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NECESSITE DE LA LIBERTE
DANS LA RECHERCHE SCIENTIFIQUE

L’histoire des Sciences montre que dans leur domaine, les plus grands
progres ont été effectués par des penseurs audacieux qui ont apergu des voies
nouvelles et fécondes que d’autres n’apercevaient pas. Si les idées des savants
de génie qui ont été les promoteurs de la science moderne avaient été soumises
a des commissions de spécialistes, elles leur auraient sans nul doute paru
extravagantes et auraient €té écartées en raison méme de leur originalité et
de leur profondeur. En fait, les luttes soutenues, par exemple, par Fresnel et
par Pasteur suffiraient a le prouver, certains de ces pionniers se sont heurtés
a lincompréhension de savants éminents et ils ont di lutter avec énergie
avant d’en triompher. Plus récemment, dans le domaine de la Physique théo-
rique dont je puis parler en connaissance de cause, les magnifiques conceptions
nouvelles de Lorentz, de Planck et surtout d’Einstein se sont heurtées a
I'incompréhension de savants éminents. Ils en ont triomphé, mais & mesure
que lorganisation de la recherche devient plus rigide, le danger augmente
que les idées nouvelles et fécondes ne puissent pas se développer librement.

Tirons en quelques mots la conclusion de ce qui précéde. Tandis que, par la
force méme des choses, s'appesantissent sur la recherche et sur I'enseignement
scientifique le poids des structures administratives et des préoccupations
financieres et la lourde armature des réglementations et des planifications,
il devient plus indispensable que jamais de préserver la liberté de la recherche
scientifique et la libre initiative des chercheurs originaux parce qu’elles ont
toujours été et resteront toujours les sources les plus fécondes des grands
progrés de la Science.

25 avril 1978
Louis de Broglie.
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DETERMINISME CACHE

FAC-SIMILE DE L’UNE DES NOTES INSEREES
PAR LOUIS DE BROGLIE DANS SON MANUSCRIT
(Le texte se trouve pp. 244 et 245 du présent volume)



Le probléme du déterminisme caché
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PREFACE

L’EVOLUTION DES IDEES
DE LOUIS DE BROGLIE
SUR L’ INTERPRETATION
DE LA MECANIQUE ONDULATOIRE

par Georges LOCHAK

L’ouvrage qu'on va lire est tout a fait exceptionnel non seulement dans
I'ocuvre de Louis de Broglie, mais encore dans la littérature scientifique en
général, car on y saisira sur le vif la pensée d’'un grand auteur qui soudain se
retourne et s’interroge sur la signification véritable d’'une théorie dont il est
lui-méme ['un des créateurs.

Le manuscrit de ce livre date de 1950-1951 et Louis de Broglie a attendu
30 ans avant d’en autoriser la publication. Il I'a désavoué, en effet, peu aprés
'avoir écrit, car il y exposait, pour la derni€re fois sans critique et d’'une maniére
particuliérement brillante et convaincante, I'interprétation de la Mécanique
ondulatoire selon les idées de 'Ecole de Copenhague auxquelles il adhérait
encore a 'époque mais dont il commenga, justement, de douter en relisant son
propre texte. Ses doutes s’exprimeront dans ce livre par diverses notes qui
étaient collées entre les pages du manuscrit, et que nous reproduirons, ou
par des ratures et des petites corrections significatives rajoutées aprés coup
et dont nous ferons état.

Ce dialogue entre un auteur et ce quil était encore, lui-méme, quelques
mois auparavant produit sur le lecteur 'émouvante sensation d’entrer dans
lintimité de sa pensée, d’autant plus que celle-ci s'éclaire par une évolution
future que, maintenant, nous connaissons. Louis de Broglie, en effet, par un
revirement qui parut brusque a tout le monde mais qui ne faisait, en réalité,
que cristalliser de longues réflexions dont nous reparlerons plus loin, devait
bient6t devenir un impitoyable contempteur de cette Ecole de Copenhague
dont il avait longtemps embrassé les vues. Et en méme temps qu'il adopta
cette attitude critique, il reprit avec un enthousiasme juvénile sa théorie de la
double solution, qu’il avait jadis abandonnée mais dans laquelle il mit a
nouveau tous ses espoirs; était-ce a tort ou 4 raison c’est 13 une question qui
reste un sujet de controverses que I'avenir, peut-€tre, un jour tranchera.
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Mais, si la théorie proposée par Louis de Broglie reste encore en suspens,
je crois, par contre, pouvoir affirmer que les événements ont déja donné
raison a ceux qui, comme lui, ont relancé, puis développé, la vieille interrogation
au sujet de linterprétation des théories quantiques.

Les temps ont changé depuis 30 ans mais a cette époque-la, la brusque
reconversion de 'un des plus célébres physiciens du siecle fit sensation et
méme scandale. On en parlait & mi-voix, dans les couloirs de IInstitut
Henri-Poincaré, comme si Louis de Broglie eiit été pris d’un subit accés d’'une
grave maladie dont il était prudent de se tenir a I'écart.

Ceci n’empéchait pas, bien slir, quune assistance unanimement muette et
respectueuse se pressat a ses cours et & ses s€minaires tandis que lui passait,
majestueux et aimable comme a P'ordinaire, affectant de ne rien savoir. Mais
n’en était-il pas de méme a Princeton ou Einstein, refusant obstinément de
suivre le courant dominant en physique, traversait de son air distrait et bon-
homme le nimbe de dévotion qui I'entourait, mais écrivait a Max Born (}) :
« ... je suis considéré ici comme une sorte de fossile que les ans ont rendu
aveugle et sourd » ?

Le débat ssamplifia, prit une dimension mondiale, avec des allures de guerre
de religion et on vit entrer en lice la plupart des fondateurs de la physique
quantique suivis de leurs bouillants épigones, en méme temps qu’apparurent
de jeunes et brillants outsiders comme David Bohm, soudain porté sur le
devant de la scéne parce qu’il avait eu le grand mérite d’avoir servi de déclen-
cheur a toute cette affaire.

Le débat ne s’est plus jamais éteint. Il est devenu commun de s’interroger
sur les bases de la Mécanique quantique au sujet desquelles la belle et silen-
cieuse unanimité de jadis s’est largement rompue, ce qui est heureux car
I'unanimité sans faille ne s’obtient guére en science qu’au détriment de I'inventi-
vité et ne peut aboutir qu’a la mort dans I'idéologie et la scolastique.

Dans le débat actuel, les idées de Louis de Broglie, loin d’étre admises par
tous, restent encore, il faut le dire, ignorées de beaucoup, souvent critiquées
par ceux qui les connaissent (plus encore par ceux qui ne les connaissent pas,
ce qui est banal) et ses éléves, comme Iui-méme, reconnaissent qu’elles ne
constituent pas encore un tout cohérent que I'on puisse regarder comme une
théorie achevée. Cependant, ces idées commencent a ressurgir ¢a et 1a, surtout
a Iétranger.

C’est le cas, par exemple, avec les travaux récents sur les équations d’ondes
non linéaires et sur les solitons, dont seuls quelques auteurs signalent que de
Broglic et ses éléves en furent les incontestables initiateurs en microphysique ;
je pense également a des idées comme la primauté des mesures de position
sur celles des autres grandeurs physiques et sur la primauté qui s'ensuit pour
le role de Fanalyseur spectral sur Pappareil de mesure proprement dit, qui
furent longuement développées par de Broglie et qu’on voit ressortir.

(') Albert Einstein, Max Born, Correspondance 1916-1955, Ed. du Seuil, Paris,
1972, p. 196.



Préface XV

Apres avoir rédigé ce manuscrit que nous ne publions qu'aujourdhui,
Louis de Broglie a développé ses critiques et défendu ses nouvelles idées dans
douze livres et plus de soixante mémoires, mais ce livre-ci conservera, jen
suis siir, une place a part parce qu'il représente un tournant dans son oceuvre
et aussi parce que cest le livre de l'interrogation.

En effet, dans les travaux qui ont suivi cet ouvrage, on retrouve partout un
double aspect : la critique des théories existantes et la proposition d’une solu-
tion de rechange. Or un lecteur peut fort bien étre disposé a entendre la critique,
ou du moins la question posée, sans pour autant accepter la théorie que de Bro-
glie soutient, si bien que, dans I'esprit d’un tel lecteur, la réponse qu’on lui
offre peut oblitérer la pertinence de la question. Ici, au contraire, rien de tel,
car les termes sont inversés. La conception soutenue dans le livre est celle de
I'Ecole de Copenhague et de Broglie, dans ses notes, ne fait encore que Sinter-
roger a son sujet, ce qui le met de plain-pied avec un lecteur qui, lui aussi,
sinterroge. Mais il n’en demeure pas moins que ces notes, ces « paperoles »
comme aurait dit Proust, ajoutées au manuscrit, contiennent déja sous une
forme bréve et parfois encore elliptique et dubitative (si bien qu’il faudra
parfois les décrypter pour le lecteur) presque toutes les idées qui furent a la
base de ce nouveau quart de siecle de travail que Louis de Broglie allait entamer
a l'age de 60 ans.

Que le lecteur approuve ces idées, ou qu’il les désapprouve, il est souhaitable
qu’il les lise sans manichéisme, en sachant reconnaitre le génie d’ou qu’il
souffle, que ce soit chez de Broglie ou chez Heisenberg, chez Bohr comme chez
Einstein. Leur grande époque est révolue, hélas, et les créateurs de la Physique
quantique sont aujourd’hui tous morts ou trés agés. Ils sont entrés dans
I'histoire et ont emporté avec eux leurs haines et leurs rivalités de grands fauves
de la science. Bien siir, ces rivalités se prolongent de nos jours et sont toujours
aussi apres car la science est un champ clos ol s’affrontent des hommes et des
idées ardentes et non pas une armoire frigorifique pour vérités établies. Mais
au moins disputons-nous entre nous et non plus avec eux ! Admirons leur
valeur sans giter par de vaines restrictions mentales le plaisir intellectuel et
artistique que procure leur enseignement. Admirons dans ce livre, aussi bien
les subtiles analyses de Bohr et Heisenberg qui y sont rapportées que celles
de de Broglie lui-méme ; et admirons ce sexagénaire qui ajoutait & son génie
scientifique assez de force d’ame, de gofit du risque et de mépris du qu’en-dira-t-
on, pour se remettre en cause alors qu’il était parvenu au faite de sa carriére
et pour mettre en jeu une renommeée €tincelante, au nom d’'une idée dont
personne encore ne voulait. Et révons un peu aussi, peut-étre, sur cette grace
divine d’avoir vécu assez vieux pour accomplir, au soir de sa vie, une nouvelle
ceuvre et pouvoir dire plus tard, a 80 ans : « Je me suis souvent demandé,
dans ces derni¢res années, si la période qui a suivi mes 70 ans n’a pas été,
du point de vue intellectuel, la plus belle de ma vie » (réf. I11, 9).

Pour apprécier vraiment ce livre charniére et le revirement qu’il annonce,
il est, toutefois, nécessaire de le situer exactement dans l'itinéraire scientifique
de son auteur, lequel avait fait, de 'exposé qui va suivre, la condition sine
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gua non de la publication de son manuscrit. Je crois méme intéressant de
commencer par raconter Ihistoire de cette publication elle-méme.

Quand Louis de Broglie, voici quelques années, me fit part de sa décision
de me confier la charge d’utiliser au mieux ses papiers scientifiques, il me donna,
sur le champ, un certain nombre d’entre eux.

1l s’agissait, pour la plupart, de feuilles volantes de papier a lettre de petit
format que tous ses éléves connaissaient bien, sur lesquelles il avait coutume
d’inscrire a I'encre noire, avec une plume « Sergent Major », des sortes de
courts poémes scientifiques, chacun d’eux consistant en 'exposé clair et concis
d’'une question qui tenait le plus souvent dans un seul feuillet dont les deux
faces étaient recouvertes de son écriture €légante, ordonnée et sans marge,
ou tout ne serait que mesure, si d’¢vidents détails de graphisme ne laissaient
transparaitre une autorité impérieuse bien que toujours maitrisée.

Ces papiers étaient classés en plusieurs enveloppes portant chacune une
indication, de la main de Louis de Broglie, sur le degré d’intérét que lui-méme
y attachait.

Outre ces enveloppes, il me donna plusieurs cahiers correspondant a ce
que ses plus jeunes collaborateurs appelaient les « cours du jeudi » parce que,
durant les dernieres années de sa vie universitaire les deux cours qu’il donnait
chaque semaine & I'Institut Henri-Poincaré étaient trés différents 'un de
Fautre : le lundy, il faisait, devant les étudiants, un cours classique de faculté
quil répétait, pour I'essentiel, d’année en année et qui constituait la base d'un
enseignement de physique théorique, que complétaient des maitres de confé-
rences et des chefs de travaux ; mais le jeudi matin, devant un public de cher-
cheurs, il faisait un cours dont le sujet se renouvelait tous les ans et qui consistait
en un exposé original sur un probléme scientifique a I'ordre du jour, selon
une tradition qui est plutdt celle du Collége de France que de la Facuité (1). .

Ce sont ces cours qui furent a 'origine de la plupart des livres de Louis de Bro-
glie, mais certains d’entre eux n’ont pas été publiés. C'était le cas des quelques-
uns qu’il m’a confiés. Il a tout de suite attiré mon attention sur deux de ces
cahiers qui se faisaient remarquer de toute maniére par leur belle reliure
cartonnée recouverte de toile glacée beige : malheureusement, c’était pour me
prévenir contre leur éventuelle publication. Il avait méme pris la précaution
d’inscrire sur la page de garde de chacun d’eux, d’une écriture énergique :

« A ne pas publier »

et ces mots étaient encadrés d’un double trait. Il me dit briévement ses raisons,
tout en m’engageant & lire le manuscrit et me faisant la faveur d’ajouter :
« Pour quelqu'un comme vous, cela peut étre trés intéressant. » Mais quand
Jai lu ce texte, le lendemain méme, avec une émotion qui dépassait de loin
le seul intérét scientifique, sachant par coeur le prolongement de chaque
paperole, devinant a demi-mot le sens de la plus petite note ajoutée au crayon

() En réalité, cette distinction entre les deux cours ne s’est faite qu'a partir de 1954.
Jusque-1a, ils étaient tous deux de méme nature et se renouvelaient chaque année.
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et découvrant derriére la moindre rature ou la plus insignifiante correction
cet homme que je connaissais comme mon propre pére, je me convainquis
aussitdt que si lui, en effet, ne pouvait pas publier ce livre, quelqu’un d’autre
le pouvait et j'entrepris, bientdt, d’essayer de le fléchir, de le persuader que son
texte, en un sens, ne lui appartenait plus, qu’il appartenait a lhistoire des
sciences et que celle-ci méritait bien que, sous une forme ou sous une autre,
on le lui livrat. Je fis valoir également que le public scientifique n’est que trop
habitué a recevoir une science aseptisée, sortie toute armée et brillante de la
téte de Jupiter, st bien que les présentations des théories modernes, axio-
matisées, synthétiques et formelles donnent faussement a penser que, contraire-
ment aux artistes, les hommes de science seraient capables, en quelque sorte,
de pondre des résultats bien ronds et bien lisses, frappés d’emblée au sceau
de I'éternité. Nous avions la, au contraire, une occasion, de montrer au lecteur
une science en marche qui hésite et avance péniblement sous ses yeux, comme
elle le fait dans la réalité, Or tout le monde contemple avec émotion les ébauches
des sculpteurs ou les esquisses des peintres dans lesquelles, outre le charme
particulier de I'oeuvre en devenir, on aime a découvrir les différentes maniéres
de lartiste, voire les projets abandonnés et remplacés par d’autres. Alors
pourquoi toujours dissimuler les esquisses des physiciens ?

La chose, au début, n’alla pas sans mal, Louis de Broglie n’étant pas homme
a changer d’avis au gré du vent, mais je revins discrétement a la charge dans
les mois qui suivirent, puis un jour, avec son accord, je lui rapportai les deux
cahiers que nous examindmes ensemble, aprés quoi, avec une feinte et quelque
peu plaisante solennité, nous effagimes le « A ne pas publier » qui était écrit
au crayon et je repartis avec autorisation d’éditer le manuscrit ne varietur,
sous réserve de I'assortir d’'un certain nombre de notes complémentaires et
d’un texte introductif, qui replaceraient cet ouvrage dans 'ensemble de son
oeuvre.

Ce qu'il faut expliquer, avant tout, c’est ce double revirement, & 25 ans
d’intervalle, par lequel Louis de Broglie s’est d’abord écarté de ses conceptions
primitives pour y revenir ensuite. Mais pour cela, il faut d’abord comprendre
quelle est la place tout a fait particuliére qu’il occupe dans la physique quan-
tique.

Je crois qu’on peut affirmer qu’il a été€ le premier théoricien, aprés Einstein,
a croire en lexistence des quanta de lumiére (les photons) et le seul, aussi,
4 croire non pas méme au dualisme, mais, selon ses propres termes, a une
coexistence entre les ondes et les corpuscules.

On sait que 'hypothése des quanta de lumiére a eu le plus grand mal a
s'imposer et quelle a été longtemps regardée comme une sorte d’erreur de
jeunesse d’Einstein qu’on ne lui pardonnait qu’en raison de la grande renommée
quil sétait acquise par ailleurs (*). Méme la confirmation expérimentale,

(*) On trouve chez Einstein lui-méme des témoignages de ce refus général Par

exemple : «... je ne doute plus de la réalité des quanta dans le rayonnement, bien
que je sois toujours seul & avoir cette conviction » (lettre a Besso datée du 29 juillet 1918).
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par Millikan, des lois de l'effet photo-électrique n’a convaincu personne,
pas méme Millikan, et ce n’est que la découverte de I'effet Compton en 1922
qui a frappé les esprits. Mais a ce moment-la, de Broglie travaillait déja depuis
longtemps sur la théorie des quanta de lumiére et, dans un article intitulé
« Rayonnement noir et quanta de lumicre » (réf. I, 12), il retrouvait grice a
cette hypothése tous les résultats de la thermodynamique du rayonnement
noir sans faire appel a I'électromagnétisme et en utilisant seulement la
mécanique statistique et la relativité. Il retrouvait notamment, sans se servir
de la théorie des ondes, I'expression de la loi de Stefan-Boltzmann et (2 ans
avant Bose !) le fameux facteur 8 nh/c® qui figure dans la densité d’énergie
du rayonnement. Clest également dans cet article qu’il émettait, pour la
premicre fois 'hypothese que le photon aurait une masse propre non nulle,
que sa vitesse dans le vide dépendrait donc de sa fréquence et que la vitesse ¢
ne serait qu'une sorte de vitesse limite définie par la relativité mais qui ne serait
jamais atteinte, non seculement par la matiére, mais méme par la lumiére,

Il s’efforgait, dans cet article, d’accuser le plus fortement possible et d’utiliser
au mieux le caractére corpusculaire de la lumiere, mais au méme moment,
il se souciait d’accorder les propriétés corpusculaires avec les propriétés
ondulatoires dans une Note « Sur les interférences et la théorie des quanta de
lumiere » (réf. 1, 13; III, 9) dans laquelle il émettait I'idée de « I'existence
d’agglomérations d’atomes de lumiére dont les mouvements ne sont pas
indépendants, mais cohérents » et il prédisait que « les équations de Maxwell
apparaitront sans doute comme une approximation continue (valable dans
beaucoup de cas, mais non dans tous) de la structure discontinue de I'énergie
radiante ».

Il est certain que cet état d’esprit domine toute 'ceuvre de de Broglie et
c’est en fait pour cela qu’il a découvert la Mécanique ondulatoire : c’est, tout
d’abord, parce qu’il ¢était profondément convaincu de la double nature cor-
pusculaire et ondulatoire de la lumiére et, ensuite, parce qu’il ne concevait pas
les propriétés corpusculaires comme une simple « apparence », mais bien
comme l'existence de « véritables » corpuscules, en tous points comparables
aux autres corpuscules matériels, possédant, comme eux, une masse propre et
comme eux soumis aux lois de la dynamique relativiste. Un détail révélateur,
a ce sujet, est que de Broglie ecrivait souvent — et je crois qu'il était seul a le
faire — atomes de lumiére pour quanta de lumicre et, parlant de leurs agglo-
meérations cohérentes dans les ondes lumineuses, il disait que ces atomes
devaient se grouper en molécules.

Comme il accordait un égal droit de cité et une existence permanente et
simultanée aux corpuscules et aux ondes dans la lumiére, il fut amené a recher-
cher le lien qui pouvait exister entre eux et qui établirait une dépendance entre
leurs mouvements. C’est cette question qui est & 'origine de la Mécanique
ondulatoire car elle le conduisit a définir une fréquence de vibration interne
du corpuscule, par égalité my ¢* = hv, écrite dans le systéme propre. Or
cette formule, d’apparence si simple, entraine une trés grave difficulté car la
masse se dilate aux yeux d’un observateur en mouvement, tandis que la fré-
quence interne lui apparaitra plus petite en raison du retard des horloges,
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si bien que I'égalité ainsi écrite n’est pas invariante relativiste. Mais elle le
devient, remarqua de Broglie, et on pourra écrire la relation du quantum

me? = hy

dans tous les référentiels galiléens si on associe, dans le systéme propre de la
particule, une onde stationnaire de méme fréquence v, que la vibration interne,
car la fréquence v de cette onde varie alors comme la masse lors d'un change-
ment de référentiel.

Louis de Broglie établit en méme temps la formule Vv = ¢* qui relie la
vitesse de phase de 'onde a la vitesse du corpuscule, ce qui lui permit d’énoncer
le théoréme de I’harmonie des phases qui constitue pour lui la clé du dualisme
onde-corpuscule : « Le corpuscule glisse sur son onde de fagon que la vibration
interne du corpuscule reste toujours en phase avec la vibration de 'onde au
point ou il se trouve. »

Or, comme il traitait les « atomes de lumiére » en véritables corpuscules
son raisonnement sappliquait plus généralement (et d’ailleurs s’énongait
comme tel) a un mobile quelconque, en particulier a un électron, auquel il
fallait, dés lors, associer une onde et de Broglie pouvait donc annoncer des 1923
qu'« un mobile quelconque pourrait dans certains cas se diffracter. Un flot
d’¢lectrons traversant une ouverture assez petite présenterait des phénomenes
de diffraction » (réf. 1, 17; I11, 9).

Et il exprimait aussitdt I'idée qui est a 'origine de sa conception du monde
physique :

« Nous concevons donc I'onde de phase comme guidant les déplacements
de I'énergie et C’est ce qui peut permettre la synthése des ondulations et des
quanta. La théorie des ondes allait trop loin en niant la structure discontinue
de Fénergie et pas assez loin en renongant & intervenir dans la dynamique. »

Aussitdt aprés quil elit rédigé sa fameuse thése de 1924, Louis de Broglie
précisait sa pensée dans une note (réf. I, 24) qui paraissait une semaine avant
la soutenance et ol apparait pour la premiére fois la notion de singularité.
On y lit notamment :

« Cette propriété (il s’agit du théoreme sur la vitesse de groupe), conséquence
directe des équations de Hamilton, permet de considérer le point matériel
comme une singularité¢ du groupe d’ondes dont le déplacement est régi par
le principe d’Hamilton-Fermat. » Ceci préfigure ce qu'il devait appeler plus
tard la loi du guidage. Et il termine sa note par cette phrase-programme :

« Mais toute la théorie ne deviendra vraiment claire que si 'on parvient
a définir la structure de 'onde lumineuse et la nature de la singularité consti-
tuée par le quantum dont le mouvement devrait pouvoir étre prévu en se
plagant uniquement au point de vue ondulatoire. »

Enfin, peu aprés, le 16 février 1925, de Broglie fit un premier essai de déve-
loppement de son programme dans une note intitulée « Sur la fréquence
propre de Iélectron » (réf. I, 25) et il montra que si 'onde de phase

o(x, y, 2 1) GX,D[Z inv(t — é)}
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obéit a I'équation de d’Alembert, son amplitude ¢ obéit a ’équation

1 %o 4 v , mpc?
P T =T )

Malgré I'apparence, ce n’est pas 'équation de Klein-Gordon car le signe est
faux et ce n’est pas en raison d’une erreur de calcul. Cependant, de Broglie
n’était pas loin de découvrir la véritable équation d’onde. C'est pourquoi,
dés la parution des travaux de Schrodinger, il rectifiait sa note de 1925 et
fut I'un des premiers a établir I'équation d’onde scalaire relativiste de I'élec-
tron et surtout il y introduisit aussit6t ses idées sur les groupes d’ondes et
calcula les premiéres solutions singuliéres (réf. I, 29) : ces solutions singuliéres
dont il savait depuis longtemps qu’elles devaient exister et qui étaient, a ses
yeux, seules capables de représenter la coexistence des ondes et des corpuscules.

Bientdt, guidé par son principe de 'harmonie des phases, il imagina le lien
qui pouvait exister entre ses ondes singuliéres et les ondes continues de Schré-
dinger et il développa la théorie de la double solution dans un grand mémoire
en 1927 (réf 1, 34).

Ce n’était pas une simple interprétation de I’équation de Schrodinger, comme
pouvait I'étre celle de Madelung parue au méme moment. C'était la poursuite
de la méme idée directrice qui avait guidé ses recherches depuis le début de
ses travaux et qui avait déja abouti a la découverte des propriétés ondulatoires
des corpuscules matériels.

Et pourtant, quelques mois plus tard, il renongait a tout cela. Pourquoi ?
Louis de Broglie I'a expliqué lui-méme en des termes souvent émouvants dans
ses « Souvenirs personnels sur les débuts de la Mécanique ondulatoire »
(ref. 111, 4) dont il a évidemment renié en partie I'argumentation lorsqu’il
est revenu par la suite a ses idées de jeunesse, mais qui nous montrent, tout au
moins, quelles étaient & 'époque, ses raisons.

Ces raisons se résument d’'une phrase : il s’est, soudain, senti dans une
impasse, tandis qu'a c6té de lui, la physique passait triomphante. Et il a tout
de suite apercu la cause du soudain retard qu’il prenait, malgré son départ
foudroyant : elle était dans la différence entre son propre point de vue et celui
adopté par la plupart des autres théoriciens.

Louis de Broglie est un esprit intuitif, concret et réaliste, épris d'images
physiques simples dans I'espace a trois dimensions. Il n’accorde pas de valeur
ontologique aux modeles mathématiques, notamment aux représentations
géomeétriques dans des espaces abstraits; il ne les considére et ne les utilise
que comme des instruments mathématiques commodes parmi d’autres et ce
n’est pas dans leur maniement que s’exerce directement son intuition physique ;
devant ces représentations abstraites, il garde toujours présente & Iesprit
'idée que les phénoménes se déroulent, en réalité, dans I'espace physique et
ces raisonnements mathématiques n’ont de signification véritable a ses yeux
que pour autant quil sente & tout moment quelles sont les lois physiques
qu’ils recouvrent dans I'espace habituel.
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Or il voyait naitre en face de lui une approche trés différente de la physique
théorique, qui était en train de porter ses fruits : ¢’était une conception tout
a fait abstraite de la physique, une description des lois naturelles non plus
par des images dans l'espace et dans le temps, mais par des régles algébriques
ou bien encore grice a des raisonnements géométriques dans des espaces
représentatifs abstraits le plus souvent complexes et 4 un grand nombre de
dimensions. On assistait au développement, chez les théoriciens, d'une nou-
velle sorte d’intuition physique, une intuition au deuxiéme degré, si 'on peut
dire, qui prenait de moins en moins appui directement sur des faits physiques,
et qui s’exergait systématiquement dans le domaine des analogies mathéma-
tiques, des régles algébriques et des lois de symétrie ou de transformations
de groupe. Les théoriciens ne cherchaient plus & décrire les faits, mais a les
prévoir. Leurs prémisses et leurs raisonnements paraissaient purement mathé-
matiques et 1l devenait trés difficile, sinon impossible, de discerner derriére
eux quelque image physique, mais pourtant les formules auxquelles ils aboutis-
saient étaient souvent, comme par miracle, vérifiées par I'expérience. On était
loin de la physique théorique de Fresnel, de Maxwell ou de Lorentz. Il est
remarquable qu'Einstein, pourtant célébre pour la finesse de son intuition
physique et toujours si proche de 'expérience ait été, en méme temps, 'un
des principaux initiateurs de ce nouvel état d’esprit, tant par ses travaux en
relativité que par son mémoire de 1917 sur les quanta (*), dont I'influence a
été trés grande sur de Broglie et Schrodinger et ot 'on résolvait pour la pre-
miere fois un probléme quantique par un raisonnement géométrique dans
Iespace de configuration de la dynamique hamiltonienne.

I1 est clair que la mécanique des matrices de Heisenberg et, plus encore,
celle des nombres q de Dirac procédaient de cette physique abstraite, mais
il en va de méme pour les travaux de Schrodinger ou 'onde de de Broglie
perdait déja toute signification physique directe, puisque Schrodinger la
faisait se propager non plus dans I'espace habituel, mais dans l'espace de
configuration, dans lequel une seule onde représente tout un systéme de parti-
cules; et C’est a cette onde abstraite que, généralisant les idées de de Broglie,
Schrédinger appliquait désormais, le principe de Huygens.

De cette tendance, 'Ecole de Copenhague devait bient6t faire une position
de principe nettement proclamée par Bohr et Heisenberg (*) dont la position
sc resume clairement dans le tableau ci-aprés di a Bohr ().

En se fondant sur les relations d’'incertitude et, plus généralement, sur la
structure mathématique des théories quantiques telles qu’elles ressortaient des
travaux de Heisenberg, Schrédinger, Dirac, Born et von Neumann, on vit

(") A. Einstein, Verhandl. Dtsch. Phys. Ges., 19, 1917, p. 82.

(®) Voir notamment : W. Heisenberg, Les principes physiques de la théorie des
quanta, Coll. : Discours de la Méthode, Gauthier-Villars, 1972 (ir¢ éd. 1931); W. Hei-
senberg, Physique et philosophie, Coll. : Science d’ Aujourd hui, Albin-Michel, Paris,
1961 ; N. Bohr, Physique atomique et connaissance humaine, Gonthier, Genéve, 1961.

() Cité par Heisenberg dans : Les principes physiques, p. 53.
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bient6t Bohr et ses disciples rejeter toute adéquation possible d’'une quel-
conque représentation causale et spatio-temporelle des phénoménes quanti-
ques. Autrement dit, la colonne de gauche du tableau de Bohr était définitive-
ment rejetée dans le passé; et 'avenir se trouvait pour eux dans la colonne de
droite. Il 0’y avait aucun sens, pour eux, a parler en méme temps d’une localisa-
tion de 'électron et de ses propriétés ondulatoires, ces deux aspects de la réalité
étant complémentaires, au sens de Bohr, et on ne perdait rien disaient-ils, a
renoncer 4 leur coexistence, puisqu’on savait, grice a de fines analyses phy-
siques, quaucune expérience ne pourrait nous révéler les deux propriétés a
la fois.
Cette interprétation de la théorie revétait elle-méme un double aspect :

— Tout d’abord, elle procédait d’options philosophiques qui relevaient du
positivisme (puisqu’elle proclamait que seules les grandeurs observables étaient
dignes de figurer dans la théorie), de I'idéalisme (car elle ne reconnaissait
I'existence d'un fait ou d’une propriété que pendant leur observation), et enfin
de I'indéterminisme (en renongant, en microphysique, a la description causale
des processus individuels dans 'espace et dans le temps).

— Mais clle relevait aussi d’un choix opérationnel qui a sans doute été
déterminant dans le succés de cette tendance, a une époque de pleine expansion
de la physique. En effet, en un sens, I'attitude de 'Ecole de Copenhague reve-
nait a dire, selon un mot de Goethe : « Ne cherchez rien derriére les faits,
ils sont eux-mémes la doctrine. » Ils auraient méme pu dire : « Ne cherchez
rien derriere les formules, elles sont elles-mémes la réalité. » Il parait certain
quen une période de vive expansion de la théorie, quand ses ressorts mathé-
matiques essentiels commengaient a étre connus (tels que le principe de super-
position des fonctions d’ondes, la correspondance entre grandeurs physiques
et opérateurs, etc.) une telle attitude libérait I'esprit, de la recherche extré-
mement difficile d'images physiques sous-jacentes au formalisme et qui seraient
responsables des faits observés.

La marche en avant de la théorie en était indéniablement facilitée et c’est
ce que Louis de Broglie ressentit cruellement a une époque ot il éprouvait
les pires difficultés a exprimer mathématiquement le dualisme onde-corpuscule
dans espace-temps. C'est ce qu’il rappelle dans « Physique et Microphysique »
(p. 174) : « Mais plus je cherchais a couler dans ce moule préexistant la matiére
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nouvelle fournie par mes idées sur la Mécanique ondulatoire, plus je rencon-
trais d’obstacles et le sentiment sans cesse accru de ces difficultés contribua
a m’empécher pendant toute Pannée 1925 de développer rapidement la cons-
truction que javais entreprise. » 1925 : c’est, ne 'oublions pas, 'année ou
il a approché mais quand méme manqué I'équation des ondes.

Ses premiers travaux sur les solutions singuliéres de I’équation de Schro-
dinger et sur I'équation d’ondes relativiste lui redonnérent quelque espoir,
mais aussitot de graves obstacles s'amoncelerent devant lui, a savoir la recher-
che génerale des solutions singuliéres elles-mémes, le comportement étrange
et peu crédible des singularités dans les états stationnaires et surtout le pro-
bléme d’une description spatio-temporelle des systémes de particules, qu'il
aurait voulu substituer a la théorie de Schrodinger qui reste confinée a 'espace
de configuration.

Invité par Lorentz a présenter un rapport au fameux congrés Solvay de
1927, Louis de Broglie, inquiet par les difficultés mathématiques de la théorie
de la double solution, n’en présenta quune version trés affaiblie qu’il appela
« théorie de Yonde pilote » et qui consistait simplement a rajouter, a 'onde
continue de Schrédinger, un paramétre caché qui consistait en un point repré-
sentant le corpuscule et supposé suivre les lignes de courant de "onde.

Ce faisant, de Broglie ¢ludait certes les difficultés mathématiques de la
théorie de la double solution, mais en revanche, il perdait la cohérence logique
de sa théorie causale en faisant « piloter » le corpuscule par une onde continue
dont la signification probabiliste était unanimement reconnue, ce que ses
adversaires ne manqueérent pas de lui faire remarquer. Le rapport de Louis de
Broglie se heurta aux critiques pénétrantes de Pauli, il ne fut soutenu ni par
Schrédinger qui ne croyait pas aux corpuscules, ni par Lorentz dont il avait
la sympathie mais qui était trop 4gé, ni véritablement par Einstein qui se
contentait de 'encourager sans I'approuver vraiment, bien qu’il attaquat par
ailleurs I'Ecole de Copenhague. En revanche, de Broglie voyait devant lui
le brillant quintette formé par Bohr, Heisenberg, Born, Pauli et Dirac qui
présentaient non sans triomphalisme, et peu enclins a composer, leur inter-
prétation probabiliste qui présentait certes des failles conceptuelles qu’Einstein
se plaisait a élargir, mais qui constituait néanmoins — et constitue encore —
I'interprétation la plus commode et la plus heuristique qu'on ait proposée
jusqu’ici.

Et cest ainsi que, troublé par les discussions du Congrés Solvay, désespérant
de résoudre les problémes qu’il s’était posés, nouvellement nommé, en outre,
Professeur a I'Institut Henri-Poincaré et placé devant la difficile question de
savoir quelle théorie il allait enseigner, de Broglie se résolut bientdt, a regret,
a rejoindre le courant dominant et 4 adopter les vues de I’Ecole de Copenhague.

Un tel ralliement supposait, cependant, une profonde reconversion car il
ne s’agissait pas seulement, pour Louis de Broglie, de renoncer a son inter-
prétation de la mécanique ondulatoire, ce qui est un acte douloureux, mais
encore d’acquérir des méthodes de pensée nouvelles qui lui étaient profon-
dément étrangéres et méme contraires a ses instincts les plus profonds.
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Il s’en est suivi que pendant 5 ans, de 1927 a 1932, en dehors de quelques
travaux de mise au point, il n’a publié aucun mémoire !

Puis soudain il émergea de son long silence et, en peu d’années, il accomplit
sa seconde grande découverte : la Mécanique ondulatoire du photon dont
Heisenberg a pu écrire plus tard (*) : « La pensée exprimée par Louis de Broglie
en 1936 (%) que les quanta de lumiére doivent &tre aussi considérés comme des
édifices composés, conduit & des problémes de principe de la méme impor-
tance que ceux que souleva la découverte célébre des ondes de matiére. »

Nous ne saurions ici exposer, ni méme résumer cette théorie, mais il faut
au moins savoir comment elle s'inscrit dans 'ceuvre de de Broglie pour com-
prendre comment celui-ci allait étre conduit vers son second revirement et
son retour aux sources.

La Mécanique ondulatoire était sortie, ne 'oublions pas, d'une générali-
sation a I'ensemble de la matiére des idées d’Einstein sur le dualisme onde-
corpuscule dans la lumiére mais, curieusement, le photon n’obéissait pas aux
premiéres équations de la Mécanique ondulatoire : 'équation de Schrodinger
n’était pas relativiste et celle de Klein-Gordon ne pouvait pas rendre compte
de la polarisation. C’était 1a une énigme qui ne pouvait laisser de Broglie
indifférent et, plus qu’a tout autre, il lui revenait d’essayer de faire rentrer la
lumiére dans le giron de la mécanique ondulatoire 4 I'origine de laquelle elle
s’était trouvée. Dés I'apparition de la théorie de Dirac, il sentit que la chose
était possible. Il connaissait fort bien cette théorie dont il fit un magnifique
exposé : « L’électron magnétique » (Hermann, 1934); elle était relativiste,
elle contenait un élément qui ressemble a la polarisation (le spin) et on trouvait
méme parmi les grandeurs qu’elle permet de définir, un tenseur antisymétrique
de rang deux comme celui de Maxwell. Cela étant, le spin % n’est pas le bon
et la statistique qui s’'ensuit est celle de Fermi et non pas celle de Bose : un
photon n’est siirement pas une particule de Dirac.

Louis de Broglie tdtonna durant quelques années avant de trouver la clé
du mystére. Guidé par des considérations de symétrie, par la nécessité de
rendre compte de 'annihilation du photon dans des phénoménes tels que
leffet photo-€lectrique et par I'analogie qui existe entre ce phénoméne et
celui de l'annihilation d’une paire €lectron-positron en théorie de Dirac, il
parvint a U'idée que le photon ne doit pas étre une particule élémentaire et
que, précisément, il doit €étre constitué d’une telle paire de corpuscules de
Dirac, de masse extrémement petite : peut-étre des neutrinos, d’ou le nom de
« théorie neutrinienne de la lumiére » parfois utilisé. 11 établit (en 1934) les
équations d’onde de cette particule composée et une transformation algébrique
montra que les équations de de Broglie, qui étaient donc formées d'une sorte
de fusion de deux équations de Dirac, peuvent se scinder en deux systémes
d’équations distincts : I'un d’eux correspond a une particule de spin 0 qui n’a

(*) Dans : L. de B. physicien et penseur, Albin-Michel, Paris, 1953.
(%) En fait la référence de Heisenberg est inexacte : la théorie date de 1934,
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pas encore trouvé de correspondant expérimental, mais Pautre est tout sim-
plement le systeme des équations de Maxwell, complétées toutefois par des
termes correctifs qui font intervenir les potentiels électromagnétiques. Ces
termes sont trés petits parce qu’ils contiennent en facteur la masse propre
du photon, mais ils ne peuvent s’annuler complétement par suite d’une cir-
constance qui faisait se rejoindre la logique interne de la théorie et 1a conviction
profonde de de Broglie : il se trouve, en effet, que la cohérence des calculs
impose que la masse propre du photon ne sannule pas. :

Or, si petits que soient ces termes correctifs, ils suffisent & rompre I'invariance
de jauge de la théorie et la condition de jauge qui S'ensuit automatiquement
est celle de Lorentz.

Bien que la théorie de de Broglie ne soit pas exempte de difficultés, on ne
saurait retenir son admiration devant cette grandiose synthése entre la matiére
et la lumiére, réalisée par la Mécanique ondulatoire et qui se trouve a I'origine
d’innombrables travaux. Louis de Broglie lui-méme y a travaillé pendant plus
de 10 ans, ainsi que plusieurs de ses éleves, et il a consacré vingt mémoires
et six livres 4 cette théorie, ainsi qu'a sa généralisation aux particules de spin
quelconque.

Il est intéressant de remarquer, d’ailleurs, que dans tous ces travaux, on
voit davantage se manifester la nature profonde de V'auteur et la maniere
de raisonner qui lui est spontanée qu'on n’y trouve de traces de son adhésion
aux idées de Bohr et au mode de pensée plus abstrait et formel qui s’était
imposé en physique : un homme peut changer les opinions qu’il professe,
mais non sa nature véritable.

La Mécanique ondulatoire du photon est bel et bien construite comme un
modéle physique dans 'espace habituel. Les raisonnements restent toujours
trés proches des images classiques et ne s'en écartent que dans la mesure ou
ils sont aussitdt rransposés dans le langage mathématique de la Mécanique
quantique et, plus spécialement, de la théorie de Dirac. Mais les lois formelles
d’invariance par rapport & un groupe, ou I'usage des représentations de groupe,
notamment, ne constituent pas chez de Broglie des procédés heuristiques
comme cest le cas chez d’autres physiciens tels Heisenberg, Pauli, Jordan
ou Dirac. Par exemple, I'idée de relier la suite des équations des particules
a spin a la suite des représentations finies du groupe de Lorentz n’appartient
pas & de Broglie, mais il faut remarquer quelle n’a été proposée qu'aprés
quil a ouvert la voie en construisant sa théorie de la lumiére par des raison-
nements intuitifs sur I'émission et I'absorption des photons, leur rapport
possible avec les paires de Dirac, les propriétés du centre de gravité d’un couple
de particules relativistes, etc. Ces rapports délicats entre « Théories abstraites
et représentations concrétes dans la physique moderne » ont été finement
analysés par lui dans un texte (réf. IIL, 3 ; p. 91) ot il se montre a la fois conscient
de la force et de la rigueur des raisonnements abstraits et pourtant persuadé
que les représentations concrétes, toujours vagues et fragiles, sans cesse remises
en question, le plus souvent abandonnées parce que plus ou moins fausses,
restent quand méme le sel de la terre.
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Dans sa théorie de la lumiére, son adhésion aux idées de Copenhague ne
se reconnait, a vrai dire, qu'a 'usage qu’il y fait des algorithmes devenus habi-
tuels en Mécanique quantique, notamment des calculs des probabilités de tran-
sitions, a partir des fonctions d’ondes et des opérateurs hermitiens représentant
les grandeurs physiques. En somme, il faisait usage du méme langage que tout
le monde, ce qui impliquait ipso facto F'abandon de ses idées sur la localisation
permanente des corpuscules, donc 'abandon de son programme initial et cela
pour des raisons générales développées par Bohr et Heisenberg, auxquelles il
s’était rangé et dont il a fini, comme il I'a dit lui-méme, « par étre d’autant
plus convaincu qu’il a plus longtemps tenté en vain de les éviter » (réf. 11, 4;
p. 166).

On doit reconnaitre qu’il parait bien peu probable qu’il eut, de toute maniére,
réalis¢ le programme ambitieux qu’il s'¢tait primitivement fixé, car nous
savons combien ¢taient grandes les difficultés qui l'avaient arrété ; en revanche,
peut-étre cet abandon a-t-il permis de refermer cette grande boucle qu’il avait
lui-méme ouverte et qui unifiait I’électron et le photon dans la vision du monde
de la Mécanique ondulatoire.

Mais, cette boucle une fois refermée (cela se passait dans les années quarante,
les années de guerre), un grand vide se fit en lui, car que pouvait-il faire d’autre
aprés cela ? La synthése dont il avait pu naturellement réver était, pour 'essen-
tiel, réalisée et ne paraissait guere perfectible dans le cadre théorique connu;
le seul autre projet qui elit €té a la hauteur de ses ambitions était le probleme
du noyau atomique mais, ayant étudié trés attentivement (il fit, sur ce sujet,
une mise au point en trois volumes), il resta insatisfait des théories existantes,
tout en reconnaissant qu’il ne savait pas faire mieux. Et il commenga a se
demander si les insuffisances de la théorie du noyau étaient dues 4 un manque
provisoire de savoir-faire des théoriciens ou a une insuffisance plus profonde
des théories quantiques elles-mémes.

