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1. Introduction 
 

The hypothesis of separated magnetic poles is an old one. In the 2nd tome 
(devoted to Magnetism), of his famous Treatise of Electricity and Magnetism [1], 
Maxwell considered the existence of free magnetic charges as evident as the 
existence of electric charges. He based the theory of magnetism on this hypothesis 
and he reported that in 1785 already, Coulomb gave the experimental proof of 
the fact that the law of force of a magnetic charge is the same one as for an 
electric charge : the « Coulomb law ». He took as a magnetiic charge, the extremity 
of a long thin solenoid.   

Our paper is neither devoted to history or to a comprehensive bibliography. 
We shall quote only three papers of this kind [2], [3], [4] and later, we shall quote 
only papers that are useful for our purpose. We shall remain in the framework of 
electrodynamics and some extensions of our theory, but this excludes the hyper-
heavy monopolesuggested by the G.U.T.  

Contrary to the dominating tendency which is to look for a magnetic monopole 
which would be baryonic, bosonic, with strong interactions but curiousely, 
without clearly definite symmetry laws, our aim is : to find a quantum wave 
equation  based on the Dirac equation for the electron, describing a magnetic 
monopole as the other electromagnetic side of the electron. We shall give such an 
equation and we shall prove that : 

 
- Despite that our idea has nothing to do with Dirac’s work on the magnetic 

monopole, the equation automatically gives his law for the link between 
electric and magnetic charges (in a more precise form). 

- Our monopole has a spin ½ and thus, is fermionic instead of bosonic 
- It is massless instead of being very heavy. 
- It appears to be a magnetically excited neutrino and thus subjected to 

weak, and not to strong interactions. 
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- O f course, it is a fermion and not a boson. 
- The experimental proofs are given in later publications of the  

author and of the Russian School, and they may§ be found on 
the same Web-Site. 

 
 
    On the other hand, we shall not confine ourselves to symmetry arguments, 

but shall present a wave equation for a magnetic monopole, which parallels the 
Dirac equation for the electron. This equation describes a monopole quite 
different from the one which is usually considered, but it satisfies all the 
electrodynamical, mechanical and gauge properties commonly assumed at 
present. Needless to say, all these "properties" are conjectural and it is very likely 
that either there are no monopoles at all (God didn't think about it) or, if there is 
one, there must be a world of monopoles, just as large and diverse as the world of 
electrically charged particles.    

 
2. At the beginning was symmetry 

 
In 1894, one century ago, Pierre Curie wrote a paper on "Symmetry in Physical 

Phenomena" [5], where he put forward the idea of a general constructive role of 
symmetry in physics and emphasized the importance of dissymmetry in the 
appearance of phenomena. He described the Curie groups : a classification of 
physical invariance groups of limited objects in tridimensional space, in analogy 
with crystallographic groups, which are the invariance groups of an unlimited 
periodic medium. As an example, he described the symmetry of electromagnetic 
phenomena — and therefore of fields — entirely on the basis of experiments, 
without using Maxwell's equations (as, for instance, in [7]). He added a short 
paper [6] in which the possibility of "free magnetic charges" was shown as a 
consequence of the laws of symmetry of electromagnetic field1.  

There is a difference between electric and magnetic charges, which is a 
consequence of the fact that the electric field is a polar vector and the magnetic 
field is an axial one2 : E has the symmetry of a radial vector r, a velocity v, a 
linear momentum p, a force F, while H has the symmetry of the external product 
of two polar vectors, like r×r' or r×p.  

As a consequence, consider the force exerted by each field on the 
corresponding charge : 

 
F = eE,       F = gH  (2.1) 
 

                                     
1 It is said in reference [2] that Curie "suggests out of the blue that magnetic 
charge might exist". It is no more "out of the blue" than all the predictions made 
in our century on the basis of symmetry, including the famous paper by Dirac 
himself on magnetic poles. Moreover, it was the first prediction of this kind.  
2 It is worth noticing that, despite the obvious difference between the two fields it 
is not so easy to prove experimentally which is polar and which is axial [5]. 
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If we assume that these law of force are P-invariant, the electric charge must be 
a scalar and the magnetic charge a pseudo-scalar : the image of an electric charge 
has the same sign, while the image of a north pole is a south pole and we find the 
following symmetry laws.  
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Fig. 1 Symmetry laws of electric and magnetic quantities 

Electric field  E 
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and current  J 

  
and current K

Magnetic field  H

 
 
One can see on Fig.1 that, while the electric current is a polar vector, like the 

electric field, the magnetic current must be axial like the magnetic field, in virtue 
of the definitions : 

 
J = ev,       K = gv (2.2) 

   
It is astonishing to find a pseudoscalar physical constant g, because a physical 

constant has no tensorial variance : for instance, c does not vary as a velocity and 
h does not vary as an action or as a kinetic moment. Only physical quantities can 
have tensorial variances, not constants, and here, there is a confusion between the 
value of a constant and the variance of the corresponding physical quantity. We 
shall see that it is not so in quantum mechanics : the elementary magnetic charge 
will be a scalar, as it must be, but physical properties will be given by a pseudo-
scalar charge operator. Magnetic current will be an axial vector different from 
(2.2).  

In other words, Fig.1 that summarizes the work of Pierre Curie is true, but eq. 
(2.1) and (2.2) are not, and this is very important because a classical objection 
against the hypothesis of magnetic poles is that it is purely formal [2], [7], [8]. 
Actually, let us introduce densities of electric and magnetic currents and charges 
J, K, ρ, µ, in Maxwell's equations : 
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curl H ! 1
c

 
!E

!t
 = 4"

c
 J ;  ! curl E ! 1

c
 
!E

!t
 = 4"

c
 K

 
 
div E = 4!" ;  div H  = 4!µ  (2.3) 
 
This system is invariant under the transformation : 
 
 E = E'  cos ! + H ' sin ! ;  H = " E'  sin ! + H ' cos ! 

# = #'  cos ! + µ'  sin !  ;    µ = " #' sin ! + µ'  cos ! 

J = J'  cos ! + K'  sin ! ;   K = " J' sin ! + K'  cos !  (2.4) 
 
And the argument is that, by suitably choosing the angle γ ,    one can arbitrarily 

eliminate magnetic (or electric) quantities. But this is true only if J and K are 
colinear, and it will not be true in our case, which invalidates the argument. 

 

3. The Birkeland-Poincaré effect 
 
In 1896, Birkeland introduced a straight magnet in a Crookes' tube and was 

puzzled by a convergence of the cathodic beam which does not depend on the 
orientation of the magnet [9]. Poincaré explained the effect by the action of a 
magnetic pole on the electric charges of the beam (these charges were only 
conjectured at that time) ; he showed that it is due to the action of only one pole 
of the magnet, and that, for symmetry reasons, it must be independent of the sign 
of the pole [10].  
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Fig. 2  The Birkeland-Poincaré effect. When a straight magnet 

is introduced in a Crookes' tube, the cathodic rays converge 

whatever the orientation of the magnet. Above : the cases 

considered by Birkeland ; below : two cases corresponding to 

the same description given by Poincaré.  
 
In order to describe this effect, Poincaré wrote down the equation of motion of 

an electric charge in a coulombian magnetic field created by one end of the 
magnet. The magnetic field is : 
 

H  = g 1
r3

  r
  (3.1) 

 
where g is the magnetic charge, and, from the expression of the Lorentz force, we 
find the Poincaré equation :  

 
d2

r

dt2
 = ! 1

r3
 dr

dt
 x r  ;   ! = 

eg
mc  (3.2) 

 
where e and m are the electric charge and the mass of the electron. 

Poincaré found the following integrals of motion, where A, B, C, Λ , are arbirary 
constants : 

 

r2 = C t2 + 2B t + A ;  dr

dt

2
= C

 (3.3) 
 
r x dr

dt
 + ! r

r
  =  "

 (3.4) 
 
He obtained from eq. (3.4) :  



 
 
 
 
6 Advanced Electromagnetism   
 
       

   

 

 ! . r = "r ;  d
2
 r

dt2
 . r = d

2
 r

dt2
  . d r

dt
 = 0

 (3.5) 
 

which says that r describes an axially symmetric cone — the Poincaré cone — and 
that the acceleration is perpendicular to its surface, so that  r follows a geodesic 
line . 

