens inverse de la propagation de son 
onde .

Pour développer cette idée, supposons que l'océan 
d'électrons cachés de Dirac, contenu dans le milieu 
subquantique, soit formé par des couples d'électrons 
unis par un potentiel interne P tel que P - 2 m0c2=0. 
Ces couples d'électrons cachés auraient donc une 
énergie nulle. Si l'on apporte à un tel couple 
d'électrons cachés l'énergie 2 m0c2, il en résulte 
au niveau observable l'apparition d'un électron libre 
normal d'énergie de masse me2 qui, s'il est mouve-

0 2 
mo c

ment avec la vitesse 6c aura l'énergie W = -----  et
m0v /I -B2

la quantité de mouvement p = ----- , la vitesse de son
h /Y^2

onde étant V et p = —.

Mais il y aura aussi apparition au niveau observa 
ble d'une "antiparticule" d'énergie P - m0c2 = m„c2, 
telle par conséquent que P = 2 m„c2. Si l'on admet 
que le potentiel P obéit à l'équation (3), on trouve

2 W = W (1 - n ) d'où n = “ 1 et, si l'anti 

particule est en mouvement, sa vitesse v' sera donnée 
par : ,

1 3 
(30) k V

3v v

Pour cette antiparticule en mouvement, on aura 
alors : .

(31) W =
m0 v’

v/T-
p =

i 2 

C 2

Alors, n étant le vecteur unité dans la direction 
de propagation de l'onde et le vecteur k étant défini
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par k = n y> on a P = - k.
À

L'antiparticule apparait donc au niveau microphy 
sique observable comme ayant une masse propre m^,

une vitesse v' en sens inverse de la propagation de 
l'onde et, par suite, une charge égale et opposée 
à celle de la particule. C'est bien là ce qu'il 
fallait obtenir.

Si l'on introduit dans la théorie précédente les 
conceptions de la thermodynamique cachée des parti 
cules, on peut voir que la production d'une paire 
particule-antiparticule entraîne une diminution du 
contenu énergétique du thermostat caché, ce qui ex 
plique le caractère instable de la paire en question. 
Nous n'insisterons pas ici sur ce point.

MICROABSORPTION ET MACROABSORPTION D'UNE ONDE 
LUMINEUSE.

Prenons d'abord le point de vue de l'Optique 
classique et considérons un train d'ondes presque 
monochromatique qui traverse un écran absorbant 
d'épaisseur SL. L'intensité de l'onde, initialement 
égale au carré ajj de son amplitude, est à la sortie

-y SLde l'écran réduite à aj|e où Y est le coefficient 
d'absorption de l'écran.

Passons maintenant au point de vue de la théorie
de la double solution. L'onde v y est absolument
assimilable à une onde lumineuse classique de très
faible intensité et son intensité après le passage
.. ni' . 2 2 -Y& - -a travers 1 écran est a = a0e ou a0 est très
faible. Cette absorption de l'onde V, je l'appelle 
rai la "microabsorption". Nous admettrons qu'elle 
est la même quel que soit le nombre des photons 
que l'onde transporte. Si initialement l'onde V 
porte un nombre très grand N0 de photons, le nom 
bre de ceux-ci qui sortent de l'écran est en

moyenne N0e car ces photons peuvent être consi 
dérés comme des "échantillons" d'une onde qui aurait 
une amplitude A = Ka, K étant très grand. J'appelle 
rai cette absorption des photons, c'est-à-dire de 
l'énergie, la "macroabsorption". Il y a donc alors 
une correspondance exacte entre la microabsorption 
et la macroabsorption.
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Mais cette correspondance ne se maintient pas si 
l'onde V porte seulement quelques photons et, en par 
ticulier, si elle n'en porte qu'un. On voit très 
nettement qu'alors chaque photon est ou n'est pas 
absorbé. La microabsorption est donc un phénomène 
de "tout ou rien" qui n'est aucunement représenté

-y £
par la loi statistique e 1 tandis que la macroab 
sorption est toujours exactement représentée par 
cette exponentielle.

Tout ceci joue un grand rôle dans l'interprétation 
d'une expérience d'apodisation en lumière très fai 
ble que j'ai proposée,où chaque train d'ondes arri 
vant sur l'écran apodiseur porterait un seul photon. 
Si ce photon est absorbé dans l'écran d'épaisseur 
variable convenablement calculée, il ne contribuera 
pas à former une image, mais s'il traverse l'écran 
et contribue à former une image apodisée, c'est que 
la microabsorption de l'onde V dans l'écran a modi 
fié le guidage du photon. Et ainsi serait prouvé que 
le mouvement du photon est déterminé par une onde 
électromagnétique très faible. C'est pourquoi la réa 
lisation d'une telle expérience me parait très impor 
tante .

Naturellement l'expérience ci-dessus envisagée 
exigerait qu'un très grand nombre N de photons par 
viennent un par un sur la plaque photographique 
après avoir traversé l'écran. On peut admettre que 
ce nombre N serait relié au nombre N0 des photons 
qui arriveraient un par un sur l'écran par la rela-

-y
tion statistique N = NQe 1 , mais cela ne changerait
rien à ce qui a été dit plus haut.

REMARQUES FINALES.

Les idées contenues dans ce chapitre auraient cer 
tainement besoin d'être précisées et étendues. Ce se 
rait un travail très intéressant et sans doute impor 
tant .

J'ai parfois envisagé la possibilité d'interpréter 
la notion de "phonons" en les assimilant à des pho 
tons se déplaçant dans un milieu matériel animé de 
mouvements de fréquences acoustiques. On a souvent 
opposé à l'idée que les phonons soient des particu 
les le fait qu'ils sont susceptibles de subir certai-
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nés réflexions à l'intérieur du corps qui les con 
tient.

Or, ces réflexions obéiraient à la loi de réfle 
xion de Bragg qui est classique dans la Physique 
des Rayons X. Mais, comme les particules transportés 
par les Rayons X sont certainement des photons, 1'ob 
jection faite à l'identification des phonons et des 
photons me parait douteuse. Mais la question serait 
à examiner d'une façon plus approfondie.

APPENDICE - NOUVELLE INTERPRETATION DE LA GRAN 
DEUR P.

Je viens d'exposer ma théorie de la propagation 
d'une onde lumineuse dans un milieu réfringent homo 
gène telle que je l'avais conçue initialement en 
interprétant la grandeur P comme un potentiel résul 
tant de l'action sur l'onde progressive du milieu 
qu'elle traverse. Cela m'avait amené à distinguer 
les deux masses propres m0 et M^. Mais je me suis 
récemment aperçu que l'on pouvait envisager le pro 
blème d'une façon très différente en ne considérant 
pas la grandeur P comme un potentiel incorporé à la 
masse propre énergétique, mais en lui donnant une si 
gnification tout à fait différente.

Le point départ de cette nouvelle interprétation 
consiste à écrire la phase de l'onde progressive 
sous la forme 'f = <p + P avec :

1 2

M0c2 M0v
(32) p =-----  t ------- x

/Pë2 /TT2

ip = Pt = - hv(n2- 1 ) t = - h\> ' t 
2

avec v' = (n2- l)v. Il est alors évident que iPl est 
la phase d'une onde progressive monochromatique plane

dont la fréquence V est donnée par hv =

quantité de mouvement par
h h v

pTv'
V_
/r-ë2

----  e t

On peut

1 a

donc dire qu'il existe dans le milieu réfringent une 
onde progressive de phase <p l qui transporte le photon 
de masse propre M^ et l'on voit alors, en appliquant
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un raisonnement bien connu de mon interprétation de 
la Mécanique ondulatoire, que la particule se dépla 
ce dans son onde de façon à rester en phase avec elle.

Mais que signifie la formule ç>2 = Pt ? Comme elle ne 
dépend que de t et non de x, elle représente évi 
demment la phase d'une onde stationnaire qui serait 
engendrée dans le milieu réfringent par le passage 
de l'onde progressive de phase i. Mais il faut exa 
miner comment cela peut se produire.

Dans son livre "Theory of Electrons", Lorentz 
avait étudié le passage dans un milieu réfringent ho 
mogène d'indice n d'une onde progressive sensiblement 
plane monochromatique. Désignant par E le champ élec 
trique de l'onde et par P la polarisation qu'elle 
produit dans les molécules du milieu traversé, il 
avait établi, à la page 142, la formule suivante :

(33) | = n2 - 1

Pour que cette formule soit d'accord avec notre 
formule (3), ^ = - v(n2 - 1), il faut que l'on ait :

(34) P P
r = ~ V — h E

si alors nous définissons une fréquence v' par :

(35)

nous trouvons :

v' =Vg=v(n2- 1) >v

(36) P = - hv'

La phase ip = Pt de la deuxième formule (32) est 
alors :

(37) ç>2 = - hv' t

Telle est la phase de l'onde stationnaire de fré 
quence v' excitée dans le milieu réfringent par le 
passage de l'onde progressive de fréquence v-

On peut se demander d'où provient le signe - dans 
la formule (37). Il semble indiquer que la phase ç>2 
de l'onde stationnaire présente une différence de 
phase égale à tt par rapport à la phase de l'onde pro 
gressive.
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Pour rendre compte de cette différence de phase, 
j'ai envisagé le raisonnement suivant. Le mouvement, 
sous l'action du champ électrique de l'onde progres 
sive, d'un élément matériel du milieu réfringent de 
masse m et de charge électrique e, positive ou né 
gative, obéit à l'équation :

(38) m ——^ = E E„ cos 2i:vt
dt2

y étant la direction du champ E qui est perpendicu 
laire à x. Si l'on pose x = x0 cos 2irvt, on trouve 
aisément après multiplication par e :

e2
(39) - E x0 cos 2Trvt =---Eq cos 2iTVt

mw2

E2 étant toujours positif, la formule (39), indique 
que la polarisation de l'élément du milieu réfringent 
est bien déphasée de TT par rapport au champ électri 
que de l'onde progressive.
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L’invariance adiabatique 
et la thermodynamique 

cachée des particules

I. INTRODUCTION DE L'INVARIANCE ADIABATIQUE PAR
BOLTZMANN.

L'idée d'invariance adiabatique a été introduite 
par Boltzmann en 1897 dans son livre "Prinzipien 
der Mechanik" (’). Il s'était inspiré des travaux 
antérieurs de Clausius et de Szily et d'idées 
d'Helmholtz résumés par Henri Poincaré dans le 
dernier chapitre de son livre de Thermodynamique. 
J'ai exposé l'essentiel de leurs idées dans mon 
livre "La Thermodynamique de la particule isolée"
( ). Dans ce livre, on trouvera développé le cal 
cul de Boltzmann aux pages 63 à 68.

Boltzmann considérait un nombre énorme de parti 
cules animées d'une agitation thermique comme un 
gaz dans la théorie cinétique des gaz et contenues 
dans un récipient à parois très lentement mobiles. 
Cela l'amenait à distinguer dans un tel système, 
comme l'avait fait Helmholtz, de très nombreuses 
variables q^ à variations très rapides qui sont les

coordonnées des molécules et des variables beaucoup 
moins nombreuses et à variations beaucoup plus len 
tes définissant les conditions aux limites de l'en 
semble des molécules, c'est-à-dire la forme du ré 
cipient qui les contient.

Il envisageait alors une variation très lente de 
la durée de variation T de ces dernières variables 
et, à l'aide des raisonnements reproduits à l'en 
droit indiqué plus haut de mon livre, il étudiait
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la variation très lente qu'éprouve alors le système 
considéré. Il aboutissait ainsi à l'équation suivan 
te :

(1) 6Q T p . dq. 
0 i 1 1

où ÔQ représente la variation, pendant la durée T de 
cette variation extrêmement lente des conditions aux 
limites, de la chaleur contenue dans le système et 
où p^ est la composante de la quantité de mouvement

correspondant à la coordonnée q. très rapidement 
variable.

En Mécanique classique non relativiste, on a pour 
l'énergie cinétique totale de l'ensemble des molécu- 

c d q ^ r . . d q •
les 2 E . = / p. -J—— = ) p. q. avec q. = ■et la

cm v *i d t VtiMi 4 ii i
formule (1) devient :

dt

(2) 6Q=iô(Ec.nT)

où est la valeur moyenne de l'énergie cinétique

de l'ensemble des molécules pendant le temps T de la 

variation envisagée. Puisque <$Q est nul quand
f T p. dq. = 0, il est naturel de nommer cette înte- 

■’ 0 1 1
grale un "invariant adiabatique".

Nous ferons ici la remarque essentielle que le 
raisonnement de Boltzmann ne soulève aucune diffi 
culté d'interprétation. En effet, puisque Boltzmann 
considérait un ensemble de molécules en agitation 
thermique, l'introduction de l'idée de chaleur était 
tout à fait naturelle et l'emploi de l'adjectif 
"adiabatique" qui, par définition, signifie "sans 
échange de chaleur" était tout à fait compréhensible 
et justifié. Mais nous allons voir qu'il n'en est 
pas de même pour les extensions qui ont été faites 
ensuite de la formule de Boltzmann.

2. INTRODUCTION PAR EHRENFEST DE LA NOTION D'INVARIAN 
CE ADIABATIQUE DANS L'ANCIENNE THEORIE DES QUANTA.

Dès 1911, Ehrenfest avait appliqué la théorie de 
Boltzmann au rayonnement noir quand on s'en tient à
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l'approximation de Wien et cela ne soulevait encore 
aucune difficulté puisqu'à cette approximation, on 
peut considérer le rayonnement noir comme un gaz de 
photons. Mais en 1916, Ehrenfest (3) a montré le rôle 
important que joue la notion d'invariance adiabati 
que quand on l'introduit dans la théorie quantique 
de l'atome telle que Bohr l'avait développée en 1913. 
Or cette extension du rôle des invariants adiabati 
ques présentait un aspect paradoxal sur lequel je 
veux insister.

A l'époque où Ehrenfest introduisait les inva 
riants adiabatiques dans la théorie de l'atome, 
celle-ci avait encore la forme primitive que lui 
avait donnée Bohr, c'est-à-dire qu'on se représen 
tait les électrons tournant dans l'atome autour 
d'un noyau central chargé positivement. Ils décri 
vaient donc des trajectoires dont la forme pouvait 
être assez compliquée quand il y avait plusieurs 
électrons et quand on devait tenir compte des correc 
tions de relativité. Mais dans le cas simple de l'a 
tome d'hydrogène où il n'y a qu'un seul électron 
tournant autour d'un proton et où l'on négligeait 
les petites corrections de relativité, les trajec 
toires étaient des courbes fermées circulaires ou 
elliptiques et l'on constatait que les conditions de 
quantification déterminant les trajectoires stables 
au sens de Bohr se réduisaient à écrire que l'inté 

grale ifpdq = p. dq . prise le long de la trajec- 
i

toire fermée était égale à un multiple entier de la 
constante h de Planck. L'importance des invariants 
adiabatiques dans la détermination des états quanti 
fiés de l'atome de Bohr apparaissait ainsi nettement.

Il est vrai qu'en dehors du cas très particulier 
de l'atome d'hydrogêne quand on néglige les petites 
corrections de relativité, les trajectoires électro 
niques dans la théorie primitive de l'atome de Bohr 
étaient plus compliquées et que l'introduction des 
invariants adiabatiques exigeait alors des développe 
ments supplémentaires que Léon Brillouin avait étu 
diées dans ses livres (4). Mais comme ces questions 
ne présentent plus aujourd'hui d'intérêt, je n'y 
insisterai pas.
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L'introduction des invariants adiabatiques pour

désigner les intégrales du Type f£ p. dq^ dans
i

l'atome de Bohr que l'on dérivait de la formule de 
Boltzmann présentent un caractère assez surprenant 
car il s'agit ici d'un système mécanique simple 
contenant un petit nombre de particules décrivant 
des trajectoires régulières. On ne voit donc pas 
du tout comment peut s'introduire l'idée de chaleur 
essentiellement liée à celle d'une agitation aléa 
toire d'origine thermique.

Ehrenfest et Brillouin avaient bien aperçu cette 
difficulté. Ils ont essayé de la lever en disant 
que, quand un atome émet un rayonnement, celui-ci 
peut être considéré comme de la chaleur et que, par 
suite, quand l'atome n'émet pas, il n'y a pas de 
variation de chaleur. C'est ainsi que s'introduirait 
la notion d'adiabatisme dans la spécification des 
états stationnaires où l'atome n'émet pas. Il me 
paraît certain que cette manière de voir n'est pas 
exacte car, lorsque l'atome émet, il projette au 
dehors un seul photon et cette émission d'énergie 
n'a aucunement le caractère d'une perte de chaleur. 
L'emploi du terme "adiabatique" dans la théorie de 
l'atome paraît donc injustifié. Cette constatation 
crée un certain malaise qui se confirme quand on 
définit des invariants adiabatiques pour des systè 
mes mécaniques extrêmement simples où il semble évi 
dent qu'aucun phénomène thermique n'intervient.
C'est la question que nous allons maintenant étu 
dier.

3. APPLICATION PARADOXALE DE LA NOTION D'INVARIANCE
ADIABATIQUE A DES SYSTEMES MECANIQUES TRES SIM 
PLES.

On a été amené à appliquer la notion d'invariance 
adiabatique à des systèmes très simples ou très gé 
néraux. C'est ainsi, par exemple, que dans leur beau 
traité de Mécanique, Landau et Lifchitz (5) définis 
sent les invariants adiabatiques, en considérant un 
système mécanique quelconque, de la façon suivante : 
"Considérons un système mécanique animé d'un mouve 
ment linéaire fini et caractérisé par un paramètre 
X définissant les propriétés du système lui-même ou 
du champ extérieur dans lequel il se trouve. Suppo 
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sons que sous l'influence de certaines causes exté 
rieures le paramètre X varie lentement, c'est-à-dire 
adiabatiquement, avec le temps. Nous appelons "lente" 
une transformation dans laquelle X varie très peu 
au cours d'une période T du mouvement du système de
sorte que x ^ << X". On peut à juste titre s'étonner

de voir apparaître le mot "adiabatique" dans la dé 
finition d'une évolution purement mécanique où n'in 
tervient aucun élément thermodynamique.

Cet étonnement ne peut qu'augmenter si l'on étu 
die les exemples de systèmes extrêmement simples que 
Léon Brillouin a donnés dans ses livres cités plus 
haut, exemples dont je n'exposerai qu'un seul.

Considérons un pendule constitué par une corde 
traversant un anneau fixe 0 à laquelle est suspen 
due une masse m.

La position de l'anneau, dit 
Brillouin, constitue une liai 
son. Nous la ferons varier en 
déplaçant très lentement cet 
anneau, ce qui modifiera la lon 
gueur du pendule. La période du

pendule T 2tt
l
ï La force

agissant sur l'anneau peut se 
calculer aisément. En effet, la 
tension de la corde est 
T = mg cos9. En composant les 
deux tensions égales, mais de 
directions opposées qui agis 
sent sur l'anneau, on voit qu'il 
reste une composante verticale :

Z = T (1 - cos 9)

et une composante latérale : 

X = T sin 9

Nous supposons l'anneau maintenu par une glissière 
verticale dont les composantes équilibrent la force 
X. Cette dernière est d'ailleurs nulle en moyenne 
pour de petits angles 0. Au contraire, la force ver 
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ticale a pour valeur moyenne :
-2"

Z = T(1 - cos6) = T y- = mg cos8. ^—

Nos oscillations étant supposées de petite ampli 
tude, nous prendrons donc pour cos 0 la valeur 1, et

gT Z
pour y- la valeur , a représentant l'angle maximum 

du pendule avec la verticale.

Mais on a, d'autre part, pour l'énergie de vibra-
a2tion l'expression E = mg£ , ce qui nous permet 

d'écrire :

Z 1 E
2 il

Quand nous déplaçons très lentement l'anneau de bas 
en haut, nous recueillons un travail 

— 1 Ed T = Z dl = r y d£ . Ce travail sera emprunté à l'é-
• a a 1 - ,. dE dT I dînergie du pendule et 1 on aura - —-— = —-— = —•.E E 2 {,

La variation simultanée de la période d'oscillation 
d T 1 (J p

est —- = —r et comme on vérifie aisément la rela-T 2 £

tion = 0, on obtient finalement :
E T

(3) Ex = Cte

d'où l'on conclut en se reportant à la formule (2) 
de Boltzmann que l'évolution lente de ce système 
simple est adiabatique.

