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NÉCESSITÉ DE LA LIBERTÉ 
DANS LA RECHERCHE SCIENTIFIQUE

L’histoire des Sciences montre que dans leur domaine, les plus grands 
progrès ont été effectués par des penseurs audacieux qui ont aperçu des voies 
nouvelles et fécondes que d’autres n’apercevaient pas. Si les idées des savants 
de génie qui ont été les promoteurs de la science moderne avaient été soumises 
à des commissions de spécialistes, elles leur auraient sans nul doute paru 
extravagantes et auraient été écartées en raison même de leur originalité et 
de leur profondeur. En fait, les luttes soutenues, par exemple, par Fresnel et 
par Pasteur suffiraient à le prouver, certains de ces pionniers se sont heurtés 
à l’incompréhension de savants éminents et ils ont dû lutter avec énergie 
avant d’en triompher. Plus récemment, dans le domaine de la Physique théo 
rique dont je puis parler en connaissance de cause, les magnifiques conceptions 
nouvelles de Lorentz, de Planck et surtout d’Einstein se sont heurtées à 
l’incompréhension de savants éminents. Ils en ont triomphé, mais à mesure 
que l’organisation de la recherche devient plus rigide, le danger augmente 
que les idées nouvelles et fécondes ne puissent pas se développer librement.

Tirons en quelques mots la conclusion de ce qui précède. Tandis que, par la 
force même des choses, s’appesantissent sur la recherche et sur l’enseignement 
scientifique le poids des structures administratives et des préoccupations 
financières et la lourde armature des réglementations et des planifications, 
il devient plus indispensable que jamais de préserver la liberté de la recherche 
scientifique et la libre initiative des chercheurs originaux parce qu’elles ont 
toujours été et resteront toujours les sources les plus fécondes des grands 
progrès de la Science.

25 avril 1978 
Louis de Broglie.



LE PROBLEME 
DU

DÉTERMINISME CACHÉ

FAC-SIMILÉ DE L’UNE DES NOTES INSÉRÉES 
PAR LOUIS DE BROGLIE DANS SON MANUSCRIT 

(Le texte se trouve pp. 244 et 245 du présent volume)
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PRÉFACE

L’ÉVOLUTION DES IDÉES 
DE LOUIS DE BROGLIE 

SUR L’INTERPRÉTATION 
DE LA MÉCANIQUE ONDULATOIRE

par Georges LOCHAK

L’ouvrage qu’on va lire est tout à fait exceptionnel non seulement dans 
l’oeuvre de Louis de Broglie, mais encore dans la littérature scientifique en 
général, car on y saisira sur le vif la pensée d’un grand auteur qui soudain se 
retourne et s’interroge sur la signification véritable d’une théorie dont il est 
lui-même l’un des créateurs.

Le manuscrit de ce livre date de 1950-1951 et Louis de Broglie a attendu 
30 ans avant d’en autoriser la publication. Il l’a désavoué, en effet, peu après 
l’avoir écrit, car il y exposait, pour la dernière fois sans critique et d’une manière 
particulièrement brillante et convaincante, l’interprétation de la Mécanique 
ondulatoire selon les idées de l’Ecole de Copenhague auxquelles il adhérait 
encore à l’époque mais dont il commença, justement, de douter en relisant son 
propre texte. Ses doutes s’exprimeront dans ce livre par diverses notes qui 
étaient collées entre les pages du manuscrit, et que nous reproduirons, ou 
par des ratures et des petites corrections significatives rajoutées après coup 
et dont nous ferons état.

Ce dialogue entre un auteur et ce qu’il était encore, lui-même, quelques 
mois auparavant produit sur le lecteur l’émouvante sensation d’entrer dans 
l’intimité de sa pensée, d’autant plus que celle-ci s’éclaire par une évolution 
future que, maintenant, nous connaissons. Louis de Broglie, en effet, par un 
revirement qui parut brusque à tout le monde mais qui ne faisait, en réalité, 
que cristalliser de longues réflexions dont nous reparlerons plus loin, devait 
bientôt devenir un impitoyable contempteur de cette Ecole de Copenhague 
dont il avait longtemps embrassé les vues. Et en même temps qu’il adopta 
cette attitude critique, il reprit avec un enthousiasme juvénile sa théorie de la 
double solution, qu’il avait jadis abandonnée mais dans laquelle il mit à 
nouveau tous ses espoirs ; était-ce à tort ou à raison c’est là une question qui 
reste un sujet de controverses que l’avenir, peut-être, un jour tranchera.
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Mais, si la théorie proposée par Louis de Broglie reste encore en suspens, 
je crois, par contre, pouvoir affirmer que les événements ont déjà donné 
raison à ceux qui, comme lui, ont relancé, puis développé, la vieille interrogation 
au sujet de l’interprétation des théories quantiques.

Les temps ont changé depuis 30 ans mais à cette époque-là, la brusque 
reconversion de l’un des plus célèbres physiciens du siècle fit sensation et 
même scandale. On en parlait à mi-voix, dans les couloirs de l’Institut 
Henri-Poincaré, comme si Louis de Broglie eût été pris d’un subit accès d’une 
grave maladie dont il était prudent de se tenir à l’écart.

Ceci n’empêchait pas, bien sûr, qu’une assistance unanimement muette et 
respectueuse se pressât à ses cours et à ses séminaires tandis que lui passait, 
majestueux et aimable comme à l’ordinaire, affectant de ne rien savoir. Mais 
n’en était-il pas de même à Princeton où Einstein, refusant obstinément de 
suivre le courant dominant en physique, traversait de son air distrait et bon 
homme le nimbe de dévotion qui l’entourait, mais écrivait à Max Born (*) : 
« ... je suis considéré ici comme une sorte de fossile que les ans ont rendu 
aveugle et sourd » ?

Le débat s’amplifia, prit une dimension mondiale, avec des allures de guerre 
de religion et on vit entrer en lice la plupart des fondateurs de la physique 
quantique suivis de leurs bouillants épigones, en même temps qu’apparurent 
de jeunes et brillants outsiders comme David Bohm, soudain porté sur le 
devant de la scène parce qu’il avait eu le grand mérite d’avoir servi de déclen 
cheur à toute cette affaire.

Le débat ne s’est plus jamais éteint. Il est devenu commun de s’interroger 
sur les bases de la Mécanique quantique au sujet desquelles la belle et silen 
cieuse unanimité de jadis s’est largement rompue, ce qui est heureux car 
l’unanimité sans faille ne s’obtient guère en science qu’au détriment de l’inventi 
vité et ne peut aboutir qu’à la mort dans l’idéologie et la scolastique.

Dans le débat actuel, les idées de Louis de Broglie, loin d’être admises par 
tous, restent encore, il faut le dire, ignorées de beaucoup, souvent critiquées 
par ceux qui les connaissent (plus encore par ceux qui ne les connaissent pas, 
ce qui est banal) et ses élèves, comme lui-même, reconnaissent qu’elles ne 
constituent pas encore un tout cohérent que l’on puisse regarder comme une 
théorie achevée. Cependant, ces idées commencent à ressurgir çà et là, surtout 
à l’étranger.

C’est le cas, par exemple, avec les travaux récents sur les équations d’ondes 
non linéaires et sur les solitons, dont seuls quelques auteurs signalent que de 
Broglie et ses élèves en furent les incontestables initiateurs en microphysique ; 
je pense également à des idées comme la primauté des mesures de position 
sur celles des autres grandeurs physiques et sur la primauté qui s’ensuit pour 
le rôle de l’analyseur spectral sur l’appareil de mesure proprement dit, qui 
furent longuement développées par de Broglie et qu’on voit ressortir.

O Albert Einstein, Max Born, Correspondance 1916-1955, Ed. du Seuil, Paris, 
1972, p. 196.
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Après avoir rédigé ce manuscrit que nous ne publions qu’aujourd’hui, 
Louis de Broglie a développé ses critiques et défendu ses nouvelles idées dans 
douze livres et plus de soixante mémoires, mais ce livre-ci conservera, j’en 
suis sûr, une place à part parce qu’il représente un tournant dans son oeuvre 
et aussi parce que c’est le livre de l’interrogation.

En effet, dans les travaux qui ont suivi cet ouvrage, on retrouve partout un 
double aspect : la critique des théories existantes et la proposition d’une solu 
tion de rechange. Or un lecteur peut fort bien être disposé à entendre la critique, 
ou du moins la question posée, sans pour autant accepter la théorie que de Bro 
glie soutient, si bien que, dans l’esprit d’un tel lecteur, la réponse qu’on lui 
offre peut oblitérer la pertinence de la question. Ici, au contraire, rien de tel, 
car les termes sont inversés. La conception soutenue dans le livre est celle de 
l’Ecole de Copenhague et de Broglie, dans ses notes, ne fait encore que s’inter 
roger à son sujet, ce qui le met de plain-pied avec un lecteur qui, lui aussi, 
s’interroge. Mais il n’en demeure pas moins que ces notes, ces « paperoles » 
comme aurait dit Proust, ajoutées au manuscrit, contiennent déjà sous une 
forme brève et parfois encore elliptique et dubitative (si bien qu’il faudra 
parfois les décrypter pour le lecteur) presque toutes les idées qui furent à la 
base de ce nouveau quart de siècle de travail que Louis de Broglie allait entamer 
à l’âge de 60 ans.

Que le lecteur approuve ces idées, ou qu’il les désapprouve, il est souhaitable 
qu’il les lise sans manichéisme, en sachant reconnaître le génie d’où qu’il 
souffle, que ce soit chez de Broglie ou chez Heisenberg, chez Bohr comme chez 
Einstein. Leur grande époque est révolue, hélas, et les créateurs de la Physique 
quantique sont aujourd’hui tous morts ou très âgés. Ils sont entrés dans 
l’histoire et ont emporté avec eux leurs haines et leurs rivalités de grands fauves 
de la science. Bien sûr, ces rivalités se prolongent de nos jours et sont toujours 
aussi âpres car la science est un champ clos où s’affrontent des hommes et des 
idées ardentes et non pas une armoire frigorifique pour vérités établies. Mais 
au moins disputons-nous entre nous et non plus avec eux ! Admirons leur 
valeur sans gâter par de vaines restrictions mentales le plaisir intellectuel et 
artistique que procure leur enseignement. Admirons dans ce livre, aussi bien 
les subtiles analyses de Bohr et Heisenberg qui y sont rapportées que celles 
de de Broglie lui-même ; et admirons ce sexagénaire qui ajoutait à son génie 
scientifique assez de force d’âme, de goût du risque et de mépris du qu’en-dira-t- 
on, pour se remettre en cause alors qu’il était parvenu au faîte de sa carrière 
et pour mettre en jeu une renommée étincelante, au nom d’une idée dont 
personne encore ne voulait. Et rêvons un peu aussi, peut-être, sur cette grâce 
divine d’avoir vécu assez vieux pour accomplir, au soir de sa vie, une nouvelle 
oeuvre et pouvoir dire plus tard, à 80 ans : « Je me suis souvent demandé, 
dans ces dernières années, si la période qui a suivi mes 70 ans n’a pas été, 
du point de vue intellectuel, la plus belle de ma vie » (réf. III, 9).

Pour apprécier vraiment ce livre charnière et le revirement qu’il annonce, 
il est, toutefois, nécessaire de le situer exactement dans l’itinéraire scientifique 
de son auteur, lequel avait fait, de l’exposé qui va suivre, la condition sine
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qua non de la publication de son manuscrit. Je crois même intéressant de 
commencer par raconter l’histoire de cette publication elle-même.

Quand Louis de Broglie, voici quelques années, me fit part de sa décision 
de me confier la charge d’utiliser au mieux ses papiers scientifiques, il me donna, 
sur le champ, un certain nombre d’entre eux.

Il s’agissait, pour la plupart, de feuilles volantes de papier à lettre de petit 
format que tous ses élèves connaissaient bien, sur lesquelles il avait coutume 
d’inscrire à l’encre noire, avec une plume « Sergent Major », des sortes de 
courts poèmes scientifiques, chacun d’eux consistant en l’exposé clair et concis 
d’une question qui tenait le plus souvent dans un seul feuillet dont les deux 
faces étaient recouvertes de son écriture élégante, ordonnée et sans marge, 
où tout ne serait que mesure, si d’évidents détails de graphisme ne laissaient 
transparaître une autorité impérieuse bien que toujours maîtrisée.

Ces papiers étaient classés en plusieurs enveloppes portant chacune une 
indication, de la main de Louis de Broglie, sur le degré d’intérêt que lui-même 
y attachait.

Outre ces enveloppes, il me donna plusieurs cahiers correspondant à ce 
que ses plus jeunes collaborateurs appelaient les « cours du jeudi » parce que, 
durant les dernières années de sa vie universitaire les deux cours qu’il donnait 
chaque semaine à l’Institut Henri-Poincaré étaient très différents l’un de 
l’autre : le lundi, il faisait, devant les étudiants, un cours classique de faculté 
qu’il répétait, pour l’essentiel, d’année en année et qui constituait la base d’un 
enseignement de physique théorique, que complétaient des maîtres de confé 
rences et des chefs de travaux ; mais le jeudi matin, devant un public de cher 
cheurs, il faisait un cours dont le sujet se renouvelait tous les ans et qui consistait 
en un exposé original sur un problème scientifique à l’ordre du jour, selon 
une tradition qui est plutôt celle du Collège de France que de la Faculté (1). .

Ce sont ces cours qui furent à l’origine de la plupart des livres de Louis de Bro 
glie, mais certains d’entre eux n’ont pas été publiés. C’était le cas des quelques- 
uns qu’il m’a confiés. Il a tout de suite attiré mon attention sur deux de ces 
cahiers qui se faisaient remarquer de toute manière par leur belle reliure 
cartonnée recouverte de toile glacée beige : malheureusement, c’était pour me 
prévenir contre leur éventuelle publication. Il avait même pris la précaution 
d’inscrire sur la page de garde de chacun d’eux, d’une écriture énergique :

« A ne pas publier »

et ces mots étaient encadrés d’un double trait. Il me dit brièvement ses raisons, 
tout en m’engageant à lire le manuscrit et me faisant la faveur d’ajouter : 
« Pour quelqu’un comme vous, cela peut être très intéressant. » Mais quand 
j’ai lu ce texte, le lendemain même, avec une émotion qui dépassait de loin 
le seul intérêt scientifique, sachant par coeur le prolongement de chaque 
paperole, devinant à demi-mot le sens de la plus petite note ajoutée au crayon

(') En réalité, cette distinction entre les deux cours ne s’est faite qu’à partir de 1954. 
Jusque-là, ils étaient tous deux de même nature et se renouvelaient chaque année.
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et découvrant derrière la moindre rature ou la plus insignifiante correction 
cet homme que je connaissais comme mon propre père, je me convainquis 
aussitôt que si lui, en effet, ne pouvait pas publier ce livre, quelqu’un d’autre 
le pouvait et j’entrepris, bientôt, d’essayer de le fléchir, de le persuader que son 
texte, en un sens, ne lui appartenait plus, qu’il appartenait à l’histoire des 
sciences et que celle-ci méritait bien que, sous une forme ou sous une autre, 
on le lui livrât. Je fis valoir également que le public scientifique n’est que trop 
habitué à recevoir une science aseptisée, sortie toute armée et brillante de la 
tête de Jupiter, si bien que les présentations des théories modernes, axio- 
matisées, synthétiques et formelles donnent faussement à penser que, contraire 
ment aux artistes, les hommes de science seraient capables, en quelque sorte, 
de pondre des résultats bien ronds et bien lisses, frappés d’emblée au sceau 
de l’éternité. Nous avions là, au contraire, une occasion, de montrer au lecteur 
une science en marche qui hésite et avance péniblement sous ses yeux, comme 
elle le fait dans la réalité. Or tout le monde contemple avec émotion les ébauches 
des sculpteurs ou les esquisses des peintres dans lesquelles, outre le charme 
particulier de l’œuvre en devenir, on aime à découvrir les différentes manières 
de l’artiste, voire les projets abandonnés et remplacés par d’autres. Alors 
pourquoi toujours dissimuler les esquisses des physiciens ?

La chose, au début, n’alla pas sans mal, Louis de Broglie n’étant pas homme 
à changer d’avis au gré du vent, mais je revins discrètement à la charge dans 
les mois qui suivirent, puis un jour, avec son accord, je lui rapportai les deux 
cahiers que nous examinâmes ensemble, après quoi, avec une feinte et quelque 
peu plaisante solennité, nous effaçâmes le « A ne pas publier » qui était écrit 
au crayon et je repartis avec l’autorisation d’éditer le manuscrit ne varietur, 
sous réserve de l’assortir d’un certain nombre de notes complémentaires et 
d’un texte introductif, qui replaceraient cet ouvrage dans l’ensemble de son 
œuvre.

Ce qu’il faut expliquer, avant tout, c’est ce double revirement, à 25 ans 
d’intervalle, par lequel Louis de Broglie s’est d’abord écarté de ses conceptions 
primitives pour y revenir ensuite. Mais pour cela, il faut d’abord comprendre 
quelle est la place tout à fait particulière qu’il occupe dans la physique quan 
tique.

Je crois qu’on peut affirmer qu’il a été le premier théoricien, après Einstein, 
à croire en l’existence des quanta de lumière (les photons) et le seul, aussi, 
à croire non pas même au dualisme, mais, selon ses propres termes, à une 
coexistence entre les ondes et les corpuscules.

On sait que l’hypothèse des quanta de lumière a eu le plus grand mal à 
s’imposer et qu’elle a été longtemps regardée comme une sorte d’erreur de 
jeunesse d’Einstein qu’on ne lui pardonnait qu’en raison de la grande renommée 
qu’il s’était acquise par ailleurs ('). Même la confirmation expérimentale,

(') On trouve chez Einstein lui-même des témoignages de ce refus général. Par 
exemple : « ...je ne doute plus de la réalité des quanta dans le rayonnement, bien 
que je sois toujours seul à avoir cette conviction » (lettre à Besso datée du 29 juillet 1918).
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par Millikan, des lois de l’effet photo-électrique n’a convaincu personne, 
pas même Millikan, et ce n’est que la découverte de l’effet Compton en 1922 
qui a frappé les esprits. Mais à ce moment-là, de Broglie travaillait déjà depuis 
longtemps sur la théorie des quanta de lumière et, dans un article intitulé 
« Rayonnement noir et quanta de lumière » (réf. I, 12), il retrouvait grâce à 
cette hypothèse tous les résultats de la thermodynamique du rayonnement 
noir sans faire appel à l’électromagnétisme et en utilisant seulement la 
mécanique statistique et la relativité. Il retrouvait notamment, sans se servir 
de la théorie des ondes, l’expression de la loi de Stefan-Boltzmann et (2 ans 
avant Bose !) le fameux facteur 8 nh/c3 qui figure dans la densité d’énergie 
du rayonnement. C’est également dans cet article qu’il émettait, pour la 
première fois l’hypothèse que le photon aurait une masse propre non nulle, 
que sa vitesse dans le vide dépendrait donc de sa fréquence et que la vitesse c 
ne serait qu’une sorte de vitesse limite définie par la relativité mais qui ne serait 
jamais atteinte, non seulement par la matière, mais même par la lumière.

Il s’efforçait, dans cet article, d’accuser le plus fortement possible et d’utiliser 
au mieux le caractère corpusculaire de la lumière, mais au même moment, 
il se souciait d’accorder les propriétés corpusculaires avec les propriétés 
ondulatoires dans une Note « Sur les interférences et la théorie des quanta de 
lumière » (réf. I, 13; III, 9) dans laquelle il émettait l’idée de « l’existence 
d’agglomérations d’atomes de lumière dont les mouvements ne sont pas 
indépendants, mais cohérents » et il prédisait que « les équations de Maxwell 
apparaîtront sans doute comme une approximation continue (valable dans 
beaucoup de cas, mais non dans tous) de la structure discontinue de l’énergie 
radiante ».

Il est certain que cet état d’esprit domine toute l’oeuvre de de Broglie et 
c’est en fait pour cela qu’il a découvert la Mécanique ondulatoire : c’est, tout 
d’abord, parce qu’il était profondément convaincu de la double nature cor 
pusculaire et ondulatoire de la lumière et, ensuite, parce qu’il ne concevait pas 
les propriétés corpusculaires comme une simple « apparence », mais bien 
comme l’existence de « véritables » corpuscules, en tous points comparables 
aux autres corpuscules matériels, possédant, comme eux, une masse propre et 
comme eux soumis aux lois de la dynamique relativiste. Un détail révélateur, 
à ce sujet, est que de Broglie écrivait souvent — et je crois qu’il était seul à le 
faire — atomes de lumière pour quanta de lumière et, parlant de leurs agglo 
mérations cohérentes dans les ondes lumineuses, il disait que ces atomes 
devaient se grouper en molécules.

Comme il accordait un égal droit de cité et une existence permanente et 
simultanée aux corpuscules et aux ondes dans la lumière, il fut amené à recher 
cher le lien qui pouvait exister entre eux et qui établirait une dépendance entre 
leurs mouvements. C’est cette question qui est à l’origine de la Mécanique 
ondulatoire car elle le conduisit à définir une fréquence de vibration interne 
du corpuscule, par l’égalité m0 c2 = hv0 écrite dans le système propre. Or 
cette formule, d’apparence si simple, entraîne une très grave difficulté car la 
masse se dilate aux yeux d’un observateur en mouvement, tandis que la fré 
quence interne lui apparaîtra plus petite en raison du retard des horloges,



Préface XIX

si bien que l’égalité ainsi écrite n’est pas invariante relativiste. Mais elle le 
devient, remarqua de Broglie, et on pourra écrire la relation du quantum

,2 hvme

dans tous les référentiels galiléens si on associe, dans le système propre de la 
particule, une onde stationnaire de même fréquence v0 que la vibration interne, 
car la fréquence v de cette onde varie alors comme la masse lors d’un change 
ment de référentiel.

Louis de Broglie établit en même temps la formule Vv = c2 qui relie la 
vitesse de phase de fonde à la vitesse du corpuscule, ce qui lui permit d’énoncer 
le théorème de Fharmonie des phases qui constitue pour lui la clé du dualisme 
onde-corpuscule : « Le corpuscule glisse sur son onde de façon que la vibration 
interne du corpuscule reste toujours en phase avec la vibration de fonde au 
point où il se trouve. »

Or, comme il traitait les « atomes de lumière » en véritables corpuscules 
son raisonnement s’appliquait plus généralement (et d’ailleurs s’énonçait 
comme tel) à un mobile quelconque, en particulier à un électron, auquel il 
fallait, dès lors, associer une onde et de Broglie pouvait donc annoncer dès 1923 
qu’« un mobile quelconque pourrait dans certains cas se diffracter. Un flot 
d’électrons traversant une ouverture assez petite présenterait des phénomènes 
de diffraction » (réf. I, 17 ; III, 9).

Et il exprimait aussitôt l’idée qui est à l’origine de sa conception du monde 
physique :

« Nous concevons donc fonde de phase comme guidant les déplacements 
de l’énergie et c’est ce qui peut permettre la synthèse des ondulations et des 
quanta. La théorie des ondes allait trop loin en niant la structure discontinue 
de l’énergie et pas assez loin en renonçant à intervenir dans la dynamique. »

Aussitôt après qu’il eût rédigé sa fameuse thèse de 1924, Louis de Broglie 
précisait sa pensée dans une note (réf. I, 24) qui paraissait une semaine avant 
la soutenance et où apparaît pour la première fois la notion de singularité. 
On y lit notamment :

« Cette propriété (il s’agit du théorème sur la vitesse de groupe), conséquence 
directe des équations de Hamilton, permet de considérer le point matériel 
comme une singularité du groupe d’ondes dont le déplacement est régi par 
le principe d’Hamilton-Fermat. » Ceci préfigure ce qu’il devait appeler plus 
tard la loi du guidage. Et il termine sa note par cette phrase-programme :

« Mais toute la théorie ne deviendra vraiment claire que si l’on parvient 
à définir la structure de fonde lumineuse et la nature de la singularité consti 
tuée par le quantum dont le mouvement devrait pouvoir être prévu en se 
plaçant uniquement au point de vue ondulatoire. »

Enfin, peu après, le 16 février 1925, de Broglie fit un premier essai de déve 
loppement de son programme dans une note intitulée « Sur la fréquence 
propre de l’électron » (réf. I, 25) et il montra que si fonde de phase
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Malgré l’apparence, ce n’est pas l’équation de Klein-Gordon car le signe est 
faux et ce n’est pas en raison d’une erreur de calcul. Cependant, de Broglie 
n’était pas loin de découvrir la véritable équation d’onde. C’est pourquoi, 
dès la parution des travaux de Schrôdinger, il rectifiait sa note de 1925 et 
fut l’un des premiers à établir l’équation d’onde scalaire relativiste de l’élec 
tron et surtout il y introduisit aussitôt ses idées sur les groupes d’ondes et 
calcula les premières solutions singulières (réf. I, 29) : ces solutions singulières 
dont il savait depuis longtemps qu’elles devaient exister et qui étaient, à ses 
yeux, seules capables de représenter la coexistence des ondes et des corpuscules.

Bientôt, guidé par son principe de l’harmonie des phases, il imagina le lien 
qui pouvait exister entre ses ondes singulières et les ondes continues de Schrô 
dinger et il développa la théorie de la double solution dans un grand mémoire 
en 1927 (réf. I, 34).

Ce n’était pas une simple interprétation de l’équation de Schrôdinger, comme 
pouvait l’être celle de Madelung parue au même moment. C’était la poursuite 
de la même idée directrice qui avait guidé ses recherches depuis le début de 
ses travaux et qui avait déjà abouti à la découverte des propriétés ondulatoires 
des corpuscules matériels.

Et pourtant, quelques mois plus tard, il renonçait à tout cela. Pourquoi ? 
Louis de Broglie l’a expliqué lui-même en des termes souvent émouvants dans 
ses « Souvenirs personnels sur les débuts de la Mécanique ondulatoire » 
(réf. III, 4) dont il a évidemment renié en partie l’argumentation lorsqu’il 
est revenu par la suite à ses idées de jeunesse, mais qui nous montrent, tout au 
moins, quelles étaient à l’époque, ses raisons.

Ces raisons se résument d’une phrase : il s’est, soudain, senti dans une 
impasse, tandis qu’à côté de lui, la physique passait triomphante. Et il a tout 
de suite aperçu la cause du soudain retard qu’il prenait, malgré son départ 
foudroyant : elle était dans la différence entre son propre point de vue et celui 
adopté par la plupart des autres théoriciens.

Louis de Broglie est un esprit intuitif, concret et réaliste, épris d’images 
physiques simples dans l’espace à trois dimensions. Il n’accorde pas de valeur 
ontologique aux modèles mathématiques, notamment aux représentations 
géométriques dans des espaces abstraits; il ne les considère et ne les utilise 
que comme des instruments mathématiques commodes parmi d’autres et ce 
n’est pas dans leur maniement que s’exerce directement son intuition physique ; 
devant ces représentations abstraites, il garde toujours présente à l’esprit 
l’idée que les phénomènes se déroulent, en réalité, dans l’espace physique et 
ces raisonnements mathématiques n’ont de signification véritable à ses yeux 
que pour autant qu’il sente à tout moment quelles sont les lois physiques 
qu’ils recouvrent dans l’espace habituel.
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Or il voyait naître en face de lui une approche très différente de la physique 
théorique, qui était en train de porter ses fruits : c’était une conception tout 
à fait abstraite de la physique, une description des lois naturelles non plus 
par des images dans l’espace et dans le temps, mais par des règles algébriques 
ou bien encore grâce à des raisonnements géométriques dans des espaces 
représentatifs abstraits le plus souvent complexes et à un grand nombre de 
dimensions. On assistait au développement, chez les théoriciens, d’une nou 
velle sorte d’intuition physique, une intuition au deuxième degré, si l’on peut 
dire, qui prenait de moins en moins appui directement sur des faits physiques, 
et qui s’exerçait systématiquement dans le domaine des analogies mathéma 
tiques, des règles algébriques et des lois de symétrie ou de transformations 
de groupe. Les théoriciens ne cherchaient plus à décrire les faits, mais à les 
prévoir. Leurs prémisses et leurs raisonnements paraissaient purement mathé 
matiques et il devenait très difficile, sinon impossible, de discerner derrière 
eux quelque image physique, mais pourtant les formules auxquelles ils aboutis 
saient étaient souvent, comme par miracle, vérifiées par l’expérience. On était 
loin de la physique théorique de Fresnel, de Maxwell ou de Lorentz. Il est 
remarquable qu’Einstein, pourtant célèbre pour la finesse de son intuition 
physique et toujours si proche de l’expérience ait été, en même temps, l’un 
des principaux initiateurs de ce nouvel état d’esprit, tant par ses travaux en 
relativité que par son mémoire de 1917 sur les quanta (1), dont l’influence a 
été très grande sur de Broglie et Schrodinger et où l’on résolvait pour la pre 
mière fois un problème quantique par un raisonnement géométrique dans 
l’espace de configuration de la dynamique hamiltonienne.

Il est clair que la mécanique des matrices de Heisenberg et, plus encore, 
celle des nombres q de Dirac procédaient de cette physique abstraite, mais 
il en va de même pour les travaux de Schrôdinger où l’onde de de Broglie 
perdait déjà toute signification physique directe, puisque Schrôdinger la 
faisait se propager non plus dans l’espace habituel, mais dans l’espace de 
configuration, dans lequel une seule onde représente tout un système de parti 
cules ; et c’est à cette onde abstraite que, généralisant les idées de de Broglie, 
Schrôdinger appliquait désormais, le principe de Huygens.

De cette tendance, l’Ecole de Copenhague devait bientôt faire une position 
de principe nettement proclamée par Bohr et Heisenberg (2) dont la position 
sc résumé clairement dans le tableau ci-après dû à Bohr (3).

En se fondant sur les relations d’incertitude et, plus généralement, sur la 
structure mathématique des théories quantiques telles qu’elles ressortaient des 
travaux de Heisenberg, Schrôdinger, Dirac, Born et von Neumann, on vit

(1 ) A. Einstein, Verhandl. Dtsch. Phys. Ges., 19, 1917, p. 82.
(2) Voir notamment : W. Heisenberg, Les principes physiques de la théorie des 

quanta, Coll. : Discours de la Méthode, Gauthier-Villars, 1972 (lre éd. 1931); W. Hei 
senberg, Physique et philosophie, Coll. : Science d’Aujourd'hui, Albin-Michel, Paris, 
1961 ; N. Bohr, Physique atomique et connaissance humaine, Gonthier, Genève, 1961.

(3) Cité par Heisenberg dans : Les principes physiques, p. 53.
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bientôt Bohr et ses disciples rejeter toute adéquation possible d’une quel 
conque représentation causale et spatio-temporelle des phénomènes quanti 
ques. Autrement dit, la colonne de gauche du tableau de Bohr était définitive 
ment rejetée dans le passé ; et l’avenir se trouvait pour eux dans la colonne de 
droite. Il n’y avait aucun sens, pour eux, à parler en même temps d’une localisa 
tion de l’électron et de ses propriétés ondulatoires, ces deux aspects de la réalité 
étant complémentaires, au sens de Bohr, et on ne perdait rien disaient-ils, à 
renoncer à leur coexistence, puisqu’on savait, grâce à de fines analyses phy 
siques, qu’aucune expérience ne pourrait nous révéler les deux propriétés à 
la fois.

Cette interprétation de la théorie revêtait elle-même un double aspect :
— Tout d’abord, elle procédait d’options philosophiques qui relevaient du 

positivisme (puisqu’elle proclamait que seules les grandeurs observables étaient 
dignes de figurer dans la théorie), de l’idéalisme (car elle ne reconnaissait 
l’existence d’un fait ou d’une propriété que pendant leur observation), et enfin 
de l’indéterminisme (en renonçant, en microphysique, à la description causale 
des processus individuels dans l’espace et dans le temps).

— Mais elle relevait aussi d’un choix opérationnel qui a sans doute été 
déterminant dans le succès de cette tendance, à une époque de pleine expansion 
de la physique. En effet, en un sens, l’attitude de l’Ecole de Copenhague reve 
nait à dire, selon un mot de Goethe : « Ne cherchez rien derrière les faits, 
ils sont eux-mêmes la doctrine. » Ils auraient même pu dire : « Ne cherchez 
rien derrière les formules, elles sont elles-mêmes la réalité. » 11 paraît certain 
qu’en une période de vive expansion de la théorie, quand ses ressorts mathé 
matiques essentiels commençaient à être connus (tels que le principe de super 
position des fonctions d’ondes, la correspondance entre grandeurs physiques 
et opérateurs, etc.) une telle attitude libérait l’esprit, de la recherche extrê 
mement difficile d’images physiques sous-jacentes au formalisme et qui seraient 
responsables des faits observés.

La marche en avant de la théorie en était indéniablement facilitée et c’est 
ce que Louis de Broglie ressentit cruellement à une époque où il éprouvait 
les pires difficultés à exprimer mathématiquement le dualisme onde-corpuscule 
dans l’espace-temps. C’est ce qu’il rappelle dans « Physique et Microphysique » 
(p. 174) : « Mais plus je cherchais à couler dans ce moule préexistant la matière
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nouvelle fournie par mes idées sur la Mécanique ondulatoire, plus je rencon 
trais d’obstacles et le sentiment sans cesse accru de ces difficultés contribua 
à m’empêcher pendant toute l’année 1925 de développer rapidement la cons 
truction que j’avais entreprise. » 1925 : c’est, ne l’oublions pas, l’année où 
il a approché mais quand même manqué l’équation des ondes.

Ses premiers travaux sur les solutions singulières de l’équation de Schrô 
dinger et sur l’équation d’ondes relativiste lui redonnèrent quelque espoir, 
mais aussitôt de graves obstacles s’amoncelèrent devant lui, à savoir la recher 
che générale des solutions singulières elles-mêmes, le comportement étrange 
et peu crédible des singularités dans les états stationnaires et surtout le pro 
blème d’une description spatio-temporelle des systèmes de particules, qu’il 
aurait voulu substituer à la théorie de Schrôdinger qui reste confinée à l’espace 
de configuration.

Invité par Lorentz à présenter un rapport au fameux congrès Solvay de 
1927, Louis de Broglie, inquiet par les difficultés mathématiques de la théorie 
de la double solution, n’en présenta qu’une version très affaiblie qu’il appela 
« théorie de fonde pilote » et qui consistait simplement à rajouter, à l’onde 
continue de Schrôdinger, un paramètre caché qui consistait en un point repré 
sentant le corpuscule et supposé suivre les lignes de courant de fonde.

Ce faisant, de Broglie éludait certes les difficultés mathématiques de la 
théorie de la double solution, mais en revanche, il perdait la cohérence logique 
de sa théorie causale en faisant « piloter » le corpuscule par une onde continue 
dont la signification probabiliste était unanimement reconnue, ce que ses 
adversaires ne manquèrent pas de lui faire remarquer. Le rapport de Louis de 
Broglie se heurta aux critiques pénétrantes de Pauli, il ne fut soutenu ni par 
Schrôdinger qui ne croyait pas aux corpuscules, ni par Lorentz dont il avait 
la sympathie mais qui était trop âgé, ni véritablement par Einstein qui se 
contentait de l’encourager sans l’approuver vraiment, bien qu’il attaquât par 
ailleurs l’Ecole de Copenhague. En revanche, de Broglie voyait devant lui 
le brillant quintette formé par Bohr, Heisenberg, Born, Pauli et Dirac qui 
présentaient non sans triomphalisme, et peu enclins à composer, leur inter 
prétation probabiliste qui présentait certes des failles conceptuelles qu’Einstein 
se plaisait à élargir, mais qui constituait néanmoins — et constitue encore — 
l’interprétation la plus commode et la plus heuristique qu’on ait proposée 
jusqu’ici.

Et c’est ainsi que, troublé par les discussions du Congrès Solvay, désespérant 
de résoudre les problèmes qu’il s’était posés, nouvellement nommé, en outre, 
Professeur à l’Institut Henri-Poincaré et placé devant la difficile question de 
savoir quelle théorie il allait enseigner, de Broglie se résolut bientôt, à regret, 
à rejoindre le courant dominant et à adopter les vues de l’Ecole de Copenhague.

Un tel ralliement supposait, cependant, une profonde reconversion car il 
ne s’agissait pas seulement, pour Louis de Broglie, de renoncer à son inter 
prétation de la mécanique ondulatoire, ce qui est un acte douloureux, mais 
encore d’acquérir des méthodes de pensée nouvelles qui lui étaient profon 
dément étrangères et même contraires à ses instincts les plus profonds.
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Il s’en est suivi que pendant 5 ans, de 1927 à 1932, en dehors de quelques 
travaux de mise au point, il n’a publié aucun mémoire !

Puis soudain il émergea de son long silence et, en peu d’années, il accomplit 
sa seconde grande découverte : la Mécanique ondulatoire du photon dont 
Heisenberg a pu écrire plus tard (J) : « La pensée exprimée par Louis de Broglie 
en 1936 (2) que les quanta de lumière doivent être aussi considérés comme des 
édifices composés, conduit à des problèmes de principe de la même impor 
tance que ceux que souleva la découverte célèbre des ondes de matière. »

Nous ne saurions ici exposer, ni même résumer cette théorie, mais il faut 
au moins savoir comment elle s’inscrit dans l’oeuvre de de Broglie pour com 
prendre comment celui-ci allait être conduit vers son second revirement et 
son retour aux sources.

La Mécanique ondulatoire était sortie, ne l’oublions pas, d’une générali 
sation à l’ensemble de la matière des idées d’Einstein sur le dualisme onde- 
corpuscule dans la lumière mais, curieusement, le photon n’obéissait pas aux 
premières équations de la Mécanique ondulatoire : l’équation de Schrôdinger 
n’était pas relativiste et celle de Klein-Gordon ne pouvait pas rendre compte 
de la polarisation. C’était là une énigme qui ne pouvait laisser de Broglie 
indifférent et, plus qu’à tout autre, il lui revenait d’essayer de faire rentrer la 
lumière dans le giron de la mécanique ondulatoire à l’origine de laquelle elle 
s’était trouvée. Dès l’apparition de la théorie de Dirac, il sentit que la chose 
était possible. Il connaissait fort bien cette théorie dont il fit un magnifique 
exposé : «L’électron magnétique» (Hermann, 1934); elle était relativiste, 
elle contenait un élément qui ressemble à la polarisation (le spin) et on trouvait 
même parmi les grandeurs qu’elle permet de définir, un tenseur antisymétrique
de rang deux comme celui de Maxwell. Cela étant, le spin ^ n’est pas le bon

et la statistique qui s’ensuit est celle de Fermi et non pas celle de Bose : un 
photon n’est sûrement pas une particule de Dirac.

Louis de Broglie tâtonna durant quelques années avant de trouver la clé 
du mystère. Guidé par des considérations de symétrie, par la nécessité de 
rendre compte de l’annihilation du photon dans des phénomènes tels que 
l’effet photo-électrique et par l’analogie qui existe entre ce phénomène et 
celui de l’annihilation d’une paire électron-positron en théorie de Dirac, il 
parvint à l’idée que le photon ne doit pas être une particule élémentaire et 
que, précisément, il doit être constitué d’une telle paire de corpuscules de 
Dirac, de masse extrêmement petite : peut-être des neutrinos, d’où le nom de 
« théorie neutrinienne de la lumière » parfois utilisé. Il établit (en 1934) les 
équations d’onde de cette particule composée et une transformation algébrique 
montra que les équations de de Broglie, qui étaient donc formées d’une sorte 
de fusion de deux équations de Dirac, peuvent se scinder en deux systèmes 
d’équations distincts : l’un d’eux correspond à une particule de spin 0 qui n’a
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(' ) Dans : L. de B. physicien et penseur, Albin-Michel, Paris, 1953.
(2) En fait la référence de Heisenberg est inexacte : la théorie date de 1934.
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pas encore trouvé de correspondant expérimental, mais l’autre est tout sim 
plement le système des équations de Maxwell, complétées toutefois par des 
termes correctifs qui font intervenir les potentiels électromagnétiques. Ces 
termes sont très petits parce qu’ils contiennent en facteur la masse propre 
du photon, mais ils ne peuvent s’annuler complètement par suite d’une cir 
constance qui faisait se rejoindre la logique interne de la théorie et la conviction 
profonde de de Broglie : il se trouve, en effet, que la cohérence des calculs 
impose que la masse propre du photon ne s’annule pas.

Or, si petits que soient ces termes correctifs, ils suffisent à rompre l’invariance 
de jauge de la théorie et la condition de jauge qui s’ensuit automatiquement 
est celle de Lorentz.

Bien que la théorie de de Broglie ne soit pas exempte de difficultés, on ne 
saurait retenir son admiration devant cette grandiose synthèse entre la matière 
et la lumière, réalisée par la Mécanique ondulatoire et qui se trouve à l’origine 
d’innombrables travaux. Louis de Broglie lui-même y a travaillé pendant plus 
de 10 ans, ainsi que plusieurs de ses élèves, et il a consacré vingt mémoires 
et six livres à cette théorie, ainsi qu’à sa généralisation aux particules de spin 
quelconque.

Il est intéressant de remarquer, d’ailleurs, que dans tous ces travaux, on 
voit davantage se manifester la nature profonde de l’auteur et la manière 
de raisonner qui lui est spontanée qu’on n’y trouve de traces de son adhésion 
aux idées de Bohr et au mode de pensée plus abstrait et formel qui s’était 
imposé en physique : un homme peut changer les opinions qu’il professe, 
mais non sa nature véritable.

La Mécanique ondulatoire du photon est bel et bien construite comme un 
modèle physique dans l’espace habituel. Les raisonnements restent toujours 
très proches des images classiques et ne s’en écartent que dans la mesure où 
ils sont aussitôt transposés dans le langage mathématique de la Mécanique 
quantique et, plus spécialement, de la théorie de Dirac. Mais les lois formelles 
d’invariance par rapport à un groupe, ou l’usage des représentations de groupe, 
notamment, ne constituent pas chez de Broglie des procédés heuristiques 
comme c’est le cas chez d’autres physiciens tels Heisenberg, Pauli, Jordan 
ou Dirac. Par exemple, l’idée de relier la suite des équations des particules 
à spin à la suite des représentations finies du groupe de Lorentz n’appartient 
pas à de Broglie, mais il faut remarquer qu’elle n’a été proposée qu'après 
qu’il a ouvert la voie en construisant sa théorie de la lumière par des raison 
nements intuitifs sur l’émission et l’absorption des photons, leur rapport 
possible avec les paires de Dirac, les propriétés du centre de gravité d’un couple 
de particules relativistes, etc. Ces rapports délicats entre « Théories abstraites 
et représentations concrètes dans la physique moderne » ont été finement 
analysés par lui dans un texte (réf. III, 3 ; p. 91) où il se montre à la fois conscient 
de la force et de la rigueur des raisonnements abstraits et pourtant persuadé 
que les représentations concrètes, toujours vagues et fragiles, sans cesse remises 
en question, le plus souvent abandonnées parce que plus ou moins fausses, 
restent quand même le sel de la terre.
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Dans sa théorie de la lumière, son adhésion aux idées de Copenhague ne 
se reconnaît, à vrai dire, qu’à l’usage qu’il y fait des algorithmes devenus habi 
tuels en Mécanique quantique, notamment des calculs des probabilités de tran 
sitions, à partir des fonctions d’ondes et des opérateurs hermitiens représentant 
les grandeurs physiques. En somme, il faisait usage du même langage que tout 
le monde, ce qui impliquait ipso facto l’abandon de ses idées sur la localisation 
permanente des corpuscules, donc l’abandon de son programme initial et cela 
pour des raisons générales développées par Bohr et Heisenberg, auxquelles il 
s’était rangé et dont il a fini, comme il l’a dit lui-même, « par être d’autant 
plus convaincu qu’il a plus longtemps tenté en vain de les éviter » (réf. II, 4 ;
p. 166).

On doit reconnaître qu’il paraît bien peu probable qu’il eut, de toute manière, 
réalisé le programme ambitieux qu’il s’était primitivement fixé, car nous 
savons combien étaient grandes les difficultés qui l’avaient arrêté ; en revanche, 
peut-être cet abandon a-t-il permis de refermer cette grande boucle qu’il avait 
lui-même ouverte et qui unifiait l’électron et le photon dans la vision du monde 
de la Mécanique ondulatoire.

Mais, cette boucle une fois refermée (cela se passait dans les années quarante, 
les années de guerre), un grand vide se fit en lui, car que pouvait-il faire d’autre 
après cela ? La synthèse dont il avait pu naturellement rêver était, pour l’essen 
tiel, réalisée et ne paraissait guère perfectible dans le cadre théorique connu ; 
le seul autre projet qui eût été à la hauteur de ses ambitions était le problème 
du noyau atomique mais, l’ayant étudié très attentivement (il fit, sur ce sujet, 
une mise au point en trois volumes), il resta insatisfait des théories existantes, 
tout en reconnaissant qu’il ne savait pas faire mieux. Et il commença à se 
demander si les insuffisances de la théorie du noyau étaient dues à un manque 
provisoire de savoir-faire des théoriciens ou à une insuffisance plus profonde 
des théories quantiques elles-mêmes.