If the cathodic rays are emitted far away from the magnetic pole with a velocity 
V parallel to the z axis, they will have an asymptote which obeys the equations :  

 
x = x0  ; y = y0 (3.6) 
 
And we find from (3.3) and (3.4) : 
 
C = V2 ;  ! = y0V, " x0V, #  (3.7) 
 
The z axis is thus a generating line of the Poincaré cone and the half angle Θ' at 

the vertex is given by : 
 
sin !'  = V

"

 x0
2 + y0

2 
 (3.8) 

 
Now, the cathodic ray that becomes, after the emission, a geodesic line rotating 

along the cone, crosses the z axis at distances from the origin given by 
 

 
x0

2 + y0
2

sin !
  ;   

x0
2 + y0

2

sin 2!
  ;   

x0
2 + y0

2

sin 3!
  ;…  ! = 2" sin #'  

 (3.9) 
 

Therefore, if the emitting cathode is a small disc of radius x0
2 + y0

2  orthogonal 
to the z axis, and if the position of the magnetic pole is such that one of these 
points is on the surface of the tube, there will be a concentration of the electrons 
emitted by the periphery of the cathode and even, approximately, of those 
coming from the whole disc : this is the focusing effect observed by Birkeland.  

This is an important result because, although the existence of magnetic 
monopoles as particles is not yet proved (at least, we are not sure of that), the 
Poincaré equation (3.2) and the integral of motion (3.4) are experimentally 
verified.  

In eq. (3.4), the first term is clearly the orbital momentum of the electron with 
respect to the magnetic pole. The second term was later interpreted by J.J. 
Thomson (see [7], [11]) who showed that :  

 

 
eg
c

 r
r
 = 1

4!c
 x " E " H

—!

!

 d3x

 (3.10)  
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Thus, with the value of λ given in eq. (3.2), the second term of the Poincaré 
integral is equal to the electromagnetic momentum and eq. (3.4) gives the 
constant total angular momentum J=mΛ . The presence of a non vanishing 
electromagnetic angular momentum is due to the axial character of the magnetic 
field created by a magnetic pole and acting on the electric charge.  

Let us add a remark about symmetry [12] : the Poincaré cone is enveloped by a 
vector r which is the symmetry axis of the system formed by the electric and the 
magnetic charge, and this axis rotates (with a constant angle Θ') around the 
constant angular momentum J=mΛ . But this is exactly the definition of the 
Poinsot cone associated to a symmetric top [13].  

The Poincaré cone is nothing but the Poinsot cone of a symmetrical top, which 
is not surprising because the system formed by an electric and a magnetic charge 
is axisymmetric and is rotating around a fixed point with  a constant total angular 
momentum. Such a system must have the angular properties of a top, but with a 
different radial motion because the it is not rigid (the motion along the geodesic 
lines of the cone has nothing to do with a top). 

 Introducing the following definition with two obvious properties :  
 
L = r ! dr

dt
 ;  L . r

r
  = 0 ;   " . r

r
  = 0

 (3.11) 
 

all that was said can be summarized in the following figure : 
 

                    

Angular momentum

Symmetry axis

! r 
/ r

"

L

Fig. 3 The generation of the Poincaré (or Poinsot) cone  

and the decomposition of the total momentum.  
 
Of course, all these results are true for a magnetic charge in a coulombian 

electric field : we shall see that this will be true in our case and that our equation 
for a magnetic monopole will give, at the classical limit, the Poincaré equation. 

 
4. Forces and potentials for a magnetic pole 

 
Owing to the second formula (2.1), we can write the equation of motion of a 
monopole in a particular system where the external field reduces to its magnetic 
part : 
 
d p0

dt0
 = g H0

 (4.1) 
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p0, t0 and H0 are the momentum, time and magnetic field in this system. The 
Lorentz transformation of the electromagnetic field is : 
 

E0 = E + v/c H

1! v/c 2
 ;  H0 = 

H ! 1/c v " E

1! v/c 2
 (4.2) 

 
Therefore, the general form of (4.1) reads :  
 
d p

d!
  = g 

H " 1/c v # E

1" v/c 2
  

 (4.3) 
 

where d! =dt 1- v/c 2
  is the differential of the proper time so that (4,3) can be 

writen :       
 
d p

dt
  = g H ! 1/c v " E     

 (4.4) 
 
The right-hand side of eq. (4.4) is the Lorentz force acting on a magnetic pole, 
with a minus sign in front of E instead of the plus sign occuring in front of H in 
the electric case. 
Now, we go back to the Maxwell equations (2.3) with magnetic current and charge 
densities and introduce relativistic coordinates : 
 
x! = x1, x2, x2, x4  = x, y, z, ict  (4.5) 
 
In a covariant form, eq. (2.3) becomes :  
 
!!F"! = 4#

c
 J" ;  J" = J, i$c

!!F"! = 4#
c

 K" ;  iK" = K, iµc  (4.6) 
 
where the i = √−1 in front of Kα is due to the axial character of K ; we have the 
relation of duality:  
 
F!" = i

2
 #!"$% F

$%    (#!"$% - antisymmetric)
 (4.7) 

 
It is clear that we cannot define the field by a Lorentz polar potential only 
because :  

 
F!" = !!A" # !"A! $ !"F!" = 0 (4,8) 
 
Then, we must introduce a new potential Bα such that :  
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F!" = !!A" # !"A! + !!B" # !"B! (4.9) 
 
Both right-hand terms in eq. (4.9) must have the same variance. Hence, Bα is a 

pseudo-potential, i.e. the dual of an antisymmetric tensor of rank three : 
 
B! = C"#$ = 1

3!
 %!"#$C

"#$

 (4.10) 
 
In terms of ordinary coordinates, we have :  
 
A! = A, iV  ;    iB! = B, iW    (4.11) 
 
where B is an axial vector. The fields are defined as :  
 

    E = ! "V ! 1
c

 
!A

!t
 + curl B 

H = rot A + "W + 1
c

 
!B

!t  (4.12) 
 
Actually, we shall not consider "dyons" with electric and magnetic charges, but 

"true" magnetic poles with a magnetic charge only, so that formulae (4.9) and 
(4.12) reduce to : 

 

F!" = !!B" # !"B! $  E = curl B ; H = %W + 1
c

 
!B

!t  (4.13) 
 
The last formulae were derived by de Broglie from his theory of light [14] ; 

they were related to the magnetic monopole by Cabibbo and Ferrari [15].    
 

5. Dirac strings 
 
In a celebrated paper of 1931, Dirac raised a fundamental problem about the 

interaction between electric and magnetic charges i. e. either the motion of an 
electric charge around a fixed monopole or conversely the motion of a monopole 
around a fixed electric charge, [16], [17], [18], [19]. Let us choose, as Dirac did, 
the motion of an electric charge in the magnetic coulombian field H generated by 
a fixed monopole with charge g. H is thus defined by a vector potential A such 
that: 

 
curl A = g  r

r3  (5.1) 
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It is clear that there is no continuous and uniform solution A of this differential 
equation because if we consider a surface Σ bounded by a loop Λ, we find 
according to Stokes' theorem :  

 

H .dS

!

 = curl A.dS

!

 = A.dl

"

 = g  

!

r

r3
.dS = g d#

!

  

 (5.2) 
 

where dS, dl and dΩ are elements of surface, length and solid angle respectively. 
Now, if the loop is shrinked to a point, while the pole remains inside the closed 
surface Σ, we get :  
 

A.dl

!"0

 = g d# =

$

 4%g  

 (5.3) 
 
This equality is impossible for a continuous potential A because then the first 

integral vanishes. There must be a singular line somewhere around which the 
loop shrinks. Now, whatever the wave  

equatio, the minimal coupling is given by covariant derivatives :  
 

   
! " i

e

!c
A  (5.4) 

 
    

Dirac introduced in the wave function ψ a non integrable (non univalent) phase 
γ, defining a new wave function : 

 
! = ei" # (5.5) 
 
If we apply the preceding operator, we know that the introduction of this phase 

γ  is equivalent to the introduction of a new potential by a change of 
electromagnetic gauge  : 

 
! " i  e

hc
 A  # = ei$ ! + i!$ " i  e

hc
 A  %

  

 (5.6) 
 
We can identify the new potential with the gradient of γ, but the phase factor 

 ei! is admissible only if the variation of γ around a closed loop is equal to a 
multiple of 2π. Then, we must have : 

 

e
hc

 A.dl

!"0

 =  #$.dl

!"0

 = %$   loop = 2&n

 (5.7) 
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Comparing eq. (5.3) and (5.7), we find the famous Dirac condition between 
electric and magnetic charges : 

 
eg

hc
  = n

2  (5.8) 
 
It is interesting to confirm this result on a solution of the eq. (5.1). Dirac chose 

the following solution :   
 

 Ax = 
g
r
 
!y

r+z

 ,    Ay = 
g
r
 x

r+z

 ,   Az = 0 ,  r = x2+y
2
+z2     

 (5.9) 
 
