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The present theory is closely related to Dirac’s equation of the electron, but not to his magnetic
monopole theory, except for his relation between electric and magnetic charge. The theory is based on
the fact, that the massless Dirac equation admits a second electromagnetic coupling, deduced from a
pseudo-scalar gauge invariance. The equation thus obtained has the symmetry laws of a massless lep-
tonic, magnetic monopole, able to interact weakly. We give a more precise form of the Dirac relation
between electric and magnetic charges and a quantum form of the Poincaré first integral. In the Weyl
representation our equation splits into P-conjugated monopole and antimonopole equations with the
correct electromagnetic coupling and opposite chiralities, predicted by P. Curie. Charge-conjugated
monopoles are symmetric in space and not in time (contrary to the electric particles), an important
fact for the vacuum polarization. Our monopoles are magnetically excited neutrinos, which leads to
experimental consequences. These monopoles are assumed to be produced by electromagnetic pulses
or arcs, leading to nuclear transmutations and, for beta radioactive elements, a shortening of the life
time and the emission of monopoles instead of neutrinos in a magnetic field. A corresponding dis-
cussion is given.
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1. Introduction

The hypothesis of separated magnetic poles is very
old. In the 2nd volume of his famous Treatise on
Electricity and Magnetism [1], devoted to magnetism,
Maxwell considered the existence of free magnetic
charges as an evidence, just as the evidence of elec-
tric charges. He based the theory of magnetism on this
hypothesis, and he reported that, as far back as 1785,
Coulomb gave the experimental proof that the law of
force of a magnetic charge is the same as the one of
an electric charge, the well known Coulomb law. In his
experiments, Coulomb took for a magnetic charge the
extremity of a thin magnetic rod. We quote only some
papers on history [2 – 4], later on, we shall restrict our-
selves only to papers useful for our purpose. In the fol-
lowing we remain in the framework of electrodynam-
ics, without including other monopoles such as the one
of Dirac (which is independent of the equation of the
electron) or the one of t’Hooft and Polyakov.

Contrary to the tendency to assume that a monopole
must be heavy, bosonic, with strong interactions, with-
out any symmetry law, our monopole appears as a
second application of the Dirac theory of the elec-
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tron, based on a pseudo-scalar gauge condition from
which we deduce symmetry laws predicted by Pierre
Curie. Contrary to other theories, our monopole is
light, fermionic and interacting electromagnetically
and weakly. It may be considered as a magnetically
excited neutrino.

2. The Classical Form of Electromagnetic
Symmetries. The Origin of the Monopole

In his paper, Symmetry in Physical Phenomena [5],
Pierre Curie put forward the constructive role of sym-
metry in physics. Generalizing the cristallographic
groups, he defined the invariance groups of limited ob-
jects in R3, and applied them to electromagnetism, only
starting from experiment and not from the formal sym-
metry of the equations of electromagnetism. As a con-
sequence of his laws, he infered the possibility of “free
magnetic charges”1 [6].

1In [2], it is said that Curie “suggests out of the blue” that mag-
netic charge might exist. Probably, the authors have never seen the
original Curie papers. Actually his prediction was a logical conse-
quence of the symmetry laws of electromagnetism that he himself
had discovered. It may be added that he made such a prediction for
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Fig. 1. Symmetry laws of electric and magnetic quantities.

The different symmetries of electric and magnetic
charges are due to the fact that the electric field is a
polar vector and the magnetic field is axial, which is
proved experimentally [5]. For charges corresponding
results have been proved in the same way [7].

The scheme of classical symmetries for electromag-
netic quantities is shown in Figure 1.

These symmetries are in accordance with those of
FFF , vvv and of the laws of forces:

FFFelec = e(EEE + 1/cvvv×HHH),
FFFmagn = g(HHH −1/cvvv×EEE),

(2.1)

and they entail polar and axial transformations of elec-
tric and magnetic currents:

JJJ = evvv, KKK = gvvv. (2.2)

Nevertheless, it is shocking that in virtue of Curie laws,
the magnetic charge g is a pseudo-scalar, because
a physical constant has no tensorial transformations
(c does not vary as a velocity and the Planck constant h̄
does not vary as a kinetic moment). It will be shown
in quantum mechanics, that the magnetic charge is a
scalar (P : g→ g) while the pseudo-scalar transforma-
tions are not the property of the charge, but of a charge
operator.

The magnetic current will be an axial vector, like
in (2.2), but with another definition. Figure 1 is true,
except for the magnetic charge. This is important be-
cause, according to a classical objection, magnetic
poles could be eliminated from Maxwell’s equations

the second time; the first one was the theoretical prediction of piezo-
electricity later observed by P. Curie. Such predictions were just as
“out of the blue”, as the prediction of the neutrino by Pauli or of the
antimatter by Dirac!

by a linear transformation. Denoting the fields as (EEE,
HHH), the electric and magnetic currents as (JJJ, KKK) and the
electric and magnetic densities as (ρ , µ), the invariant
linear transformations are

EEE = EEE ′ cosγ +HHH′ sinγ,

HHH = −EEE ′ sinγ +HHH′ cosγ,

ρ = ρ ′ cosγ + µ ′ sinγ,

µ = −ρ ′ sinγ + µ ′ cosγ,

JJJ = JJJ′ cosγ +KKK′ sinγ,

KKK = −JJJ′ sinγ +KKK′ cosγ.

(2.3)

By a choice of γ , KKK could be so eliminated from the
equations, but only if JJJ′ and KKK′ are colinear, and we
shall see, that it cannot happen in our theory [8].

3. The Birkeland-Poincaré Effect

In 1896, Birkeland introduced a magnet in a
Crookes’ tube and he found a focusing of the ca-
thodic beam [9]. Poincaré ascribed this effect to the
force of a magnetic pole at rest on a moving electric
charge [8, 10] and he found the equation

d2rrr
dt2 = λ

1
r3

drrr
dt

×rrr, λ =
eg
mc

, (3.1)

where e and m are the electric charge and the mass of
the cathodic particles (electrons).

Poincaré showed that rrr follows a geodesic line of
an axially symmetric cone (the Poincaré cone) and he
proved the observed focusing effect. This is an impor-
tant result because Coulomb proved that his law is the
same for electricity and magnetism.

Therefore, a classical magnetic monopole in a
Coulomb electric field obeys the Poincaré equation.
Later on we shall find that this equation is the clas-
sical limit of our equation [8, 11 – 13]. Therefore, the
fact that the Birkeland effect is predicted by (3.1), be-
comes an argument in favour of our quantum equation.

Let us add two remarks:
1) Poincaré deduced from his equation, the angular

momentum JJJ = mΛΛΛ :

ΛΛΛ = rrr× drrr
dt

+ λ
rrr
r
. (3.2)

J. J. Thomson showed that the second term is the elec-
tromagnetic momentum [8, 14].

2) The Poincaré cone is the envelope of the symme-
try axis rrr (joining electric and magnetic charges), rotat-
ing under a constant angle Θ ′, around the momentum
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Fig. 2. The generation of the Poincaré (or Poinsot) cone and
the decomposition of the total momentum.