Clest pourquoi il wappliqua pas, en réalité, toutes ses forces a ce probléme.
Cependant, il avait 50 ans, il se sentait en excellente forme intellectuelle; il
mavait pas d’autres handicaps physiques que, durant quelques années, ceux
qui étaient dus a la guerre : il se nourrissait médiocrement et avait froid I'hiver,
comme tout le monde, et désertait alors son bureau glacial ol il n’entrait plus
que subrepticement en manteau, & la recherche d’un livre, et travaillait reclus
dans sa chambre chauffée avec des biiches de la Forét de Chantilly qui appar-
tient a PInstitut de France. Mais ce n’¢taient qu’'incommodités provisoires :
la véritable entrave a son travail était que, se trouvant au sommet de sa car-
riére, il était accablé d’obligations, encore que méme cela ne 'empéchit pas,
grace a des régles de vie monacales et a un travail acharné, d’écrire entre 1941
et 1951 (Pannée qui nous occupe) treize livres et trente-trois mémoires ori-
ginaux.

Or, ce qui nous intéresse ici est le caractére extrémement varié, et méme
apparemment disparate, des travaux de cette époque, qui montre I'absence
dun grand projet en cours de réalisation. Durant ces 10 ans, Louis de Broglie
a écrit, en effet, sur le photon et les particules a spin (mais de moins en moins),
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sur le noyau, les guides d’ondes, 'optique €électronique, les invariants adiaba-
tiques en mécanique classique, la variance relativiste de la température, la
structure du schéma probabiliste quantique, 'onde de phase et la fréquence
propre de 'électron (pour la premiére fois depuis prés de 20 ans), le probléme
expérimental de la mesure du spin, la théorie quantique des champs, les ana-
logies thermodynamiques en mécanique et en électrodynamique classiques
et enfin, car tout, chez lui, procede des quanta et 'y ramene, il écrivit le présent
livre ou plutét, nous le savons, le texte des conférences qu’il devait faire en
1951 et 1952 a P'lnstitut Henri-Poincaré.

Pourtant, si 'on examine de prés ces livres et ces mémoires, si I’on rassemble
les commentaires glanés ¢a et 1a, au cours d’années de conversation avec
Pauteur, comme jai pu le faire et, enfin, si on réfléchit aux travaux qu’il a
effectués par la suite, la liste des thémes que je viens de citer s'ordonne faci-
lement.

Certains d’entre eux sont, certes, occasionnels comme les guides d’ondes
(commande d’Etat datant du début de la guerre) ou 'optique corpusculaire
appelée semble-t-il par des collaborateurs; mais méme ces travaux la, appa-
remment trés spécifiques, sont parsemés de remarques fondamentales (méme
de développements) sur les ondes et sur I'optique, que Louis de Broglie a
utilisés et prolongés par la suite. Les travaux sur le photon et les particules
a spin se passent d’explications, car ils constituent évidemment 'achévement
de toute une période. Ceux sur le noyau avaient pour but, nous l'avons dit,
d’explorer les possibilités de principe de la Mécanique ondulatoire dans ce
domaine et conduisirent Louis de Broglie & la conclusion que les limites de
la théorie actuelle risquaient bien d’étre atteintes. On peut en dire autant des
travaux sur la théorie des champs dans laquelle il n’a jamais admis, que des
artifices de calcul, si ingénieux soient-ils, puissent résoudre le probléme des
« infinis ». En fait, dés avant 1950, il commencait de se persuader que les dif-
ficultés de 1a théorie du noyau, comme celles de I'électrodynamique quantique,
étaient irréductibles dans le cadre conceptuel admis et révélaient une impuis-
sance fondamentale de I'ensemble de la théorie a décrire des structures spatio-
temporelles. C’est cette conviction grandissante qu’il devait exprimer plus tard,
lorsqu’elle cristallisa en lui en 1952, par cette phrase sans ambiguité
«...aujourd’hui le pouvoir explicatif de la Mécanique ondulatoire, telle qu’elle
est enseignée, parait en grande partie épuisé » (réf. I, 6; p. 143) et cest ce
nouvel état d’esprit qui explique tous les autres thémes de réflexion que nous
avons énumeérés, y compris ceux du présent livre. En effet, ces thémes se par-
tagent en deux catégories simples : d’une part, il s’est remis a explorer les bases
les plus profondes et les plus lointaines de la théorie des quanta, en revenant
a la Mécanique ondulatoire telle qu’il la concevait jadis et & des considérations
de thermodynamique, de mécanique classique et de relativité qu’il devait,
plus tard, longuement développer; mais d’autre part, il s’interrogeait sur
Iinterprétation devenue classique et orthodoxe de la Mécanique ondulatoire,
telle qu’il I’enseignait lui-méme, ce qui se voit dans les travaux sur le schéma
probabiliste de la théorie, sur la mesure du spin et surtout évidemment, dans

L. DE BROGLIE. 2
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le présent livre. Ce livre était-il, comme on incline a le croire en pareil cas,
une tentative de se convaincre lui-méme ? A vrai dire, je 'ignore et sans doute
de Broglie ne l'a-t-il jamais su vraiment : en fait, ce genre de supputation
est une traite tirée sur l'inconscient et donc sans valeur contrélable. Disons
plus simplement que de Broglie s'interrogeant sur ces probleémes, il les a
soigneusement réexaminés et a voulu faire part a son auditoire du fruit de
ses réflexions. Une chose est sire : I'exposé était absolument orthodoxe,
convaincu et convaincant ! Seules de difficiles analyses peuvent faire naitre
le doute sur ces questions et de telles analyses ne se trouvaient pas dans le
texte initial : les notes critiques que nous reproduisons sont toutes postérieures,
méme si certaines d’entre elles ne le sont peut-étre que de quelques mois
(nous men connaissons pas la date exacte). Il est certain, également, que
Louis de Broglie n’envisageait pas du tout, en écrivant ce livre, de reprendre
la théorie de la double solution et encore moins celle de 'onde pilote.

Or dans I'été de 1951, donc entre les deux parties de cette série d’exposés,
mais alors, semble-t-il, que le manuscrit était déja entiérement écrit, ou au
moins congu, de Broglie recut de Princeton, un preprint d’'un long mémoire
signé d’'un jeune physicien encore peu connu en France, malgré ses travaux
sur les plasmas et un remarquable ouvrage de Mécanique quantique qui
venait, il est vrai, tout juste de paraitre : c’était David Bohm et son mémoire
reprenait et développait la théorie de 'onde-pilote, dont il apprit in extremis
et juste 4 temps pour l'inclure dans sa bibliographie, que de Broglie avait déja
construit la méme théorie 25 ans auparavant, puis I'avait presque aussitot
abandonnée.

La premiére réaction de Louis de Broglie fut négative (réf. 1, 93). Mieux
que quiconque il connaissait les arguments qui militaient contre 'onde-pilote
et notamment le principal d’entre eux, & savoir qu'on ne saurait prétendre
au caractére causal du mouvement d'un corpuscule si on le fait dépendre
d’'une onde qui se propage non dans I'espace physique mais dans I'espace
de configuration et qui est, en outre, sujette 4 la réduction du paquet d’ondes
lors d'une mesure de localisation.

Mais pourtant ce mémoire de Bohm eut sur de Broglie comme Peffet de
rompre un charme qui I'aurait longtemps tenu envouté. Ce charme était celui
quavait longtemps exercé sur lui, comme sur presque tous les théoriciens,
I'ensemble du langage scientifico-philosophique, tissé d’incertitudes et de
complémentarité, dont les tenants de 'Ecole de Copenhague avaient enveloppé
le formalisme quantique, et que venait encore couronner — et méme péren-
niser — le fameux théoréme de von Neumann qui affirmait, au terme d’une
impressionnante construction mathématique, I'impossibilité de rendre compte
des lois quantiques 4 l'aide d’une théorie causale a paramétres cachés.

Ce théoréme relevait, quand on y réfléchit, d'une incroyable prétention
philosophique : celle de prouver, de l'intérieur d'une théorie, que les prin-
cipes sur lesquels elle repose sont définitifs et marquent une limite ultime des
connaissances humaines. On retrouve 1a sous une forme nouvelle, qui n’est
antinomique qu'en apparence, le triomphalisme et les excés du déterminisme
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laplacien. Eh bien ! Louis de Broglie, qui venait d’exposer dans son cours
ce théoréme de von Neumann comme une vérité¢ inattaquable et que personne,
dailleurs, n’avait attaquée depuis 25 ans, eut soudain I'intuition que la théorie
de l'onde-pilote, si imparfaite qu’elle fiit, constituait néanmoins un contre-
exemple a ce théoréme qui lui interdisait en principe d’exister; il ajouta au
manuscrit une note capitale qui commence par cette phrase empreinte encore
d’une légére hésitation : « L’existence de la théorie de 'onde-pilote semble
montrer cependant qu’il existe une sorte de fissure dans le raisonnement de
M. von Neumann. »

Et il montra ensuite, ainsi qu'on le verra dans I'ouvrage, que cette fissure
se trouve dans I'’hypothése implicite que faisait von Neumann, selon laquelle
les distributions de probabilités prévues par la Mécanique quantique seraient
toutes simultanément réalisées, méme lorsqu’elles se rapportent a des gran-
deurs qui ne sont pas simultanément mesurables. De Broglie était évidemment
préparé a ce type d’analyse grice a I'étude trés claire qu’il avait fait paraitre
un peu auparavant sur le schéma probabiliste quantique (réf. V, 44; III, 9),
Il a développé, plus tard, son argumentation dans plusieurs ouvrages (réf. II,
27, 29, 33) et elle constitue, 4 mon sens, la seule réfutation physique véritable
du théoréme de von Neumann. D’autres réfutations ont été données par la
suite, car, le théoréme une fois atteint, on lui a découvert d’autres faiblesses,
qui sont toutes de caractére logique ou formel; elles ne sont pas sans intérét,
mais seul, a mon avis, peut avoir une signification générale le raisonnement
physique qui, en sappuyant sur le schéma statistique de la théorie, fait appel
au probléme de fond qui est celui du dualisme onde-corpuscule; c’est pour-
quoi il conserve sa valeur contre d’autres théorémes du méme type, méme
s'ils se présentent sous des formes trés différentes (1).

Cette réfutation fut, pour de Broglie, tout a fait essentielle parce que, der-
riére le voile qu’il venait ainsi d’entrouvrir, il redécouvrit I'image du monde
qui avait jadis été la sienne, mais qu’il avait presque laissée seffacer de sa
mémoire.

Cest cela son second revirement. Cest cette image, qu'on verra ici dans
quelques courtes notes, se reformer peu a peu devant lui, trait par trait, encore
exprimée avec la prudence des derniers doutes, mais en laquelle il recommence
a croire et qu’il essaiera de parfaire et d’étendre durant tout son vieil dge.

Aucun physicien ne peut rester indifférent a cette conception, qu’il la partage
ou qu’il ne la partage pas; c’est une autre conception de la microphysique,
complétement différente de celle qui est enseignée et chacun doit savoir qu’elle
existe car C’est d’elle que la Mécanique ondulatoire est née.

Mais cette reprise tardive de la méme théorie par le méme homme contient-
elle (au moins en germe) quelques nouvelles découvertes ? Pour ma part je
le crois et je dirai plus loin lesquelles, mais je pense qu’il faut avant tout contem-

(1) Signalons également que dans le mémoire cité de Bohm, celui-ci écarte le théo-
reme de von Neumann & I'aide d'un argument sur la mesure qui s’apparente a celui
de de Broglie mais qu’il se contente d’esquisser.
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pler ce travail d’'un vieil et illustre physicien comme on peut le faire de la
Pieta de Michel Ange exposée 4 Milan, elle aussi ceuvre tardive : elle peut
paraitre un peu rude et inachevée si on la compare a la splendeur de la Pieta
du Vatican, mais n’est-elle pas aussi une lointaine préfiguration de l'art de
notre temps ?

Cette allusion a l'art est aussi naturelle, s’agissant de ce physicien homme
de lettres qu’elle I'est & propos d’Einstein qui est 'homme de science qu’il
a le plus passionnément admiré. Mais, tandis que le déroulement de I'ccuvre
d’Einstein suggére aussitot I'idée d’une harmonie musicale, une telle méta-
phore serait, pour de Broglie, tout & fait hors de propos : la musique est le
seul art auquel il soit resté étranger. Mais I'ccuvre de de Broglie me parait
avoir deux clés.

La premiere, évidemment, est 'Histoire. Il I'a tant étudiée qu’il m’a dit un
jour qu’il pensait avoir lu encore plus de livres d’histoire que de livres de
physique. Mais plus particuliérement, T'histoire des idées en physique depuis
le xvie et surtout depuis le xvie siécle, a joué dans son ceuvre un role déter-
minant. Ce n’était aucunement, pour lui, une sorte de curiosité ou un passe-
temps d’honnéte homme, c’était a la fois la force motrice de son esprit de
synthése et la terre nourriciére de sa pensée. Le premier mot de la fameuse
thése de 1924 était « L’Histoire », et ce n’est pas un fait du hasard.

Quant a la seconde clé de son ceuvre, elle est de caractére visuel : c’est la
recherche d’une image du monde qu’il désigne volontiers par le terme allemand
de Welthild en le citant de Planck. Pour de Broglie, comprendre c’est voir.
Epris de modéles concrets, pour lui un modele ne saurait étre qu'une repré-
sentation visuelle dans I'espace physique. Dans sa langue, elle-méme si trans-
parente, on retrouve plus que chez quiconque des métaphores empruntées a
I'optique et a la vision. En parlant d’une grande idée, il la qualifie le plus
souvent de « trait de lumiére » ou « d’éclair dans la nuit ». « Il n’y a que les
visionnaires qui créent » aime-t-il a dire; parlant de notre vie intérieure,
« seul objet de connaissance », il précise que « tout ce que nous connaissons
passe en effet par elle et se réfracte en elle » (réf. 111, 6, p. 250) ; évoquant la
découverte de la Mécanique ondulatoire, il raconte : « Une grande lumiére
se fit alors soudain dans mon esprit » (réf. 111, 6; p. 180). La joie, pour lui,
c’est de voir : & propos de la découverte de 'atomisme et des statistiques, il
s’écrie : « Ce jour-la le voile s'est déchiré et nous avons enfin apergu avec sou-
lagement la réalité physique qui se cachait derriére les formes si abstraites
de la Thermodynamique classique » (réf. II1, 3, p. 93).

Relativiste dans I'dme, son imagination se développe dans une sorte de
continuum quadridimensionnel, empruntant & T'histoire sa dimension tem-
porelle et s’exprimant en images spatiales. « Seul, dit-il, a une réalité physique
le déplacement d’éléments localisés dans I'espace au cours du temps (). »
Une grande idée, pour de Broglie, c’est rendre compte, en une seule image
spatiale, d’'une synthése résultant de I'analogie subitement apergue entre des
lois physiques différentes ou entre des représentations longtemps réputées

(') Annales de la Fondation Louis de Broglie, 1, 1976, p. 116.
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contradictoires. La création, pour lui, a forcément la fulgurance d’une vision
poétique, apres quoi il ne peut retenir quelque tristesse a la voir entre ses
propres mains, ou dans d’autres, s’étioler et perdre de son éclat par I'expression
mathématique qu’il faut bien lui donner. Et son besoin d’images est si grand,
gu'en évoquant « Le savant a son dernier quart d’heure » (réf. 111, 6) son réve
supréme est que, peut-étre, ce que nous apercevons dans I'espace-temps n’est
encore pas la vision véritable et que le physicien serait comme un ouvrier
tissant une tapisserie de haute lice face au revers de son ouvrage, qui ne saurait
se rendre compte de 'ceuvre réelle que « le jour ol il pourrait retourner cet
ouvrage et le contempler de face ».

Ainsi de Broglie reprit donc son oeuvre et retrouva la vision du monde de
sa jeunesse. En quelques mois, il en réexamina les différents aspects, il se
remit & en parler avec de plus en plus d’assurance, il balaya de son esprit
les conceptions qu’il s’était laissé imposer et il entreprit d’en faire la critique,
en méme temps qu'il s’attaquait aux difficultés techniques soulevées par sa
propre théorie.

Aidé par une nouvelle équipe de jeunes éléves, il s’attaqua au probl¢me
du guidage des singularités, des paquets d’ondes indé¢formables dans les équa-
tions non linéaires (ce qu'on appelle maintenant les solitons), il étendit ses
idées a la théorie de Dirac, a T'optique des milieux réfringents et, au moins
en partie, aux systémes de particules; il élabora une nouvelle théorie quantique
de la mesure; il développa une dynamique a masse propre variable et la ther-
modynamique relativiste; enfin il lanca I'idée d’'une thermodynamique de la
particule isolée. Le tout se trouve dans une cinquantaine de mémoires et
quatorze livres en comptant celui-ci.

Si je puis me permettre un choix dans tout cela, javancerai deux idées qui
me paraissent les plus importantes.

La premiére est celle des solitons, que nous appelions des ondes d bosse,
a I'Institut Henri-Poincaré. Cette idée de de Broglie, jadis regardée comme
désuete et trop classique, jouit aujourd’hui d'un certain prestige, comme je
'ai dit plus haut, et elle a sans doute beaucoup d’avenir mais a condition
d’avoir conscience du véritable obstacle, qui reste le méme depuis 25 ans,
a savoir absence d’un principe général au nom duquel nous saurions choisir
une équation d’onde non linéaire parmi I'infinité possible. Si, un jour, nous
savons trouver une telle équation, une nouvelle microphysique naitra.

La seconde idée est la thermodynamique de la particule isolée, proposée
par de Broglie en s’appuyant d’'une part sur I'analogie de variance relativiste
entre une fréquence d’horloge et une température (!) et, d’autre part, sur un

(') La variance de la température reste un sujet de controverse car la formule de
Planck-Einstein-Laue qu'utilise de Broglie a été contestée (voir : H.- Arzelies, Thermo-
dynamique relativiste et quantique, Gauthier-Villars, 1968); mais a vrai dire, méme
la variance de la fréquence d’une horloge peut étre discutée (L. Brillouin, Relativity
reexamined, Ac. Press. 1971), ce qui n’a pas empéche, en son temps, la Mécanique
ondulatoire de naitre a partir de la variance généralement admise ! Le débat sur ces
problémes n’est pas terminé.
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rapprochement entre les trois grands principes extrémaux de la physique :
les principes de Fermat, de Maupertuis et de Carnot.

Cela non plus, n’est pas encore une théorie véritable, ce n’est que 'apercu
d’une synthése que nous saurons peut-étre, un jour, réaliser et utiliser : dans
un an, dans un si€cle ? Qui sait ? N'oublions pas qu’au temps de Laplace,
on doutait encore du principe de Fermat et qu'un siécle aprés Huygens, son
fameux principe restait a I'abandon.

Les grandes idées cheminent lentement et ce n’est pas facilement admis,
en notre époque trépidante qui ne laisse guére de place a la méditation
poétique... C'est sans doute P'une des raisons pour lesquelles, en dehors d'un
cercle d’¢éléves, de Broglie, dans ces derniéres années, est resté si ignoré en
méme temps quon le pétrifiait sous les honneurs. Peut-Etre est-ce également
parce que, face a une école majoritaire sire d’elle, soudée sur ses dogmes
et peu disposée a laisser entamer ses positions, il incarnait d’une fagon intransi-
geante et austére une certaine tradition de la science frangaise, celle de Fermat,
Laplace, Fresnel, Poincaré, souvent délaissée aujourd’hui au profit de maniéres
plus pragmatiques et formelles, mais aussi plus internationales et collectives.
Or, quels que soient les nécessités et les résultats du travail en équipe, on ne
doit pas oublier que jamais une grande équipe n’a émis une grande idée;
ce sont les hommes qui émettent les idées : les équipes ne font que les développer.
Si on écrase les individus, il n’y aura plus d’idées. De méme quels que soient
les bienfaits de la coopération internationale, on doit se rappeler que, s’il est
vrai que les résultats de la science sont internationaux (nous nous accordons
méme tous a espérer qu’ils sont universels !) la tournure d’esprit des hommes,
leur style de réflexion et de travail restent nationaux : c’est pourquoi il n’y a
que les Américains qui sachent vraiment faire une grande science a Paméricaine,
les Allemands a l'allemande etc.; et si les Frangais dédaignaient la tradition
frangaise, personne ne la ranimerait pour eux. Autant chaque tradition doit
senrichir de 'apport des autres et €évoluer, autant, me semble-t-il, si les scienti-
fiques d’'un pays suivent trop les modes venues d’ailleurs, ils améliorent peut-
étre leur statut international, mais ils rapetissent leur destin.

Face 4 la puissance grandissante de Ja communauté scientifique et a
I'influence anonyme des commissions de spécialistes, dans lesquelles il voyait
des facteurs d’uniformisation de la pensée, Louis de Broglie a maintes fois
réagi, s'élevant contre les dangers du dirigisme et soulignant I'importance de
la liberté dans la recherche scientifique et d’'un réexamen sans réticence des
théories ou des principes en vigueur.

Clest 1a peut-étre I'essentiel du flambeau qu’il a transmis & la Fondation
Louis de Broglie a laquelle il a certes 1égué son idéal de clarté physique et de
recherche d’images théoriques intuitives et simples mais plus encore, peut-€tre,
cette croyance profonde qui est la sienne, que le pouvoir d’aucune théorie ni
d’aucune hypothése n’est établi a jamais et donc qu’aucune critique ni aucune
idée nouvelle ne doit &tre enterrée sans débat.

Favoue que c’est d'une main quelque peu tremblante que jachéve cette
préface pour un maitre que je sens a la fois si supérieur et si proche. Lui qui
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a fait tant de préfaces !... Nonagénaire épuisé par le travail et par les ans,
il m’écrira pas celle-ci, mais je voudrais au moins lui laisser le dernier mot,
avec le texte d’une note présentée par lui devant 'Académie des Sciences &
'occasion du cinquantenaire de la Mécanique ondulatoire et que nous pouvons
regarder comme son testament scientifique.



SUR LES VERITABLES IDEES DE BASE
DE LA MECANIQUE ONDULATOIRE

Note (!) de M. Louis de Broglie, Membre de I’Académie

A P'occasion du cingantiéme anniversaire de la découverte de la Mécanique ondulatoire, lauteur
rappelle les idées qui 'avaient guidé a cette époque et expose les raisons pour lesquelles il lui parait
aujourd’hui nécessaire de reprendre ces idées bien oublies dans I'enseignement de I'actuelle
Meécanique quantique.

Jai exposé les premiers principes de la Mécanique ondulatoire dans trois
Notes aux Comptes rendus en septembre-octobre 1923, puis d’'une fagon plus
développée dans ma Thése de Doctorat soutenue le 25 novembre 1924. Mon
idée essentielle était d’étendre a toutes les particules la coexistence des ondes
et des particules découverte par Einstein en 1905 dans le cas de la lumiére
et des photons. Conformément aux idées claires de la Physique classique,
je cherchais & me représenter une onde physique réelle transportant de trés
petits objets localisés dans I'espace au cours du temps. Deux maniéres de le
faire se sont alors présentées a mon esprit. La premiére, tout a fait oubliée
aujourd’hui dans 'enseignement usuel et que je considére maintenant comme
de beaucoup la plus profonde, se trouve esquissée dans une de mes Notes
de 1923 et développée dans le premier chapitre de ma Thése. Elle consistait
a partir de la différence des transformations relativistes de la fréquence d’une
onde et de la fréquence d’une horloge. Admettant que la particule posséde une
vibration interne qui permet de l'assimiler a une petite horloge, je supposais
que cette horloge se déplagait dans son onde de fagon que sa vibration interne
reste constamment en phase avec celle de 'onde : c’est le postulat de « 'accord
des phases ». Ces hypothéses me paraissaient étre rendues nécessaires par le
fait que la relation W = hv, appliquée a la particule implique I'existence d’une
fréquence v intérieure a la particule, tandis que I'on sait depuis les travaux
de Planck et d’Einstein que v est aussi la fréquence de 'onde qui transporte
la particule. Celle-ci apparait alors comme incorporée dans 'onde ol elle
constitue une trés petite région ou Pamplitude est trés grande. On peut en
déduire la formule bien connue p = 4/4. Dans le second chapitre de ma These,
Javais ensuite montré que, dans le cas ou la propagation de 'onde s’effectue
a l'approximation de I'optique géométrique, on est ainsi conduit 4 identifier
le principe de Fermat avec le principe de moindre action de Maupertuis et a
retrouver la formule p = A/A

(') Séance du 25 juin 1973
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I1 convient de souligner les différences qui existent entre les deux modes de
raisonnements que je viens de rappeler. Le premier, le postulat de la concor-
dance des phases, est de nature essentiellement relativiste puisqu’il repose sur
la différence entre deux formules de transformation relativiste, tandis que le
second, Iidentification des principes de Fermat et de Maupertuis n’a rien
d’essentiellement relativiste puisque ces deux principes sont valables aussi
bien en théorie classique et en théorie relativiste. La seconde différence entre
les deux méthodes est que la premiére est valable pour toutes les propagations
d’ondes tandis que la seconde n’a de sens que pour les propagations s’effectuant
a lapproximation de l'optique géométrique.

Aprés ma Thése, on a souvent interprété faussement mes idées en disant que,
d’aprés moi, Iélectron était une onde, ce qui escamotait la particule. Cest,
semble-t-il, en adoptant cette idée que Schrodinger, en 1926, dans de trés beaux
travaux, a écrit le premier pour Iélectron, mais seulement a 'approximation
newtonienne et sans tenir compte du spin, I'équation de propagation d’une
onde qu’il a nommée I'onde . Il a pu ainsi calculer exactement les processus
ondulatoires qui correspondent aux états quantifiés d’'un systéme atomique
congu a la maniére classique depuis les travaux de Bohr et de ses continuateurs.
Certainement Schrédinger pensait alors que son onde y était une onde physi-
que, mais il abandonnait toute idée de localisation de la particule dans 'onde
de sorte qu'en réalité dans 'image qu’il se formait de I'atome et plus générale-
ment des ondes ¥ il n’y avait plus de particules localisées. Ceci était trés grave
et rendait paradoxal 'emploi qu’il faisait de I'espace de configuration dans le
cas des systémes de particules. Peu aprés, Born a introduit la normalisation
de 'onde ¢ qui, en modifiant arbitrairement 'amplitude de 'onde, lui enléve
toute réalité physique. L’onde iy normalisée est ainsi transformée en une simple
représentation de probabilités qui conduit & un trés grand nombre de prévisions
exactes, mais ne fournit aucune représentation compréhensible de la coexis-
tence des ondes et des particules.

Les travaux de Schrodinger avaient eu le mérite de bien faire voir que la
Mécanique ondulatoire, quand on I'applique aux systémes atomiques, conduit
a des problémes ou lapproximation de loptique géométrique n’est plus
valable. Il en résulte que le principe de Fermat n’est plus applicable et ne
permet plus de définir un « rayon » assimilable a la trajectoire d’une particule.
Si donc on se refuse a faire intervenir le postulat de I'accord des phases, I'on
est amené & dire qu’il est impossible d’attribuer une trajectoire a la particule
dans son onde et a affirmer qu’elle ne peut avoir que des localisations isolées
sans positions intermédiaires. Mais une telle conception souléve de grandes
difficultés et notamment celle qui fut signalée par Einstein au Conseil de
Physique Solvay de 1927. On peut la résumer de la fagon suivante : soit une
source qui émet une onde sphérique transportant une particule. Un instant
aprés, la particule manifeste sa présence en un point de 'onde sphérique par
un effet localisé sur un détecteur. Il est évidemment certain que I'émission
de la particule par la source est la cause de son arrivée sur le détecteur. Or,
le lien causal entre les deux phénoménes ne peut étre établi que par I'existence
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d’une trajectoire et nier cette existence, c’est renoncer i la causalité, c’est se
condamner & ne pas comprendre,

Faisons maintenant une remarque importante. Comme la normalisation,
qui modifie arbitrairement 'amplitude de I'onde, ne modifie pas sa phase,
la Mécanique quantique usuelle peut définir la méme fréquence v et la méme
longueur d’onde 4 que ma théorie et c’est 1 ce qui lui permet d’étre une théorie
puissante conduisant a un trés grand nombre de résultats exacts. Mais, contrai-
rement a ce que I'on admet d’habitude, la Mécanique quantique n’a pas le
droit de poser W = hv et p = h// parce que I'énergie W et la quantité de
mouvement p d’'une particule sont des grandeurs liées a la conception d’un
objet localisé qui se déplace dans I'espace le long d’une trajectoire. Si jai pu
autrefois établir ces formules, c’est que jadmettais que la particule est localisée
dans son onde.

Appelé en 1928 a des fonctions d’enseignement, j’ai exposé les idées qui
avaient prévalu en Mécanique quantique et pendant de longues années j’ai
renoncé a développer mes idées primitives.

Mais depuis environ 20 ans j’ai été de nouveau convaincu qu’il fallait revenir
a I'idée que la particule est un trés petit objet localisé décrivant une trajectoire.
Comme je I'ai montré dans toute une série de travaux de plus en plus appro-
fondis (*), c’est ce que permet de faire, tout en conservant la signification
statistique de I'onde  normée, ma conception du guidage de la particule par
son onde quand on la compléte par une Thermodynamique cachée dont le
développement ouvre des perspectives trés nouvelles. Une conséquence de
cette thermodynamique me parait trés importante : le principe de moindre
action ne serait qu'un aspect du second principe de la Thermodynamique (?).

I1 est important de remarquer combien il est étonnant qu’en optique de la
lumiéere et des particules, on puisse prévoir, avec une extréme précision, un
nombre énorme de phénoménes en partant de propagations d’ondes sans faire
nullement intervenir la structure corpusculaire, cependant certaine, de I'énergie
quelles transportent. Dans le cas des phénomeénes d’interférences et de dif-
fraction, le postulat statistique de Born suffit a expliquer les phénomeénes.
Mais en théorie quantique usuelle, on admet arbitrairement ce postulat,
tandis que je puis en donner une justification. Mais la ot le postulat de 'accord
des phases me semble fournir une explication que la théorie usuelle ne parait
pas pouvoir donner, c’est quand on considére I'action d’'une onde hertzienne
de fréquence v sur un circuit oscillant ou un dispositif analogue accordé sur
cette fréquence. 11 est, en effet, naturel de penser que certains des photons
apportés par I'onde cédent leur énergie au circuit oscillant sous forme d’une
brusque impulsion qui compense I'amortissement. Mais 'énergie ainsi apportée
au circuit oscillant ne peut entretenir son oscillation réguliére que si ces
impulsions sont rythmées a la fréquence du circuit qui est celle de Fonde. Ceci
me semble prouver que les photons incidents possédent une fréquence

(") La réinterprétation de la Mécanique ondulatoire, Gauthier-Villars, Paris, 1971.
(*>) La Thermodynamique de la particule isolée, Gauthier-Villars, Paris, 1964.
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d’oscillation interne égale a celle de 'onde et c’est bien ce qu’affirme le postulat
de Taccord des phases, alors que la théorie usuelle ne peut introduire aucune
idée analogue.

En conclusion, je pense que mes idées primitives, telles que je les ai reprises
et développées dans ces derniéres années, permettent de comprendre la véri-
table nature de la coexistence des ondes et des particules dont la Mécanique
quantique usuelle et ses prolongements ne nous donnent quune vue statistique
exacte sans nous en révéler la véritable nature. Le postulat de I'accord des
phases nous apprend, en effet, qu’il existe une Dynamique corpusculaire ayant
le caractére d’'une Dynamique d masse propre variable qui est sous-jacente
a toute propagation d’ondes, méme quand celle-ci seffectue en dehors de
I'approximation de optique géométrique. Et je crois que cC’est 1a ce que la
Mécanique quantique actuelle n’a pas su voir.

Parvenu a un age qui ne me permet plus d’espérer pouvoir continuer long-
temps mes travaux personnels, je dois exprimer 'espoir que de jeunes chercheurs
se consacrent a développer, dans le sens que jai indiqué dans ces derniéres
années, les idées qui ont permis, il y a un demi-siécle, la naissance en France
de la Mécanique ondulatoire.

C.R. Acad. Sc. Paris, t. 277 (16 juillet 1973)
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CHAPITRE 1

PRINCIPES DE LA MECANIQUE
ONDULATOIRE

1. DYNAMIQUE CLASSIQUE DU POINT MATERIEL. THEORIE
DE JACOBI

Nous allons résumer les principes généraux de la Mécanique onduiatoire
dans le cas d’un corpuscule unique soumis a laction d’'un champ de force
dérivant d’une fonction potentielle connue V(x, y, z, t). Nous devons com-
mencer par rappeler quelques grandes lignes de la Dynamique classique du
point matériel.

Avec les conceptions anciennes, le corpuscule a a chaque instant une posi-
tion bien déterminée dans I'espace et, au cours du temps, il décrit une certaine
courbe, la trajectoire, sous l'influence du champ de force. On peut donc a
tout instant attribuer au corpuscule trois coordonnées rectangulaires x, y, z qui
fixent sa position. Les équations classiques du mouvement sont les suivantes :

d?x ov

m étant une constante caractéristique du corpuscule nommée sa masse. Ces
trois équations différentielles du second ordre définissent entiérement les
variations des coordonnées du corpuscule au cours du temps, c’est-a-dire son
mouvement, quand on se donne 6 constantes arbitraires représentant les
coordonnées et les composantes de la vitesse a un instant donné, linstant
dit initial. Le déterminisme de l'ancienne Mécanique consistait en ce que,
I'état initial de position et de vitesse étant supposé connu, les états ultérieurs
étaient rigoureusement déterminés.

Nous renvoyons aux traités de Mécanique rationnelle pour la démonstra-
tion des théorémes généraux de la Dynamique du point matériel et pour

Note des éditeurs : dans les notes qui suivent, Louis de Broglie sera désigné
par L. B. et Georges Lochak par G. L.
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la théorie des équations de Lagrange, de Hamilton, etc. (*). Nous nous bor-
nerons 4 énoncer le théoréme fondamental de Jacobi qui nous sera utile dans
la suite.

Théoréme : Si 'on parvient & trouver une intégrale compléte (c’est-a-dire
une solution contenant 3 constantes arbitraires non additives) S(x, y, z, t, &, B, 7)
de Yéquation aux dérivées partielles (équation de Jacobi)

1 [[aS\2  [8S\* [0S\ oS
o () @)

les équations

3) os =aqa os =b a8 =c

Jo ap 0y
ou q, b, ¢ sont trois nouvelles constantes arbitraires, définissent un des mou-
vements possibles dans le champ de force; et les composantes de la quantité
de mouvement du corpuscule quand, en exécutant ce mouvement, il occupe
a I'instant ¢ la position x, y, z sont données par les relations

_ 9. ey = 5. )
axa py—“mvy— ay’ p. = nmv, = oz’

@ p=m, =

Nous voyons donc que d’aprés ce théoréme de Jacobi, les mouvements
possibles du corpuscule se divisent en classes, les mouvements d’'une méme
classe correspondant a une intégrale compléte S(x, y, z, £, a, 5, y) avec des valeurs
données de affy. Chacune de ces classes contient une infinité de mouvements
possibles, chacun d’eux étant caractérisé par la valeur des constantes secon-
daires abc.

Rappelons aussi que I'équation de Jacobi peut s’obtenir en partant de
I'expression de I'énergic et en fonction des coordonnées et des moments
conjugués

1
(5) H(X, 9, 2, Pxs Pys Po ) = 57 P:+pi+pH)+Vxyz

et en y remplagant p,, p,, p, respectivement par — 0S/0x, — 0S/0y et — 0S/0z
et en égalant I'expression obtenue a dS/dt.

(!) Note G. L. : parmi les nombreux traités, citons : J. M. Souriau, Struc-
ture des systémes dynamiques, Dunod,- Paris, 1970 ; H. Goldstein, Classical
mechanics, Addison-Wesley, Cambridge, Mass., 1953. Notons que ce n’est
pas par souci de simplicité que Louis de Broglie énonce le théoréme de Jacobi
dans R?, mais parce que I'analogie optique-mécanique n’a de sens véritable
a ses yeux que dans I'espace physique, en dehors duquel elle n’est plus que
formelle.
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Le théoréme de Jacobi prend une forme qui nous sera particuliérement
utile dans le cas ou la fonction potentielle V ne dépend pas du temps. On sait
que dans ce cas, il y a conservation de I'énergie, c’est-a-dire que pendant le
cours du mouvement, la somme de I’énergie cinétique et de I'énergie poten-

. 1 .
tielle 3 mv? + V garde une valeur constante E. La constante E joue alors
le role d'une des constantes primaires du mouvement, par exemple y. On pose

(6) S(x, v, z,t, 0, B, E) = Et = §,(x, ), z, &, B, E)

ou S, ne dépend plus du temps et I'on cherche une intégrale compléte dépen-
dant de la constante E et des deux constantes arbitraires o et § de 'équation
aux dérivées partielles (équation de Jacobi raccourcie)

1 28,\* 38, \? AT
(7) m |:<Tx_> + (W + v + Vix,y,2) = E.
Le théoréme de Jacobi appliqué & ce cas particulier nous apprend que,

si Yon a trouvé une telle intégrale compléte, le mouvement défini par les
équations

ds, as,

W:a W:b
® as as,

GE-'TTE €

ou a, b, ¢ sont trois constantes arbitraires est un des mouvements possibles
du corpuscule dans le champ de force constant et que la quantit¢ de mouve-
ment lors du passage au point x, y, z est donnée par

s, as, 25,

px:mvx_axa py':mu: 5 pzzmuz_az'

Les mouvements possibles se divisent en classes correspondant 4 une méme
valeur de I’énergie E et des deux constantes primaires o et f§ et chaque classe
contient une infinité de mouvements caractérisés chacun par les valeurs des
trois constantes secondaires a, b, c.

Les deux premiéres équations (8) ne contenant pas le temps définissent
une courbe de I'espace qui est la trajectoire du corpuscule. La troisiéme équa-
tion qu’on peut écrire 0S,/0F = t — t, donne le mouvement le long de la tra-
jectoire (équation de I'horaire). On voit ainsi que dans le cas des champs
constants, I'étude de la trajectoire peut se faire indépendamment de I'étude
du mouvement : ceci n'a pas licu dans le cas général des champs variables
avec le temps.
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Un autre théoréme important valable dans le cas des champs constants
est le suivant : « Les trajectoires d’'une méme classe qui correspondent &
une méme intégrale compléte S,(x, y, -, 2, f, E) sont orthogonales aux surfaces
Sl = Cte. » Ceci résulte immédiatement du fait exprimé par les équations
p = WS . que la vitesse est proportionnelle au gradient de S, en chaque
point.

La propriété des trajectoires d’étre normales aux surfaces §; = Cte permet
de retrouver le principe de moindre action de Maupertuis. Considérons pour
cela toutes les surfaces S, = Cte correspondant a des valeurs infiniment
voisines de la constante comprises entre les valeurs ¢, et ¢, et représentons-en
quelques-unes par la tranche.

Soit AEB une trajectoire de la classe correspondant 4 S, et AFB une courbe
infiniment voisine de AEB.

B S, =C,
G\
E
F
\
A ~s, =,

Si I'on nomme dn I'élément de normale aux surfaces S, = Cte, lintégrale
N .
J?nl ds prise le long de AEB est égale a ¢, — ¢, puisqu’alors on a ds = dn.

Prenons la méme intégrale le long de la courbe AFB. La contribution a cette
intégrale d’un petit élément tel que FG est supérieure ou au moins égale 4 la
variation de S{ de F en G : en effet si FG est normal aux surfaces S; = Cre qui

‘a * FG = $,(G) — §,(F),

tandis que si FG n’est pas normal aux surfaces S, = Cte, on a FG > dn et

passent par ces extrémités, alors FG = dn et

7ni - FG est supérieure a S (G) — S,(F). Or tous les éléments de AFB pe

peuvent étre normaux aux surfaces S, = Cte sans quoi AFB coinciderait
B
L . oS
avec la trajectoire AEB. Donc l'intégrale J Wni ds est plus grande le long de
A

AFB que le long de AEB.
D’apres I'équation a laquelle satisfait S,, on a

a8, aS;\*  [0S,\* [03S,\?
o S B (@S (&) - v

Nous parvenons donc a I'énoncé suivant : « La trajectoire passant par deux
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points A et B de lespace est caractérisée par le fait que lintégrale

B
j v 2m(E — V)ds est plus petite pour la trajectoire que pour toute courbe

A .
voisine. » C’est 1a le principe de moindre action de Maupertuis.

[Le raisonnement fait ci-dessus est en défaut quand les trajectoires ont une
enveloppe et que la trajectoire AEB touche cette enveloppe entre 4 et E.
L’intégrale de Maupertuis peut alors étre maximum au lieu de minimum,
mais elle est toujours stationnaire.]

Un exemple trés simple permet d’illustrer les considérations précédentes.
Envisageons le mouvement du corpuscule en l'absence de champ. Alors
V=0 et, comme il y a conservation de I'énergie, on peut écrire 'équation

de Jacobi raccourcie sous la forme
1 0S8, \* 28,\? AT
(10) m[(a) +<7y“ &) |7 E

Une intégrale compléte est obtenue par exemple en posant

(11) S, =2mE(ax + By +./1 — o* — B*2)

et d’aprés le théoréme de Jacobi, on obtient les trajectoires

%=,/2m£[x——a—z]=a,

1 _ a?. . BZ
(12 o8 B
@'W”’E[Y “‘r_—_ﬁ} -

Ce sont les droites de cosinus directeurs o, B et,/1 — «* — B? normales
aux plans S, = Cte. Le mouvement le long de ces droites est défini par I'équa-
tion

08, m 5 31
(13) —é‘E——\/—z——_m.E[CXX+ﬁy+\/1—d—ﬁ Z]—t—[o.

Il est rectiligne et uniforme et s’effectue avec la vitesse v =./2 E/m. Enfin on
vérifie aisément les relations p, = mv, = mav =./2 mE o = 0S,/dx... L'inté-
grale compléte envisagée définit donc la classe des mouvements rectilignes
et uniformes de direction o, 8, y et de vitesse./2 E/m.
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On définirait de méme la classe des mouvements rectilignes et uniformes
émanant d’un point O de coordonnées x, y, z, en considérant l'intégrale
compléte de I'équation en S

(14) S = =3[ = %P + (y = yo* + (2 = 2]

2. PROPAGATION DES ONDES DANS UN MILIEU ISOTROPE

Pour amorcer le passage a la Mécanique ondulatoire, faisons maintenant
une rapide étude de la propagation des ondes monochromatiques dans un
milieu isotrope, réfringent et dispersif.

Nous admettrons que cette propagation est régie par 'équation

(15) Ay = — —

Y étant la fonction d’ondes et ¥” une grandeur généralement fonction des
points xyz et de la fréquence v de 'onde. ¥~ est la vitesse de propagation de la
phase ou simplement vitesse de propagation. Nous écrirons 'onde mono-
chromatique sous la forme complexe

(16) ¥ = ulx, y, z) e*™

1 nlx,yzV)

et nous poserons
P v 7

¥, étant la vitesse de propagation dans un milieu de référence pour lequel
Iindice de réfraction est égal a 1. On a alors

4 12 n* y?
Vs
Rigoureusement I'étude de la propagation de T'onde monochromatique
dans le milieu dispersif devra se faire en cherchant les solutions de cette équa-
tion, mais il arrive souvent en pratique que 'on puisse résoudre le probléme

par un procédé approximatif qui est a la base de l'optique géométrique.

Pour bien comprendre le sens de cette approximation, considérons d’abord
le cas ou I'indice ne dépend pas de x, y, z (milieu homogene). On obtient alors
une solution rigoureuse de I’équation en posant

(18) l//=a€xp{27tiv[t—n7(/ﬁ(ax+ﬁy +mz)}}

(17) A+ v =0.

0
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a est une constante appelée lamplitude de T'onde plane. Nous nommerons
« phase de I'onde » la fonction linéaire

(19) qo=v[t~7ng(ax+ﬁy+ l—az—ﬁzz)}.

Les surfaces d’égale phase ¢ = Cte nommeées aussi surfaces d’onde sont les
plans perpendiculaires a la direction a, 8, y = \/1 — «* — B2 Au cours du
temps, les valeurs de la phase, et par suite de la fonction i, progressent dans
cette direction avec la vitesse

(20) Y=Y /n(v).

A un instant donné, on retrouve la méme valeur de ¥ sur des plans d’égale
phase séparés les uns des autres par la distance

v, v
(21) A=—2=_

ny v

nommée « longueur d’onde » et en un point donné, on retrouve les mémes
valeurs de ¥ a des intervalles de temps égaux a la période T = 1/v.