In polar coordinates : 
 
x = r sin ! cos " ,  y = r sin ! cos " ,   z = r cos !   (5.10) 
 

Eq. (5.9) becomes : 
 

 Ax = ! 
g
r
 tan "

2
 sin # ,    Ay = 

g
r
 tan "

2
 cos # ,   Az = 0    

 (5.11) 
 
There is a nodal line which goes from x = 0 to ∞, for  θ = π, and the Dirac condition 

is easily found if we compute the curvilinear integral (5.7) around this line for 
θ = π − ε and  let ε go to 0. We must have : 

 

e
hc

 A.dl

!"0

 =  
eg

hc
 1
r
 tan #

2
# = $ % & , &"0

  rsin #  d' = 2$n

  (5.12)   
 

Therefore : 
 

 
eg

hc
sin !

tan !
2

!"0

   d# = 
eg

hc
 2$2% = 2%n

 (5.13) 
 
We see that the factor 2 comes from ε/2 in the tangent and we could conclude 

that it is related to the fact that the nodal line begins at r = 0. But this is wrong 
because the solution (5.9) or (5.11) chosen by Dirac depends on an arbitrary 
gauge, and his choice is not actually very good because this potential has no 
definite parity. Moreover, it must be stressed that with a polar vector A, the vector 
curl A is axial, so that eq. (5,1) would be admissible only with a pseudo scalar 
constant  g, against which we have already objected. In the following, we shall find 
a wave equation for a monopole in an electromagnetic field and our potential will 
not be A but B, solution of the following equation, where e is a scalar : 



 
 
 
 
12 Advanced Electromagnetism   
 
       

   

 
curl B = e  r

r3  (5.14)   
 
We know that B is an axial vector and it is evident on (5.14) because curl B 

must be polar, like r . Mutadis mutandis Dirac's reasoning presented above will be 
true, but we shall choose another solution of (5.14) which is axial : 

 

Bx = e
r
  

yz

x2 + y2
 ,  Bx = e

r
  !xz
x2 + y2

 ,   Bz = 0 ,   r = x2+y
2
+z2  

 (5.15)  
 
Or, in polar coordinates : 
 

Bx = e
r
  

sin !

tan "
 ,  By = e

r
  
# cos !

tan "
 ,   Bz = 0 

 (5.16)  
 
The Dirac-like solution is, in this case : 
 

 B'x = e
r
  
!y
r+z

 ,    B'y = e
r
  x
r+z

 ,   B'z = 0     (5.17) 
 
And we have the gauge difference :   
 
B'  ! B = " Arctan 

y
x  (5.18) 

 
Using solution (5.15) or (5.16) in Dirac's proof of relation (5.8), the singular 

line goes now from − ∞ to ∞, instead of from 0 to ∞, and equality (5,13) becomes : 
 

2! 
eg

hc
sin "
tan "

"#0

   d$ = 2!
eg

hc
 2% = 2%n

  (5.19) 
 
Now, the factor 2 comes no more as it did above from tan ε/2 but from the fact 

that the singular line pierces the sphere in two points. Therefore, the factor n/2 in 
the Dirac condition (5,8) was not at all related to the fact that the singular line 
began in r = 0. Further, we shall give another proof of Dirac's relation and we shall 
see that the factor n/2 is related to the double connexity of the rotation group.  

According to (5.8), if we choose the charge e of the electron as a unit electric 
charge, the magnetic charge is quantized. For n=1, we obtain the unit magnetic 
charge as a function of the electron charge and of the fine structure constant : 

 
  g0 = hc

2e2
 e = 1

2!
 e " 137

2
 e = 68,5 e

  (5.20) 
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This is an enormous charge, of the order of the electric charge of a nucleus in 
the region of lantanides, beyond the middle of Mendeleïev's classification. This 
means that a monopole interacts strongly with atoms and possesses strong 
ionizing properties. It seems that a light monopole would be continually deviated 
from its inertial trajectory. Actually, the problem of the interaction cross section 
between electric and magnetic particles is difficult and not free from some 
ambiguities or ad hoc hypotheses which we shall not discuss in this paper (see [1], 
[20], [21], [22], [23], [24]).  

 It is noteworthy, for future questions raised by experiment, that Dirac's 
condition (5,8) is based on general assumptions from quantum mechanics 
(uniformity of phase), electromagnetism (fields expressed by potentials) and on 
the postulate of gauge invariance1. Until now, there has been unfortunately only 
one observation, by Blas Cabrera, of a possible magnetic monopole, with a 
magnetic charge obeying the Dirac condition : a jump of the quantized magnetic 
flux of a superconducting loop, corresponding to one Dirac unit (5.20) of 
magnetic charge [25]. But we cannot ignore the fact that a series of experiments 
was performed in the thirties by Ehrenhaft [26], later by Schedling [27] and 
Ferber [28], and recently by Mihaïlov [29], [30], [31], [32], [33]. Thousands of 
observations of strongly illuminated ferromagnetic aerosols in various electric 
and magnetic fiels, showed a migration of microparticles which could not be 
interpreted, until now, other than as a migration of magnetic monopoles (several 
other interpretations were attempted, but seem to be wrong).  

Nevertheless, these phenomena are not really understood. They give a whole 
range of values of magnetic charge, and most of them violate the Dirac condition. 
While the unit given by (5,20) is about 3,28×10-8 gauss cm2, the  measured charge 
is between 10-13 to 10-11 gauss cm2. Mikhaïlov gave an empirical formula that fits 
many experimental results [31] :  

 
g = !

6
 e  " g = 1

3
  !2 g0 (5.21) 

 
α  is the fine structure constant and g0 the Dirac unit charge (5.20).   
In 1948, Dirac [17] quoted two Ehrenhaft's papers [34]. He did not allude 

directly to the discrepancy concerning the charge, but he remarked that the value 
he had predicted for the smallest magnetic charge led him to the conclusion that 
the creation of a magnetic pole requires an enormous amount of energy in order 
to separate a magnetic doublet2. But Ehrenhaft did not use high energies, so that 
Dirac simply said : "this is not a confirmation of the present theory". But, of 
course, he didn't assert that the experiments were impossible for theoretical 
reasons !     

                                     
1It may be noticed that Dirac's result on monopole was perhaps the first one 
which was based on the postulate of gauge invariance. 
2  We shall see later that Dirac's conclusion is not at all obvious because the 
separation of a doublet is not the unique way to produce a monopole. Perhaps it 
is not the way at all. 
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Einstein was informed of these experiments and of Ehrenhaft's conclusion that, 
perhaps, even the fundamental electric charge is not a universal constant. In 
1939, in a letter to Langevin, Einstein made a brief but remarkable comment and 
recommended Ehrenhaft for the next Conseil Solvay (that actually met after the 
war) : 

 
"I know that Ehrenhaft' reputation is bad in the circles of physicists because of 

his persistency, based on numerous researches, to deny the constancy of the 
elementary quantum of electricity. Nevertheless, it must be said in his favour, that 
he himself has created a large part of the method in question, and that the results 
of his experiments were not weakened by more reliable results of measures 
performed in this domain, but rather by general reflections, based on results 
obtained in a quite different domain." [35]  

 
A beautiful example of Einstein's open mind and of his humility before 

experimental physics.  
 

6. A spinor wave equation for a magnetic monopole. 
 
Now, we shall find a wave equation for a magnetic monopole. It will be shown 

that the famous Dirac equation for the electron admits not only one local gauge 
invariance but two — and only two. As it is known, the first invariance (the 
ordinary phase invariance) corresponds to an electric charge ; the second one 
corresponds to a magnetic monopole. The new spinorial equation so obtained 
describes, in quantum terms, the Curie symmetry laws, and we shall see that new 
symmetries are involved, that can be given only in quantum mechanics, without 
any classical equivalence : especially the correct definition of an antimonopole. 

 
a) Scalar gauge and chiral gauge in the Dirac equation. 
 