J'ai tenu à reproduire le raisonnement d'une admi 
rable clarté donné par Léon Brillouin. Les autres 
exemples qu'il a développés sont tout aussi clairs 
et remarquables.

Mais, ici encore, il est impossible de ne pas 
remarquer la différence si importante qui existe 
entre le système envisagé par Boltzmann qui conte 
nait un très grand nombre de particules en agitation 
thermique et le cas si simple d'un pendule dont le 
fil de suspension a une longueur très lentement va 
riable.



97

En résumé, on est forcément amené à se demander 
comment on peut appliquer à des problèmes mécaniques 
très simples où, en apparence du moins, aucun pro 
cessus de nature thermodynamique n'intervient, la 
notion d'adiabatisme essentiellement liée à l'ab 
sence d'échanges de chaleur. En y réfléchissant, 
on ne peut pas ne pas avoir l'impression que quel 
que chose se cache derrière cet étrange problème.

4. INTRODUCTION DE LA DYNAMIQUE DU GUIDAGE ET DE LA
THERMODYNAMIQUE RELATIVISTE.

La difficulté que nous venons de signaler nous 
paraît imposer l'idée que derrière le mouvement de 
tout système mécanique se dissimule une Thermodynami 
que cachée. Or, c'est là précisément une des idées 
fondamentales que mes réflexions de ces dernières 
années sur la réinterprétation nécessaire de la Méca 
nique ondulatoire dans le sens de mes conceptions 
primitives de 1924-1928 m'ont amené à introduire 
(6) .

Mon hypothèse fondamentale sur la liaison du mou 
vement de la particule et la propagation de l'onde 
est que la particule est le siège d'une vibration 
périodique interne et qu'elle se déplace dans son 
onde, à laquelle elle est en quelque sorte incor 
porée, de façon à rester constamment en phase avec 
elle. C'est la théorie du guidage de la particule 
par son onde. Si alors on écrit l'expression de 
l'onde qui transporte la particule sous la forme

y h
complexe ae h où h = la variation de la phase

au point M où se trouve la particule est

d<p = ir^ dt - “ d£, d£ étant l'élément de longueur
O t O X-

de la trajectoire de la particule qui, d'après la 
théorie du guidage, est dirigé suivant la normale à 
la surface d'égale phase au point M. Si la particule

. - dî,est animee de la vitesse v = on a donc :

dip “ (!ï - ü v)dt m c
Mais lfénergie de la particule est W = hv= -----

/r^82

(4)
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. - . 9^et sa quantité de mouvement est p =
/ï^B2

8 = —. Dans ces formules, m0 est la masse propre de

la particule en mouvement qui, dans ma théorie, est 
la somme de sa masse propre normale et des contribu 
tions qu'apporte à la masse propre l'intervention du 
potentiel quantique et éventuellement des potentiels 
extérieurs (7). L'équation (4) devient alors

d •P = (-
m v o

-) d t . Si, dans le système de rêfé-
/t^b2 /t^b2'

rence où l'onde est stationnaire et la particule 
immobile, la fréquence interne de la particule est 
v0, dans le système où elle est en mouvement avec la

vitesse v sa fréquence sera v0 /1-B2 d'après la for 
mule de transformation relativiste de la fréquence 
d'une horloge et l'on a pour la phase interne de la

particule d'P ^ = m0c2 /1 ~B2 . Le principe de l'accord

des phases qui conduit à poser d'f = d<f> ^ nous donne :

(5)
/t^b2

/T-b2
/l^B2

Cette formule n'est pas autre chose que la formule 
fondamentale de la Thermodynamique relativiste d'après
laquelle l'énergie totale de la particule en mouvement 

2mo c
est égale à la somme de la chaleur qu'elle con-

^ 1 -B2 2 ___ mcv
tien t m c‘ 1 ï - B 2 et de l'énergie de mouvement ------.

o n-- 2/1 -g
Cette dernière grandeur me paraît être la véritable 
énergie cinétique de la particule : elle diffère de
l'énergie m0c2(y4yr -

on arrête la particule 
Relativité, on nomme, 
cinétique (8).

1) qui est "récupérable" quand

et qu'en théorie usuelle de la 
à tort pensons-nous, l'énergie

Les considérations qui précèdent ont l'avantage de 
montrer clairement le lien étroit qui existe entre la 
formule (4) exprimant le guidage de la particule par 
son onde et la formule fondamentale (5) de la thermo 
dynamique relativiste.
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Avant d'introduire la Thermodynamique cachée des 
particules, il me paraît utile de rappeler encore 
quelques points de l'histoire des théories quanti 
ques de l'atome. Nous avons déjà rappelé que Bohr, 
dans sa théorie primitive de l'atome d'hydrogène, 
admettait que l'électron décrivait des trajectoires 
circulaires ou elliptiques autour du noyau. Cela 
conduisait à admettre que seules étaient stables 
les trajectoires électroniques pour lesquelles l'in-

tégrale ?p dq prise le long de la trajectoire était 
égale à nh avec n = 1, 2, 3, ... L'intervention
dans cette formule des nombres entiers avait dès 
mes premiers travaux sur ce sujet en 1923-24 attiré 
mon attention. J'avais, en effet, remarqué que les 
nombres entiers interviennent fréquemment en théorie 
des ondes, notamment dans les phénomènes d'interfé 
rences, et ceci m'avait amené à penser qu'il fallait 
associer au mouvement de la particule la propagation 
d'une onde. Mais, en 1926, Schrodinger avait déve 
loppé sa belle théorie de l'onde iJj en excluant toute 
localisation de la particule dans l'onde et il avait 
exprimé la quantification des états atomiques sta 
tionnaires sans aucune intervention des invariants 
adiabatiques qui, d'ailleurs, dans sa théorie 
n'avaient plus de sens.

Or, ma théorie du guidage de la particule par 
l'onde, esquissée dans mes premiers travaux de 1923 
à 1927 et reprise par moi depuis une vingtaine 
d'années, me permet de faire à nouveau intervenir 
les invariants adiabatiques. En effet, elle montre 
que dans le cas de l'atome d'hydrogène, l'électron 
atomique peut soit rester immobile, soit se déplacer 
sur une trajectoire circulaire centrée sur un axe 
passant par le noyau. Nous retrouvons ainsi la con 

dition fp dq = nh parce qu'elle exprime l'uniformité 
de la phase le long de la trajectoire fermée, mais 
maintenant le nombre n peut prendre non seulement 
les valeurs entières 1, 2, ..., mais aussi la valeur
n = 0 dans le cas où la trajectoire se réduit à un 
point. Ainsi les états se trouvent, dans cette inter 
prétation, de nouveau caractérisés par des valeurs

égales à nh d'invariants adiabatiques du Type yp dq 
comme l'ancienne théorie des quanta.



5. RESUME DE LA THERMODYNAMIQUE CACHEE DES PARTICU 
LES .

La théorie du guidage de la particule par son 
onde implique qu'en dehors du cas limite et jamais 
strictement réalisé de l'onde monochromatique plane, 
la trajectoire de la particule est une ligne courbe 
le long de laquelle le potentiel quantique et par 
suite la masse propre varient de sorte que l'on a 
affaire à une Dynamique à masse propre variable.

Mais une telle image est encore certainement 
trop simple et il est nécessaire de la compléter en 
admettant que ce mouvement régulier est constamment 
perturbé par de brusques variations de la masse 
propre m^, ce qui impose à la particule une sorte 
d'agitation brownienne superposée au mouvement ré 
gulier. En effet, s'il n'en était pas ainsi, on ne 
pourrait comprendre comment la probabilité de la 
présence de la particule dans un élément de volume 
dT est donnée à chaque instant par la quantité 
| I 2 d T , c'est-à-dire par le carré de l'amplitude de 
l'onde, conformément au principe de Born qui est 
certainement exact. De plus, nous avons vu plus 
haut que, dans le cas de l'atome d'hydrogène, la 
théorie du guidage prévoit des états stationnaires 
où l'électron est immobile et là encore on ne voit 
pas comment la probabilité en a pourrait se réali 
ser.

Puisque l'énergie m0c2 peut être assimilée à une 
chaleur interne contenue dans la particule, les va 
riations continues ou aléatoires de la masse propre 
doivent correspondre à des variations de la chaleur 
interne. Ceci amène à l'idée que la particule, même 
quand elle nous apparaît comme isolée, doit être en 
contact permanent avec un grand réservoir de chaleur 
constituant un thermostat caché.

En appliquant aux échanges continuels d'énergie 
calorifique entre la particule et le thermostat 
caché les conceptions de la Thermodynamique statis 
tique, on peut attribuer à l'état de la particule 
une certaine entropie correspondant par la formule 
de Boltzmann S = k log P à la probabilité de cet 
état. L'on est ainsi amené à établir entre l'entro 
pie et la grandeur mécanique action qui figure dans 
le principe de moindre action une relation du plus
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grand intérêt et à démontrer que le principe de moin 
dre action de la Mécanique n'est qu'un aspect du 
principe thermodynamique général de l'augmentation de 
l'entropie.

Je me contente de donner ce résumé succinct de 
la Thermodynamique cachée des particules que j'ai 
développée depuis une dizaine d'années en renvoyant 
pour une étude plus complète à l'endroit indique de 
la bibliographie (6).

6. INTERPRETATION DE L'INVARIANCE ADIABATIQUE PAR
LA THERMODYNAMIQUE CACHEE DES PARTICULES.

Je veux maintenant montrer comment l'introduction 
de la Thermodynamique cachée des particules permet 
de comprendre pourquoi la notion thermodynamique 
d'adiabatisme peut s'introduire dans l'étude de sys 
tèmes mécaniques très simples.

Considérons un système mécanique animé d'un mou 
vement périodique de période T et d'énergie W, T et 
W étant très lentement variables à l'échelle du 
temps de façon que le produit WT reste constant. Ce 
sont là les conditions imposées aux systèmes aux 
quels la notion d'invariance adiabatique est appli 
cable.

Si 6 désigne la variation très lente de l'évolu 
tion du système, la formule (5) nous permet d'écri 
re :

f T
6 Wd t 

0
6

T
Qdt +

0

fT + +
6 p.vd t

0

= 6 Qdt l Pi dqi
0 i 1

Comme par hypothèse Wx est constant, on a 
■T _

6 Wdt = ô(Wt) = 0. Si, de plus, Q est constant, 
0
■T _

6 Qdt = ôQt = 0 et nous aurons alors :

ï Pi = 0
i

0



Mais quand Q est constant, l'évolution du système 
est, par définition, adiabatique et, la grandeur

$ £ p. dq. ne variant pas, elle peut être qualifiée 
i

d'invariant adiabatique. L'explication cherchée est 
ainsi obtenue.

Nous pouvons en tirer la conclusion suivante. 
Puisque le mouvement adiabatique peut être consi 
déré à la fois comme un mouvement pendant lequel 
l'Action ne varie pas et comme un mouvement pendant 
lequel l'Entropie reste constante, nous pouvons 
énoncer la conclusion suivante : "Puisque les deux 
définitions du mouvement, l'une dynamique et l'au 
tre thermodynamique, peuvent coïncider, il est né 
cessaire que l'Entropie et l'Action soient intime 
ment reliées l'une à l'autre". Et nous retrouvons 
ainsi l'une des idées les plus importantes de la 
Thermodynamique cachée des particules résumées dans 
le précédent paragraphe.

Nous préciserons cette dernière idée de la façon 
suivante. Conformément à ce qui est exposé dans mon 
livre récent (6), on doit écrire la relation entre 
l'entropie S et l'action A de la façon suivante :

avec A
= f - m0 c2 -J 1 - g2 dt = 

J n
P dq - W dt

d'après la relation (5), d'où pour la variation pen 
dant un cycle de durée :

fis
k

I Pi dq. -

puisque fi(Wx) = 0. Donc si ô

6 (WT) 

T

0
ï P ■ dq. =

o ! Pi ^

0, on a

fis = 0. La variation très lente du mouvement s'opère 
donc à entropie constante, c'est-à-dire sans échange 
de chaleur. Elle est donc adiabatique.

Plusieurs points de l'exposé fait dans le pré 
sent travail demanderaient sans doute à être appro 
fondis, mais les conclusions que j'en tire me sem 
blent bien établies.
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Exposé
sur la masse propre du photon

Dans ma thèse de Doctorat, j'ai introduit pour la 
première fois l'idée que la masse propre du Photon, 
bien qu'extrêmement petite, n'était pas rigoureuse 
ment nulle. Pourquoi l'ai-je fait ? C'est parce que 
je cherchais à étendre à toutes les particules maté 
rielles l'idée de la coexistence des ondes et des 
particules introduite en 1905 par Einstein dans sa 
théorie des "quanta de lumière" ou "photons". Attri 
buer aux photons une masse rigoureusement nulle, 
c'était créer une différence capitale entre la théo 
rie des photons et celle des autres particules, ce 
qui était inconciliable avec la tentative que je dé 
veloppais. Dès cette époque, je m'étais rendu compte 
que, pour n'être pas en contradiction avec des faits 
physiques indéniables, la masse propre du photon de-

. -s *“4 5vait etre au plus égalé à 10 gramme, mais pouvait
être beaucoup plus petite. J'avais ensuite montré en 
détail qu'une série de phénomènes optiques bien 
connus, tels que les diverses sortes d'effets Doppler 
ou la pression de radiation, pouvait se retrouver 
sans modifications perceptibles en appliquant aux 
photons de masse non tout à fait nulle des calculs 
de mécanique très classiques.

On peut donner un argument très sérieux en faveur 
de l'existence d'une masse non nulle du photon. Si

M ^ c 2
l'on écrit l'équation -----  = hv, la valeur du pre-

/Pë2

mier membre quand y = 0 e t 6 = 1 est indéterminée 
alors que le second membre a une valeur parfaitement



précise pour une onde de fréquence V . On ne peut pas
. ^oc2 . .

attribuer au quotient -----  une valeur déterminée
/ïqp

par la règle de L'Hôpital parce que y0 est une cons 
tante tandis que g tend vers 1. Il faut aussi remar 
quer que, si E est une grandeur extrêmement petite, 
mais non nulle, la différence e-0 est extrêmement pe-

£tite tandis que le quotient -jj est infini.

Ce qui achève de rendre acceptable que, pour le 
photon libre, la masse propre peut ne pas être rigou 
reusement nulle, c'est que, dans beaucoup de cas, la 
masse propre du photon peut prendre des valeurs rela 
tivement élevées. Je m'en était bien aperçu en écri 
vant mon livre "Problèmes de propagation guidée des 
ondes électromagnétiques" (pages 34 et 35). Quand la 
fréquence de l'onde électromagnétique qui se propage 
dans le guide est très voisine d'une des fréquences de 
coupure, l'énergie se déplace dans le guide avec une 
vitesse extrêmement petite ou nulle. On doit alors

écrire pour la masse propre y du photon yo = ce
c2

qui donne pour une onde centimétrique de fréquence 

1010 hertz :

hy i o_1* 7 i ni » , „-3 7
y = — =10 .10 cgs = 10 gramme0 9

C z

ce qui, pour le photon, est une masse énorme.

De même, dans un milieu réfringent tel que le verre
3où l'indice de réfraction n est de l'ordre y et où, la 

dispersion étant sensiblement nulle, la vitesse V de

à la vitesse V de phasel'énergie peut être prise égale 
c 2 yoc2
— = — c. On a alors -----  = hv, ce qui donne

-47/^ 
= 10 . 1 O1y0 = 10 V = 10 .10 = 10 gramme, masse énorme

pour le photon. L'idée que la masse propre y0 du pho 
ton n'est jamais tout à fait nulle n'a donc rien de 
paradoxal puisque cette masse propre peut prendre dans 
certains cas une valeur relativement élevée.



REPONSE A DES OBJECTIONS.

Nous allons maintenant examiner certaines objec 
tions qui ont été faites à l'hypothèse d'une masse 
propre non nulle du photon libre.

On a dit que a étant par définition la vitesse 
de la lumière, le photon doit nécessairement avoir 
la vitesse a. Cette objection ne tient pas. Il 
suffit, pour l'écarter, de définir o comme la vi 
tesse limite de l'énergie. Les photons ont une vi 
tesse très voisine de cette limite, d'autant plus 
voisine que leur fréquence est plus élevée.

Une autre objection, d'apparence plus sérieuse, 
est la suivante. La formule du rayonnement noir de 
Planck résulte d'un raisonnement où l'on admet que 
les ondes électromagnétiques sont rigoureusement 
transversales. Or, on peut facilement voir, à l'aide 
d'équations que nous étudierons plus loin, que, si 
l'on admet l'existence d'une masse non nulle du pho 
ton, les ondes électromagnétiques ont une composante 
longitudinale. Ceci ne va-t-il pas conduire à une 
loi du rayonnement noir qui, s'écartant de celle de 
Planck, ne serait plus en accord avec l'expérience ? 
La réponse, c'est que, la masse propre du photon li 
bre étant extrêmement petite, l'onde longitudinale 
qui en résulte est si faible que la démonstration de 
Planck n'en est pas réellement affectée. On trouvera 
cette démonstration dans mon livre "Mécanique ondula 
toire du photon et théorie quantique des champs" pp. 
54 et 55. Schrodinger a d'ailleurs donné ensuite une 
démonstration équivalente sans avoir connaissance de 
la mienne.

Les formules que nous étudierons tout à l'heure 
montrent que le potentiel créé à une distance r par

e
une charge électrique de valeur e est non pas -, mais
e -k r , h 1 O-37 . , . T ,
-e o avec k = --- ~ — — c.g.s. L influence de
r o h c hH o M o

— k irl'exponentielle e 0 ne pourrait se manifester qu'à 
des distances si grandes de la charge électrique 
qu'une semblable vérification est sans doute impossi 

ble. L'adjonction au terme - dans l'expression du po 

tentiel de l'exponentielle 
constituer une difficulté.

. - k. r
ne semble donc pas
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A la page 60 du livre "Mécanique ondulatoire ... 
cité plus haut, on trouvera une étude de la trans 
formation relativiste de la vitesse qui permet de 
lever d'autres objections.

ETUDE MATHEMATIQUE DE LA THEORIE DU PH0T0N A 
MASSE PROPRE NON NULLE.

Je commencerai par rappeler comment s'est intro 
duit en Physique théorique, il y a une cinquantaine 
d'années, le "dogme" de l'invariance de jauge qui 
conduit à refuser toute existence physique réelle 
aux potentiels électromagnétiques.

Les équations classiques de l'Electromagnétisme 
dans le vide s'écrivent :

<•>

i || = rot H

d i v H = 0

d i v É 0

ce qui s'écrit dans le formalisme relativiste sous la 
forme :

9F 9f
(2)

avec F

yv 
9x,

0
yv

9x
= 0

14 Ex ’ F2 4 Ey ’ F = E et F3 4 g 2 3 V F31 = V
F, , = H .

1 2 Z

Mais il était d'usage d'introduire aussi les poten 

tiels électromagnétiques A et V (potentie1-vecteur et 
potentiel scalaire) et de poser Aj = A , Aj = A , = A z ’

= V. Pour des raisons de symétrie relativiste, Lorentz
a imposé aux potentiels la relation :

9A
l rt \l -*■

(3) 1 9V f n— ■=— + div A = 0 ou „ 
c 91 9x

ü = 0

mais cette relation était postulée indépendamment des 
équations de Maxwell (1) ou (2). Or, si nous considé 
rons une fonction d'espace-temps F(x ) telle que

□ F = ( i 8

c2 91:
A)F = 0 ou 3xy S 0, on a

9_
9x

9FAy + ] = 0. On peut en conclure que l'équation



(3) de Lorentz ne définit les potentiels qu'au gra 
dient près d'une fonction d'espace-temps de Dalembev- 
tien nul. Donc 1'E1ectromagnétisue classique ne per 
met pas de définir les potentiels d'une façon univo 
que. C'est de là que l'on tirait le "principe de l'in 
variance de Jauge" qui enlevait aux potentiels le 
caractère de grandeurs physiques bien définies.