Considérons maintenant un milieu ou I'indice n varie d’un point 4 un autre.
Une onde monochromatique pourra toujours s’écrire sous la forme

(22) ¥ = alx, y,z) exp { 2 milvt — ¢,(x, 3, 2)] }

les fonctions a et ¢, étant réelles. On peut toujours définir une longueur
d’onde A par la formule 4 = ¥7/nv, mais cette longueur est « locale » en ce
sens qUelle varie d’un point a I'autre. Si, dans une région de I'espace, 'indice
varie peu d’un point a l'autre d I’échelle de la longueur d’onde, on voit aisément
que les dérivées de a sont négligeables devant celles de ¢, et en substituant
dans I'équation de propagation, on obtient I'équation approximative dite
« équation de Toptique géométrique »

(23) ‘3_‘512+ G0\, (G _ iy 2)
0x dy 0z V3

Elle permet de déterminer les variations de la phase sans avoir 4 se préoccuper
des variations lentes de I'amplitude a.

Soit @,(x, y, z, v, a, ) une intégrale compléte de I'équation de I'optique géo-
métrique. La fonction Yy =aexp { 2wi[vi— o, (x, y, z, v, &, )] } ot a est une fonc-
tion lentement variable a grande échelle est une solution approximative de
I'équation de propagation. Par définition, les courbes orthogonales aux sur-
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faces ¢, =Cte sont les «rayons» de 'onde. Comme on a justifié plus haut le
principe de moindre action de Maupertuis pour les trajectoires normales
aux surfaces S; =Cte, nous pourrions ici démontrer le principe de Fermat
suivant lequel, si la courbe C est un rayon de la propagation d’ondes passant
. s g 0, % nv :
par les points 4 et B de I'espace, V'intégrale j . ds = j 7, ds prise le
A A
long du rayon C est plus petite que la méme intégrale prise le long d’une courbe
infiniment voisine de C et joignant 4 et B.

L’optique géométrique n’est qu'une approximation valable seulement
si 'indice n varie peu a I'échelle de la longueur d’onde. Si la longueur d’onde
tendait vers zéro, cette approximation tendrait 4 devenir rigoureuse.

La présence de la fréquence v dans I’équation de propagation (17) doit
attirer I'attention. Au lieu de considérer une onde monochromatique, on peut
avoir a considérer le cas plus général d'une superposition d’ondes mono-
chromatiques, chacune d’elles satisfaisant a I'’équation de propagation avec
la valeur de n qui correspond a la fréquence. Mais il est désirable d’avoir
une forme de I'équation de propagation ou la fréquence ne figure pas et a
laquelle doive satisfaire la fonction d’ondes méme quand elle est formée
par une superposition d’ondes monochromatiques.

Supposons, pour donner un exemple, que I'indice soit défini par la loi de

dispersion
F (,\‘V,ﬁ nord
nx, py,z. v) = 1 — —
(632 \/ 4 72 y?

ou F est une certaine fonction du lieu. Alors on pourra adopter comme équa-
tion générale de propagation

ey
Bz A
car pour une onde monochromatique, on aura 0%y/dr* = — 4 n* v2 y et l'on

retrouvera I'équation (17). Nous trouverons un cas de ce genre en Mécanique
ondulatoire (%).

3. PASSAGE DE LA MECANIQUE CLASSIQUE
A LA MECANIQUE ONDULATOIRE

La grande analogie de forme entre la théorie de Jacobi et la théorie des ondes
déja apergue il y a plus d’un siécle par Hamilton peut aujourd’hui nous conduire
a la synthése réalisée par la Mécanique ondulatoire.

(!) Note G. L. : On lira avec profit, 2 propos de I'optique géométrique,
les références (I, 27) et (I, 29) de l'auteur.
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Commengons par comparer le mouvement d’un corpuscule en I'absence
de champ (V' = 0) avec la propagation d’une onde dans un milieu homogéne
ou I'indice n est indépendant de xyz. Pour le corpuscule en 'absence de champ,
nous avons trouvé

(11) S, =V2mE[ax + By + /1 — o> — B%z]
mofax + By +/1 — «® — B> z].

D’autre part, pour 'onde monochromatique dans un milieu homogéne,
puisque la longueur d’onde 4 est alors constante, on peut écrire I'équation
de I'optique géométrique sous la forme

(24 (p1=%[ax+ﬁy+\/1—oc2—,822].

Les fonctions complétes S et ¢ sont alors

S = Et — mo[ax + By +/1 — o? — f2 7]

vt—%[cxx+ﬂy +/1 — a* — B z]

(25)

4

en faisant coincider la direction du mouvement avec celle de la propagation
de I'onde. Il est dans T'esprit de la théorie des quanta de poser E = hv, c.-a.-d.
d’associer au mouvement du corpuscule d’énergie E la propagation d’une onde
de fréquence v = E/h (). Ceci nous conduit a poser

(26) o =S/h.

Si nous posons par hypothése cette relation, il en résulte les deux formules

27 E =hv A= h/mv.

En d’autres termes, au mouvement rectiligne et uniforme du corpuscule
d’énergic E et de quantit¢ de mouvement mv, nous faisons correspondre
la propagation dans la direction du mouvement d’'une onde plane mono-

(') Note G. L. : A cette époque, sous la pression ambiante, Louis de Broglie
s’était écarté du point de vue strictement relativiste de sa Thése, auquel il
allait revenir par la suite. En réalité seule la relativité fixe v, en fixant la cons-
tante de I'énergie, ce qu’il n'indique pas, alors qu’il y attachait pourtant une
importance fondamentale.
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chromatique ayant la fréquence E/h et la longueur d’onde #/mv, onde dont
I'expression est

2nig
Yy =aek (a constant)

S ayant la valeur écrite ci-dessus.

Cette correspondance entre onde et mouvement se généralise dans le cas
du mouvement d’un corpuscule dans un champ constant défini par la fonction
potentielle V(x, y, z). Il faut alors comparer le mouvement a la propagation
d’une onde dans un milieu non homogene ou l'indice n et par suite la longueur
d’onde A varient d’'un point a l'autre.

Les expressions 4 comparer de la fonction de Jacobi S et de la phase ¢
sont alors

(28) {S =Et — S/(x, 3 2)

@ = vt — @i(x,,2)

les fonctions S; et ¢, étant respectivement des intégrales complétes des
équations

38, \? 5, \? 5. \*

7?'; + W + E = Zm[E — V(XyZ)]
(2 () () -

0x dy oz 3 (xyz)
Il est tout naturel de faire encore ici 'hypothése exprimée par ¢ = S/h et par
suite de poser E = hv, S; = hg,. La seconde formule donne aisément
1 h h

lgrad ¢, | |grad S,| /2m[E - V(x,?,?)]

et comme en chaque point on doit avoir £ = 1/2 mu? 4+ V(x, ¥, z), on trouve
encore

(29)

(30) A

A= hjimo.

mais ici v et A sont variables d'un point a l'autre.
Comment s’écrira 'équation de propagation de I'onde qui correspond au
mouvement dans un champ constant ? Ecrivons I’équation (17) sous la forme

4 72
31 Ay + —————f =
31 Y 27 W
et substituons-y la valeur de A : il vient
8 n*m
(32) Ay + [E-=V(x.y.2)]Yy =0.

hz

En faisant V = 0, on retrouve I'équation valable en I'absence de champ.
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Chaque fois que l'optique géométrique sera valable pour la propagation
de I'onde ¥, nous pourrons poser

Y =a exp(% S> =a exp{ % [Et — Si(x, 3, 2)] }

et les trajectoires prévues par 'ancienne Dynamique du point matériel, nor-
males aux surfaces S, = Cre, ne seront autres choses que les rayons de I'onde
normaux aux surfaces ¢, = Cre.

Nous arrivons ainsi a 'une des idées essentielles de la nouvelle Mécanique.
Tandis que la Mécanique ancienne attribuait a ses équations un caractére
rigoureux et les considérait comme toujours valables, la nouvelle Mécanique
donne a I'onde  le role essentiel : elle ne considére plus 'ancienne Mécanique
que comme une approximation valable quand I'approximation de I'optique
géométrique est suffisante pour décrire la propagation de I'onde .

La Dynamique classique n’apparait donc plus que comme une approxima-
tion : elle n’est utilisable que quand l'indice n relatif a 'onde  varie peu a
’échelle de la longueur d’onde ou, ce qui revient au méme quand le potentiel
varie peu a cette échelle. Si la longueur d’onde de I'onde ¥ était infiniment
petite, l]a Dynamique ancienne serait rigoureusement valable. D’aprés la for-
mule (27) donnant A, 'on voit que ceci serait toujours réalisé (pour v non
nulle) si h était infiniment petit : pour h — 0, la Mécanique classique doit
toujours reprendre sa valeur.

4. EQUATION GENERALE DE LA MECANIQUE ONDULATOIRE
DU POINT MATERIEL

Nous venons d’étre conduits & substituer aux équations classiques de la
Dynamique du point matériel dans un champ constant I’équation de propa-
gation d’une onde monochromatique. Mais, comme nous le verrons bientdt,
nous serons souvent amenés a considérer des trains d’ondes y formés par
une superposition d’ondes monochromatiques. Il est donc utile de chercher
a obtenir une équation de propagation a laquelle satisfasse la fonction ¥
quand elle représente une telle superposition d’ondes monochromatiques.
L’équation (*)

8n’m 4 wim 0
(33 ay - Sy = S

satisfait a4 cette condition, car pour une onde plane monochromatique de
fréquence E/h, elle nous rameéne a I'équation (32). Mais cette nouvelle forme

(!) Note G. L. : L’auteur a coutume d’utiliser I'équation conjuguée de
I'équation habituelle.



14 Principes de la M.O.

d’équation nous permet de ne pas nous borner aux ondes planes monochro-
matiques et de considérer une superposition de telles ondes. De plus, elle
nous suggére la maniére d’étendre la nouvelle Mécanique au cas des champs
variables avec le temps. En effet, comme elle nous permet de ne plus nous
borner aux ondes monochromatiques, le temps n’y joue plus un role parti-
culier et il est donc nature] d’admettre que la forme de 'équation se conserve
quand V dépend du temps, donc d’écrire

8n’m 4 wim 0

e Vix,y,z, ) = ; %

(34 Ay —

comme forme générale de I'équation des ondes en Mécanique ondulatoire
non relativiste du corpuscule unique.

5. PROCEDE AUTOMATIQUE PERMETTANT DE RETROUVER
LEQUATION DES ONDES

Nous allons indiquer un moyen formel qui permet de retrouver automati-
quement I'équation des ondes.

En Mécanique classique, on appelle « fonction hamiltonienne » la fonction
qui exprime I'énergie a I'aide des coordonnées et des moments de Lagrange.
Avec les coordonnées rectangulaires, 'expression bien connue de cette fonc-
tion est

1
(35 H6 0,200 PP t) = 50 (P2 + 1y + 92) + Vx ) z0).

Si, dans le second membre de cette expression, nous remplagons p, par

__11__ ar__h_i ar_iin bt &
> i ox’ Dy p i ay, p. D i 0z’ ous obtenons un opera-

teur, I'opérateur Hamiltonien

(36) H(xay,Z, —_— T, — 7 =, !

_L iz 5_2+_02_+6_2 + V(x. zZ,0t)
T 2m\2qi) \ox? T 6y* ' az? R

En appliquant cet opérateur a la fonction y (c’est-a-dire en multipliant y

h 0 h & ha)

en avant par 'opérateur Hamiltonien) et en égalant a i% %lé, on a
1 h\? h oy
(37 m(m) W+ Vy, 20y =5— =

équation identique & I'équation générale obtenue plus haut.



Principes de la M.O. 15

Nous voyons ainsi que I'équation générale de propagation peut s’écrire
sous la forme

_ b
(38) H(x,y’Z,Px,Py’Pz’[)l/,—z_TciE'

ou P,, P, P, sont respectivement les opérateurs

h 0 h 0 h 0

T 2midx’  2midy’  2mioz

que nous faisons correspondre aux composantes de la quantité de mouvement.

1l importe de remarquer que le procédé automatique pour obtenir 'équation
d’ondes qui vient d’étre indiqué ne réussirait pas en général si 'on employvait
des coordonnées curvilignes. Ainsi, en coordonnées sphériques, on n’obtien-
drait pas ainsi la forme correcte de l'opérateur Laplacien 4 figurant dans
I'équation. Cette difficulté est liée au fait qu’alors on ne peut déduire univo-
quement de la fonction hamiltonienne classique la forme de I'opérateur
Hamiltonien parce qu'un terme de la forme gp, par exemple de la fonction
classique peut donner naissance suivant l'ordre des facteurs a des termes

P,q + gP
qPq’qu’_q————g.

3 - qui ne sont pas équivalents.



CHAPITRE II

L’INTERP}{ETATION PROBABILISTE
DE LA MECANIQUE ONDULATOIRE

1. INTERPRETATION DE L’ONDE

Nous avons obtenu les équations générales de la Mécanique ondulatoire.
Il nous faut maintenant apprendre a nous en servir et, en particulier, quel sens
attribuer 4 la fonction .

Si on se laissait guider par les analogies classiques, on serait conduit a
considérer la fonction ¥ comme représentant une grandeur physique, peut-€tre
liée a la vibration de quelque milieu. Une circonstance nous avertit tout de
suite qu’une telle interprétation est impossible. L’équation générale contenant
dans ses coefficients le facteur i =/ — 1, Ia fonction d’onde doit étre considérée
comme une grandeur essentiellement complexe, contrairement 4 ce qui se
passait dans la théorie classique des ondes et vibrations ol 'emploi de fonctions
complexes apparaissait toujours comme un simple artifice mathématique.

En Mécanique ondulatoire, la fonction d’onde apparait non comme donnant
la valeur d'une grandeur physique, mais comme constituant un « élément de
prévision » a 'aide duquel on peut évaluer la probabilité de certains résultats
de mesure (*). La fonction y est complexe, mais on peut, nous le verrons,
former a partir d’elle des grandeurs réelles qui ont une signification physique
en tant que probabilités. Que la fonction y soit essentiellement liée a des
probabilités explique pourquoi comme nous le verrons sa valeur n’est jamais
entierement déterminée : il subsiste d’abord toujours dans son expression un

(') Note G. L. : Tout ce paragraphe aurait été écrit par I'auteur, plus tard,
avec beaucoup plus de précautions. Ce qu’il dit ici n’est vrai que de la fonction
d’onde continue et normée de Schrodinger, mais il a repris, par la suite, 'idée
de la double solution d’aprés laquelle, & chaque solution continue, de significa-
tion probabiliste, doit étre associée une solution singuliére de méme phase
qu’elle, mais dont ’'amplitude comporte une région singuliére qui représente
le corpuscule. Cette onde singuliére est alors considérée comme une onde
physique et représente la coexistence entre I'onde et le corpuscule.
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facteur de phase ¢ qui disparait quand on forme les grandeurs réelles ayant
un sens de probabilités et qui, par suite, n’a pas d’importance : ensuite son
module n’est déterminé qu’a une constante prés et 'on profite de cette indé-
termination, comme nous le verrons, pour « normer » la fonction d’ondes,
ce qui permet d’exprimer a partir d’elle des probabilités « en valeur absolue ».
Tout ceci serait incompréhensible si le ¥ représentait une vibration ayant un
caractere physique car alors 'amplitude et la phase auraient des valeurs bien
déterminées. Nous reviendrons plus loin sur certains caractéres de la fonction .

2. PRINCIPE DES INTERFERENCES

Pour utiliser la connaissance de la fonction i, la Mécanique ondulatoire
a été rapidement amenée a énoncer un premier principe auquel nous donnerons
le nom de « principe des interférences » ou encore « principe de localisation ».
En voici I'énoncé :

« Le carré du module de la fonction ¥ mesure en chaque point et a chaque
instant la probabilité pour que la présence du corpuscule soit observée en ce
point & cet instant. »

La fonction  étant une quantité complexe peut s’écrire sous la forme
Y = a ", aet @ étant le module et argument. a et ¢ sont des quantités réelles
généralement fonctions de x, y, z, ¢. Désignons par y* la quantité a ¢~ " com-
plexe conjuguée de . On a

(1) a =yp* =1y 7.

Clest cette grandeur réelle qui intervient dans le principe des interférences.

Il est facile de rattacher le principe des interférences a des idées qui sont
classiques en théorie de la lumiére. Dans toutes les théories de la lumiére,
on admet que Pintensité de 'onde mesure en chaque point et & chaque instant
la quantité d’énergie qu’on peut y recueillir : c’est cette régle qui permet une
prévision exacte des interférences. Mais nous savons aujourd’hui que tout se
passe, dans les échanges énergétiques entre la matiére et la lumiére comme si la
lumiére était formée de corpuscules d’énergie Av. Ce sont les « photons ».
St nous nous représentons une onde lumineuse comme entrainant avec elle
un grand nombre de photons, 'explication des interférences exige que l'inten-
sité de I'onde mesure en chaque point la densité en photons. Mais cette inter-
prétation « statistique » est insuffisante et doit étre transformée en une inter-
prétation « probabiliste ». En effet, on a pu obtenir (expériences de Taylor,
de Dempster et Batho) des phénoménes d’interférences du type usuel, méme
en employant pendant un temps trés long une lumiére d’intensité trés faible,
si faible qu’il ne devait jamais y avoir plus d'un photon a la fois dans appareil
d’interférences. De plus, nous verrons qu’il n’est guére possible d’attribuer au
corpuscule une position bien définie dans I'espace. On est ainsi nécessairement
amené a dire que l'intensité de 'onde lumineuse mesure la probabilité pour
qu'un photon produise en un point de espace un effet observable. On retrou-

L. o1 BRoGL:, 3
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vera ainsi parfaitement, méme dans le cas des irradiations tres faibles, 'expres-
sion classique des interférences.

L’extension du principe des interférences de la lumiére aux particules maté-
rielles est justifiée par le fait quavec les particules matérielles, comme avec la
lumiére, on peut obtenir des phénoménes d’interférences et de diffraction.
Par exemple, pour les électrons que 'on peut facilement employer dans les
expériences (électrons de quelques dizaines & quelques centaines de mille
électron-volts), 'onde associée a, d’apres la formule A = h/mv, une longueur
d’onde de I'ordre de 10~ 8 2 1072 cm. On doit donc pouvoir avec des électrons
obtenir des phénomeénes de diffraction analogues a ceux que 'on obtient avec
des rayons X dont la longueur d’onde est du méme ordre. Cest ce quont
montré en 1927 les célébres expériences de Davisson et Germer, bientdt reprises
par G. P. Thomson, Rupp, Ponte, Kikuchi, etc. (). Ces expériences prouvent
quun faisceau d’électrons monocinétiques peuvent en se diffractant sur un
cristal donner naissance a des phénomeénes tout a fait analogues & ceux qu'on
observe avec les rayons X (expériences de Laue-Bragg). M. Rupp 4 pu méme
obtenir la diffraction des électrons par un réseau ordinaire sous incidence trées
rasante et en 1940 M. Borsch (), répétant une expérience fondamentale de
Fresnel sur la lumiére, a pu obtenir la diffraction des électrons par le bord
dun écran. Toutes ces expériences permettent d’obtenir une excellente confir-
mation des idées générales de la Mécanique ondulatoire et en particulier de la
formule 4 = A/mv : elles apportent aussi un appui décisif a I'idée qu’il convient
d’étendre aux particules matérielles le principe des interférences puisque ce
principe est 4 la base de toutes les interprétations dans le domaine des inter-
férences et de la diffraction.

3. ENONCE PRECIS DU PRINCIPE DES INTERFERENCES.
FLUIDE DE PROBABILITE

Pour préciser le principe des interférences, nous remarquerons que 'onde
qui est la solution d'une équation aux dérivées partielles et qui n’a pas le
caractére d’'une grandeur physique mesurable n’est déterminée qu’a un facteur
constant multiplicatif prés, ce facteur pouvant étre complexe. Nous pouvons
le choisir de maniére a avoir

@ J“ Yy*de =1

(Y C. J. Davisson et L. H. Germer, Phys. Rev., 30, 705, 1927.
G. P. Thomson, Nature, 120, 802, 1927.

E. Rupp, Naturwiss., 16, 556, 1928.

M. Ponte, C.R. Ac. Sc., 244, 909, 1929

(3 M. Boersch, Naturwiss., 28, 709, 1940.
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I'intégrale étant étendue a tout I'espace. Tout au moins le choix du facteur
arbitraire nous permet de « normer » la fonction par la relation précédente
a un instant donné 7, et nous allons montrer qu’alors la fonction ¥ reste normée
a tout instant 7. On peut alors préciser 'énoncé du principe des interférences
en disant : « La probabilité pour quune observation permette de localiser
un corpuscule dont la fonction d’onde normée est ¥(x, y, z, t) dans un éiément
de volume ¢t a linstant ¢ est égale a

Y,y DY,y z ) de = | Y(x, py, 2, 1) | deo»

Pour nous représenter visuellement les variations dans le temps de la pro-
babilité de présence | ¥ |*, nous imaginerons un fluide fictif (*) dont, par défi-
nition, la densité en chaque point a chaque instant serait donnée par

(3) p(x5y’z’ t) :lll(x’yﬂzﬂ [) l//*(x7y’z5 t)

Nous définissons le mouvement de ce fluide en posant que sa vitesse au point
xrz a linstant ¢ est donnée par la formule

(4) - —(!// raal//*—l//*gmalﬁ)=—igm3<p.
yy* 4 2 m
Or les fonctions et ¥* obéissent aux équations complexes conjuguées
8§mim 4 im oy
Ay — =W DY = =,
&) W B (x,y,z 0¥ T
2 . *
s =3y z e = - A Y
h ot
d’oui 'on tire aisément
4 wim 0 4 nim 0p
©) v Ay — g ayr = 28 Sy = 2
ce qu'on peut écrire
™ ar 4mm(w A =y Ay = - 47rimx>;;6x l/I l//
ou
) %ﬁ—’+ div(p?) = 0.

(*) NoteG. L. : On donne a ce fluide le nom de fluide de Madelung. 11 jouera,
par la suite, un grand réle dans l'interprétation causale de la mécanique ondu-
latoire.
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Cette équation bien connue en hydrodynamique sous le nom d’équation
de continuité exprime que le fluide fictif de densité p se conserve au cours du

temps, c’est-a-dire que lintégrale J JJ | |? dr reste constante. La norma-

lisation de ¥ a donc un caractére permanent.

4. LES RELATIONS D’INCERTITUDE D’HEISENBERG

L’ancienne Mécanique admettait qu’il €tait possible d’attribuer au corpuscule
une position et une vitesse bien définies 4 chaque instant : en d’autres termes,
on attribuait aux coordonnées x, y, z du corpuscule ainsi qu’a son énergie E
et 4 sa quantité de mouvements p = mu des valeurs bien déterminées a chaque
instant. Nous allons voir qu'on ne peut plus faire de méme en Mécanique
ondulatoire.

Etudions le cas simple du mouvement rectiligne uniforme en dehors de
tout champ. Nous savons qu’au mouvement rectiligne et uniforme d’énergie £
et de quantité de mouvement ps’opérant dans la direction de cosinus directeurs

a, Bet/1 — o — B* correspondait I'onde plane monochromatique
2 mi 2 2
9 Yy =aexp T[Et— 2mE (ax + fy + /1 — o> — p*2)]

de fréquence E/h et de longueur d’onde hA/mv. Cette onde monochromatique
correspond donc a un état de mouvement bien déterminé, mais elle ne donne
aucune indication sur la position du corpuscule, car elle est homogeéne, c’est-a-
dire a méme amplitude en tout point de I'espace. La probabilité de présence
Yy * est donc la méme en tous les points.

Mais, au lieu d’étre une onde plane monochromatique, la solution ¢ de
I'équation d’onde qui convient a I'état du corpuscule peut étre une superposi-
tion d’ondes planes monochromatiques représentant un train d’ondes de
dimensions limitées. Alors I'intensité Yy * ne sera différente de zéro que dans
une région limitée de I'espace et le corpuscule, d’aprés le principe des interfé-
rences, ne pourra étre décelé que dans cette région. L’incertitude sur la position
est donc moins grande que dans le cas de 'onde plane monochromatique. Par
contre, si 2 chaque composante monochromatique de fréquence v et de longueur
d’onde A nous faisons correspondre I'état de mouvement défini par

(10) E=hv p.=oh/d) p,=PBiA) p, = yh/l)

on ne pourra plus attribuer au corpuscule un état de mouvement bien déter-
miné. En passant du cas de 'onde plane monochromatique a celui du train
d’ondes limité, nous avons donc diminué I'incertitude sur la position, mais nous
avons augmenté l'incertitude sur I'état de mouvement. Nous pouvons passer
au cas limite d’'un train d’ondes de dimensions infiniments petites. Il est alors
nécessaire de faire intervenir pour la représentation analytique de ce train
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d’ondes une superposition d'ondes monochromatiques ayant toutes les
fréquences, toutes les longueurs d’onde et toutes les directions possibles. Ce
cas limite symétrique de celui de 'onde plane monochromatique correspond
a une localisation bien déterminée du corpuscule, mais a une ignorance com-
pléte de son état de mouvement.

En résumé, mieux la position du corpuscule est définie, plus grande est
lincertitude sur son état de mouvement et inversement. Nous arrivons ainsi
a un premier énoncé qualitatif des relations d’incertitude d’Heisenberg que
nous allons maintenant préciser.

Pour cela, étudions la représentation d'une onde ¥ par une superposition
d’ondes planes monochromatiques. Posons

£ Px _ % s b _B s PV 5

L’onde monochromatique plane correspondante peut s'écrire
(12) aexp(2milvt — pox — p,y — i z1).

On pourra représenter 'onde ¥ par une intégrale de Fourier

(13) Yoy, 2,0 = J ff alpy, s 1) X

x exp[2 mi(vt — e X — ¥ — p; 2)] du,, du,, du,
formule dans laquelle on doit poser

(14 v=Eo .
Les coefficients a(p,, u,, 1,) sont en général complexes, c’est-a-dire contiennent
un facteur de la forme e®, car les diverses composantes monochromatiques
dans le développement de  n’ont pas la méme phase.

Envisageons maintenant le train d’ondes { a un instant quelconque que
nous prendrons comme instant initial ¢ = 0. La fonction

(15 Yl(x, 3,2 0) = J fj a(fy My 1) X

— 0

x exp[ — 2 mip, x + py ¥ + p, 2)] dp,, duy, du,

ne doit différer de zéro que dans un domaine limité R. Nous désignerons par
les symboles Ax, Ay, Az les variations maxima des coordonnées dans R,
c.-a.-d. les longueurs des arétes paralleles aux axes d’un rectangle circonscrit
a R. Nous pouvons choisir I'origine des coordonnées en I'un des sommets
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du parallélépipéde de sorte que x, y, zdans R varient dans les intervalles (0, 4x),
(0, 4y), (0, 42).
La théorie des intégrales de Fourier nous fournit la relation

(16)  a(pe py p) = JJJ ¥(x, y,2,0) x
R
x exp[2 milpu, x + p, ¥y + p, z)] dx dy dz.

Comme tous les a ne peuvent étre infiniment petits, il y a au moins un ensemble
de valeurs des g, disons pu u? u2, tel que a(ug, 4y, 1) ait une valeur notable.
Faisons varier f,, i, ft, de oy, op,, Syt & partir de p2, uy, 2, les variations

n’étant pas nécessairement infiniment petites. On a

a(p + Spt 18 + Spyy S + S — aud, 1y, p1d) =

Ax Ay Az
= J dx f dy J dz Y(x, y, z, 0) [exp[2 mi(du, x+dp, y+dp, z)]—1] x

0 0 0
x exp[2 mi(ud x+ud y+pf 2)] dx dy dz .

L’exponentielle entre crochets ne peut différer sensiblement de 1 que si 'un
au moins des produits du, Ax, dp, Ay, du, Az est supérieure a une fraction 7
qui n'est pas trés petite devant 'unité. Donc, si 'on a a la fois du, Ax < 75;
Spy Ay < m; Su, Az <, a(ul + Sk py + Oy, p +6p,) différera peu de
a(ul, ud, 1) et aura donc d’aprés I'hypothése une valeur notable. On peut
donc dire que I'étendue du domaine de variation des trois parametres p,, i, U,
dans la représentation de Fourier du train d’ondes y est mesurée par trois
quantités Apu,, Ap,, Ay, satisfaisant aux inégalites

Apgdx =2 n Ap, Ay =21 Ap, Az 2 4
ou d’apres la définition de p,, u, et y,
a7 Ap, Ax = h dp, Ay = h Ap, Az = h

les inégalités étant valables en ordre de grandeur. Nous avons ainsi obtenu les
inégalités d’incertitude d’Heisenberg : elles nous apprennent que le produit
de I'incertitude sur une coordonnée par l'incertitude sur la composante conju-
guée de la quantité de mouvement est toujours de I'ordre de A.

5. LE PRINCIPE DE DECOMPOSITION SPECTRALE (BORN)

Dans les raisonnements que nous venons d’exposer, nous avons implicitement
admis un principe qu’il importe maintenant d’énoncer nettement. Le principe
qui Sest imposé lors du développement de la Mécanique ondulatoire et qui a
été énoncé en premier par M. Born peut s’énoncer en disant : « si 'onde ¢
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est formée par la superposition d’un certain nombre d’ondes planes monochro-
matiques, chacune de ces composantes correspond a un état de mouvement
possible du corpuscule, c’est-a-dire qu'une observation ou mesure peut per-
mettre d’attribuer cet état de mouvement au corpuscule ». D'une fagon plus
précise, on peut dire avec M. Born : « si'onde y est formée par la superposition
d’ondes planes monochromatiques formant un spectre discontinu, c’est-a-dire
silona:

(18) ¥ = Y ala, B, E) exp{zznz[Et—./2mE(ocx+ﬁy+~/l—oc2—ﬁ2 z)]}

a,B.E

la probabilité pour qu'une mesure conduise a attribuer au corpuscule un
mouvement d’énergie £ dans la direction définie par les cosinus directeurs a,
B, /1 — o> — p? est a(a, B, E).a*(aBE) = | a(o, B, E) |* ». Si T'onde ¢ est
formée par la superposition d’ondes planes formant un spectre continu (ce qui
est le cas des trains d’onde usuels), c.-a.-d. si 'on a

(19 ¢ = jfja(a, B, E) x

Y exp { 2 i /2 max+ fy+T— 2= 7 2)] } do. df dE

la probabilité pour qu'une mesure conduise a attribuer au corpuscule un
mouvement d’énergie comprise entre E et E+ AE s’effectuant dans une direction
correspondant aux intervalles (a, o + Ado)et(f, f + Af)est égalea

ffj | a(a, B, E) |* dou df dE .
Aa, A8, AE

On peut donc dire que la probabilité de chaque ¢tat de mouvement est
mesurée par lintensité de la composante spectrale correspondante. Les états
de mouvement qui ne figurent pas dans le développement de Fourier de la
fonction d’onde ont donc une probabilité nulle : c’est 13, nous le verrons, la
base de la théorie des états quantifiés en Mécanique ondulatoire.

Nous n’avons énoncé le principe de décomposition spectrale que dans le cas
simple de I'absence de champ. Nous apprendrons bientét a connaitre un
principe général applicable a tous les cas, le principe de décomposition
spectrale généralisé, dont le principe de Born et méme celui des interférences ne
sont que des cas particuliers.

6. IDEES NOUVELLES RESULTANT DES CONCEPTIONS PRE-
CEDENTES

Les considérations précédentes nous permettent déja de préciser le sens de
I'onde ¥ et &’y rattacher des idées toutes nouvelles.
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L’onde y n'est pas une grandeur physique au sens classique : clle est un
instrument de prévision (!). Sa forme résulte des observations antérieures qui
nous ont apporté des renseignements sur I'état du corpuscule et de son évolution
a partir des derniéres observations qui se fait conformément a I'équation
d’ondes. Bien que cette ¢volution de onde y soit entiérement déterminée, il
n’en résulte pas, nous le verrons, une prévisibilité rigoureuse des observations
futures, car la connaissance de 'onde  ne nous permet pas de dire quelle valeur
d’une grandeur donnée sera observée dans une nouvelle observation, mais
quelles seront les valeurs possibles de la grandeur et leurs probabilités res-
pectives.

Chaque fois que de nouvelles observations nous apportent de nouvelles
connaissances sur I’état du corpuscule, la forme de 'onde ¥ s’en trouve modifiée:
cecl se congoit aisément si 'on comprend bien que 'onde  n’est qu’une repré-
sentation de nos connaissances actuelles sur I'état du corpuscule et non la
représentation d’une réalité objective.

Nous verrons que des observations faites simultanément au cours d’une
méme expérience ne peuvent jamais nous permettre d’avoir sur les grandeurs
lices & un corpuscule des connaissances plus précises que ne le permettent
les inégalités d’incertitude d’Heisenberg. Une partie (on pourrait dire la moitié)
au moins des grandeurs caractérisant le corpuscule sont 4 tout instant affectées
d’incertitude. Si nous mesurons avec précision la valeur de certaines grandeurs,
la valeur des grandeurs canoniquement conjuguées nous reste totalement
inconnue. 1y a donc des expériences de mesure « maximales » qui nous donnent
la plus grande connaissance que nous puissions avoir sur I'état du corpuscule
sans cependant nous le faire connaitre entierement. S’il existait des expériences
nous permettant de connaitre exactement toutes les grandeurs attachées a un
corpuscule, les relations d’incertitude d’Heisenberg ne seraient évidemment
plus satisfaites et il résulte des raisonnements faits précédemment qu’aprés
une expérience de ce genre nous ne pourrions plus représenter 'état de nos
connaissances par une onde y : mais nous verrons quaucune expérience de
ce genre ne peut étre réalisée et cela en raison méme de I'existence du quantum
d’action. Toutes ces considérations seront rendues plus claires et plus précises
par ce qui suit.

7. RETOUR DE LA MECANIQUE ONDULATOIRE A LA MECANIQUE
CLASSIQUE. THEOREME D'EHRENFEST, VITESSE DE GROUPE

Nous voulons maintenant exposer comment on peut, du point de vue de la
Mécanique ondulatoire, justifier le succes de la Mécanique classique dans le

() Note G. L. : Cest précisément pour cette raison que de Broglie avait
introduit en 1927 l'idée, qu’il reprendra 'année qui suivit ce manuscrit, selon
laquelle il doit exister deux solutions de I'équation de Schrédinger reliées entre
elles mais non identiques : 'une physique et I'autre statistique.
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domaine macroscopique. Une premicére méthode fait intervenir le théoréme
d’Ehrenfest que nous allons exposer.

Considérons & nouveau le fluide de probabilité de densité p = | |*. Pour
un train d’ondes, il occupe une région finie R de Pespace et 'on peut définir
son « centre de gravité » par les formules intuitives

o [ [[Lovrns 5w
[

Plus généralement nous appellerons valeur moyenne d’une fonction f(x, y, z)
dans le fluide de probabilité la quantité

e 7= [|] reenatura,

Ces définitions pbsées, voici le théoréme naguére démontré par M. Ehrenfest.
« Le centre de gravité du fluide de probabilit¢ de coordonnées X, 7y, z se
déplace au cours du temps comme le ferait d’aprés les lois de la Mécanique

classique un point matériel de masse m qui serait soumis a la force f.»
En effet, on trouve en employant 'équation d’ondes et des intégrations par
parties (1a fonction ¢ étant supposée assez réguliére et nulle aux limites de R).

s _ [ owvr, h AR
@ E‘Lx o = T Tum Z@x[ o Y ]

X,y,Z

_ h or* « OV
T 4 wim L |:l// i ]

d’x _L Wour _opour v, B
a2 4mim 0t 0x Ox Ot ox Ot ox Ot

_ _h_ oyt vy,
T 2 mim dr ox 0x ot
ce qui, en vertu de 'équation de propagation, donne encore

d*x h* oy* 8nim N 87tm
[ (S e v

uis
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Or deux intégrations par parties donnent encore

o> A G Vs « 0
(o oo [ o

a * —
=ngAmw—0

et il reste
d27c_ 0 " B V.
mW_LVﬁ(W/)dT— —LEWJ dt
a*x v -
2 — = - — =
(23) mdt2 Ox *

et deux équations analogues en y et z. Le théoréeme d’Ehrenfest en résulte.
Considérons maintenant une expérience macroscopique permettant d’obser-
ver le mouvement d’une particule, mettons d'un électron. La longueur d’onde
de 'onde y est toujours extrémement petite & notre échelle et 'on peut considé-
rer un train d’ondes dont les dimensions sont trés petites a notre échelle (train
d’ondes quasi ponctuel) et dont les dimensions seront cependant grandes par
rapport a la longueur d’onde. Le champ macroscopique auquel le corpuscule
sera soumis variera toujours trés peu a I'intérieur du train d’ondes de sorte que

7sera sensiblement égale a la valeur de la force au centre du train d’ondes.

Comme alors nous pouvons macroscopiquement confondre le train d’ondes
avec son centre de gravité et que le corpuscule ne peut manifester sa présence
qu’a Tintérieur du train d’ondes, nous pourrons décrire les choses, d’apres le
théoréme d’Ehrenfest, en disant que le corpuscule est animé du mouvement
prévu par la théorie classique. Assurément une expérience microscopique nous
montrerait que le corpuscule peut avoir une position quelconque dans le train
d’ondes, mais macroscopiquement toutes ces positions possibles sont confon-
dues puisque le train d’ondes est ponctuel a notre échelle.

La question peut &tre reprise a un autre point de vue en employant le théo-
réme de la vitesse de groupe.

Rappelons d’abord qu'un groupe d’ondes est un train d’ondes qui peut
étre représenté par une superposition d’ondes planes monochromatiques ayant
des fréquences, des longueurs d’onde et des directions de propagation trés voi-
sines. On peut donc lui attribuer une fréquence, une longueur d’onde et une
direction de propagation approximatives quoiqu’il ne soit pas rigoureusement
équivalent a une onde monochromatique. Le groupe d’ondes a des dimensions
limitées parce que les différentes ondes composantes en concordance de phase
au centre du train d’ondes se détruisent par interférences en dehors de ces
limites. Il est facile de prouver que les dimensions d’un groupe d’ondes sont tou-
jours grandes par rapport a sa longueur d’onde moyenne A, Si en effet les
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diverses composantes sont en concordance de phase au centre du groupe
d’ondes représenté par une superposition d’ondes de longueurs d’onde com-
prises dans l'intervalle (4, — A4, 1, + 44) avec 41 <€ 4,, pour que les compo-
santes puissent se détruire par interférences en dehors de 'espace occupé par le
groupe, il faut que le déphasage des ondes de longueurs d’onde Ay et 45 + 44
soit au moins 7/2 quand on va du centre du groupe aux limites de ce groupe.
Si d est la distance du centre a la limite, on doit avoir

d y)
donc /1_0 ~ 12[—0/1 > 1 c.q.fd.

d dAal =
o + 44 A3 2

d
Ao

Retrouvons maintenant la formule de lord Rayleigh donnant la vitesse de
groupe. Dans un milieu & indice variable une onde monochromatique de
fréquence v, pourrait a I'approximation de 'optique géométrique étre repré-
sentée par aexp{ 2 ilve t — @1(x, ¥, z, Vo)l }, @, étant une intégrale com-
pléte de I'équation de 'optique géométrique. Un groupe d’ondes sera repre-
senté par

vo+ Ay

24 ¢ = J a(v) exp{ 2 milvt — @,(x, y, z, V)] } dv, 4v € vy

vo— Adv

Posons v = v, + #, pvariantde — A4va + 4dv. Nous pourrons écrire approxi-
mativement

Av

(25 ¥ = exp{2milvo t — ¢1(x, y, 2, Vo] }J a(1) X

—dv
x exp{2m{nz — (%)0 r/J}dn

ol (0 ,/0v), est la dérivée partielle de ¢, par rapport & v pour v = v, Dans
cette derniére formule, I'intégrale est une fonction du paramétre 1 —(d¢,/0V),
et l'on peut donc écrire

0, ,
2 = F[z - (a—” exp{ 2 milvo £ = 1% 3, 2 vl }

Le train d’ondes se comporte donc approximativement comme une onde
monochromatique dont l'amplitude serait fonction de ¢+ — (0¢,/0v),. On peut
voir que cette approximation cesse d’étre valable pour des temps trés longs.

Si nous nous déplagons le long d’un rayon c.-a.-d. d'une courbe orthogonale
aux surfaces ¢, = Cte de fagon que dt — (8¢, /0v Os) ds soit nul, nous accom-
pagnerons une méme valeur de amplitude. Nous pouvons donc dire que
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pendant un temps qui n’est pas trop long, le groupe d’ondes se déplace en bloc
le long des rayons avec la vitesse

ds o\ !
27 U:Ef_<6vas> '

Mais nous avons vu que J¢,/ds = | grad ¢, | est égal en chaque point a
I'inverse de la longueur d’onde locale A(x, y, z, v}; nous avons donc

L a1\ _ae) _ 1 am)
28) U (71)“ o T, o

U~ ov

Telle est la formule qui donne en chaque point la vitesse de groupe (formule
de lord Rayleigh). Si le milieu est homogéne, U est indépendante de x, y, z
Si de plus, il est sans dispersion (dn/0v = 0), ona U = 7" la vitesse de groupe
se confond avec la vitesse de phase.

Appliquons la formule de lord Rayleigh a la propagation des ondes i en
Mécanique ondulatoire. Pour le mouvement d’un corpuscule se mouvant dans
un champ dérivant du potentiel V(x, ¥, £), nous avons trouvé (p. 12 formule (30))

h

] =
\/2 m(E — V(x, y, 2))

avec E = hv

d’ou
o(1/4) _ (1/h)y o /2m(E — V) m

v (1) OE AmE - V)

car\/ 2m(E — V) = mv. La formule de Rayleigh donne donc
U=v.

< | =

D’ou l'important théoréme de la vitesse de groupe en Mécanique ondu-
latoire. _

« La vitesse d’'un groupe d’ondes ¥ associé a un corpuscule est égale a la
vitesse corpusculaire qui correspond & la fréquence centrale du groupe d’ondes.»

Revenons au raccord entre la Mécanique classique et la Mécanique ondu-
latoire dans le domaine macroscopique. Dans ce domaine, les champs et par
suite I'indice de réfraction des ondes i varient peu a I'échelle de la longueur
d’onde. De plus, les longueurs d’onde étant trés petites, nous pouvons considérer
des groupes d’ondes qui sont presque ponctuels & notre échelle. Considérons
alors la propagation d’'une onde monochromatique correspondant a la fré-
quence centrale v, du groupe. Nous aurons un ensemble de surfaces équi-
phases @,(x, y, z, v;) = Cte et les rayons ou courbes orthogonales a ces
surfaces.

Le groupe d’ondes sera a I'échelle macroscopique analogue a un petit globule
qui glisserait le long d'un tube de rayons. A Téchelle microscopique de la
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longueur d’onde, il serait dans sa partie centrale assimilable & une onde mono-
chromatique et c’est seulement sur les bords que linterférence de ses diverses
composantes ferait rapidement tomber a4 zéro son intensité. Le train d’ondes
se transporte le long des rayons avec la vitesse U qui serait celle d’'un corpuscule
classique dans le champ. Comme a I'échelle macroscopique, nous ne savons
pas distinguer les divers points du groupe d’ondes qui nous apparait comme
ponctuel et que le corpuscule ne peut se manifester qu’a I'intérieur du groupe,
nous avons I'impression d’étre en présence d'un corpuscule ponctuel animé
du mouvement classique. L’on voit que nous retrouvons ainsi exactement les
conclusions que nous avions tirées du théoréme d’Ehrenfest. Le théoreme
d’Ehrenfest et celui de la vitesse de groupe sont intimement reliés et nous
permettent, un et autre, de faire le raccord entre la Mécanique ondulatoire
et la Mécanique classique dans le cas des phénoménes macroscopiques ol la
propagation de 'onde y peut étre décrite par I'approximation de Ioptique
géométrique.



CHAPITRE III

LA MECANIQUE ONDULATOIRE
DES SYSTEMES DE CORPUSCULES

1. ANCIENNE DYNAMIQUE DES SYSTEMES DE POINTS MATE-
RIELS

Jusqu'ici, nous avons considéré un corpuscule placé dans un champ de
force connu. Comment généraliser la méthode exposée plus haut dans le cas
d’un systéme de corpuscules agissant les uns sur les autres ? Pour le voir,
il faut d’abord rappeler quelques points de la Dynamique classique des systémes
de points matériels.

Considérons un systéme formé de N corpuscules. La masse du i® est m,
ses coordonnées sont x;, y;, z;. L'énergie cinétique du systéme est

IN di2 di2 diz
o r-iel(E) (@ (@]

Les moments conjugués des trois coordonnées sont

dx,- dyl . dZi

(2) pxi = ml%ﬂ pyi = mi}‘j?a pzl- = mi?]? .