Let us write the Dirac equation without external field : 
 
 !µ!µ" + 

m0c

h
 " = 0

  (6.1) 
 

where xµ= {xk ; ict} and γµ are matrices defined in terms of Pauli matrices sk as : 
 

 
 !k = i 

0 sk

" sk 0
 ;  k = 1, 2, 3 ;  !4 = 

I 0

0 "I
 ;  !5 = !1!2!3!4 = 

0 I
I 0

  

 (6.2) 
 
Consider a global gauge transformation where Γ is a Hermitian matrix and θ a 

constant phase :  
 
! " ei#$ ! (6.3) 
 
Eq. (6.1) becomes : 
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!µ ei"#!µ  !µ$ + 
m0c

h
 ei"# $ = 0

 (6.4) 
 
 Let us now develope Γ on the following Clifford algebra basis built on the γµ 

matrices : 
 

! = aN !N!
N = 1

16

 ;  !N = I, "µ,  "[µ"#],  "[$"µ"#],"5 

 (6.5) 
 
Owing to the commutation rules of γµ we have the following relations for any 

matrix ΓN [36] (the sign varies with µ and N) :   
 
 !µ "N !µ = ± "N  (6.6) 
 
Hence we find from eq. (6.4) : 
 

 !µ ei"# !µ = exp i# ± aN !µ "N !
N = 1

16

!µ  = exp i# ± aN "N!
N = 1

16

   

 (6.7) 
 
A necessary condition for the gauge invariance of eq. (6.1) is that the factor 

!µ ei"#!µ  in (6.4) does not depend on µ and this is possible with two and only two 
matrices ΓN : I and γ5 because the first commutes and the second anticommutes 
with all the γµ . Therefore :  

 
! = a1I + a5 "5  ;  a1 ,  a5 = Const. (6.8) 
 
The first term gives the ordinary phase invariance that implies the 

conservation of electricity :  
 
! = I ;  " # ei$ "  (6.9) 
 
For reasons to be explained shortly, the second term will be called the chiral 

invariance :   
 
! = "5 ;  # $ ei"5

% # (6.10) 
 
 We shall see that this invariance implies the conservation of magnetism. But 

these two gauges are quite different because the first one is valid for every value 
of m0 in eq. (6.1), so that the conservation of electricity is universal in quantum 
mechanics, while the second one is valid only for m0 = 0 in (6.1) because of the 
anticommutation of γ5 and γµ, so that the conservation of magnetism is not as 
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strong as the conservation of electricity ; it is broken by a linear mass term. 
Despite this difference, there is a symmetry between the two gauges, owing to two 
kinds of relations.  

At first, let us recall that the Dirac spinor and the Clifford algebra basis (6.5) 
define 16 tensorial quantities : a scalar, a polar vector, an antisymetric tensor of 
rank two, an antisymmetric tensor of rank three (an axial vector) and an 
antisymmetric tensor of rank four (a pseudo-scalar) :  

 
 !1  = " " ;  Jµ = i " #µ " ;  Mµ$ = i " #µ #$ " ;  %µ = i " #µ #5 " ; !2  = & i  " #5 "

" = "+#4 ;   "+ = hermitean conjugated  
 (6.11) 
 
Secondly, when Ω1 and Ω2  do not simultaneously vanish, the Dirac spinor may 

be written as follows [37], [38], [39] : 
 
! = " e i #5 A/2 U !0 (6.12) 

 
ψ0 is a constant spinor, U a general Lorentz transformation, A the pseudo-scalar 

angle of Yvon-Takabayasi : 
 

tan A = 
!2

!1  (6.13) 
 

The amplitude ρ is : 
 

! = "1
2
+"2

2

 (6.14) 
 
Now, the proper rotation Euler angle ϕ (included in U) defines a scalar phase  ϕ/2 

of the spinor ψ, which is canonically conjugate (with respect to a classical Poisson 
bracket) to the fourth component of the polar vector Jµ  [37], [38], [39] : 

 
!

2
 ,  J4  = " r#r '

 (6.15) 
  
In analogy with (6.15), the pseudo-scalar phase A/2 is conjugate to the fourth 

component of the axial vector  Σµ [37], [38], [39] :  
      
A

2
 ,  !4  = " r # r '   

 (6.16) 
 
In Dirac's theory of the electron, J4 is a density of electricity associated with the 

phase invariance and the space part J of Jµ is a density of electric current. In the 
same way, Σ4 is a density associated to the chiral  invariance and the space part 
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Σ  of Σµ is a density of current. They will be densities of charge and current of 
magnetism. 

Nevertheless, among the differences between the two gauges, and apart from 
the fact that  Jµ is polar and Σµ axial, there is the important property that Jµ is 
time-like while Σµ is space-like  because of the Darwin - De Broglie equalities : 

 
! JµJµ = "µ"µ = #1

2
+#2

2

 (6.17) 
 
The fact that Jµ (interpreted as a current of electricity and probability) is time-

like is very important because this property is equivalent to the existence of a 
rest-frame. At first glance, a space-like  magnetic current Σµ looks unacceptable 
but we shall see that it is not so.   

  The fact that A is a pseudo-scalar is easy to prove using the transformations :    
 

  P : ! " # 4! ;T : ! " $i# 3# 1!
*
;C : ! " # 2!

*  (6.18) 
 
With the definitions (6.11), this implies : 
 

  

P:!1 " !1;!2 " #!2

T:!1 " !1;!2 " #!2

C:!1 " #!1;!2 " #!2

  (6.19) 

 
Then, (6,19 and (6.13) show that Ω1 is a relativistic invariant while Ω2 and A 

are relativistic pseudo-invariants. The chiral gauge transformation, may be 
written geometrically in the following way : 

 

!1 =  " cos A ;  !2  = " sin A ;  " = !1
2
+!2

2

 (6.20) 
 

where we must introduce the transformations : 
 
   P: A ! "A ;T: A ! "A ;C: A ! "A  (6.21) 
 
Now, consider a chiral gauge transformation, slightly modified with respect to 

the eq. (6,10)  :  
 
!' = ei"#/2 ! (6.22) 
 
Using definition (6,11) of Ω1 and  Ω2, we get : 
 
!1

'

!2
'

 = 
cos " # sin "  

sin " cos "

 
!1

!2  (6.23) 
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The chiral gauge transformation is thus a θ rotation in the plane {Ω1, Ω2} (while 
the rotation of the spinor was θ/2). Making use of (6.13), we verify that θ 
represents a phase shift of the angle A : 

 
A' =  A + ! (6.24) 
 
Naturally, θ is a relativistic pseudo-scalar, like A. 
 
b) The wave equation. 
 
We know that, introducing the ordinary local gauge (5.5) in the Dirac equation 

(6.1), we find the minimal electric coupling and the covariant derivatives (5.4) in 
terms of Lorentz potentials, that give the equation of an electric particle in an 
electromagnetic field. 

Now, consider the Dirac equation with m0 = 0 : 

 
 !µ!µ" = 0  (6.25) 
 

and the chiral gauge (6.10), replacing the abstract pseudo-scalar angle θ with a 
(pseudo-scalar) phase φ with physical coefficients : 
 

! " exp i 
g

hc
 #5 $   ! ;  Bµ " Bµ + i %µ$

 (6.26) 
 
g will be a scalar magnetic charge : the pseudo-scalar character of magnetism is 

related to a pseudo-scalar magnetic charge operator G which is at the origin of all 
the differences between the classical and the quantum theory of magnetic 
monopoles :  

 
G = g !5 (6.27) 
 
As φ is a pseudo-scalar, the electromagnetic potential cannot be the Lorentz 

polar vector Aµ, but the axial potential Bµ, defined by (4.10), (4.11) and which 
have the variance of ∂µφ. The covariant derivatives are now (the absence of i in 
front of g is due to the axiality of Bµ) : 

 
!µ = "µ #  

g

hc
 $5Bµ 

 (6.28) 
 
The equation of the magnetic monopole is thus [39], [40]: 
 
!µ "µ #  

g

hc
 !5Bµ  $ = 0

 (6.29) 
 
The justification of this equation will be given by its symmetry properties and 

by the motion in a central electric field. 
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7. Symmetries of the wave equation. 
 

a) Gauge invariance.  
 
By definition, eq. (6.29) is invariant with respect to the chiral gauge 

transformation (6.23). This entails the conservation of the axial current that will 
play the role of a magnetic current :  

  
!µKµ = 0 ;   Kµ = g "µ = i g # $µ $5 # (7.1) 
 
 It must be noticed that this magnetic current is not parallel to the electric 

current and that its pseudo-tensorial variance is in accordance with the Curie 
laws. The question of its space-like character will become clear a little further. The 
same expression for the magnetic current was previously suggested by Salam [41] 
for reasons of symmetry, but here, it is deduced from a wave equation and a 
gauge condition. 

 
b) CPT. 
 