C’est pourquoi il n’appliqua pas, en réalité, toutes ses forces à ce problème. 
Cependant, il avait 50 ans, il se sentait en excellente forme intellectuelle; il 
n’avait pas d’autres handicaps physiques que, durant quelques années, ceux 
qui étaient dus à la guerre : il se nourrissait médiocrement et avait froid l’hiver, 
comme tout le monde, et désertait alors son bureau glacial où il n’entrait plus 
que subrepticement en manteau, à la recherche d’un livre, et travaillait reclus 
dans sa chambre chauffée avec des bûches de la Forêt de Chantilly qui appar 
tient à l’Institut de France. Mais ce n’étaient qu’incommodités provisoires : 
la véritable entrave à son travail était que, se trouvant au sommet de sa car 
rière, il était accablé d’obligations, encore que même cela ne l’empêchât pas, 
grâce à des règles de vie monacales et à un travail acharné, d’écrire entre 1941 
et 1951 (l’année qui nous occupe) treize livres et trente-trois mémoires ori 
ginaux.

Or, ce qui nous intéresse ici est le caractère extrêmement varié, et même 
apparemment disparate, des travaux de cette époque, qui montre l’absence 
d’un grand projet en cours de réalisation. Durant ces 10 ans, Louis de Broglie 
a écrit, en effet, sur le photon et les particules à spin (mais de moins en moins),
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sur le noyau, les guides d’ondes, l’optique électronique, les invariants adiaba 
tiques en mécanique classique, la variance relativiste de la température, la 
structure du schéma probabiliste quantique, l’onde de phase et la fréquence 
propre de l’électron (pour la première fois depuis près de 20 ans), le problème 
expérimental de la mesure du spin, la théorie quantique des champs, les ana 
logies thermodynamiques en mécanique et en électrodynamique classiques 
et enfin, car tout, chez lui, procède des quanta et l’y ramène, il écrivit le présent 
livre ou plutôt, nous le savons, le texte des conférences qu’il devait faire en 
1951 et 1952 à l’Institut Henri-Poincaré.

Pourtant, si l’on examine de près ces livres et ces mémoires, si l’on rassemble 
les commentaires glanés çà et là, au cours d’années de conversation avec 
l’auteur, comme j’ai pu le faire et, enfin, si on réfléchit aux travaux qu’il a 
effectués par la suite, la liste des thèmes que je viens de citer s’ordonne faci 
lement.

Certains d’entre eux sont, certes, occasionnels comme les guides d’ondes 
(commande d’Etat datant du début de la guerre) ou l’optique corpusculaire 
appelée semble-t-il par des collaborateurs ; mais même ces travaux là, appa 
remment très spécifiques, sont parsemés de remarques fondamentales (même 
de développements) sur les ondes et sur l’optique, que Louis de Broglie a 
utilisés et prolongés par la suite. Les travaux sur le photon et les particules 
à spin se passent d’explications, car ils constituent évidemment l’achèvement 
de toute une période. Ceux sur le noyau avaient pour but, nous l’avons dit, 
d’explorer les possibilités de principe de la Mécanique ondulatoire dans ce 
domaine et conduisirent Louis de Broglie à la conclusion que les limites de 
la théorie actuelle risquaient bien d’être atteintes. On peut en dire autant des 
travaux sur la théorie des champs dans laquelle il n’a jamais admis, que des 
artifices de calcul, si ingénieux soient-ils, puissent résoudre le problème des 
« infinis ». En fait, dès avant 1950, il commençait de se persuader que les dif 
ficultés de la théorie du noyau, comme celles de l’électrodynamique quantique, 
étaient irréductibles dans le cadre conceptuel admis et révélaient une impuis 
sance fondamentale de l’ensemble de la théorie à décrire des structures spatio- 
temporelles. C’est cette conviction grandissante qu’il devait exprimer plus tard, 
lorsqu’elle cristallisa en lui en 1952, par cette phrase sans ambiguïté : 
« ...aujourd’hui le pouvoir explicatif de la Mécanique ondulatoire, telle qu’elle 
est enseignée, paraît en grande partie épuisé » (réf. III, 6 ; p. 143) et c’est ce 
nouvel état d’esprit qui explique tous les autres thèmes de réflexion que nous 
avons énumérés, y compris ceux du présent livre. En effet, ces thèmes se par 
tagent en deux catégories simples : d’une part, il s’est remis à explorer les bases 
les plus profondes et les plus lointaines de la théorie des quanta, en revenant 
à la Mécanique ondulatoire telle qu’il la concevait jadis et à des considérations 
de thermodynamique, de mécanique classique et de relativité qu’il devait, 
plus tard, longuement développer; mais d’autre part, il s’interrogeait sur 
l’interprétation devenue classique et orthodoxe de la Mécanique ondulatoire, 
telle qu’il l’enseignait lui-même, ce qui se voit dans les travaux sur le schéma 
probabiliste de la théorie, sur la mesure du spin et surtout évidemment, dans
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le présent livre. Ce livre était-il, comme on incline à le croire en pareil cas, 
une tentative de se convaincre lui-même ? A vrai dire, je l’ignore et sans doute 
de Broglie ne l’a-t-il jamais su vraiment : en fait, ce genre de supputation 
est une traite tirée sur l’inconscient et donc sans valeur contrôlable. Disons 
plus simplement que de Broglie s’interrogeant sur ces problèmes, il les a 
soigneusement réexaminés et a voulu faire part à son auditoire du fruit de 
ses réflexions. Une chose est sûre : l’exposé était absolument orthodoxe, 
convaincu et convaincant ! Seules de difficiles analyses peuvent faire naître 
le doute sur ces questions et de telles analyses ne se trouvaient pas dans le 
texte initial : les notes critiques que nous reproduisons sont toutes postérieures, 
même si certaines d’entre elles ne le sont peut-être que de quelques mois 
(nous n’en connaissons pas la date exacte). Il est certain, également, que 
Louis de Broglie n’envisageait pas du tout, en écrivant ce livre, de reprendre 
la théorie de la double solution et encore moins celle de l’onde pilote.

Or dans l’été de 1951, donc entre les deux parties de cette série d’exposés, 
mais alors, semble-t-il, que le manuscrit était déjà entièrement écrit, ou au 
moins conçu, de Broglie reçut de Princeton, un preprint d’un long mémoire 
signé d’un jeune physicien encore peu connu en France, malgré ses travaux 
sur les plasmas et un remarquable ouvrage de Mécanique quantique qui 
venait, il est vrai, tout juste de paraître : c’était David Bohm et son mémoire 
reprenait et développait la théorie de l’onde-pilote, dont il apprit in extremis 
et juste à temps pour l’inclure dans sa bibliographie, que de Broglie avait déjà 
construit la même théorie 25 ans auparavant, puis l’avait presque aussitôt 
abandonnée.

La première réaction de Louis de Broglie fut négative (réf. I, 93). Mieux 
que quiconque il connaissait les arguments qui militaient contre l’onde-pilote 
et notamment le principal d’entre eux, à savoir qu’on ne saurait prétendre 
au caractère causal du mouvement d’un corpuscule si on le fait dépendre 
d’une onde qui se propage non dans l’espace physique mais dans l’espace 
de configuration et qui est, en outre, sujette à la réduction du paquet d'ondes 
lors d’une mesure de localisation.

Mais pourtant ce mémoire de Bohm eut sur de Broglie comme l’effet de 
rompre un charme qui l’aurait longtemps tenu envoûté. Ce charme était celui 
qu’avait longtemps exercé sur lui, comme sur presque tous les théoriciens, 
l’ensemble du langage scientifico-philosophique, tissé d'incertitudes et de 
complémentarité, dont les tenants de l’Ecole de Copenhague avaient enveloppé 
le formalisme quantique, et que venait encore couronner — et même péren 
niser — le fameux théorème de von Neumann qui affirmait, au terme d’une 
impressionnante construction mathématique, l’impossibilité de rendre compte 
des lois quantiques à l’aide d’une théorie causale à paramètres cachés.

Ce théorème relevait, quand on y réfléchit, d’une incroyable prétention 
philosophique : celle de prouver, de l’intérieur d’une théorie, que les prin 
cipes sur lesquels elle repose sont définitifs et marquent une limite ultime des 
connaissances humaines. On retrouve là sous une forme nouvelle, qui n’est 
antinomique qu’en apparence, le triomphalisme et les excès du déterminisme
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laplacien. Eh bien ! Louis de Broglie, qui venait d’exposer dans son cours 
ce théorème de von Neumann comme une vérité inattaquable et que personne, 
d’ailleurs, n’avait attaquée depuis 25 ans, eut soudain l’intuition que la théorie 
de l’onde-pilote, si imparfaite qu’elle fût, constituait néanmoins un contre- 
exemple à ce théorème qui lui interdisait en principe d’exister ; il ajouta au 
manuscrit une note capitale qui commence par cette phrase empreinte encore 
d’une légère hésitation : « L’existence de la théorie de Fonde-pilote semble 
montrer cependant qu’il existe une sorte de fissure dans le raisonnement de 
M. von Neumann. »

Et il montra ensuite, ainsi qu’on le verra dans l’ouvrage, que cette fissure 
se trouve dans l’hypothèse implicite que faisait von Neumann, selon laquelle 
les distributions de probabilités prévues par la Mécanique quantique seraient 
toutes simultanément réalisées, même lorsqu’elles se rapportent à des gran 
deurs qui ne sont pas simultanément mesurables. De Broglie était évidemment 
préparé à ce type d’analyse grâce à l’étude très claire qu’il avait fait paraître 
un peu auparavant sur le schéma probabiliste quantique (réf. V, 44 ; III, 9). 
Il a développé, plus tard, son argumentation dans plusieurs ouvrages (réf. II, 
27, 29, 33) et elle constitue, à mon sens, la seule réfutation physique véritable 
du théorème de von Neumann. D’autres réfutations ont été données par la 
suite, car, le théorème une fois atteint, on lui a découvert d’autres faiblesses, 
qui sont toutes de caractère logique ou formel ; elles ne sont pas sans intérêt, 
mais seul, à mon avis, peut avoir une signification générale le raisonnement 
physique qui, en s’appuyant sur le schéma statistique de la théorie, fait appel 
au problème de fond qui est celui du dualisme onde-corpuscule ; c’est pour 
quoi il conserve sa valeur contre d’autres théorèmes du même type, même 
s’ils se présentent sous des formes très différentes (1).

Cette réfutation fut, pour de Broglie, tout à fait essentielle parce que, der 
rière le voile qu’il venait ainsi d’entrouvrir, il redécouvrit l’image du monde 
qui avait jadis été la sienne, mais qu’il avait presque laissée s’effacer de sa 
mémoire.

C’est cela son second revirement. C’est cette image, qu’on verra ici dans 
quelques courtes notes, se reformer peu à peu devant lui, trait par trait, encore 
exprimée avec la prudence des derniers doutes, mais en laquelle il recommence 
à croire et qu’il essaiera de parfaire et d’étendre durant tout son vieil âge.

Aucun physicien ne peut rester indifférent à cette conception, qu’il la partage 
ou qu’il ne la partage pas ; c’est une autre conception de la microphysique, 
complètement différente de celle qui est enseignée et chacun doit savoir qu’elle 
existe car c’est d’elle que la Mécanique ondulatoire est née.

Mais cette reprise tardive de la même théorie par le même homme contient- 
elle (au moins en germe) quelques nouvelles découvertes ? Pour ma part je 
le crois et je dirai plus loin lesquelles, mais je pense qu’il faut avant tout contem-

(' ) Signalons également que dans le mémoire cité de Bohm, celui-ci écarte le théo 
rème de von Neumann à l’aide d’un argument sur la mesure qui s’apparente à celui 
de de Broglie mais qu’il se contente d’esquisser.
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pler ce travail d’un vieil et illustre physicien comme on peut le faire de la 
Pietà de Michel Ange exposée à Milan, elle aussi oeuvre tardive : elle peut 
paraître un peu rude et inachevée si on la compare à la splendeur de la Pietà 
du Vatican, mais n’est-elle pas aussi une lointaine préfiguration de l’art de 
notre temps ?

Cette allusion à l’art est aussi naturelle, s’agissant de ce physicien homme 
de lettres qu’elle l’est à propos d’Einstein qui est l’homme de science qu’il 
a le plus passionnément admiré. Mais, tandis que le déroulement de l’oeuvre 
d’Einstein suggère aussitôt l’idée d’une harmonie musicale, une telle méta 
phore serait, pour de Broglie, tout à fait hors de propos : la musique est le 
seul art auquel il soit resté étranger. Mais l’œuvre de de Broglie me paraît 
avoir deux clés.

La première, évidemment, est l’Histoire. Il l’a tant étudiée qu’il m’a dit un 
jour qu’il pensait avoir lu encore plus de livres d’histoire que de livres de 
physique. Mais plus particulièrement, l’histoire des idées en physique depuis 
le xvie et surtout depuis le xvne siècle, a joué dans son œuvre un rôle déter 
minant. Ce n’était aucunement, pour lui, une sorte de curiosité ou un passe- 
temps d’honnête homme, c’était à la fois la force motrice de son esprit de 
synthèse et la terre nourricière de sa pensée. Le premier mot de la fameuse 
thèse de 1924 était « L’Histoire », et ce n’est pas un fait du hasard.

Quant à la seconde clé de son œuvre, elle est de caractère visuel : c’est la 
recherche d’une image du monde qu’il désigne volontiers par le terme allemand 
de Weltbild en le citant de Planck. Pour de Broglie, comprendre c’est voir. 
Epris de modèles concrets, pour lui un modèle ne saurait être qu’une repré 
sentation visuelle dans l’espace physique. Dans sa langue, elle-même si trans 
parente, on retrouve plus que chez quiconque des métaphores empruntées à 
l’optique et à la vision. En parlant d’une grande idée, il la qualifie le plus 
souvent de « trait de lumière » ou « d’éclair dans la nuit ». « Il n’y a que les 
visionnaires qui créent » aime-t-il à dire ; parlant de notre vie intérieure, 
« seul objet de connaissance », il précise que « tout ce que nous connaissons 
passe en effet par elle et se réfracte en elle » (réf. III, 6, p. 250) ; évoquant la 
découverte de la Mécanique ondulatoire, il raconte : « Une grande lumière 
se fit alors soudain dans mon esprit » (réf. III, 6; p. 180). La joie, pour lui, 
c’est de voir : à propos de la découverte de l’atomisme et des statistiques, il 
s’écrie : « Ce jour-là le voile s’est déchiré et nous avons enfin aperçu avec sou 
lagement la réalité physique qui se cachait derrière les formes si abstraites 
de la Thermodynamique classique » (réf. III, 3, p. 93).

Relativiste dans l’âme, son imagination se développe dans une sorte de 
continuum quadridimensionnel, empruntant à l’histoire sa dimension tem 
porelle et s’exprimant en images spatiales. « Seul, dit-il, a une réalité physique 
le déplacement d’éléments localisés dans l’espace au cours du temps (1). » 
Une grande idée, pour de Broglie, c’est rendre compte, en une seule image 
spatiale, d’une synthèse résultant de l’analogie subitement aperçue entre des 
lois physiques différentes ou entre des représentations longtemps réputées

(') Annales de la Fondation Louis de Broglie, 1, 1976, p. 116.
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contradictoires. La création, pour lui, a forcément la fulgurance d’une vision 
poétique, après quoi il ne peut retenir quelque tristesse à la voir entre ses 
propres mains, ou dans d’autres, s’étioler et perdre de son éclat par l’expression 
mathématique qu’il faut bien lui donner. Et son besoin d’images est si grand, 
qu’en évoquant « Le savant à son dernier quart d’heure » (réf. III, 6) son rêve 
suprême est que, peut-être, ce que nous apercevons dans l’espace-temps n’est 
encore pas la vision véritable et que le physicien serait comme un ouvrier 
tissant une tapisserie de haute lice face au revers de son ouvrage, qui ne saurait 
se rendre compte de l’oeuvre réelle que « le jour où il pourrait retourner cet 
ouvrage et le contempler de face ».

Ainsi de Broglie reprit donc son oeuvre et retrouva la vision du monde de 
sa jeunesse. En quelques mois, il en réexamina les différents aspects, il se 
remit à en parler avec de plus en plus d’assurance, il balaya de son esprit 
les conceptions qu’il s’était laissé imposer et il entreprit d’en faire la critique, 
en même temps qu’il s’attaquait aux difficultés techniques soulevées par sa 
propre théorie.

Aidé par une nouvelle équipe de jeunes élèves, il s’attaqua au problème 
du guidage des singularités, des paquets d’ondes indéformables dans les équa 
tions non linéaires (ce qu’on appelle maintenant les solitons), il étendit ses 
idées à la théorie de Dirac, à l’optique des milieux réfringents et, au moins 
en partie, aux systèmes de particules ; il élabora une nouvelle théorie quantique 
de la mesure ; il développa une dynamique à masse propre variable et la ther 
modynamique relativiste ; enfin il lança l’idée d’une thermodynamique de la 
particule isolée. Le tout se trouve dans une cinquantaine de mémoires et 
quatorze livres en comptant celui-ci.

Si je puis me permettre un choix dans tout cela, j’avancerai deux idées qui 
me paraissent les plus importantes.

La première est celle des solitons, que nous appelions des ondes à bosse, 
à l’Institut Henri-Poincaré. Cette idée de de Broglie, jadis regardée comme 
désuète et trop classique, jouit aujourd’hui d’un certain prestige, comme je 
l’ai dit plus haut, et elle a sans doute beaucoup d’avenir mais à condition 
d’avoir conscience du véritable obstacle, qui reste le même depuis 25 ans, 
à savoir l’absence d’un principe général au nom duquel nous saurions choisir 
une équation d’onde non linéaire parmi l’infinité possible. Si, un jour, nous 
savons trouver une telle équation, une nouvelle microphysique naîtra.

La seconde idée est la thermodynamique de la particule isolée, proposée 
par de Broglie en s’appuyant d’une part sur l’analogie de variance relativiste 
entre une fréquence d’horloge et une température (1 ) et, d’autre part, sur un (*)

(*) La variance de la température reste un sujet de controverse car la formule de 
Planck-Einstein-Laue qu’utilise de Broglie a été contestée (voir : H.-Arzeliès, Thermo 
dynamique relativiste et quantique, Gauthier-Villars, 1968); mais à vrai dire, même 
la variance de la fréquence d’une horloge peut être discutée (L. Brillouin, Relativity 
reexamined, Ac. Press, 1971), ce qui n’a pas empêché, en son temps, la Mécanique 
ondulatoire de naître à partir de la variance généralement admise ! Le débat sur ces 
problèmes n’est pas terminé.
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rapprochement entre les trois grands principes extrêmaux de la physique : 
les principes de Fermât, de Maupertuis et de Carnot.

Cela non plus, n’est pas encore une théorie véritable, ce n’est que l’aperçu 
d’une synthèse que nous saurons peut-être, un jour, réaliser et utiliser : dans 
un an, dans un siècle ? Qui sait ? N’oublions pas qu’au temps de Laplace, 
on doutait encore du principe de Fermât et qu’un siècle après Huygens, son 
fameux principe restait à l’abandon.

Les grandes idées cheminent lentement et ce n’est pas facilement admis, 
en notre époque trépidante qui ne laisse guère de place à la méditation 
poétique... C’est sans doute l’une des raisons pour lesquelles, en dehors d’un 
cercle d’élèves, de Broglie, dans ces dernières années, est resté si ignoré en 
même temps qu’on le pétrifiait sous les honneurs. Peut-être est-ce également 
parce que, face à une école majoritaire sûre d’elle, soudée sur ses dogmes 
et peu disposée à laisser entamer ses positions, il incarnait d’une façon intransi 
geante et austère une certaine tradition de la science française, celle de Fermât, 
Laplace, Fresnel, Poincaré, souvent délaissée aujourd’hui au profit de manières 
plus pragmatiques et formelles, mais aussi plus internationales et collectives. 
Or, quels que soient les nécessités et les résultats du travail en équipe, on ne 
doit pas oublier que jamais une grande équipe n’a émis une grande idée ; 
ce sont les hommes qui émettent les idées : les équipes ne font que les développer. 
Si on écrase les individus, il n’y aura plus d’idées. De même quels que soient 
les bienfaits de la coopération internationale, on doit se rappeler que, s’il est 
vrai que les résultats de la science sont internationaux (nous nous accordons 
même tous à espérer qu’ils sont universels !) la tournure d’esprit des hommes, 
leur style de réflexion et de travail restent nationaux : c’est pourquoi il n’y a 
que les Américains qui sachent vraiment faire une grande science à l’américaine, 
les Allemands à l’allemande etc. ; et si les Français dédaignaient la tradition 
française, personne ne la ranimerait pour eux. Autant chaque tradition doit 
s’enrichir de l’apport des autres et évoluer, autant, me semble-t-il, si les scienti 
fiques d’un pays suivent trop les modes venues d’ailleurs, ils améliorent peut- 
être leur statut international, mais ils rapetissent leur destin.

Face à la puissance grandissante de la communauté scientifique et à 
l’influence anonyme des commissions de spécialistes, dans lesquelles il voyait 
des facteurs d’uniformisation de la pensée, Louis de Broglie a maintes fois 
réagi, s’élevant contre les dangers du dirigisme et soulignant l’importance de 
la liberté dans la recherche scientifique et d’un réexamen sans réticence des 
théories ou des principes en vigueur.

C’est là peut-être l’essentiel du flambeau qu’il a transmis à la Fondation 
Louis de Broglie à laquelle il a certes légué son idéal de clarté physique et de 
recherche d’images théoriques intuitives et simples mais plus encore, peut-être, 
cette croyance profonde qui est la sienne, que le pouvoir d’aucune théorie ni 
d’aucune hypothèse n’est établi à jamais et donc qu’aucune critique ni aucune 
idée nouvelle ne doit être enterrée sans débat.

J’avoue que c’est d’une main quelque peu tremblante que j’achève cette 
préface pour un maître que je sens à la fois si supérieur et si proche. Lui qui

Préface
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a fait tant de préfaces !... Nonagénaire épuisé par le travail et par les ans, 
il n’écrira pas celle-ci, mais je voudrais au moins lui laisser le dernier mot, 
avec le texte d’une note présentée par lui devant l’Académie des Sciences à 
l’occasion du cinquantenaire de la Mécanique ondulatoire et que nous pouvons 
regarder comme son testament scientifique.



SUR LES VÉRITABLES IDÉES DE BASE 
DE LA MÉCANIQUE ONDULATOIRE

Note (*) de M. Louis de Broglie, Membre de l’Académie

A l’occasion du cinqantième anniversaire de la decouverte de la Mécanique ondulatoire, l’auteur 
rappelle les idées qui l’avaient guidé à cette époque et expose les raisons pour lesquelles il lui paraît 
aujourd’hui nécessaire de reprendre ces idées bien oubliées dans l’enseignement de l'actuelle 
Mécanique quantique.

J’ai exposé les premiers principes de la Mécanique ondulatoire dans trois 
Notes aux Comptes rendus en septembre-octobre 1923, puis d’une façon plus 
développée dans ma Thèse de Doctorat soutenue le 25 novembre 1924. Mon 
idée essentielle était d’étendre à toutes les particules la coexistence des ondes 
et des particules découverte par Einstein en 1905 dans le cas de la lumière 
et des photons. Conformément aux idées claires de la Physique classique, 
je cherchais à me représenter une onde physique réelle transportant de très 
petits objets localisés dans l’espace au cours du temps. Deux manières de le 
faire se sont alors présentées à mon esprit. La première, tout à fait oubliée 
aujourd’hui dans l’enseignement usuel et que je considère maintenant comme 
de beaucoup la plus profonde, se trouve esquissée dans une de mes Notes 
de 1923 et développée dans le premier chapitre de ma Thèse. Elle consistait 
à partir de la différence des transformations relativistes de la fréquence d’une 
onde et de la fréquence d’une horloge. Admettant que la particule possède une 
vibration interne qui permet de l’assimiler à une petite horloge, je supposais 
que cette horloge se déplaçait dans son onde de façon que sa vibration interne 
reste constamment en phase avec celle de l’onde : c’est le postulat de « l’accord 
des phases ». Ces hypothèses me paraissaient être rendues nécessaires par le 
fait que la relation W = hv, appliquée à la particule implique l’existence d’une 
fréquence v intérieure à la particule, tandis que l’on sait depuis les travaux 
de Planck et d’Einstein que v est aussi la fréquence de l’onde qui transporte 
la particule. Celle-ci apparaît alors comme incorporée dans l’onde où elle 
constitue une très petite région où l’amplitude est très grande. On peut en 
déduire la formule bien connue p = h//.. Dans le second chapitre de ma Thèse, 
j’avais ensuite montré que, dans le cas où la propagation de l’onde s’effectue 
à l’approximation de l’optique géométrique, on est ainsi conduit à identifier 
le principe de Fermât avec le principe de moindre action de Maupertuis et à 
retrouver la formule p = hjl.

(') Séance du 25 juin 1973.
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Il convient de souligner les différences qui existent entre les deux modes de 
raisonnements que je viens de rappeler. Le premier, le postulat de la concor 
dance des phases, est de nature essentiellement relativiste puisqu’il repose sur 
la différence entre deux formules de transformation relativiste, tandis que le 
second, l’identification des principes de Fermât et de Maupertuis n’a rien 
d’essentiellement relativiste puisque ces deux principes sont valables aussi 
bien en théorie classique et en théorie relativiste. La seconde différence entre 
les deux méthodes est que la première est valable pour toutes les propagations 
d’ondes tandis que la seconde n’a de sens que pour les propagations s’effectuant 
à l’approximation de l’optique géométrique.

Après ma Thèse, on a souvent interprété faussement mes idées en disant que, 
d’après moi, l’électron était une onde, ce qui escamotait la particule. C’est, 
semble-t-il, en adoptant cette idée que Schrôdinger, en 1926, dans de très beaux 
travaux, a écrit le premier pour l’électron, mais seulement à l’approximation 
newtonienne et sans tenir compte du spin, l’équation de propagation d’une 
onde qu’il a nommée l’onde \p. Il a pu ainsi calculer exactement les processus 
ondulatoires qui correspondent aux états quantifiés d’un système atomique 
conçu à la manière classique depuis les travaux de Bohr et de ses continuateurs. 
Certainement Schrôdinger pensait alors que son onde ip était une onde physi 
que, mais il abandonnait toute idée de localisation de la particule dans l’onde 
de sorte qu’en réalité dans l’image qu’il se formait de l’atome et plus générale 
ment des ondes \p il n’y avait plus de particules localisées. Ceci était très grave 
et rendait paradoxal l’emploi qu’il faisait de l’espace de configuration dans le 
cas des systèmes de particules. Peu après, Born a introduit la normalisation 
de fonde ip qui, en modifiant arbitrairement l’amplitude de fonde, lui enlève 
toute réalité physique. L’onde ip normalisée est ainsi transformée en une simple 
représentation de probabilités qui conduit à un très grand nombre de prévisions 
exactes, mais ne fournit aucune représentation compréhensible de la coexis 
tence des ondes et des particules.

Les travaux de Schrôdinger avaient eu le mérite de bien faire voir que la 
Mécanique ondulatoire, quand on l’applique aux systèmes atomiques, conduit 
à des problèmes où l’approximation de l’optique géométrique n’est plus 
valable. Il en résulte que le principe de Fermât n’est plus applicable et ne 
permet plus de définir un « rayon » assimilable à la trajectoire d’une particule. 
Si donc on se refuse à faire intervenir le postulat de l’accord des phases, l’on 
est amené à dire qu’il est impossible d’attribuer une trajectoire à la particule 
dans son onde et à affirmer qu’elle ne peut avoir que des localisations isolées 
sans positions intermédiaires. Mais une telle conception soulève de grandes 
difficultés et notamment celle qui fut signalée par Einstein au Conseil de 
Physique Solvay de 1927. On peut la résumer de la façon suivante : soit une 
source qui émet une onde sphérique transportant une particule. Un instant 
après, la particule manifeste sa présence en un point de fonde sphérique par 
un effet localisé sur un détecteur. Il est évidemment certain que l’émission 
de la particule par la source est la cause de son arrivée sur le détecteur. Or, 
le lien causal entre les deux phénomènes ne peut être établi que par l’existence
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d’une trajectoire et nier cette existence, c’est renoncer à la causalité, c’est se 
condamner à ne pas comprendre.

Faisons maintenant une remarque importante. Comme la normalisation, 
qui modifie arbitrairement l’amplitude de l’onde, ne modifie pas sa phase, 
la Mécanique quantique usuelle peut définir la même fréquence v et la même 
longueur d’onde À que ma théorie et c’est là ce qui lui permet d’être une théorie 
puissante conduisant à un très grand nombre de résultats exacts. Mais, contrai 
rement à ce que l’on admet d’habitude, la Mécanique quantique n’a pas le 
droit de poser W = hv et p = h/l parce que l’énergie W et la quantité de 
mouvement p d’une particule sont des grandeurs liées à la conception d’un 
objet localisé qui se déplace dans l’espace le long d’une trajectoire. Si j’ai pu 
autrefois établir ces formules, c’est que j’admettais que la particule est localisée 
dans son onde.

Appelé en 1928 à des fonctions d’enseignement, j’ai exposé les idées qui 
avaient prévalu en Mécanique quantique et pendant de longues années j’ai 
renoncé à développer mes idées primitives.

Mais depuis environ 20 ans j’ai été de nouveau convaincu qu’il fallait revenir 
à l’idée que la particule est un très petit objet localisé décrivant une trajectoire. 
Comme je l’ai montré dans toute une série de travaux de plus en plus appro 
fondis (r), c’est ce que permet de faire, tout en conservant la signification 
statistique de l’onde ijt normée, ma conception du guidage de la particule par 
son onde quand on la complète par une Thermodynamique cachée dont le 
développement ouvre des perspectives très nouvelles. Une conséquence de 
cette thermodynamique me paraît très importante : le principe de moindre 
action ne serait qu’un aspect du second principe de la Thermodynamique (2).

Il est important de remarquer combien il est étonnant qu’en optique de la 
lumière et des particules, on puisse prévoir, avec une extrême précision, un 
nombre énorme de phénomènes en partant de propagations d’ondes sans faire 
nullement intervenir la structure corpusculaire, cependant certaine, de l’énergie 
qu’elles transportent. Dans le cas des phénomènes d’interférences et de dif 
fraction, le postulat statistique de Born suffit à expliquer les phénomènes. 
Mais en théorie quantique usuelle, on admet arbitrairement ce postulat, 
tandis que je puis en donner une justification. Mais là où le postulat de l’accord 
des phases me semble fournir une explication que la théorie usuelle ne paraît 
pas pouvoir donner, c’est quand on considère l’action d’une onde hertzienne 
de fréquence v sur un circuit oscillant ou un dispositif analogue accordé sur 
cette fréquence. Il est, en effet, naturel de penser que certains des photons 
apportés par l’onde cèdent leur énergie au circuit oscillant sous forme d’une 
brusque impulsion qui compense l’amortissement. Mais l’énergie ainsi apportée 
au circuit oscillant ne peut entretenir son oscillation régulière que si ces 
impulsions sont rythmées à la fréquence du circuit qui est celle de l’onde. Ceci 
me semble prouver que les photons incidents possèdent une fréquence

(\) La réinterprétation de la Mécanique ondulatoire, Gauthier-Villars, Paris, 1971. 
(2) La Thermodynamique de la particule isolée, Gauthier-Villars, Paris, 1964.
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d’oscillation interne égale à celle de l’onde et c’est bien ce qu’affirme le postulat 
de l’accord des phases, alors que la théorie usuelle ne peut introduire aucune 
idée analogue.

En conclusion, je pense que mes idées primitives, telles que je les ai reprises 
et développées dans ces dernières années, permettent de comprendre la véri 
table nature de la coexistence des ondes et des particules dont la Mécanique 
quantique usuelle et ses prolongements ne nous donnent qu’une vue statistique 
exacte sans nous en révéler la véritable nature. Le postulat de l’accord des 
phases nous apprend, en effet, qu’il existe une Dynamique corpusculaire ayant 
le caractère d’une Dynamique à masse propre variable qui est sous-jacente 
à toute propagation d’ondes, même quand celle-ci s’effectue en dehors de 
l’approximation de l’optique géométrique. Et je crois que c’est là ce que la 
Mécanique quantique actuelle n’a pas su voir.

Parvenu à un âge qui ne me permet plus d’espérer pouvoir continuer long 
temps mes travaux personnels, je dois exprimer l’espoir que de jeunes chercheurs 
se consacrent à développer, dans le sens que j’ai indiqué dans ces dernières 
années, les idées qui ont permis, il y a un demi-siècle, la naissance en France 
de la Mécanique ondulatoire.

C.R. Acad. Sc. Paris, t. 277 (16 juillet 1973)
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CHAPITRE I

PRINCIPES DE LA MÉCANIQUE 
ONDULATOIRE

1. DYNAMIQUE CLASSIQUE DU POINT MATERIEL. THEORIE 
DE JACOBI

Nous allons résumer les principes généraux de la Mécanique ondulatoire 
dans le cas d’un corpuscule unique soumis à l’action d’un champ de force 
dérivant d’une fonction potentielle connue V(x, y, z, t). Nous devons com 
mencer par rappeler quelques grandes lignes de la Dynamique classique du 
point matériel.

Avec les conceptions anciennes, le corpuscule a à chaque instant une posi 
tion bien déterminée dans l’espace et, au cours du temps, il décrit une certaine 
courbe, la trajectoire, sous l’influence du champ de force. On peut donc à 
tout instant attribuer au corpuscule trois coordonnées rectangulaires x, y, z qui 
fixent sa position. Les équations classiques du mouvement sont les suivantes :

(1)
dV
dx

m étant une constante caractéristique du corpuscule nommée sa masse. Ces 
trois équations différentielles du second ordre définissent entièrement les 
variations des coordonnées du corpuscule au cours du temps, c’est-à-dire son 
mouvement, quand on se donne 6 constantes arbitraires représentant les 
coordonnées et les composantes de la vitesse à un instant donné, l’instant 
dit initial. Le déterminisme de l’ancienne Mécanique consistait en ce que, 
l’état initial de position et de vitesse étant supposé connu, les états ultérieurs 
étaient rigoureusement déterminés.

Nous renvoyons aux traités de Mécanique rationnelle pour la démonstra 
tion des théorèmes généraux de la Dynamique du point matériel et pour

Note des éditeurs : dans les notes qui suivent, Louis de Broglie sera désigné 
par L. B. et Georges Lochak par G. L.
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la théorie des équations de Lagrange, de Hamilton, etc. (’). Nous nous bor 
nerons à énoncer le théorème fondamental de Jacobi qui nous sera utile dans 
la suite.

Théorème : Si l’on parvient à trouver une intégrale complète (c’est-à-dire 
une solution contenant 3 constantes arbitraires non additives) S(x, y, z, t, oc, /?, y) 
de l’équation aux dérivées partielles (équation de Jacobi)

Principes de la M.O.

(2)
1

2 m
'ÔS'
dz

_,. x dS 
+ V(x, y, z,t) =-^t

les équations

dS ÔS= _
da a dp ^ dy

où a, b, c sont trois nouvelles constantes arbitraires, définissent un des mou 
vements possibles dans le champ de force ; et les composantes de la quantité 
de mouvement du corpuscule quand, en exécutant ce mouvement, il occupe 
à l’instant t la position x, y, z sont données par les relations

(4) px = mvx
dS dS dS
dï; Py = mvy=-Ty' ^ = mv^~Tz-

Nous voyons donc que d’après ce théorème de Jacobi, les mouvements 
possibles du corpuscule se divisent en classes, les mouvements d’une même 
classe correspondant à une intégrale complète S(x, y, z, t, oc, p, y) avec des valeurs 
données de ocPy. Chacune de ces classes contient une infinité de mouvements 
possibles, chacun d’eux étant caractérisé par la valeur des constantes secon 
daires abc.

Rappelons aussi que l’équation de Jacobi peut s’obtenir en partant de 
l’expression de l’énergie et en fonction des coordonnées et des moments 
conjugués

(5) H(x,y, z,px,py,pz, t) = 1
2 m {pl + Py + PÏ) + V(x, y, z, t)

et en y remplaçant px, py, pz respectivement par — dS/dx, — dS/dy et — ôS/dz 
et en égalant l’expression obtenue à ôSjôt.

(') Note G. L. : parmi les nombreux traités, citons : J. M. Souriau, Struc 
ture des systèmes dynamiques, Dunod,-Paris, 1970; H. Goldstein, Classical 
mechanics, Addison-Wesley, Cambridge, Mass., 1953. Notons que ce n’est 
pas par souci de simplicité que Louis de Broglie énonce le théorème de Jacobi 
dans R3, mais parce que l’analogie optique-mécanique n’a de sens véritable 
à ses yeux que dans l’espace physique, en dehors duquel elle n’est plus que 
formelle.
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Le théorème de Jacobi prend une forme qui nous sera particulièrement 
utile dans le cas où la fonction potentielle V ne dépend pas du temps. On sait 
que dans ce cas, il y a conservation de l’énergie, c’est-à-dire que pendant le 
cours du mouvement, la somme de l’énergie cinétique et de l’énergie poten 
tielle i nu:2 + V garde une valeur constante E. La constante E joue alors 

le rôle d’une des constantes primaires du mouvement, par exemple y. On pose

(6) S{x, y, z, t, a, P, E) = Et - Sj(x, y, z, a, P, E)

où Sl ne dépend plus du temps et l’on cherche une intégrale complète dépen 
dant de la constante E et des deux constantes arbitraires oc et [S de l’équation 
aux dérivées partielles (équation de Jacobi raccourcie)

(7)
1

2 m
dSl
ôx

2 dS,
W +

’ô S, 
dz I + V(x, y, z) = E .

Le théorème de Jacobi appliqué à ce cas particulier nous apprend que, 
si l’on a trouvé une telle intégrale complète, le mouvement défini par les 
équations

(B)

dS,
da a

8S1
dp

dS _ 5si _
1 ~ TË ~ c

où a, b, c sont trois constantes arbitraires est un des mouvements possibles 
du corpuscule dans le champ de force constant et que la quantité de mouve 
ment lors du passage au point x, y, z est donnée par

Px = mvx
dSl 
ËË ’ Py = mvy

dS1
W; pz = mvz

ôSj
dz

Les mouvements possibles se divisent en classes correspondant à une même 
valeur de l’énergie E et des deux constantes primaires a. et P et chaque classe 
contient une infinité de mouvements caractérisés chacun par les valeurs des 
trois constantes secondaires a, b, c.

Les deux premières équations (8) ne contenant pas le temps définissent 
une courbe de l’espace qui est la trajectoire du corpuscule. La troisième équa 
tion qu’on peut écrire dSJdE = t — t0 donne le mouvement le long de la tra 
jectoire (équation de l’horaire). On voit ainsi que dans le cas des champs 
constants, l’étude de la trajectoire peut se faire indépendamment de l’étude 
du mouvement : ceci n’a pas lieu dans le cas général des champs variables 
avec le temps.
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Un autre théorème important valable dans le cas des champs constants 
est le suivant : « Les trajectoires d’une même classe qui correspondent à 
une même intégrale complète y, z, a, /?, E) sont orthogonales aux surfaces 
Sj = Cte. » Ceci résulte immédiatement du fait exprimé par les équations 
p = grad Sj que la vitesse est proportionnelle au gradient de S1 en chaque 
point.

La propriété des trajectoires d’être normales aux surfaces S, = Cte permet 
de retrouver le principe de moindre action de Maupertuis. Considérons pour 
cela toutes les surfaces S, = Cte correspondant à des valeurs infiniment 
voisines de la constante comprises entre les valeurs cq et c2 et représentons-en 
quelques-unes par la tranche.

Soit AEB une trajectoire de la classe correspondant à S1 et AFB une courbe 
infiniment voisine de AEB.

Si l’on nomme dn l’élément de normale aux surfaces Sl = Cte, l’intégrale 
'dSl .

ds prise le long de AEB est égale à c2 — cl puisqu’alors on a ds = dn.

Prenons la même intégrale le long de la courbe AFB. La contribution à cette 
intégrale d’un petit élément tel que FG est supérieure ou au moins égale à la 
variation de Sx de F en G : en effet si FG est normal aux surfaces S, = Cte qui

passent par ces extrémités, alors FG = dn et
8S1

j dn FG = S,(G) - S^F),

tandis que si FG n’est pas normal aux surfaces S, = Cte, on a FG > dn et 
ôSi —

• FG est supérieure à S^G) — S^F). Or tous les éléments de AFB pe

peuvent être normaux aux surfaces = Cte sans quoi AFB coïnciderait
fB dS

avec la trajectoire AEB. Donc l’intégrale ds est plus grande le long dednJA
AFB que le long de AEB.

D’après l’équation à laquelle satisfait Sl5 on a

dS,
,9) iz dz

■ J2 m(E — V(xyz))

Nous parvenons donc à l’énoncé suivant : « La trajectoire passant par deux



points A et B de l’espace est caractérisée par le fait que l’intégrale
/.B
J2 m(E — V) ds est plus petite pour la trajectoire que pour toute courbe

JA

voisine. » C’est là le principe de moindre action de Maupertuis.
[Le raisonnement fait ci-dessus est en défaut quand les trajectoires ont une 

enveloppe et que la trajectoire AEB touche cette enveloppe entre A et E. 
L’intégrale de Maupertuis peut alors être maximum au lieu de minimum, 
mais elle est toujours stationnaire.]

Un exemple très simple permet d’illustrer les considérations précédentes. 
Envisageons le mouvement du corpuscule en l’absence de champ. Alors 
V = 0 et, comme il y a conservation de l’énergie, on peut écrire l’équation 
de Jacobi raccourcie sous la forme
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Une intégrale complète est obtenue par exemple en posant 

(11) Si = yjl mE(y.x + fly + ^/l — a2 — /?2 z)

et d’après le théorème de Jacobi, on obtient les trajectoires

(12)

a
L Jl-a2-p2 J

r P 1
y----- . = zL y/l - a2 - P2 J

Ce sont les droites de cosinus directeurs oc, fi et 1 - a2 — /?2 normales 
aux plans S, = Cte. Le mouvement le long de ces droites est défini par l’équa 
tion

(13) -w = -j=[ax + fiy + - a2 - fi2 z] = t - t0 .
UCd 2 mE

Il est rectiligne et uniforme et s’effectue avec la vitesse v = 2 E/m. Enfin on
vérifie aisément les relations px = mvx = mav = yj2 mE a = 8S, jcx... L’inté 
grale complète envisagée définit donc la classe des mouvements rectilignes 
et uniformes de direction a, fi, y et de vitesse ^72 E/m.
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On définirait de même la classe des mouvements rectilignes et uniformes 
émanant d’un point O de coordonnées x0 y0 z0 en considérant l’intégrale 
complète de l’équation en S

(14) S = - ^ [(x - x0f + (>> - y0)2 + (z - z0)2] .

2. PROPAGATION DES ONDES DANS UN MILIEU ISOTROPE

Pour amorcer le passage à la Mécanique ondulatoire, faisons maintenant 
une rapide étude de la propagation des ondes monochromatiques dans un 
milieu isotrope, réfringent et dispersif.

Nous admettrons que cette propagation est régie par l’équation

(15)
ôhp_
ôt2

\p étant la fonction d’ondes et Y une grandeur généralement fonction des 
points xyz et de la fréquence v de l’onde. Y est la vitesse de propagation de la 
phase ou simplement vitesse de propagation. Nous écrirons l’onde mono 
chromatique sous la forme complexe

(16)

et nous poserons

ip = u(x, y, z) e2kiv< 

1 _ n(x, y, z, v)
r y 0

y0 étant la vitesse de propagation dans un milieu de référence pour lequel 
l’indice de réfraction est égal à 1. On a alors

(17) A\p + 4 n2 n2 v2
r02

ip = o.

Rigoureusement l’étude de la propagation de l’onde monochromatique 
dans le milieu dispersif devra se faire en cherchant les solutions de cette équa 
tion, mais il arrive souvent en pratique que l’on puisse résoudre le problème 
par un procédé approximatif qui est à la base de l’optique géométrique.

Pour bien comprendre le sens de cette approximation, considérons d’abord 
le cas où l’indice ne dépend pas de x, y, z (milieu homogène). On obtient alors 
une solution rigoureuse de l’équation en posant

(18) ip = a exp J 2 ri i v t - (ax + fiy + \/i



Principes de la M.O. 9

a est une constante appelée l’amplitude de l’onde plane. Nous nommerons 
« phase de l’onde » la fonction linéaire

(19) (p = v t -J?- (<*x + Py + yi - a2 - P2 z) 
7 o

Les surfaces d’égale phase (p = Cte nommées aussi surfaces d’onde sont les 
plans perpendiculaires à la direction a, fl, y = 1 — a2 — fl2. Au cours du
temps, les valeurs de la phase, et par suite de la fonction ijj, progressent dans 
cette direction avec la vitesse

(20) r = -r0/n(v).

A un instant donné, on retrouve la même valeur de ijt sur des plans d’égale 
phase séparés les uns des autres par la distance

(21)
■r0 _ r
nv v

nommée « longueur d’onde » et en un point donné, on retrouve les mêmes 
valeurs de ij/ h des intervalles de temps égaux à la période T = 1/v.

Considérons maintenant un milieu où l’indice n varie d’un point à un autre. 
Une onde monochromatique pourra toujours s’écrire sous la forme

(22) iA = a(x, y, z) exp { 2 ni[vt - q>,(x, y, z)] }

les fonctions a et étant réelles. On peut toujours définir une longueur 
d’onde X par la formule X = 'P'o/nv, mais cette longueur est « locale » en ce 
sens qu’elle varie d’un point à l’autre. Si, dans une région de l’espace, l’indice 
varie peu d’un point à l’autre à l'échelle de la longueur d'onde, on voit aisément 
que les dérivées de a sont négligeables devant celles de <p1 et en substituant 
dans l’équation de propagation, on obtient l’équation approximative dite 
« équation de l’optique géométrique »

’d<Pi\2 (ScpX (dtp, V v2n\x,y,z)
Sx) \dy) \ôz) r02

Elle permet de déterminer les variations de la phase sans avoir à se préoccuper 
des variations lentes de l’amplitude a.