La seule manière de leur rendre ce caractère pa 
rait être d'introduire les potentiels dans les équa 
tions de base de l'Electromagnétisme (1) ou (2). Les 
potentiels étant des grandeurs à un seul indice, 
on ne peut pas les introduire d'une façon linéaire

3F
dans les équations 3x

^ - 0, 

P 3F
e crivant la place de yv

mais on peut le faire en 
9F

= 0,-
JJV k A où k doit 

D3xv ’ 8xv
être une grandeur très petite sans quoi on s'écarte 
rait notablement des équations de Maxwell, ce qui ne 
peut pas être exact. Les équations de l'Electromagné 
tisme ainsi complétées s'écrivent :

(4) 

ou ,

3F yv 3F

3x.
= 0 yv

3x
P v

en notations classiques

k o A y

(4')
— 4^ = rot E div H = 0
c 31

-k
13E -*■ * o- -Si = rot H - k*A div E = - k^V
c 31 » o

et l'on peut voir facilement que k0 s'exprime en fonc 
tion de y par la relation :

(5) h y c

Alors l'invariance de jauge disparait et les poten 
tiels deviennent des grandeurs physiques réelles au 
même titre que les champs, bien que dans la plupart 
des cas leur intervention dans les équations soit 
pratiquement négligeable en raison de la très faible 
valeur de la masse du photon libre yQ.

La réalité physique des potentiels parait aujour 
d'hui bien établie par les expériences récentes de



MM. Imbert et Ricard. Je n'exposerai pas ici ces 
expériences, mais je ferai remarquer que, si les 
potentiels ont des valeurs bien définies, il est 
impossible de ne pas les introduire dans les équa 
tions de Maxwell. En effet, sans cela, les valeurs 
physiques des potentiels ne seraient pas reliées 
aux valeurs physiques des champs, ce qui est impos 
sible.
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Sur l’incorporation des potentiels 
dans la masse propre 

des particules et application

Autrefois, en étudiant la Mécanique classique, 
j'avais été intrigué par le fait suivant. Considé 
rons deux particules qui interagissent et soit 
Vi2 = V21 leur potentiel d'interaction. Si T, et T2

sont les énergies cinétiques des deux particules, il 
est naturel de définir leurs énergies individuelles 
en posant Ej = Tj + V12 et E2 = T2 + V12- Il semble 

rait donc que l'énergie du système des deux particu 
les devrait être E = Ej + E2 = T1 + T2 + 2V12. Or,

cette formule est inexacte et l'on doit poser 
E = Tj + T2 + V12. Naturellement, pour un système de

N particules, on retrouve la même difficulté carl'é-
N

nergie de ce système est E = £ T. + £ V. . et non
N 1 1 (ij) 1J

Pas E = l T. + 2 l V .
1 (ij) J

A la fin de sa vie, Léon Brillouin a publié un li 
vre intitulé "Relativity reexamined" (') qui est 
plein d'idées intéressantes, mais souvent seulement 
esquissées. Dans cet ouvrage, il a proposé de répartir 
l'énergie d'interaction entre les constituants d'un 
système, ce qui lèverait la difficulté signalée plus 
haut. Mais il n'a précisé cette idée que dans le cas 
particulier de deux corps de même masse.

Dans une Note aux Comptes Rendus ( ), j'ai envisagé 
la solution générale suivante de ce problème. Consi 
dérons d'abord deux particules de masses M^ et M^



soumises à un potentiel d'interaction V12 = V2l. Les 
forces qu'elles subissent étant égales et opposées, on 
a :

(I) - grad V = grad V112 2 12

Si nous voulons répartir l'énergie potentielle 
entre les deux particules, je propose d'attribuer à

m2
la première particule l'énergie —----— V et à la

M1 + M2 12

seconde l'énergie —---- rr- V, „ . Alors, si M, >> M, , laM + M w ^ 11 2
presque totalité du potentiel est à attribuer à la 
première particule et, si >> , elle est à attri 

buer à la seconde particule. Dans le cas particulier 
où Mj = M2, l'énergie potentielle est partagée égale 

ment entre les deux particules comme l'avait bien vu 
Léon Brillouin.

Si Pj = MjVj et p2 = MjV2 sont les quantités de 

mouvement des deux particules, on a :

dp i
<2> — - 

dh-
jt

TvT gradiv.2+1 2 
M.

M +M„ 1 2
graVi2+ m-îït

M +M gradlV12 
1 2
M,

gra3. V.

= - gra

grac

3 v

En vertu de (1), on peut en déduire que ^ ( pt+p2)=0, 
c'est-à-dire que :

(3) Mv + M v =Cte
Il 2 2

On retrouve ainsi la propriété essentielle du cen 
tre de gravité d'un système, dont le mouvement n'est 
pas influencé par les forces internes, d'avoir une 
vitesse constante ou nulle.

Les mêmes considérations s'étendent aisément à un 
système de N particules dont les énergies d'interac 
tion V.. = V.. sont réparties entre les particules en 

1J J ^ M.
attribuant à la ie particule l'énergie —---V.. et

r ° M. + M . 1 1
M. i 1

à la j 1 énergie — - V... Les calculs sont indi-
i J 1J
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qués dans la Note aux Comptes Rendus citée ci-dessus 
et je ne les reproduis pas.

Nous sommes ainsi parvenus à l'idée qu'en Mécani 
que classique l'on doit toujours incorporer dans la 
masse de toute particule une partie des potentiels 
créés par la présence d'autres particules et, comme 
je l'avais brièvement indiqué à la fin de ma Note, 
il en est de même pour la masse propre en Mécanique 
relativiste. Au cours du mouvement d'une particule, 
sa masse propre sera donc en général variable puisque 
le potentiel qui agit sur elle sera variable. Et, 
comme le mouvement d'une particule résulte des va 
riations de ce potentiel, il s'ensuit que ce mouve 
ment résulte d'une Dynamique à masse propre variable, 
idée qui dans mes récents travaux m'est apparue comme 
fondamentale.

Dans ce domaine de recherches, bien des questions 
restent à étudier. L'une des moins difficiles consiste 
à étudier le cas où la particule serait soumise non 
seulement à un potentiel scalaire, mais aussi à un 
potentiel vecteur. On s'attend à ce que, tandis que 
le potentiel scalaire s'introduit dans la masse pro 
pre figurant dans l'énergie de la particule, le po 
tentiel vecteur s'introduise dans l'impulsion de la 
particule. Il y aurait lieu alors de distinguer deux 
masses propres différentes, la masse propre énergéti 
que et la masse propre impulsionnelle. Un calcul ra 
pide me semble indiquer que ces deux masses sont éga 
les, mais il y aurait lieu de vérifier ce résultat.

Dans ce qui précède, nous avons implicitement 
supposé que les interactions entre les particules se 
propagent instantanément de l'une à l'autre, ce qui 
est admissible si les particules se déplacent assez 
lentement. Mais, si les particules se déplacent très 
rapidement, les interactions ne peuvent se transmettre 
de l'une à l'autre qu'en un temps fini. Léon Brillouin, 
qui avait bien vu cela, avait supposé qu'il fallait 
alors tenir compte de la durée non nulle de la trans 
mission d'énergie entre particules. Il lui semblait 
que, dans le cas des interactions électromagnétiques, 
ce transport d'énergie devait se faire par échange de 
photons. Comme il ne semble y avoir aucune raison pour 
ne pas étendre toutes les considérations précédentes 
aux interactions gravifiques, il y aurait alors à 
considérer des transports d'énergie potentielle par 
gravi tons.



Nous arrêterons là l'exposé de ces idées généra 
les qui auraient certainement besoin d'être bien 
approfondies et nous allons maintenant montrer 
comment l'incorporation des potentiels de gravita 
tion dans la masse propre permet de prévoir exac 
tement des phénomènes dont l'existence physique 
est expérimentalement prouvée.

Les phénomènes dont il s'agit sont l'effet Moss- 
bauer et le déplacement vers le rouge des raies 
émises par le Compagnon de Sirius. On les considère 
en général comme apportant des preuves en faveur de 
la théorie de la Relativité généralisée. Nous allons 
montrer qu'on peut les prévoir par la simple incor 
poration des potentiels de gravitation dans la masse 
propre du photon.

Considérons d'abord l'effet Mossbauer. Dans ce 
phénomène, on mesure la fréquence d'une raie émise 
par un atome qui est incorporé dans un corps solide, 
ce qui évite tout effet de recul. Si v est la fréquen 
ce émise par l'atome à une hauteur H au dessus du sol 
et v + 5v sa fréquence quand il est à la hauteur H + 6h 
au-dessus du sol, la théorie de la Relativité généra 
lisée nous dit que l'on doit avoir :

(A)
6 v 
—v

gm6h
!„!c R

Dans cette formule, G est la constante de la gravi 
tation, M et R la masse et le rayon de la Terre, ÔH 
la variation de hauteur au-dessus du sol dans les deux 
positions, a la vitesse limite de l'énergie. En unités 
c . g.s , on a :

G = 6,66.10
222 —28 +27

10 ; M = 6,6.10

R = 6.1 O8.

La formule (4) nous donne alors une valeur de 

en bon accord avec le résultat expérimental.

6 V 
V

Mais on peut aussi obtenir la formule (4) en incor 
porant le potentiel de gravitation dans la masse pro 
pre du photon. Si nous désignons ici par m la masse 
du photon en mouvement quand la fréquence est V et 
par m + 5m cette masse quand la fréquence est V + ôv , 
nous devons poser :



1 I 4

(5)
6V _ ^5m
V m

Si nous incorporons dans la masse du photon la

fraction -——  du potentiel de gravitation, c'est-
M + m

à-dire sensiblement la totalité de ce potentiel 
puisque M >> m, nous obtenons d'après (5) :

(6) 3v
v

GM 6H

le signe - résultant du fait que le potentiel de gra 
vitation diminue quand H augmente.

Passons maintenant à un autre effet prévu égale 
ment, mais d'une manière moins précise, par la théo 
rie de la Relativité généralisée : le déplacement 
vers le rouge des raies émises par le Compagnon de 
Sirius. Cette étoile est une "naine blanche" ayant 
un volume relativement petit, mais une très grande 
densité. Sa masse est sensiblement égale à celle du

Soleil, soit 2 . 1 0 3 3 grammes environ, mais son rayon 
est seulement le huit-millième de celui du Soleil, le 

quel est égal à 7.1010 centimètres.

Considérons un atome qui, s'il était à une distan 
ce infinie du Compagnon de Sirius, émettrait une raie 
de fréquence spectrale v. Si cet atome se trouve à 
la surface de cet astre, il émettra une raie de fré 
quence v + <5v. En incorporant dans la masse du pho 
ton le potentiel gravifique qui s'exerce à la sur 
face de l'astre, on voit que l'on est conduit à la 
formule :

(7) üdiSv
v

GM
„ 2 r

GM J_
„2 R

où M et R sont la masse et le rayon du Compagnon de 
Sirius. Avec les valeurs numériques indiquées plus 
haut, nous trouvons en unités c.g.s.

2_j_2 2 ,„-2i 2.1 O3 3
3 '(8) 6 v 

v 1 0
8.1 O-3.7.1 O1

=-2,8.10

Or, 1 ’

fréquence

observation a prouvé que le déplacement de 

— correspond sensiblement à un effet



Doppler de 80 kilomètres par seconde, c'est-à-dire 
que :

(9)
&\>
v = - 2,7.10

4

en bon accord avec (8). Et, ici encore, nous avons 
pu retrouver cet accord sans avoir recours aux 
conceptions de la Théorie de la Relativité généra 
lisée.

Dans l'exposé précédent, nous avons rappelé que 
l'expérience de Pound conduit à la conclusion sui 
vante : la fréquence d'un photon qui s'élève d'une 
hauteur H à la surfacd de la Terre subit un déplace 
ment vers le rouge donné par :

(10)
6 v 
v

où g est l'accélération de la 
alors facile de voir que cette 
ment la même que la formule :

... <5v GMfiH
(4) — = - ----V 2- 2

pesanteur. Il 
formule est

est
exac te-

que nous avons obtenue plus haut pour interpréter 
l'effet Mossbauer. En effet, la formule fondamentale

de la Dynamique nous donne = my, d'où après sup-
R ^

pression de m :

(11)
GM

R2
g

ce qui montre l'identité des formules (4) et (10).

Finalement, la question qui se pose est la suivante 
"Puisque deux des quatre vérifications de la théorie 
de la Relativité généralisée se trouvent expliquées 
par la simple incorporation du potertiel gravifique 
dans la masse, n'en serait-il pas de même des deux au 
tres vérifications de cette théorie, c'est-à-dire la 
déviation de la lumière passant au bord du soleil et 
le résidu inexpliqué par la Mécanique céleste classi 
que du déplacement du périhélie de Mercure. Si l'on 
parvenait à le démontrer, il ne resterait aucune preu 
ve de la nécessité d'introduire une géométrie non- 
euclidienne dans la structure de 1'espace-temps. La 
question vaudrait la peine d'être étudiée de près.



Dans mon livre "Optique ondulatoire et corpuscu 
laire (x), j'ai étudié la propagation d'une onde de 
la Mécanique ondulatoire dans le cas où il existe, 
en plus d'un potentiel scalaire V, un potentiel-

vecteur A qui agit sur la particule en mouvement. 
J'ai montré que, dans ce cas, la propagation de 
l'onde est anisotrope et que, comme dans le cas de 
la propagation de la lumière dans un milieu 
optiquement anisotrope, cette circonstance oblige à 
considérer une vitesse de phase dirigée suivant

la normale à l'onde et une autre vitesse V^, vitesse 
de phase comptée le long du rayon.

On démontre alors que le point P étant le point 
de départ du rayon, la surface d'onde est un ellip 
soïde de révolution autour de la direction OZ du po-

tentiel vecteur A tandis que la surface des vitesses 
normales est la podaire de cet ellipsoïde.

Sur la figure PN est 
la normale à l'onde émi 

se par P et PR est le 
rayon correspondant.

L'angle NPR est nommé 'P

et l'angle RPZ sera 
nommé 6. Sur cette figure, 
on lit la relation

N V c o s 'P . K

L'incorporation des potentiels dans la masse pro 
pre donne :

(12)

car V

A o = 0.

W =

_Vo_

/T=g:

/T^2

e t A =

+ V =

Sv,

/r-

/H2
avec m = m +o o

On en tire 

(13) A2 = V2 - V2 
R R OR

BR vor

^R

(*) page 56.
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d'où

(14)
y B

A OR RA„ =------
R r~i—2*1 -fi

La formule (35) de la page 57 du livre cité plus 
haut donne :

h
PR = r

05)

d'où : 

(16)

!iVr_ + i A "°’r_ + i !r V

:2 c R " c /T^l^ 1 - B
R

TU V V VovR v OR R
---------- +---------- —

’o \

^R c2/T^r

m: = m„ + OR

ce qui montre mj = m0.

Il est d'ailleurs aisé de démontrer que la formule 
(15) est en accord avec le principe que la particule 
se déplace dans son onde de façon que sa vibration in 
terne reste constamment en phase avec celle de l'onde
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Processus forts 
et états transitoires

1. SUR LA NATURE DES TRANSITIONS QUANTIQUES.

Dans l'importante contribution qu'il a apportée à 
un livre paru en 1953 (’), Albert Einstein a intro 
duit la très intéressante idée que, quand se produit 
une transition quantique avec échange d'énergie et de 
quantité de mouvement entre deux particules, il inter 
viendrait "quelque chose ayant une structure atomique 
au même titre que l'électron lui-même". Son idée était 
qu'il se passait alors quelque chose de très important 
impossible à décrire par le formalisme quantique usuel 
parce que ce formalisme, purement ondulatoire et igno 
rant la localisation des particules, ne peut pas tenir 
compte de leur structure et de la possibilité des 
"chocs" qui pourraient se produire entre elles.

Cherchons à préciser le sens du texte, peut-être 
un peu imprécis, d'Einstein. Considérons un atome 
d'hydrogène qui se trouve dans un état stationnaire 
initial représenté par l'une de ses fonctions propres 
\p^. Une particule chargée qui passe à proximité de

l'atome perturbera l'état de l'atome et cette pertur 
bation sera représentée par le potentiel coulombien

G
en - de la particule incidente. Si la perturbation 

est faible, elle aura pour effet de transformer le ip. (*)

(*) Publié en anglais dans Foundations of Physias, 4
n° 3, p. 221, 1974.



initial en 

pour j ^ i .

^ = ÏC.ip. avec C. ~ 1 et les C. très petits 
j J J i J

On peut dire que la perturbation diminue

un peu la composante <J^ et fait apparaître de très

faibles composantes ifj • Or, la théorie actuelle nous

apprend qu'à la fin de l'interaction faible, l'atome a

une probabilité |C^|2 presque égale à l'unité d'être

resté dans son état initial et des probabilités très

faibles IC.I2 d'avoir passé dans l'un des états é..
J _ . J

Mais les variations Wj - de l'énergie de l'atome

qui correspondent à des transitions très peu proba 
bles peuvent être grandes. Le paradoxe signalé par 
Einstein consiste alors en ceci : comment peut-il se 
faire qu'une interaction très faible puisse dans cer 
tains cas provoquer finalement un important transfert 
d'énergie ?

D'ailleurs, ce que nous venons de dire au sujet 
de l'interaction d'une particule et d'un atome peut 
se généraliser à tous les cas d'interactions entre 
particules ou ensembles de particules qui se termi 
nent par un important échange d'énergie et de quanti 
té de mouvement. Dans tous les cas de ce genre, il 
faut qu'il y ait d'abord recouvrement des ondes des 
particules dans une même région de l'espace. Les par 
ticules se trouvant alors dans un même volume, il 
peut à un moment donné se produire un "contact" en 
tre les très petites régions qui constituent les par 
ticules. L'idée d'Einstein était certainement que 
c'est ce "contact", ce "choc", qui peut permettre un 
brusque échange d'énergie et de quantité de mouvement 
entre les particules. Mais l'expression même de choc 
implique que les particules sont localisées dans 
l'espace. La Mécanique quantique usuelle, utilisant 
uniquement des formalismes ondulatoires qui ne con 
tiennent aucun élément permettant de définir la posi 
tion d'une particule ne peut évidemment envisager 
aucun processus de choc. Le faible potentiel pertur 
bateur qui figure dans les équations d'ondes usuelles 
ne peut modifier que le "processus faible" de l'évo 
lution de l'onde en y faisant apparaître des compo 
santes nouvelles. Il ne peut pas provoquer, comme 
l'a très justement remarqué Einstein, le "processus 
fort" qui intervient lors du brusque transfert d'une 
énergie finie.
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Jusqu'ici nous nous sommes exprimés dans le lan 
gage de la théorie quantique usuelle. Nous allons 
maintenant reprendre la question en nous plaçant au 
point de vue de la théorie de la double solution. 
Rappelons les bases de cette théorie. La véritable 
onde physique que j'appelle l'onde V serait une onde 
de très faible énergie qui ne pourrait pas se mani 
fester directement par des phénomènes observables. 
Mais cette onde pourrait transporter une ou plusieurs 
particules qui constitueraient au sein de l'onde de 
très petites régions de grande concentration de 
l'énergie. Ces particules posséderaient une fréquen 
ce interne qui permettrait de les assimiler à de pe 
tites horloges et elles se déplaceraient dans l'onde 
V de façon à rester constamment en phase avec elle.
Il en résulte que les particules possèdent un mou 
vement régulier, le mouvement de guidage, qui leur 
est imposé par la propagation de l'onde. A ce mouve 
ment régulier se superpose un mouvement aléatoire de 
nature brownienne résultant probablement d'échanges 
incessants et aléatoires d'énergie entre la particule 
et un milieu caché, le milieu subquant i que . L'onde ip 
à signification statistique, mais sans réalité phy 
sique, qui est usuellement considérée en Mécanique 
quantique , est définie à partir de l'onde V par la re 
lation ÿ = Cv où C est un facteur de normalisation

N où N est le nombre de particulestel que

portées par l'onde. Je ne m'étendrai pas davantage 
sur les conceptions de la théorie de la double solu 
tion dont on trouvera ailleurs ( ) le développement, 
mais je veux insister sur une idée importante. Quand 
l'onde V, qui est pour nous une réalité physique, 
est formée par une superposition de composantes mo 
nochromatiques, ces composantes n'ont pas une exis 
tence séparée indépendante : seule la superposition 
est une réalité physique. Nous verrons plus loin 
l'importance de cette remarque.

Avec les conceptions de la théorie de la double 
solution, nous sommes amenés à dire que, si une par 
ticule localisée se trouve au cours de son mouvement 
entrer en contact avec une autre particule localisée, 
un processus très rapide, que les équations de propa 
gation de l'onde ne permettent pas de prévoir, va se 
produire qui détachera chaque particule de son onde 
V primitive pour l'attacher à l'une des composantes



de cette onde avec rupture des relations de phase 
et conservation globale de l'énergie et de la quan 
tité de mouvement.