L’énergie potentielle du systeme V{(x, ..., zy, £) est formée de deux sortes
de termes : 1) ceux qui expriment linteraction mutuelle des corpuscules
et sont supposés ne dépendre que de leurs distances : ils sont de la forme
V; j(\/ (x;—x)*+(yi—y)* +(z;—2;)*); 2) ceux qui expriment P'action éventuelle
dun champ extérieur sur chacun des corpuscules : ils sont de la forme
Vi{xi o 2 D

L’expression hamiltonienne qui donne I'énergie en fonction des coordonnées
et des moments est

N

1
(3) H(xy...zy 1) = Zi T (P;Zci + 173‘. + Pzz,-) + Vixy...zy ).
1 ;

Si le champ extérieur ne dépend pas du temps (ou est nul), ¥ ne dépend pas de ¢



Les systémes de corpuscules 31

et 'on sait que H reste égal a une valeur constante £ au cours du mouvement
(systéme conservatif).

La théorie de Jacobi se laisse étendre aux systémes. L’équation de Jacobi
pour le systéme est

u 1 oS 2 oS 2 R 2 2
@ gﬁ[(ﬁ) + (@) + (5; VO ) =
Si I'on parvient & trouver une intégrale compléte de cette équation contenant

3 N constantes arbitraires non additives o, ... aszy, on obtiendra un mouve-
ment possible en écrivant

(5) 6S(x1> erey ZNaaat, Ags enes OC3N) —a i = 1’ 2’ » AN

ou les g; sont 3 N nouvelles constantes arbitraires et les moments de Lagrange
sont donnés par les formules

3 | oS _ s
(6) pxi - _5‘:’ Py,- = _a_yi’ pzi = EZ—I 1= 1,2,..,N.

Dans le cas particulier ou les actions extérieures sont indépendantes du temps
(ou nulles), V est indépendant de ¢ et 'on peut trouver des solutions de la forme
S = Et — Si(x1,...s Zy)-

L’on est alors ramené a envisager I'équation de Jacobi « raccourcie »

N 1 0S1 2 551 2 051 2
@) ;i2—mi|:<ax> + <a—yl + 6—2, + V(xq, .o zy) = E
et a en chercher une intégrale compléte contenant 3 N constantes arbitraires
non additives E, a4, ..., #;3y_,. Les équations du mouvement sont alors

0S,/00; = a; i=1,2.,N-1),
équation de la trajectoire du point représentatif dans I'espace de configuration
Xy - ZN
0S,/0E =t — t, (équation de I'horaire)
et 'on a

oS, a8y 08,
px.- - a_xi’ py,- - a_yi’ pzi - azi .

Comme dans le cas d’un point matériel unique, I'équation de Jacobi permet de
deéfinir des « classes » de mouvement du point représentatif du systéme dans
lespace de configuration, chaque classe correspondant a une fonction
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Si(xy. o2y Ey gy ooy a3n—1) avec des valeurs données des constantes
E, o) ... a3y_ 1, les divers mouvements d'une méme classe étant caractérisés
par la valeur des constantes @ ... dyy_1 €t f

2. MECANIQUE ONDULATOIRE DES SYSTEMES DE CORPUS-
CULES

Pour obtenir une Mécanique ondulatoire des systemes de corpuscules,
on doit comme I'a montré M. Schrédinger, considérer la propagation d’une
onde dans 'espace de configuration de ce systéme (*) et, pour pouvoir retrouver
la Mécanique classique en premi¢re approximation, il faut que Yoptique
géométrique de cette propagation nous rameéne a la théorie de Jacobi.

On admet que I'équation de propagation dans ['espace de configuration
s’obtient par le procédé formel qui réussit dans le cas du corpuscule unique.
On part de Texpression Hamiltonienne classique H(x;...zyp,, ... Py 1)
qui convient pour le systéme envisagé et on transforme cette fonction en un
opérateur en remplagant les moments p,, p,, p,, par

hoo , hoo hoo

= P, == = .

(8) ka = _2—77iﬁ_xk’ e — 2_7—7:_26_)2_,{’ Zi

On obtient ainsi l'opérateur Hamiltonien

LN o miox, T 2w Ozy°
et 'on adopte comme équation de propagation
h o0 ~  h 0 _h oY
) H(leZM“z—mm ’ 2m‘ﬁ”>‘/"ﬁ77'
On trouve ainsi

No1 oty oy oM 8 n* 47i oY
1 — =%+ =+ =] - — Vixy, 02y, DY = ——
10 2um, <ax,% i b)Y T

si N = 1, onretrouve I'équation valable pour un seul corpuscule.

() Note G. L. : Cest ce que de Broglie a refusé¢ d’admettre en 1926 (voir
réf. I, 29), considérant que les ondes associées aux différentes particules du
systéme « ont une réalité physique et doivent s’exprimer par des fonctions des
3 coordonnées d’espace et du temps ». En 1927 (réf. 1, 34) il a fait une premiére
tentative de reconstruire la théorie des systémes dans l'espace physique,
tentative qu’il devait reprendre vingt-cing ans plus tard avec Andrade ¢ Silva.
Mais a I'époque ou il écrivit ce texte, il s’était résigné a adopter, sans plus le
critiquer, le point de vue devenu habituel.
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Pour les systémes conservatifs (¢V /0t = 0), on peut considérer des solutions
monochromatiques ne dépendant du temps que par le facteur exp(2 ni/h Et)
et I'équation sécrira

N o] 8 2
(11 Zk;k AN + F[E — Vixg, o,z = 0.

St dans une région de I'espace de configuration V (et par suite I'indice) varie
peu a I'échelle de la longueur d’onde locale, I'optique géométrique est valable
et 'onde a la forme approximative

2 mi

(12) Y =a exp(T (Et — Sl])

a étant une fonction lentement variable dont les dérivées sont trés petites par
rapport a celles de S;. En substituant cette forme dans 'équation de propa-
gation, on voit que S; doit étre une solution de I'équation de Jacobi pour le
systéme, ce qui établit la jonction avec la Mécanique classique.

Un cas intéressant est celui ot les corpuscules du systéme n’agissent pas les
uns sur les autres. On peut alors les considérer aussi bien comme isolés que
comme formant un systéme. La fonction V se réduisant aux termes en
Vi{xy, v zi 1) qui expriment laction d’un champ extérieur sur les divers
corpuscules, 'équation du systéme se réduit a

N1 8 n? 4 7i O
(13) lek;k Ay — _hTZk: VilXi Yo 2 D ¥ = T

Posons W(x; ... zy £} = W¥(xy, V1, 215 £) oo Wn(Xns Vs Zx» £) DOUS  trouvons
que I'équation du systéme se décompose en N équation du type

L (% O 02¢k> § 12 4 i o,
-, + - V(X Vio Zio D) W = — —=
19 mk<8xf o7 Vo) e Ve n 0= -

et 'on voit que I'on peut considérer chaque corpuscule isolément. Néanmoins

I'équation de propagation admet aussi comme solutions une combinaison

linéaire quelconque des fonctions [ | ¥, (xy, yi» zi £). Ces combinaisons repré-
k

sentent les cas ou les corpuscules ont été antérieurement en interaction de sorte
que leurs €tats actuels ne sont pas indépendants. Les solutions [ [ y, repré-
k

sentent les cas ou I'état des corpuscules sont tous indépendants.

3. INTERPRETATION DE LA MECANIQUE ONDULATOIRE
DES SYSTEMES DE CORPUSCULES

I est aisé de transposer le principe des interférences au cas des systémes
de corpuscules. On I'énonce alors comme suit : «si 'état d’'un systéme de
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corpuscules est représenté dans l'espace de configuration par la fonction
d’ondes y(x; ... zy £), la probabilité pour qu'une expérience permette au
temps ¢ de localiser le point figuratif du systéme dans I'élément de volume
dv = dx, ... d,, de I'espace de configuration est

[ |2 dt = Y(xy, ..., Zys WX (X1 ooy Zy, ) dT O .

S’il n’y a qu'un seul corpuscule, on retombe évidemment sur la forme pré-
cédemment étudiée du principe des interférences. Pour N corpuscules qui ne
réagissent pas entre cux et n’ont jamais réagi entre eux (états indépendants),

N

onay = Hk Yil(Xp Vo Zio 1) €t par suite
1

(15 |y |Pdt = | W1(x1, Y1, 215 1) '2 dx, dy; dz; x = X
X | YnCens Yao 2o O |2 dxy dyy dzy .

La probabilité pour que le point figuratif du systéme soit dans I'élément
de volume dx, ... dzy de I'espace de configuration est donc alors le produit
de la probabilité pour que le 1¢r corpuscule soit dans I'élément de volume
dx; dy, dz, ... le N-iéme dans I'élément de volume dxy dyy dzy. Ce résultat
est d’accord avec le théoréme des probabilités composées car les présences des
divers corpuscules dans les divers éléments de volume de I'espace sont des

événements indépendants. Nous voyons bien ainsi pourquot la fonction
N

d’onde ¥ doit alors avoir la forme l_[k /7%
1

Pour que la grandeur | ¢ |* dt donne en valeur absolue la probabilité de
présence du point figuratif dans I'élément 4t de I'espace de configuration,
il faut normer la fonction d’onde en posant

J J| VP dxy...dzy = 1
3N

ce qui détermine ¥ & une constante de phase de la forme e preés.

Il faut démontrer que la normalisation effectuée a un instant # subsiste ensuite.
Pour cela, on considérera un fluide fictif de probabilité dans I'espace de confi-
guration défini par les relations

p=1y
h
(16 P = g W BTAd Y — 9 grad, )
dxk dyk de mm———
D’k ayant comme composantes T dd et grad, ayant comme composantes
3 a4 0
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En multipliant 'équation de propagation par ¥*, I'équation conjuguée
par ¥ et en soustrayant, on obtient alors

WA 47iod

lek;k W* Ay — ¥ 4] = === (W™

ou
Z Wa'(w*ﬁa’n// v grad, yr) = LT %

ou encore d’aprés les définitions du fluide fictif de probabilité

Al 0 0 op
0 o) + g on) + v |+ F =0,

Cette équation est la généralisation & 3 N dimensions de I'équation de conti-
nuité¢ hydrodynamique div (p?) + dp/dt = 0 ; elle exprime que le fluide fictif
de probabilité se conserve pendant son mouvement dans l'espace de confi-
guration. La normalisation de ¥ a donc un caractére permanent.

Le principe de décomposition spectrale s’énonce comme pour un corpuscule
unique. Si le systéme est conservatif, 'onde ¥ peut toujours étre représentée
par une superposition d’ondes monochromatiques et l'intensité de chaque
composante spectrale donne la probabilité pour quune expérience permette
d’assigner au systéme Pénergie correspondante.

En étudiant la représentation d’un train d’ondes dans I'espace de configu-
ration par une intégrale de Fourier, on retrouve les relations d’incertitude de
la forme

Ax,.dp,, = h

en ordre de grandeur. Ces relations ont la méme signification que pour le
corpuscule unique.

Dans la théorie précédente, nous avons supposé les corpuscules libres de se
mouvoir dans tout Pespace (systémes sans liaisons) et nous avons employé
les coordonnées cartésiennes rectangulaires des corpuscules pour repérer
la configuration du systéme. Si 'on veut employer des coordonnées curvilignes,
ce qui est normal dans le cas ou il existe des liaisons si bien que le nombre des
degrés de liberté est inférieur & 3 N, il faut développer un peu differemment la
théorie qui précéde. Nous n’insistons pas sur ce point (*). De méme, si le systéme
contient des corpuscules de méme nature, 'indiscernabilité de ces corpuscules
améne 4 n’accepter que certaines des solutions de I'équation de propagation.
Nous laissons également de c6té ce genre de questions.

(M) Voir Réf. (11, 22).



CHAPITRE IV

FORMALISME GENERAL
DE LA MECANIQUE ONDULATOIRE

Nous allons maintenant nous placer a un point de vue différent et développer
sous un aspect plus formel les principes généraux de la Mécanique ondulatoire.
Pour faire cet exposé avec une rigueur mathématique trés grande, il faudrait
introduire souvent des comnsidérations mathématiques assez complexes et
d’ailleurs certains points resteraient encore douteux.

La théorie deviendrait ainsi plus satisfaisante pour les esprits rigoureux,
mais elle ne différerait guére dans ses résultats pratiques de la théorie plus
sommaire que je vais exposer et, puisque celle-ci suffit actuellement aux besoins
de la Physique théorique, je m’y tiendrai dans cet exposé.

1. NOUVELLE CONCEPTION DES GRANDEURS ATTACHEES
A UN CORPUSCULE (OU A UN SYSTEME)

Nous allons développer le formalisme général de la Mécanique ondulatoire
en nous en tenant au cas du corpuscule dans un champ de force connu. La
généralisation au cas des systeémes de corpuscules se fait aisément en suivant
les mémes lignes que précédemment.

Dans le procédé automatique qui fournit I'opérateur Hamiltonien a partir
de I'expression Hamiltonienne de Iénergie dans le probléme classique corres-
pondant, on remplace les variables x, y, z par les opérateurs x x, y x, z X
et les variables p,, p,, p, par les opérateurs

h 0

T 2mi ox’

hoo
27w oy’

__h 9
2w 0z°

Nous voyons ainsi apparaitre I'idée de substituer ou de faire correspondre
des « opérateurs » aux « grandeurs » de la Mécanique classique. Cette idée
ondulatoire. On a admis qu’a toute grandeur mesurable (observable) définie
par la Mécanique ou la Physique anciennes doit correspondre dans la nouvelle
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Mécanique un opérateur. Pour parvenir & former a partir de I'expression
classique d’une grandeur observable 'opérateur qui lui correspond, on a été
amené a admettre une régle qui est la simple généralisation de celle déja admise
pour la formation de 'opérateur Hamiltonien et traduite par les symboles

L
1=axp 2mi dq°

Tandis que les variables d’espace sont ainsi transformées en opérateurs, la
variable ¢ garde son caractére de variable numérique : cette hypothése qui
rompt la symétrie entre les variables d’espace et de temps est l'origine des
difficultés que I'on éprouve a concilier la théorie quantique et la théorie de la
Relativité.

Comme la Mécanique classique nous fournit pour chaque probléme I'expres-
sion de toute grandeur mécanique attachée a un corpuscule en fonction des
variables canoniques X, y, z, p,, p,, p, ¢t du temps 7, nous n’avons dans cette
expression qua remplacer chacune des variables canoniques par 'opérateur
correspondant pour obtenir 'opérateur cherché. Cet opérateur peut d’ailleurs
contenir le temps comme parametre si 'expression classique le contenait.
Si les coordonnées employées sont des coordonnées cartésiennes rectangulaires,
Popérateur obtenu est bien déterminé quel que soit I'ordre des facteurs dans
I'expression classique. Quand on emploie d’autres coordonnées, il peut ne
pas en étre de méme, il faut alors pour trouver le bon opérateur, appliquer
certaines régles de « symétrisation » de I'expression classique de la grandeur.

Pour donner un exemple, appliquons la méthode a la formation de 'opé-
rateur qui correspond & la composante z du moment de quantité de mouvement
(moment cinétique) du corpuscule par rapport a I'origine. On trouve aisément

h 0 0 h 0
(1) (Mz)op = (xpy - ypx)ap = - 2_7U<xa_V - ya) = - m %

¢ ¢tant Pazimut compté autour de Oz

Les opérateurs qui correspondent ainsi en Mécanique ondulatoire 4 des
grandeurs mesurables sont des opérateurs, en général complexes, appartenant
a la catégorie des opérateurs liné¢aires donc tels que

2 Alpy + @) = Al@y) + A(@s) ;. Alcp) = cA(9).
(c constante complexe)

De plus ces opérateurs sont hermitiens (ou hermitiques), Cest-a-dire que on a
3) J f*A(g)dv = J gA*(f*) do
D D

fet g étant deux fonctions finies, uniformes et continues dans le domaine D
de variation des variables que 'on peut choisir arbitrairement. Ces fonctions
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doivent s’annuler aux limites du domaine D de telle fagon que les intégrales
de surface qui apparaissent par intégration par parties dans la vérification de
I’équation précédente soient nulles. On peut vérifier dans chaque cas particulier
que les opérateurs correspondant a des grandeurs observables sont toujours
hermitiens. La raison physique de ce fait nous apparaitra plus loin.

Parmi les opérateurs de la Mécanique ondulatoire, il nous sera utile de
distinguer les « opérateurs complets » qui intéressent toutes les variables du
domaine D et les « opérateurs incomplets » qui n’intéressent qu'une partie
de ces variables (}). Pour un corpuscule libre de se mouvoir dans les trois
dimensions de l'espace, I'opérateur (p,),, est visiblement incomplet, tandis
que 'opérateur H,, est complet.

En résumé, a toute grandeur mesurable attachée a un corpuscule, la Mécani-
que ondulatoire fait correspondre un opérateur linéaire et hermitien, en général
complexe, dont elle sait former I'expression a partir des expressions classiques.
Mais il est évident que si I'on effectue la mesure précise d’'une grandeur, on
obtiendra un nombre réel. La Mécanique ondulatoire doit donc pouvoir
prévoir & partir de Popérateur les valeurs possibles essentiellement réelles
que peut fournir la mesure de la grandeur.

De l'opérateur linéaire et hermitique que la nouvelle Mécanique fait cor-
respondre & une grandeur mesurable, nous devons pouvoir déduire une liste
de nombres réels représentant tous les résultats possibles de la mesure de cette
grandeur. Ceci est précisément rendu possible par le fait que les opérateurs
linéaires et hermitiens possedent une suite de « valeurs propres » réelles.
Etudions ce point d'une fagon générale.

2. VALEURS PROPRES ET FONCTIONS PROPRES
D'UN OPERATEUR LINEAIRE HERMITIEN

Soit A un opérateur linéaire hermitien. Ecrivons I'équation
Ap = op

ol ¢ est une fonction des variables intéressées par 4 et o une constante. Le
temps ¢ peut figurer dans 4, ¢ et « comme paramétre numérique. Par définition,
nous appellerons « valeurs propres de I'opérateur 4 dans un domaine D »
les valeurs de la constante « telles qu’il existe au moins une solution ¢(x, y, z, «)
dite « fonction propre », jouissant des propriétés suivantes : elle est uniforme
et continue dans le domaine et I'intégrale du carré de son module dans D est
convergente, cette derniére condition entrainant évidemment que, si D est
infini, ¢ doit décroitre suffisamment vite 4 I'infini. Enfin si D est fini, ¢ doit de
plus étre nulle aux limites de D.

() Note L.B. : Dans le plan xOy, l'opérateur x ?% -y % n’est pas complet

parce qu’il est égal a @/d¢.
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Remarquons que nous ne considérons comme solutions distinctes de
Péquation aux valeurs propres Ap = a¢ que les solutions linéairement indé-
pendantes.

Nous admettrons (voila un point délicat au point de vue de la rigueur) que
pour les opérateurs de la Mécanique ondulatoire les valeurs propres existent.
Nous allons montrer quelles sont réelles. En effet de 'équation aux valeurs
propres et de sa conjuguée, on tire aisément

J [o* A(p) — @A*(9")] dt = (¢ — d*)J po* du

A étant hermitien, le premier membre est nul et, comme l'intégrale du second
membre est essentiellement positive, on doit avoir « = a*, donc « est une
constante réelle.

E’ensemble des valeurs propres forme le « spectre » de I'équation 4@ = ag@
(ou spectre de 'opérateur 4 dans le domaine D). Si les valeurs propres sont
isolées, le spectre est discontinu : c’est un spectre de raies. Si les valeurs propres
forment une suite continue, on a un spectre continu ou spectre de bande. Le
spectre peut d’ailleurs étre en partie continu, en partie discontinu. Les spectres
continus n’apparaissent que pour D infini

Occupons-nous des spectres discontinus. Désignons par o; une valeur
propre isolée : il existe au moins une fonction propre @(x, ¥, z t) qui lui
correspond.

Montrons que 'ensemble des fonctions propres du spectre discontinu forme
un systéme orthogonal, c.-a.-d. que si ¢; et ¢; sont deux fonctions propres
correspondant a des valeurs propres distinctes o; et a; # o, on a

) J(p;“qojd‘E:O.
D
En effet, nous avons puisque les «; sont réelles

J (o Alp) — @; AX(@P)] dv = 0 = (o — O‘i)j @F @;dr.

Le premier membre étant nul par suite de ’hermiticité de A4, on en tire la formule
annonceée.

Toutefois la démonstration précédente est en défaut pour deux fonctions
propres qui se trouveraient correspondre a une méme valeur propre. Quand
ce cas se présente, on dit qu'on a affaire a une valeur propre « multiple » ou
« dégénérée ». Soit o; une telle valeur propre & laquelle correspondent p
fonctions propres linéairement indépendantes ¢, @, ... ¢;,. L'opérateur 4
étant toujours linéaire, toute combinaison linéaire de ces p fonctions propres
est encore une fonction.propre. On peut donc remplacer ¢;, ... ¢; par p combi-
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naisons linéaires linéairement indépendantes de ces fonctions et il est possible
de choisir ces combinaisons de fagon qu’elles soient orthogonales entre elles.
On peut donc toujours supposer que I'ensemble des fonctions propres d’'un
opérateur lin¢aire hermitien est orthogonal

Les fonctions propres ne sont évidemment déterminées qu’a une constante
multiplicative complexe pres car, si @; est solution de Ap; = o; @;, Co; est
aussi solution a cause du caractére linéaire de 4. On convient de toujours
choisir le module de la constante complexe C de fagon a avoir

Q) Jtpiw?‘df=jlqoilzdr=l-
D D

La fonction ¢; est alors dite « normée » : elle contient encore un « facteur de
phase » arbitraire ¢® de module unité.

Les fonctions ¢; étant 4 la fois normées et orthogonales (orthonormales)
on peut écrire

J ¥ @; dr = 5ij
D

0;; ¢tant le « symbole de Kronecker » égala 1sii = jetaOsii # j.

Nous avons jusqu’ici raisonné sur le cas d'un spectre discret. Si 4 posséde
un spectre continu, a toute valeur propre de ce spectre correspondra une
fonction propre ¢(x, y, z, «) ol nous écrivons &« comme une variable continue
au lieu de l'inscrire en indice. On démontre aisément, comme ci-dessus, que
toute fonction propre du spectre continu est orthogonale a toute fonction
propre du spectre discontinu s’il y en a un. Pour montrer que les fonctions
propres du spectre continu sont normées et orthogonales entre elles, on peut,

pour éviter certaines difficultés de convergence, employer au lieu des fonctions
a + Ao

propres elles-mémes @(x, y, z, a) les expressions f o(x, y, z, a) do dites
« différentielles propres », I'intervalle (o, « + Aa) étant un intervalle extréme-
ment petit du spectre continu. Cette substitution a un sens physique : elle
correspond a celle qu'on opére en théorie classique des ondes quand on consi-
dere a la place de 'onde plane monochromatique qui est une abstraction le
« groupe d’ondes » formé par la superposition d'ondes de fréquences trés
voisines. On exprime alors que les différentielles propres sont normées et
orthogonales en écrivant

(6) Z&j dt[f o(x, y, z, @) docil |:f o(x, y, z, a) da} = 8.
D o o

Les fonctions propres des opérateurs complets de la Mécanique ondulatoire
possédent la propriété importante de former un systéme « complet ». Cela veut
dire que, sous certaines conditions trés larges, une fonction définie dans le



Formalisme général de la M.O. 41

domaine D des variables intéressées par I'opérateur A se laisse développer
en une somme de fonctions propres de cet opérateur. (Pour plus de rigueur,
il y aurait lieu d’introduire ici la notion de « convergence en moyenne », ce
que nous ne ferons pas dans cet exposé sommaire.) Si, par exemple, f(x, y, z)
est une fonction des variables x, y, z, elle se laisse trés généralement développer
suivant les fonctions propres d’un opérateur hermitien complet 4 sous la forme

f(x’ y’ Z) = Z ci (pi(x’ ) Z) + Jvc(a) (p(xs Y Z, OC) dO(

lasomme ) étant étendue au spectre discontinu et I'intégrale au spectre continu.
Nous pouvons mettre en évidence les différentiglles propres en écrivant

(7) f‘(-x’ ¥, Z) = Z ¢ (pi(xa Vs Z) + Z C(d) J (P(Xs Vs 2 O() dOC :

En utilisant les formules exprimant 'orthonormalité des fonctions propres
du spectre discontinu et des différentielles propres, on trouve les formules

(8) ci:J (p;kf(x’y’ Z)d’(;
D

C(Oﬁ) = ZI—(X \[ dfliJv QD(X, Y, z, O‘) dO(:|* f(x’ Vs Z) .
D

24

Les coefficients ¢; et ¢(a) sont souvent appelés les coefficients de Fourier du
développement de la fonction f(x, y, z) suivant les fonctions propres de I'opé-
rateur 4. La série et I'intégrale de Fourier sont des cas particuliers simples de
ce type de développements. Il est a noter que le temps peut figurer comme
paramétre numérique dans I'expression des c; et des ¢(a).

Nous noterons encore que si oy ... o; ... sont les valeurs propres d'un opé-
rateur lin€aire A, of ... of ... sont les valeurs propres de 4". La vérification
est immédiate.

3. LE SPECTRE CONTINU DE L’'HAMILTONIEN D'UN
CORPUSCULE LIBRE. LA FONCTION é DE DIRAC

L’équation aux valeurs propres de 'Hamiltonien peut s’écrire
(©) H(p) = E¢

(E remplagant ici a). Pour un corpuscule libre V =0, H = (— h*/8 > m) A
etlona

2

(10) -

8n2mA(p:E(p.
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Soit 7 le vecteur impulsion du corpuscule. On trouve les fonctions propres

(A ¢(x,»,20) = aexp[ 22 (o x +p,y +0p: Z)] = aexp[——( *)}
avee

L 2 p__

On voit donc 1) que toute valeur positive de E est une valeur propre,
2) qu’a toute valeur positive de E correspond une infinité de fonctions propres
du type précédent obtenues en donnant a p,, p,, p, toutes les valeurs compa-
tibles avec I'équation précédente. Donc pour I'énergie, on trouve un spectre
continu allantde 0 a + oo avec dégénérescence d’ordre infini pour toute valeur
de E autre que 0.

A chaque fonction propre correspond une onde plane monochromatique
solution de I'équation des ondes ayant la forme

(13) ¥(x, .25, ) = o(x,, 2, ) e)qr)<2—h7E Et> = aexp(% [Et — ﬁ.?])-

Nous retrouvons ainsi des résultats connus. On pose souvent

27> k=27z

R
19 k=T%v e

E

et 'on écrit
15 W(x, , 2, 1, k) = a explitket — k.7)]

avec la relation

(16) ke = — | K |2 .

Le vecteur k est nommé le « vecteur de propagation » de 'onde plane qui
est entierement spécifiée par cette seule donnée.

Remarquons quon peut indifferemment prendre comme fonctions propres
de H soit les Yy, soit les @ qui ne différent que par le facteur e*“ puisque les
fonctions propres ne sont définies qu’a un facteur de module 1 prés.

On peut exprimer I'orthonormalité des ondes planes en introduisant les
différentielles propres. Au cours de ce calcul que nous ne reproduirons pas,
on est amené a introduire la fonction « impropre » ou « singuliére » &(x) de
Dirac définie par les 2 propriétés suivantes :

1) Cest une fonction paire de 'argument x.
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2) On a toujours

f N f(x) 6(x) dx = { Sf(0) si x; et x, sont de signes contraires,

0 six et x, sont de méme signe.
On peut représenter d(x) par la fonction singuliére de Dirichlet en posant

a7 5(x) = lim S2TNX

N—-x®

Finalement le calcul de normalisation en question montre que les fonctions
propres normées du spectre continu d’un corpuscule libre doivent s’écrire

(18) 0%, 3, 2, k) = exp[ — itk.r)] ;

@ )3/2

Yix, y, z t, l—c’) exp| ket — k. r)]

@ )3/2
Le caractére complet de Yensemble de ces fonctions propres se traduit par

le fait que sous des conditions trés générales une fonction f(x, y, z) peut se
développer en intégrale de Fourier sous la forme

(19) fGy,2) = (77-:@ LO (k) exp(— ik.7) dk
dk signifiant dk, dk, dk,. Les c(l_c)) sont données par

(20) (k) = f 1(x, v, 2) exp(ik.r) dr
D

1

dr désignant dx dy dz. Clest la formule classique des coefficients de I'intégrale
de Fourier.
On peut aussi écrire

o) S22 = o L o )Wy, 21, 0) df

avec

22) ok, 1) = c(k) e et



CHAPITRE V

PRINCIPES GENERAUX DE
L’INTERP’RETATION PROBABILISTE
DE LA MECANIQUE ONDULATOIRE

1. IDEES GENERALES

La Mécanique ondulatoire doit pouvoir calculer les valeurs propres des
grandeurs mesurables (ou observables) attachées a un corpuscule (ou par
généralisation naturelle & un systéme). Or elle représente I'état d’un corpuscule
(ou plus exactement I'état de nos connaissances sur un corpuscule) par une
fonction d’onde Y(x, y, z, 1), solution de I'équation de propagation, fonction
que nous supposerons toujours normée. En outre, elle fait correspondre a toute
grandeur mesurable attachée & un corpuscule un opérateur linéaire et hermi-
tien qui permet de définir un ensemble de nombres réels, ses valeurs propres,
et un systéme complet de fonctions, ses fonctions propres. Nous sommes ainsi
en mesure d’énoncer les 2 principes fondamentaux de I'interprétation physique
de la Mécanique ondulatoire.

1er principe (*).  Les valeurs possibles d’'une grandeur mesurable, c'est-a-dire
les divers résultats possibles d’'une mesure de cette grandeur sont les valeurs
propres de l'opérateur linéaire et hermitien correspondant a cette grandeur.
(Principe de quantification.)

2¢ principe. Quand T'état du corpuscule est représenté par une certaine
fonction d’onde Y(x, y, z, 1), solution de I'équation de propagation, la proba-

(*) Note G. L. : On remarquera que, contrairement a beaucoup d’auteurs,
de Broglie ne pose pas ces principes comme des a priori, mais cherche a les
induire & partir de la théorie des ondes. Il ne prétend pas que tout opérateur
hermitien représente une observable, mais suppose seulement que, si nous
connaissons celle-ci, alors elle sera ainsi représentée. Le lecteur actuel, nourri
des ses années d’étude de mécanique quantique, aurait tort de lire ces pages
d'un ceil distrait parce qu'allant de sot : C’est ici, en fait, qu’il peut comprendre
Porigine du formalisme quantique.
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bilité pour qu'une mesure précise de la grandeur mesurable correspondant a
I'opérateur linéaire et hermitien A4, complet et & valeurs propres non dégénérées,
fournisse a I'instant ¢ une certaine valeur propre est égale au carré du module
du coefficient de la fonction propre correspondante dans le développement
de la fonction d’onde s suivant les fonctions propres normées de A. (Principe
de décomposition spectrale généralisée.)

Plus précisément, si la fonction ¥ se développe suivant les fonctions propres
et différentielles propres de A par la formule

7a+Aa
(1) W(X, y’ Z, t) = Z Ci (pi =+ AZ C(O() f QD(X, y» 2z, a) dOC

la probabilité de la valeur propre «; est | ¢; | et la probabilité d'une valeur
propre comprise entre a et a + Ao est | c(a) |* da

On vérifiera aisément que, la fonction d’onde y étant par hypothése normée,
la probabilité totale de toutes les hypothéses possibles est bien égale a I'unité.
Naturellement les probabilités des valeurs possibles peuvent étre fonction du
parametre £.

Si I'opérateur A4 a des valeurs propres multiples, 'énoncé du second principe
doit étre complété. Soit a; une valeur propre multiple a laquelle correspondent
p fonctions propres ¢, ¢, ... ¢;, normees, orthogonales et lin€airement
indépendantes. La probabilité de trouver, par une mesure faite a I'instant z,
la valeur o; pour la grandeur A est alors la somme des carrés des modules des

p
coefficients de ¢;; ... ¢,,, dans le développement du , soit )" | ¢;; |%. On vérifie
17

que cette expression est, comme cela doit étre, indépendante de la maniére,
en partie arbitraire dont sont choisies les fonctions propres @;; ... ),

Quand Fopérateur A4 est incomplet, I'énoncé du 2¢ principe doit subir une
modification. Alors, en effet, les fonctions propres de 4 ne sont pas fonctions
de toutes les variables xyz et par suite les coefficients ¢; et ¢(«) sont fonctions
des variables non intéressées par 'opérateur 4. La probabilité d’une valeur
propre ne peut donc pas alors étre le | ¢; |* correspondant, quantité qui dépend
encore de certaines variables. Pour obtenir cette probabilité, il faut intégrer
les expressions indiquées plus haut par rapport aux variables non intéressées
par A. On vérifiera qu’apreés cette modification, la probabilité totale de toutes
les valeurs possibles est bien égale a I'unité.

Un exemple simple d’application de nos 2 principes est fourni par le cas
de I'opérateur H qui est complet. Si H est indépendant du temps, il admet des
valeurs propres constantes E; et des fonctions propres ¢, Une mesure de

Iénergie ne peut fournir que 'une des valeurs E; et siTona ¢ = ) ¢; ¢, la

1
probabilité de E; est | ¢; |>. On retrouve ainsi 'idée de quantification des
systemes atomiques et le principe de décomposition spectrale de Born. Si le
spectre est discret, on a une suite discréte d’états stationnaires a énergies
quantifiées.
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Prenons un autre cas : celui d’une coordonnée x du corpuscule qui corres-
pond a 'opérateur « multiplication par x ». L’équation aux valeurs propres est
'x(p = ag. Cette équation peut étre considérée comme vérifiée pour toute
valeur réelle de x en posant o(x, @) = o(x — a), d(x — o) étant une fonction
singuliere de Dirac nulle pour x # o Donc d’aprés le premier principe, une
mesure de x peut nous fournir n’importe quelle valeur réelle comprise entre
— oo et + oo. De plus, les différentielles propres de ce spectre continu

a+ Ao
J o(lx — oy du

X

forment un systéme complet satisfaisant a la relation d’orthonormalité. Comme
on a é¢videmment
+ o0

@ Yix, y, 2, 1) = j Y(o, y, z, 1) 8(x — a) du
— 00
la probabilité pour qu'une mesure de x fournisse a I'instant 7 une valeur comprise
+ o
entre o et o + Ao est Ao JJ | Y(t, y, z, 1) |* dy dz et 'on en déduit aisément
que la probabilité pour que le corpuscule manifeste sa présence a Pinstant ¢
dans I'élément de valeur dr entourant le point x, y, zest égale a | Y(x. y,z,1) |* dr.
La probabilité totale de la présence d’un corpuscule en un point quelconque de

Pespace D qui lui est accessible est bien égale a 1 puisque | |y | dr = 1 (}).
D

Nous étudierons plus loin d'une maniere approfondie la fagon dont les
incertitudes d’Heisenberg peuvent se déduire des principes généraux énoncés
plus haut (3, (3.

() Note L. B. : Cest la raison physique pour laquelle on doit normer le .
Nous verrons que I'on peut déduire des principes généraux que 2 grandeurs
A et B ne peuvent étre simultanément mesurées que si AB = BA. Ainsi, les
variables canoniquement conjuguées p et g ne sont pas simultanément mesu-
rables.

(>) Note L. B. : Notion de superposition. Chaque fonction propre ¢; d'un
opérateur 4 décrit un état du systéme ou la grandeur A a certainement la
valeur précise «,. En général le ¢ du systéme ne se réduit pas a un seul ¢,
mais est égal 4 une somme de o, Y=Y ¢

On dit alors aussi que le  est une « superposition » de ¢,, ce terme venant du
« principe de superposition des petits mouvements » dans les théories vibra-
toires classiques. Mais ici la superposition n’a plus du tout le méme sens que
dans les théories classiques. Il ne s’agit plus de la vibration d'un milieu qui
s'obtiendrait en ajoutant plusieurs vibrations ¢lémentaires. Il s’agit de Iaffir-
mation suivante : si la fonction ¥ d’un systéme est de la forme ¥ = ) ¢; ¢;

13
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et si 'on cherche a lui attribuer un état @; en mesurant la grandeur A4, on a la
probabilité | ¢, |* détre conduit a lui attribuer P'état ¢,. Donc avant la mesure

le systéme dans I'état = ) ¢; ¢; se trouve potentiellement dans plusieurs états

i
@; chacun possédant une probabilité non nulle | ¢; |2. Cest 1a une idée entiére-
ment nouvelle, tout a fait étrangére aux théories classiques dans lesquelles
I'état d’un systéme est caractérisé par des valeurs bien définies des grandeurs
de ce systéme. Cette notion nouvelle de superposition est peut-€tre la plus
importante de celles qui ont été introduites par la Mécanique nouvelle.
Si dans la théorie classique des vibrations, on considére une vibration donnée

par i = Z ¢ exp[Z ni( vt — f—)], cela veut dire que la valeur du ¥ a chaque

instant en chaque point est donnée par la somme des termes de la série : les

vibrations composantes s’ajoutent avec les valeurs des ¢; qui leur correspondent.

En Mécanique ondulatoire la forme envisagée pour le i est soumise a la

condition ) | ¢;|* = 1 liée a I'interprétation probabiliste du ¥ et 'on nc peut
4

plus regarder le 3y comme fourni par 'addition de termes ayan( une amplitude
prédéterminée. Ainsi dans la théorie classique 2 mouvements ondulatoires

Y, = ¢ exp|:2 m’<v1 — i)] et Y, = cyexp [2 ni(vt - i)} donnent par

superposition une onde ¥ = ¥, + y, damplitude ¢; + ¢,. Au contraire en
Mécanique ondulatoire les 2 €tats ¥, et ¥, considérés isolément satisfont aux
conditions | ¢, | = 1/\/5 et |ey| = 1/\[1). Si on les superpose, on a I'état
¥ = ¥, + ¥, mais avec la condition | ¢, + ¢, | = 1///v de sorte qu’il n’y a
plus du tout addition des amplitudes. Ceci montre 'abime qui sépare la notion
de fonction d’onde dans la théorie classique des ondes et en Mécanique ondu-
latoire.

(®) Note G. L. (au sujet de la note précédente de I'auteur) : Louis de Broglie
n’envisage ici que 'onde continue et normée sur laquelle est fondée I'inter-
prétation probabiliste de la mécanique ondulatoire. S’étant rallié au point de
vue orthodoxe, il considérait, a 'époque ou il écrivait ces lignes, que cette onde
était la seule possible et on le voit, dans cette note, insister sur ce point avec
d’autant plus de force qu'il avait €té, jadis, convaincu du contraire. Cest a cette
ancienne conviction qu’il devait, nous le savons, bient6t revenir, en dévelop-
pant la théorie de la double solution et en distinguant soigneusement onde
ayant les propriétés qu’il décrit ici, de Ponde v (partie réguliére de I'onde sin-
guliére ») qui a la méme phase que ¥ mais pas la méme amplitude, qui n’est pas
normeée, qui n’est pas soumise a la réduction du paquet d’ondes, mais qui, par
contre, obéit a la loi ordinaire d’addition des composantes de la théorie clas-
sique des vibrations. Louis de Broglie la considérera désormais comme la
véritable onde physique, contrairement a ¥ qui n’est quun instrument de
prévision.
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2. LES MATRICES ALGEBRIQUES ET LEURS PROPRIETES

On appelle « matrice » un tableau de nombres contenant un nombre fini ou
infini de lignes et de colonnes. Si ce tableau est de dimensions finies, nous le
supposerons carré pour simplifier. Chaque nombre figurant dans le tableau
(ou « élément de matrice ») peut étre repéré a l'aide de 2 indices qui spécifient
respectivement la ligne et la colonne du tableau auquel appartient I'élément.
Nous désignerons donc par g, I'élément situé a Tintersection de la i-iéme
ligne et de la k-iéme colonne. L’ensemble de la matrice sera désigné par la
lettre 4. Les éléments a;; sont les éléments diagonaux et une matrice dont seuls
les éléments diagonaux sont différents de zéro est dite une « matrice diagonale ».
Deux matrices 4 et B sont dites égales (4 = B) si tous leurs éléments corres-
pondants sont égaux g;; = h;; pour tout i et tout j.

Les matrices se présentent en Algebre quand on étudie les transformations
linéaires. En effet, si des variables x; sont des combinaisons linéaires de variables
x; on a des formules de transformation du type xj = ) a;; x; qu'on é&crit

J
symboliquement X' = X avec la convention (4X); = a;; X; On est ainsi
7

aisément conduit a définir la somme et le produit de 2 matrices par les régles
suivantes

[) La somme des 2 matrices A4 et B est par définition la matrice 4 + B
de composantes a;; + b;;.

2) Le produit de la matrice 4 par la matrice B est la matrice 48 de compo-
sante d’indices ik égale & ) a;; by,
j

De cette dernic¢re définition résulte qu’en général la matrice 4B n’est pas
égale a la matrice BA. Si par exception AB = BA, ondit que 4 et Bcommutent.
On désigne souvent sous le nom de « commutateur » des matrices 4 et B
la matrice AB — BA = [A, B] qui, si elle n’est pas nulle, sert a mesurer le
défaut de commutation de 4 et de B.

Parfois, on introduit aussi la matrice AB + BA = {4, B], ou « anticom-
mutateur » de A et B. Si cette matrice est nulle AB = — BA et 'on dit que
A et Banticommutent : si elle n’est pas nulle, elle mesure lc défaut d’anticommu-
tation de 4 et B.

Les matrices sont réelles ou complexes suivant que leurs éléments sont réels
ou complexes. Nous envisageons le cas général des matrices complexes.
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Une matrice est dite hermitienne si I'on a g, = aff; pour tout i et tout k.
Une matrice hermitienne réelle est donc symétrique par rapport a sa diagonale
ct les ¢léments diagonaux d’une matrice hermitienne sont toujours réels.

Une matrice est antihermitienne si 'on a 4, = af pour tout i et tout k.
Les éléments diagonaux d’une matrice antihermitienne sont imaginaires purs.

Le produit de 2 matrices hermitiennes 4 et B est lui-mé&me hermitien si les
deux matrices commutent et dans ce cas seulement : il est antihermitien si
A et B anticommutent.

La matrice A est la matrice « transposée » de A4 si 'on a d,; = a; et 'on
appelle matrice « adjointe» 4" de 4 la matrice définie par af = af ou
A% = A* Si A est hermitienne, 4 = A" : A4 est alors sa propre adjointe.

Onaévidemment(4 *)* = Aetlondémontre aisément que(AB)* =B* A™.

Une matrice hermitienne diagonale est nécessairement réelle. En particulier
la matrice hermitienne diagonale a; = 0, est la « matrice unité » souvent
représentée par 1.

Etant donnée une matrice A4, sil existe une matrice 4 ! telle que
A.A ' = A7 4 = 1, lamatrice 4 ~ ! est dite l'inverse de 4. Si 4 a un nombre
fini de lignes et de colonnes, 4 ~! existe toujours quand le déterminant déduit
du tableau A4 des «;, est différent de zéro. Si 4 a un nombre infini de lignes
et de colonnes, 4 ~! peut exister ou ne pas exister suivant les cas. Quand 4 !
et B! existent, on a toujours (4B) ' = B ' 47

Quand A est une matrice réelle et que 'on a

3) Zaji Ay = Ok > Zajl = 5jk
j 1

on dit que la matrice est orthogonale. La transformation linéaire qui lui
correspond représente alors dans I'espace une transformation orthogonale
qui laisse invariante la somme Y x7. On généralise cette définition pour une

1

matrice complexe 4 en disant que si 'on a

4 z aj aﬁ = 0y ; Z aj ayfy = 5jk
Jj 1

la matrice 4 définit une transformation orthogonale complexe ou « unitaire »
et 'on vérifie aisément que pour une telle transformation la quantité ) x} x;

1

reste invariante. La matrice 4 est alors dite « unitaire » et 'on a
+ . +
. aij = Oy Z aj ag = O
i 1

Cest-a-dire
) At A =447 =1 dou AT =471

Donc I'adjointe d’une matrice unitaire coincide avec son inverse.

Lo Broain 4
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Par définition, la « trace » d’une matrice A est la somme de ses termes

diagonaux Tr A = ) a;. On démontre de suite que
i

(6) Tr AB = Tr BA = Zaik bki .
ik

Soient encore deux matrices carrées, 'une 4 quelconque, 'autre S unitaire
ayant les mémes nombres de lignes et colonnes. La matrice

(N B=S"1'4S

est dite obtenue a partir de 4 par une « transformation canonique ». On vérifie
facilement que si 4 est hermitienne, B l'est aussi. Les transformations cano-
niques conservent donc le caractére hermitien des matrices : il est aisé de voir
quelles conservent €galement leur trace. De plus, si 2 matrices carrées A et 4’
sont transformées par une transformation canonique en B et B’, leur produit
AA’ est transformé en BB’ par cette méme transformation car

S7T1AS.S7'A4’S=S8S"144'S.