Soit tpi(x, y, z, v, a, fl) une intégrale complète de l’équation de l’optique géo 
métrique. La fonction ijj = a exp { 2 ni[vt — cpj (x, y, z, v, a, fl)]} où a est une fonc 
tion lentement variable à grande échelle est une solution approximative de 
l’équation de propagation. Par définition, les courbes orthogonales aux sur-
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faces q>1 = Cte sont les «rayons» de l’onde. Comme on a justifié plus haut le 
principe de moindre action de Maupertuis pour les trajectoires normales 
aux surfaces St = Cîe, nous pourrions ici démontrer le principe de Fermât 
suivant lequel, si la courbe C est un rayon de la propagation d’ondes passant

par les points A et B de l’espace, l’intégrale à<Pi
ôn ds =

nv
r, ds prise le

long du rayon C est plus petite que la même intégrale prise le long d’une courbe 
infiniment voisine de C et joignant A et B.

L’optique géométrique n’est qu’une approximation valable seulement 
si l’indice n varie peu à l’échelle de la longueur d’onde. Si la longueur d’onde 
tendait vers zéro, cette approximation tendrait à devenir rigoureuse.

La présence de la fréquence v dans l’équation de propagation (17) doit 
attirer l’attention. Au lieu de considérer une onde monochromatique, on peut 
avoir à considérer le cas plus général d’une superposition d’ondes mono 
chromatiques, chacune d’elles satisfaisant à l’équation de propagation avec 
la valeur de n qui correspond à la fréquence. Mais il est désirable d’avoir 
une forme de l’équation de propagation où la fréquence ne figure pas et à 
laquelle doive satisfaire la fonction d’ondes même quand elle est formée 
par une superposition d’ondes monochromatiques.

Supposons, pour donner un exemple, que l’indice soit défini par la loi de 
dispersion

n(.x, y, z, v) 11 Hx,y,=) fp 
4 n2 v2

où F est une certaine fonction du lieu. Alors on pourra adopter comme équa 
tion générale de propagation

m l d2i// „
Aÿ - -t p ï ~^2 = F(x> y-z) 'AYq or

car pour une onde monochromatique, on aura d2ij//dt2 = — 4 n2 v2 ÿ et l’on 
retrouvera l’équation (17). Nous trouverons un cas de ce genre en Mécanique 
ondulatoire (1).

3. PASSAGE DE LA MÉCANIQUE CLASSIQUE 
A LA MÉCANIQUE ONDULATOIRE

La grande analogie de forme entre la théorie de Jacobi et la théorie des ondes 
déjà aperçue il y a plus d’un siècle par Hamilton peut aujourd’hui nous conduire 
à la synthèse réalisée par la Mécanique ondulatoire.

I1) Note G. L. : On lira avec profit, à propos de l’optique géométrique, 
les références (I, 27) et (I, 29) de l’auteur.



Principes de la M.O. 11

Commençons par comparer le mouvement d’un corpuscule en l’absence 
de champ (E = 0) avec la propagation d’une onde dans un milieu homogène 
où l’indice n est indépendant de xyz. Pour le corpuscule en l’absence de champ, 
nous avons trouvé

(11) S, = y]2 mE\_ax + Py + s/l — a2 — fi2 z]

= mv[otx + Py + s/l — a2 — p2 z] .

D’autre part, pour l’onde monochromatique dans un milieu homogène, 
puisque la longueur d’onde X est alors constante, on peut écrire l’équation 
de l’optique géométrique sous la forme

(24) <?i = j [ax + Py + s/l ~ a2 - P2 z] .

Les fonctions complètes S et cp sont alors

(25)
S = Et — mv[otx + Py + v'l — oc2 — p2 z] 

ç> = vt — j [oex + Py + s/l — et.2 — P2 z]

en faisant coïncider la direction du mouvement avec celle de la propagation 
de l’onde. Il est dans l’esprit de la théorie des quanta de poser E = hv, c.-à.-d. 
d’associer au mouvement du corpuscule d’énergie E la propagation d’une onde 
de fréquence v = Ejh ('). Ceci nous conduit à poser

(26) q> = S/h.

Si nous posons par hypothèse cette relation, il en résulte les deux formules

(27) E = hv X = h/mv .

En d’autres termes, au mouvement rectiligne et uniforme du corpuscule 
d’énergie E et de quantité de mouvement mv, nous faisons correspondre 
la propagation dans la direction du mouvement d’une onde plane mono-

(') Note G. L. : A cette époque, sous la pression ambiante, Louis de Broglie 
s’était écarté du point de vue strictement relativiste de sa Thèse, auquel il 
allait revenir par la suite. En réalité seule la relativité fixe v, en fixant la cons 
tante de l’énergie, ce qu’il n’indique pas, alors qu’il y attachait pourtant une 
importance fondamentale.



chromatique ayant la fréquence Ejh et la longueur d’onde h/mv, onde dont 
l’expression est

2ni £

ij/ = a e h (a constant)

S ayant la valeur écrite ci-dessus.
Cette correspondance entre onde et mouvement se généralise dans le cas 

du mouvement d’un corpuscule dans un champ constant défini par la fonction 
potentielle V(x, y, z). Il faut alors comparer le mouvement à la propagation 
d’une onde dans un milieu non homogène où l’indice n et par suite la longueur 
d’onde X varient d’un point à l’autre.

Les expressions à comparer de la fonction de Jacobi S et de la phase (p 
sont alors
(28) ( S = Et — S^x, y, z)

l <P = Vf - (p^x, z)
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les fonctions et cp1 étant respectivement des intégrales complètes des 
équations

(29)

'dSi
ôx

d<Pi
dx

(2 + '5SA
dy)

'dcpA
, dy )

dSA2
-gfj = 2 m[E- V(xyz)] 

= i
v, dz J X2(xyz)

Il est tout naturel de faire encore ici l’hypothèse exprimée par ç> = S/h et par 
suite de poser E = hv, Sl = hcpv La seconde formule donne aisément

(30) 2 =
1

I grad (Pi |
h

I grad S1 |
_________ h_________
V2

et comme en chaque point on doit avoir E = 1/2 mv2 + K(.v, y, z), on trouve 
encore

X = h/mv.

mais ici v et X sont variables d’un point à l’autre.
Comment s’écrira l’équation de propagation de l’onde qui correspond au 

mouvement dans un champ constant ? Ecrivons l’équation (17) sous la forme

(31) Ai/j +
4 n2

X2(x, y, z) * = 0

et substituons-y la valeur de X : il vient

(32) âx/j + [£- V(x, y, z)]i// = 0 .

En faisant V = 0, on retrouve l’équation valable en l’absence de champ.
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Chaque fois que l’optique géométrique sera valable pour la propagation 
de l’onde ip, nous pourrons poser

i// = a exp^j^- S^j = a [Et — S,(x, y, z)]

et les trajectoires prévues par l’ancienne Dynamique du point matériel, nor 
males aux surfaces S, = Cte, ne seront autres choses que les rayons de l’onde tjt 
normaux aux surfaces cp, = Cte.

Nous arrivons ainsi à l’une des idées essentielles de la nouvelle Mécanique. 
Tandis que la Mécanique ancienne attribuait à ses équations un caractère 
rigoureux et les considérait comme toujours valables, la nouvelle Mécanique 
donne à l’onde i\> le rôle essentiel : elle ne considère plus l’ancienne Mécanique 
que comme une approximation valable quand l’approximation de l’optique 
géométrique est suffisante pour décrire la propagation de l’onde ijt.

La Dynamique classique n’apparaît donc plus que comme une approxima 
tion : elle n’est utilisable que quand l’indice n relatif à l’onde i// varie peu à 
l’échelle de la longueur d’onde ou, ce qui revient au même quand le potentiel 
varie peu à cette échelle. Si la longueur d’onde de l’onde ijj était infiniment 
petite, la Dynamique ancienne serait rigoureusement valable. D’après la for 
mule (27) donnant X, l’on voit que ceci serait toujours réalisé (pour v non 
nulle) si h était infiniment petit : pour h -> 0, la Mécanique classique doit 
toujours reprendre sa valeur.

4. ÉQUATION GÉNÉRALE DE LA MÉCANIQUE ONDULATOIRE 
DU POINT MATÉRIEL

Nous venons d’être conduits à substituer aux équations classiques de la 
Dynamique du point matériel dans un champ constant l’équation de propa 
gation d’une onde monochromatique. Mais, comme nous le verrons bientôt, 
nous serons souvent amenés à considérer des trains d’ondes ij/ formés par 
une superposition d’ondes monochromatiques. Il est donc utile de chercher 
à obtenir une équation de propagation à laquelle satisfasse la fonction ijj 
quand elle représente une telle superposition d’ondes monochromatiques. 
L’équation (*)

(33) Ai// 8 7t2 m V(x, y, z) ijt 4 nim ô\jt 
h ôt

satisfait à cette condition, car pour une onde plane monochromatique de 
fréquence Ejh, elle nous ramène à l’équation (32). Mais cette nouvelle forme

(‘) Note G. L. : L’auteur a coutume d’utiliser l’équation conjuguée de 
l’équation habituelle.
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d’équation nous permet de ne pas nous borner aux ondes planes monochro 
matiques et de considérer une superposition de telles ondes. De plus, elle 
nous suggère la manière d’étendre la nouvelle Mécanique au cas des champs 
variables avec le temps. En effet, comme elle nous permet de ne plus nous 
borner aux ondes monochromatiques, le temps n’y joue plus un rôle parti 
culier et il est donc naturel d’admettre que la forme de l’équation se conserve 
quand V dépend du temps, donc d’écrire

Principes de la M.O.

(34) A\j/ 8 n2 m 
h2

V(x, y, z, t) ij/ 4 nim dip 
h dt

comme forme générale de l’équation des ondes en Mécanique ondulatoire 
non relativiste du corpuscule unique.

5. PROCÉDÉ AUTOMATIQUE PERMETTANT DE RETROUVER
L’ÉQUATION DES ONDES

Nous allons indiquer un moyen formel qui permet de retrouver automati 
quement l’équation des ondes.

En Mécanique classique, on appelle « fonction hamiltonienne » la fonction 
qui exprime l’énergie à l’aide des coordonnées et des moments de Lagrange. 
Avec les coordonnées rectangulaires, l’expression bien connue de cette fonc 
tion est

(35) H(x, y, z, px, py, pz, t) = — (p2x + p) + pl) + V(x, y, z, t).

Si, dans le second membre de cette expression, nous remplaçons px par
h d h d h d

— ~—: 3-, pv par — -—: -5-, pz par — -—: , nous obtenons un opera-2 ni dx 0 2 ro <3y z 2 ni dz K
teur, l’opérateur Hamiltonien

j., h ô h d h ô \(36) H{x, y, z, - —- j-, - —-- j-, - , r =
2 7zi ex 2 ni ôy 2 m dz J

1 / h V / Ô2 d2 d2\ t//“2^(2^; {d^ + d/+J7) + V(x'y’z-l)-

En appliquant cet opérateur à la fonction 1jj (c’est-à-dire en multipliant 1j/

h ôil/en avant par l’opérateur Hamiltonien) et en égalant à ^—: ■/, ona
2 7n dt

(37) 1 ( h Y a 1 t /-/ , , h d\p~~—: Al\t + V(x, y, z,t)ÿ= ^—: -5- 2m\2ml ' r 2 m dt

équation identique à l’équation générale obtenue plus haut.
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Nous voyons ainsi que l’équation générale de propagation peut s’écrire 
sous la forme

(38)

où Px, Py, Pz sont respectivement les opérateurs

h d_
2 ni dz

h d h d
2 ni dx ’ 2 ni ôy ’

que nous faisons correspondre aux composantes de la quantité de mouvement.
Il importe de remarquer que le procédé automatique pour obtenir l’équation 

d’ondes qui vient d’être indiqué ne réussirait pas en général si l’on employait 
des coordonnées curvilignes. Ainsi, en coordonnées sphériques, on n’obtien 
drait pas ainsi la forme correcte de l’opérateur Laplacien A figurant dans 
l’équation. Cette difficulté est liée au fait qu’alors on ne peut déduire univo 
quement de la fonction hamiltonienne classique la forme de l’opérateur 
Hamiltonien parce qu’un terme de la forme qpq par exemple de la fonction 
classique peut donner naissance suivant l’ordre des facteurs à des termes

P„ q + qPa . ,
qPq, Pq q, ——x----- 1 qui ne sont pas équivalents.



CHAPITRE II

L’INTERPRÉTATION PROBABILISTE 
DE LA MÉCANIQUE ONDULATOIRE

1. INTERPRÉTATION DE L’ONDE i/t

Nous avons obtenu les équations générales de la Mécanique ondulatoire. 
Il nous faut maintenant apprendre à nous en servir et, en particulier, quel sens 
attribuer à la fonction ip.

Si on se laissait guider par les analogies classiques, on serait conduit à 
considérer la fonction ip comme représentant une grandeur physique, peut-être 
liée à la vibration de quelque milieu. Une circonstance nous avertit tout de 
suite qu’une telle interprétation est impossible. L’équation générale contenant 
dans ses coefficients le facteur i = x/— 1, la fonction d’onde doit être considérée 
comme une grandeur essentiellement complexe, contrairement à ce qui se 
passait dans la théorie classique des ondes et vibrations où l’emploi de fonctions 
complexes apparaissait toujours comme un simple artifice mathématique.

En Mécanique ondulatoire, la fonction d’onde apparaît non comme donnant 
la valeur d’une grandeur physique, mais comme constituant un « élément de 
prévision » à l’aide duquel on peut évaluer la probabilité de certains résultats 
de mesure (1). La fonction \p est complexe, mais on peut, nous le verrons, 
former à partir d’elle des grandeurs réelles qui ont une signification physique 
en tant que probabilités. Que la fonction ip soit essentiellement liée à des 
probabilités explique pourquoi comme nous le verrons sa valeur n’est jamais 
entièrement déterminée : il subsiste d’abord toujours dans son expression un

f1 ) Note G. L. : Tout ce paragraphe aurait été écrit par l’auteur, plus tard, 
avec beaucoup plus de précautions. Ce qu’il dit ici n’est vrai que de la fonction 
d’onde continue et normée de Schrôdinger, mais il a repris, par la suite, l’idée 
de la double solution d’après laquelle, à chaque solution continue, de significa 
tion probabiliste, doit être associée une solution singulière de même phase 
qu’elle, mais dont l’amplitude comporte une région singulière qui représente 
le corpuscule. Cette onde singulière est alors considérée comme une onde 
physique et représente la coexistence entre fonde et le corpuscule.
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facteur de phase e‘x qui disparaît quand on forme les grandeurs réelles ayant 
un sens de probabilités et qui, par suite, n’a pas d’importance : ensuite son 
module n’est déterminé qu’à une constante près et l’on profite de cette indé 
termination, comme nous le verrons, pour « normer » la fonction d’ondes, 
ce qui permet d’exprimer à partir d’elle des probabilités « en valeur absolue ». 
Tout ceci serait incompréhensible si le \j/ représentait une vibration ayant un 
caractère physique car alors l’amplitude et la phase auraient des valeurs bien 
déterminées. Nous reviendrons plus loin sur certains caractères de la fonction 1/1.

2. PRINCIPE DES INTERFÉRENCES

Pour utiliser la connaissance de la fonction 1j/, la Mécanique ondulatoire 
a été rapidement amenée à énoncer un premier principe auquel nous donnerons 
le nom de « principe des interférences » ou encore « principe de localisation ». 
En voici l’énoncé :

« Le carré du module de la fonction ijj mesure en chaque point et à chaque 
instant la probabilité pour que la présence du corpuscule soit observée en ce 
point à cet instant. »

La fonction \p étant une quantité complexe peut s’écrire sous la forme 
ij/= a eiq>, a et <p étant le module et l’argument, a et <p sont des quantités réelles 
généralement fonctions de x, y, z, t. Désignons par \j/* la quantité a e~ltp com 
plexe conjuguée de i/c On a

(1) a2 = = | iA |2 •

C’est cette grandeur réelle qui intervient dans le principe des interférences.
Il est facile de rattacher le principe des interférences à des idées qui sont 

classiques en théorie de la lumière. Dans toutes les théories de la lumière, 
on admet que l’intensité de fonde mesure en chaque point et à chaque instant 
la quantité d’énergie qu’on peut y recueillir : c’est cette règle qui permet une 
prévision exacte des interférences. Mais nous savons aujourd’hui que tout se 
passe, dans les échanges énergétiques entre la matière et la lumière comme si la 
lumière était formée de corpuscules d’énergie hv. Ce sont les « photons ». 
Si nous nous représentons une onde lumineuse comme entraînant avec elle 
un grand nombre de photons, l’explication des interférences exige que l’inten 
sité de fonde mesure en chaque point la densité en photons. Mais cette inter 
prétation « statistique » est insuffisante et doit être transformée en une inter 
prétation « probabiliste ». En effet, on a pu obtenir (expériences de Taylor, 
de Dempster et Batho) des phénomènes d’interférences du type usuel, même 
en employant pendant un temps très long une lumière d’intensité très faible, 
si faible qu’il ne devait jamais y avoir plus d’un photon à la fois dans l’appareil 
d’interférences. De plus, nous verrons qu’il n’est guère possible d’attribuer au 
corpuscule une position bien définie dans l’espace. On est ainsi nécessairement 
amené à dire que l’intensité de fonde lumineuse mesure la probabilité pour 
qu’un photon produise en un point de l’espace un effet observable. On retrou 

L Di Hk c x .i m . 3
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vera ainsi parfaitement, même dans le cas des irradiations très faibles, l’expres 
sion classique des interférences.

L’extension du principe des interférences de la lumière aux particules maté 
rielles est justifiée par le fait qu’avec les particules matérielles, comme avec la 
lumière, on peut obtenir des phénomènes d’interférences et de diffraction. 
Par exemple, pour les électrons que l’on peut facilement employer dans les 
expériences (électrons de quelques dizaines à quelques centaines de mille 
électron-volts), l’onde associée a, d’après la formule X = h/mv, une longueur 
d’onde de l’ordre delO~8àlO“9 cm. On doit donc pouvoir avec des électrons 
obtenir des phénomènes de diffraction analogues à ceux que l’on obtient avec 
des rayons X dont la longueur d’onde est du même ordre. C’est ce qu’ont 
montré en 1927 les célèbres expériences de Davisson et Germer, bientôt reprises 
par G. P. Thomson, Rupp, Ponte, Kikuchi, etc. ('). Ces expériences prouvent 
qu’un faisceau d’électrons monocinétiques peuvent en se diffractant sur un 
cristal donner naissance à des phénomènes tout à fait analogues à ceux qu’on 
observe avec les rayons X (expériences de Laue-Bragg). M. Rupp a pu même 
obtenir la diffraction des électrons par un réseau ordinaire sous incidence très 
rasante et en 1940 M. Bôrsch (2), répétant une expérience fondamentale de 
Fresnel sur la lumière, a pu obtenir la diffraction des électrons par le bord 
d’un écran. Toutes ces expériences permettent d’obtenir une excellente confir 
mation des idées générales de la Mécanique ondulatoire et en particulier de la 
formule X = h/mv : elles apportent aussi un appui décisif à l’idée qu’il convient 
d’étendre aux particules matérielles le principe des interférences puisque ce 
principe est à la base de toutes les interprétations dans le domaine des inter 
férences et de la diffraction.

3. ÉNONCÉ PRÉCIS DU PRINCIPE DES INTERFÉRENCES.
FLUIDE DE PROBABILITÉ

Pour préciser le principe des interférences, nous remarquerons que l’onde ij/ 
qui est la solution d’une équation aux dérivées partielles et qui n’a pas le 
caractère d’une grandeur physique mesurable n’est déterminée qu’à un facteur 
constant multiplicatif près, ce facteur pouvant être complexe. Nous pouvons 
le choisir de manière à avoir

(2)

(') C. J. Davisson et L. H. Germer, Phys. Rev., 30, 705, 1927. 
G. P. Thomson, Nature, 120, 802, 1927.
E. Rupp, Naturwiss., 16, 556, 1928.
M. Ponte, C.R. Ac. Se., 244, 909, 1929.
(2) M. Boersch, Naturwiss., 28, 709, 1940.
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l’intégrale étant étendue à tout l’espace. Tout au moins le choix du facteur 
arbitraire nous permet de « normer » la fonction par la relation précédente 
à un instant donné t0 et nous allons montrer qu’alors la fonction \p reste normée 
à tout instant t. On peut alors préciser l’énoncé du principe des interférences 
en disant : « La probabilité pour qu’une observation permette de localiser 
un corpuscule dont la fonction d’onde normée est ip(x, y, z, t) dans un élément 
de volume dz à l’instant t est égale à

ip(x, y, z, t) ip*{x, y, z, t) dz = \ ip(x, y, z, t) \2 dz. »

Pour nous représenter visuellement les variations dans le temps de la pro 
babilité de présence | ip |2, nous imaginerons un fluide fictif (1) dont, par défi 
nition, la densité en chaque point à chaque instant serait donnée par

(3) p(x, y, z, t) = il/(x, y, z, t) ip*(x, y, z, t).

Nous définissons le mouvement de ce fluide en posant que sa vitesse au point 
vrr a l’instant t est donnée par la formule

(4)
1 'l— (ip graâ1p* — ip* graàip) — — t —— graà(p .

(5)

ip\p* 4 nim 2 nm

Or les fonctions >p et ip* obéissent aux équations complexes conjuguées

, , 8 n2 m ... . . 4 nim dip
Aÿ------------ t ~2 V(x , y, z, t)ip = —— — ;

h h et

%n2m 4 nim dip*
A\p*------------ -j— V(x, y, z, t) \p* =------------ ------------- —

h n et

d’où l’on tire aisément

(6) if/* Aip - ip Aip* 4 nim ô 
h dt m*)

4 nim dp 
h et

ce qu’on peut écrire

(7)
dt 4 mmv 

ou

(8)

ip Aip*) h y Ô f , Ôlp* 
4 nim dx y dx

~ + div (pv) = 0 .

j1) Note G. L. : On donne à ce fluide le nom de fluide de Madelung. Il jouera, 
par la suite, un grand rôle dans l’interprétation causale de la mécanique ondu 
latoire.
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Cette équation bien connue en hydrodynamique sous le nom d’équation 
de continuité exprime que le fluide fictif de densité p se conserve au cours du

temps, c’est-à-dire que l’intégrale | ip \2 dx reste constante. La norma 

lisation de f a donc un caractère permanent.

4. LES RELATIONS D’INCERTITUDE D’HEISENBERG

L’ancienne Mécanique admettait qu’il était possible d’attribuer au corpuscule 
une position et une vitesse bien définies à chaque instant : en d’autres termes, 
on attribuait aux coordonnées x, y, z du corpuscule ainsi qu’à son énergie E 
et à sa quantité de mouvements p = mv des valeurs bien déterminées à chaque 
instant. Nous allons voir qu’on ne peut plus faire de même en Mécanique 
ondulatoire.

Etudions le cas simple du mouvement rectiligne uniforme en dehors de 
tout champ. Nous savons qu’au mouvement rectiligne et uniforme d’énergie E 
et de quantité de mouvement/s’opérant dans la direction de cosinus directeurs 
a, P et y/1 — a2 — p2 correspondait l’onde plane monochromatique

(9) ij/ = a exp | [Et — yJ2 mE (ax + Py + yj\ — a2 — p2 z)]

de fréquence E/h et de longueur d’onde h/mv. Cette onde monochromatique 
correspond donc à un état de mouvement bien déterminé, mais elle ne donne 
aucune indication sur la position du corpuscule, car elle est homogène, c’est-à- 
dire a même amplitude en tout point de l’espace. La probabilité de présence 
tf/xp* est donc la même en tous les points.

Mais, au lieu d’être une onde plane monochromatique, la solution ij/ de 
l’équation d’onde qui convient à l’état du corpuscule peut être une superposi 
tion d’ondes planes monochromatiques représentant un train d’ondes de 
dimensions limitées. Alors l’intensité ne sera différente de zéro que dans 
une région limitée de l’espace et le corpuscule, d’après le principe des interfé 
rences, ne pourra être décelé que dans cette région. L’incertitude sur la position 
est donc moins grande que dans le cas de Fonde plane monochromatique. Par 
contre, si à chaque composante monochromatique de fréquence v et de longueur 
d’onde k nous faisons correspondre l’état de mouvement défini par

(10) E = hv px = a(h/k) py = P(h/k) pz = y(h/k)

on ne pourra plus attribuer au corpuscule un état de mouvement bien déter 
miné. En passant du cas de Fonde plane monochromatique à celui du train 
d’ondes limité, nous avons donc diminué l’incertitude sur la position, mais nous 
avons augmenté l’incertitude sur l’état de mouvement. Nous pouvons passer 
au cas limite d’un train d’ondes de dimensions infiniments petites. Il est alors 
nécessaire de faire intervenir pour la représentation analytique de ce train
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d’ondes une superposition d’ondes monochromatiques ayant toutes les 
fréquences, toutes les longueurs d’onde et toutes les directions possibles. Ce 
cas limite symétrique de celui de Fonde plane monochromatique correspond 
à une localisation bien déterminée du corpuscule, mais à une ignorance com 
plète de son état de mouvement.

En résumé, mieux la position du corpuscule est définie, plus grande est 
l’incertitude sur son état de mouvement et inversement. Nous arrivons ainsi 
à un premier énoncé qualitatif des relations d’incertitude d’Heisenberg que 
nous allons maintenant préciser.

Pour cela, étudions la représentation d’une onde ip par une superposition 
d’ondes planes monochromatiques. Posons

(11) v
Px

h
-h^2^Ë py=^=^^/2mË pz =j=ly/2mË.

L’onde monochromatique plane correspondante peut s’écrire 

(12) a exp(2 ni[vt — px x — py y — pz z]).

On pourra représenter Fonde \jj par une intégrale de Fourier

(13) ij/(x, y, z, t) a(px, Hy, pz) X

x exp[2 ni(vt — px x — py y — pz z)] dpx, dpy, dpz

formule dans laquelle on doit poser

(14) v = £ = + tf).

Les coefficients a(px, py, pz) sont en général complexes, c’est-à-dire contiennent 
un facteur de la forme em, car les diverses composantes monochromatiques 
dans le développement de ijt n’ont pas la même phase.

Envisageons maintenant le train d’ondes i/' à un instant quelconque que 
nous prendrons comme instant initial t = 0. La fonction

(15) tpix, y, z, 0) = a(px,py,pz) x

x exp[— 2 ni(px x + py y + pz z)] dpx, dpy, dpz

ne doit différer de zéro que dans un domaine limité R. Nous désignerons par 
les symboles Ax, Ay, Az les variations maxima des coordonnées dans R, 
c.-à.-d. les longueurs des arêtes parallèles aux axes d’un rectangle circonscrit 
à R. Nous pouvons choisir l’origine des coordonnées en l’un des sommets



du parallélépipède de sorte que x, y, z dans R varient dans les intervalles (0, Ax), 
(0, Ay), (0, A z).

La théorie des intégrales de Fourier nous fournit la relation
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(16) a(px, py, pz) ij/(x, y, z, 0) x
J JR

x exp[2 ni(px x + py y + pz z)] dx dy dz .

Comme tous les a ne peuvent être infiniment petits, il y a au moins un ensemble 
de valeurs des p, disons px py pz, tel que a(px, py, p?) ait une valeur notable. 
Faisons varier px, py, pz de ôpx, ôpr ôpz à partir de px, py, pz, les variations 
n’étant pas nécessairement infiniment petites. On a

a(p° + ôpx, p° + <5p^ p°z + ôpz) - a(px, p°, p°)
■*Ax f*Ay

dx dy
0 * 0

T’
r*Az

dz (/'(x, y, z, 0) \_exp[2 ni(ôpx x + ôpy y + ôpz z)] — 1 ] x

x exp [2 ni(px x + py y + pz z)] dx dy dz.

L’exponentielle entre crochets ne peut différer sensiblement de 1 que si l’un 
au moins des produits ôpx Ax, ôpy Ay, ôpz Az est supérieure à une fraction 17 
qui n’est pas très petite devant l’unité. Donc, si l’on a à la fois ôpx Ax ^ ri ; 
ôpy Ay «S i/; ôpz Az ^ p, a(px + ôpx, py + ôpy, pz + ôpz) différera peu de 
a(px, p°', pz) et aura donc d’après l’hypothèse une valeur notable. On peut 
donc dire que l’étendue du domaine de variation des trois paramètres px, py, pz 
dans la représentation de Fourier du train d’ondes est mesurée par trois 
quantités Apx, Apy, Apz satisfaisant aux inégalités

Apx.Ax ^ t] Apy, Ay ^ rj Apz, Az > iy 

ou d’après la définition de px, py et pz

(17) Apx Ax ^ h Apy Ay ^ h Apz Az ^ h

les inégalités étant valables en ordre de grandeur. Nous avons ainsi obtenu les 
inégalités d’incertitude d’Heisenberg : elles nous apprennent que le produit 
de l’incertitude sur une coordonnée par l’incertitude sur la composante conju 
guée de la quantité de mouvement est toujours de l’ordre de h.

5. LE PRINCIPE DE DÉCOMPOSITION SPECTRALE (BORN)

Dans les raisonnements que nous venons d’exposer, nous avons implicitement 
admis un principe qu’il importe maintenant d’énoncer nettement. Le principe 
qui s’est imposé lors du développement de la Mécanique ondulatoire et qui a 
été énoncé en premier par M. Born peut s’énoncer en disant : « si Fonde ip
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est formée par la superposition d’un certain nombre d’ondes planes monochro 
matiques, chacune de ces composantes correspond à un état de mouvement 
possible du corpuscule, c’est-à-dire qu’une observation ou mesure peut per 
mettre d’attribuer cet état de mouvement au corpuscule ». D’une façon plus 
précise, on peut dire avec M. Born : « si l’onde ip est formée par la superposition 
d’ondes planes monochromatiques formant un spectre discontinu, c’est-à-dire 
si l’on a :

(18) tp = £ a{a, P, E) exp | [Et— -J2 mE(ax + fiy+^/l — a2 —fi2 z)] i

la probabilité pour qu’une mesure conduise à attribuer au corpuscule un 
mouvement d’énergie E dans la direction définie par les cosinus directeurs a, 
p, yjl — a2 —est a(a, P, E).a*(aPE) = | a(a, P, E) |2 ». Si l’onde ip est 
formée par la superposition d’ondes planes formant un spectre continu (ce qui 
est le cas des trains d’onde usuels), c.-à.-d. si l’on a

L’interprétation probabiliste

(19) ijr a(a, P, E) x

x exp | [Et —~J^ mE(<xx + Py -Fy/l — a2 ~p2 z)] | da dp dE

la probabilité pour qu’une mesure conduise à attribuer au corpuscule un 
mouvement d’énergie comprise entre E et E+ AE s’effectuant dans une direction 
correspondant aux intervalles (a, a 4- Ad) et (P, P + Ap) est égale à

| a(a, P, E) |2 da dp dE.
J J Jjoc, AP, AE

On peut donc dire que la probabilité de chaque état de mouvement est 
mesurée par l’intensité de la composante spectrale correspondante. Les états 
de mouvement qui ne figurent pas dans le développement de Fourier de la 
fonction d’onde ont donc une probabilité nulle : c’est là, nous le verrons, la 
base de la théorie des états quantifiés en Mécanique ondulatoire.

Nous n’avons énoncé le principe de décomposition spectrale que dans le cas 
simple de l’absence de champ. Nous apprendrons bientôt à connaître un 
principe général applicable à tous les cas, le principe de décomposition 
spectrale généralisé, dont le principe de Born et même celui des interférences ne 
sont que des cas particuliers.

6. IDÉES NOUVELLES RÉSULTANT DES CONCEPTIONS PRÉ 
CÉDENTES

Les considérations précédentes nous permettent déjà de préciser le sens de 
Fonde ip et d’y rattacher des idées toutes nouvelles.
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L’onde tp n'est pas une grandeur physique au sens classique : elle est un 
instrument de prévision ('). Sa forme résulte des observations antérieures qui 
nous ont apporté des renseignements sur l’état du corpuscule et de son évolution 
à partir des dernières observations qui se fait conformément à l’équation 
d’ondes. Bien que cette évolution de l’onde ip soit entièrement déterminée, il 
n’en résulte pas, nous le verrons, une prévisibilité rigoureuse des observations 
futures, car la connaissance de fonde ip ne nous permet pas de dire quelle valeur 
d’une grandeur donnée sera observée dans une nouvelle observation, mais 
quelles seront les valeurs possibles de la grandeur et leurs probabilités res 
pectives.

Chaque fois que de nouvelles observations nous apportent de nouvelles 
connaissances sur l’état du corpuscule, la forme de fonde ip s’en trouve modifiée : 
ceci se conçoit aisément si l’on comprend bien que fonde ip n’est qu’une repré 
sentation de nos connaissances actuelles sur l’état du corpuscule et non la 
représentation d’une réalité objective.

Nous verrons que des observations faites simultanément au cours d’une 
même expérience ne peuvent jamais nous permettre d’avoir sur les grandeurs 
liées à un corpuscule des connaissances plus précises que ne le permettent 
les inégalités d’incertitude d’Heisenberg. Une partie (on pourrait dire la moitié) 
au moins des grandeurs caractérisant le corpuscule sont à tout instant affectées 
d’incertitude. Si nous mesurons avec précision la valeur de certaines grandeurs, 
la valeur des grandeurs canoniquement conjuguées nous reste totalement 
inconnue. Il y a donc des expériences de mesure « maximales » qui nous donnent 
la plus grande connaissance que nous puissions avoir sur l’état du corpuscule 
sans cependant nous le faire connaître entièrement. S’il existait des expériences 
nous permettant de connaître exactement toutes les grandeurs attachées à un 
corpuscule, les relations d’incertitude d’Heisenberg ne seraient évidemment 
plus satisfaites et il résulte des raisonnements faits précédemment qu’après 
une expérience de ce genre nous ne pourrions plus représenter l’état de nos 
connaissances par une onde ip : mais nous verrons qu’aucune expérience de 
ce genre ne peut être réalisée et cela en raison même de l’existence du quantum 
d’action. Toutes ces considérations seront rendues plus claires et plus précises 
par ce qui suit.

7. RETOUR DE LA MÉCANIQUE ONDULATOIRE A LA MÉCANIQUE
CLASSIQUE. THÉORÈME D’EHRENFEST, VITESSE DE GROUPE

Nous voulons maintenant exposer comment on peut, du point de vue de la 
Mécanique ondulatoire, justifier le succès de la Mécanique classique dans le

t1) Note G. L. : C’est précisément pour cette raison que de Broglie avait 
introduit en 1927 l’idée, qu’il reprendra l’année qui suivit ce manuscrit, selon 
laquelle il doit exister deux solutions de l’équation de Schrôdinger reliées entre 
elles mais non identiques : l’une physique et l’autre statistique.
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domaine macroscopique. Une première méthode fait intervenir le théorème 
d’Ehrenfest que nous allons exposer.

Considérons à nouveau le fluide de probabilité de densité p = | i// |2. Pour 
un train d’ondes, il occupe une région finie R de l’espace et l’on peut définir 
son « centre de gravité » par les formules intuitives

(20) 3c = px dx
R

x | i// |2 dx ; y = 
J J/i

y I I2 dx ;
R

Z z\\p \2 dx.
R

Plus généralement nous appellerons valeur moyenne d’une fonction /(x, y, z) 
dans le fluide de probabilité la quantité

(21) / = /(x, y,z) | (^ |2 dx .
R

Ces définitions posées, voici le théorème naguère démontré par M. Ehrenfest.
« Le centre de gravité du fluide de probabilité de coordonnées x, j, z se

déplace au cours du temps comme le ferait d’après les lois de la Mécanique . —►
classique un point matériel de masse m qui serait soumis à la force f. »

En effet, on trouve en employant l’équation d’ondes et des intégrations par 
parties (la fonction ijj étant supposée assez régulière et nulle aux limites de R).

,22, <3iM* .x —r—dx = — 
dt 4 nim

V dx X ^
R x,y,z VJÇ

dx

i #* , *#*-dF-rëX

dx dx

dx

uis
d2x
dt2

h
4 nim 

h
2 nim

d\lf*
dt dx dx dt

dé dé* . d2é* 
+ y/ ■dx dt dx dt dx

dip #* 
dt dx

d\jr di//*\ ,

ce qui, en vertu de l’équation de propagation, donne encore 

h2d2x 
dt2 8 7c2 m2

dt//* f &n2m \ ci// ( . ^ 8 n2 m .
r*-—¥* l+ïxé'1' dx .
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Or deux intégrations par parties donnent encore

dil/* d dz

et il reste

dx [iI/* A\j/] dz = 0

m -d2x
dt2

V^-x(U*)dz = - ^ W* dz
dx

(23) m ■d2x
FF - — =] JXdx

et deux équations analogues en y et z. Le théorème d’Ehrenfest en résulte.
Considérons maintenant une expérience macroscopique permettant d’obser 

ver le mouvement d’une particule, mettons d’un électron. La longueur d’onde 
de l’onde ijj est toujours extrêmement petite à notre échelle et l’on peut considé 
rer un train d’ondes dont les dimensions sont très petites à notre échelle (train 
d’ondes quasi ponctuel) et dont les dimensions seront cependant grandes par 
rapport à la longueur d’onde. Le champ macroscopique auquel le corpuscule 
sera soumis variera toujours très peu à l’intérieur du train d’ondes de sorte que 
/ sera sensiblement égale à la valeur de la force au centre du train d’ondes.

Comme alors nous pouvons macroscopiquement confondre le train d’ondes 
avec son centre de gravité et que le corpuscule ne peut manifester sa présence 
qu’à l’intérieur du train d’ondes, nous pourrons décrire les choses, d’après le 
théorème d’Ehrenfest, en disant que le corpuscule est animé du mouvement 
prévu par la théorie classique. Assurément une expérience microscopique nous 
montrerait que le corpuscule peut avoir une position quelconque dans le train 
d’ondes, mais macroscopiquement toutes ces positions possibles sont confon 
dues puisque le train d’ondes est ponctuel à notre échelle.

La question peut être reprise à un autre point de vue en employant le théo 
rème de la vitesse de groupe.

Rappelons d’abord qu’un groupe d’ondes est un train d’ondes qui peut 
être représenté par une superposition d’ondes planes monochromatiques ayant 
des fréquences, des longueurs d’onde et des directions de propagation très voi 
sines. On peut donc lui attribuer une fréquence, une longueur d’onde et une 
direction de propagation approximatives quoiqu’il ne soit pas rigoureusement 
équivalent à une onde monochromatique. Le groupe d’ondes a des dimensions 
limitées parce que les différentes ondes composantes en concordance de phase 
au centre du train d’ondes se détruisent par interférences en dehors de ces 
limites. Il est facile de prouver que les dimensions d’un groupe d’ondes sont tou 
jours grandes par rapport à sa longueur d’onde moyenne A0. Si en effet les
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diverses composantes sont en concordance de phase au centre du groupe 
d’ondes représenté par une superposition d’ondes de longueurs d’onde com 
prises dans l’intervalle (X0 — AX, X0+AX) avec AX <| X0, pour que les compo 
santes puissent se détruire par interférences en dehors de l’espace occupé par le 
groupe, il faut que le déphasage des ondes de longueurs d’onde X0 et X0 + A a  
soit au moins n/2 quand on va du centre du groupe aux limites de ce groupe. 
Si d est la distance du centre à la limite, on doit avoir

d d d AX n dnX0
-------------------~ —t - ~ - donc---------------1 c.q.f.d.
X0 X0 + AX X% 2 X0 2 AX

Retrouvons maintenant la formule de lord Rayleigh donnant la vitesse de 
groupe. Dans un milieu à indice variable une onde monochromatique de 
fréquence v0 pourrait à l’approximation de l’optique géométrique être repré 
sentée par a exp{ 2 ni[vQ t — cpt (x, y, z, v0)] }, q>l étant une intégrale com 
plète de l’équation de l’optique géométrique. Un groupe d’ondes sera repré 
senté par

(24) =

*vo + /lv

a(v) exp{ 2 ni[vt
v q  — Av

(Pi(x, y, z, v)] } dv , A v <§ v0 .

Posons v = v0 + rj, rç variant de — Av à + dv. Nous pourrons écrire approxi 
mativement

(25) •A = exp{ 2 m\v0 t - (pt(x, y, z, v0)] X
— Av

x exp 2 ni r]t — 8(P i 
ôv I r] 

o
dtj

où (dtpi/ôv)o est la dérivée partielle de <px par rapport à v pour v = v0. Dans 
cette dernière formule, l’intégrale est une fonction du paramètre t—(d(p1/ôv)0 
et l’on peut donc écrire

(26) ijj = F t -
d<Pi\

. dv )o exp{ 2 7i/[v0 t Vi(x, y, z, v0)] } •

Le train d’ondes se comporte donc approximativement comme une onde 
monochromatique dont l’amplitude serait fonction de t — (ô(p1/8v)0. On peut 
voir que cette approximation cesse d’être valable pour des temps très longs.

Si nous nous déplaçons le long d’un rayon c.-à.-d. d’une courbe orthogonale 
aux surfaces q>x = Cte de façon que dt — (ô2(p1/ôv ôs) ds soit nul, nous accom 
pagnerons une même valeur de l’amplitude. Nous pouvons donc dire que
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pendant un temps qui n’est pas trop long, le groupe d’ondes se déplace en bloc 
le long des rayons avec la vitesse

L'interprétation probabiliste

(27)
ds 1
dt IdvSs/

Mais nous avons vu que ô(p1jôs = | grad (py | est égal en chaque point à 
l’inverse de la longueur d’onde locale A(x, y, z, v) ; nous avons donc

(28) > 1 «ÇL.
U ëvyAj dv r0 ëv

Telle est la formule qui donne en chaque point la vitesse de groupe (formule 
de lord Rayleigh). Si le milieu est homogène, U est indépendante de x, y, z. 
Si de plus, il est sans dispersion (dn/dv = 0), on a 17 = f la vitesse de groupe 
se confond avec la vitesse de phase.

Appliquons la formule de lord Rayleigh à la propagation des ondes iji en 
Mécanique ondulatoire. Pour le mouvement d’un corpuscule se mouvant dans 
un champ dérivant du potentiel V(x, y, r), nous avons trouvé (p. 12 formule ( 30 ))

A = —^ - — avec E = hv
J7 m(E - V(x, y, z))

d’où
ô(l/A) _ (\/h) d^Jl m(E - V) _ m = \_ 

dv ~ (1/fi) ÔE ~ JlniE - V) v

car ^2 m(E — V) = mv. La formule de Rayleigh donne donc

U = v.

D’où l’important théorème de la vitesse de groupe en Mécanique ondu 
latoire.

« La vitesse d’un groupe d’ondes tp associé à un corpuscule est égale à la 
vitesse corpusculaire qui correspond à la fréquence centrale du groupe d’ondes. » 

Revenons au raccord entre la Mécanique classique et la Mécanique ondu 
latoire dans le domaine macroscopique. Dans ce domaine, les champs et par 
suite l’indice de réfraction des ondes ip varient peu à l’échelle de la longueur 
d’onde. De plus, les longueurs d’onde étant très petites, nous pouvons considérer 
des groupes d’ondes qui sont presque ponctuels à notre échelle. Considérons 
alors la propagation d’une onde monochromatique correspondant à la fré 
quence centrale v0 du groupe. Nous aurons un ensemble de surfaces équi- 
phases (p^x, y, z, v0) = Cte et les rayons ou courbes orthogonales à ces 
surfaces.

Le groupe d’ondes sera à l’échelle macroscopique analogue à un petit globule 
qui glisserait le long d’un tube de rayons. A l’échelle microscopique de la
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longueur d’onde, il serait dans sa partie centrale assimilable à une onde mono 
chromatique et c’est seulement sur les bords que l’interférence de ses diverses 
composantes ferait rapidement tomber à zéro son intensité. Le train d’ondes 
se transporte le long des rayons avec la vitesse U qui serait celle d’un corpuscule 
classique dans le champ. Comme à l’échelle macroscopique, nous ne savons 
pas distinguer les divers points du groupe d’ondes qui nous apparaît comme 
ponctuel et que le corpuscule ne peut se manifester qu’à l’intérieur du groupe, 
nous avons l’impression d’être en présence d’un corpuscule ponctuel animé 
du mouvement classique. L’on voit que nous retrouvons ainsi exactement les 
conclusions que nous avions tirées du théorème d’Ehrenfest. Le théorème 
d’Ehrenfest et celui de la vitesse de groupe sont intimement reliés et nous 
permettent, l’un et l’autre, de faire le raccord entre la Mécanique ondulatoire 
et la Mécanique classique dans le cas des phénomènes macroscopiques où la 
propagation de l’onde ÿ peut être décrite par l’approximation de l’optique 
géométrique.

U interprétation probabiliste



CHAPITRE III

LA MÉCANIQUE ONDULATOIRE 
DES SYSTÈMES DE CORPUSCULES

1. ANCIENNE DYNAMIQUE DES SYSTÈMES DE POINTS MATÉ 
RIELS

Jusqu’ici, nous avons considéré un corpuscule placé dans un champ de 
force connu. Comment généraliser la méthode exposée plus haut dans le cas 
d’un système de corpuscules agissant les uns sur les autres ? Pour le voir, 
il faut d’abord rappeler quelques points de la Dynamique classique des systèmes 
de points matériels.