Naturellement l'émission ou l'absorption d'un 
photon par un atome doit rentrer dans ce schéma. 
Seulement il faut alors imaginer que dans le proces 
sus de l'émission un électron atomique qui se trouve 
initialement en contact avec un photon annihilé 
d'énergie nulle (sans doute caché dans le milieu 
subquantique) lui cède par un processus brusque une 
certaine quantité d'énergie qui en fera un photon 
observable d'énergie non nulle, tandis que le pro 
cessus de l'absorption sera exactement inverse.

Nous sommes ainsi amenés à faire de nouveau la 
distinction entre les "processus faibles" qui sont 
décrits par la propagation de l'onde V et qui ont 
un caractère continu, et les "processus forts" inté 
ressant les particules où se trouve concentrée la 
presque totalité de l'énergie. Bien entendu, les 
transitions quantiques au sens de Bohr sont des cas 
particuliers de processus forts. Nous ne dirons pas, 
comme le faisait Bohr, que ces transitions quanti 
ques "transcendent toute description dans le cadre 
de 1 'espace-temps". Nous nous contenterons de dire 
qu'elles échappent à toute description dans le ca 
dre d'une théorie purement ondulatoire qui ignore 
la localisation des particules.

Nous allons maintenant reprendre les mêmes idées 
en nous plaçant à un autre point de vue.

2. LES DEUX ETAPES D'UNE TRANSITION QUANTIQUE.

Le complexe onde-particule tel que la théorie de 
la double solution se le représente peut être consi 
déré comme comportant une "superstructure" et une 
"substructure" de la façon suivante :

a) La substructure est formée par l'onde v dont 
l'évolution est causale et, au moins en première 
approximation, linéaire. Cette évolution se déduit 
des équations classiques de l'onde ij; (ou de l'onde 
électromagnétique dans le cas des photons) puisque 
nous admettons la relation f = Cv où C est un fac 
teur de normalisation. Les ondes V et obéissent



aux mêmes équations de propagation et sont soumises 
aux mêmes conditions aux limites. Mais il y a une 
grande différence de nature entre les deux sortes 
d'ondes car V est une véritable onde physique de 
très faible amplitude bien déterminée tandis que ÿ , 
dont l'amplitude est arbitrairement normée et qui 
ne possède pas la propriété caractéristique d'addi- 
vité des solutions d'une équation linéaire, n'est 
pas une véritable onde. La fonction ip n'est qu'une 
représentation de probabilité.

b) La superstructure est constituée par les par 
ticules qui sont des régions de haute concentration 
du champ incorporées à l'onde V et se déplaçant de 
façon à rester en phase avec elle. Seule cette super 
structure se manifeste dans les phénomènes observa 
bles, mais ceux-ci ne sont vraiment interprétables 
que si l'on tient compte de la substructure cachée.

Comme application des idées développées au para 
graphe précédent, nous allons considérer le cas 
simple de deux particules de l'échelle microphysi 
que observable autres que des photons. Supposons 
que, dans l'état initial, ces particules soient 
portées par deux trains d'ondes sensiblement mono 
chromatiques et suffisamment éloignés pour occuper 
des régions entièrement séparées de l'espace. Si 
les trains d'ondes se rapprochent et viennent se 
superposer, l'interaction commence dans la théorie 
usuelle par une évolution linéaire et causale de l'on 
de 4) du système dans l'espace de configuration. 
L'état initial représenté dans l'espace de configu 
ration par une onde formée de deux parties entiè 

rement séparées devient ensuite une onde iJj = S c z

formée par une superposition de composantes de 
Fourier correspondant à un ensemble de propagation 
d'ondes dans l'espace physique. Au cours de cette 
évolution, se produit brusquement un processus qui 
n'est pas représentable par le formalisme ondula 
toire ordinaire et qui a pour effet que finalement 
les deux particules se trouvent de nouveau attachées 
à des trains d'ondes entièrement séparés dans l'es 
pace physique. L'onde 4 de l'espace de configuration 
a alors une forme \p^ constituée de deux parties en 

tièrement séparées dans cet espace de configuration.



Au total, il y a donc eu passage de l'état ini 
tial représenté par ip = iJj ^ à un état final repré 

senté par ij) = ipj, mais, et ceci est une remarque

très importante, ce passage s'est opéré en deux 
étapes, l'une relativement lente, causale et li 
néaire représentée exactement par les équations or 
dinaires de la Mécanique ondulatoire, l'autre très 
rapide et actuellement impossible à décrire compor 
tant un échange conservatif important d'énergie et 
de quantité de mouvement entre les deux particules 
avec rupture des relations de phase. On peut dire 
que la première étape est un processus qui est 
bien décrit par l'évolution de la substructure tan 
dis que la seconde étape est essentiellement un 
processus qui s'opère au niveau de la superstructure 
et qui échappe complètement à la théorie actuelle.

Il importe de remarquer que, quand le système est 
parvenu dans l'état défini dans l'espace de configu 
ration par la fonction = E cç4)0, plusieurs transi-

tions quantiques sont possibles de l'état t{j vers 
chacun des états j. En accord avec l'idée d’Einstein

qui voyait dans l'échange brusque entre particules 
de quantités notables d'énergie et de quantité de 
mouvement pendant la transition quantique un effet 
de nature "granulaire", on peut penser que la possi 
bilité de plusieurs transitions quantiques différen 
tes résulte des diverses façons dont les particules 
peuvent entrer en collision, la collision étant dé 
finie par le contact des structures intérieures des 
particules. Ces contacts correspondent à des points 
de l'espace de configuration où l'on a Xj = x2,

yt = y2, = z2> Le succès des prévisions de la Mé 

canique quantique actuelle indique que la probabilité 
de la transition ÿ = Z c z^ Z >1^ est égale à j cfc | 2 ,

résultat que la théorie de la double solution permet 
de retrouver. Notons d'ailleurs que, comme nous 
allons le voir, l'existence de la première étape 
lente, causale et linéaire du processus de choc 
est nécessaire pour que l'on puisse rendre compte 
de la largeur des raies spectrales émises.
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3. LARGEUR SPECTRALE ET ETAT PRECURSEUR.

Dans la théorie ondulatoire classique de la lu 
mière, on admet que les atomes peuvent émettre des 
trains d'ondes de largeur spectrale <5v pendant un 
temps T et l'on démontre que l'on a ôv.T = 1. Ces 
trains d'ondes ont généralement dans l'émission des 
sources de lumière usuelle une longueur de l'ordre 
du mètre. C'est seulement dans le cas des ondes 
hertziennes et des ondes lumineuses émises par des 
lasers que l'on obtient des trains d'ondes beaucoup 
plus longs correspondant à une durée de cohérence 
beaucoup plus grande. Dans la théorie classique des 
radiations, l'interprétation de la largeur spectrale 
des raies ne parait pas soulever de grandes difficul 
tés, mais il n'en est pas de même dans la théorie 
quantique actuelle. Quand un atome émet de la lumiè 
re par une transition quantique conçue à la façon de 
Bohr, il devrait émettre un rayonnement strictement 
monochromatique, ce qui n'est pas possible. Pour 
cette raison, la Mécanique quantique orthodoxe a 
été amenée à développer une théorie de la largeur 
naturelle des raies spectrales qui est exposée no 
tamment dans un livre de M. Heitler (3). Mais cette 
théorie parait soulever une très grave difficulté, 
comme nous allons le montrer.

Nous allons reprendre cette théorie de la lar 
geur des raies spectrales en nous bornant à un cas 
particulier qu'il est facile de généraliser. Nous 
considérerons un système atomique possédant trois 
états stationnaires numérotés 1, 2, 3 par ordre d'é 
nergie décroissante. Nous avons alors le schéma sui 
vant des transitions possibles à partir de l'état 
initial 1

Nous supposons que l'a 
tome se trouvant initiale- 

| I ment dans l'état d'énergie
--- j-----*------------ - E2 E puisse passer par transi

^ tion quantique soit dans
e3 l'état d'énergie E2, soit

dans l'état d'énergie E3.

Dans l'état initial, la fonction d'onde ip de l'atome 
est^£ = ip j . On suppose que, pendant la période qui
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précède l'émission quantique, l'onde ip évolue à par 
tir de sa forme initiale \pJ et qu'à l'instant t on 
puisse écrire :

(1) ÿ(t) = C1(t)^1 + C2(t)^2 +

En admettant plus ou moins arbitrairement que l'on
_t

doit poser Cj(t) = e 2t de sorte que la probabilité

de l'état 1 à l'instant t compté à partir du début
_t

du processus soit |Cj| = e X) T étant alors la vie

moyenne de l'état d'énergie E , on peut calculer

C2(t) et C3(t) et, bien entendu, on a

|C1 (t)|2 + |C2 ( t)|2 + | C 3 ( t)|2 = 1. Or, le terme

t
dans l'expression (1) étant e 2x peut se dé 

velopper en intégrale de Fourier et l'on voit ainsi 
que l'état 1 n'est plus monochromatique de fréquence 
Ei

, mais présente une petite largeur spectrale. Par

suite de cet élargissement spectral du niveau 1, les 
transitions quantiques possibles 1 + 2 et I + 3 cor 
respondent à l'émission de trains d'ondes électro 
magnétiques ayant la largeur spectrale ôv. On ob 
tient bien ainsi la relation ôv.T = 1 pour le train 
d'ondes émis et l'on a justifié l'affirmation sui 
vant laquelle la durée de passage T de ce train 
d'ondes en un point de l'espace peut être assimilée 
à la vie moyenne x de l'état 1 dans l'atome émetteur.

Tout semble donc satisfaisant. Mais en réalité, en 
dehors de quelques difficultés mathématiques que l'on 
constate en examinant ce calcul, il conduit à une 
conclusion paradoxale. En effet, la largeur natu 
relle de la raie émise lors d'une transition quanti 
que, par exemple E! ■* E2, se trouverait alors dépen 

dre non seulement de la transition qui s'est produi 
te, mais de toutes celles qui étaient possibles, mais 
qui ne se sont pas produites (ici Ej = E3). Une telle

interprétation me parait impossible à admettre car 
un phénomène ne peut pas dépendre de phénomènes qui 
étaient possibles, mais qui n'ont pas eu lieu. Et 
cependant la prévision théorique est vérifiée par 
l'expérience.



Le paradoxe auquel on se heurte ainsi peut être 
écarté si l'on introduit les notions de processus 
faibles et de processus forts sous la forme qui a 
été précédemment exposée. Reprenons le problème de 
la largeur des raies spectrales dans le cadre de 
nos idées. Dans l'état initial, la fonction d'onde

V de l'atome est v^ = ^ iJk . Puis commence une évolu 

tion causale et linéaire de l'onde V en interaction 
avec un champ électromagnétique précurseur égale 
ment du type V ne portant encore aucun photon. Le 
calcul indiqué ci-dessus pour l'onde ij> est valable 
pour l'onde V et, en divisant par C, l'équation 
( 1) devient :

(2) v(t) = Cj(t)vj + C2(t)v2 + C 3(t)v 3

t
où l'on suppose que C! (t) = e 2T. Mais il faut

bien remarquer que, l'onde V étant pour nous une 
onde réelle, les trois termes du second membre de 
(2) n'ont pas une existence indépendante : seule 
existe physiquement l'onde v(t) formée par leur su 
perposition. La fonction d'onde (2) définit "l'état 
précurseur" qui précède une émission quantique et 
qui seul alors a une existence physique. Corrélati 
vement, il nait un champ électromagnétique précur 
seur, processus faible du type v ne comportant aucun 
photon. Ce champ est formé par la superposition de

E i - E 2
deux composantes de fréquence V12 = e t

V.1 3 h
geur spectrale 6v

Chacune de ce s composantes a une lar- 

— qui dépend à la fois des trois

états quantifiés de l'atome que nous considérons. 
Mais ici cette largeur spectrale n'est pas due aux 
probabilités des transitions I + 2 et 1 ■+ 3 dont 
aucune ne s'est encore produite, mais à l'évolution 
causale due à l'interaction du champ précurseur V 
de l'atome avec le champ V précurseur électromagné 
tique .

Tout à coup se produit une transition quantique 
(processus fort, très bref) dont la description 
échappe complètement à la théorie ondulatoire u- 
suelle parce qu'elle ferait intervenir le caractère 
localisé des particules. Supposons que ce soit la



transition 1 ->• 2 qui se produise. Alors, selon nos 
conceptions, l'électron atomique se "décroche" de 
l'onde v(t) donnée par (2) pour s'accrocher sur l'on 

de v2 = <|>2 ■ Corrélativement, comme cela est néces 

saire pour la conservation de l'énergie, un photon, 
sans doute extrait du milieu subquantique, apparait 
sur le train d'ondes électromagnétique de fréquence 
V12 et de largeur spectrale ô\). Ainsi il y a finale 
ment émission par l'atome d'un photon transporté par 
une onde électromagnétique V et correspondant à une 
raie spectrale de fréquence V12 et de largeur spec 
trale ôv. Les conclusions seraient analogues dans le 
cas où ce serait la transition 1 ->■ 3 qui se produi 
rait.

Le paradoxe qui résulte de la théorie usuelle et 
qui a été signalé plus haut parait ainsi avoir dis 
paru. La largeur spectrale d'une raie émise lors 
d'une transition quantique n'est pas due à la proba 
bilité d'une transition qui ne s'est pas produite : 
elle résulte de l'évolution causale des processus 
faibles du type V qui ont précédé la transition quan 
tique .

La Thermodynamique cachée des particules, complé 
ment naturel de la théorie de la double solution 
sous sa forme actuelle, permet de voir (4) que les 
états quantifiés qui sont monochromatiques ont une 
probabilité thermodynamique plus grande que les états 
précurseurs qui sont définis par une superposition 
d'ondes monochromatiques. Il en résulte que le retour 
d'un état précurseur à un état monochromatique sta 
tionnaire s'accompagne d'une augmentation de la pro 
babilité thermodynamique. Les états quantifiés sont 
donc plus stables que les états dont la fonction d'on 

de est de la forme ip = £ c. ijj „ , point sur lequel nous
Z Z

reviendrons plus loin.

Dans ce qui précède, nous avons étudié le cas de 
l'émission spontanée, au sens d'Einstein, d'un pho 
ton par un atome. Des considérations analogues doi 
vent pouvoir être développées dans le cas où un atome 
(ou une molécule) est frappé par une onde transpor 
tant un photon. Il peut alors s'établir un état pré 
curseur transitoire qui se termine par une transition 
quantique brusque, avec augmentation de la probabilité
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thermodynamique, pouvant réaliser suivant les cas 
une absorption ou une émission stimulée au sens 
d'Einstein, un effet Compton ou un effet Raman.

Ce qui parait inexact et trompeur dans la concep 
tion usuellement admise, c'est qu'elle considère 
comme des états indépendants les composantes de 
Fourier qui figurent dans l'expression de l'onde au 
cours des processus précurseurs alors que la vérita 
ble transition quantique n'a pas encore eu lieu. On 
prend ainsi pour des états quantiques indépendants 
ce qui n'est en réalité que des termes apparaissant 
dans le calcul, par la méthode de variations des 
constantes, de l'évolution de l'onde cohérente (V 
ou 40 pendant le processus précurseur. Et c'est cela 
qui conduit à considérer la particule ou le système 
comme étant réparti entre plusieurs états quanti 
ques, alors qu'en réalité il est dans un état uni 
que, mais transitoire, avec fluctuation d'énergie.
Ce qui facilite la confusion qui parait exister 
dans l'interprétation actuelle, c'est que le déve 
loppement de l'expression de l'onde dans l'état pré 
curseur préfigure l'ensemble des transitions quanti 
ques qui pourraient se produire, mais dont aucune ne 
s'est encore produite.

La chose apparait peut-être encore plus nettement 
dans le cas où, poussant plus loin les approxima 
tions, on fait intervenir dans le calcul des compo 
santes de l'onde des états intermédiaires 41 • tels

que, la transition directe 4^ 4>k étant impossible,

elle peut cependant avoir lieu par le double passage

4<k. On constate alors que les passages

4*k ne conservent pas l'énergie alors\pi ■* ipj et 4/j

que le passage global 41 • 41 • ■+ 4)1, la conserve fina
î j k

lement, ce que l'on interprète souvent en disant que 
la durée ôt du processus global est trop courte, en 
raison de la relation d'incertitude ÔE.ôt = h, pour 
que l'on puisse appliquer la conservation de l'éner 
gie aux stades de ce processus. C'est ce qui a con 
duit à introduire la notion étrange de particules 
virtuelles (par exemple de photons virtuels) pour 
lesquels il n'y aurait pas conservation de l'énergie. 
On peut penser qu'ici encore on prend pour des réa 
lités physiques ce qui n'est qu'un stade dans un
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calcul d'approximations, les états intermédiaires 
E. n'étant pas physiquement réalisés, mais étant 
seulement des termes intervenant dans le calcul de 
l'état précurseur indécomposable qui existe avant 
la véritable transition quantique.

4. INTRODUCTION DANS LA THEORIE PRECEDENTE DE CERTAI 
NES IDEES DE SCHRODINGER.

Dans un article intitulé "Are there quantum jumps?' 
Schrodinger avait remarqué que le "privilège" atta 
ché aux états stationnaires lui paraissait injusti 
fié (5). Pourquoi, disait-il, suppose-t-on qu'un sys 
tème quantifié se trouve toujours dans un état sta 
tionnaire = 4*k alors que la forme générale de la

fonction d'onde, solution d'une équation linéaire est

évidemment ^ c^ tpj ? Et il concluait que les

états stationnaires avaient usurpé leur situation 
privilégiée.

Partant de cette idée, Schrodinger avait alors 
cherché à se représenter le phénomène de l'émission 
des rayonnements par un atome d'une façon classique 
sans intervention des sauts quantiques de Bohr. Il 
pensait que l'on devait partir de la formule

* - I

j
<|k représentant une superposition d'états

stationnaires et il définissait le moment électrique

. i
J

— E . t
a correspondant de l'atome en posant = ah ‘

les a^ pouvant être complexes, et en écrivant

a
9

ou q = x,

^||>
iJjqdT 2 ck ci

îk
(aq)ki

et (a ),. =-e 
q ki 4,k ^qdT

a^ qdx e I <VEk)t

L'atome devrait alors rayonner comme un ensemble
et devrait

E,
ainsi émettre toutes les fréquences

d'oscillateurs de moment électrique (a ),.
q ki

E .î
h
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de Bohr. Il voyait dans ce résultat une sorte d'in 
terprétation classique du rayonnement par transitions 
quantiques. Mais il est aisé de voir que cette inter 
prétation se heurte à des objections graves : toutes 
les fréquences \Kk seraient émises simultanément et

rien ne serait analogue aux sauts quantiques de Bohr, 
l’état initial ne jouerait aucun rôle particulier, 
tous les états quantifiés intervenant de la même 
façon, etc.

Néanmoins, si l'on adopte les conceptions de la 
théorie de la double solution et si l'on admet l'exis 
tence des états précurseurs tels que nous les avons 
précédemment définis, il parait possible de donner à 
l'idée de Schrodinger une forme acceptable et très 
intéressante.

Considérons le cas de l'émission spontanée de

atomes dans l'état quantique initial d'énergie E^.

L'état précurseur tel que nous l'avons précédemment

défini est représenté dans le formalisme usuel par

une fonction ^ de la forme suivante 4* = c . ^. + J ck^k

k
la somme £ étant étendue aux états d'énergie < E^.

k
Dans cet état précurseur, le moment électrique consi 
déré par Schrodinger a une composante a de fréquence 

qui est : ^

(aq)ik = - e Ck Ci l|>* ^£ qdT (q = x, y, z)

Pour l'ensemble des atomes, l'énergie rayonnée

sous forme d'une onde de fréquence V^k avec champ

électrique parallèle à l'axe des q sera donnée d'a 
près la théorie classique du rayonnement par la for 
mule :

N .
î

x

X 2
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où = N-Jc^l2 est nombre des atomes qui pas 

sent de l'état initial d'énergie à l'état final 

d'énergie .