3. OPERATEURS ET MATRICES EN MECANIQUE ONDULATOIRE

Supposons que nous connaissions un systéme de fonctions orthonormales
@1 ... ¢; ... dans un domaine D de variation de certaines variables. Nous les
appellerons des fonctions de base. Ce systéme pourra étre par exemple celui
de fonctions propres normées d’'un opérateur linéaire hermitien de la Méca-
nique ondulatoire. Avec ce systéme de base, a tout opérateur linéaire nous
pouvons faire correspondre une matrice. Soit en effet 4 un opérateur linéaire.
L’application de cet opérateur a une des fonctions de base ¢; nous fournira
une nouvelle fonction qui pourra se développer suivant le systéme des fonctions
de base et nous aurons des relations de la forme

® Ap; = ), a;: 9;

avec

&) aj = J ‘P}k Ap; dt
D

D étant le domaine de variation des variables figurant dans les ¢;. Par définition,
les a;; sont les €éléments de la matrice engendrée par opérateur 4 dans le
systéme de base des ¢;. Nous désignerons cette matrice par le méme symbole 4
que 'opérateur, ou si nous voulons préciser le systéme de base employé par 4.
Il est aisé de vérifier que les matrices ainsi définies satisfont aux régles d’addition
et de multiplication des matrices algébriques indiquées plus haut.

Si le systéme de base est formé par les fonctions propres d’'un opérateur de la
Meécanique ondulatoire et si lopérateur 4 lui méme est un opérateur linéaire
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et hermitien de cette Mécanique, nous dirons que la matrice A4 est une matrice de
la Mécanique ondulatoire. On voit immédiatement qu'elles sont toujours
elles-mémes hermitiennes car avec la définition des g;; le caractére hermitien
de A entraine g;; = a}i. Plus généralement, on voit d’ailleurs que la condition
nécessaire et suffisante pour que la matrice engendrée par un opérateur 4
dans un systéme de base soit hermitienne est que opérateur soit lui-méme
hermitien. L’hermitianité est donc une propriété intrinséque des opérateurs
en ce sens quun opérateur hermitien engendre des matrices hermitiennes dans
tous les systémes de base. Toutes les matrices de la Mécanique ondulatoire
sont donc hermitiennes.

Nos définitions établissent donc une corrélation étroite entre les opérateurs
et les matrices. En particulier, la condition nécessaire et suffisante pour que
deux matrices commutent (ou anticommutent) est que les opérateurs corres-
pondants commutent (ou anticommutent) ou vice versa. Ceci améne a définir
le commutateur et 'anticommutateur de 2 opérateurs A et B par

(10) [4, Bl = AB — BA; [A, B],= AB + BA.

Une catégorie particuliérement importante de matrices de la Mécanique
ondulatoire est obtenue en prenant toujours comme fonctions de base les
fonctions propres de l'opérateur Hamiltonien correspondant au probléme
considéré. Soient ¥, ... ¥, ... les fonctions propres de I'opérateur H. Les matrices
AY engendrées par un opérateur linéaire et hermitien 4 dans le systéme de base
des y; dont les éléments sont

(1D ay = J WE Ay, de
D

peuvent étre appelées « matrices d’Heisenberg » car ce sont celles que
M. Heisenberg a mises a la base de sa Mécanique quantique. Si dans la défi-

nition des i, on comprend le facteur exponentiel exp(% E, ,) et si 'on pose
2mi
Ve = adx, y, 2) €XP<T E, I>
on aura
2 mi
(12) ay = J at Aa, dt.exp(—hE (E, — E) z)_
D

Ces ¢élements définissent la matrice d’Heisenberg proprement dite qui dépend
du temps. Parfois on supprime dans I'expression des y, le facteur exponentiel

et 'on pose a, = | af Aa, drv : on définit ainsi une matrice 4’ d’éléments a,
D
qui est indépendante du temps. Cest la matrice de Schrodinger correspondant
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a la préceédente matrice d'Heisenberg. Nous nous servirons généralement des
matrices d’Heisenberg.

Avec les matrices d’Heisenberg, la matrice H correspondant a I'énergie est
une matrice diagonale dont les termes diagonaux sont les valeurs propres de
I'énergie (c.-a.-d. les énergies stationnaires quantifiées). Toutefois, dans le cas
ou I'opérateur H posséde des valeurs propres multiples, la propriété précédente
n’est vraie que si I'on a eu soin de choisir les fonctions propres correspondant
aux valeurs propres multiples de facon qu’elles soient orthogonales. La véri-
fication est immeédiate car

ij:J‘ lp;kHl//de:Ekf lﬂj‘l//kd‘CZEkéjk
D D

Le résultat précédent n’est d’ailleurs qu'un cas particulier du théoréme
suivant dont la démonstration est immédiate : « Si 'on construit la matrice
engendrée par un opérateur 4 dans le systéme des fonctions propres ortho-
normales de cet opérateur, cette matrice est diagonale et ses €léments diago-
naux sont égaux aux vecteurs propres de lopérateur 4 (les vecteurs propres
multiples figurant avec leur ordre de multiplicité) ».

4. VALEURS MOYENNES ET DISPERSIONS EN MECANIQUE
ONDULATOIRE

Pour tout état d’un corpuscule (ou d’un systéme) caractérisé par une certaine
forme de la fonction d’onde y, toute grandeur A4 a une série de valeurs possibles
(résultats possibles de la mesure de A) affectées de probabilité. On peut donc
définir la « valeur moyenne » de la grandeur, 4 qui sera I'espérance mathé-
matique correspondant a une mesure de A.

Si «; et f; sont les valeurs propres et les fonctions propres de A4, la valeur
moyenne A sera donc d’aprés les principes généraux définie par 4 = Z o | ¢ |2

3

En remplagant ¢ par Y. ¢; @; et en tenant compte de I'orthonormalité des ¢,

on vérifie que 'on peut aussi écrire

(13) Z:j Y* Ay dr

ce qui permet de déduire immédiatement A de la connaissance du .
Ayant défini la valeur moyenne de la variable aléatoire A4, on peut également
définir la « dispersion » (au sens du Calcul des probabilités) qui lui correspond,
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Cest-a-dire la racine carrée du carré moyen de I'écart. Si 'on désigne par o,
cette dispersion, on aura

—

04 =\/(,litf4_? :»\/Zz — 2 A4 + A?

/AT
d’ou

(14) ol = J y* Ay dr — <J v Ay dr>2.

Considérons maintenant 2 grandeurs 4 et B attachées a un corpuscule. A A4
correspondent les valeurs propres et fonctions propres o, et ¢, a B les valeurs
propres et fonctions propres f3,, 7. Si la fonction d’onde ¥ se développe sous
la forme ¢ = ) d; ¢, on trouve par substitution de ce développement dans

i
I'expression de B

(15) B =Y d*a,b
ik

ou b est I'élément d’indices i, k de la matrice engendrée par lopérateur B
dans le systéme des ¢,. Donc la valeur moyenne de B peut toujours s’exprimer
linéairement a laide des éléments de la matrice quengendre l'opérateur B
dans le systéme des fonctions propres d’un autre opérateur A.

En particulier, si le corpuscule (ou le systéme) se trouve dans I'un des états
propres relatifs a la grandeur A (et c’est ce qui arrive aprés une mesure précise
de la grandeur 4),onay = d;, ¢, avec|d;| = 1 etonentire

(16) B = b?,

d’oui le théoréme : « L’¢lément diagonal d’indices ii de la matrice engendrée
par lopérateur B dans le systéme des fonctions propres de lopérateur A
représente la valeur moyenne de la grandeur B quand on sait que la grandeur 4
a la valeur précise «; ».

Ce théoréme donne un sens physique aux éléments diagonaux des matrices
de la Mécanique ondulatoire. Un autre théoréme va nous fournir une signi-
fication physique des €¢léments non diagonaux.

Supposons toujours que le corpuscule soit dans I'état y = ¢,. Nous venons
de voir qualors b est 1a valeur moyenne de B dans cet état. La valeur moyenne
de B? est alors

an B = f oF B gy dr = (BY)S = (b7
D
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mais la loi de multiplication des matrices nous donne
j#i
(BAG = Y. bf bG = (b + ), bf b4
J i

jFi
2 2 igr
= (b9)* + Z | b% | car B est hermitienne
J
d’out

_ j#i j#i
(18) o3 =BT~ (B =Y |b5IP = b5
J J

d’ou le théoreme :

« Si l'on construit la matrice d’une grandeur B dans le systéme des fonctions
propres @; d’une autre grandeur A4, la somme des carrés des modules des
¢léments non diagonaux figurant dans la i-ieme ligne (ou la i-iéme colonne)
de la matrice B est égale au carré de la dispersion oy relative a la grandeur B
quand on sait que la grandeur 4 a la valeur précise o;. » Cet énonc¢ donne
un sens physique aux €¢léments non diagonaux.

Si les fonctions propres y; de B coincident avec celles ¢; de A (nous verrons
que la condition nécessaire pour que cela se produise est [4, B] = 0), dans
Pétat = @; = y; la grandeur B a la valeur précise f; qui correspond a y;
et la matrice B¢ est diagonale. Alors g5 = 0.

5. INTEGRALES PREMIERES EN MECANIQUE ONDULATOIRE

Considérons la matrice d’Heisenberg 4 dont les éléments sont définis par
aj = j Y¥ Ay, dr. L'€lément aj, peut dépendre du temps ¢ par l'intermédiaire
D

de y¥ et de y, et aussi de A si cet opérateur dépend explicitement du temps.
Dérivons donc ay, par rapport a ¢ en tenant compte du fait que ; et i, obéissent
a 'équation des ondes et que 'opérateur est hermitien. Il vient aisément

day o 04  2mi
(19 v L 1 [E + —h—(AH — HA)} W, dr

oll 0A4/0t est I'opérateur obtenu en dérivant formellement 4 par rapport
au paramétre . Nous pouvons interpréter la formule précédente en disant :
la matrice d’Heisenberg dont I'élément d’indice jk est day/dr est engendrée
dans le systéme des ¢; par I'opérateur symbolique dA/dr tel que

dA4 04 2mi
20 E——6?+T[AH—HA].
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I arrive trés fréquemment que 'opérateur 4 ne dépende pas explicitement
d4 2z

04 L
du temps. Alors—07 =0 et rr [4, H] (")

Par définition, dans un probléme ou 'Hamiltonien H est donné, la grandeur
observable correspondant a un opérateur A est dite « intégrale premiére » ou
« constante de mouvement » pour le probléme considéré si d4/dt est nul,
c’est-a-dire si

(21 %‘3 gh—[A H]=0.

Si 4 ne dépend pas explicitement du temps, la grandeur 4 est intégrale
premicre quand lopérateur 4 commute avec 'opérateur Hamiltonien.

On peut aussi définir les intégrales premiéres de la facon suivante : une
grandeur, dont 'opérateur est A4, est intégrale premiére si, ¥ étant une solution
quelconque de I'équation des ondes, 4y en est également solution. En effet
par hypothése /ot = (2 ni/h) Hy et 'on a

o 2w 0 (o4, 2w
() AZ=SFAHY e = Ay = a:"’* &=y S AHy.

Pour que 4y soit solution de I'équation des ondes, il faut donc que

23) aa/? v+ %(AH HA) Y = 0.

La condition nécessaire et suffisante pour que cette équation soit satisfaite
quelle que soit la solution ¥ de I'équation des ondes est précisément la rela-
tion (21). c.q.fd

Voici quelques exemples classiques d'intégrales premieres.

Si le champ extérieur agissant sur le corpuscule (ou le systéme) est indépen-
dant du temps, I'opérateur H ne contient pas ¢ et, comme il commute évidem-
ment avec lui-méme, I'énergie est alors intégrale premiére : nous retrouvons
I'analogue de la conservation de I'énergie pour les systémes conservatifs en
Mécanique classique. De méme si la composante x du champ est nulle, 'opé-
rateur / ne dépend pas de x (0V/dx = 0) et il commute avec (p,),, la compo-
sante de la quantité de mouvement est donc alors intégrale premiére, résultat
analogue a un théoréme de la Mécanique classique.

Enfin si le champ de force a un moment nul par rapport a un axe Oz c.-a.-d.

(') Note L. B. : 1l est facile d’en déduire que, pour 4 indépendant du temps
on a

dA 2 i ———
@ - R A HL
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si I'énergie potentielle V ne dépend pas de 'azimut ¢ compté autour de Oz,
I"'Hamiltonien H ne dépend pas de  ct par suite commute avec 'operuteur
correspondant a la composante - du moment de quantité de mouvement car

_ h ©
( zlop — T 2_7” % .
La grandeur M, est donc alors intégrale premiére comme en Mécanique
classique. Sl le champ de force est central, les trois composantes du moment
cinétique M par rapport a des axes passant par le centre sont intégrales pre-
miéres et il en est de méme de la grandeur M? = M2 + M} + M7 (carré
de la longueur du moment cinétique). Ceci nous amene a dire quelques mots
du moment cinétique.

6. MOMENT CINETIQUE (MOMENT DE ROTATION
OU DE QUANTITE DE MOUVEMENT)
EN MECANIQUE ONDULATOIRE

Dans le présent exposé€, nous laisserons de c6té le spin et nous nous bornerons
au moment cinétique orbital. Le moment cinétique orbital d'un corpuscule
par rapport a un centre O (pris comme origine des coordonnées) est le vecteur

moment de la quantité de mouvement du corpuscule par rapport a O, soit
—_—

(24) M= p.

Les composantes sont M, = yp, — zp, ...

Nous venons de voir que si Je champ agissant sur le corpuscule a un moment
nul par rapport a I'un des axes, la composante de M sur cet axe est intégrale
premiére.

La longueur du moment cinétique est définie par son carré

29 M? = M2 + M + M2 = 1 p* — ()}

d’apres Pidentité de Lagrange.
Cette quantité est intégrale premiére si le champ de force est central.

En Mcécanique ondulatoire on remplace M, M, et M, par des opérateurs
qui sont

h b, 0 h 0
(26) (M)op = —m<y5—25>— T Taide.

@, ... €tant les azimuts comptés autour des axes Ox... L’'un quelconque des
opérateurs M, a pour valeurs propres m{h/2 n) et pour fonctions propres
normées (14/2 ) e~ ™* comme on le vérifie aisément.

Draprés les principes généraux de la Mécanique ondulatoire, on doit en
conclure que la mesure exacte de I'une des composantes du moment ciné-
tique doit toujours fournir une valeur multiple entier de 4/2 n. Cette quantité
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peut donc étre considérée comme I'unité quantique de moment de rotation.

On s’apergoit alors que la représentation du moment de rotation par un
vecteur a quelque chose de trompeur a I'échelle quantique. En effet, les 3 com-
posantes du moment cinétique ne sont pas, en général, simultanément mesu-
rables a I'echelle quantique car les opérateurs M,, M, et M, ne commutent pas.
Si donc on effectue avec précision la mesure d’'une composante rectangulaire
de M, la valeur exacte des 2 autres composantes de M restera inconnue : il y
aura seulement une distribution de probabilité pour les valeurs possibles de
ces composantes. On ne pourra donc construire exactement le vecteur 74
puisquon ne connaitra Jamals exactement plus d’'une de ces_composantes.
1 est d’ailleurs évident qu’on ne peut supposer que le vecteur M ait simulta-
nément 3 composantes rectangulaires multiples entier de 4/2 7 quelle que soit
'orientation du repére Cartésien autour du point O.

La non-commutation des opérateurs M,, M, M, est facile a prouver.
On trouve en effet

h
(27) [Mx, My =2—nl.Mz...

Nous aurons a nous servir de ces relations.
A la grandeur M? de la Mécanique classique, la Mécanique ondulatoire
fait correspondre 'opérateur

(28) (Mz)op = (sz)op + (Myz)op + (Mzz)op =
W1 0 0 1 ¢
= —— — 1 0 — +—_—
42 5in0 [59 (s"’ ae) sin 0 ¢
en employant des coordonnées polaires autour de Oz (M 2) au facteur
h*/4 n* prés n'est pas autre chose que le Laplacien a la surface d’une sphere

de rayon 1.
L’équation aux valeurs propres

(29) M), f = of

n’admet comme solutions finies, uniformes et continues sur la sphere de rayon 1

que les fonctions de Laplace Y, (6, ¢), la valeur propre correspondant a la
. . . .. . h? .

fonction Y, oli /est un entier positif ou nul, étant ype i/ + 1). Onvoit donc que

finalement les valeurs propres de M? sont
h2
(30 MZ:———l(l+1) /1=0,12....

Il est aisé de vérifier que M? commute avec M,, M, et M. On peut donc
mesurer simultanément M ? et I'une des composantes de M



CHAPITRE VI

THEORIE DE LA COMMUTATION
DES OPERATEURS EN MECANIQUE
ONDULATOIRE

1. THEOREMES GENERAUX

Soient deux opérateurs 4 et B de la Mécanique ondulatoire. En général,
ils ne commutent pas et AB # BA. Exceptionnellement, on peut avoir AB=BA.
Nous allons montrer qu’en Mécanique ondulatoire, la propriété pour les
opérateurs correspondants a deux grandeurs mesurables de commuter a une
grande importance. Cette importance repose essentiellement sur le théoréme
suivant : « La condition nécessaire et suffisante pour que 2 opérateurs linéaires
et hermitiens 4 et B admettent un méme systeme de fonctions propres est que
AB=BA. »

Pour démontrer ce théoréme avec rigueur il faut distinguer 3 cas : 1) les
2 opérateurs sont complets; 2) I'un est complet, 'autre incomplet; 3) tous les
deux sont incomplets. Dans chacun des cas, la démonstration et méme 'énoncé
correct du théoréme différent 1égérement.

ler Cas. Théoréme : La condition nécessaire et suffisante pour que deux opé-
rateurs complets 4 et B admettent un méme systéme de fonctions propres
est qu'ils commutent.

En effet, supposons d’abord que les 2 opérateurs admettent un méme systéme
de fonctions propres @, ... ¢;.... On a alors Ap; = «; ¢;; Bp; = B; ¢, pour
tout i, d’ou l'on tire BA@; = o; Bp, = o; B; ¢; ¢t ABp; = f; Ap; = B; 7 ¢;.
Donc AB¢p; = BA@; pour tous les ¢; : comme ceux-ci forment un systéme
complet, on a ABf = BAf, f étant une fonction quelconque développable
suivant les ¢; On en conclut 4B = BA et la condition énoncée est nécessaire.

Démontrons qu'elle est suffisante. Nous admettons alors que AB = BA.
Si ¢; sont les fonctions propres de A4 et y; celles de B, on a A(¢y) = o; ¢; et
B(y) = B; y» De la 1T¢ équation nous tirons BA@; = o; Bo; = ABg; (puisque
BA = AB) By, est donc fonction propre de A avec la valeur propre o,. Suppo-
sons d’abord que o; ne soit pas une valeur propre multiple : alors By, est
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nécessairement proportionnelle a ¢; et 'on a Bp; = Cte ¢; = f5; ¢, Mais ¢;
est une fonction finie, uniforme et continue dans le domaine D et nulle aux
limites. D’apres la derniere équation, elle est donc fonction propre de B. Toutes
les fonctions propres de A sont donc fonctions propres de B si aucun o; n’est
multiple. En appliquant 'opérateur 4 a I'équation B(y;) = B; x;» on démon-
trerait de meme que toute fonction propre de B est fonction propre de A si
aucun des f§; n’est multiple. Donc si tous les «; et tous les f; sont des valeurs
propres simples, le systéme des ¢, coincide avec celui des y; et la condition
énoncée est suffisante.

La démonstration est en défaut si certains des «; ou des f3; sont des valeurs
propres multiples.

Supposons par exemple qu'a une certaine valeur propre «; de 4 corres-
pondent p fonctions propres ¢;, ... ¢,,. Alors on aura p relations de la forme
ABo;; = BAp;; = o; Bp;; d’apres le raisonnement précédent. On peut
seulement en conclure que Bg,; est une fonction lin¢aire de @;; ... ¢;, c.-i-d.

P
que Bg;; = Zk ¢ @y les ¢& étant des constantes complexes. Les p fonctions

1
Bg,; doivent pouvoir s'exprimer linéairement a I'aide de p fonctions propres
x; deTopérateur B. Les p fonctions Bo,; sont en effet linéairement indépendantes
et elles ne pourraient I'étre si elles s’exprimaient a I'aide d'un nombre de
fonctions y; inférieures a p : d’autre part, si elles s’exprimaient a l'aide d'un
nombre de fonctions y; supérieur a p. les y; ne pourraient étre linéairement
indépendantes. Les Bo;; Sexpriment donc linéairement a l'aide de py; et de p
seulement ; et inversement ces py; sexpriment lincairement a 'aide des pBo;;.
Comme dans les cas de dégénérescence on peut remplacer les p fonctions
propres par p combinaisons linéaires linéairement indépendantes de ces
fonctions propres, on peut remplacer les Be;; par les y; en question et ceux-ci
seront a la fois fonctions propres de A4 et de B pour la valeur propre ;. On peut
raisonner de méme si 'un des f5; est multiple et I'on arrive a la conclusion qu’il
est toujours possible de choisir les fonctions propres de fagon que A4 et B aient
le méme systéme de fonctions propres. Le théoréme se trouve ainsi compléte-
ment démontré dans le cas 1.

2e Cas : L'un des opérateurs est incomplet, l'autre complet.

Théoréme : Soient un opérateur complet 4 et un opérateur incomplet B.
Si les deux opérateurs commutent, chaque fonction propre de A4 est égale au
produit d’une fonction propre de B par une fonction des variables qui n’inter-
viennent pas dans B. Inversement si cette propri€té se vérifie, les opérateurs
commutent.

Proposition directe. Nous supposons AB = BA. Soient x... les variables
qui interviennent dans B, y... celles qui n’y interviennent pas. Les fonctions
propres de A4 sont des fonctions ¢,(x, y ...), celles de B des fonctions y,(x...).
L'ona Ap; = a; @, et par suite BAp; = o; Bp; = ABp,; (car AB = BA). Si «;
n'est pas multiple, on voit que Be; doit étre proportionnelle a ¢;, Bp; = fo; :
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@; est donc fonction propre de B. Mais le systeme des z; ¢tant complet pour
les variables x ..., ¢@; ne peut étre fonction propre de B que si elle est égale a une
fonction ¥, multipliée par un facteur ne dépendant que des y. On doit avoir

M Pix ..y .) = fuly ) wlx )

et C’est la proposition annoncée.

La démonstration est en défaut si 4 admet des valeurs propres multiples.
Alors a la valeur propre ; correspondent p fonctions propres ¢;; ... @, linéai-
rement indépendantes.

Soit 4" un opérateur complet ayant des valeurs propres simples et commutant
avee B D’apres ce qui a été démontré, toute fonction propre de 4', ¢pi(x ... 1...)
peut s’écrire sous la forme @j(x...y...) = fily..) nlx...). Pour les raisons
exposées ci-dessus, les p fonctions propres ¢;; doivent s’exprimer linéairement
a Paide de p fonctions ¢; et de p seulement ct inversement. On peut donc
remplacer dans la liste des fonctions propres de A les p ,; par p @;. Nous voyons
donc que s'il existe des valeurs propres «; multiples, on peut s’arranger, en
profitant de Pindétermination des fonctions propres correspondantes, pour
choisir ces fonctions propres de facon que le théoréme soit encore vérifié.

Proposition inverse. Nous supposons que toute fonction propre de 4 soit
de la forme

2 Qi e v o) = faly o) 2l ).
De Ap; = «; ¢; nous tirons
BA@; = o; Bo; = o; fuly ...) By = o fu Pr i
= o B ¢;
et, de méme, de

By = By %k »

nous tirons d’abord

B(fic 1) = B S 1

puis

AB(fu 1) = Bx A(fu 1) = B A(@) = i o ;..
D’ou
(3) AB(¢;) = BA(p;) .

Cette relation ¢tant vraie pour toutes les fonctions qui forment un systéme
complet, on en déduit AB = BA et le théoréme inverse est démontré.
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Nous devons faire une remarque importante sur la formule

2 Ox ... y..)=Ffay..)ulx..).

En général, a une méme fonction propre y, de I'opérateur incomplet B
correspondent plusieurs fonctions propres ¢; de 'opérateur complet 4. Clest
cette circonstance qui nous oblige a mettre 2 indices a la fonction fi(y...)
puisqu’en général pour une valeur donnée de k, il y a plusieurs valeurs de i.
Autrement dit, il n’y a pas correspondance biunivoque entre les fonctions
propres de A et celles de B, les premiéres étant beaucoup plus nombreuses que
les secondes. Comme exemple, on peut prendre comme opérateur 'opérateur
Hamiltonien H d’un systéme a symétrie sphérique tel que I'atome d’hydrogéne
et comme opérateur B opérateur incomplet M.

En prenant des coordonnées polaires autour de Oz, (M,),, =(—h/2 7i) (3/0¢).
Ecrivons I'équation aux valeurs propres de H

h? 02 20 1 o . 0
N B S UL Sy ey e
“ 8n2m[0r2 +r8r+r2 sin()&B(gm >+
_1_6_2 + V() o, =E
r2 Sif’lzga(pz th (pi"" 1q0i'

En posant ¢; = f(r, 0) x(¢), on trouve aisément que les fonctions propres
de 4 = H sont de la forme @,,(r, 0, @) = f,(r, §) ¢™ ol n, [ m sont des
nombres quantiques, m en particulier un entier positif ou négatif.

Or les fonctions propresde B = M, sont les solutions uniformes de I'équation

aux valeurs propres — Tm% = By, Cest-a-dire x, (@) = e” ™ (m entier),
\ h .
les valeurs propres correspondantes étant f, = m=—. On voit donc que

27

notre théoréme est bien vérifie. A une valeur donnée du nombre entier m
correspond une fonction propre y, de M, et toute une séric de fonctions
propres de H qui sont les produits de y,, par les fonctions f,,(r, 6) correspondant
aux diverses valeurs possibles de n, 1

Nous pouvons encore ajouter une remarque en quelque sorte inverse de la
précédente. A toute fonction propre y(x...) de B, correspond au moins une
fonction propre ¢(x ... y...) de 4 qui lui est proportionnelle. En effet, si dans
les ¢; on donne aux y des valeurs constantes, toutes les fonctions ¢; qui sont
proportionnelles 4 un y, sont ¢quivalentes. Le systéme des ¢, qui est complet
pour I'ensemble des variables x ... et y ... doit encore rester complet pour les
variables x ... et pour qu’il en soit ainsi, il faut évidemment qu’au moins 'une
des fonctions ¢; se réduise, 4 un facteur constant pres, a I'une des y, quand
on donne aux y des valeurs constantes. Donc a toute fonction y, correspond
au moins une fonction ¢; de la forme f,(y...) x.(x...).

3¢ Cas : Les deux opérateurs sont incomplets.
Nous diviserons les variables en quatre catégories : 1) les variables x ...
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qui figurent dans A sans figurer dans B; 2) les variables y ... qui figurent dans 4
et B; 3) les variables z ... qui figurent seulement dans B; 4) les variables u ...
qui ne figurent ni dans 4, ni dans B. Nous appelons «; et ¢,(x ... y ...) les valeurs
propres et fonctions propres de A4;, B; et x(y ... z...) les valeurs propres et
fonctions propres de B. On a alors le théoréme suivant

Théoréme : Silarelation AB = BA est satisfaite, il existe entre les @, et les y,
des relations de la forme

5 ofx..y.zou)=fi{z..u.)elx..y.)=gupx...u.)uy..z.)

les fonctions w; formant un systéme complet pour I'ensemble des variables
X..y..z..u... Réciproquement si les relations précédentes sont vérifiées,
les opérateurs 4 et B commutent.

Proposition directe.  Nous supposons que 4B = BA. Soit alors C un opé-
rateur hermitien ne portant que sur les variables ... . Cet opérateur commute
évidemment avec A et avec B. Considérons alors I'opérateur ABC : cest un
opérateur complet qui commute avec C et aussi avec 4 et B puisque A par
hypothése commute avec B. D’ailleurs 4ABC est hermitien comme étant le
produit d’opérateurs hermitiens commutables. En appliquant le théoréme
du2¢casa ABCeta A4, on a en désignant par w/(x... y... z... u...) les fonctions
propres de ABC qui forment un systéme complet pour 'ensemble des variables

6) ofx..y..z..u.)=filz.. u.)elx..y..).
En appliquant le méme théoréme & ABC et a B, on obtient de méme

)] wfx...y..z..u)=gx ul)py..z.).

Les relations (5) sont donc démontrées. Si nous nous reportons aux remarques
faites a la fin de I'étude du cas 2, nous voyons que toute fonction ¢; satisfait
au moins & une relation de la forme (5) et qu’il en est de méme pour toute
fonction y,.

Proposition inverse. Nous supposons vraies les relations (5), les w; formant
un systéme complet. Nous avons alors

A(wj) - A(fji @) = aifji @; = o W;
et par suite
BA(wj) = o B(wj) = B(gjk X)) = o By ;.
De méme on a

B(wj) = B(gjk X = B I X = Br wj
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et par suite
AB(w) = B Alw) = B A(f;; @) = B 4 ;.
Donc

AB(w;) = BA(w))

et comme les w; forment un systéme complet, AB = BA. c.q.fd.

Un cas particulier intéressant est celui ol il n’y a aucune variable du type y,
c.-a-d. aucune variable figurant a la fois dans 4 et dans B. Nous dirons alors
que les opérateurs A4 et B sont indépendants et naturellement ils commutent.
Si alors nous désignons par 4,(u) les fonctions propres de I'opérateur C intro-
duit dans le raisonnement précédent, tous les produits

oix .Y ulz.) Au..)

sont fonctions propres de ABC et I'on aura

(8 wfx...z..u) = @fx..) ulz..) Au..)

ce qui revient a dire que dans (5),
Sifzou) = plz..) Au..)

et
ilx o u.) = @x..) Au..).

Il est a remarquer aussi que I'opérateur C introduit dans la démonstration
précédente est entiérement arbitraire a cela prés quil doit porter exclusivement
sur les variables u. Quand A4 et B commutent, il existe donc une infinité de
manieres d’écrire les relations (5) suivant le choix arbitraire de C.

2. COROLLAIRES DES THEOREMES PRECEDENTS

Un premier corollaire important des théoremes précédents est le suivant :
« Si 2 opérateurs complets 4 et B commutent, on peut, en prenant comme
fonctions de base leurs fonctions propres communes ¢;, ramener simultanément
les matrices 4 et Ba la forme diagonale. »



64 La commutation des opérateurs

En effet, les deux opérateurs commutant par hypothése admettent un méme
systéme de fonctions propres ¢; telles que

A; = o; @;; Boy = Py ¢ .

L’é1ément d’indices i, k de la matrice correspondant a I'opérateur 4 dans
le systtme des ¢; est

aikz\[ oF Ap, dr = “kj OF ¢ dt = oy Iy,
D p

et de méme I’élément d’indices i, k de la matrice correspondant a Popérateur B
est

bik:J‘ (PZFBqudT:BkJ OF ppdr = Py by .
D D

Les formules montrent immédiatement que les deux matrices A et B ont la
forme diagonale, les €léments diagonaux étant respectivement les valeurs
propres des opérateurs A4 et B.

Réciproquement, si pour un certain choix des fonctions de base ¢, les
matrices 4 et B correspondant aux opérateurs complets 4 et B prennent la
forme diagonale, ces opérateurs commutent.

En effet on a alors par hypothése

9 f oF Ap, dt = a; by J ¥ B, dt = by 6y, -
D D

Donc toutes les composantes de Fourier des fonctions A, et By, dans le
systeme de base des ¢; sont nulles sauf les composantes d’indices k qui sont
respectivement égales a a; et b,. On a donc

(10) AQ, = ay, ¢y Bo, = by ¢y .

Les fonctions ¢, sont donc a la fois fonctions propres de A4 et de Bet, en vertudu
théoréme fondamental AB = BA.

Le corollaire que nous venons de démontrer se généralise dans le cas ou
I'un au moins des 2 opérateurs A4 et B est incomplet. Les raisonnements sont
faciles a faire. Nous considérons seulement le cas de 2 opérateurs incomplets.
Voici alors I'énoncé du corollaire : « Si deux opérateurs incomplets 4 et B
commutent, il est possible par un choix convenable du systéme de base de
ramener les matrices A et B a la forme diagonale.»

Prenons, en effet, pour fonctions de base le systéme complet défini dans la
démonstration du cas 3 & l'aide d’'un opérateur C portant sur les variables
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qui ne figurent ni dans A4, ni dans B. Comme A et B commutent, par hypothése,
on a les relations (5) et par suite

(n
ayg = j w¥ Aw, dt = J of fulz...u..) Ap, dt = a,f ¥ o, dt = oy Oy
D D D
et de méme
(12)
by = J w¥ Bo, dt = J of gyfx...u..)Byjdt = ﬂjJ of o, dt = B; 0y
D D D

et la proposition est démontrée.

Réciproquement si 'on peut, par un choix convenable des fonctions de base,
amener simultanément les matrices 4 et B a la forme diagonale, les opérateurs
incomplets 4 et B commutent.

En effet, 'hypothese est ici qu'il est possible de trouver un systéme complet
de fonctions w; de toutes les variables x... y...z... u... tel que

J o} Ao, dt = a, O j w¥ Bw, dt = b, 0y, .
D D

On voit alors que toutes les composantes des fonctions Aw, et Bw, dans le
systéme des w; sont nulles sauf les composantes d’indices k, d’ou

(13) Awy, = a, oy By, = b, oy .

Les fonctions w, sont donc a la fois fonctions propres de 4 et de B et par suite,
en profitant de I'indétermination des fonctions propres de 4 et de Bs'il y a
deégénérescence, elles peuvent étre considérées comme proportionnelles a une
fonction propre de A et aussi a une fonction propre de B, ce qui nous permet
de poser

wfx..y..z..u.)=fiz. . u.)odx...y..)=gux...u..)x(y..z..)

et il résulte alors du cas 3 (proposition inverse) que 4 et B commutent.

De ce qui précede résulte naturellement que si deux opérateurs 4 et B
ne commutent pas entre eux, il est impossible de ramener simultanément les
matrices correspondantes & la forme diagonale. Ceci permet de démontrer
I'élégant théoréme suivant :

Théoréme : « Si deux opérateurs F; et F, commutent avec un troisi€éme
opérateur complet 4, mais ne commutent pas entre eux, alors 'opérateur 4
a nécessairement des valeurs propres multiples ».
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En effet, comme A4 et F; commutent, il est possible de choisir un systéme de
fonctions propres de 4 comme systéme de base ramenant simultanément les
matrices 4 et F, a la forme diagonale : soit ¢, ... @;... ce systéme de fonctions
propres. De méme, 4 et F, commutant, on peut trouver un systéme de fonctions
propres de A, soit @} ... }..., qui, pris comme de base, permet de ramener
simultanément les matrices 4 et F, a la forme diagonale. Mais si l'opérateur A
n’avait pas de valeurs propres multiples, le systéme de ces fonctions propres
serait déterminé sans ambiguité et les fonctions ¢; coincideraient avec les
fonctions ;. Il serait alors possible par un méme choix du systéme des fonctions
de base de ramener simultanément & la forme diagonale les matrices 4, F,
et F,. Or ceci ne peut pas étre exact puisque par hypothése F; et F, ne com-
mutent pas. Il faut donc que 4 ait des valeurs propres multiples. _

Comme exemple d’application de ce théoréme, considérons un systéme a
symétrie sphérique dont 'Hamiltonien H ne dépend que de la distance » 4 un
point central O pris comme origine des coordonnées. Nous avons vu que les
opérations M, et M, correspondant aux moments de rotation autour des axes
Ox et Oy ne commutent pas. Par contre ces opérateurs incomplets commutent
tous deux avec 'opérateur H comme on le vérifie aisément. On en conclut
que H admet des valeurs propres multiples : les états quantifiés d’'un systéme
a symétrie sphérique sont donc dégénérés, résultat bien connu dans I'étude de la
quantification.

Opérateurs ayant une fonction propre commune

Considérons 2 opérateurs 4 et B ayant en commun une fonction propre ¢.
Nous avons A(@) = ap; B = o d’ou

(14) (AB — BA) ¢ = [A, Bl ¢ = fAp — aBp = 0.

Or cette équation [4, B] ¢ = 0 ne peut étre vérifiee que dans 2 cas :

1) [4, B] = 0. Alors 4 et B commutent et admettent tout un systéme de
fonctions propres communes dont ¢ fait partie.

2) L’opérateur [4, B] n’est pas nul, mais il admet la valeur propre 0.

Alors A4 et B, bien que non commutants, pourront avoir en commun une
(ou plusieurs) fonction propre ¢ si ¢ est fonction propre de [4, B] pour la
valeur propre 0.

Comme exemple de ce 2¢ cas, considérons encore les opérateurs M, et M.
Ona

M, M| ==—M, #0.

o
2 mi

Ils ne commutent pas, mais M, a pour valeur propre m(h/2 n) avec m=0, l: 2.
et admet donc la valeur propre 0. Donc [M,, M,] admet la valeur propre 0. M,
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et M, ont en commun la fonction propre ¢ = Cte comme on le vérifie immé-
diatement (¢ = exp(— im(px)/\/ﬂ pour m = 0).

Un cas important est celui ou [4, B] est de la forme Cre x lopérateur 1.
Cest le cas des grandeurs canoniquement conjuguées pour lesquelles
[4, B] = (h/2 =i) 1. Comme la matrice unit¢é n’admet évidemment aucune
valeur propre nulle, les opérateurs 4 et B ne peuvent admettre aucune fonction
propre commune.

Notons que les considérations précédentes sont valables pour les spectres
continus.

3. MESURE SIMULTANEE DE DEUX GRANDEURS
D'APRES LA MECANIQUE ONDULATOIRE

Nous allons maintenant nous servir des théorémes et corollaires démontrés
plus haut pour étudier ia question de la mesure simultanée de deux grandeurs.

Dans la nouvelle Mécanique, nous faisons correspondre un opérateur
hermitien & toute grandeur mécanique. Etant donnés une grandeur et I'opé-
rateur 4 qui lui correspond, il est trés important de distinguer les grandeurs
dont les opérateurs commutent avec A de celles dont les opérateurs ne com-
mutent pas avec A. L'importance de cette distinction vient de ce que deux gran-
deurs mécaniques peuvent étre mesurées simultanément quand leurs opérateurs
commutent et dans ce cas seulement. C’est ce que nous voulons maintenant
montrer.

Nous partirons du postulat essentiel en Mécanique ondulatoire que tout état
d'un corpuscule ou d’'un systeme doit pouvoir a tout instant étre représenté
par une fonction d’onde  qui en réalité représente I'état de nos connaissances
sur ce corpuscule ou ce systéme a cet instant. Toute opération de mesure ou
d’observation des éléments microscopiques modifie I'état de nos connaissances
sur le corpuscule ou le systéme et par suite modifie brusquement la forme du i,
mais aussi bien avant 'acte de mesure qu’aprés, nous devons pouvoir représenter
I'état du corpuscule par une onde i : voila le postulat fondamental quadmet
la Mécanique ondulatoire et qu’il est essentiel de noter. Immédiatement aprés
une mesure ou une observation qui nous révéle quelque chese sur I'état des
¢léments inaccessibles & nos sens de la Physique atomique, nous pouvons
adopter une certaine forme d’onde ¥ qui représente I'état de nos connaissances
et a partir de ce moment tant qu’on ne fait pas d’autres observations ou mesures,
I'onde y évolue a partir de cette forme initiale conformément & I'équation des
ondes de la Mécanique ondulatoire et cette €évolution est rigoureusement
déterminée.

Si & une époque ultérieure une nouvelle mesure ou observation nous permet
d’assigner & une grandeur 4 une valeur précise «;, cette valeur est d’aprés nos
principes généraux une des valeurs propres de 'opérateur A et la fonction
d’onde ¥ aprés la mesure devra €tre proportionnelle 4 une fonction propre @;
correspondant a «;. Si 'on recommengait immédiatement aprés la mesure de 4
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une nouvelle mesure de A4, on serait certain d'aprés les principes généraux de
lui retrouver la valeur «; (répétabilité de la mesure). Donc pour qu’on puisse
mesurer simultanément avec exactitude la grandeur 4 et une autre grandeur B
de valeur propre f; et de fonction propre y;, il est nécessaire qu'apres la mesure
la fonction d’onde Y puisse étre a la fois proportionnelle & une des ¢; et 4 une
des y; sans quoi la représentation par une onde  de Iétat de nos connaissances
apres la mesure ne serait pas possible.

Appliquons d’abord cette idée a 2 opérateurs A et B complets. Pour que les
grandeurs correspondantes puissent étre simultanément mesurées avec
précision, il faut qu’aprés la mesure on puisse avoir ¥ = a; ¢; = b; x; avec
a;| = | b;| = 1, une correspondance biunivoque convenable ayant été établie
entre les ; et les f; (de fagon que les quantités de méme indice se correspondent).

1l faut donc que le systeme des ¢; coincide avec celui des y; et nous savons
que la condition nécessaire et suffisante de cette coincidence est AB = BA.
La mesure précise et simultanée de 4 et de B n’est possible que si leurs opé-
rateurs commutent. Les deux mesures sont alors entierement liées 'une a
l'autre : la connaissance du résultat de 'une entraine celle du résultat de 'autre,
tout au moins quand il n’y a pas de valeurs propres multiples.

Prenons ensuite le cas ou 4 est complet et B incomplet (cas 2, p. 59). Nous
voulons qu’on puisse avoir aprés lamesure ¥ = a; @; = fu(y ...) x{x ...) avec

la;| = let |... ||fu|*dy = 1quel quesoit i. Or nous savons que la condition

nécessaire et suffisante pour qu’il en soit ainsi est encore AB = BA4. Mais ici
les 2 mesures simultanées ne sont jamais entiérement liées. En effet, nous avons
vu qua une valeur de k peuvent correspondre plusieurs valeurs de i. Si donc
on connait le résultat , de la mesure de B, cette connaissance n’entraine pas
en général la connaissance de la valeur o; de A.

Prenons encore le cas ou 4 et B sont tous deux incomplets. Nous reprenons
ici les notations du cas 3 (p. 61). Pour que A4 et B soient simultanément mesu-
rables avec précision, il faut avoir apres la mesure

(15) U=filzoou.)ox...y..) =gulx..u.) ulz...y..)

quel que soit i avec les conditions

(16) J j]jﬂ(z u.)|Pdudz=1 et J J| galx..ou.)Pdudx = 1.

Dans le 3¢ cas étudié, p. 61, pour qu’il en soit ainsi il faut et il suffit que
AB = BA. Ici les deux mesures sont moins liées que dans le cas précédent car
il peut exister plusieurs valeurs de j correspondant 4 une méme valeur de i et
plusieurs valeurs de j correspondant 4 une méme valeur de k. La connaissance
du résultat d’'une des mesures n’entraine pas en général le résultat de la connais-
sance de l'autre mesure.

Enfin supposons que A4 et B soient des opérateurs indépendants. Iis sont alors
nécessairement commutables et en leur adjoignant un opérateur C portant sur
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les variables non contenues dans 4 et B, on obtient un systéme complet de
fonctions de base pour toutes les variables en prenant les fonctions propres w;
de 'opérateur complet ABC. Aprés la mesure, la fonction y pourra se réduire
aI'une quelconque des wj, c.-a-d. étre de la forme

(17 Vo=ciw;=cp Mu.)olx )y )

avec | ¢;| = 1; i, k, [ ayant des valeurs entiéres quelconques. Ceci signifie qu’il
est toujours possible de mesurer simultanément les grandeurs A4 et B et que les
résultats des 2 mesures simultanées sont totalement indépendants. La connais-
sance du résultat de I'une n’apprend rien sur le résultat de I'autre.

En résumé, la condition nécessaire et suffisante pour que deux grandeurs
A et B soient simultanément mesurables est que leurs opérateurs commutent.
Les résultats de la mesure simultanée de 4 et B, quand clle est possible, sont
plus ou moins 1iés 'un a autre suivant le caractére complet ou incomplet des
opérateurs.

La considération des cas des opérateurs indépendants conduit 4 la notion
de « mesure maximale ». Supposons que le corpuscule ou le systéme soit défini
par n coordonnées x; ... x,. A chaque coordonnée x; faisons correspondre
une grandeur mesurable dont 'opérateur A4; n’intéresse que la variable x;.
Soient o et @ les valeurs propres et fonctions propres de A.;.