JJJ = mΛ . But this is the definition of the Poinsot cone of
a symmetric top. Thus, we can deduce that the system
of an electric and a magnetic charge has the symmetry
of a symmetric top [8, 15]. This will be important later.

Owing the following properties all that was said is
summarized in Fig. 2:

d2rrr
dt2 ·rrr =

d2rrr
dt2 · drrr

dt
= 0, Λrrr = λ r. (3.3)

Our equation of a monopole will define this cone in a
quantum form.

4. The Electromagnetic Potentials for a
Magnetic Pole

Let us write the Maxwell equations with the electric
and magnetic currents (JJJ, KKK) and charges (ρ , µ):

curlHHH − 1
c

∂EEE
∂t

=
4π
c

JJJ,

−curlEEE − 1
c

∂HHH
∂t

=
4π
c

KKK,

div EEE = 4πρ , div HHH = 4πµ .

(4.1)

In relativistic coordinates:

xα = {x1,x2,x3,x4} = {x,y,z, ict}, (4.2)

the equations (4.1) become:

∂β Fαβ =
4π
c

Jα , Jα = (JJJ, iρc),

∂β F̄αβ =
4π
c

Kα , iKα = (KKK, i µc),
(4.3)

where F̄FFαβ = i
2 εαβ γδFFFγδ (εαβ γδ antisymmetric).

It is clear that we cannot define the field by a Lorentz
polar potential, because

Fαβ = ∂α Aβ −∂β Aα ⇒ 1
2

εαβ γδ ∂β Fγδ = 0. (4.4)

Therefore, we must introduce a new potential Bα such
that

Fαβ =
1
2

εαβ γδ (∂γ Bα −∂δ Bγ ). (4.5)

Bα must be a pseudo-potential, the dual of an antisym-
metric tensor of the third order:

Bα =
1
3!

εαβ γδCβ γδ . (4.6)

In terms of ordinary coordinates, we have

Aα = (AAA, iV ), iBα = (BBB, iW ), (4.7)

where BBB is an axial vector and W a pseudo-scalar. The
fields are defined as

EEE = curlBBB, HHH = W +
1
c

∂BBB
∂t

. (4.8)

The preceeding formulae were first given by de
Broglie [16] and later related to the monopole by
Cabibbo and Ferrari [17].

5. Dirac Strings

In 1931, Dirac raised the problem of the motion of
an electric charge around a fixed monopole or con-
versely [18]. In the case of the motion of a monopole in
the vicinity of an electric Coulombian center, the elec-
tric field EEE of the latter will be defined by a pseudo-
potential BBB deduced from (4.8)

curlBBB = e
rrr
r3 . (5.1)

BBB cannot be continuous and uniform. There must be a
singular line, the Dirac string, and to save the unifor-
mity of wave functions, Dirac found his famous rela-
tion between electric and magnetic elementary charges
(see [8, 18] for the Dirac proof):

D =
eg
h̄c

=
n
2
. (5.2)

Later on we shall give a proof based on our equa-
tion [8]. Let us note two points:

• In the Dirac proof, the string plays the central
role. On the contrary, in our proof the string will be
rubbed out by an argument of symmetry.

• Dirac’s choice of potentials corresponds to the
following solution of (5.1) which has no defined sym-
metry and makes the calculations more difficult:

Bx =
e
r
−y

r + z
, By =

e
r

x
r + z

, Bz = 0

(r =
√

x2 + y2 + z2).
(5.3)
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In the following, we shall chose another gauge that
gives a pseudo-vectorial potential in accordance with
the symmetry of the problem, which allows simplified
calculations. This potential is

Bx =
e
r

yz
x2 + y2 , By =

e
r

−xz
x2 + y2 , Bz = 0

(r =
√

x2 + y2 + z2).
(5.4)

6. Symmetry in Quantum Form

The main problem of the magnetic monopole was
discovered by Maxwell [1] and Pierre Curie [5, 6]: it
is the difference of symmetry between electricity and
magnetism, i. e. between polar and axial vectors. This
is the starting point of the following theory, which is
based on the fact that Dirac’s equation of the electron
admits not only one local gauge but two, and only two.

The first invariance corresponds to an electric
charge, the second one to a magnetic monopole. The
new spinorial equations so obtained describe the Curie
symmetry laws, in quantum terms. These laws indeed
clearly appear only in quantum mechanics.

6.1. The Two Gauges of Dirac’s Equation

Let us write the Dirac equation without external
field :

γµ ∂µΨ +
m0c

h̄
Ψ = 0. (6.1)

We shall use the de Broglie represention which gives a
plus sign in γ5: xµ = {xk; ict}, γµ are defined in terms
of Pauli matrices sk as

γk = i
(

0
−sk

sk
0

)
, k = 1,2,3;

γ4 =
(

I
0

0
−I

)
; γ5 = γ1γ2γ3γ4 =

(
0
I

I
0

)
.

(6.2)

Consider the following global gauge, where θ is a con-
stant phase and Γ a hermitian matrix that will be rep-
resented in Clifford algebra basis:

Ψ → eiΓ θΨ (Γ =
16

∑
N=1

aNΓN ; ΓN =

{I,γµ ,γ[µ γν],γ[λ γµγν],γ5}).
(6.3)

Introducing this gauge in (6.1), we get

(γν eiΓ θ γν)γµ∂µΨ +
m0c

h̄
eiΓ θΨ = 0. (6.4)

Developing Γ as in (6.3) and using the equality
γµΓNγµ = ±ΓN [19], we find

γµeiΓ θ γµ = exp

(
iθ

16

∑
N=1

±aNγµΓNγµ

)

= exp

(
iθ

16

∑
N=1

±aNΓN

)
.

(6.5)

(6.1) will be invariant if γµeiΓ θ γµ commutes or anti-
commutes with all the γµ , i. e. if Γ = I or Γ = γ5:

if Γ = I, Ψ → eiθΨ ;

if Γ = γ5, Ψ → eiγ5θΨ .
(6.6)

The first case is the phase invariance which gives the
conservation of electricity. The second case will be
called chiral invariance and will give the conservation
of magnetism.

But the first one is valid for every value of m0
in (6.1), so that the conservation of electricity is univer-
sal in quantum mechanics; the second one (which was
given in [20 – 22]) is valid only for m0 = 0 because of
the anticommutation of γ5 and γµ , so that the conser-
vation of magnetism is weaker than the conservation
of electricity.

6.2. The Dirac Tensors and the Magic Angle A of
Yvon-Takabayasi

In the Clifford basis (6.3), the Dirac spinor defines
16 tensorial quantities. A scalar, a polar vector, an anti-
symmetric tensor of rank two, an antisymmetric tensor
of rank three (an axial vector) and an antisymmetric
tensor of rank four (a pseudo-scalar):

Ω1 = Ψ̄Ψ , Jµ = iΨ̄γµΨ , Mµν = iΨ̄γµγνΨ ,

Σµ = iΨ̄γµ γ5Ψ , Ω2 = −iΨ̄γ5Ψ
(Ψ̄ = Ψ+γ4, Ψ+ = Ψ h̄c).