It is easy to prove that our wave equation is C, P and T invariant, i.e. invariant 

under the transformations : 
 

P: g ! g ;  xk  ! " xk  ,  x4  ! x4  ;  Bk  ! Bk ;  B4   ! " B4   ;  # ! $4 #           

T:  g ! g  ;   xk  ! xk  ,  x4  ! " x4  ;  Bk  ! " Bk ,   B4  ! B4  ;  # ! " i$3 $1 #
*

C:  g ! g  ;  # ! $2 #* = $2 $4 #     # = #+$4                                                      

 (7.2) 
 
In this formulae, the most important point is that the charge conjugation does 

not change the sign of the magnetic constant of charge. In the next section, we 
shall see what exactly charge conjugation means, but we can already assert that 
two conjugated monopoles have the same charge constant and that two 
monopoles with opposite charges are not charge conjugated : changing g in − g in 
eq. (6.29), we find a new equation which is not unitary equivalent to the original 
one.  

Therefore, we cannot create or annihilate pairs of monopoles with opposite 
charges g and − g , in the way pairs of electric charges are created or annihilated. 
The properties of charge conjugation of eq. (6.29) show that there is no danger of 
an infinite polarization of vacuum which could occur from the zero mass of our 
monopole and it shows that one cannot invoke the hypothesis of great masses to 
explain the rarity of monopoles or, at least, the difficulty to observe them. The 
fact that chiral invariance and conservation of magnetism are easily broken shows 
that, more probably, monopoles are abundant in nature and that the difficulty of 
the isolation of one of them is not a question of energy. 

But what are conjugated monopoles ?  
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8. Weyl's representation. Two-component theory. 

 
The Weyl representation is the one that diagonalizes γ5 and, thus, the charge 

operator G. The transformation is : 
 

 ! " U ! =  

#

$
 ;  U = U %1 = 1

2
  &4 +  &5  

 (8.1) 
 

where ξ and η are two-component spinors ; and we have :  
 

U G U !1 = U g "5 U !1 =  g  "4 = 
g 0

0 ! g  (8.2) 
 
Applying eq. (8.2) to ψ given by (8.1), we see that ξ and η are eigenstates of G, 

corresponding to the eigenvalues g and − g :  
 

U G U !1 
"

0
 =  g  

"

0
 ;  U G U !1 0

#
 = ! g  0

#  (8.3) 
 
Owing to (8.1) and (4.11), the equation (6.29) splits into a pair of 

uncoupled two component equations in ξ and η corresponding to  
opposite eigenvalues  of the charge operator G [39], [40] :  

 

1
c

 
!

!t
 " s .# " i  

g

hc
 W + s .B  $ = 0

1
c

 
!

!t
 + s .# + i 

g

hc
 W " s .B  % = 0

 (8.4) 
 
They exchange between themselves by C, P, T transformations : 
  

P:   g ! g ; xk  ! " xk   ,  t ! t ;  Bk   ! Bk  ,  W ! " W ; # $ %                             

T:  g ! g  ;   xk  ! xk  ,  t ! " t ;  Bk  ! " Bk ,   W ! W ;  # ! s2 #*  ;  % ! s2 %* 

C:  g ! g  ;  # ! " i s2 %* ;  % ! i s2 #*                                                                    

 (8.5) 
 
They describe two charge conjugated  particles — a monopole and an 

antimonopole  — with the same charge constant but opposite helicities  and going 
up and down the time. 
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The charge operator G is thus related to the helicity and our monopole appears 
as a kind of excited neutrino : the system (8.4) reduces to the neutrino two-
component equations if g = 0.  

The eq. (8.4) are invariant under the gauge transformation (note the opposite 
signs of φ for ξ and η) : 

 

! " exp i 
g

hc
 #   ! ;  $ " exp % i  

g

hc
 #   $ ;  W " W +  1

c
 
&#

&t
 ;  B " B % '#

(8.6) 
  

9. Chiral currents. 
 
The gauge law (8.6) entails, respectively, for the two equations (8.4), the 

conservation of two chiral currents :   
   

 1
c

 
! "

+
"

!t
 # $"

+
s " = 0 ;  1

c
 
!%+%

!t
 + $%+s % = 0

 (9.1) 
 
These currents are thus defined as : 
 
Xµ = !

+
!,  " !

+
s !  ;  Yµ = #+#,  #+s #  (9.2) 

 
Its is easy to prove that they are isotropic : 
 
XµXµ = 0 ;  YµYµ = 0 (9.3) 
 
They exchange between themselves by parity : 
 
P :  x !  " x ;   Xµ # Yµ (9.4) 
 

which justifies their denomination as chiral currents. 
Making use of eq. (8.1), we find the following decomposition of the polar and 

axial vectors defined in (6.11) : 
 
Jµ = Xµ + Yµ ;  !µ = Xµ " Yµ (9.5) 
 
It seems to be a good idea to consider the chiral isotropic currents Xµ and Yµ as 

the fundamental currents and to define the electric and magnetic currents as 
their sum and their difference (with suitable charge factors). Identities (6.17) are 
now easily proved because, using (6.11) and (8.1), we find : 

 
!1 = "

+
# + #+" ;  !2 = i  "

+
# $ #+"  ;  %2 = 4 "

+
#  #+"  (9.6) 
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The fact that one of the currents (Jµ or Σµ) must be time-like and the other one 
space-like appears as a trivial property of the difference and the sum of two 
isotropic vectors. The space-like vector is Jµ because one can show that Xµ Yµ 

< 0. 
We understand that our magnetic current Kµ = gΣµ may be space-like because 

the true magnetic currents are the conservative chiral currents gXµ and −gYµ 
whereas Kµ is only their sum.  

It is interesting to add a remark concerning the role of the chiral currents in 
the Dirac theory for the electron. In the Dirac equation, (9.1) cannot hold because 
we have no chiral invariance and we find instead the equalities : 

 

 1
c

 
! "

+
"

!t
 # $"

+
s " =  

m0c

h
 %2 ;   1

c
 
!&+&

!t
 + $&+s & = # 

m0c

h
 %2

 (9.7) 
 
The second invariant Ω2 appears as a source of magnetism in the Dirac eqation. 

The sum and the difference of these equations give the conservation of electricity 
and the Uhlenbeck and Laporte relation : 

 
  !µ Jµ = 0 ;  !µ "µ + 2 

m0c

h
 #2 = 0

 (9.8) 
 

10. The geometrical optics approximation and the monopole in an 
electric central field. 
 

Now we must verify that we find the correct Poincaré equation and the 
Birkeland effect. Let us introduce in the first equation (8.4) the following 
expression of the spinor ξ  : 

 
! = a eiS/h  (10.1) 
 

where a is a two-component spinor and S a phase. At zeroth order in h, we have : 
 

1
c

 
! S

! t
 " g W  " # S + 

g
c

 B  . s  a = 0

 (10.2) 
 
This is an homogeneous system with respect to a. A necessary condition for a 

non trivial solution is : 
 

1
c2

 
! S

! t
 " g W

2

 " # S + 
g
c

 B
2

 = 0

 (10.3) 
 
This is nothing but a relativistic Jacobi equation with zero mass and we may 

define the kinetic energy, the impulse and the linear Lagrange momentum : 
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E  = ! 
" S

" t
 + g W ;  p = # S + 

g
c

 B ;  P = # S 

 (10.4) 
 
The Hamiltonian function will be equal to : 
 

H = c P + 
g
c

 B
2

 ! g W    (10.5) 
 

and a classical calculation gives as equation of motion : 
 

dp

dt
 = g !W + 

"B

"t
  # 

g
c

 v $ curl B

 (10.6) 
 
The eq. (4.13) gives the classical form : 
 
d p

dt
  = g H ! 1/c v " E     

 (10.7) 
 
But we must not forget that the mass of our particle is equal to zero, so that v is 

the velocity of light and we cannot write :  p = m v. But the equality : p = E/c2 v still 
holds when the energy E is a constant, which will be the case in a coulombian 
electric field. We then have : 

 

d2
r

dt2
 = ! " 1

r3
 dr

dt
 x r  ;   " = 

egc

E  (10.8) 
 
This is exactly the Poincaré equation (3.2) with a minus sign because we have 

chosen the left monopole. If we had chosen the right monopole, i. e. the second 
equation (8.4), we would have found, with the same transformation (10.1), the 
following equation for b :  

 

1
c

 
! S

! t
 + g W  " # S " 

g
c

 B  . s  b = 0

 (10.9) 
 
This new equation may be deduced from eq. (10.2), by applying the P and T 

transformations (8.5) but it could seem surprising that (10.9) cannot be deduced 
from the corresponding charge conjugation. The reason is that charge conjugation 
must be applied not to the spinor a in the eq. (10.2) but to the spinor ξ in (10.1), 
which gives : 

 
g ! g ;   " i  s2 a* ! b ;   i s2 b*

 
! a ;  S 

! " S  (10.10) 
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These equalities show, contrary to what a superficial comparison between 
(10.2) and (10.9) may suggest, that the latter is not deduced from the former by 
changing the sign of the magnetic charge but by changing the sign of the phase of 
the wave, with the same magnetic charge. Of course (10.9) gives the Poincaré 
equation (10.8) with a plus sign before λ.       