Nous devons maintenant examiner de plus près le 
sens de l'image ainsi obtenue. Pour nous, pendant 
l'état précurseur, il existe dans l'atome une onde 
V électronique de la forme :

v = a . e 
1

t
2x h E . t

î

l Ck
r V

Cette onde V contiendra, sous une forme que nous pré 
ciserons plus loin, un moment électrique variable 
dont les composantes de Fourier peuvent s'écrire sous 
la forme :

(Vik e
 

a. a . qdT . e k î ^

Ek)t

En d'autres termes, il existerait dans l'onde V de 
l'atome pendant l'état précurseur une distribution 
d'électricité variable dont la composition spectrale 
contiendrait toutes les fréquences correspondant aux 
transitions quantiques de Bohr susceptibles d'être 
émises. Cette très faible distribution variable 
d'électricité rayonnerait, suivant les lois classi 
ques, autour de l'atome une très faible onde électro 
magnétique du type V ne portant aucun photon et con 
tenant, elle aussi, toutes les fréquences suscepti 
bles d'être émises par l'atome. Au très faible ni 
veau des ondes V, toutes les émissions quantiques 
seraient en quelque sorte préfigurées et tout se pas 
serait à ce niveau d'une manière classique en accord 
avec l'idée directrice de Schrodinger.

Mais ce qui n'est pas classique, c'est la façon 
dont se termine par un processus fort d'échange 
d'énergie cet état précurseur. Ce processus ne pou 
vait pas être représentée par une théorie comme celle 
de Schrodinger qui ignorait la localisation des par 
ticules. L'électron atomique s'accrochera alors sur 
l'une des composantes de fréquence de l'onde V

électronique de l'état précurseur, la probabilité de 
cet accrochage étant égale à |C^|2. Ce brusque re 

tour pour l'électron à un état stationnaire d'énergie



moindre que celle de l'état initial correspond, d'a 
près la Thermodynamique cachée des particules, à une 
augmentation de l'entropie ou plus exactement en rai 
son de l'émission d'un photon à une diminution de 
l'énergie libre et c'est là ce qui justifie la pré 
rogative des états stationnaires que contestait 
Schrodinger.

On voit ainsi que les conceptions de Schrodinger 
peuvent être adoptées pour la description de la 
substructure pendant les états précurseurs sans por 
ter atteinte à la prérogative, pour nous d'origine 
thermodynamique, des états stationnaires et cela 
doit être vrai aussi bien dans les processus d'ab 
sorption que dans les processus d'émission sponta 
née ou stimulée. On peut dire qu'au niveau de la 
subs tructure, c'est-à-dire des ondes v, tout se 
passe comme si la théorie électromagnétique classi 
que était exacte. Cette conclusion, qui pourrait 
probablement être mise en relation avec le principe 
de correspondance, est l'un des aspects de la vali 
dité que conserve dans beaucoup de calculs l'emploi 
de la théorie électromagnétique classique malgré 
l'existence certaine des photons. Mais il nous res 
te à examiner un point important.

5. LE ROLE DE LA CHARGE DE L'ELECTRON PENDANT L'ETAT
PRECURSEUR.

Remarquons d'abord qu'il semble certain que l'on 
de y d'un électron comporte une très petite charge 
électrique de densité - ea2 répandue dans toute son 
étendue. En effet, si nous considérons une onde y 
électronique qui ne transporte aucun électron et si 
nous supposons que cette onde subisse l'action d'un 
champ électrique extérieur, la présence dans l'équa 
tion de propagation d'un terme - eV où V est le po 
tentiel dont dérive le champ extérieur montre que 
cette propagation est influencée en chaque point 
par l'action du champ électrique, ce qui parait 
imposer l'idée qu'une très petite partie de la 
charge de l'électron est répandue dans toute l'onde 
y.

Cependant, avec nos conceptions où l'électron 
est localisé dans l'onde, la presque totalité de la 
charge doit être localisée dans l'électron lui-même. 
Dans les états stationnaires de l'atome où, selon
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nos idées, l'électron peut être animé d'un mouvement 
de guidage et cependant il ne doit pas y avoir de 
rayonnement d'énergie vers l'extérieur. La difficul 
té est analogue à celle que l'on rencontrait dans la 
théorie primitive de l'atome de Bohr où l'on suppo 
sait l'électron décrivant des trajectoires circu 
laires ou elliptiques et où cependant, contraire 
ment aux prévisions de la théorie électromagnétique 
classique, l'atome dans son état stationnaire ne de 
vait pas émettre d'énergie sous forme électromagné 
tique .

En réfléchissant au problème qui se pose ainsi, 
on arrive à des conclusions qui paraissent très 
intéressantes. Considérons un atome d'hydrogène où 
l'électron est animé d'un mouvement de guidage sur 
une trajectoire circulaire autour d'un axe oz. Ce 
cas est réalisé quand, en prenant des coordonnées 
polaires r, a, 0 pour repérer les positions, l'onde 
ü a la forme :

fi- (Ekt - mvra)
Vk = ak^r’ e

avec a^ réel et = Cv^. Le moment de quantité de

mouvement de l'électron sur une trajectoire circu 
laire de guidage est alors un multiple entier non 
nul de h. Alors, avec notre manière de voir, les 
trajectoires de guidage de l'électron sont des 
petits cercles de rayon r décrits avec la vitesse

h
v, r et v étant relies par la relation vr = n —

r m
avec n entier. Dans la forme primitive de la théo 
rie de la double solution où les perturbations alé 
atoires d'origine subquantique n'intervenaient pas, 
l'électron décrivait une seule de ces trajectoires 
circulaires et alors on ne voyait pas pourquoi il 
ne rayonnait pas. Mais, dans la forme actuelle de 
la théorie de la double solution, les perturbations 
subquantiques font constamment passer l'électron 
d'une de ses trajectoires circulaires définies plus 
haut à une autre de ces trajectoires, les grandeurs 
v et r variant simultanément de façon que leur pro 
duit reste constant, C'est là la raison pour la 
quelle la probabilité de la présence de l'électron 
dans un élément de volume dx de l'atome est égal à 
| ip [ 2 d t où | ip | = Ca(r, a, 0) ne dépend pas du temps. 
C'est cette circonstance qui, en établissant une
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sorte d'incohérence entre les émissions qui corres 
pondraient aux éléments de trajectoires de l'élec 
tron fait qu'au total l'état stationnaire de l'a 
tome ne rayonne pas, ce qu'un calcul développé pour 
rait peut-être démontrer plus rigoureusement. Il 
semble donc que l'on doit en tirer la conclusion 
suivante : "Pour qu'un état de l'atome puisse rayon 
nerj il faut que la grandeur 14* I dépende du temps”.

Mais, dans les états précurseurs précédemment 
définis, l'onde V de l'électron est formée par une 
superposition de composantes ayant des fréquences 
de la forme égales aux fréquences qui peu 

vent être émises par transitions de Bohr. la gran 
deur |^|2 dans ces états précurseurs est donc fonc 
tion du temps et, conformément aux conceptions clas 
siques et aux idées de Schrôdinger, il y a alors 
émission d'une onde V électromagnétique qui ne porte 
encore aucun photon et qui est la superposition des 
composantes correspondant à toutes les fréquences 
V^ ^. C'est seulement ensuite que cet état pré 

curseur cesse brusquement par l'intervention du 
processus fort ou "choc d'Einstein" qui s'accompa 
gne de l'émission de l'une des fréquences V. -

avec passage de l'atome dans l'état stationnaire 
d'énergie hV et conservation de l'énergie glo 
bale .

Il semble bien que l'on doive en conclure que 
l'émission pendant l'état précurseur d'une très fai 
ble onde électromagnétique autour de l'atome fait 
intervenir non seulement la très faible charge élec 
trique de l'onde v électronique, mais aussi la to 
talité de la charge électrique concentrée dans la 
particule "électron", charge qui se trouve en quel 
que sorte répartie statistiquement pendant l'état 
précurseur par l'effet des perturbations subquanti- 
ques dans toute l'étendue de l'onde V électronique.

6. DERNIERE REMARQUE ET CONCLUSION.

On peut faire encore une remarque importante au 
sujet du schéma général proposé ci-dessus en ce qui 
concerne les émissions et absorptions stimulées. En 
effet, ce schéma n'est valable que si l'état pré 
curseur de l'atome peut se représenter par une su 



perposition de fonctions propres correspondant aux 
états non perturbés de l'atome. Or, cette condition 
peut cesser d'être réalisée si l'action de l'onde 
électromagnétique incidente sur l'atome est suffi 
samment forte pour modifier sensiblement l'état on 
dulatoire de l'atome. Et cela pourrait être mis en 
relation avec les très intéressants travaux de 
M. Georges Lochak et de ses collaborateurs.

La question des émissions stimulées demande 
rait d'ailleurs à être regardée de plus près. En 
particulier, il faudrait expliquer pourquoi les 
émissions ou bsorptions stimulées sont proportion 
nelles au nombre des photons portés par l'onde in 
cidente. Peut-être cela provient-il du fait que 
l'onde électromagnétique V incidente, bien que très 
faible, agit cependant comme si elle était beaucoup 
plus intense parce que les photons qu'elle transpor 
te apportent à l'atome des "échantillons" d'une onde 
électromagnétique beaucoup plus intense, échantil 
lons qui sont répartis statistiquement dans toute 
l'onde par les perturbations aléatoires subquanti- 
ques (6) .

Evidemment les idées exposées dans les paragra 
phes qui précèdent ne constituent que des indica 
tions générales qui auraient besoin d'être précisées 
et développées, mais qui forment probablement la ba 
se sur laquelle il faudra constituer la véritable 
théorie des interactions entre la matière et le 
rayonnement.
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Onde active 
et onde réactive

1. SUBSTITUTION DE DEUX FONCTIONS D’ONDE REELLES A 
LA FONCTION D'ONDE COMPLEXE DE LA THEORIE DE LA 

DOUBLE SOLUTION.

Dans l'interprétation de la Mécanique ondulatoire 
par la théorie de la double solution, il est usuel de 
définir la fonction d'onde 'P qui représente statisti 
quement une onde portant un grand nombre de particu 
les par la formule :

41 = ae h(1)

a étant l'amplitude et 'f la phase de l'onde. L'hypo 
thèse que la particule est assimilée à une petite 
horloge qui se déplace dans son onde de façon à res 
ter en phase avec cette onde, hypothèse qui a été le 
point de départ de mes travaujf en 1 923-24, conduit à 
prévoir que la grandeur P = a est la densité de pro 
babilité de présence de la particule tandis que le

vecteur p = - grad 'P est la quantité de mouvement de 
la particule au point où elle se trouve. Mais la théo 
rie que nous cherchons à développer tendant toujours 
à éliminer le plus possible tous les formalismes pu 
rement mathématiques, il est très naturel de chercher 
à remplacer l'expression complexe (1) de ÿ par deux 
fonctions réelles et ty2 telles que + i4*2 .

On est alors conduit à relier et aux fonctions 
a et P par les relations :

(2) a
2 = 'f'i + i|> 22 ^ = arc tg



Si, à l'aide de ces deux relations, on introduit 
4>j et ipz dans l'équation d'onde sous la forme simple

de Schrôdinger, on obtient en séparant les termes 

réels et imaginaires, deux équations réelles liant 
2 2 4^2

iJjj + \p2 et arc tg et, compte tenu des relations 

(1) et (2), on trouve :

(3) P = 4>i + 4^ p = - grad arc tg
*1

et l'on vérifie facilement que ces deux équations 
sont celles que j'ai l'habitude de nommer "équations 
de Jacobi généralisée" et "équation de continuité".
Le passage des fonctions a et 'P aux fonctions 4 j et

42 n'introduit donc rien de nouveau dans l'interpréta 

tion physique de ces équations en théorie de la dou 
ble solution, mais il est évident que l'emploi des 
fonctions a et ‘P est plus commode que celui des fonc 
tions 4'j et P2 • Mais, en revanche, comme nous allons
le montrer, l'emploi de 4j et de 42, du moins dans le

cas des ondes électromagnétiques, est d'un très grand 
intérêt physique si l'on introduit les notions de 
puissance active et de puissance réactive.

2. RAPPEL DES NOTIONS DE PUISSANCE ACTIVE ET DE PUIS 
SANCE REACTIVE.

Soit un circuit électrique contenant une résis 
tance R, une self £ et une capacité C sur lequel 
agit une tension alternative de fréquence V, donc de 
pulsation w = 2ttv . Nous pouvons écrire cette tension 
sous la forme :

(4) U = U0 cos ut = Ug Sï cos ü)t 

Uo
où U = — est la tension efficace. Le courant in-

6 /2
duit dans le circuit est :

(5) I = I0 cos(wt - P) = I -PL cos(Ut - *P)

1 o
où I = — est l'intensité efficace et où, ici,1^ dé- 

6 71

signe le décalage du courant par rapport à la tension.



1 39

Les grandeurs I et U sont reliées par l'équation :

(6)

et l'on a Xo

+ RI +
x
C

I

Idt = U 

U
e

= -g— avec

(7)

Z R2 + (£ U) tg(fi

s in (fi cosifi

£ u -

R

1
Cü)

R
Z

Z étant l'impédance du circuit. Quand la condition de 
résonance £ Cu2 = 1 est réalisé, Z = R et le courant 
est maximal. Tout ceci est bien connu.

En notations complexes, nous écrirons :

(8) U = U0 il e1Ut I = I0 /2 elUt e”1^

et nous aurons :

(9) U = ZI avec Z = R+ i(ü)jC- )

Z étant l'impédance complexe. On retrouve aisément les 
formules sous la forme réelle.

L'énergie débitée par la source pendant une pério-

dex = — est
V T

(10) U Jï I Jl cos ut.cos(ù)t - (fi ) dt 
e e

et la puissance moyenne Pi fournie au circuit et con 
sommée dans la résistance R pendant la durée X d'une 
période est :

(H) U I cos wt.cos(lût - *P)dt 
e e

= U I COS (fi 
e e

formule bien connue.

Mais nous allons maintenant introduire une notion 
importante, moins couramment employée que les précé 
dentes. En effet, il y a plus de 60 ans, M. Boucherot 
a introduit l'idée nouvelle de "puissance réactive"



définie par la formule symétrique de (11) :

(12) P, = 13 1 sin <pi e e

Tandis que la puissance active P! s'exprime naturelle 
ment en watts, la puissance réactive P2 s'exprime en 
vars ou voltampères réactifs.

Pour montrer l'intérêt de la notion de puissance 
réactive, M. Boucherot a considéré la propagation des 
puissances actives et réactives dans deux cas impor 
tants : celui d'un branchement et celui d'une self 
suivie d'un condensateur.

'WP—

Il a montré que dans ces deux cas, non seulement 
la puissance active, mais aussi la puissance réactive 
se conservent depuis l'entrée jusqu'à la sortie du 
dispositif. On trouvera ces démonstrations avec quel 
ques remarques complémentaires dans mon livre "Ondes 
électromagnétiques et Photons" p. 53 à 55.

3. RELATIONS ENTRE LA PUISSANCE ACTIVE ET LA PUISSANCE! 
REACTIVE ET LES FONCTIONS REELLES 4), ET <p DANS LE ! 
CAS D'UNE ONDE ELECTROMAGNETIQUE. !

Dans le premier paragraphe de cette étude, nous j
avons montré que, dans la Mécanique ondulatoire telle 
que nous la concevons, on peut remplacer la fonction 
d'onde complexe par deux fonctions d'onde réelles.
Dans le cas que nous considérons d'une onde électroma 
gnétique, cela nous amène naturellement à penser que, 
en suivant les conceptions de Boucherot, l'onde ip 1 
doit être considérée comme une onde active et la fonc 
tion 412 comme une onde réactive.

Alors, la fonction 411 correspondra à la tension
active U = U /5" cos ut définie par (4) et c'est cette 

e
tension active qui, en cédant de l'énergie au circuit 

oscillant, y entretiendra le courant
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I = I Jl cos(ut - P) . L'énergie cédée par l'onde 
e

au circuit pendant un temps très court dt sera donc:

(13) dW U I .2 cos 
e e

et pendant une période T 
moyenne par période :

(14)

+ — 
T

2 U I 
e e

2 U I 
e e

ut. cos(ut - ^)dt 

cette énergie cédée sera

cos <P cos2 ut dt

sin ip.sin ut.cos ut dt

en

Comme
T

sin ut.cos ut.dt est visiblement nulle,
0

on retrouve pour l'énergie cédée au circuit par unité 

de temps l'expression classique UeIg cos 'P .

Mais, cela ne veut pas dire que l'onde réactive 
n'échange pas d'énergie avec le circuit oscillant 
car, pendant le premier et le troisième quart de la
période T, l'intégrale jsin ut cos ut dt est positi 

ve tandis que pendant le deuxième et le quatrième 
quart de la période T cette intégrale est négative.

Il y a donc une certaine énergie qui oseille cons 
tamment entre l'onde et le circuit en se conservant 
et cette oscillation d'énergie est due à l'action sur 
le circuit du champ réactif. Ceci montre bien que 
l'onde réactive existe bien réellement.

4. CONCLUSION.

Assurément la théorie précédente est un peu schéma 
tique. Elle n'est valable pour un champ électromagné 
tique que si le transfert d'énergie de l'onde à un 
circuit oscillant peut s'exprimer à l'aide d'une seu 
le grandeur U. On pourrait peut être chercher à la 

généraliser.

Aucune théorie analogue ne semble pouvoir être dé 

veloppée pour les ondes portant les électrons dont 
les composantes n'ont pas le caractère de grandeurs 
électromagnétiques, mais on pourrait, en partant des 
équations de Pauli et de Dirac, remplacer les fonc 
tions d'ondes par des fonctions réelles et examiner 
ce qui pourrait en résulter.
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Sur la largeur 
des raies spectrales 
et l’effet Dupouy

La propagation d'une onde monochromatique plane 
dans une direction ox peut être définie par un vec 
teur égal à | dans la direction ox , À étant la lon 

gueur d'onde. Si X est affecté d'une petite varia 
tion 64- = <5^, V et V étant la fréquence et la vi-

tesse de phase, la superposition des ondes planes 
monochromatiques donne naissance à un train d'ondes 
limité se déplaçant suivant ox avec une vitesse de

1 3X
groupe donnée par la formule de Rayleigh — = La

représentation d'une onde par un train d'ondes est 
beaucoup plus proche de la réalité physique que 
l'image d'une onde monochromatique plane indéfinie.

Pour analyser la propagation d'un train d'ondes 
limité, faisons la figure suivante :

Si toutes les composantes spectra 
les sont en accord de phase en 0, la 
longueur L du train d'ondes sera donnée 
par la formule :

<!> 2*<{+ 5r \ *17
d'où

(2) 6x L
L<Sv
v



— étant le temps T que met le train d'ondes à passer 

en un point M et l'on a :

(3) (Su . T - 1

relation bien connue entre la largeur spectrale <5\) 
et le temps de cohérence t.

Mais il est naturel de supposer qu'un train d'on 
des n'est pas seulement défini par un ensemble de

vecteurs de longueurs comprises entre y et y + 6 y
A À A

dirigés suivant ox, mais par un ensemble de tels 
vecteurs compris à l'intérieur d'un cône d'axe ox 
et de très petit angle au sommet e. Alors, si au 
point 0 toutes les composantes spectrales sont en 
phase, on peut définir la "largeur" L' du train d'on 
des par la formule analogue à (1) :

(4) 2,c(l ♦ 6} - J) = n 

car sin c ~ £ . On en tire :

(5) <s|. r L' = 1

d'où en comparant (5) avec (2) :

(6) L' - L >> L
£

La largeur d'un train d'ondes doit donc être 
beaucoup plus grande que sa longueur.

Je n'insisterai pas ici sur l'application de ces 
formules à la lumière et je me bornerai à étudier 
le ras des électrons.

Dans son très intéressant " 
électronique" autographiê, M. 
dans le paragraphe 3, page 18,

de vitesse v - les valeurs

Cours de diffraction 
Zouckermann donne 
pour des électrons

suivantes :

T = 1 0 s . L - VT
1
2

c. 10-14 = lp.

Ce résultat est en accord avec celui qu'avait 
publié Mollenstedt en Allemagne en Mars 1956 où il 
avait trouvé, pour des électrons de 25 k.e.V. dont



la longueur d'onde est X = 10 cm, que la longueur
des trains d'onde était de 1,5 y, soit environ 
150 000 X.