(6.7)

If Ω1 and Ω2 do not vanish simultaneously, the Dirac
spinor may be written as [12, 20, 21]

Ψ = ρeiγ5AUΨ0, (6.8)

where ρ is the amplitude, A the pseudo-scalar angle of
Yvon-Takabayasi, U the general Lorentz transforma-
tion, Ψ0 the constant spinor, and

ρ =
√

Ω 2
1 + Ω 2

2 , A = arctan
Ω2

Ω1
. (6.9)
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U is a product of six factors eiΓ ϑ with three real Eu-
ler angles (rotations in R3) and three imaginary angles
(components of velocity). The proper rotation Euler
angle ϕ gives a scalar phase ϕ̃/2 in the spinor Ψ , con-
jugated (by a classical Poisson bracket) to the compo-
nent J4 of the polar vector Jµ ; the pseudo-scalar an-
gle A is conjugated to the component Σ4 of the axial
vector Σµ ([20 – 22]). So we have the classical field
poisson brackets [20]
[ϕ

2
,J4

]
= δ (rrr−rrr′),

[
A
2

,Σ4

]
= δ (rrr−rrr′). (6.10)

In the Dirac theory, J4 is a density of electricity associ-
ated to the phase invariance; the spatial part of Jµ is a
density of electric current. Σ4 is a density associated in
the same way to the chiral invariance (6.6) and it will
be shown that the space part of Σµ is a density of mag-
netic current. So, there are densities of magnetic charge
and current. The difference between the two gauges is:

1) Jµ is polar and Σµ axial.
2) Jµ is time-like and Σµ is space-like because of

the Darwin-de Broglie equalities

−JµJµ = ΣµΣµ = Ω 2
1 +Ω 2

2 , JµΣµ = 0. (6.11)

It is because Jµ is time-like, that it may be a current of
electricity and probability. Thus it seems that a space-
like Σµ will be unacceptable. We shall see that this is
not the case.

6.3. PTC Symmetries of the Angle A

It was proved [7] that, the correct transformations,
in the sense of Curie, are such that P is a Racah trans-
formation, but T is not; it is the antilinear “weak time
reversal”2:

P : Ψ → γ4Ψ ,

T : Ψ →−iγ3γ1Ψ∗, (e →−e),
C : Ψ → γ2Ψ ∗, (e →−e).

(6.12)

With the definitions (6.9), this implies:

P : Ω1 → Ω1, Ω2 →−Ω2,

T : Ω1 → Ω1, Ω2 →−Ω2,

C : Ω1 →−Ω1, Ω2 →−Ω2.

(6.13)

(6.9) and (6.11) show that A is a relativistic pseudo-
invariant which is PTC invariant. Owing to (6.9), we

2While the Racah transformation would be linear: ψ → γ1γ2γ3ψ .

can give a geometrical interpretation of the chiral
gauge, writing

Ω1 = ρ cosA, Ω2 = ρ sinA. (6.14)

Now, consider a chiral gauge, slightly modified with
respect to (6.6):

Ψ ′ = eiγ5θ/2Ψ . (6.15)

Using the definition (6.11) of Ω1 and Ω2, we get from
(6.14)

(Ω ′
1

Ω ′
2

)
=
(

cosθ
sinθ

−sinθ
cosθ

)(Ω1
Ω2

)
. (6.16)

The chiral transformation is a rotation θ in the plane
{Ω1, Ω2}, that will be called the chiral plane, or a ro-
tation θ/2 of the spinor. (6.14) shows that θ is a phase
shift of the angle A:

A′ = A + θ . (6.17)

6.4. The Wave Equation

We know that the local gauge deduced from the
global first gauge (6.8) gives the minimal electric cou-
pling in the Dirac equation. Now, consider the Dirac
equation with m0 = 0:

γµ∂µΨ = 0. (6.18)

It is invariant by the chiral gauge (6.8). Let us intro-
duce a pseudo-scalar phase φ , the corresponding gauge
transformation and the charge operator G:

Ψ → exp
(

i
g
h̄c

γ5φ
)

Ψ , Bµ → Bµ + i∂µ φ ,

G = gγ5.
(6.19)

g is a scalar magnetic charge; the pseudo-scalar char-
acter of magnetism is related to a pseudo-scalar mag-
netic charge operator G which is at the origin of all
the differences between the classical and the quantum
theory of magnetic monopoles.

φ being a pseudo-scalar, the potential is not a polar
vector Rµ , but an axial potential Bµ defined in (4.6),
(4.7), which has the variance of ∂µφ . The covariant
derivatives are

µ = ∂µ − g
h̄c

γ5Bµ

(
= ∂µ − G

h̄c
Bµ

)
, (6.20)
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where the absence of i in front of g is due to the axi-
ality of Bµ . The equation of the magnetic monopole is
thus [12 – 14]

γµ

(
∂µ − g

h̄c
γ5Bµ

)
Ψ = 0. (6.21)

7. Symmetries of the Wave Equation

7.1. Gauge Invariance

(6.21) is gauge invariant by (6.19). This entails the
conservation of the axial current that plays the role of
a magnetic current:

∂µ Kµ = 0, Kµ = gΣµ = igΨ̄γµ γ5Ψ . (7.1)

According to (6.11), the magnetic current cannot be
colinear to the electric current, which prevents the ap-
plication of (2.3) to remove (Kµ ,ρ) in (2.3). Kµ is a
pseudo-tensor, as it was predicted by Curie. The space-
like character will become clear a little further. This
expression for the magnetic current was suggested by
Salam [23], for symmetry reasons but here, it is a con-
sequence of a wave equation and a gauge condition.

7.2. CPT

It is easy to prove that the wave equation (6.21) is C,
P and T invariant [7]3:

P : g → g, xk →−xk, x4 → x4,

Bk → Bk, B4 →−B4, Ψ → γ4Ψ ,

T : g → g, xk → xk, xk →−x4,

Bk →−Bk, B4 → B4, Ψ →−iγ3γ1Ψ∗,
C : g → g, Ψ → γ2Ψ∗.

(7.2)

In these formulae, an important point is that the charge
conjugation does not change the sign of the mag-
netic constant of charge g. In the next section, we
shall see what the charge conjugation in the magnetic
case means. We can already assert that two conju-
gated monopoles have the same charge constant. Two
monopoles with opposite constants are not charge-
conjugated: to change g in −g in (6.21) means to
change the vertex angle of the Poincaré cone.

3In [11 – 13]), we gave the Racah formula for T , but it con-
tradicts the Curie laws [7]. So, we have adopted the law g → g,
Ψ →−iγ3γ1Ψ∗ in the magnetic case.

We cannot create or annihilate pairs of monopoles
with charges g and −g, as it is the case for electric
charges e and −e. This property of charge conjugation
of (6.21) shows that there is no danger of an infinite po-
larization of vacuum with such zero mass monopoles.
Moreover, it shows that one has not to invoke the great
masses to explain the rarity of monopoles or the diffi-
culty to observe them.