Considérons un système formé de N corpuscules. La masse du ie est mb 
ses coordonnées sont xb yb zb L’énergie cinétique du système est

(1) T
1 N& dzt 21

dt J

Les moments conjugués des trois coordonnées sont

dxt dy( dzj
(2) pxl =mi~, P,t=milF.

L’énergie potentielle du système V(x1,..., zN, t) est formée de deux sortes 
de termes : 1) ceux qui expriment l’interaction mutuelle des corpuscules 
et sont supposés ne dépendre que de leurs distances : ils sont de la forme 
Vij{,J(x; — Xj)2 + (y; — yj)2 + (z; — Zj)2) ; 2) ceux qui expriment l’action éventuelle 
d’un champ extérieur sur chacun des corpuscules : ils sont de la forme 
Vixb yb zb t).

L’expression hamiltonienne qui donne l’énergie en fonction des coordonnées 
et des moments est

(3) H(xy ... zNt) = ç. yL (pl. + pl + pl) + V(Xi ...zNt).

Si le champ extérieur ne dépend pas du temps (ou est nul), V ne dépend pas de t



et l’on sait que H reste égal à une valeur constante E au cours du mouvement 
(système conservatif).

La théorie de Jacobi se laisse étendre aux systèmes. L’équation de Jacobi 
pour le système est

les systèmes de corpuscules 31

(4)
N 1
Z 2

dSV ( dS'
dxj

dS
dzt

... \ dS+ V(x1 ... zN t) = j-( .

Si l’on parvient à trouver une intégrale complète de cette équation contenant 
3 N constantes arbitraires non additives ... a3N, on obtiendra un mouve 
ment possible en écrivant

(5)
<5S(xj,..., zN, t, ct1, oc3N) 

dot;
i = 1, 2,..., 3 N

où les üi sont 3 N nouvelles constantes arbitraires et les moments de Lagrange 
sont donnés par les formules

(6) pXi
dS_ _ dS = _ dS
dx;’ ^ “ dyC Pzi dZi i = 1, 2,.., N .

Dans le cas particulier où les actions extérieures sont indépendantes du temps 
(ou nulles), V est indépendant de t et l’on peut trouver des solutions de la forme 
S = Et — S,(xj,..., Zjy).
L’on est alors ramené à envisager l’équation de Jacobi « raccourcie »

(7)
*_L|W (dl±
^ilMiWdx ) + \dji +

8S1
dZi | + V(xu ..., zN) = E

et à en chercher une intégrale complète contenant 3 N constantes arbitraires 
non additives E, au a3N^1. Les équations du mouvement sont alors

dS1/doti = a{ (i = 1, 2,..., N — 1),

équation de la trajectoire du point représentatif dans l’espace de configuration
x, ... zN

ôS1/dE = t — t0 (équation de l’horaire)

et l’on a

_ dS1 _ SS,. _ dSi
Pyi~Wi; Pzi~~dTi~

Comme dans le cas d’un point matériel unique, l’équation de Jacobi permet de 
définir des « classes » de mouvement du point représentatif du système dans 
l’espace de configuration, chaque classe correspondant à une fonction
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Sjf.v,......zN, E, o l u  ..., a3JV_ j) avec des valeurs données des constantes
E1 a, ... o c 3jV_ ,, les divers mouvements d’une même classe étant caractérisés 
par la valeur des constantes ak ... a2N~ i et t0.

Les systèmes de corpuscules

2. MÉCANIQUE ONDULATOIRE DES SYSTÈMES DE CORPUS 
CULES

Pour obtenir une Mécanique ondulatoire des systèmes de corpuscules, 
on doit comme l’a montré M. Schrôdinger, considérer la propagation d’une 
onde dans l’espace de configuration de ce système (') et, pour pouvoir retrouver 
la Mécanique classique en première approximation, il faut que l’optique 
géométrique de cette propagation nous ramène à la théorie de Jacobi.

On admet que l’équation de propagation dans l’espace de configuration 
s’obtient par le procédé formel qui réussit dans le cas du corpuscule unique. 
On part de l’expression Hamiltonienne classique H(x1...zNpXi...pzNt) 
qui convient pour le système envisagé et on transforme cette fonction en un 
opérateur en remplaçant les moments pXk pyk pZk par

(8) P = _ _A__ 3_. P = _ ±__ s_.
Xk 2 ni dxk ’ yk 2 ni dyk ’ 

On obtient ainsi l’opérateur Hamiltonien

h d 
2 ni dzk '

H\ Xk ... ZN, —   : -—
1 2 ni cxi

h ô 
2 nidzN ’

et l’on adopte comme équation de propagation

(9)
h d A d \ , _ A

2 ni dxk ’ 2 ni dzN ’ J 2 ni ôt

On trouve ainsi

1 (d2\p d2\p d2ip\ 8 7t2 . A , 4 ni dip
(10) y — —y + —y + zrr-----rr V(X1’ ZN’ OV = -TT 37’ ik mk \dxl 8yk dz2) h2 h dt

si N = 1, on retrouve l’équation valable pour un seul corpuscule.

(1) Note G. L. : C’est ce que de Broglie a refusé d’admettre en 1926 (voir 
réf. I, 29), considérant que les ondes associées aux différentes particules du 
système « ont une réalité physique et doivent s’exprimer par des fonctions des 
3 coordonnées d’espace et du temps ». En 1927 (réf. I, 34) il a fait une première 
tentative de reconstruire la théorie des systèmes dans l’espace physique, 
tentative qu’il devait reprendre vingt-cinq ans plus tard avec Andrade e Silva. 
Mais à l’époque où il écrivit ce texte, il s’était résigné à adopter, sans plus le 
critiquer, le point de vue devenu habituel.
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Pour les systèmes conservatifs (r? Vjdt = 0), on peut considérer des solutions 
monochromatiques ne dépendant du temps que par le facteur exp(2 ni/h Et) 
et l’équation s’écrira

(H) + V(xu ..., zN)~\ p = 0.

Si dans une région de l’espace de configuration V (et par suite l’indice) varie 
peu à l’échelle de la longueur d’onde locale, l’optique géométrique est valable 
et fonde a la forme approximative

(12) tj/ = aexp(^-^-[Et —

a étant une fonction lentement variable dont les dérivées sont très petites par 
rapport à celles de Sk. En substituant cette forme dans l’équation de propa 
gation, on voit que Si doit être une solution de l’équation de Jacobi pour le 
système, ce qui établit la jonction avec la Mécanique classique.

Un cas intéressant est celui où les corpuscules du système n’agissent pas les 
uns sur les autres. On peut alors les considérer aussi bien comme isolés que 
comme formant un système. La fonction V se réduisant aux termes en 
Vlxh yb zb t) qui expriment l’action d’un champ extérieur sur les divers 
corpuscules, l’équation du système se réduit à

(13) yk(xk,yk,zk,t) p
4 ni dp 

h dt '

Posons i//(xl ... zN t) = i/qCxj, yu zu t)... i//N(xN, yN, zN, t) nous trouvons 
que l’équation du système se décompose en N équation du type

1 ( d2\t/ (14) -1
mk

d2\jjk d2\J/k\ 8 n
ôxk Syi

+
dzl h2

V(xk, yk, zk, t) i//k =
4 ni ô\j/k 

h dt

et l’on voit que l’on peut considérer chaque corpuscule isolément. Néanmoins 
l’équation de propagation admet aussi comme solutions une combinaison 
linéaire quelconque des fonctions [”[ <J/k(xk, yk, zk, t). Ces combinaisons repré-

k

sentent les cas où les corpuscules ont été antérieurement en interaction de sorte 
que leurs états actuels ne sont pas indépendants. Les solutions J~[ <pk repré-

k

sentent les cas où l’état des corpuscules sont tous indépendants.

3. INTERPRETATION DE LA MECANIQUE ONDULATOIRE 
DES SYSTÈMES DE CORPUSCULES

Il est aisé de transposer le principe des interférences au cas des systèmes 
de corpuscules. On l’énonce alors comme suit : « si l’état d’un système de
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corpuscules est représenté dans l’espace de configuration par la fonction 
d’ondes tp(xt ... zN t), la probabilité pour qu’une expérience permette au 
temps t de localiser le point figuratif du système dans l’élément de volume 
dx = dxl ... dZN de l’espace de configuration est

\\p \2 dx = *p(xx, zN, zN, t) dx » .

S’il n’y a qu’un seul corpuscule, on retombe évidemment sur la forme pré 
cédemment étudiée du principe des interférences. Pour N corpuscules qui ne 
réagissent pas entre eux et n’ont jamais réagi entre eux (états indépendants),

N

on a iA = fl •/'*(**> Ji, zk, t) et par suite
i *

(15) | ip |2 dx = | ipx(xu yu zu t) \2 dxi dyx dzx x ••• x
x | \pN(xN, yN, zN, t) | dxjy dyN dzN .

La probabilité pour que le point figuratif du système soit dans l’élément 
de volume dxx ... dzN de l’espace de configuration est donc alors le produit 
de la probabilité pour que le 1er corpuscule soit dans l’élément de volume 
dxx dyx dzx ... le N-ième dans l’élément de volume dxN dyN dzN. Ce résultat 
est d’accord avec le théorème des probabilités composées car les présences des 
divers corpuscules dans les divers éléments de volume de l’espace sont des 
événements indépendants. Nous voyons bien ainsi pourquoi la fonction

N

d’onde t// doit alors avoir la forme ]^[ ipk.
i k

Pour que la grandeur | ip |2 dx donne en valeur absolue la probabilité de 
présence du point figuratif dans l’élément dx de l’espace de configuration, 
il faut normer la fonction d’onde en posant

J3N

| ip \2 dxx ... dzN = 1

ce qui détermine ip à une constante de phase de la forme e,a près.
Il faut démontrer que la normalisation effectuée à un instant t subsiste ensuite. 

Pour cela, on considérera un fluide fictif de probabilité dans l’espace de confi 
guration défini par les relations

p = m2

(16) pvk = VP graâk ip* - ip* gradk ip]

_. dxk dyk dzk ---->
vk ayant comme composantes et gradk ayant comme composantes

A A A
ôxk ’ 8yk ’ dzk '
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En multipliant l’équation de propagation par iJ/*, l’équation conjuguée 
par ij/ et en soustrayant, on obtient alors

^ 1 4 Tri fjï*— M M*] =

ou

£k ~-k sradk (iI/* graclk ^ - iA graâk ij/*) = ^ ^ 

ou encore d’après les définitions du fluide fictif de probabilité

(17) L + dp
8t = 0.

Cette équation est la généralisation à 3 N dimensions de l’équation de conti 
nuité hydrodynamique div (pv) 4- ôp/ôt = 0 ; elle exprime que le fluide fictif 
de probabilité se conserve pendant son mouvement dans l’espace de confi 
guration. La normalisation de ÿ a donc un caractère permanent.

Le principe de décomposition spectrale s’énonce comme pour un corpuscule 
unique. Si le système est conservatif, l’onde iJj peut toujours être représentée 
par une superposition d’ondes monochromatiques et l’intensité de chaque 
composante spectrale donne la probabilité pour qu’une expérience permette 
d’assigner au système l’énergie correspondante.

En étudiant la représentation d’un train d’ondes dans l’espace de configu 
ration par une intégrale de Fourier, on retrouve les relations d’incertitude de 
la forme

Axh.ApXk 3ï h

en ordre de grandeur. Ces relations ont la même signification que pour le 
corpuscule unique.

Dans la théorie précédente, nous avons supposé les corpuscules libres de se 
mouvoir dans tout l’espace (systèmes sans liaisons) et nous avons employé 
les coordonnées cartésiennes rectangulaires des corpuscules pour repérer 
la configuration du système. Si l’on veut employer des coordonnées curvilignes, 
ce qui est normal dans le cas où il existe des liaisons si bien que le nombre des 
degrés de liberté est inférieur à 3 Af, il faut développer un peu différemment la 
théorie qui précède. Nous n’insistons pas sur ce point (1). De même, si le système 
contient des corpuscules de même nature, l’indiscernabilité de ces corpuscules 
amène à n’accepter que certaines des solutions de l’équation de propagation. 
Nous laissons également de côté ce genre de questions.

(■1) Voir Réf. (II, 22).



CHAPITRE IV

FORMALISME GÉNÉRAL 
DE LA MÉCANIQUE ONDULATOIRE

Nous allons maintenant nous placer à un point de vue différent et développer 
sous un aspect plus formel les principes généraux de la Mécanique ondulatoire. 
Pour faire cet exposé avec une rigueur mathématique très grande, il faudrait 
introduire souvent des considérations mathématiques assez complexes et 
d’ailleurs certains points resteraient encore douteux.

La théorie deviendrait ainsi plus satisfaisante pour les esprits rigoureux, 
mais elle ne différerait guère dans ses résultats pratiques de la théorie plus 
sommaire que je vais exposer et, puisque celle-ci suffit actuellement aux besoins 
de la Physique théorique, je m’y tiendrai dans cet exposé.

1. NOUVELLE CONCEPTION DES GRANDEURS ATTACHÉES
A UN CORPUSCULE (OU A UN SYSTÈME)

Nous allons développer le formalisme général de la Mécanique ondulatoire 
en nous en tenant au cas du corpuscule dans un champ de force connu. La 
généralisation au cas des systèmes de corpuscules se fait aisément en suivant 
les mêmes lignes que précédemment.

Dans le procédé automatique qui fournit l’opérateur Hamiltonien à partir 
de l’expression Hamiltonienne de l’énergie dans le problème classique corres 
pondant, on remplace les variables x, y, z par les opérateurs x x, y x, z x 
et les variables px, py, pz par les opérateurs

h _ô_
2 ni dx ’

h d_ 
2 ni ôy ’

h d_
2 ni ôz '

Nous voyons ainsi apparaître l’idée de substituer ou de faire correspondre 
des « opérateurs » aux « grandeurs » de la Mécanique classique. Cette idée 
a été érigée en principe général au cours du développement de la Mécanique 
ondulatoire. On a admis qu’à toute grandeur mesurable (observable) définie 
par la Mécanique ou la Physique anciennes doit correspondre dans la nouvelle
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Mécanique un opérateur. Pour parvenir à former à partir de l’expression 
classique d’une grandeur observable l’opérateur qui lui correspond, on a été 
amené à admettre une règle qui est la simple généralisation de celle déjà admise 
pour la formation de l’opérateur Hamiltonien et traduite par les symboles

q -> q x p h d 
2 ni dq ’

Tandis que les variables d’espace sont ainsi transformées en opérateurs, la 
variable t garde son caractère de variable numérique : cette hypothèse qui 
rompt la symétrie entre les variables d’espace et de temps est l’origine des 
difficultés que l’on éprouve à concilier la théorie quantique et la théorie de la 
Relativité.

Comme la Mécanique classique nous fournit pour chaque problème l’expres 
sion de toute grandeur mécanique attachée à un corpuscule en fonction des 
variables canoniques x, y, z, px, py, pz et du temps t, nous n’avons dans cette 
expression qu’à remplacer chacune des variables canoniques par l’opérateur 
correspondant pour obtenir l’opérateur cherché. Cet opérateur peut d’ailleurs 
contenir le temps comme paramètre si l’expression classique le contenait. 
Si les coordonnées employées sont des coordonnées cartésiennes rectangulaires, 
l’opérateur obtenu est bien déterminé quel que soit l’ordre des facteurs dans 
l’expression classique. Quand on emploie d’autres coordonnées, il peut ne 
pas en être de même, il faut alors pour trouver le bon opérateur, appliquer 
certaines règles de « symétrisation » de l’expression classique de la grandeur.

Pour donner un exemple, appliquons la méthode à la formation de l’opé 
rateur qui correspond à la composante z du moment de quantité de mouvement 
(moment cinétique) du corpuscule par rapport à l’origine. On trouve aisément

(1) (Mz)op (xpy yPx)op 2 ni ^ dy y ô^j 2 nj d(f)

(p étant l’azimut compté autour de Oz.
Les opérateurs qui correspondent ainsi en Mécanique ondulatoire à des 

grandeurs mesurables sont des opérateurs, en général complexes, appartenant 
à la catégorie des opérateurs linéaires donc tels que

(2) A(q>l + <p2) = A((pt) + A(<p2) ; A(ccp) = cA(cp).
(c constante complexe)

De plus ces opérateurs sont hermitiens (ou hermitiques), c’est-à-dire que l’on a

(3) /* A(g) dx
J D

g A *(/*) dx
D

f et g étant deux fonctions finies, uniformes et continues dans le domaine D 
de variation des variables que l’on peut choisir arbitrairement. Ces fonctions
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doivent s’annuler aux limites du domaine D de telle façon que les intégrales 
de surface qui apparaissent par intégration par parties dans la vérification de 
l’équation précédente soient nulles. On peut vérifier dans chaque cas particulier 
que les opérateurs correspondant à des grandeurs observables sont toujours 
hermitiens. La raison physique de ce fait nous apparaîtra plus loin.

Parmi les opérateurs de la Mécanique ondulatoire, il nous sera utile de 
distinguer les « opérateurs complets » qui intéressent toutes les variables du 
domaine D et les « opérateurs incomplets » qui n’intéressent qu’une partie 
de ces variables (1). Pour un corpuscule libre de se mouvoir dans les trois 
dimensions de l’espace, l’opérateur (px)op est visiblement incomplet, tandis 
que l’opérateur Hop est complet.

En résumé, à toute grandeur mesurable attachée à un corpuscule, la Mécani 
que ondulatoire fait correspondre un opérateur linéaire et hermitien, en général 
complexe, dont elle sait former l’expression à partir des expressions classiques. 
Mais il est évident que si l’on effectue la mesure précise d’une grandeur, on 
obtiendra un nombre réel. La Mécanique ondulatoire doit donc pouvoir 
prévoir à partir de l’opérateur les valeurs possibles essentiellement réelles 
que peut fournir la mesure de la grandeur.

De l’opérateur linéaire et hermitique que la nouvelle Mécanique fait cor 
respondre à une grandeur mesurable, nous devons pouvoir déduire une liste 
de nombres réels représentant tous les résultats possibles de la mesure de cette 
grandeur. Ceci est précisément rendu possible par le fait que les opérateurs 
linéaires et hermitiens possèdent une suite de « valeurs propres » réelles. 
Etudions ce point d’une façon générale.

2. VALEURS PROPRES ET FONCTIONS PROPRES 
D’UN OPÉRATEUR LINÉAIRE HERMITIEN

Soit A un opérateur linéaire hermitien. Ecrivons l’équation

A(p = oup

où <p est une fonction des variables intéressées par A et a une constante. Le 
temps t peut figurer dans A, (pet a comme paramètre numérique. Par définition, 
nous appellerons « valeurs propres de l’opérateur A dans un domaine D » 
les valeurs de la constante a telles qu’il existe au moins une solution cp(x, y, z, a) 
dite « fonction propre », jouissant des propriétés suivantes : elle est uniforme 
et continue dans le domaine et l’intégrale du carré de son module dans D est 
convergente, cette dernière condition entraînant évidemment que, si D est 
infini, (p doit décroître suffisamment vite à l’infini. Enfin si D est fini, <p doit de 
plus être nulle aux limites de D.

(*) Note L.B. : Dans le plan xOy, l’opérateur x 
parce qu’il est égal à djdcp.

d
Ty y n’est pas complet
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Remarquons que nous ne considérons comme solutions distinctes de 
l’équation aux valeurs propres Acp = cap que les solutions linéairement indé 
pendantes.

Nous admettrons (voilà un point délicat au point de vue de la rigueur) que 
pour les opérateurs de la Mécanique ondulatoire les valeurs propres existent. 
Nous allons montrer qu’elles sont réelles. En effet de l’équation aux valeurs 
propres et de sa conjuguée, on tire aisément

/* /*

\jp* A(q>) — (pA*(cp*)] dx = (a — a*) qxp* dx
JD JD

Formalisme général de la M.O.

A étant hermitien, le premier membre est nul et, comme l’intégrale du second 
membre est essentiellement positive, on doit avoir a = a*, donc a est une 
constante réelle.

L’ensemble des valeurs propres forme le « spectre » de l’équation A(p = cap 
(ou spectre de l’opérateur A dans le domaine D). Si les valeurs propres sont 
isolées, le spectre est discontinu : c’est un spectre de raies. Si les valeurs propres 
forment une suite continue, on a un spectre continu ou spectre de bande. Le 
spectre peut d’ailleurs être en partie continu, en partie discontinu. Les spectres 
continus n’apparaissent que pour D infini.

Occupons-nous des spectres discontinus. Désignons par a, une valeur 
propre isolée : il existe au moins une fonction propre (p;(x, y, z, t) qui lui 
correspond.

Montrons que l’ensemble des fonctions propres du spectre discontinu forme 
un système orthogonal, c.-à.-d. que si <pt et q>j sont deux fonctions propres 
correspondant à des valeurs propres distinctes a; et oq # a;, on a

(4) q>f (pj dx = 0 .
D

En effet, nous avons puisque les a,- sont réelles

f /*
[<PÏ A((pj) - (pjA*((pf)] dx = 0 = (ctj - (Xj) <pf <p} dx .

JD JD

Le premier membre étant nul par suite de l’hermiticité de A, on en tire la formule 
annoncée.

Toutefois la démonstration précédente est en défaut pour deux fonctions 
propres qui se trouveraient correspondre à une même valeur propre. Quand 
ce cas se présente, on dit qu’on a affaire à une valeur propre « multiple » ou 
« dégénérée ». Soit a, une telle valeur propre à laquelle correspondent p 
fonctions propres linéairement indépendantes (ph, <ph ... cpip. L’opérateur A 
étant toujours linéaire, toute combinaison linéaire de ces p fonctions propres 
est encore une fonction propre. On peut donc remplacer <ptl... <pip par p combi 
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naisons linéaires linéairement indépendantes de ces fonctions et il est possible 
de choisir ces combinaisons de façon qu’elles soient orthogonales entre elles. 
On peut donc toujours supposer que l’ensemble des fonctions propres d’un 
opérateur linéaire hermitien est orthogonal.

Les fonctions propres ne sont évidemment déterminées qu’à une constante 
multiplicative complexe près car, si q>t est solution de A<pt = oc; cph C(pt est 
aussi solution à cause du caractère linéaire de A. On convient de toujours 
choisir le module de la constante complexe C de façon à avoir

(5) q>i cpf dx
D

f*

| (Pi |2 dx = 1 . 
Jd

La fonction (pt est alors dite « normée » : elle contient encore un « facteur de 
phase » arbitraire <?'* de module unité.

Les fonctions (pt étant à la fois normées et orthogonales (orthonormales) 
on peut écrire

tP* (Pj dx = ôu 
Jd

ôu étant le « symbole de Kronecker » égal à 1 si / = j et à 0 si / # j.
Nous avons jusqu’ici raisonné sur le cas d’un spectre discret. Si A possède 

un spectre continu, à toute valeur propre de ce spectre correspondra une 
fonction propre q>(x, y, z, a) où nous écrivons a comme une variable continue 
au lieu de l’inscrire en indice. On démontre aisément, comme ci-dessus, que 
toute fonction propre du spectre continu est orthogonale à toute fonction 
propre du spectre discontinu s’il y en a un. Pour montrer que les fonctions 
propres du spectre continu sont normées et orthogonales entre elles, on peut, 
pour éviter certaines difficultés de convergence, employer au lieu des fonctions

r»a + Aa

propres elles-mêmes <p{x, y, z, a) les expressions (p(x, y, z, a) doc dites

« différentielles propres », l’intervalle (a, a + A a) étant un intervalle extrême 
ment petit du spectre continu. Cette substitution a un sens physique : elle 
correspond à celle qu’on opère en théorie classique des ondes quand on consi 
dère à la place de l’onde plane monochromatique qui est une abstraction le 
« groupe d’ondes » formé par la superposition d’ondes de fréquences très 
voisines. On exprime alors que les différentielles propres sont normées et 
orthogonales en écrivant

(6) A a dx
D

fvx' + A<x

1 <p{x, y, z, a) doc
a'

r*a" + Acc

<p(x, y, z, oc) doc
a"

= 5,

Les fonctions propres des opérateurs complets de la Mécanique ondulatoire 
possèdent la propriété importante de former un système « complet ». Cela veut 
dire que, sous certaines conditions très larges, une fonction définie dans le
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domaine D des variables intéressées par l’opérateur A se laisse développer 
en une somme de fonctions propres de cet opérateur. (Pour plus de rigueur, 
il y aurait lieu d’introduire ici la notion de « convergence en moyenne », ce 
que nous ne ferons pas dans cet exposé sommaire.) Si, par exemple, /(x, y, z) 
est une fonction des variables x, y, z, elle se laisse très généralement développer 
suivant les fonctions propres d’un opérateur hermitien complet A sous la forme

/(x, y, z) = £ q <Pi(x, y, z) + c(a) <p(x, y, z, a) da

la somme Y étant étendue au spectre discontinu et l’intégrale au spectre continu. 
Nous pouvons mettre en évidence les différentielles propres en écrivant

(7) /(x, y, z) = Y Ci <Pi(x, y, z) + Y, c(°0 (p(x, y, z, a) dot.

En utilisant les formules exprimant l’orthonormalité des fonctions propres 
du spectre discontinu et des différentielles propres, on trouve les formules

(8) Ci I <PÎ /(x, y, z) dx ; 
'd

c(a) /la
dx

D

cp(x, y, z, a) dot /(x, y, z).
y.

Les coefficients c, et c(a) sont souvent appelés les coefficients de Fourier du 
développement de la fonction /(x, y, z) suivant les fonctions propres de l’opé 
rateur A. La série et l’intégrale de Fourier sont des cas particuliers simples de 
ce type de développements. Il est à noter que le temps peut figurer comme 
paramètre numérique dans l’expression des c; et des c(a).

Nous noterons encore que si ... a;... sont les valeurs propres d’un opé 
rateur linéaire A, ot" ... a"... sont les valeurs propres de A". La vérification 
est immédiate.

3. LE SPECTRE CONTINU DE L’HAMILTONIEN D’UN 
CORPUSCULE LIBRE. LA FONCTION <5 DE DIRAC

L’équation aux valeurs propres de l’Hamiltonien peut s’écrire 

(9) H(<p) = E(p

(E remplaçant ici a). Pour un corpuscule libre V = 0, H = ( — h2/8 n2 m) A 
et l’on a

h2
(10)

8 7t2 m
Acp = Erp.
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(11) cp(x, y,z,p) = a exp 2 ni
(pxx + Py y +pzz) — a exp 2 ni (M

avec

(12) (pl + Py + pl) = = E ■2m y 2m

On voit donc 1) que toute valeur positive de E est une valeur propre, 
2) qu’à toute valeur positive de E correspond une infinité de fonctions propres 
du type précédent obtenues en donnant à px, py, pz toutes les valeurs compa 
tibles avec l’équation précédente. Donc pour l’énergie, on trouve un spectre 
continu allant de 0 à + oo avec dégénérescence d’ordre infini pour toute valeur 
de E autre que 0.

A chaque fonction propre correspond une onde plane monochromatique 
solution de l’équation des ondes ayant la forme

(13) ijj(x, y, z, p, t) = <p(x, y, z, p) exp\^- Etj = aexp\^-[Et - p.r] ).

Nous retrouvons ainsi des résultats connus. On pose souvent 

(14) ï» 2 n -> 
k~~hp

, 2 nk = — E hc

et l’on écrit

(15)

avec la relation

(16)

ij/(x, y, z, t,k) = a exp[i(kct — /c.r)]

kc = 1112 ~.
2 m 2n

Le vecteur k est nommé le « vecteur de propagation » de Fonde plane qui 
est entièrement spécifiée par cette seule donnée.

Remarquons qu’on peut indifféremment prendre comme fonctions propres 
de H soit les tj/%, soit les (p% qui ne diffèrent que par le facteur elkct puisque les 
fonctions propres ne sont définies qu’à un facteur de module 1 près.

On peut exprimer l’orthonormalité des ondes planes en introduisant les 
différentielles propres. Au cours de ce calcul que nous ne reproduirons pas, 
on est amené à introduire la fonction « impropre » ou « singulière » à(x) de 
Dirac définie par les 2 propriétés suivantes :

1) C’est une fonction paire de l’argument x.
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2) On a toujours

CXl
f(x) (5(x) dx =

J^i

/(O) si Xi et x2 sont de signes contraires, 
0 si xl et x2 sont de même signe.

(17)

On peut représenter £>(x) par la fonction singulière de Dirichlet en posant

s in 2 nNxS(x) = lim
N-» 00 7ZX

Finalement le calcul de normalisation en question montre que les fonctions 
propres normées du spectre continu d’un corpuscule libre doivent s’écrire

(18) (p(x, y, z, k) = 1 -/2 exp[- i(k.r)] ;
(2 71)

<K*, y, z, t, k) = ——U75 exp[i{kct - k.r)] .
(2 7t)

Le caractère complet de l’ensemble de ces fonctions propres se traduit par 
le fait que sous des conditions très générales une fonction f(x, y, z) peut se 
développer en intégrale de Fourier sous la forme

(19) f(x, y, z) =
(2 71)3/2 c(k) exp(— ik.r) dk

dk signifiant dkx dky dkz. Les c(k) sont données par

(20) c(k) =
(2 71)

3/2 f(x, y, z) exp(ik.r) dr

dr désignant dx dy dz. C’est la formule classique des coefficients de l’intégrale 
de Fourier.

On peut aussi écrire

(21) f{x, y, z) =
(2 Tl) 3/2 c(k, t) ip(x, y, z, t, k) dk

avec

(22) c(k, t) = c(k) e~lkct.



CHAPITRE Y

PRINCIPES GÉNÉRAUX DE 
L’INTERPRÉTATION PROBABILISTE 
DE LA MÉCANIQUE ONDULATOIRE

1. IDÉES GÉNÉRALES

La Mécanique ondulatoire doit pouvoir calculer les valeurs propres des 
grandeurs mesurables (ou observables) attachées à un corpuscule (ou par 
généralisation naturelle à un système). Or elle représente l’état d’un corpuscule 
(ou plus exactement l’état de nos connaissances sur un corpuscule) par une 
fonction d’onde if/(x, y, z, t), solution de l’équation de propagation, fonction 
que nous supposerons toujours normée. En outre, elle fait correspondre à toute 
grandeur mesurable attachée à un corpuscule un opérateur linéaire et hermi 
tien qui permet de définir un ensemble de nombres réels, ses valeurs propres, 
et un système complet de fonctions, ses fonctions propres. Nous sommes ainsi 
en mesure d’énoncer les 2 principes fondamentaux de l’interprétation physique 
de la Mécanique ondulatoire.

1er principe (*). Les valeurs possibles d’une grandeur mesurable, c’est-à-dire 
les divers résultats possibles d’une mesure de cette grandeur sont les valeurs 
propres de l’opérateur linéaire et hermitien correspondant à cette grandeur. 
(Principe de quantification.)

2e principe. Quand l’état du corpuscule est représenté par une certaine 
fonction d’onde iJ/(x, y, z, t), solution de l’équation de propagation, la proba-

(1 ) Note G. L. : On remarquera que, contrairement à beaucoup d’auteurs, 
de Broglie ne pose pas ces principes comme des a priori, mais cherche à les 
induire à partir de la théorie des ondes. Il ne prétend pas que tout opérateur 
hermitien représente une observable, mais suppose seulement que, si nous 
connaissons celle-ci, alors elle sera ainsi représentée. Le lecteur actuel, nourri 
dès ses années d’étude de mécanique quantique, aurait tort de lire ces pages 
d'un oeil distrait parce qu’allant de soi : c’est ici, en fait, qu’il peut comprendre 
l’origine du formalisme quantique.
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bilité pour quune mesure précise de la grandeur mesurable correspondant à 
l’opérateur linéaire et hermitien A, complet et à valeurs propres non dégénérées, 
fournisse à l’instant t une certaine valeur propre est égale au carré du module 
du coefficient de la fonction propre correspondante dans le développement 
de la fonction d’onde ij/ suivant les fonctions propres normées de A. (Principe 
de décomposition spectrale généralisée.)

Plus précisément, si la fonction iJ/ se développe suivant les fonctions propres 
et différentielles propres de A par la formule

Principes de F interprétation probabiliste

(1)
/*a + Aa

|Kx, y, z, t) = £ Ci <Pi + X c(«)
i Aa

<p(x, y, z, a) d<x

la probabilité de la valeur propre a, est | q |2 et la probabilité d’une valeur 
propre comprise entre a et a + A a est | c( a) 2 Ari.

On vérifiera aisément que, la fonction d’onde ijt étant par hypothèse normée, 
la probabilité totale de toutes les hypothèses possibles est bien égale à l’unité. 
Naturellement les probabilités des valeurs possibles peuvent être fonction du 
paramètre t.

Si l’opérateur A a des valeurs propres multiples, l’énoncé du second principe 
doit être complété. Soit a; une valeur propre multiple à laquelle correspondent 
p fonctions propres cpn <pi2 ... (pip normées, orthogonales et linéairement 
indépendantes. La probabilité de trouver, par une mesure faite à l’instant t, 
la valeur oc; pour la grandeur A est alors la somme des carrés des modules des

p
coefficients de (pn ... (pip, dans le développement du i/y, soit £ | ctj \2. On vérifie

1 ^
que cette expression est, comme cela doit être, indépendante de la manière, 
en partie arbitraire dont sont choisies les fonctions propres q>n ... cpip.

Quand l’opérateur A est incomplet, l’énoncé du 2e principe doit subir une 
modification. Alors, en effet, les fonctions propres de A ne sont pas fonctions 
de toutes les variables xyz et par suite les coefficients q et c(a) sont fonctions 
des variables non intéressées par l’opérateur A. La probabilité d’une valeur 
propre ne peut donc pas alors être le | q |2 correspondant, quantité qui dépend 
encore de certaines variables. Pour obtenir cette probabilité, il faut intégrer 
les expressions indiquées plus haut par rapport aux variables non intéressées 
par A. On vérifiera qu’après cette modification, la probabilité totale de toutes 
les valeurs possibles est bien égale à l’unité.

Un exemple simple d’application de nos 2 principes est fourni par le cas 
de l’opérateur H qui est complet. Si H est indépendant du temps, il admet des 
valeurs propres constantes E{ et des fonctions propres <q. Une mesure de 
l’énergie ne peut fournir que l’une des valeurs Et et si l’on a ij/ = £ q cph la

i
probabilité de Et est | q |2. On retrouve ainsi l’idée de quantification des 
systèmes atomiques et le principe de décomposition spectrale de Born. Si le 
spectre est discret, on a une suite discrète d’états stationnaires à énergies 
quantifiées.
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Prenons un autre cas : celui d’une coordonnée x du corpuscule qui corres 
pond à l’opérateur « multiplication par x ». L’équation aux valeurs propres est 
xcp = y.(p. Cette équation peut être considérée comme vérifiée pour toute 
valeur réelle de x en posant <p(x, a) = <)(x — a), d{x — a) étant une fonction 
singulière de Dirac nulle pour x # a. Donc d’après le premier principe, une 
mesure de x peut nous fournir n’importe quelle valeur réelle comprise entre 
— oo et -I- oo. De plus, les différentielles propres de ce spectre continu

/•a + Jet

ô(x — a) da

Principes de /’interprétation probabiliste

forment un système complet satisfaisant à la relation d’orthonormalité. Comme 
on a évidemment

(2) iKx, y, z, t)
/*+ oo

i//(a, y, z, t) ô{x — oc) da.
- co

la probabilité pour qu'une mesure de x fournisse à l'instant t une valeur comprise
/» /» + X

entre oc et oc + d oc est d oc | i/c(a, y, z, t) |2 dy dz et l’on en déduit aisément
— x

que la probabilité pour que le corpuscule manifeste sa présence à l’instant t 
dans l’élément de valeur dx entourant le point x, y, z est égale à | i/c(x, y, z,t) |2 dx. 
La probabilité totale de la présence d’un corpuscule en un point quelconque de

l’espace D qui lui est accessible est bien égale à 1 puisque I «A I2 dx = 1 O.
JD

Nous étudierons plus loin d’une manière approfondie la façon dont les 
incertitudes d’Heisenberg peuvent se déduire des principes généraux énoncés 
plus haut (2), (3).

(J) Note L. B. : C’est la raison physique pour laquelle on doit normer le ij/. 
Nous verrons que l’on peut déduire des principes généraux que 2 grandeurs 
A et B ne peuvent être simultanément mesurées que si AB = BA. Ainsi, les 
variables canoniquement conjuguées p et q ne sont pas simultanément mesu 
rables.

(2) Note L. B. : Notion de superposition. Chaque fonction propre ipi d’un 
opérateur A décrit un état du système où la grandeur A a certainement la 
valeur précise oc;. En général le ij/ du système ne se réduit pas à un seul <p;, 
mais est égal à une somme de cpt i/c = Y, c; <?;■

i
On dit alors aussi que le ijj est une « superposition » de <ph ce terme venant du 

« principe de superposition des petits mouvements » dans les théories vibra 
toires classiques. Mais ici la superposition n’a plus du tout le même sens que 
dans les théories classiques. Il ne s’agit plus de la vibration d’un milieu qui 
s’obtiendrait en ajoutant plusieurs vibrations élémentaires. Il s’agit de l’affir 
mation suivante : si la fonction ij/ d’un système est de la forme \p = £ c;
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et si l’on cherche à lui attribuer un état (pt en mesurant la grandeur A, on a la 
probabilité [ ck \2 d’être conduit à lui attribuer l’état cpk. Donc avant la mesure 
le système dans l’état i// = £ c( <p; se trouve potentiellement dans plusieurs états

i
<Pi chacun possédant une probabilité non nulle | ct |2. C’est là une idée entière 
ment nouvelle, tout à fait étrangère aux théories classiques dans lesquelles 
l’état d’un système est caractérisé par des valeurs bien définies des grandeurs 
de ce système. Cette notion nouvelle de superposition est peut-être la plus 
importante de celles qui ont été introduites par la Mécanique nouvelle.

Si dans la théorie classique des vibrations, on considère une vibration donnée

par i/i = Y, ci exP 2 ni\ , cela veut dire que la valeur du \jt à chaque

instant en chaque point est donnée par la somme des termes de la série : les 
vibrations composantes s’ajoutent avec les valeurs des ct qui leur correspondent. 
En Mécanique ondulatoire la forme envisagée pour le i// est soumise à la 
condition £ | c( |2 = 1 liée à l’interprétation probabiliste du i/i et l’on ne peut

plus regarder le ij/ comme fourni par l'addition de termes ayant une amplitude 
prédéterminée. Ainsi dans la théorie classique 2 mouvements ondulatoires

i//i = Cj exp 2 7iil vt — et ij/2 = c2 exp 2 ni\ vt — donnent par

superposition une onde i/i = i/q + \j/2 d’amplitude cx + c2. Au contraire en 
Mécanique ondulatoire les 2 états i/fj et ijj2 considérés isolément satisfont aux 
conditions | c\ | = 1/^/v et \ c2\ = 1/^/v- Si on les superpose, on a l’état 
\p = t/q + i/r2 mais avec la condition \ck + c2 | = lj\J v de sorte qu’il n’y a 
plus du tout addition des amplitudes. Ceci montre l’abîme qui sépare la notion 
de fonction d’onde dans la théorie classique des ondes et en Mécanique ondu 
latoire.

(3) Note G. L. (au sujet de la note précédente de l’auteur) : Louis de Broglie 
n’envisage ici que Fonde continue et normée sur laquelle est fondée l’inter 
prétation probabiliste de la mécanique ondulatoire. S’étant rallié au point de 
vue orthodoxe, il considérait, à l’époque où il écrivait ces lignes, que cette onde 
était la seule possible et on le voit, dans cette note, insister sur ce point avec 
d’autant plus de force qu’il avait été, jadis, convaincu du contraire. C’est à cette 
ancienne conviction qu’il devait, nous le savons, bientôt revenir, en dévelop 
pant la théorie de la double solution et en distinguant soigneusement Fonde tj/ 
ayant les propriétés qu’il décrit ici, de Fonde v (partie régulière de l’onde sin 
gulière u) qui a la même phase que i// mais pas la même amplitude, qui n’est pas 
normée, qui n’est pas soumise à la réduction du paquet d’ondes, mais qui, par 
contre, obéit à la loi ordinaire d’addition des composantes de la théorie clas 
sique des vibrations. Louis de Broglie la considérera désormais comme la 
véritable onde physique, contrairement à i// qui n’est qu’un instrument de 
prévision.
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2. LES MATRICES ALGÉBRIQUES ET LEURS PROPRIÉTÉS

On appelle « matrice » un tableau de nombres contenant un nombre fini ou 
infini de lignes et de colonnes. Si ce tableau est de dimensions finies, nous le 
supposerons carré pour simplifier. Chaque nombre figurant dans le tableau 
(ou « élément de matrice ») peut être repéré à l’aide de 2 indices qui spécifient 
respectivement la ligne et la colonne du tableau auquel appartient l’élément. 
Nous désignerons donc par aijk l’élément situé à l’intersection de la z'-ième 
ligne et de la fc-ième colonne. L’ensemble de la matrice sera désigné par la 
lettre A. Les éléments aH sont les éléments diagonaux et une matrice dont seuls 
les éléments diagonaux sont différents de zéro est dite une « matrice diagonale ». 
Deux matrices A et B sont dites égales (A = B) si tous leurs éléments corres 
pondants sont égaux an = htj pour tout i et tout j.

Les matrices se présentent en Algèbre quand on étudie les transformations 
linéaires. En effet, si des variables x't sont des combinaisons linéaires de variables 
xh on a des formules de transformation du type x\ = a{j Xj qu’on écrit

j
symboliquement X' = I.Y avec la convention (AX)( = Y<au xi- On est a'ns'

j
aisément conduit à définir la somme et le produit de 2 matrices par les règles 
suivantes :

1) La somme des 2 matrices A et B est par définition la matrice A + B 
de composantes + /z0.

2) Le produit de la matrice A par la matrice B est la matrice AB de compo 
sante d’indices ik égale à £ aij bjk-

j

De cette dernière définition résulte qu’en général la matrice AB n’est pas 
égale à la matrice BA. Si par exception AB = B A, on dit que A et B commutent. 
On désigne souvent sous le nom de « commutateur » des matrices A et B 
la matrice AB — BA = [A, B] qui, si elle n’est pas nulle, sert à mesurer le 
défaut de commutation de A et de B.

Parfois, on introduit aussi la matrice AB + B A = [A, B] + ou « anticom 
mutateur » de A et B. Si cette matrice est nulle AB = — BA et l’on dit que 
A et B anticommutent : si elle n’est pas nulle, elle mesure le défaut d'anticommu 
tation de A et B.

Les matrices sont réelles ou complexes suivant que leurs éléments sont réels 
ou complexes. Nous envisageons le cas général des matrices complexes.
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Une matrice est dite hermitienne si l’on a aik = a£ pour tout i et tout k. 
Une matrice hermitienne réelle est donc symétrique par rapport à sa diagonale 
et les éléments diagonaux d’une matrice hermitienne sont toujours réels.

Une matrice est antihermitienne si l’on a aik = aki pour tout i et tout k. 
Les éléments diagonaux d’une matrice antihermitienne sont imaginaires purs.

Le produit de 2 matrices hermitiennes A et B est lui-même hermitien si les 
deux matrices commutent et dans ce cas seulement : il est antihermitien si 
A et B anticommutent.

La matrice Â est la matrice « transposée » de A si l’on a aki = aik et l’on 
appelle matrice « adjointe » A + de A la matrice définie par a-k = aki ou 
A + = Â*. Si A est hermitienne, A = A + : A est alors sa propre adjointe.

On a évidemment (A +)+ = A et l’on démontre aisément que (AB)+ = B+ A+.
Une matrice hermitienne diagonale est nécessairement réelle. En particulier 

la matrice hermitienne diagonale aik = ôik est la « matrice unité » souvent 
représentée par 1.

Etant donnée une matrice A, s’il existe une matrice A ~1 telle que 
A. A~x = A~1. A = 1,1a matrice A ~1 est dite l’inverse de A. Si A a un nombre 
fini de lignes et de colonnes, A ~1 existe toujours quand le déterminant déduit 
du tableau A des aik est différent de zéro. Si A a un nombre infini de lignes 
et de colonnes, A ~ 1 peut exister ou ne pas exister suivant les cas. Quand A ~1 
et B 1 existent, on a toujours (AB)~1 = B~ 1 A~ 1.

Quand A est une matrice réelle et que l’on a

(3) Z an aik = <5* ; Z ari aki = àjk

on dit que la matrice est orthogonale. La transformation linéaire qui lui 
correspond représente alors dans l’espace une transformation orthogonale 
qui laisse invariante la somme Z xf. On généralise cette définition pour une

i

matrice complexe A en disant que si l’on a

Z an a% = 3U i Z aji aki = àjk(4)

la matrice A définit une transformation orthogonale complexe ou « unitaire » 
et l’on vérifie aisément que pour une telle transformation la quantité Z x* xt

i

reste invariante. La matrice A est alors dite « unitaire » et l’on a

Z ®ki dij 3kj ’ Z ®il ^lk 3jk

c’est-à-dire
(5) A + A = AA + = 1 d’où A + = A ~1 .