Nous obtenons un opérateur complet en considérant le produit de tous les 4,

n
soit H A; les fonctions propres de cet opérateur sont les produits
1 13

n

w; =[], o).

1 13

Les A4; étant indépendants, les grandeurs correspondantes sont simultané-
ment mesurables : supposons que nous les mesurions toutes dans un méme
acte de mesure. Apreés cette mesure, le y aura la forme

n

1 ¥

en supposant que la mesure de A4; a fourni la valeur propre of’ correspondant
a la fonction propre ¢f’. On aura alors effectué une observation ou mesure
« maximale » déterminant complétement la fonction i et par suite la pro-
babilité des valeurs possibles de toutes les grandeurs mesurables attachées
au systéme. La mesure d’une autre grandeur mesurable B en méme temps que
celle des A; est ou bien impossible si B ne commute pas avec le produit de 4,
ou bien possible, mais sans intérét dans le cas contraire car alors cette mesure
ne nous apprend rien de plus sur I’état du systéme dont la mesure simultanée
de tous les 4; nous fournit une connaissance « maximale ».
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4. EXEMPLES DE GRANDEURS NON SIMULTANEMENT
MESURABLES. DISTINCTION DE DEUX SORTES DE
NON-COMMUTATION

L’exemple le plus connu de grandeurs non simultanément mesurables est
celui d’une coordonnée g et de la composante conjuguée p de quantité de
mouvement. Si Q et P désignent les opérateurs correspondants, on a

h 0 h
(18) Q=qX P——z—ni% QP—PQ_H

car
h \ @ h\ 0 ok
q<— 2_7u> oq _<_ m)a—q[qf(q)]—z—mf(q).

Les grandeurs g et p ne sont donc pas simultanément mesurables. S’il y a
plusieurs g soit ¢, ... g; ... on a naturellement Q, P; = P; Q, et comme

Q:i0=0.Q; et PP =PFP,

on voit quon peut toujours mesurer simultanément deux coordonnées ou
deux composantes de quantité de mouvement ainsi qu'une coordonnée et une
composante non conjuguée de quantité de mouvement. Seule la mesure simul-
tanée d’'une coordonnée et de la composante correspondante de quantité de
mouvement est impossible.

Dans le cas d’'un corpuscule défini par trois coordonnées x, y, z auxquelles
sont conjuguées les trois composantes rectangulaires de quantité de mouve-
ment p,, p,, p,, on retrouve I'impossibilité de connaitre simultanément les
quantités conjuguées x et p, etc. que nous avions précédemment pu déduire de la
représentation des ondes ¥ par des intégrales de Fourier. Les relation d’incer-
titude d’'Heisenberg se déduisent, nous reviendrons sur ce point, des relations
QP — PQ = h/2 ni. Plus généralement si dans un probléme mécanique, p et g
sont des variables canoniquement conjuguées, on a toujours QP — PQ =h/2 ni.
Ainsi 'angle d’azimut autour d’un axe polaire Oz est canoniquement conjugué
de la composante M, du moment cinétique autour de Oz. Comme & M, corres-
pond l'opérateur — Z%%’ on a bien en opérateurs oM, — M, ¢ = h/2 ui

z

Dans le cas que nous venons d’étudier les deux opérateurs non commutants
sont tels que [4, B] = ¢, ¢ étant une constante ici égale a #/2 ni. Les grandeurs
canoniquement conjuguées appartiennent a la catégorie générale des grandeurs
non simultanément mesurables dont le commutateur est égal a une constante.
Mais il existe une autre catégorie de grandeurs non simultanément mesurables :
celles dont le commutateur est égal a un opérateur non nul.

Ceest le cas des grandeurs M, et M, par exemple puisqu’on a

h

[Mx’ My] = 2—7UMZ
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La différence essentielle entre ce type d’opérateurs non commutants et le type
précédent provient du théoréme énoncé p. 66. En effet, deux opérateurs non
commutants 4 et B ne peuvent avoir aucune fonction propre commune si le
commutateur est égal & une constante ¢ car 'opérateur c¢.1 n'a pas de valeurs
propres nulles : les grandeurs correspondant a deux tels opérateurs ne sont
jamais simultanément mesurables.

Au contraire, si les deux grandeurs non commutantes ont leur commutateur
égal 4 un opérateur, 4 et B pourront avoir des fonctions propres communes si
[4, B] a des valeurs propres nulles. Il pourra alors accidentellement arriver
que la mesure simultanée de A et de B puisse s’effectuer et elle fournira alors
pour valeurs de A et de B des valeurs propres correspondant a 'une des fonc-
tions propres communes. Par exemple, dans le cas de M, et de M, comme le
commutateur [M,, M,] ~ M, admet la valeur propre 0 avec la fonction propre
¢o = Cte = 1/2 7, une mesure simultanée de M, et de M, peut exception-
nellement permettre de leur attribuer les valeurs M, = 0 et M, = 0 qui
correspondent aussi a la fonction propre ¢, = 1 /\/ﬁ. Mais en général il est
impossible de mesurer simultanément M, et M, (*).

Lorsque nous ¢tudierons le théoréme relatif & la dispersion de deux grandeurs
non commutantes, nous verrons a nouveau fintérét qu'il y a a distinguer les
grandeurs non commutantes dont le commutateur est une constante des
grandeurs non-commutantes dont le commutateur est égal a un opérateur.

Nota : On peut noter que si 'on a [4, B] = ¢ 1 la constante ¢ est toujours
proportionnelle & A car pour 7 — 0 A4 et B doivent commuter puisqu’on revient
alors 4 la Mécanique classique. Dans ce cas, on peut donc toujours se ramener
au cas de grandeurs canoniquement conjuguées.

() En réalité la fonction propre de M, pour la valeur propre 0 est f(p +z)
en coordonnées cylindriques autour de Oz et les fonctions propres de M, et M,
pour les valeurs propres 0 ont des expressions analogues de sorte que la fonction
propre commune a M,, M,, M, pour les valeurs propres O est F(r) = F(p* +z%) :
elle représente un état & symétrie sphérique.



CHAPITRE VII

IMPOSSIBILITE PHYSIQUE
DE MESURER SIMULTANEMENT
LES GRANDEURS CANONIQUEMENT
CONJUGUEES

1. NECESSITE  D’EXAMINER L’ IMPOSSIBILITE DE MESURER
SIMULTANEMENT AVEC PRECISION DEUX GRANDEURS
CANONIQUEMENT CONJUGUEES

Nous avons montré que, suivant la Mécanique ondulatoire, il doit étre
impossible de mesurer simultanément avec précision deux grandeurs non
commutantes et, en particulier, deux grandeurs canoniquement conjuguées.
Cette impossibilité est déduite du postulat fondamental suivant lequel il doit
étre possible de représenter I'état de nos connaissances sur un systéme par une
onde t, aussi bien aprés qu’avant une expérience de mesure. Si deux grandeurs
canoniquement conjuguées pouvaient €étre simultanément mesurées avec
précision, il serait impossible de représenter I'état du systéme aprés la mesure
par une onde i et il faudrait abandonner la Mécanique ondulatoire.

Mais I'on peut se demander si réellement il est impossible d’effectuer une telle
mesure simultanée de deux grandeurs conjuguées et quelle est 'origine physique
de cette impossibilité. De fines analyses développées tout d’abord par MM. Bohr
et Heisenberg ont montré qu’effectivement il ne parait pas possible d’imaginer
des expériences permettant de mesurer simultanément deux grandeurs conju-
guées avec une précision supérieure a celle que permettent les inégalités
d’incertitude d’Heisenberg. Les longues discussions que soulevérent les raison-
nements de MM. Bohr et Heisenberg ont tourné a leur avantage et aujourd’hui
leur thése parait admise par tous les physiciens qui ont séricusement étudié
la question.

Ces raisonnements ont de plus I'intérét de montrer que 'impossibilité de la
mesure simultanée précise de deux grandeurs conjuguées a son origine dans
existence méme du quantum d’action mesuré par la constante / de Planck.

Comme la constante A de Planck est négligeable du point de vue macrosco-
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pique, la mesure simultanée de deux grandeurs conjuguées est pratiquement
possible dans les phénomeénes macroscopiques parce qualors I'imprécision
des mesures masque les incertitudes quantiques : mais a I'échelle des phéno-
menes corpusculaires ¢€lémentaires, 4 n’est plus du tout négligeable et les
incertitudes quantiques jouent un rdle essentiel

Nous allons étudier quelques-uns des exemples donnés par Bohr et Heisen-
berg.

2. LE MICROSCOPE D’HEISENBERG

M. Heisenberg a développé le célébre argument connu sous le nom de
microscope d’Heisenberg en supposant qu’on observe dans un microscope
optique un électron placé sur le porte-objet. Cette expérience est évidemment
irréalisable, mais on peut la présenter sous une forme qui se rapproche davan-
tage de ce qui est réalisable en pratique.

Considérons un microscope optique ou corpusculaire (électronique) et
supposons que nous examinions a I'aide de cet instrument un objet de masse M
suffisamment petit pour étre considéré comme ponctuel et qui est placé sur le
porte-objet du microscope.

X
T
*x M -—
8 —
0
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L’objet est « éclairé » par des corpuscules de méme énergie arrivant paral-
lelement a 'axe du microscope. Soit p leur quantité de mouvement ; la longueur
associée est 4 = h/p. Les corpuscules incidents sont des photons si le micro-
scope est un microscope optique, des électrons (ou éventuellement des protons)
si le microscope est un microscope corpusculaire.

Si le microscope était parfait, c’est-a-dire si les aberrations et les effets de
diffraction étaient négligeables, au point objet M correspondrait dans le plan
objet 7 une image ponctuelle P. Les aberrations peuvent étre rendues trés
faibles (en microscopie optique par un choix convenable des lentilles, en
microscopie corpusculaire par emploi d’'une ouverture 2 ¢ trés petite). Mais
on ne peut jamais supprimer le phénoméne de diffraction di au passage de
I'onde ¥ associée aux corpuscules éclairant a travers ouverture limitée de
l'appareil. La théorie du pouvoir séparateur du microscope nous apprend que
I'observation du point image ne permet de déterminer la position du point
objet sur 'axe des x qu’avec une incertitude égale a 6x = A/2 sin ¢ S’il n’y avait
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pas de diffraction (ni d’aberrations), I'arrivée d’un corpuscule en P (phénomene
observable en principe) permettrait d’assigner une position précise au point M.
Mais lintervention inévitable de la diffraction a pour résultat que larrivée
d’un corpuscule en P ne permet de localiser M sur 'axe des x qu’avec I'incer-
titude dx = h/2 sin &. On voit que cette incertitude existe indépendamment
de 'intensité du faisceau éclairant puisqu’on peut 'évaluer en considérant un
seul corpuscule diffusé par I'objet ponctuel.

La diffusion des corpuscules incidents par Yobjet est le résultat d’une bréve
interaction, d’'un choc, entre I'objet et le corpuscule. Au cours de cette inter-
action, 'échange de quantité de mouvement entre le corpuscule en mouvement
et 'objet supposé primitivement immobile doit étre faible, sans quoi Ponde
associée au corpuscule diffusé aurait une longueur d’onde différente de celle du
corpuscule incident et I'on n’aurait plus d’'image réguliére. Pour traiter le
probléme, il faudrait méme considérer le systéme formeé par 'objet et le corpus-
cule et envisager I'espace de configuration du systéme. On peut donc admettre
que la quantité de mouvement | 7 | du corpuscule diffusé est égale a | | = A/ ).

Aprés le choc, le corpuscule diffusé a une quantité de mouvement p’ qui fait
langle o avec la direction primitive du mouvement (direction de I'axe du
microscope) et comme, pour que le corpuscule diffusé puisse intervenir dans la
mesure il faut qu’il pénétre dans le microscope, on a | « | < &. Soit enfin P, la
composante le long de Ox de la quantité de mouvement de 'objet apres le choc.
On peut écrire la conservation de la quantité de mouvement le long de Ox
pour le systéme objet + corpuscule incident, ce qui donne

) P.=p'sina~psina = h/A)sinao
P, a donc une valeur comprise entre
—(hfAi)sine et +(h/A)sine.

L’incertitude sur la valeur de P, est donc (2 A/ 1) sin &. Aprés avoir constaté
I'arrivée d’un corpuscule en P, I'observateur ne connait donc I'abscisse x et la
composante de quantité de mouvement P, de I'objet qu'avec les incertitudes

2 Ox = Af2sin ¢ OP, = 2(h/A) sin ¢
d’ol
Ox.0P. = h.

Nous mettons > parce que le signe d’égalité suppose que toutes les obser-
vations soient parfaites, que les aberrations soient nulles, etc.

Nous avons retrouve ainsi la relation d’incertitude pour les grandeurs
conjuguées x et P, et nous voyons que ces grandeurs ne peuvent, du moins
dans le cas étudié, jamais étre déterminées avec une entiére précision.

Le raisonnement montre que cette circonstance est due a la valeur finie de la
constante 4. Si 'on voulait augmenter la précision sur x, il faudrait diminuer A
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en prenant des corpuscules incidents plus rapides. Mais alors (et c'est ici
qu’intervient la valeur finie du quantum d’action), la quantité de mouvement
| | des corpuscules incidents augmente puisque | p| = A/ et que 4 est fini.
D’oil augmentation de 6P, et 'on a toujours la relation d’Heisenberg. L’impos-
sibilité d’enfreindre la liaison créée entre dx et P, par I'existence du quantum
d’action apparait comme I'origine profonde de la relation d’Heisenberg et ceci
porte a croire quon doit la retrouver quel que soit le dispositif de mesure
utilisé.

3. MESURE DE LA VITESSE D'UN ELECTRON AU MOYEN DE
L’EFFET DOPPLER

Etudions maintenant la mesure de la vitesse d'un électron par Ueffet Doppler.
Supposons qu’un électron se déplace avec la vitesse v dans la direction positive
d'un axe Ox. On envoie sur cet électron un train d’ondes lumineuses de longueur
d’onde moyenne A qui se propage le long de Ox dans le sens négatif S’il y a
diffusion le photon diffusé pourra subir un renversement de sa vitesse et étre
renvoyé dans le sens des x positifs. Supposons que cela se produise et que nous
puissions mesurer exactement la fréquence v' diffusée. Pour simplifier suppo-
sons la vitesse de I'électron trés inférieure a celle de la lumicre et écrivons les
équations qui traduisent la conservation de I'énergie et de la quantité de
mouvement :

1 2 g 1 P _hv _ ,
3 hv+§mov = hv t5mov Mo v — — = Mo +—c—

v’ étant la vitesse finale de I'électron. En €liminant v’ entre les deux équations
il vient

’ 1 hz 7 2 h V2

4 My — V) = SO+ V) =2mpo—(v + V) |.

2mg| c c

Posons v = v — ¢ en remarquant que ¢ est faible et que par suite ¢ Uet g
¢

sont négligeables ainsi que

hv car hv 10713
meec>  107°

€
mg 2

est aussi petit. Finalement on trouve

2
e =2 hv2—2£v
Mg € ¢
d’our
(%) v’=v—s=v[1—2hvz+—2—v}.
mg ¢ ¢
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Cette formule résume dans le cas considéré avec les approximations admises
a la fois I'effet Doppler représenté par le terme 2 v/c et 'effet Compton repreé-
senté par le terme — 2 hv/m, c*. L'effet Compton perturbe la vitesse de I'élec-
tron et si nous voulons mesurer celle-ci avec précision par l'effet Doppler,
il nous faut rendre 'effet Compton négligeable devant l'effet Doppler, ce qui
hvimg ¢?

vjc T myvd
notable et nous pourrons poser

conduit a prendre tres petit. Alors effet Doppler sera seul

vi=v[l +20v/c] et A=Al —2v/).

Mais le train d’ondes a forcément une longueur finie / : par suite, il n’est pas
rigoureusement monochromatique et si nous introduisons le nombre d’ondes
1/4, ce nombre d’ondes variera pour les diverses ondes monochromatiques du
train de la quantité 5(1/4) avec 6(1/4) ~ 1/l d’aprés la théorie de la représen-
tation des trains d’ondes par des intégrales de Fourier. Donc, méme en mesurant
A’ sans aucune erreur expérimentale, il restera encore une incertitude sur la
. , ¢ A . .
valeur de v car celle-ci est donnée par v = 3 <l — 7) et lincertitude sur A
entraine par suite une incertitude sur v égale a

¢ ., 1

de sorte que I'incertitude sur la quantité de mouvement de I'électron le long de
Ox aprés la mesure est

(6) Opy = mcAj2 1.

Mais la mesure simultanée de la coordonnée est, elle aussi, affectée d’une
incertitude. En effet, 'effet Compton, bien que faible par hypothése devant
l'effet Doppler, existe néanmoins et provoque, nous 'avons vu, une variation
de vitesse égalea v' — v ~ — 2 hv/my ¢ = — 2 h/my A. Supposons la position
initiale du corpuscule bien connue, ce qui est nous placer dans le cas le plus
favorable. 11 subsistera une cause d’incertitude sur la position aprés la mesure
due au fait suivant : on ne sait pas & quel instant de la durée //c du passage
du train d’ondes sur 'électron on doit rapporter la diffusion et il en résulte une
incertitude dx sur la position finale de I’électron égale a

Nl 2h 1
On a donc dans le cas le plus favorable

5x-(5px:m—cf'%'é:h

et Ton retrouve lincertitude d’Heisenberg.
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4. PASSAGE D’'UN CORPUSCULE AU TRAVERS D’UN DIAPHRAGME
RECTANGULAIRE

Comme autre exemple, nous prendrons encore la détermination de la posi-
tion d’'un corpuscule, grace a son passage a travers une ouverture rectangulaire
de cbtés 2 a et 2 b percée dans un écran plan. Pour définir les coordonnées du
corpuscule, on sera amené a prendre une ouverture trés petite, mais plus on
diminue les cotés 2 @ et 2 b de Pouverture rectangulaire, plus on augmente
I'importance des phénoménes de diffraction que la traversée de cette ouverture
provoque suivant les idées de la Mécanique ondulatoire.

Pour introduire ici la quatri¢me relation d’incertitude dont nous n’avons pas
encore parlé et que nous étudierons plus compleétement plus tard, nous pour-
rons supposer qu'a l'effet de déterminer l'instant du passage du corpuscule
dans l'ouverture, on emploie un volet mobile permettant de découvrir ou
d’obturer instantanément I'ouverture. Plus on diminuera par une manocuvre
rapide du volet le temps d’ouverture, mieux sera déterminé I'instant du passage,
mais en méme temps le train d’ ondes associ€ au corpuscule se trouvera raccourci
en proportion; la monochromaticité du train d’ondes en sera diminuée et
I'énergie du corpuscule sera de moins en moins bien définie. D’ot la quatriéme
relation d'incertitude oW.ot = h.

Pour examiner mathématiquement le probléme, prenons le centre de 'ouver-
ture rectangulaire comme origine des coordonnées, les axes Ox et Oy parallCles
aux cOtés 2 aet 2 b de 'ouverture, I'axe des z normal a 'ouverture avec son sens
positif dans le sens de la propagation de la lumiére. Soient M de coordonnées X,
Y, O un point de 'ouverture et dX dY un petit rectangle entourant ce point.
Le principe d’'Huygens permet, on le sait, de calculer la valeur de I'onde élé-
mentaire envoyée par le petit rectangle dX dY dans une direction dont les
cosinus directeurs sont a, 5, y et qui fait un trés petit angle avec Oz. Si x, y, z
désignent les coordonnées d’un point trés éloigné dans la direction ofy,
I'onde élémentaire en question a pour expression

®) dp,, = KdX dY exp<2 m'liv[ _ox — X) +§(}’ -Y)+ Zil) ,

ol K est un coefficient qui varie avec la direction «ffy, mais beaucoup plus
lentement que l'exponentielle. Nous avons posé y ~ 1. L’onde résultante
envoyée dans la direction «ffy est donc

©)] Wap = Cexp<2 ni[vt — MMJ)
avec

(10) C=A+iB= UKexp<2mﬁ;ﬁchzy>
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Pintégrale étant étendue a 'ouverture rectangulaire. La symétrie de l'ouverture
montre de suite que B est nulle de sorte que C se réduit a

an C=A=HKcos2n5XI—ﬂYdXdY.

Le cosinus peut se remplacer par la somme d’un produit de cosinus et d’un
produit de sinus et le produit de sinus donne une intégrale nulle. On a donc

a b 2
(12) A=4K | dX coszm{X{ chosZnB—Y = I§/1 sinznaasinznﬂb
o o A waf A A
d’otr
2
(13) W, = n’fiﬂ sin> ’;“" sin2 ’Zﬁb exp<2 ni[vt - %}) .
oa fb S
Y/, est donc nul pour 2 = - = kretpour2n 7= kn avec k entier, C’est-a-
. — . ki . kA
dire dans les directions pour lesquelles on a soit & = 5 Soit p = h

¥.p €st, au contraire, maximum dans les directions pour lesquelles on a,

2kl Ao 2kt A

x 7 3 P 7 2b

On obtient donc ce que 'on nomme un phénoméne de diffraction localisé a
Pinfini. Pour 'observer, du moins dans le domaine optique, on placera une
lunette dont I'axe optique coincidera avec Oz. S'il i’y avait pas de diffraction,
on observerait seulement une image de 'ouverture rectangulaire située dans
le plan focal de la lunette sur Paxe optique. Mais a cause de I'existence d’ondes
planes monochromatiques inclinées sur I'axe, on obtient aussi une série d’autres
images correspondant aux maxima de ¥, L’intensité de ces images décroit
quand k s’éléve (puisque « et S figurent au dénominateur dans 'expression de
l/joz[})'

En résumé, 'onde plane qui tombe sur I'écran est de la forme

(19 Y =a exp[2 7ti<vt — %)]

mais le passage a travers I'ouverture rectangulaire la transforme en un ensemble
d’ondes planes de normales peu inclinées sur 'axe des z et de la forme

(15 Yy = ala f) exp<2 ni[vt - a_x_—l%ﬁ_z])

ap
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les amplitudes partielles a(a, ) présentant en fonction de o et de § des maxima
et des minima successifs. Comme lintensité des ordres successifs diminue
rapidement, on voit que 'extension du groupe d’ondes par rapport a la variable
o est mesurée par do = k;(4/2 a) = A/2 a, k, désignant un petit entier positif
qui correspond a Pordre de diffraction le plus €leve dont Vintensité soit sensible.
De méme l'extension du groupe en f sera 68 = k,(A4/2b) = 1/2 b.

Si alors ji désigne le vecteur « nombre d’ondes » correspondant a I'onde
diffractée de direction de propagation afiy, c’est-a-dire le vecteur de longueur
|+ porté dans la direction affy, on a

(16) pe = /A p. = B/A = y/d =1/
Les variations maximales de p, et u, sont du, = da/i et ou, = off/~ d'ou
(17 o, = 1/2a o, = 1/2b.

Or la position du corpuscule quand il traverse 'ouverture est connue avec des
incertitudes éx = 2aetdy = 2 b, don

Oy 0x = 1 op,.0y = 1.

Mais la relation fondamentale |p| = h/A peut s'écrire
P=hi
d’ou
Op-0x = h op,.0y = h

et nous retrouvons encore les inégalités d’Heisenberg,

D’autre part, si nous voulons déterminer la coordonnée z du corpuscule
et I'époque ¢ de son passage a travers 'écran, nous devons employer un volet
mobile comme cela a été expliqué plus haut. Soit 7 le temps pendant lequel
le volet est enlevé. L'incertitude sur ¢ est évidemment égale a 7, celle sur z a U,
U étant la vitesse de groupe des ondes {y qui, nous le savons, est égale a celle
du corpuscule. Donc

ot =1 oz = Ur.

Mais en n’ouvrant 'ouverture que pendant le temps 7, nous ne laissons passer
a travers 'ouverture qu'un train d’ondes limit¢ et ce train d’ondes est composé
d’ondes monochromatiques occupant un intervalle spectral au moins de
Fordre de 1/7 : 6v = 1/r. On a donc

5(1) _ Ay 1 1 a1/%)

<
\%

7 v U U7 &

Pratiquement on aura donc dv = 1/t et &(1/4) = 1/Ut. Or, d’aprés les
principes généraux de la Mécanique ondulatoire, l'incertitude sur I’énergie



80 La mesure des grandeurs conjuguées

finale du corpuscule sera 4 v et I'incertitude sur la composante p, de quantité
de mouvement est £ du, ~ A J(1/2). On a donc

SW.6t = h 0p,.0z = h.

Ce sont les deux autres relations d’incertitude d’Heisenberg,

5. REMARQUE IMPORTANTE SUR LA MESURE DE LA VITESSE

Nous venons de constater sur quelques exemples que les procédés de mesure
de deux grandeurs canoniquement conjuguées conduisent aux inégalités
d’Heisenberg.

On peut étre cependant tenté de faire l'objection suivante. A l'instant £,, on
peut effectuer une expérience montrant que le corpuscule est situ¢ au voisinage
d’un point A4 de I'espace, puis a une époque postérieure ¢, une autre expérience
montrant que le corpuscule se trouve alors au voisinage d’un autre point B
de T'espace. Si le temps 1, — ¢; est suffisamment long, on aura semble-t-il
une trés bonne détermination de la vitesse en posant v = AB/(1; — ¢;) et 'on
pourra dire que 'on connait a la fois la position et la quantité de mouvement
du corpuscule d’'une fagon précise, ce qui est contraire aux relations d'Heisen-
berg.

Mais ce n’est 14 qu'une apparence. On doit, en effet, d’abord remarquer que
si Ton effectuait la mesure de vitesse envisagée pour un grand nombre de
corpuscules dans le méme état initial, on trouverait des résultats différents.
En effet, on peut démontrer que le train d’ondes ¥ de trés petites dimensions
qui correspond a la localisation du corpuscule prés de A par la premicre
expérience, s'étale rapidement pendant sa propagation et occupe une grande
étendue au bout du temps, par hypothése trés long, 1, — ;. D’aprés le principe
des interférences, il y aura au temps ¢, une grande région de 'espace ou le
corpuscule pourrait se trouver et 'ensemble des expériences envisagées four-
nirait une série de points B différents.

De méme, et ceci est le point capital, on ne peut pas dire que I'on connaisse
simultanément par la mesure envisagée la position et la quantité de mouvement
du corpuscule. En effet, tout d’abord la vitesse v = AB/(1, — ;) n’est évidem-
ment connue qu’apres la 2¢ observation : on ne peut donc pas dire qu’il y ait
connaissance simultanément a ’instant t, de la position et de la vitesse. Cette
connaissance existe-t-elle a I'instant 7, ? La 2¢ observation nous donne bien
la position B du mobile et permet, si 'on veut, de lui attribuer dans l'intervalle
de temps une trajectoire rectiligne AB décrite avec la vitesse v = AB/(1, — t,),
mais ce qui importerait ce serait de connaitre aprés la 2¢ observation la quantité
de mouvement du mobile, mais 'observation de la position B trouble comple-
tement I'état de mouvement de sorte qu'on ne peut aucunement attribuer au
corpuscule localisé en B la vitesse v calculée et 'on ne peut pas se servir de
celle-ci pour prévoir I’évolution postérieure du mouvement. La vitesse v n’est
connue qu'au moment ou elle ne représente plus rien. La Mécanique ondu-
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latoire, comme toutes les théories physiques, a pour but la prédiction et est
donc toujours tournée vers I'avenir. Ce qui Uintéresse, cCest I'état de nos con-
naissances aprés chaque observation : or, aprés la 2¢ observation comme apres
la Ire, si nous connaissons exactement la position du corpuscule, nous ignorons
complétement sa vitesse. L’hypothése méme d’attribuer rétrospectivement
a la vitesse la valeur v dans l'intervalle de temps (¢4, t,) est arbitraire car, aucune
observation n’ayant eu lieu dans cet intervalle de temps, affirmer que le cor-
puscule a décrit la droite 4B d’'un mouvement uniforme est une affirmation
arbitraire.

6. CAS DE DEUX GRANDEURS DONT LE COMMUTATEUR EST
UN OPERATEUR NON NUL

Nous avons examiné le cas des tentatives de mesures simultanées de deux
quantités canoniquement conjuguées et nous avons vu que la précision obtenue
est toujours limitée par les relations d’Heisenberg. Mais les quantités conjuguées
appartiennent a la premiére catégorie de grandeurs non commutantes : celles
dont le commutateur est une constante. Peut-on arriver a des conclusions
analogues pour les grandeurs non commutantes de la 2¢ espece : celles dont le
commutateur est égal a un opérateur non nul ? Nous allons examiner cette
question dans le cas le plus important au point de vue physique, celui des
composantes M, M, M, du moment cinétique

Pour raisonner sur un cas trés simple, considérons un électron qui tourne
sur une trajectoire circulaire quantifiée 3 un magnéton de Bohr avec une vitesse
constante v. Le moment magnétique .# et le moment cinétique M de ce courant
particulaire sont

b Larr—1-5=R oy moR

(18) A= TR 2¢

aln

(en supposant v € ¢). D’ou la formule bien connue qui est valable pour tout
systéme de charges en mouvement (quand on néglige le spin) ainsi qu’Einstein
Pa démontré

eh

4 wmy, ¢

e
2mgyc

CRRE N _ h .
(19) d’ou si M‘ﬂ M =

SEN

Nous voulons mesurer M en mesurant .# par 'action du courant particulaire
sur un magnétomeétre placé a la distance r du courant particulaire.

Si [ est le moment magnétique de laiguille du magnétométre, le champ
produit par le magnétometre a endroit ou se trouve le courant particulaire
sera de I'ordre p/r®. D’autre part, pour mesurer exactement .#, nous devons
a laide du magnétomeétre évaluer exactement le champ magnétique exercé
par le courant particulaire & 'endroit ou se trouve le magnétomeétre, champ qui
est de 'ordre de .#/r>. 1l faudra donc connaitre ce champ avec une incertitude

L. pE BroGui., 5
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AH = (#r®) n avec 5 <1, donc connaitre Pénergic du magnétométre Zﬁ
avec une incertitude de I'ordre de 4E = u AH = u(#/r®) . La 4¢ relation
d’incertitude d’Heisenberg exige alors que la durée de 'expérience soit au moins
égale & At = h/AE = hr’/u n. Or, pendant cette durée, le courant particu-
laire soumis au champ magnétique ~ p/r’ = H' du magnétométre va préces-
ser autour de ce champ avec la vitesse angulaire de précession de Larmor
o = eH'/2 m, c. En effet, si nous représentons le petit aimant équivalent au

courant particulaire placé dans le champ H’, on aura d’aprés le théoréme du

mouvement cinétique dM/dt = moment par rapport 4 0 de la force exercée
— — N A > —

par H' sur .4. Le moment de la force étant normal & H’, langle 6 entre M et

H’ est constant car %(M cos ) = 0, et en projetant sur le plan normal a H

(20) Q[Msma{c,o“”}]:H',/%sma{_‘“”“’}
dt sin @ cos ¢
ou
) M{’S’”"’}w=ﬂw{_”w},
cos @ cos @

o ¢tant la vitesse angulaire de précession de I'aimant .# autour de la direction
H’. On a donc bien

LM eH’
cO_Hﬁ_Zmoc

cq.fd. .

La rotation _e_f)fectuée par Yaxe du courant particulaire, ¢.-a.-d. par le vecteur
M autour de H' pendant la durée de 'expérience sera

e u hr? eh 1

1 2n
2mocﬁuﬂn_2mocﬂ;

n

o =qwAat ~ > 2.
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L’axe du circuit particulaire accomplit donc pendant lexpérience un grand
nombre de tours autour de la direction de H' et seule la composante de .#, et
donc celle de M le long de 74 peut étre mesurée. On voit donc que la mesure
d’une composante de M ne peut se faire en méme temps queﬁc):lle d’une autre
composante, conforggémelt) au fait que les composantes de M ne commutent
pas. Cependant si 4 et M sont nuls, le magnétométre permettra de vérifier
que les 3 composantes de ces vecteurs sont nulles : dans ce cas exceptionnel,
la mesure simultanée des composantes sera possible, et ceci est encore en
accord avec les prévisions de la théorie générale.

7. LA COMPLEMENTARITE AU SENS DE BOHR

Nous allons maintenant préciser un point qu’il est important de noter pour
bien pouvoir suivre certains exposés. Dans les traités élémentaires d’optique,
on donne généralement le nom d’onde aux ondes planes monochromatiques
parce que les trains d’ondes lumineuses usuels, bien que limités, sont assez longs
pour que dans leur partie centrale, on puisse les confondre avec une onde
monochromatique plane. Une « onde » ainsi définie aura une fréquence, une
longueur d’onde et une direction de propagation déterminées : la Mécanique
ondulatoire lui fait correspondre un vecteur p qui pointe dans la direction de
propagation et dont la longueur | 7| donne la longueur d’onde 4 = A/ 7|
dont on déduit la fréquence. L'onde associée sera donc définie par le vecteur p.
Cette onde plane monochromatique qui est homogéne et ne permet aucune
localisation du corpuscule est Pidéalisation de 'idée de mouvement pur sans
aucune idée de localisation spatio-temporelle.

Au contraire les coordonnées x, y, z du corpuscule correspondent a I'idée
d'une localisation spatio-temporelle & un instant z. Les variables canoniquement
conjuguees p,, p,, P, €t x, y, z correspondent respectivement a I'aspect ondula-
toire de I'entité « corpuscule », aspect qui est purement dynamique sans loca-
lisation et 4 l'aspect granulaire du corpuscule qui en un certain sens exclut
I'idée de mouvement (Zénon d’Elée). Si alors on se reporte aux inégalités
d’Heisenberg, on voit que les corpuscules élémentaires de la Physique ne
peuvent €tre décrits par une onde plane ou par un grain localisé que dans des
cus extrémes @ en général I'aspect onde plane et 'aspect grain localisé existent
tous deux, mais sont tous deux un peu flous, I'onde y associée étant formée par
la superposition d’un certain nombre d’ondes planes monochromatiques et la
localisation restant incertaine dans une région plus ou moins étendue de
l'espace.

Les relations d’incertitude d’Heisenberg nous apprennent méme que, plus
une observation permet de préciser I'un des aspects du corpuscule, plus I'autre
s'estompe. Ceci permet d’expliquer comment la Mécanique ondulatoire permet
d’utiliser simultanément ces deux conceptions, en apparence contradictoires,
d’onde plane homogéne indéfiniment étendue et de grain localisé : cest que
ces deux images si différentes ne peuvent jamais entrer en contradiction fla-
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grante, chacune d’elles tendant a s’effacer des que I'autre s’affirme. C'est 1a un
aspect trés intéressant des conceptions modernes de la Microphysique. M. Bohr
I'a exprimé en disant : « L’onde et le corpuscule sont des « aspects complémen-
taires » de la réalité. » Chaque fois que le comportement de 'entité « cor-
puscule » peut se représenter par la propagation d'une onde plane monochro-
matique, son aspect granulaire disparait et chaque fois que ce comportement
peut se représenter par le déplacement d’'un grain localisé dans I'espace son
aspect ondulatoire disparait. Le concept de « complémentarité » ainsi introduit
par Bohr est trés curieux : il se pourrait, comme Bohr I'a lui-méme indiqué,
qu’il ait des applications en dehors du domaine de la Physique ().

Pour illustrer I'idée de complémentarité, prenons Iexemple concret du
phénomene de la diffraction des ¢lectrons par un cristal. Les électrons sont
produits dans un « canon & électrons », dispositif comprenant un fil chaud
qui émet les électrons et un systéme de grilles portées a des potentiels appro-
priés, qui imprime & tous les électrons une méme accélération dans une méme
direction : on obtient donc ainsi un faisceau cylindrique d’électrons mono-
cinétiques. Le faisceau d’électrons est projeté sur la surface d'un cristal : les
¢lectrons diffusés sont recueillis sur une plaque photographique ot ils pro-
duisent des impressions ponctuelles sur la couche sensible.

Cristal

AN/

Canon
a électrons

plaque photographique

() Note G.L. : Est-il besoin de rappeler que 'opinion de de Broglie sur la
complémentarité a, par la suite, évolué¢ ? On trouve, par exemple, dans « Certi-
tudes et incertitudes de la science », le passage suivant : « Si 'emploi du mot
« complémentarité » sert seulement a traduire I'apparition successive d’appa-
rences corpusculaires et d’apparences ondulatoires dans des phénomenes
indéniables, cet emploi est entierement légitime, mais en revanche, il ne consti-
tue en aucune facon une explication réelle de la dualité des ondes et des cor-
puscules. On peut comparer la complémentarité & la « vertu dormitive » de
I'opium dont s’est moqué Moliere : il est parfaitement légitime de traduire les
propriétés soporifiques de 'opium en attribuant a cette substance une « vertu
dormitive », mais il faut bien se garder de voir dans ces mots une explication
de ces propriétés » (réf. 111, &, p. 20).
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La section droite du canon a électrons est supposée infiniment grande par
rapport a la longueur d’'onde de 'onde associée 4 chaque électron. Chaque
¢électron sortant du canon a donc une quantité de mouvement parfaitement
déterminée puisqu’il a subi une chute de potentiel connue, mais sa position est
entirement indéterminée a I'échelle de la longueur d’onde : on peut donc le
représenter par une onde plane monochromatique. Cette onde vient frapper
la surface du cristal et pénétrer méme dans ses premiéres couches d’atomes.
La régularité de la disposition des atomes dans le cristal provoque alors le
phénoméne de diffraction grace auquel la probabilité de trouver ensuite I'élec-
tron dans telle ou telle direction varie avec la direction envisagée et présente
des maxima intenses dans certaines directions privilégiées (théorie de Laue-
Bragg). Ce processus de diffusion ne peut se décrire qu'en employant 'image
ondulatoire car il suppose que toute une portion étendue du cristal participe
au phénomene et il fait intervenir les différences de phase (notion essentielle-
ment ondulatoire !) entre les ondelettes diffusées par les divers atomes régu-
liérement distribués du cristal. Si 'on cherchait a représenter la diffusion des
électrons a l'aide de I'image granulaire, il faudrait considérer une trajectoire
électronique venant frapper le cristal en un point, telle que la ligne brisée
indiquée plus haut sur la figure. Mais alors la réflexion de I'électron sur le cristal
ne pourrait dépendre que des propriétés physiques de la surface cristalline
au point d’impact et non de toute la structure réguliére du cristal; de plus,
il serait impossible d’expliquer avec cette image corpusculaire I'intervention
des différences de phase.

Donc, dans la diffraction des électrons par le cristal, c’est 'aspect ondulatoire
de I'électron qui se manifeste : son aspect granulaire disparait complétement.
Mais voici ensuite I'électron diffusé qui vient produire dans la couche sensible
de la plaque photographique une impression bien localisée, comme une balle
qui vient perforer en un point déterminé la cible qu’elle atteint. Dans ce second
phénomene, I'électron se manifeste comme un corpuscule localisé, comme un
grain, et rien ne décele plus son aspect ondulatoire.

Voici donc une méme expérience ou se produisent successivement deux
processus dont I'explication exige pour 'un I'intervention de I'image ondula-
toire et pour l'autre celle de I'image granulaire. Mais pour chaque processus
une seule des deux images intervient de sorte qu’il n'y a jamais contradiction
flagrante.

8. CALCUL DE BOHR POUR LES TROUS D’YOUNG

Voici une illustration de la complémentarité donnée par Bohr et qui est d’'un
type un peu différent. On sait en quoi consiste 'expérience des trous d’Young,
On envoie normalement sur 'une des faces d’un écran percé de deux trous un
faisceau cohérent de lumieére monochromatique. Du c6té postérieur de I'écran,
les deux trous qui sont trés rapprochés laissent passer la lumiére incidente et
jouent le réle de deux petites sources de lumiére cohérente : les ondes lumi-
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neuses envoyées derriére I'écran par ces deux petites sources se superposent
et cette superposition donne par le jeu des interférences des franges brillantes
et obscures. En évaluant la différence de phase des ondes parvenant de chaque
trou en un point donné, on peut calculer la position des franges, position qui
naturellement dépend de la longueur d’onde de Yonde employée. L’observation
confirme entiérement les prévisions de la théorie ondulatoire et c’est pourquoi
I'expérience des trous d’Young a été I'une de celles qui ont apporté, il y a
environ 150 ans, des preuves décisives en faveur de la théorie ondulatoire de la
lumiére.

Nous avons donc ici une expérience ou 'aspect ondulatoire de la lumiére se
manifeste trés clairement. Mais, si nous voulons introduire dans la description
de cette expérience I'idée de photon considéré comme un grain localisé, nous
rencontrons d’insurmontables difficultés. La trajectoire du photon devrait
avoir passé par 'un ou l'autre trou, ce qui détruirait la symétrie du réle des
deux trous, symétrie qui est indispensable pour linterprétation du phénomeéne.
Comment d’ailleurs expliquer que la trajectoire du photon qui passe par 'un
des trous soit influencée par la présence de I'autre trou ? Et cependant une telle
influence serait nécessaire pour rendre compte d’un phénoméne qui dépend
de la situation réciproque des deux trous. Comment faire intervenir dans une
image purement granulaire la différence de phase provenant de 'écartement
des trous, différence de phase sans laquelle on ne peut effectuer une prévision
correcte du phénoméne observé ?

L’idée de complémentarité de Bohr vient lever ces difficultés. Les interférences
produites par le dispositif d’Young constituent un phénomeéne ol se manifeste
'aspect ondulatoire de la lumiére : I'aspect granulaire de celle-ci ne pourrait
ici se manifester sans amener a des contradictions. Serrant la question de plus
pres, M. Bohr a montré que tout dispositif permettant de dire par lequel des
trous d’'Young a passé le photon ferait nécessairement disparaitre le phéno-
mene d’interférences : permettant de préciser I'aspect granulaire de la lumiére,
ce dispositif ferait nécessairement disparaitre son aspect ondulatoire. Voici
dans ses grandes lignes le raisonnement de Bohr.

x A
— A
Onde incidente Q |4 —
el b T ¥
B
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Nous supposerons pour préciser, que la lumiére monochromatique envoyée
sur la face antérieure de I'écran d’Young provient d’une fente percée dans un
premier écran et jouant le role de source de lumiére. Nous désignerons par a
la distance des trous d’Young et nous choisirons des axes des x et des y comme
il est indiqué dans la figure page 86.

D désignera la distance des écrans supposés paralléles, A la longueur d’onde
de la lumiére utilisée.

Supposons que la position dans le sens des x de la premiére fente soit connue
avec une incertitude Ax. Pratiquement a et Ax sont toujours petits devant D.

La différence des phases des ondes lumineuses qui atteignent les 2 trous
d’Young sera égale a

22) A¢=3§[\/DZ +<g+Ax>2—\/D2 +<%—Ax>2:|

soit approximativement Ap = 2 n(a Ax/AD).

Pour qu’apres le second écran nous puissions avoir des franges nettes, il faut
que la différence de phase des ondes lumineuses émanant des 2 trous d’Young
soit bien déterminée, c.-a-d. que l'incertitude dont la différence de phase peut
étre affectée doit étre tres inférieure a 2 «, ce qui nous donne

(23) Ax < \Dfa.

D’autre part, pour que nous puissions dire par lequel des trous d’Young le
photon qui a traversé la premiére fente ira ensuite passer, il faudrait connaitre
avec une précision suffisante la direction de la quantité de mouvement de ce
photon a la sortie de la premiére fente. Si p, et p, sont les composantes de cette
quantité de mouvement, le point du second écran atteint par le photon aura
une abscisse égale a D(p,/p,) et si p, est affectée d’une incertitude Ap,, cette
abscisse sera elle-méme affectée de I'incertitude D(4p,/p,). Pour que I'on puisse
affirmer que le photon a passé par 'un des trous d’Young, il faut donc, on s’en
rend compte aisément, que I'on ait

A
24) a» D=

y

Mais le faisceau de lumicre issue de la premiére fente est 4 peu prés paralléle
a I'axe des y de sorte que I'on a approximativement p, = p = h/A et par suite
la condition précédente s’écrit approximativement

(25 a > D (4p./p) = D 4p.(i/h).

Mais nous savons que, quels que soient les dispositifs employés pour mesurer
la coordonnée x du photon et la composante p, de sa quantité de mouvement
quand il traverse le premier écran, on a toujours I'inégalité d’Heisenberg
Ax.4p, = h.
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La condition (25) donne donc a fortiori
(26) Ax > AD/a.

Maintenant il est évident que les inégalités (23) et (26) sont contradictoires.
On en conclut que si 'on peut préciser par lequel des trous d’Young a passé
le photon il est impossible d’observer le phénoméne d’interférences et qu’in-
versement s'il est possible d’observer les interférences, on ne peut dire par quel
trou a passé le photon. L’aspect granulaire et 'aspect ondulatoire de la lumiére
jouent ici en quelque sorte a cache-cache et n’entrent jamais en conflit direct :
C’est la I'essentiel de I'idée de complémentarité de Bohr ().