Un résultat analogue avait aussi été publié par 
Fert et Faget dans les Comptes Rendus de l'Académie 
des Sciences de Décembre 1956. Ils avaient trouvé 
qu'un train d'ondes électroniques a une longueur 
égale à environ un million de fois la longueur d'on 
des .

La concordance de ces résultats permet d'admettre 
que, pour des électrons ayant une énergie de quel 
ques dizaines de milliers d'électron-volts, la lon 
gueur des trains d'ondes est de l'ordre du y. Mais 
M. Zouckermann a été plus loin. Il a pu évaluer la 
largeur d'un train d'ondes électroniques pour des 
électrons de 60 000 e.V. Il a trouvé que cette lar 
geur est supérieure à 80 y, soit environ 100 fois 
la longueur du train d'ondes.

J'en arrive maintenant à ce que j'appellerai 
"l'effet Dupouy". M. Dupouy, qui emploie dans son 
laboratoire de Toulouse, des électrons d'une éner 
gie de trois millions d'électron-volts, a annoncé, 
il y a quelques années, qu'il constatait la dispari 
tion totale de l'aberration de sphéricité. Cette 
aberration prévue par les calculs usuels d'optique 
électronique est bien vérifiée par l'expérience pour 
les électrons de quelques dizaines de milliers d'é 
lectron-volts usuellement utilisés en optique élec 
tronique. Le fait important et inattendu signalé par 
M. Dupouy me parait susceptible d'être interprété, 
dans le cadre de mes idées sur le transport des 
particules par leur onde, à l'aide des résultats 
expérimentaux que je viens de rappeler.

Comme je l'ai rappelé dans mon livre d'optique 
électronique et corpusculaire p. 128, l'aberration 
de sphéricité est due au fait suivant : les rayons 
émis par une source ponctuelle ne vont converger 
vers un même point de l'image que s'ils sont peu 
inclinés sur l'axe de l'appareil employé pour obte 
nir cette image. On peut donc penser que l'effet 
Dupouy est dû au fait que, pour les électrons de 
très haute énergie, les trains d'ondes passent par 
le centre des pupilles de l'appareil sans en tou 
cher les bords.



Or, comme je l'ai rappelé plus haut, M. Zoucker- 
mann employant des électrons de 60 000 e.v. a trouvé 
une largeur des trains de l'ordre de 100 y. Mais 
M. Dupouy emploie des électrons de 3 millions d'é- 
1 ectron-vo11s dont l'énergie est donc 50 fois plus 
grande que celle des électrons de M. Zouckermann. La 
formule W = hv montre alors que la fréquence V des 
électrons de M. Dupouy est 50 fois plus grande que 
celle des électrons de 60 000 e.V. La vitesse des 
électrons de 3 millions de volts étant extrêmement 
voisine de c, la longueur d'onde correspondante est 

c2 c
X = — - — et ceci montre qu'elle est environ 50 fois 

W V M
plus petite que celle des électrons de 60 000 e.v.
Si l'on admet alors, ce qui parait naturel, que la 
largeur des trains d'ondes est proportionnelle à la 
longueur d'onde, cette largeur est 50 fois plus 
petite pour les électrons de 3 millions d'électron- 
volts que pour des électron de 60 000 électron- 
vol t s .

D'après les schémas d'appareils donnés par 
M. Magnan au début de son traité de Microscopie 
électronique, les pupilles contenues dans ces appa 
reils ont des diamètres de l'ordre de 70 y. Si l'on 
envoie sur ces pupilles des trains d'ondes électro 
niques portant des électrons de 60 000 e.v., ces 
trains d'ondes couvrent les pupilles et l'aberra 
tion de sphéricité intervient. Mais pour des élec 
trons de 3 millions d'é1ectron-vo1ts, la largeur 
des trains d'ondes sera 50 fois plus petite. Elle 
sera donc de l'ordre de 2 y de sorte que ces trains 
d'ondes passeront par le centre des pupilles sans 
en toucher les bords. Et ceci explique la dispari 
tion de l'aberration de sphéricité.

M. Dupouy a bien vu la chose quand il a écrit 
(C.R. 27 Mars 1972) que l'aberration de sphéricité 
disparait parce que les faisceaux d'électrons qu'il 
emploie sont si fins qu'ils passent par le centre 
des pupilles. Cependant cette explication ne me pa 
rait pas tout à fait exacte parce que c'est la pro 
pagation de l'onde qui détermine la forme de l'ima 
ge et la répartition statistique de l'apport de 
l'énergie par les électrons dans cette image. Il 
est d'ailleurs probable que chaque train d'ondes 
incident ne porte qu'un seul électron. C'est donc la



très petite largeur des trains d'ondes qui doit être 
invoquée pour expliquer exactement la disparition de 
l'aberration de sphéricité dans les expériences de 
M. Dupouy.
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Réfutation du théorème de Bell

Le but de cette Note est d'exposer pourquoi le 
raisonnement par lequel M. Bell a cru pouvoir dé 
montrer l'impossibilité d'interpréter la Mécanique 
ondulatoire par une théorie à variables cachées 
est inexact.

Dans un article publié dans la Revue Physics en 
1964 C1 ) , M. Bell a cru pouvoir démontrer l'impossi 
bilité d'interpréter la Mécanique ondulatoire à 
l'aide d'une "théorie à variables cachées". Pour 
nous, cette expression désigne une théorie qui admet 
la localisation permanente des particules dans leur 
onde, les variables cachées étant les coordonnées 
des particules.

Dans le paragraphe 3 de son article, M. Bell 
considérant la mesure des spins de deux électrons 
très éloignés l'un de l'autre calcule les probabi 
lités que doivent avoir les résultats de telles me 
sures si l'on admet l'existence de variables ca 
chées et l'indépendance de ces mesures. Les évalua 
tions qu'il obtient ainsi sont en accord avec celles 
que l'on obtient dans notre théorie qui localise les 
particules dans l'onde.

Mais M. Bell veut ensuite démontrer, et c'est ce 
qui constitue son théorème, qu'il existe une contra 
diction entre l'hypothèse de l'indépendance des me 
sures du spin et les lois générales, qui lui parais 
sent toujours exactes, de la Mécanique quantique 
usuelle. Pour faire cette démonstration, il repré 



sente par la lettre A l'ensemble des variables sup 

posées cachées et il désigne par a et f deux vec 
teurs unités situés aux endroits où s'effectue la 
mesure du spin des deux électrons supposés éloignés 
et localisés, vecteurs qui définissent l'orienta 
tion des deux appareils de mesure.

Prenant alors comme unité de spin la grandeur 
h
■j, M. Bell écrit que le résultat de la mesure des

spins sur les électrons éloignés doit être exprimée 
par les formules :

(1) A(a, A) = ± 1 B (b , A) = + 1

Elles signifient que le résultat des mesures du spin 
est ± 1 suivant la position des particules et l'o 

rientation des vecteurs a et ?. Le résultat de la 
mesure faite sur l'un des électrons ne dépend donc 
pas de l'orientation de l'appareil agissant sur 
l'autre électron. On en déduit que, dans une théorie 
à variables cachées, si p(A) est la probabilité des

A, la valeur moyenne des composants o^a et o2? est :

(2) P(t, t) p(A) A(a, A). B(H, î)dA

et nous sommes d'accord sur cette formule (*).

Mais, dit ensuite M. Bell, cette valeur moyenne, 
conséquence nécessaire d'une théorie à variables ca 
chées, doit être compatible avec celle qui est pré 
vue par la Mécanique quantique pour un état singulet, 
qui s'écrit, avec les notations employées, sous la 
forme que nous avons vérifiée :

(3) < O la» o2b > 0 ! a.02 b + Ojb,02a a . b

les indices 1 et 2 numérotant les particules. C'est 
sur cette formule que M. Bell s'appuie pour déclarer

(*) Enoncée oomme je le fais, cette affirmation 
n'est exacte qu'à condition de l'appliquer en 
prenant pour p(\) la distribution de probabi 
lités créée par la dernière mesure effectuée.
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inacceptable toute théorie à variables cachées.

Mais nous contestons la validité générale de la 
formule (3). En effet, que signifie cette formule ?
Si l'on permute la position des particules dans 
l'espace, cela a pour effet de permuter les spins 
de ces électrons, car les spins sont définis par 
la structure locale de l'onde et non par la position 
des particules. Il résulte de cette permutation que

Oja devient 0jb et que a2b devient 02a. La formule

(3) exprime donc l'antisymétrisation de la fonction 
d'onde de deux électrons dans l'espace de configura 
tion, compte tenu du spin. Mais, ainsi que je l'ai 
signalé il y a bien longtemps (2), cette antisymé 
trisation n'est justifiée que si les trains d'ondes 
portant les deux électrons se superposent, au moins 
partiellement, dans l'espace.

Il est facile de comprendre le sens de cette der 
nière affirmation. Quand deux particules sont sur un 
même train d'ondes, leurs mouvements, qui dans notre 
théorie résulte de la loi du guidage et des pertur 
bations subquantiques, sont corrélés et c'est cette 
corrélation qui est exprimée par la formule d'antisy 
métrisation pour les fermions et de symétrisation 
pour les bosons (3). Mais, dès que les trains d'ondes 
se sont séparés, le mouvement de chaque particule 
dans son train d'ondes devient entièrement indépen 
dant du mouvement que peut avoir l'autre particule 
dans son train d'ondes éloigné.

La plupart des auteurs qui exposent la Mécanique 
quantique semblent toujours raisonner comme si les 
trains d'ondes associés aux particules avaient une 
longueur infinie. Déjà pour la lumière, si l'on excep 
te celle qui est émise par les lasers, la longueur 
des trains d'ondes ne paraît pas dépasser l'ordre du 
mètre. Mais, pour les électrons, la longueur des 
trains d'ondes est de l'ordre du y ou millionnième 
de mètre. La plupart des théoriciens quantistes pa 
raissent ne pas tenir compte de ce fait bien connu 
des spécialistes de l'optique électronique, à la 
suite des travaux de Mollenstedt, Fert et Faget, 
Zouckermann.



De la très petite longueur des trains d'ondes 
électroniques, il résulte que, quand deux électrons 
initialement portés par un même train d'ondes ont 
été envoyés dans des directions différentes par 
l'action d'un appareil du type Stern-Gerlach, leurs 
trains d'ondes se séparent en un temps qui ne peut 

— i 2
guère dépasser 10 seconde et qu'ensuite la for 
mule (3), qui correspond à l'existence d'un état 
singulet, n'est plus valable tandis que la formule
(2) est alors vérifiée, ce qui fait tomber le théo 
rème de Bell.

En résumé, M. Bell considère deux électrons qui 
sont éloignés et portés par un même train d'ondes, 
mais ces deux hypothèses sont inconciliables.

Ajoutons encore une remarque. Si, à un même ins 
tant, on mesure les spins de deux électrons éloi 
gnés et si ces mesures sont corrélées, cela impli 
que un échange d'information instantané entre les 
deux appareils de mesure, ce qui est contraire à la 
théorie de la Relativité. Cette objection est vala 
ble que les particules soient ou ne soient pas lo 
calisées et n'est nullement opposable à une théorie 
â variables cachées. Mais nous échappons complète 
ment à cette objection puisque, pour nous, les 
mesures du spin sur des électrons éloignés ne sont 
pas corrélées.
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DEMONSTRATION DES FORMULES (2) et (3).

Nous allons montrer que les formules (2) et (3) 
de Bell sont exactes si l'on adopte nos hypothèses.

Commençons par la formule (2) en supposant l'exac 
titude des variables cachées. Pour nous, ces varia 
bles cachées sont les coordonnées xlt ylf z,, x2,

y2, z2 des deux électrons. Quand leurs spins sont

mesurés par les appareils liés aux vecteurs a et b, 
ils ont des coordonnées que Bell schématise par la 
seule lettre X et le résultat de ces mesures peut

s'exprimer, en unité par la formule (1). Mais,

si nous ignorons la position des appareils au mo 
ment de la mesure, donc la valeur des coordonnées 
des électrons Xj,..., z2 à ce moment, nous pouvons

introduire la probabilité p(Xj,... z2) de ces va-
-F ->■ -►

leurs et la valeur moyenne de ala et de cr2b pour

l'ensemble des valeurs possibles des coordonnées 
sera :

P(Oja,a2b)= p(Xj,yi,Zl,x2,y2,z2)A(a,Xl,Vl,Zl,x2,y2,z2) 

B(b,x1,y1,z1,x2,y2,z2)dxldyldz1dx2dy2dz2

C'est cette valeur moyenne que Bell écrit sous la 
forme condensée de la formule (2) :

P(a, b) = p(À) A(a, X) B(b, X)dX

et nous avons bien retrouvé cette formule.

Nous allons maintenant retrouver la formule de 
Bell (3) si l'on admet, ce que nous n'admettons pas, 
que lors de la mesure de deux électrons éloignés, 
ces états sont dans un état singulet.

Nous pouvons supposer que l'on mesure le spin des 
électrons dans une direction que nous prenons comme 
verticale sur notre figure. Les vecteurs unités

. . ,
a et b qui définissent l'orientation des appareils
de mesure sont arbitraires et nous avons le schéma 
suivant :



On a évidemment a et B cons 
tants avec :

■+
Oja = cos a

-y -y
a2b = cos 3 

~y -y ~y
Oj a.a2b = cos a cos B

-y -y -y -y

Ojb.a2a = cos (ir-a) . cos (tt ~B)

= cos a.cos B

d'où :

-+ -t ^ -> -+ ->■ -+■ I - — . H., i

x aia.o2b + Oj b .a2 a = -j 2 cos a.cos B= cos a.cos B

Mais on a aussi :

- a.b = - cos(ir +a- B) = cos(a - B)

= cos a cos B + sin a sin B

Comme B = Ot + Cte, on a sin a.sin B = cos a
-y -y

et, puisque a.b est constant :

-y -y |

xx - a.b = 2 2 cos a-cos 2 = cos a.cos B

D'après x et xx, l'on a donc bien :

CTja.CTjb + Ojb.CJ2a = - a.b

c o s B

ce qui est la formule (2) de Bell pour la moyenne 
prévue par la Mécanique quantique pour un état sin- 
gulr.t. Mais, pour nous, quand on mesure les spins 
sur des électrons éloignés, ils ne sont plus dans 
un état singulet.
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Le mouvement brownien 
d’une particule dans son onde

Dans un article paru dans la Physioal Review (*),
M. Edward Nelson a eu la très intéressante idée de 
rechercher si l'équation de Schrodinger ne pouvait 
pas être considérée comme correspondant au mouvement 
brownien d'une particule et il a trouvé que le coef 
ficient de diffusion D de ce mouvement serait égal à 
C(h/m), où C est une constante numérique qui, d'après 
son calcul, a la valeur 1/2. Une expression de cette 
forme pouvait être prévue pour des raisons de dimen 
sions dans une théorie non relativiste où l'on ne dis 
pose que des deux constantes physiques m et h.

Mes idées actuelles sur l'interprétation de la Mé 
canique ondulatoire me font penser que la tentative 
de M. Nelson est orientée dans une bonne direction.
Je crois, en effet, qu'il faut rétablir la localisa 
tion de la particule dans son onde, admettre qu'elle 
possède un mouvement "moyen" qui, en l'absence de 
perturbations, lui ferait décrire une des courbes or 
thogonales aux surfaces d'égale phase de l'onde, mais 
que ce "mouvement de guidage" est constamment pertur 
bé par des interactions provenant d'un milieu caché 
"le milieu subquantique". Il en résulte que la parti 
cule, partant d'une certaine position initiale, est 
constamment diffusée autour de cette position initiale 
et possède donc une sorte de mouvement brownien, 
approximativement représentable par une équation de 
diffusion, qui se superpose au mouvement de guidage.

Mais, bien que je sois d'accord sur le sens de la 
tentative de M. Nelson elle ne me donne pas entière 
satisfaction, en particulier parce qu'elle conduit



à une équation de diffusion de la forme 3 'F / 31 = DAf 
où la fonction d'onde H* de Schrodinger joue le rôle 
d'une densité alors que c'est la quantité |Ÿ|2 qui 
devrait jouer ce rôle. J'ai ainsi été amené à re 
prendre une tentative analogue, mais sur des bases 
différentes. Depuis longtemps, je suis convaincu 
qu'on ne peut pas déduire l'équation de Schrodinger 
d'une équation de diffusion parce qu'une équation 
de diffusion, qui a la forme de l'équation de la 
chaleur, est du type parabolique tandis que l'équa 
tion de Schrodinger, dégénérescence non relativiste 
de celle de Klein-Gordon, est en réalité, malgré les 
apparences, du type hyperbolique. Inversement je ne 
crois pas non plus qu'on puisse faire dériver une 
véritable équation de diffusion de la seule équation 
de Schrodinger. Pour déduire de la propagation d'une 
onde un phénomène de diffusion, il me paraît néces 
saire d'introduire une hypothèse supplémentaire qui 
se présente tout naturellement dans ma théorie de la 
double solution.

Dans celle-ci, en effet, on admet comme principe 
essentiel que la particule est toujours localisée et 
qu'elle se déplace dans son onde de telle façon que 
sa vibration interne reste constamment en phase avec 
l'onde qui la porte (onde v de ma théorie à laquelle 
l'onde Ÿ est proportionnelle). Quand le milieu sub- 
quantique n'exerce aucune perturbation sur l'onde, 
le mouvement de la particule est défini par la "for 
mule du guidage" suivant laquelle la quantité de mou 
vement est égale au gradient de la phase de l'onde. 
Nous pouvons dire alors que la trajectoire non pertur 
bée est l'une des lignes de courant de l'onde. Mais, 
si une perturbation provenant du milieu subquantique 
se produit, l'onde devient v' = v + w, où w traduit 
l'existence de la perturbation et alors la particule 
se déplace à chaque instant en suivant l'une des li 
gnes de courant de v' et en restant ainsi constamment 
en phase avec v'. Quand la perturbation est terminée, 
on a de nouveau w = 0 et v' = v de sorte que la par 
ticule se met finalement à suivre la ligne de courant 
de v sur laquelle elle est parvenue. Nous nous pro 
posons de montrer qu'en admettant cette hypothèse 
supplémentaire, nous allons pouvoir attribuer à la 
particule un mouvement brownien représenté par une 
équation de diffusion.



Nous désignerons par ‘P la phase de l'onde non per 
turbée v et par <p' la phase "interne" du corpuscule 
pendant le mouvement brownien. Représentons les sur 
faces d'égale phase de l'onde non perturbée aux ins 
tants 0, t, t + dt et x en supposant que la pertur 
bation commence au temps 0 et se termine au temps t-

La particule dans son 
mouvement brownien zigzaguant 
qui va de M0 en M suit

pendant l'intervalle de
temps f t ,_t + dt}le petit
segment PP' qui est dif- 
férent du segment PP" qui 
correspondrait au mouve 
ment de guidage en P en 
l'absence de perturbation 
subquantique. Nous pou 
vons représenter la vites- 
se de la particule sur PP' 

par v + v, où v est la vitesse de guidage non per-
^ . 

turbee en P et v est la vitesse due à la perturbation
d'origine subquantique.