The fact that chiral invariance and conservation of
magnetism are easily broken, suggests that, more prob-
ably, monopoles are abundant in nature and that the
problem of the isolation of one of them is not a prob-
lem of energy.

8. Weyl’s Representation. Two-Component Theory

The matrix γ5 and the magnetic charge opera-
tor G are diagonalized in the Weyl representation, and
the wave function is divided into the two-component
spinors ξ and η . So we have

Ψ →UΨ =
(

ξ
η

)
, U =U−1 =

1√
2
(γ4 +γ5), (8.1)

UGU−1 = Ugγ5U−1 = gγ4 =
(

g
0

0
−g

)
. (8.2)

(8.1) and (8.2) show that ξ and η are eigenstates of G,
with the eigenvalues g and −g:

UGU−1(ξ
0
)
= g

(ξ
0
)
, UGU−1(0

η
)
=
( 0
−η
)
. (8.3)

Owing to (8.1) and (4.7), (6.21) splits into a pair of
uncoupled two-component equations in ξ and η , cor-
responding to opposite eigenvalues of G [8, 12, 13]:[

1
c

∂
∂t

−sss · −i
g
h̄c

(W +sss ·BBB)
]

ξ = 0,

[
1
c

∂
∂t

+sss · +i
g
h̄c

(W −sss ·BBB)
]

η = 0,

iBµ = (BBB, iW ).

(8.4)

P and T permute the equations (8.4) between them-
selves and P, T , C become

P : g → g, xk →−xk, t → t,

Bk → Bk, W →−W, ξ ↔ η ,

T : g → g, xk → xk, t →−t,

Bk →−Bk, W →W,

ξ → s2ξ ∗, η → s2η∗,
C : g → g, ξ →−is2η∗, η → is2ξ ∗.

(8.5)
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We have a pair of charge-conjugated particles – a
monopole and an antimonopole – with the same charge
constant but opposite helicities. They are defined by
the operator G, which shows that our monopole is a
magnetically excited neutrino, because (8.4) reduces
to a pair of two-component neutrino equations if g = 0
[8, 12, 13].

Equations (8.4) are invariant under the follow-
ing gauge transformation (with opposite signs of the
phase φ for ξ and η):

ξ → exp
(

i
g
h̄c

φ
)

ξ , η → exp
(
−i

g
h̄c

φ
)

η ,

W →W +
1
c

∂φ
∂t

, BBB →BBB− φ .

(8.6)

9. Chiral Currents

The gauge (8.6) entails for (8.4) the conservation
laws

1
c

∂(ξ +ξ )
∂t

− ξ +sssξ = 0,

1
c

∂(η+η)
∂t

− η+sssη = 0.

(9.1)

We thus have two currents, with some simple but im-
portant properties:

Xµ = (ξ +ξ − ξ +sssξ ), Yµ = (η+η ,η+sssη),
XµXµ = 0, YµYµ = 0, P ⇒ Xµ ↔ Yµ .

(9.2)

They are isotropic and they are interchanged by parity;
they are chiral currents.

Owing to (8.1), we find a decomposition of the polar
and axial vectors defined in (6.9):

Jµ = Xµ +Yµ , Σµ = Xµ −Yµ . (9.3)

The chiral currents Xµ and Yµ , may be taken as fun-
damental currents, that define electric and magnetic
currents. We can prove (6.13), using (6.11) and (8.1),
which gives

Ω1 = ξ +η + η+ξ , Ω2 = i(ξ +η −η+ξ ),

ρ2 = 4(ξ +η)(η+ξ ).
(9.4)

The fact, that one of the vectors Jµ , Σµ is time-like and
the other space-like, is a trivial property of the addi-
tion of isotropic vectors. But the fact, that precisely Jµ

is space-like, is a specific property due to the value
of Ω 2

1 + Ω 2
2 . See (6.13) and (9.4).

Our magnetic current KKKµ = gggΣµ may be space-like
because the true magnetic currents are the isotropic
currents gXµ and gYµ , whereas KKKµ is only their dif-
ference, which has not any reason to be of a definite
type.

10. The Geometrical Optics Approximation and
the Poincaré Equation [8]

Now we verify that we can find the Poincaré equa-
tion and the Birkeland effect. Let us introduce in the
first equation (8.4) the following expression of the
spinor ξ :

ξ = aeiS/h, (10.1)

where a is a two-component spinor and S a phase. At
zero order in h̄, we have[

1
c

(
∂
∂t

−gW
)
−
(

S +
g
c

BBB
)
·sss
]

a = 0. (10.2)

A condition for a non-trivial solution a is a relativistic
zero mass Jacobi equation:

1
c2

(
∂
∂t

−gW
)2

−
(

S +
g
c

BBB
)2

= 0. (10.3)

We can define the kinetic energy E , the impulse ppp,
the linear Lagrange momentum PPP and the Hamiltonian
function H:

E = −∂S
∂t

+ gW, ppp = SSS+
g
c

BBB, PPP = SSS,

H = c

√(
PPP +

g
c

BBB
)2 −gW.

(10.4)

A classical calculation gives the equation of motion

dppp
dt

= g
(

W +
∂BBB
∂t

)
− g

c
vvv× curlBBB, (10.5)

and the formulae (4.8) give the classical form

dppp
dt

= g
(

HHH − 1
c

vvv×EEE
)

. (10.6)

Now, one should remember that the mass of the particle
is equal to zero, so that vvv is the velocity of light. Thus
one cannot write ppp = mvvv. But the equality ppp = E

c2 vvv still
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holds with a constant energy E , which is the case in a
Coulombian electric field. Hence we find the Poincaré
equation (3.1) with a minus sign because we have cho-
sen the left monopole:

dppp
dt

= −λ
1
r3 ppp×rrr, λ =

ecg
E

. (10.7)

The right monopole cannot be deduced from the for-
mer by changing the sign of charge but it can be de-
duced by changing the sign of the phase of the wave,
with the same magnetic charge [8].

11. The Quantum Problem of a Monopole in an
Electric Central Field. Angular Eigenfunctions.
Dirac’s Condition

We assume W = 0 and introduce the expres-
sion (5.4) of BBB in (8.4). We find the integrals of mo-
tion [13] (with D = eg

h̄c , BBB = eB), respectively, for left
and right monopole. The Dirac number D was defined
in (5.2):

JJJξ = h̄
[
rrr× (−i + DBBB)+ D

rrr
r
+

1
2

sss
]
,

JJJη = h̄
[
rrr× (−i −DBBB)−D

rrr
r
+

1
2

sss
]
.

(11.1)

JJJξ and JJJη only differ by the sign of D (the sign of the
eigenvalues of the charge operator). We chose the sign
plus, the left monopole, and we drop the index ξ . We
find

[J2,J3] = ih̄J1, [J3,J1] = ih̄J2, [J1,J2] = ih̄J3. (11.2)

Now, if we write JJJ as

JJJ =
[
ΛΛΛ +

1
2

sss
]
, ΛΛΛ = rrr× (i + DBBB)+ D

rrr
r
, (11.3)

we recognize that h̄Λ is the quantum form of the
Poincaré integral (3.2). JJJ is the sum of this first in-
tegral and of the spin operator: JJJ is the total angular
momentum of the monopole in an electric Coulombian
field, the exact analogue of the corresponding classical
quantity. Of course, the components of h̄Λ obey the
same relations (11.2) as the components of JJJ.