Donc l’adjointe d’une matrice unitaire coïncide avec son inverse.
Bl<u,, 4
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Par définition, la « trace » d’une matrice A est la somme de ses termes 
diagonaux Tr A = £ au. On démontre de suite que

i

(6) Tr AB = Tr B A = £ aik bki.
ik

Soient encore deux matrices carrées, l’une A quelconque, l’autre S unitaire 
ayant les mêmes nombres de lignes et colonnes. La matrice

(7) B = S-1 AS

est dite obtenue à partir de A par une « transformation canonique ». On vérifie 
facilement que si A est hermitienne, B l’est aussi. Les transformations cano 
niques conservent donc le caractère hermitien des matrices : il est aisé de voir 
qu’elles conservent également leur trace. De plus, si 2 matrices carrées A et A' 
sont transformées par une transformation canonique en B et B’, leur produit 
AA' est transformé en BB’ par cette même transformation car

S-1 AS.S'1 A' S = SAA' S.
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3. OPÉRATEURS ET MATRICES EN MÉCANIQUE ONDULATOIRE

Supposons que nous connaissions un système de fonctions orthonormales 
<pl ... <pt... dans un domaine D de variation de certaines variables. Nous les 
appellerons des fonctions de base. Ce système pourra être par exemple celui 
de fonctions propres normées d’un opérateur linéaire hermitien de la Méca 
nique ondulatoire. Avec ce système de base, à tout opérateur linéaire nous 
pouvons faire correspondre une matrice. Soit en effet A un opérateur linéaire. 
L’application de cet opérateur à une des fonctions de base (pt nous fournira 
une nouvelle fonction qui pourra se développer suivant le système des fonctions 
de base et nous aurons des relations de la forme

(B)

avec

(9)

A<Pi = X aji cpj

<p* A(pi dx
JD

D étant le domaine de variation des variables figurant dans les (pt. Par définition, 
les atj sont les éléments de la matrice engendrée par l’opérateur A dans le 
système de base des (p;. Nous désignerons cette matrice par le même symbole A 
que l’opérateur, ou si nous voulons préciser le système de base employé par Aq>. 
Il est aisé de vérifier que les matrices ainsi définies satisfont aux règles d’addition 
et de multiplication des matrices algébriques indiquées plus haut.

Si le système de base est formé par les fonctions propres d’un opérateur de la 
Mécanique ondulatoire et si l’opérateur A lui même est un opérateur linéaire
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et hermitien de cette Mécanique, nous dirons que la matrice A est une matrice de 
la Mécanique ondulatoire. On voit immédiatement qu’elles sont toujours 
elles-mêmes hermitiennes car avec la définition des atJ le caractère hermitien 
de A entraîne au = a*. Plus généralement, on voit d’ailleurs que la condition 
nécessaire et suffisante pour que la matrice engendrée par un opérateur A 
dans un système de base soit hermitienne est que l’opérateur soit lui-même 
hermitien. L’hermitianité est donc une propriété intrinsèque des opérateurs 
en ce sens qu’un opérateur hermitien engendre des matrices hermitiennes dans 
tous les systèmes de base. Toutes les matrices de la Mécanique ondulatoire 
sont donc hermitiennes.

Nos définitions établissent donc une corrélation étroite entre les opérateurs 
et les matrices. En particulier, la condition nécessaire et suffisante pour que 
deux matrices commutent (ou anticommutent) est que les opérateurs corres 
pondants commutent (ou anticommutent) ou vice versa. Ceci amène à définir 
le commutateur et l’anticommutateur de 2 opérateurs A si B par

(10) [A, B] = AB - BA; [A, 5]+= AB + BA.

Une catégorie particulièrement importante de matrices de la Mécanique 
ondulatoire est obtenue en prenant toujours comme fonctions de base les 
fonctions propres de l’opérateur Hamiltonien correspondant au problème 
considéré. Soient i/q ... \\in... les fonctions propres de l’opérateur H. Les matrices 
A * engendrées par un opérateur linéaire et hermitien A dans le système de base 
des ij/i dont les éléments sont

(H) °jk = ij/j A\jjk dx

peuvent être appelées « matrices d’Heisenberg » car ce sont celles que 
M. Heisenberg a mises à la base de sa Mécanique quantique. Si dans la défi 
nition des ipk on comprend le facteur exponentiel exp^-j^- Ek t^j et si l’on pose

'Pk = ak(x, y, z) exp(^ Ek t

on aura

(12) ajk = aj Aak dx.expl (Ek - E)t\.

Ces éléments définissent la matrice d’Heisenberg proprement dite qui dépend 
du temps. Parfois on supprime dans l’expression des i{/k le facteur exponentiel

et l’on pose a’jk = aj Aak dx : on définit ainsi une matrice A ' d’éléments ajjk

qui est indépendante du temps. C’est la matrice de Schrôdinger correspondant
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à la précédente matrice d’Heisenberg. Nous nous servirons généralement des 
matrices d’Heisenberg.

Avec les matrices d’Heisenberg, la matrice H correspondant à l’énergie est 
une matrice diagonale dont les termes diagonaux sont les valeurs propres de 
l’énergie (c.-à.-d. les énergies stationnaires quantifiées). Toutefois, dans le cas 
où l’opérateur H possède des valeurs propres multiples, la propriété précédente 
n’est vraie que si l’on a eu soin de choisir les fonctions propres correspondant 
aux valeurs propres multiples de façon qu’elles soient orthogonales. La véri 
fication est immédiate car

Hjk = i/jf H\j/k dx = Ek iA* <Ak dx = Ek ôjk .

Le résultat précédent n’est d’ailleurs qu’un cas particulier du théorème 
suivant dont la démonstration est immédiate : « Si l’on construit la matrice 
engendrée par un opérateur A dans le système des fonctions propres ortho 
normales de cet opérateur, cette matrice est diagonale et ses éléments diago 
naux sont égaux aux vecteurs propres de l’opérateur A (les vecteurs propres 
multiples figurant avec leur ordre de multiplicité) ».

4. VALEURS MOYENNES ET DISPERSIONS EN MÉCANIQUE 
ONDULATOIRE

Pour tout état d’un corpuscule (ou d’un système) caractérisé par une certaine 
forme de la fonction d’onde tj/, toute grandeur A a une série de valeurs possibles 
(résultats possibles de la mesure de A) affectées_de probabilité. On peut donc 
définir la « valeur moyenne » de la grandeur, A qui sera l’espérance mathé 
matique correspondant à une mesure de A.

Si a, et f sont les valeurs propres et les fonctions propres de A, la valeur 
moyenne A sera donc d’après les principes généraux définie par A = £ a,-1 c, |2.

I
En remplaçant t/f par £ ct (pt et en tenant compte de l’orthonormalité des cph

i

on vérifie que l’on peut aussi écrire

(13) A = \p* Ai// dx
D

ce qui permet de déduire immédiatement A de la connaissance du ijj.
Ayant défini la valeur moyenne de la variable aléatoire A, on peut également 

définir la « dispersion » (au sens du Calcul des probabilités) qui lui correspond,
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c’est-à-dire la racine carrée du carré moyen de l’écart. Si l’on désigne par aA 
cette dispersion, on aura
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d’où

(14)

aA =\/U - A)2 =Ja 2 -2 AA + A2

^Ja^T2

<*a = | \p* A 2 \p dx 
n

ip* Aij/ dx
D

2

Considérons maintenant 2 grandeurs A et B attachées à un corpuscule. A A 
correspondent les valeurs propres et fonctions propres a; et q>b à B les valeurs 
propres et fonctions propres j, yk. Si la fonction d’onde ij/ se développe sous 
la forme ip = <[>„ on trouve par substitution de ce développement dans

i
l’expression de B

(15) B = dkbfk

où b£ est l’élément d’indices i, k de la matrice engendrée par l’opérateur B 
dans le système des cpk. Donc la valeur moyenne de B peut toujours s’exprimer 
linéairement à l’aide des éléments de la matrice qu’engendre l’opérateur B 
dans le système des fonctions propres d’un autre opérateur A.

En particulier, si le corpuscule (ou le système) se trouve dans l’un des états 
propres relatifs à la grandeur A (et c’est ce qui arrive après une mesure précise 
de la grandeur A ), on a \p = dicpi avec | dt | = 1 et on en tire

(16) B = bfi

d’où le théorème : « L’élément diagonal d’indices ii de la matrice engendrée 
par l’opérateur B dans le système des fonctions propres de l’opérateur A 
représente la valeur moyenne de la grandeur B quand on sait que la grandeur A 
a la valeur précise at ».

Ce théorème donne un sens physique aux éléments diagonaux des matrices 
de la Mécanique ondulatoire. Un autre théorème va nous fournir une signi 
fication physique des éléments non diagonaux.

Supposons toujours que le corpuscule soit dans l’état ip = <p;. Nous venons 
de voir qu’alors bft est la valeur moyenne de B dans cet état. La valeur moyenne 
de B2 est alors

B1 = <P* B2 (Pi dx = (B2)fi = {b2)l(17)
D



mais la loi de multiplication des matrices nous donne

(b2% = £ bf} bjt = m2 + X bfj bl 
j J

jïi
= (bu)2 + Y, I bfj |2 car B est hermitienne 

j

o 2b = Bt- (B)2 = £ | bfj |2 = Jf | b% |2 

i j

d’où le théorème :
« Si l’on construit la matrice d’une grandeur B dans le système des fonctions 

propres (pt d’une autre grandeur A, la somme des carrés des modules des 
éléments non diagonaux figurant dans la z'-ième ligne (ou la z'-ième colonne) 
de la matrice B est égale au carré de la dispersion aB relative à la grandeur B 
quand on sait que la grandeur A a la valeur précise a,. » Cet énoncé donne 
un sens physique aux éléments non diagonaux.

Si les fonctions propres yt de B coïncident avec celles ç>; de A (nous verrons 
que la condition nécessaire pour que cela se produise est [A, B] = 0), dans 
l’état t/z = q>i = Xi la grandeur B a la valeur précise /i, qui correspond à yd 
et la matrice Bq> est diagonale. Alors oB = 0.
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d’où

(18)

5. INTÉGRALES PREMIÈRES EN MÉCANIQUE ONDULATOIRE

Considérons la matrice d’Heisenberg A dont les éléments sont définis par

üjk ~ \j/* Aij/k dx. L’élément aJk peut dépendre du temps t par l’intermédiaire
JD

de ij/f et de ij/k et aussi de A si cet opérateur dépend explicitement du temps. 
Dérivons donc ajk par rapport à t en tenant compte du fait que i/z, et i/zk obéissent 
à l’équation des ondes et que l’opérateur est hermitien. Il vient aisément

(19) dcijk
dt •A*

ÔA
dt

2 ni. , TT + —(AH HA) i j)k dx

où ôA/dt est l’opérateur obtenu en dérivant formellement A par rapport 
au paramètre t. Nous pouvons interpréter la formule précédente en disant : 
la matrice d’Heisenberg dont l’élément d’indice jk est dajk/dt est engendrée 
dans le système des i/z; par l’opérateur symbolique dA/dt tel que

dA dA 2 ni r 1TT TT Â,
-r = s- + -r- [AH - HA], dt dt h L J(20)



Il arrive très fréquemment que l’opérateur A ne dépende pas explicitement 
du temps. Alors ^ ~ 0 et ^ [A, H] C1).

Par définition, dans un problème où l’Hamiltonien H est donné, la grandeur 
observable correspondant à un opérateur A est dite « intégrale première » ou 
«constante de mouvement» pour le problème considéré si dA/dt est nul, 
c’est-à-dire si
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(21)

Si A ne dépend pas explicitement du temps, la grandeur A est intégrale 
première quand l’opérateur A commute avec l’opérateur Hamiltonien.

On peut aussi définir les intégrales premières de la façon suivante : une 
grandeur, dont l’opérateur est A, est intégrale première si, i\t étant une solution 
quelconque de l’équation des ondes, Ai// en est également solution. En effet 
par hypothèse ôiJ//ôt = (2 ni/h) H\j/ et l’on a

. di/f 2 7ii .... . ô ÔA . . d\/j  SA . 2ni À

<22) A7t-—AH* a +
Pour que A\j/ soit solution de l’équation des ondes, il faut donc que

(23) ~ i/r + ^(AH - HA) ÿ = 0.

La condition nécessaire et suffisante pour que cette équation soit satisfaite 
quelle que soit la solution ijj de l’équation des ondes est précisément la rela 
tion (21). c.q.f.d.

Voici quelques exemples classiques d’intégrales premières.
Si le champ extérieur agissant sur le corpuscule (ou le système) est indépen 

dant du temps, l’opérateur H ne contient pas t et, comme il commute évidem 
ment avec lui-même, l’énergie est alors intégrale première : nous retrouvons 
l’analogue de la conservation de l’énergie pour les systèmes conservatifs en 
Mécanique classique. De même si la composante x du champ est nulle, l’opé 
rateur H ne dépend pas de x (ô V/ôx = 0) et il commute avec (px)op la compo 
sante de la quantité de mouvement est donc alors intégrale première, résultat 
analogue à un théorème de la Mécanique classique.

Enfin si le champ de force a un moment nul par rapport à un axe Oz c.-à.-d.

(') Note L. B. : Il est facile d’en déduire que, pour A indépendant du temps 
on a

dA
dt

2 ni
[A, H].
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si l’énergie potentielle V ne dépend pas de l’azimut <p compté autour de Oz, 
l'Hamiltonien H ne dépend pas de </i et par suite commute avec l’opéraieur 
correspondant à la composante r du moment de quantité de mouvement car

(Mz)op
h ô 

2 ni dq> '

La grandeur Mz est donc alors intégrale première comme en Mécanique 
classique. Si le champ de force est central, les trois composantes du moment 
cinétique M par rapport à des axes passant par le centre sont intégrales pre 
mières et il en est de même de la grandeur M2 = M2 + M2 + M2 (carré 
de la longueur du moment cinétique). Ceci nous amène à dire quelques mots 
du moment cinétique.

6. MOMENT CINÉTIQUE (MOMENT DE ROTATION 
OU DE QUANTITÉ DE MOUVEMENT)
EN MÉCANIQUE ONDULATOIRE

Dans le présent exposé, nous laisserons de côté le spin et nous nous bornerons 
au moment cinétique orbital. Le moment cinétique orbital d’un corpuscule 
par rapport à un centre O (pris comme origine des coordonnées) est le vecteur 
moment de la quantité de mouvement du corpuscule par rapport à O, soit

(24) ~M = [r a  p].

Les composantes sont Mx = ypz — zpy...
Nous venons de voir que si le champ agissant sur le corpuscule a un moment 

nul par rapport à l’un des axes, la composante de M sur cet axe est intégrale 
première.

La longueur du moment cinétique est définie par son carré

(25) M2 = M2 + M2 + M2 = r2p2 - (r.p)2 

d’après l’identité de Lagrange.
Cette quantité est intégrale première si le champ de force est central.

En Mécanique ondulatoire on remplace Mx My et Mz par des opérateurs 
qui sont

(26) h f d 3 \ _ h d
2ni\^ôz Z dyj 2 ni d(px

cpx... étant les azimuts comptés autour des axes Ox... L’un quelconque des 
opérateurs Mk a pour valeurs propres m(h/2 n) et pour fonctions propres 
normées (\/s/Tn) e~l,n,pk comme on le vérifie aisément.

D’après les principes généraux de la Mécanique ondulatoire, on doit en 
conclure que la mesure exacte de l’une des composantes du moment ciné 
tique doit toujours fournir une valeur multiple entier de h/2 n. Cette quantité
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peut donc être considérée comme l’unité quantique de moment de rotation.
On s’aperçoit alors que la représentation du moment de rotation par un 

vecteur a quelque chose de trompeur à l’échelle quantique. En effet, les 3 com 
posantes du moment cinétique ne sont pas, en général, simultanément mesu 
rables à l’échelle quantique car les opérateurs Mx, My et Mz ne commutent pas. 
Si donc on effectue avec précision la mesure d’une composante rectangulaire 
de M, la valeur exacte des 2 autres composantes de M restera inconnue : il y 
aura seulement une distribution de probabilité pour les valeurs possibles de 
ces composantes. On ne pourra donc construire exactement le vecteur M 
puisqu’on ne connaîtra jamais exactement plus d’une de ces composantes. 
Il est d’ailleurs évident qu’on ne peut supposer que le vecteur M ait simulta 
nément 3 composantes rectangulaires multiples entier de h/2 n quelle que soit 
l’orientation du repère Cartésien autour du point O.

La non-commutation des opérateurs Mx, My, Mz est facile à prouver. 
On trouve en effet

(27) [Mx, My\ = Mz... .

Nous aurons à nous servir de ces relations.
A la grandeur M2 de la Mécanique classique, la Mécanique ondulatoire 

fait correspondre l’opérateur

(28) (M\p = (MX + (My\p + (MX =
h2 1 [d ( . a d\ , 1 d2 '

4 n2 sin 9 39 y dOj sin 9 dcp2

en employant des coordonnées polaires autour de Oz. (M2)op au facteur 
h2/4 7i2 près n’est pas autre chose que le Laplacien à la surface d’une sphère 
de rayon 1.

L’équation aux valeurs propres

(29) (M2)opf = af

n’admet comme solutions finies, uniformes et continues sur la sphère de rayon 1 
que les fonctions de Laplace Yk(9, (p), la valeur propre correspondant à la

h2fonction Y,, où / est un entier positif ou nul, étant -—~ /(/ + 1). On voit donc que
4 71

finalement les valeurs propres de M2 sont

(30) M2=~l(l+ 1) / = 0,1,2....
4 71

Il est aisé de vérifier que M2 commute avec Mx, My et Mz. On peut donc 
mesurer simultanément M2 et l’une des composantes de M.



CHAPITRE VI

THÉORIE DE LA COMMUTATION 
DES OPÉRATEURS EN MÉCANIQUE 

ONDULATOIRE

1. THÉORÈMES GÉNÉRAUX

Soient deux opérateurs A et B de la Mécanique ondulatoire. En général, 
ils ne commutent pas et AB # B A. Exceptionnellement, on peut avoir AB = B A. 
Nous allons montrer qu’en Mécanique ondulatoire, la propriété pour les 
opérateurs correspondants à deux grandeurs mesurables de commuter a une 
grande importance. Cette importance repose essentiellement sur le théorème 
suivant : « La condition nécessaire et suffisante pour que 2 opérateurs linéaires 
et hermitiens A et B admettent un même système de fonctions propres est que 
AB = BA. »

Pour démontrer ce théorème avec rigueur il faut distinguer 3 cas : 1) les 
2 opérateurs sont complets ; 2) l’un est complet, l’autre incomplet ; 3) tous les 
deux sont incomplets. Dans chacun des cas, la démonstration et même l’énoncé 
correct du théorème diffèrent légèrement.

1er Cas. Théorème : La condition nécessaire et suffisante pour que deux opé 
rateurs complets A et B admettent un même système de fonctions propres 
est qu’ils commutent.

En effet, supposons d’abord que les 2 opérateurs admettent un même système 
de fonctions propres <pl ... (pt.... On a alors A(pt = oq (p(; B(pt = /f; cpt pour 
tout i, d’où l’on tire BA(pt = oq B(pt = oq /?,• q>i et ABq>t = Acp{ = /?,■ a, (/>,. 
Donc AB(fii = BA(pt pour tous les : comme ceux-ci forment un système 
complet, on a ABf = BAf, f étant une fonction quelconque développable 
suivant les (p;. On en conclut AB = B A et la condition énoncée est nécessaire.

Démontrons qu’elle est suffisante. Nous admettons alors que AB = BA. 
Si (Pi sont les fonctions propres de A et celles de B, on a A(<Pj) = a; (pt et 
B(xD = Pi xt. De la lre équation nous tirons BAq>i = oq B(p{ = AB<Pi (puisque 
B A = AB) B(pi est donc fonction propre de A avec la valeur propre a,. Suppo 
sons d’abord que a; ne soit pas une valeur propre multiple : alors B(pt est
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nécessairement proportionnelle à (pt et l’on a B(pt = Cte (pt = cpt. Mais (pt 
est une fonction finie, uniforme et continue dans le domaine D et nulle aux 
limites. D’après la dernière équation, elle est donc fonction propre de B. Toutes 
les fonctions propres de A sont donc fonctions propres de B si aucun oq n’est 
multiple. En appliquant l’opérateur A à l’équation B(xd = /?; Xi, on démon 
trerait de meme que toute fonction propre de B est fonction propre de A si 
aucun des n’est multiple. Donc si tous les at et tous les /?; sont des valeurs 
propres simples, le système des coïncide avec celui des /, et la condition 
énoncée est suffisante.

La démonstration est en défaut si certains des a; ou des /?,• sont des valeurs 
propres multiples.

Supposons par exemple qu’à une certaine valeur propre a, de A corres 
pondent p fonctions propres <pn ... cpip. Alors on aura p relations de la forme 
ABcpij = BAcpij = a, B(pi} d’après le raisonnement précédent. On peut 
seulement en conclure que B(ptj est une fonction linéaire de (pn ... <pip c.-a-d.

p
que Bcpij = £ ckj <pik, les ij étant des constantes complexes. Les p fonctions

Bcpij doivent pouvoir s’exprimer linéairement à l’aide de p fonctions propres 
Xi de l’opérateur B. Les p fonctions B<pu sont en effet linéairement indépendantes 
et elles ne pourraient l’être si elles s’exprimaient à l’aide d’un nombre de 
fonctions Xi inférieures à p : d’autre part, si elles s’exprimaient à l’aide d’un 
nombre de fonctions x.i supérieur à p. les yd ne pourraient être linéairement 
indépendantes. Les B(pu s’expriment donc linéairement à l’aide de pxt et de p 
seulement ; et inversement ces pyA s’expriment linéairement à l’aide des pB(pip 
Comme dans les cas de dégénérescence on peut remplacer les p fonctions 
propres par p combinaisons linéaires linéairement indépendantes de ces 
fonctions propres, on peut remplacer les Bcp^ par les Xi en question et ceux-ci 
seront à la fois fonctions propres de A et de B pour la valeur propre a;. On peut 
raisonner de même si l’un des est multiple et l’on arrive à la conclusion qu’il 
est toujours possible de choisir les fonctions propres de façon que A et B aient 
le même système de fonctions propres. Le théorème se trouve ainsi complète 
ment démontré dans le cas 1.

2e Cas : L’un des opérateurs est incomplet, l’autre complet.

Théorème : Soient un opérateur complet A et un opérateur incomplet B. 
Si les deux opérateurs commutent, chaque fonction propre de A est égale au 
produit d’une fonction propre de B par une fonction des variables qui n’inter 
viennent pas dans B. Inversement si cette propriété se vérifie, les opérateurs 
commutent.

Proposition directe. Nous supposons AB = B A. Soient x... les variables 
qui interviennent dans B, y... celles qui n’y interviennent pas. Les fonctions 
propres de A sont des fonctions (pt(x, y...), celles de B des fonctions x,(x..). 
L’on a Atpt = ot; <p; et par suite BA(pt = a; B(pt = ABq>i (car AB = BA). Si 
n’est pas multiple, on voit que B(pt doit être proportionnelle à cph Bcpi = fiepi :
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(Pi est donc fonction propre de B. Mais le système des y, étant complet pour 
les variables .y (pt ne peut être fonction propre de B que si elle est égale à une 
fonction yk multipliée par un facteur ne dépendant que des y. On doit avoir

(Pi(x... y ...) = fk(y ...) xk(x...)(1)

et c’est la proposition annoncée.
La démonstration est en défaut si A admet des valeurs propres multiples. 

Alors à la valeur propre a; correspondent p fonctions propres (pn ... (pip linéai 
rement indépendantes.

Soit A ' un opérateur complet ayant des valeurs propres simples et commutant 
avec B. D’après ce qui a été démontré, toute fonction propre de A (p'^.x... y...) 
peut s’écrire sous la forme cp'^x ... y ...) = fk(y ■■■) Xk(x ...). Pour les raisons 
exposées ci-dessus, les p fonctions propres cp(J- doivent s’exprimer linéairement 
à l’aide de p fonctions (pt et de p seulement et inversement. On peut donc 
remplacer dans la liste des fonctions propres de A les p ç>,7par/i (p\. Nous voyons 
donc que s’il existe des valeurs propres ocf multiples, on peut s’arranger, en 
profitant de l’indétermination des fonctions propres correspondantes, pour 
choisir ces fonctions propres de façon que le théorème soit encore vérifié.

Proposition inverse. Nous supposons que toute fonction propre de A soit 
de la forme

(2) <Pi(x...y..) =fk(y...) Xk(x...).

De Acpi = a; <pt nous tirons

BAcpi = a; Bcpi = aifk(y ... ) BXk = <Xifik fik Xk 

= «i Pk <Pi

et, de même, de

B Xk = Pk Xk,

nous tirons d’abord

BUik Xk) — PkJik Xk
puis

AB(fk Xk) = pk A(fik Xk) = pk A(tpi) = pk «; (Pi .

D’où

(3) AB((pi) = BA((Pi).

Cette relation étant vraie pour toutes les fonctions qui forment un système 
complet, on en déduit AB = B A et le théorème inverse est démontré.
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Nous devons faire une remarque importante sur la formule

(2) q>t(x ...y ...) = fik(y ...) Xk(x ■■■).

En général, à une même fonction propre Xk de l’opérateur incomplet B 
correspondent plusieurs fonctions propres cpi de l’opérateur complet A. C’est 
cette circonstance qui nous oblige à mettre 2 indices à la fonction fik(y...) 
puisqu’en général pour une valeur donnée de k, il y a plusieurs valeurs de i. 
Autrement dit, il n’y a pas correspondance biunivoque entre les fonctions 
propres de A et celles de B, les premières étant beaucoup plus nombreuses que 
les secondes. Comme exemple, on peut prendre comme opérateur l’opérateur 
Hamiltonien H d’un système à symétrie sphérique tel que l’atome d’hydrogène 
et comme opérateur B l’opérateur incomplet Mz.

En prenant des coordonnées polaires autour de Oz, (Mz)op = ( — h/2 ni) (d/dcp). 
Ecrivons l’équation aux valeurs propres de H

(4)
h2 [ d2 ,2 d , 1 d ( . a ô\

----- t  —T d- —~ d- —t --------- T“" 1 d —— ] +
8 n2 m dr2 r dr r2 sin 9 d9\ 59 J

d- 1 d2 
r2 sin2 9 ôcp2

(pi + V(r) (Pi = Et (pt.

En posant <p; = f(r, 9) x(<p), on trouve aisément que les fonctions propres 
de A = H sont de la forme (p„im(r, 9, (p) = fnl(r, 9) eimq> où n, l, m sont des 
nombres quantiques, m en particulier un entier positif ou négatif.

Or les fonctions propres de B = Mz sont les solutions uniformes de l’équation
h dy _ ■

aux valeurs propres - = l'>/, c’est-à-dire xJd?) = e~im<p (m entier),
^ h

les valeurs propres correspondantes étant /?m = m ^—. On voit donc que2 n
notre théorème est bien vérifié. A une valeur donnée du nombre entier m 
correspond une fonction propre Xm de Mz et toute une série de fonctions 
propres de H qui sont les produits de xm Par les fonctions /„,(r, 9) correspondant 
aux diverses valeurs possibles de n, l.

Nous pouvons encore ajouter une remarque en quelque sorte inverse de la 
précédente. A toute fonction propre %k(x... ) de B, correspond au moins une 
fonction propre (pt(x ... y ... ) de A qui lui est proportionnelle. En effet, si dans 
les (pt on donne aux y des valeurs constantes, toutes les fonctions (pt qui sont 
proportionnelles à un xk sont équivalentes. Le système des (pt qui est complet 
pour l’ensemble des variables x ... et y ... doit encore rester complet pour les 
variables x ... et pour qu’il en soit ainsi, il faut évidemment qu’au moins l’une 
des fonctions (pt se réduise, à un facteur constant près, à l’une des yk quand 
on donne aux y des valeurs constantes. Donc à toute fonction xk correspond 
au moins une fonction <p; de la forme fk(y... ) xk(x

3e Cas : Les deux opérateurs sont incomplets.
Nous diviserons les variables en quatre catégories : 1) les variables x...



62 La commutation des opérateurs

qui figurent dans A sans figurer dans B ; 2) les variables y ... qui figurent dans A 
et B, 3) les variables z ... qui figurent seulement dans B; 4) les variables u ... 
qui ne figurent ni dans A, ni dans B. Nous appelons oq et (p;(x ... y ...) les valeurs 
propres et fonctions propres de Ab /?,- et ~/J,y... z...) les valeurs propres et 
fonctions propres de B. On a alors le théorème suivant

T héorème : Si la relation AB = B A est satisfaite, il existe entre les q>t et les yk 
des relations de la forme

(5) o)j(x... y... z... u...) =fji(z...u...)(pi(x...y...) = gjk(x... u...) yk(y... z...)

les fonctions coj formant un système complet pour l’ensemble des variables 
x... y... z... u.... Réciproquement si les relations précédentes sont vérifiées, 
les opérateurs A et B commutent.

Proposition directe. Nous supposons que AB = BA. Soit alors C un opé 
rateur hermitien ne portant que sur les variables u.... Cet opérateur commute 
évidemment avec A et avec B. Considérons alors l’opérateur ABC : c’est un 
opérateur complet qui commute avec C et aussi avec A et B puisque A par 
hypothèse commute avec B. D’ailleurs ABC est hermitien comme étant le 
produit d’opérateurs hermitiens commutables. En appliquant le théorème 
du 2e cas à ABC et à A, on a en désignant par co/x... y... z... u...) les fonctions 
propres de ABC qui forment un système complet pour l’ensemble des variables

(6) coj(x...y...z...u...) =fJi(z...u...)q>i(x...y..) .

En appliquant le même théorème à ABC et à B, on obtient de même

(7) (Oj(x... y... z... u ..é) = $k(x...u..)xk(y...z..).

Les relations (5) sont donc démontrées. Si nous nous reportons aux remarques 
faites à la fin de l’étude du cas 2, nous voyons que toute fonction <pt satisfait 
au moins à une relation de la forme (5) et qu’il en est de même pour toute 
fonction %k.

Proposition inverse. Nous supposons vraies les relations (5), les coj formant 
un système complet. Nous avons alors

A(ü)j) = A(fji (pD = ciifji (pt = ctiCOj

et par suite

BA(cOj) = <x; B(mj) = cct B(gjk xk) = a,- Pk oij ■

De même on a

B(a>) = B(gJk y_k) = [ikgjk yk = fik coj
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et par suite

/IB(ojj) = pk A(coj) = pk A(fji rpp = pk cüj.

Donc

AB((0j) = BA(cOj)

et comme les co, forment un système complet, AB = B A. c.q.f.d.
Un cas particulier intéressant est celui où il n’y a aucune variable du type y, 

c.-à-d. aucune variable figurant à la fois dans A et dans B. Nous dirons alors 
que les opérateurs A et B sont indépendants et naturellement ils commutent. 
Si alors nous désignons par /.,(«) les fonctions propres de l’opérateur C intro 
duit dans le raisonnement précédent, tous les produits

<Pi(x Xk(z-)

sont fonctions propres de ABC et l’on aura 

(8) o)j(x... z... u...) = <Pi(x...) ik{z...) À,(u...)

ce qui revient à dire que dans (5),

fji(z...u...) = xk(z...) Àt(u...) 

et
gjk(x...u...) = (Pi(x...) Xt(u...).

Il est à remarquer aussi que l’opérateur C introduit dans la démonstration 
précédente est entièrement arbitraire à cela près qu’il doit porter exclusivement 
sur les variables u. Quand A et B commutent, il existe donc une infinité de 
manières d’écrire les relations (5) suivant le choix arbitraire de C.

2. COROLLAIRES DES THÉORÈMES PRÉCÉDENTS

Un premier corollaire important des théorèmes précédents est le suivant : 
« Si 2 opérateurs complets A et B commutent, on peut, en prenant comme 
fonctions de base leurs fonctions propres communes cph ramener simultanément 
les matrices A et B à la forme diagonale. »
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En effet, les deux opérateurs commutant par hypothèse admettent un même 
système de fonctions propres cp, telles que

Atpi = cti (pi ; B(pk = Pk (pk.

L’élément d’indices i, k de la matrice correspondant à l’opérateur A dans 
le système des rp; est

aik <pf A<pkdz = ak
D

<PÎ <Pk dz
D

xk àik

et de même l’élément d’indices i, k de la matrice correspondant à l’opérateur B 
est

bik I cpf B<pk dz = pk (pf <Pk dz
D

Pk bik ■

Les formules montrent immédiatement que les deux matrices A et B ont la 
forme diagonale, les éléments diagonaux étant respectivement les valeurs 
propres des opérateurs A et B.

Réciproquement, si pour un certain choix des fonctions de base cph les 
matrices A et B correspondant aux opérateurs complets A et B prennent la 
forme diagonale, ces opérateurs commutent.

En effet on a alors par hypothèse

(9) cpf Acpk dz = ak ôik
D

cpf Bcpk dz = bk ôik .
D

Donc toutes les composantes de Eourier des fonctions Acpk et Bcpk dans le 
système de base des cpt sont nulles sauf les composantes d’indices k qui sont 
respectivement égales à ak et bk. On a donc

(10) Acpk = ak cpk Bcpk = bkcpk.

Les fonctions cpk sont donc à la fois fonctions propres de A et de B et, en vertu du 
théorème fondamental AB = BA.

Le corollaire que nous venons de démontrer se généralise dans le cas où 
l’un au moins des 2 opérateurs A et B est incomplet. Les raisonnements sont 
faciles à faire. Nous considérons seulement le cas de 2 opérateurs incomplets. 
Voici alors l’énoncé du corollaire : « Si deux opérateurs incomplets A et B 
commutent, il est possible par un choix convenable du système de base de 
ramener les matrices A et B à la forme diagonale.»

Prenons, en effet, pour fonctions de base le système complet défini dans la 
démonstration du cas 3 à l’aide d’un opérateur C portant sur les variables
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qui ne figurent ni dans A, ni dans B. Comme A et B commutent, par hypothèse, 
on a les relations (5) et par suite

(H)

«a = cof Acok dx = cof fkl(z... u ...) Acpt dx = a, cof cok dx = at ôik

et de même

(12)

bik = <o* Bcok dx = cof gkj(x... u...) Bxj dx = /?,. cof cok dx = Pj 3a

et la proposition est démontrée.
Réciproquement si l’on peut, par un choix convenable des fonctions de base, 

amener simultanément les matrices A et B à la forme diagonale, les opérateurs 
incomplets A et B commutent.

En effet, l’hypothèse est ici qu’il est possible de trouver un système complet 
de fonctions co; de toutes les variables x... y... z... u... tel que

cof Acokdx = ak ôik
D

cof Bcok dx = bk ôik.
D

On voit alors que toutes les composantes des fonctions Acok et Bcok dans le 
système descOj sont nulles sauf les composantes d’indices k, d’où

( 13) A cok —— ak cok Bcok — bk cok.

Les fonctions cok sont donc à la fois fonctions propres de A et de B et par suite, 
en profitant de l’indétermination des fonctions propres de A et de B s’il y a 
dégénérescence, elles peuvent être considérées comme proportionnelles à une 
fonction propre de A et aussi à une fonction propre de B, ce qui nous permet 
de poser

coj(x...y... z... u..) =fjk(z... u...) cpk(x...y...) = g^x... u...) fa{y... z

et il résulte alors du cas 3 (proposition inverse) que A et B commutent.
De ce qui précède résulte naturellement que si deux opérateurs A et B 

ne commutent pas entre eux, il est impossible de ramener simultanément les 
matrices correspondantes à la forme diagonale. Ceci permet de démontrer 
l’élégant théorème suivant :

Théorème : « Si deux opérateurs F { et F2 commutent avec un troisième 
opérateur complet A, mais ne commutent pas entre eux, alors l’opérateur A 
a nécessairement des valeurs propres multiples ».
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En effet, comme A et Fx commutent, il est possible de choisir un système de 
fonctions propres de A comme système de base ramenant simultanément les 
matrices A et Fx à la forme diagonale : soit <p:... <p;... ce système de fonctions 
propres. De même, A et F2 commutant, on peut trouver un système de fonctions 
propres de A, soit <p\ ... qui, pris comme de base, permet de ramener 
simultanément les matrices A et F2 à la forme diagonale. Mais si l’opérateur A 
n’avait pas de valeurs propres multiples, le système de ces fonctions propres 
serait déterminé sans ambiguïté et les fonctions q>\ coïncideraient avec les 
fonctions q>t. Il serait alors possible par un même choix du système des fonctions 
de base de ramener simultanément à la forme diagonale les matrices A, Fl 
et F2- Or ceci ne peut pas être exact puisque par hypothèse Fi et F2 ne com 
mutent pas. Il faut donc que A ait des valeurs propres multiples.

Comme exemple d’application de ce théorème, considérons un système à 
symétrie sphérique dont l’Hamiltonien H ne dépend que de la distance r à un 
point central O pris comme origine des coordonnées. Nous avons vu que les 
opérations Mx et My correspondant aux moments de rotation autour des axes 
Ox et Oy ne commutent pas. Par contre ces opérateurs incomplets commutent 
tous deux avec l’opérateur H comme on le vérifie aisément. On en conclut 
que H admet des valeurs propres multiples : les états quantifiés d’un système 
à symétrie sphérique sont donc dégénérés, résultat bien connu dans l’étude de la 
quantification.

Opérateurs ayant une fonction propre commune

Considérons 2 opérateurs A et B ayant en commun une fonction propre <p. 
Nous avons A(<p) = cup; B(p = ftp d’où

(14) (AB — BA) cp = [A, B] cp = fAtp — aB(p = 0 .

Or cette équation [A, B] cp = 0 ne peut être vérifiée que dans 2 cas :

1) [A, B] = 0. Alors A et B commutent et admettent tout un système de 
fonctions propres communes dont cp fait partie.

2) L’opérateur [A, B] n’est pas nul, mais il admet la valeur propre 0.

Alors A et B, bien que non commutants, pourront avoir en commun une 
(ou plusieurs) fonction propre cp si cp est fonction propre de [A, B] pour la 
valeur propre 0.

Comme exemple de ce 2e cas, considérons encore les opérateurs Mx et Mr 
On a

\Mx,My\ = A,M2 #0.

Ils ne commutent pas, mais Mz a pour valeur propre m(h/2 n) avec m = 0, 1,2... 
et admet donc la valeur propre 0. Donc [Mx, My] admet la valeur propre 0. Mx
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et My ont en commun la fonction propre (p = Cte comme on le vérifie immé 
diatement (<p = exp{ — imtp^jy/Yn pour m = 0).

Un cas important est celui où [A, B] est de la forme Cte x l’opérateur 1. 
C’est le cas des grandeurs canoniquement conjuguées pour lesquelles 
[A, B] = (h/2 ni) 1. Comme la matrice unité n’admet évidemment aucune 
valeur propre nulle, les opérateurs A et B ne peuvent admettre aucune fonction 
propre commune.

Notons que les considérations précédentes sont valables pour les spectres 
continus.

3. MESURE SIMULTANÉE DE DEUX GRANDEURS
D’APRÈS LA MÉCANIQUE ONDULATOIRE

Nous allons maintenant nous servir des théorèmes et corollaires démontrés 
plus haut pour étudier la question de la mesure simultanée de deux grandeurs.

Dans la nouvelle Mécanique, nous faisons correspondre un opérateur 
hermitien à toute grandeur mécanique. Etant donnés une grandeur et l’opé 
rateur A qui lui correspond, il est très important de distinguer les grandeurs 
dont les opérateurs commutent avec A de celles dont les opérateurs ne com 
mutent pas avec A. L’importance de cette distinction vient de ce que deux gran 
deurs mécaniques peuvent être mesurées simultanément quand leurs opérateurs 
commutent et dans ce cas seulement. C’est ce que nous voulons maintenant 
montrer.

Nous partirons du postulat essentiel en Mécanique ondulatoire que tout état 
d’un corpuscule ou d’un système doit pouvoir à tout instant être représenté 
par une fonction d’onde ijj qui en réalité représente l’état de nos connaissances 
sur ce corpuscule ou ce système à cet instant. Toute opération de mesure ou 
d’observation des éléments microscopiques modifie l’état de nos connaissances 
sur le corpuscule ou le système et par suite modifie brusquement la forme du i/j , 
mais aussi bien avant l’acte de mesure qu’après, nous devons pouvoir représenter 
l’état du corpuscule par une onde ijj : voilà le postulat fondamental qu’admet 
la Mécanique ondulatoire et qu’il est essentiel de noter. Immédiatement après 
une mesure ou une observation qui nous révèle quelque chose sur l’état des 
éléments inaccessibles à nos sens de la Physique atomique, nous pouvons 
adopter une certaine forme d’onde \// qui représente l’état de nos connaissances 
et à partir de ce moment tant qu’on ne fait pas d’autres observations ou mesures, 
fonde \/j  évolue à partir de cette forme initiale conformément à l’équation des 
ondes de la Mécanique ondulatoire et cette évolution est rigoureusement 
déterminée.

Si à une époque ultérieure une nouvelle mesure ou observation nous permet 
d’assigner à une grandeur A une valeur précise och cette valeur est d’après nos 
principes généraux une des valeurs propres de l’opérateur A et la fonction 
d’onde ij> après la mesure devra être proportionnelle à une fonction propre 
correspondant à at. Si l’on recommençait immédiatement après la mesure de A
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une nouvelle mesure de A, on serait certain d’après les principes généraux de 
lui retrouver la valeur a; (répétabilité de la mesure). Donc pour qu’on puisse 
mesurer simultanément avec exactitude la grandeur A et une autre grandeur B 
de valeur propre /î; et de fonction propre yh il est nécessaire qu’après la mesure 
la fonction d’onde i)/ puisse être à la fois proportionnelle à une des <p; et à une 
des Xi sans quoi la représentation par une onde ij/ de l’état de nos connaissances 
après la mesure ne serait pas possible.

Appliquons d’abord cette idée à 2 opérateurs A et B complets. Pour que les 
grandeurs correspondantes puissent être simultanément mesurées avec 
précision, il faut qu’après la mesure on puisse avoir ip = a, = bt avec 
I «; I = I bt | = 1, une correspondance biunivoque convenable ayant été établie 
entre les a; et les fit (de façon que les quantités de même indice se correspondent).

Il faut donc que le système des <pt coïncide avec celui des /, et nous savons 
que la condition nécessaire et suffisante de cette coïncidence est AB = B A. 
La mesure précise et simultanée de A et de B n’est possible que si leurs opé 
rateurs commutent. Les deux mesures sont alors entièrement liées l’une à 
l’autre : la connaissance du résultat de l’une entraîne celle du résultat de l’autre, 
tout au moins quand il n’y a pas de valeurs propres multiples.

Prenons ensuite le cas où A est complet et B incomplet (cas 2, p. 59). Nous 
voulons qu’on puisse avoir après la mesure ip = a( (pt = fk(y ...) %k(.x ...) avec

| a; | = 1 et \fk 12 dy = 1 quel que soit i. Or nous savons que la condition

nécessaire et suffisante pour qu’il en soit ainsi est encore AB = B A. Mais ici 
les 2 mesures simultanées ne sont jamais entièrement liées. En effet, nous avons 
vu qu’à une valeur de k peuvent correspondre plusieurs valeurs de i. Si donc 
on connaît le résultat fik de la mesure de B, cette connaissance n’entraîne pas 
en général la connaissance de la valeur a, de A.

Prenons encore le cas où A et B sont tous deux incomplets. Nous reprenons 
ici les notations du cas 3 (p. 61). Pour que A et B soient simultanément mesu 
rables avec précision, il faut avoir après la mesure

(15) ip = fji(z...u...)cpi(x...y...) = yjk(x... u ...) Xk(z ■■■ y •■•)

quel que soit / avec les conditions

(16) | fji(z... u...) |2 dudz = 1 et gik(x... u...) |2 du dx = 1 .

Dans le 3e cas étudié, p. 61, pour qu’il en soit ainsi il faut et il suffit que 
AB = BA. Ici les deux mesures sont moins liées que dans le cas précédent car 
il peut exister plusieurs valeurs de j correspondant à une même valeur de i et 
plusieurs valeurs de j correspondant à une même valeur de k. La connaissance 
du résultat d’une des mesures n’entraîne pas en général le résultat de la connais 
sance de l’autre mesure.

Enfin supposons que A et B soient des opérateurs indépendants. Ils sont alors 
nécessairement commutables et en leur adjoignant un opérateur C portant sur
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les variables non contenues dans A et B. on obtient un système complet de 
fonctions de base pour toutes les variables en prenant les fonctions propres (Oj 
de l’opérateur complet ABC. Après la mesure, la fonction tp pourra se réduire 
à l’une quelconque des a>j, c.-à-d. être de la forme

(17) IP = cj = Cj A,(m ...) (Pi(x ...) Xk(y •■•)

avec | Cj | = 1 ; /', k, I ayant des valeurs entières quelconques. Ceci signifie qu’il 
est toujours possible de mesurer simultanément les grandeurs A et B et que les 
résultats des 2 mesures simultanées sont totalement indépendants. La connais 
sance du résultat de l’une n’apprend rien sur le résultat de l’autre.

En résumé, la condition nécessaire et suffisante pour que deux grandeurs 
A et B soient simultanément mesurables est que leurs opérateurs commutent. 
Les résultats de la mesure simultanée de A et B, quand elle est possible, sont 
plus ou moins liés l’un à l’autre suivant le caractère complet ou incomplet des 
opérateurs.