La variation dV de la phase non perturbée le long 
du segment PP' est, pendant la durée dt du parcours 
de ce segment, égale à :

2m„ c . m v
(1) d, - — dt dt -_^PP"

1 >
dt - -=t- m v dt 2ft o g

puisque PP" = v^dt. D'où :

m0c2

(2) «P (T ) - <p( 0) = —T  T
T mn
W v dt 2n g

m v2
JLa t
2h

Puisque nous admettons que la vitesse de la par-

ticule pendant son mouvement brownien est v^ + v,

nous trouvons pour la variation d<p ’ de la phase in 
terne de la particule de P en P' :
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me m
(3) dip ' = —jj— dt”2TT ^ + ^g^2<lt

m c o
dt

m vÆ o
IF d t -

m„ v^ 
0 g dt -

2m0v.v
& d t

puisque, d'après la formule relativiste du ralentis 
sement des horloges, la fréquence interne de la par 
ticule en mouvement est :

V = V. y/l "B2 (1-
, m„ c ‘1 p 2 \ _ _A_2 S } h

1
2 h

Si nous intégrons dip ' le long de la trajectoire 
brownienne de la particule en remarquant qu'on a par 
hypothèse ip'(O) = ip(0), on trouve :

(4) 'P'(t) - <p (0)
moc‘ m v2 

0 ë
2 h T

mov2 

2b- T

car le dernier terme de (3) est nul en moyenne le 
long de la trajectoire brownienne puisque la projec-

• #
tion de v sur v varie aléatoirement le long de cette
trajectoire. ®

La comparaison de (2) et de (4) fournit alors :

m0v*
(5) p ( t) - ip'(x) = ■ 2 h t

et pour que les phases ip(x) et ip'(x) coïncident, il 
faut que :

(6) v2x = 4irn (n entier).
mo

Pour trouver maintenant l'équation de diffusion 
représentant ce mouvement brownien, nous compterons 
la variable x le long de la droite, M0M, c'est-à-

dire que nous poserons MM0 = x. Comme pendant l'in 

tervalle de temps dt la diffusion brownienne est

dx = v dt on aurait, si v était constant, x = v x- x ’ x ’ x
Mais v varie aléatoirement de sorte que "v est x x
nul et nous devons nous contenter de poser :

(7)



En désignant alors par a l'angle constamment 
variable que fait la vitesse brownienne instantanée 
avec M0M, on aura :

(v cos a)2 = j(8)

d'où d'après (7) et (6) :

Or la théorie du mouvement brownien repose sur 
l'équation de diffusion :

(10)

où p est la probabilité de la présence de la parti 
cule à une distance x de son point de départ. La 
solution bien connue de l'équation (10) est pour 
t = T :

4Dt(H) P(x, T) e
/ 4ttDt

qui donne aisément :

(12) 2DT ou

Compte tenu de (9), on obtient finalement comme 
coefficient de diffusion pour le mouvement brownien 
de la particule dans son onde :

(13) D
o

ce qui, pour n = 1, ne diffère que par le facteur 
numérique 4ïï/3 de la valeur h/2 m trouvée par 
M. Nelson.

La théorie qui précède n'est valable qu'à l'ap 
proximation newtonienne et l'on sait qu'un phénomène 
de diffusion n'est qu'approximativement représentable 
par une équation du type (10). De plus, le mouvement 
brownien de la particule dans son onde représenté 
par les équations (10) à (13) est défini abstraction 
faite du mouvement de guidage.

Le calcul effectué dans cette Note n'est qu'appro 
ximatif, mais il indique une direction de recherches.
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Sur la théorie

des particules “échantillons”

1. IDEES GENERALES.

Dans un article de "l'Onde électrique" de Sep 
tembre 1970, j'ai précisé la façon dont je conçois 
la mise en oscillation d'un circuit oscillant dans 
un récepteur de Radio par l'action d'une onde élec 
tromagnétique incidente. D'après moi, les photons 
portés par une très faible onde électromagnétique V 
sont assimilables à des "échantillons" d'une onde 
de même phase que l'onde incidente, mais d'une am 
plitude beaucoup plus grande.

Une idée analogue peut être introduite pour in 
terpréter toutes les actions de photons sur la ma 
tière. Par exemple, quand on obtient l'inscription, 
sur une plaque photographique soit d'une image four 
nie par un appareil d'optique, soit des franges 
d'interférences ou de diffraction dues à l'arrivée 
de photons, on peut prévoir très exactement les phé 
nomènes observables en utilisant une onde électro 
magnétique V de Maxwell associée aux photons. Plus 
généralement, on obtiendra une prévision exacte de 
la localisation de particules quelconques en les 
considérant comme guidées par des ondes V solutions 
des équations correspondantes de la Mécanique ondu 
latoire et en les considérant comme des "échantillons 
d'une onde de même phase que l'onde incidente, mais 
d'une amplitude beaucoup plus grande.



2. APPROFONDISSEMENT DE CETTE IDEE.

On doit cependant noter qu'il y a une différence 
importante entre les cas que nous venons d'envisager 
et la mise en oscillation d'un circuit oscillant dans 
un appareil de Radio. En effet, dans un circuit oscil 
lant, et c'est là ce qui fait l'intérêt de ce cas 
particulier, l'oscillation du courant dans le cir 
cuit met directement en évidence la phase de l'onde 
incidente qui peut même être enregistrée par un dis 
positif sans inertie comme un tube cathodique. Mais 
on ne réalise alors aucun comptage des photons hert 
ziens agissant sur le circuit oscillant. Au contraire 
dans l'enregistrement d'une image photographique ou 
par un dispositif analogue, il y a seulement enregis 
trement du nombre des particules, des photons dans 
le cas de la lumière, qui arrivent en moyenne en di 
vers points du dispositif. Le radioë1ectricien met 
en évidence la phase de l'onde hertzienne incidente 
sans pouvoir opérer un comptage des photons, tandis 
que l'opticien constate le nombre et la répartition 
des photons sans mettre en évidence directe l'exis 
tence de la phase. C'est ce qu'a très bien vu M. 
Michel Yves Bernard dans son livre "Masers et Lasers" 
publié en 1964 par les Presses Universitaires de 
France.

Comme nous admettons que l'onde réelle V qui trans 
porte les particules est trop faible pour agir direc 
tement sur l'appareil d'enregistrement et que, seules 
les arrivées successives des particules peuvent le 
faire, nous sommes de nouveau amenés à admettre que 
les particules apportent des échantillons d'une onde 
de même phase que l'onde V, mais d'une amplitude beau 
coup plus grande. Comme le nombre des particules qui 
viennent agir en divers points du dispositif est, en 
moyenne, proportionnel au carré de l'amplitude de 
l'onde, c'est finalement le nombre des échantillons 
de l'onde de grande amplitude, et non sa phase, qui 
est enregistré. Cependant, comme l'équation de propa 
gation lie étroitement les variationsde l'amplitude 
à celle de la phase, on peut dire que, s'il n'y a 
pas alors enregistrement de la phase comme dans le 
circuit oscillant, il y a cependant encore ici une 
influence décisive de la phase sur le phénomène ob 
servable .



Il me parait donc probable que le succès de l'em 
ploi exclusif de la théorie classique des ondes lu 
mineuses pour expliquer dans tous leurs détails les 
phénomènes les plus fins de l'optique expérimentale 
doit être interprété par l'idée des particules "é- 
chanti1Ions". Et c'est évidemment de la même façon 
que l'on doit expliquer comment l'emploi des équa 
tions d'ondes de la Mécanique ondulatoire, qui ne 
contiennent pas l'idée de particules localisées, 
peut conduire à prévoir très exactement les phéno 
mènes de localisation, de diffraction et d'interfé 
rences de toutes les particules microphysiques.

3. REPONSE A UNE CRITIQUE ADRESSEE A LA THEORIE DES
PARTICULES "ECHANTILLONS".

La théorie que nous venons d'exposer a été criti 
quée par des radioêlectriciens. Je pense que cette 
critique n'est pas valable parce que les échantil 
lons dont il a été question dans les paragraphes 
précédents ne sont pas assimilables à ceux dont par 
lent les radioêlectriciens.

Précisons d'abord ce qu’est un échantillon dans 
le langage des radioêlectriciens. Considérons d'abord 
un très long train d'ondes électromagnétiques d'am 
plitude A, de fréquence V et de longueur d'onde X 
tel que le conçoivent souvent les radioêlectriciens.

A ,D,X

Au lieu d'émettre un tel train d'ondes, on peut 
émettre une série de trains d'ondes plus courts avec 
les mêmes valeurs de A, X et v.

A,U,\ A,V,\ A,V,A

Les radioêlectriciens disent alors que l'on émet 
des échantillons de l'onde de la figure 1.



Mais ces échantillons sont très différents de 
ceux auxquels j'assimile les particules matérielles. 
En effet, dans ma conception des particules échan 
tillons, une onde v de très petite amplitude a, de 
fréquence V et de longueur d'onde X transporte des 
particules localisées qui restent constamment en 
accord de phase interne avec elle. On a alors le 
schéma suivant :

A,V,X A,V,X A,V,X

Les particules constituant alors des "échantil 
lons" d'une onde qui aurait même phase que celle de 
l'onde V, mais avec une amplitude A beaucoup plus 
grande. Mais ces échantillons ne sont pas du tout 
des morceaux importants d'une onde de grande ampli 
tude comme les échantillons des radioé1ectriciens.
Ce sont des échantillons très étroits et très loca 
lisés d'une onde de grande amplitude qui sont trans 
portés par une onde v d'amplitude extraordinairement 
faible en restant constamment en phase avec elle. Ils 
diffèrent donc entièrement des échantillons considé 
rés par les radioé1ectriciens.
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Probabilités présentes, 
probabilités prévues, 
probabilités cachées

INTRODUCTION.

Le regain d'actualité que connaissent depuis une 
dizaine d'années les discussions sur le problème gé 
néral du caractère complet, ou non, des théories 
quantiques, ainsi que sur l'existence, ou la non 
existence, de paramètres cachés derrière le schéma 
statistique actuellement en vigueur, appellent de 
notre part un certain nombre de remarques que nous 
allons développer dans cet article.

Tout d'abord, nous ferons observer qu'il nous pa 
raît dangereux et peu prometteur de discuter d'une 
manière abstraite et générale du problème des para 
mètres cachés. Il suffit, pour expliquer notre scep 
ticisme, de se demander à quoi auraient abouti les 
théoriciens du 19ême siècle s'ils avaient essayé de 
répondre à la question générale : "Existe-t-il des 
êtres innombrables en agitation désordonnée, qui se 
raient responsables des lois de la thermodynamique ?".

Ils n'auraient probablement abouti à aucun résul 
tat et on sait qu'en réalité les théories statistiques 
modernes sont nées de l'étude de modèles très con 
crets d'atomes qui, pourtant, ne ressemblaient que 
fort peu à l'image que nous nous en faisons aujourd' 
hu i .

De même, nous pensons qu'en Mécanique ondulatoire, 
on doit introduire des paramètres cachés bien précis 
qui sont les positions et les vitesses des corpuscu 
les et les grandeurs qui s'en déduisent.



Nous tenons à souligner que nous n'avons pas fait 
ce choix en nous fondant sur des considérations méta 
physiques ou dans le seul but de rétablir les prin 
cipes du déterminisme. Nous l'avons fait sur la base 
d'un examen détaillé d'un certain nombre de phénomè 
nes physiques et de questions concrètes qui nous pa 
raissent demeurer sans réponse si on n'accepte pas 
l'idée de la localisation permanente des corpuscules.

En procédant ainsi, nous ne faisons que dévelop 
per les idées mêmes qui se sont trouvées à l'origine 
de la découverte de la Mécanique ondulatoire et qui 
furent élaborées par son auteur entre 1922 et 1927. 
Celui-ci écrivait déjà en 1922, à propos des inter 
férences et de la théorie des quanta de lumière C1) 
"... il faudra sans doute faire un compromis entre 
l'ancienne théorie et la nouvelle [celle des quanta] 
en introduisant dans celle-ci la notion de périodi 
cité. Quand cette synthèse aura été faite, les équa 
tions de Maxwell apparaîtront sans doute comme une 
approximation continue (valable dans beaucoup de cas 
mais non dans tous) de la structure discontinue de 
l’énergie radiante...” et il poursuivait deux ans 
plus tard (2) : "Mais la théorie ne deviendra vrai 
ment claire que si on parvient à définir la structure 
de l'onde lumineuse et la nature de la singularité 
constituée par le quantum, dont le mouvement devrait 
pouvoir être prévu en se plaçant uniquement au point 
de vue ondulatoire".

C'est une telle théorie que l'auteur tentait d'é 
difier en 1927 (3) sous le nom de "Théorie de la dou 
ble solution", mais qu'il abandonna pendant une lon 
gue période. Le mérite essentiel de David Bohm dans 
ce domaine fut, en 1952 (4) de remettre à l'ordre du 
jour ces idées longtemps oubliées et qui furent, de 
puis lors, longuement développées, notamment sur la 
base de la Thermodynamique cachée des particules, 
dans de nombreux travaux (que nous citons en référen 
ce) de Louis de Broglie et de quelques uns de ses 
élèves. Il est d'ailleurs curieux de remarquer com 
bien ces travaux restent peu lus par ceux qui les 
critiquent ou par d'autres encore qui tentent des 
approches de problèmes qui s'y trouvent depuis long 
temps étudiés : les uns et les autres gagneraient à 
s'y référer.



L'IMPORTANCE DES PHENOMENES DE LOCALISATION EN 
MICROPHYSIQUE (5) (6).

Avant de nous pencher sur le schéma statistique 
de la Mécanique ondulatoire, sur lequel nous revien 
drons plus loin, et qui suscite à juste titre tant 
de travaux chez les théoriciens qui s'intéressent 
aux fondements des théories quantiques, il nous pa 
rait essentiel de réfléchir sur la manière dont la 
Mécanique ondulatoire peut contrôler expérimentale 
ment ses prévisions et donc, en général, sur ce 
qu'est l'observation en microphysique.

On s'aperçoit ainsi de la prééminence des mesures 
de position auxquelles se ramènent en fait, directe 
ment ou indirectement, les autres mesures quantiques 
(*). En effet, tout ce que nous pouvons apercevoir 
d'une particule microphysique est un phénomène local 
causé par sa présence dans une région plus ou moins 
bien délimitée de l'espace; nous décelons en général 
cette présence par l'effet macroscopique d'une réac 
tion en chaîne déclenchée par la particule et qui 
peut impressionner nos sens ou mettre en marche un 
appareil : tache sur une émulsion photographique ou 
sur un écran sensible, trajectoire dans une chambre 
à bulles, "top" ou scintillation d'un compteur ...etc.

Même s'il se trouve que le but de l'observation 
n'est pas la localisation du corpuscule, c'est néan 
moins par l'intermédiaire d'un tel enregistrement 
qu'on atteindra d’autres grandeurs concernant soit 
ce corpuscule lui-même, soit un autre corpuscule qui 
aura interagi avec lui auparavant. Ainsi, la fréquence 
d'un photon se détermine dans un spectroscope en en 
registrant sa sortie dans un certain angle solide 
après la traversée de l'appareil; c'est par le même 
procédé qu'on trouve le rapport ra/e d'un ion dans un 
spectrographe de masse; dans un appareil à jet molé 
culaire, on décèle une résonance en détectant le si 
gnal de sortie du jet, donc en constatant la présence 
ou l'absence d'une molécule dans une certaine direc 

(*) Nous n'envisageons ici que des mesures effec 
tuées sur des systèmes individuels et non pas 
celles qui interviennent sur les phénomènes 
quantiques collectifs qui se manifestent dans 
les grands ensembles de tels systèmes.



tion de l'espace; le dispositif de Stern et Gerlach 
n'est lui-même qu'un polariseur qui fournit la valeur 
d'une composante de spin en déviant différemment les 
particules selon les différentes valeurs que prend 
cette composante.

Il est tout aussi facile de citer des mesures in 
directes dans lesquelles une localisation ou une sui 
te de localisations d’une particule fournit des ren 
seignements sur une autre particule avec laquelle 
elle a interagi. C’est le procédé couramment utilisé 
par la physique des particules fondamentales : l'étu 
de des traces des particules connues dans les produits 
d'une réaction donnant des renseignements sur les 
particules nouvelles, y compris sur les particules 
neutres qui ne laissent pas de trace. D'une manière 
plus générale, ce procédé d'observation est, sous di 
verses formes, celui de toute la physique des colli 
sions .

Observons maintenant que, dans les mesures que 
nous venons de citer, et, nous semble-t-il, dans 
toute autre, la particule observée n'interagit jamais 
avec un appareil de mesure macroscopique, comme on le 
prétend parfois : toutes les interactions sont à l'é 
chelle microphysique. En particulier, on ne saurait 
mesurer la position d'une particule en la faisant 
passer au travers d'un trou percé dans un écran, 
comme on le dit souvent : un tel trou ne constitue 
qu'une condition aux limites qui modifie l'évolu 
tion ultérieure de l'onde, et donc le mouvement de 
la particule; il nous permet d'affirmer que si la 
particule a passé d'un c6té à l'autre de l'écran, 
elle l'a fait à travers ce trou, mais seule une in 
teraction microscopique suivie d'un processus en cas 
cade peut éventuellement marquer son passage et per 
mettre de mesurer sa position à un instant donné.

De même, on ne mesure certainement pas l'impul 
sion d'une particule en la communiquant à un "appa 
reil" macroscopique dont on mesurerait le recul (ce 
qui, pourtant, a été dit), mais en préparant cette 
particule de façon telle que la valeur de son impul 
sion se déduise univoquement de sa localisation dans 
une certaine région de l'espace ou de la localisation 
d'une particule avec laquelle elle a interagi.



Hais ceci nous amène à faire une remarque essen 
tielle sur laquelle on ne saurait trop insister : 
pour qu'une correspondance bijective s'établisse en 
tre la localisation d'un corpuscule et la valeur 
d'une grandeur mesurée, il est nécessaire que l'on 
de associée à ce corpuscule soit séparée en trains 
d'ondes limités et disjoints dans l'espace. Il est 
d'ailleurs évident que c'est cela qu'on cherche à 
obtenir lorsqu'on s'efforce d'améliorer le pouvoir 
séparateur en spectrographie optique ou en specto- 
graphie de masse. En ce sens, toute opération de 
mesure (sauf la mesure de position elle-même) peut 
être regardée comme une analyse spectrale. Par 
exemple si l'on mesure une grandeur A sur une parti 
cule sans faire intervenir d'autres particules, nous 
pouvons développer la fonction d'onde initiale sui 
vant les fonctions propres de A :

O) ÿ = I C * •
K

Le dispositif de mesure comprend alors un analy 
seur spectral (prisme ou réseau pour une fréquence 
optique, champ magnétique inhomogène pour une compo 
sante de spin etc.) qui sépare dans l'espace les dif 
férentes composantes ipv de l'onde ip , si bien que si

l’on enregistre la présence de la particule dans l'un 
des trains d'ondes, disons ip , on saura que la gran-

deur A a la valeur propre correspondante (fig. 1)-
K.

Déjà, dans cet exemple simple, apparaît une diffi 
culté lorsqu'on refuse d'admettre une localisation 
permanente des corpuscules. En effet, la théorie ha 
bituelle nous dit, qu'à la sortie de l'appareil, nous 
devons attendre le corpuscule incident dans l'une 
des régions R , R , ... R„... occupées par les trains

d'ondes ip , i..., ... mais qu'il n'est loca 

lisé dans aucune d'elles avant que ne se produise un 
phénomène observable. D'après certains auteurs comme 
Von Neumann (10), London et Bauer (1J), ce serait 
même la prise de conscience, par l'observateur, de ce 
phénomène observable qui localiserait brusquement la 
particule dans l'une des régions R . Ce qui est le

plus étrange dans cette conception, c'est que la ma 
nifestation de la particule dans l'une de ces régions
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RR nous assure évidemment tout aussitôt qu'elle ne

peut pas apparaître dans une autre région et il 
faudrait donc admettre que c'est l'apparition d'un 
phénomène dans Rj, (ou, mieux encore, la conscience

que nous en prenons !) qui fait instantanément se 
propager cette interdiction.

La question se pose encore plus clairement dans 
les mesures de seconde espèce où, après l'interaction 
entre deux particules, on mesure une grandeur affé 
rente à l'une d'elles en effectuant une observation 
sur l'autre. On sait que le paradoxe le plus célèbre 
dans ce domaine est celui d'Einstein, Podolsky et 
Rosen ( ) mais nous le trouvons, quant à nous, peu 
probant parce qu'entaché de l'erreur fondamentale 
de négliger l'extension finie des trains d'ondes (8). 
Il est intéressant, par contre d'évoquer un problè 
me beaucoup glus simple et plus clair posé par Schro 
dinger ( ) ( ) (9) vers la même époque et qui ne
tombe pas sous le coup de cette critique. Considérons 
avec lui deux paquets d'ondes 'f 0 et Xo associés à

des corpuscules 1 et 2 qui, après s'être propagés
dans des régions disjointes Rq*^ et Rq2^ de l'espace,

entrent en collision, puis se séparent. En général, 
une série de mouvements possibles en résultera, tous 
compatibles avec les lois de conservation de la Méca 
nique ondulatoire des systèmes de particules. Nous 
aurons donc, après l'interception, un ensemble de 
couples de trains d'ondes corrélés :

(^ 1 » Xj)> (*^2» X 2 ) > •••> ^ s Xg) >

qui se propageront, comme l'indique la figure, dans 
des régions disjointes :

(R
O) „(2)
1

,0) „(2)\ ') , (R£ ' , R^ ')..... (R (D r(2)
K ’ RK ) ,. . .