 
11. The quantum description of a monopole in an electric central field. 
Angular eigenfunctions. Dirac's condition. 

 
To solve the problem of a central field, we must introduce W = 0 and the 

expressions (5.15) or (5.16) of B in the chiral equations (8.4). First of all, a quite 
simple calculation gives the following integrals of motion, respectively for the 
monopole and the antimonopole or, equivalently for the left and the right 
monopole :  

 
 J! = h r "  # i $ + DB  + D r + 1

2
 s      

J% = h r "  # i $ # DB  # D r + 1
2

 s      
 (11.1) 

 
with the notations : 

 
D = 

eg

hc
  ;  B = e B  ;  r = r

r  (11.2) 
 
D is the Dirac number that already appeared in the Dirac condition (5.8). Jξ 

and Jη only differ by the sign of D (i.e. by the sign of the eigenvalues of the 
charge operator). We shall restrict our study to the plus sign, that corresponds to 
the first equation (8.4) (the left monopole), and we shall drop the ξ index. It is 
easily shown that the components of J obey the relations of an angular 
momentum : 

 
J2 , J3  = ih J1  ; J3 , J1  = ih J2  ;  J1 , J2  = ih J3 (11.3) 
 
Now, if we write J as : 
 
J = h  !+ 1

2
 s   ;  ! =  r "  # i $ + DB  +D r

 (11.4) 
 

we recognize that hΛ  is the quantum form of the Poincaré integral (3.4). J is the 
sum of this integral and of the spin operator : J is the total quantum angular 
momentum of the monopole in an electric coulombian field, the exact analogue of 
the corresponding classical quantity. Of course, the components of hΛ  obey the 
same relations (11.3) as the components of J.  

In terms of polar angles, we find, from the definition (11.4) of Λ  and the polar 
form (5.16) of B : 
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!
+
 = !1 + i !2 = ei" i cot # 

$

$"
 + 

$

$#
 + D

sin #
        

!
%
 = !1 % i  !2 = e% i" i cot # 

$

$"
  %  

$

$#
 + D

sin #
     

!3 = % i  
$

$"
                                                                   

 (11.5) 
 
It is interesting to note that, owing to our choice (5.15) for the electromagnetic 

gauge, there is no additional term in Λ3 as it occurred with the Dirac solution (see 
for instance [42], [43]). 

Now, we need the eigenstates Z(θ,ϕ) of Λ2 and Λ3, knowing from (11.3), that the 
eigenvalue equations are : 

 

 
!

2
 Z = j j + 1  Z  ;  !3 Z =  m Z  ;  j  = 0,  1

2
, 1, 3

2
, 3,… ;  m = " j , " j + 1, … j " 1, 

 
 (11.6) 
 
In order to simplify the calculation of the functions Z(θ,ϕ), we shall introduce a 

new angle χ, the meaning of which will soon appear, and we consider the product 
: 

 
D  !,",#  = eiD# Z !,"  (11.7) 
 
These functions are eigenstates of operators Rκ that are easily derived from 

(11.5) :  
 

R+
 = R1 + i R2 = ei! i cot " 

#

#!
 + 

#

#"
  $  i

sin "
 
#

#%
        

R$
 = R1 $ i  R2 = e$ i! i cot " 

#

#!
  $ 

#

#"
  $ i

sin "
 
#

#%
     

R3 = $ i  
#

#!
                                                                       

 (11.8) 
 
Obviously, the eigenvalues are the same as those of Z : 
 
R

2
 D = j j + 1  D  ;  R3D =  m D (11.9) 
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The Rk are well-known : they are the infinitesimal operators of the rotation 
group written in the fixed referential. θ, ϕ, χ are the nutation, the precession and 
the proper rotation. The role of the rotation group is not surprising because of 
the spherical symmetry of the system constituted by a monopole in a central 
electric field.  

Our eigenfunction problem is thus trivialy solved : instead of the cumbersome 
calculations of "monopole harmonics", we see, under the simple assumption of 
continuity of the wave functions on the rotation group, that the angular functions 
are the generalized spherical functions, i.e. the matrix elements of the irreducible 
unitary representations of the rotation group [39], [40], [44], [45]. These 
functions are also the eigenfunctions of the spherical top. This coincidence was 
quoted by Tamm [46] without explanation, but here, the explanation is evident 
because we already know the analogy between a symmetrical top and a monopole 
in a central field. 

The eigenstates of R2
 and R3  are (see any textbook on group theory) : 

 
Dj

m',m
 !,", #  = ei m" + m'#   dj

m',m
 !  (11.10) 

 

dj
m',m

 !  = N 1 — u  " m " m'  / 2 1 " u
 " m " m'  / 2

1 + u  " m + m'  / 2  

# d
du

 j " m
 1 " u

  j " m'  / 2
 1 + u   j + m'  / 2

 (11.11) 
 

u = cos !   ;  N = 
" 1  

j " m
 i  m " m'

2j  (11.12) 
 
j = 0,  1

2
, 1, 3

2
, 3,… ;  m, m' = !j, !j + 1, … j!1

 (11.13) 
 
The normalization factor N is taken from group theory : the representation 

matrix is unitary and normed to unity. If we want normed eigenfunctions and real 
d(θ) functions in (11.11), we must take as "monopole harmonics" (eigenfunctions 
of Λ) : 

 
Zj

m',m
 !,"  = 2j + 1  D j

m',m
 !,", 0   i  m' — m

  (11.14) 
 
The proper rotation angle χ disappears because the monopole was implicitly 

supposed to be punctual, contrary to the symmetric top that has a spatial 
extension. Nevertheless, there is a projection, different from zero, of the orbital 
angular momentum on the symmetry axis, due to the chirality of the magnetic 
charge. The eigenvalue associated to this projection is the quantum number  m'.  

This is a crucial point. If we compare (11.7) and (11.10), we see that the 
quantum number m' is nothing but the Dirac number D. This means that the 
continuity of the wave function on the rotation group implies the quantization of 
the Dirac number D : 
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D = m'  (11.15) 
 
But, in virtue of the relations (11.13), we have : 
 
m' = 0,  1

2
, 1, 3

2
, 3,… = n

2  (11.16) 
 
Taking into account the definition (11.2) of D, the equality (11.15) is thus 

identical to the Dirac condition (5.8) and the latter appears as a consequence of 
the spherical symmetry of the system and of the continuity on the rotation group. 
As we have already announced it, the factor "one half" has nothing to do with 
strings beginning at the origin of electric charge : it is a consequence of the 
double connexity of the rotation group. Let us quote, concerning these questions, 
an interesting work of T.W. Barrett in which the role of the rotation group in 
electromagnetic field theories is extensively developed [47]. 

 
12. Radial functions. 
 
For a monopole, the harmonics with spin are [40] : 
 

!j
 m',m

+  = 

j + m

2j + 1
     Zj

 m',m " 1

j " m + 1

2j + 1
   Zj

 m',m
          

!j
 m',m

"  = 

j " m + 1

2j + 1
  Zj

 m',m " 1

" 
j + m

2j + 1
      Zj

 m',m
         

 

 (12.1) 
 
They correspond respectively to the eigenvalues k = j ± 1/2 of the total angular 

momentum J. For k = j �  1/2, we have : 

 

�  (12.2) 

 

The solution of the radial problem consists in introducing the following expansion in the first 

equation (8.4) and to find the radial functions F± (r):  

 

�  (12.3) 

 

We shall not give the technical details, that may be found in reference [40], except for two points :  

 

1) One needs, for the calculation, the following formulae : 

 

�   (12.4) 
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�  (12.5) 

 

It is worth to note that the angle � ' that appears is these formulae is the half-angle of the 

Poincaré cone Fig. 3, generated by the precession of the symmetry axis around the orbital 

angular momentum.  

 

2) Denoting F(r) and G(r) as: 

 

�  (12.6) 

 

the result of the calculation is :  

 

�  (12.7) 

 

The important point is that �  is not quantized : the monopole in a coulombian electric field is 

always in a ionizing state. This fact, predicted by Dirac, may be guessed for two reasons : 1) 

Because we know the spiraling motion on the cone described in the classical case by Poincaré 

and we know that our equation has the Poincaré equation as a classical limit. 2) The potential B 

given in (5.15) has an infinite string and thus, the wave equation cannot have square integrable 

solutions. 