Expressing by (5.4) BBB in terms of polar angles, from
the definition (11.3) we find

Λ+ = Λ1 + iΛ2 = eiϕ
(

icotθ
∂

∂ϕ
+

∂
∂θ

+
D

sinθ

)
,

Λ− = Λ1 − iΛ2 = e−iϕ
(

icotθ
∂

∂ϕ
− ∂

∂θ
+

D
sinθ

)
,

Λ3 = − ∂
∂ϕ

. (11.4)

It is important to note that, owing to our choice of
gauge (6.6), there is not any additional term in Λ3 as
it occurred with the Dirac solution [24, 25]. Now, we
look for the eigenstates Z(θ ,ϕ) of (Λ)2 and Λ3. In
accordance with (11.2), the corresponding eigenvalue
equations are

(Λ 2)Z = j( j + 1)Z, Λ3Z = mZ,

j = 0,
1
2
,1

3
2
,2 . . . , m = − j,− j + 1, . . . j−1, j.

(11.5)

To simplify the calculation, let us introduce an angle χ
and a function D(θ ,ϕ ,χ):

D(θ ,ϕ ,χ) = eiDχ Z(θ ,ϕ). (11.6)

These functions are eigenstates of operators Rk, as can
be seen from (11.4):

R+ = R1 + iR2 = eiϕ
(

icotθ
∂

∂ϕ
+

∂
∂θ

− i
sin θ

∂
∂χ

)
,

R− = R1− iR2 = e−iϕ
(

icotθ
∂

∂ϕ
− ∂

∂θ
− i

sinθ
∂

∂χ

)
,

R3 = −i
∂

∂ϕ
. (11.7)

The functions D(θ ,ϕ ,χ) are related by (11.6) to the
eigenvalues of Λ+, Λ−, Λ3:

D(θ ,ϕ ,χ) = j( j + 1)D(θ ,ϕ ,χ),
R3Z = mD(θ ,ϕ ,χ).

(11.8)

The Rk are the infinitesimal operators of the rotation
group written in the fixed reference frame. θ , ϕ , χ are
the Euler angles : nutation, precession and proper rota-
tion. The role of the rotation group is evident because
of the spherical symmetry of the problem.

Our eigenfunction problem is trivialy solved by the
hypothesis of continuity of the wave functions, on the
rotation group instead of the cumbersome calculations
of the so-called “monopole harmonics” [24, 25], which
actually don’t exist! Owing to the continuity the effects
of the Dirac strings are “rubbed out” as was said at the
begining.
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Under the assumption of continuity on the rotation
group, we find that the angular eigenfunctions are the
generalized spherical functions, i. e. the matrix ele-
ments of the irreducible unitary representations of the
rotation group [8, 13, 26, 27].

And they are the eigenfunctions of the spherical top.
This was considered by Tamm [28] as a coincidence,
but here, it is evident as a consequence of the analogy
between the system of a monopole in a central field and
the angular motion of a symmetrical top.

The eigenstates of R2 and R3 are given by the group
theory. The end of the calculation and the radial part
may be found in [8, 12]. The most important point ap-
pears on the formula (11.6): the D(θ ,ϕ ,χ) are the el-
ements Dm′m

j (θ ,ϕ ,χ) of the unitary representations of
the rotation group. So the following eigenvalues j, m,
m′ result with

J = 0,1,
1
2
,1

3
2
,2, . . . ,

m,m′ = − j,− j + 1, . . . , j−1, j.
(11.9)

j are the values of the total angular momentum and m′
is its projection on the symmetry axis of the system,
joining the monopole and the Coulombian center.

But m′ must be identical to the number D in the fac-
tor of χ of the exponent in (11.6). So, we have D = m′
and we know from (11.1) that D is the Dirac number;
thus we find:

d = m′ =
eg
h̄c

= − j,− j + 1, . . . , j−1, j. (11.10)

This is the Dirac formula, but with some differences:

1) The proof is based on a model which allows an
interpretation of the abstract number n in (5.2).

2) The number hm′ is limited by the quantum state
of the “top“, which raises the question of the generality
of the Dirac formula [29].

Now, the normalized angular eigenfunctions take
the form [8, 13]:

Zm′m
j (θ ,ϕ) =

√
2 j + 1Dm′m

j (θ ,ϕ ,0)(i)m′−m. (11.11)

The proper rotation angle χ disappears because the
monopole is supposed to be punctual, contrary to the
symmetric top. But there is a projection of the orbital
momentum different from zero, due to the chirality of
the magnetic charge.

12. A Non-Linear Massive Monopole

Until now we had a massless linear monopole
(6.21), but there are non-linear chiral invariant gen-
eralizations ([7, 8, 13]). We have found that the general
mass is a function F(ρ) where ρ is given by (6.9). In
Weyl’s representation the Lagrangian reads:

L =
h̄c
i

{
ξ +
(

1
2

1
c
[∂t ]− g

h̄c
W
)

ξ

− ξ +sss ·
(

1
2
[ ]+

g
h̄c

BBB
)

ξ
}

+
h̄c
i

{
η+
(

1
2

1
c
[∂t ]+

g
h̄c

W
)

η

+ η+sss ·
(

1
2
[ ]− g

h̄c
W
)

η
}

+ h̄cF(ρ),

(12.1)

which gives the equations

1
c

∂tξ −sss· ξ − i
g
h̄c

(W +sss·BBB)ξ + iκ(ρ)

√
η+ξ
ξ +η

η = 0,

1
c

∂tη +sss· η + i
g
h̄c

(W −sss·BBB)η + iκ(ρ)

√
ξ +η
η+ξ

ξ = 0,

where κ(ρ)=
dFG(ρ)

dρ
. (12.2)

These equations are chiral invariant, like the linear
equation, the magnetic current (7.1) is conserved and,
owing to (7.2), the equations are PTC invariant [7].
Generally, the equations (12.2) are coupled, contrary
to (8.4) but this coupling is not strong. The isotropic
chiral currents (9.2) are separately conserved and the
coupling vanishes when ρ = 4|ξ +η |= 0. This happens
for ξ = 0 or η = 0 (separated chiral components), or
in the Majorana case [30], that cannot be developed
here [29, 31]:

ξ = f (x, t)s2η∗ ⇒ ξ = eiθ(x,t)s2η∗. (12.3)

Now, in (12.2), ξ and η are phase independent. The
plane waves are

ξ = aei(ωt−kkk·rrr), η = bei(ω ′t−kkk′·rrr), (12.4)
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which gives the dispersion relation [7, 8, 13],(
ω2

c2 −kkk2
)(

ω ′2

c2 −kkk′2
)

−2
(

ωω ′

c2 −kkkkkk′
)

κ2(ρ)+ κ4(ρ) = 0,

κ(ρ) =
dF(ρ)

dρ
.