La théorie actuelle ne nous permet pas de prévoir 
où, exactement, nous pourrons observer les particules 
1 et 2, mais les lois de conservation nous disent que
si nous enregistrons 1 dans la région r['\ alors 2

_ . (2)
sera nécessairement dans la région R , si nous ob-

. ( 1 )
servons 1 dans la région R^ , alors 2 se trouvera
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(2)
dans 1*2 , etc.

Mais si nous n'admettons pas la localisation per 
manente des corpuscules, si nous disons, comme le 
disait Bohr, qu'avant la mesure le corpuscule 1 
était "potentiellement présent" dans tous les trains 
d'ondes 'f ^ z , ..., ... et le corpuscule 2

dans tous les trains d'ondes X] > X2 » •••> X]ç> • ••

comment devrons-nous interpréter ce phénomène ? Nous 
devrons dire, si nous suivons von Neumann, London et 
Bauer, que c'est la prise de conscience par l'obser 
vateur du phénomène macroscopique observable déclen 
ché par la particule 1 sur une plaque ou dans un comp 

teur situé en par exemple, qui localise instan 

tanément la particule 2 dans le sous-espace corrélé
(2)R, et empeche cette localisation dans les autres
* (2)
sous-espaces R entre lesquels la particule 2 était 
jusqu'alors statistiquement répartie.

Il est vraiment difficile d'admettre cette explica 
tion télépathique, d'autant que la particule 1 pour 
rait être guettée par deux observateurs, l'un les yeux 
ouverts et l'autre les yeux fermés : alors, la parti 
cule 2 doit-elle se localiser par la seule prise de 
conscience de l'observateur qui a vu le phénomène ob 
servable, ou bien faudra-t-il attendre qu'il en in 
forme son collègue : la non-prise de conscience de 
celui-ci risquant d'empêcher la localisation ? ques 
tion absurde.

A moins de renoncer à toute description ration 
nelle du monde physique, il faut admettre que la loca 
lisation de la particule 2 est liée à celle de la par 
ticule 1 et au phénomène observable que celle-ci a 
déclenché, et non à la conscience que nous pouvons en 
prendre. Mais nous ne pouvons même pas admettre que 
c'est le phénomène macroscopique déclenché par 1 qui 
provoque la brusque localisation de la particule 2 
dans le train d'ondes corrélé, car il faudrait suppo 
ser pour cela un phénomène de propagation instantanée, 
alors que les particules peuvent se trouver arbitrai 
rement éloignées l'une de l'autre au moment où s'ef 
fectue l'observation : "Ce serait de la magie !" 
écrivait Schrodinger à propos de cette hypothèse.



C'est pour répondre à un certain nombre de pro 
blèmes de ce type que la théorie de la double solu 
tion se propose de rétablir dans les théories quan 
tiques la notion de localisation permanente des 
corpuscules, grâce à laquelle les problèmes que nous 
venons d'esquisser reçoivent des interprétations 
évidentes. En effet, dans une telle théorie, on doit 
admettre dans le dernier problème cité, qu'à la suite 
de l'interaction entre les deux corpuscules et après 
leur séparation, le corpuscule 1 se retrouve dans un
train d'onde bien déterminé, par exemple r5'^,
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corpuscule 2 dans le train d'onde corrélé ,

et le 

alors

l'enregistrement du corpuscule 1 n'est plus que la 
constatation d'un fait déjà existant et la déduction 
que nous en tirons sur le corpuscule 2, notamment sur

(21sa localisation dans la région R^ , n'est qu'un ren 

seignement que nous obtenons sur un état de choses 
qui existait, lui aussi, avant la mesure. Ce n'est 
plus la mesure qui précipite le corpuscule 2 dans la

région R^ : s'il s'y trouve, c'est à la suite de

sa collision avec le corpuscule 1 et la mesure ne 
fait que nous en informer.

Mais une telle conception pose un subtil problème 
de statistique qui a été longuement analysé dans les 
références ( 5 ) (6) (16) (17) (18) (19) mais qui
échappe complètement aux auteurs qui raisonnent d'une 
manière trop générale sur les théories à paramètres 
cachés. Nous allons maintenant en dire quelques mots.

PROBABILITES ACTUELLES, PROBABILITES PREVUES, PRO 
BABILITES CACHEES.

Nous avons vu que la position d'une particule nous 
paraît avoir une prééminence parmi toutes les gran 
deurs observables car c'est toujours par l'intermé 
diaire d'une mesure de position que les autres mesu 
res s'effectuent. Mais en outre, et c'est là en quel 
que sorte un corollaire de cette constatation, la 
densité de probabilité de présence ilnp* jouit d'un 
privilège par rapport aux autres probabilités cal 
culées en Mécanique ondulatoire. En effet, pour 
effectuer une mesure de position, il n'est pas né 
cessaire de préparer la particule dans un état spé-
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cial, et donc de modifier préalablement son état (*).

Il en résulte que, pourvu qu'un montage expéri 
mental soit réalisable pour la mesure de la position 
d'une particule dans un certain état c'est direc 
tement dans cet état-là que nous pourrons contrôler 
la densité de probabilité ijjip* grâce à une série de 
mesures effectuées sur un ensemble de particules se 
trouvant dans le même état; que l'on songe, par 
exemple, que dans un champ d'interférences, la den 
sité ifuJ1* nous est donnée directement par des mesures 
de densimétrie effectuées sur un enregistrement pho 
tographique de la figure d'interférence. Donc, lors 
qu'on dit que, dans un état <p, la densité de présence 
est W* il s'agit d'une affirmation directement véri 
fiable (quelles que soient par ailleurs les difficul 
tés techniques d'une telle vérification). En parti 
culier, lorsque nous supposons la localisation perma 
nente de la particule dans son onde, la densité 
correspond à la présence de la particule en un point 
de l'onde avant l'action de tout appareil de mesure.

Nous dirons qu'il s'agit là d'une probabilité 
actuelle, en ce sens qu'elle correspond à une situa 
tion qui existe à l'instant même où cette probabili 
té est définie. Mais tel n'est pas le cas des autres 
grandeurs physiques.

Reprenons en effet le développement de Fourier (I)
d'une fonction d'onde suivant les états propres 'PvK.
d'une grandeur physique A, correspondant aux valeurs 
propres de cette grandeur. L'interprétation proba-

biliste de la Mécanique ondulatoire nous enseigne 
(principe de Born), et l'expérience a jusqu'ici tou 
jours confirmé, que si une particule est dans cet 
état <p et si nous effectuons sur elle une mesure de 
la grandeur A, nous trouverons la valeur a avec une

probabilité |c„|2 ou C„ est le coefficient de {Pl7 
K. K. ts.

dans le développement (1). Mais que cela signifie-t-il
exactement ? En général, les différentes composantes

(*) Bien entendu, cet état sera modifié ensuite par 
la perturbation causée par la mesure, mais ceei 
n'a rien à voir avec la préparation d'un système.



de l'onde <|j se recouvriront, du moins partielle 

ment, dans l'espace et interféreront entre elles,
faisant jouer notamment aux phases des nombres CvK.
un rôle déterminant. Il est clair que l'onde <(j ne 
se réduit aucunement à l'ensemble des composantes 
ipjç considérées isolément : seule la superposition de

ces composantes avec les effets d'interférence 
qu'elle implique représentera ijj et donc l'état de la 
particule. Imaginons alors une mesure de première 
espèce de la grandeur A, c'est-à-dire une mesure qui 
ne fasse pas intervenir d'autre particule. Pour que 
nous puissions affirmer : "la grandeur A a la valeur 
a ", il faut, ainsi que nous l'avons déjà dit, et

schématisé sur la fig. 1, qu'un analyseur spectral 
convenablement choisi sépare dans l'espace, des 
trains d'ondes limités correspondant aux différents 
états <p , ip » <p ..., puis qu'une mesure de

localisation nous montre que la particule se trouve 
dans le train d'ondes ip . Autrement dit, avant que la

mesure proprement dite n'intervienne, il nous a fallu
modifier l'état ondulatoire du système en séparant
les composantes ip et, de ce fait, rompre leurs rela- 

K.
tions de phase qui jouaient un rôle fondamental dans 
l'état initial \jj .

Alors qu'est-ce que la probabilité | C^| 2 ? C'est

évidemment la probabilité de trouver la particule 
dans le train d'ondes ip , mais cette réponse prend

un sens tout différent suivant que nous nous trouvons 
avant ou après l'analyseur. Si nous nous plaçons 
après l'analyseur, mais avant d'avoir enregistré la 
présence du corpuscule dans l'un des trains d'ondes 
( *) , nous avons un collectif (qui est l'ensemble de 
ces trains d'ondes) qui réalise objectivement la loi 
de probabilité en |cj2, | C2 | 2 , ... | C | 2 ... il s ' a-

git, dans ce cas, de probabilités actuelles, comme 
1 était la probabilité de présence, en ce sens 
qu'elles correspondent à l'information maximale que 
nous possédons sur une situation effectivement réa 

(*) En fait, la mesure peut avoir été réalisée, il 
suffit que nous nfen ayons pas encore eu 
connaissance.



lisée et que nous pouvons contrôler en prenant con 
naissance du résultat de la mesure.

Mais plaçons-nous maintenant avant l'analyseur. 
Bien entendu, nous pouvons, grâce au développement
(1) calculer ces mêmes nombres l^^l2 mais nous ne

pouvons pas vérifier directement leur valeur prévi 
sionnelle tant que le système se trouve dans l'état 
de superposition îj;. Ces probabilités ne prendront un 
sens actuel et ne correspondront à un collectif réel 
qu'après le passage dans l'analyseur : ce sont des 
probabilités prévues et il en sera ainsi pour toutes 
les probabilités calculées en Mécanique ondulatoire, 
sauf pour la position ou, éventuellement, pour les 
grandeurs dont l'état ^ (dans lequel on considère la 
particule) serait un état propre ou se trouverait 
constitué d'un ensemble d'états propres morcelés 
dans 1'espace.

On comprend alors pourquoi les probabilités calcu 
lées habituellement en Mécanique ondulatoire n'obéis 
sent pas au schéma probabiliste classique et pour 
quoi, en particulier, deux grandeurs A et B étant 
choisies au hasard, il n'est généralement pas possi 
ble de définir dans un état donné du système la pro 
babilité "jointe" P (A, B) qu'une mesure de la gran 
deur A donne la valeur et qu'une mesure de la

grandeur B donne la valeur . C'est simplement parce

que les probabilités afférentes aux mesures de A et 
de B ne sont pas actuelles mais prévues. Chacune 
d'elles ne deviendra actuelle que si on prépare le 
système dans un nouvel état, grâce à la séparation 
des trains d'ondes correspondant aux différents états 
propres. Or si les grandeurs A et B ne commutent pas, 
il n'existera pas de dispositif capable d'effectuer 
cette séparation pour les deux grandeurs à la fois, 
donc il n'existera pas d'état du système dans lequel 
on puisse rendre simultanément actuelles les probabi 
lités afférentes aux mesures de A et de B et où l'on 
pourrait, par conséquent, définir la probabilité 
"jointe" P (A, B).

Que se pas sera-1-i1, alors, si nous cherchons à 
rendre compte des lois de la Mécanique ondulatoire 
en admettant l'existence d'un déterminisme sous- 
jacent, chaque particule se trouvant, avant toute



observation, dans un état où toutes les grandeurs 
physiques qui le caractérisent sont simultanément dé 
finies ? En particulier, nous supposons, pour notre 
part, que la particule est constamment localisée 
dans son onde et on sait que la théorie de la double 
solution lui attribue à chaque instant une impulsion 
d'après la formule du guidage (8) (12).

La position est évidemment, pour la Mécanique on 
dulatoire actuelle, un paramètre caché mais nous 
avons vu que sa densité de répartition dans l'onde,

, est actuelle car on peut effectuer des mesures 
de position sans modifier préalablement l'état du 
système et révéler ainsi directement la valeur jus 
que là cachée des paramètres de position. Quant à 
l'impulsion, non seulement sa valeur à chaque ins 
tant est cachée, mais cette valeur est, en général, 
différente de celles que fournirait la mesure parce 
que celle-ci exige une préparation du système (donc 
un changement d'état) pour obtenir la séparation des 
composantes spectrales de l'onde : plus précisément, 
on montre en théorie de la double solution que ce 
n'est qu'une fois séparées les composantes spectra 
les que, dans chacune d’elles, la valeur cachée de 
l'impulsion sera égale à celle que fournirait la 
mesure.

Mais revenons à l'état initial, avant séparation 
des trains d'ondes. Une densité de probabilité Pp(p)

y sera définie pour la répartition des valeurs ca 
chées de l'impulsion. Cette densité n'est évidemment 
pas actuelle, puisqu'il n'est pas possible de mesurer 
directement l'impulsion dans cet état de la particu 
le. Mais ce n'est pas non plus la densité de proba 
bilité prévue par les lois habituelles de la Mécani 
que ondulatoire, en raison même du fait que les va 
leurs cachées de l'impulsion ne sont pas celles qu'on 
trouve par la mesure : ce point est établi en théorie 
de la double solution. Autrement dit, la densité de 
probabilité des valeurs cachées de l'impulsion est 
une densité cachée et il en est de même pour les den 
sités attachées aux valeurs cachées des autres gran 
deurs physiques, sauf la position. Mais si on mesure 
l'une de ces grandeurs en séparant dans l'espace les 
trains d'ondes correspondant aux différents états 
propres, les probabilités "cachées" calculées pour 
ce nouvel état deviennent actuelles et coïncident



avec celles que l'on calcule habituellement (5) (6);
évidemment, ce résultat sera vrai pour toutes les 
grandeurs qui commutent avec celle qu'on a choisi de 
mesurer, puisqu'elles ont les mêmes états propres et 
c'est pour cette raison qu'elles sont simultanément 
mesurables; au contraire, pour les grandeurs qui ne 
commutent pas avec la grandeur choisie, il n'y aura 
pas de séparation des états propres dans ce disposi 
tif et les probabilités correspondant aux valeurs 
cachées de ces grandeurs, resteront elles-mêmes ca 
chées .

C'est sur la base des principes exposés ici briè 
vement, que la théorie de la double solution par 
vient â interpréter les lois probabilistes de la 
Mécanique ondulatoire en termes de variables cachées 
obéissant au schéma statistique classique : remar 
quons en particulier que la position et l'impulsion 
étant simultanément définies, la théorie sait définir 
la probabilité p(x,p) dx dp que la particule soit 
dans l'intervalle (x, x + dx) avec une impulsion dans 
l'intervalle (p, p + dp). Mais les probabilités que 
nous introduisons ne sont pas celles que l'on calcule 
habituellement; ce sont des probabilités cachées et 
c'est pourquoi nous sommes d'accord avec la théorie 
habituelle pour ce qui est des résultats des mesures 
et des statistiques correspondantes, tout au moins 
lorsque les prévisions sont correctement faites en 
tenant compte de l'extension finie des trains d'ondes 
et de leur séparation dans l'espace.

La distinction que nous faisons entre probabilités 
actuelles, probabilités prévues et probabilités ca 
chées, qui a été longuement analysée dans les réfé 
rences citées de Louis de Broglie, nous paraît capi 
tale car elle seule permet l'accord entre une théorie 
à variables cachées et les résultats statistiques 
exacts de la Mécanique ondulatoire dans la prévision 
des résultats des mesures. L'erreur essentielle qui 
invalide le célèbre théorème de von Neumann sur la 
prétendue impossibilité des théories à paramètres 
cachés est de croire que les paramètres cachés intro 
duits dans la théorie doivent obéir aux lois statis 
tiques habituellement définies en Mécanique ondulatoi 
re : hypothèse absurde, puisque la statistique sur 
les paramètres cachés doit obéir au schéma classique, 
alors qu'il est notoire que la statistique habituelle
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construite en Mécanique ondulatoire ne s'y conforme 
pas. Cette seule remarque suffit à montrer que s'il 
existe des paramètres cachés, leur statistique doit 
également être cachée.

Des auteurs plus récents, souvent partisans des 
théories à paramètres cachés, commettent eux aussi 
l'erreur de confondre les trois sortes de probabili 
tés que nous distinguons. Ils sont ainsi conduits à 
considérer un système dans un certain état initial 
qu'ils décrivent par un ensemble de paramètres cachés 
(complètement abstraits, en général), sur lesquels 
ils définissent un schéma probabiliste classique et 
c'est à l'aide de ces probabilités classiques défi 
nies dans l'état initial du système, qu'ils calcu 
lent les moyennes des résultats de toutes les mesures 
qu'on réalisera par la suite. C'est notamment cette 
hypothèse qui est à la base de l'inégalité de Bell 
(13) ( 14) (15). Or il est évident qu'une telle démar 
che conduit forcément à un schéma statistique clas 
sique sur les résultats des mesures, donc à une con 
tradiction avec les prévisions de la Mécanique ondu 
latoire, et il ne saurait être question d'admettre 
un tel point de vue qui revient à nier l'action du 
dispositif de mesure sur l'objet observé.

LES RELATIONS D'INCERTITUDE.

Une conséquence importante de l'analyse dont nous 
venons de tracer les grandes lignes est qu'elle impli 
que une nouvelle interprétation des relations d'incer 
titude. Nous nous limiterons ici aux relations habi 
tuelles :

(2) Sx.ép^ > h, ôy.6py > h, ôz.6pz > h.

Tout le mystère dont on a entouré ces relations et 
les conclusions qu'on en a tirées au sujet d'un indé 
terminisme des lois de la Mécanique ondulatoire pro 
viennent essentiellement de ce que les incertitudes 
sur la position et l'impulsion sont considérées comme 
simultanément actuelles et se rapportant au même état 
du système. Mais considérons, en prenant pour simpli 
fier le cas d'un spectre discret, une particule dans 
un état ip représentable par le développement :

(3) ÿ = l c, av e £ (Ekt-PkX"Pk/-Pk *>
k K k. x y z
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où les a^ sont les amplitudes normées des composan 

tes de Fourier.

Pour nous, la particule est à chaque instant loca 
lisée dans le train d'ondes représenté par la fonc 
tion ip, mais sa position exacte nous est inconnue 
et elle est entachée d'incertitudes ôx, ôy, ôz sur 
les trois coordonnées : ces incertitudes sont pour 
nous actuelles, elles sont définies pour cet état ij/ 
et mesurent les dimensions du train d'ondes.

Mais la situation est tout à fait différente en 
ce qui concerne ôpx> ôpy, ôp^. En effet, dans l'état

i|), les différentes composantes du développement in 
terfèrent, seule leur somme \p a un sens physique et 
elles n'ont encore aucune signification individuelle: 
pas plus que les nombres p^ qui ne sont pas les va 

leurs actuelles de l'impulsion ou les nombres c^ qui

ne sont que des amplitudes de probabilités prévues; 
donc les incertitudes ôp^, ôp^, <$Pz n'ont pas, elles

non plus, de signification actuelle, elles ne sont 
que des incertitudes prévues et ne prendront un sens 
physique que quand, l'état initial ayant été détruit 
par un analyseur qui séparera dans l'espace les dif 
férentes composantes du développement (3), la parti 
cule pourra être animée d'un mouvement ayant l'une 
des valeurs p^ de l'impulsion. En somme, pour nous,

les incertitudes ôx, ôy, ôz d'une part et ôp , ôp ,x y
ôp^ de l'autre, sont bien reliées par les inégalités

(2), mais ne se rapportent pas au même état du systè 
me .

Ces inégalités expriment donc le fait que la posi 
tion et l'impulsion ne peuvent pas être simultanément 
mesurées avec une précision infinie, elles n'expri 
ment aucunement l'impossibilité que la position et 
l'impulsion puissent être simultanément définies 
comme variables cachées.

La théorie de la double solution fournit précisé 
ment l'exemple d'une théorie dans laquelle ces deux 
grandeurs sont simultanément définies et qui, pour 
tant, s'accorde avec les résultats et la statistique



des mesures, prévus par la théorie habituelle. Même 
si l'on n'admet pas la valeur physique de la théorie 
de la double solution, et même si les faits venaient 
à l'infirmer, elle n'en constituerait pas moins un 
contre exemple qui montre la fausseté des interdits 
du théorème de von Neumann et l'inconsistance des 
développements philosophiques de l'Ecole de Copen 
hague sur la prétendue démonstration d'un indétermi 
nisme fondamental des phénomènes naturels.
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