La considération des cas des opérateurs indépendants conduit à la notion 
de « mesure maximale ». Supposons que le corpuscule ou le système soit défini 
par n coordonnées x{ ... xn. A chaque coordonnée x1 faisons correspondre 
une grandeur mesurable dont l’opérateur At n’intéresse que la variable xt. 
Soient a[° et cp^ les valeurs propres et fonctions propres de Ab 

Nous obtenons un opérateur complet en considérant le produit de tous les At
n

soit p[. Ab les fonctions propres de cet opérateur sont les produitsi 1

<»i = | |. (p{k(xù ■
î

Les At étant indépendants, les grandeurs correspondantes sont simultané 
ment mesurables : supposons que nous les mesurions toutes dans un même 
acte de mesure. Après cette mesure, le ip aura la forme

wi = fl, <PkK*d >

en supposant que la mesure de At a fourni la valeur propre a)11 correspondant 
à la fonction propre q>%\ On aura alors effectué une observation ou mesure 
« maximale » déterminant complètement la fonction ip et par suite la pro 
babilité des valeurs possibles de toutes les grandeurs mesurables attachées 
au système. La mesure d’une autre grandeur mesurable B en même temps que 
celle des At est ou bien impossible si B ne commute pas avec le produit de Ab 
ou bien possible, mais sans intérêt dans le cas contraire car alors cette mesure 
ne nous apprend rien de plus sur l’état du système dont la mesure simultanée 
de tous les A( nous fournit une connaissance « maximale ».
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4. EXEMPLES DE GRANDEURS NON SIMULTANÉMENT 
MESURABLES. DISTINCTION DE DEUX SORTES DE 
NON-COMMUTATION

L’exemple le plus connu de grandeurs non simultanément mesurables est 
celui d’une coordonnée q et de la composante conjuguée p de quantité de 
mouvement. Si Q et P désignent les opérateurs correspondants, on a

(18)

car

Q = q x P = h d
2 ni ôq QP- PQ = Y

h \ Sf(q) 
2 ni J ôq

Les grandeurs q et p ne sont donc pas simultanément mesurables. S’il y a 
plusieurs q soit qt ... q(... on a naturellement Qk P, = Pt Qk et comme

Qi Qk — Qk Qi et Pi Pk — Pk Pi >
on voit qu’on peut toujours mesurer simultanément deux coordonnées ou 
deux composantes de quantité de mouvement ainsi qu’une coordonnée et une 
composante non conjuguée de quantité de mouvement. Seule la mesure simul 
tanée d’une coordonnée et de la composante correspondante de quantité de 
mouvement est impossible.

Dans le cas d’un corpuscule défini par trois coordonnées x, y, z auxquelles 
sont conjuguées les trois composantes rectangulaires de quantité de mouve 
ment px,Py,pz, on retrouve l’impossibilité de connaître simultanément les 
quantités conjuguées x etpx etc. que nous avions précédemment pu déduire de la 
représentation des ondes ip par des intégrales de Fourier. Les relation d’incer 
titude d’Heisenberg se déduisent, nous reviendrons sur ce point, des relations 
QP — PQ = h/2 ni. Plus généralement si dans un problème mécanique, p et q 
sont des variables canoniquement conjuguées, on a toujours QP — PQ = h/2 ni. 
Ainsi l’angle d’azimut autour d’un axe polaire Oz est canoniquement conjugué 
de la composante Mz du moment cinétique autour de Oz. Comme à Mz corres- 

h ôpond l’opérateur — , on a bien en opérateurs cpMz — Mz <p = h/2 ni

Dans le cas que nous venons d’étudier les deux opérateurs non commutants 
sont tels que [A, B] = c, c étant une constante ici égale à h/2 ni. Les grandeurs 
canoniquement conjuguées appartiennent à la catégorie générale des grandeurs 
non simultanément mesurables dont le commutateur est égal à une constante. 
Mais il existe une autre catégorie de grandeurs non simultanément mesurables : 
celles dont le commutateur est égal à un opérateur non nul.

C’est le cas des grandeurs Mx et My par exemple puisqu’on a
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La différence essentielle entre ce type d’opérateurs non commutants et le type 
précédent provient du théorème énoncé p. 66. En effet, deux opérateurs non 
commutants A et B ne peuvent avoir aucune fonction propre commune si le 
commutateur est égal à une constante c car l’opérateur c. 1 n’a pas de valeurs 
propres nulles : les grandeurs correspondant à deux tels opérateurs ne sont 
jamais simultanément mesurables.

Au contraire, si les deux grandeurs non commutantes ont leur commutateur 
égal à un opérateur, A et B pourront avoir des fonctions propres communes si 
[A, B] a des valeurs propres nulles. Il pourra alors accidentellement arriver 
que la mesure simultanée de A et de B puisse s’effectuer et elle fournira alors 
pour valeurs de A et de B des valeurs propres correspondant à l’une des fonc 
tions propres communes. Par exemple, dans le cas de Mx et de My, comme le 
commutateur [/Vf Mv] ~ Mz admet la valeur propre 0 avec la fonction propre 
<p0 = Cte = l/y/2h, une mesure simultanée de Mx et de My peut exception 
nellement permettre de leur attribuer les valeurs Mx = 0 et My = 0 qui 
correspondent aussi à la fonction propre cp0 = 1 j^J2 n. Mais en général il est 
impossible de mesurer simultanément Mx et My (' ).

Lorsque nous étudierons le théorème relatif à la dispersion de deux grandeurs 
non commutantes, nous verrons à nouveau l’intérêt qu’il y a à distinguer les 
grandeurs non commutantes dont le commutateur est une constante des 
grandeurs non-commutantes dont le commutateur est égal à un opérateur.

Nota : On peut noter que si l’on a [A, B] = c 1 la constante c est toujours 
proportionnelle à h car pour h -> 0 A et B doivent commuter puisqu’on revient 
alors à la Mécanique classique. Dans ce cas, on peut donc toujours se ramener 
au cas de grandeurs canoniquement conjuguées. (*)

La commutation des opérateurs

(*) En réalité la fonction propre de Mz pour la valeur propre 0 est f(p +z) 
en coordonnées cylindriques autour de Oz et les fonctions propres de Mx et Mz 
pour les valeurs propres 0 ont des expressions analogues de sorte que la fonction 
propre commune à Mx, My, Mz pour les valeurs propres 0 est F(r) = F(p2 +z2) : 
elle représente un état à symétrie sphérique.



CHAPITRE VII

IMPOSSIBILITÉ PHYSIQUE 
DE MESURER SIMULTANÉMENT 

LES GRANDEURS CANONIQUEMENT 
CONJUGUÉES

1. NÉCESSITÉ D’EXAMINER L’IMPOSSIBILITÉ DE MESURER
SIMULTANÉMENT AVEC PRÉCISION DEUX GRANDEURS
CANONIQUEMENT CONJUGUÉES

Nous avons montré que, suivant la Mécanique ondulatoire, il doit être 
impossible de mesurer simultanément avec précision deux grandeurs non 
commutantes et, en particulier, deux grandeurs canoniquement conjuguées. 
Cette impossibilité est déduite du postulat fondamental suivant lequel il doit 
être possible de représenter l’état de nos connaissances sur un système par une 
onde ijj, aussi bien après qu’avant une expérience de mesure. Si deux grandeurs 
canoniquement conjuguées pouvaient être simultanément mesurées avec 
précision, il serait impossible de représenter l’état du système après la mesure 
par une onde t/y et il faudrait abandonner la Mécanique ondulatoire.

Mais l’on peut se demander si réellement il est impossible d’effectuer une telle 
mesure simultanée de deux grandeurs conjuguées et quelle est l’origine physique 
de cette impossibilité. De fines analyses développées tout d’abord par MM. Bohr 
et Heisenberg ont montré qu’effectivement il ne paraît pas possible d’imaginer 
des expériences permettant de mesurer simultanément deux grandeurs conju 
guées avec une précision supérieure à celle que permettent les inégalités 
d’incertitude d’Heisenberg. Les longues discussions que soulevèrent les raison 
nements de MM. Bohr et Heisenberg ont tourné à leur avantage et aujourd’hui 
leur thèse paraît admise par tous les physiciens qui ont sérieusement étudié 
la question.

Ces raisonnements ont de plus l’intérêt de montrer que l’impossibilité de la 
mesure simultanée précise de deux grandeurs conjuguées a son origine dans 
l’existence même du quantum d’action mesuré par la constante h de Planck.

Comme la constante h de Planck est négligeable du point de vue macrosco 
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pique, la mesure simultanée de deux grandeurs conjuguées est pratiquement 
possible dans les phénomènes macroscopiques parce qu’alors l’imprécision 
des mesures masque les incertitudes quantiques : mais à l’échelle des phéno 
mènes corpusculaires élémentaires, h n’est plus du tout négligeable et les 
incertitudes quantiques jouent un rôle essentiel.

Nous allons étudier quelques-uns des exemples donnés par Bohr et Heisen- 
berg.

2. LE MICROSCOPE D’HEISENBERG

M. Heisenberg a développé le célèbre argument connu sous le nom de 
microscope d’Heisenberg en supposant qu’on observe dans un microscope 
optique un électron placé sur le porte-objet. Cette expérience est évidemment 
irréalisable, mais on peut la présenter sous une forme qui se rapproche davan 
tage de ce qui est réalisable en pratique.

Considérons un microscope optique ou corpusculaire (électronique) et 
supposons que nous examinions à l'aide de cet instrument un objet de masse M 
suffisamment petit pour être considéré comme ponctuel et qui est placé sur le 
porte-objet du microscope.

L’objet est « éclairé » par des corpuscules de même énergie arrivant paral 
lèlement à l’axe du microscope. Soitp leur quantité de mouvement ; la longueur 
associée est X = h/p. Les corpuscules incidents sont des photons si le micro 
scope est un microscope optique, des électrons (ou éventuellement des protons) 
si le microscope est un microscope corpusculaire.

Si le microscope était parfait, c’est-à-dire si les aberrations et les effets de 
diffraction étaient négligeables, au point objet M correspondrait dans le plan 
objet ri une image ponctuelle P. Les aberrations peuvent être rendues très 
faibles (en microscopie optique par un choix convenable des lentilles, en 
microscopie corpusculaire par l’emploi d’une ouverture 2 e très petite). Mais 
on ne peut jamais supprimer le phénomène de diffraction dû au passage de 
l’onde i(/ associée aux corpuscules éclairant à travers l’ouverture limitée de 
l’appareil. La théorie du pouvoir séparateur du microscope nous apprend que 
l’observation du point image ne permet de déterminer la position du point 
objet sur l’axe des x qu’avec une incertitude égale à Sx = Xj2 sin e. S’il n’y avait
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pas de diffraction (ni d’aberrations), l’arrivée d’un corpuscule en /'(phénomène 
observable en principe) permettrait d’assigner une position précise au point M. 
Mais l’intervention inévitable de la diffraction a pour résultat que l’arrivée 
d’un corpuscule en P ne permet de localiser M sur l’axe des x qu’avec l’incer 
titude ôx = h/2 sin e. On voit que cette incertitude existe indépendamment 
de l’intensité du faisceau éclairant puisqu’on peut l’évaluer en considérant un 
seul corpuscule diffusé par l’objet ponctuel.

La diffusion des corpuscules incidents par l’objet est le résultat d’une brève 
interaction, d’un choc, entre l’objet et le corpuscule. Au cours de cette inter 
action, l’échange de quantité de mouvement entre le corpuscule en mouvement 
et l’objet supposé primitivement immobile doit être faible, sans quoi l’onde 
associée au corpuscule diffusé aurait une longueur d’onde différente de celle du 
corpuscule incident et l’on n’aurait plus d’image régulière. Pour traiter le 
problème, il faudrait même considérer le système formé par l’objet et le corpus 
cule et envisager l’espace de configuration du système. On peut donc admettre 
que la quantité de mouvement | p | du corpuscule diffusé est égale à | p \ = h/1.

Après le choc, le corpuscule diffusé a une quantité de mouvement p' qui fait 
l’angle a avec la direction primitive du mouvement (direction de l’axe du 
microscope) et comme, pour que le corpuscule diffusé puisse intervenir dans la 
mesure il faut qu’il pénètre dans le microscope, on a | a | < e. Soit enfin Px la 
composante le long de Ox de la quantité de mouvement de l’objet après le choc. 
On peut écrire la conservation de la quantité de mouvement le long de Ox 
pour le système objet + corpuscule incident, ce qui donne

(1) Px = p' sin a ~ p sin a = (h/1) sin a 

Px a donc une valeur comprise entre

— (fi//) sin s et + (h/l) sin e  .

L’incertitude sur la valeur de Px est donc (2 fi/1) sin e. Après avoir constaté 
l’arrivée d’un corpuscule en P, l’observateur ne connaît donc l’abscisse x et la 
composante de quantité de mouvement Px de l’objet qu’avec les incertitudes

(2) ôx = 1/2 sin e ôPx = 2(h/l) sin e  

d’où
ôx. ôPx ^ fi .

Nous mettons > parce que le signe d’égalité suppose que toutes les obser 
vations soient parfaites, que les aberrations soient nulles, etc.

Nous avons retrouvé ainsi la relation d’incertitude pour les grandeurs 
conjuguées x et Px et nous voyons que ces grandeurs ne peuvent, du moins 
dans le cas étudié, jamais être déterminées avec une entière précision.

Le raisonnement montre que cette circonstance est due à la valeur finie de la 
constante fi. Si l’on voulait augmenter la précision sur x, il faudrait diminuer 1
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en prenant des corpuscules incidents plus rapides. Mais alors (et c’est ici 
qu’intervient la valeur finie du quantum d’action), la quantité de mouvement 
| p | des corpuscules incidents augmente puisque | p \ = hjX et que h est fini. 
D’où augmentation de SPX et l’on a toujours la relation d’Heisenberg. L’impos 
sibilité d’enfreindre la liaison créée entre Sx et 6PX par l’existence du quantum 
d’action apparaît comme l’origine profonde de la relation d’Heisenberg et ceci 
porte à croire qu’on doit la retrouver quel que soit le dispositif de mesure 
utilisé.

3. MESURE DE LA VITESSE D’UN ÉLECTRON AU MOYEN DE
L’EFFET DOPPLER

Etudions maintenant la mesure de la vitesse d’un électron par l’effet Doppler. 
Supposons qu’un électron se déplace avec la vitesse v dans la direction positive 
d’un axe Ox. On envoie sur cet électron un train d’ondes lumineuses de longueur 
d’onde moyenne X qui se propage le long de Ox dans le sens négatif. S’il y a 
diffusion le photon diffusé pourra subir un renversement de sa vitesse et être 
renvoyé dans le sens des x positifs. Supposons que cela se produise et que nous 
puissions mesurer exactement la fréquence v' diffusée. Pour simplifier suppo 
sons la vitesse de l’électron très inférieure à celle de la lumière et écrivons les 
équations qui traduisent la conservation de l’énergie et de la quantité de 
mouvement :

, . 1 2 , , . 1 ,2 hv , hv'(3) hv + ^ m0 v = hv + j m0 v m0v —— = m0 v + —

v' étant la vitesse finale de l’électron. En éliminant v' entre les deux équations
il vient

(4)

Posons v' = v — e en remarquant que e est faible et que par suite e - et e 2
c

sont négligeables ainsi que

e------J car
m0 c

hv hv___ 10~13
m0 c2 10 6

est aussi petit. Finalement on trouve

c
d’où

m0 c2 c
2 hv 2v 

7(5) S V
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Cette formule résume dans le cas considéré avec les approximations admises 
à la fois l’effet Doppler représenté par le terme 2 r/c et l’effet Compton repré 
senté par le terme — 2 h vjm() c2. L’effet Compton perturbe la vitesse de l’élec 
tron et si nous voulons mesurer celle-ci avec précision par l’effet Doppler, 
il nous faut rendre l’effet Compton négligeable devant l’effet Doppler, ce qui 

hv/m0 c2 h
conduit à prendre----- ------=------- r très petit. Alors l’effet Doppler sera seul

VjC ITÎq  v  à,
notable et nous pourrons poser

v' = v[l + 2 v/c] et /' = /(! — 2 r/c).

Mais le train d’ondes a forcément une longueur finie / : par suite, il n’est pas 
rigoureusement monochromatique et si nous introduisons le nombre d’ondes 
1/1, ce nombre d’ondes variera pour les diverses ondes monochromatiques du 
train de la quantité <5(1 /X) avec <5(1/A) ^ l/l d’après la théorie de la représen 
tation des trains d’ondes par des intégrales de Fourier. Donc, même en mesurant 
1' sans aucune erreur expérimentale, il restera encore une incertitude sur la
valeur de v car celle-ci est donnée par v = ^ ( 1 — j et l’incertitude sur 1

entraîne par suite une incertitude sur v égale à

bv = j 1' <5.

de sorte que l’incertitude sur la quantité de mouvement de l’électron le long de 
Ox après la mesure est

(6) bpx ~ mcl/2 l.

Mais la mesure simultanée de la coordonnée est, elle aussi, affectée d’une 
incertitude. En effet, l’effet Compton, bien que faible par hypothèse devant 
l’effet Doppler, existe néanmoins et provoque, nous l’avons vu, une variation 
de vitesse égale à v' — v ~ — 2 hv/m0 c = — 2 h/m0 2. Supposons la position 
initiale du corpuscule bien connue, ce qui est nous placer dans le cas le plus 
favorable. Il subsistera une cause d’incertitude sur la position après la mesure 
due au fait suivant : on ne sait pas à quel instant de la durée l/c du passage 
du train d’ondes sur l’électron on doit rapporter la diffusion et il en résulte une 
incertitude bx sur la position finale de l’électron égale à

(7) ÔX = {v-V')Le = l!i V

On a donc dans le cas le plus favorable

bx • bpx mcl 2 h l
T7 ‘ Jiâ ' c = h

et l’on retrouve l’incertitude d’Heisenberg.
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4. PASSAGE D’UN CORPUSCULE AU TRAVERS D’UN DIAPHRAGME 
RECTANGULAIRE

Comme autre exemple, nous prendrons encore la détermination de la posi 
tion d’un corpuscule, grâce à son passage à travers une ouverture rectangulaire 
de côtés 2 a et 2 b percée dans un écran plan. Pour définir les coordonnées du 
corpuscule, on sera amené à prendre une ouverture très petite, mais plus on 
diminue les côtés 2 a et 2 b de l’ouverture rectangulaire, plus on augmente 
l’importance des phénomènes de diffraction que la traversée de cette ouverture 
provoque suivant les idées de la Mécanique ondulatoire.

Pour introduire ici la quatrième relation d’incertitude dont nous n’avons pas 
encore parlé et que nous étudierons plus complètement plus tard, nous pour 
rons supposer qu’à l’effet de déterminer l’instant du passage du corpuscule 
dans l’ouverture, on emploie un volet mobile permettant de découvrir ou 
d’obturer instantanément l’ouverture. Plus on diminuera par une manoeuvre 
rapide du volet le temps d’ouverture, mieux sera déterminé l’instant du passage, 
mais en même temps le train d’ondes associé au corpuscule se trouvera raccourci 
en proportion; la monochromaticité du train d’ondes en sera diminuée et 
l’énergie du corpuscule sera de moins en moins bien définie. D’où la quatrième 
relation d’incertitude dW.ÔT > h.

Pour examiner mathématiquement le problème, prenons le centre de l'ouver 
ture rectangulaire comme origine des coordonnées, les axes Ox et Oy parallèles 
aux côtés 2 a et 2 h de l’ouverture, l’axe des z normal à l’ouverture avec son sens 
positif dans le sens de la propagation de la lumière. Soient M de coordonnées X, 
Y, 0 un point de l’ouverture et dX dY un petit rectangle entourant ce point. 
Le principe d’Huygens permet, on le sait, de calculer la valeur de l’onde élé 
mentaire envoyée par le petit rectangle dX dY dans une direction dont les 
cosinus directeurs sont a, fi, y et qui fait un très petit angle avec Oz. Si x, y, z 
désignent les coordonnées d’un point très éloigné dans la direction aPy, 
l’onde élémentaire en question a pour expression

où K est un coefficient qui varie avec la direction aPy, mais beaucoup plus 
lentement que l’exponentielle. Nous avons posé y ~ 1. L’onde résultante 
envoyée dans la direction aPy est donc

(8) d\jjxa = K dX dY expl 2 ni vt - a(x — X) + fi(y — T) + z
I

(9) ij/xp = C expl 2 ni vt — a x + Py + z
I

avec

(10) C — A -t- iB — K expl 2 ni xX ^Y dX dY
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l’intégrale étant étendue à l’ouverture rectangulaire. La symétrie de l’ouverture 
montre de suite que B est nulle de sorte que C se réduit à

(H) C -J] v &X + P Y , ,K cos 2 n-----^— dX dY .

Le cosinus peut se remplacer par la somme d’un produit de cosinus et d’un 
produit de sinus et le produit de sinus donne une intégrale nulle. On a donc

(12) A = 4K 

d’où

dX cos 2 n<xX
X

, BY KX2 . 2 nota . 2nfib dY cos 2 n c— = sin —-— sin —-—
X n a p X X

, KX2 . 2naa . 2nftb (13) ij/^p = ——- sin —;— sin —f— exp\ 2 ni
n2 aP X X

a a

vt -

Pb

ax + fiy + z

ij/af est donc nul pour 2 n-j- = knet pour 2 n -j = kn avec k entier, c’est-à-A
... • kX . kXdire dans les directions pour lesquelles on a soit a = soit p =

ij/ag est, au contraire, maximum dans les directions pour lesquelles on a,

2k + 1 X 
2 2 a et p = 2k + 1 X

2 2b'

On obtient donc ce que l’on nomme un phénomène de diffraction localisé à 
l’infini. Pour l’observer, du moins dans le domaine optique, on placera une 
lunette dont l’axe optique coïncidera avec Oz. S’il n’y avait pas de diffraction, 
on observerait seulement une image de l’ouverture rectangulaire située dans 
le plan focal de la lunette sur l’axe optique. Mais à cause de l’existence d’ondes 
planes monochromatiques inclinées sur l’axe, on obtient aussi une série d’autres 
images correspondant aux maxima de ij/^. L’intensité de ces images décroît 
quand k s’élève (puisque a et P figurent au dénominateur dans l’expression de 
•Âa/S)-

En résumé, l’onde plane qui tombe sur l’écran est de la forme

(14) ip = a exp 2 ni{ vt —

mais le passage à travers l’ouverture rectangulaire la transforme en un ensemble 
d’ondes planes de normales peu inclinées sur l’axe des z et de la forme

(15) ip = a(a, P) expl 2 ni vt - ax + Py + z
I
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les amplitudes partielles a( a, fi) présentant en fonction de a et de fi des maxima 
et des minima successifs. Comme l’intensité des ordres successifs diminue 
rapidement, on voit que l’extension du groupe d’ondes par rapport à la variable 
a est mesurée par Sa = k1(l/2 a) ^ 1/2 a, kl désignant un petit entier positif 
qui correspond à l’ordre de diffraction le plus élevé dont l’intensité soit sensible. 
De même l’extension du groupe en fi sera ôfi = /c2(l/2 b) ^ 1/2 b.

Si alors fi désigne le vecteur « nombre d’ondes » correspondant à l’onde 
diffractée de direction de propagation afiy, c’est-à-dire le vecteur de longueur 
1 /. porté dans la direction a fiy, on a

(16) px = a/l /<,. = fi/À pz = y/l ~ 1/1.

Les variations maximales de jix et py sont Ôjxx = Sa) À et 6fi, = ôfi//. d’où

(17) ôiix ^ 1/2a bjiy ^ 1/2b.

Or la position du corpuscule quand il traverse l’ouverture est connue avec des 
incertitudes Sx = 2 a et ôy = 2 b, d’où

bpx.bx ^ 1 bj.iy.by > 1 .

Mais la relation fondamentale \p \ = ù/l peut s’écrire

P = hfi

d’où

bpx.bx ^ h Spy.by ^ h

et nous retrouvons encore les inégalités d’Heisenberg.
D’autre part, si nous voulons déterminer la coordonnée z du corpuscule 

et l’époque t de son passage à travers l’écran, nous devons employer un volet 
mobile comme cela a été expliqué plus haut. Soit t  le temps pendant lequel 
le volet est enlevé. L’incertitude sur t est évidemment égale à t , celle sur z à Ut , 
U étant la vitesse de groupe des ondes \p qui, nous le savons, est égale à celle 
du corpuscule. Donc

bt = t bz — Ut  .

Mais en n’ouvrant l’ouverture que pendant le temps t , nous ne laissons passer 
à travers l’ouverture qu’un train d’ondes limité et ce train d’ondes est composé 
d’ondes monochromatiques occupant un intervalle spectral au moins de 
l’ordre de 1/t  : <5 v > l/i. On a donc

5(i/A) 1
-drôv>TTT car J_

U dv

Pratiquement on aura donc Sv $= 1/t  et <5(1/7.) ^ 1/f/i. Or, d’après les 
principes généraux de la Mécanique ondulatoire, l’incertitude sur l’énergie
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finale du corpuscule sera h ôv et l’incertitude sur la composante pz de quantité 
de mouvement est h ôp.z ~ h (5(1 /A). On a donc

ôW.ôt ^ h ôpz.ôz ^ h .

Ce sont les deux autres relations d’incertitude d’Heisenberg.

5. REMARQUE IMPORTANTE SUR LA MESURE DE LA VITESSE

Nous venons de constater sur quelques exemples que les procédés de mesure 
de deux grandeurs canoniquement conjuguées conduisent aux inégalités 
d’Heisenberg.

On peut être cependant tenté de faire l’objection suivante. A l’instant tu on 
peut effectuer une expérience montrant que le corpuscule est situé au voisinage 
d’un point A de l’espace, puis à une époque postérieure t2 une autre expérience 
montrant que le corpuscule se trouve alors au voisinage d’un autre point B 
de l’espace. Si le temps t2 — tx est suffisamment long, on_aura semble-t-il 
une très bonne détermination de la vitesse en posant v = ABj{t2 — tx) et l’on 
pourra dire que l’on connaît à la fois la position et la quantité de mouvement 
du corpuscule d’une façon précise, ce qui est contraire aux relations d’Heisen 
berg.

Mais ce n’est là qu’une apparence. On doit, en effet, d’abord remarquer que 
si l’on effectuait la mesure de vitesse envisagée pour un grand nombre de 
corpuscules dans le même état initial, on trouverait des résultats différents. 
En effet, on peut démontrer que le train d’ondes ijj de très petites dimensions 
qui correspond à la localisation du corpuscule près de A par la première 
expérience, s’étale rapidement pendant sa propagation et occupe une grande 
étendue au bout du temps, par hypothèse très long, t2 — D’après le principe 
des interférences, il y aura au temps t2 une grande région de l’espace où le 
corpuscule pourrait se trouver et l’ensemble des expériences envisagées four 
nirait une série de points B différents.

De même, et ceci est le point capital, on ne peut pas dire que l’on connaisse 
simultanément par la mesure envisagée la position et la quantité de mouvement 
du corpuscule. En effet, tout d’abord la vitesse v = AB/(t2 ~ /, ) n’est évidem 
ment connue qu’après la 2e observation : on ne peut donc pas dire qu’il y ait 
connaissance simultanément à Vinstant tx de la position et de la vitesse. Cette 
connaissance existe-t-elle à l’instant t2 ? La 2e observation nous donne bien 
la position B du mobile et permet, si l’on veut, de lui attribuer dans l’intervalle 
de temps une trajectoire rectiligne AB décrite avec la vitesse v = AB/(t2 — ;, ). 
mais ce qui importerait ce serait de connaître après la 2e observation la quantité 
de mouvement du mobile, mais l’observation de la position B trouble complè 
tement l’état de mouvement de sorte qu’on ne peut aucunement attribuer au 
corpuscule localisé en B la vitesse v calculée et l’on ne peut pas se servir de 
celle-ci pour prévoir l’évolution postérieure du mouvement. La vitesse v n’est 
connue qu’au moment où elle ne représente plus rien. La Mécanique ondu 
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latoire, comme toutes les théories physiques, a pour but la prédiction et est 
donc toujours tournée vers Vavenir. Ce qui l’intéresse, c’est l’état de nos con 
naissances après chaque observation : or, après la 2e observation comme après 
la 1re, si nous connaissons exactement la position du corpuscule, nous ignorons 
complètement sa vitesse. L’hypothèse même d’attribuer rétrospectivement 
à la vitesse la valeur v dans l’intervalle de temps (tu t2) est arbitraire car, aucune 
observation n’ayant eu lieu dans cet intervalle de temps, affirmer que le cor 
puscule a décrit la droite AB d’un mouvement uniforme est une affirmation 
arbitraire.

6. CAS DE DEUX GRANDEURS DONT LE COMMUTATEUR EST 
UN OPÉRATEUR NON NUL

Nous avons examiné le cas des tentatives de mesures simultanées de deux 
quantités canoniquement conjuguées et nous avons vu que la précision obtenue 
est toujours limitée par les relations d’Heisenberg. Mais les quantités conjuguées 
appartiennent à la première catégorie de grandeurs non commutantes : celles 
dont le commutateur est une constante. Peut-on arriver à des conclusions 
analogues pour les grandeurs non commutantes de la 2e espèce : celles dont le 
commutateur est égal à un opérateur non nul ? Nous allons examiner cette 
question dans le cas le plus important au point de vue physique, celui des 
composantes Mx My Mz du moment cinétique M.

Pour raisonner sur un cas très simple, considérons un électron qui tourne 
sur une trajectoire circulaire quantifiée à un magnéton de Bohr avec une vitesse 
constante v. Le moment magnétique Jt et le moment cinétique M de ce courant 
particulaire sont

(18) Jt = - ■ nR2 = I ■ S = ^ M=m0vR
c 2 t iR 2 c

(en supposant v c). D’où la formule bien connue qui est valable pour tout 
système de charges en mouvement (quand on néglige le spin) ainsi qu’Einstein 
l’a démontré

(19) Jt_
M

e
2 m0 c d’où si eh

4nm0c'

Nous voulons mesurer Men mesurant Jt par Faction du courant particulaire 
sur un magnétomètre placé à la distance r du courant particulaire.

Si p est le moment magnétique de l’aiguille du magnétomètre, le champ 
produit par le magnétomètre à l’endroit où se trouve le courant particulaire 
sera de l’ordre p,/r3. D’autre part, pour mesurer exactement Jt, nous devons 
à l’aide du magnétomètre évaluer exactement le champ magnétique exercé 
par le courant particulaire à l’endroit où se trouve le magnétomètre, champ qui 
est de l’ordre de Jtjr3. Il faudra donc connaître ce champ avec une incertitude

L. üli Bk o g i II . 5
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AH — (Jijr3) tp avec tp <4 1, donc connaître l’énergie du magnétomètre pi./T 
avec une incertitude de l’ordre de AE = pi AH = pi{Jé!r3) rp. La 4e relation 
d’incertitude d’Heisenberg exige alors que la durée de l’expérience soit au moins 
égale à At = hIAE = hr3/piJérp. Or, pendant cette durée, le courant particu 
laire soumis au champ magnétique ~ pijr3 = H' du magnétomètre va préces 
ser autour de ce champ avec la vitesse angulaire de précession de Larmor 
co = eH'jl m0 c. En effet, si nous représentons le petit aimant équivalent au

La mesure des grandeurs conjuguées

courant particulaire placé dans le champ H', on aura d’après le théorème du 
mouvement cinétique dM/dt = moment par rapport à 0 de la force exercée 
par H' sur Æ. Le moment de la force étant normal à TT', l’angle 6 entre ~M et

H' est constant car (M cos 0) = 0, et en projetant sur le plan normal à 7f' :

(20)

ou

d_
dt M sin 0

cos (p 
sin cp

H' Ji sin 0
sin <p 
cos cp

(21)
. — sin cp ,M{ ^ = H',

cos (p
sin (p 
cos (p

at étant la vitesse angulaire de précession de l’aimant M autour de la direction 
H'. On a donc bien

TJ, J( eH'at = H — = -------M 2 m0 c c.q.f.d..

La rotation effectuée par l’axe du courant particulaire, c.-à.-d. par le vecteur 
Jl autour de H' pendant la durée de l’expérience sera

a — at At ~ e pi hr3 
2 m0 c r3 \iJÎ t]

eh 11 2 %
^--------- r — = — >2%2 m0 c ,Æ rp rp



La mesure des grandeurs conjuguées 83

L’axe du circuit particulaire accomplit donc pendant l’expérience un grand 
nombre de tours autour de la direction de H' et seule la composante de Jt, et 
donc celle de M le long de H' peut être mesurée. On voit donc que la mesure 
d’une composante de M ne peut se faire en même temps que celle d’une autre 
composante, conformément au fait que les composantes de M ne commutent 
pas. Cependant si Jl et M sont nuis, le magnétomètre permettra de vérifier 
que les 3 composantes de ces vecteurs sont nulles : dans ce cas exceptionnel, 
la mesure simultanée des composantes sera possible, et ceci est encore en 
accord avec les prévisions de la théorie générale.

7. LA COMPLÉMENTARITÉ AU SENS DE BOHR

Nous allons maintenant préciser un point qu’il est important de noter pour 
bien pouvoir suivre certains exposés. Dans les traités élémentaires d’optique, 
on donne généralement le nom d’onde aux ondes planes monochromatiques 
parce que les trains d’ondes lumineuses usuels, bien que limités, sont assez longs 
pour que dans leur partie centrale, on puisse les confondre avec une onde 
monochromatique plane. Une « onde » ainsi définie aura une fréquence, une 
longueur d’onde et une direction de propagation déterminées : la Mécanique 
ondulatoire lui fait correspondre un vecteur p qui pointe dans la direction de 
propagation et dont la longueur | p | donne la longueur d’onde Â = h/\ p | 
dont on déduit la fréquence. L’onde associée sera donc définie par le vecteur p. 
Cette onde plane monochromatique qui est homogène et ne permet aucune 
localisation du corpuscule est l’idéalisation de l’idée de mouvement pur sans 
aucune idée de localisation spatio-temporelle.

Au contraire les coordonnées x, y, z du corpuscule correspondent à l’idée 
d’une localisation spatio-temporelle à un instant t. Les variables canoniquement 
conjuguées px, py, pz et x, y, z correspondent respectivement à l’aspect ondula 
toire de l’entité « corpuscule », aspect qui est purement dynamique sans loca 
lisation et à l’aspect granulaire du corpuscule qui en un certain sens exclut 
l’idée de mouvement (Zénon d’Elée). Si alors on se reporte aux inégalités 
d’Heisenberg, on voit que les corpuscules élémentaires de la Physique ne 
peuvent être décrits par une onde plane ou par un grain localisé que dans des 
cas extrêmes : en général l’aspect onde plane et l’aspect grain localisé existent 
tous deux, mais sont tous deux un peu flous, fonde tp associée étant formée par 
la superposition d’un certain nombre d’ondes planes monochromatiques et la 
localisation restant incertaine dans une région plus ou moins étendue de 
l’espace.

Les relations d’incertitude d’Heisenberg nous apprennent même que, plus 
une observation permet de préciser l’un des aspects du corpuscule, plus l’autre 
s’estompe. Ceci permet d’expliquer comment la Mécanique ondulatoire permet 
d’utiliser simultanément ces deux conceptions, en apparence contradictoires, 
d’onde plane homogène indéfiniment étendue et de grain localisé : c’est que 
ces deux images si différentes ne peuvent jamais entrer en contradiction fia-
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grante, chacune d’elles tendant à s’effacer dès que l’autre s’affirme. C’est là un 
aspect très intéressant des conceptions modernes de la Microphysique. M. Bohr 
l’a exprimé en disant : « L’onde et le corpuscule sont des « aspects complémen 
taires » de la réalité. » Chaque fois que le comportement de l’entité « cor 
puscule » peut se représenter par la propagation d’une onde plane monochro 
matique, son aspect granulaire disparaît et chaque fois que ce comportement 
peut se représenter par le déplacement d’un grain localisé dans l’espace son 
aspect ondulatoire disparaît. Le concept de « complémentarité » ainsi introduit 
par Bohr est très curieux : il se pourrait, comme Bohr l’a lui-même indiqué, 
qu’il ait des applications en dehors du domaine de la Physique (1).

Pour illustrer l’idée de complémentarité, prenons l’exemple concret du 
phénomène de la diffraction des électrons par un cristal. Les électrons sont 
produits dans un « canon à électrons », dispositif comprenant un fil chaud 
qui émet les électrons et un système de grilles portées à des potentiels appro 
priés, qui imprime à tous les électrons une même accélération dans une même 
direction : on obtient donc ainsi un faisceau cylindrique d’électrons mono 
cinétiques. Le faisceau d’électrons est projeté sur la surface d’un cristal : les 
électrons diffusés sont recueillis sur une plaque photographique où ils pro 
duisent des impressions ponctuelles sur la couche sensible. (*)

Cristal

(*) Note G.L. : Est-il besoin de rappeler que l’opinion de de Broglie sur la 
complémentarité a, par la suite, évolué ? On trouve, par exemple, dans « Certi 
tudes et incertitudes de la science », le passage suivant : « Si l’emploi du mot 
« complémentarité » sert seulement à traduire l’apparition successive d’appa 
rences corpusculaires et d’apparences ondulatoires dans des phénomènes 
indéniables, cet emploi est entièrement légitime, mais en revanche, il ne consti 
tue en aucune façon une explication réelle de la dualité des ondes et des cor 
puscules. On peut comparer la complémentarité à la « vertu dormitive » de 
l’opium dont s’est moqué Molière : il est parfaitement légitime de traduire les 
propriétés soporifiques de l’opium en attribuant à cette substance une « vertu 
dormitive », mais il faut bien se garder de voir dans ces mots une explication 
de ces propriétés » (réf. III, 8, p. 20).



La mesure des grandeurs conjuguées 85

La section droite du canon à électrons est supposée infiniment grande par 
rapport à la longueur d’onde de l’onde associée à chaque électron. Chaque 
électron sortant du canon a donc une quantité de mouvement parfaitement 
déterminée puisqu’il a subi une chute de potentiel connue, mais sa position est 
entièrement indéterminée à l’échelle de la longueur d’onde : on peut donc le 
représenter par une onde plane monochromatique. Cette onde vient frapper 
la surface du cristal et pénétrer même dans ses premières couches d’atomes. 
La régularité de la disposition des atomes dans le cristal provoque alors le 
phénomène de diffraction grâce auquel la probabilité de trouver ensuite l’élec 
tron dans telle ou telle direction varie avec la direction envisagée et présente 
des maxima intenses dans certaines directions privilégiées (théorie de Laue- 
Bragg). Ce processus de diffusion ne peut se décrire qu’en employant l’image 
ondulatoire car il suppose que toute une portion étendue du cristal participe 
au phénomène et il fait intervenir les différences de phase (notion essentielle 
ment ondulatoire !) entre les ondelettes diffusées par les divers atomes régu 
lièrement distribués du cristal. Si l’on cherchait à représenter la diffusion des 
électrons à l’aide de l’image granulaire, il faudrait considérer une trajectoire 
électronique venant frapper le cristal en un point, telle que la ligne brisée 
indiquée plus haut sur la figure. Mais alors la réflexion de l’électron sur le cristal 
ne pourrait dépendre que des propriétés physiques de la surface cristalline 
au point d’impact et non de toute la structure régulière du cristal; de plus, 
il serait impossible d’expliquer avec cette image corpusculaire l’intervention 
des différences de phase.

Donc, dans la diffraction des électrons par le cristal, c’est l’aspect ondulatoire 
de l’électron qui se manifeste : son aspect granulaire disparaît complètement. 
Mais voici ensuite l’électron diffusé qui vient produire dans la couche sensible 
de la plaque photographique une impression bien localisée, comme une balle 
qui vient perforer en un point déterminé la cible qu’elle atteint. Dans ce second 
phénomène, l’électron se manifeste comme un corpuscule localisé, comme un 
grain, et rien ne décèle plus son aspect ondulatoire.

Voici donc une même expérience où se produisent successivement deux 
processus dont l’explication exige pour l’un l’intervention de l’image ondula 
toire et pour l’autre celle de l’image granulaire. Mais pour chaque processus 
une seule des deux images intervient de sorte qu’il n’y a jamais contradiction 
flagrante.

8. CALCUL DE BOHR POUR LES TROUS D’YOUNG

Voici une illustration de la complémentarité donnée par Bohr et qui est d’un 
type un peu différent. On sait en quoi consiste l’expérience des trous d’Young. 
On envoie normalement sur l’une des faces d’un écran percé de deux trous un 
faisceau cohérent de lumière monochromatique. Du côté postérieur de l’écran, 
les deux trous qui sont très rapprochés laissent passer la lumière incidente et 
jouent le rôle de deux petites sources de lumière cohérente : les ondes lumi 
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neuses envoyées derrière l’écran par ces deux petites sources se superposent 
et cette superposition donne par le jeu des interférences des franges brillantes 
et obscures. En évaluant la différence de phase des ondes parvenant de chaque 
trou en un point donné, on peut calculer la position des franges, position qui 
naturellement dépend de la longueur d’onde de l’onde employée. L’observation 
confirme entièrement les prévisions de la théorie ondulatoire et c’est pourquoi 
l’expérience des trous d’Young a été l’une de celles qui ont apporté, il y a 
environ 150 ans, des preuves décisives en faveur de la théorie ondulatoire de la 
lumière.

Nous avons donc ici une expérience où l’aspect ondulatoire de la lumière se 
manifeste très clairement. Mais, si nous voulons introduire dans la description 
de cette expérience l’idée de photon considéré comme un grain localisé, nous 
rencontrons d’insurmontables difficultés. La trajectoire du photon devrait 
avoir passé par l’un ou l’autre trou, ce qui détruirait la symétrie du rôle des 
deux trous, symétrie qui est indispensable pour l’interprétation du phénomène. 
Comment d’ailleurs expliquer que la trajectoire du photon qui passe par l’un 
des trous soit influencée par la présence de l’autre trou ? Et cependant une telle 
influence serait nécessaire pour rendre compte d’un phénomène qui dépend 
de la situation réciproque des deux trous. Comment faire intervenir dans une 
image purement granulaire la différence de phase provenant de l’écartement 
des trous, différence de phase sans laquelle on ne peut effectuer une prévision 
correcte du phénomène observé ?

L’idée de complémentarité de Bohr vient lever ces difficultés. Les interférences 
produites par le dispositif d’Young constituent un phénomène où se manifeste 
l’aspect ondulatoire de la lumière : l’aspect granulaire de celle-ci ne pourrait 
ici se manifester sans amener à des contradictions. Serrant la question de plus 
près, M. Bohr a montré que tout dispositif permettant de dire par lequel des 
trous d’Young a passé le photon ferait nécessairement disparaître le phéno 
mène d’interférences : permettant de préciser l’aspect granulaire de la lumière, 
ce dispositif ferait nécessairement disparaître son aspect ondulatoire. Voici 
dans ses grandes lignes le raisonnement de Bohr.

x

Onde incidente O-
D 4 y

B
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Nous supposerons pour préciser, que la lumière monochromatique envoyée 
sur la face antérieure de l’écran d’Young provient d’une fente percée dans un 
premier écran et jouant le rôle de source de lumière. Nous désignerons par a 
la distance des trous d’Young et nous choisirons des axes des x et des y comme 
il est indiqué dans la figure page 86.

D désignera la distance des écrans supposés parallèles, X la longueur d’onde 
de la lumière utilisée.

Supposons que la position dans le sens des x de la première fente soit connue 
avec une incertitude Ax. Pratiquement a et Ax sont toujours petits devant D.

La différence des phases des ondes lumineuses qui atteignent les 2 trous 
d’Young sera égale à

(22) A(p 2 n
~r ID- + (2 + Ax ) — D2 + \~Ax

soit approximativement Acp = 2 n(a Ax/XD).
Pour qu’après le second écran nous puissions avoir des franges nettes, il faut 

que la différence de phase des ondes lumineuses émanant des 2 trous d’Young 
soit bien déterminée, c.-à-d. que l’incertitude dont la différence de phase peut 
être affectée doit être très inférieure à 2 7t, ce qui nous donne

(23) Ax <§ XD/a .

D’autre part, pour que nous puissions dire par lequel des trous d’Young le 
photon qui a traversé la première fente ira ensuite passer, il faudrait connaître 
avec une précision suffisante la direction de la quantité de mouvement de ce 
photon à la sortie de la première fente. Si px et py sont les composantes de cette 
quantité de mouvement, le point du second écran atteint par le photon aura 
une abscisse égale à D(pjpy) et si px est affectée d’une incertitude Apx, cette 
abscisse sera elle-même affectée de l’incertitude D(Apx/py). Pour que l’on puisse 
affirmer que le photon a passé par l’un des trous d’Young, il faut donc, on s’en 
rend compte aisément, que l’on ait

(24) a p D A px 
Py

Mais le faisceau de lumière issue de la première fente est à peu près parallèle 
à l’axe des y de sorte que l’on a approximativement py = p = hjX et par suite 
la condition précédente s’écrit approximativement

(25) a D (Apjp) — D Apx(Xjh).

Mais nous savons que, quels que soient les dispositifs employés pour mesurer 
la coordonnée x du photon et la composante px de sa quantité de mouvement 
quand il traverse le premier écran, on a toujours l’inégalité d’Heisenberg 
Ax.Apx ^ h.
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La condition (25) donne donc a fortiori 

(26) Ax XD/a .

Maintenant il est évident que les inégalités (23) et (26) sont contradictoires. 
On en conclut que si l’on peut préciser par lequel des trous d’Young a passé 
le photon il est impossible d’observer le phénomène d’interférences et qu’in- 
versement s’il est possible d’observer les interférences, on ne peut dire par quel 
trou a passé le photon. L’aspect granulaire et l’aspect ondulatoire de la lumière 
jouent ici en quelque sorte à cache-cache et n’entrent jamais en conflit direct : 
c’est là l’essentiel de l’idée de complémentarité de Bohr (*).