(12.5)

We shall consider the case of an equation homoge-
neous in ξ and η :

F(ρ) = κ0ρ , κ(ρ) = κ0 = const. (12.6)

Two kinds of waves (12.5) are particularly interesting:
1) ω = ω ′, kkk = kkk′. Both monopoles have the same

phase and the dispersion relation is reduced to

ω2

c2 = k2 + κ2
0 (k =

√
kkk2). (12.7)

This is the ordinary dispersion relation of a massive
particle, a bradyon.

2) ω = −ω ′, kkk = −kkk′. The phases have opposite
signs and the dispersion relation becomes

ω2

c2 = k2 −κ2
0 . (12.8)

This is the dispersion relation of a supraluminal parti-
cle, a tachyon. The wave equations (12.2) seem to be
the first ones in which tachyons appear without any ad
hoc condition. These non-linear equations can be eval-
uated in various ways which in detail are described in
the papers quoted in the references, especially [7].

Nevertheless, let us conclude with an important
remark concerning the non-linear monopole in a
Coulombian electric field. Chiral components of (12.2)
cannot be separated as they were in the linear
case (8.4).

We must go back to the Ψ representation (6.21) that
gives equivalently to (12.2)

γµ

(
∂µ − g

h̄c
γ5BBBµ

)
Ψ + κ(ρ)

Ω1− iγ5Ω2√
Ω 2

1 + Ω 2
2

= 0

(
ρ =

√
Ω 2

1 + Ω 2
2

)
.

(12.9)

In a Coulombian electric field, with a pseudo-
potential (4.7), the angular operator corresponding

to (11.1), in the Ψ representation, is

JJJ = h̄
[
rrr× (−i + γ4DBBB)+ γ4D

rrr
r

+
1
2

SSS
]
,

SSS =
( s

0
0
s

)
, D =

eg
h̄c

, BBB = eB.

(12.10)

To prove that JJJ is an integral of the non-linear system,
we must go back to the definition and verify that the
mean value of the operator JJJ is a constant in virtue of
the wave equations (12.9). It is just what happens and
one finds indeed

∂
∂t

∫
Ψ+JJJΨdxdydz = 0. (12.11)

So, the non-linear equation (12.9) defines the same an-
gular momentum as the linear equation (6.21). There-
fore, the angular part must be the same as in the linear
case. The difference will be only in the radial factor.

13. Chiral Gauge and Twisted Space

Let us take the particular case of (12.9) when Bµ =
0, κ(ρ) = λ ρ , λ = const:

γµ∂µΨ + λ (Ω1 − iγ5Ω2)Ψ = 0. (13.1)

Equivalent equations were considered by other authors
[32 – 38], among them is Rodichev [38] who consid-
ered a space with affine connection. Let us briefly re-
call:

1) No metric is introduced, the theory is formulated
in terms of connection coefficients Γ i

rk only. One can
define contravariant and covariant vectors T i and Ti,
and covariant derivatives

µT i = ∂µT i +Γ i
r µT r,

µTi = ∂µ Ti −Γ r
i µTr.

(13.2)

2) Two important tensors are so defined4, curva-
ture and torsion:

−Ri
qkl =

∂Γ i
ql

∂xk − ∂Γ i
qk

∂xl +Γ i
pkΓ

p
ql −Γ i

plΓ
p

qk

and Sλ
[µν] = Γ λ

µν −Γ λ
νµ .

(13.3)

3) A parallel transport along a curve x(t) is defined
by: ξ T = ξ k

kT = 0 (ξ = x(t)). A geodesic line is
generated by the parallel transport of its tangent. Apart

4When Ri
qkl = Sλ

[µν] = 0, the space is Euclidean.
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from an Euclidean space, a geodesic rectangle is bro-
ken by a gap in two terms: the first, in dt2, depends on
torsion, the second, of the order of o(dt3), depends on
curvature.

4) In a twisted space (Sλ
[µν] �= 0), a geodesic loop

is an arc of helicoid with a “thread” of the second or-
der, the order of an area. Something similar happens in
a spin fluid: the angular momentum of a droplet is of
higher order than the spin [39 – 41].

Now, Rodichev takes a flat twisted space, with
torsion

(
Γ λ
[µν] = Sλ

[µν] �= 0
)

but straight geodesics

(Γ λ
(µν) = 0), and the following connection and covari-

ant spinor derivative:

Γλ [µν] = Sλ µν = Φ[Λ µν],

µΨ = ∂µΨ − i
4

Φ[µνλ ]γνγλΨ ,
(13.4)

with the following Lagrangian density:

L =
1
2
{

Ψ̄γµ µΨ − ( µΨ̄)γµΨ
}

. (13.5)

Translating the last formula in our language, it gives

L =
1
2

{
Ψ̄γµ∂µΨ − (∂µΨ̄)γµΨ − i

2
Φ[µνλ ]Ψ̄γν γλΨ

}
.

(13.6)

Introducing the axial dual vector Φµ = i
3! ε[µνλ σ ]

×Φ[νλ σ ], the Lagrangian becomes

L =
1
2

{
Ψ̄γµ∂µΨ − (∂µΨ̄)γµΨ − 1

2
ΦµΨ̄γµγ5Ψ

}
,

(13.7)

which gives the equation

γµ

(
∂µ − 1

2
Φµ γ5

)
Ψ = 0. (13.8)

With Φµ = 2g
h̄c Bµ , this is our equation (6.21). Let us

note that Rodichev did not introduce Φµ as an external
field, but only as an geometric property, but now we
can say that a monopole plunged into an electromag-
netic field induces a torsion in the surrounding space.

Rodichev ignored the monopole. He didn’t aim at
the linear equation (13.6), but at a non-linear equa-
tion, through the following Einstein-like action integral
without external field:

S =
∫

(L−bR)d4x. (13.9)

L is given by (13.3), b is constant, R is the total curva-
ture and, in virtue of (13.3),

R = Φ[λ µν]Φ[λ µν] = −6ΦµΦµ . (13.10)

Hence, (13.9) becomes

S =
∫ {1

2
[Ψ̄γµ∂µΨ − (∂µΨ̄)γµΨ

−2ΦµΨ̄γµγ5Ψ ]+ 36bΦµΦµ

}
d4x.

(13.11)

Now, if we vary S with respect to Φ , we find

Φµ =
1

18b
Ψ̄γµ γ5Ψ ,

R =
1

64β 2 (Ψ̄γλ γµ γνΨ)(Ψ̄γλ γµγνΨ )

=
3

32β 2 (Ψ̄γµγ5Ψ)(Ψ̄γµγ5Ψ ).