Le raisonnement précédent s’appliquerait aussi bien aux électrons et aux
autres corpuscules matériels. L’expérience des trous d’Young doit en effet, du
moins en principe, étre réalisable pour ces corpuscules. Le méme genre de
considérations pourrait d’ailleurs étre étendu a d’autres dispositifs interféren-
tiels.

() Note G.L. : Louis de Broglie a, par la suite, critiqué ce raisonnement
et lui en a substitué un autre (voir réf. II, 29, p. 65). Il observe notamment :
« La fagon dont intervient la relation d’incertitude est un peu singuliére car
elle suppose implicitement qu’on puisse mesurer la composante p, de la quantité
de mouvement du corpuscule par le recul le long de I'axe des x du premier écran,
ce qui est impossible puisque cet écran a une masse macroscopique et peut étre
solidement fixé. De plus, le raisonnement ne fait pas intervenir la largeur de la
fente du premier écran (qui ne se confond pas avec l'incertitude Ax), largeur
qui joue un rdle essentiel dans le phénomene de diffraction qui permet a 'onde,
aprés son passage a travers la fente du premier écran, d’atteindre les deux trous
d’Young. » Et de Broglie retrouve le résultat de Bohr en montrant que pour
viser 'un des trous d’Young, il faudrait augmenter le diamétre de ce premier
trou, mais que ceci aurait pour effet de faire disparaitre le phénoméne d’inter-
ferences.



CHAPITRE VIII

FORME PRECISE DES RELATIONS
D’INCERTITUDE

1. THEOREME SUR LES DISPERSIONS DES GRANDEURS NON
COMMUTANTES

En prenant comme postulat fondamental la possibilité de représenter a
tout instant I'état de nos connaissances sur un corpuscule par une fonction
d’onde i, nous avons montré, en nous appuyant sur les propriétés des déve-
loppements de Fourier, que les incertitudes sur deux quantités canoniquement
conjuguées p et q obéissent aux inégalités

ey Aq.4p = h

qui sont exactes en ordre de grandeur. C'est 1a I'énoncé « qualitatif » des
relations d’Heisenberg et nous avons vu qu’aucune expérience ne peut nous
fournir pour des grandeurs. canoniquement conjuguées des valeurs plus
précises que ne le permettent lesdites relations.

Nous avons aussi montré que la mesure simultanée de deux grandeurs
dont les opérateurs ne commutent pas est en général impossible, méme si ces
grandeurs ne sont pas canoniquement conjuguées (exemple des composantes
du moment cinétique) : cependant en ce cas, il peut arriver exceptionnellement
que la mesure simultanée soit possible (si les grandeurs ont la valeur 0).

Nous allons retrouver ces résultats d’'une maniére plus précise en démontrant
un théoréme sur la dispersion des grandeurs non commutantes qui parait di a
M. Pauli. Nous allons en donner deux démonstrations d’une forme un peu
différente.

Premiere démonstration :

Nous introduirons d’abord une définition nouvelle. Soit F un opérateur
linéaire défini pour certaines variables dans un domaine D. Nous appellerons
« opérateur adjoint» de F l'opérateur F* défini également dans D tel que

Jf*ngtzJ(F+f)*gdr
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pour toutes fonctions f et g qui sont finies, uniformes et continues dans D et
s’annulent aux limites de D de telle fagon que les intégrales de surfaces venant

de I'intégration par parties de | soient nulles. Si 'on compare la définition de
D
F* avec la définition d’un opérateur hermitien

J [f*¥Agdt = j gA* f* dt,
D D

on voit que si F est hermitien F* = F de sorte qu’un opérateur hermitien est
son propre adjoint (hermitien = self adjoint).

Que 'opérateur linéaire soit ou non hermitien, la valeur moyenne de FF © au
sens de la Mécanique ondulatoire est toujours réelle et positive (ou nulle)
car

) FTzJw*FFﬂ//dt:J(F*l//)*FJrWdt:J |F* y|2de > 0.

D

Ceci posé, nous sommes en état de démontrer le théoréme annoncé qui
s’énonce :

Théoréme : Si deux grandeurs physiques observables correspondent res-
pectivement aux deux opérateurs lin€aires et hermitiens 4 et B,on a

3 04 0p 2 | [4, B] |

B

[A, B] étant le commutateur de 4 et de Bet o, op étant les dispersions (écarts
quadratiques) définis par les formules

“ o4 =4 -4} o5=(B~ B

Pour démontrer ce théoréme fondamental, nous considérerons I'opérateur
linéaire (non hermitien) 4 + iAB ou A est une constante réelle : son adjoint est
A — iAB et, par application de la formule (2), nous voyons que la valeur
moyenne

(4 +iABY(A4 — iAB) = A* + 2> B* — il [A4, B]

est réelle, positive ou nulle. Donc la fonction de 4

f()) = A% + A2 B2 — iJ[4, B]

est réelle et non négative. On en conclut que [4, B] est purement imaginaire.
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De plus, f(4) est minimum pour 4, = : [A [4, B] et a alors pour valeur
B?
1([4, B))*
fto) = 47 4 LA D
4 B

Comme cette valeur doit étre positive ou nulle, on a
(4bis) A2.B?> —
Posons

8A=A—-A4 O6B=B-B

A et Bsont des nombres, 4 et B des opérateurs : donc 64 et B sont des opé-
rateurs. On trouve aisément

[04,0B] = [4 — 4, B — B] = [4, B].

Nous pouvons appliquer I'inégalité (4) aux opérateurs 04 et 0B et compte
tenu de la derniére relation, nous obtenons

(64)*.(6B)* > (14, B])*.

-N'—'

Comme [A4, B] est imaginaire pure, nous avons donc

04.05 =+ (04)2.J (0B)* = % | [4, B] |

ce qui est le théoréme annoncé.
Appliquons le théoréme a deux grandeurs canoniquement conjuguées
pour lesquelles [4, B] = — h/2 zi, il vient

© 51 = | v o) ve = — .

quantité purement imaginaire comme cela doit étre.
Le théoréme nous donne alors

©6 G4.05 = h/dm

Cette formule constitue une forme tout a fait précise des relations d’incertitudes
d’Heisenberg. En particulier nous aurons

™ 0,.0p, = hldT.
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Appliquons encore le théoréme a deux grandeurs observables non commu-

tantes dont le commutateur est égal a un opérateur C ({4, B] = C), on aura
[4, B] = C et par suite
® O4-0p 2 |El/2
En particulier pour

A=M, et B=M,, [4,B]= hmMz,
on aura

h

€ O-Mx'o-MyZHI -

Généralement le produit des dispersions sera supérieur a zéro. Il pourra
cependant étre nul dans le cas exceptionnel ou M, = 0.

Deuxiéme démonstration :

Nous allons donner une deuxiéme démonstration de la formule
0,. 0, = h/4 mpour les grandeurs canoniquement conjuguées.
Soient g, une coordonnée et p, le moment conjugué. On a

(10) a=jw*qmdr.

Prenons g, comme origine des g, de sorte que la moyenne de g, soit zéro.
Nous aurons alors

A--ar == [ vty
Drautre part

(1 p_k=f w*(- %)g—;/’—kdf

et

Posons par définition

12) V= n/zexp( o qk>
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La fonction ' est, comme la fonction ¥, finie, continue et uniforme dans D
et nulle aux limites de D. On peut écrire

(13 a§k=jw'*qfw'dr; o§k=Jw'*< hz) g T
D D ogi

en tenant compte de ¥'* y' = | |* de sorte que Y’ comme i est normée.

On vérifie facilement la seconde formule en remplagant Y’ par exp<—2—;:1 Dk qk>.

Comme  est nulle aux limites de D, une intégration par parties nous permet
d’écrire
0,2 _ hz al// £ ] 0!//
P 4 » 04 aqk

Je dis maintenant que l'on a

a9 y([vrve) <] aveve] Bk

Pour le démontrer considérons deux séries de grandeurs complexes
a, ...a,; by ... b, On a évidemment

‘Zaibi <Z|aibi|<2|ai| | b; |

2 2
< (Zlail |bi|>
et par suite

2 2
Z|ai|2'zlbi|2_’2alb >Z|ai|221bi12_<2'ai||bi|>-
Or le dernier membre de cette inégalité se trouve égal a

Z(Iai| ij|_|bi| |aj|)2

i>j

d’ou

c’est-a-dire a une somme de carrés. On a donc

Zla IZZIb * >

Zaibi2

i

ou plus explicitement
lay by +a, by + P <(lay P+ 1ay P+ (b P +1b )2 + ).

(15)
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Divisons maintenant le domaine D en éléments At et considérons les deux
suites de quantités complexes

(g ' aes/AT15 L@ ¥ ™*ae /471 lax ¥')aen/AT25 @ ¥ * g/ 472 -
oy'* oy’ oY'* '’
,: 4 ]A“ /ATy ; [g‘cl;—k]ml«/zirl; [g:] :‘ ) VA3 [TZJAQ 41, ..

g, k 4t

la quantité [g, ¥'],., étant la valeur moyenne de g, ' dans I'élément A7,
etc... Appliquons a ces deux suites de quantités la formule précédente : il vient

2 [qk Y’ a(;/;’k*l 4t, + Z [qk Y= A4 L At

2
<

i k
r*
<OV GV ¥ My Ar2 Y| LT e,
i 7 6 i aqk At

Si 'on augmente indéfiniment le nombre des éléments At; en faisant tendre
chacun d’eux vers zéro, on obtient a la limite

<

oy o, [
16 ‘ —=—dt + *ld
(16) Lqm s quw = e

, oy
<4 ; oo | -2 d
quw Laqk e

La fonction ¥’ étant nulle aux limites de D, I'intégration par parties donne

2 2 2
S|l = (] vl
D D

et la formule (14) annoncée se trouve ainsi démontrée.

On a alors
h? W
2 . 2 — 2 % 1 dT
O g Opy 4 7'[2 fD di ‘p lﬁ J‘ q

G a%(‘”’ U de

5Qk

2 2 h?
Caes Oy 16 Z[Jw*lﬂ dr] _16n2

puisque ¥’ est normée dans D. Donc

puis par (14),

7] = hldn

qx* GP

et nous retrouvons le théoréme sur la dispersion des grandeurs canoniquement
conjugueées.
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2. CARACTERE OPTIMUM DU PAQUET D’ONDE GAUSSIEN

La seconde démonstration que nous venons d’obtenir du théoréme des
dispersions va nous permettre de démontrer que pour obtenir le signe d’égalité
dans linégalit¢ o,,.0, > h/4 =, il faut que le |y | dépende de g, seulement
par l'exponentielle Gaussienne

< (g — @;)2>
exp ——z )

On a alors un train d’ondes ou paquet d’ondes Gaussien : ce paquet d’ondes
correspond a la plus petite dispersion et, en ce sens, il €st « optimum »,
Pour le montrer, reportons-nous au raisonnement (p 126) qui nous a fourni

la formule
ZIGIZZIbIZ Zab

Nous voyons que, pour avoir dans cette formule le signe d’égalité, il faut et il
suffit que tous les quotients | g; |/| b; | aient la méme valeur, quel que soit
I'indice i.

Le raisonnement fait pour obtenir I'inégalité (14) montre alors que pour avoir

dans cette formule (14) le signe d’égalité tous les quotients [ Ly l] N 1V (14

doivent avoir 1a méme valeur dans tous les éléments At;.
Il en résulte que pour avoir le signe d’égalité dans la formule

Oge Op = Hf4 T
il est nécessaire que
1 aly]
il Y| Ok

ait la méme valeur quel que soit g,.
| "] considérée comme fonction de g, doit donc obéir a I’équation diffé-
rentielle

o1y
0

(17) = Cq ¥’

qui a pour intégrale générale
[y’ | = C"exp(Cqi/2) -

Puisque | ¢’ | doit étre nul pour g, = + oo, C doit étre négatif et I'on peut
poser C = — 1/a®. On trouve alors

(18) ' | = C"exp(— g?[2 a?).
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Ce résultat est obtenu avec 'hypothése faite plus haut (p. 92) que g; est nul
S’il n’en est pas ainsi, on doit écrire

(19) W' =1¢]=Cexp(— q — qJ*2a".

La constante C’ peut d’ailleurs dépendre des variables g autres que g,
On voit d’ailleurs aisément que g, = a/\/E. En effet

j @ — T expl— (@ — T?Ja?) day
(20) afk =

J exp(— (g — q)*/a”) dg,

— 00

J u? exp(— u?/a*) du

— a?

w© 27
f exp(— u*/a*) du

—

Si la fonction d’onde est un paquet d’ondes Gaussien en g, la probabilité
de présence correspondant a lintervalle (q,, g, + dg,) est proportionnelle a
[y 1> ~ exp(— (g — 30)%/2 02,). Cette probabilité obéit donc a une loi de
Gauss.

L’état i considéré est celui qui résulte d'une mesure de g, affectée d’une
erreur possible a répartition Gaussienne. Ce cas est le plus favorable en ce qui
concerne les incertitudes d’Heisenberg puisqu’alors le produit des dispersions
est égal 4 /4 m au lieu d’étre supérieur a ce nombre et atteint ainsi sa valeur
minimum.

Remarque sur les paquets Gaussiens.

La propriété que nous venons d’indiquer montre I'intérét que présente en
Mécanique ondulatoire la considération des paquets d’ondes Gaussiens
considérés précédemment. Ces paquets d’ondes possédent une autre propriété
remarquable que I'on peut énoncer ainsi : un paquet d’ondes Gaussien en g,
est également Gaussien en p,.

Supposons en effet que nous ayons

|V | = Cexp(— qif2a*) = Cexp(— gi/4 o7)

(ensupposant g, = 0). Alors |y |> = C? exp(— g¢/2 o2 ). C peut dépendre des
q autres que g;. La fonction d’onde s sera développable en intégrale de Fourier
sous la forme

e3) v = ﬁ J oo expl — 2, qk> do,
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¥ et les C(p,) peuvent dépendre des variables g autres que g,. Nous ne les inscri-
vons pas dans nos ¢quations car elles n’interviennent pas dans le raisonnement.
La théorie des intégrales de Fourier nous apprend que

@ cw =7, | ven(3n o) da

2 .
i 2 mi__
Y = Cexp ) exp Dr G
2 a? h
g2 2mi_ 2w
Clp) = —— €XP — 57 ) P\~ 7 Pidi | €XP\ = Pic i dq,

( )—EJ ex <—|: 2m( —_p_k)a}2>x
Dk _\ﬂl . P aﬁ h\/i
( 4n* (Pk—b—k)zaz>
x exp| — dg;

d’ol,, comme

h? 2

4 2 a2
Clpw) = C/exp<_ h—Z(Pk — o’ ‘2_>

d’ou
4 72 _
, C(po |2 =1C |2 EXP<— _hT(pk - Pk)z a2> =
, 4 7% (P — po)?
=|C'|? exp<— h—z"_d_zf"_
, 47 (p — p)*
23) | Clpa [P = 1C7p exp(— e

avecd’ = 1/a. Comme | C(p,) |? est la probabilité de la valeur p,, on voit que la
distribution de probabilité de p, est Gaussienne et que 'on a

g2 Lfamy _ k1 B 2
P 2\2x) " 8mta®  167% a?

Oy Op. = B4 7 puisque a = \/5 Oa

']

d’ou

Nous retrouvons la relation des dispersions avec le signe d’égalité, mais nous
voyons que le paquet d’'ondes est Gaussien a la fois en p, et en g,.



98 Forme précise des incertitudes

3. COMPARAISON DU THEOREME SUR LES DISPERSIONS AVEC
LES RELATIONS QUALITATIVES D’ INCERTITUDE
DE HEISENBERG (PAULI, ROBERTSON)

Nous sommes maintenant en possession de deux énoncés relatifs aux incer-
titudes. Tout d’abord nous avons démontré en nous appuyant sur les propriétés
des développements de Fourier que I'on a en ordre de grandeur

(24) op.dq = h.

Cet énoncé est quelque peu qualitatif car il n’est vrai qu’en ordre de grandeur.
On le voit en se reportant aux considérations sur les développements et, plus
nettement encore peut-étre, en reprenant 'argument du microscope d’Heisen-
berg ol la démonstration de la relation d’incertitude fait intervenir la définition
optique du pouvoir séparateur (deux points voisins de 'objet ne peuvent étre
séparés par un instrument d’optique que si le centre de I'image de diffraction
due a 'un des points coincide avec le premier minimum de I'image de diffraction
due a l'autre point) et cette définition du pouvoir séparateur a quelque chose
d'un peu arbitraire et n’est vraie que d’une fagcon approchée.

En second lieu, nous avons obtenu I'énonce tout a fait précis

(D 0,0, = hjdT

qui provient de l'application aux quantités canoniquement conjuguées g
et p de la relation générale

(3) O’A.O-B>%AB_BA.

Nous avons vu que les relations d’'Heisenberg sous leur forme qualitative
signifient qu’a tout moment et en particulier quand on vient d’effectuer une
mesure, il existe sur la valeur de deux quantités canoniquement conjuguées p
et g des incertitudes dont le produit est toujours en ordre de grandeur supérieur
ou égal a ~. La méme conclusion s’obtient d’une fagon plus précise a partir de
la relation sur les dispersions. A tout instant et en particulier tout de suite
apres une opération de mesure, nos connaissances sur I'état d’un systéme sont
représentées par une fonction d’onde ¥ et deux grandeurs conjuguées p et g ont
des valeurs aléatoires correspondant a des distributions de probabilités telles
que le produit des dispersions soit toujours supérieur ou égal a 4/4 n.

Le théoréme sur les dispersions conduit donc, tout comme les relations
qualitatives d’Heisenberg, & la conclusion qu’il est impossible dans une méme
opération de mesure de mesurer avec précision deux quantités conjuguées p et
g, sans quoi aprés la mesure p et g seraient connues avec certitude et I'on
aurait ¢, = 0, g, = 0 ce qui est en contradiction avecla relation g,. o, > h/4 n.
Apres la mesure, I'état de nos connaissances ne serait plus représentable par
une fonction Y car cette représentation entraine, nous 'avons vu, la relation
6,00, = h/4 T



Forme précise des incertitudes 99

Si j’insiste sur ce point, c’est qu’on pourrait étre tenté de raisonner comme il
suit. Considérons un grand nombre de systémes dans un méme état, c.-a-d.
représentés par une méme fonction y et cherchons a mesurer simultanément
deux grandeurs conjuguées p et q. Nous savons que pour chaque systéme nous
pouvons obtenir des valeurs différentes avec diverses probabilités que la
connaissance de ¥ nous permet de calculer. On pourrait alors croire que la loi
de dispersion exige que les dispersions sur p et sur g seront toujours telles que
leur produit soit supérieur ou égal a #/4 m, mais qu’elle ne s’oppose pas a ce que
dans certaines mesures on obtienne simultanément des valeurs précises pour p
et g. Lerreur que 'on commet ainsi vient de ce que 'on considére seulement
I'état des probabilités avant la mesure (représentée par le  antérieur a la
mesure). Or il faut aussi que 1’état qui suit la mesure soit représentable par une
fonction d’onde ¥ et que la relation des dispersions s’applique a la distribution
de probabilité qui lui correspond. C’est ceci qui permet de déduire de la relation
des dispersions I'impossibilité de mesurer simultanément p et g.

4. CONSIDERATIONS DIVERSES SUR LES INCERTITUDES.
INCERTITUDES « A BORDS NETS » .

Pour bien préciser la nature des incertitudes dp et dg qui interviennent
dans les relations qualitatives d’Heisenberg, nous allons regarder les choses
de plus prés.

Soit une grandeur observable 4. Pour un systéme dans un état y donné,
les diverses valeurs de 4 ont des probabilités bien définies calculables a partir
du y par les principes généraux de la Mécanique ondulatoire. Nous préciserons
la notion d’incertitude au sens d’Heisenberg en appelant « incertitude de la
grandeur 4 dans I'état  » le plus petit intervalle 64 des valeurs de A qui
contient toutes les valeurs de 4 dont la probabilité totale est supérieure a
1 — ¢, eétant une grandeur trés petite (par exemple ¢ = 1/1 000). Une mesure de
A conduira presque certainement a une valeur comprise dans I'intervalle 4.
Cette définition des incertitudes dépend de la valeur choisie pour ¢; mais, une
fois ¢ choisie, les incertitudes sont bien définies.

Cette définition adoptée, I'étude des décompositions de Fourier montrera
ce qui suit : si 64 et 6B sont les incertitudes dans I’état ¥ sur deux quantités
canoniquement conjuguées 4 ¢t B, on a

(25) 0A.0B = a(e) h

a(e) étant un nombre au moins de 'ordre de grandeur de I'unité dont la valeur
exacte est variable avec e. Plus ¢ est choisi petit, plus o sera grand. Avec les
petites valeurs de ¢ pratiquement (souvent implicitement) admises, a(e) est
voisin de I'unité. Nous retrouvons ainsi avec quelques précisions supplémen-
taires les relations d’Heisenberg.
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On peut imaginer que 'un des intervalles 04 ou 0B précédemment définis
soit « & bords nets », c’est-a-dire que la probabilité de trouver des valeurs de
A (ou B) en dehors de 64 (ou 4B) soit nulle : alors on peut prendre ¢ = 0.

Dans ce cas on peut montrer que «(g) = «(0) = oo et d4.0B = co. On peut
justifier ce résultat en reprenant I'analyse des développements de Fourier :
nous en donnerons un exemple tout a I'heure. Ainsi, si Ponde y nest diffé-
rente de 0 que dans un intervalle 4x de la variable x (intervalle a bords nets),
la décomposition de Fourier de ¥ fait intervenir toutes les valeurs de p, et
Ap, = co. Donc Ax.Ap, = Ax x o0 = 0.

Mais en fait ce résultat, parfaitement exact du point de vue mathématique
ma quun intérét pratique trés limité, car en général dés que la probabilité
tombe au-dessous d’une certaine valeur ¢, elle est pratiquement nulle. Cest
pourquoi la relation d’Heisenberg 64.0B > ah avec o voisin de 1 est toujours
pratiquement vérifice, méme si I'un des intervalles 64 ou dB est a bords nets.

La question est analogue a4 la suivante. Dans la théorie de la largeur des
raies spectrales, on démontre que le profil des raies dans 'échelle des fréquences
est le suivant :

1(v)

Théoriquement les raies ont une largeur infinie, mais ce résultat mathématique-
ment exact n’a pas de sens réel, car dés que l'intensité I(v) tombe au-dessous
d’'une certaine valeur, elle est pratiquement nulle parce qu’inobservable.
Pratiquement les raies spectrales ne s'étendent pas sur toute I'échelle des fré-
quences, mais elles ont une largeur assez bien définie.

Exemples d’incertitude a bords nets

Pour illustrer les considérations précédentes, nous allons étudier un exemple
simple d’incertitude a bords nets. Nous supposons une onde ¥ telle que

_exp(— ikg x)

N

=0 pour x<a et x>b; Y pour a<x<»b.

(26)

1 .
Le facteur ———— assure la normalisation de 'onde <J

\/bTa |l//ldx=l>.

— 00
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Entre x = a et x = b, 'onde a la forme d’'une onde monochromatique :
en dehors de cet intervalle « a bords nets » y = 0. Si 'on mesure la coordon-
née x, on a la certitude de la trouver comprise entre a et b (x = b — a avec
g = 0).

Posons ky = (2 n/h) p, et k = (2 n/h) p et cherchons le développement de
Fourier du . On a

explilk — ko) x] dx

ff Jb—a

@®
-1 (k) exp(— ikx) dk avec (k) =
V2T )
27
d’ou
1

1 .
Tonts — o) Tk — Ky LIk

(k) = — ko) b] — expli(k — ko) al]

et par suite

| c(k) |? = 51; PR — [1 — cos(k — ko) (b — a)]
L 4 Tk — ko) (b — a)
ST E-ak ky [_‘“2—]
(28) l C(k) IZ = na SZZZ “ avee u = (k——k())z..(é_-_a) (1)

On voit donc que | c(k) |2 n’est rigoureusement nul qu’a I'infini sur axe des k.
A un intervalle a bords nets en x, correspond donc un intervalle en k (ou p)
infini. Si donc on prend ¢ =0, on a Ax = b — a et 4p, = oo, d'ou

Ax.Ap, = ©

| c(k) |* diminue rapidement quand k s’¢loigne de k,, mais est encore notable
pour u > © cest-a-dire pour 4k > 2 wf(b — a@). On a donc certainement
Ax.4k > 2w, soit Ax.Ap > h. Mais si k s’éloigne de k, davantage, la valeur

de | c(k) |* diminue rapidement. On calcule que |c(k)|* ~ 1_(1)6 | cko) |2

pour dp.Ax =3 h et |c(k)|* ~ WIOO | c(ko) |* pour Ap.Ax = 9 h. Donc,

bien que | ¢(k) |* ne s’annule que pour k = oo, pratiquement une mesure de p

(!) Note L.B. : On vérifie quej | c(k) |* dk = 1.

o0



102 Forme précise des incertitudes

conduira toujours a une valeur de p comprise dans un intervalle 4p | autour
h

27
o ~ 1 et c’est tout ce qui importe pour Papplication pratique des relations

d’Heisenberg.

de la valeur p = py = k(,) telle que Ap.(b — a) = Ap.Ax = oh avec

Microscope d’Heisenberg. Reprenons l'exemple du microscope d'Hei-
senberg. Ici le dp, est a bords nets parce qu’il est défini par I'ouverture du
microscope. Par contre le Ax n’est pas a bords nets, mais s’étend théoriquement
a linfini parce qu’il est défini par le phénomeéne de diffraction intervenant dans
la définition du pouvoir séparateur. En principe, I'onde parvenant en un point
P’ du plan image ne provient pas uniquement d’un point P du plan objet :
elle peut venir de tout point du plan objet et Ax est en principe illimité, mais
en pratique, comme le montre la théorie du pouvoir séparateur, I'incertitude
Ax sur la position de P est limitée & I'entourage immédiat du point dont P’
est I'image géometrique.

Ecran percé d’un trou. Passons a Yexemple de I'écran percé d’un trou.
Ici I'incertitude Ax est définie par le contour de I'ouverture et est donc 4 bords
nets. Derriére I'écran, il y a de la lumiére diffractée dans toutes les directions
de sorte que A4p, est en principe infini, mais les franges brillantes observables
sont toutes au voisinage de 'ombre géométrique et par suite le 4p, est prati-
quement trés limité.

Pagquet d’ondes Gaussien. Pour le paquet d’'ondes Gaussien, nous avons
29 |y PP=Clexp(—q*205) |cp) P = C?exp(— p*2 o)

avec g,. 0, = h/4 . Le paquet d’ondes Gaussien n’est donc « a bords nets »
nien g, nien p.
Posons 6q = ma, et dp = mo, et soit

8=2J llﬁlqu=2j | @) |> dp .

mog/2 mop/2

dq et dp sont alors les incertitudes correspondant a la valeur précédente de &
d’aprés notre définition des incertitudes, £ étant fonction de m et inversement.
Pour ¢ donné, mest fixé et 'on a

h
2
(30) 9q.0p = m* o, 6, = m? s
Sie—>0 m— o etdqg.dp - oo. Mais en pratique, il suffit de supposer ¢
trés petit. Ceci sera déja réalisé pour m = . /4 7 car

]

| (/47 o) 2
| /47 a,)|?

On aura donc pratiquement dq.dp ~ h.

e Y0 > < | y(0) |2
e ™| e(0) | < | c(0)|* car e ® ~ 1/350.

Il
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En résumé : Pour définir avec précision les incertitudes d’Heisenberg, il est
nécessaire de définir I'incertitude 64 sur une grandeur 4 comme étant lin-
tervalle des valeurs de A telle que la probabilit¢ de trouver une valeur en
dehors de 54 soit inférieure a une petite quantité ¢. On a alors pour deux gran-
deurs A et B canoniquement conjuguées 64.0B ~ a(e) h ot a(e) dépend du
choix de & a(e) est infini pour ¢ = 0 de sorte qu'alors 64.6B = o : de la
résulte que, si I'intervalle 54 est fini, 6B est infini (cas des intervalles a bords
nets). Mais en pratique, il suffit de choisir ¢ trés petit, mais non nul, et alors le
produit 6A4.08 pourra dans les cas favorables s’abaisser jusqu'a I'ordre de A,
mais pas au-dessous. Pratiquement on a donc dA4.6B = hen ordre de grandeur.
La question est analogue & celle que 'on rencontre dans I’étude de la diffraction
et du pouvoir séparateur.

Le théoréme sur la dispersion qui s'énonce pour les grandeurs conjuguées
sous la forme o0,.05 = h/4 n est plus précis que les relations d’incertitudes
d’Heisenberg. Il entraine, comme ces relations elles-mémes, I'impossibilité
d’obtenir pour les grandeurs conjuguées des valeurs précises dans une méme
opération de mesure (1).

(1) Note L.B. : Cas ou la relation d’incertitude est applicable bien que le
produit des dispersions soit infini.
Soit le train d’ondes défini par

Y(x) =0 pour x <0; Y(x) = exp(— yx/2) exp(2 miky x)

pour x>0 (y > 0).
Si nous posons

Y(x) = J“’“ c(k) e % dk

nous trouvons

1
2 witk — ko) + /27

o(k) =

On a donc

) 1
Il//(X) |2 — e‘VX; |C(k)| = 47'52(k _ kO)Z + y2/4

Si N est un nombre trés grand, nous pouvons définir les incertitudes éx et
ok en posant :

1 1 4
N’ 4 n2(8k)* + y3/4  Ny?

— yox

e
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Cas des composantes du moment cinétique

Nous venons d’étudier le cas des grandeurs canoniquement conjuguées qui
est un cas particulier des grandeurs non commutantes dont le commutateur est
égal a une constante. Nous savons qu’il existe un autre type de grandeurs non
commutantes réelles dont le commutateur est égal a un opérateur. Tel est le
cas des composantes du moment cinétique pour lesquelles on a

h

[Mx) My] - 2_7_”M7_ etc.

Le théoréme des dispersions donne

1 h
OpM,» OM, = ‘2‘ | [an My] l = 4—an etc.

Existe-t-il pour M,, M,, M, des relations d’incertitude ?

Naturellement, on peut, a l'aide d’'un nombre trés petit ¢ définir comme plus
haut des incertitudes 6 M, ... A priori, on ne sait rien sur la valeur d’un produit
tel que dM,.0M,. Mais comme la probabilite d’un écart type est toujours
assez grande, il arrivera le plus souvent que 0 M, sera supérieur 4 o, et M,
a oy, d’ou

OM,.0M, > (hjdn) M .

suite de la note de la page 103

d’ou

_1 ) ~ L
5x—7/10gN, 5k_4n\/ﬁ

et 'ona
0x.0k = Zl—n\/ﬁ log N
ou en posant k = p_/h

0x.0p, = Zh; Nlog N .

Pour N = 20, on trouve

dx.0p, ~ h.

+ o0

Par contre ¢, = oo car J ptc(p,)dp, diverge. On trouve pour o, la
— 0

valeur 1/y. D’ou ¢, .0, = 0, ce qui est bien supérieur a 4/4 7. Ici la relation

des dispersions ne donne rien, tandis que la relation d’incertitude est toujours

valable.
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Nous allons montrer autrement qu'on ne peut pas avoir M, # 0 et
oM, oM, = 0. .

En effet, pour que M, # 0, il faut que le ¥ contienne dans son développe-
ment suivant les fonctions propres de M, au moins une fonction propre de
valeur propre différente de zéro. Cette fonction propre de M, ne peut pas étre
fonction propre de M, ou de M, puisque la seule fonction propre commune a
M,eta M,(oua M) est f = 0. Donc si 'on décompose le  suivant les fonc-
tions propres de M, (ou M »)» le développement contient au moins deux fonc-
tions propres de M, (ou M,) de valeurs propres différentes. Il en résuite que
oM, et OM, sont différents de zéro. Il est donc impossible d’avoir a la fois
M, # 0et 6M_.0M, = 0.

Voici d’autres remarques montrant la différence entre le cas des grandeurs
non commutantes du premier type et le cas des grandeurs non commutantes
du second type

Soit un systéme qui se trouve initialement dans un état 1 représenté par
une fonction d’'onde i, et soient 4 et B deux grandeurs observables de ce
systéme.

Supposons qu’une certaine opération de mesure fasse passer le systéme dans
un état 2 représenté par une certaine fonction d’onde 5.

Avant la mesure, on a

o gl > % |dB = BA) |, .
Aprés la mesure, on a

|
¢?.oP = 5 |(AB — BA) |,.

Si 4 et B sont canoniquement conjuguées ou plus généralement si [4, B]

est un multiple de T'unité, {4, B) est une constante indépendante de P'état.

Alors les produits ¢\, ¢ et ¢'2. 6% ont une méme limite inféricure.
p 4 -0p A+ 0p

Siau contraire AB — BA est égal a un opérateur C, [4, B] variera en général
avec I'état considéré et si I'état 2 est tel que

][A, B]z' < ][A, B]l'

il pourra se faire que I'on ait (bien que <o‘f). o > % | (4B — BA), {>

o?. o) < 3| (4B = BA), |.

En d’autres termes, la borne inférieure du produit ¢'. ¢ aprés la mesure
est déterminée par ’état qui existe aprés cette mesure et non par I'état antérieur.
Appliquons ceci au cas ot 4 = M,, B = M, avec [4, B] = (h/2 ni) M.
Si dans Pétat 1, M, # 0, on a o} of}) > 0. Mais une mesure peut conduire &
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un état 2 out M, = 0 et ol o§;). 0§ = 0, Cest-a-dire & un état out M, et M,
ont des valeurs précises qui sont d’ailleurs M, = M, = 0. Cest la une grande
différence avec le cas des grandeurs canoniquement conjuguées ou aucune
mesure ne peut amener a un état ou les deux grandeurs ont une valeur précise.

Dans I'état initial 1, il y a pour A4 et pour B certaines distributions de proba-
bilité qui se déduisent de la connaissance de y,. Soient 64 et 6B deux inter-
valles de valeurs pour A et B choisis arbitrairement. En général, ces intervalles
ne seront pas pour I'état 1 des incertitudes au sens précisé plus haut. Mais
imaginons que nous fassions une mesure nous permettant d’affirmer que les
probabilités de trouver la valeur 4 hors de 84 et la valeur B hors de 6B sont
toutes deux inférieures a & Alors dans I'état , qui suit la mesure, 64 et 6B
sont devenues des incertitudes au sens admis et 'on aura

64.6B > |4, B, | x «

N —

o étant un nombre fonction de ¢ et au moins de 'ordre de 'unité.

Si 4 et B sont canoniquement conjuguées, on retrouve les inégalités d’Hei-
senberg et 'on a ainsi prouvé qu’aucune mesure ne peut fournir les valeurs de 4
et de B avec plus de précision que ne le permettent ces inégalités, car §’il en
était autrement, 'état 2 qui suit la mesure ne pourrait étre représenté par la
Mécanique ondulatoire.

Si A4 et B sont tels que [4, B] = C, on voit que la borne inférieure de 64.5B
peut varier avec ['état et quapres la mesure cette borne est déterminée par la
valeur de (4B — BA), ().

() Note G.L. : Louis de Broglie n’a jamais publié, par la suite, d’étude aussi
exhaustive sur les relations d’incertitude et je doute qu'on trouve, dans la
littérature, un autre exposé ol I'on reprend pratiquement toutes les analyses
de Heisenberg et de Bohr, auxquelles viennent s’ajouter ici celles de de Broglie
lui-méme. Notons cet aspect qui lui est propre : le soin qu’il met a bien séparer
les informations qui concernent I'état du systéme avant la mesure, de celles qui
concernent son état aprés la mesure. Cette distinction préparait I'interprétation
qu’il a donnée plus tard des relations d’incertitude (voir réf. II, 27, 29 et 33).
L’idée principale en est la suivante : la particule étant supposée toujours
localisée en un certain point de I'onde, une éventuelle mesure de localisation
ne ferait que révéler une position préexistante de la particule, si bien que
I'incertitude Ax existe dans I'état initial du systéme, avant méme toute mesure
(qu’elle soit de localisation ou autre), ¢’est une incertitude actuelle ; au contraire,
la mesure de p,, nécessitant une préparation du systéme, ne révéle pas une
valeur préexistante de 'impulsion mais une valeur créée lors de cette prépara-
tion, si bien que 4p, n’est pas une incertitude actuelle, c’est une « incertitude
prévue dans I'état initial sur la valeur que peut avoir p, aprés I'action d’un
dispositif permettant la mesure de p,, quand on ne connait pas encore le
résultat de cette mesure ».



CHAPITRE IX

LA QUATRIEME RELATION
D’INCERTITUDE D’HEISENBERG

1. ABSENCE DE SYMETRIE ENTRE L’ESPACE ET LE TEMPS
EN MECANIQUE ONDULATOIRE

Quand on se place au point de vue des idées relativistes, la quatriéme relation
d'incertitude d’Heisenberg dW.dt ~ h apparait comme un complément
naturel des trois premiéres relations dp; dx; ~ h car la théorie de Relativité
considére I'énergie comme grandeur canoniquement conjuguée du temps au
méme sens que les composantes p,, p,, p, de 'impulsion sont respectivement
canoniquement conjuguées des variables x, y, z. On le voit par exemple en
remarquant que I'élément de l'intégrale d’action Hamiltonienne

Wit — podx — pody — p.d:
est un invariant d'espace-temps.

Mais, en Mécanique ondulatoire, la symétrie entre la quatriéme relation
d’incertitude et les trois premiéres, du moins dans I'état actuel de cette théorie,
est plus apparente que réelle. En effet, la Mécanique ondulatoire, méme sous
la forme d’apparence relativiste due & M. Dirac, n’établit pas une symétrie
véritable entre les variables d’espace et le temps. Tandis que les coordonnées
x, ¥, z d’'un corpuscule sont des grandeurs observables correspondant a un
opérateur et dont les valeurs ont pour chaque état (défini par une fonction
d’onde ¥) une certaine répartition de probabilité, le temps ¢ est toujours consi-
déré comme un paramétre ayant une valeur bien définie ().

On peut préciser ceci de la fagon suivante. Soit un observateur galiléen
celui que nous supposons effectuer des mesures. Il emploie des coordonnées
x, J, z, t qui lui servent a repérer les événements dans le cadre macroscopique
de ses expériences. Les variables v, y, z, ¢ sont des nombres, des paramétres,
et ce sont ces nombres qui figurent dans I’équation d’ondes et dans la fonction

(") Note G.L. : Signalons que, dans « L’électron magnétique » (réf. II, 11),
on trouve un long développement sur la quatrieme relation d’incertitude et sur
le probléme du temps en Relativité et en Mécanique ondulatoire. Dans « Certi-
tudes et incertitudes de la science » (réf. I11, 8), on pourra lire une analyse du
rapport possible (mais contesté par I'auteur) entre la quatriéme relation et la
cinquiéme qui relie la phase d'une onde lumineuse au nombre d’occupation :
ON 6P = 1.
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d’onde. Mais a chaque corpuscule de la physique atomique, correspondent des
« grandeurs observables » qui sont les coordonnées du corpuscule. La corres-
pondance entre les grandeurs observables x, y, z et le cadre de I'espace des
x, y, z de l'observateur galiléen considéré est statistique, chaque grandeur x, y, z
pouvant avoir en général dans ce cadre toute une série de valeurs avec une
répartition de probabilité. Au contraire, il n’y a pas dans la Mécanique ondu-
latoire actuelle de « grandeur observable » ¢ attachée au corpuscule : il y a
seulement une variable ¢ qui est I'une des variables du cadre d’espace-temps de
I'observateur définie par les horloges (essentiellement macroscopiques) qu'em-
ploie cet observateur.

Il est nécessaire en Mécanique ondulatoire d’avoir une « variable d’évo-
lution » permettant de suivre la variation de I'état des systémes quantiques.
Or cette évolution de I'état des systémes, ou plus exactement de la connaissance
que nous en avons, saccomplit nécessairement dans le temps tel qu’il existe
pour la conscience de I'observateur, temps dont nous ne savons repérer 'écou-
lement que par les horloges macroscopiques. Cest dans le cadre de ce temps
de la conscience de T'observateur que s’opérent notamment les brusques
modifications de la forme du ¥ dues aux opérations de mesure et aux rensei-
gnements que ces opérations nous fournissent. Mais le fait d’étre obligé de
prendre comme variable d’évolution le temps macroscopique (variable ¢ de
I'espace-temps relativiste) nous empéche dattribuer aux corpuscules ou
systémes quantiques une « grandeur observable » ¢ de nature aléatoire comme
nous faisons correspondre aux coordonnées g une « grandeur observable »
avec répartition de probabilité. Telles sont quelques-unes des raisons trés
profondes qui s’opposent, & mon avis, a I’établissement en Mécanique ondu-
latoire d’une symétrie entre espace et temps analogue a celle que postule la
théorie de la Relativitée. Ces difficultés sont en relation intime avec le fait que
la Physique quantique crée une liaison d'une nature nouvelle entre 'objectif
et le subjectif. « L’état » d’un systéme quantique n’a plus dans la nouvelle
théorie une définition objective correspondant a une description « de ce qui
est » : il est défini au contraire uniquement en fonction « de ce que nous savons »,
il est une représentation de nos connaissances et nous ne pouvons pas aller
au-dela de cette représentation. C'est donc dans la conscience de 'observateur,
par suite dans le cadre du temps macroscopique, quévolue « I'état » défini
par 'onde i et; si les théories quantiques ne parviennent pas a établir une symé-
trie entre espace et temps, cela semble bien di au caractére particulier du temps
pergu par la conscience, a son déroulement continu et a son irréversibilité (*).

(Y) Note L.B. : Si 'on voulait considérer P'énergie comme correspondant 4
Popérateur (h/2 mi) 9/0t, on aurait 'équation aux valeurs propres

h_op _

2ni 0t
et il 0’y aurait pas de quantification de 'énergie, E pouvant prendre toutes les
valeurs possibles de — 0 4 + 0.
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2. ENONCE CORRECT DE LA QUATRIEME RELATION
D'INCERTITUDE

Nous sommes maintenant en mesure d’énoncer correctement la quatriéme
relation d’incertitude et nous allons ainsi retrouver la forme de cet énoncé
que nous avions déja ét¢ amenés a admettre implicitement.

Reprenons le cas du train d’ondes ¢ de dimensions limitées occupant une
région R de l'espace. La valeur de la coordonnée x du corpuscule est incer-
taine, elle peut se révéler a la suite d'une mesure comme correspondant a une
position quelconque a l'intérieur de R, la probabilité correspondante variant
comme | ¥ |2. La probabilité de trouver pour p, une valeur donnée est d’autre
part égale a | c(p,) |* de sorte que la valeur de p, est, aussi, incertaine. Nous
savons que le produit, p, dx des incertitudes au sens d’Heisenberg est de 'ordre
de h. Mais si 'on peut déterminer par une mesure la coordonnée x du cor-
puscule, on ne peut parler de la mesure de son temps ¢ car en Mécanique
ondulatoire le temps ¢ est le temps macroscopique de 'observateur et a toujours
une valeur certaine.

Que signifie alors la relation 0E.5t ~ h ? Elle signifie que pour pouvoir
attribuer au corpuscule une énergie E avec une incertitude 8, il faut faire une
observation, une opération de mesure, qui dure au moins le temps 5t ~ A/JE.
En effet, il résulte de nos analyses des développements de Fourier du train
d’ondes que la durée §¢ du passage du train d’ondes en un point est au moins
de 'ordre 6t = 1/3v. Pour pouvoir affirmer que I'incertitude sur I'énergie est
au plus 0F = & ov, il faudra observer en un point P le passage du front avant
et du front arriére du train d’ondes, ce qui exige une durée d’observation au
moins égale & 4t ~ 1/0v. En particulier pour affirmer que §F est nul, c.-a-d.
que le train d’ondes est monochromatique, il faudrait faire une observation
de durée infinie, puisque la longueur d’'une onde monochromatique est infinie.

Ainsi, tandis que les trois premiéres relations d’incertitude traduisent I’exis-
tence d'une répartition de probabilité pour les grandeurs ¢ et p, c’est-a-dire le
fait que ces grandeurs sont des « variables aléatoires » au sens du calcul des
probabilités, la quatrieéme relation d’incertitude doit S'interpréter différemment :
le temps ¢ n’est pas une variable aléatoire, mais la mesure de F ne peut s’effectuer
qua laide d’observations dune durée finie et plus la durée d’observation
diminue, plus lincertitude sur la valeur exacte de F augmente. Comme la
variable 7 n’est pas une variable aléatoire, il n’y a pas de relation entre les dis-
persions de sorte qu’ici la relation qualitative d’incertitude 6E.5t S h n’est
pas doublée par un énoncé précis sur les dispersions du type oy g, = h/4 7,
car ¢ étant une variable & valeur précise g, n’a pas de signification (o, serait
toujours nul). On voit bien ici 'opposition qui existe entre ces conclusions et
la symétrie relativiste entre espace et temps.