Le raisonnement précédent s’appliquerait aussi bien aux électrons et aux 
autres corpuscules matériels. L’expérience des trous d’Young doit en effet, du 
moins en principe, être réalisable pour ces corpuscules. Le même genre de 
considérations pourrait d’ailleurs être étendu à d’autres dispositifs interféren- 
tiels.

(*) Note G.L. : Louis de Broglie a, par la suite, critiqué ce raisonnement 
et lui en a substitué un autre (voir réf. II, 29, p. 65). Il observe notamment : 
« La façon dont intervient la relation d’incertitude est un peu singulière car 
elle suppose implicitement qu’on puisse mesurer la composante px de la quantité 
de mouvement du corpuscule par le recul le long de l’axe des x du premier écran, 
ce qui est impossible puisque cet écran a une masse macroscopique et peut être 
solidement fixé. De plus, le raisonnement ne fait pas intervenir la largeur de la 
fente du premier écran (qui ne se confond pas avec l’incertitude Ax), largeur 
qui joue un rôle essentiel dans le phénomène de diffraction qui permet à fonde, 
après son passage à travers la fente du premier écran, d’atteindre les deux trous 
d’Young. » Et de Broglie retrouve le résultat de Bohr en montrant que pour 
viser l’un des trous d’Young, il faudrait augmenter le diamètre de ce premier 
trou, mais que ceci aurait pour effet de faire disparaître le phénomène d’inter 
férences.



CHAPITRE VIII

FORME PRÉCISE DES RELATIONS 
D’INCERTITUDE

1. THÉORÈME SUR LES DISPERSIONS DES GRANDEURS NON 
COMMUTANTES

En prenant comme postulat fondamental la possibilité de représenter à 
tout instant l’état de nos connaissances sur un corpuscule par une fonction 
d’onde i]/, nous avons montré, en nous appuyant sur les propriétés des déve 
loppements de Fourier, que les incertitudes sur deux quantités canoniquement 
conjuguées petq obéissent aux inégalités

(1) Aq.Ap > h

qui sont exactes en ordre de grandeur. C’est là l’énoncé « qualitatif » des 
relations d’Heisenberg et nous avons vu qu’aucune expérience ne peut nous 
fournir pour des grandeurs canoniquement conjuguées des valeurs plus 
précises que ne le permettent lesdites relations.

Nous avons aussi montré que la mesure simultanée de deux grandeurs 
dont les opérateurs ne commutent pas est en général impossible, même si ces 
grandeurs ne sont pas canoniquement conjuguées (exemple des composantes 
du moment cinétique) : cependant en ce cas, il peut arriver exceptionnellement 
que la mesure simultanée soit possible (si les grandeurs ont la valeur 0).

Nous allons retrouver ces résultats d’une manière plus précise en démontrant 
un théorème sur la dispersion des grandeurs non commutantes qui paraît dû à 
M. Pauli. Nous allons en donner deux démonstrations d’une forme un peu 
différente.

Première démonstration :
Nous introduirons d’abord une définition nouvelle. Soit F un opérateur 

linéaire défini pour certaines variables dans un domaine D. Nous appellerons 
« opérateur adjoint » de F l’opérateur F + défini également dans D tel que

f* Fg dt (F+ f)* 9 dx
D D
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pour toutes fonctions / et g qui sont finies, uniformes et continues dans D et 
s’annulent aux limites de D de telle façon que les intégrales de surfaces venant

de l’intégration par parties de soient nulles. Si l’on compare la définition de

F + avec la définition d’un opérateur hermitien

f* Ag dx = gA* f* dx,

on voit que si F est hermitien F + = F de sorte qu’un opérateur hermitien est 
son propre adjoint (hermitien = self adjoint).

Que l’opérateur linéaire soit ou non hermitien, la valeur moyenne de FF + au 
sens de la Mécanique ondulatoire est toujours réelle et positive (ou nulle) 
car

(2) FF+ 11/* FF + \\t dx
D

(F+ i/0* F+ iA dx = \F+ij/\2 dx ^ 0.
D JD

Ceci posé, nous sommes en état de démontrer le théorème annoncé qui 
s’énonce :

Théorème : Si deux grandeurs physiques observables correspondent res 
pectivement aux deux opérateurs linéaires et hermitiens A et B, on a

(3) °AoB>\ | ÜTSÎ |

[A, B] étant le commutateur de A et de B et aA, oB étant les dispersions (écarts 
quadratiques) définis par les formules

(4) ^ = J(A - A)2 oB = J(B - B)2 .

Pour démontrer ce théorème fondamental, nous considérerons l’opérateur 
linéaire (non hermitien) A + iXB où X est une constante réelle : son adjoint est 
A — iXB et, par application de la formule (2), nous voyons que la valeur
moyenne ___________________ __________________

(A + iXB) (A - iXB) = A2 + X2 B2 - iX[A, B]

est réelle, positive ou nulle. Donc la fonction de X

f(X) = Â1 + X2 B2 - iXÏÂTB]

est réelle et non négative. On en conclut que [A, B] est purement imaginaire.
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De plus, /(A) est minimum pour A0 =

/(Ao)

L _j et a alors pour valeur
9 d  2

, i(P7gI)2
4 Æ2

Comme cette valeur doit être positive ou nulle, on a 

(46/s) A*.B1 > - | ([X, B])2 .

Posons

SA = A - A ôB — B — B

A et B sont des nombres, A et B des opérateurs : donc SA et SB sont des opé 
rateurs. On trouve aisément

[SA, SB] = [A - A, B - B] = [A, B].

Nous pouvons appliquer l’inégalité (4) aux opérateurs <5^4 et SB et compte 
tenu de la dernière relation, nous obtenons

Comme [A, B] est imaginaire pure, nous avons donc

Oa-Ob =J(SÂy2.JJsB? > \ | [A, B] |

ce qui est le théorème annoncé.
Appliquons le théorème à deux grandeurs canoniquement conjuguées 

pour lesquelles [A, B] = — 6/2 ni, il vient

(5) [A, B]
D

h
2 ni ’

quantité purement imaginaire comme cela doit être. 
Le théorème nous donne alors

(6) aA’ oB ^ 6/4 n

Cette formule constitue une forme tout à fait précise des relations d’incertitudes 
d’Heisenberg. En particulier nous aurons

(7) ox. aPx ^ h/4 n .
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Appliquons encore le théorème à deux grandeurs observables non commu 
tantes dont le commutateur est égal à un opérateur C ([A, B] = C), on aura 
[A, B] = C et par suite

(8) > | C |/2 .

En particulier pour

on aura

(9)

A = Mx et B — My, [A, B]

Généralement le produit des dispersions sera supérieur à zéro. Il pourra 
cependant être nul dans le cas exceptionnel où Mz = 0.

Deuxième démonstration :
Nous allons donner une deuxième démonstration de la formule 

g x. g Px ^ h/4 n pour les grandeurs canoniquement conjuguées.
Soient qk une coordonnée et pk le moment conjugué. On a

(10) Qk = \jj* qk (A dx .
D

Prenons qk comme origine des qk de sorte que la moyenne de qk soit zéro. 
Nous aurons alors

= (q - Qk)2 = Qk •A* Qk <A dr .
JD

D’autre part

«n» 2ml oqk

et

ffpk = (Pk ~ Pk? = PÎ ~ (Pk)2

= 11/*
JD

Posons par définition

h2 
4 7z2

d2iA
dqï

dx - (pk)2 .

r iA exp\(12)
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La fonction if/ ' est, comme la fonction i//, finie, continue et uniforme dans D 
et nulle aux limites de D. On peut écrire

(13) i/d* q2 i/d dr ; tjpk 
D

l/d*
D

h2 ' 
4 n2

d2i/d
dql

dx

en tenant compte de i/d* i/d = \ \j/ |2 de sorte que i/d comme i)/ est normée. 
On vérifie facilement la seconde formule en remplaçant i/d par ij/ exp(p~k qk\

Comme i// est nulle aux limites de D, une intégration par parties nous permet 
d’écrire

a2
Pk

h2 f 8iy* #' ,
---- T “T—xr—dx
4 71 JD dcik d(lk

Je dis maintenant que l’on a

(14) ip’* i/d dx ) ^ qk [//'* i/d dx.
di/i'* d\j/' 
8qk 8qk dx .

Pour le démontrer considérons deux séries de grandeurs complexes 
a1 ... an; bj ... bn. On a évidemment

Z ai bi Z l ai bi I ^ ZI at l \bi

d’où

et par suite

Z I «I l2-Z I bi I2 -

Z (ai bi)

Z ai bi

< Zl«il l bi

> Z l ai l2 ZI bi I2 - ( Z l ai l l bi

Or le dernier membre de cette inégalité se trouve égal à

Z (I ai I I bj I - I bi I I «J I)2
i> j

c’est-à-dire à une somme de carrés. On a donc

Zl«il2-Zlbil2 ^ Y.aibi
i i i

ou plus explicitement
\albl + a2 b2 + — \2 ^ (I «i |2 + I a2 |2 + •••) (| bk \2 + | b2 |2 + •••)

(15)
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Divisons maintenant le domaine D en éléments Ax et considérons les deux 
suites de quantités complexes

[qk'l'’V*]a .2'/^2

'dxp'*
dqk

;
'dxpr
Sqk AXi

'dxp'*
<3<î* 2 5

Jt 2
'dj/
dqk Ax2

s/^2 ■

la quantité [<?* étant la valeur moyenne de qk\j/' dans l’élément Axu 
etc... Appliquons à ces deux suites de quantités la formule précédente : il vient

I qk 4>
, dxp'*

dqk Ax i
Axi + I / ,* dxp'

w. A T;
An

2Efe2^'^'*Lr,dT;.2X dxp' dxp'* 
ôqk ôqk A T;

Si l’on augmente indéfiniment le nombre des éléments Ax, en faisant tendre 
chacun d’eux vers zéro, on obtient à la limite

(16)
,,a*" , 

q‘*Tig;dx +

^ 4 qk ty' ÿ'* dx
dxp' dxp'*

B dqk dqk
dx .

La fonction xp' étant nulle aux limites de D, l’intégration par parties donne

"‘ëg xp'* xp' dx xp'* xp' dx

et la formule (14) annoncée se trouve ainsi démontrée. 
On a alors

a2
qk'

h2

4 n2
qk xp'* xp' dx.

D

’ dxj/*_ _ dxj/ 
n dqk ôqk

dx.

puis par (14),

2 2 ^ h2
°qk' aPk ^ {èn2 xp'* xp' dx

puisque xp’ est normée dans D. Donc

ffqk' °Pk > hl4 71

h2
16 n2

et nous retrouvons le théorème sur la dispersion des grandeurs canoniquement 
conjuguées.
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2. CARACTÈRE OPTIMUM DU PAQUET D’ONDE GAUSSIEN

La seconde démonstration que nous venons d’obtenir du théorème des 
dispersions va nous permettre de démontrer que pour obtenir le signe d’égalité 
dans l’inégalité oqk. oPk ^ h/4 n, il faut que le \ tj/ \ dépende de qk seulement 
par l’exponentielle Gaussienne

exp
(dk - qkï

2 a2

On a alors un train d’ondes ou paquet d’ondes Gaussien : ce paquet d’ondes 
correspond à la plus petite dispersion et, en ce sens, il est « optimum ».

Pour le montrer, reportons-nous au raisonnement (p. 126) qui nous a fourni
la formule

2.m- > bt

Nous voyons que, pour avoir dans cette formule le signe d’égalité, il faut et il 
suffit que tous les quotients | at |/| ht | aient la même valeur, quel que soit 
l’indice i.

Le raisonnement fait pour obtenir l’inégalité (14) montre alors que pour avoir
~d\r~dans cette formule ( 14) le signe d’égalité tous les quotients

dqk
doivent avoir la même valeur dans tous les éléments z It ,-.

Il en résulte que pour avoir le signe d’égalité dans la formule

/[dk I «A' IL

il est nécessaire que
> h/4 71

i .8\r\
dk I I bqk

ait la même valeur quel que soit qk.
| i/d | considérée comme fonction de qk doit donc obéir à l’équation diffé 

rentielle

07) iijLJ_(Wi

qui a pour intégrale générale

I «A' I = C' expiCql/2).

Puisque | i/d | doit être nul pour qk = ± co, C doit être négatif et l’on peut 
poser C = — l/a2. On trouve alors

(18) I <A' I = C' exp(- ql/2 a2).



96 Forme précise des incertitudes

Ce résultat est obtenu avec l’hypothèse faite plus haut (p. 92) que qk est nul. 
S’il n’en est pas ainsi, on doit écrire

(19) I I = I lA I = C' exp(- qk - qk)2/2 a2 .

La constante C' peut d’ailleurs dépendre des variables q autres que qk. 
On voit d’ailleurs aisément que aqk = aj-Jl. En effet

(20)

(<fk ~ dkŸ exp( - (qk - qd2/a2) dqk

f* OC

exp( - (qk - qd2/a2) dqk
J — OO

u2 exp(— u2la2) du 
* — oo a

~ 2 ' 

exp( — u2/a2) du
J — oo

Si la fonction d’onde est un paquet d’ondes Gaussien en qk, la probabilité 
de présence correspondant à l’intervalle (qk, qk + dqk) est proportionnelle à 
I </d |2 ~ exp(— (qk — 7h)2/2 o2k). Cette probabilité obéit donc à une loi de 
Gauss.

L’état ijz considéré est celui qui résulte d’une mesure de qk affectée d’une 
erreur possible à répartition Gaussienne. Ce cas est le plus favorable en ce qui 
concerne les incertitudes d’Heisenberg puisqu’alors le produit des dispersions 
est égal à h/4 n au lieu d’être supérieur à ce nombre et atteint ainsi sa valeur 
minimum.

Remarque sur les paquets Gaussiens.
La propriété que nous venons d’indiquer montre l’intérêt que présente en 

Mécanique ondulatoire la considération des paquets d’ondes Gaussiens 
considérés précédemment. Ces paquets d’ondes possèdent une autre propriété 
remarquable que l’on peut énoncer ainsi : un paquet d’ondes Gaussien en qk 
est également Gaussien en pk.

Supposons en effet que nous ayons

I I = C exp(- qH2 a2) = C exp{- qlj4 a2k)

(en supposant q^ = 0). Alors | i//12 = C2 exp{ — qk/2 <r2k). C peut dépendre des 
q autres que qk. La fonction d’onde i/j  sera développable en intégrale de Fourier 
sous la forme

C(pk) exp i
2 ni \ 

h Pk Qk J dpk(21)
— OO
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et les C{pk) peuvent dépendre des variables q autres que qk. Nous ne les inscri 
vons pas dans nos équations car elles n’interviennent pas dans le raisonnement. 

La théorie des intégrales de Fourier nous apprend que
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(22)

d’où, comme

C(Pk) ijr exp\ 2 ni
— pkqk dqk

<A = C exp[ - expf— ^ pk qk

C(Pk) = 4=
yj h K -

exp l
2 ni _
~H~Pk qk pkqk dqk

c(pk)
qk

-a^/2
2 ni(pk - pk) q~P

hj2 _ .
X

x exp |
4 n2 * (pk - pk)2 a2' 
h2 2

dqk

d’où

/ 4 t j2 a2\
C(pk) = C' expl - -p- (pk - K)2 Y 

C(Pk) |2 = I C' |2 exp(- 4-p~(Pk ~ K)2 a2) =

(23) C(Pk) |2 = I C' |2 exp'

= | C' |2 expl
4 n2 (pk - pkf 
h2 a'2

4 n2 (pk - pD2\
h2 2 < )

avec a' = 1 /a. Comme | C(pk) \2 est la probabilité de la valeur pk, on voit que la 
distribution de probabilité de pk est Gaussienne et que l’on a

2 _ 1 /a' h\2 _ h2 1 _ h2 2^
Pk 2 l 2 71 / 8 n2 a2 16 7r2 a2

d’où

cjqk. aPk = h/4 n puisque a = J2 aqk.

Nous retrouvons la relation des dispersions avec le signe d’égalité, mais nous 
voyons que le paquet d’ondes est Gaussien à la fois enpk et en qk.
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3. COMPARAISON DU THÉORÈME SUR LES DISPERSIONS AVEC 
LES RELATIONS QUALITATIVES D’INCERTITUDE 
DE HEISENBERG (PAULI, ROBERTSON)

Nous sommes maintenant en possession de deux énoncés relatifs aux incer 
titudes. Tout d’abord nous avons démontré en nous appuyant sur les propriétés 
des développements de Fourier que l’on a en ordre de grandeur

(24) ôp.ôq^h.

Cet énoncé est quelque peu qualitatif car il n’est vrai qu’en ordre de grandeur. 
On le voit en se reportant aux considérations sur les développements et, plus 
nettement encore peut-être, en reprenant l’argument du microscope d’Heisen- 
berg où la démonstration de la relation d’incertitude fait intervenir la définition 
optique du pouvoir séparateur (deux points voisins de l’objet ne peuvent être 
séparés par un instrument d’optique que si le centre de l’image de diffraction 
due à l’un des points coïncide avec le premier minimum de l’image de diffraction 
due à l’autre point) et cette définition du pouvoir séparateur a quelque chose 
d'un peu arbitraire et n’est vraie que d’une façon approchée.

En second lieu, nous avons obtenu l’énoncé tout à fait précis

(7) oq. <7P ^ h/4 n

qui provient de l’application aux quantités canoniquement conjuguées q 
et p de la relation générale

(3) a a - &b  2 AÊ ~ BA .

Nous avons vu que les relations d’Heisenberg sous leur forme qualitative 
signifient qu’à tout moment et en particulier quand on vient d’effectuer une 
mesure, il existe sur la valeur de deux quantités canoniquement conjuguées p 
et q des incertitudes dont le produit est toujours en ordre de grandeur supérieur 
ou égal à h. La même conclusion s’obtient d’une façon plus précise à partir de 
la relation sur les dispersions. A tout instant et en particulier tout de suite 
après une opération de mesure, nos connaissances sur l’état d’un système sont 
représentées par une fonction d’onde tj/ et deux grandeurs conjuguées p et q ont 
des valeurs aléatoires correspondant à des distributions de probabilités telles 
que le produit des dispersions soit toujours supérieur ou égal à h/4 n.

Le théorème sur les dispersions conduit donc, tout comme les relations 
qualitatives d’Heisenberg, à la conclusion qu’il est impossible dans une même 
opération de mesure de mesurer avec précision deux quantités conjuguées p et 
q, sans quoi après la mesure p et q seraient connues avec certitude et l’on 
aurait aq = 0, op = 0 ce qui est en contradiction avec la relation oq. op ^ h/4 n. 
Après la mesure, l’état de nos connaissances ne serait plus représentable par 
une fonction ip car cette représentation entraîne, nous l’avons vu, la relation 
<V g p ^ h/4 n-
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Si j’insiste sur ce point, c’est qu’on pourrait être tenté de raisonner comme il 
suit. Considérons un grand nombre de systèmes dans un même état, c.-à-d. 
représentés par une même fonction i// et cherchons à mesurer simultanément 
deux grandeurs conjuguées p et q. Nous savons que pour chaque système nous 
pouvons obtenir des valeurs différentes avec diverses probabilités que la 
connaissance de ip nous permet de calculer. On pourrait alors croire que la loi 
de dispersion exige que les dispersions sur p et sur q seront toujours telles que 
leur produit soit supérieur ou égal à h/4 n, mais qu’elle ne s’oppose pas à ce que 
dans certaines mesures on obtienne simultanément des valeurs précises pour p 
et q. L’erreur que l’on commet ainsi vient de ce que l’on considère seulement 
l’état des probabilités avant la mesure (représentée par le ip antérieur à la 
mesure). Or il faut aussi que l’état qui suit la mesure soit représentable par une 
fonction d’onde tp et que la relation des dispersions s’applique à la distribution 
de probabilité qui lui correspond. C’est ceci qui permet de déduire de la relation 
des dispersions l’impossibilité de mesurer simultanément p et q.

4. CONSIDÉRATIONS DIVERSES SUR LES INCERTITUDES. 
INCERTITUDES « A BORDS NETS »

Pour bien préciser la nature des incertitudes Sp et ôq qui interviennent 
dans les relations qualitatives d’Heisenberg, nous allons regarder les choses 
de plus près.

Soit une grandeur observable A. Pour un système dans un état ijj donné, 
les diverses valeurs de A ont des probabilités bien définies calculables à partir 
du tp par les principes généraux de la Mécanique ondulatoire. Nous préciserons 
la notion d’incertitude au sens d’Heisenberg en appelant « incertitude de la 
grandeur A dans l’état ip » le plus petit intervalle SA des valeurs de A qui 
contient toutes les valeurs de A dont la probabilité totale est supérieure à 
1 - e, e étant une grandeur très petite (par exemple e = 1/1 000). Une mesure de 
A conduira presque certainement à une valeur comprise dans l’intervalle SA. 
Cette définition des incertitudes dépend de la valeur choisie pour e ; mais, une 
fois e choisie, les incertitudes sont bien définies.

Cette définition adoptée, l’étude des décompositions de Fourier montrera 
ce qui suit : si SA et SB sont les incertitudes dans l’état \p sur deux quantités 
canoniquement conjuguées A et B, on a

(25) S A. S B ^ a(e) h

tx(s) étant un nombre au moins de l’ordre de grandeur de l’unité dont la valeur 
exacte est variable avec e . Plus e est choisi petit, plus a sera grand. Avec les 
petites valeurs de e pratiquement (souvent implicitement) admises, a(e) est 
voisin de l’unité. Nous retrouvons ainsi avec quelques précisions supplémen 
taires les relations d’Heisenberg.
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On peut imaginer que l’un des intervalles SA ou SB précédemment définis 
soit « à bords nets », c’est-à-dire que la probabilité de trouver des valeurs de 
A (ou B) en dehors de SA (ou SB) soit nulle : alors on peut prendre e = 0.

Dans ce cas on peut montrer que a(e) = a(0) = oo et SA.SB = oo. On peut 
justifier ce résultat en reprenant l’analyse des développements de Fourier : 
nous en donnerons un exemple tout à l’heure. Ainsi, si l’onde i// n’est diffé 
rente de 0 que dans un intervalle Ax de la variable x (intervalle à bords nets), 
la décomposition de Fourier de ijj fait intervenir toutes les valeurs de px et 
Apx = oo. Donc Ax.Apx = Ax x oo = oo.

Mais en fait ce résultat, parfaitement exact du point de vue mathématique 
n’a qu’un intérêt pratique très limité, car en général dès que la probabilité 
tombe au-dessous d’une certaine valeur e, elle est pratiquement nulle. C’est 
pourquoi la relation d’Heisenberg SA.SB ^ a h avec a voisin de 1 est toujours 
pratiquement vérifiée, même si l’un des intervalles SA ou SB est à bords nets.

La question est analogue à la suivante. Dans la théorie de la largeur des 
raies spectrales, on démontre que le profil des raies dans l’échelle des fréquences 
est le suivant :

Théoriquement les raies ont une largeur infinie, mais ce résultat mathématique 
ment exact n’a pas de sens réel, car dès que l’intensité I(v) tombe au-dessous 
d’une certaine valeur, elle est pratiquement nulle parce qu’inobservable. 
Pratiquement les raies spectrales ne s’étendent pas sur toute l’échelle des fré 
quences, mais elles ont une largeur assez bien définie.

Exemples d'incertitude à bords nets
Pour illustrer les considérations précédentes, nous allons étudier un exemple 

simple d’incertitude à bords nets. Nous supposons une onde tjj telle que

ij/ = 0 pour x < a et x > b;

(26)

•A =
exp{ — ik0 x) 

yjb — a
pour a < x < b.

Le facteur assure la normalisation de l’onde
'J b — a

i/' \2 dx = 1 .
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Entre x = a et x = b, l’onde a la forme d’une onde monochromatique : 
en dehors de cet intervalle « à bords nets » tj/ = 0. Si l’on mesure la coordon 
née x, on a la certitude de la trouver comprise entre a et b (ôx = b — a avec 
£ = 0).

Posons k0 = (2 n/h) p0 et k = (2 n/h) p et cherchons le développement de 
Fourier du t/o On a

1 n
ijt = ; c(k) exp( — ikx) dk avec c(k) =

\J 2 TC J — q o

(27)

exp\i{k — k0) x]
TT , a Jb dx

d’où

c(k) = / „ Jl-----rn. [exp[i(k - k0) b] - exp[i(k - k0) a]]
sj2 n(b - a) ltK ~ Ko)

et par suite

c(k) I2 = 1 1 1
2 n b — a (k — k0)

1 4
2 n (b — a) (k — k0)2

2 2[1 — cos(k — k0)(b — aj\ 

(k - k0) (b - a)
sin

(28) c(k) 2 =
2 _ b — a sin2 u ^ _ (k — k0)(b — a)

2 n avec u = O-

On voit donc que | c(k) \2 n’est rigoureusement nul qu’à l’infini sur l’axe des k. 
A un intervalle à bords nets en x, correspond donc un intervalle en k (ou p) 
infini. Si donc on prend e = 0, on a Ax = b — a et Apx = oo, d’où

Ax.àpx = oo .

| c(k) \2 diminue rapidement quand k s’éloigne de k0, mais est encore notable 
pour u > n c’est-à-dire pour Ak > 2 n/(b — a). On a donc certainement 
Ax.Ak > 2 n, soit Ax.Ap > h. Mais si k s’éloigne de k0 davantage, la valeur

de | c(k) \2 diminue rapidement. On calcule que | c(k) \2 ~ | c(k0) \2

pour Ap.Ax = 3 h et | c(k) \2 ~ ^ | c(k0) \2 pour Ap.Ax = 9 h. Donc,

bien que | c(k) \2 ne s’annule que pour k = oo, pratiquement une mesure de p

r*co

| c(k) |2 dk = 1.(J) Note L.B. : On vérifie que
00
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conduira toujours à une valeur de p comprise dans un intervalle Ap ( autour
h \ V

de la valeur p = p0 = k0 J telle que Ap.(b — a) = Ap.Ax = euh avec

a ~ 1 et c’est tout ce qui importe pour l’application pratique des relations 
d’Heisenberg.

Microscope d'Heisenberg. Reprenons l'exemple du microscope d’Hei 
senberg. Ici le Apx est à bords nets parce qu’il est défini par l’ouverture du 
microscope. Par contre le Ax n’est pas à bords nets, mais s’étend théoriquement 
à l’infini parce qu’il est défini par le phénomène de diffraction intervenant dans 
la définition du pouvoir séparateur. En principe, fonde parvenant en un point 
P' du plan image ne provient pas uniquement d’un point P du plan objet : 
elle peut venir de tout point du plan objet et Ax est en principe illimité, mais 
en pratique, comme le montre la théorie du pouvoir séparateur, l’incertitude 
Ax sur la position de P est limitée à l’entourage immédiat du point dont P' 
est l’image géométrique.

Ecran percé d'un trou. Passons à l’exemple de l’écran percé d’un trou. 
Ici l’incertitude Ax est définie par le contour de l’ouverture et est donc à bords 
nets. Derrière l’écran, il y a de la lumière diffractée dans toutes les directions 
de sorte que Apx est en principe infini, mais les franges brillantes observables 
sont toutes au voisinage de l’ombre géométrique et par suite le Apx est prati 
quement très limité.

Paquet d'ondes Gaussien. Pour le paquet d’ondes Gaussien, nous avons

(29) | 4> I2 = C2 exp(- q2/2 a2) \ c(p) |2 = C'2 exp{~ p2/2 <j2p)

avec aq. op = h/4 n. Le paquet d’ondes Gaussien n’est donc « à bords nets » 
ni en q, ni en p.

Posons ôq = maq et bp = mop, et soit

s = 2 I 12 dq
mcrq/2

2
/»cc

Jmap/2
c(p) |2 dp.

ôq et ôp sont alors les incertitudes correspondant à la valeur précédente de e 
d’après notre définition des incertitudes, e étant fonction de m et inversement. 
Pour e donné, m est fixé et l’on a
(30) ôq.ôp = m2 aq op = m2 ^.

Si e ->■ 0 m -> oo et ôq.ôp -> co. Mais en pratique, il suffit de supposer e 
très petit. Ceci sera déjà réalisé pour m = x/4 n car

| iK/ïrc er9) |2 = e~2n | >K0) |2 « | >K0) |2

| c(^/4~7t (Tp) |2 = e~2n \ e(0) |2 | c(0) |2 car e~6 ~ 1/350.

On aura donc pratiquement ôq.ôp ~ h.
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En résumé : Pour définir avec précision les incertitudes d’Heisenberg, il est 
nécessaire de définir l’incertitude SA sur une grandeur A comme étant l’in 
tervalle des valeurs de A telle que la probabilité de trouver une valeur en 
dehors de SA soit inférieure à une petite quantité e. On a alors pour deux gran 
deurs A et B canoniquement conjuguées SA.SB ~ a(e) h où a(e) dépend du 
choix de s. o c (e ) est infini pour e = 0 de sorte qu’alors SA. S B = oo : de là 
résulte que, si l’intervalle SA est fini, SB est infini (cas des intervalles à bords 
nets). Mais en pratique, il suffit de choisir e très petit, mais non nul, et alors le 
produit S A. S B pourra dans les cas favorables s’abaisser jusqu’à l’ordre de h, 
mais pas au-dessous. Pratiquement on a donc SA.SB ^ h en ordre de grandeur. 
La question est analogue à celle que l’on rencontre dans l’étude de la diffraction 
et du pouvoir séparateur.

Le théorème sur la dispersion qui s’énonce pour les grandeurs conjuguées 
sous la forme oA. aB ^ h/4 n est plus précis que les relations d’incertitudes 
d’Heisenberg. Il entraîne, comme ces relations elles-mêmes, l’impossibilité 
d’obtenir pour les grandeurs conjuguées des valeurs précises dans une même 
opération de mesure (').

f1) Note L.B. : Cas où la relation d’incertitude est applicable bien que le 
produit des dispersions soit infini.

Soit le train d’ondes défini par

i//(x) = 0 pour x < 0 ; i//(x) = exp( - yx/2) exp(2 nik0 x)

pour x > 0 (y > 0).
Si nous posons

i^(x) =
'OO

c(k) e2nikx dk
— 00

nous trouvons

C^ 2 ni(k — k0) + y/2 '

On a donc

i//(x) \2 = e yx', | c(k) \2
_________ 1_________
4 n2(k - k0)2 + y2/4 '

Si N est un nombre très grand, nous pouvons définir les incertitudes Sx et 
Sk en posant : 4

1 4„-yàx _ J_. 
N ’ 4 n2(Sk)2 + y2/4 Ny2
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Cas des composantes du moment cinétique
Nous venons d’étudier le cas des grandeurs canoniquement conjuguées qui 

est un cas particulier des grandeurs non commutantes dont le commutateur est 
égal à une constante. Nous savons qu’il existe un autre type de grandeurs non 
commutantes réelles dont le commutateur est égal à un opérateur. Tel est le 
cas des composantes du moment cinétique pour lesquelles on a

[M„ M] = M„ etc.Z ni

Le théorème des dispersions donne

\ -------- - /j ----
GMx* <*My> 2 I [,V/- Mv’l I = Mz etC-

Existe-t-il pour Mx, My, Mz des relations d’incertitude ?
Naturellement, on peut, à l’aide d’un nombre très petit e définir comme plus 

haut des incertitudes ÔMX,... A priori, on ne sait rien sur la valeur d’un produit 
tel que SMx.ÔMy. Mais comme la probabilité d’un écart type est toujours 
assez grande, il arrivera le plus souvent que SMX sera supérieur à aMx et SMy 
à <rMyi d où

d’où

et l’on a

ôMx.ôMy Jï (h/4 n) Mz.

________________  suite de la note de la page 103

Sx = - log N ; Sk
y 4 n

ôx.Sk = 4~\/^ l°S N

ou en posant k = pjh

ôx.Spx = 2j-^\/ÏV log N . 

Pour N = 20, on trouve

Sx.Spx ~ h.

{* + oo

Par contre o„
Px

co car px c(px) dpx diverge. On trouve pour ax la
J — 00

valeur l/y. D’où aPx. ox = oo, ce qui est bien supérieur à h/4 n. Ici la relation 
des dispersions ne donne rien, tandis que la relation d’incertitude est toujours 
valable.



Nous allons montrer autrement qu’on ne peut pas avoir Mz # 0 et 
ÔMx.êMy = 0. __

En effet, pour que Mz # 0, il faut que le tjf contienne dans son développe 
ment suivant les fonctions propres de Mz au moins une fonction propre de 
valeur propre différente de zéro. Cette fonction propre de Mz ne peut pas être 
fonction propre de Mx ou de My puisque la seule fonction propre commune à 
Mz et à Mx (ou à My) est / = 0. Donc si l’on décompose le t// suivant les fonc 
tions propres de Mx (ou My), le développement contient au moins deux fonc 
tions propres de Mx (ou My) de valeurs propres différentes. Il en résulte que 
5MX et ôMy sont différents de zéro. Il est donc impossible d’avoir à la fois 
Mz # 0 et ÔMx.SMy = 0.

Voici d'autres remarques montrant la différence entre le cas des grandeurs 
non commutantes du premier type et le cas des grandeurs non commutantes 
du second type

Soit un système qui se trouve initialement dans un état 1 représenté par 
une fonction d’onde ipl et soient A et B deux grandeurs observables de ce 
système.

Supposons qu’une certaine opération de mesure fasse passer le système dans 
un état 2 représenté par une certaine fonction d’onde ijj2.

Avant la mesure, on a

^1,-41) >j\(AB- BA) |j .

Après la mesure, on a

oT- 42) s* \ | (AB - BA) \2 .

Si A et B sont canoniquement conjuguées ou plus généralement si [A, B] 
est un multiple de l’unité, [A, B] est une constante indépendante de l’état. 
Alors les produits o!4I). et c7^42,. dp' ont une même limite inférieure.

Si au contraire AB — B A est égal à un opérateur C, [A. B] variera en général 
avec l’état considéré et si l’état 2 est tel que

] [A, B]2 | < ] [A, B]^ |

il pourra se faire que l’on ait (bien que | o^2’. i | (AB — BA)2 | j
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oT- 42) < 2 \(AB - B A), | .

En d’autres termes, la borne inférieure du produit après la mesure
est déterminée par l’état qui existe après cette mesure et non par l’état antérieur.

Appliquons ceci au cas où A = Mx, B = My avec [A, B] = (hjl ni) Mz. 
Si dans l’état 1, Mz A 0, on a > 0. Mais une mesure peut conduire à
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un état 2 où Mz = 0 et où oÿx. crj^ = 0, c’est-à-dire à un état où Mx et My 
ont des valeurs précises qui sont d’ailleurs Mx = My = 0. C’est là une grande 
différence avec le cas des grandeurs canoniquement conjuguées où aucune 
mesure ne peut amener à un état où les deux grandeurs ont une valeur précise.

Dans l’état initial 1, il y a pour A et pour B certaines distributions de proba 
bilité qui se déduisent de la connaissance de Soient SA et SB deux inter 
valles de valeurs pour A et B choisis arbitrairement. En général, ces intervalles 
ne seront pas pour l’état 1 des incertitudes au sens précisé plus haut. Mais 
imaginons que nous fassions une mesure nous permettant d’affirmer que les 
probabilités de trouver la valeur A hors de SA et la valeur B hors de SB sont 
toutes deux inférieures à s. Alors dans l’état ij/2 qui suit la mesure, SA et SB 
sont devenues des incertitudes au sens admis et l’on aura

SA.SB > 11 [A, B]2 | x a

a étant un nombre fonction de e et au moins de l’ordre de l’unité.
Si A et B sont canoniquement conjuguées, on retrouve les inégalités d’Hei- 

senberg et l’on a ainsi prouvé qu’aucune mesure ne peut fournir les valeurs de A 
et de B avec plus de précision que ne le permettent ces inégalités, car s’il en 
était autrement, l’état 2 qui suit la mesure ne pourrait être représenté par la 
Mécanique ondulatoire.

Si A et B sont tels que [A, B] = C, on voit que la borne inférieure de S A. SB 
peut varier avec l’état et qu’après la mesure cette borne est déterminée par la 
valeur de {AB — BA)2 (J).
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O Note G.L. : Louis de Broglie n’a jamais publié, par la suite, d’étude aussi 
exhaustive sur les relations d’incertitude et je doute qu’on trouve, dans la 
littérature, un autre exposé où l’on reprend pratiquement toutes les analyses 
de Heisenberg et de Bohr, auxquelles viennent s’ajouter ici celles de de Broglie 
lui-même. Notons cet aspect qui lui est propre : le soin qu’il met à bien séparer 
les informations qui concernent l’état du système avant la mesure, de celles qui 
concernent son état après la mesure. Cette distinction préparait l’interprétation 
qu’il a donnée plus tard des relations d’incertitude (voir réf. II, 27, 29 et 33). 
L’idée principale en est la suivante : la particule étant supposée toujours 
localisée en un certain point de l’onde, une éventuelle mesure de localisation 
ne ferait que révéler une position préexistante de la particule, si bien que 
l’incertitude Ax existe dans l’état initial du système, avant même toute mesure 
(qu’elle soit de localisation ou autre), c’est une incertitude actuelle ; au contraire, 
la mesure de px, nécessitant une préparation du système, ne révèle pas une 
valeur préexistante de l’impulsion mais une valeur créée lors de cette prépara 
tion, si bien que Apx n’est pas une incertitude actuelle, c’est une « incertitude 
prévue dans l’état initial sur la valeur que peut avoir px après l’action d’un 
dispositif permettant la mesure de px, quand on ne connaît pas encore le 
résultat de cette mesure ».



CHAPITRE IX

LA QUATRIÈME RELATION 
D’INCERTITUDE D’HEISENBERG

1. L’ABSENCE DE SYMÉTRIE ENTRE L’ESPACE ET LE TEMPS 
EN MÉCANIQUE ONDULATOIRE

Quand on se place au point de vue des idées relativistes, la quatrième relation 
d’incertitude d’Heisenberg ôW.ôt ~ h apparaît comme un complément 
naturel des trois premières relations ôpi Sxt ~ h car la théorie de Relativité 
considère l’énergie comme grandeur canoniquement conjuguée du temps au 
même sens que les composantes px, py, pz de l’impulsion sont respectivement 
canoniquement conjuguées des variables x, y, z. On le voit par exemple en 
remarquant que l’élément de l’intégrale d’action Hamiltonienne

W dl — px (lx — pr dy — p- (h 
est un invariant d'espace-temps.

Mais, en Mécanique ondulatoire, la symétrie entre la quatrième relation 
d’incertitude et les trois premières, du moins dans l’état actuel de cette théorie, 
est plus apparente que réelle. En effet, la Mécanique ondulatoire, même sous 
la forme d’apparence relativiste due à M. Dirac, n’établit pas une symétrie 
véritable entre les variables d’espace et le temps. Tandis que les coordonnées 
x, y, z d’un corpuscule sont des grandeurs observables correspondant à un 
opérateur et dont les valeurs ont pour chaque état (défini par une fonction 
d’onde \p) une certaine répartition de probabilité, le temps t est toujours consi 
déré comme un paramètre ayant une valeur bien définie (1).

On peut préciser ceci de la façon suivante. Soit un observateur galiléen 
celui que nous supposons effectuer des mesures. Il emploie des coordonnées 
x, y, z, t qui lui servent à repérer les événements dans le cadre macroscopique 
de ses expériences. Les variables x, y, z, t sont des nombres, des paramètres, 
et ce sont ces nombres qui figurent dans l’équation d’ondes et dans la fonction (*)

(*) Note G.L. : Signalons que, dans « L’électron magnétique » (réf. II, 11), 
on trouve un long développement sur la quatrième relation d’incertitude et sur 
le problème du temps en Relativité et en Mécanique ondulatoire. Dans « Certi 
tudes et incertitudes de la science » (réf. III, 8), on pourra lire une analyse du 
rapport possible (mais contesté par l’auteur) entre la quatrième relation et la 
cinquième qui relie la phase d’une onde lumineuse au nombre d’occupation : 
ÔNÔ<P 3ï 1.
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d’onde. Mais à chaque corpuscule de la physique atomique, correspondent des 
« grandeurs observables » qui sont les coordonnées du corpuscule. La corres 
pondance entre les grandeurs observables x, y, z et le cadre de l’espace des 
x, y, z de l’observateur galiléen considéré est statistique, chaque grandeur x, y, z 
pouvant avoir en général dans ce cadre toute une série de valeurs avec une 
répartition de probabilité. Au contraire, il n’y a pas dans la Mécanique ondu 
latoire actuelle de « grandeur observable » t attachée au corpuscule : il y a 
seulement une variable t qui est l’une des variables du cadre d’espace-temps de 
l’observateur définie par les horloges (essentiellement macroscopiques) qu’em 
ploie cet observateur.

Il est nécessaire en Mécanique ondulatoire d’avoir une « variable d’évo 
lution » permettant de suivre la variation de l’état des systèmes quantiques. 
Or cette évolution de l’état des systèmes, ou plus exactement de la connaissance 
que nous en avons, s’accomplit nécessairement dans le temps tel qu’il existe 
pour la conscience de l’observateur, temps dont nous ne savons repérer l’écou 
lement que par les horloges macroscopiques. C’est dans le cadre de ce temps 
de la conscience de l’observateur que s’opèrent notamment les brusques 
modifications de la forme du ij/ dues aux opérations de mesure et aux rensei 
gnements que ces opérations nous fournissent. Mais le fait d’être obligé de 
prendre comme variable d’évolution le temps macroscopique (variable t de 
l’espace-temps relativiste) nous empêche d’attribuer aux corpuscules ou 
systèmes quantiques une « grandeur observable » t de nature aléatoire comme 
nous faisons correspondre aux coordonnées q une « grandeur observable » 
avec répartition de probabilité. Telles sont quelques-unes des raisons très 
profondes qui s’opposent, à mon avis, à l’établissement en Mécanique ondu 
latoire d’une symétrie entre espace et temps analogue à celle que postule la 
théorie de la Relativité. Ces difficultés sont en relation intime avec le fait que 
la Physique quantique crée une liaison d’une nature nouvelle entre l’objectif 
et le subjectif. « L’état » d’un système quantique n’a plus dans la nouvelle 
théorie une définition objective correspondant à une description « de ce qui 
est » : il est défini au contraire uniquement en fonction « de ce que nous savons », 
il est une représentation de nos connaissances et nous ne pouvons pas aller 
au-delà de cette représentation. C’est donc dans la conscience de l’observateur, 
par suite dans le cadre du temps macroscopique, qu’évolue « l’état » défini 
par l’onde ij/ et, si les théories quantiques ne parviennent pas à établir une symé 
trie entre espace et temps, cela semble bien dû au caractère particulier du temps 
perçu par la conscience, à son déroulement continu et à son irréversibilité (1).

(x) Note L.B. : Si l’on voulait considérer l’énergie comme correspondant à 
l'opérateur (Iij2 ni) d/ôt, on aurait l’équation aux valeurs propres

h dtp 
2 ni dt Ecp

et il n’y aurait pas de quantification de l’énergie, E pouvant prendre toutes les 
valeurs possibles de — co à + oo.
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2. ÉNONCÉ CORRECT DE LA QUATRIÈME RELATION
D’INCERTITUDE

Nous sommes maintenant en mesure d’énoncer correctement la quatrième 
relation d’incertitude et nous allons ainsi retrouver la forme de cet énoncé 
que nous avions déjà été amenés à admettre implicitement.

Reprenons le cas du train d’ondes i// de dimensions limitées occupant une 
région R de l’espace. La valeur de la coordonnée x du corpuscule est incer 
taine, elle peut se révéler à la suite d’une mesure comme correspondant à une 
position quelconque à l’intérieur de R, la probabilité correspondante variant 
comme 11jj |2. La probabilité de trouver pour px une valeur donnée est d’autre 
part égale à | c(px) \2 de sorte que la valeur de px est, aussi, incertaine. Nous 
savons que le produit, ôpx ôx des incertitudes au sens d’Heisenberg est de l’ordre 
de h. Mais si l’on peut déterminer par une mesure la coordonnée x du cor 
puscule, on ne peut parler de la mesure de son temps t car en Mécanique 
ondulatoire le temps t est le temps macroscopique de l’observateur et a toujours 
une valeur certaine.

Que signifie alors la relation ÔE.ôt ~ h ? Elle signifie que pour pouvoir 
attribuer au corpuscule une énergie E avec une incertitude SE, il faut faire une 
observation, une opération de mesure, qui dure au moins le temps ôt ~ h/ôE. 
En effet, il résulte de nos analyses des développements de Fourier du train 
d’ondes que la durée ôt du passage du train d’ondes en un point est au moins 
de l’ordre ôt = 1/(3 v. Pour pouvoir affirmer que l’incertitude sur l’énergie est 
au plus ÔE = h ôv, il faudra observer en un point P le passage du front avant 
et du front arrière du train d’ondes, ce qui exige une durée d’observation au 
moins égale à ôt ~ l/<5v. En particulier pour affirmer que ôE est nul, c.-à-d. 
que le train d’ondes est monochromatique, il faudrait faire une observation 
de durée infinie, puisque la longueur d’une onde monochromatique est infinie.