(13.12)

Now, the variation of S with respect to Ψ gives the non-
linear equation:

γλ ∂λΨ − 1
9b2 (Ψ̄γµγ5Ψ)γµ γ5Ψ = 0. (13.13)

So doing, we come back once more to the monopole,
but now in the non-linear case. Up to a constant factor,
(13.13) is identic to (13.1), a particular case of (12.9).
The identity between (13.3) and (13.1) is due to the
identities (6.11), in virtue of which, and of (13.12):

R =
3

32β 2 (Ω 2
2 + Ω 2

2 ). (13.14)

Which means that the fundamental chiral invariant,
(Ω 2

2 + Ω 2
2 ), apart from a constant factor, is the curva-

ture of the twisted space created by the self-action of
the monopole, expressed in the equation by the identi-
fication of the torsion to the total curvature in (13.8).
This confirms the link between our monopole and a
torsion of the space.

14. The Electroweak Generalization by Stumpf

We owe to H. Stumpf an important generalization of
the preceding theory, which could not be better sum-
marized than by quoting the formulation of the prob-
lems by the author himself:

(i) Does a medium exist which transmits electric as
well as magnetic monopole actions?
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(ii) Can one discover “elementary” or other par-
ticles which act as magnetic monopoles or dyons, re-
spectively?

(iii) Can the hypothetical medium and the
monopoles and dyons be incorporated into an
extended electroweak Standard model?

In this context it is interesting to note that in de
Broglie’s theory of fusion the problem of the existence
of magnetic monopoles is already present in the for-
malism. Apart from “electric” photons the fusion equa-
tions admit a second photon solution which has been
identified as a “magnetic” photon state [8, 42]5, the
fields of which are exactly those that enter in the dy-
namics of a magnetic charge. In this way the problem
of magnetic monopoles is linked to the fermionic sub-
structure of the photon, or more general, to the sub-
structure of elementary particles. This has been the
topic of de Broglie’s and Heisenberg’s fusion ideas.
Following these ideas Stumpf developed a quantum
field theoretic formalism for the treatment of fusion
problems and in particular, he applied this formalism
to the monopole problem. A discussion of his results
would exceed the scope of the paper. So we refer to the
literature [43 – 50].

15. Experiments

Most experiments were performed in Moscow in the
Recom Laboratory of the Kurchatov Institute, under
the leadership of Leonid Urutskoev [51, 52], some at
the Nuclear Institute of Dubna, by Vladimir Kuznetsov
et al. [53], and others at the Kazan University, by Niko-
lai Ivoilov [54, 55]. At first we describe Urutskoev’s
experiments, performed with intense, brief electrical
discharges through thin titanium electrodes submerged
in a liquid medium (generally water). He found several
remarkable effects:

1) The appearance of an astonishingly stable light-
ning ball (50 times the duration of the discharge) with
a very complex optical spectrum, showing the rays of
various chemical elements, many of which were ini-
tially absent from the laboratory installation [51, 52].

2) The most remarkable effect was the chemical
composition of the remaining dust of the thin titanium
electrode pulverized by the electric discharge: the com-
plex composition obtained by mass spectrography con-
firmed the one obtained by optical spectrometry, see

5Two references can be added, concerning “electric” and “mag-
netic” photons: G. Lochak, Ann. Fond. L. de Broglie 20, 111 (1995);
29, 297 (2004).

Fig. 3. New elements after the discharge (Urutskoev).

Fig. 4. Isotopic structure of titanium before and after the dis-
charge (Urutskoev).

Fig. 3 (the chemical components present before the ex-
periment are not shown).

An important point is a modification of the isotopic
spectrum of the elements: the proportions of the dif-
ferent isotopes are modified. It is the case for the ti-
tanium, the central isotope of which is strongly weak-
ened, but it must be stressed (Urutskoev) that it is not
transformed into the other isotopes. One can see on
Fig. 4 that the central 48Ti isotope is strongly weak-
ened, indeed, but the lateral satellites are practically
unaltered.

An interesting fact is the presence of a considerable
quantity of iron (Fig. 3) that could pass for an artefact,
since the source of monopoles was in a block of steel.
So this point was specially verified. The isotopic com-
position of the column “iron” that appears in Fig. 3
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Fig. 5. A monopole track (Urutskoev)

is not the ordinary composition of iron. For instance,
56Fe, abundant in nature, was strongly reduced, while
57Fe, very rare in nature (less than 2.5%), was strongly
increased. Thus, this iron is not the one that enter in the
composition of the source.

It must be stressed that exceptionally competent and
scrupulous experimenters obtained these results. The
Urutskoev group repeated and controlled hundreds of
similar discharge experiments, which were in addi-
tion confirmed on several mass spectrometers of dif-
ferent types in different laboratories, mainly by the
Kuznetsov’s group [53].

3) A puzzling result was that the radiation emitted
during the electrical discharge was examined on nu-
clear photographic plates located at distances of sev-
eral meters from the source. Strange tracks appeared
on the plates. Figures like Fig. 5, communicated by
Urutskoev, were analyzed by specialists skilled in in-
terpreting tracks on nuclear emulsions.

The conclusion was that these tracks were unlike
anything they had ever observed – don’t forget that the
Kurchatov Institute is one of Russia’s major nuclear
physics laboratories!

These tracks could not be due to electrically charged
particles, because:

a) The observed particles freely cross several me-
ters of atmosphere (it was not done in vacuum), while
electric particles would be largly stoped.

b) For electric particles, the track thickness would
correspond to 1 GeV of energy, but the tracks were
‘hairless’: without surrounding “delta electrons”, char-
acteristic of charged particles.

c) They cannot be neutral since they leave tracks.
Thus, they must carry some other charge.

These tracks have a curious ‘caterpillar structure’
(Fig. 6 and references quoted above). The formation
of the tracks is sensitive to a magnetic field. A field of
20 œrsteds applied to the source of monopole radia-
tion transforms the shape of the tracks into a broader
trace of ‘comet-like’ shape with an integrated darken-
ing equal to that of the initial track.

Fig. 6. Caterpillar structure of a monopole track (enlarged∼= 150 times).

Another question is raised by another specific fea-
ture: the traces appear in a plane orthogonal to the
radius-vector from the center of the unit, as if they
were traped between the film and the sensitive emul-
sion. The larger is the distance between the detector
and the unit center, the narrower is the trace pattern.
At a distance equal to about one half meter, the track
width is about 30 µm, while at a 2-meter distance it is
only around 5 µm [52].

4) Various difficulties of interpretation gradually
led Urutskoev and his research team to the conclusion
that magnetic poles could be a possible source of the
strange radiation effects they had observed. They be-
came aware of the present author’s work and a fruitful
collaboration has been initiated.

From the very beginning, an important experiment
was realized by Urutskoev and Ivoilov [56], using the
fact that 57Fe is at the same time magnetic and the most
sensitive element to the Mössbauer effect. They irradi-
ated, at some meters from the source of the supposed
monopoles, a sample of 57Fe. Behind the iron sam-
ple was one pole of a long linear magnet, in order to
repel the monopoles of the same sign and attract the
monopoles of the opposite sign. Owing to the Möss-
bauer effect, they found a distinct shift of a character-
istic γ ray.

They repeated the experiment with the other pole of
the magnet behind the iron sample and, with the same
exposure they found a γ ray shift in the opposite direc-
tion [56].