3. ILLUSTRATION DE LA DEFINITION PRECEDENTE

Pour illustrer le sens de la quatrieme relation d’incertitude, nous donnerons
un exemple qui a été indiqué, sous une forme un peu différente, par M. Lennuyer
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[Annales de Physique 20 (1946), p. 91 a 110] dans un article sur la résonance
optique.

Considérons un réseau optique comportant un nombre total de traits égal
a N (N tres grand), les traits étant équidistants a la distance a. Sur ce réseau,
nous faisons tomber normalement un faisceau de lumiére de longueur d’onde
A(= ¢/v).

La lumiére diffusée par deux traits consécutifs du réseau dans une direction
faisant un angle 6 avec la normale présente une différence de phase égale a

(2 7/ 2) a sin B de telle sorte que la lumiere diffusée a I'infini dans la direction 6
N-1

a une amplitude proportionnelle & Y ™ avec u = (2 #/4) a sin 6, soit a
0 n

(€™ — 1)/(e™ — 1). L’intensité correspondante (carré du module de I'ampli-
tude) est donc proportionnelle a
eiNu -1

2 1 — cosNu _ sin®(Nu/2)
1|

1 —cosu  sin®(u?2)

M

Ce résultat classique montre qu'il y a des maxima dans les directions telles que
u/2 = mn (m entier), soit sin 8, = m(i/a) = (m/a)(c/v). On pourra donc
déterminer la fréquence v (donc I'énergie £ = Av des photons) en observant
langle 0, qui correspond au m-iéme maximum. Mais, en procédant ainsi,
il restera une certaine incertitude sur la valeur de v (ou de E) car on ne peut
jamais déterminer exactement 6, Examinons ce point.

sin? (Nuj2)

L’expression I =
p Sin? @)2)

présente un maximum égal & N? quand

)
u/2 = mm. Si u/2 prend la valeur mn + #, I devient égal a ﬂ—w
sin® n

Pour n = n/N (N étant supposé grand), on a

_ sin® (Nmn + ) 0
sin® (n/N) o

Donc [ passe de la valeur élevée N2 a la valeur 0. L’erreur que I'on peut com-
mettre en mesurant 6,, est donc toujours telle que 6(1/2) puisse atteindre une
fraction de n/N. Comme on a 3(u/2) = n(a sin 6/c) év, on voit que I'incertitude
ov sur la valeur de v ainsi mesurée peut atteindre une fraction de ¢/Na sin 6.
Donc 6v ~ ¢/Na sin 0.

Soit maintenant §¢ la durée limitée de I'expérience. Pour que tous les traits
du réseau entrent en action et que, par suite, la théorie précédente soit appli-
cable, il faut que la lumiére diffusée par le N-iéme trait du réseau dans la
direction @ ait pu dépasser le plan d’onde P, ce qui exige que

o0t = Nasin8/c
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c Nasin
Na sin 0 c o

ov-ot = 1 en ordre de grandeur

et
O0E.5t = h en ordre de grandeur .

Nous voyons bien ici intervenir dans la mesure de I'énergie £ = hv du photon
la durée 6t de T'expérience et nous voyons que dans la quatriéme relation
d’incertitude la grandeur 6z a essentiellement le sens d’'une durée d’expérience
pour Pobservateur qui Teffectue.

Exemple de Darwin [ Proc. Roy. Soc. A, vol. 130 (1931), p. 632]

Darwin constdére un électron qui est au repos, mais peut se déplacer sur une
droite. En un point de la droite, se trouve un électrométre qui permet, en
mesurant le champ électrique, de déterminer la position x de I'électron. Pour
analyser plus aisément le fonctionnement de I'¢lectrométre, M. Darwin suppose
qu’il est constitué par un atome subissant I'effet Stark. Cet atome est susceptible
d’émettre une raie spectrale en passant du niveau d’énergie E;, + M, & au
niveau E, + M, &. E, et E, sont les énergies des niveaux en 'absence du
champ ¢électrique &, M, et M, les moments électriques de 'atome avant et aprés
la transition.

Pour mesurer le champ & avec la précision d4, il faut pouvoir distinguer
deux fréquences différant de | M, — M, | (04 /h). Pour cela il faut attendre un
temps 61 tel que dv.dr ~ 1 c.-a-d. tel que

h
(2 ot = m
Ainsi intervient la quatrieme relation d’incertitude.

Continuons le raisonnement. A un certain instant inconnu, I’atome-électro-
metre saute d’un état 1 a un état 2. Ce saut exerce une réaction sur I’¢lectron
qui d’abord est soumis a 'action du moment électrique M, puis a partir d’'un
instant inconnu 4 Paction du moment ¢€lectrique M,. Nous ne pouvons mieux
chercher a compenser cette variation d’action qu’en appliquant constamment
a I'électron un champ équivalent a la présence au point ol est I'électrométre
d’un moment électrique égal a (M, + M,)/2. Mais, méme en faisant cette

compensation, il y a encore & l'origine un moment residuel €gal 4 3 (M,—My)

et & la fin un moment résiduel égal a %(Mz—Ml). Le moment électrique

véritable de I'atome-électrométre a un instant quelconque est donc affecté
dune incertitude de Pordre de | M, — M, |. M. Darwin ajoute : « Le fait
qu'il 1’y a pas d’observation sans incertitude est illustré par les raies pour
lesquelles M; = M,. Pour celles-ci la réaction sur Iélectron est exactement
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compensée, mais justement, alors, la raie ne présente pas d’effet Stark et ne
peut pas servir pour une mesure électrométrique. »

Pour mesurer la position x de I'électron avec une incertitude dx, il faut
mesurer le champ électrique avec I'incertitude 5(e/r’) = e dx/r>. Nous avons vu
que pour cela il faut faire une observation d'une durée ¢ telle que

£ h _ hrd
TIM, — M,166 edx|M, — M,|

3) B

Pendant ce temps, I'électron est soumis a une réaction équivalente a la présence
dans Délectrométre d'un moment électrique M au moins de 'ordre de
| M, — M, | : il est donc soumis a une force e(M/r’) = e/r’ | M, — M, |.
Pendant le temps o¢ cette force fait varier la quantité de mouvement p, de
Iélectron de

eM e hr? h

@ 5px:75t>r3|M1_M2|.65X|M1~M2|:Ec

0x.0p, = h en ordre de grandeur .

On retrouve ainsi la premiére relation d’incertitude par lintermédiaire
de la quatriéme.

4. REMARQUES DIVERSES SUR LA QUATRIEME RELATION
D’INCERTITUDE

Nous allons faire diverses remarques au sujet de la quatriéme relation d’in-
certitude. Commengons par une remarque déja trés ancienne de M. Bohr.

On sait que, si 'on bombarde un systéme atomique a l'aide de particules
rapides, on peut obtenir I'excitation ou méme I'ionisation du systéme atomique.
Or ce phénomeéne, quand on 'analyse avec les idées classiques, apparait comme
incompréhensible. En effet, la particule incidente traverse 'atome avec une
vitesse v et, si a désigne le diamétre moyen de 'atome, le temps de transit de la
particule a travers 'atome est au plus de I'ordre de a/v. C’est donc seulement
pendant un temps de cet ordre que la particule incidente peut agir sur les consti-
tuants de 'atome et leur céder de I'énergie de fagon a provoquer une excitation
ou une ionisation. Pour quun constituant de 'atome absorbe de I'énergie,
il faut qu’il se déplace appréciablement pendant le temps a/v. Ceci exige que
le temps T = a/v soit grand par rapport aux périodes d’oscillation des électrons
dans I'atome. On le voit aisément en raisonnant sur un oscillateur linéaire :
un tel oscillateur a une période T bien déterminée et, 5’1l est mis en mouvement
par une action extérieure, il vibre avec cette période ; pour que I'action extérieure
puisse lui communiquer de I'énergie, il faut quelle agisse sur lui pendant
un temps qui soit d’'un ordre de grandeur sensiblement supérieur a T. Il faut
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donc avoir t = afv > T oua > vT ;v < av. Mais pour qu’il y ait possibilité
d’excitation ou d’ionisation, il faut que I'énergie cinétique apportée par la
particule incidente soit de 'ordre de Av. Sila vitesse v est assez petite pour qu’on
puisse négliger les corrections de relativité (ce qui est ici le cas usuel), on devra
avoir mv? ~ hv.

Considérons d’abord un électron atomique situé a la périphérie de 'atome
et correspondant par suite a une fréquence de ordre de celles de la lumiére.
On a alors

a~10"8%cm v~ 1014571,

La condition v < av donne v < 10° cm/s tandis que la condition me? ~ hv
donne v ~ . /hv/m = 2,7.107 cm/s. Il y a donc contradiction. Considérons
de méme un électron situé dans les profondeurs de 'atome et correspondant a
une fréquence de l'ordre de celles des rayons X. Onauraa ~ 10™° cm, v~ 108,
La condition v < v donne v < 10° cm/s tandis que mv? ~ hv donne
v ~ 2,7.10° cm/s. Il y a encore contradiction. On voit donc quavec les idées
classiques les phénoménes d’excitation ou d’ionisation par choc restent
inexplicables.

Il n’en est pas de méme avec les conceptions nouvelles. Pour pouvoir appli-
quer au choc la conservation de I'énergie, il faut que I'énergie cinétique du
corpuscule incident soit connue avec une incertitude £ beaucoup plus petite
que sa valeur E ~ hv. D’ou 0E < hv. Mais alors le train d’ondes associé
a la particule incidente est relativement long et, pour passer sur 'atome, ce
train d’ondes met un temps 6¢ > A/SE. Comme on peut fixer a l'intérieur du
temps ot linstant ol la particule incidente entre dans Patome, on ne peut
attribuer au temps de transit T une valeur inférieure a éz7. Donc

t~hSE> hE=1/v=T.

La condition ¢ » T peut étre considérée comme réalisée parce que la durée
d’interaction entre la particule incidente et les constituants de I'atome ne
peut &tre considérée comme inférieure a la durée é¢ du passage sur I'atome
du train d’onde associ¢ a la particule.
Passons a une autre remarque. Soit un systéme quantifié dont la fonction
d’onde est y = ) ¢, a, exp[(2 mi/h) E, t]. Nous avons dit que, si I'on faisait a
k

linstant ¢, une mesure de I'énergie, on doit trouver I'un des E; et la probabilité
pour que ce soit précisément E, est | ¢, |2 Mais nous voyons maintenant que
cet énoncé n’est pas tout a fait correct, car pour mesurer I'énergie il nous faut
toujours un certain temps (et d’autant plus de temps que la mesure est plus
précise). Nous ne pouvons donc pas parler d'une mesure de I'énergie faite a
I'instant ¢, mais seulement d'une mesure faite dans un intervalle de temps d¢
entourant I'instant ¢. (Il n’en est pas de méme pour les mesures de la quantité
de mouvement ou de la position.)

Néanmoins la restriction que nous introduisons ainsi a en pratique peu
" d’importance car nous pourrons affirmer que E a la valeur E; dés que 6F sera

L. bE BROGLIE. 6
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trés inférieur a la plus petite des différences | E,_; — E | ou | E, — Fpyq |
Or ces différences, méme quand il s’agit d’états ol les électrons sont trés peu
liés a I'atome, correspondent a des transitions ou la fréquence émise est au
moins égale a celle de I'infrarouge lointain, c.-a-d. est au moins de I'ordre de
10'2 571, Le temps d’observation nécessaire pour distinguer un état quantifié
d’un état voisin sera donc au plus de I'ordre de

8t ~ hfSE ~ hih.10'? = 107125,

Il sera donc toujours pratiquement trés petit et nous pourrons considérer
les mesures d’énergies quantifiées comme pouvant étre pratiquement instan-
tanées. Voici encore d’autres remarques dont nous verrons bientdt 'importance.

Soit un systéme ayant, entre autres, deux états quantifiés E; et E,. Supposons
que le systéme soit perturbé par une action extérieure et que le calcul nous
indique (nous préciserons bientdt comment) que, sous I'action de la pertur-
bation, le systéme oscille entre les états E; et E, avec la fréquence v, =(E,— E,)/h.
Il ne faut pas en conclure que le systéme passe physiquement de I'état i a I'état k
et inversement, car nous n’aurions le droit de le dire que si nous pouvions saisir
le systéme dans 'un ou l'autre de ces états, c.-a-d. : mesurer son énergie dans
I'un ou l'autre état. Or, comme il ne reste dans I'un des états que pendant un
temps 6t inférieur a 1/v, = h(E; — E,) aucune mesure ne nous permet de
mesurer I'énergic de 'un des états avec une précision supérieure a

OE ~ hiot ~ E; — E,

et nous ne pouvons distinguer les deux états 'un de P'autre. Pendant l'inter-
action, I'énergie du systéme reste indéterminée entre E; et £, et nous ne pouvons
vérifier la conservation de I'énergie qu'a | E; — E, | prés.

Supposons encore que le systéme posséde 'énergie E, jusqu’a un temps ¢,
puis qu’il subit une action extérieure de 7, & 7, qui le perturbe sans lui fournir
finalement d’énergie, puis qu’il se trouve dans I'état E, pour ¢ > f,. Comme
nous disposons pour mesurer E; et E, respectivement de tout le temps qui
précede ¢, et de tout le temps qui suit £,, nous pouvons mesurer trés exactement
E, et E, et la conservation de I’énergie exige que £, = E,. Mais pendant le
temps de perturbation ¢, — 7,, le systéme peut passer dans un état intermé-
diaire E. Si t, — t, est petit devant A/(E — E,), il sera impossible de saisir le
systéme dans I'état E en mesurant cette énergie. On peut dire que le systéme
passe par I'état « virtuel » E et en réalité I'énergie est durant I'interaction indé-
terminée a £ — E; pres. La conservation de I'énergie se vérifie pour le passage
global E; — E,, mais non nécessairement pour les transitions virtuelles
E, > FEetE—> E,

Nous allons préciser ces considérations en développant rapidement I'étude
des perturbations par la méthode de variation des constantes.
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5. METHODE DE VARIATION DES CONSTANTES ET PROBABILITE
DE TRANSITION

Pour illustrer ces considérations, nous allons rappeler briévement les grands
traits de la méthode de variation des constantes et la notion de probabilité
de transition.

Dans la méthode de variation des constantes, on considére un Hamiltonien
non perturbé H'” indépendant du temps auquel correspondent des états
stationnaires du systéme envisagé en I'absence de la perturbation. On suppose
connues les valeurs propres et fonctions propres EL% et y/”’ de cet Hamiltonien.
On suppose le systéme soumis a des actions perturbatrlces qui peuvent dépendre
du temps : elles seront représentées par un terme V dans 'Hamiltonien de sorte
que H = HO + V().

L’équation d’évolution du systéme en présence de la perturbation sera donc

) [+ VO] = 5

Q’I%’

A tout instant ¢, la fonction d’onde Y du systéme peut étre développée
suivant le systéme complet des fonctions propres y{” de ’'Hamiltonien non
perturbé H'® sous la forme

© WD) = 3 ct) YO expl(2 nifh) EO 1]
avec
@ () = J WO* , exp[ — (2 ifh) E® 1] ds

D’aprés les principes généraux de la Mécanique ondulatoire, la probabilité
pour qu’a linstant ¢ le systéme soit trouvé dans I'état yi” est donnée par
| c(0) 1. Encore faut-il, comme nous I'avons remarqué plus haut, que le systéme
demeure dans cet état pendant un temps assez long pour qu’on puisse recon-
naitre la valeur de son énergie. La fonction d’onde est toujours supposée normée
etil sensuit que Y | ¢, | = 1.

k

En substituant 'expression de y dans I'équation d’évolution et en tenant
compte de ce que les ”’ sont fonctions propres de H'®, on trouve

(/(k

@ Z

O expl@ nifh) B 1] = S5 ) V) Y42 expl2 wilh) £ 1],
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Multiplions par ¥{9* exp[ — (2 =i/h) E{® t] et intégrons dans D. Nous obte-
nons, en tenant compte de Porthonormalité (%, les équations fondamentales

9 dﬁctl 2w Z Vit clt) exp[(2 mifh) (EL® — E{®) 1]
ou
(10) Vlk(t) = j wl(O)* V(t) l//lio) dr .

Pour V = 0, les ¢, sont constants et le i est une somme de fonctions propres
de H? A coefficients constants, cas connu. Si la perturbation V n’est pas nulle,
les coefficients ¢, varient avec le temps : d’ou le nom de « méthode de variation
des constantes » donné a ce mode de calcul. (On vérifie aisément que

%chciﬁ=0, dou Y || = Cte =1
k k

a tout instant.)

L’intégration des équations de variation des constantes est difficile a effectuer
dans le cas général; on peut en tirer diverses conséquences que nous n’étu-
dierons pas ici en détail. Nous nous bornerons au cas suivant : au temps t = 0,
I'on sait que le systéme est dans I’¢tat d’indice n de sorte que ¢,(0) = 1 et
¢,(0) = 0 pour m # n.

La perturbation représentée dans 'Hamiltonien par I'opérateur V(z) étant
faible par hypotheése, nous obtiendrons une solution des équations de variation
des constantes qui sera valable approximativement pendant un certain temps
en posant

dc

' 2T .
(11) 5 s V o €xp[(2 mifh) (E, — E,,) t] m+#n

(en supprimant l'indice supérieur O dans les E). La solution correspondant 4 la
condition initiale ¢,(0) = 0 est

exp[(z 7[1//1) (En - Em) t] -1

Cm(t) = an E — L
d’ou
(12)
|an|2 27 4V o |* T
‘Cm(t)|2 )2 I—COS—h—(En—Em)[ (E )2 nZ?l(En_Em)[-

Cette quantité peut étre considérée comme la probabilité pour que le systéme
soit 4 I'instant ¢ dans I'état m : elle est proportionnelle & | V,,, |, ce qui donne
une importance particuliére a ces éléments de matrice. Toutefois, conformément
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a une remarque faite ci-dessus, tant que dure la perturbation, nous ne pouvons
pas saisir physiquement le systéme dans I’état d’énergie E,,, car ceci exigerait
une mesure de I'¢nergie affectée d’une incertitude inférieure a E,, — E, et le
temps pendant lequel le systéme reste dans I'état E,, est inférieur 4 A(E,, — E,).
Cest seulement si & 'instant 7 la perturbation V(#) cesse brusquement que nous
pourrions saisir le systéme dans I'état E,, (devenu un état final permanent),
la probabilité de cette éventualité étant mesurée par | ¢,,(¢) |>. Comme I'énergie
du systéme n’est pas mesurable pendant la durée de la perturbation, on ne peut
alors lui appliquer la conservation de I'énergie qui n’est vérifiable qu’a la fin
du processus de perturbation (*).

Il peut arriver que certains des V,,, soient nuls : ceci signifie que la transition
n — m ne peut seffectuer directement. Mais cette transition peut parfois
seffectuer indirectement par passage par un état intermédiaire p si V,,, et
V .. ne sont pas nuls. Plus généralement, il peut y avoir plusieurs états p, p', ...

P

pouvant servir d’états intermédiaires suivant le schéma nf p'> m,

"

p

(') Note L.B. : Dans la théorie des perturbations, il se pose quelques
questions délicates au sujet du potentiel perturbateur V. Plagons-nous d’abord
dans le cas d’un systéme a spectre discontinu. Dans ce cas, le potentiel V
peut étre un potentiel d’interactions intérieures (indépendant de 7 ou un
potentiel extérieur (qui peut dépendre de 7). Dans le premier cas, on ne peut
attribuer un commencement, ni une fin 4 l'interaction et il est impossible de
mesurer les énergies E, E9 .. en absence d’interactions. Si, au contraire,
V représente une action extérieure, on peut supposer que cette action ait un
début et une fin (par exemple par rapprochement puis éloignement du systéme
qui produit le champ extérieur). On peut alors mesurer I'énergie avant I'inter-
action et I'énergie aprés I'interaction. En général, les deux énergies ne seront
pas égales mais 'on pourra sauver la conservation de I'énergie en disant que de
I'énergie a été empruntée ou cédée par le systéme au systéme extérieur qui
produit le champ.

Dans ce dernier cas, il est naturel de considérer le systéme X formé par l'en-
semble du systeme S ¢étudié et du systéme S’ qui produit le champ. Mais, pour
pouvoir appliquer la conservation de I'énergie, il faut pouvoir approcher puis
¢loigner le systeéme S’ du systeéme S, ce qui exige que le systéme X posséde un
spectre continu. Ce sera alors la théorie des pages 119 et ss. qui s'appliquera
et elle nous apprend comment apparait la conservation de I’énergie. En résumé,
chaque fois que la conservation est physiquement vérifiable, il semble qu’on
puisse se ramener a la théorie des pages 119 et ss.
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En utilisant 'approximation admise dans le calcul précédent on peut écrire

hdc

> va,, ¢, exp[(2 mi/h) (E, — E,) 1] ;

(13)

h dc, .
i dt =V, exp[(2ni/h)(E, — E,) t]

valable pour p, p', ...
L’intégration de la 2¢ équation donne

(2 mih) (B, — E) ] = 1
(14 ) = ¥ LTI ]

n Ep
et la premiére équation donne alors
h dc, exp[(2 nilh) (E,— E,,) t] —exp[(2 nilh)(E,— E,;) t]
9 7w §va Von E,—E, -

d’otl, en intégrant avec la condition initiale ¢,(0) = 0
Vmp Vpn
(16) cn(1) = ; E-E ~

exp[2mi/h) (E, — E) 1] — | _ exp[@milh)(E, — E) 1] — 1
* E _E, - E, - E,

En introduisant la notation V,,, = on trouve pour la probabilité

SRR

de présence du systéme dans I'état E,,, a linstant ¢

2| Vi I?

(Em - En)2

2
A7 |ea®|? = [1 - cos—hE(E,, —E) t}+termes en(E,—E,).

En général, les termes en (£, — E,) n'interviennent pas effectivement dans
I'application de cette formule qui a une grosse importance dans la théorie des
interactions entre matiére et rayonnements.

Ici encore, pendant la durée de la perturbation, on ne peut physiquement
saisir le systéme dans 'état E,, ni appliquer la conservation de I'énergie. C'est
seulement si la perturbation cesse a I'instant ¢ que P'on peut trouver ensuite le
systtme avec I'énergie E,, la probabilité de cette éventualité étant | ¢,(¢) |*
Mais, méme dans ce cas, on ne peut jamais saisir le systéme dans un des états
p, p' ... et par suite la conservation de P'énergie ne s’applique jamais dans ces
états intermédiaires. C’est ce que I'¢tude des probabilités de transition va nous
montrer plus clairement.
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Notons qu'on trouve des circonstances analogues quand la transition
n — m peut seffectuer avec étapes successives dans plusieurs états intermé-
diaires.

6. PROBABILITES DE TRANSITION

Jusqu’ici nous avons supposé que les états quantiques formaient une suite
discontinue. Or il arrive souvent, et c’est un cas tres important, qu’on ait affaire
a des états formant un spectre continu (dans les problémes de choc par exemple).
Il faut alors reprendre les calculs précédents en supposant que le systéme se
trouvant dans un état initial » connu puisse passer dans un état final apparte-
nant a une suite continue. Nous supposerons donc que le nombre des états
finaux possibles dont les énergies sont contenues dans un intervalle (E, £+ dE)
est donné par une expression p(F) dE ol p(E) est une fonction continue et
assez lentement variable de E. ’

Nous allons donc transformer la théorie précédente pour 'appliquer au cas
ou l'état m final appartient & un petit intervalle AE d’un spectre continu.
Supposons d’abord que la transition # — m soit directement possible (V,,, # 0).
Alors d’apres la formule (12), la probabilité totale du passage pendant le temps ¢
de Tétat initial n & I'un quelconque des états m appartenant & Iintervalle
(E, E + AF) sera

, i ,
42 [ETAE Sinz(E— E)t
A8 Pl = 5 j [ Vam I | ————| p(E) dE.

On peut vérifier aisément que, si £, n’appartient pas a l'intervalle AE, I'intégrale
est tres petite quel que soit ¢ de sorte que P(¢)/r tend vers zéro pour ¢ — oo :
on peut dire que la probabilité de transition par unité de temps est nulle dans
ce cas.

Il en est autrement si E, appartient a 'intervalle AE. Dans ce cas, si ¢ est assez
E+ AE

grand, l'intégrale j croit proportionnellement a 7 et la probabilité de
E

transition par unité de temps P(¢)/t prend une valeur finie : cette transition

se produit donc d’une fagon notable.

D’une fagon plus précise, I'étude de I'intégrale montre que, pour pouvoir
affirmer que la transition se produira entre I'état initial E, et un état E compris
dans I'intervalle JE, il faut attendre un temps de I'ordre de 67 = h/2 n SE,
ce qui correspond a la quatriéme relation d’incertitude $E.5t ~ h. Ce n'est
donc qu’au bout d’'un temps suffisamment long que la conservation de I'énergie
E, =~ E, se trouvera jouer, mais pratiquement en raison de la trés petite valeur
de 4 a notre échelle, ce temps sera pour nous trés court.
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Donc, au bout d’'un temps §¢ pratiquement trés court apres le début de la
perturbation, la conservation de Iénergie se trouvera établie et 'on pourra
constater que le systéme a passé¢ de son état initial £, a un état final d’énergie
E,, presque égale (E,, — E, ~ h/d1). Alors on aura trés approximativement

2
T
472 @ smz(E—-E,,)t
(19) Pn,AE([) =~ —}1—2-| an |2 p(En) J\ —_TC————- dE
T® 71 (E - En)

car, I'élément E = E, de l'intégrale étant entierement prépondérant, on peut
sans erreur sensible y remplacer p(E) par p(E,) et étendre I'intégration a toutes
les valeurs de E. Posant u = (n/h)(E — E,) ¢, il vient

sin® u 4 7?2
— du

(20) u = ——/’l—l an l2 p(En) -

P () 4= *
_’%I?Q:TIan lzp(En)j

La probabilité de transition par unité de temps de I'état » & un état m du
spectre continu est donc égale a

4 2
1 Poom = == Vo [ pUE)

Cest la formule fondamentale (formule de Wentzel) valable quand la transition
n — m est possible. V,,, alors différent de zéro, est 'élément de matrice cor-
respondant a la transition de I'état n a U'état m d’énergie E,, du spectre continu.
L’analyse précédente montre clairement comment la conservation de I'énergie
s’établit progressivement de plus en plus strictement quand le temps d’'inter-
action s’écoule conformément a la quatriéme relation d’incertitude.

Si le passage n — m n’est pas directement possible (V,,, = 0), le passage
n — m peut parfois s’effectuer avec passage dans un état intermédiaire p et
I'on devra alors partir de la formule (17). On peut vérifier qu’en dehors de
certains cas exceptionnels ou il y aurait résonance entre les états m et p, les
termes en £, — E,, de la formule (17) ne donnent aucune contribution sensible
a la probabilité de passage. Le calcul précédent est alors encore valable avec
simple substitution de V,,, a V,,, et I'on trouve

4 12 Vo V
Pyomw=——| Vi |* p(E,) avec V,, =) =2,
n-m h mn n mn ) En _ Ep
m désignant un état du spectre continu d’énergie E,.
Il y a encore conservation de I'énergie dans le processus global n — m,
mais non pas dans I'état intermédiaire p car E, peut étre différent de E, et E,,.
Ici encore on ne peut pas saisir le systéme dans 'état intermédiaire p de sorte

que l'écart par rapport a la conservation de I'énergie n’est pas constatable.
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On dit qu’un tel état p est un état « virtuel » puisqu’il ne peut se manifester
effectivement.

Pour les transitions s’effectuant avec plusieurs étapes intermédiaires, on
trouverait des formules analogues, mais plus compliquées.

Exemple physique : Nous allons donner un exemple physique illustrant
ce qui précede.

Considérons d’abord la diffusion de la lumiére par un atome. L’atome a un
état quantifié normal d’énergiec minimum E; et une série d’états quantifiés
excités d’énergies E4, F, ... supérieures a E;. Soumis a I'irradiation d’'une onde
lumineuse de fréquence v, atome diffuse la lumiére incidente sans changement
de fréquence. L’analyse de ce phénoméne, qui conduit a trouver la loi de
« dispersion » pour le genre d’atomes considéré, amene a regarder l'atome
comme oscillant pendant I'irradiation entre I'état E, et des états « virtuels »
E, ... Plus exactement il y a passage avec conservation de I'énergie de I’état
initial « photon incident de fréquence v + atome dans I'état E, » a Iétat final
« photon de fréquence v diffusé, en général, en dehors de la direction d’inci-
dence + atome revenu dans I'état E, », ce passage s’opérant avec étape inter-
médiaire dans I'un des états E, E, ... suivant le schéma de la théorie ci-dessus
indiquée. Comme, en dehors du cas exceptionnel de la résonance qui exige
une étude particuliere, les différences d’énergie E; — E; sont différentes de hv,
il 'y a pas conservation de I'énergie dans I'état intermédiaire E; mais cela
importe peu puisque cet état intermédiaire est un état « virtuel » impossible &
saisir expérimentalement.

Dans la théorie quantique des interactions entre particules électrisées, on
est amené €galement a faire intervenir des passages par des états intermédiaires
« virtuels » sans conservation de 'énergie (échanges virtuels de photons).

La théorie de la largeur des raies spectrales fournit une belle illustration
de la quatrieéme relation d’incertitude. Considérons une raie spectrale corres-
pondant au passage de I'atome d’un état excité E; a I'état fondamental E,,.
L’expérience indique et le calcul quantique explique que la raie émise est large
et que la répartition des intensités a I'intérieur de la raie large est donnée par
la formule

Iy vy

*2 0 = e — 7 v 7

oll v;p = (E; — Ey)/h est la fréquence (centrale) de la raie et y « le coefficient
d’amortissement » de I'état initial d’énergie E, c.-a-d. que la probabilité de
trouver l'atome dans I'état excité E; au temps t aprés 'excitation diminue
comme ¢~ . On voit que /(v), maximum pour v = v;,, diminue rapidement

quand on s’éloigne du centre de la raie : I[(v) = % I(vio) pour| v — vy | = y/4 T

On peut donc dire par convention que y/4 © mesure la « largeur » de la raie.
Or il est évident, d’aprés la définition de y, que 'on ne peut suivre I'atome dans
'état E; que pendant un temps d¢ de Pordre de 1/v : il est donc impossible de
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mesurer £; avec une précision supérieure a 0E ~ h/dt ~ hy. La fréquence de
la raie est donc affectée de 'incertitude 6v = 6E/h ~ y et ceci correspond bien
a la largeur de la raie.

Pour une étude plus approfondie des questions effleurées dans ce paragraphe,
on se reportera & « Une nouvelle théorie de la Lumiére » tome II (réf. II, 16).

7. RELATIONS D’INCERTITUDE ET THEORIE DE LA RELATIVITE

Dans le domaine oli I'on doit tenir compte des corrections de Relativité
(vitesses voisines de c¢), on peut trouver de nouvelles formes de relations d’incer-
titude qui ont été signalées par Landau et Peierls (Z. f. Phys. B. 69, p. 56 et ss.)
et qui ont donné lieu a d’assez nombreuses discussions.

Dans le domaine relativiste, on doit définir Pénergie E, compte tenu de
Pénergie interne de masse. Ainsi pour un corpuscule de masse propre my,

2
mg ¢ . .
on devra poser E = e Si p, désigne I'une des composantes de
I —v/c

Iimpulsion, I'équation de Hamilton dE/dp, = v, donne la relation

23) SE = v, dp,

2

mg ¢ Mg U,

————= et p, = ———. Partant d’un état ou
s 7 Dx T g 7

I'énergie E, et I'impulsion p, sont connues, opérons une mesure de E qui dure

un temps 6¢; I'incertitude sera SE = h/d1. Or 6E = v, ép, et v, est forcément

inférieur a ¢. D’ou

249 op. = hf(c ot)

facile a vérifier sur E =

relation d’incertitude d’une forme nouvelle qui lie une incertitude sur un
moment de Lagrange 4 une durée de mesure, indépendamment de I'incertitude
sur la coordonnée x correspondante. La mesure de I'impulsion exigerait,
si I'on tient compte de la Relativité, toujours un certain temps si 'on veut
gu’elle soit un peu précise.

On peut retrouver cette relation nouvelle par le raisonnement suivant.
Supposons qu'une premiére mesure localise un corpuscule au voisinage immé-
diat d’'un point 0. Aprés la mesure, on a un train d’ondes ¥ de dimensions
infiniment petites et nous avons vu que I'analyse de Fourier nous apprend
alors que le train d’ondes comprend des composantes de toutes les fréquences.

mg c*
J1 - B
correspondent 2 des vitesses infiniment voisines de ¢. Donc si la mesure dure
un temps o¢, le front de I'onde ¢ a la fin de la mesure pourra déja étre a la
distance ¢ 8¢ du point O et a la fin de la mesure éx = c ér. Alors la relation

La formule relativiste Av = montre que les fréquences infinies
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d’Heisenberg dp,..0x = h donne dp, = h/(c 8t) et nous retrouvons la nouvelle
relation d’incertitude (}).

En théorie relat1v1ste on a entre l’energle E et la quantité de mouvement p
la relation E?/c*=p? +mdc? dou EdE=c*pdp et comme p= Er ¢?
on en conclut que dF = v dp, ce qui permet d’écrire la relation d’incertitude

25) 0E = vdp > vh/dq ou OE.5q > vh

reliant P'incertitude sur 'énergie a Pincertitude sur la position. On trouve un
exemple physique de ce cas dans les expériences de Rausch von Traubenberg qui
ont été analysées théoriquement par Schrddinger [Z. f. Phys. 78 (1932), p. 309].

Considérons des atomes qui se trouvent excités avec I'énergie E; et qui se
déplacent avec une vitesse uniforme v le long d’'un axe Ox sur lequel régne un
champ magnétique non homogéne H(x). La valeur de E; varie avec x en raison
de la variation de H. En revenant a leur état normal d’énergie E,, les atomes

(") Note L.B. : On a 6t > h/SE et, comme on doit avoir aussi 3E < E, on a
= h/E.

Comme en théorie relativiste les fronts d’onde peuvent atteindre la vitesse c,
on doit poser 8q = ¢ 6t d’our

h 3
P = — —
oq = o 1 -5

Sy

ou encore
> AB car A =L,/1 - .
mg fBe

Pour la lumi€re dg > A, mais pour les particules matérielles, 5q peut étre
inférieur a A
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émettent une raie spectrale dont la fréquence varie suivant la position occupée
par chaque atome a l'instant de la transition. On cherche a trouver les varia-
tions de E; en observant la fréquence de la raie émise sur chaque €lément de
’'axe Ox. Malheureusement, comme 'a observé Schrédinger, on est géné par
les circonstances suivantes

D’abord, deux points de 'axe Ox ne sont « séparables » l'un de autre que si
leur distance dx est supérieure a A(x)/sin & A(x) étant la longueur émise au
point x et ¢ le demi-angle d’ouverture de I'appareil d’observation. D’autre part,
pendant la durée d¢ de I'observation, I'atome émetteur est animé vers 'appareil
d’observation d’une vitesse qui peut atteindre v sin ¢ et par suite de leffet
Doppler il y a une incertitude sur la longueur d’onde égale a 64 = (v/c) sin ¢ 4,
ov

d’out v = (v/c) sin & v car 5—; = | — | et, comme dx = A/sin ¢

(26) OF = ho(sin e/4) = hv/éx SE.0x = hv.

Nous retrouvons la relation d’incertitude annoncée.
Ecrivons encore

ox = h/ép, = hv/OF .

Pour qu’on puisse localiser un corpuscule d’énergie £ bien définie (0F < E)
dans T'intervalle dx, il faut donc que

ox » hv/E = vj/v car E = hv.

Or A= V/v=c*vvdoudx » p* A

A Tapproximation Newtonienne (particules de vitesse faible), £ est négli-
geable et cette inégalité ne donne rien. La localisation peut s’effectuer dans un
domaine de dimensions petites par rapport a la longueur d’onde. Il n’en est
plus de méme si v — ¢; alors § — 1 et 'inégalité tend vers éx » A. On ne peut
plus localiser la particule dans un domaine de I'ordre de la longueur d’onde.
Donc, pour les particules de vitesse voisine de ¢, et en particulier pour les
photons, il n’y a pas de localisation possible a I’échelle de la longueur d’onde.

Les questions que nous venons d’exposer ont donné lieu a d’assez nombreuses
discussions. Elles se rattachent a la question des états a énergie négative bien
connue dans la théorie de Dirac et 1a théorie générale des particules a spin, ainsi
qu'a la non-existence d’une densité de présence définie positive pour les photons
et les particules de spin pair. Ces discussions n’ont pas abouti a des conclusions
absolument claires et la question reste mal élucidée.

D’autres considérations relatives a la comparaison des relations d’incerti-
tude et des conceptions relativistes ont été développées par divers auteurs,
notamment par M. Schrodinger (Annales de 'TL.H.P., vol. 2(1932), p. 287 et ss.).
Nous en rappellerons seulement quelques points se rapportant a la mesure
des temps et des longueurs avec un raisonnement un peu plus court que celui de
Schrédinger. Supposons que dans un systéme galiléen, ot la synchronisation
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a été établie, on veuille régler une horloge de masse propre M,,. Pour cela, on
suppose qu’elle émet un photon qui est recueilli au temps ¢ pour un observateur
situé a une distance / de I’horloge : le temps d’émission du photon sera alors
t — Ifc et on pourra régler 'horloge. Mais pour éviter que I’horloge ne prenne
lors de I'’émission du photon un mouvement de recul qui troublerait la mesure,
il faut que I'énergie du photon émis soit trés petite par rapport a 'énergie
propre de I'horloge : d’ou hv < M, c*. Mais la durée §¢ d’émission du train
d’ondes associé au photon est > h/h Sv, év étant I'incertitude sur la valeur de v
qui est forcément < v. Do 8t > 1/v > h/M, ¢*. Comme I'enregistrement de
larrivée du photon par 'observateur peut avoir lieu a n’importe quel instant
de l'intervalle de temps §¢ pendant lequel le train d’ondes passe sur 'obser-
vateur, on voit que le réglage de I'horloge ne peut avoir lieu qu’avec une pré-
cision inférieure a t, = h/M, c*.

De méme si I'on veut dans un systéme de référence galiléen mesurer la
longueur d’une régle, cette mesure ne pourra s’effectuer, a cause de la relation

h

8x = h/ép,, quavec lincertitude éx > m car

x

My E E
0 > v, et 5px>—§50x.

N .

h h
Eyje Myc
jamais €tre connue avec une incertitude moindre que

Ao = BIM, ¢,

Comme v, < ¢, 6x > . Ainsi la longueur de la régle ne pourra

M, étant ici la masse de la régle.

On se reportera pour les détails & I'exposé de Schrédinger dont tous les
raisonnements peuvent en fin de compte se ramener a la quatriéme relation
d’incertitude et aux relations données plus haut, mais qui contient sur le réle
du temps en Mécanique ondulatoire de trés pénétrantes remarques.

8. FORMULES DE MANDELSTAM ET TAMM

Partant de considérations dont quelques-unes sont peut-étre un peu dis-
cutables, MM. Mandelstam et Tamm sont parvenus a des formules intéres-
santes reliées a la quatriéme relation d’incertitude [Journal of Physics, vol. IX,
n° 4 (1945), p. 249]. Nous allons les étudier.

Les auteurs remarquent que, si un systéme est dans un état stationnaire
Y ~ e*™ les répartitions de probabilités pour toutes les variables dynamiques
sont indépendantes du temps, ce qui se vérifie facilement. Ils en concluent qu’il
doit exister une relation générale entre la dispersion oy de I'énergie et la
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variation dans le temps des coordonnées, moments, etc. Pour le voir, partons
de la relation

valable pour tout couple de grandeurs observables 4 et B. D’autre part, nous

avons par définition 4 = | y* 4y dr et 'on en tire aisément (si A est indé-

pendant de t, ce que nous supposerons)

20l ZE_’
h

8) 942 ’”flp*(AH ~ HA Y de = 2 GH — HA) = 2R A H]

da ~ h
ol H est 'Hamiltonien du systéme. En prenant B = H dans(27), nous obtenons

dA
dt

h

29 Oy 04 = P oy = oy = dispersion de I'énergie

ce qui est la relation cherchée (Relation de Mandelstam et Tamm). Si 'on a un
état stationnaire A énergie connue o5 = 0 et dA/dr = 0.

On peut écrire la relation obtenue sous une forme différente. Le systéme
étant supposé isolé, oy est constant, mais g, peut varier. Considérons un
intervalle de temps d¢ et désignons par % la moyenne dans le temps pendant
cet intervalle de o 4 (ce n’est pas le méme genre de moyenne que celles qui sont
jusqu’ici désignées par un surlignage). Si nous intégrons dans l'intervalle de
temps ot en remarquant que l'intégrale de la valeur absolue d’'une fonction
est toujours supérieure ou égale a la valeur absolue de I'intégrale de la fonction,
on trouve
(30) GOt > 4—"7; A@ + o) = AW

04

Mandeistam et Tamm introduisent alors un « temps standard » 6T, défini
comme il suit : C’est le temps le plus court pendant lequel la valeur moyenne
de A varie de o, La derniére formule s’écrit alors

31 oyg. 0T, 2 hjdn.

De la formule (29) on déduit que pour que la valeur moyenne d’une grandeur A
puisse varier, il faut non seulement que gy ne soit pas nulle, mais aussi que a4
ne soit pas constamment nulle. Dans le cas oll 4 a un spectre discontinu,
ceci est évident, mais il n’en est pas de méme si 4 a un spectre continu. On voit
aussi sur la formule (30) que si 4 un certain instant ¢, s’annule sans que A4 cesse
de varier, alors initialement c.-a-d. pour ¢ trés petit, ¢, doit varier beaucoup
plus rapidement que A.
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On obtient une illustration intéressante des formules précédentes en consi-
dérant la propagation d’un « train d’ondes » le long de I'axe des x et en faisant
A = x. Alors X est la coordonnée x du centre de gravité du train d’ondes
tandis que o, peut étre regardé comme sa longueur moyenne et 6T, comme
la durée moyenne de son passage en un point. La relation ¢4.0T, > h/d n
montre que cette durée moyenne est d’autant plus grande que op est plus
petite. Nous retrouvons ainsi une conclusion qui est bien connue, mais tandis
que les raisonnements antérieurs ne fournissaient cette conclusion que dans
le cas de I'absence de champ, elle est ici valable méme s’il y a un champ extérieur,
car les raisonnements qui conduisent aux formules de la page précédente
n’impliquent nullement I'absence d’'un champ extérieur.

Voici un autre exemple donné par Mandelstarn et Tamm. Soit ¢, 1a fonction
d’onde représentant un certain état d’un systéme oli la dispersion sur 'énergie
est oy (1). Y désignant un état quelconque du systéme, considérons I'opérateur

L, tel que L,y = ¢, ¢, avec ¢, = jq):‘ W dt. L, est un opérateur qui isole

dans le  la composante c, ¢, : C'est un projecteur et il est évident que L? = L,.
Comme on a

(32 o, =2 - @) = JL, - @)’
la relation de Mandelstam et Tamm nous donne
h |dL
2 n
(33 ouyL — @) > 7= |5
Cette inégalité qui ne contient plus que L, peut facilement étre intégrée.
Supposons que dans Iétat initial, on ait L,(0) = 1, ce qui signifie qu’a I'origine
le systéme se trouve certainement dans I'état ¢, ; alors en intégrant de 0 4 ¢, on
trouve

(34 277[ oyt = g — arcsin \/171.‘)

h

Sit > h/(4 oy), I'inégalité ne donne aucune restriction sur la valeur de L,,(t)
qui est toujours compris dans lintervalle fermé [0, 1].

Désignons par  la vie moyenne de I'état ¢, telle que L (t) = 1/2si L,(0) =
Alors la derniére inégalité nous donne

(35) oy.-T = h/8

Si0<t<hi(4oy), onalLf)= cosz<—2—z Oy t>.

un peu plus restrictive que oy.7 = h/4 7.
Le mémoire de Mandelstam et Tamm contient aussi une application un peu
moins claire aux cas des perturbations, sur laquelle nous n’insisterons pas.

(") Note L.B. : ¢, peut étre un état propre relatif a une grandeur 4 qui ne
commute pas avec H.