The function (12.7) are also the massless limit of the solutions of the problem 
of an electrically charged fermion in the field of an infinitely massive monopole 
[23], which is obvious for formal symmetry reasons. But it must be stressed that 
the essential difference between our theory and all the others is the presence of 
the charge operator G = g γ5 that modifies the chiral properties of the monopole 
and the question of charge conjugation. 

 
13. A massive monopole. 
 
Until now, our monopole was massless, which is not surprising in a gauge 

theory, but our equation (6.28) is unique only under the assumption of linearity. 
There are other possible equations that are chiral gauge invariant but they are 
non linear. A chiral invariant term must be independent from the angle A and it 
may be proved [39], [40] that the most general form is a function of ρ (defined by 
(6.14)). Thus we have the following lagrangian (where M is an arbitrary function) 
: 

 

L = 1
2

 ! "µ #µ  ! $ 
g

hc
 ! "µ "5 Bµ ! + 1

4
 
M %2  c

h
 !  (13.1) 

 
from which we find a general equation with a non linear term of mass depending 
on an arbitrary function m  (the derivative of M ) : 

 

!µ "µ # 
g

hc
  !5 Bµ  $ +  1

2
 
m %2  c

h
  &1 # i  &2 !5  $ = 0

 (13.2) 
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By definition, this equation is chiral invariant and the magnetic current given 
in (7.1) is conserved. Applying (7.2), one can see that the equation is C P T  
invariant. 

In the Weyl representation (8.1), eq. (13.2) is equivalent to the system :  
 

1
c

 
!"

!t
  #  s .$" # i  

g

hc
 W + s .B  " + i 

m 4 "
+
%

2
 c

h
  %+"  % = 0

1
c

 
!%

!t
  + s .$% + i 

g

hc
 W # s .B  % + i 

m 4 "
+
%

2
 c

h
  "

+
%  " = 0

 (13.3) 
 
In virtue of (8.5), this system is  C P T — invariant, just as (13.2). 
 
In general, eqs. (13.4) are coupled, contrary to (8.4). The non linear mass term 

introduces a coupling, but not very strong. The isotropic chiral currents (see 
(9.1), (9.2)) are still separately conserved and the coupling vanishes when : 

 
! = 2 "

+
#  = 0 (13.4) 

 
This obviously happens when ξ = 0 or η = 0, which corresponds to one of the chiral 
components of the linear monopole, but it also happens in a more interesting case 
: 
 
! = f x,t  s2 "*   #  ! = ei $ x ,t  s2 "* (13.5) 
 
where f (x,t) is an arbitrary function that may be reduced to a phase term exp i θ (x,t) 
under the assumption that both components ξ and η are separately normalized.  
Up to the θ phase factor, the condition (13.5) is a generalization of the Majorana 
condition and it was shown that, under this condition, there are monopole 
solutions that split into two components, even in the Dirac equation with a linear 
term of mass, where m0 is the ordinary rest mass [48] :    
 

1
c

 
!"

!t
  #  s .$" # i  

g

hc
 W + s .B  " + i 

m 0 c

h
  ei % s2 "*

 
= 0

1
c

 
!&

!t
  + s .$& + i 

g

hc
 W # s .B  & + i 

m 0 c

h
  ei % s2 &* = 0

 (13.6) 
 
We shall not develope this question and we go back to the problem with m0 = 0. 
Suppose that, in (13.5), θ = 0 : this means that chiral components are charge 
conjugated, they constitute a pair monopole — anti-monopole ; the definition 
(9.2) shows that the chiral currents are thus equal : 
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Xµ = Yµ (13.7) 
 
There is no more chirality and, from (9.5), we have : 
 
Jµ = 2 Xµ  ;  Kµ = 0   (13.9) 

 
In other words : 1) The electric current becomes isotropic, but this is not 

interesting for us, because we have supposed that the particle has no electric 
charge ; 2) More interesting is the fact that the magnetic current vanishes for a 
pair of charge conjugated monopoles, although their charges are not of opposite 
sign.  

If we were living in an aether made of such pairs of monopoles, it would be 
very difficult to observe them, which means that perhaps the apparent rarity of 
monopoles is not due to a true rarity, but to the difficulty of observing only one 
of them. It must not be forgotten that we are living in a world full of electrons and 
that it is not so easy to "see" one of them ! 

 
14. The presence of tachyons in the non linear monopole equation. 
 
It is easy to see that the phases of ξ and η are independent in eq. (13.3). We can 

introduce two plane waves with constant spinors a and b and two different phases 
: 

 
! = a e i " t #  k.r   ;  $ = b e i "' t #  k'.r  (14.1) 
 

in the equations without external field. We find : 
 
!
c

 + s .k  a + 
m a+b  c

h
 b+a  b = 0

!'
c

 " s .k '  b + 
m a+b  c

h
 a+b  a = 0

 (14.2) 
 
Multiplying the first equation by (ω'/c — s.k') and using the second equation, we 

find a linear system, with respect to the spinor a : 
 

! + s.K " M
  2c2

h2
  a = 0

 (14.3) 
 
With : 
 
! = " "'

c2
 # k .k'   ;  K = 1

c
  "' k # " k '  + i k $ k '  ;  M  = a+b  $ m a+b  

 
  (14.4) 
 
Now, in order to have non trivial solutions of eq. (14.3) we must equal to zero 

the determinant. This gives a dispersion relation [40]:  
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!2

c2
 " k2

 !' 2

c2
 " k'2  " 2 !!'

c2
 " k.k'  M

  2c2

h2
  + M

  4c4

h4
  = 0

 (14.5) 
 
In virtue of the last eq. (14.4), M depends on a and b, except if the term of 

mass, in the system (13.4), has the particular form :   
 

m !
+
"  = 

m0

!
+
"

    m0 = Const    #   M  =  m0

 (14.6) 
 
It is interesting that, in this case, eqs. (13.3) are homogeneous in ξ and η, which 

are normalizable. There are reasons to believe that such an equation may have 
physical interest even for an electrically charged particle [49], [50].  

With a general function M, two kinds of waves (14.1) are particularly 
interesting : 

 
1) ω = ω', k = k' : both monopoles have the same phase and the dispersion 

relation reduces to : 
 

 
!2

c2
  =  k2 +  M

  2c2

h2  (14.7) 
 
This is the ordinary dispersion relation of a massive particle, say a bradyon, 

adopting the terminology of the tachyon theory because our second case is : 
 
2) ω = − ω', k = −  k' : the phases are of opposite signs and the dispersion relation 

becomes : 
 

 
!2

c2
  =  k2 "  M

  2c2

h2  (14.8) 
 
This is the dispersion relation of a supraluminal particle, a tachyon, the theory 

of which was extensively developed for many years, in particlular by E. Recami 
and coworkers [51], [52], [53]. The wave equation (13.3) seems to be the first one 
in which tachyon solutions appear, although it was originally written for quite 
independent reasons. 

This non linear equation was more accurately described in some works in view 
of finding soliton solutions and stability properties [54], [55]. Nevertheless, the 
following result is unpublished : 

Consider the nonlinear equations (13.3) in the case of a coulombian electric 
field, that is with a pseudo-potential (5.15) or (5.16). The equations cannot be 
separated as were the equations (8.4) and the 2×2 matrix operators (11.1) cannot 
represent the total angular momentum. The corresponding operator is the 4×4 
operator : 
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J = h r !  " i # + $4 DB  + $4 D r + 1

2
 S    ;   S = s 0

0 s
  
 (14.9) 

 
that combines the preceding 2×2 operators. J commutes with the Hamiltonian of 
the whole linear system (8.4) ; it is an integral of motion. But it would be 
meaningless to look for a "commutation with the nonlinear Hamiltonian" of the 
system (13.3), in order to prove that J is also an integral of the nonlinear system.  

We must go back to the definition of an integral of motion in quantum 
mechanics and directly verify that the mean value of the operator J is a constant 
in virtue of the wave equations (13.4). If ψ is a solution of eq. (13.3), we find 
indeed : 

 

!

!t
 "+ J " dx dy dz = 0  ;  " = 

#

$  (14.10) 
 

which confirms that the nonlinear system (13.3) has the same constant angular 
momentum as the linear system (8.4). 

 
15. Miscellaneous remarks. 
 
1) A geometric property. When m (ρ2) is constant in eq. (13.2) and (13.3), it 

was shown (see [12], [40]) using an older work of Rodichev [56]), that the 
presence of a monopole may be considered as a local torsion of an affine twisted 
space, the total curvature of which is : R = Const. × ρ2. Therefore, an aether made of 
pairs of monopoles is a flat space (because in this case, ρ = 0) and the question of 
the observability of monopoles may be expressed in a geometrical form : if such 
an aether do exist, what must be done in order that a local torsion appear ? 