One can make two remarks about this experiment:
a) This is one of the most brilliant proofs of

monopole magnetism. But there are others: for in-
stance, the fact that Ivoilov focused a monopole beam
with an electromagnet.

b) If the 57Fe target sample used in the Mössbauer
experiment is abandoned for three days, the preceding
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characteristic γ ray spectrum goes back to its mean nor-
mal position. This half-life effect seems to hold for all
the effects of magnetism induced by monopoles: they
seem to have a limited time of life (not predicted by
theory). But other effects, such as isotopic shifts, are
definitive.

There a more recent experiments:
1) Chemical effects: Urutskoev has decomposed a

sample of ammonium nitrate (NH4NO3) sealed in a
hermetic aluminum vessel at a distance of several me-
ters from the electric discharge, hypothesizing that the
monopoles emitted by the discharge would penetrate
the aluminum container and catalyze the exothermic
decomposition. He further introduced the same ma-
terial in a vessel made of ferromagnetic steel, and
nothing happened. The experiment was repeated many
times for statistical accuracy. The nitrate was decom-
posed in every aluminum container and no change was
ever observed inside the steel containers.

2) Enrichment of uranium: The first idea of a catas-
trophe caused by a flow of monopoles arose in the
Urutskoev group after the Chernobyl catastrophe. The
hypothesis about Chernobyl is that the origin could be
an electric “machine explosion” that really happened
in a building connected to the reactor by a water pipe.
Urutskoev hypothesized that monopoles created by the
arc could have been conveyed into the reactor through
this water conduit and perpetrated transmutations on a
massive scale.

The original concentration of 235U, before the catas-
trophe, in 1986, was less than 1.2%. But after the
explosion, uranium pieces were found, enriched up
to 27%. Later, Urutskoev tried to obtain an identical ef-
fect on uranium with a monopole flow. He proved that
it is a repeatable effect, and an impressive enrichment
was obtained in his laboratory [52].

3) β Radioactivity. There are two important results:
a) It was theoretically predicted [8, 11, 13], that

in some cases, β radioactivity may be associated
with monopoles, instead of neutrinos, and that so-
lar monopoles could follow the earth magnetic lines
and reach the magnetic poles. Our initial hypoth-
esis was confirmed by experiments performed by
Ivoilov [54, 55]. He submitted a β radioactive sample
to a magnetic field in the presence of nuclear emulsions
and monopole traces appeared.

b) Reduction of the half-life time of β emitters
by magnetic monopoles. It is known that the life-
time of unstable nuclear states of some atoms de-
pends on their chemical state ([57 – 59]). While this

Fig. 7. A monopole track with its image in a mirror (Ivoilov).

effect is not controversial, the changes are generally
less than 1% and are close to the noise level. However,
the β half-lifetime of rhenium has been reduced from
4× 1010 years to 30 years in the case of a complete
ionization of the atom.

Urutskoev put this phenomenon in parallel with the
Kadomtsev effect, which consists in a reduction of a
β lifetime by the action of an external magnetic field
on an atom. This theoretical prediction [60] needs gi-
gantic fields (unobtainably large on a laboratory scale).
But such a field can be produced in the vicinity of a
monopole, which is able to pass very close to a nu-
cleus because there is no repelling force. Experiments
performed by Urutskoev confirmed this interaction.

4) Chirality. Ivoilov, with a weaker source of
monopoles, has the curious advantage to obtain the
same tracks with lower energy, more sensitive to the
distortions of fields, thus with more complicated and
easily recognizable shapes. Figure 7 shows a monopole
track with its image in a mirror made of glass or
monocrystalline Si or Ge [54, 55].

The photograph is taken on a low sensitivity two-
sided X-ray plate, so that a microscope of magnifica-
tion 20 to 100 is able to distinguish the track on the
side of the source of radiation from the track on the re-
flector side. The tracks are almost identical, up to little
defects due to the fluctuating magnetic field due to the
electric arc of the source of monopoles, from which the
sensitive emulsion plate was at a distance of only 10 –
15 cm.

There are three questions concerning this experi-
ment:

a) As we already know, the observed tracks are on
a plane orthogonal to the direction of the source. Per-
haps Ivoilov provided the beginning of an answer to
this puzzling fact (partially in [54], partially in a private
discussion). He quoted that there is a too little number
of tracks, to explain macroscopic effects such as the
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magnetization of a sample of 57Fe or the fact that frag-
ments of irradiated titanium are attracted by a magnet
after the electrical discharges.

Conversely, Ivoilov noted on the photographic
plates myriads of microscopic tracks that did not draw
attention at a first glance, as they looked like small de-
fects of the surface. On closer inspection, however, it
turned out that the microscopic tracks were not sim-
ple defects. Ivoilov verified that these traces were pro-
duced by the electric discharge, and he emitted the hy-
pothesis that perhaps they are due to monopoles pass-
ing through the emulsion plane at greater angles. The
long tracks, which can reach 10 mm, would then be the
paths of rare monopoles that are trapped by chance be-
tween the sensitive layer and the polymer ground (the
last point seems to be verified). And he stressed that
this faculty of making a bend at a right angle could
be a consequence of the zero mass predicted by the-
ory [54, 55].

b) On Fig. 7 the reflected track is not a mirror image
in the optical sense: it is quasi-identical to the direct
track, which has been verified on many photographs.
This is a first proof that the monopole is a pseudo-
scalar, as it was predicted by Pierre Curie and con-
firmed by the theory given above. It must be stressed
that this theory is the only one, which deduces the
chirality of monopoles from its wave equations (8.4),
splitting the south and north monopoles. Other theo-
ries, devoid of geometry, cannot integrate this result.

c) Last question: The reflected track seems to be ro-
tated of an angle π , which is puzzling at a first glance,

but actually the image is not rotated, it is symmet-
ric with respect to a center. Contrary to the rotation,
this symmetry is evident and achieves the proof of
pseudo-scalarity of the charge: the magnetic current is
a pseudo-vector and has the symmetry of the product
of the velocity (a polar vector) by the charge (a pseudo-
scalar). The component orthogonal to the plane of sym-
metry does not change, while the components parallel
to the plane change their sign, so that the experimental
result agrees with the theoretical predictions.

5) Biological effects. These researches were or-
ganized under the leadership of E. Pryakhin (from
the Ural Scientific and Practical Center of Radioionic
Medicine) in the Urutskoev Laboratory, where an ex-
perimental sample of several hundred laboratory mice
were irradiated by magnetic monopoles. The conclu-
sions of Pryakhin’s report at a conference in Mar-
seille in 2004 [61], draw attention to the following
points:

“It can be concluded, based on the results of our ex-
periments, that:

(i) “Strange” radiation stimulates proliferation of
bone marrow cells with or without delay in maturation.

(ii) It induces changes resulting in increased resis-
tance to genotoxic exposures (gamma-irradiation and
others).

(iii) “Strange” radiation (monopoles) aggravates
the clinical course of acute radiation disease if it is ap-
plied after gamma-irradiation.

(iv) It leads to changes of cell composition in the
blood.”
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