Ainsi, tandis que les trois premières relations d’incertitude traduisent l’exis 
tence d’une répartition de probabilité pour les grandeurs q et p, c’est-à-dire le 
fait que ces grandeurs sont des « variables aléatoires » au sens du calcul des 
probabilités, la quatrième relation d’incertitude doit s’interpréter différemment : 
le temps t n’est pas une variable aléatoire, mais la mesure de E ne peut s’effectuer 
qu’à l’aide d’observations d’une durée finie et plus la durée d’observation 
diminue, plus l’incertitude sur la valeur exacte de E augmente. Comme la 
variable t n’est pas une variable aléatoire, il n’y a pas de relation entre les dis 
persions de sorte qu’ici la relation qualitative d’incertitude ôE.ôt % h n’est 
pas doublée par un énoncé précis sur les dispersions du type oE a, ^ h/4 n, 
car t étant une variable à valeur précise nt n’a pas de signification ( a, serait 
toujours nul). On voit bien ici l’opposition qui existe entre ces conclusions et 
la symétrie relativiste entre espace et temps.

3. ILLUSTRATION DE LA DÉFINITION PRÉCÉDENTE

Pour illustrer le sens de la quatrième relation d’incertitude, nous donnerons 
un exemple qui a été indiqué, sous une forme un peu différente, par M. Lennuyer
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[Annales de Physique 20 (1946), p. 91 à 110] dans un article sur la résonance 
optique.

Considérons un réseau optique comportant un nombre total de traits égal 
kN (N très grand), les traits étant équidistants à la distance a. Sur ce réseau, 
nous faisons tomber normalement un faisceau de lumière de longueur d’onde 
X( = c/v).

La lumière diffusée par deux traits consécutifs du réseau dans une direction 
faisant un angle 9 avec la normale présente une différence de phase égale à 
(2 n/X) a sin 9 de telle sorte que la lumière diffusée à l’infini dans la direction 9

N- 1
a une amplitude proportionnelle à £ emu avec u = (2 n/X) a sin 0, soit à

o"
(e,Su — 1 )/(elu — 1). L’intensité correspondante (carré du module de l’ampli 
tude) est donc proportionnelle à

2 _ 1 — cos Nu _ sin2 (Nu/2)
1 — cos u sin2 (u/2)

eiNu - 1 
em - 1

Ce résultat classique montre qu’il y a des maxima dans les directions telles que 
m/2 = mn (m entier), soit sin 9m = m(X/a) = (m/a) (c/v). On pourra donc 
déterminer la fréquence v (donc l’énergie E = hv des photons) en observant 
l’angle 9m qui correspond au m-ième maximum. Mais, en procédant ainsi, 
il restera une certaine incertitude sur la valeur de v (ou de E) car on ne peut 
jamais déterminer exactement 9m. Examinons ce point.

T, . , sin2 (Nu/2)L expression I =-----, , présente un maximum
sin2 (u/2)

u/2 = mn. Si m/2 prend la valeur mn + rj, I devient égal 

Pour i/ = n/N (N étant supposé grand), on a

égal à N2 quand

, sin2 N(mn + rj) a----- -------------- .

sin2 (Nmn + n) _ 
sin2 (n/N)

Donc / passe de la valeur élevée A2 à la valeur 0. L’erreur que l’on peut com 
mettre en mesurant 9m est donc toujours telle que ô(u/2) puisse atteindre une 
fraction de n/N. Comme on a ô(u/2) = n(a sin 9/c) ôv, on voit que l’incertitude 
ôv sur la valeur de v ainsi mesurée peut atteindre une fraction de c/Na sin 9. 
Donc <5v ~ c/Na sin 9.

Soit maintenant ôt la durée limitée de l’expérience. Pour que tous les traits 
du réseau entrent en action et que, par suite, la théorie précédente soit appli 
cable, il faut que la lumière diffusée par le A'-ième trait du réseau dans la 
direction 9 ait pu dépasser le plan d’onde P, ce qui exige que

ôt ^ Na sin 9/c
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d’où

ôvbt ^ c
Na sin 9

Na sin 9 
c en ordre de grandeur

et

bE.ôt > h en ordre de grandeur .

Nous voyons bien ici intervenir dans la mesure de l’énergie E = h v du photon 
la durée ôt de l’expérience et nous voyons que dans la quatrième relation 
d’incertitude la grandeur ôt a essentiellement le sens d’une durée d’expérience 
pour l’observateur qui l’effectue.

Exemple de Darwin [Proc. Roy. Soc. A, vol. 130 (1931), p. 632]
Darwin considère un électron qui est au repos, mais peut se déplacer sur une 

droite. En un point de la droite, se trouve un électromètre qui permet, en 
mesurant le champ électrique, de déterminer la position x de l’électron. Pour 
analyser plus aisément le fonctionnement de l’électromètre, M. Darwin suppose 
qu’il est constitué par un atome subissant l’effet Stark. Cet atome est susceptible 
d’émettre une raie spectrale en passant du niveau d’énergie E1 + M: g au 
niveau E2 + M2 g. E1 et E2 sont les énergies des niveaux en l’absence du 
champ électrique g, M1 et M2 les moments électriques de l’atome avant et après 
la transition.

Pour mesurer le champ ê avec la précision ôê, il faut pouvoir distinguer 
deux fréquences différant de | M, - M2 | (M/h). Pour cela il faut attendre un 
temps ôt tel que ôv.bt ~~ 1 c.-à-d. tel que

(2) Ôt ^ | Mx - M2 | ÔS '

Ainsi intervient la quatrième relation d’incertitude.
Continuons le raisonnement. A un certain instant inconnu, l’atome-électro- 

mètre saute d’un état 1 à un état 2. Ce saut exerce une réaction sur l’électron 
qui d’abord est soumis à l’action du moment électrique Mu puis à partir d’un 
instant inconnu à l’action du moment électrique M2. Nous ne pouvons mieux 
chercher à compenser cette variation d’action qu’en appliquant constamment 
à l’électron un champ équivalent à la présence au point où est l’électromètre 
d’un moment électrique égal à (Mx + M2)/2. Mais, même en faisant cette

compensation, il y a encore à l’origine un moment résiduel égal à ^ (M] — M2)

et à la fin un moment résiduel égal à ^(M2 — Mx). Le moment électrique

véritable de l’atome-électromètre à un instant quelconque est donc affecté 
d’une incertitude de l’ordre de | M2 — M, |. M. Darwin ajoute : « Le fait 
qu’il n’y a pas d’observation sans incertitude est illustré par les raies pour 
lesquelles Mj = M2. Pour celles-ci la réaction sur l’électron est exactement
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compensée, mais justement, alors, la raie ne présente pas d’effet Stark et ne 
peut pas servir pour une mesure électrométrique. »

Pour mesurer la position x de l’électron avec une incertitude Ôx, il faut 
mesurer le champ électrique avec l’incertitude ô(ejr2) = e ôx/r3. Nous avons vu 
que pour cela il faut faire une observation d’une durée ôt telle que

(3) ôt ^ M i
h
M2 | ôê

hr3
e ôx | Ml — M2 | '

Pendant ce temps, l’électron est soumis à une réaction équivalente à la présence 
dans l’électromètre d’un moment électrique M au moins de l’ordre de 
I Mi — M2 | : il est donc soumis à une force e{M/r3) ^ ejr3 \ — M2 |.
Pendant le temps ôt cette force fait varier la quantité de mouvement px de 
l’électron de

(4) à IL =
eM ôt e

75 Mi M2\ •
hr3

e ôx | M1 — M2 |
h
ôx

d’où
ôx. ôpx ^ h en ordre de grandeur .

On retrouve ainsi la première relation d’incertitude par l’intermédiaire 
de la quatrième.

4. REMARQUES DIVERSES SUR LA QUATRIÈME RELATION
D’INCERTITUDE

Nous allons faire diverses remarques au sujet de la quatrième relation d’in 
certitude. Commençons par une remarque déjà très ancienne de M. Bohr.

On sait que, si l’on bombarde un système atomique à l’aide de particules 
rapides, on peut obtenir l’excitation ou même l’ionisation du système atomique. 
Or ce phénomène, quand on l’analyse avec les idées classiques, apparaît comme 
incompréhensible. En effet, la particule incidente traverse l’atome avec une 
vitesse v et, si a désigne le diamètre moyen de l’atome, le temps de transit de la 
particule à travers l’atome est au plus de l’ordre de a/v. C’est donc seulement 
pendant un temps de cet ordre que la particule incidente peut agir sur les consti 
tuants de l’atome et leur céder de l’énergie de façon à provoquer une excitation 
ou une ionisation. Pour qu’un constituant de l’atome absorbe de l’énergie, 
il faut qu’il se déplace appréciablement pendant le temps ajv. Ceci exige que 
le temps t  = ajv soit grand par rapport aux périodes d’oscillation des électrons 
dans l’atome. On le voit aisément en raisonnant sur un oscillateur linéaire : 
un tel oscillateur a une période T bien déterminée et, s’il est mis en mouvement 
par une action extérieure, il vibre avec cette période ; pour que l’action extérieure 
puisse lui communiquer de l’énergie, il faut qu’elle agisse sur lui pendant 
un temps qui soit d’un ordre de grandeur sensiblement supérieur à T. Il faut
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donc avoir t  = a/v > T ou a > vT ; v < av. Mais pour qu’il y ait possibilité 
d’excitation ou d’ionisation, il faut que l’énergie cinétique apportée par la 
particule incidente soit de l’ordre de hv. Si la vitesse v est assez petite pour qu’on 
puisse négliger les corrections de relativité (ce qui est ici le cas usuel), on devra 
avoir mv2 ~ hv.

Considérons d’abord un électron atomique situé à la périphérie de l’atome 
et correspondant par suite à une fréquence de l’ordre de celles de la lumière. 
On a alors

a ~ l(T8cm v ~ 1014 s“1 .

La condition v < av donne v < 106 cm/s tandis que la condition mv2 ~ hv 
donne v m = 2,7.107 cm/s. Il y a donc contradiction. Considérons
de même un électron situé dans les profondeurs de l’atome et correspondant à 
une fréquence de l’ordre de celles des rayons X. On aura a ~ 10-9 cm, v~1018. 
La condition v < v donne v < 109 cm/s tandis que mv2 ~ hv donne 
v ~ 2,7.109 cm/s. Il y a encore contradiction. On voit donc qu’avec les idées 
classiques les phénomènes d’excitation ou d’ionisation par choc restent 
inexplicables.

Il n’en est pas de même avec les conceptions nouvelles. Pour pouvoir appli 
quer au choc la conservation de l’énergie, il faut que l’énergie cinétique du 
corpuscule incident soit connue avec une incertitude ôE beaucoup plus petite 
que sa valeur E ~ hv. D’où SE hv. Mais alors le train d’ondes associé 
à la particule incidente est relativement long et, pour passer sur l’atome, ce 
train d’ondes met un temps ôt ^ h/SE. Comme on peut fixer à l’intérieur du 
temps ôt l’instant où la particule incidente entre dans l’atome, on ne peut 
attribuer au temps de transit t  une valeur inférieure à ôt. Donc

t  - h/ÔE > h/E = 1/v = T.

La condition i T peut être considérée comme réalisée parce que la durée 
d’interaction entre la particule incidente et les constituants de l’atome ne 
peut être considérée comme inférieure à la durée ôt du passage sur l’atome 
du train d’onde associé à la particule.

Passons à une autre remarque. Soit un système quantifié dont la fonction 
d’onde est ip = ^ ck ak exp[(2 ni/h) Ek t~\. Nous avons dit que, si l’on faisait à

k

l’instant t, une mesure de l’énergie, on doit trouver l’un des Et et la probabilité 
pour que ce soit précisément Ek est | ck |2. Mais nous voyons maintenant que 
cet énoncé n’est pas tout à fait correct, car pour mesurer l’énergie il nous faut 
toujours un certain temps (et d’autant plus de temps que la mesure est plus 
précise). Nous ne pouvons donc pas parler d’une mesure de l’énergie faite à 
l’instant t, mais seulement d’une mesure faite dans un intervalle de temps ôt 
entourant l’instant t. (Il n’en est pas de même pour les mesures de la quantité 
de mouvement ou de la position.)

Néanmoins la restriction que nous introduisons ainsi a en pratique peu 
d’importance car nous pourrons affirmer que £ a la valeur Ek dès que ôE sera

L. d l  Br o g l il . 6
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très inférieur à la plus petite des différences | Ek-k — Ek \ ou \ Ek — Ek + l\. 
Or ces différences, même quand il s’agit d’états où les électrons sont très peu 
liés à l’atome, correspondent à des transitions où la fréquence émise est au 
moins égale à celle de l’infrarouge lointain, c.-à-d. est au moins de l’ordre de 
1012 s-1. Le temps d’observation nécessaire pour distinguer un état quantifié 
d’un état voisin sera donc au plus de l’ordre de

ôt ~ h/ÔE ~ h/h. 1012 = 10“12 s .

Il sera donc toujours pratiquement très petit et nous pourrons considérer 
les mesures d’énergies quantifiées comme pouvant être pratiquement instan 
tanées. Voici encore d’autres remarques dont nous verrons bientôt l’importance.

Soit un système ayant, entre autres, deux états quantifiés Et et Ek. Supposons 
que le système soit perturbé par une action extérieure et que le calcul nous 
indique (nous préciserons bientôt comment) que, sous l’action de la pertur 
bation, le système oscille entre les états Et et Ek avec la fréquence vik = (Ei~Ek)/h. 
Il ne faut pas en conclure que le système passe physiquement de l’état / à l’état k 
et inversement, car nous n’aurions le droit de le dire que si nous pouvions saisir 
le système dans l’un ou l’autre de ces états, c.-à-d. : mesurer son énergie dans 
l’un ou l’autre état. Or, comme il ne reste dans l’un des états que pendant un 
temps ôt inférieur à \/vik = h(Et — Ek) aucune mesure ne nous permet de 
mesurer l’énergie de l’un des états avec une précision supérieure à

ÔE ~ hjôt ~ Et - Ek

et nous ne pouvons distinguer les deux états l’un de l’autre. Pendant l’inter 
action, l’énergie du système reste indéterminée entre Et et Ek et nous ne pouvons 
vérifier la conservation de l’énergie qu’à \ Et — Ek\ près.

Supposons encore que le système possède l’énergie £j jusqu’à un temps tu 
puis qu’il subit une action extérieure de t, à t2 qui le perturbe sans lui fournir 
finalement d’énergie, puis qu’il se trouve dans l’état E2 pour t > t2. Comme 
nous disposons pour mesurer Æj et E2 respectivement de tout le temps qui 
précède tk et de tout le temps qui suit t2, nous pouvons mesurer très exactement 
Æj et E2 et la conservation de l’énergie exige que E2 = £j. Mais pendant le 
temps de perturbation t2 — tk, le système peut passer dans un état intermé 
diaire E. Si t2 — tx est petit devant hj(E — £j), il sera impossible de saisir le 
système dans l’état E en mesurant cette énergie. On peut dire que le système 
passe par l’état « virtuel » E et en réalité l’énergie est durant l’interaction indé 
terminée à E — Æj près. La conservation de l’énergie se vérifie pour le passage 
global £j -> E2, mais non nécessairement pour les transitions virtuelles 
£j -> E et E -> E2.

Nous allons préciser ces considérations en développant rapidement l’étude 
des perturbations par la méthode de variation des constantes.
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5. MÉTHODE DE VARIATION DES CONSTANTES ET PROBABILITÉ
DE TRANSITION

Pour illustrer ces considérations, nous allons rappeler brièvement les grands 
traits de la méthode de variation des constantes et la notion de probabilité 
de transition.

Dans la méthode de variation des constantes, on considère un Hamiltonien 
non perturbé H{0) indépendant du temps auquel correspondent des états 
stationnaires du système envisagé en l’absence de la perturbation. On suppose 
connues les valeurs propres et fonctions propres Ek0) et i/40) de cet Hamiltonien. 
On suppose le système soumis à des actions perturbatrices qui peuvent dépendre 
du temps : elles seront représentées par un terme V dans l’Hamiltonien de sorte 
que H = H(0) + V(t).

L’équation d’évolution du système en présence de la perturbation sera donc 

(5)

A tout instant t, la fonction d’onde ÿ du système peut être développée 
suivant le système complet des fonctions propres i/40) de l’Hamiltonien non 
perturbé H(0) sous la forme

(6) <K0 = X ckO) t/4°> exp\i2 ni!Il) £*0) 0
k

avec

(V) ck(t) = i/40)* <A, exp[— (2 ni/h) El0) t] dx .
D

D’après les principes généraux de la Mécanique ondulatoire, la probabilité 
pour qu’à l’instant t le système soit trouvé dans l’état i/40) est donnée par 
| ck(t) |2. Encore faut-il, comme nous l’avons remarqué plus haut, que le système 
demeure dans cet état pendant un temps assez long pour qu’on puisse recon 
naître la valeur de son énergie. La fonction d’onde est toujours supposée normée 
et il s’ensuit que X I ck \2 = 1.

k
En substituant l’expression de ijj dans l’équation d’évolution et en tenant 

compte de ce que les i/40) sont fonctions propres de H{0\ on trouve

(8) X ^0) exPÜ2 nilh) Ek0> É1 = X cfc(0 HO ^ exp[(2 ni/h) E/0) t] .
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Multiplions par t//\0)* exp\_- (2 ni/h) Ej0) t] et intégrons dans D. Nous obte 
nons, en tenant compte de l’orthonormalité les équations fondamentales

(9) î = ¥ ? Vlk(t) Ck{t) exÆi2 Uilh) {Ek) ~ ^

où

(10) vlk(t) l/q(0)* V(t) ^°> ch .
D

Pour V = 0, les c( sont constants et le i/z est une somme de fonctions propres 
de H<0) à coefficients constants, cas connu. Si la perturbation V n’est pas nulle, 
les coefficients c, varient avec le temps : d’où le nom de « méthode de variation 
des constantes » donné à ce mode de calcul. (On vérifie aisément que

^ Z ck c* = 0 , d’où Ç I ck\2 = Cte = 1

à tout instant.)
L’intégration des équations de variation des constantes est difficile à effectuer 

dans le cas général; on peut en tirer diverses conséquences que nous n’étu 
dierons pas ici en détail. Nous nous bornerons au cas suivant : au temps t = 0, 
l’on sait que le système est dans l’état d’indice n de sorte que c„(0) = 1 et 
cm(0) = 0 pour m ^ n.

La perturbation représentée dans l’Hamiltonien par l’opérateur V(t) étant 
faible par hypothèse, nous obtiendrons une solution des équations de variation 
des constantes qui sera valable approximativement pendant un certain temps 
en posant

de 2 7zi
(H) -j t  = ~ Vmn expK2 {En ~ Ern'> ^ m ^ n

(en supprimant l’indice supérieur 0 dans les E). La solution correspondant à la 
condition initiale cm(0) = 0 est

d’où

(12)

| cm(t) |2

cm(t) = V,
exp[(2 ni/h) (En - EJ t] - 1 

En - Em

2 ] I2
(En-Ej2

2 n
1 -cos—(E„-EJt 

h
4\VmJ2

(■En-EJ2
sin2-(E„-EJt. 

n

Cette quantité peut être considérée comme la probabilité pour que le système 
soit à l’instant t dans l’état m : elle est proportionnelle à | Vm„ |2, ce qui donne 
une importance particulière à ces éléments de matrice. Toutefois, conformément
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à une remarque faite ci-dessus, tant que dure la perturbation, nous ne pouvons 
pas saisir physiquement le système dans l’état d’énergie Em, car ceci exigerait 
une mesure de l’énergie affectée d’une incertitude inférieure à Em — En et le 
temps pendant lequel le système reste dans l’état Em est inférieur à h/(Em — E„). 
C’est seulement si à l’instant t la perturbation V{t) cesse brusquement que nous 
pourrions saisir le système dans l’état Em (devenu un état final permanent), 
la probabilité de cette éventualité étant mesurée par | cjt) |2. Comme l’énergie 
du système n’est pas mesurable pendant la durée de la perturbation, on ne peut 
alors lui appliquer la conservation de l’énergie qui n’est vérifiable qu’à la fin 
du processus de perturbation (‘).

Il peut arriver que certains des Vmn soient nuis : ceci signifie que la transition 
n -> m ne peut s’effectuer directement. Mais cette transition peut parfois 
s’effectuer indirectement par passage par un état intermédiaire p si Vmp et 
Vpn ne sont pas nuis. Plus généralement, il peut y avoir plusieurs états p, p\ ...

^P
pouvant servir d’états intermédiaires suivant le schéma n -> p' (*)

(*) Note L.B. : Dans la théorie des perturbations, il se pose quelques 
questions délicates au sujet du potentiel perturbateur V. Plaçons-nous d’abord 
dans le cas d’un système à spectre discontinu. Dans ce cas, le potentiel V 
peut être un potentiel d’interactions intérieures (indépendant de t) ou un 
potentiel extérieur (qui peut dépendre de t). Dans le premier cas, on ne peut 
attribuer un commencement, ni une fin à l’interaction et il est impossible de 
mesurer les énergies h’,'01. E^]... en l’absence d’interactions. Si, au contraire, 
V représente une action extérieure, on peut supposer que cette action ait un 
début et une fin (par exemple par rapprochement puis éloignement du système 
qui produit le champ extérieur). On peut alors mesurer l’énergie avant l’inter 
action et l’énergie après l’interaction. En général, les deux énergies ne seront 
pas égales mais l’on pourra sauver la conservation de l’énergie en disant que de 
l’énergie a été empruntée ou cédée par le système au système extérieur qui 
produit le champ.

Dans ce dernier cas, il est naturel de considérer le système Z formé par l’en 
semble du système S étudié et du système S' qui produit le champ. Mais, pour 
pouvoir appliquer la conservation de l’énergie, il faut pouvoir approcher puis 
éloigner le système S ' du système S, ce qui exige que le système Z possède un 
spectre continu. Ce sera alors la théorie des pages 119 et ss. qui s’appliquera 
et elle nous apprend comment apparaît la conservation de l’énergie. En résumé, 
chaque fois que la conservation est physiquement vérifiable, il semble qu’on 
puisse se ramener à la théorie des pages 119 et ss.
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h de
03) y— -Jf = Y, vmp expia ni/h) (Ep - EJ t] ;

h dc„
Yni~dt = Vpn £XP K2 ^E" ~ Ep) ^

valable pour p, p',...
L’intégration de la 2e équation donne

(14) cP(t) = Vp
expia ni/h) (E„ - Ep) t] - 1

et la première équation donne alors

h dcm expianilh){En-EJi]-explanijh){Ep-EJt]
U^ 2ni dt ~ £ mp pn En-Ep

d’où, en intégrant avec la condition initiale cm(0) = 0

(16) Cm(t) = ly^f-X

expia ni/h)(E„ - EJt~\ - 1 
X En-Em

expia ni/h) (Ep - EJ t] - 1 
Ep - Em

En introduisant la notation V'm„ = £
P E„- Ep

, on trouve pour la probabilité

de présence du système dans l’état Em à l’instant t 

(17)
c (PI», 2<F-!2 

m j| (Em- EJ2 1 - cos~ (En - EJ t
h

+ termes en (Ep — E„).

En général, les termes en (Ep — E„) n’interviennent pas effectivement dans 
l’application de cette formule qui a une grosse importance dans la théorie des 
interactions entre matière et rayonnements.

Ici encore, pendant la durée de la perturbation, on ne peut physiquement 
saisir le système dans l’état Ep, ni appliquer la conservation de l’énergie. C’est 
seulement si la perturbation cesse à l’instant t que l’on peut trouver ensuite le 
système avec l’énergie Em, la probabilité de cette éventualité étant | cm(t) \2. 
Mais, même dans ce cas, on ne peut jamais saisir le système dans un des états 
p, p'... et par suite la conservation de l’énergie ne s’applique jamais dans ces 
états intermédiaires. C’est ce que l’étude des probabilités de transition va nous 
montrer plus clairement.
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Notons qu’on trouve des circonstances analogues quand la transition 
n -> m peut s’effectuer avec étapes successives dans plusieurs états intermé 
diaires.

6. PROBABILITÉS DE TRANSITION

Jusqu’ici nous avons supposé que les états quantiques formaient une suite 
discontinue. Or il arrive souvent, et c’est un cas très important, qu’on ait affaire 
à des états formant un spectre continu (dans les problèmes de choc par exemple). 
Il faut alors reprendre les calculs précédents en supposant que le système se 
trouvant dans un état initial n connu puisse passer dans un état final apparte 
nant à une suite continue. Nous supposerons donc que le nombre des états 
finaux possibles dont les énergies sont contenues dans un intervalle (E, E + dE) 
est donné par une expression p(E) dE où p(E) est une fonction continue et 
assez lentement variable de E.

Nous allons donc transformer la théorie précédente pour l’appliquer au cas 
où l’état m final appartient à un petit intervalle AE d’un spectre continu. 
Supposons d’abord que la transition n -> m soit directement possible (Vnm # 0). 
Alors d’après la formule (12), la probabilité totale du passage pendant le temps t 
de l’état initial n à l’un quelconque des états m appartenant à l’intervalle 
(E, E + AE) sera

(18) e(0 —
4 n2 Vn.

sin | (E - E„) )

\ ^
CE ~ En)

p(E) dE.

On peut vérifier aisément que, si E„ n’appartient pas à l’intervalle AE, l’intégrale 
est très petite quel que soit t de sorte que P(t)/t tend vers zéro pour t -> oo : 
on peut dire que la probabilité de transition par unité de temps est nulle dans 
ce cas.

Il en est autrement si En appartient à l’intervalle AE. Dans ce cas, si t est assez
/»£ + AE

grand, l’intégrale croît proportionnellement à t et la probabilité de
JE

transition par unité de temps P(t)/t prend une valeur finie : cette transition 
se produit donc d’une façon notable.

D’une façon plus précise, l’étude de l’intégrale montre que, pour pouvoir 
affirmer que la transition se produira entre l’état initial E„ et un état E compris 
dans l’intervalle ÔE, il faut attendre un temps de l’ordre de dt = h/2 n à E, 
ce qui correspond à la quatrième relation d’incertitude ôE.ôt ~ h. Ce n’est 
donc qu’au bout d’un temps suffisamment long que la conservation de l’énergie 
Em ~ En se trouvera jouer, mais pratiquement en raison de la très petite valeur 
de h à notre échelle, ce temps sera pour nous très court.
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Donc, au bout d’un temps ôt pratiquement très court après le début de la 
perturbation, la conservation de l’énergie se trouvera établie et l’on pourra 
constater que le système a passé de son état initial En à un état final d’énergie 
Em presque égale(Em - En ~ h/dt). Alors on aura très approximativement

(19) e(0 —
4 7T v„ p(En)

Lin | (E - E„) t\

h (E ~ En)
dE

car, l’élément E = En de l’intégrale étant entièrement prépondérant, on peut 
sans erreur sensible y remplacer p(E) par p(E„) et étendre l’intégration à toutes 
les valeurs de E. Posant u = (n/h) (E — En) t, il vient

(20) Eh ,ae (1)
t

p(E„)
/•GO

— 00

sin2 u 
—=— du 

u
4 n2 
~ Vmn\2p(En).

La probabilité de transition par unité de temps de l’état « à un état m du 
spectre continu est donc égale à

(21) Pn^m = ^f\Vm I2 P(E„).

C’est la formule fondamentale (formule de Wentzel) valable quand la transition 
n -* m est possible. V„m, alors différent de zéro, est l’élément de matrice cor 
respondant à la transition de l’état n à l’état m d’énergie Em du spectre continu. 
L’analyse précédente montre clairement comment la conservation de l’énergie 
s’établit progressivement de plus en plus strictement quand le temps d’inter 
action s’écoule conformément à la quatrième relation d’incertitude.

Si le passage n -> m n’est pas directement possible (Vnm = 0), le passage 
n -> m peut parfois s’effectuer avec passage dans un état intermédiaire p et 
l’on devra alors partir de la formule (17). On peut vérifier qu’en dehors de 
certains cas exceptionnels où il y aurait résonance entre les états m et p, les 
termes en Ep — Em de la formule (17) ne donnent aucune contribution sensible 
à la probabilité de passage. Le calcul précédent est alors encore valable avec 
simple substitution de V'mn à Vm„ et l’on trouve

4 n1 ^ „ Vmn VBn
Pn^m = — I V'mn I P(E„) avec Vmn = X E - E/

m désignant un état du spectre continu d’énergie E„.
Il y a encore conservation de l’énergie dans le processus global n -> m, 

mais non pas dans l’état intermédiaire p car Ep peut être différent de E„ et Em.
Ici encore on ne peut pas saisir le système dans l’état intermédiaire p de sorte 

que l’écart par rapport à la conservation de l’énergie n’est pas constatable.



On dit qu’un tel état p est un état « virtuel » puisqu’il ne peut se manifester 
effectivement.

Pour les transitions s’effectuant avec plusieurs étapes intermédiaires, on 
trouverait des formules analogues, mais plus compliquées.

Exemple physique : Nous allons donner un exemple physique illustrant 
ce qui précède.

Considérons d’abord la diffusion de la lumière par un atome. L’atome a un 
état quantifié normal d’énergie minimum E0 et une série d’états quantifiés 
excités d’énergies EUE2... supérieures à E0. Soumis à l’irradiation d’une onde 
lumineuse de fréquence v, l’atome diffuse la lumière incidente sans changement 
de fréquence. L’analyse de ce phénomène, qui conduit à trouver la loi de 
« dispersion » pour le genre d’atomes considéré, amène à regarder l’atome 
comme oscillant pendant l’irradiation entre l’état E0 et des états « virtuels » 
E2 ... Plus exactement il y a passage avec conservation de l’énergie de l’état 
initial « photon incident de fréquence v + atome dans l’état E0 » à l’état final 
« photon de fréquence v diffusé, en général, en dehors de la direction d’inci 
dence + atome revenu dans l’état E0 », ce passage s’opérant avec étape inter 
médiaire dans l’un des états Eu E2 ... suivant le schéma de la théorie ci-dessus 
indiquée. Comme, en dehors du cas exceptionnel de la résonance qui exige 
une étude particulière, les différences d’énergie Et — E0 sont différentes de hv, 
il n’y a pas conservation de l’énergie dans l’état intermédiaire Eb mais cela 
importe peu puisque cet état intermédiaire est un état « virtuel » impossible à 
saisir expérimentalement.

Dans la théorie quantique des interactions entre particules électrisées, on 
est amené également à faire intervenir des passages par des états intermédiaires 
« virtuels » sans conservation de l’énergie (échanges virtuels de photons).

La théorie de la largeur des raies spectrales fournit une belle illustration 
de la quatrième relation d’incertitude. Considérons une raie spectrale corres 
pondant au passage de l’atome d’un état excité Et à l’état fondamental E0. 
L’expérience indique et le calcul quantique explique que la raie émise est large 
et que la répartition des intensités à l’intérieur de la raie large est donnée par 
la formule
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(22) /(v) = _______ Vy_______
4 7i2(vi0 - v)2 + y2/4

où vi0 = (Ei — E0)jh est la fréquence (centrale) de la raie et y « le coefficient 
d’amortissement » de l’état initial d’énergie Eb c.-à-d. que la probabilité de 
trouver l’atome dans l’état excité £( au temps t après l’excitation diminue 
comme e~yt. On voit que /(v), maximum pour v= vi0, diminue rapidement
quand on s’éloigne du centre de la raie : /(v) = ^ /(vi0) pour | v — vi0 | = y/4 n.

On peut donc dire par convention que y/4 n mesure la « largeur » de la raie. 
Or il est évident, d’après la définition de y, que l’on ne peut suivre l’atome dans 
l’état Ei que pendant un temps ôt de l’ordre de l/y : il est donc impossible de
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mesurer E, avec une précision supérieure a ÔE ~ h/ôt ~ hy. La fréquence de 
la raie est donc affectée de l’incertitude ôv = ôE/h ~ y et ceci correspond bien 
à la largeur de la raie.

Pour une étude plus approfondie des questions effleurées dans ce paragraphe, 
on se reportera à « Une nouvelle théorie de la Lumière » tome II (réf. Il, 16).

7. RELATIONS D’INCERTITUDE ET THÉORIE DE LA RELATIVITÉ

Dans le domaine où l’on doit tenir compte des corrections de Relativité 
(vitesses voisines de c), on peut trouver de nouvelles formes de relations d’incer 
titude qui ont été signalées par Landau et Peïerls (Z. f. Phys. B. 69, p. 56 et ss.) 
et qui ont donné lieu à d’assez nombreuses discussions.

Dans le domaine relativiste, on doit définir l’énergie E, compte tenu de 
l'énergie interne de masse. Ainsi pour un corpuscule de masse propre m0,

m0c2
on devra poser E = r..  =. Si px désigne l’une des composantes de

V1 “ Y/c2
l’impulsion, l’équation de Hamilton ôE/dpx = vx donne la relation

(23) ÔE = vx ôpx

, „ m0 c2 mn vx
facile a vérifier sur E = et px = , . Partant d’un état où

l’énergie E0 et l’impulsion p0 sont connues, opérons une mesure de E qui dure 
un temps St; l’incertitude sera ÔE ^ h/ôt. Or ÔE = vx ôpx et vx est forcément 
inférieur à c. D’où

(24) ôpx Sï h/(c ôt)

relation d’incertitude d’une forme nouvelle qui lie une incertitude sur un 
moment de Lagrange à une durée de mesure, indépendamment de l’incertitude 
sur la coordonnée x correspondante. La mesure de l’impulsion exigerait, 
si l’on tient compte de la Relativité, toujours un certain temps si l’on veut 
qu’elle soit un peu précise.

On peut retrouver cette relation nouvelle par le raisonnement suivant. 
Supposons qu’une première mesure localise un corpuscule au voisinage immé 
diat d’un point O. Après la mesure, on a un train d’ondes x// de dimensions 
infiniment petites et nous avons vu que l’analyse de Fourier nous apprend 
alors que le train d’ondes comprend des composantes de toutes les fréquences.

La formule relativiste hv = , 0 montre que les fréquences infinies

correspondent à des vitesses infiniment voisines de c. Donc si la mesure dure 
un temps ôt, le front de l’onde xj/ à la fin de la mesure pourra déjà être à la 
distance c ôt du point O et à la fin de la mesure ôx = c ôt. Alors la relation



d’Heisenberg ôpx.ôx ^ h donne ôpx > h/(c ôt) et nous retrouvons la nouvelle 
relation d’incertitude (!).

En théorie relativiste, on a entre l’énergie E et la quantité de mouvement p 
la relation E2/c2 = p2+ml c2 d’où EdE=c2pdp et comme p=Evc2, 
on en conclut que ôE = v ôp, ce qui permet d’écrire la relation d’incertitude

(25) ôE = v ôp ^ vh/ôq ou ôE.ôq ^ vh

reliant l’incertitude sur l’énergie à l’incertitude sur la position. On trouve un 
exemple physique de ce cas dans les expériences de Rausch von Traubenberg qui 
ont été analysées théoriquement par Schrôdinger [Z. f. Phys. 78 (1932), p. 309].

Considérons des atomes qui se trouvent excités avec l’énergie Et et qui se 
déplacent avec une vitesse uniforme v le long d’un axe Ox sur lequel règne un 
champ magnétique non homogène H(x). La valeur de Et varie avec x en raison 
de la variation de H. En revenant à leur état normal d’énergie E0, les atomes
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Ax x

O Note L.B. : On a ôt ^ h/ôE et, comme on doit avoir aussi ôE < E, on a

ôt ^ h/E.

Comme en théorie relativiste les fronts d’onde peuvent atteindre la vitesse c, 
on doit poser ôq = c ôt d’où

h
m0 c

ou encore

s^if, car i =

Pour la lumière ôq d A, mais pour les particules matérielles, ôq peut être 
inférieur à A.
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émettent une raie spectrale dont la fréquence varie suivant la position occupée 
par chaque atome à l’instant de la transition. On cherche à trouver les varia 
tions de Ei en observant la fréquence de la raie émise sur chaque élément de 
l’axe Ox. Malheureusement, comme l’a observé Schrôdinger, on est gêné par
les circonstances suivantes

D’abord, deux points de l’axe Ox ne sont « séparables » l’un de l’autre que si 
leur distance ôx est supérieure à X(x)/sin s, X(x) étant la longueur émise au 
point x et e le demi-angle d’ouverture de l’appareil d’observation. D’autre part, 
pendant la durée ôt de l’observation, l’atome émetteur est animé vers l’appareil 
d’observation d’une vitesse qui peut atteindre v sin e et par suite de l’effet 
Doppler il y a une incertitude sur la longueur d’onde égale à ÔX = (vjc) sin e X,

d’où ôv = (vjc) sin e v car ÔX ÔV

X V
et, comme ôx = Xi sin e

(26) ôE = hv(sin e/X) ^ hvjôx ôE.ôx ^ hv .

Nous retrouvons la relation d’incertitude annoncée. 
Ecrivons encore

ôx ^ h/ôpx = hv/ÔE.

Pour qu’on puisse localiser un corpuscule d’énergie E bien définie (ÔE <4 E) 
dans l’intervalle ôx, il faut donc que

ôx > hv/E = vjv car E = hv.

Or X = V/v = c2/vv d’où ôx P j82 X.
A l’approximation Newtonienne (particules de vitesse faible), fi2 est négli 

geable et cette inégalité ne donne rien. La localisation peut s’effectuer dans un 
domaine de dimensions petites par rapport à la longueur d’onde. Il n’en est 
plus de même si v -> c ; alors j8 -*• 1 et l’inégalité tend vers <5x ï> X. On ne peut 
plus localiser la particule dans un domaine de l’ordre de la longueur d’onde. 
Donc, pour les particules de vitesse voisine de c, et en particulier pour les 
photons, il n’y a pas de localisation possible à l’échelle de la longueur d’onde.

Les questions que nous venons d’exposer ont donné lieu à d’assez nombreuses 
discussions. Elles se rattachent à la question des états à énergie négative bien 
connue dans la théorie de Dirac et la théorie générale des particules à spin, ainsi 
qu’à la non-existence d’une densité de présence définie positive pour les photons 
et les particules de spin pair. Ces discussions n’ont pas abouti à des conclusions 
absolument claires et la question reste mal élucidée.

D’autres considérations relatives à la comparaison des relations d’incerti 
tude et des conceptions relativistes ont été développées par divers auteurs, 
notamment par M. Schrôdinger (Annales de l’I.H.P., vol. 2(1932), p. 287 et ss.). 
Nous en rappellerons seulement quelques points se rapportant à la mesure 
des temps et des longueurs avec un raisonnement un peu plus court que celui de 
Schrôdinger. Supposons que dans un système galiléen, où la synchronisation
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a été établie, on veuille régler une horloge de masse propre M0. Pour cela, on 
suppose qu’elle émet un photon qui est recueilli au temps t pour un observateur 
situé à une distance l de l’horloge : le temps d’émission du photon sera alors 
t — l/c et on pourra régler l’horloge. Mais pour éviter que l’horloge ne prenne 
lors de l’émission du photon un mouvement de recul qui troublerait la mesure, 
il faut que l’énergie du photon émis soit très petite par rapport à l’énergie 
propre de l’horloge : d’où hv M0 c2. Mais la durée ôt d’émission du train 
d’ondes associé au photon est ^ h/h ôv, ôv étant l’incertitude sur la valeur de v 
qui est forcément v. D’où ôt $> 1/v h/M0 c2. Comme l’enregistrement de 
l’arrivée du photon par l’observateur peut avoir lieu à n’importe quel instant 
de l’intervalle de temps ôt pendant lequel le train d’ondes passe sur l’obser 
vateur, on voit que le réglage de l’horloge ne peut avoir lieu qu’avec une pré 
cision inférieure à r0 = h/M0 c2.

De même si l’on veut dans un système de référence galiléen mesurer la 
longueur d’une règle, cette mesure ne pourra s’effectuer, à cause de la relation

hôx > h/ôpx, qu’avec l’incertitude ôx ^ -------5------car
(E0/c2) ôvx

Px =
M0 vx

yfi~rf
et ?>Px > HT Svx c

h h
Comme ôvx ^ c, ôx ^ ~F~T = TT—• Ainsi la longueur de la règle ne pourra 

£o/C c
jamais être connue avec une incertitude moindre que

Â0 = h/M0 c ,

M0 étant ici la masse de la règle.
On se reportera pour les détails à l’exposé de Schrôdinger dont tous les 

raisonnements peuvent en fin de compte se ramener à la quatrième relation 
d’incertitude et aux relations données plus haut, mais qui contient sur le rôle 
du temps en Mécanique ondulatoire de très pénétrantes remarques.

8. FORMULES DE MANDELSTAM ET TAMM

Partant de considérations dont quelques-unes sont peut-être un peu dis 
cutables, MM. Mandelstam et Tamm sont parvenus à des formules intéres 
santes reliées à la quatrième relation d’incertitude [Journal of Physics, vol. IX, 
n° 4 (1945), p. 249]. Nous allons les étudier.

Les auteurs remarquent que, si un système est dans un état stationnaire 
i// ~ e2n,vl les répartitions de probabilités pour toutes les variables dynamiques 
sont indépendantes du temps, ce qui se vérifie facilement. Ils en concluent qu’il 
doit exister une relation générale entre la dispersion rrE de l’énergie et la
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variation dans le temps des coordonnées, moments, etc. Pour le voir, partons 
de la relation

(27) G A- ^ 2 I AB — BA

valable pour tout couple de grandeurs observables A et B. D’autre part, nous/%
avons par définition A = \J/* Ai// dx et l’on en tire aisément (si A est indé-

pendant de f, ce que nous supposerons)

. . dA 2 ni
(28) dT = “T il/*(AH - HA) \jj dz — '—r^- {AH - HA) = ~ [A, H]2 ni-

où H est l’Hamiltonien du système. En prenant B = H dans (27), nous obtenons

(29) 4 n
dA
dt aH = &E = dispersion de l’énergie

ce qui est la relation cherchée (Relation de Mandelstam et Tamm). Si l’on a un 
état stationnaire à énergie connue oH = 0 et dAjdt = 0.

On peut écrire la relation obtenue sous une forme différente. Le système 
étant supposé isolé, aH est constant, mais aA peut varier. Considérons un 
intervalle de temps ôt et désignons par Tr" la moyenne dans le temps pendant 
cet intervalle de aA (ce n’est pas le même genre de moyenne que celles qui sont 
jusqu’ici désignées par un surlignage). Si nous intégrons dans l’intervalle de 
temps ôt en remarquant que l’intégrale de la valeur absolue d’une fonction 
est toujours supérieure ou égale à la valeur absolue de l’intégrale de la fonction, 
on trouve

(30)
ù A(t + St) - A(t) 

7H.ôt > —4 n àf

Mandelstam et Tamm introduisent alors un «temps standard» ÔTA défini 
comme il suit : c’est le temps le plus court pendant lequel la valeur moyenne 
de A varie de ~ôA. La dernière formule s’écrit alors

(31) <jh.ÔTA ^ /z/4 n.

De la formule (29) on déduit que pour que la valeur moyenne d’une grandeur A 
puisse varier, il faut non seulement que oH ne soit pas nulle, mais aussi que aA 
ne soit pas constamment nulle. Dans le cas où A a un spectre discontinu, 
ceci est évident, mais il n’en est pas de même si A a un spectre continu. On voit 
aussi sur la formule (30) que si à un certain instant aA s’annule sans que A cesse 
de varier, alors initialement c.-à-d. pour ôt très petit, aA doit varier beaucoup 
plus rapidement que A.
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On obtient une illustration intéressante des formules précédentes en consi 
dérant la propagation d’un « train d’ondes » le long de l’axe des x et en faisant 
A = x. Alors x est la coordonnée x du centre de gravité du train d’ondes 
tandis que cx^ peut être regardé comme sa longueur moyenne et ôTA comme 
la durée moyenne de son passage en un point. La relation aH.ôTA > h/4 n 
montre que cette durée moyenne est d’autant plus grande que <j h  est plus 
petite. Nous retrouvons ainsi une conclusion qui est bien connue, mais tandis 
que les raisonnements antérieurs ne fournissaient cette conclusion que dans 
le cas de l’absence de champ, elle est ici valable même s’il y a un champ extérieur, 
car les raisonnements qui conduisent aux formules de la page précédente 
n’impliquent nullement l’absence d’un champ extérieur.

Voici un autre exemple donné par Mandelstam et Tamm. Soit <pn la fonction 
d’onde représentant un certain état d’un système où la dispersion sur l’énergie 
est <rH ('). ijj désignant un état quelconque du système, considérons l’opérateur

L„ tel que L„ i// = cn <pn avec c„ tp* \{t dx. Ln est un opérateur qui isole

dans le \j/ la composante c„ <p„ : c’est un projecteur et il est évident que L2 = L„. 
Comme on a
(32) aLn = ^ - (I„)2 = VÂ. - (Ln)2

la relation de Mandelstam et Tamm nous donne

(33) dLn
dt

Cette inégalité qui ne contient plus que L„ peut facilement être intégrée. 
Supposons que dans l’état initial, on ait L„(0) = 1, ce qui signifie qu’à l’origine 
le système se trouve certainement dans l’état cpn ; alors en intégrant de 0 à l, on 
trouve
. _ .. 2 71 ^ 71 . z r(34) aH t ^ ^ ~ arcsin ^L„(t).

Si 0 < t < h/{4 aH), on a Ln(t) > cos2(^ aH A

Si t > h/(4 (jH), l’inégalité ne donne aucune restriction sur la valeur de Ln(t)
qui est toujours compris dans l’intervalle fermé [0, 1],___

Désignons par t  la vie moyenne de l’état cpn telle que Ln(t) = l/2siL„(0) = 1. 
Alors la dernière inégalité nous donne

(35) aH. x ^ h/8

un peu plus restrictive que aH.x ^ h/4 n.
Le mémoire de Mandelstam et Tamm contient aussi une application un peu 

moins claire aux cas des perturbations, sur laquelle nous n’insisterons pas.

(') Note L.B. : (pn peut être un état propre relatif à une grandeur A qui ne 
commute pas avec H.