 
2) A possible relation between magnetic monopoles and weak 

interactions.   
 
We know that the equations (6.28) or (8.4) give the neutrino equations as a 

particular case, for g = 0, and g is quantized by the Dirac condition (5.8) (which is 
also a consequence of our equations) : 

 
g = n g0  ;  g0 = hc

2e  (15.1)  
 
Therefore, this monopole may be considered as a "magnetically excited" 

neutrino. More exactly, we have a family of monopoles with different values of n 
and the neutrino is the ground state with n = 0. It is thus natural to ask the 
question : is it possible that such monopoles have not only electromagnetic but 
weak interactions ? And this question leads to another one : is it possible to 
produce monopoles in weak reactions instead of neutrinos ?  If it is so, there must 
be different families of monopoles associated with the different leptons e, µ and τ.  
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Finally, this leads to the hypothesis that these monopoles could play a role in 
the magnetic activity of the sun, in particular in the sunspots. Apart from the 
neutrinos produced by weak interactions responsible for the solar energy, 
massless monopoles could appear and, contrary to the ordinary neutrinos, they 
would undergo an important loss of energy in the condensed matter and it could 
be a possible explanation for the lack of registered solar neutrinos. 

 
3) The Cerenkov radiation of a monopole.   
 
Assuming the above hypothesis holds true, it is interesting to ask the following 

question : if massless monopoles are emitted in condensed matter by a weak 
reaction or, if some of these hypothetical monopoles created in the sun were able 
to reach the earth, would it be possible to oberve an emission of light ? An 
obvious idea is the Cerenkov radiation. It is not difficult apply the classical theory 
of Tamm and Franck to this problem. We shall not give the calculation, but only 
the result that seems the most interesting : 

— In the classical Cerenkov radiation emitted by an electric charge, we have in 
the direction Oz of the propagation of the wave : 

 
Ez ! 0  ;  Hz = 0 (15.2) 
 
— In the case of a magnetic charge, we have on the contrary : 
 
Ez = 0  ;  Hz ! 0 (15.3) 
 

References 
 

1.  J. C. Maxwell, A treatise on electricity and magnetism (1873), 3rd ed. 
(Clarendon Press, 1891, Dover, 1954.      

2.  B. Cabrera and W.P. Trower, Found. of Phys., 13 (1983) 195.  
3. R. A. Carrigan and W. P. Trower ed., Magnetic Monopoles, Plenum, New-York, 

1983). 
4.  A. S. Goldhaber and W.P. Trower ed., Magnetic Monopoles (Am. Ass. of Phys. 

Teachers, College Park, 1990). 
5.  P. Curie, Sur la symétrie dans les phénomènes physiques, J. de Phys., 3° 

série, III (1894) 393.  
6.  P. Curie, Sur la possibilité d'existence du magnétisme libre, J. de Phys., 3° 

série, III (1894) 415.  
7.  J.D. Jackson, Classical Electrodynamics (John Wiley & Sons, N.Y. second 

edition, 1975). 
8.  H. Harrison, N. A. Krall, O. C. Eldridge, F. Fehsenfeld, W.L. Fite and W.B. 

Teutsch, Am. J. of Phys., 31 (1963) 249. 
9.  Birkeland, Archives des Sciences physiques et naturelles, I , 4e période 

(1896). 
10. H. Poincaré, Comptes rendus Acad. Sc., 123 (1896) 530.  
11. J.J. Thomson, Elements of the Mathematical Theory of Electricity and 

Magnetism (Cambridge University Press, 1904).  



 
 
 
 
34 Advanced Electromagnetism   
 
       

   

12. G. Lochak, in Information, Complexity and Control in Quantum Physics, A. 
Blaquière, S. Diner and G. Lochak ed. (Springer Verlag, Wien, N.Y., 1987)  

13. H. Goldstein, Classical Mechanics, Second edition (Addison-Wesley, 
Reading, Massachusetts, 1980). 

14. L. de Broglie, Une nouvelle théorie de la lumière (Hermann, Paris, t. I 1940, 
t. II 1942). 

15. N. Cabibbo, G. Ferrari, Nuov. Cim., 23 (1962) 1147.  
16. P.A.M. Dirac, Proc. Roy. Soc., Ser A, 133 (1931) 60. 
17. P.A.M. Dirac, Phys. Rev. 74 (1948) 817. 
18. P.A.M. Dirac, Int. J. of Theor. Phys., 17 (1978) 235. 
19. P.A.M. Dirac, Directions in Physics (John Wiley & Sons, N.Y., London, 

Sidney, Toronto1978). 
20. P.P. Banderet, Helvetica physica Acta, 19 (1946) 503. 
21. H.J. Cole, Proc. Camb. Phil. Soc., 47 (1951) 196. 
22. E. Bauer, Proc. Camb. Phil. Soc., 47 (1951) 777. 
23. Y. Kazama, C.N. Yang, A.S. Godhaber, Phys. Rev. 15 D (1977) 2287. 
24. S.P. Ahlen, Phys. Rev. 17 D (1977) 229.  
25. B. Cabrera, Phys. Rev. Lett., 48 (1982) 1378. 
26. F. Ehrenhaft, Phys. Zs., 31 (1930) 454. 
27. J.A. Schedling, Acta Phys. Australica, 4 (1950) 98. 
28. J.A. Ferber, Acta Phys. Australica, 4 (1950) 133. 
29. V.F. Mikhaïlov, Phys. Rev. Lett., 1303 (1982) 331. 
30. V.F. Mikhaïlov, J. Phys. A, 18 (1985) L903. 
31. V.F. Mikhaïlov, Ann. Fond. L. de Broglie, 12 (1987) 491. 
32. V.F. Mikhaïlov, J. Phys. A, 24 (1991) 53. 
33. V.F. Mikhaïlov, in Courants, Amers, Ecueils en Microphysique: Directions in 

Micropysics  (Fond. L. de Broglie, Paris, 1913). 
34. F. Ehrenhaft, Phys. Rev., 67 (1945) 63, 201. 
35. E. Einstein, in Paul Langevin et Albert Einstein d'après une correspondance 

et des documents inédits ("La Pensée", Paris). 
36. W. Pauli, Annales de l'Institut Henri Poincaré, 6 (1936) 109. 
37. G. Jakobi, G. Lochak, Comptes rendus de l'Académie des Sciences, 243 

(1956) 234, 357.  
38. G. Lochak, Comptes rendus de l'Académie des Sciences, 245 (1957) 2023.  
39. G. Lochak, Ann. Fond. L. de Broglie, 8 (1983) 345 ; 9 (1984) 5.  
40. G. Lochak, International journal of theoretical Physics, 24 (1985) 1019. 
41. A. Salam, Physics Letters, 22 (1966) 683. 
42. T.T. Wu, C.N. Yang, Phys. Rev. 12 D (1975) 3845. 
43. T.T. Wu, C.N. Yang, Nucl. Phys. 107 B (1976) 365. 
44. I.M. Gelfand, R.A. Minlos and Z.Ya. Shapiro, Representation of the rotation 

and and Lorentz groups and their applications  (Pergamon Press, New-
York).  

45. G. Lochak, Cahiers de Physique, 13 (1959) 41.  
46. I. Tamm, Zeitschrift für Physik, 71 (1931) 141. 
47. T.W. Barrett, Ann. Fond. L. de Broglie, 14 (1989) 37.  
48. E. Majorana, Nuvo. Cim., 14 (1937) 1937. 
49. C. Daviau, Thèse, Nantes, 1993. 
50. C. Daviau, G. Lochak, Ann. Fond. L. de Broglie, 16 (1991) 43. 



 
 
 
 
 Magnetic monopole  35 
 
 
        

51. G.D. Maccarone, M. Pavsic and E. Recami, Nuvo. Cim., 73 (1983) 91. 
52. E. Recami, Riv. Nuvo. Cim., 9 (6) (1986) 1-178. 
53. W.A. Rodrigues, J. Vas, E. Recami, in Courants, Amers, Ecueils en 

Microphysique: Directions in Micropysics  (Ed. Fond. L. de Broglie, Paris, 
1994) 379. 

54. G. Lochak, in Nonlinear World,  IV Workshop on Nonlinear and Turbulent 
Processes, Kiev 1989 (World Scientific, Singapore, 1990). 

55. G. Lochak, E. Maslov, Ann. Fond. L. de Broglie, 19 (1993) 1.  
56. V.I. Rodichev, Soviet Physics JETP, 13 (1961) 1029.  
 
 


